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ABSTRACT 
 

Quantifying community assembly processes and understanding how communities respond to 

disturbance is a critical goal of ecology. Co-occurrence analysis is an increasingly popular tool 

that has been used to approach this problem, and quantifies how often a pair of species is 

found together with respect to a random baseline, usually calculated using possible pairs of 

species in an assemblage. Despite its potential to provide nuanced pairwise information, 

practical applications of this approach remain elusive. Associations calculated with co-

occurrence do not demonstrate direct biotic interactions. Instead, relationships are often 

driven by combinations of several mechanisms, which can make associations appear 

statistically insignificant on the surface and difficult to interpret biologically. In the first 

chapter of this work, I begin with a short introduction to co-occurrence analysis and outline 

the challenges and potential advantages associated with it. In the second chapter, I confront 

these challenges by suggesting that co-occurrence data should be treated as a continuous 

probabilistic variable. I also demonstrate several ways co-occurrence analysis can untangle 

biological mechanisms when used in targeted comparative analyses. The third chapter 

provides an observational study of probabilistic co-occurrence networks, describing their 

structures and link weights using simulated and empirical examples. In the following chapters, 

I use two applications of the propose probabilistic framework to answer ecological questions 

about community responses to disturbance such as extinction and habitat alteration. In 

chapter 4, I study the end-Pleistocene North American mammal extinction to show how biotic 

and abiotic regulatory factors can be isolated as components of each co-occurrence. 

Moreover, I show that community reassembly of the surviving mammals after the extinction 
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was driven by biotic interactions rather than concurrent climate change.  In chapter 5, I 

demonstrate how co-occurrence analysis can highlight changes in functional trait distribution 

due to habitat alteration using site inventories of Neotropical birds and bats. The methods 

presented here can be extended in the future to improve our understanding of multi-taxon 

association networks and eventually entire ecosystems. Most of the investigated taxa showed 

a decrease in positive co-occurrences and an increase in negative co-occurrences in response 

to disturbances. These patterns suggest that anthropogenic disturbance decreases the ability 

of species to coexist and may reduce the ability of ecosystems to self-regulate via biotic 

interactions. Thus, the restoration of species interactions may require more attention in 

conservation and management. 
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 Natural ecosystems harbour diverse, interacting communities of plants, animals, 

fungi, and microbes. The processes by which these ecosystems assemble and disassemble are 

varied and complex, involving environmental influences such as rainfall and interactions 

between species. Understanding how ecosystems and local communities come to support 

many coexisting species, and how this changes over space and time is a central focus of 

macroecology. Such information is vital to both humans and animals, because ecosystems 

support our very existence: they provide sustenance through intricate mechanisms such as 

pollination, they decompose, recycle, and circulate nutrients, cleanse toxins, and provide 

myriad other services that we often take for granted. 

 In today’s rapidly changing world, human influence has altered over 75% of the 

terrestrial landscape and appropriated most of its resources (Ellis and Ramankutty 2008), 

caused extinctions that reshaped the faunal body mass distributions of entire continents 

(Lyons et al. 2004; Lyons and Smith 2013), and downgraded the trophic regulation of global 

ecosystems (Estes et al. 2011; Ripple et al. 2016). Understanding how assemblages of plants 

and animals respond to these disturbances over various scales is therefore a pressing 

question. For example, how might human disturbance alter the resilience of forest bird 

communities? On long temporal scales, how might survivors of a major extinction event shift 

their assembly patterns in response to the disappearance of the extinction victims? Is the new 

community structure of survivors reflected in local diversity or community resilience?  

BIOTIC INTERACTIONS AS A DRIVER OF COMMUNITY ASSEMBLY 

 Increasingly, researchers in ecology, paleoecology, and conservation are expanding 

their focus to take in complex systems, showing how species relationships and interactions 
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determine occupancy (Jeffers et al. 2015; Kraft et al. 2015; D’Amen et al. 2018; Serván et al. 

2018; Gravel et al. 2018), support ecosystem services (Kaiser-Bunbury et al. 2017), and 

promote biodiversity (Levine et al. 2017). One study even proposes that environmental 

filtering should be invoked only when abiotic factors prevent the establishment and growth 

of a species in the absence of biotic interactions, and suggest a framework to isolate the role 

of the environment (Kraft et al. 2015). Several studies test frameworks for unravelling the 

effects of dispersal, environmental filtering, and biotic interactions on species distributions 

and coexistence (Blois et al. 2014; Weinstein et al. 2017; D’Amen et al. 2018).  

Answering these types of questions comes with a unique suite of challenges. First and 

foremost, our ability to understand the nuances of community structure depends on the data 

that is available. While the quality of and access to climate and biogeographic data is 

improving exponentially, local species data must still be collected by field sampling, which 

takes a tremendous amount of money and effort. Simple occurrence data are much easier to 

collect than abundance estimates, and are therefore much more readily available. Comparing 

these sampling types for species monitoring (Joseph et al. 2006; Dibner et al. 2017; Ward et 

al. 2017) and adapting species assessment methods to work with presence-absence data (e.g. 

(Valle et al. 2018), is an active area of research. Moreover, direct species interaction data is 

usually central to understanding the role of interactions in the spatial distribution of species, 

and this type of data is even more difficult to collect, because it requires direct observation 

of interactions at local scales. 

A second challenge is that there is a range of spatial and temporal scales we need to 

monitor. Long-term temporal trends are rarely considered in depth, as ongoing monitoring 

studies are still rare worldwide due to limitations imposed by funding cycles and human 
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lifetimes (Lindenmayer et al. 2012). Experts have pointed out the critical importance of 

understanding community change on longer time scales, suggesting that studies integrating 

modern and palaeoecological analyses should be a priority (Blois et al. 2013; Barnosky et al. 

2017). One such study showed that human impacts likely began to alter ecosystems 

thousands of years ago, suggesting that modern ecology represents a novel state in geologic 

history (Lyons et al. 2016). Unfortunately, differences in the scale, resolution, collecting 

method, and taphonomy of paleontological data mean that studies integrating fossil and 

modern ecology are the exception, not the rule. Furthermore, biotic interaction data for fossil 

assemblages traditionally comes from indirect evidence such as dental morphology (Pineda-

Munoz et al. 2016), herbivory damage on macro-plant fossils (Labandeira and Currano 2013), 

or predictive models (Pires et al. 2014, 2015). Some types of interactions can only be recorded 

in the unlikely event that their occurrence was fossilised (e.g. a plant being found with its 

pollinator or an animal fossilised with its parasites in situ, or fossilised stomach contents).  

There is also increasing interest in studying large spatial scales in a search of useful 

generalisations (McGill 2019). Although there is evidence that biotic interactions influence 

community assembly at large spatial scales (Araújo and Luoto 2007), it can be difficult to 

detect their spatial effects across landscapes due to scaling effects (Araújo and Rozenfeld 

2013), and direct interaction data collected locally does not scale easily to regions and 

landscapes. Shifts in community structure may change in opposite ways depending on the 

spatial scale and resolution of the data (Chase et al. 2018), often making it difficult to draw 

practical, broadly applicable conclusions. 

A third major challenge in scaling up to ecosystem-level analyses is that methods for 

addressing biological questions in systems with many interacting components are still being 
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developed. Network analysis is one approach that lends itself intuitively to the study of 

ecological systems with many interacting components. Studies of biotic interactions, 

(particularly trophic relationships) utilising some form of network analysis to evaluate the 

properties of assemblages (particularly stability) have been around for many years (Pimm 

1984; Montoya et al. 2006), although recent increases in data availability and computing 

resources have opened rapid progress in the field (Proulx et al. 2005). Networks have since 

been used to study how plant-pollinator interactions (Sauve et al. 2015; Kaiser-Bunbury et al. 

2017), mutualistic interactions (Rezende et al. 2007; Bascompte and Jordano 2007; Bastolla 

et al. 2009; Thébault and Fontaine 2010; Suweis et al. 2013; Dáttilo et al. 2013, 2016; Rohr et 

al. 2014; Welti and Joern 2015; Minoarivelo and Hui 2016), seed-dispersal interactions 

(Timóteo et al. 2018), and parasitic interactions (Poisot et al. 2012) relate to community 

structure, dynamics, diversity, and response to disturbances.  

Though such research is traditionally limited to examining the role of one type of 

interaction (e.g. pollination or herbivory), several studies have recently taken steps to analyse 

the structure and stability of multilayer networks which incorporate multiple interaction 

types, and have the potential to add spatial and temporal dimensions (Pilosof et al. 2017). For 

example, several studies examine how the plants on a farm site in the UK connect herbivory 

and pollination networks (Pocock et al. 2012; Sauve et al. 2015), and another examines 

modularity in an herbivore-plant-pollinator network from Germany (Astegiano et al. 2017). A 

series of reviews and theory papers also promote the potential uses of multilayer networks 

in ecology (Pilosof et al. 2017; García-Callejas et al. 2018; Hutchinson et al. 2019). While biotic 

interaction networks have proved a popular and fruitful area of research, they still have 

limitations. Data must be collected on local scales with tremendous effort, and these local 
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networks do not scale up easily; rather, they must be observed again at different places and 

times. Moreover, antagonistic interactions that are often fundamental to determining species 

distributions, such as competition, are difficult to study in network form, although the effect 

of interspecific competition has been examined in multi-species systems (Jeffers et al. 2015; 

Ulrich et al. 2017; Elsen et al. 2017; D’Amen et al. 2018). Furthermore, they typically—with 

the exception of some food webs—focus on bipartite interactions, for instance, a multilayer 

herbivore-plant-pollinator network can be used to analyse the relationship between 

pollinators and herbivores and plants, but it ignores the relationships among the plants, 

among the herbivores (e.g. insects), and among the pollinators (e.g. insects and birds), which 

constitute entire quadrants of the adjacency matrix that may be subject to confounding 

competitive, trophic, and parasitic interactions. If we want to understand community 

assembly on large scales, the spatial outcomes of all possible interactions between species 

and taxa, as well as their abiotic environment and temporal dynamics, must be taken under 

consideration, but collecting that much interaction data (including historical and/or fossil 

data), or even building such models from simulated interactions, seems like an 

insurmountably complicated task.  

CO-OCCURRENCE ANALYSIS 

One increasingly popular approach for quantifying community structure that presents 

a potential solution to the problem is co-occurrence analysis. It uses simple presence-absence 

data from multiple sites across a study area to quantify the association of each species with 

each other species in an assemblage. More specifically, it asks whether each pair of species 

coexists (i.e. occurs together in the same sample) more or less often than expected if they 
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were randomly distributed. The resulting relationships (called ‘associations’) can be 

integrated into a co-occurrence network representing spatial community structure. See Table 

1.1 for the definitions of these and other terms that are central to this thesis. Though it is a 

relatively simple approach, co-occurrence analysis has the potential to reveal a detailed 

snapshot of community structure for the scales on which it is calculated. Co-occurrence 

networks can reveal changes in community structure that are more subtle than a decrease in 

richness or beta-diversity (Kay et al. 2017). They can also elucidate species-specific changes 

(e.g. does a species become more or less connected to others after a disturbance?) and hint 

at the role of each species in the greater system (Berry and Widder 2014; Borthagaray et al. 

2014). Because of its basic data requirements, co-occurrence analysis can be run on modern 

as well as paleontological community data (Blois et al. 2014; Lyons et al. 2016). Co-occurrence 

intrinsically incorporates information about spatial variation in species coexistence, making it 

an ideal tool for extracting general, consistent patterns from occurrence data. But even more 

fundamentally, co-occurrence analysis starts with the spatial relationships of all species on a 

broad scale and works backwards to infer processes and mechanisms. This is advantageous 

because it does not constrain the assembly mechanisms (i.e. environmental filtering, biotic 

interactions, dispersal) that may be included and is thus useful for analyses that wish to 

consider several interacting factors (Freilich et al. 2018). Because it focusses on the observed 

spatial outcomes of all overlapping processes, it is readily applicable to the real world where 

unknown or unmeasured variables are often important.  

Despite all of its advantages, several studies advise caution on the use of co-

occurrence analysis, citing the challenges that still remain. Associations are not interactions, 

and should not be interpreted as such without additional data (Freilich et al 2018), though 
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efforts are underway to translate between the spatial patterns of co-occurrence and biotic 

interactions (Morueta-holme et al. 2016; Harris 2016). In fact, associations are nothing more 

than statistically postulated relationships which do not have an objective biological 

interpretation. Associations give important information about the spatial relationships 

between species, but they do not identify the biological mechanisms driving the associations, 

and are therefore difficult to utilise in applied situations.  

One area where co-occurrence network analysis shows promise is in comparative 

studies. While it can be difficult to extract biological conclusions about a system from one co-

occurrence network, it can be very informative to compare networks across space  

(i.e. in disturbed and undisturbed sites) or time (i.e. before and after a disturbance event at 

the same sites). Several studies have used co-occurrence network analysis to study changes 

in community structure in response to disturbances (Veech 2006; Araújo et al. 2011; Lane et 

al. 2014; Lyons et al. 2016; Kay et al. 2017). Unfortunately, there are a plethora of ways to 

calculate co-occurrence, and researchers often use several such metrics to test the robustness 

of their results. Standardisation of these methodologies is sorely needed, a task that is beyond 

the scope of this thesis despite a comparison of three methods included in the supplementary 

materials for Chapter 2. Although co-occurrence studies often report observations about 

network metrics, many struggle to apply these to test biologically relevant hypotheses. This 

is partly because the structure of ecological networks varies across interaction types 

(Thébault and Fontaine 2010) and across space (Poisot et al. 2016), so interpreting changes 

in network structure has proved challenging (e.g. what does it mean when node centrality 

decreases?). In addition, little has been done to systematically document and describe the 

structure of co-occurrence networks for various taxa and spatial scales, leaving us without 
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baselines for comparison. Finally, studies rarely acknowledge that each individual co-

occurrence is a product of several overlapping processes. Existing methods typically 

categorise pairs according to the most likely driving process, even in cases where they cannot 

distinguish between them (Blois et al. 2014; D’Amen et al. 2018). 

AIMS 

The remainder of the current work aims to confront these challenges and 

demonstrate how co-occurrence can be used to answer biologically important questions 

about the mechanisms of community assembly, integrate modern and paleoecological data, 

and identify useful generalisations over regional and continental scales. The second chapter 

identifies trends in current uses of co-occurrence analysis, and extends and refines current 

methodologies, highlighting a modelling approach that can shed light on co-occurrence 

mechanisms. It also introduces the concept of a probabilistic co-occurrence network, which 

treats the strength of co-occurrence as a continuous variable. Traditional methods use a 

threshold approach to distinguish significant and random associations, but the approach 

outlined in this chapter allows researchers to make similar calculations without having to 

worry that a different threshold might overturn their results. I use an empirical dataset of 

mammals from East Africa to demonstrate its use for targeting questions about the drivers of 

community assembly and how it has changed over time.  
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Table 1.1. A brief glossary of terms that are central to this thesis.  

Term Definition 

Coexistence 
A general term that is used to describe a relationship 
between two species in which they are able to co-occur 
and perhaps even share resources.  

Co-occurrence 
When two species are found to be present at the same 
site.  

Co-occurrence analysis 

A set of statistical calculations which describes the 
frequency of co-occurrence between every possible pair 
of species in an assemblage with respect to a random, or 
expected, baseline.  The output of a co-occurrence 
analysis is generally in the form of a distance matrix. 

Network analysis 
Any analysis that involves the structure or properties of a 
network, i.e. a set of nodes connected by edges.   

Interaction network 
A network in which the nodes are species and edges 
represent some type of interaction (e.g. biotic interaction 
such as predation) between species.  

Bipartite network 

A network in which only the interactions/relationships 
between two distinct groups of nodes are considered 
(e.g. the interactions between herbivores and the plants 
they eat, to the exclusion of any interactions among the 
plants or among the herbivores). One common example is 
a plant-pollinator network.  

Co-occurrence network 
A network in which the edges represent relationships that 
correspond to the output of a co-occurrence analysis.  

Association 

A general term for the relationship between a pair of 
species that is calculated with co-occurrence analysis. An 
association is a hypothetical statistical construct rather 
than a biological reality, but may correlate with or 
indicate the existence of a biological relationship. In this 
thesis, I argue that such associations should be analysed 
as probabilities.  

Aggregation 
An association in which the species pair is found together 
more often than expected by chance.  

Segregation 
An association in which the species pair is found together 
less often than expected by chance.  
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PRACTICAL APPLICATIONS 

The third chapter documents the associations of North American mammal 

assemblages across the end-Pleistocene, Holocene, and last 2 ka (effectively, the Recent). This 

covers the critical Pleistocene-Holocene transition interval, which is marked by a mass 

extinction event that claimed almost all mammals greater than 40 kg (Martin and Wright 

1967). The Pleistocene-Holocene transition was also a time of warming climate, driving a 

reduction of the glaciers from the previous ice age. In this section, I explore how  

co-occurrence analysis can be used to identify the biotic and abiotic components of species 

associations and how the extinction event impacted the community structure of survivors.  

I ask whether changes in abiotic conditions or biotic interactions are responsible for 

community assembly shifts across the Pleistocene-Holocene transition by comparing mutual 

niche co-occurrence patterns to overall co-occurrence patterns in pairs of mammals, 

predicting that both processes play integral roles in community analysis that leaves a 

detectable signature on the co-occurrence patterns of species pairs.  

My fourth chapter tackles another applied problem: the effect of habitat alteration on 

assemblages of birds and bats in the Central and South American tropics. It presents a 

comparative analysis of the co-occurrence structures of these taxa in altered and unaltered 

habitats. Using basic diet information, I demonstrate how co-occurrence analysis can reveal 

the effect of habitat alteration on the outcomes of resource sharing and competition in 

Neotropical birds and bats.  

Further development and application of these methodologies, with a focus on 

elucidating biological mechanisms, can have a wide variety of practical conservation 
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applications. From building a fundamental understanding of community assembly and 

structure, we will be better able to assess the health of species assemblages. Co-occurrence 

analysis can also provide a simple way to monitor the effects of conservation and 

management decisions over time. Eventually, networks encompassing pairwise associations 

across several taxa (e.g., birds, trees, and insects) may provide similar insights into entire 

functioning ecosystems.  
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ABSTRACT 

Co-occurrence-based associations can be used to detect spatial and temporal changes in 

community assembly patterns. Most current methods for identifying co-occurrences are 

based on conventional hypothesis testing, which categorises pairs of species as significantly 

or randomly associated based on a canonical significance threshold. However, standard 

network metrics such as modularity and connectivity vary with the choice of threshold. 

Because co-occurrences are probabilistic relationships, we argue that the probabilistic 

framework proposed by Poisot et al. (2016) is readily applicable to co-occurrence networks, 

and confers several advantages. We go on to use co-occurrence probabilities as the response 

variable in a linear modelling approach and present a case study of East African mammals to 

show how it yields insights into the processes driving community assembly. Carnivores, 

herbivores, and omnivores present different assembly patterns, with carnivores more likely 

to exclude one another. Because of variable rates of exclusion across dietary groups, 

however, competitive exclusion is only weakly detectable in overall community assembly 

patterns in the presence of other ecological processes. In addition, the rate of exclusion may 

have decreased over time. Weak links, which are discarded in traditional networks, can be 

integral to interpreting assemblage structure, especially when there is high compositional 

turnover or when multiple interacting factors are influencing the co-occurrence of a pair.  The 

probabilistic approach is the logical way forward for co-occurrence analysis.  
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MAIN TEXT 

Introduction 

Much of macroecology focuses on explaining the composition and richness of 

communities across geographic space. Frequently, this question has been approached by 

modelling species occurrences against environmental variables. A few years ago, the idea that 

biotic interactions could play an important role in the spatial distribution of species, even on 

larger spatial scales, began to gain traction in the scientific community (Araújo and Luoto 

2007; Araújo and Rozenfeld 2013). The idea was not new: the notion of studying the 

relationships between the spatial distributions of pairs of species was pioneered by Diamond 

(1975) based on his observations of bird populations on islands. This work sparked a decades-

long debate about whether co-occurrence patterns are meaningful or driven by chance 

(Connor and Simberloff 1979; Diamond and Gilpin 1982; Gotelli and McCabe 2002).  

These developments led to a promising wave of research seeking to integrate the 

concepts of environmental and ecological niche modelling (Gravel et al. 2018; Dehling and 

Stouffer 2018). One popular approach to this challenge is to build joint species distribution 

models (JSDMs), which incorporate residual covariance of species occurrences into 

environmental distribution models to account for the effect of biotic interactions on species 

distributions (Pollock et al. 2014).  Another method, and the focus of this work, involves 

analysing pairwise species co-occurrence (Araújo et al. 2011; Steele et al. 2011; Lane et al. 

2014; Morueta-holme et al. 2016; Kay et al. 2017). Requiring only presence-absence 

observations, co-occurrence analysis quantifies the tendency of species to be found at the 

same sites with respect to a null model. This approach has been used to study the effects of 
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climate change (Araújo et al. 2011), habitat loss (Lane et al. 2014), interspecific competition 

(Kamilar and Ledogar 2011), anthropogenic landscape modification (Kay et al. 2017), and 

events in Earth history (Lyons et al. 2016; Villalobos et al. 2016) on the structures of various 

assemblages. To face the challenges of a changing world, methods that facilitate bridging the 

gap between modern and paleontological community data are urgently needed (Blois et al. 

2013; Barnosky et al. 2017), and co-occurrence analysis is a possible way forward (Blois et al. 

2013).  

Despite its potential, co-occurrence methodologies have encountered several 

obstacles. Many methods exist for the quantification of co-occurrence patterns, and they do 

not always agree, making information from diverse studies difficult to integrate. A direct 

biotic interaction between a pair of species cannot be demonstrated with co-occurrence data 

alone (Freilich et al. 2018).  This is in part because the co-occurrence of species pairs can be 

influenced by factors other than direct interaction, such as shared environmental 

preferences, dispersal limitation (Blois et al. 2014; Weinstein et al. 2017; D’Amen et al. 2018), 

phylogenetic distance (Krasnov et al. 2014), and even higher-order interactions with a third 

species (Levine et al. 2017).  Furthermore, the co-occurrence patterns of species pairs can 

change over space, particularly along ecological gradients (Bar-Massada and Belmaker 2017). 

How, then, can co-occurrence data best be used to answer real-world biological questions? 

In this paper, we tackle three main objectives. We begin with a discussion of current 

trends in the use of co-occurrence analysis, and point out how the use of significance 

thresholds has restricted the accuracy of popular approaches. We will then examine an 

emerging alternative approach to co-occurrence that uses association probabilities, rather 

than statistically significant associations alone, as the underlying data in analyses. Finally, we 



Chapter 2  Probabilistic Co-occurrence Analysis 
 

32 
 

present a case study of a practical application of probabilistic co-occurrence to an example 

dataset. 

Current trends in co-occurrence analysis 

Our goal in this section is to discuss trends in recent co-occurrence analyses and 

highlight their strengths and weaknesses. This is not an exhaustive review; instead, we use a 

small, diverse sample of recent co-occurrence studies to identify certain commonalities.  

Strengths. With the increasing availability of high-performance computing, network analysis 

has become very popular in ecology (Proulx et al. 2005), and this development is evident in 

the field of co-occurrence analysis. Co-occurrence networks have been constructed for birds 

(Araújo et al. 2011; Lane et al. 2014; Tulloch et al. 2016), mammals and amphibians (Araújo 

et al. 2011), trees (Morueta-holme et al. 2016), animals in general (Borthagaray et al. 2014), 

microbes (Steele et al. 2011; Barberán et al. 2012; Berry and Widder 2014), and reptiles 

(Araújo et al. 2011; Kay et al. 2017). This approach involves applying a significance threshold 

to co-occurrence calculations, which means removing weak associations that do not meet the 

significance criteria. There are two main advantages of this approach. First, it allows the 

construction of networks with binary links (yes/no), which can then be described or compared 

using common metrics of network structure and node characteristics. Second, the number of 

pairwise associations in an assemblage increases exponentially with the number of species, 

and this pruning procedure reduces associations to a more manageable number (Morueta-

holme et al. 2016), even for highly diverse assemblages.  

Another promising trend is the use of co-occurrence-based data as the response 

variable in linear regression models. Depending on the experimental unit (which can be 
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species, pairs, or networks), these data can be anything from the strengths of associations to 

node level metrics such as degree, to network/matrix level metrics such as modularity or 

nestedness. For example, Kamilar and Ledogar (2011) tested matrix-level checkerboard 

scores of various primate dietary guilds from ten tropical regions. Berry and Widder (2014) 

tested the effect of ‘keystone-ness’ (a measure of species removal effect derived from 

network simulations based on the Lotka-Volterra model) on various node level metrics, 

including degree and betweenness centrality, in microbial co-occurrence networks. Morueta-

Holme et al. (2016), among several similar analyses, tested the effect of phylogenetic distance 

and trait distance on the link strength of significant pairs of North American trees. This 

approach has also been used in biotic interaction networks. For example, Thébault and 

Fontaine (2010) tested network level metrics against interaction types and noticed that 

herbivory networks are more modular while pollination networks tend to be nested. The 

advantage of this approach is that each analysis answers a specific, applicable biological 

question, as with all of these studies. Specifically, Kamilar and Ledogar (2011) asked whether 

diffuse interspecific competition for food affects community structure in primates. Berry and 

Widder (2014) were looking for an easy way to identify keystone species from node 

characteristics. Morueta-Holme et al. (2016) asked whether similarities or differences in 

species traits affect the spatial distribution and coexistence of trees. 

