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Overview of thesis 

Over the past nine years, the Human Proteome Project (HPP) has made enormous progress in 

achieving two goals. These are: mapping the human protein repertoire under the Chromosome-

centric human proteome project (C-HPP) and, understanding the pathophysiology of human 

biology and disease under the Biology/Disease-driven human proteome project (B/D-HPP) 

(Figure 1).  

This thesis contributes towards these two HPP goals by; 

ii) cataloguing human proteins, particularly the “missing proteins’ (Chapter 1) and  

ii) diagnosing early stage colorectal cancer (CRC) through the development of a multi-variate 

blood-based assay (Chapters 2-5; with results contained across Chapters 3, 4 and 5).  

 

Chapter 1 of this thesis summarises contributions in developing an investigative approach and 

community-centric resource (MissingProteinPedia) to accelerate the discovery and 

understanding of ‘missing proteins’ (Publication I). Out of ~ 20,000 human protein coding 

genes, 2,319 proteins (at time of writing) still lack mass spectrometry-based evidence for 

reliable high-stringency protein existence data. These are referred to as the PE2-4 proteins or 

colloquially as the ‘missing proteins’. This chapter explores the common characteristics of 

missing proteins, including assignment to groups of proteins, topological distribution and 

structural composition, and it details challenges associate with identifying these proteins. This 

is exemplified by investigation of an elusive class/family of GPCR proteins, known as the 

olfactory receptors (ORs).  The chapter provides potential approaches to facilitate identification 

of missing proteins in order to accelerate successful and timely completion of the HPP.  

 

Chapter 2 introduces CRC by reviewing incidence, stages, mortality rate, as well as the factors 

governing susceptibility and pathophysiology, staging and survival. The chapter describes 

existing screening tests, and CRC biomarkers in context unmet clinical needs. One major 

requirement is to develop a minimally invasive, blood-based markers for routine CRC 

screening is explored in this chapter with particular reference to technological and strategic 

advances across the field of proteomics. The complexities and challenges associated with 

plasma proteomic biomarker discovery are also discussed. 

 

Chapter 3 employs state-of-the-art proteomic techniques to provides an in-depth analysis of the 

CRC plasma proteome in order to develop such blood-based diagnostic test. A combination of 
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patented, in-house ultradepletion methods, commercial immunodepletion approaches and 

multiple peptide fractionations was used to overcome the challenges of detecting low-

abundance proteins in plasma.  

 

Furthermore, SWATH™-MS was employed for specific and reliable exploration of protein 

biomarkers using 100 clinically staged EDTA-plasma samples (n=20 per AJCC stage for CRC 

(i.e. stages I, II, III and IV)). A total of 37 potential protein candidates were identified by 

comparing differential expression in CRC stages (I-IV) against the plasma pool of healthy 

controls (n=20) with stringent statistical analysis (fold change ≥ 1.5, unique peptide ≥ 1, p < 

0.05). A literature search indicated some of these putative CRC biomarkers were novel while 

others had been previously associated with CRC. The capability of 7 of these 37 candidates to 

distinguish CRC early stages (I/II) from healthy controls were confirmed using Western 

blotting and/or ELISA-based method. In addition, a machine learning model was then utilised 

to confirm the potential of 5 protein candidates (from list of 37 candidates) as a putative panel 

to distinguish early stage (I/II) CRC from healthy controls using a 5000 synthetic patient 

cohort.  

 

Chapter 4 then develops and verifies a first-pass parallel reaction monitoring (PRM) assays to 

interrogate plasma samples for two target peptides for Complementary factor D and 

ADAMDEC1, both were identified as potential candidates from Chapter 3. Despite 

encouraging initial data, this work remained preliminary and requires further characterisation 

and validation studies, which are described in detail. 

 

Penultimately, Chapter 5 develops a proof-of-concept PRM assay to quantify the expression of 

two markers of the epithelial-to-mesenchymal transition (uPAR and αvβ6) in HCT116 (colon 

carcinoma) cell line and CRC plasma samples. Both (uPAR and αvβ6) are of low abundance 

in plasma and have been extensively studied by our group. Increased levels of uPAR has been 

established as a stage II prognostic marker in CRC tissues, and equally, αvβ6 expression has 

shown to be elevated in early stage of CRC. The objective of this chapter was to explore the 

increased expressions of circulating uPAR and αvβ6 as potential biomarkers in development 

of CRC in using plasma samples. The proof-of-concept PRM assay developed, showed a 33% 

decrease in uPAR expression between antisense (HCT116AS) and wildtype (HCT116WT). This 

study is ongoing and requires optimisation to verify and quantitate both uPAR and αvβ6 

peptide from CRC plasma samples.  
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Finally, Chapter 6 summarises the thesis in the context of the current literature providing a 

discussion of possible future directions and the clinical significance and limitations of the 

studies outlined. I describe the importance of population-based studies of the selected CRC 

protein biomarkers and the need for direct comparisons to other existing screening 

methodologies. 

 

 

 

Figure 1: Thesis Outline Flowchart: Thesis chapters are organised around the two key central 

streams/programs of the Human Proteome Project programs namely – the Chromosome-

centric Human Proteome Project (C-HPP) and the Biology/Disease-Driven Human Proteome 

Project (B/D-HPP)  
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Chapter 1 

The Human Proteome Project  

 

1.1 The Human Proteome Project – Positioning Involvement in the Journey 

The central paradigm of molecular biology emphasises the ordered flow of information 

between three biomolecules, namely DNA, RNA and proteins. These govern every intricate 

aspect of cellular function (Li and Xie, 2011). The initial publication of the human genome in 

2000 (Venter et al., 2001), (Lander et al., 2001) provided the DNA blueprint for all molecules 

that enabled any cell to carry out biochemical processes. This was a landmark achievement in 

the field of life science research and an important step towards understanding human health 

and physiology at the grass roots - its DNA.  

 

However, the genome is relatively static in nature, while human cellular function, physiology 

and disease are highly dynamic (Aebersold and Mann, 2003). It was quickly realised that other 

technologies like proteomics, epigenomics, transcriptomics, and metabolomics would be 

essential for understanding human biology (Bilello, 2005), in toto.  Researchers have also been 

quick to harness the power of next-generation sequencing (NGS) to explore the dynamic human 

transcriptome in our efforts to understand complexities in cellular phenotype (Wang et al., 

2009). Importantly, genomics and transcriptomics made remarkable advances in this area with 

technological breakthroughs in both NGS (improved speed, cost and accuracy) and the 

development of sensitive and specific, high throughput, microarrays (Shendure and Ji, 2008). 

With a minimum of ~230 different cell human types comprising the human body (Legrain et 

al., 2011) transcriptomics complemented genomics in its power to ascertain the profile of RNA 

levels expressed in each cell type, increasing our knowledge of the cellular landscape (Wang 

et al., 2009).  

 

In our endeavours to fill the gap in genomics and transcriptomics, proteomics has emerged as 

a key tool to decipher cellular phenotypes, principally by studying the most crucial determinant 

of biochemical function, namely proteins expression, turnover, activity and post-translational 

modification (Cox and Mann, 2007). Biomolecules, however, do not act in isolation. It is the 

interaction between various classes of biomolecules (interactomics) in time and space, their 

regulation through post-translational modifications and response to external factors that 
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provide not only a holistic, but also a more simplistic understanding of cellular function. For 

example, it is possible to observe a host of genetic alterations or transcript profiles in a number 

of disease-related genes which can all, in effect, be mapped onto a single biochemical pathway 

or pathways that interlink to give rise to a certain phenotype (Aebersold et al., 2013).  

 

The Human Proteome Organisation (HUPO) has played a pivotal role in revolutionising the 

understanding of human proteomics by providing an organised framework for globally sharing 

experimental protocols, data and research techniques. Various research initiatives, pillars and 

teams started under HUPO have been amalgamated and collectively termed the global Human 

Proteome Project (HPP). The HPP was officially launched by HUPO at its 2010 World 

Congress in Sydney, Australia and further extensions have been developed and launched since 

then (Aebersold et al., 2013; Omenn, 2012). The HPP broadly provides a global effort to 

identify proteins produced by protein-coding genes, in respect to protein abundance, 

subcellular localisation, interaction with other biomolecules and function (Omenn, 2017). In 

contrast to the genome which is relatively static (~20,000 predicted protein-coding genes) 

(Aebersold et al., 2018), the human proteome is vast, nebulous and dynamic. The complexity 

of the total human proteome is contributed to by many factors, including, but not restricted to, 

alternative splice variation, post-translational modifications, variation in protein activity and 

cellular location. These result in a dynamic proteome, where not only does the repertoire of 

proteins expressed differs between cell types but expression levels of a subsets of proteins may 

change with time and in response to external factors within any cell type.  

 

To address this dynamism, a three-pronged approach was proposed by the HPP to unravel the 

human proteome (Legrain et al., 2011). The first was to harness the technological and analytical 

prowess of mass spectrometry to identify peptides and proteins from human cells and tissues 

with high reproducibility and stringent data analysis. The second aimed at generating specific 

antibodies against each of the ~20,000 proteins in order to identify spatio-temporal location in 

normal and diseased human cells, tissues and organs. The third aspect was directed towards 

developing state-of-the-art bioinformatics for the project in the form of a knowledge database 

(i.e., knowledgebase) to compile, curate and organise information obtained from the first two 

approaches. This framework, termed the “two streams and three pillars of the HPP” (Figure 

1), has received substantial support from the proteomics community. Over ensuing years, 

efforts involving numerous laboratories spread across the globe and these have contributed to 
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realising many of the goals set by the HPP and are working in synergy towards its completion 

(Omenn et al., 2018). 

 

 

Figure 1.1: Scheme demonstrating the two foundation streams (incorporating many existing 

initiatives; C-HPP and B/D-HPP) and three foundation resource pillars of HUPO’s HPP: 

mass spectrometry (MS), antibody (Abs) and knowledge database (KB) on which the Human 

Proteome Project (C-HPP and B/D-HPP) is based. Adapted from https://hupo.org/human-

proteome-project  

 

1.2 Three Resource Pillars of HPP 

The first pillar of the HPP comprises mass spectrometry-based approaches to analytically 

identify and quantitate the human proteome. This approach typically involves shotgun-based 

identification and quantitation of peptides with protein inference from biospecimens generating 

data for the building of a repository of fragment ion spectra for each of these proteins. These 

serve as an invaluable asset for developing validation assays using targeted selected reaction 

monitoring (SRM) or parallel reaction monitoring (PRM) assays through the use of stable 

isotope-labelled peptide standards. The data obtained from these assays can be stored and 

shared using databases like PeptideAtlas, SRMAtlas, PASSEL (Kusebauch et al., 2014). This 

pillar relies on the mass spectrometer’s sensitivity and high-throughput capabilities to not only 

quantify proteins that are known, but more importantly identify proteins whose expression has 

not been validated, making it the force behind unravelling the human proteome.  
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The second pillar focuses on connecting protein expression to tissue distribution and 

subcellular location using affinity/antibody reagents. This resource pillar is also meant to serve 

as a resource for protein-specific capture reagents for human proteins to support related 

immunochemistry and affinity assays. This pillar has already resulted in a comprehensive 

tissue-based human map showing protein expression, termed the Human Protein Atlas (HPA). 

As of 2018, the HPA represented proteins encoded by 17,000 human genes accounting for 

~87% of the human proteome and using 26,009 antibodies (Thul and Lindskog, 2018). The 

HPA has sub-categorised its data into a range of atlases, including the Tissue Atlas, Cell Atlas, 

Pathology Atlas and The Cancer Genome Atlas integrating RNA-Seq data alongside 

immunochemistry data to provide an invaluable and well-curated resource for all life scientists 

(Uhlen et al., 2010). 

 

Proteomics being an intensive technology-driven science requires robust bioinformatics 

support to analyse and curate the large amount of high-throughput data being generated by the 

mass spectrometry (MS) and antibody (Ab) pillars. The HPP knowledgebase compiles, curates, 

organises and shares data from the other two pillars and both HPP initiatives (C-HPP and B/D-

HPP). From the very outset, the HPP drew upon databases like UniProt/SwissProt and this 

approach was rapidly supplemented by many other repositories. Prominent among these were 

neXtProt, PRIDE, PeptideAtlas, GPMdb and the Human Protein Atlas (Legrain et al., 2011). 

Updated datasets and meta-datasets are now routinely shared through ProteomeXchange and 

other repositories (Legrain et al., 2011), with ProteomeXchange datasets assigned a specific 

PDX identifier. The overall knowledgebase (KB) is indispensable for interrogating and 

understanding data derived from streams, initiatives, resource pillars and merging teams.  

 

Together, the pillars comprised the technological resource foundation on which the HPP was 

built. Recently, (HUPO Orlando 2018 World Congress), the pathology resource pillar was 

added as a 4th pillar, recognising the translational role/s that clinical pathology is playing in 

proteomics. Since inception, the HPP has made significant inroads towards accomplishing two 

overarching goals, namely; 

 

1. deciphering the proteins that compose the human proteome and map protein parts to 

their respective gene, by quantitating, locating and validating their presence; and 
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2. integrating proteomics with other –omics technologies like genomics, transcriptomics, 

metabolomics to empower the biomedical and research community to translate 

proteomics knowledge into clinical solutions (Omenn et al., 2018).  

 

HPP was initially launched under two central major parts (called streams) to help achieve each 

of the above goals. The two streams were the Chromosome Centric Human Proteome Project 

(C-HPP) focused on Aim 1 (Paik et al., 2012), while the Biology/ Disease-driven Human 

Proteome Project (B/D-HPP) focussed on Aim 2 (Aebersold et al., 2013). 

 

1.3 C-HPP 

In its formative years, the HPP allocated each human chromosome (Chr 1-22, X, Y and 

mitochondrial DNA) to members of a global consortium formed from international research 

teams with expertise in proteomics and aligned research. This scheme closely aligned with the 

approach used by its predecessor, the Human Genome Project (Venter et al., 2001), without 

which much in human proteomics would be impossible to achieve.  

 

The C-HPP initially aimed at identifying and mapping all the protein-coding genes from a 

human chromosomal complement using physical and functional perspectives. This was 

achieved by “dividing” the human proteome into chromosomal landmarks. In addition, there 

was an additional task of characterising protein expression at both the tissue and cellular level 

alongside identifying protein variants and post translation modifications (PTMs). This part of 

the HPP was termed the Chromosome Centric Human Proteome Project or C-HPP. The 

primary goal of C-HPP was to rapidly identify at least one representative protein of then (2011) 

estimated  ~20,300 human genes (Aebersold et al., 2018) predicted to encode proteins. C-HPP 

also aimed to independently categorise and study proteins based on subcellular characteristics 

like membrane protein, protein variants, or proteins based on abundance (Aebersold et al., 

2013). An ultimate motive behind chromosome-based protein data curation was to increase the 

overall “uptake” of proteomics alongside multi-omics work by the general research community 

by integrating datasets into a compatible and easily understandable format (Paik et al., 2012).   

 

The C-HPP was tightly integrated with the three pillars (Figure 1.1). This multinational 

program aimed at characterising the proteome by mapping the proteome through mass 

spectrometry-based SRMAtlas, antibody-based Human Proteome Atlas and the bioinformatics 

knowledgebase and was supported through ProteomeXchange by developments like the 
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PRoteomics IDEntification database (PRIDE), Tranche, PeptideAtlas, Global Proteome 

Machine Database (GPMDB), UniProt and finally neXtProt (Paik et al., 2012), which was 

assigned the official KB reporting role/s for the HPP. To assess the progress of HPP, it was 

decided to communally categorise proteins in neXtProt based on what was termed “protein 

existence” or PE1-5 scores. neXtProt initiated the classification of proteins identified in the 

HPP based on the range of PE scores from 1-5 (Table 1.1). The PE score was a measure of 

protein evidence based on credible MS data, partial/complete Edman sequencing data, X-

ray/NMR structure, protein interaction data and/or detection of proteins using affinity reagents 

as reviewed by us previously (Baker et al., 2017).  

 

The HPP KB pillar (with inputs from all parts of the HPP consortia) also established high 

stringency metrics in terms of guidelines for submission of MS data. These included a 

deliberate effort to bring high stringency data to the fore, by requiring protein identification to 

only come from two or more uniquely-coding non-nested 9 or more amino acid-containing, 

peptides that could be confirmed by spectra of cognate synthetic peptides if they were previous 

missing (i.e., PE2-4) proteins  (Paik et al., 2018). These standards extend to data curation by 

MS portals reflecting the annotation of a protein surpassing the established metrics to qualify 

as a PE1 protein. The success of the HPP project Phase 1 and all composite supportive HPP 

parts is directly related to the number of human proteins currently annotated as being PE1 

(Baker et al., 2017).  
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1.4 Study I: Accelerating the Search for the Missing Proteins in the Human Proteome 

(Publication I) 
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In the bioinformatic analysis presented in the above study (Study I), one of the most interesting 

observations was that the largest PE2-4 classification mapped onto the transmembrane G-

protein coupled receptor family. What was more astonishing, was the fact that progress in the 

discovery of putative proteins belonging to a subfamily of these receptors encompassing 

receptors for taste and olfaction had seen no progress since 2012 (Baker et al., 2017).  

It has been postulated that one of the possible reasons for poor translation of “missing proteins” 

to PE1 could be in their inadequacy for tryptic digestion. Not all proteins are amenable to 

tryptic digestion due to their sequence, chemical properties or expression in limited 

biospecimens (Paik et al., 2012). Thus, they fail to yield tryptic peptides that suitably “fly” in 

the mass spectrometer or simply lie outside observable mass range detection settings. Based on 

this, the question stands; “How much of the Human Olfactory Receptor Proteome is Findable 

using High Stringency Mass Spectrometry”. The reasons for the absence of MS-based data on 

this family of proteins and proposed orthogonal approaches were investigated to attempt to 

answer this question. This is summarised in the following review (Study II) as part of this 

thesis. Our hope is that adoption of the proposed strategies in this manuscript alongside 

innovation across proteomics technical avenues will contribute towards finding missing 

proteins as one of the goals of HPP. 
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1.5 Study II: In Silico Peptide Repertoire of Human Olfactory Receptor Proteome on 

High-Stringency Mass Spectrometry (Publication II) 

Subash Adhikari†, Samridhi Sharma†, Seong Beom Ahn† and Mark S. Baker†*

† Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie 

University, NSW, 2109, Australia. 

Abstract 

Human olfactory receptors (ORs) are 7-pass transmembrane G-protein coupled receptors 

(GPCR) involved in smell perception and many other signalling pathways. They are primarily 

expressed in the olfactory epithelium and ectopically expressed in several other organs/tissues. 

neXtProt contains four (4) PE1 (protein existence 1 - evidence at protein level) ORs, based 

either on protein interaction data (i.e., OR1D4, OR2AG1) or convincing genetic, haplotype or 

biochemical data (i.e., OR1D2, OR2J3). Not a single OR currently qualifies for neXtProt PE1 

status based on mass spectrometry (MS) evidence. Many reasons for this absence of MS-based 

identification have been proposed, including (i) confined or spatiotemporal or developmental 

expression, (ii) low copy number, (iii) OR repertoire gene silencing, and/or (iv) limited tissue 

availability. OR transmembrane domains (TMDs) inherently limit MS identification as the 

hydrophobic nature restricts the access of trypsin to potential cleavage sites.  Equally, the 

extremely low frequency or lack of accessible arginine (R) and lysine (K) residues in TMDs 

renders trypsin cleavage ineffective. Here, an analytical approach specifically focussed on the 

hydrophilic (trypsin-accessible) domains of ORs (i.e., with all transmembrane segments 

(TMDs) and anchored-peptides excluded) is demonstrated. The ability of OR soluble 

(hydrophilic) domains to yield two or more > 9 amino acids (aa) length uniquely mapping 

(unique to a protein only), non-nested (peptides with varying length at the N or C terminal but 

contains the same core sequence), leucine/isoleucine (I/L) switch examined (I and L have same 

mass and can’t be distinguished by MS) tryptic peptides. Our analysis showed that ~58% of 

the human OR proteome could potentially generate tryptic peptides that satisfy current Human 

Proteome Project (HPP) data interpretation guidelines (v 2.1), when no missed cleavage is 

allowed and increases to ~78 % when one missed cleavage is allowed. Utilisation of current 

biological data (adjuvant genomics, expression profile, transcriptomics, epigenome silencing 

data etc.) and adoption of non-conventional proteomics approach (e.g., Confetti multi-protease 

digestion, CNBr cleavage of TMDs, more extreme chromatographic/MS methods) could aid in 

the detection of the remaining ORs. 