Weaknesses. Although significance thresholds that are chosen by convention are a familiar 

concept to most ecologists, co-occurrence analysis requires so many individual calculations 

that even very low error rates can yield large numbers of false positives and false negatives  

(Morueta-holme et al. 2016). Furthermore, the choice of significance threshold can strongly 

influence ‘emergent’ network properties (Poisot et al. 2016), such as modularity (see Chapter 
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3). Negative associations tend to be weaker than positive associations (henceforth: 

segregations and aggregations) in ecological datasets due to the sparseness of occurrence 

matrices. Therefore, studies that count links or calculate network connectivity usually report 

more aggregation than segregation (e.g., Veech 2006; Barberán et al. 2012), although 

segregation can be dominant in some strongly competing communities after controlling for 

environmental variables and dispersal (e.g., Camarota et al. 2016). As a result, researchers 

have occasionally gone to great lengths to devise non-arbitrary thresholds for species 

associations (e.g., Gotelli and Ulrich 2010). However, even this has attracted criticism (e.g., 

von Gagern et al. 2015).  

Finally, binary (yes/no) associations between species are poor descriptors of 

relationships that vary over space, a feature that has been repeatedly pointed out for biotic 

interactions (Poisot et al. 2015, 2016) and is certainly applicable to co-occurrence-based 

associations (Bar-Massada and Belmaker 2017). This is because generating binary 

associations ignores spatial variation, downgrades the information contained in the data, and 

has a strong tendency to misrepresent rare events (Poisot et al. 2016).  

We propose that co-occurrence analyses should follow Poisot et al. (2016) by shedding 

significance thresholds and working with the (two-tailed) probability that the species pair’s 

association deviates from random expectations, which we will refer to as the association 

‘strength’. We discuss three metrics suited to this task in the next section.   

Probabilistic co-occurrence analysis 

Why is it better? Working with the full distribution of co-occurrence scores confers several 

distinct advantages. In the traditional approach, pairs of species with weak patterns of co-
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occurrence across the landscape (e.g., with a number of mutual occurrences similar to the 

null expectation) are discarded as random. But co-occurrence patterns over large spatial 

scales are almost certainly influenced by multiple overlapping processes and variables 

(Presley et al. 2009, 2010), including environmental filtering, dispersal, and biotic interactions. 

If several processes are acting in opposition, we would expect species pairs to have weak 

overall co-occurrence scores, and throwing out weak pairs would compromise our ability to 

measure those processes, if they happened to be focal to our analysis.   

Consider Fig. 2.1, which depicts Holocene occurrences of coyotes (Canis latrans) and 

grey wolves (Canis lupus) between 2 and 11 thousand years ago in the conterminous United 

States. Because mutual and separate occurrences of these two species are both frequent, 

significance thresholds would discard this association. However, it appears that there may be 

spatial variation in the co-occurrence of this pair. Coyotes are found throughout the U.S., 

while wolves occur only in the midwest and west. Where their ranges overlap, coyotes are 

rarely found without the co-occurrence of wolves. These patterns suggest that there may be 

environmental and/or dispersal filters that drive differences in the ranges of these two 

species, while another process (e.g., sharing of prey or low human population density) brings 

them into close proximity where their ranges overlap. Geographic patterns aside, coyotes and 

wolves are ecologically similar carnivores that certainly interact (Merkle et al. 2009). Wolves 

have been known to kill coyotes (Levi and Wilmers 2012), and coyotes routinely scavenge 

wolf kills for food, resulting in direct competition (Berger and Gese 2007). Although this pair 

fails the statistical test for non-randomness overall, an analysis of the pair in several smaller 

regions (e.g. eastern, central, and western USA) could show that the pair has significant 

patterns of co-occurrence that vary in response to a variable of interest. 
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Figure 2.1. Fossil occurrences of coyotes (Canis latrans), indicated by filled orange circles, and grey wolves (Canis 

lupus), indicated by filled purple circles, between 2 and 11 thousand years ago in North America. Open black 

circles indicate sample localities where neither species was sampled. Data extracted from the FAUNMAP II 

database (Graham and Lundelius 2010). 

But the retention of weak associations is also important for other reasons. When 

searching for mechanisms, explicitly including information about which species do not 

associate strongly will produce stronger evidence for our conclusions. Consider the primate 

diet study (Kamilar and Ledogar 2011), which showed that primates within dietary guilds had 

more checkerboard occurrences than expected by chance, and attributed this to interspecific 

competition. Based on basic experimental theory, we argue that this analysis would have 

benefitted greatly from a control, namely, pairs of primates in different diet categories. 

Demonstrating that pairs of primates competing for food segregate more than pairs that do 

not compete for food would confer much stronger evidence that food competition is 

responsible for segregation than merely demonstrating that competing pairs segregate more 

than the random expectation. After all, we have not shown that non-competing pairs do not 
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also segregate more than expected by chance (e.g., due to fine gradations in habitat 

preferences, territoriality, or other ecological processes). To achieve this, the primate study 

would have had to be run with pairs as the experimental unit, and weak associations would 

need to be retained so that the ‘true’ strength of associations in each group could be 

measured.  

In the keystone species study (Berry and Widder 2014), node-level metrics were 

calculated after a significance threshold was used to remove weak links. Although this is 

conventionally a perfectly acceptable procedure, our prior discussion of metrics based on 

binary networks begs the question of whether a different threshold would have yielded 

different node characteristics. Fortunately, a suite of network metrics tailored to probabilistic 

data already exists (Poisot et al. 2016), and has been shown to more accurately represent 

network structure than the analogous measures calculated on binary networks (Poisot et al. 

2016). Our third example, the comparison of tree co-occurrence strength to trait and 

phylogenetic distance (Morueta-holme et al. 2016), used 0s for the strengths of non-

significant pairs. Given the high numbers of false positives and negatives in significance-based 

co-occurrence analysis, however, fitting a linear regression to the continuous data will 

remove the possibility that pairs are placed in the wrong significance category, and allow pairs 

that would be false negatives to be taken at face value instead. This is not to say that the 

modifications suggested here would overturn existing result. However, we do believe they 

represent improvements in experimental design. 

 We are aware of two studies that did use a probabilistic approach. Krasnov et al. 

(2014) examined the association strength of flea species on hosts with respect to phylogenetic 

distance, and found that closely related species aggregate more than expected. Bar-Massada 
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and Belmaker (2017) examined the association strength of North American trees with respect 

to habitat suitability of each species in the pair. They found more segregation when habitat 

suitability is high, meaning that species tend to segregate from others in the middle of their 

ranges but become more tolerant of aggregations near their range margins. This study is a 

powerful illustration of how co-occurrence patterns can change through space, and how 

these patterns can be explored through a modelling approach. 

Probabilistic co-occurrence metrics. To generate probabilistic co-occurrence values, we need 

a metric that can be calculated from occurrence data and which places species pairs on a 

continuum from negatively to positively associated based on a null model, and whose output 

values fall between 0 and 1, such that they can be interpreted as probabilities.  Several such 

metrics already exist. Examples include the mid-P variant of Fisher’s Exact Test (FETmP; Berry 

& Armitage, 1995; Kallio et al., 2011) and the sample-standardised effect size of Fisher’s Exact 

Test (Veech 2013; Arita 2016; Griffith et al. 2016). The standardised effect size of the C-score 

(Stone and Roberts 1990; Gotelli and Ulrich 2010) is also appropriate (see supplement). 

Following an adapted version of Gotelli’s (2000) methodology for evaluating co-occurrence 

techniques (see supplementary materials), we tested the performance of each of the three 

metrics. We use FETmP throughout the remainder of this paper because it assigns reliable 

weights and is analytical rather than randomization-based. Thus, it is less computationally 

expensive than calculating the similarly accurate C-Score effect size. 

Implementation. One issue remains which we have not yet covered: traditional hypothesis 

tests have strict assumptions about data independence, normality, and variance of the model 

variables. The latter two can usually be fulfilled by performing data transformations, but in 

the case of co-occurrence analysis, pairs of species are necessarily non-independent. This is 
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an issue which is not yet fully resolved. The North American tree study (Bar-Massada and 

Belmaker 2017) used an immense dataset that allowed the authors to construct 200 totally 

independent analyses, thus giving them access to 200 independent data points per species 

pair. Such a large dataset is not readily available for most systems, particularly given our 

objective of designing analyses that can be used across fossil data. Usually, we have one 

distance matrix and we want to test for differences between sections of that matrix. The cell 

values in such a matrix are non-independent, and therefore a standard test such as a t-test 

would not be appropriate. The parasite network study (Krasnov et al. 2014) used a Mantel 

test instead, which is the convention for the comparison of pairwise distance data, but at least 

one other paper opted not to correct for non-independence, citing the high Type I error rates 

of Mantel tests (Morueta-Holme et al. 2016). In high-diversity systems with many pairs, small 

differences may indeed be identified as significant by a Mantel test. However, our observation 

of empirical networks reveals that the metrics of empirical co-occurrence networks are 

strongly constrained with respect to the simulated range of possibilities (see supplement), so 

even relatively small changes may represent biologically meaningful changes in network 

structure. We suggest that a Mantel test, or permutational ANOVA for categorical data, is a 

suitable significance test, with the caveat that its performance when using co-occurrence and 

network data requires additional research, and could require a more stringent significance 

threshold.  

Four examples with association strength 

In this section we will illustrate the use of co-occurrence strengths in linear regression 

models with categorical independent variables, without the need to construct actual 
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networks. We focus on this application as it forms the basis for the following chapters of this 

thesis. However, continuous explanatory variables (such as phylogenetic distance) could be 

used just as easily. This approach can also be extended to node-level or network-level metrics 

to species or assemblage characteristics as the response variable.  

There are four main ways that co-occurrence strengths can be grouped for models. 

First, species can be grouped based on functional characteristics such as body size, life form, 

body proportions, or trophic level. Comparing species subsets can answer questions about 

the differences that functional roles play in the process of community assembly. For instance, 

do pairs of carnivores tend to co-occur more than pairs of herbivores? Do solitary species 

form weaker spatial patterns than gregarious species? Comparisons between species 

subgroups can indicate whether or not the splitting variable has any bearing on community 

assembly.  

Second, pairs of species (rather than the species individually) can be grouped based 

on the interaction or distance between their respective functional characteristics (Krasnov et 

al. 2014; Morueta-holme et al. 2016). Comparing subsets of pairs can answer questions about 

how similarities and differences in species functional roles contribute to community 

assembly. For instance, competition theory predicts that species that eat different types of 

food should be able to coexist more readily than species that compete for food in  

high-diversity areas. Comparing pairs that share a dietary category to those that do not can 

determine whether this prediction is generally fulfilled across an entire assemblage, and 

indicate whether competition is an important factor in the assemblage as a whole. 

Alternately, pairs could be split on whether they have similar or different life history 

characteristics, sociality, activity times, etc. 
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Third, biologically relevant subsets of the sites can be used to calculate and compare 

co-occurrences in an assemblage. Comparing subsets of sites is one way to directly address 

spatial variation in co-occurrence across a large study area. It can also be used to quantify the 

effect of climate variables (by contrasting cold sites to warm sites, or wet sites to dry sites, or 

between major biomes), and to compare the effect of biotic interactions to the effects of 

abiotic variables (by contrasting co-occurrences calculated from the overlapping climate 

envelope of a pair to the overall co-occurrence pattern—see Chapter 4).  

Each of these comparative splits can be performed using both modern and fossil data, 

as they require only general categorisations of diet, body size, and climate niche—data that 

are becoming readily available for many Quaternary fossil assemblages, as well as some 

deeper-time datasets. The relative influence of subgroups on the assembly patterns of the 

community can be estimated from the number and/or strength of pairs in each group, as well 

as their resemblance to the overall pattern. 

Finally, and perhaps most importantly, the shifts of these patterns in response to 

disturbances can be documented by comparing assemblages before and after, or with and 

without, the presence of the disturbance in question. With enough data, such a hierarchical 

approach can also be used to explore the interaction of two variables (e.g. does species 

diversity affect the outcome of interspecific food competition on community assembly?). We 

will use a case study to demonstrate an application of each of these splitting techniques. 

Case study 

Data. We used presence-absence data for mammals in East Africa (Tóth et al. 2014a, b). The 

data set contained 311 mammal species recorded at 38 national parks throughout Kenya and 
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Tanzania, and each site contained aggregated site inventories for two time intervals:  

1888-1950 and 1950-2013. The previously published dataset was carefully compiled from 

surveys, historical records and museum specimens. It includes body mass and dietary 

information, which were compiled from the literature for every species. We limited our 

analysis to the 115 species > 1 kg in average body mass (to reduce computation time and 

avoid sampling biases associated with small mammals). We calculated co-occurrence 

probabilities using FETmP for all possible species pairs in this assemblage. We used this 

dataset to demonstrate simple cases of the four models described above. Because 

distributions of co-occurrence scores are always centred on 0.5 (representing a perfectly 

random association) , it is meaningless to compare overall group means. Differences between 

distributions will occur in the shapes of the two sides of the distribution, the significance of 

group differences were calculated separately on aggregations and segregations using Mantel 

tests. 

Species split: Do herbivores, omnivores, and carnivores have different effects on community 

assembly? Using the “DIET2” data field in the East African dataset, we organised species into 

carnivores (including “meat”, “piscivore”, “bone”, “invrt”, and combinations thereof), 

omnivores (including “p_dom”, “a_dom”, “mixed”, and “fruit_meat”), and herbivores 

(including “gr”, “br”, “fruit”, “root”, “seed”, “fungi”, and combinations thereof). We then 

compared associations where both species fell into the same group (i.e., carnivore-carnivore, 

omnivore-omnivore, and herbivore-herbivore pairs). Omnivores do not represent an 

ecologically cohesive unit (Pineda-Munoz and Alroy 2014), but we use it here because we are 

characterising only very broad trophic patterns. 
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Pair split: Does food competition cause exclusion in East African mammals? We split pairs into 

two groups depending on whether or not they were in the same specific diet category  

(e.g., invertivore, piscivore, frugivore, etc.). Though pairs in the same diet group do not 

necessarily compete, they are more likely to compete for food than pairs in different diet 

categories, and this competition is likely to be more intense. Thus, if pairs in the same diet 

category have more or stronger segregations, we can hypothesize that food-based 

competitive exclusion is an important factor in community assembly. The pair split is distinct 

from the species split because it uses the difference or similarity of the traits in a species pair, 

rather than the actual trait categories, as the levels of the response variable.  

Site split: Have community assembly patterns changed over time in East Africa? We split the 

sites into historical and modern time intervals that were provided in the dataset, and removed 

empty rows (i.e., if species did not occur in a given time interval). Co-occurrence probabilities 

were re-calculated for the intervals. The pair and species splits used samples from both time 

intervals, and therefore their results are subject to time averaging, but including sites from 

both ~60-year time intervals in one analysis makes their results more reliable. This is because 

in order to receive a strong aggregation, a pair needs to have aggregated in both time 

intervals. If the spatial association of the pair changed over time (e.g., it segregates in the 

historical time interval but aggregates in the recent), then the time-averaged score for the 

pair would be weaker. Therefore, strong associations derived from datasets encompassing 

multiple finer time intervals represent patterns that are both temporally and spatially 

consistent.   

Hierarchical split: Did the outcome of interspecific competition change over time? This is an 

example of hierarchical splitting, where the data are first split by time interval, and then split 
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by whether or not the species in the pair use the same food source. If the outcome of 

interspecific competition (e.g. exclusion) changes over time, we expect a shift in the 

associations of same-diet and different-diet pairs between the regions. We performed 

permutational ANOVAs on each model to determine p-values.  

Results 

Do herbivores, omnivores, and carnivores have different effects on community assembly? 

East African omnivores formed stronger segregations than herbivores and carnivores (Fig. 

2.2). Herbivores had the weakest segregations, and carnivores were in between. Aggregation 

strengths were similar between the three groups. Carnivores aggregated the most often 

(79.6% of pairs aggregated) followed by herbivores (70.5% of pairs aggregated), followed by 

omnivores (62.8% of pairs aggregated). Therefore, omnivores had the strongest and most 

frequent segregations. Differences between aggregation (p = 0.0037) and segregation  

(p < 0.0001) were significant across all three groups.  
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Figure 2.2. Strength of aggregations and segregations in carnivore-carnivore, herbivore-herbivore, and 

omnivore-omnivore pairs in East Africa. Cross-guild pairs are not depicted. Values near 1 represent strong 

aggregations, values near 0.5 indicate random associations (i.e., species distributions are indistinguishable from 

random expectations), and values closer to 0 indicate strong segregations.  

 Does food competition cause exclusion in East African mammals? Species pairs that had 

differing diets were equally likely to segregate as species having the same diet (Fig. 2.3). 

Segregations and aggregations are both slightly stronger for species pairs that have the same 

diet, but the differences were not significant (pagg = 0.31, pseg = 0.1109).  
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Figure 2.3. Strength of aggregations and segregations in species pairs with different diets versus same diets in 

East Africa. Diet categories correspond to “DIET2” column in the dataset, comprising detailed diet categories. 

Values near 1 represent strong aggregations, values near 0.5 indicate random associations (i.e., species 

distributions are indistinguishable from random expectations), and values closer to 0 indicate strong 

segregations.  

Have community assembly patterns changed over time in East Africa? Aggregations became 

much more common going from the historical to the recent time interval (62.9% to 76.7% of 

pairs). Additionally aggregations became stronger while segregations stayed the same  

(pagg < 0.0001, pseg = 0.594; Fig. 2.4). As occupancy distributions are closely linked to  
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co-occurrence (see supplement, Fig. 2.8), difference in sampling across time intervals can 

influence these results. In this dataset, there was only 2.2% difference in matrix fill between 

the two time intervals, suggesting that sampling was reasonably consistent over time. 

 
Figure 2.4. Strength of aggregations and segregations in recent (1950-2013) and historical (1888-1950) mammal 

pairs in East Africa. Values near 1 represent strong aggregations, values near 0.5 indicate random associations 

(i.e., species distributions are indistinguishable from random expectations), and values closer to 0 indicate strong 

segregations.  
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Did the outcome of interspecific competition change over time? Pairs in the same diet 

category became more likely to co-occur in the recent time interval compared to the historical 

time interval. Aggregations went from representing 65.8% of pairs to 81.0% of pairs, and 

aggregations on average became stronger (pagg < 0.0001) while segregations remained the 

same (pseg = 0.876; Fig. 2.5). Pairs with a different diet also became more likely to co-occur, 

with aggregations going from 62.6% to 76.2% of pairs. Aggregations (pagg < 0.0001) became 

stronger and segregations did not change significantly (pseg = 0.506). In short, the same effects 

happened to pairs in both different- and same-diet groups (Fig. 2.5). 
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Figure 2.5. Strength of aggregations and segregations in recent (1950-2013) and historical pairs (1888-1950) in 

East Africa, split by whether they have the same diet or different diets. Values near 1 represent strong 

aggregations, values near 0.5 indicate random associations (i.e., species distributions are indistinguishable from 

random expectations), and values closer to 0 indicate strong segregations.  
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together at some subset of the sites and are mutually absent at others. For African 

ecosystems, this suggests that large-herbivore-dominated savannas such as the Serengeti act 

as a congregation point for large predators and carnivorous scavengers. Herbivores aggregate 

almost as strongly as carnivores, as savannas support a large biodiversity of grazing and 

browsing artiodactyls and perissodactyls.  

Interestingly, carnivores and herbivores have very different segregation strengths, 

which may indicate that interspecific competition is more likely to result in exclusion at 

individual sites for carnivores. Indeed, the potential for carnivore competition is relatively 

well-documented (Caro and Stoner 2003), and a more recent study showed that previously 

accepted temporal partitioning in competing carnivores is much weaker than expected, 

suggesting carnivores are “starvation driven” and are willing to risk direct competition to 

survive (Cozzi et al. 2012). It is important to note, however, that competition that does not 

result in exclusion may cause abundances to covary negatively, but still allow mutual presence 

(aggregation) as opposed to segregation, and this may partly account for why both 

aggregations and segregations are relatively strong in carnivores. Herbivores (particularly 

large ungulates), by contrast, have recently been shown to be surprisingly adept at resource 

partitioning (Kleynhans et al. 2011; Kartzinel et al. 2015), and even older studies typically 

found equal if not more evidence for facilitation (such as protection from predators in mixed 

herds) than competitive interactions (Sinclair 1985; Arsenault and Owen-Smith 2002). This 

ecological difference between herbivores and carnivores is reflected in the outcome of local 

community assembly.  

Omnivores exhibit stronger and more frequent segregations than carnivores and 

herbivores. This group is comprised of diverse opportunistic taxa with varied diets including 
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jackals, most primates, civets, porcupines, genets, and wild pigs. Because omnivores 

commonly live in a wide variety of environments, such as forests, savannas, and woodlands, 

it is reasonable to suggest that habitat preferences are at least partly responsible for the 

prevalence and strength of segregations in this group, and the weakness of aggregations. This 

could be tested with further data splits (e.g., splitting sites into open and closed habitats 

should reduce segregation within groups).  Although competitive interactions are probably 

reduced by the wide variety of food sources used by omnivores (e.g., insects, leaves, fruit, 

bark, roots, small prey such as lizards, etc), it is still possible that related species, such as 

primates, experience competitive exclusion to some degree (Kamilar and Ledogar 2011). 

Carnivores have a higher proportion and strength of aggregations than omnivores (Fig. 2.2), 

and this suggests that more carnivore pairs prefer the same habitats (perhaps because 

environmental filtering causes them to aggregate), whereas fewer omnivore pairs prefer the 

same habitats. As pairs are non-independent, carnivore segregations are thus more likely to 

be a result of competitive exclusion, while omnivore segregations likely reflect a combination 

of exclusion and environmental filtering.   

In our split of same-diet and different-diet pairs, we saw no significant difference 

across the two groups (Fig. 2.3). Though same-diet pairs are theoretically more likely to 

compete than pairs with different diets, some species in the same categories actually partition 

resources (Kleynhans et al. 2011) and facilitate one another (Arsenault and Owen-Smith 

2002). While competition causes a detectable increase in segregation strength in some 

subgroups of same-diet pairs (e.g. carnivores, as discussed previously), other factors, such as 

environmental filtering and mutualistic interactions, likely play similar roles across both 

groups, and this makes the spatial effect of food competition undetectable in the overall data.  
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Our temporal split of the data indicated that aggregations became much stronger and 

more common in the recent compared to the historical interval. Although we cannot tell why 

this is the case based on our simple analysis, further split analyses of these data have the 

potential to shed light on this question by asking which functional groups (diet, activity time, 

sociality, etc.) were most strongly affected over time. We could also hierarchically split sites 

based on measures of anthropogenic disturbance (e.g., human population density) or climate 

change (e.g., the amount of change in average temperature or precipitation) to further 

explore why this shift in community assembly occurred.  

Our hierarchical split of same- and different-diet pairs across time intervals shows that 

both same- and different-diet pairs increased their aggregation strength and frequency across 

the time interval. These results suggest that increasing aggregation in the recent time interval 

is not related to food competition.  

The probabilistic approach. We have shown how the co-occurrence scores generated by the 

probabilistic approach can be used in a modelling framework that allows the exploration of 

how ecological variables affect community assembly outcomes. In this paper, we used only 

proportion and strength of aggregations and segregations, but this framework can easily be 

extended to compare properties of network nodes and ‘emergent’ network properties (such 

as the modularity and nestedness metrics proposed by Poisot et al. (2016) across groups. By 

contrast, binary networks are likely to understate the likelihood of rare events and overstate 

the importance of common events in the spatial structuring of communities, and therefore 

have the potential to introduce systematic biases (Poisot et al. 2016). 
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Based on analyses of binary networks, there is growing evidence that disturbance 

causes rearrangement of network structure (e.g., Lane et al., 2014; Kay et al., 2017). 

Probabilistic networks provide a holistic and accurate view of co-occurrence network 

structure. This is not to say that probabilistic and binary networks will most often disagree. 

Instead, the advantage of using probabilistic networks instead of binary networks is that they 

eliminate the possibility that results can be overturned by changing the significance threshold. 

Moreover, probabilistic networks do not ignore the underappreciated fact that weak 

associations can capture biologically meaningful properties of ecological networks. This is 

particularly true when a matrix is sparse, which is likely to result in a high proportion of weak 

associations, especially segregations. Recent research using co-occurrence analysis has been 

making progress in the right direction. In our view, turning to probabilistic metrics that take 

weak links at face value would represent a paradigm shift that would impart substantial 

improvements for co-occurrence models. Models using probabilistic associations can be more 

useful, as they allow for making more explicit comparisons between pairs, taxa, or 

assemblages; more robust, because they do not rely on significance thresholds; more realistic, 

as they treat associations as probabilities rather than concrete biological entities; more 

detailed, because they are represented by numerical rather than categorical data; and more 

interpretable, reflecting the way co-occurrence patterns can vary across space and time. 

Acknowledging and leveraging the probabilistic nature of species associations is therefore the 

logical next step for co-occurrence analysis.  

Conclusions. Our case study highlights how various categorizations of the data can yield 

information about what drives co-occurrence in species pairs. In particular, ecological 

differences between carnivores, herbivores, and omnivores influence the extent to which 
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biotic interactions such as competition and facilitation are detectable in community assembly 

outcomes.   

As researchers increasingly utilise co-occurrence networks to understand community 

assembly over large spatiotemporal scales, it is important to ensure that their methodologies 

are appropriate to the nature of the underlying data. Probabilistic co-occurrence analysis 

produces networks that are more robust and more biologically interpretable. The modelling 

approach examined in this paper provides advantages to any research employing comparative 

co-occurrence analysis, and can help elucidate the spatial and temporal impacts of 

disturbance, climate change, management actions, and extinctions on communities of any 

reasonably well-sampled taxa.  
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SUPPLEMENTARY MATERIALS 

Probabilistic co-occurrence metrics 

Fisher’s Exact Test mid-P variant. This metric is used as a co-occurrence measure for 

frequentist inference (Berry and Armitage 1995; Kallio et al. 2011), but can be used as a 

weighting metric. It is based on Fisher’s Exact Test (FET) computes the probability that k sites 
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out of a total of N sites will contain both species A and species B, given the incidence of each 

species 
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where A is the number of occurrences of species A, B is the number of occurrences of species 

B, k is a hypothetical number of sites where species A and B could occur together where 

max(A+B-N, 0) ≤ k ≤ min(A, B), and X is the observed number of sites where the species co-

occur. This can be used for inference by treating whichever tail probability is smaller as a p-

value for significance testing (not including the probability of the observed value). If the upper 

tail is the smaller tail, the association is positive, and if the lower tail probability is smaller, 

the association is negative (Fig. 2.6a and b). By contrast, the mid-P variant of FET (FETmP) 

creates a continuous, normalised metric by splitting the probablity of the observed co-

occurrence value equally between the tail probabilities, ensuring they add up to 1 (Fig. 2.6c).  
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Figure 2.6. Probability distribution of overlaps when considering two species with 6 occurrences each in 24 sites. 

(a) Lower tail of Fisher’s exact test (FET), (b) Upper tail of FET, and (c) weight assigned by FETmP where the 

observed number of overlaps X = 2. In this situation, FET effect size would classify the pair as random based on 

the upper tail value of 0.139 (non-significant), whereas FETmP used as a continuous metric would assign a weight 

of 0.69, a very weak positive association. If the observed number of overlaps was 4 instead, FET might assign a 

significant aggregation based on the upper tail probability of 0.018 (depending of the cut-off is 0.05 or 0.01), 

and FETmP would assign a weight of 0.99.  

The co-occurrence weight is then simply the lower tail (including half the observed 

probability), which will be small when pairs are negatively associated and large when they are 

positively associated, but will never take the exact values of 0 or 1 because of the mid-P split. 
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The equation produces middling values for observations that approach expected overlap 

values. See Berry and Armitage (1995) for a discussion of mid-P confidence intervals.  

Fisher’s Exact Test effect size (observed – expected). Another way to use FET to calculate a 

continuous metric is to use the effect size as defined by Veech (2013). By this definition, the 

expected number of shared sites for any pair of species is sum(Pj x j), where 0 ≤ j ≤ 

min(occurrences of species A, occurrences of species B) and Pj is the probability of observing 

that overlap (i.e. one point in the discrete probability distribution). By taking the difference 

between our observed and expected overlaps, we will get a value that ranges between 

negative and positive infinity, though the magnitude is limited by the number of sites. As it 

happens, the output weights of FET effect size and z-scores of FETmP are closely and linearly 

related (Fig. 2.7, left).  

 
Figure 2.7. Relationship between z-score of FETmP, FET effect size, and C-Score effect size. Points are pairs of 

species from an artificial 24-site matrix that displays all the possible combinations of co-occurrence patterns 

(192 species/rows).  
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C-score effect size (observed - expected). A third possible continuous metric is the effect size 

of the C-score, as developed by Stone and Roberts (1990). The normalized C-score is defined 

as 

𝐶+0 =
(𝐴 − 𝑋)(𝐵 − 𝑋)

𝐴𝐵  

and takes values 0 to 1 inclusive, where 0 indicates complete overlap and 1 indicates no 

overlaps. The PAIRS program (Ulrich, 2008; Gotelli & Ulrich, 2010) calculates the pairwise C-

scores for a specified number of randomized matrices shuffled using an algorithm that keeps 

marginal totals constant (Gotelli 2000). It then compares the null distribution of C-scores for 

each pair to the observed C-score in the original matrix to determine the effect size. This 

procedure also returns somewhat similar values to FETmP and FET effect size, although the 

relationship is not linear (Fig. 2.7, right). Interestingly, the effect size of the C-score seems to 

separate out negative associations more strongly than positive associations. One 

disadvantage of this method is that randomisations with fixed marginal totals are a 

computationally expensive process and take a long time to run for diverse systems (e.g. more 

than 150 species). If any kind of subsampling or bootstrapping procedure is required, these 

randomisations can become prohibitively time-consuming.  

Error testing 

We compared the accuracy and detection power of FETmP z-score, FET effect size, and 

C-score effect size. Although it is somewhat counterintuitive to test for error rates when our 

goal is to test each metric as a descriptive measure, applying a threshold and testing for false 

positives and false negatives (i.e. treating them as hypothesis testing methods) can help 

determine whether pairs are being assigned appropriate scores. We determined accuracy 
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(Type I error) by testing for false positives on random matrices. We used a highly structured 

and systematically degraded Diamond and Gilpin-type matrix to test the detection power  

(Type II error) of each metric (Diamond & Gilpin, 1982; Gotelli, 2000).  

Accuracy. We ran FET effect size and FETmP on 72 random matrices with varied numbers of 

sites (10-300), numbers of species (10-400) and fill (5-30%). Each matrix was constructed by 

randomly sampling the global abundance distribution of mist-netted bats from the Ecological 

Register (http://ecoregister.org) (Alroy 2015), to mimic natural occupancy distributions. Since 

the matrices are random, an ideal test will detect no strong aggregations or segregations and 

be unaffected by sample size, richness, and matrix fill. More specifically, the percentage of 

the pairs above any a-level should not exceed thea-level itself. We also ran PAIRS using F-F 

randomization on 30 of the unstructured datasets, and compared these to the FET outputs. 

Running PAIRS on all of the random test matrices was not feasible due to time constraints.  

Detection power. We tested the detection power of each algorithm using methodology 

adapted from Gotelli (2000). We began with a blocked matrix with two perfectly segregated 

groups of perfectly co-occurring species (Gotelli 2000), and systematically degraded the 

presences, performing the pairwise calculations FET effect size and FETmP at each stage using 

an a of 0.01. Gotelli (2000) used a random swap for each row, but we merely removed 

presences, because this mimics decreased sampling. Because the test matrix is highly 

structured, every pair is perfectly aggregated or segregated, allowing us to measure loss of 

detection as the sampling becomes poorer. Ideally, degradation does not affect the detection 

rate for approximately half of the steps, after which noise takes over and most pairs rapidly 

become randomly associated (Gotelli 2000). We recorded the degradation tolerated by the 

matrix before pairs began appearing as random above the a-level, a measure we will call 
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“tolerance”. We repeated the analysis for a series of matrices with 30 to 300 sites by 60 

species and 20 to 300 species by 100 sites. We ran PAIRS on a systematically degraded matrix 

with 60 species and 100 sites, and compare detection power across the three methods.  

Results of Accuracy and detection power. The comparisons between FET effect size, PAIRS, 

and FETmP showed that FET effect size consistently produces somewhat higher rates of false 

positives than the other two metrics, especially with low matrix fill or low richness (Fig. 2.8). 

Although FETmP did respond to sampling and matrix fill, it consistently had error levels below 

the a-level (Fig. 2.8). C-score effect size also produced low error rates (Fig. 2.8). There was no 

difference in the detection power of the three metrics when the Bayesian filter in PAIRS was 

not used; when it was used, it weakened the detection power of PAIRS (Fig. 2.9). Overall, 

FETmP performed slightly better than FET effect size and equally as well as PAIRS. 

 

Figure 2.8. Scatterplots showing the rate of Type I error (false positive rate) produced by applying Fisher’s exact 

test effect size (crosses), FETmP (open circles), and C-score effect size (filled blue circles) to random datasets. 

The dashed line indicates the a-level (0.01). FET has error rates above the a-level that are influenced by sample 

size and matrix fill while FETmP and C-score values are consistently below the a-level. 
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Figure 2.9. A typical run of the Type II error degradation test (60 species by 100 samples), showing the Type II 

error contrasted with the degree of degradation for FET effect size (thin solid line), FETmP (thick solid line), C-

score effect size (dashed line), and C-score effect size with Bayesian significance threshold (dotted line), 

calculated on a perfectly structured checkerboard matrix. The plot resembles the ideal curve depicted in Gotelli 

(2000, Fig. 2.6). FET, FETmP, and PAIRS z-scores provide nearly identical detection power, while the Bayesian 

significance threshold loses power with minimal degradation. 

Accuracy. FET effect size shows sensitivity to richness, sample size, and the matrix fill of the 

random datasets. The rate of Type I error increases with matrix fill and decreases with sample 

size. Overall, the Type I errors generated by FET vary between 0% and 7% (mean = 1%), and 

are above the a-level in 41% of random matrices (Fig. 2.8). Although the error rates are not 

too high, they are higher than previously reported (Veech 2013). Because of the discrepancy, 

we checked the results using the matrix parameters described in Veech (2013), including a 

high matrix fill and a peaked abundance distribution. The results confirm that FET effect size 
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is sensitive to the abundance distribution used to produce the test matrices, so the Type I 

error generated by FET effect size for real datasets may be higher in empirical datasets with 

many rare and a few common species than originally estimated on test matrices with peaked 

abundance distributions. FETmP is only mildly affected by the shape of abundance 

distributions, and produces values that meet our expectations for an accurate measure. 

Though low matrix fill and increased sample counts mildly affect the outputs, the proportion 

of values meeting the a-level never rises above the a-level. The average Type I error rate over 

all FETmP matrices was 0.0040, significantly lower than the error generated by FET effect size. 

C-Score effect size produces comparable Type I error rates (mean = 0.0014; Fig. 2.8).  

Detection power. The Type II error of FETmP not deviate strongly from that of FET effect size 

(Fig. 2.9). Type II error in both tests follows the ideal hypothetical curve (Gotelli 2000). At low 

sample sizes (30 samples), both tests have a degradation tolerance of 10-15%. At high sample 

sizes (200-300 samples), they exhibit a tolerance > 50%. C-score effect size produces error 

rates comparable to FET effect size and FETmP. Fig. 2.9 depicts the degradation curves in all 

three scenarios, plus a curve for the Bayesian significance threshold applied to the C-Score via 

the PAIRS program, added for comparison, in a typical run (60 species and 100 samples), 

which demonstrates just under 40% tolerance for the former three.  
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Probabilistic and binary co-occurrence networks for 
simulated and empirical assemblages: a comparative 

analysis 
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ABSTRACT 

The study of probabilistic networks of co-occurrence is in its infancy. While it is a promising 

method for exploring the patterns and processes driving community assembly, there is 

much that is not known about probabilistic co-occurrence analysis, including how it 

compares to binary approaches, how it behaves under simulation, and the properties of its 

output for empirical assemblages. The purpose of this chapter is to undertake an 

observational and comparative study of probabilistic and binary co-occurrence metrics that 

begins to answer these questions. We find that weak links that are typically discarded by 

binary network constructions have an important role in differentiating between various 

types of simulated network structures. We also observe that networks constructed for 

empirical assemblages only weakly resemble simulated structures, even though the 

structures are simple and obvious. This finding suggests that existing models of community 

structure are too simplistic. Finally, we observe that empirical assemblages exhibit 

probabilistic co-occurrence structures much more similar to one another than to simulated 

structures, suggesting that empirical co-occurrence structures are governed by rigid 

assembly patterns that link disparate taxa and apply across a substantial range of spatial 

scales.  

MAIN TEXT 

Introduction 

Co-occurrence analysis has been around for many years, but rarely has it been 

applied in a probabilistic manner. Traditionally, studies using co-occurrence analysis have 

focused on binary (yes/no) implementations based on frequentist significance testing. 
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Recently, Poisot et al. (2016) introduced a probabilistic network approach for networks of 

biotic interactions. The previous chapter makes a case for why the probabilistic approach is 

also highly applicable for co-occurrence networks, and gives several examples highlighting 

how its use can improve models that aim to understand how co-occurrence is related to 

biological measures of community structure and diversity.  

Unfortunately, only a few studies (Krasnov et al. 2014; Bar-Massada and Belmaker 

2017) have explored the possibility of using co-occurrence analysis in a probabilistic manner 

(i.e. by using co-occurrence weights as a numerical response variable in models). Very little is 

known about how co-occurrence weights behave for simulated and empirical datasets. For 

instance, the shape of their distributions are not well documented, nor to what extent this 

property can be expected to vary from dataset to dataset.  

Ecological network analysis is new enough that we are still in the process of observing 

and documenting network structures (Proulx et al. 2005), and this is especially true for co-

occurrence networks. This is a critical part of the research process that constructs a 

knowledge foundation on which to build future studies. Without such baselines it can be 

difficult to translate network metrics into applicable biological conclusions. Modularity in 

particular has many interpretations that depend on the type of network (Morueta-holme et 

al. 2016). Thus, observing and comparing between different types of networks is a vital topic, 

and it is starting to receive attention (Thébault and Fontaine 2010; Steele et al. 2011). Of 

several studies that have constructed and analysed co-occurrence networks, many settled on 

describing the networks, using their observations to identify future research questions (Steele 

et al. 2011; Barberán et al. 2012; Borthagaray et al. 2014; Lane et al. 2014; Kay et al. 2017).  
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Much of the co-occurrence literature compares the structures of communities 

through time or across space. Researchers have used binary co-occurrence networks to 

compare communities before and after disturbances or management actions (Tulloch et al. 

2016) and inside and outside managed areas or modified habitats (Lane et al. 2014; Kay et al. 

2017), and to compare the network properties of different taxa under changing climate 

conditions (Araújo et al. 2011). Often, network measurements such as node degree and 

centrality (Araújo et al. 2011; Berry and Widder 2014), counts of positive to negative 

associations (Veech 2006; Villalobos et al. 2016), connectivity (Kay et al. 2017), and 

modularity (Barberán et al. 2012; Kay et al. 2017) are used as a basis for these comparisons. 

However, it is not known how network metrics calculated from binary versus probabilistic 

networks compare to one another.  

The value of observational studies for establishing baselines is frequently 

underestimated. This chapter uses a series of simulated and empirical datasets to build both 

binary and probabilistic co-occurrence networks. It then goes on to compare common metrics 

between the two network types, explore the properties of probabilistic co-occurrence 

weights, and compare probabilistic networks of simulated and empirical datasets. Our aim is 

to document and compare co-occurrence structures across various spatial scales, taxa, and 

community types so that future research can proceed with a basic understanding of the 

behaviour of  probabilistic co-occurrence distributions, networks, and metrics under various 

scenarios.  

Materials and Methods 
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Simulated Data. To facilitate the interpretation of empirical co-occurrence networks, we 

created five synthetic datasets of 60 species by 60 sites containing previously published 

hypothetical assemblage structures. The assemblage structures we used are randomly 

dispersed and compartmented gradients (Hoagland & Collins, 1997; Leibold  

& Mikkelson, 2002) and single- or multi-compartmented nested patterns, shown in Fig. 3.2 

(Patterson and Atmar 1986; Lewinsohn et al. 2006). Each structure can be formed by one or 

more biological mechanisms (Connor and Simberloff 1979; Gilpin and Diamond 1982; Leibold 

and Mikkelson 2002; Presley et al. 2010). To these we added noise in the form of five random 

swaps per row and column, simply to make the matrices more realistic.  

Empirical Data. We downloaded seven empirical datasets having various spatial scales and 

including different taxa from the Ecological Register (Alroy 2015). Details of the retrieval of 

each dataset are recorded in Appendix 1. After downloading, we removed observations 

represented by a single individual and species represented by a single sample to avoid low 

detection rates.  

Construction of Binary Networks. We constructed a series of binary co-occurrence networks 

for our empirical datasets using two existing inferential methods, Fisher’s Exact Test (FET: 

Veech, 2013; Arita, 2016) and F-F randomization on C-Scores (Stone & Roberts, 1990) in the 

software program PAIRS (Gotelli and Ulrich 2010).  

Binary Network Metrics. Varying the significance threshold (a) for co-occurrence scores can 

alter whether any particular link between a species pair is present in a binary network. 

Network measurements that depend on link presence and absence may therefore vary 

depending on the choice of a. We assessed the behaviour of commonly used binary network 
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metrics in response to changing a-levels using binary networks created from our empirical 

datasets. We pruned the binary networks of the empirical datasets with an increasingly 

stringent a-level. At each step, we calculated three basic properties of each network. (1) 

Connectivity: the percentage of links realised, calculated with C = 2e/n (n - 1) where e is the 

number of links and n is the number of nodes (species). (2) Modularity: the degree of 

compartmentation (clustering) in a network. We used the leading eigenvector method 

(Newman 2006) from the igraph package in R (Csardi and Nepusz 2006; R Core Team 2015) to 

compute modularity, using only significant positive associations. (3) The ratio of negative 

associations. We report the effect of a-level on these three properties of each network, and 

on the relationships amongst them. Finally, we generated binary networks for each matrix 

with the threshold set to 0.05, for comparison with probabilistic network metrics.  

Construction of Probabilistic Networks. We generated probabilistic networks for our 

simulated datasets and for the empirical datasets from the Ecological Register. For simulated 

datasets, we calculated pairwise co-occurrence scores using the mid-P variant of Fisher’s 

Exact Test (Kallio et al. 2011) and used these to generate probabilistic networks. The number 

of samples in a dataset can affect the outcome of association weights; in particular, datasets 

with more samples have higher connectivity (i.e. stronger associations) (Kay et al. 2017). 

Therefore, to create probabilistic networks for the empirical datasets, we subsampled each 

matrix to the same number of sites without replacement and repeated the process 100 times, 

calculating co-occurrence scores on each iteration. We plotted cumulative link weight 

distributions across all iterations to reflect the frequency with which each pair appears in the 

subsamples.  
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Probabilistic Network Metrics. We calculated connectivity for each network, using the sum 

of aggregation strengths divided by the total number of links, and repeating for segregations. 

Association strengths were scaled between -1 and 1 for this procedure (so that strong 

segregations result in high negative connectivity). We also calculated modularity for each 

probabilistic network. We used the "spin glass" clustering algorithm (Newman and Girvan 

2003; Reichardt and Bornholdt 2006) with z-scores of association weights because it uses 

positive and negative links together. The spin glass algorithm is implemented in the igraph 

package in R (Csardi and Nepusz 2006; R Core Team 2015).  

Comparative Analyses.  We conducted comparisons between: (1) probabilistic and traditional 

binary network metrics for empirical and simulated datasets; (2) probabilistic co-occurrence 

weight distributions and network metrics across simulated matrices; and (3) distributions and 

network metrics across empirical matrices. To compare empirical datasets, we used the mean 

of the measurements taken on subsamples, and compared the datasets in pairs where either 

the spatial location or the focal taxon was held constant. We compared 1) bats from North 

America and southern Brazil; 2) mammals from the New World and Indomalaya; 3) rodents 

and bats from southern Brazil; and 4) trees and scarabs from North America. We used this 

pairwise approach to control for differences in the input datasets, which helped us interpret 

variation in output co-occurrence distributions.  

Visualisation. We also generated network plots based on each simulated matrix for 

comparison to empirical matrices. We follow Lewinsohn et al. (2006) in using an ordination 

approach to visualize assemblage structure. We suggest using the z-scores of the co-

occurrence weights as a distance matrix in a principal coordinates analysis (PCoA). This is 

different from a traditional principal components analysis because the pairwise distances are 
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not, say, Euclidean distances, but instead scores that reflect the deviation between observed 

and random patterns. We plot each graph separately with the aggregations and segregations 

represented as lines, with thickness and transparency varied to indicate association strength.  

Results 

 Effect of thresholds on binary metrics. The values for the modularity of each binary empirical 

network varied unpredictably across the different a-levels for both inferential methods (Figs. 

3.1A-B). Connectivity necessarily decreases as a increases for any network. However, the 

relative connectivity values among the various networks also change arbitrarily when 

implementing FET (Fig 3.1C). The values generated by the PAIRS program are more consistent, 

but it is clear that the relative connectivity of the different datasets can change with the 

threshold (Fig. 3.1D), and this uncertainty translates to uncertainty in biological 

interpretations. For example, the threshold used in PAIRS influences whether North American 

or Southern Brazilian bats have a higher connectivity (Fig. 3.1D). At higher thresholds, North 

American bats have stronger connectivity, but lower thresholds cause Southern Brazilian bats 

to have higher connectivity. It is therefore unclear which assemblage has interactions that 

influence spatial distribution patterns more strongly. The percentage of significant pairs that 

were negatively associated tended to decrease with a-level, suggesting that positive 

associations are often stronger than negative ones. However, this does not always hold true, 

and again the relationships among the networks change as a increases (Figs. 3.1E and 3.1F). 

Our tree dataset had stable measurements across a-levels. However, because the 

measurements for networks of animal data change with a, so do the comparisons between 

animal and tree networks.  
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Figure 3.1. Response of modularity, connectivity, and percent negatively associated pairs to changing the 

significance threshold (New World mammals = circles, North American scarabs = squares, North American trees 

= dots, North American bats = diamonds, southern Brazilian bats = triangles, and southern Brazilian rodents = 

inverted triangles). Datasets are from the Ecological Register (Alroy 2015). Panels A, C, and E show results for 

Fisher’s Exact Test (Veech 2013), while B, D, and F show results of PAIRS (Gotelli and Ulrich 2010). Missing data 

points indicate that no significant links remain at that threshold. Squares are partly obscured under triangles in 

panel d, and triangles are obscured under inverted triangles in panel f. Note that quantile of alpha level is used 

on the x-axis for readability, and a quantile of 1.96 corresponds to the usual significance threshold of 0.05. 
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Binary vs probabilistic metrics. Network metrics calculated on binary and probabilistic 

networks are related and behave somewhat predictably. Probabilistic connectivity measures 

consistently yield greater connectivity values than binary measures for both positive and 

negative links (Fig. 3.2 B-C). The ratio between them is particularly high for empirical 

networks, where most links weights are weak and tend to be discarded in binary network 

construction. Modularity values are typically higher for binary networks, and the correlation 

between them is not tight (Fig. 3.2 A).  

 

Figure 3.2. Relationship between network metrics calculated on binary versus probabilistic networks. Empirical 

network results are plotted in yellow while simulated networks are plotted in violet. The line of unity is shown.  

Probabilistic network metrics. We present simulated network link weight distributions as a 

set of three comparisons between related simulations (nested against compartmented-

nested, three compartments against single gradient, and square compartments against 

compartmented-nested structures). Simulated matrices generally produced bimodal co-

occurrence probability distributions (Fig. 3.3) because matrices were deliberately constructed 

with strong aggregations and segregations. Compartmentation produced stronger bimodality 
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than graded turnover (i.e. an increase in the strength of both aggregations and segregations), 

and segregations were proportionally more frequent with an increasing number of 

compartments. Nested structures produced positive associations (Fig. 3.3). When 

compartments were nested, strong aggregations and weak segregations resulted. Network 

graphs visually represented network structure (Fig. 3.4), and provide a simple baseline for 

comparison.  

Table 3.1. Pairwise counts, positive, negative and total connectivity, and modularity results for each of the 

simulated datasets using probabilistic networks (grps = number of clusters, mod = spin glass modularity value). 

Dataset 
Number of pairs Weighted Connectance Modularity 

Positive Negative Total Positive Negative Total grps mod 

Nested 1662 108 1770 0.738 0.028 0.766 4 0.048 

Two nested 
compartments 1170 600 1770 0.392 0.160 0.552 2 0.254 

Two-compartment 
gradient 869 901 1770 0.433 0.454 0.887 2 0.493 

Three-compartment 
gradient 751 1019 1770 0.309 0.430 0.739 3 0.450 

Smooth gradient 813 957 1770 0.274 0.315 0.589 3 0.352 
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Figure 3.3. Comparisons between pairs of test matrices (left), and their association strength density distributions 

(right). Colours of the simulated datasets match their association strength density distributions, which indicate 

the strength and relative frequency of co-occurrence scores. FETmP scores > 0.5 signal positive associations 

while scores < 0.5 signal negative associations.  
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Figure 3.4. Network PCA plots of positive (centre) and negative (right) associations for each simulated dataset 

(left). Colours indicate clusters identified by the spin glass algorithm. Node size indicates species occurrence 

frequency. 
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Observations of empirical networks 

Description of networks. Our analysis of the empirical datasets revealed that ecological 

regional assemblages share some striking similarities, despite differences in spatial extent, 

location, and taxonomic composition. For instance, they tend to be strongly dominated by 

weak segregations (numbers just under 0.5: Fig. 3.5). Aggregations are fewer in number and 

tend to be stronger (numbers greater than 0.5: Fig 3.5). This difference in aggregation and 

segregation frequencies is not surprising, as ecological matrices with many samples are 

typically sparse, making weak negative associations likely. Furthermore, all assemblages had 

stronger positive than negative connectivity, although the ratios of positive to negative 

connectivity varied (Table 3.2). Modularity of empirical networks was constrained in a tight 

range, between 0.3 and 0.41 (Table 3.2).  
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Table 3.2. Pairwise counts, positive, negative and total connectivity, and modularity (grps = number of clusters, 

mod = spin glass modularity value) results for each of the seven empirical test datasets from the Ecological 

Register based on probabilistic networks, calculated on the subsample level and reported as means of the 

subsamples. Note that the total number of pairs is less than the total possible because subsamples do not always 

include all species. 