Reprinted with permission from Adhikari, S., Sharma, S., Ahn, S. B., Baker, M. S. (2019) In Silico 
Peptide Repertoire of Human Olfactory Receptor Proteomes on High-Stringency Mass Spectrometry, 
Journal of Proteome Research 2019 18 (12), 4117-4123.DOI: 10.1021/acs.jproteome.8b00494. 
Copyright 2019 American Chemical Society
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Keywords: olfactory receptors, missing proteins, transmembrane proteins, high-stringency 

mass spectrometry, in-silico trypsin digestion, HPP metrics, HPP data interpretation guidelines, 

uniquely mapping non-nested peptides, membrane hydrophobicity, trypsin activity. 

Introduction 

Human ORs are a family of 404 (UniProt release: 24th March 2018) seven TMD-containing 

GPCR signalling proteins.1 They are involved in human olfaction2 and several other human 

biologies.3 ORs sit on the rhodopsin branch of the unrooted GPCR phylogenetic tree.4 They 

are responsible for initiating signalling in response to a range of ligands, including protons, 

photons, low molecular weight (<30kD) hormones, metals, nutrients, volatiles and 

neurotransmitters.5, 6, 7  Elucidating OR function is progressing, coincident with advances in 

structural and physiological analysis, signalling models and other interactomic methodologies.8 

ORs are implicated in many ectopic physiologies with escalating chemosensory roles, 

independent of nasal epithelial tissues.6, 9, 10 ORs have restricted expression in ectopic sites 

such as brain, breast, colon, liver, lung, testis, thyroid etc, usually with FKPM (fragments per 

kilobase per million mapped fragments) value of less than 1. For reference, ß-actin gene yields 

an expression value at a range of 500-5000 FPKM whereas the TATA box binding protein has 

an expression value of 1.6-21 FPKM.6 

Each OR contains one free N-terminal strand exposed extracellularly (i.e., ecto-), one C- 

terminal strand exposed to the cytoplasm (i.e., endo-), 7 TMDs, and 3 ecto- and 3 endo-domain 

loops between these TMDs, respectively. Each of these domains varies in length, sequence and 

R/K composition that makes them heterogeneously-susceptible to tryptic digestion.1 For 

example, while hydrophilic OR loops and free N- and C- strands contain many R/K residues 

that make them readily available, ORs TMD domains are notably deficient in R/K residues. In 

fact, these positively-charged AAs are most likely located at the extremities of the 

hydrophobic/hydrophilic membrane interfaces or not located in the TMDs at all.11, 12 In 

addition, after tryptic digestion hydrophobic TMDs remain embedded within the plasma 

membrane and can only be removed/solubilised using more extreme sample preparation 

strategies13 and utilisation of heated chromatography.14 

In our previous study, all 122,717 “stranded” OR peptide spectra ( > 7 aa in length) were 

concatenated from the publicly-available database.15 The analysis included studies that 

previously claimed identification of a significant number of ORs16, 17 despite what has now 
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been confirmed as reliance on the marginal spectral quality, a lack of stringent applicable 

FDRs, inclusion of shorter non-proteotypic observed peptides (< 8 aa) and numerous erroneous 

or ambiguous identifications.18 Our study (Suppl. Data) concluded that at very best there was 

patchy/unconvincing MS evidence for ~6% (i.e., 23) of the 404 ORs.15 The data concludes that 

no human OR currently met the high-stringency MS criteria set by the HPP data interpretation 

guidelines.19 

Indisputably, the community faces ongoing difficulties identifying OR family members by 

high-stringency MS. Plausible explanations for the paucity of identifications include, that; 

o they have nil/low transcription;

o there are few OR-expressing cells;

o they have limited tissue/sample availability;

o they have restricted spatiotemporal/differentiation-dependent expression;

o gene expression is inactivated in olfactory sensory neurons for all but a single OR;

o there is a lack of availability/solubility of trypsin-accessible sites in many ORs; and/or

Here, the ability of ORs to generate peptides from trypsin accessible domains was analysed 

exclusively. Since it is extremely unlikely that membrane protein TMDs contribute to MS data 

collations unless specifically enriched, in silico digestion of both the full-length ORs was 

undertaken and concatenations of the exposed hydrophilic OR domains (free N- and C-termini 

strands plus 3 each of the ecto-domain and endo-domain loops). Approximately ~58% of the 

human OR proteome could potentially generate non-missed cleaved tryptic peptides qualifying 

the current HPP PE1 guidelines.19 

Methods 

Grouping of missing proteins based on NeXtProt descriptors: Analysis was performed on 

chromosomal reports available from neXtProt protein dataset release for the year 2013, 2014-

2019 (ftp://ftp.nextprot.org/pub/current_release/). The chromosomal reports (1-22, X, Y and 

MT) were downloaded and protein descriptions of PE2-4 category proteins were sorted into 

protein groups based on neXtProt descriptors, e.g. zinc finger proteins were pooled together 

and counted. Subsequently, the 20 most populous proteins ‘descriptors’ according to neXtProt 

were plotted on a bar graph using graph pad prism (version 7). neXtProt chromosomal reports 

contain proteins that are assigned as putative or probable, e.g., Probable G-protein coupled 

receptor 63 or Putative olfactory receptor 2B8. Grouping of these proteins into the pool of 
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for no (zero) missed cleavages. Uniquely mapping non-nested peptides were subsequently 

selected using the neXtProt’s peptide uniqueness checker (neXtProt release v2.21.0).21 These 

peptides were then matched to respective ORs. Both uniquely mapping non-nested peptide lists 

(i.e., derived from full length OR and concatenated hydrophilic domains) were analysed 

(Figure 1). The percentage of the 404 ORs as full-length ORs or non-TMD-containing OR 

concatemers capable of producing peptides at different MS stringency levels was calculated 

and is illustrated in Figure 4. This shows 58% (235) of 404 ORs could generate tryptic peptides 

qualifying the current PE1 HPP data interpretation guidelines19 with no missed cleavage 

allowed. The workflow was repeated allowing one tryptic missed cleavage for the remaining 

42% ORs, leading to an inclusion of additional 80 (~78% total) ORs. 

OR GPCR topology cartoon representations and sequence were generated using Protter.22 An 

interactive HTML file containing a list of observable peptides from concatenated hydrophilic 

OR domains (supplementary file) was prepared using the DT R package.23 

Results 

Figure 2 contains past and current neXtProt PE datasets from 2013 to 2019. This represents an 

update of analyses previously undertaken.15 Positive trends demonstrating increased neXtProt 

PE1 assignment are observed across most (18/20) of the top 20 protein group based on neXtProt 

descriptors. This demonstrates that the HPP has successfully identified more human proteins 

at high stringency than ever before, with few protein family exceptions. For example, 

noteworthy progress has been made in identifying zinc finger, keratin-associated, leucine-rich 

repeats and sperm and testes-related proteins. Despite this unquestionable progress, Figure 2 

also demonstrates that membrane protein identification at high stringency remains problematic, 

including across neXtProt protein groups covering the olfactory receptors, other 

transmembrane non-GPCR transmembrane proteins, non-OR GPCRs, taste receptors and 

solute carrier proteins. 
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Figure 2: Updated (2013-2019) most abundant 20 neXtProt PE2-4 missing protein 

descriptors: neXtProt protein datasets were captured from neXtProt chromosomal download 

reports as previously described. PE2-4 proteins were sorted by neXtProt protein descriptions 

under the term “descriptions”.  

In summary, the only neXtProt protein descriptor group where absolutely zero progress has 

been made since 2013 are the ORs. Figure 2 also shows that the 2019 neXtProt release 

demonstrates that ORs continue to be the major PE2-4 missing protein family, representing a 

massive ~19% (400 out 2,129) of all missing PE2-4 proteins. In silico digestion of trypsin-

available regions of the ORs was performed to calculate ORs capable of generating peptides as 

per the current HPP PE1 guidelines.15 

Trypsin digestion is widely adopted in shotgun proteomic approaches because of its stability, 

high activity, and specificity, often resulting in the generation of “flyable” y-ion high mass 

series peptides.24 The availability/accessibility of R/K residues in domains is crucial for 

determining susceptibility to cleavage. Limited MS-based detection of TMD peptides has been 

previously established, owing to hydrophobicity25 and poor MS signal.26 Unusual LC and MS 

conditions are required to comprehensively analyse peptides generated from membrane protein 
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TMDs.27, 28 An initial structural analysis of the OR proteome to determine where all OR TMD 

R/K residues resided was undertaken.  

 

Our UniProt-based analysis (Figure 3) indicated that 31% of OR TMDs are completely 

deficient (126/404; data not shown) in either R or K residues and are unable to produce any 

tryptic peptides. Figure 3 illustrates that occasionally R/K residues (278/404 ORs with 1 reside 

and 57/404 ORs with > 2 residues) are always positioned (>85%) proximal to the interface 

between the hydrophobic and hydrophilic environments – in other words at the inside 

(cytoplasmic) and outside (extracellular) membrane boundaries. Of those R/Ks present in OR 

TMDs, ~ 50 % of Rs and ~ 85 % of Ks are located at the TMD extremities. Recognising the 

paucity of TMD R/K residue locations and considering the TMD hydrophobicity, it is 

extremely unlikely that TMD tryptic peptides could ever significantly contribute to OR HPP 

data by relying on conventional MS approaches.  

 

The whole sequence in silico digestion many do not correlate experimental peptide yield from 

membrane proteins containing multiple TMDs (e.g., 7 TMDs in all ORs and GPCRs), as 

peptide cleavage and release is restricted. This is because the soluble ecto- and endo-domain 

loops between adjacent hydrophobic membrane-embedded TMDs need to be cleaved at a 

minimum of two (2) locations before tryptic peptides can be released.  

 

When only a single one tryptic cleavage is present, both nascent ends of ecto- or endo-domain 

loops remain anchored through their adjacent single membrane-embedded TMDs. This simple 

observation results in a far lower likelihood of soluble tryptic peptide release from ecto- and 

endo- domain loops in multi-TMD containing membrane proteins (e.g., ORs/GPCRs), 

suggesting that membrane proteomics requires careful consideration of the repertoire of 

proteolytic peptides necessary to contribute to PE1 assignments. 
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Low occurrence of R/K residues within TMDs and restriction of trypsin proteolytic activity 

against these residues if any, within hydrophobic TMD leads to the generation of most MS 

identifiable peptides from ecto- or endo- domains using a conventional MS approach. Figure 5 

presents two representative topological distributions of ORs along plasma membrane that can 

(OR4K5_HUMAN, UniProt accession: Q8NGD3; Figure 5a) or cannot (OR5MA_HUMAN, 

UniProt accession: Q6IEU7; Figure 5b) meet the current the HPP PE1 criteria, based on tryptic 

peptide generation when no missed cleavage is allowed. OR4K5 generates 4 uniquely mapping 

non-nested peptides (green), 3 from its endo- domain (YVAICKPLYYVVIMSR, 

IVNHYLRPR and ISEMSLVVR) and 1 from ecto- domain (SNSSVVSEFVLLGLCSSQK). 

OR4K5 can generate peptides as per the HPP PE1 guidelines, with an ability to yield two or 

more uniquely mapping non-nested peptides that are nine or more aa in length. By contrast, 

OR5MA generates 3 non-uniquely mapping non-nested tryptic peptides (yellow), 1 from ecto- 

domain (MLSPNHTIVTEFILLGLTDDPVLEK) and 2 from endo- domain 

(YVAICSPLHYSSR, DVILAIQQMIR). Additionally, OR5MA contains 3 “hanging” peptides 

(light blue) (NVTPNMLHNFLSEQK, LLTFHLSFCGSLEINHFYCADPPLIMLACSDTR, 

YLFIFAAIFR). These nascent peptides remain anchored to the plasma membrane as their 

respective domains lack two (or more) cleavage sites for peptide release leading to the 

conclusion that OR5MA could never reach PE1 status, solely based on tryptic peptides. 

 

Eight (8) ORs that could not generate peptides as per PE1 assignment criteria were identified, 

upon whole sequence digestion. This observation directed us to probe if any evidence of 

experimental uniquely mapping non-nested OR peptide exists. PeptideAtlas 

(http://www.peptideatlas.org/)29 and neXtProt (https://www.nextprot.org/)21 were thoroughly 

analysed in search of publicly available experimental OR peptide evidences. Current 

PeptideAtlas build does not contain any evidence for experimental OR peptide spectra. 

(personal communication, Eric Deutsch) and the HPP does not permit the use of synthetic 

peptides or data from bait-proteins for immune-precipitations as evidence for PE1 assignment.  

 

The most current 2019 neXtProt release has assigned PE1 status to four ORs based upon non-

MS evidence i.e., either protein-protein interaction evidence (OR1D4_HUMAN, UniProt 

accession: P47884 and  OR2AG1_HUMAN, UniProt accession: Q9H205) or other relevant 

genomics and biochemical evidence (OR1D2_HUMAN, UniProt accession: P3498230 and 

OR2J3_HUMAN, UniProt accession: O76001. Among the remaining 400 ORs, neXtProt 

classifies 227 ORs as PE2 and 173 ORs as PE3.31  
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activity on membrane-embedded R/K residues, if any and requirement of minimum two (2) 

cleavage sites within any ecto- and endo-domain loops, generally results in low tryptic peptide 

yield. Peptides generated by a potential PE1 candidate OR requires LC-MS compatibility and 

“flyability” to be identified on any MS platform,34 further limiting identification. An interactive 

HTML file (supplementary file, requires file type conversion to HTML) containing tryptic 

peptides generated from ORs endo- and ecto- domain, with associated annotations is provided. 

This file could be used to query uniquely mapping non-nested peptides obtainable from any of 

the 404 OR concatenated hydrophilic domains.  

Should alternate proteolytic enzyme systems be used, additional missed cleavage allowed, 

TMD considered or change in UniProt topology definition observed, our current prediction 

number will change on a case by case basis. Analysis of MS-identifiable ORs taking these 

aspects into account was not the aim of this analysis. Given the lack of OR identification over 

recent years, assignment of any ORs as PE1 proteins based solely on the current HPP guidelines 

seems farfetched. These ORs require adjuvant genomics, expression profile, transcriptomics or 

epigenome silencing data complementing MS evidence for PE1 assignment. This corollary 

holds true for other missing proteins containing multiple TMDs such as taste receptors or other 

GPCRs.  

Supplementary information 

The supplementary file contains a list of tryptic peptides obtainable from concatenated OR 

ecto- and endo- domains by in silico digestion allowing no missed cleavage (S1) or one-missed 

cleavage (S2). ORs capable of generating peptides at different length and number stringency 

can be obtained from column “Matches to PMID” with corresponding peptide length 

stringency on immediate right columns.  
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Figure 1.2: Constituents of the Biology and Disease oriented initiative of the Human 

Proteome Project (B/D-HPP). Adapted and reproduced from https://hupo.org/human-

proteome-project 

1.6. B/D-HPP 

The B/D-HPP was established in order to obtain a functional insight into the proteome and to 

develop tools, technologies, and informatics pipelines addressing biomedical and translational 

needs. It focussed on the identifying the trends in the proteome by investigating a specific 

biological problem or disease rather than segmenting the proteome as in the C-HPP. The road 

map to achieve this involved the following steps. Firstly, a focus area central to a biological 

problem or disease was selected. This enabled researchers across the globe with specific 

interests in a bioprocess or disease to self-organise to form a typically multidisciplinary group 

to effectively contribute to the project. A target list involving hypothetical proteins or proteins 

known to get altered could then be generated. Assays to robustly detect and quantify proteins 

involved in the disease process could be established to probe for potential targets for further 

characterisation. SOPs and data emerging from these assays could be shared using the 

knowledge base (Aebersold et al., 2013). Currently, the B/D HPP (Figure 1.2) includes a 
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repertoire of initiatives including the eye, brain, cancer, musculo-skeletal, paediatric, 

cardiovascular, diabetes, epigenetics and chromatin, glyco-proteomics, infectious disease, 

kidney and urine, liver, mitochondria, model organisms, plasma, and stem cells proteome. B/D-

HPP groups are also studying proteomic signatures following exposure to extreme conditions 

including nutrition, the immunopeptidome, protein aggregation, and toxicoproteomics, 

reproductive health, membrane proteins and neurodegenerative (and protein misfolding) 

disorders (Van Eyk et al., 2016). The B/D HPP interlinks with the C-HPP to help populate the 

individual chromosomes and understand specific diseases at the molecular level (Figure 1.2). 

 

The B/D-HPP, like the C-HPP, strongly relies on the three HPP pillars (Figure 1.1). 

Technological advances in all three pillars have enhanced the pace at which the B/D-HPP is 

accomplishing its various goals. One such branch of B/D-HPP has enabled researchers to 

obtain a new dimension of understanding into cancer biology in the post-genomic era, the 

cancer-HPP.  

Cancer arises from genomic aberrations that result in dysregulation in signalling or protein 

activity/function (Hanahan and Weinberg, 2011). Whilst over the past decade or so genomics 

has fuelled many ambitious projects aimed at identifying cancer-related mutations, this 

approach has not been without challenges. For example, only ~10% of tumours result from 

actionable mutations with a majority of tumours harbouring alterations where functional 

outcomes are difficult to interpret (Jimenez et al., 2018). It is now realised that proteomics may 

be central to facilitating the HPP visions of P4 (i.e., personalised, precision, preventative and 

participatory) medicine (Nice, 2016). Tumours are highly heterogenous and as a result clinical 

response differs from case to case. Another unmet clinical challenge is that resistance to therapy 

frequently arises during prolonged treatment (Jimenez et al., 2018). To overcome the 

aforementioned unmet clinical needs of tumour heterogeneity and resistance to therapies, 

comprehensive proteomic analysis of cancer is needed to improve the understanding of the 

disease and improve clinical outcomes, fitting well into the P4 framework and complementing 

genomics (Nice, 2016). This led to the inception of the Human Cancer Proteome Project, part 

of the B/D-HPP.  

 

Like most other teams within the B/D-HPP, the cancer HPP aims to benefit from 

multidisciplinary international collaborations. Cancer covers a vast spectrum of malignancies 

affecting almost every organ of the body. Moreover, cancer of a particular organ can often 

comprise several types of tumours. For example, there are over 120 different types of brain and 
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CNS tumours alone, each with its own pattern of progression and characteristics (NBTS, 2018). 

To obtain useful insights into such a complex disease requires a multidisciplinary approach. 

Global projects studying cancer specific studies have resulting in resources like The Cancer 

Genome Atlas (TCGA) (Vogelstein et al., 2013), Clinical Proteomic Tumour Analysis 

Consortium (CPTAC) (Ellis et al., 2013) and the Genomics Evidence Neoplasia Information 

Exchange (GENIE) (2017) which provides access to datasets with either genomic landscapes, 

proteome profiles or NGS data in a cohort of patients with specific cancers. In order to build a 

platform that integrates genomic and proteomic datasets from a large cohort of patients with 

high sample quality, an initiative called the Applied Proteogenomics Organisation (APOLLO) 

launched with the Cancer Moonshot project under the auspices of the NCI (Fiore et al., 2017). 

The Human Cancer Proteome Project fits well within this scheme to delineate and grade 

proteomes from normal to malignant, identify tumour specific signatures to dissect tumour 

heterogeneity and to develop assays and reagents with translational utility to be distributed into 

the community. The Cancer-HPP strongly encourages researchers to conform to the high 

stringency metrics and standards set by the HPP, especially in the context of MS data collection 

and analysis and in promoting the post-publication submission of cancer proteomics datasets 

for global meta- and pan-cancer initiatives (Jimenez et al., 2018). 

In this thesis, the state-of-art proteomics was used to find translational solutions for one of the 

biggest clinical problems plaguing our world, namely colorectal cancer (CRC) (Bray et al., 

2018) discussed in detail in Chapter 2 “Introduction to CRC”.  
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Chapter 2 

Introduction to CRC   

Even though cancer can simplistically be described as a genetic disease of somatic cells, it 

underlays a deceptively complex interplay of cellular processes leading to its manifestation. 

Despite relentless progress in biomedical science, the multi-layered complexity governing 

tumourigenesis poses significant resistance to a majority of currently available cancer treatment 

modalities. This is particularly true after a late stage diagnosis, where many complications 

(including metastasis) occur, eventually leading to breakdown of most physiological processes. 

This occurs to such an extent that medical practitioners are compelled to switch from curative 

to palliative cancer treatment. 

In their seminal paper in 2000, Hanahan and Weinberg predicted that “those researching the 

cancer problem will be practicing a dramatically different type of science than we have 

experienced over the past 25 years” (Hanahan and Weinberg, 2000). Our understanding of 

tumour heterogeneity, molecular landscapes, microbiome, tumour microenvironment, 

epigenetic factors and immune checkpoints are indeed shaping the way cancer is now seen and 

treated (Flavahan et al., 2017; Gopalakrishnan et al., 2018; Meacham and Morrison, 2013; 

Pickup et al., 2013; Reya et al., 2001; Vesely et al., 2011; Vogelstein et al., 2013). Research 

accompanied by conceptual and technical advancements will continue to shape the future of 

cancer therapy and treatment (Hanahan and Weinberg, 2000). However, the path to a “cure” 

remains a long and arduous one and begs the question - what actionable changes can be 

implemented relatively immediately that will reduce the mortality burden from cancer? 

One central tenet to combating diseases like cancer is philosophically “nipping it in the bud”. 

This is true for almost all cancers where curative procedures or treatments are in place. In most 

types of cancer, survival of patients improves significantly when diagnosis is made earlier 

rather than later in disease progression (WHO, 2018). One classical example is cancer of the 

colon or rectum – or CRC. It results from the accumulation of genetic mutations that lead to 

neoplasia (de la Chapelle, 2004). Its histopathological progression can be demarcated into 

clinical stages where the tumour progresses, allowing researchers to understand cancer biology 

in greater depth (de la Chapelle, 2004). Perhaps the most interesting observation regarding 

CRC is how stage of diagnosis directly impacts patient prognosis (Kolligs, 2016). It seems 
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apparent that the major driving factor of CRC-related mortality is the lack of an effective early 

clinical stage diagnostic test, that could convert the third largest number of global cancer deaths 

into a combatable ailment.  

This chapter provides an introductory overview about CRC incidence, susceptibility, basic 

biology and a clinical perspective on CRC pathogenesis. It specifically focuses on current early 

diagnosis tests used in clinical practise, as well as tests that are currently in development. 

Shortcomings are highlighted to plan likely solutions and form the rationale for this thesis. 

2.1 Colorectal Cancer Incidence and Mortality 

CRC is the fourth most common malignancy in the world today, with an age standardised rate 

(ASR) of 19.7 per 100,000 individuals. In 2018, 1,849,518 new CRC cases and 880,792 deaths 

were recorded globally, making it the third most common cause of death from malignancy 

(Figure 2.1). Of these, 21,217 mapped to Australasian incidence cases, and an estimated 7,424 

deaths making it the region with the largest percentage of recorded CRC cases globally (CRC 

fact sheet Globocon) (Ferlay et al., 2018). The estimated number of cases in Australasia are 

predicted to increase by ~48% and number of deaths predicted to increase by 83% by 2040, 

making CRC a serious public health problem (IARC Global Cancer Observatory web site 

(http://gco.iarc.fr/) (Bray et al., 2018; Ferlay J, 2018).  
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Figure 2.1: Estimated age-standardised A) CRC new cases, B) deaths (world 2018) worldwide 

for both sexes and all ages, and C) countries with highest incidence and mortality. Image from 

GLOBOCON 2018, Global Cancer Observatory (http://gco.iarc.fr/)(Ferlay J, 2018). 

2.2 Factors Governing CRC Susceptibility 

Temporal CRC trends have been studied in the context to various factors that contribute to 

aetiology.  These can broadly be segregated as epidemiological, genetic, dietary/lifestyle and 

microbiome risk factors. 
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2.2.1 Epidemiological Factors 

2.2.1.1 Gender and Age  

CRC affects men and women almost equally. However, incidence and mortality are particularly 

high in individuals over 55 years of age. In 2018, CRC incidence and mortality ratios affecting 

individuals over 55 years compared to those under 55 years was ~7:1 and ~11:1, respectively 

(Arnold et al., 2017; Bray et al., 2018). However, temporal trends suggest an increase of 22% 

in CRC incidence in young adults in the period 2000-2012 (Bray et al., 2018). 

2.2.1.2 Geographic Prevalence 

Epidemiological studies show clear patterns of CRC incidence. The burden of CRC seems to 

be borne particularly by those 1st world countries with high scores on the human development 

index (HDI), accounting for 60% of global incidence. Europe, Oceania, Canada, Korea and 

Japan contribute largely to this incidence (Arnold et al., 2017; Bray et al., 2018) (Figure 2.2). 

Rates of mortality in these countries have declined from 2000 and this has been attributed to 

the increased uptake of (bowel cancer) screening programs and improved treatment modalities. 

However, countries undergoing societal and economic transformation from low to middle/high 

incomes are demonstrating dramatic increases in mortality. This pattern accentuates findings 

from studies that show CRC risk aligned to incorporation of a “Western” lifestyle combined 

with poor early screening programs in those countries compared to high HDI counterparts. 

Figure 2.2: Estimated CRC prevalence (5-year) as a proportion in 2018 for both sexes and 

all ages. Image from GLOBOCON 2018, Global Cancer Observatory 

(http://gco.iarc.fr/)(Ferlay J, 2018). 
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2.2.2 Genetic Factors 

CRC is primarily driven by genetic mutations. These mutations can be segregated based on 

pattern of occurrence as familial, inherited or sporadic. Approximately 75% of CRC results 

from sporadic gene mutations. The remaining ~25% of cases occurs in patients with a family 

history of disease (Amersi et al., 2005). About 2-5% of these arise from germline mutations 

that are inherited. However the aetiology of the remaining 20% of familial CRCs remain 

elusive (Jasperson et al., 2010).  

2.2.2.1 Inherited CRC 

A patient who has a first degree relative diagnosed with CRC or colonic polyps before 60 years 

of age or two or more relatives diagnosed with CRC or colon polyps at any age is considered 

to have significant history of CRC (Amersi et al., 2005). The magnitude of this risk is      

considered to be elevated if affected family members are diagnosed before 55 years (Amersi et 

al., 2005). The risk is considered substantially greater if affected family members are diagnosed 

before 45 years of age (Amersi et al., 2005). This category is further subclassified into CRCs 

derived from polyposis and non-polyposis backgrounds.  

2.2.2.1.1 Polyposis variant 

About 1-2% of diagnosed CRC cases are attributed to familial adenomatous polyposis (FAP). 

This autosomal dominant form of CRC is one the best characterised hereditary polyposis 

syndromes, where a germline mutation in the adenomatous polyposis coli (APC) gene drives 

the syndrome. APC is a tumour suppressor gene located on the long arm of chromosome 5q21. 

It is considered to be a gene that primarily regulates colonic cell neoplastic transition via the 

β-catenin cell signalling pathway (Amersi et al., 2005). APC promotes apoptosis in colon 

epithelial cells by regulating the degradation of β-catenin. A mutation in the APC gene results 

in loss of function that leads to rapid β-catenin-induced proliferation of cells (Stoffel and 

Kastrinos, 2014). This results in formation of numerous adenomatous polyps throughout the 

gastrointestinal tract, especially colon. To date, over 1,000 different mutations in APC gene 

leading to formation of a truncated APC protein have been reported in association with FAP 

(Rowan et al., 2000). Although APC is the main driver mutation occurring in FAP, ~7-8% of 

FAP cases result from a mutation in MYH gene (Amersi et al., 2005). MYH is located on 

chromosome 1p and is a known base excision repair gene. A less aggressive mutation in APC 

can lead to what is termed as Attenuated FAP (AFAP), that is characterised by 10-100 

adenomatous polyps found predominantly in the proximal colon and sometimes rectum. 
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Besides FAP and AFAP, MUTYH-associated polyposis (MAP), Peutz-Jeghers syndrome 

(PJS), serrated polyposis syndrome (SPS) are well described conditions associated with the 

polyposis variant of CRC (Bogaert and Prenen, 2014).  

2.2.2.1.2 Non-polyposis variant 

Hereditary non-polyposis CRC (HNPCC) or Lynch syndrome constitutes the non-polyposis 

variant of CRC (Aarnio et al., 1995). This is an autosomal dominant condition and accounts 

for about 5-10% of CRC cases. It is characterised by a mutation in any of the DNA mismatch 

repair genes (MMR), including hMSH2, hMLH1, hPMS1, hPMS2, hMSH3 and hMSH6. 

Defects in MMR genes lead to accumulation of spontaneous point mutations or 

insertion/deletions of short tandem repeats termed microsatellites. This results in genomic 

instability called microsatellite instability (MSI). Although mutations can occur in any of the 

MMR genes, mutations in hMSH2 and hMLH1 are most likely in HNPCC cases (Katballe et 

al., 2002).   

2.2.2.2 Spontaneous 

Most CRC tumours develop following a succession of mutations that allow the morphological 

transition of an adenoma to carcinoma. The primary driver mutation in these cases is a mutation 

in APC. This is followed by sequential mutations in the KRAS, TP53 and DCC genes. Besides 

these mutations, three major genomic alterations have been identified that trigger CRC. 

Chromosomal instability (CIN) leading to chromosomal changes and translocations cause 

aneuploid tumours or loss of heterozygosity (LOH) that likely affects the APC, KRAS, PI3K 

and TP53 gene (Armaghany et al., 2012). These aberrations invariably affect central signalling 

and cell proliferation pathways like WNT, MAPK/PI3K and TGF-b. CpG island methylation 

CRC phenotype (CIMP) is associated with epigenetic instability. These are characterised by 

hypermethylation of oncogenes which lead to silencing of critical genes that trigger CRC 

pathogenic pathways. The third genomic alteration is due to microsatellite instability caused 

by a hypermutable phenotype due impairment of DNA repair mechanisms. Loss of DNA repair 

mechanisms impair the cell’s ability to repair short DNA chains or inserts of tandem repeats 

leading to accumulation of deleterious mutations (Amersi et al., 2005).  
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2.2.3 Risk Factors 

2.2.3.1 Diet 

The so-called “Western” lifestyle largely refers to a diet which influences CRC in many ways 

(Arnold et al., 2017). Numerous studies assessing the effect of dietary factors like dietary fibre 

(vegetables, fruits), type of meat, dietary fat and micronutrient (Calcium, vitamins) intake have 

been undertaken across the globe (Potter, 2009). The relationship of dietary fibre and total 

dietary fat have inconclusive outcomes in the context of CRC incidence, however meat-eating 

(particularly red &/or processed meat) has been substantially associated with elevated CRC 

risk (Potter, 2009; Sugimura and Sato, 1983). Heterocyclic amines, PAHs, heme, nitrosylation 

and O6 carboxymethyl guanine have been proposed as possible carcinogens found in cooked 

meat (Bingham et al., 2002; Cross et al., 2003). Calcium has been shown to reduce the 

proliferation of adenomas (Bostick et al., 1995; Hyman et al., 1998) and in conjugation with 

Vitamin D has been shown to associate with a reduced risk for CRC (Potter, 2009). 

2.2.3.2 Lifestyle 

 Apart from diet, populations across high- and middle-income countries tend have a sedentary 

lifestyle (Marmol et al., 2017). This is possibly the reason why CRC risk is elevated in 

individuals in “white collar” professions. Obesity has been shown to be associated with an 

elevated risk of CRC in men (Potter, 2009), whilst the data on women is variable. Alcohol 

consumption has been consistently shown to associate with elevated CRC risk. Alcohol acts as 

a potent risk factor by inhibiting DNA repair pathways (Marmol et al., 2017; WRCF, 1987). 

Smoking has also been shown to be a CRC risk factor and is associated with microsatellite 

unstable (MSI-H) types of CRC (Slatter et al., 2001). Heterocyclic amines in tobacco are likely 

to trigger pathogenesis in CRC as they have been shown to cause specific mutations in APC in 

rat models (Kakiuchi et al., 1995). 

2.2.3.3 Microbiome and Infections 

Among factors that influence CRC risk, a healthy gut microbiome is associated with low CRC 

risk. A case study by Want et al., 2012 has shown individuals with CRC have a predominance 

of gut microbes from the genera Bacteroides fragilis, Enterococcus, Escherichia/Shigella, 

Klebsiella, Streptococcus and Peptostreptococcus spp. when compared to healthy individuals 

(Wang et al., 2012). It has also been established that a healthy gut microbiome reduces the 

incidence of an animal’s strains genetically vulnerable to CRC (TCRβ/p53, IL-10, Gpx1/Gpx2, 
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Gαi2, Smad3, Muc2, Tgfβ1/Rag2, IL-2/β2m knock-out strains) when compared to germ-free 

animals from the same strains (Antonic et al., 2013).  

 

On the flipside, CRC is notoriously associated with aggravated risk in individual post exposure 

to certain pathogenic infection. There are a handful of case studies reporting likely associations 

with Schistosomiasis, a communicable trematode infection prevalent in the tropics (Potter, 

2009). In vitro studies provide evidence that Streptococcus bovis or Streptococcus galloliticus 

infections result in formation of pre-cancerous lesions, making affected individuals more 

vulnerable to CRC. Helicobacter pylori has also been identified as a class I carcinogen by the 

International Agency for Research in Cancer owing to its association to gastric cancer. There 

are several studies correlating H. pylori risk to CRC (Fireman et al., 2000; Meucci et al., 1997; 

Potter, 2009) . Infections from bacteria belonging to Fusobacterium spp.  have been strongly 

correlated to CRC development. Several viruses like human polyoma virus (John Cunningham 

virus (JC virus)), BK virus, human cytomegalovirus (CMV), human papilloma viruses (HPV; 

predominantly type 16 and 18) may be potent risk factors (Antonic et al., 2013). These virus 

highjack important regulatory pathways like Notch, JNK, cyclin-CDK pathway by 

dysregulating tumour suppressor genes like p53 and Rb (Antonic et al., 2013) . They could 

induce chromatin remodelling, modulate cellular transcription and/or elicit inflammatory 

responses potentiating CRC development. 

 

2.2.3.4 Other medical conditions 

Conditions like cholecystectomy affecting bile flow in the intestinal tract have been shown to 

have an underlying 30% higher CRC risk (Todoroki et al., 1999). An increase of 30-40% was 

also observed in individuals diagnosed with diabetes mellitus (Larsson et al., 2005). Among 

other medical conditions, inflammatory bowel disease is known to have a pronounced CRC 

risk associated with it. This risk is reported to be ~7-14% in individuals with IBD affected for 

>25 years. However, risk is more pronounced (~30%) in individuals suffering from IBD for 

>35 years (Amersi et al., 2005). Researchers have been unable to find genetic links between 

ulcerative colitis or Crohn’s disease (comprising IBD) and CRC. However, it has been 

proposed that a link could be due to anatomical manifestation of IBD involving he loss of brush 

border lining of the intestine (Potter, 2009). The recent decline in IBD-associated CRC cases 

have been attributed to increased use of anti-inflammatory medications prescribed to control 

IBD (Potter, 2009). 
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2.2.3.5 Medication 

Non-steroidal anti-inflammatory drugs (NSAIDs) have been consistently shown to have a 

protective role in CRC development (Potter, 2009). There are numerous case control studies 

associated with reduced CRC incidence/mortality in individuals administered aspirin (Bigler 

et al., 2001; Kune et al., 1988; Rosenberg et al., 1991; Ruder et al., 2011; Suh et al., 1993), 

sulindac (Moorghen et al., 1988), piroxicam (Reddy et al., 1987), celecoxib (Kawamori et al., 

1998) and indomethacin (Pollard and Luckert, 1980). All have been shown to inhibit 

carcinogenesis in rodent CRC models. Effects are attributed to potent inhibition of 

inflammatory cyclooxygenase (COX) enzymes that are highly up-regulated in CRC (Potter, 

2009).   

2.3 CRC Pathophysiology 

2.3.1 Anatomical Standpoint 

The human colon (large intestine) measures approximately 1.5m and comprises five anatomic 

sections: caecum, followed by ascending column, transverse colon, descending colon, sigmoid 

column and finally rectum. The caecum, transverse column and sigmoid colon are enveloped 

by peritoneum whereas ascending colon, descending colon, sigmoid colon, and rectum are 

retroperitoneal. The histological and cellular composition of the large intestine is identical 

throughout these five sections. The colonic wall is made up of five layers, the innermost layer 

starting with the mucosa, muscularis mucosa, submucosa, muscularis externa, and serosa that 

is the outermost layer (Berrocal et al., 1999).  

Understanding the arrangement of multiple layers of colonic wall and their respective 

characteristic properties sheds light on CRC development and progression. Colonic polyps 

initiate from the inner-most epithelial mucosal surface. Aggressive polyps invade the next 

layer, muscularis mucosa, which is made of a thin layer of muscle fibres consisting of 

lymphocytes and solitary lymphatic nodules. Further progression of cancer penetrates 

submucosa and functionally this layer is responsible for venous and lymphatic drainage. 

Aggressive cancers spread into the lymphatic system thereby causing cancer to metastasise to 

distant organs (Jung, 2013). A representative figure shows the anatomy of colon and rectum 

(Figure 2.3 A), with a second figure showing the colonic wall, divided into multiple layers and 

progression of polyps within that mucosal layer (Figure 2.3 B).  
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Figure 2.3: Anatomy and histological layers of CRC: A) Anatomy of human large intestine 

and rectum (Blausen.comstaff, 2014) and B) Five layers of colonic wall involved in the 

progression of colon cancer. Image from National Cancer Institute, National Institute of 

Health (https://www.nih.gov/) 

2.3.2 CRC Staging and Survival 

Stage is a strong predictor of patient survival and tumour characteristics such as size and 

location of tumour and its progression in a patient’s body. An accurate cancer staging is 

imperative to evaluate patient treatment options. This, therefore, warrants a globally recognised 

cancer staging system for exchange and comparison between hospitals and as basis for 

translational research. Broadly, a staging system is generally divided into clinical and 

pathologically staging. Clinical staging is based on imaging (e.g., x-rays, CT-scans and more), 

physical exams, tumour biopsies and blood tests as part of diagnosis/monitoring (i.e., before 

surgery or post therapy or recurrence). A staging system is particularly used in deciding best 

treatment options by clinicians. On the other hand, a pathological staging system is performed 

after surgery and is derived from clinical staging information complemented/revised by 

pathological evaluation of the resected tumour specimens and other post-operative findings 

(Donna M. Gress, 2017).   

The most elaborated and useful staging system developed so far is the American Joint 

Committee on Cancer (AJCC) staging system developed in collaboration with the Union of 

International Cancer Control (UICC). It is broadly referred to as AJCC staging system and 

refers to Tumour Node Metastasis (TNM) staging for both pathological and clinical staging. 

This system elaborates and classifies three properties 1) the size and contiguous spread of the 



52 
 

primary tumour (T), 2) the presence and absence of cancer in regional lymph node (N), and 3) 

the absence and presence of distant metastasis in sites/organs outside local tumour area (M). 

The combined values of TNM determines overall cancer stage. CRC staging primarily 

determines the size and the depth at which tumour has penetrated the bowel wall (T), whether 

it has spread to lymph node vessels (N) and/or further metastasised to other organs (M) 

(Charanjeet Singh, 2017; Stephen B. Edge 2010).  

 

Before TNM staging was introduced, CRC was classified under the Dukes’ staging system. It 

classified CRC into four different stages, A, B, C, and D. In Dukes’ A, a tumour is confined 

within the mucosal and sub-mucosal wall. In Dukes’ stage B, the tumour penetrates tumour 

penetrates through the muscularis propria but does not infiltrate further. In Dukes’ C, tumour 

cells spread to local lymph node vessels, whilst Dukes’ D marks metastasis to distant organs. 

Figure 2.4 summarises the AJCC TNM and Dukes’ staging systems.  