Dataset Number of pairs Connectivity Modularity 

 Positive Negative Total Positive Negative Total grps mod 

North 
American Bats 

919 2185 3104 0.207 0.135 0.342 4.19 0.328 

Southern 
Brazilian Bats 

819 2210 3029 0.189 0.111 0.300 4.13 0.323 

Southern 
Brazilian 
Rodents 

319 1768 2087 0.116    0.099 0.215 7.30 0.408 

North 
American 
Scarabs 

1234 6494 7728 0.118 0.124 0.242 4.54 0.394 

Eastern North 
American 
Trees 

1220 4521 5741 0.140 0.104 0.245 5.42 0.305 

New World 
Mammals 641 2326 2967 0.134   0.121 0.254 4.63 0.351 

Indomalayan 
Mammals 

1344 3650 4994 0.201 0.129 0.330 4.77 0.325 
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Figure 3.5. Association strength density distribution comparisons between various empirical datasets, which are 

specified on the left. Colours on the plots match the colour of either the taxon or spatial extent of the 

corresponding dataset. Values closer to 1 constitute strong positive associations and values closer to 0 constitute 

strong negative associations. Values near 0.5 are weak associations.  

In the comparison of association strengths between our two bat datasets, North 

American bats had more associations with strong weights, suggesting that they form  

well-separated clusters. This is supported by the network visualisations (Fig. 3.6) and 

modularity calculations (Table 3.2). Both bat assemblages have high ratios of positive 
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connectivity to negative, suggesting that they assemble in nested communities and 

supporting a nested-compartmented assembly structure for North American bats. In our 

comparison between bat and rodent communities in southern Brazil, rodents had very low 

total connectivity, and pairs were dominated by weak negative associations, strong positive 

associations and very high modularity, suggesting high spatial turnover rates and insular local 

assemblages.  

The two mammal camera trap datasets produced similar network structures  

(Fig. 3.6). The Indomalayan dataset had stronger positive associations, higher total 

connectivity, and lower modularity. This combination of features suggests nested structures 

that are weakly separated in space or overlapping. The North American dataset had positive 

to negative connectivity ratio close to 1, and a modularity of 0.35, features that are similar to 

the smooth gradient simulated matrix. This is compatible with our a priori knowledge of the 

data, which encompasses 100 degrees of latitude and is therefore expected to exhibit gradual 

turnover of species along this broad gradient.  

Our final comparison, between trees and scarabs from North America, shows that 

scarabs exhibit slightly stronger associations (Fig. 3.5) and much higher modularity  

(Table 3.2, Fig. 3.6), indicating a more clustered structure. 
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Figure 3.6. Network PCA plots of positive (centre) and negative (right) associations for each empirical dataset, 

indicated by icons (left; colours match Fig. 3.4). Node colours indicate clusters identified by the spin glass 

algorithm using mean z-scores for each pair, and node size indicates species occurrence frequency. Note that 

the placement of nodes is the same in positive and negative plots because the PCoA is calculated on all links at 

once. Positive and negative links are depicted separately for visual clarity.  
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Discussion 

 Binary metrics. The choice of an a-level can affect network-level metrics in ways that in turn 

affect biological interpretations. This issue extends to node-level determinations such as 

degree (the number of links connected to a node) and betweenness (proposed as identifiers 

of keystone species: Berry & Widder, 2014), which are also strongly controlled by a. In short, 

measurements of network properties using presence and absence of associations do not 

necessarily yield any information that is inherent to the network—except perhaps in isolated 

cases—nor do they elucidate any robust relationships between different networks. This 

property greatly limits the usefulness of full-network metrics as comparative tools. At best, 

pruning links from co-occurrence networks degrades the information contained in the 

network, and at worst, it could lead to misleading conclusions.  

Simulated networks. Our simulated networks served to provide a baseline that illustrates 

how hypothetical network structures differ in link weight distributions and common network 

metrics. Related simulated structures (e.g. nested vs nested-compartmented matrices) often 

have similar link weight distributions, differing primarily in the density of weaker links. This 

suggests that weak links may sometimes contain important information about community co-

occurrence structure.  

Empirical networks. Several patterns emerged from our observation of empirical probabilistic  

co-occurrence networks. Despite the diversity of datasets, all of our matrices had more 

negative than positive associations. This appears to be a universal property at larger 

(landscape and continental) spatial scales. Total connectivity and modularity also fell within 

limited ranges compared to simulated networks, with a few notable exceptions. The bat 
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datasets tended to have much higher positive connectivity than negative connectivity, which 

suggests bats may be more adept at sharing space despite their high diversity. The only other 

animal dataset to have a similarly high ratio is the Indomalayan mammal dataset, which 

represents a system that has highly concentrated diversity. In sharp contrast, we observed 

low total connectivity of rodent communities in southern Brazil, coupled with the highest 

modularity. It appears that rodents share space with a limited number of other species, 

producing a high-turnover, low-diversity assembly pattern with distinguishable community 

types (clusters in Fig. 3.6), perhaps as a result of habitat specialisation. This would suggest 

that niche partitioning strategies differ between bats and rodents, namely, rodents fill niches 

limited in physical space, whereas bats may partition a different limiting resource, such as 

food type.  

The high connectivity of our Indomalayan mammal dataset indicates that species are 

more affected by one another than in the North American mammal dataset. The structural 

differences between these mammal communities probably reflect the disparity in spatial 

scale: the New World mammal positive associations are weaker because species can disperse 

vast distances and are not affected by the distributions of other species. The Indomalayan 

dataset has much less land area and high richness, so its associations are more likely to reflect 

fine niche partitioning and biotic interactions. Our only plant dataset, for Eastern North 

American trees, has low total connectivity and also the lowest modularity. It may be worth 

exploring whether this difference is common to plant-animal comparisons, for instance, 

whether the sessile nature of plants causes them to form more loosely defined community 

types. It would also be interesting to examine the effect of seed dispersal strategy on network 

modularity of plants. 
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Some unexpected features emerged in our empirical analyses. Our empirical datasets 

generally did not replicate the association strength distributions of the hypothetical 

assemblage structures, even though their metrics indicated similarities to hypothetical 

structures. A specific example is that even though the North American mammal dataset had 

very similar ratios to the hypothetical smooth gradient, its association strength distribution is 

more similar to the other empirical datasets than it is to our hypothetical smooth gradient. It 

seems likely that the patterns in large-scale empirical datasets are more complex than 

accepted assemblage structure models. Previous studies of metacommunity structure have 

recognised the existence of assemblages with multiple driving variables (Leibold and 

Mikkelson 2002; Presley et al. 2010), but such patterns have not been extensively studied in 

empirical datasets. An emerging literature is describing a multi-dimensional network 

framework that includes multiple types of interactions (Pilosof et al. 2017; García-Callejas et 

al. 2018). Because probabilistic co-occurrence networks include all possible pairwise 

relationships, it is possible that probabilistic networks represent a collapsed multidimensional 

network (i.e. a network in which multiple processes and interaction types, usually separated 

out into several layers of networks, are conflated into a single network), and perhaps future 

research should involve a multidimensional approach. 
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ABSTRACT 

Large mammals are at high risk of extinction globally. To understand the consequences of 

their demise for community assembly, we tracked community structure through the end-

Pleistocene megafaunal extinction in North America. We decomposed the effects of biotic 

and abiotic factors by analysing co-occurrence within the mutual ranges of species pairs. 

Although shifting climate drove an increase in niche overlap, co-occurrence decreased, 

signalling shifts in biotic interactions. Furthermore, the effect of abiotic factors on co-

occurrence remained constant over time, while the effect of biotic factors decreased. Biotic 

factors apparently played a key role in continental-scale community assembly before the 

extinctions. Specifically, large mammals likely promoted co-occurrence in the Pleistocene, 

and their loss contributed to the modern assembly pattern in which co-occurrence frequently 

falls below random expectations. 
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MAIN TEXT 

Human activities have put extant large-bodied mammals at high risk of extinction 

(Davidson et al. 2009), and their eventual loss may have severe ecological repercussions. For 

example, the loss of ecosystem engineers such as megaherbivores has the capacity to alter 

entire landscapes (Zimov et al. 1995; Estes et al. 2011; Ripple et al. 2016). Such human-

mediated extinctions will have impacts lasting far beyond our lifetimes, making it important 

to examine long-term records of past extinctions in order to forecast the consequences of 

current biodiversity loss. A key example is the catastrophic and approximately synchronous 

(Faith and Surovell 2009) extinction of large mammals, including mammoths and saber-

toothed cats, at the end of the Late Pleistocene in North America (Barnosky et al. 2017). The 

rich and highly resolved Pleistocene and Holocene fossil record provides a unique opportunity 

to explore how extinction alters communities. 

The causes of Pleistocene extinctions have been debated for decades (Lyons et al. 

2004; Koch and Barnosky 2006). In light of the current biodiversity crisis, recent work has 

focused on understanding their ecological and evolutionary legacies instead (Malhi et al. 

2016). A compelling picture of ecological transformation across the continents has emerged, 

including the disappearance of the mammoth steppe (Zimov et al. 1995), changes in 

vegetation and fire regimes (Gill et al. 2009; Johnson 2009; Rule et al. 2012), loss of functional 

groups (Davis 2017), loss or rearrangement of interactions (Lyons et al. 2016; Galetti et al. 

2017), and shifts in global biogeochemistry (Smith et al. 2016a) and biophysical feedback 

systems (Doughty et al. 2016). However, empirical studies of changes in mammal community 

structure, including the extinction of most species over 40 kg (Lyons et al. 2004), have often 
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been centered on individual fossil deposits (Smith et al. 2016b) or particular taxa (e.g. (Pardi 

and Smith 2016; Hayward et al. 2016) but see (Lyons 2005; Plotnick et al. 2016)). 

Here we examine community assembly patterns of surviving large mammals across 

the Pleistocene-Holocene transition using occupancy, niche size, and  patterns of species co-

occurrence. We examined end-Pleistocene (21-11 ka), Holocene (11-2 ka), and Recent (2-0 

ka) (see supplement for details) mammal occurrence data (Fig. 4.1) drawn from the FAUNMAP 

II database (Graham and Lundelius 2010), comprising 93 species (> 1kg). Only survivor-

survivor pairs were analysed to ensure that community changes were not simply a result of 

reduced diversity or lost associations involving extinct species. Every possible species pair 

received an association weight that quantifies how strongly the two co-occur. We refer to a 

species pair as aggregated when the species occur together more often than expected by 

chance, and segregated when they co-occur less often than expected. Segregations receive 

negative weights. Broad shifts in community assembly may be influenced by both extinction 

and climate change. We estimate the contributions of these two factors by isolating the 

relative effects of abiotic and biotic changes on the association of each survivor-survivor pair 

across this interval.  
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Figure 4.1. Maps of sites including large (>1 kg) mammals that fall within the Recent (top: 535 sites), Holocene 

(middle: 381 sites), and end-late Pleistocene (bottom: 78 sites). 

Species associations are caused by a combination of abiotic and biotic drivers, which 

can be differentiated by first establishing species’ geographic and environmental constraints. 
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Geographic envelopes were constructed using Lambert azimuthal equal area projected 

coordinates. The climatic envelope of each species was calculated from mean annual 

temperature, precipitation, temperature seasonality and precipitation seasonality of sites 

falling within the species’ geographic envelopes. Climate estimates were extracted from 

downscaled paleoclimate simulations (Z. Liu et al. 2009; Veloz et al. 2012) and z-transformed. 

All envelopes were calculated with Blonder’s hypervolumes (Blonder et al. 2014). The set of 

sites falling within both geographic and climatic envelopes (Fig. 4.2) was defined as the 

potential range of each species. The potential range represents sites where the occurrence of 

a species is not constrained by climate or dispersal ability. We also calculated background 

climatic and geographic hypervolumes for each species in each time interval to quantify how 

much of the available geographic and environmental space is being occupied by each species 

(see supplement).  



Chapter 4  Post-extinction Community Reorganisation 
 

100 
 

  
 
Figure 4.2. Calculation of mutual potential range sites for an example pair. This schematic illustrates the process 

of selecting the mutual potential range sites of an example pair. Mutual potential range sites are used to 

calculate the biotic component of associations. 

 

Step 2. A hypervolume or 
convex hull is calculated 
around species occurrences in 
climate space. This is the 
“climatic envelope.”

Step 1. A hypervolume or 
convex hull is calculated 
around species occurrences in 
geographic space. This is the 
“geographic envelope.”

Step 3. Sites falling within 
both climatic and geographic 
niches are selected, 
irrespective of whether the 
species occurs at them. This 
is the species’ potential 
range. 

Step 4. Sites occurring in both 
species’ potential ranges are 
used to calculate the strength 
of co-occurrence when 
abiotic variables are factored 
out. This is the biotic 
association. 
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We calculated the strength and direction of pairwise co-occurrence of species pairs 

with the mid-P variant of Fisher’s Exact Test, which provides an association weight for each 

pair (Kallio et al. 2011). We then individually calculated biotic and abiotic components of co-

occurrence, such that the sum of the association weights of these two components equals 

the original association weight (Fig. 4.3). We did this by calculating the association weight 

within the mutual potential range (i.e., the sites remaining after accounting for abiotic limits 

for both species), which represents the component of each association regulated by biotic 

factors. The abiotic component was defined as the difference between the full association 

and its biotic component (see supplement). The abiotic component of a pair received a 

positive association weight if species have similar niches, and negative if their niches were 

disparate (Fig. 4.3). The biotic and abiotic components of a pair may have the same or 

opposite signs, and when the latter occurs the full association weight may be close to 0 (Fig. 

4.3). Using this framework, we evaluated changes in co-occurrence patterns and their 

components across the Pleistocene-Holocene transition and into the Recent. 
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Figure 4.3. Explanation of the mutual potential range calculation. Example calculations of biotic and abiotic 

components across a hypothetical set of sites, simplified to one abiotic variable for clarity (sites are ordered 

vertically in order of increasing mean annual temperature). Three scenarios are depicted for segregation (first 

table of each pair) and aggregation (second table in each pair).  The second scenario has two additional tables 

depicting hybrid situations. (A) Mean annual temperature is responsible for the association. (B) Mean annual 

temperature is partially responsible for the association. (C) Mean annual temperature does not explain the 

association. The association weight is calculated first for the full set of sites and then for the mutual potential 

range (red rectangle). In scenario (A), the biotic score is strongly reduced in absolute value (compare full to biotic 

association weight). In (B) the score is somewhat reduced or flipped when biotic and abiotic regulators are acting 

in the same direction. When regulators are acting in opposite directions, there is no predictable pattern but 

component scores have opposite signs and may be stronger (absolute value) than the full association weight. In 

(C) the score is not reduced, and it may increase. Associations observed only within the mutual potential ranges 

cannot be attributed to the abiotic variables being tested.  
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Across the Pleistocene-Holocene transition, common surviving species became even 

more common and rare species remained the same or became rarer (Fig. 4.4A). There were 

no significant changes in occupancy patterns between the Holocene and the Recent (Fig. 

4.4B). Extinction victims had smaller climatic niches and geographic ranges than survivors in 

the end-Pleistocene (Fig. 4.5). On average, climatic and geographic envelopes of surviving 

species expanded from the end-Pleistocene to the Holocene, even when compared to 

background variation (i.e., as a proportion of the total space each species could potentially 

occupy; Fig. 4.5B-C) 

 
Figure 4.4. Occupancy (fraction of sites occupied) changes for survivors over the two time interval transitions: 

(A) end-Pleistocene to Holocene (n = 44) and (B) Holocene to Recent (n = 45). Points represent species, plotted 

over the line of unity. Only species sampled in consecutive time intervals are shown.  
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Figure 4.5. Increases in niche overlap. Climatic (A-B) and geographic (C) envelopes of species are compared to 

pooled climate envelopes (A) and background envelopes (B-C) in each time interval. In (A) larger ratios 

correspond with larger niches because niche space expands, as illustrated by oval sizes in (D); in (B) and (C) larger 

ratios result from proportionately higher fill that causes increased niche overlap (E-F). In (A-C), each shaded 

distribution sums to an area of 1; circles are means. In (D-F), shared polygons represent hypothetical species 

niches. 
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proportion of aggregations (see supplement).  While this may partially explain why 

segregations became stronger, it cannot explain the increase in proportion of segregations or 

the decrease in aggregation strengths. When associations were split into their biotic and 

abiotic components, end-Pleistocene associations calculated within mutual potential ranges 

of pairs (i.e., biotic associations) were also dominated by aggregations, which diminished in 

both mean weight (Fig. 4.6I) and as a proportion of the pairs (Fig. 4.6C) across the Pleistocene-

Holocene transition, while segregations increased in mean weight and proportionally (Figs. 

4.6J and 4.6D). Abiotic associations (i.e., the difference between the full association and the 

biotic association) exhibited the opposite pattern (Figs. 4.6A-B, G-H). Note that associations 

due to abiotic components were typically segregations while those due to biotic components 

were typically aggregations, and this pattern was greatly weakened but not overturned by 

the trends described above.  
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Figure 4.6. Proportion of aggregations (left) and segregations (right) for abiotic components (A-B), biotic 

components (C-D), and full associations (E-F) in each subsample (n = 1000). Only pairs with at least 10 sites falling 

within their mutual niche are included. 

The Pleistocene-Holocene transition was characterized by substantial changes in 

occupancy (Fig. 4.4), niche size (Fig. 4.5), and association patterns (Fig. 4.6). The fact that 

survivors of the extinction exhibited larger potential ranges than the victims (Fig. 4.5) is 

consistent with the concept that specialists with narrow ranges are at higher risk of extinction 

(Davidson et al. 2009). The expansion of climatic niche fill in the Holocene may reflect the 

filling of empty niche space after competitive release. 
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The overall shift toward segregations starting in the Holocene resulted from changes 

in the relative effects of the biotic and abiotic components of species co-occurrence. 

Increasing climatic and geographic niche fill (Fig. 4.4) drives increasing potential range overlap 

between pairs in the Holocene (Fig. 4.7), and this caused the shift toward aggregations in 

abiotic associations. In contrast, co-occurrence decreased within mutual potential ranges (i.e. 

biotic associations; Fig. 4.6C-D). All else being equal, these opposing forces might have 

annulled any trend in the full associations. We observe a trend, however, because of the 

change in the relative importance of biotic and abiotic factors, which can be quantified using 

the average magnitude (absolute value) of association weights within each component. 

Species responses to environmental factors contributed consistently to community assembly 

over time despite the dramatic climatic changes driving species dispersal over this interval 

(Graham et al. 1996), while co-occurrence patterns due to biotic interactions diminished after 

the end-Pleistocene (Fig. 4.8). This loss of biotic regulation contributes to the segregation 

pattern, as biotic interactions tend to promote aggregations (compare Fig. 4.6C and 4.6D). 

Thus, the decrease in co-occurrence was driven by the combined effects of weakening biotic 

associations and a decrease in the tendency of biotic associations to be aggregated. 

Therefore, shifting biotic factors (i.e. the loss of the megafauna or the advent of humans), not 

climate change, were responsible for the ecological upheaval.  
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Figure 4.7. Number of sites in the mutual niche Mij of each pair over the three time intervals for pairs with at 

least 10 mutual niche sites. Mutual niches are calculated on subsamples of 60 sites to standardize sampling, so 

60 is the maximum overlap. All else being equal, an increase in the number of mutual niche sites causes an 

increase in the strength of abiotic aggregations and a decrease in the strength of abiotic segregations, because 

it results in more mutual absences in the full set and fewer sites where one species in the pair occurs without 

the other. 
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Figure 4.8. Absolute values of associations weights, broadly representing the relative importance of biotic and 

abiotic components for overall community assembly patterns. Boxplots represent the variation among 

subsamples (n = 1000). 
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abundance and magnitude within mutual potential ranges. One potential explanation is that 

the loss of predators and competitors increased the abundances of survivors in a rapid 

competitive release scenario (Alroy 2001) that eventually led to enhanced competition and 

increased exclusion from mutual niche sites.  

Contemporary loss of keystone species causes direct and indirect effects on other 

species and communities (Beschta and Ripple 2009; Estes et al. 2011; Ripple et al. 2015) via 

the loss of biotic interactions. These include top-down biotic processes (Estes et al. 2011), 

higher-order interactions (i.e., a third species affecting the interaction of two others) (Levine 

et al. 2017), ecosystem engineering, pollination, pest control, and nutrient cycling (Doughty 

et al. 2016). Such loss often results in reduced biodiversity and degradation of ecosystem 

health. The extinction of the megafauna may have caused substantial shifts in the biotic 

drivers of community assembly via similar pathways, particularly via the loss of top-down 

control and the liberation of resources. The trend away from aggregations is crucial because 

it has been suggested that coexistence enhances biodiversity through the emergence of 

higher-order interactions (Levine et al. 2017), and biodiversity is a central focus of modern 

conservation efforts.  

The end-Pleistocene extinction caused measurable, lasting effects on the dynamics of 

mammal communities that go beyond simple biodiversity loss. Our analysis suggests that it 

disrupted a network of species interactions that supported high levels of aggregation, leading 

to a modern fauna in which continent-wide species associations are now regulated more 

strongly by climate and dispersal limitation and are characterised increasingly by segregation. 

We find that biotic mechanisms such as species interactions and range dynamics once played 

a measurable role in mammal community assembly by consistently affecting how species  
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co-occur on continental scales. Remaining species interactions among survivors likely take 

place opportunistically, on smaller scales, or within shorter timeframes. Overall, we find that 

biotic mechanisms now play a reduced role in species co-occurrences on a continental spatial 

scale, and this shift was most likely driven by the extinction of the Pleistocene megafauna.  
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SUPPLEMENTARY MATERIALS 

Materials and Methods 

Data. We obtained species-by-site tables of mammal occurrences from the FAUNMAP II 

database (Graham and Lundelius 2010), which documents fossil localities across North 

America (excluding Mexico; Fig. 4.1). Using the pre-existing FAUNMAP epoch classifications, 

we extracted sites from the Holocene (HOLO) and Late Pleistocene (LPLE, PLEI). A site is 

defined as an entity having a unique combination of the fields ‘analysis unit’ and ‘machine 

number’, so different strata from the same locality were treated as separate sites (see 

supplemental section on time averaging for a discussion of the effects of site duration). We 

did not use sites whose FAUNMAP epoch classifications were HOPL (i.e., not clearly Holocene 

or Pleistocene). Although dating of individual sites within FAUNMAP is often imprecise, this 

treatment ensured that the Holocene and Pleistocene species clearly represent pre- and post-
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extinction faunas (i.e. communities with extinct megafauna and communities without them), 

despite some minor inconsistencies in dating boundaries. Finally, we removed indeterminate 

species and marine species such as cetaceans, sirenians, pinnipeds, and sea otters.  

We obtained mean body mass estimates for fully identified species from the MOM 3.0 

database (Smith et al. 2003), and removed species with mass estimates less than 1 kg, which 

excluded bats from the analysis. We did this to focus our main analysis on larger species, but 

also to avoid biases associated with sampling methods, which differ for small and large 

mammals. From the resulting species-by-site tables (one for each time interval), we removed 

sites that were above a latitude of 60˚N in order to avoid artificial biogeographic biases 

introduced by the large unsampled area separating Alaska and the Yukon from the rest of the 

sites.  

We then discarded sites with fewer than five species to exclude samples which are 

unlikely to reflect the original communities and to increase the computational speed and 

accuracy of community analyses. Including a large number of sites with only one or a few 

species would result in very low matrix fill, and therefore artificially cause co-occurrence 

results to be biased heavily toward negative associations.  

We downloaded the locality data table from FAUNMAP and extracted metadata on 

our remaining sites. We calibrated all uncalibrated 14C dates with the IntCal13 calibration 

curve (Niu et al. 2013; Reimer et al. 2013) in OxCal (Bronk Ramsey 1995). The dates of sites 

estimated with other methods were left unchanged. This is unlikely to bias our analyses 

because the sites were grouped into broad intervals for our analyses, where the most 

important distinction was the separation of pre- and post-extinction faunas. We left the 
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Pleistocene data in their original FAUNMAP epoch categories, but we divided the Holocene 

epoch into Holocene and Recent time intervals, setting the boundary at a maximum calendar 

date of 2 ka. We limited the end-Pleistocene interval to sites whose mean age was younger 

than 21 ka. This is the oldest interval that has associated climate simulations, and taking this 

step also accounts for bias associated with time averaging by establishing roughly equal 

temporal durations for the end-Pleistocene (9.3 ka) and the Holocene time intervals (9.7 ka).  