 

All biospecimens used in studies referred to in this thesis were originally classified under 

Dukes’ staging system. They were later re-classified using the AJCC-TNM staging system 

(Dukes, 1932). It should be noted that since CRC is a heterogenous disease identification of 

new mutations in individuals and varied morphological observations by pathologists warrants 

periodic updating of staging. This will help in more accurate diagnosis, treatment, prognosis 

and development of new targeted therapies.  
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Figure 2.4: Staging and survival rate of CRC: The CRC staging system is a predictor of 

patient survival and prognostic assessment of disease. The currently most utilised staging 

system is the AJCC Tumour-Node-Metastasis (TNM) staging system, where; Stage I: 

penetration of tumour into sub mucosa, and mucosa; stage II: tumour invasion through 

muscularis propria; stage III: tumour invasion to lymph nodes via visceral peritoneum; and 

stage IV tumour invasion to adjacent distant organs. The TNM and Dukes’ staging with 

respective survival data from the American cancer society and AJCC 8th edition pathology 

outliners: colon tumour staging. Figure concept adapted from Cantor, 2016 (Cantor et al., 

2015).  
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2.3.3 Signs and Symptoms: 

The most common, although diffuse and non-specific symptoms of CRC are traces of blood 

on/in stools expelled from the anus, changes in bowel habits, abrupt weight loss, anaemia and 

the loss of appetite. However, not all CRCs display these symptoms, nor do all these symptoms 

necessarily signify the onset of CRC. Notably, early CRC stages (I/II) are notoriously 

asymptomatic, presenting a major diagnostic challenge. Later CRC stages (III/IV), however, 

display severe symptoms leading to prompt diagnosis but poor patient survival.  

On the other hand, some symptoms of CRC overlap with common ailments experienced by a 

healthy population. For example, rectal bleeding could occur due to rectal fissures, 

haemorrhoids and both are common causes of false FOBT positives. The ambiguity and lack 

of specific symptoms complicates and delays accurate CRC diagnosis. Another important 

factor to be considered is delay caused in seeking medical help by patients due to non-

recognition of the seriousness of symptoms. Some patients choose to adopt a “wait and see” 

strategy. Misdiagnosis due to symptoms attributed to alternate benign conditions which happen 

has been estimated to occur in 31-34% of cases (Emery, 2015). Therefore, greater public 

awareness and a standard fast track diagnosis pathway and further research on the basis of 

epidemiological evidence could add predictive value contributing to earlier diagnosis (Fijten 

et al., 1995).  

2.4 CRC Population Screening Tests 

CRC is a disease associated with significantly low morbidity if diagnosed in its earlier clinical 

stages (AJCC I/II). However, disease caught at a later stage (AJCC III/IV) present with 

particularly poor prognosis.  

To date, CRC detection tests have incorporated traditional technologies. However, with the 

evolution of technology, CRC detection modalities have moderately improved. Traditionally, 

CRC screening modalities can be categorised into either; 

• Stool-based, and/or

• Structural (visual) examination-based tests (Wolf et al., 2018).



55 
 

2.4.1 Stool-based tests 

One of the first stool-based tests shown to be effective in the detection of CRC were the guaiac-

based faecal occult blood (gFOBT) tests. These tests detect trace amounts of blood 

haemoglobin in a stool specimen by virtue of the peroxide activity between heme and guaiac 

(Wolf et al., 2018). However, both low and high sensitivity gFOBT tests lead to false-positive 

results, as blood can be detected in stool because of other reasons like gastro-intestinal bleeding 

caused due to non-steroidal anti-inflammatory drugs or red meat, and dietary peroxidases and 

therefore are neither highly specific. False negative results also occur after consumption of 

antioxidants like Vitamin C (Wolf et al., 2018).  

 

On the other hand, the faecal immunochemical test (FIT) affords a suitable alternative (Wolf 

et al., 2018) to gFOBT tests. FIT (earlier known as iFOBT), like gFOBT, screens for occult 

blood caused as a result of bleeding from polyps or CRC. The antibody used in FIT is highly 

specific for the globulin component of human haemoglobin. FIT is basically unreactive to 

upper GIT bleeding caused by other agents as the globulin component of any released 

hemoglobulin is totally degraded by digestive enzymes. Therefore, FIT preferentially detects 

bleeding from the lower GI tract caused due to adenoma, polyps, inflammatory diseases and 

CRC (Wolf et al., 2018) and other non-neoplastic lower GI tract lesions.  

 

gFOBT has shown a sensitivity of 12.9%-79.4% with a specificity of 86.7%-97.7% across a 

range of different population studies (Song and Li, 2016). FIT, on the other hand,  has better 

performance with  sensitivity at 79% and  specificity at 94% (Lee et al., 2014). Few high 

sensitivity FOBT kits termed HSgFOBT have shown to have a sensitivity ranging from 62-

79% and specificity ranging from 87-96% placing this test at par, as well as being a cost-

effective alternative to FIT (Wolf et al., 2018). HSgFOBT and FIT have superseded gFOBT as 

the preferable non-invasive stool-based haemoglobin tests to screen CRC in populations (Wolf 

et al., 2018).  

However, performance characteristics of gFOBT and FIT tests have been found to be 

inconsistent. This primarily stems from the US Food and Drug Administration (US FDA) 

clearance process which clears them for detection of occult blood not CRC screening per se 

(Rex et al., 2017). Thus, information on sensitivity and specificity of tests detecting CRC are 

not a prerequisite for FDA clearance. It is because of this reason that clinicians continue to seek 

a high sensitivity and specific test for CRC or adenoma population screening.  
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A different perspective on why the gFOBT and FIT test fail to capture a true spectrum of CRC 

incidence can be attributed to how samples are collected. Most manufacturers of these tests 

recommend that stool samples be collected at home. However, physicians often collect small 

amount of stool samples during digital rectal examinations which is sufficient volume to run 

gFOBT or FIT tests in the clinic. This practice fails to detect CRC 90% of the time (Wolf et 

al., 2018). 

Besides the above two stool-based tests, a third DNA-inclusive multi-target stool (mt-sDNA) 

test has become available for screening CRC. This test combines FIT and assays for aberrantly 

methylated BMP3, NDRG, NDRG4 genes and mutations in KRAS and b-actin genes from 

cells exfoliated from colonic neoplasms (Wolf et al., 2018). In a large comparative trial 

comparing mt-sDNA to FIT with colonoscopy as the gold reference standard for CRC 

detection, mt-sDNA was found to be 92.3% sensitive for detecting CRC as compared to 73.8% 

for FIT (Wolf et al., 2018). Both tests were found to be equally specific at 86.6%. The 

sensitivity of mt-sDNA was found to be particularly high for individuals with advanced 

adenomas and sessile serrated polyps at 42.4% when compared to FIT which detected these 

tumours with only a 23.8% sensitivity. Specificity was, however, significantly lower (89.9%) 

when compared to FIT (96.4%) when confirmed with colonoscopy (Rex et al., 2017; Wolf et 

al., 2018). The interpretation of mt-sDNA data is elusive considering that commercial kits do 

not specify if a positive test emanates from the FIT component or which DNA components of 

the kit.  Clinical follow-up may differ depending upon the source of the positive result on a 

case-by-case basis (Wolf et al., 2018). However, mt-sDNA continues to be a diagnostic test 

recommended to be taken every 3 years which yields 88% of Life Years Gained (LYG) from 

colonoscopy every 10 years (Lansdorp-Vogelaar et al., 2011; Peterse et al., 2018). The FDA 

has recently approved the costly mt-sDNA test for CRC screening in average risk individuals 

above the age of 50.  

Amidst these established stool-based tests currently in clinical practice, DNA and DNA 

methylation markers from stool have also been proposed as a promising early diagnostic non-

invasive marker for CRC. Specific DNA alterations from the neoplasm are released into the 

lumen continuously via mechanism of tumour exfoliation (Ahlquist and Gilbert, 1996) rather 

solely on bleeding which is often intermittent. Moreover, DNA is stable in stool and PCR 

amplification methods enables detection of analyte present in limited amounts (Ahlquist et al., 

2000). Many studies have reported the identification of DNA methylated markers from the 
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stool of the patients diagnosed with CRC for example, methylated fibrillin-1 (mFBN1), 

vimentin (VIM), methylated progesterone receptor (mPGR) and O6-methylguanine DNA 

methyl transferase (mMGMT). (Nguyen and Weinberg, 2016). However, DNA testing for 

CRC screening has been reported with limited sensitivity owing to poor quality of DNA 

detected and tumour inter/intra heterogeneity and specific genetic alterations selected for 

detection (Richter, 2008). 

2.4.2 Structural (visual) examination-based tests 

2.4.2.1 Colonoscopy 

Colonoscopy is a medical procedure to visualise the bowel and detect cancer, colon polyps or 

other abnormalities. It is the most frequently used physical test to diagnose CRC in the USA. 

The principle advantage of colonoscopy is the direct visualisation of the colon accompanied 

by detection, biopsy and removal of any underlying polyps in a single session. Its sensitivity 

for detecting adenomas ≥6mm in diameter ranges from 75% to 93% with specificity of 94%, 

while for adenomas ≥1cm in diameter sensitivity ranged from 89% to 98% with specificity of 

89%. The US Preventive Services Task Force (USPSTF) estimated that colonoscopy-based 

screening performed once every ten years in individuals between the ages of 50-75 years would 

reduce CRC incidence by 62% and mortality by 79-90%. It is for these reasons that 

colonoscopy is considered the gold standard diagnostic modality for CRC detection (Rex et al., 

2017; Wolf et al., 2018). 

Despite, the merits offered by colonoscopy, it has several disadvantages. Although 

colonoscopy is a high sensitivity test, it does tend to miss colonic polyps around the sharp 

anatomical hepatic and sigmoid flexure turns. Even though colon cancers are rarely missed due 

to sheer size difference when compared to adenomatous polyps, flat adenomas which tend to 

be small and discoid resembling erythematous plaques with significant risk of CRC or high-

grade dysplasia are occasionally missed during colonoscopy (Rex et al., 2017).  

Logistics involved in performing colonoscopy are far from a “point and shoot” approach. It 

requires a rigorous patient bowel cleansing regime, the efficiency of which is paramount before 

conducting colonoscopy. It has also been found that the length of time between last dose of 

bowel cleansing agent (e.g., GoLYTELY, MoviPrep, SUPREP, OsmoPrep or Prepopik) and 

initiation of colonoscopy correlate directly with quality of evidence obtained from tests.  
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Colonoscopy is considered relatively painless but needs to be conducted under sedation and 

requires at least a day of recovery. Perhaps the biggest drawback of colonoscopy is due to 

bowel perforations and/or bleeding occurring at the rate of 4 and 8 events per 10,000 

colonoscopies, respectively. Such iatrogenic injuries because of colonoscopy procedures 

follow a non-linear but significant rise with increasing age and have a significant co-morbidity 

burden. In addition to this, there is minor risk of splenic injury requiring splenectomy. Further, 

sedative drugs used in colonoscopic procedures often leads to cardiopulmonary complications 

such as minor fluctuations in heart rate to cardiac arrhythmias, myocardial infarction and 

respiratory arrests. In toto, even though there are associated risks with colonoscopy, it is by far 

the most specific, sensitive and effective screening method for CRC in use today (Wolf et al., 

2018). 

2.4.2.2 Computer Tomography Colonoscopy (CTC) 

CTC involves generation of thin-slice computed tomography images through that can be 

analysed in two-dimensions and/or reconstructed in three-dimensions. Effectively, it 

reconstructs what can potentially be observed through a colonoscopy. In such a test, a small 

tube-like instrument is inserted a short distance into the rectum, where images of the colon and 

the rectum are taken. CTC has a sensitivity of 96.1% for CRC detection and 73-98% for 

detection of adenomas ≥6mm with a specificity ranging from 89-91%.  The risk of bowel wall 

perforation is comparatively lower for CTC when compared to colonoscopy. CTC is far more 

effective than barium enema for colorectal imaging. The disadvantages of CTC are that less 

rigorous patient bowel preparation strongly affects the quality of the test. CTC also performs 

poorly when it comes to detecting polyps ≤1cm, as well as flat or serrated lesions (Wolf et al., 

2018). The USPSTF advocates a CTC screening every 5 years between the ages of 50-75 years 

as a model recommendable strategy. Strong evidence of CTC reducing CRC mortality has yet 

to be established. Radiation exposure like with other radiological tests needs to be considered 

as a potential risk. A positive result CTC result would inevitably be recommended for standard 

follow-up colonoscopy (Rex et al., 2017; Song and Li, 2016).  

2.4.2.3 Flexible Sigmoidoscopy (FS) 

As the name suggests, a FS scope allows imaging of the rectum and the distal end of the 

sigmoid colon spanning about 61cm. This was one of the first structural imaging examinations 

shown to be efficient in detecting CRC. The procedure does not require extensive bowel 

preparation or sedation in patients. In a study reported by USPSTF, CRC mortality was reduced 
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by 27% after 11-12 years of follow-up. This reduction in mortality was found to be significant 

in distal CRC but did not translate to proximal CRCs. The MISCAN modelling recommends 

FS once every five years in individuals aged from 45-75 years.  FS scores in its underlying cost 

and risk associated when compared to colonoscopy. The procedure involves less rigorous 

bowel preparation that could be of benefit, whilst the lack of sedation leads to an unpleasant 

procedure for patients. For this reason, patients are often non-compliant to follow-up or repeat 

the procedure. Moreover, the fact that only a part of the colon is tested makes it unpopular in 

the USA. It has been reported in 2010 that only 2.5% of individuals aged 50-75 years underwent 

FS whilst 60% underwent colonoscopy (Nguyen and Weinberg, 2016; Wolf et al., 2018). 

2.4.2.4 Capsule Colonoscopy 

Capsule colonoscopy is a procedure derived from capsule endoscopy, that allows the imaging 

of the entire GI tract. It involves ingestion of a capsule with a camera placed on both ends of 

it. As the capsule passes through the GI tract, it provides evidence of polyps or CRC in the 

colon or rectum as recorded images stored in an external device and later analysed by a medical 

professional. The test is considered complete when the capsule is passed in the stool. The 

diagnostic accuracy of this procedure on individuals with signs/symptoms of CRC or 

individuals having a high-risk of developing CRC has been assessed. It was found that the 

pooled sensitivity and specificity for capsule colonoscopy was 87% and 76% respectively for 

polyps ≥6mm. These numbers improved for larger polyps with a sensitivity and specificity of 

89% and 91% respectively (Wolf et al., 2018).  

Capsule colonoscopy is an attractive procedure for CRC detection because it is non-invasive, 

and it circumvents hazards associated with colonoscopy. Thus, capsule colonoscopy is a 

promising technology available for cases where despite adequate preparation, incomplete 

optical colonoscopy was achieved, and/or complete colon examination was not possible. 

Capsule colonoscopy is also an ideal technique in patients who are not candidates for receiving 

colonoscopy or sedation due to other ailments. The disadvantages associated with this 

procedure involves the burden of a more extensive bowel preparation than standard 

colonoscopy. Moreover, there is a logistical barrier in performing same-day colonoscopy for 

individuals testing positive in capsule colonoscopy. Adverse events associated with this 

procedure included nausea, vomiting, abdominal pain and fatigue in <4% of patients who were 

administered capsule colonoscopy (Rex et al., 2017). The most serious issue reported was 

capsule retention in 0.8% of patients. The FDA approves the use of capsule colonoscopy for 
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detecting colon polyps in patients suffering from lower GI bleeding. However, this procedure 

has not yet received clearance as a diagnostic modality for CRC screening (Song and Li, 2016; 

Wolf et al., 2018). Various recommended CRC screening methods and respective sensitivities 

and specificities is summarised in Table 2.1. 
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Table 2.1: Recommended CRC screening methods 

Screening tests Type 
Screening 

intervals 
Performance Preparation Limitations Patient burden 

Costs and 

further tests 

requirement 

Sensitivity and 

Specificity 

(respectively) 

References 

Faecal 

Immunochemical 

Test (FIT) 

Stool-based Every Year 

Equivalent or superior 
performance compared 

with gFOBT and tests 

performance can vary 
between brands 

No 

Nonadherence in annual 
testings 

Poor detection for 
advanced adenomas  

Usually done at home, or 

clinics  

Low cost but to be 

followed by 
colonoscopy if 

positive.  

73%-92% and 
91%-97% 

(Nguyen and 

Weinberg, 
2016; Wolf et 

al., 2018) 

High-Sensitivity 

 gFOBT 

(HSgFOBT) 

Stool-based Every Year 

Good evidence in 
incidence and mortality 

Performance varies by 

different versions of the 
test.  

No 

High nonadherence to 

annual testing  
Limited data available 

from various FDA 

cleared tests.   

Usually done at home, or 
clinics 

Requires dietary and 

medication restrictions 
Higher false-positive rate 

than FIT  

Low cost but to be 

followed by 

colonoscopy if 
positive. 

62%-79% and 

87%-96% 

(Nguyen and 

Weinberg, 

2016; Wolf et 
al., 2018) 

MT-sDNA Stool-based In Every 3 years 
Performance monitoring 
is needed over time 

No 
limited data on screening 
outcomes   

Can be done at home 

Higher false-positive rate 

than FIT 

Expensive than 

other stool-based 

tests 
To be followed up 

by colonoscopy if 

positive   

92.3% compared 

to 73.8% FIT with 
specificity of 

89.80% 

(Nguyen and 

Weinberg, 
2016; Wolf et 

al., 2018) 
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Colonoscopy 
Structural and 

visual 

examination 

In Every 10 years 

This test is suitable for 

both early detection and 
prevention of CRC 

through polypectomy 

(removing polyps from 
inside the colon) 

  

Yes 

Risk of bowel 

perforation- 4 in 10,000 

major bleeding- 8 in 
10,000; and 

cardiopulmonary 

complications of 
anesthesia-2-4 in 10,000.  

Adherence data to 

colonoscopy 10-year   

Laxative preparation and 
bowel cleaning 

 

 
  

Most expensive 

test 
Polypectomy and 

anaesthesia may 

be expensive 
 

  

75%-93%; for 
adenomas ≥ 6mm 

and 89%-98% for 

adenomas ≥ 1cm 
Specificity: 94% 

for adenomas ≥ 

6mm and 89% for 
adenomas ≥ 1cm 

(Nguyen and 

Weinberg, 
2016; Wolf et 

al., 2018) 

Computed 

Tomography 

Colonoscopy 

(CTC) 

Structural and 

visual 

examination 

In Every 5 years 

Comparable performances 
to colonoscopy in 

identifying advanced 

adenomas without 
procedural risks of 

colonoscopy and 

Exposure to low-dose 
radiations  

Yes 

Incidental extracolonic 

findings may require 
workup, with unclear 

benefit-burden balance 

Laxative preparation and 
bowel cleaning 

Colonoscopy required if 

test positive, sometimes 
on the same day 

Relatively 
expensive 

To be followed up 

by colonoscopy 
for positive test 

75%-98%; for 

adenomas ≥ 6mm 
and 89%-91%; for 

adenomas ≥ 6mm 

(Wolf et al., 
2018) 

Flexible 

Sigmoidoscopy 

(FS) 

Structural and 

visual 

examination 

In Every 5 years 

Best evidence among 

structured examination for 

reducing mortality and 

incidence 

Yes 

Risk of bowel 

perforation- 1 in 10,000; 

major bleeding- 2 in 
10,000 

Suboptimal visualisation 

due to poor bowel 
cleaning 

Poor sensitivity for CRC 

in proximal colon 

Pain and discomfort 

Self-administration of 
enema prior to procedure 

Abnormal findings 

require second 
endoscopic procedure 

(colonoscopy) 

To be followed up 

by colonoscopy 

for positive test 

- 
(Wolf et al., 

2018) 

Septin9 
Blood-based 

(DNA 

methylation) 

Not determined 

Serum assay potentially 

more convenient for 

patients 

No 

Marked inferior than FIT 
Inability to detect 

adenomas 

Low cost-effective in 
comparison to other tests 

Patient preferred septin9 

test over colonoscopy 

and FIT 

To be followed up 
by colonoscopy 

for positive test 

Test is expensive 
than FIT 

77% and 80% 

(Nguyen and 

Weinberg, 

2016) 
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2.5 Minimally invasive CRC biomarkers for early screening 

Biomarkers can be defined as any “biological molecules found in blood, other body fluids or 

tissues that are a sign of a normal or abnormal process, or of a condition or disease. 

Biomarkers may be used to see how well the body responds to treatment for a disease or 

condition” (Mayeux, 2004).  

The US FDA is the main regulatory body that approves the clinical use of biomarkers. The 

FDA categorises biomarkers into seven categories, namely, susceptibility/risk, diagnostic, 

monitoring, prognostic, predictive, pharmacodynamic/response, and safety. It approves use 

through a stringent, multistage regulatory process (Group, 2016). Numerous research 

endeavours have shed light on the basic biology of CRC, and these have led to the identification 

of some promising CRC biomarkers candidates. These markers represent potential anomalies 

in physiological molecules, including DNA, RNA, proteins, glycans and other post-

translational modifications and/or metabolites within biospecimens. 

In an attempt to, shift CRC diagnosis from procedure-centric to minimally invasive, cost-

effective tests, researchers have tested several putative DNA, RNA and protein candidates in 

faecal, tissue, urine and blood specimens for potential as a diagnostic, prognostic and/or 

therapeutic marker for CRC. Putative CRC biomarkers from stool samples have been described 

earlier. Notable biomarker candidates proposed from, blood and urine in the past decades will 

be discussed here.  

2.5.1 Urine Biomarkers 

Tumour-derived DNA at circulating levels in plasma that are high enough to exceed renal 

absorption enters the urine. Alongside proteins and volatile compounds, tumour-derived DNA 

has been deemed as a useful source of non-invasive biomarkers for the early detection of CRC. 

These include DNA for arylsufatase, lysosomal exoglycosidases and cathepsin D (Altobelli et 

al., 2016); prostanoids metabolites, Prostaglandin E2 and M (PGE2, PGEM) (Davenport et al., 

2016); (N(1),N(12)-diacetylspermine) and DiAcSpd (N(1),N(8)-diacetylspermidine (Umemori 

et al., 2010), epigenetic markers involving changes in DNA methylation in genes like vimentin, 

Wif-1 and ALX-4 (Amiot et al., 2014); mutation in genes such as KRAS (Su et al., 2008). In 

addition, elevated levels of volatile organic compounds like citrate, hippurate, p-cresol, 2-

aminobutyrate, myristate, putrescine, and kynurenate, and nucleosides including adenosine, 

cytidine, N(2),N(2)- dimethylguanine, 8-hydroxy-2'-deoxyguanosine and uridine  have been 
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proposed as putative indicators of CRC, in other studies(Cheng et al., 2012; Hsu et al., 2009). 

Urinary PGE-M seem to be promising candidates for detection of adenomas and CRC, which 

has been examined in more than five studies one of which evaluates 1000 individual patients 

(Altobelli et al., 2016) (Cheng et al., 2012). Therefore, evidence suggests that urine biomarkers 

can potential be used to screen early CRC; however, collection of urine samples can encounter 

the challenge of patient adherence to testing by the populace. 

2.5.2 Serological (Blood-based) Biomarkers 

The dynamic nature of blood vasculature and its constituents is reflective of individuals’ 

physiological and pathological state. In addition, the ease of sampling makes blood not an only 

a logical choice but also studies have shown that more than 85% of patients prefer blood-based 

diagnosis over stool-based tests. Blood components that provide an indication of cancer status 

include various cellular elements such as proteins, peptides, metabolites, circulating tumour 

cells, cell-free DNA and RNA. Thousands of publications have explored the use of various 

components of the blood to diagnose cancer early (Table 2.2). In the following section details 

about the protein markers, and nucleic acid markers is discussed. 

2.5.2.1 Protein biomarkers 

There are numerous serological biomarkers currently under investigation for CRC early 

diagnosis. However, only a handful of these have proceeded to be available in the form of 

diagnostic blood tests.  

For example, carcinoembryonic antigen (CEA) is an oncofetal protein whose level is found to 

be elevated in the serum of late stage CRC patients. Being highly specific (87%) but not so 

sensitive (36%), CEA is an FDA recommended CRC recurrence monitoring marker. In more 

than one study, elevated levels of CEA delineate with later stages of CRC rather than earlier 

(Fakih and Padmanabhan, 2006).  

Carbohydrate antigen 19-9 (CA 19-9) is a protein elevated in serum of individuals with CRC 

or other malignancies related to the gastrointestinal tract. Like CEA, CA 19-9 is a late stage 

CRC marker with a lower specificity than CEA (Mahboob et al., 2015; Vukobrat-Bijedic et al., 

2013). Tumour associated glycoprotein (TAG 72) is one such protein marker recommended in 

combination to other CRC biomarkers in a panel. The sensitivity of TAG 72 as a stand-alone 
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CRC marker has been found to range between 28% to 67% (Yanqing et al., 2018). Tissue 

polypeptide specific antigen (TPS) is released from cells after mitosis, thus serving as an 

appropriate marker for the rapidly dividing oncogenic cells. TPS can serve as an early diagnosis 

marker in a panel of CRC marker (Fiala et al., 2015). Further, of other protein markers proposed 

to date, two protein markers have been extensively studied, 1) Tumour specific M2 isoform of 

pyruvate kinase (PKM2) and 2) tissue inhibitor of matrix metalloproteinase 1 (TIMP1) (Fung 

et al., 2014). PKM2 is measured both in plasma and stool and has a reported sensitivity of more 

than 90% in stool but specificity in plasma is unknown. TIMP1 is reported to be elevated in 

CRC in comparison to healthy controls with reported sensitivity and specificity of 63% and 

98% (Nielsen et al., 2008). However, sensitivity for early stage CRC (Dukes stage A and B) is 

poor at 56% (Holten-Andersen et al., 2002). In addition, both PKM2 and TIMP2 are less 

sensitive in comparison to FOBT (Tao et al., 2012; Wild et al., 2010).  

Additional serological protein biomarkers under investigation include cytokeratins, dermokine 

(DK), melanotransferrin, N methyltransferase, neutrophil elastase, cathepsin D and lysosomal 

exoglycosidases such as isoenzymes of N-acetyl-β-D-hexosaminidase (HEX) (Rasmussen et 

al., 2013),  HEX A and B, β-D-galactosidase (GAL), α-fucosidase (FUC), α-mannosidase 

(MAN), cathepsin D (Waszkiewicz et al., 2012), insulin-like growth factor binding protein 2 

(IGFBP2), and matrix metalloproteinase 9 (MMP9).  

However, none of these identified markers have proved to effectively detect early stages of 

CRC.  

2.5.2.2 Nucleic Acid Biomarkers 

Recent advances in technology have allowed researchers to monitor DNA shed from cells that 

enter circulation. These are commonly termed as cell-free DNA (cfDNA) and were described 

in times as early as 1948 (Volik et al., 2016). It is only now, that researchers have been able to 

exploit this for screening genetic aberrations or specific DNA fragments derived from tumour 

cells to aid diagnosis through NGS and RNA-Seq (Volik et al., 2016). These fragments of DNA 

are termed as circulating tumour DNA (ctDNA) could potentially provide a snapshot of the 

pathology of an individual and are therefore often referred to as “liquid biopsies” 

(Gorgannezhad et al., 2018).  
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In the context to CRC, numerous studies focus on viable ctDNA and ctRNA markers. 

Exploiting epigenetic aberrations triggering CRC, several serological DNA methylation 

markers have been investigated for their potential to diagnose CRC at an early stage. In one 

study, mBCAT1 and mIKZF1 measured together detected CRC with a sensitivity and 

specificity of 77% and 92.4% (Symonds and Young, 2015). The extent of methylation of 

BCAT and IKZF1 closely corelated with CRC stages I to IV at 50%, 68%, 87% and 100%, 

respectively (Jedi et al., 2018). Methylation abnormalities of DNA for Neuro D3/Neurogenin 

1/NGN1 (NEUROG1), TAC1, EYA4, RUNX3, S100P promoter, p16 and THBD have also 

been found to be relevant in the context of CRC diagnosis (Vijeta Pamudurthy, 2016). Amongst 

these, the methylated Septin9 gene (mSEPT9) was recently approved by the FDA as the first 

serum-based nucleic acid assay for CRC screening. It is manufactured by Epigenomics, Seattle 

(Song et al., 2017). This non-invasive test screens mSEPT9 shed by tumours and is a preferred 

test by patients not willing to undergo (or repeatedly refuse) other forms of CRC screening. 

This test diagnoses all stage CRCs and adenomas at a sensitivity and specificity of 68% and 

80%, respectively, making performance inferior to tests like FIT and colonoscopy (Song et al., 

2017). Moreover, compliance of patients after receiving a positive test to undergo colonoscopy 

for confirmation of diagnosis is uncertain. Being a novel blood test, information on mortality 

and incidence reduction or other critical CRC outcomes is obscure. This test is more expensive 

than standard, better-performing modalities like FIT. Because of these limitations, FDA 

clearance of mSEPT9 has not been forthcoming as a routine CRC screening modality for 

average at-risk individuals (Nguyen and Weinberg, 2016). 

 

Further, various forms of RNA markers like messenger RNA (mRNA), miRNA and long non-

coding RNA (lncRNA) have been studied for potential to allow early diagnosis of CRC. 

Marshall et al., in 2010 introduced a 7-gene serological mRNA biomarker panel targeted at 

ANXA3, CLEC4D, LMNB1, PRRG4, TNFAIP6, VNN1, and IL2RB, from gene expression 

profiling data of CRC patients across various stages (Marshall et al., 2010). This was further 

validated in a larger patient cohort and has demonstrated some clinical utility in determination 

of patient’s risk of developing CRC, with a sensitivity and specificity of 78% and 66%, 

respectively (Ganepola et al., 2014). This blood test for CRC diagnosis is currently called 

ColonSentry® and is manufactured by Innovative Diagnostic Laboratory (Ganepola et al., 

2014).  
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The role of miRNAs has been increasing appreciated in the context of human malignancies. 

Numerous serological miRNA markers, including miR-7, miR-15b, miR-17-5p, miR-17-

3pmiR-18a, miR-19a, miR-19b, miR-20a, miR-21, miR-29a, miR-92a, miR-96, miR-106b, 

miR-133a, miR-142-3p,miR-143, miR-145, miR-183, miR-195, miR-196a, miR-214, miR-

221, miR-331, miR-335, miR-532-5p,miR-532-3p, miR-652, miR-1246 have been shown to 

be up-regulated in primary CRC (Schee et al., 2012), whilst miR-124, miR-127-3p, miR-138, 

miR-143, miR-146a, miR-222, miR-601 and miR-760 have been found to be down-regulated 

in primary CRC (Mitchell et al., 2008). Additionally, miR-15b, miR-29a, miR-139-3p, miR-

141, miR-431 were found to be up-regulated in the metastatic disease.  

Recently a broad spectrum, multi-analyte blood test called CancerSEEK was launched by 

researchers at John Hopkins Kimmel Cancer Center, Baltimore, USA and is being 

commercialised by Thrive Earlier Detection Corp. This test was designed to serve as an early 

pan-cancer diagnostic modality covering eight common types of cancers, including ovarian, 

liver, stomach, pancreatic, oesophageal, colorectal, lung and breast.  

When applied to 1,005 patients with non-metastatic tumours, the test was positive in a median 

of 70% of all eight cancer types. The sensitivity of this test ranged between 69%-98% for 

detection of five cancer types (i.e., ovarian, liver, stomach, pancreatic and oesophageal) with 

the specificity of the CancerSEEK test over 99%. This test comprised two components. The 

first focused on ctDNA mutations in 16 candidate genes using 61 primer pairs, whilst the 

second component sought changes in expression of a 41-protein panel. An algorithm was then 

utilised on data obtained from the test to provide a specific diagnosis (Cohen et al., 2018). 

Careful analysis of this Science publication laid out a promising proof-of-concept multi-analyte 

blood test. However, the study had several limitations. The biggest limitation was that the 

subjects used in this study were pre-diagnosed with cancer. Therefore, they were distinct from 

the general “blinded” population on whom this test was intended for use. Moreover, the test 

seems to perform better for the five tumours ovary, liver, stomach, pancreas, and oesophagus 

but not as well for CRC.  

More to this, CancerSEEK tests relies on a set of five literature derived plasma protein 

biomarkers CA125, CA19-9, CEA, HGF, MPO, OPN, PRL, TIMP-1. Additionally, 

CancerSEEK’s use of CA 19-9, CEA and TIMP1 is puzzling, as these markers have restricted 

FDA approval specifically for stage III/IV recurrence and tumour burden applications. CEA 
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does not differentiate adenomas or early stage I/II from healthy (Halford et al., 2013) and CA 

19-9 and TIMP1 have also shown poor sensitivity for early CRC screening as discussed in

detail above (section 2.5.2.1).  

2.6 Unmet Clinical Needs: 

Ostensibly, the holy grail for decreasing CRC mortality is the development of a new 

asymptomatic population screening/diagnostic test with crucial characteristics. The test must 

be: 

• Specific - which means true negatives identified to prevent costly unnecessary

interventions or psychological distress from false positive results

• Sensitive - which means true positives must be detected to ensure confirmatory

coloscopy is prescribed and early enough for surgery to be curable

• have a high positive predictive value (PPV) - which depends on sensitivity, specificity

and whether disease is common/rare

• be readily performed

• cause minimal discomfort

• be readily taken up - have compliance >90%, and

• be amenable in routine clinical practice and pathology settings.

Currently, after screening patients with existing tests (stool-based tests mentioned above in 

Table 2.1), adenoma/early stage CRC confirmation is performed by colonoscopy with 

subsequent surgical resection. Despite this, only 9% and 24% of patients are currently 

diagnosed at stage I/II respectively, with most diagnosed at stage III (23%) or IV (44%). 

Survival rates tumble when spread (metastasis) has occurred (e.g., <11% 5-year survival for 

stage IV patients; Figure 2.5). 

Various test sensitivities, specificities are summarised (Table 2.1). Despite education 

programs, patient compliance for stool-based tests is lower than 40%, which leads to poor 

adherence to tests and annual testing. Also, the reliance of stool-based tests on detection of Hb 

in stool samples leads to detection of false positives, which exposes population to adverse 

effects of colonoscopy (discussed in detail in section 2.4).  
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On the other hand, blood tests have a patient compliance of ~95%, due to ease-of-use strategies, 

aimed at relieving discomfort around faeces handling (Elsafi et al., 2015). 

Further, many companies such as GRAIL, Freenome, Clinical Genomics and more utilise 

mutant ctDNA liquid biopsy and/or methylation epigenomic technologies in asymptomatic 

population early stage screening. Colvera (Clinical Genomics) is now marketed as a clinically 

validated blood test for improved established CRC recurrence monitoring.  

The feasibility of ctDNA for adenoma and early stage CRC screening has been recently 

discounted around issues, including; 1) capacity of deep sequencing to find early mutations, 2) 

undetectable or vanishingly low levels of mutant ctDNA released from small early stage 

tumours, 3) low apoptosis rates in adenomas and early tumours, 4) subsequent low/zero levels 

of ctDNA leakage from small benign tumours (Bettegowda et al., 2014; Cohen et al., 2017; 

Diamandis and Fiala, 2017), 5) accumulation of cancer-associated mutations with normal 

ageing, and 6) potential inability to identify cancer tissue of origin as many signatures overlap 

(Heitzer et al., 2017).  

Significantly, cell of origin analysis surprisingly indicated driver mutations are also acquired 

in long-lived healthy tissues, stem or progenitor cells (Heitzer et al., 2017). More encouragingly 

though, a plethora of studies validate ctDNA (after deep sequencing of primary tumours) as 

enabling better understanding of later stage cancer, tumour heterogeneity, load and detection 

of patient resistance to therapy or presence of postoperative minimal residual disease (Fan et 

al., 2017).  

The enthusiasm around the CancerSEEK blood test described in section (2.5.2.2) should be 

tempered due to the above-mentioned reasons. Further, a recent paper inadvisably uses the term 

early detection to refer to recurrence/relapse (Heitzer et al., 2017), unnecessarily creating 

confusion with the accepted meaning of early stage screening. Equally, many studies don’t 

benchmark against previous epigenomic alterations or ctDNA mutations (e.g., SEPT92, 

APC3). Some tests like CancerSEEK (7.5ml), Clinical Genomics BCAT1/IKZF1 (~4ml) and 

Epigenomics Epi proColon methylated Septin9 (3.5ml) require large plasma volumes, 

precluding use of many established small draw plasma collections or the performing of 

preferred duplicate/triplicate assays. 
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Further, a faecal proteogenomics (genomic/epigenomic and proteomic) test involving Hb, β-

actin, KRAS mutation and aberrant NDRG4 and BMP3 methylation (Imperiale et al., 2014) 

discussed above in section 2.4.1 had a high false positive rate, limited advanced adenoma 

sensitivity (42%) and suffered low compliance like other faecal tests (e.g., FOBT, gFOBT, FIT 

and Exact Sciences' Cologuard).  

Therefore, there is still an unmet clinical need to find a blood-based biomarker that can screen 

early CRC patients from healthy controls and hence forms the primary objective of this thesis 

(Chapter 3).  

2.7 Novel CRC Biomarkers by Plasma Proteomics 

The potential for biomarkers to supplement/facilitate CRC early diagnosis poses a clinical 

necessity. Enzyme assays and immunoassays have dominated the FDA-approved blood-based 

diagnostic testing space for decades. However, the turnover of new FDA-approved protein 

biomarkers and the uptake of new assay platforms has been particularly slow. Over the last 

decade, proteomics has emerged as a powerful tool for accelerating identification of clinically 

significant protein biomarkers.  

Proteomics is defined as the study of the entire repertoire of proteins (proteome) of a 

biospecimen under defined conditions at any given time point (Wilkins et al., 1996). It is a 

technology-driven field that allows the study of protein structure, function, post-translational 

modification, protein-protein interaction and abundance. Although proteomics is currently 

dominated by various forms of mass spectrometry (MS), other technologies are incorporated 

into major efforts like the Human Proteome Project (see Chapter 1).  

MS has evolved over the years in terms of its technology and workflows to accurately measure 

protein abundance in biospecimens. Briefly, a mass spectrometer has three essential 

components: ionization source, mass analyzer and detector. In short, for the most commonly 

applied LC-MS/MS mode of mass spectrometry, enzymatically digested proteins from 

biospecimens are separated by high performance liquid-chromatography (HPLC) that is 

coupled to the electrospray ionization (ESI) source. ESI helps in imparting a charge to the 

peptides which are then separated as per their m/z ratio. The mass and abundance of each 

peptide is acquired in the mass spectrometer mass analyzer through a complete MS scan. The 

next dimension of MS involving peptide fragmentation pattern provides an MS/MS spectrum 
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which allows peptide identification after subjecting it to mass spectrometry-based data base 

searches. The details of common workflows involving MS-based proteomics is found in 

Section 2.9. MS-based proteomics can not only provide a global spectrum of the proteome of 

a biospecimen but is also well-suited to detect PTMs which could be of immense diagnostic 

value. (Aebersold and Mann, 2003). 

Despite many advantages, MS-based proteomics has several challenges especially when 

challenged by such a complex biospecimen as human plasma. The primary hurdle in subjecting 

plasma to MS analysis lies in its relative proteomic composition (Anderson and Anderson, 

2002).  

Figure 2.5: Protein Concentration Curve: Data points represents an individual protein and 

its relative log concentration found in serum/plasma as measured with diverse methods and as 

retrieved from either the Plasma Proteome Database 

(http://www.plasmaproteomedatabase.org/) and/or PeptideAtlas (www.peptideatlas.org/) 

searched manually for the list of proteins obtained as a result in Chapter 3. 
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The human plasma proteome can be broadly functionally grouped into immunoglobulins, acute 

phase response proteins, tissue leakage proteins (proteins secreted or shed from the cell into 

systemic circulation), and cytokines. Out of 100 or so FDA approved biomarkers, 50% can be 

functionally identified as acute phase response proteins, 25% as tissue leakage proteins with 

the remaining can be identified as immunoglobulins or receptor ligands. Many of these 

biomarkers have been in use for decades but continue to be routinely utilised in clinical care 

settings for example C-Reactive Proteins is used as an inflammatory marker and Cardiac 

troponin T as a cardiac test and many more (Geyer et al., 2017).  

The dynamic concentration range difference between the most abundant plasma protein 

(albumin) and interleukins/cytokines (e.g., IL-6) (Figure 2.5) is over 10-12 log orders of 

magnitude. This fact alone decides which plasma proteome proteins are discoverable by MS. 

Over 90% of plasma proteome is dominated with systemic and acute phase response proteins 

found at mg/ml concentration can also be termed as the high abundance plasma proteome 

whilst mid and low abundance proteins are found in the ug/ml-mg/ml and ng/ml-pg/ml ranges, 

respectively (Anderson and Anderson, 2002).  