Climates were inferred from the CCSM3 paleoclimate simulations (Z. Liu et al. 2009), 

which were downscaled to 0.5˚ x 0.5˚ at 1000-year intervals from 0 to 21 ka (Veloz et al. 2012). 

We extracted mean annual precipitation (MAP) and mean annual temperature (MAT) for each 

site, matching the mean calibrated calendar ages of sites to the corresponding climate 

inferences. We excluded sites for which we could not estimate climate (i.e., sites assigned to 

a single epoch in FAUNMAP but lacking dates).   

The final dataset had the following time intervals: end-Pleistocene (21-11 ka), 

Holocene (11-2 ka), and Recent (2-0 ka). The general properties of our final dataset are listed 

in Table 4.1, and their locations are mapped in Fig. 4.1. The end-Pleistocene dataset includes 

83 species, the Holocene 48 species, and the Recent 48 species (Table 3.1), and 45 of the 

latter are sampled in both the Recent and Holocene, for a total of 51 surviving species. The 

discrepancy between Holocene and Recent data sets is due to less common species not being 

sampled in both time intervals. Of the end-Pleistocene species, 45 survived and 53 went 

extinct (i.e., they were not sampled in the Holocene and Recent and are listed as extinct in 

the recent literature). The only contentious extinction was that of Martes nobilis, which was 

considered an extinct species distinct from M. americana in this study (Hughes 2009). The 

taxonomy of extinct mammals does not affect our analysis, as we only compared associations 
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among surviving species. For instance, there is a lack of consensus about the splitting of 

extinct Equus species, but it is widely accepted that only one species, E. ferus, is still extant. 

Finally, it is widely known that some extinct species may have survived briefly into the 

Holocene (Dale Guthrie 2004). Because we wished to compare surviving faunas pre- and post-

extinction, the sites in our time intervals represent pre- and post-extinction faunas, even at 

the expense of precise date boundaries. In other words, Holocene-dated sites that include 

any remnants of megafauna were not included in our Holocene dataset. The dataset 

represents 105 species in total. With the exception of the niche space analyses, which 

included a category for extinction victims, the central analyses in this manuscript are focused 

on community changes of the survivors across the three time intervals. This is because we 

were interested in how changes over the extinction interval affected the community structure 

of extant species.  

Table 3.1. Basic properties of the dataset used in this paper, split by time interval.  Note that overlaps in duration 

are a result of including loosely dated sites whose age ranges place their maximum age estimates outside of the 

accepted boundaries of their time intervals. Specifically, eight Holocene sites have maximum age estimates older 

than 11 ka. 

Epoch Sites Species Matrix fill 
Duration  

(by Max Age) 

Occupancy 

Range 

Occupancy 

Median/Mean 

Recent 535 48 0.160 2.0-0 ka 0.600 0.103 / 0.160 

Holocene 381 48 0.155 13.1-2 ka 0.577 0.081 / 0.155 

End-Pleistocene 78 83 0.117 21-11 ka 0.423 0.090 / 0.117 

 

Niche space analysis. Understanding the breadth of the geographic extent and climatic 

niche of each species helps to interpret how abiotic factors affected the co-occurrence 
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structure of the assemblage pre- and post-extinction. We estimated the climatic and 

geographic envelopes of each species, and then compared the sizes of these envelopes to 

several types of backgrounds.  

We estimated the realized climatic envelope (C) and geographic envelope (G) of each 

species i in each time interval in two ways. First, we used Blonder’s hypervolume package 

(Blonder et al. 2014) in R to construct a hypervolumes with the geographic coordinates 

(projected into the Lambert azimuthal equal area projection and z-transformed to make 

them more comparable to climatic envelopes) of each occurrence of species i. These 

hypervolumes represent the geographic envelope Gi of each species. We repeated the 

process to make climatic envelopes Ci using z-transformed mean annual precipitation, mean 

annual temperature, precipitation seasonality, and temperature seasonality, extracted for 

each site from the temporally corresponding layer in a previously published, downscaled 

paleoclimate simulation (Z. Liu et al. 2009; Veloz et al. 2012). Mean annual precipitation and 

precipitation seasonality were also square root transformed before calculating z-scores. 

Climatic envelopes were calculated only from sites falling within the geographic envelope of 

each species in each time interval. We then compared the sizes of these climate envelopes 

to three background variations.  

First, to investigate changes in the degree of niche infilling over time, we calculated 

background climate from the absences within each species geographic niche within each 

time interval (background 1). This comparison explores the extent to which species filled the 

climatic niche that they accessed in each time interval.  



Chapter 4  Post-extinction Community Reorganisation 
 

116 
 

Second, to investigate changes in the degree of potential niche infilling over time, we 

calculated a background climate from the pooled absences within the geographic envelope 

of each species across all three time intervals (background 2). This comparison asks: in each 

time interval, to what extent did species fill the climatic niche that they accessed over all 

time intervals? This also addresses the question of whether, objectively, the niches of 

species expanded or contracted, whether or not the background variability changed. We 

expect time intervals with larger overall climatic variability to exhibit larger niche sizes. 

Third, to investigate changes in the degree of available niche fill over time, we 

calculated background climate from the absences of each species within each time interval 

(background 3). This comparison investigates the extent to which species filled the climatic 

niche that they had the ability to access within each time interval. Mammal species, 

particularly larger-bodied mammal species, are very mobile and are easily able to disperse 

thousands of kilometres over time intervals as long as the ones in this study. Environmental 

and biotic factors, not physical boundaries or physiological limitations, would have 

constrained their realized geographic envelopes. The purpose of calculating background this 

way was to understand how much climate space was utilized by each species with respect to 

the total unused available background, because this influences the degree of overlap in the 

potential ranges of species, which has bearing on the abiotic component of the co-

occurrence analysis.  

We did not include geographic and climatic variables in the same hypervolumes 

because geographic coordinates are often collinear with climatic variables, and this restricts 

the hypervolumes to a hyperplane, strongly affecting volume calculations. Including 

collinear variables in the same hypervolume is not recommended by the authors (Blonder et 
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al. 2014). Furthermore, species are not biologically confined to particular combinations of 

climate and geographic location. Species should disperse to any sites with suitable climatic 

conditions as long as they are able to reach them. 

We repeated this process using simple convex hulls instead of hypervolumes to 

calculate geographic, climatic, and seasonality envelopes. Geographic range was estimated 

for each species i by calculating the area of the convex hull Gi around the locations (plotted 

using the Lambert azimuthal equal area projection and z-transformed) where the species 

occurred. Climatic envelope was estimated by calculating the area of the convex hull Ci 

around occurrences plotted by their mean annual temperature in ˚C and square root 

transformed mean annual precipitation in mm/year, taken for each site from the temporally 

corresponding layer the downscaled paleoclimate simulations (Z. Liu et al. 2009; Veloz et al. 

2012) and z-transformed. Seasonality envelope was estimated by taking the area of the 

convex hull Si around the occurrences of each species plotted by z-transformed temperature 

and precipitation seasonality (from the same source as mean annual climate data).  

We compared estimated geographic envelope and climate envelope areas for 

victims of the extinction in the end-Pleistocene and survivors across the three time intervals. 

In the main text, we present the areas of the hypervolume-based geographic envelopes with 

respect to unoccupied geographic space, and the volumes of climatic envelopes with 

respect to backgrounds 2 and 3 described above (Fig. 4.5). We present the raw hypervolume 

sizes and background 1 in Fig 4.9.  All of the convex hull results (including raw areas and 

areas with respect to background variation) are presented in Figs. 4.10 and 4.11.   
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   The potential range of each species was then calculated as the intersection of the 

climate and geographic envelopes for that species across the entire time interval (Fig. 4.2). 

The set of sites in the potential range of each species (Pi) thus consists of all the sites where 

the species occurred, plus any additional sites that fall within both Gi and Ci, thereby 

ensuring that they are environmentally suitable and geographically accessible for species i. 

The collection of sites within the potential ranges of species were used later to conduct the 

analysis of mutual potential range co-occurrence. Potential ranges based on hypervolumes 

are used in the main text, but the same analyses using convex hulls are included in the 

supplementary figures. 
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Figure 4.9 Niche hypervolumes. (A) Climatic envelope of each species calculated from occupied sites inside its 

geographic hypervolume in each time interval. (B) Climatic envelopes in A as a ratio of the climate envelope 

calculated from unoccupied sites inside each species’ geographic hypervolume in each time interval.  (C) 

Geographic envelope of each species by time interval. Species climatic hypervolumes include mean annual 

temperature, mean annual precipitation, temperature seasonality, and precipitation seasonality. Geographic 

hypervolumes are constructed from projected equal-area geographic coordinates. Shaded areas represent 

density distributions with a total area of 1.  
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Figure 4.10. Relative niche areas. Density distribution of geographic, climatic, and seasonality convex hull areas, 

as a proportion of total background variability in each time interval.  
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Figure 4.11. Raw niche areas. Density distribution of climatic, geographic, and seasonality envelope areas in the 

time intervals, calculated with convex hulls. The raw areas are displayed, without accounting for background 

variation.  
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Co-occurrence analysis. Interactions between species are recognized as crucial to 

community assembly (Blois et al. 2013). Co-occurrence analysis quantifies the association 

between species pairs based on the frequency with which they are found at the same sites, 

and has increasingly been used to characterize the structure and dynamics of communities 

(Araújo and Luoto 2007; Barberán et al. 2012; Lane et al. 2014; Lyons et al. 2016; Villalobos 

et al. 2016; Ulrich et al. 2017). To remove the confounding effect of sample size, we 

subsampled (without replacement) the species-by-site occurrence matrices (one each for 

end-Pleistocene, Holocene, and Recent) to 60 sites, computed pairwise Fisher’s Exact Test 

mid-P variant (FETmP) co-occurrence scores (Berry and Armitage 1995; Kallio et al. 2011) for 

all possible pairs in each subsample, and repeated this process 1000 times. Note that the 

null model for this analysis is included in the calculation of the mid-P variant of Fisher’s 

Exact test, described in the next paragraph. The random subsampling procedure was used 

to standardize sample size across the time intervals, not to build a null model.  

The mid-P variant of Fisher’s exact test is a continuous descriptive metric that is based 

on Fisher’s exact test and uses analytical probabilities of co-occurrence to describe 

associations, based on species occupancy and the number of samples. It is the analytical 

equivalent of a fixed-equiprobable null model, which was used here for efficiency and to avoid 

under-randomization. Unfortunately, as of yet there is no equivalent analytical solution to a 

fixed-fixed randomization null model. Fisher’s exact test was recently repurposed as an 

analytical approach for categorizing species associations as positive, negative, or random 

(Veech 2013). We used the mid-P variant of Fisher’s exact test because we were interested in 

a continuous metric that can be compared across associations rather than categorizing and 
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counting association types using a significance threshold. The mid-P variant of Fisher’s exact 

test describes the probability of two species co-occurring at any number of sites, given their 

frequencies of occurrence and the number of sites (based on simple combinatorics). The 

metric comparatively scores the strength of each association on a continuous scale by 

splitting the probability distribution at the observed number of mutual occurrences for each 

pair. This produces values near 0.5 for pairs that co-occur the expected number of times, 

values > 0.5 for species that are positively associated (or aggregated), and values < 0.5 for 

pairs that are negatively associated (or segregated). The output scores vary between 0 and 1, 

non-inclusive. Raw scores are then transformed to z-scores using the base R function qnorm, 

which are useful because they vary from positive to negative infinity, placing random scores 

near 0. One advantage of z-scores is that they emphasize variations in strong interactions (e.g. 

the difference between 0.990 and 0.999 is given more weight than the difference between 

0.790 and 0.799 because this difference is harder to achieve mathematically). They also 

provide a way to subtract association scores (which we do in our separation of biotic and 

abiotic variables, see next section), because they are unbounded, while the raw scores are 

restricted to values between 0 and 1. Recently, Harris (Harris 2016) introduced new methods 

for inferring indirect effects and networks of species interactions from co-occurrence data. 

However, Harris’ method assumes that all species in the analysis are potentially interacting 

indirectly through a connected network (e.g. three-way interactions involving the regulation 

of associations by third parties). The null model analysis used here is a simpler measure of the 

degree of direct pairwise positive and negative associations. We will refer to the z-

transformed output of the mid-P variant of Fisher’s exact test as association weights, and as 
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aggregation and segregation weights when referring to the weights of positive and negative 

associations. 

Mutual niche co-occurrence analysis. To determine the strength of abiotic effects on 

associations over time, we ran a co-occurrence analysis on potential range sites shared 

between each species in a given pair (termed mutual potential range, Mij). We used the 

potential ranges previously estimated for each species (Pi).  For each pair, we extracted the 

subset of sites falling within the potential ranges of both species in the pair (Mij = Pi Ç Pj) 

(Kallio et al. 2011).  

Because sample size can affect the outcome of association weight calculations, we 

included only pairs that had at least 10 sites in their mutual potential ranges (enough to 

perform a co-occurrence calculation, but not so many as to exclude a majority of pairs). The 

original association weights were recalculated using 10 randomly chosen sites from the 

current subsample of 60 sites, as described above in the co-occurrence analysis section, and 

the mutual potential range associations were calculated using 10 sites randomly chosen from 

within the mutual sites present in the subsample (8 and 12 sites were also tried with no 

substantive change in the results). The original associations were then separated into two 

components, such that the association weights of the components sum to the original 

association weight: (1) the biotic component, calculated using sites in each pair’s mutual 

potential range (because associations within mutual potential ranges cannot be driven by 

dispersal ability or the climate variables used to calculate their limits, see Fig. 4.3); and (2) the 

abiotic component, computed by calculating the difference between the original association 

and its biotic component. We treat the biotic and abiotic components as species pair 
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associations in their own right, and the sum of their weights is equivalent to the association 

weight of the full associations.  

The biotic component includes potential mechanisms such as direct and indirect 

biotic interactions and range dynamics. The biotic component can also be impacted by 

selection between time intervals. The abiotic component is strictly a result of the factors 

used to calculate the mutual niche space (geographic coordinates, mean annual 

precipitation, mean annual temperature, and seasonality variables). In theory, this means 

that the biotic component could also be affected by a climate variable that we have not 

factored out in this analysis.  However, for such a variable to have an appreciable effect on 

our results within the mutual potential ranges of species pairs, it would have to impact 

species occurrence consistently across the continent, in a fashion comparable to mean 

annual precipitation or mean annual temperature without covarying with them. The 

association weight and abundance of aggregations and segregations for each component 

was compared with those of the full associations. 

If the included abiotic variables (mean annual temperature, mean annual 

precipitation, seasonality of temperature and precipitation, and geographic coordinates) 

strongly regulate the association of a given pair, the association within the mutual potential 

range will be weaker than the original association strength because the sites included in the 

recomputed mid-P variant of Fisher’s exact test will no longer harbor that abiotic signal. For 

example, if two species are segregated due to disparate climate preferences, the original 

association will be negative, but species should associate randomly inside of the mutual 

potential range, indicating that climate fully accounts for the association. If a pair aggregates 

in sites with high mean annual temperature, using the mutual potential range (i.e., 
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removing the sites with low mean annual temperature where neither species occurs) will 

reduce the strength of the original aggregation by removing mutual absences. The reasoning 

for the mutual niche analysis is summarized visually in Fig. 4.3. 

The comparison between the original and mutual potential range association scores 

identifies three broad categories of pairs, corresponding to the three panels in Fig. 4.3. In 

panel (A), Abiotic variables fully explain the spatial relationship of the pair. (B) Abiotic and 

biotic variables both influence the spatial relationship of the pair.  (C) Abiotic variables do 

not explain the spatial relationship of the pair. In the first case, the association within the 

mutual potential range is random and its z-score is close to zero. In this scenario, the 

original score minus the biotic score will be close to the original score, indicating that abiotic 

factors are driving the relationship (Fig. 4.3A). If biotic and abiotic variables are both 

contributing to the relationship, then the biotic component will be estimated by the weight 

calculated from the mutual potential range, and the difference between the original and 

biotic weights will indicate the extent of abiotic component (Fig. 4.3B). If biotic and abiotic 

components work in the same direction (e.g. both cause segregation), then their absolute 

values will add up to the absolute value of the original score.  However, it is possible for the 

biotic and abiotic components to drive spatial patterns in opposing directions. If this is the 

case, a positive and negative value may yield an overall association that appears weak 

(association z-score close to zero; Fig. 4.3B). In the final case, the biotic component will be 

almost the same as the original association, indicating either that the pattern is only evident 

inside the mutual niche, or that the mutual niche is almost as large as the full potential 

range of both species (Fig. 4.3C). Either way, the abiotic component will be left with a 

number close to zero when the biotic score is subtracted from the original.  
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The analysis revealed that the use of mutual potential range sites causes many 

original association strengths to decrease or flip, indicating abiotic regulation of community 

assembly. This is the most common case in all three time intervals. However, the end-

Pleistocene aggregations were stronger and more frequent when abiotic variables were 

factored out, suggesting enhanced biotic regulation of co-occurrence when the megafauna 

were still alive (Fig. 4.3A-B, Fig. 4.3A-B).  

Confounding factors 

Statistical confounding factors. Measurements of co-occurrence can be influenced by certain 

characteristics of the input matrix. The most common confounding factors are the number of 

sites and the variance in sampling intensity. Sampling intensity can in turn influence apparent 

occupancy of species and the richness of sites in a dataset. Of course, biological changes in 

occupancy and richness also control co-occurrences patterns and should be interpreted as a 

real signal. Co-occurrence analyses attempting to compare associations calculated from data 

with varying number of sites and sampling intensity should take measures to account for each 

of these factors.  

Number of samples. Time periods with more sites yield stronger statistical power and may 

artificially create stronger associations relative to assemblages with fewer sites. We 

employed a subsampling procedure to ensure that the same number of sites was used for 

the calculation of pairwise associations we wished to compare (e.g., association strength 

distributions across time intervals). To compare full associations across time intervals, we 

subsampled each time interval to the same number of sites and repeated the process 1000 

times. The number of sites in each subsample is somewhat arbitrary, but should be no 
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greater than the number of sites in the least-sampled interval (Pleistocene), as subsampling 

was run without replacement. Sub-sampling below the sample size of our least-sampled 

interval allows us to estimate variance of our results within all sampled intervals. We ran 

our analyses fixing the subsample size at 48, 60, and 72 (the latter is the total number of 

sites available in the end-Pleistocene). The subsample number did not substantively change 

our results. Although there were differences in the weights of individual pairs, this 

translated to only very small changes in the proportions and average weights of 

aggregations and segregations in each subsample. The overall temporal patterns (i.e. 

increase in segregation weight and proportion in biotic associations and the opposite in 

abiotic associations) remained constant. The analyses presented in the main text are based 

on subsamples of 60 sites. The figures for the co-occurrence analysis with 48 and 72 sites in 

each subsample were so similar to our main text results (i.e. Figs 3 and 4) that we felt it 

would be redundant to include them here. 

Sampling variance. Variance in the sampling intensity between time intervals can also create 

artificial differences. In particular, sampling intensity affects the marginal totals of a data 

matrix (occupancy = row sums and site richness = column sums). The closer the occupancies 

of species in a pair are to 50%, the stronger the power of co-occurrence tests. Increased 

sampling intensity resulting in higher site richness may, but does not necessarily, lead to 

overestimation of positive associations in comparison to a dataset with lower sampling 

intensity. It is difficult to determine the extent to which site richness and species occupancy 

patterns reflect biological changes vs. sampling effects. However, we can estimate the effects 

that occupancy and richness have on the outcome of associations by running randomization 

analyses (i.e., null models) with these features fixed (i.e. fixed row sums or column sums).  



Chapter 4  Post-extinction Community Reorganisation 
 

129 
 

If the outcome of the randomizations differs from the outcome of the empirical dataset, we 

can assume that the distribution of species pair associations is not an artefact of the marginal 

totals of the matrix, regardless of whether or not the marginal totals are influenced by 

sampling intensity.  

We implemented a fixed-equiprobable randomization (Gotelli 2000) of the 

subsampled matrices (R package EcoSimR (Nicholas J. Gotelli 2015)), which preserves species 

occupancy while randomizing the actual sites of occurrence. We also implemented an 

equiprobable-fixed randomization which preserves site richness instead. We avoided fixed-

row and fixed-column sum randomizations to avoid the problem of under-randomization 

(Colwell and Winkler 1984; Jonsson 2001). Association weights for each pair were extracted 

from the randomized matrices. We examined the density distributions of randomized 

associations over time to establish expectations. See Fig. 4.12 for an explanation of how to 

interpret density distributions. The difference in occupancy over the time intervals (or any 

sampling bias causing apparent occupancy shifts) predicted the strengthening of association 

scores (a decrease in the height of the centre peak and increases in the left and right peaks). 

However, these factors do not explain the shift toward negative associations that is the 

central result of this paper (Fig. 4.13c). They also predict an increase in the proportion of 

aggregations, which is opposite to the results in this paper. Site richness predicted slightly 

stronger positive associations in the end-Pleistocene, but was unable to predict the excess of 

strong positive associations in this interval and the excess of strong negative associations in 

the subsequent intervals (Fig. 4.13).  
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Figure 4.12. Expectations for the density distribution of association scores in the presence of systematic 

community shifts in a hypothetical structured assemblage. Dark blue line indicates a baseline expectation for 

the distribution of co-occurrence scores, with weak associations falling in the center peak, and strong positive 

and negative associations represented by the right and left hand peaks, respectively. Panels show the expected 

change in the case of a hypothetical shift toward (A) positive associations; (B) negative associations; (C) stronger 

associations; and (D) weaker associations. Note that the center peak does not move on the x-axis; changes are 

indicated by a combination of shifts in the left and right peaks or changes in the height of any peak.  
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Figure 4.13. Kernel density plots of large mammal association FETmP weight distributions within the end-

Pleistocene (bottom), Holocene (middle), and Recent (top) when matrices are randomized using fixed species 

occupancy with equiprobable site richness (blue) and equiprobable species occupancy with fixed site richness 

(red) randomization. This indicates the expected result if association scores purely result from changes in 

occupancy or site richness, since row and column sums are fixed, respectively. Shaded gray areas represent the 

observed distribution of association weights in each time interval.  
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alignment with a priori knowledge about each time interval. For example, previous research 

shows that there was competitive release in the Holocene as a result of the extinctions  

(Alroy 2001). This suggests that survivors should increase in abundance and occupancy in the 

Holocene. We observe an increase in the occupancy of common species, which aligns with 

this prediction. We also know that the end-Pleistocene had much higher gamma diversity 

than the later time intervals due to the presence of megafaunal species across the continent. 

As such, we should be unsurprised to find end-Pleistocene sites have a higher maximum 

richness.  

A quantitative way to evaluate the effects of sampling is to estimate the number of 

species occurrences missing in our datasets and evaluate in missing data through time. To do 

this, we first used correspondence analysis and coherence (Burroughs and Brower 1982; 

Leibold and Mikkelson 2002) of the assemblages to estimate the number of false negatives: 

the number of species occurrences missing from our datasets that should likely be presences. 

Previous research has supported the notion that species are often arrayed according to 

several overlapping gradients (Presley et al. 2009), and as such, species absences at sites 

surrounded by presences (when the sites are ordered according to an environmental 

gradient) are unlikely to represent true absences. We counted embedded absences (absences 

surrounded by presences) with the sites arranged according to each of the first three axes of 

the correspondence analysis (because the eigenvalues of the correspondence analysis 

indicated three dimensions of organization). This was done separately for each of the three 

orderings. We then evaluated how many of the embedded absences were found all three 

times (triply absent), which mostly likely represent false absences (false negatives). The count 

of triply embedded absences divided by the sum of presences plus embedded absences is 
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then the percent of the estimated total occurrences that is missing (false negatives). False 

negatives were most common in the recent (46.97%), lower in the Holocene (43.41%), and 

lowest in the end-Pleistocene (30.17%). Occupancy changes are in the opposite direction than 

we would expect from these results, including increases in the occupancies of several 

common species in the Holocene and Recent. Thus, we conclude that the occupancy changes 

are driven by biological mechanisms (not statistical artefacts), and therefore that our results 

are not being driven by sampling. In sum, changes in marginal totals cannot fully explain our 

results, and changes over time of marginal totals in our data are unlikely to be caused by 

sampling biases. Therefore, any influences of marginal totals on our results are probably 

biological rather than artefacts of sampling. Matrix fill, which can influence the strength of 

associations, was lowest in the end-Pleistocene and highest in the Recent. Nonetheless, the 

rate of false negatives was lowest in the end-Pleistocene interval. This suggests that our 

conclusion that marginal totals have changed biologically rather than by sampling biases 

applies to matrix fill as well. Furthermore, lower matrix fill should cause weaker associations, 

so change in matrix fill cannot explain the directional shift that is the focus of this paper.  

Occupancy. The distribution of mammalian occupancy changed from the end-Pleistocene to 

the Holocene (Fig. 4.14). The end-Pleistocene was characterized by many species having low- 

to mid-occupancy. The high number of species with the lowest occupancies partially persisted 

into the Holocene, but the number of species at medium occupancies decreased dramatically, 

with most surviving species moving toward occupancies above 20% or below 5%. The 

Holocene occupancy distribution also expanded to include higher-occupancy species (end-

Pleistocene, Holocene, and Recent maximum occupancies are 43, 55, and 59%, respectively), 

while occupancies of rarer species decreased (Fig. 4.14). As a result, the median occupancy 
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dropped from 7.0% in the end-Pleistocene to 4.1% in the Holocene, but the mean occupancy 

increased from 9.3% to 12.8%. The correlation in occupancy of species that survived across 

consecutive intervals was highly significant (P < 0.001) for both transitions (end-Pleistocene 

to Holocene, Holocene to Recent), but end-Pleistocene occupancy only partly explained 

variation in Holocene occupancy (r2 = 0.60; Fig. 4.14A), while Recent occupancies closely 

tracked Holocene occupancies (r2 = 0.93; Fig. 4.14B). 
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Figure 4.14. Occupancy distributions of mammals (>1 kg) in the Recent, Holocene, and end-Pleistocene. Gray 

bars represent species that are recorded only within one time interval. For the Holocene and Recent intervals 

these are rare or low-density species that are not commonly sampled, while for the end-Pleistocene all are 

extinct megafauna. 
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and several types of surface assemblages. Cave or karst bone assemblages are formed in 

many different ways and may be dominated by smaller-bodied mammals as a result of 

accumulation by owls (Andrews 1990), or because of the relatively small size of species that 

usually inhabit caves (e.g., bats). Many cave sites also include larger animals, however. The 

subset of FAUNMAP sites used in this paper includes several dozen cave assemblages with  

10 or more species of mammals larger than 1 kg, and these are distributed across all three 

time intervals. 

If cave assemblages in our study are biased toward smaller mammals, a time interval 

with a higher proportion of cave sites might be expected to exhibit weaker aggregations. This 

is because many smaller mammal species typically have lower occupancies (i.e. smaller 

ranges) than larger mammals (Brown 1995; Plotnick et al. 2016). Therefore, they might not 

associate strongly with other species. If the Holocene and Recent have more cave sites than 

the Pleistocene, then taphonomy could drive the observed pattern toward weaker apparent 

positive association. We find that 40% of the end-Pleistocene sites and 51% of the Holocene 

sites are caves, while only 19% of Recent sites are caves. Although the Holocene does have 

slightly more cave sites than the end-Pleistocene, the Recent has many fewer.  Nonetheless, 

the Holocene and Recent produce similar co-occurrence results that differ from end-

Pleistocene co-occurrences. This indicates that taphonomic processes resulting in body size 

biases in cave fossil assemblages have not affected our results. 

Biogeography. Maps of our Pleistocene, Holocene, and Recent sites are presented in Fig. 

4.1. The sites in all time intervals are restricted to the US and southern Canada. The density 

of sites is higher in the younger time intervals, but this is accounted for by our subsampling 

protocol, which summarized results from 1000 runs in which each time interval is 
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subsampled to the same number of sites. Visual inspection of the maps reveals that there is 

a lack of Pleistocene sites in the northern mid-west and northwest of the US, resulting in a 

reduction of the total geographic area covered by our sites in the end-Pleistocene interval 

(6.6 million km2, estimated with a minimum convex polygon, disregarding coastlines) 

compared to the Holocene (13.9 million km2) and Recent (11.7 million km2) intervals. These 

areas were covered by glaciers in the Pleistocene, so if the change in extent caused changes 

in co-occurrence, it should be interpreted as a real biological signal and is factored into our 

analysis of abiotic variables.  We use hypervolumes and convex hulls on species occurrences 

to estimate species niches in this study, and the presence of glaciers covering entire regions 

could cause large over-estimates of species geographic ranges in the end-Pleistocene. 

However, because end-Pleistocene ranges are consistently smaller than Holocene and 

Recent ranges, correction for this factor would only strengthen our results. Survivors and 

victims in the end-Pleistocene are subject to the same biases, and so their comparison 

should not be systematically biased by the presence of glaciers.  Finally, the mutual 

potential range analysis does not suffer from bias imposed by glacier coverage, as there are 

no sites in these areas, and thus they cannot be counted in the mutual niche of any pair.  

The distribution of geographic ranges across the time intervals correlates with the 

total amount of area available in each time interval (compare areas cited above with Figs. 

4.9C and 4.11B), and a similar relationship is evident with the four-dimensional climate 

envelope hypervolumes (31.1, 84.5, and 27.6 z4 for the end-Pleistocene, Holocene, and 

Recent, respectively; compare with Fig. 4.9A). It is possible that changes in niche breadth 

were simply a result of retreating glaciers and climate change, but such a simple explanation 

would only be supported in the unlikely event that all niche expansions take advantage of 
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new niche space only. When geographic and climatic envelopes were plotted as a ratio of 

available background variation (Figs. 4.4 and 4.9B), the pattern of expanding Holocene 

niches was still evident. This indicates that Holocene mammals filled a larger percent of the 

available climate space than the same species in the end-Pleistocene. Such expansions 

suggest that the competitive release scenario we discussed in our main text allowed some 

species to fill newly available niche space as well as existing niche space in the absence of 

competition or predation from extinct end-Pleistocene megafauna and is consistent with 

the central message of this paper. 

Time averaging. There are three related types of time averaging that could affect the 

outcome of this analysis: (a) Because increases in time-averaging may correspond to increases 

in richness, the number of species recovered may be increased in sites with a longer duration 

between minimum and maximum ages. (b) Binning sites from different times into broader 

time intervals place sites that may not be strictly contemporaneous in the same matrix, and 

(c) the three time intervals explored here (end-late Pleistocene, Holocene, Recent) are not 

the same duration. These three types of time averaging are each addressed below.  

If sites have minimum and maximum dates that are farther apart, time-averaging may 

cause some species to appear at the same sites that did not truly co-occur. This would cause 

species pairs to appear more aggregated in intervals where sites have broader age ranges. 

End-Pleistocene sites had an average duration of 5418 years, Holocene sites had an average 

duration of 2877 years, and Recent sites had an average duration of 385 years. We do see 

more frequent and stronger aggregations in the end-Pleistocene, which has the least precisely 

dated sites. To address this potential bias, we ran a version of the co-occurrence analyses 

from which we removed end-Pleistocene sites with higher richness than the richest site in the 
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Recent interval with a duration less than 400 years. This ensures that all site faunas could 

have accumulated in 400 year period (maximum 21 species). The analysis yielded similar 

results (Fig. 4.15) to those presented in the main text.  

  

 
Figure 4.15. Results of reduced richness analysis to test for systematic time averaging bias. Proportion (left) and 

mean weight (right) of aggregations and segregations for abiotic components (top), biotic components (middle), 

and full associations (bottom) when end-Pleistocene sites with more than 21 species are removed. Boxplots 

represent variation over subsamples (n= 200). Only pairs with at least 10 sites falling within their mutual 

potential range are included and all associations are calculated with exactly 10 sites. 
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temporally (within the interval) as well as spatially to receive strong weights (i.e. high positive 

or negative Fisher’s Exact Test mid-P z-scores). In other words, the binned time interval 

represents a spatiotemporal relationship for each pair rather than a strictly spatial one, and 

the association must be occurring in space as well as time to exhibit a strong pattern. In a 

practical sense, this is true for any fossil dataset, because most fossil assemblages take time 

to accumulate. In practice, the association weights calculated for a time interval of any given 

duration represent the spatial relationship of pairs over that duration, averaging out any 

variations in the relationship that may have occurred over time. Thus, if associations do 

change over the duration of the binned interval, time averaging could cause such pairs to 

appear random. The more dynamic the association pattern, the weaker we expect 

associations to be. The longer the time interval, the more likely that it encompasses temporal 

changes in associations and thus the weaker we expect the pairs to be. If this scenario was 

driving our results, we would expect the end-Pleistocene and the Holocene to exhibit weaker 

associations than the Recent, but we observe that the Holocene and Recent have similar 

associations.  

Finally, the Holocene and end-Pleistocene intervals have roughly the same duration 

(9.7 and 9.3 ka, respectively) while the Recent interval is much shorter (2 ka). Despite this, 

the greatest differences in co-occurrence are observed over the Pleistocene to Holocene 

transition. This indicates that time averaging is not responsible for the patterns detected in 

our analyses. Nonetheless, to firmly rule out the idea that time averaging is responsible for 

the aggregations observed in the end-Pleistocene, we ran our co-occurrence analyses again 

with sites older than 18 ka excluded, effectively reducing the duration of the end-Pleistocene 

interval to 7 ka. The temporal co-occurrence patterns in Fig. 4.6 were unchanged. This analysis 
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demonstrates that longer time-averaged intervals do not necessarily translate to stronger 

aggregations.  

Radiocarbon dating. Radiocarbon dates can be compromised by contamination of modern 

carbon (Zazula et al. 2014, 2017). The influence of contamination becomes larger with the 

increasing age of the dated sample (i.e., a 1-2 ka discrepancy for 0-10 ka sites and 2-4 ka 

discrepancy for 10-25 ka sites with 2% contamination). The potential inaccuracies in our 

radiocarbon dates may cause our sites to be aligned with the incorrect climate layers in our 

niche analyses, and this mismatch may be more frequent in the Pleistocene dataset than the 

Holocene and Recent datasets. Therefore, differences in the abiotic signal in the  

end-Pleistocene might be caused by incorrect 14C dates. However, the direction of the dating 

inaccuracy caused by contamination is consistently toward a younger age, typically meaning 

that the true site age is 0-4 ka older than its calculated age. To address this issue, we ran both 

of our abiotic analyses with coarsened climate data, where each site was assigned climate 

means averaged across its apparent CCSM3 1000-year interval and the three intervals 

preceding it. Because Pleistocene sites are most likely to be dated incorrectly, this approach 

gives Pleistocene sites a much greater chance of having accurate—if less precise—climate 

estimates. Simultaneously, it weakens the accuracy and precision of Holocene and Recent 

climate estimates (i.e., because Holocene sites are not likely to have more than 1 ka 

discrepancy, and therefore were probably assigned the correct climates to begin with), thus 

placing the time intervals on more equal footing.  

It is also possible that accurate dating of sites might be degraded by the procedures 

used by FAUNMAP, e.g., assigning the same dates to loosely associated macrofossils or using 

bulk dating methods. Therefore, it is possible that the dataset contains random instead of 
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systematic bias in dating errors. To address this issue, we randomly selected either the 

minimum or maximum age of each site to align with climate layers and re-ran the niche 

analyses, repeating the process five times. This approach is highly conservative because it 

shows whether or not the dating uncertainties have the capacity to overturn our results. By 

randomly choosing the minimum or maximum age of each site, we may also shuffle sites along 

the environmental gradient, and this can influence the outcome of the estimated niche 

spaces. Neither analysis changed our results. This sensitivity analysis suggests that spatial 

gradients in climate are relatively stable even when large shifts are occurring over time  

(e.g. site A is always warmer/colder than site B), lending robustness to these results.  

Supplementary results 

Relative magnitude of biotic vs. abiotic components. We compared the average magnitude 

of each component to establish its relative importance in community assembly. Both biotic 

and abiotic components were important in all time intervals, but the magnitude of the biotic 

component decreased from the Pleistocene to the Holocene and stayed consistent into the 

Recent (Fig. 4.8). The relative magnitude of biotic and abiotic components reinforces the 

conclusion that abiotic control of community assembly processes is important but did not 

vary strongly over time. By contrast, the importance of the biotic component decreases after 

the Pleistocene. This result suggests that biotic factors structured end-Pleistocene 

communities to a greater degree than subsequent time intervals, and this partly drove the 

loss of aggregations in the following intervals.  

Excluded survivor-survivor pairs. The results presented in the main text are based on pairs 

with at least 10 mutual niche sites. However, the pairs excluded by this threshold are 



Chapter 4  Post-extinction Community Reorganisation 
 

143 
 

theoretically separated by abiotic factors, namely, differential habitat preferences or 

inability to disperse into one another’s niches. Thus, it may be informative to examine how 

many pairs do not have sufficient overlapping potential ranges in each time interval. The 

percent of pairs excluded was 67.2, 68.5, and 58.4 for the end-Pleistocene, Holocene, and 

Recent, respectively. This percent is calculated on subsamples of pairs, so this means that 

the average pair was excluded roughly 60% of the time it was present in the 1000 iterations. 

These numbers suggest potential range overlap increased in the recent. This agrees with the 

increasing climate-driven aggregation and decreasing segregation we observe in the results 

for pairs that do have 10 or more sites in their mutual potential ranges (Fig. 3.6A-B), thus 

strengthening our results. 

Dating sensitivity analyses. The results of the dating sensitivity analysis were not 

substantively different from the results presented in the main text. The original analysis used 

1000-year climate layers to assign climate variables to each site. The median (rather than 

mean) magnitude of aggregations and segregations is presented in Fig. 4.16, to ensure that 

our results are not influenced by the distributions of association scores, which may be strongly 

skewed when aggregations and segregations are plotted separately. We present our results 

for climates assigned according to 4000-year averages in Fig. 4.17.  Note that the average 

weight of aggregations decreases in the original associations and in the biotic component, 

while the abundance and weight of segregations increases. The opposite pattern is evident in 

the abiotic component, and this is consistent with the results presented in the main text. The 

results do not change when sites are assigned climates from their minimum or maximum date 

at random (Fig. 4.18). Interestingly, the interplay between abiotic and biotic factors removes 

the decrease in the proportion of aggregations that we observed in the main results. This 
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indicates that climate and biotic interactions take more equal opposing roles that cancel one 

another out in the overall spatial pattern, supporting the notion that these sensitivity analyses 

capture the role of climate more strongly than the 1000-year layers (i.e. because the abiotic 

signal was somewhat overpowered in the main results, but not here). In Figs. 4.19 and 4.20, 

the average relative association weights for biotic and abiotic factors are presented when 

calculated with 4000-year averages and minimum/maximum dates, respectively. The 

decrease in biotic regulation over the Pleistocene-Holocene transition is upheld. However, it 

appears that abiotic regulation may also have decreased slightly. Although the patterns in the 

full associations seem to have been weakened slightly, it is still clear how they were formed: 

(1) a decrease in the importance of biotic regulation with respect to abiotic regulation, and 

(2) a shift of biotic regulation toward segregations.   
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Figure 4.16. Median weight of aggregations (left) and segregations (right) for abiotic components (A-B), biotic 

components (C-D), and observed full association (E-F) in each subsample (n = 100). Only pairs with at least 10 

sites falling within their mutual niche are included. 
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Figure 4.17. Proportion (left) and mean weight (right) of aggregations and segregations for abiotic components 

(top), biotic components (middle), and full associations (bottom) when climates are averaged over 4 ka. Boxplots 

represent variation over subsamples (n= 200). Only pairs with at least 10 sites falling within their mutual niche 

are included and all associations are calculated with exactly 10 sites 
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Figure 4.18. Proportion (A-F) and magnitude (G-L) of aggregations and segregations for abiotic components 

(top), biotic components (middle), and full associations (bottom) when climates are calculated by randomly 

chosen minimum or maximum calibrated age. Boxplots represent variation over subsamples (n= 200). Only pairs 

with at least 10 sites falling within their mutual niche are included.  
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Figure 4.19. Average magnitude of biotic and abiotic associations over the three time intervals, broadly 

representing the relative importance of these two components for overall community assembly patterns, when 

climates are assigned using 4000-year averages. Boxplots represent the variation among subsamples (n = 200). 
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Figure 4.20. Average magnitude of biotic and abiotic associations over the three time intervals, broadly 

representing the relative importance of these two components for overall community assembly patterns, when 

climates are assigned using 1000-year averages corresponding to minimum or maximum site age  

(chosen randomly). Boxplots represent the variation among subsamples (n = 200). 
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ABSTRACT 
Anthropogenic habitat destruction is one of the greatest threats facing biodiversity. It is 

increasingly recognized that conservation and monitoring efforts should target not just 

species but communities and ecosystems. Traditional measures of communities include 

species richness and beta diversity, but they are somewhat limited because species must 

become extirpated or extinct before changes can be observed. Co-occurrence analysis is an 

increasingly popular method that can be used to detect more subtle changes in community 

structure. We calculated richness and beta-diversity for Neotropical assemblages of birds and 

bats at altered and unaltered sites. We also calculated co-occurrence scores for all possible 

pairs of species in each assemblage. Using a comparative approach, we quantified how 

habitat alteration affected patterns of co-occurrence in pairs with varying degrees of diet 

overlap. We found that pairs with the same diets co-occurred more in altered habitats, while 

pairs with related or different diets co-occurred less, even though alpha diversity and 

composition were not significantly different. Our results suggest that altered habitats provide 

abundant food sources at predictable places and times, reducing the incidence of exclusion 

and causing aggregation within particular dietary groups. However, this also means that sites 

are less likely to support multiple species from several dietary groups, compromising local 

trait diversity and possibly functional redundancy. 
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MAIN TEXT 

Introduction 

Landscape-scale habitat alteration by humans is one of the foremost threats facing 

species today (Newbold et al. 2015). More than three-quarters of Earth’s non-frozen land area 

has been altered or settled by humans in some capacity (Sanderson et al. 2002; Ellis and 

Ramankutty 2008), encompassing almost 90% of global net primary productivity as well as 

80% of global tree cover (Ellis and Ramankutty 2008). Thus, the quantification of changes in 

local communities of species as a result of human disturbance has become a major goal of 

ecology and conservation science. 

One traditional approach to analysing changes in communities is estimating alpha 

diversity (i.e. richness). Shifts in the composition, as opposed to the richness, of communities 

are also well-documented (McKinney 2006; Dornelas et al. 2014; Tóth et al. 2014) and have 

received increasing attention. The consequence of shifting community composition in 

response to habitat alteration is often a reduction in beta diversity, particularly when 

sensitive and specialist species are extirpated while adaptive generalists or human-cultivated 

species become increasingly dominant (McKinney and Lockwood 1999; McKinney 2006; Tóth 

et al. 2014). 

However, alpha- and beta-diversity metrics provide only broad summary statistics of 

community change without suggesting mechanistic links to the observed patterns. Ecosystem 

change is often reflected in turnover of species over time rather than simple reductions in 

alpha diversity (Magurran et al. 2018). If multiple species respond to a disturbance differently, 

community assembly patterns may undergo shifts that are not detectable by examining the 
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richness or spatial turnover of the assemblage. Magurran et al. (2016) stress that changes in 

composition, particularly when it results in homogenization, may eventually compromise 

ecosystem function. Documenting and examining more subtle changes in community 

assembly is therefore critical, even before species are extirpated. Therefore, it is increasingly 

clear that the focus of conservation, management, and monitoring efforts should also be on 

the biotic interactions that underlie ecosystem function and community assembly. The 

degree to which biotic interactions have been disrupted is one of the five criteria proposed 

by Keith (2015) for assessing the risk level of ecosystems, and has been adopted by the IUCN 

Red List of Ecosystems (Keith et al. 2015). 

Competition is a commonly recognised biotic interaction that is backed up by a 

foundation in ecological theory. Although it has not escaped substantial criticism, the notion 

that competition is an important driver of community assembly amassed much empirical 

support in its early years (Schoener 1983), and evidence has continued to mount. A 

considerable proportion of this body of literature is devoted to tropical birds (Terborgh and 

Weske 1975; Remsen and Graves IV 1995; Jankowski et al. 2010; Freed and Cann 2014; 

Weinstein and Graham 2016), but competition in other taxa, such as primates (Kamilar and 

Ledogar 2011), has also been examined. Based on competition theory, we expect competing 

species to either coexist in a dynamic equillibrium such that their abundances covary 

negatively through time, or to exclude one another, i.e., be found together less often than 

species which do not compete (Kamilar and Ledogar 2011). Studies evaluating the effects of 

human disturbance on the outcome of interspecific competition, however, are scarce. 

One way to look more closely at differences in community assembly is to calculate the co-

occurrence patterns of all pairwise combinations of species. This approach has been used for 
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decades (Diamond 1975), and has recently been used to examine community assembly of 

species under human disturbance (Lane et al. 2014; Kay et al. 2017), changing climate 

conditions (Araújo and Luoto 2007), across environmental gradients (Bar-Massada and 

Belmaker 2017), and across short (Tulloch et al. 2016) and long timescales (Lyons et al. 2016). 

Such methods can detect whether species occur together more often than expected 

(aggregation) or less often than expected (segregation) by chance. They can also assign a 

value, or weight, to represent how strongly the pattern is supported by the data available. 

The resulting associations can then be examined singly or as a whole, represented by a 

network data structure where the nodes are species and the links (edges) represent their co-

occurrence patterns. 

Unfortunately, many previous studies have sometimes struggled to provide applicable 

biological interpretations for their observations of changing network structure for a variety of 

reasons. Natural network topology may be variable (Thébault and Fontaine 2010), and 

interpreting changes in networks in the context of disturbances is still difficult. Another 

challenge is that associations calculated on the basis of co-occurrence do not have an 

objective biological interpretation. Instead, much of what we know about network dynamics 

is derived from biological interactions such as plant-pollinator networks and food webs. 

Despite recent attempts to clarify the relationship between co-occurrence and biotic 

interactions (Cazelles et al. 2016; Harris 2016), it is still not known how measured properties 

of the network and its nodes (representing species) may be interpreted when the network 

edges do not necessarily imply direct interactions (Freilich et al. 2018). For example, a highly 

connected insect in a plant-pollinator food web is a generalist that pollinates a variety of 

plants. A highly connected rodent in a co-occurrence network may be a specialist that always 
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occurs on mountaintops with several other mountaintop-adapted species, but it could also 

be a keystone species that facilitates the occurrence of many others in some other way. In 

fact, most associations are likely driven by a combination of factors (e.g., shared habitat 

preferences, direct and indirect biotic interactions, and/or mutual dispersal barriers), and 

distinguishing between these – or quantifying their respective contributions – is one of the 

current challenges associated with this approach (Blois et al. 2014; Weinstein et al. 2017). 

In this paper, we evaluate the effect of habitat alteration on the outcomes of 

competition for food in Neotropical birds and bats. We use comparisons between targeted 

groupings of the dataset to provide biological interpretations of changing co-occurrence 

patterns. We begin by examining the alpha richness and beta diversity of communities of 

Neotropical birds and bats under altered versus unaltered conditions. Then, we calculate 

pairwise species co-occurrence scores to look at changes in community structure after habitat 

alteration, using unaltered sites as controls. Based on categorical information about diets, we 

ask whether co-occurrence patterns are different for pairs that share food sources and those 

that do not. If species in the same guild are more aggregated than pairs in different diet guilds, 

it means they are partitioning the shared resource or able to coexist despite some 

competition. If they are more segregated, this means they may be excluding one another. We 

report marked changes in co-occurrence that are indifferent to changes in richness and 

composition. 

Materials and Methods 

Abundance data were downloaded from the Ecological Register 

(http://ecoregister.org) on 30 July 2018 for mistnetted bats and birds from the Neotropics, 
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defined as all areas in the western hemisphere south of the Tropic of Cancer (23.44˚N). The 

sites were sourced from a total of 88 bat studies and 90 bird studies.  Samples were combined 

if they were within the same 11.1 x 11.1 km2 equal-area grid cell, sourced from the same 

study, and represented the same habitat and alteration category. We also downloaded 

Register metadata for the species and sites in the abundance tables, including coordinates for 

sites and dietary guild assignments for species. Guild assignments were based on recently 

published primary literature. Four bird sites from altered habitats were added to improve the 

spatial coverage of this category (Flores et al. 2001; Arteaga and Moya 2002; Vidaurre et al. 

2006; Villegas and Garitano-Zavala 2010). Sampling methods and reporting was standard 

across the samples, as all were mist-netted samples with consistent mesh size, harp net 

samples were excluded, and almost all nets were placed at ground level. Duration of sampling 

did vary among datasets, but this variation was present across all subsequent splits of the 

data. The full dataset consisted of 56,149 bat and 46,264 bird individuals representing 219 

bat and 1299 bird species from 124 and 81 sites, respectively. Maps of the sites are plotted in 

Fig. 5.1 (top row).  
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Figure 5.1. Maps of Neotropical bat and bird sites before (top) and after (bottom) biogeographic matching, with 

altered sites represented in red and unaltered sites represented in blue. 