Recently, two proteomics studies of unparalleled scale were undertaken. The first reported 

~300 differentially-expressed glycoproteins in CRC tissues (parallel to our previous study 

(Sethi et al., 2016)) from which they derived a 5-protein consensus MRM signature using 

undepleted CRC plasma cohorts (Surinova et al., 2015a; Surinova et al., 2015b) . The signature 

consisted of ceruloplasmin (CP), serum paroxonase/arylesterase 1 (PON1), serpin A3 

(SERPINA3), leucin-rich α2glycoprotein (LRG1), and tissue inhibitor of metalloproteinase-1 

(TIMP1). Notably, all these proteins lay in the medium abundance range (0.8ng/ml→2mg/ml). 

Their test had a modest sensitivity (70%) and specificity (79%) that was strangely similar 

across all CRC stage /healthy comparisons. Addition of CEA cut-off of >5ng/mL did not 

appreciably change sensitivity. In conclusion, this study had lower sensitivity and specificity 

than colonoscopy, was inferior to FIT and was only marginally better than FOBT. 

In the second study, Applied Proteomics extracted 187 CRC-associated proteins from the 

literature. Each protein was then assayed using multiplex MRM MS on MARS14-depleted 

plasmas from age and gender-matched patients and controls (Jones et al., 2016). A patented 

signature of ORM2, SERPINA1, AMY2B, CLU, C9, ECH1, FTL, GSN, TIMP-1, OSTP, 

SBP1, SEPR and SPON2 was generated and called SimpliPro Colon.   This test showed a 
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comparable sensitivity (81%) but inferior specificity (78%) to FIT (Jones et al., 2016) on CRC 

stage I-IV cohorts. This is not surprising, given the number of abundant, liver-derived acute 

phase response proteins and complement factors that are known to be differentially expressed 

across a multitude of diseases/pathologies. In addition to this, multiple proteomics studies have 

proposed different liver-derived acute phase response proteins as CRC biomarkers 

(summarised in Table 2.2). Although, none of these markers have proven diagnostic value. 
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Table 2.2: List of CRC blood /serum/plasma protein biomarkers identified from proteomic studies 

Status 

Serum Protein 

Biomarkers Sample Types Ref 

In use CEA Blood/Serum (Lech et al., 2016) 

Clinical Validation TIMP-1 Plasma (Lech et al., 2016) 

Pre-Clinical Development 

3 protein panel 

IGFBP2, DKK3 

and PKM2 Blood/Serum (Fung et al., 2015) 

4 protein panel 

DK-BLY, CEA, 

Ca 19-9, S-p53 Blood/Serum (Shah et al., 2014) 

6 protein panel 

SULF1, 

NHSL1, MST1, 

GTF2i, 

SREBF2, GRN Blood/Serum (Babel et al., 2011) 

Alpha 1-

antitrypsin Blood/Serum (Bujanda et al., 2013) 

Amphiregulin Plasma (Mahboob et al., 2015) 

C3a-desArg Blood/Serum (Fentz et al., 2007) 

Collagen type X 

alpha1 

(CPL10A1) Blood/Serum (Sole et al., 2014) 

CP, PON1, 

SERPINA3, 

LRG1, CEA & 

TIMP-1CA125  

Blood/Serum (Surinova et al., 2015a) 

CXCL11 Plasma (Mahboob et al., 2015) 

RM2, 

SERPINA1, 

AMY2B, CLU, 

CO9, ECH1, 

FTL, GSN, 

TIMP-1, OPN, 

SBP1, SEPR & Blood/Serum (Jones et al., 2016) 



75 
 

SPON29 (v2 

CEA, TFRC, 

A1AG, C09, 

DPPIV, MIF, 

PKM & SAA) 

CXCL5 Plasma (Mahboob et al., 2015) 

GRN Blood/Serum (Babel et al., 2011) 

GTF2i Blood/Serum (Babel et al., 2011) 

IL6 Plasma (Mahboob et al., 2015) 

IL8 Plasma (Mahboob et al., 2015) 

MMP9 Blood/Serum (Mroczko et al., 2010) 

MMP9 + CEA Blood/Serum (Mroczko et al., 2010) 

MMP9 + TIMP-

1 Blood/Serum (Mroczko et al., 2010) 

MST1 Blood/Serum (Babel et al., 2011) 

MUC1 + MUC4 Blood/Serum (Pedersen et al., 2011) 

NHSL1 Blood/Serum (Babel et al., 2011) 

RPH3AL auto-

antibodies Blood/Serum (Chen et al., 2011) 

S100A8 Blood/Serum (Kim et al., 2009) 

S100A9 Blood/Serum (Kim et al., 2009) 

sCD26 Blood/Serum (De Chiara et al., 2010) 

SREBF2 Blood/Serum (Babel et al., 2011) 

SULF1 Blood/Serum (Babel et al., 2011) 

TIMP-1 Blood/Serum (Mroczko et al., 2010) 

Transthyretin Blood/Serum (Fentz et al., 2007) 

Transthyretin + 

C3a-desArg Blood/Serum (Fentz et al., 2007) 

uPAR Tissue/serum (Ahn et al., 2015; Bujanda et al., 2013) 

STK31 Serum 

(Watany et al., 2018; Zhong et al., 

2017) 

FBLN1 Serum (Watany et al., 2018) 

Spondin-2, 

DcR3, Trail-R2, 

Reg IV, MIC1 Serum 

(Reviewed by (Tanaka et al., 2010)) 

PSME3 Serum 

NNMT Serum 

CRMP-2 Serum 
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In this thesis, it was envisaged that the challenge of dynamic concentration range of plasma 

could be partially overcome by depleting the abundant protein load by passing plasma through 

columns containing immobilised antibodies against the top 1-200 proteins. There are several 

commercially available and proof-of-principle strategies available for depletion. In fact, a novel 

aspect about this thesis was to test the efficacy of an in-house chicken IgY-based ultradepletion 

strategy against commercial depletion column(Tan et al., 2013) (details section 2.9).  

An alternative strategy to enhance plasma proteome coverage is to subject samples to extensive 

fractionation. Fractionation can be undertaken after plasma depletion and has helped identify 

several thousand plasma proteins. Further, the new advanced mass spectrometry technology 

SWATH™-MS is a revolutionary technique that compliments traditional MS by synergising 

the advantages of shotgun and targeted approach which yields high-throughput along with high 

reproducibility and consistency. It follows an intricate workflow to effectively capture a 

complete and permanent record of all fragment ions of detectable peptide precursors found in 

a biospecimen (section 2.9).  

This thesis utilises the DIA method SWATH™-MS for plasma biomarker discovery aimed 

towards developing an early diagnosis modality to supplement gold standard colonoscopic 

confirmation or early stage CRC. 

SELDI 

(apolipoprotein 

C1, C3a-

desArg, α1-

antitrypsin, 

transferring) Serum 

HNP 1–3 Serum 

MIF Serum 

M-CSF Serum 

M2-PK Serum 

Prolactin Serum 

CCSA-2, −3, −4 Serum 

MMP7 Serum 

Laminin Serum 
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2.8 Triangular MS-based Biomarker Discovery Strategy  

As discussed, the dynamic concentration range of human plasma poses immense technical 

challenges for in-depth plasma proteomic studies on population sized cohorts. To circumvent 

this, a triangular multi-staged biomarker discover approach was employed in this study. Our 

first step undertook shotgun-based library generation for subsequent SWATH™-MS discovery 

through non-depleted, depleted and ultradepleted plasma proteomics applied to plasma 

specimens from small pooled (N=20) cohorts comprising few cases and controls. This leads to 

the identification of tens-hundreds of differentially-expressed proteins (Geyer et al., 2017) as 

potential CRC biomarkers. Comprehensive SWATH™-MS data analysis leads subsequently 

to the identification of putative markers which would be then be verified in the next phase in 

larger individual or population cohorts using either a set number of multiplexed or individual 

targeted proteomic assays and/or commercially available ELISA/other assays.  

 

Our lab is familiar with the development of targeted proteomic assays as these allow precise 

detection and quantification of sets of candidate proteins across an independent cohort by 

selectively monitoring peptide sequences specific to candidate proteins with high precision 

(Addona et al., 2009; Picotti et al., 2009) (section 2.9). Finally, the last stage discovery stage 

involve population-based validation and clinical application of the most robust biomarkers 

identified using clinical immunoassays on pathology-lab platforms and/or development of 

high-throughput systems to undertake novel targeted MRM/SRM assays (Anderson and 

Hunter, 2006). Although, all steps in this workflow was not completed, this thesis adheres to a 

long-term triangular biomarker discovery framework and has a view to identifying blood-based 

early-stage CRC screening biomarkers, as represented in Figure 2.6. 
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Figure 2.6: Triangular strategy paradigm: Protein identification is done on a relatively small 

number or pooled set of samples which yields large datasets. Validation of a statistically 

significant protein set is performed on a relatively larger data set and final validation assay is 

performed as a population-based study for potential biomarker. Image adapted from (Geyer et 

al., 2017) 

2.9 Sample Preparation, Proteomics and Orthogonal tools for Biomarker Identification 

and Validation  

2.9.1 Plasma Sample Preparation 

2.9.1.1 Multiple Affinity Removal System (MARS14 - Human 14) 

The MARS-14 targeted high-abundance protein depletion system that uses combinations of 

anti-human plasma protein antibodies attached to chromatographic supports was introduced by 

Agilent in 2003.  Since then it has been employed widely by many labs to identify and 

characterise low abundant plasma proteins in unbiased biomarker discovery experiments. 

These MARS-14 columns containing immobilised antibodies can reproducibly and reliably 

remove14 abundant plasma proteins (i.e., human serum albumin, IgG, antitrypsin, IgA, 

transferrin, haptoglobin, fibrinogen, α2-macroglobulin, α1-acid glycoprotein, IgM, 

apolipoprotein AI, apolipoprotein AII, complement C3 and transthyretin) (Tu et al., 2010).The 

MARS14 columns provides reproducible and specific removal of targeted proteins in human 
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plasma and enhances the detection of mid-low abundant plasma proteins. However, the non-

targeted plasma proteins obtained after enrichment using immunodepletion columns, on 

subjection to current multidimensional LC-MS/MS technology, detects mid- and high-

abundance proteins. The low abundance proteins comprise of 5-6% of depleted plasma in range 

(Tu et al., 2010). To reach deeper depths of plasma, in-house IgY ultradepletion used in the 

study discussed in section 2.9.1.2. 

2.9.1.2 In-house ultradepletion (API – abundant protein depletion) 

Immuno-depletion of high-abundant proteins is widely used before proteome analysis. Despite 

using these early columns to effectively remove 14 of the most abundant plasma proteins, the 

dynamic range of plasma protein concentrations remains high and this continues to act as 

barrier to the discovery of clinically relevant biomarkers.  

To address this ongoing problem, our Macquarie University team developed an in-house 

ultradepletion method that immunodepletes many more additional high- and mid-abundance 

human plasma proteins (Tan et al., 2013; Tan et al., 2012). This novel, patented immunoaffinity 

ultradepletion strategy allows for the binding/removal of ~165 human plasma proteins.   

In brief, 30 litres of human plasma were fractioned by SCX followed by SAX and where dual 

IEX flow-through proteins were also collected. This method has been dubbed Protein 

Repetitive Orthogonal Offline Fractionation (PROOF) (Figure 2.7). Application of this 

method produced 7 human plasma fractions but maintained the native state of proteins in order 

to preserve the immunogen status of each. Fractions were injected intramuscularly into 

chickens that were used as hosts and eggs were collected as a source for chicken-derived, anti-

human plasma antibodies (IgY). Yolks were separated, processed, filtered, concentrated, 

purified, then bound to a solid phase hydrazine bead support and packed into the ultradepletion 

columns as previously described (Tan et al., 2013).  The combination of this novel strategy 

with use of commercial MARS-14 columns was subsequently shown to significantly increase 

discovery of lower abundance plasma proteins (Tan et al., 2013). 



80 
 

 

Figure 2.7: In-house API method designed to remove high abundance protein from human 

plasma- Non-fractionated human plasma yielded seven fractions after subjecting to dual ion 

exchange chromatography (PROOF). The resultant seven fractions were used as protein 

antigens to immunize chickens. Eggs were collected, IgY antibodies extracted and antigen-

specifically purified on plasma antigen columns. Specific IgY antibodies were subsequently 

bound to GE UltraLink affinity media support to make the API ultradepletion column. Image 

used with permission of the Baker research team and (Tan et al., 2013). 

 

2.9.2 Proteomics Tools 

Proteomics is a congregation of techniques employed to understand system wide changes in 

the protein complement that takes place in a given biological sample. Initial attempts to 

comprehend a holistic snapshot of the proteome dates to 1975 from endeavours by O'Farrell, 

Klose and Scheele who attempted to decipher proteins from various organisms using two-

dimensional gel electrophoresis (2-DGE) (Graves and Haystead, 2002). Integration of MS-

based techniques has catapulted proteomics to now enable the identification of tens of 

thousands of proteins in a single experiment. The following section describes advanced 

proteomics approaches for biomarker discovery and validation of identified candidates 

2.9.2.1 Discovery Mass Spectrometry 

A mass spectrometer is an analytical instrument that ionises compounds to identify them based 

on m/z ratios. As described earlier, it is divided into three components. The first component is 
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the ionisation source. Proteins are labile in nature and the success of mass spectrometers in the 

field of proteomics can be primarily attributed to the development of soft ionisation techniques 

like matrix-assisted laser desorption/ionisation (MALDI) and electrospray ionisation (ESI). 

While MALDI has niche proteomic applications, where the analyte is immobilised on a solid 

substrate (matrix) and crystallised, most modern LC-MS platforms use ESI as their ionisation 

source. ESI involves the injection of the liquid analyte through a fine metal capillary tip which 

generates fine droplets. These droplets are ionised when passed through an electric field and 

then analysed by the mass analyser, which is the second component of the mass spectrometer. 

To enhance the resolution of the analyte subjected to mass spectrometry, the liquid analyte is 

separated by high pressure liquid-chromatography (HPLC) prior to ionisation, therefore the 

term “LC-MS”.  Depending on the source of ionisation and downstream objective of the study, 

several mass analysers have been developed e.g. time-of-flight (TOF), quadrupole, ion traps 

and Fourier transform ion cyclotron resonance (FT-ICR). TOF can be used in tandem with 

MALDI, whilst ion traps and FT-ICR are commonly used mass analysers for quantitative LC-

MS. Quadrupole-based mass analysers are finding extensive utility in targeted proteomics. The 

third component of the mass spectrometer is the detector that amplifies signals from ions hitting 

it to give a readout that aids identification of peptide masses and hence inferred peptide/protein 

sequence. Commercial mass spectrometers primarily use specific combinations of the above 

three components to serve applications to many of the downstream proteomic approaches 

described subsequently in this section. 

The choice of approach used in proteomics depends on the end goal of any study. LC MS/MS 

is the workhorse of proteomics largely due to its sensitivity and high-throughput nature. 

However, an understated benefit of this technology is its flexibility to integrate and switch 

between various discovery-based strategies used in proteomics. These strategies can be largely 

divided into “top-down” and “bottom-up” approaches. 

2.9.2.1.1 Top-Down Proteomics 

Functional characterisation of proteins is attributed to their structural features, functional 

domains and motifs. The dynamic post-translational modifications of proteins are key to the 

proper working of signalling cascades. Top-down preserves the intermolecular complexity of 

proteins and allows better characterisation of proteins and their post-translational modification. 

Top-down applies mass spectrometry to study the proteoform level information of an intact 

protein (Toby et al., 2016). Proteoforms refers to the all the molecular form of protein that is 
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derived from a single gene, which includes post-translational modifications, genetic variants 

and alternative splice variants of RNA transcripts (Aebersold et al., 2018; Smith and Kelleher, 

2013).  

Unlike bottom up where proteins are digested, and peptides subjected to mass spectrometric 

analysis, top-down involves direct infusion of intact proteins into the mass spectrometer. 

Proteoforms under analysis are purified or selectively isolated and often pre-fractioned upon 

isoelectric point or molecular mass that and can be further resolved using different liquid-

chromatographic modes. Fractionated samples are ionised or desorbed either through matrix-

assisted laser desorption-ionisation (MALDI) or electrospray ionisation (ESI) for detection and 

identification (Catherman et al., 2014). Ionised intact proteoforms are analysed by either 

Orbitrap or Fourier transform ion cyclotron resonance (FT-ICR) mass analysers. In order to 

distinguish between different post-translational modifications and/or allow proper peak 

resolution, the accurate spectral peak assignment from complex precursor spectra of intact 

proteoforms and their fragment spectra mass analysers with high resolution, mass accuracy and 

sensitivity is critical (Compton et al., 2011; Tipton et al., 2011). 

2.9.2.1.2 Bottom-up (Shotgun) Proteomics 

Complex biological samples often contains thousands of proteins at different concentrations 

(wide concentration range, the concentration at multiple order of magnitude- relevant if for 

plasma) (Meier et al., 2018). Shotgun proteomics is widely used for identification and 

quantification of a wide range of proteins. Shotgun proteomics involves peptide generation 

upon enzymatic digestion of a protein mixture where these peptides are subsequently used as 

surrogates for respective protein identification (by inference) when compared with in silico 

generated peptides (Wolters et al., 2001). Resolution of peptides involves chromatographic 

separation in an LC with peptide spectra generation in tandem-MS (full scan MS1 to measure 

signal intensity and m/z ratios followed by identification of fragmentation pattern in MS2) and 

peptide identification and protein inference by search engine upon comparison with protein 

sequence database (Altelaar et al., 2013). Shotgun proteomics workflow allows quantification 

in tandem with identification of multiple proteins, and has been adopted using multiple 

quantification strategies, including label-based, label-free, DDA and DIA as outlined below 

(Ong and Mann, 2005).  
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2.9.2.1.3 Label-based Strategies 

Label-based quantitative mass spectrometric approaches are commonly used for studying 

quantitative proteomic alterations produced during various pathological conditions. This 

approach involves differential labelling of peptides obtained from two or more biological 

conditions using stable isobaric or isotopic tags. These approaches include stable isotope 

labelling of amino acids in cell culture (SILAC), isotope-coded affinity tags (ICAT), isobaric 

tags for relative and absolute quantitation of peptides (iTRAQ) and tandem mass tags (TMT).  

SILAC is a metabolic labelling method that can be used to study proteomic alterations that 

occur in vivo in cell lines and animal models. In this method, heavy isotope containing arginine 

and lysine amino acids are added to the culture medium and which are incorporated into newly 

synthesised proteins in cells. After 100% metabolic labelling, proteins extracted from cells are 

subjected to tryptic digestion followed by LC-MS/MS. Protein quantification can be performed 

by calculating the ratio of intensities of precursor ions from different conditions, which differ 

from each other with a known difference in mass. SILAC can only be used to compare a 

maximum of three experimental conditions at any given time and cannot be used for ex vivo 

chemical labelling of proteins (Kruger et al., 2008; Seyfried et al., 2010). In vitro labelling 

strategies like iTRAQ, ICAT and TMT are commonly used for comparative proteome 

profiling.  

ICAT is an isotopic label that binds to cysteine residues in proteins (Gygi et al., 1999). The 

labelled protein extract is digested, and ICAT-labelled peptides enriched using biotin-

streptavidin affinity chromatography. Protein quantification is further performed by subjecting 

the ICAT-labelled peptides to LC-MS/MS. iTRAQ is another in vitro labelling technique that 

allows parallel comparison of either four (iTRAQ-4plex reagent) or eight (iTRAQ-8plex 

reagent) biological conditions. iTRAQ reagents bind to the free amino terminal of peptides and 

side chain amino groups of lysine residue (Ross et al., 2004). The pool of labelled peptides 

from different conditions is subjected to LC-MS/MS based identification. Intensity of the 

isobaric tags is indicative of relative abundance of proteins in different experimental 

conditions. TMT-based labelling approach is similar to that of iTRAQ, which allows 

comparative analysis of ten experimental conditions simultaneously in a single mass 

spectrometry run (Werner et al., 2014). Label-based quantitative proteomics allows parallel 

screening of protein alteration in multiple biological conditions thus help in reducing run-run 

variation. 
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2.9.2.1.4 Label-Free Strategies 

 Label-free aims at direct comparison of relative abundance of proteins across mass-

spectrometric runs. Label-free quantitation works on the principle that the protein 

concentration in a sample corroborates well with spectral counts or peak intensities of the 

peptides that are unique to any specific protein. Spectral counts of the peptide provide the 

number of tandem spectra obtained for each protein whereas peak intensities are obtained by 

integrating the area under the curve across retention time windows (Zhu et al., 2010). Unlike 

labelling methods, label-free approaches are cost-effective, involve minimal sample 

preparation and allow comparison of multiple biological conditions. However, data analysis 

for label-free is technically more complicated than labelled-based strategies as the peak areas, 

m/z and retention time for each peptide should be well-aligned across multiple mass 

spectrometric runs (Van Riper et al., 2013). Also, the protein sample across different biological 

conditions is measured separately, which leads to increased variability in data acquisition. 

Therefore, for label-free strategies includes proper calibration of mass spectrometers and 

chromatograph between LC-MS/MS runs and multiple technical and biological replicate runs 

to acquire reliable quantification of proteins with adequate levels of statistical significance (Lin 

and Garcia, 2012; Zhang et al., 2013). 

2.9.2.1.5 Data-Dependent Acquisition (DDA) Shotgun Proteomics 

Shotgun proteomics quantifies proteins by indirectly measuring peptides obtained after 

proteolytic digestion of intact proteins. A typical shotgun experiment comprises of fragmenting 

a peptide mixture digested via trypsin before subjecting to LC-MS. Peptides are identified by 

mapping the mass spectra obtained from peptide fragments against protein databases such as 

Sequest and MASCOT. Peptides are uniquely assigned to a protein but in few cases redundant 

and homologous protein sequences interfere in the identification of the proteins. This 

interference issue is one of the major challenges of shotgun approaches. One of the most cited 

reason quoted is the sequencing speed at which LC-MS platform processes fragment ions. In 

general, in DDA workflows the first MS1 scan cycle of eluting peptides lasts for 1sec during 

which peptide intensity is monitored and identified. Following this a series (~10) of MS2 scans 

occur during which each precursor ion is isolated, fragmented and product ions detected. 

Precursors ions are fragmented in order of decreasing intensity which implies that the most 

intense precursor ions are collected in the MS1 survey scan and further subjected to detection 

leading to inadequate sequencing opportunities. This allows two things; 1) hinders the 

identification and detection of peptide with low ion signals and 2) peptide interference leading 
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to identification of homologous proteins. These problems can be largely overcome by data-

independent acquisition (DIA) and this is discussed below. 

2.9.2.1.6 Sequentially Window Acquisition of Theoretical Spectra (SWATH™-MS) 

Recent advancements in the field of qualitative and quantitative mass spectrometry has led to 

a new era of accurate and reproducible label-free quantification where focus has shifted from 

enumerating peptides and proteins to consistent quantification of large-scale samples.  

This advancement is particularly necessary for fields like proteogenomics, biomarker 

discovery and drug screening. An emerging technology designed to meet these requirements 

has been called SWATH™-MS (Sequentially Window Acquisition of Theoretical Spectra). 

SWATH™-MS is a registered trademark of SCIEX, and it represents one form of Data 

Independent Acquisition (DIA). SWATH™-MS fundamentally differs from data-dependent 

acquisition (DDA) MS (described above) by performing repeated cyclical acquisition of 

precursor ions with fixed isolation windows whilst capturing an entire m/z range (Ludwig et 

al., 2018). In this manner, SWATH™-MS fragments and collects spectra for all precursor ions 

within a sample, allowing retrospective examination of all peptides after the generation of a 

comprehensive spectral library. In conventional DDA-MS methods, fragmentation occurs for 

a fixed number of abundant precursor ions in a single survey scan. In a general SWATH™-MS 

workflow, any biospecimen is trypsin digested and fractionated with an LC attached to the 

tandem mass spectrometer (hybrid full-scans, preferably Q-TOF and Q-Orbitrap). All 

fragmented precursor ions are isolated in 32 (sometimes more or less) precursor isolation 

windows in a specific mass range of 25m/z each (Figure 2.8).  

Conventional DDA measures proteomic profiles of specimen and is the choice of method for 

discovering the maximal number of proteins in a biomarker discovery experiment but often it 

is limited by irreproducible quantification and stochastic precursor ion selection. The variable 

precursor isolation width of SWATH™-MS or DIA provides an edge and alleviates this 

limitation of DDA (Gillet et al., 2012). 
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Figure 2.8: Principle of SWATH™-MS A) measurements are performed on fast scanning 

hybrid mass spectrometer, classically a quadruple which act as first mass analyser and a TOF 

or orbitrap as a second mass analyser. In SWATH™-MS mode, typically a single precursor 

ion (MS1) spectrum is recorded, B) followed by series of fragment ion generating MS2 spectra 

with wide precursor isolation window (e.g. 25m/z) in repeated cycling using 32 MS2 scans with 

defined isolation window (400-425m/z). 

Critical Appraisal for SWATH™-MS 

SWATH™-MS is a powerful and advanced mass spectrometry technique for in-depth 

proteome analysis and coverage, although it has some significant limitations (Law et al., 2013). 

Primary among these is that the data emerging from a SWATH™-MS experiment are 

incompatible with traditional database searching platforms. Although there have been notable 

efforts from the community to build algorithms to deconvolute data from SWATH™-MS 

acquisition, it poses challenges like production of chimeric spectra formed due to residual 

precursor ions. Next, the Triple TOF, the preferred instrument for SWATH™-MS does not 

share the high mass accuracy and resolution of Orbitrap or FT-ICR which poses a question of 

specificity in mass determination. Another problem of SWATH™-MS arises from the 25 

theoretical width of the precursor isolation widow which may give rise to interference that is 

likely to affect the precision of quantification. Hence, validation using SRM/PRM following 

SWATH™-MS data analyses is imperative. 
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2.9.2.2 Validation-based Proteomics 

Proteomics is a rapidly developing field and with the advent of high-resolution mass 

spectrometers paradigms have shifted from discovery-based proteomics to validation and 

quantitation with high precision and accuracy. Targeted approaches allow multiplexing, and 

hence require minimal clinical sample for validation of multiple candidate proteins (Fortin et 

al., 2009; Harlan and Zhang, 2014). Unlike discovery phase proteomics that allows monitoring 

of thousands of protein alteration, targeted-based assays allow repeated monitoring of a few 

specific scheduled peptides and their fragment ions belonging to proteins of interest. This 

approach utilises specific properties of peptides like hydrophobicity, mass/charge ratio (m/z) 

and fragmentation patterns to detect and quantify peptides in complex biological mixtures. 

These MS-based validation experiments if performed on a triple quadrupole are referred to as 

selected/multiple reaction monitoring (SRM or MRM) and if performed on Orbitrap mass 

spectrometers are known as parallel reaction monitoring (PRM) assays.  

SRM/MRM-based validation typically monitors multiple transitions (pair of precursor peptide 

and daughter ions) of the target protein using a triple quadrupole mass spectrometer. The 

resolved peptides are first selected on the basis their mass/charge (m/z) ratio in the first 

quadrupole (Q1) which then gets fragmented using collision induced dissociation at second 

quadrupole (Q2), the third quadrupole (Q3) further isolates the fragment ions of based on 

specific m/z. Multiple and repeated monitoring of the specific set of peptides and their fragment 

ion provides selectivity and reproducible quantitative measurements (Gillette and Carr, 2013). 

The area under the curve obtained for the transitions are compared to those for internal 

standards and are used for quantitation. Mass-based filtering of peptides at two levels (i.e., Q1 

and Q3) effectively excludes most co-eluting interferences, making SRM a highly sensitive 

technique (Figure 2.9). However, owing to the low resolving power of the quadrupole, 

interfering peptides with near-isobaric patterns and similar MS/MS fragmentation pattern may 

co-elute (Gallien et al., 2013). These co-eluting peptides may result in erroneous results.  

Moreover, in SRM experiments several optimisation and iterations are needed for defining the 

optimal set of transitions to be monitored for newly examined proteins (Prakash et al., 2009; 

Rauniyar, 2015). Thus, the success of SRM-based validation relies on the set of pre-selected 

transitions that are defined for any candidate proteins. In order to ease basic optimisation steps 

for SRM experiments, multiple databases are available containing information concerning 

transitions that can be used to monitor specific proteins. 
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Figure 2.9: Schematic representation of principle of peptide selection in multiple reaction 

monitoring and parallel reaction monitoring. In MRM method, selected single precursor ion 

is measures whereas in PRM’s all fragment ions are quantified at the same time. 

Parallel reaction monitoring (PRM) has emerged as an alternative strategy. PRM is also based 

upon monitoring set of quantotypic peptides for target proteins. However, unlike SRM that 

monitors a few transitions for each peptide, PRM allows monitoring of all possible fragment 

ions derived from a specific peptide. Typical instrumentation for PRM includes a quadrupole 

coupled to the Orbitrap mass analyser (q-OT) (Eliuk and Makarov, 2015; Gallien et al., 2012; 

Kim et al., 2016). q-OT mass spectrometers can be used for both discovery-based and targeted 

experiments, thus allowing use of similar parameters used for two data acquisition methods to 

circumvent the need to optimising multiple parameters. The quadrupole allows isolation of 

specific peptide based upon the m/z ratio which is then transferred via C-trap to the higher 

energy collision-induced dissociation (HCD) cell for further fragmentation. The C-trap allows 

trapping of specified number of precursor ions thereby enhancing the signal to noise ratio 

(Domon and Gallien, 2015). Fragment ions obtained from the HCD enters the Orbitrap mass 

analyser and the MS/MS spectra are acquired with high mass accuracy and resolution. In PRM-

based targeted experiments, complete MS/MS spectra of the targeted peptides are attained 

making protein quantitation highly specific and selective (Peterson et al., 2012).  
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Isotopically-labelled internal standards can be used to enhance precision, accuracy and 

reproducibility as it has been revealed that run-to-run variation arises due to interference from 

complex biological matrixes (Gallien et al., 2012). In order to eliminate repeat optimisation 

steps for MRM experiments, databases have been made available, which contain properly 

documented SRM coordinates that can be directly deployed for SRM-based validation.  

Critical Appraisal for Targeted Proteomics 

Although significant progress has been made in the field of targeted proteomics, both in terms 

of instrumentation and data analyses software, there remains impediments to the clinical 

application of these techniques. The primary reason for this relates to the specialised training 

required for the operation of a mass spectrometer and data analyses (Arora et al., 2019). While 

there are several resources that are freely available for training online, accessibility to 

instruments is not widespread. Another drawback is the feasibility of running a clinic-based 

SRM assay which may be more easily/economically performed by antibody-based ELISA 

techniques. Sample preparation and interpretation of results from immune platforms are also 

more straightforward/intuitive 

SRM assays are also technically challenging. For instance, the development and 

standardisation of an SRM assay is time consuming and could take up to several months to 

optimise. Furthermore, several SRM assays require enrichment of proteins in samples using 

antibodies which can vary depending on the quality of antibody, and the amount of sample 

available. There are numerous options for setting up a targeted workflow and data analysis 

(Gonzalez-Galarza et al., 2012) which complicates the establishment of a “universal” SRM 

test. However, SRM/PRM is a powerful platform for target specifically detecting proteins. This 

makes it the most sought-after platform for validation experiments and for clinical application. 

This thesis utilises targeted assays to verify the ability of candidate biomarkers to differentiate 

early stage CRC from healthy controls and to validate SWATH™-MS experiments that are 

described in Chapter 3. 

2.9.3 Orthogonal Technologies  

Immunoassays are a class of binding assays that measure the presence or concentration of an 

analyte (here a protein) with the use of an antibody. Depending on the application, numerous 



90 
 

immunoassays have been defined over the last 30 years and the two most predominant immune 

assays are Western blotting (WB) and ELISA.  

 

Western blotting is a technique for visualising the presence of target proteins in a biospecimen 

through a series of intricate steps. Developed in 1979, WB was inspired by techniques like 

Southern blotting for DNA and Northern blotting for RNA that revolved around the principle 

of electrophoretic separation of the biological molecule of interest followed by detecting 

specific molecules using a suitable probe. In case of Southern and Northern blotting, the target 

nucleic acids are probed using a labelled sequence of nucleic acid complementary to the target 

molecule that could detect its presence via probe hybridisation. In case of WB, this is achieved 

through antibodies targeting the protein of interest that is being probed. 

 

Enzyme-linked immunosorbent assays or ELISA was first described by Engvall and Perlmann 

in 1971. ELISA, in principle and methodology, is very similar to WB, and has been a preferred 

mode of detection and quantitation of a wide variety of proteins like cytokines, hormones, 

antibodies, for which reagents for detection are well characterised and readily available. One 

of the key advantages of ELISA over western blotting is its throughput. Typically, ELISA is 

performed in a 96/384-well plate where the antigen being probed is immobilised on a solid 

surface. The antigen is probed using an antibody that is enzyme linked so as to facilitate a 

reaction when a substrate is added to it. The product thus formed can be measured 

colorimetrically indicative of the presence and quantity of the sample (Engvall and Perlmann, 

1971; Mahmood and Yang, 2012). 

In this thesis, Western blotting was primarily used to validate our putative CRC markers in 

serum emerging from quantitative MS data. As would be described in subsequent chapters, un-

depleted plasma contains a vast repertoire of proteins. This includes proteins like native 

antibodies produced by the patients, which necessitates running of adequate isotype controls to 

ensure the efficacy of validation assays.  
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Thesis Experimental Aims 

Aim I: To identify potential early clinical stage colorectal cancer diagnosis using a multi-

variate test using MS-based technologies 

This study aimed to adopt state-of-the-art proteomic technologies to discover protein 

biomarkers for the detection of CRC patients at earlier stages (I/II) from 100 EDTA plasma 

samples. The aim was to visualise and quantify novel lower-abundance proteins, using 

combinations of commercially available depletion and an in-house ultradepletion systems. The 

identified candidates were further verified using orthogonal technologies including western 

blotting, ELISA and machine learning predictive model on synthetic patient data. 

Aim II: Verification of a multi-analyte signature assay for early diagnosis using Parallel 

Reaction Monitoring (PRM) assay 

The study then aimed to verify the biomarker candidates identified in plasma discovery studies 

by targeted peptide measurements to facilitate the development of a robust PRM assay.  

Aim III: Development and verification of parallel reaction monitoring assays for CRC 

epithelial-mesenchymal transition markers uPAR and integrin αvβ6 

This study sought to develop a proof-of-concept PRM assay to interrogate plasma samples for 

expression of two cancer epithelial to mesenchymal transition markers (uPAR and αvβ6) in 

cell lines and recombinant proteins. This study is ongoing and requires optimisation to verify 

and measure uPAR and αvβ6 peptide fragments in CRC plasma samples. 
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Chapter 3 

Potential early clinical stage colorectal cancer 

diagnosis using a proteomics blood test 

Abstract 

Background: One of the most significant challenges in colorectal cancer (CRC) management 

is the use of compliant early-stage population-based diagnostic tests as adjuncts to a 

confirmatory colonoscopy. Despite the near curative nature of early-stage surgical resection, 

mortality remains unacceptably high; as most patients are diagnosed by faecal haemoglobin 

followed by colonoscopy occur at latter stages. Additionally, current population-based screens 

reliant on faecal occult blood tests (FOBT) have low compliance (~40%) and tests suffer low 

sensitivities. Therefore, blood-based diagnostic tests offer survival benefits from their higher 

compliance (>97%), especially if they can match or surpass the sensitivity and specificity of 

FOBTs. However, discovery of low abundance plasma biomarkers is difficult due to occupancy 

of a high percentage of proteomic discovery space by relatively few high-abundance proteins. 

Methods: A combination of high abundance protein ultradepletion (e.g., MARS-14 and an in-

house IgY depletion) strategies, extensive peptide fractionation methods (SCX, SAX, High pH 

and SEC) and SWATH™-MS were utilised to uncover protein biomarkers from a cohort of 

100 plasma samples (i.e., pools of 20 healthy and 20 stages I-IV CRC plasmas). The 

differentially expressed proteins were analysed using ANOVA and pairwise t-tests (p<0.05; 

fold-change>1.5), and further examined with a neural network classification method using 

augmented 5,000 patient datasets, in silico. 

Results: Ultradepletion combined with peptide fractionation allowed for the identification of a 

total of 513 plasma proteins, 8 of which had not been previously reported in human plasma. 

SWATH™-MS analysis revealed 37 protein biomarker candidates that exhibited differential 

expression across CRC stages compared to healthy controls. Of those, 7 candidates (CST3, 

GPX3, CFD, MRC1, COMP, PON1 and ADAMDEC1) were validated using Western blotting 

and/or ELISA. The neural network classification narrowed down candidate biomarkers to 5 

proteins (SAA2, APCS, APOA4, F2 and AMBP) that had maintained accuracy which could 

discern early (I/II) from late (III/IV) stage CRC. 

Conclusion: MS-based proteomics in combination with ultradepletion strategies have an 

immense potential of identifying diagnostic protein biosignature.  
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3.1 Introduction 

Global temporal patterns of colorectal cancer (CRC) incidence and mortality are alarming. In 

2018, it is estimated that over 1.8 million patients will be diagnosed with CRC, resulting in 

over 800,000 deaths annually (1). These statistics are expected to increase to ~2.2 million new 

cases with 1.1 million fatalities by 2030 (2). This trend can partially be explained by the fact 

that early stages of the disease are especially asymptomatic with the majority of patients 

diagnosed when tumours have already invaded local lymph nodes (stage III) or metastasised to 

distant organs (stage IV), leading to survival rates lower than 13% (2, 3). Surgical tumour 

resection in early stage disease can be both preventive and curative (4) with the 5-year survival 

rate of early stage I/II CRC  patients greater than 90% (5). There is therefore a substantial need 

to reliably, accurately and consistently diagnose CRC as early as possible. 

There are a number of stool-based tests and structural examinations (6, 7) that are in use 

clinically to aid early CRC detection.  In developed countries,  stool-based tests like gFOBT 

(guaiac chemical faecal occult blood tests), FIT (faecal immunochemical tests) and mt-sDNA 

(multi-target stool DNA tests) are distributed to most-at-risk populations (e.g., those aged 50-

74 years) (8). The gFOBT (sensitivity 62-79%; specificity 87%- 96%) and FIT (sensitivity 73-

92%; specificity 91-97%) (6) tests rely on the chemical or immunological detection of faecal 

hemoglobin (Hb) respectively (8). The mt-sDNA test, which has a lower ~90% specificity, (6) 

identifies multiple molecular biomarkers, such as hypermethylated BMP3/NDRG4, point 

mutations in KRAS and the beta-actin gene as well as Hb protein (9). However, despite 

extensive public health education programs worldwide, patient participation/compliance with 

faecal-based screening tests has rarely (if ever) exceeded 44% (6, 10, 11).  

Positive faecal gFOBT/FIT test results (i.e., true or false positives) are referred to more invasive 

structural tests for confirmation. These structural tests include computed topographic 

colonography (CTC) and flexible sigmoidoscopy (FS) (6). The efficacy of CTC and FS is 

restricted by exposure to low-dose radiation and incomplete examination of the proximal colon, 

respectively (6).  As per standard practice of care, all positive non-colonoscopic screening 

procedures are followed up with a confirmatory colonoscopy.  

However, colonoscopy is expensive, invasive, requires unpleasant preparation and causes 

occasional adverse sedation morbidities as well as unavoidable infrequent mortality from 

adverse consequences like bowel perforation and sepsis (6). Low compliance and sensitivity 
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of faecal tests has compelled the investigation of potential blood tests that have a much higher 

compliance rate (as high as 97% in controlled studies).  

Two primary classes of blood-based markers have been developed, namely DNA-based and 

protein-based.  Tests that detect tumour-specific genetic and epigenetically-altered circulating 

tumour DNA (ctDNA) released from tumour cells are colloquially termed ‘liquid biopsy’ tests 

(12). However, there remain some technology barriers to early clinical stage cancer screening 

using liquid biopsy tests. These include; secretion of negligible levels of ctDNA from small 

adenomas or early stage tumours meaning large amounts of blood are required, mutational 

heterogeneity among individual patients (13) and poor association of emerging mutational 

biomarkers with cancer stages and types, each of which limits use for screening early clinical 

stage CRC patients (14).  