Richness and Beta diversity. We estimated richness for bats and birds in altered and 

unaltered sites using the squares diversity extrapolator (Alroy 2018) and Chao1 (Chao 1984) 

on the raw abundance data for all sites. The split was based on the ‘altered.habitat’ field in 

the site metadata table, which is empty if the site is unaltered and filled with land use 

category if the site is altered. Altered sites included cropland, disturbed forest, forest 

fragment (required to be no larger than 1 km2 in size), pasture, plantation, rural, secondary 

forest, suburban, and urban categories, although the latter two comprise only a small 

minority of sites. A finer split of site types was not possible due to the low number of sites in 

Bats−original sites Birds−original sites

Bats−included sites Birds−included sites
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most of the altered subcategories. Altered sites are composed primarily of forest fragments, 

secondary forest, and disturbed forest. Bats had 73 unaltered and 51 altered sites while 

birds had 48 unaltered sites and 33 altered sites. The abundance data were converted to a 

presence-absence format. The spatial coverage of altered sites was a subset of the larger 

spatial area covered by unaltered sites. To minimize the effects of biogeography on our 

results, we removed unaltered sites that were farther from the nearest altered site than the 

most isolated altered site was from its nearest unaltered site (see supplement), resulting in 

roughly the same spatial coverage for both site types. The resulting dataset had 1,798 

occurrences of bats and 3,316 occurrences of birds at 98 and 70 sites, respectively (Fig. 5.1, 

bottom row). We then calculated the beta diversity between all pairs of sites for bats and 

birds separately and plotted the distributions of values, separating them into groups by each 

pair’s habitat: altered-altered, unaltered-unaltered, and unaltered-altered. We used the 

modified Forbes similarity index (Forbes 1907; Alroy 2015a) as the similarity measure for 

beta diversity. Finally, we ran a principal coordinates analysis (PCoA) on the sites using the R 

function cmdscale in the stats package to check for compositional shifts between altered 

and unaltered habitats. We used Forbes distances (one minus Forbes similarity values) in 

ordination analyses because this approach has been shown to minimize sampling biases and 

outperforms the widely-used Dice-Sorenson coefficient (Alroy 2015b). The Forbes similarity 

index is F = a (n + sqrt n)/[a (n + sqrt n) + 3/2 b c] where a is the number of species in both 

sites, b is the number of species unique to the first site, c is the number of species unique to 

the second site, and n = a + b + c. We tested for significant shifts in the site centroids on the 

two primary PCoA axes using a permutation test. 
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Co-occurrence analysis. We separated the presence-absence data into altered and unaltered 

habitat types. We classified each species in the dataset into one of two categories: shared 

(species occurring in both habitat types) and unique (species occurring in only one habitat 

type). Comparing the co-occurrence patterns of unique species between altered and 

unaltered sites can elucidate whether species exclusive to altered sites are filling similar or 

different structural roles as species that have potentially been extirpated from altered sites, 

although failure to sample may explain many such absences. Comparisons of shared species 

co-occurrences, on the other hand, measure differences that are not caused by local 

extirpation, sampling failure, or turnover between unaltered and altered sites, but by changes 

in occupancy across sites. The final dataset was comprised of 202 bat and 1181 bird species 

in 47 and 37 unaltered and 51 and 33 altered sites, respectively. We calculated the co-

occurrence score of every pairwise combination of species using the mid-P variant of Fisher’s 

Exact Test (Kallio et al. 2011). Co-occurrence metrics are influenced by the number of sites 

used to calculate them, so in comparative analyses co-occurrence scores should be calculated 

using the same number of sites. Because altered and unaltered categories had different 

numbers of sites, we subsampled each matrix down to the same number of sites (equal to 

five-sixths of the available sites in the least sampled site type for each taxon) and ran co-

occurrence analysis on the subsampled matrices. This allows for many combinations while 

keeping enough sites to run a meaningful analysis. We repeated the subsampling process 100 

times, and used subsamples as the experimental unit in subsequent analyses. 

Functional Analysis. We used dietary information for bats and birds from the Ecological 

Register to analyse our co-occurrence results (Table 4.1). We selected all pairs with complete 

dietary information and split them by the degree to which they shared food sources.  
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Same-guild pairs had to share primary and secondary sources of food, but the order of these 

could be reversed (e.g., a frugivore-nectarivore and a nectarivore-frugivore). Related-guild 

pairs shared one food source and had at least one non-shared food source (e.g., frugivores 

and insectivore-frugivores), and different-guild pairs had no shared food sources. Although 

species sharing food sources are not necessarily competing, pairs with more dietary overlap 

have a higher probability of experiencing competition for food, while different-guild pairs 

have no chance of competing for food. Therefore, this comparison evaluates whether habitat 

alteration changes the spatial outcomes of food competition from the patterns observed in 

unaltered habitats. 

Table 4.1. number of species per diet guild for bats and birds. 

Life 
form Guild Abbreviation Count 

bat carnivore-insectivore CI 22 
bat frugivore F 69 
bat frugivore-insectivore FI 1 
bat frugivore-nectarivore FN 3 
bat insectivore I 80 
bat insectivore-nectarivore IN 2 
bat nectarivore N 21 
bat sanguinivore S 3 
bird carnivore C 16 
bird carnivore-insectivore CI 10 
bird frugivore F 96 
bird frugivore-granivore FG 43 
bird frugivore-insectivore FI 251 
bird frugivore-nectarivore FN 8 
bird granivore G 24 
bird insectivore I 459 
bird insectivore-granivore IG 17 
bird insectivore-nectarivore IN 54 
bird nectarivore N 40 
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When analysing associations, it is helpful to picture the distribution of association 

strengths as falling along a continuum of co-occurrence between segregated and aggregated 

pairs, with random or weakly associated pairs in the middle. Segregated pairs co-occur less 

than expected and receive negative weights while aggregated pairs co-occur more than 

expected and receive positive weights. In this framework, a net change in co-occurrence 

across altered versus unaltered sites can create several patterns: (a) an increase in the 

proportion and strength of aggregations indicates more co-occurrence; (b) an increase in the 

proportion and strength of segregations indicates less co-occurrence; (c) increase in the 

strength of both aggregations and segregations and signals that species are more tightly 

linked to the occurrence of their pairs; and (d) a decrease in the strength of all associations 

indicates that pairs are closer to being randomly distributed with respect to one another. 

Complex restructuring of links can also lead to other combinations that lack a clear pattern. 

The net difference in co-occurrence patterns associated with altered versus unaltered 

habitats can suggest biological mechanisms for the shifts in co-occurrence. For instance, 

reduced co-occurrence in same-guild pairs compared to different-guild pairs suggests that 

competitive exclusion has increased, because fewer species that share resources are co-

occurring. Increased co-occurrence of same-guild pairs means that particular altered sites 

(i.e., those that provide the requisite dietary resource) can support the coexistence of more 

species in the same dietary group more often. Tighter co-occurrence can be interpreted as 

indicating that species form clusters, likely due to an increase in the spatial segregation of 

food resources introduced by habitat alteration (e.g., pastures provide an abundance of one 

type of food and plantations provide other types). Relaxed associations indicate that the 
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spatial structure of food resources is less defined in altered habitats, and species are 

dispersing more randomly or becoming very widespread. 

For each analysis, we report differences in the proportion and strength of 

aggregations and segregations between altered and unaltered habitats. We distinguish 

between shifts in association strengths driven by pairs that are shared between site types and 

pairs that are unique to one site type. We present our results by pairing the subsamples of 

altered and unaltered sites randomly and plotting group means (e.g., mean strength of 

aggregated unique pairs) in scatterplots with unaltered means on the x-axis and altered 

means on the y-axis. We chose this presentation of the data for clarity and readability, as any 

random pairing of subsamples would result in a similar plot. Side-by-side boxplots of the same 

results are provided in the supplement for reference (Figs. 5.S1-5.S4). 

Results 

Richness and Beta Diversity. Based on Chao 1 and squares, altered sites have unchanged 

alpha richness compared to unaltered sites (squares p-values = 0.905 and 0.55, and Chao 1 p-

values = 0.562 and 0.586 for bats and birds, respectively). Average richness for bat samples in 

unaltered habitats was 23.37 (squares) and 25.17 (Chao1), and this changed to 21.48 

(squares) and 26.34 (Chao 1) in altered habitats. Average richness for bird samples was 59.13 

(squares) and 68.49 (Chao 1) in unaltered habitats, and 57.59 (squares) and 64.53 (Chao 1) in 

altered habitats. For bats and birds, respectively, 38% and 49% of species increased their 

occupancies in altered habitats, and of these, 34% and 55%, respectively, appeared only in 

altered habitats. Overall, however, 62% of all bat and 51% of all bird species decreased their 

occupancies in altered habitats, and of these, 40% and 71% disappeared altogether. There 
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are a relatively large number of species that were sampled only in altered habitats (13% of 

bats and 27% of birds). These species likely do exist in unaltered habitats. However, as we 

took measures to standardize sampling between altered and unaltered sites, these species 

may represent a group whose abundances have been substantially increased in altered sites, 

such as vampire bats (Delpietro et al. 1992). The converse may be true for some species that 

only occur in unaltered sites. 

Altered sites had the lowest beta-diversity in bats, decreasing significantly from 

unaltered sites (p = 0.002). Birds did not exhibit a significant change in beta-diversity between 

habitat types (p = 0.9). Bats had on average about four times higher similarity across sites, 

indicating that spatial turnover in birds is much higher and suggesting the two taxa have very 

different community structures. This is unsurprising because Neotropical bats frequently have 

geographic ranges spanning almost the entire realm, unlike Neotropical birds. 

Fig. 5.2 depicts the altered and unaltered sites plotted by the first two principal 

coordinates. The permutation tests detected no significant compositional differences 

between altered and unaltered sites (p-values = 0.189 for bats and 0.127 for birds). This 

indicates that the considerable faunal turnover observed across altered and unaltered sites is 

not atypical, even across sites in the same category. 
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Figure 5.2. Principal coordinates analysis of altered and unaltered sites for bats (A) and birds (B). There is no 

significant difference between the composition of altered and unaltered sites for either taxon, based on  

a permutation test of the site type centroids (p-values = 0.181 and 0.137 for bats and birds, respectively). 

Functional Co-occurrence Analysis– Bats. The proportion of aggregations exhibited by bats is 

higher in unaltered sites and lower in altered sites. This is true for all groups except  

same-guild unique pairs, meaning pairs that are unique to altered habitats aggregate more 

often than same-guild pairs that are unique to unaltered habitats (Fig. 5.3). 
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Figure 5.3. Proportion aggregated pairs in altered versus unaltered habitats for pairs of bats, separated based 

on degree of dietary overlap. The dashed line is the line of unity. The points represent subsamples. Samples 

falling above the line had a higher proportion aggregations in altered habitats, and samples falling below the 

line had a lower proportion of aggregations in altered habitats than unaltered habitats. 

At unaltered sites, bat pairs have stronger aggregations the more their diet overlaps, 

with same-guild pairs exhibiting particularly strong aggregations (Fig. 5.4A). The pattern is 

stronger at altered sites, where different- and related-diet pairs have weaker or unchanged 

aggregation strength, while same-guild pairs have even stronger aggregations (Fig. 5.4A).  

Segregation strength is approximately equal across different, related, and same-diet pairs in 

unaltered sites (Fig. 5.4). Altered sites exhibit stronger segregations in all three diet overlap 

categories, but especially in same-guild pairs, and this pattern is driven by unique pairs  

(i.e., pairs unique to altered habitats segregate more strongly than pairs unique to unaltered 

habitats, such that compositional turnover between altered and unaltered habitats drives the 

increase in segregation strength; Fig 4.4B). 
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Figure 5.4. Mean magnitude of aggregations and segregations in pairs of bats, grouped based on degree of 

dietary overlap, with altered sites plotted against unaltered sites. The points represent subsamples. The dashed 

line is the line of unity. Samples falling below the line exhibit less co-occurrence (stronger segregations or weaker 

aggregations) in altered sites, while samples falling above the line exhibit more co-occurrence (stronger 

aggregations or weaker segregations) in altered sites compared to unaltered sites. 

Functional Co-occurrence Analysis– Birds. At unaltered sites, bird pairs with different diets 

segregate most often and related-guild pairs aggregate most often. This pattern is driven by 
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both shared and unique pairs. Bird pairs are more likely to aggregate across the board in 

altered sites versus unaltered sites (Fig. 5.5), but the relationship between diet overlap 

categories does not change. Shared pairs in particular tend to aggregate more at altered sites 

than unaltered sites, and the likelihood of aggregation increases with dietary overlap. 

 
Figure 5.5. Proportion aggregated pairs in altered versus unaltered habitats for pairs of birds, separated based 

on degree of dietary overlap. The dashed line is the line of unity. The points represent subsamples. 

Alteration causes weaker co-occurrence (stronger segregations and/or weaker 

aggregations) in different-guild and related-guild pairs (Fig. 5.6A), particularly in unique pairs 

(Fig. 5.6B). Pairs that share at least one food source co-occur more strongly (stronger 

aggregations and weaker segregations) in altered versus unaltered sites. The difference in the 

response of diet categories to alteration is driven by pairs unique to each site type  

(i.e., changes in community assembly associated with faunal turnover), because shared pairs, 
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which tend to occur more commonly, actually have more co-occurrences in all diet overlap 

categories, which is different from the pattern in the overall data (Fig 4.6B). 

  
Figure 5.6. Mean magnitude of aggregations and segregations in pairs of birds, grouped based on degree of 

dietary overlap, with altered sites plotted against unaltered sites. The points represent subsamples. The dashed 

line is the line of unity. 
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Functional Co-occurrence Analysis– Comparison. In summary, both bat and bird pairs exhibit 

more co-occurrence (more aggregations as well as stronger aggregations) in altered habitats 

than unaltered habitats when sharing food sources, and less co-occurrence when not sharing 

food sources. Although habitat alteration does not substantially alter the general 

relationships between diet-overlap groups in either taxon, it causes the existing patterns in 

bats to become stronger. Finally, unique pairs (i.e., pairs occurring in only one habitat type 

because of compositional turnover) are more likely to dominate the overall patterns. 

Discussion 

In this study we examined the effect of habitat alteration on the community assembly 

of Neotropical bats and birds. Unaltered and altered habitats did not differ significantly in 

species richness, nor did we find differences in composition between unaltered and altered 

habitats. This suggests that biogeographic location is more important in determining 

compositional turnover than habitat alteration. However, beta diversity was lower in altered 

habitats for bats, similar to the results of Kay et al. (2017) for lizards in Australia. This paper 

therefore joins a long parade of studies showing that habitat alteration can cause 

homogenisation rather than reducing richness (McKinney and Lockwood 1999; McKinney 

2006; Trentanovi et al. 2013; Dornelas et al. 2014; Tóth et al. 2014; Knop 2015). We found 

this pattern even though our altered sites encompassed a wide variety of habitat types 

ranging from urban to secondary forest. Such homogenisation is typically driven by the 

expansion of a few cosmopolitan species while rare and sensitive species are extirpated 

(McKinney and Lockwood 1999; Tóth et al. 2014). It is possible that compositional similarities 

between altered and unaltered sites are a result of extinction debt (i.e. the concept that some 
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species trapped in diminishing fragments will go locally extinct but have not yet done so), 

however, bats and birds are such mobile species that this explanation does not seem likely.  

Differences in association strength between altered and unaltered sites were largely 

dominated by reduced co-occurrence (stronger segregations and weaker aggregations) in the 

presence of alteration, except in pairs that shared the same diet sources. Previous studies 

have focused on the number or proportion of significant aggregations and segregations, 

showing a decrease in the incidence of aggregations in mammals (Lyons et al. 2016; Smith et 

al. 2016) and fossil pollen (Blois et al. 2014; Lyons et al. 2016) in the presence of disturbance. 

Similarly, a loss of aggregations is seen in modern Australian lizards (Kay et al. 2017) in 

modified sites and birds in forest plantings (Lane et al. 2014). Unlike most previous work, we 

evaluated both the incidence and the strength of associations using all associations, not just 

those above a significance threshold. Although our results are compatible with previous 

findings, our investigation makes it clear that the picture is more complex than a loss of 

aggregations. Bat pairs had fewer aggregations in altered versus unaltered habitats and these 

aggregations were also weaker, except in same-guild pairs. Bird pairs had more aggregations, 

but these were again weaker in all except same-guild pairs. 

Our functional analysis hints at an explanation for the observed differences. In birds, 

the relationship between different-, related-, and same-guild pairs is similar between altered 

versus unaltered habitats, but all groups have a higher incidence of aggregation in altered 

habitats. This suggests that some other variable, such as competition for breeding territories, 

or some type of interaction entirely, is more instrumental than diet in structuring bird 

communities in the wild. The fact that bat pairs had more and stronger segregations 

irrespective of dietary overlap suggests that altered habitats increase the incidence of 
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exclusion, but this is not driven by competition for food. Food resource sharing does influence 

the effect of habitat alteration on aggregations, however, because aggregations are stronger 

in same-diet pairs and weaker in the others, increasing the existing difference between them 

in both taxa. 

Even in unaltered habitats, same-guild bat pairs aggregate much more strongly than 

different-guild pairs (Fig. 5.4), suggesting that far from excluding one another, competing 

species of bats are able to coexist easily in the wild. We do not believe this result is a sampling 

artefact because the Ecological Register intentionally excludes literature that did not fully 

document bat faunas because, for example, it only discussed phyllostomids. If our pattern is 

real, it makes sense because bats often share roosts with other species (Swift and Racey 1983) 

and have been shown to partition microhabitats and foraging times (Aldridge and Rautenbach 

1987; Nicholls and Racey 2006), which allows them to overlap broadly on the trophic 

dimension (Kingston et al. 2000). The changes associated with habitat alteration actually 

enhance this pattern, suggesting that certain properties of altered habitats actively aggregate 

particular diet guilds in space (e.g. to particular types of sites) or in time (e.g., seasonal fruiting 

of a particular tree that is frequently planted). Birds segregate much more often than bats in 

general, but co-occurrence is nonetheless stronger for same-guild pairs in altered habitats 

(Fig. 5.6), suggesting that a similar mechanism may be in play for both taxa. 

Strong aggregations form when species occur together at a relatively small number of 

sites and are both absent from other sites. Vampire bats have been shown to feed 

preferentially on the blood of livestock (Delpietro et al. 1992; Bobrowiec et al. 2015), 

suggesting they co-occur in farms and ranches (Becker et al. 2018), even though they are 

relatively rare in the wild. Although there are only a few species of sanguinivore bats in our 
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data, carnivorous bats (22 species) co-occur disproportionately in plantations and forest 

fragments. Frugivorous bats (69 species) co-occur primarily in plantations and rural sites, 

suburban sites support the highest proportion of insectivore bats (80 species), and 

nectarivores (21 species) co-occur disproportionately in plantations (Fig. 5.7). Different-guild 

pairs might segregate due to this spatial structure in food resources, and likewise for  

related-guild pairs, if their non-shared food resources are not available in the same sites. 

Interestingly, insectivores and nectarivores disproportionately segregate, suggesting that 

competitive exclusion is stronger in altered habitats for these feeding guilds, but also that 

insect and nectar food resources may be available in a broader range of altered site types. 
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Figure 5.7. Percent of species in bird (left and center) and bat (right) guilds, represented by panels, that co-occur 

at individual altered sites by type of alteration. Each point is an altered or unaltered site. There are no bird sites 

in the suburban category. Key to panels: C = carnivore; F = frugivore; I = insectivore; N = nectarivore; and G = 

granivore. Multiple letters indicate mixed feeders. 

The overall differences in the data are often dominated by the pattern established by 

unique pairs. This means that species pairs sampled only in altered habitats do not substitute 

the community structural roles of pairs that have been extirpated and remain only in 

unaltered habitats. In particular, pairs unique to altered habitats appear to co-occur less often 

than their counterparts in unaltered habitats, partially driving the stronger segregations and 

weaker aggregations in the different- and related-diet categories for both taxa. This is despite 

the fact that pairs conserved between the two habitat types often aggregate more in altered 

habitats. 
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Our findings suggest that exclusion from interspecific competition for food is weaker 

or absent in altered sites compared to unaltered sites, probably due the predictability and 

reliability of abundant food sources. However, they also indicate that species apparently 

segregate by dietary guild to a greater extent than in unaltered sites, and this may reduce the 

dietary diversity of local communities in altered habitats, because it reduces the  

co-occurrence of pairs with different diets. It is possible that the aggregation of one dietary 

group at a site reduces trait diversity and redundancy of other guilds for that site through 

competition for other resources, such as roosting sites, breeding territory, or foraging time. 

Conclusion 

Our approach confirms that there are indeed marked differences in the community 

assembly of bats and birds as a result of habitat alteration, even though richness and habitat 

composition were not significantly different. Most pairs that share food sources exhibit 

stronger aggregations in altered habitats, suggesting that changes in community assembly are 

more strongly influenced by the spatial distribution of food resources in altered sites than in 

the wild. This implies that habitat alteration reduces competitive exclusion for food, 

particularly in bats. Unfortunately, this leads to reduced co-occurrence of functionally diverse 

pairs, as evidenced by the decreasing co-occurrence of pairs with different food sources. This 

is consistent with previous work suggesting that human disturbances are reducing 

aggregations in non-volant mammals (Lyons et al. 2016) and reptiles (Kay et al. 2017). 

Reduced competition and exclusion between species with similar diets ultimately results 

decreased diversity of dietary groups at altered sites. 
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SUPPLEMENTARY MATERIALS 

Methods 

Biogeographic correction. The geographic layout of sites can influence the results of  

co-occurrence analysis. For instance, if sites are clustered in two regions with no sites in 

between, there is a good chance that the co-occurrence structure of the assemblage will 

reflect this clustered layout by exhibiting strong aggregations within the clusters and 

segregations between clusters. Ideally, we would like to have even sampling over our entire 

study area, but when this is not possible, we must at least make sure that any comparisons 

are not influenced by geographic sampling bias. One way to achieve this is to ensure that the 

sites used to calculate co-occurrences have roughly the same geographic coverage when 

comparing co-occurrences across different types of sites or time periods. 

In this paper, the study extent covers Central and South America south of the Tropic 

of Cancer. This includes large swathes of the Amazon in Brazil where there are no samples in 

altered habitats. As a result, the unaltered sites cover more area than the altered sites, and 

the geographic coverage of the latter is nested within that of the former. To correct for these 

biases, we removed the unaltered sites covering areas that were not covered by altered sites 

using the following algorithm. (1) We measured the distance to the closest altered site for all 

unaltered sites and vice versa. (2) We found the altered site farthest from its closest unaltered 
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site. (3) We removed all unaltered sites whose closest altered neighbour was farther than the 

distance in step 2. Note that this approach only works because the geographic coverages is 

nested; site types that are offset in space would require a different approach. Our final sites 

are plotted in Fig. 5.1. 

Guild-by-guild analysis. The main text of this study compares pairs that have the same diet, 

related diets, and different diets. To understand the differences between individual dietary 

guilds in terms of response to habitat alteration, we used our co-occurrence results for  

same-diet pairs to compute the proportion and strength of aggregations and segregations 

within each dietary guild separately. This analysis can shed light on which dietary guilds are 

strongly affected by alterations and which dietary guilds are responsible for the overall 

patterns. Because some guilds are poorly represented, we restricted this analysis to dietary 

guilds that have an average of at least 50 pairs per subsample per habitat type in total 

(counting both shared and unique pairs), which is roughly equivalent to at least 10 species 

showing up regularly in each habitat in each subsample. We plotted the proportion and 

magnitude of associations of species in altered habitats against those in unaltered habitats. 

Analysis of alteration types. To gain more insight into the aggregation of same-guild pairs in 

altered habitats, we calculated the percent of species in each guild that co-occur at individual 

sites (e.g., 5% of bat carnivore species occur at site A, etc.). We plotted the sites by alteration 

type to examine the influence of alteration on species aggregation. Although we do not have 

enough sites of each alteration type to draw any definitive conclusions, this analysis can 

suggest reasons why certain guilds might co-occur more in altered sites and provide questions 

for future research. 
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Results 

Guild-by-guild analysis. Same-guild pairs in different dietary categories unsurprisingly 

showed a variety of responses to habitat alteration. As expected, the largest guilds dominated 

the overall pattern. In bats, insectivores and frugivores are the largest guilds. In altered sites, 

both guilds showed a higher proportion of segregations for shared pairs but a higher 

proportion of aggregations for unique pairs (Fig. 5.8). Bat carnivore pairs aggregated more 

than pairs in any other guild in unaltered sites, but their aggregations were substantially less 

prevalent in altered sites. Nectarivores aggregated less than the other guilds in unaltered 

sites, but aggregations were more common in altered sites. Although frugivores and 

insectivores have stronger aggregations in altered sites versus unaltered sites, which drives 

the overall pattern, both unique nectarivores and shared carnivores had weaker aggregations. 

Stronger average segregations observed in altered sites are mainly driven by nectarivores and 

unique insectivores (i.e., turnover in insectivore species: Fig. 5.9). 
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Figure 5.8. Proportion of pairs that are aggregated in altered versus unaltered habitats for pairs of bats that have 

the same dietary sources, by guild. The dashed line is the line of unity. The points represent the appropriate 

pairs from the subsamples (i.e. each subsample is plotted four times, once for its pairs in each guild). Samples 

falling above the line have a higher proportion of aggregations in altered habitats, and samples falling below the 

line have a lower proportion of aggregations in altered habitats. Key: CI = carnivore-insectivore; F = frugivore;  

I = insectivore; N = nectarivore. 
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Figure 5.9. Mean magnitude of aggregations and segregations in pairs of bat species that share the same dietary 

sources, grouped into diet categories, with altered subsamples plotted against unaltered subsamples. The points 

represent subsamples. The dashed line is the line of unity. Samples falling below the line exhibit less  

co-occurrence (stronger segregations or weaker aggregations) in altered sites, while samples falling above the 

line exhibit more co-occurrence (stronger aggregations or weaker segregations) in altered sites compared to 

unaltered sites. Key: CI = carnivore-insectivore; F = frugivore; I = insectivore; N = nectarivore.  
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habitats, and the opposite was true for the three remaining guilds (frugivores, frugivore-

granivores, and insectivore-nectarivores). Interestingly, almost every bird guild showed 

overall less co-occurrence (stronger segregations or weaker aggregations) in altered sites, 

particularly in unique pairs (Fig 4.11). Only insectivore and nectarivore bird pairs tended 

toward more co-occurrence (stronger aggregations and weaker segregations) with any 

consistency, and this trend in insectivores dominates the overall pattern, due to the large 

number of insectivore bird species. 

 
Figure 5.10. Proportion of aggregated pairs in altered versus unaltered habitats for pairs of bird species that 

have the same dietary sources, by guild. The dashed line is the line of unity. The points represent each dietary 

guild within subsamples (i.e. each subsample is plotted seven times, once for its pairs in each guild). Subsamples 

falling above the line have a higher proportion aggregations in altered habitats, and samples falling below the 

line have a lower proportion of aggregations in altered habitats. Key: C = carnivore; F = frugivore; G = granivore; 

I = insectivore; N = nectarivore; multiple letters indicate mixed feeders. 
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Figure 5.11. Mean magnitude of aggregations and segregations in pairs of bird species that share the same 

dietary sources, grouped into diet categories, with altered subsamples plotted against unaltered subsamples. 

The dashed line is the line of unity. The points represent subsamples. Subsamples falling below the line exhibit 

less co-occurrence (stronger segregations or weaker aggregations) in altered sites, while subsamples falling 

above the line exhibit more co-occurrence (stronger aggregations or weaker segregations) in altered sites 

compared to unaltered sites. Key: C = carnivore; F = frugivore; I = insectivore; N = nectarivore; and  

S = sanguinivore. Multiple letters indicate mixed feeders. 
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are an important aggregation point for bats, particularly frugivores and nectarivores. 

Although only two suburban sites are included, these sites both contain more than 15% of bat 

insectivores, and very few other species. The data for site types are even sparser for birds, 

but the primary habitat types are forest fragment, secondary forest, disturbed forest, and 

plantation. These site types vary in their importance to individual bird guilds. Birds with fruit 

or nectar in their diets co-occurred in plantations and fragments, while insectivores were 

most strongly aggregated in secondary forest. Disturbed forest typically contained a low 

percentage of each dietary guild. Secondary forest and forest fragment sites appear more 

instrumental for the co-occurrence of same-guild birds than bats (Fig. 5.7). 

Discussion 

The results of the guild-by-guild analysis show that the increase in co-occurrence 

between same-guild pairs is not universal across all dietary guilds. In fact, much of the analysis 

is dominated by the patterns of insectivore pairs in both taxa. As insectivores are the most 

speciose guild in both bats and birds (by far in the latter), the prevalence of insectivore-based 

patterns in the data should be considered biologically relevant. However, diversity of life 

history traits depends upon the co-occurrence of a variety of taxa, and functional redundancy 

depends on the ability of many same-guild taxa to co-occur. Based on this analysis, many 

guilds from both taxa have lost the ability to form strong, frequent aggregations, suggesting 

that functional redundancy at altered sites is being lost for particular functional groups. 

Our main analyses suggest that different-guild and even related-guild pairs co-occur 

more weakly at altered sites. We interpret this to mean that functional diversity, i.e. the 

ability of species with diverse functional roles to coexist, has been reduced at altered sites in 
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the Neotropics. According to the guild-by-guild analysis, functional redundancy for many 

groups may also be affected.  

Supplementary figures 

 
Figure 5.S1. Percent aggregated pairs in altered and unaltered habitats for bats, separated by the degree to 

which diets are shared by each species pair. Each group is further separated based on whether it is found in both 

altered and unaltered habitats (shared) or only in one (unique), distinguishing between community change that 

is or is not driven by compositional turnover. Points represent subsamples, and the average number of pairs per 

subsample in each category is displayed within each panel. 
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Figure 5.S2. Strength of aggregations and segregations in altered (red) and unaltered (blue) habitats for bats, 

separated by the degree to which diets are shared by each species pair (A). Each group is further separated 

based on whether it is found in both altered and unaltered habitats (shared) or only in one (unique), 

distinguishing between community change that is or is not driven by compositional turnover (B). Points toward 

the right represent stronger aggregations or weaker segregations, which is an increase in co-occurrence. Points 

toward the left represent stronger segregations or weaker aggregations, which constitutes a decrease in  

co-occurrence. 
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Figure 5.S3. Percent aggregated pairs in altered and unaltered habitats for birds, separated by the degree to 

which diets are shared by each species pair. See caption of Fig. 5.S1 for details 

 
Figure 5.S4. Strength of aggregations and segregations in altered and unaltered habitats for birds, separated by 

the degree of shared dietary sources between the species pair. See caption of Fig. 5.S2 for details.  
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MAIN TEXT 

Recap 

 The previous chapters have introduced a comparative, probabilistic approach to co-

occurrence analysis and applied it to answer two distinct questions about the biological 

mechanisms of community assembly. The first chapter presented an introduction to 

ecological networks and co-occurrence analysis. The second chapter outlined some 

challenges involved in  co-occurrence analysis and illustrated how a comparative approach to 

probabilistic co-occurrences can provide answers to meaningful biological questions about 

community assembly. The third chapter is an observational study of simulated and empirical 

co-occurrence networks that provides a side-by-side comparison of binary vs. probabilistic 

network metrics as well as an assessment of the similarities between simulated and empirical 

network structures. The fourth chapter was a practical application of the comparative 

approach that observed changes in mammal community assembly over a critical extinction 

interval. The fifth chapter compared various dietary groupings of Neotropical bats and birds 

in altered and unaltered habitats to explore the effects of human land use on the outcomes 

of interspecific competition.  

Four steps to conservation 

 The use of comparative co-occurrence analysis for improving applied conservation 

and management of dynamic ecosystems requires a four-step process (Fig. 6.1). As modern 

ecological network analysis is tied to relatively recent advances in computing, we are still in 

the process of documenting and observing ecological networks (Proulx et al. 2005). Therefore, 
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first, co-occurrence patterns must be observed and documented for target taxa at various 

scales to establish a baseline and the normal range of variation. Systems minimally impacted 

by anthropogenic factors should be studied here. 

 
Figure 6.1. The process of using co-occurrence data to improve conservation management consists of four steps. 

This work addresses the first three steps directly. Continued monitoring of managed systems over time in the 

fashion demonstrated here would make it possible to achieve step 4, improving conservation management. 

 In chapters 2-5 of this work, co-occurrences were documented for communities of  

large-bodied non-volant mammals, bats, trees, insects, and birds, in some cases for various 

spatial and temporal extents. The results of these analyses suggest that—although ecological 

networks have already been shown to have a variety of topologies (Thébault and Fontaine 

2010)—the co-occurrence structure of empirical communities is strongly constrained with 
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respect to the full range of possibilities observed in simulated matrices. To illustrate this, we 

plotted the probabilistic connectivity (Poisot et al. 2016) of co-occurrence networks for 

aggregations against segregations (Fig. 6.2) using the empirical datasets in chapters 2-5 of this 

work, in addition to several other datasets from the Ecological Register 

(http://ecoregister.org). We see that networks derived from empirical matrices fall in a small 

section near the centre of the connectivity plot, whereas networks derived from simplistic 

simulated matrices cover much of the possible plot area (Fig. 6.2). As a result, even seemingly 

small shifts in co-occurrence distributions can actually signal significant changes in community 

assembly patterns. This property is at least partially tied to numerical properties of empirical 

matrices such as low matrix fill and the presence of many rare and a few common species, 

which are relatively consistent across taxa. 

The effect of spatial and temporal resolution on co-occurrences is still largely 

unknown, though it has been suggested that they do not necessarily behave as expected, for 

instance, decrease in temporal resolution does not necessarily cause an increase in 

aggregations (Lyons et al. 2016b). Chapter 5 of this thesis illustrates that co-occurrence 

patterns do not necessarily correlate with temporal extent either, because the younger two 

time intervals with very different temporal extents had more in common than the longer of  

these with the oldest time interval, which had a similar temporal extent. These findings 

suggest that co-occurrence analysis may be robust to reasonable variation in grain and extent 

and manages to capture biological patterns instead.  
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Figure 6.2. Probabilistic connectivity of aggregations plotted against probabilistic connectivity of segregations 

for the empirical matrices used in this work, and additional empirical datasets from the Ecological Register, 

including datasets documenting ants, bats, birds, butterflies, frogs, mammals, mosquitoes, scarab beetles, small 

mammals, and trees (not differentiated in legend) from different biogeographic realms. These are plotted along 

with a series of simulated datasets, including structured and unstructured (random) matrices with realistic 

occupancy distributions. The simulated structured matrices are based on community theory (see Chapter 3), and 

illustrate the theoretically possible range of connectivity combinations for co-occurrence networks. The gray 

triangle indicates the mathematically impossible section of the parameter space. 

 The second step is to observe changes in co-occurrence patterns over space and time, 

keeping in mind that modern communities may already be significantly different from those 

occurring before anthropogenic activities became widespread. This was one of the goals of 

chapter 4 of this work, in which North American large mammal co-occurrences were 
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compared before and after a major human-driven extinction event. This and other previous 

work (Lyons et al. 2016) suggests that the segregation-dominated assemblages of surviving 

species seen today could be an anthropogenic phenomenon that emerged in the last 10,000 

years. In North American mammals, it appears that the shift toward segregation is a result of 

changes in biotic interactions, most likely the loss of top-down control by apex predators and 

of competition with large herbivores. A possible avenue of future research would be to repeat 

these analyses for the Pleistocene megafaunal extinction event on other continents. Another 

important area of inquiry would be to observe community shifts across non-anthropogenic 

critical intervals, such as the Palaeocene-Eocene Thermal Maximum (PETM) or the mass 

extinctions at the Cretaceous-Paleogene boundary (KPG), which would help to establish 

whether or not human disturbances bring about novel community assembly patterns,  

i.e. whether other critical intervals also precipitated increases in the prevalence of 

segregations, or another pattern. 

The third step, and the major goal of this work, was to link observed changes to 

biological mechanisms, such as dispersal barriers, habitat preferences, and biotic interactions. 

The idea that many factors are simultaneously at work cannot be discounted, and thus we 

must find ways to determine how each one contributes to community assembly. The 

approach outlined in chapter 2 of this work is specifically targeted at identifying the interplay 

of mechanisms that assembles communities. 

 In chapters 4 and 5, I used two example systems to demonstrate how the comparative 

approach can answer targeted biological questions.  In chapter 4, I compared the effects of 

biotic and abiotic factors on the community assembly of survivors of the end-Pleistocene 

extinction. Critically, I demonstrated that the observed shifts in community structure are 
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driven by a decrease in biotic regulation, rather than the climatic changes that occurred 

simultaneously. The pattern of changes suggests that the extinction ultimately resulted in 

increased competitive exclusion. This could have been driven by removal of competition and 

top-down control that led to increases in abundance. These results imply that mammal 

assemblages impacted by the Pleistocene mass extinction may be irreversibly altered by 

human interference above and beyond the permanent loss of extinct megafauna. This chapter 

builds on previous work describing changes in co-occurrence over deep time (Lyons et al. 

2016a; Smith et al. 2016; Villalobos et al. 2016) by focusing explicitly on this critical interval.  

 In chapter 5, I assessed whether the spatial outcomes of interspecific food 

competition is influenced by human habitat alteration. I showed that the ability of altered 

habitats to support the coexistence of multiple species with different functional traits is 

diminished, but species with similar functional traits co-occurred more. This result suggests 

that altered communities, while still rich in species numbers, are losing functional diversity.  

Given enough data, this approach could be implemented in many ways. For example, 

one could compare co-occurrence patterns in different types of altered habitat to determine 

whether alteration has differential effects on co-occurrence. One could split species using 

other functional characteristics, such as foraging mode in bats or degree of territoriality in 

birds, to test whether these traits are more instrumental in competitive exclusion than dietary 

guild assignments. Pairs could be split based on phylogenetic distance or differences in body 

size. Sites from different regions could be compared for a more spatially explicit analysis  

(i.e., to compare assembly patterns across space). Communities of plants with and without a 

target invasive species could be compared to see how invaders influence community 

structure. 
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 Observing co-occurrence patterns and figuring out why they shift will improve our 

understanding of assemblages over regional and continental spatial scales. Monitoring 

changes in co-occurrence over time or comparing managed and unmanaged assemblages can 

help detect and evaluate the outcomes of management strategies. Drawing comparisons with 

relatively undisturbed areas could provide conservation targets for managing disturbed areas 

such as plantations or suburbs. Node-level properties of co-occurrence networks could 

provide potential options for actively replacing extirpated species with surrogates possessing 

similar roles in community structure. Because co-occurrence analysis only requires presence-

absence data, it provides highly nuanced information even if there have not yet been more 

obvious changes like a decrease in richness due to extirpation.  

Understanding ecosystems  

Scaling up. Co-occurrence analysis can be applied at any spatial scale, and provides 

generalisations for the scale on which it was calculated. These generalisations can shift or be 

broken down if the analysis is performed on smaller scales, allowing us to measure spatial 

variation in species associations and understand the processes that combine to create the 

overarching pattern. Macroecology seeks to identify useful generalisations at large spatial 

scales (McGill 2019), and co-occurrence analysis provides a way to recognise and understand 

such patterns in species distributions.  

A hierarchy of complexity. Another major long-term goal of macroecology is to understand 

how biotic and abiotic factors interact to govern functioning ecosystems. To achieve this, we 

must focus on understanding the connections between increasingly diverse and numerous 

interacting elements. Traditionally, much of ecology research has tended to be species-
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centric, directed at understanding the behaviour of species, their distributions, and their roles 

in their ecosystems. This type of research is a logical first step and produces necessary 

foundational knowledge to describing the biosphere.  It is still a central area of effort today, 

although the focus has shifted to a systematic biodiversity census with the aim of ecological 

risk assessment through efforts such as the IUCN Red List of Threatened Species. But higher-

level questions about ecosystem function have also been in the literature for many decades. 

Interactions between species, particularly trophic and competitive relationships between 

single pairs of species, were an active area of research throughout the 1900s, as researchers 

tried to document how one species can affect others. The keystone species concept (Paine 

1969) was born from the stability-complexity debate when Paine (1969) observed that the 

structure, and even the physical appearance, of two disparate marine communities were both 

strongly affected by the abundance of a single species of predatory starfish, despite rich 

biodiversity, and that there was no evidence of a similar effect for other species in these 

communities. The community assembly of birds on island archipelagos was instrumental in 

the development of the idea that competitive interactions across an entire assemblage, 

“diffuse competition” may be more applicable to the real world than the myriad studies 

examining competition between two species (Diamond 1970, 1975). Today, these ideas are 

being extended by the joint species distribution modelling (JSDM) literature, which 

incorporates the co-occurrence of other species—in addition to abiotic environmental 

variables—in predictive models of species distributions (Ovaskainen and Soininen 2011; 

Pollock et al. 2014; Warton et al. 2015).  

While competitive models typically focused on species within a single taxon  

(e.g. birds), early research on food webs explored interactions across multiple taxa, typically 
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in marine and aquatic systems where several taxa (e.g. fish, gastropods, bivalves, 

echinoderms, etc.) make up reasonably small local food webs (Paine 1966; Pimm 1980). 

Eventually, more research began to explicitly emphasise how various biotic interactions link 

assemblages of two otherwise unrelated taxa, heralding the emergence of modern network 

ecology (Proulx et al. 2005; Montoya et al. 2006). These studies often use bipartite networks, 

focusing on the interactions between two taxa, not interactions within each taxon. Recently, 

research on multi-taxon interaction networks involving three or more taxa or functional 

groups (e.g. plants, herbivores, and their parasites) has begun to gain more traction (Pilosof 

et al. 2017; Astegiano et al. 2017; Hutchinson et al. 2019). A huge number of interactions 

occur across taxa (e.g. parasitism, commensalisms, herbivory, pollination, mutualism), so two 

species are often indirectly connected through interactions with a third, and all three may be 

in different taxa and functional groups. These multilayer networks allow us to analyse 

interaction networks across as well as within several taxa; essentially a multi-taxon unipartite 

network, which considers all possible relationships. Network layers can also correspond to 

different spatial locations and temporal intervals.  

Co-occurrence analysis has been with us for most of the journey. Now, it offers a way 

to study all the possible relationships between any taxa, across space and time, by starting 

with the spatial outcomes of all driving processes, and working backwards to distinguish the 

driving mechanisms, all without a priori data about direct interactions. The four-step process 

outlined above provides a way forward for studying each level of the hierarchy described 

above, which is illustrated in Fig. 6.3. This thesis demonstrates the first three steps of this 

procedure and draws conclusions that can inform our development of the final step.  

Applications of the framework outlined in these chapters may eventually answer deeply 
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complex ecological questions, such as how do species co-occurrence patterns change along 

gradients of spatial resolution and extent? How do members of myriad different taxa share 

and partition space in ecosystems? How does this reflect their interactions and contributions 

to ecosystem function? How do interactions encourage local diversity and sustain complex 

food chains? How do ecosystems provide ecosystem services? How do ecosystems assemble 

and disassemble? And what can we do to ensure we do not destroy these processes? 

 
Figure 6.3. The hierarchy of interactions that make up the biosphere. Individual species and their pairwise 

interactions are basic units of community assembly.  To understand ecosystems, however, we must focus future 

attention on multi-taxon networks, and consider relationships within and across taxa, including both biotic and 

abiotic factors. Co-occurrence analysis can be used across all levels of this hierarchy, as well as over long 

temporal scales using fossil occurrences. 
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APPENDIX 

DATA AND CODE AVAILABILITY 

Chapter 2 

• Code relating to Chapter 2 can be found at https://github.com/anikobtoth/FCW.  

• Empirical East African Mammals data for Kenya (Tóth et al. 2014) is available from 

http://www.esapubs.org/archive/ecol/E095/150/metadata.php. 

• Full dataset including Tanzanian data is available on 

https://github.com/anikobtoth/FCW. All other empirical data can be downloaded 

from the download page of the Ecological Register (Alroy 2015) at 

http://ecoregister.org using the following search parameters. 

Chapter 3 

• Code and simulated data relating to Chapter 3 can be found at 

https://github.com/anikobtoth/FCW.  

• Empirical data can be downloaded from the download page of the Ecological 

Register (Alroy 2015) at http://ecoregister.org using the following search 

parameters. 
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Table 1. Empirical datasets from the Ecological Register (http://ecoregister.org). The table details the search 

criteria entered into the download form. Limits = the latitudinal and longitudinal range in degrees.  

Dataset 
Limits (degrees) Included 

sampling 
methods 

Minimum 
indiv. per 

sample North  South  East West  

North American 
Bats - 15 -60 - - 50 

South Brazilian 
Bats -15 -33 -38 -70 - 50 

South Brazil 
Rodents -15 -33 -38 -70 - 50 

North American 
Scarabs - 15 -60 -110 - 50 

E. North 
American Trees 50 25 -60 -100 - 50 

New World 
Mammals† - - -30 - camera - 

Indochinese 
Mammals† 23 -10 130 90 camera 30 

† Does not include bats. Ecological Register taxon search criteria include carnivores, primates, rodents, ungulates, 

other large mammals, and other small mammals. 

Chapter 4 

• Code and curated data relating to Chapter 3 can be found at 

https://github.com/anikobtoth/Megafauna. 

• The raw fossil data were originally downloaded from FAUNMAP II (Graham and 

Lundelius 2010), and can be accessed from 

https://ucmp.berkeley.edu/faunmap/use/datadownload.html 
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• CCSM3 climate simulations (Veloz et al. 2012, Blois et al. 2013) are available from 

https://nelson.wisc.edu/ccr/resources/paleoclimate.php 

• Body mass data (Smith et al. 2003) can be downloaded from 

http://www.esapubs.org/archive/ecol/E084/094/ 

Chapter 5 

• Code and curated data relating to Chapter 4 can be found at 

• https://github.com/anikobtoth/HabitatAlteration 

• The raw empirical data can be downloaded from the download page of the Ecological 

Register (Alroy 2015) at http://ecoregister.org using the following search parameters. 

Table 2. Empirical datasets from the Ecological Register (http://ecoregister.org). The table details the search 

criteria entered into the download form. Limits = the latitudinal and longitudinal range in degrees.  

Dataset 
Limits (degrees) Included sampling 

methods 
Repeat 
samples North  South  East West  

Bats 23.5 - -30 - mist Lump in small 
cells 

Birds 23.5 - -30 - mist Lump in small 
cells 
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CONFERENCE PRESENTATIONS AND INVITED TALKS DURING CANDIDATURE 

2019 Tóth AB, Lyons SK, ETE working group, and Alroy J. Reassembly of surviving mammalian 

communities after the end-Pleistocene mass extinction. 9th Biennial conference of 

International Biogeography Society, Málaga, Spain. Jan. 8- 12. (Oral presentation) 

2019 Pineda-Muñoz S*, Tóth AB, Lyons SK, Wang Y, McGuire J. Changes in North American 

mammal niche preferences from the late Pleistocene to the present. 9th Biennial 

conference of International Biogeography Society, Málaga, Spain. Jan. 8-12.  

2018 Tóth AB*, Lyons SK, and Alroy J. Evaluating community assembly over space and time 

using co-occurrence network analysis. University of Nebraska, Lincoln. Oct. 26. (Invited 

talk) 

2018 Tóth AB*, Lyons SK, ETE working group, and Alroy J. End-Pleistocene megafaunal 

extinction caused a fundamental shift in mammal species interactions. Annual meeting 

of the Society of Vertebrate Paleontologists, Albuquerque, NM. Oct. 17-20.  

(Invited talk).  

2018 Pineda-Muñoz S*, Lyons SK, Tóth AB, and Behrensmeyer AK. Lessons in designing 

databases for examining paleocommunities through geological time. 78th Annual 

meeting of the Society of Vertebrate Paleontologists, Albuquerque, NM. Oct. 17-20.  

2018 Fraser DL*, Villaseñor A, Balk M, Eronen JT, Tóth AB, ETE Working Group, Behrensmeyer 

AK, and Lyons SK. Profound prehistoric biotic homogenization of North America.  

78th Annual meeting of the Society of Vertebrate Paleontologists, Albuquerque, NM. 

Oct. 17-20.  

2017 Pineda-Muñoz S*, Jukar AM, ETE working group and Lyons SK. Human impact on North 

American mammal faunas from the Pleistocene. 102nd Annual meeting of the 

Ecological Society of America, Portland, OR, August 2017  
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2016 Pineda-Muñoz S*, Jukar AM, ETE working group and Lyons SK. Human impact on North 

American Mammal faunas. 76th Annual Meeting of the Society of Vertebrate 

Paleontology, Salt Lake City, Utah.  

2016 Tóth AB*., Soul L, Eronen JT, Lyons SK, Behrensmeyer AK, and Pineda- Muñoz S. Stability 

of empirical mammal co-occurrence networks over paleontological timescales.  

76th Annual Meeting of the Society of Vertebrate Paleontology, Salt Lake City, Utah.  

* indicates speaker 

ADDITIONAL PROJECTS I HAVE BEEN INVOLVED IN DURING CANDIDATURE 

Lyons SK, Miller JH, Amatangelo KL, Behrensmeyer AK, Bercovici A, Blois JL, Davis M, 

DiMichele WA, Du A, Eronen JT, Faith JT, Graves GR, Jud N, Labandeira CC, Looy CV, 

McGill B, Patterson D, Pineda-Muñoz S, Potts R, Riddle B, Terry RC, Tóth AB, Ulrich W, 

Villaseñor A, Wing SL, Anderson H, Anderson J, and Gotelli NJ. 2016. Reply to How 

foreign is the past. Nature 538, doi:10.1038/nature20097.  

Lyons SK, Miller JH, Tóth AB, Amatangelo KL, Behrensmeyer AK, Bercovici A, Blois JL, Davis M, 

DiMichele WA, Du A, Eronen JT, Faith JT, Graves GR, Jud N, Labandeira CC, Looy CV, 

McGill B, Patterson D, Pineda-Muñoz S, Potts R, Riddle B, Terry RC, Ulrich W, Villaseñor 

A, Wing SL, Anderson H, Anderson J, and Gotelli NJ. 2016. Reply to Questioning 

Holocene community shifts. Nature 537, doi:10.1038/nature19110  

Žliobaitė I, Rinne J, Tóth AB, Mechenich M, Liu L, Behrensmeyer AK, and Fortelius M. 2016. 

Herbivore teeth predict climatic limits in Kenyan ecosystems. PNAS, 113(45), pp. 12751–

12756. doi:10.1073/pnas.1609409113.  