Of protein markers, carcinoembryonic antigen (CEA) was one of the earliest to be used 

clinically, although it has been subsequently discounted as efficacious for early-stage screening 

(15). Plasma CEA levels are primarily used to monitor colorectal carcinoma treatment and to 

identify recurrence after surgical resection, despite having a low 35% sensitivity and 87% 

specificity (16). Furthermore, CEA is expressed in many other cancers (17, 18) and is not 

specific to CRC. Multiple other protein markers have been proposed (19), however only a few 

individuals have shown translational promise. Protein-based blood biomarkers offer significant 

advantages that make them amenable for the development of an ideal population blood-based 

CRC screening test. They purport to be accurate, specific, sensitive and inexpensive (11).  

Furthermore, protein-based tests offer significant advantages in translatability with current 

technologies and clinical laboratory practices (20). The key, however, remains, to find a 

molecular protein-based biomarker (or panel) that provides better specificity and sensitivity 

than gFOBT and FIT, as a pre-colonoscopy screening test.  

Blood plasma is a complex body fluid owing to the high dynamic concentration range of 

proteins found within it. The concentration range of human blood plasma proteins extends 12-

13 orders of magnitude (21), with >90% of all plasma protein content covered by a few (10 to 

14) highly abundant proteins found above the mg/ml mark. These are primarily haemostatic 

(e.g., albumin), acute phase response proteins (e.g., serpins), lipid/protein transporters and 

immunoglobulins (21, 22). The remaining low and medium abundance proteins are found at 

concentrations ranging from ng/ml down to pg/ml and are often derived from proteins that have 

leaked or been shed from tissues (including diseased cells/tissues) or that represent interleukins, 

cytokines or growth factors (21, 23). These low abundance proteins potentially hold critical 
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information regarding the health and disease status of any individual (24). However, low 

abundant proteins are masked by more abundant proteins and are difficult to detect in a 

proteomics discovery experiment. Indeed, the repertoire of often identified disease biomarker 

candidates from mass spectrometry are usually categorised as general inflammatory response 

proteins, lipid transporters or coagulation cascade proteins (25-27). In other words, many 

proteomic biomarker studies unearth proteins of unremarkable biological context, meaning that 

they code for disease with particularly low specificity (28). 

This study aimed to adopt a multilayered plasma proteomic approach to discover protein 

biomarkers for the detection of CRC patients at earlier stages (I/II) from EDTA plasmas. To 

visualise and quantify novel lower abundance proteins, a combinations of commercially 

available depletion (i.e., MARS-14) (29) and an in-house ultradepletion system (30, 31) were 

used. SWATH™-MS (Sequential Window Acquisition of all THeoretical Mass Spectra) was 

employed for deep and reliable exploration of the plasma proteome. These studies were applied 

to a set of pooled EDTA-plasma samples in order to identify potential candidates for early stage 

I/II CRC detection. To verify the diagnostic ability of candidate biomarkers, Western blotting 

and ELISA on pooled and individual samples were performed, where tests were available 

commercially (experimental procedure summarised in Figure 3.1). Finally, a machine-learning 

approach to further test the validity of our candidates was utilised. Unsupervised clustering 

algorithms were used to validate how dissimilar early stage I/II CRC were from healthy 

subjects. Supervised classifiers on generated data based on the variance found in our individual 

samples were used, which was then tested on real patient data. This discovery experiment 

resulted in a novel blood-based multi-analyte biomarker signature panel that requires 

comprehensive validation to allow population-based detection of stages I and II CRC.   

 



112 

Figure 3.1: Blood-based multi-analyte proteomic signature discovery workflow: (a) A total of 

100 age- and sex-matched EDTA-plasma samples were procured (n=20 per stage I, II, III, IV, 

and n=20 healthy controls (non-menopausal, non-smoking and no history of any cancers)). (b) 

Plasma samples were collected as per ethics requirements. To create a plasma reference 

library, equal volumes of all patients and healthy plasmas were pooled. For the SWATH™-MS 

experiments, equal volumes of 20 plasma samples were combined to produce pools of each of 

the 4 CRC stages (I-IV) and healthy controls (c) For library generation, HAPs depleted using 

MARS-14 column (Agilent) followed by tryptic digestion and peptide fractionation by SAX, 

SCX, SEC and HpH (independently), followed by IDA-MS analysis. (d) The stage pooled 

samples were processed through four different experiments (three, where the plasma HAP were 

depleted and one where it was not). The resulting proteins were digested and subjected to 

SWATH™-MS. Lists of quantifiable proteins were extracted from the SWATH™-MS dataset 

using the peptide library generated in (c). (e) Differentially expressed proteins were first 

identified using ANOVA/t-test (p-value<0.05, fold change cut off ±1.5), resulting in 37 proteins 

exhibited with differential expression across all CRC stages compared to healthy controls. 

These 37 proteins were further evaluated by unsupervised clustering method to increase 

discriminatory power. Differentially expressed proteins were subjected to validation pipeline 

where they were checked to identify evidence in the literature, followed by experimental 

validation (ELISA/Western blotting) of a subset that seemed most promising. Concurrently, the 
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samples also underwent a supervised classification method which identified potential 

candidates which were then validated with an augmented dataset (with a SD 10 times the 

observed variance). This resulted in a subset of 5 candidate proteins that were able to classify 

the different stages of the disease. SAX: strong anion exchange, SCX: strong cation exchange, 

SEC: size exclusion chromatography, HpH: high pH reversed phased c18, SWATH™-MS : 

sequential window acquisition of all theoretical mass spectra, IDA-MS: information-dependent 

acquisition mass spectrometry, SD: standard deviation, HAPs: high abundant proteins. 

3.2 Material and Methods 

Ethic statement and sample collection: 

This study was performed with approval from the Macquarie University Human Research 

Ethics Committee (MQ HREC approval #5201200702). The cohort of 100 patient EDTA-

plasma samples was procured from the Victorian Cancer Biobank (VCB) in Melbourne, 

Australia. The experiment assembled 100 individual EDTA-plasma samples, composed of 80 

from Dukes’ staging system staged CRC (n=20 each for stages A, B, C, and D). These were 

clinically re-classified as stage I, II, III, and IV CRCs respectively according to the AJCC 

system. Samples were collected from CRC patients diagnosed with non-malignant/malignant 

tumours, before they underwent any treatment or surgery for CRC. Plasma was also collected 

from 20 healthy donors (Victorian Cancer Biobank) that were age- and sex-matched, non-

smokers and with no prior history of cancer or other major disease. The demographic and 

clinical information is summarised in Table S3.5. 

Cancer and healthy plasma samples were processed identically throughout the study and 

supplied for this study by the Victorian Cancer Biobank. The blood samples were collected in 

9ml EDTA tubes and centrifuged for 10 mins at room temperature at 1200g. The supernatant 

liquid (plasma) was transferred to a single tube of 10 ml, centrifuged again at room temperature 

for 10 minutes at 1800 x g, aliquoted into 15 x 250µl aliquots and then stored at -80˚C (15). 

The whole process of sample preparation was completed within 2 hours of plasma collection 

as per the Victorian Cancer Biobank guidelines. TNM staging, 5-year survival and 5-year 

recurrence data for recruited patients is tabulated in Appendix VI. 

Multiple affinity removal system (MARS-14) high abundance plasma protein depletion:  

A previous study using the MARS-14 system has shown that depletion columns afford highly 

repeatable and efficient plasma fractionation with few non-targeted proteins captured (29). The 
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Agilent MARS-14 high capacity affinity column (4.6×100 mm) was designed to employ anti-

human plasma protein monoclonal antibodies to remove the 14 most abundant proteins (human 

serum albumin, IgG, antitrypsin, IgA, transferrin, haptoglobin, fibrinogen, α2-macroglobulin, 

α1-acid glycoprotein, IgM, apolipoprotein AI, apolipoprotein AII, complement C3 and 

transthyretin) from human plasma. Depletion was performed on an Agilent 1260 HPLC system 

where 40µl EDTA-plasma samples were first diluted 4-fold using buffer A supplied by the 

manufacturer followed by 0.22µm spin filtering at 4°C in technical triplicates. Eluates plasmas 

were injected to run on the HPLC, and proteins eluted following the manufacturer’s 

instructions.  

In-house abundant protein immuno-depletion (API): 

In detail, chicken IgY polyclonal antibodies were raised against 7 dual (SCX followed by SAX 

including dual flow-through proteins) ion-exchange fractions of human plasma. Purified IgYs 

were covalently-linked as antigen affinity-purified IgYs to activated hydrazide beads (GE, 

Uppsala, Sweden) following the manufacturer’s instructions and packed into columns as 

described previously (30, 31). This API (abundant protein immunodepletion) column was 

subsequently pre-equilibrated at 5ml/min using PBS at pH 7.2. Plasma was injected into the 

column at 0.1ml/min and washed using 2.5 column volumes of PBS, first at 0.05ml/min for 

3min and then at 5ml/min. Bound proteins were subsequently eluted from the API column 

using  4 column volumes of 0.1M glycine buffer at pH2.5 and a flow rate of 5 ml/min. 

Neutralisation using glycine 100mM, pH 10 was performed on all bound fractions post-elution 

for long-term storage at -80°C prior to LC-MS/MS. All samples were buffer exchanged using 

3kDa Amicon filtration and total protein quantified using a Micro BCA Protein Assay kit 

(Thermo Scientific). API columns were immediately re-equilibrated with 5 column volumes 

of binding buffer at 5 ml/min for subsequent re-use (30, 31). The samples were prepared as 

technical triplicates. 

Tryptic digestion: Prior to tryptic digestion, protein concentration was measured using a BCA 

Protein Assay Kit following the manufacturer’s protocol (Thermo Fisher Scientific) for both 

depleted and nondepleted samples. The samples were reduced with 5mM dithiothreitol (DTT) 

at 60°C for 30min and alkylation with 25mM iodoacetamide (IAA) at room temperature for 

30min in the dark. Samples were diluted in 100mM ammonium bicarbonate and digested with 

sequencing grade porcine trypsin (Promega) at a protease to substrate ratio of 1:30 at 37°C for 

16hr. Peptide mixtures were desalted and cleaned with C18 OMIX tips (Agilent) according to 

the manufacturer's protocol followed by drying by vacuum centrifugation. 
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Strong Cation Exchange (SCX) peptide fractionation: Tryptic digested peptides (100µg) 

were fractionated using a poly-sulfonylethyl column A size 200 x 2.1mm, 5µm, 200Å column 

attached to the 1260 series HPLC (Agilent, Santa Clara, CA, USA). The separation was 

initiated, at a constant flow rate of 0.3 ml/min, with 100 % buffer A (5 mM KH2PO4, pH 2.72, 

25% acetonitrile) for 25min. This was followed by a gradual increase in buffer B (5 mM 

KH2PO4, pH 2.72, 350 mM KCl, 25% acetonitrile) concentration from 0 % to 45 % over 70min. 

Strong Anion Exchange (SAX) peptide fractionation:  Digested peptides (100µg) were 

fractionated using a UNOTM Q1 column (Bio-Rad, CA, USA) on a 1260 series HPLC (Agilent, 

Santa Clara, CA, USA). Fractionation was performed at a constant flow rate of 0.5 ml/min with 

peptides eluted on a linear gradient of buffers A (20mM Tris-HCl, pH 7) for 10min then a 

linear increase of buffer  B (20mM Tris-HCl, pH 7, 1M KCl) to 100% over 60min and held for 

10min and finally replaced with buffer C (20mM Tris-HCl, pH 7, 2M KCl) to 100%.  

Size Exclusion Chromatography (SEC) peptide fractionation: Peptides (100µg) were 

fractionated using Tricorn Superdex 75 10/300 GL, 10 × 300-310 mm, 13µm column 

(Amersham Biosciences) on a 1260 series HPLC (Agilent, Santa Clara, CA, USA). Elution of 

peptides was performed using a 100mM NaPO4, 250mM NaCl, pH 7 at an isocratic flow rate 

of 0.5ml/min. Peptides were collected over 80min. 

High pH reversed phased C18 (HpH) peptide fractionation: Peptides (100µg) were 

fractionated using a ZORBAX 300 Extend-C18 2.1x150 mm, 3.5µm column on a 1260 HPLC 

system (Agilent, Santa Clara, CA, USA). Buffer A (5mM ammonium formate (NH4COOH)) 

and B (5mM NH4COOH, 90% acetonitrile in water) were used for the fractionation at a 

constant flow rate of 0.3 ml/min.  

SWATH™-MS library generation (information-dependent acquisition, IDA): All 

fractionated peptides obtained from multiple peptide fractionation methods (as descripted 

above) were used for SWATH™-MS reference library generation (i.e., protein identification). 

The protein identification was performed on a Sciex TripleTOF 5600 (Sciex, Framingham, 

MA) coupled with Eksigent Ultra nanoLC system (Eksigent Technologies, Dublin, CA). 

Peptides were injected onto a reverse phase peptide C18 trap (Bruker peptide Captrap) for pre-

concentration and desalted at a flow rate of 10µL per min for 5 min with 0.1% formic acid 

(v/v) and 2% acetonitrile (v/v). After desalting, the peptide trap was switched in-line with an 

in-house packed analytical column (150µm × 10cm, solid core Halo C18, 160 Å, 2.7 µm media 

(Bruker)). Peptides were eluted and separated from the column using the buffer B (99.9% 
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acetonitrile (v/v), 0.1% formic acid (v/v)) gradient starting from 2% and increasing to 10% for 

10min then to 35% over the next 78min at a flow rate of 500nL per minute. After peptide 

elution, the column was cleaned with 95% buffer B for 10min and equilibrated with 98% buffer 

A (0.1% formic acid (v/v)) for 20 minutes before next injection. In IDA mode, a TOFMS 

survey scan was acquired at m/z 350 – 1500 with 0.25 second accumulation time, with the ten 

most intense precursor ions (2+-5+; counts >150) in the survey scan consecutively isolated for 

subsequent product ion scans. Dynamic exclusion was used with a window of 20secs. Product 

ion spectra were accumulated for 50msecs in the mass range m/z 100 – 1500 with rolling 

collision energy. 

IDA data were subjected to database searches by ProteinPilot (V4.2, SCIEX) using the Paragon 

algorithm (33). Homo sapiens database was obtained from SwissProt (20,204 entries, 2015 

version). The search parameters were as follows: sample type: identification; cys alkylation: 

iodoacetamide; digestion: trypsin; instrument: TripleTOF 5600; special factors: none; ID 

focus: biological modifications; miss-cleavages: one; precursor peptide mass tolerance: 

±50ppm; fragment ion mass tolerance: ±0.1Da; peptide length: >7 amino acids. A reverse-

decoy database search strategy was used with ProteinPilot, with the calculated protein 

FDR<1% and a probability cut off at 0.99. The analysis of proteomics experiments conformed 

to the guidelines provided by Journal of Proteome Research. The link to these guidelines is 

https://pubsapp.acs.org/paragonplus/submission/jprobs/jprobs_mass_spectrometry_guidelines

.pdf 

SWATH™-MS: A Sciex TripleTOF 5600 coupled with Eksigent Ultra nanoLC system and 

identical LC conditions (as described above) were used for SWATH™-MS experiments. 

Initially, the precursor m/z frequencies from generated IDA data (above) were used to 

determine the sizes of m/z window. SWATH™-MS variable window acquisition with a set of 

60 overlapping windows (1amu for window overlap) was constructed covering the mass range 

of m/a 399.5 – 1249.5. In SWATH™-MS mode, TOFMS survey scans were acquired (m/z 

350-1500, 0.05 sec) then the 60 predefined m/z ranges were sequentially subjected to MS/MS 

analysis. Product ion spectra were accumulated for 60msecs in the mass range m/z 350-1500 

with rolling collision energy optimised for lowed m/z in m/z window +10%. 

SWATH™-MS  data were extracted using PeakView (v2.1) with the following parameters: top 

6 most intense fragments per peptide, fragment tolerance at 75ppm, 10min retention time 

window, confidence thresholds of 99%, FDR for transitions <1% (based on chromatographic 

feature after fragment extraction) and exclusion of shared/modified peptides.  
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Statistical analyses: Peptide quantification was performed using peak areas from extracted ion 

chromatograms and proteins were quantified using cumulative mean values of the calculated 

peptide quantities. The extracted data was normalised using total area normalisation, and log-

transformed prior to statistical analysis; the data distribution was examined using density plots 

and boxplots. The overall sample look and consistency of the technical triplicates was 

examined visually using hierarchical clustering and PCA plots.  

Extracted quantitation contained data from pooled samples in technical triplicates, belonging 

to five categories: CRC stage I-IV and healthy control.  Proteins differentially expressed 

between the five categories were identified based on a one-way ANOVA run separately for 

each protein, selecting proteins based on an ANOVA p-value criterion (<0.05) and maximum 

fold change (FC > 1.5).  Pairwise t-tests were also carried out, using both a protein level and 

peptide-level approach. The statistical analysis protocol is embedded in SWATHXtend as 

described in detail previously (34). 

Unsupervised and supervised machine-learning: The differentially expressed protein 

candidates analysed by one-way ANOVA and pairwise t-test were consolidated in a single 

dataset from the different depletions, and were further evaluated, first, by being plotted in 3D-

space following unsupervised clustering techniques. Dissimilarity matrix were created based 

on the peak areas of technical replicates for each condition and plotted by using multi-

dimensional scaling. The data is represented based on the first dimensions for each CRC stage 

and healthy. Results from this clustering approach were verified using principal component 

analysis (PCA). Both methods were done in MATLAB. 

Although supervised classification approaches have been used in recent years with proteomics 

datasets (35, 36), the nature of most proteomics datasets, with a high number of proteins but a 

small population, make their validity as early predictors of a disease debatable. One way to 

overcome the limitations of such a dataset is to generate a synthetic dataset based on real 

participants’ information in order to perform classification. Data augmentation is a mainstay 

for training classification algorithms in the field of machine-vision and medical imaging 

analysis (37, 38), though not widely used with proteomics data. Here these methods were 

adapted as further validation of our results. To evaluate the predictive power of the selected 

panel of candidate protein biomarkers, a synthetic population of patients (1,000 per the 4 CRC 

stages as well as healthy controls, total=5,000) was created by generating a normal distribution 

of random number at 10 times the standard deviation (SD) for each protein concentration from 

our technical replicates. Data augmentation was also performed in MATLAB. 
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Once the dataset was generated for each group, various classification approaches (including a 

shallow neural network as well as k-nearest neighbour and decision tree classifiers) were 

applied, using the MATLAB neural network toolbox and classification app. For the shallow 

neural network, the network was composed of 10 hidden neurons, with 70% of the data used 

for training, 15% for validation and 15% for testing. Once the network was trained, it was 

deployed to test on the dataset comprising our real pooled patient values. 

Western blotting: Protein concentration was measured using a BCA Protein Assay Kit 

following the manufacturer’s protocol (Thermo Fisher Scientific). Proteins (25μg/sample) 

were separated on a 4-12% SDS-PAGE gel and transferred onto nitrocellulose membrane blots 

using semi-dry blotting system (Bio-Rad) following the manufacturer’s protocol. To ensure the 

equal protein loading in each lane, the blots were stained Ponceau S (Sigma) and imaged on a 

ChemiDoc™ imaging system (Bio-Rad). Blots were then incubated with primary 

monoclonal/polyclonal antibodies including CFD (R&D systems, AF1824, 1:2500), GPX3 

(R&D systems AF4199, 1:200), CST3 (Abcam ab133495, 1:13000), PON1 (Abcam, ab92466, 

1:5000), MRC1 (Abcam ab195193, 1:1000) and COMP (Abcam, ab74524, 1:200), followed 

by respective HRP-conjugated secondary antibodies. Blots were imaged using a Li-Cor 

Odyssey Blot imager (LI-COR Biosciences). Quantitation of signal intensity of the bands in 

Western blots was performed using Image lab software version 5.0 (Bio-Rad) and Image Studio 

Lite version 5.2 (LI-COR Biosciences). 

Enzyme-Linked Immunosorbent Assay (ELISA) verification: Expression level of 

ADAMDEC1 from pooled and individual plasma (n=100, 20 per stage (I-IV) and 20 heathy 

control) was measured using MyBioSource ELISA kit (Catalogue #: MBS928931) following 

the manufacturer's instructions. Optical densities were measured at 450 nm and 570 nm using 

a PHERAstar® microplate reader (BMG Labtech). Statistical significance of differential 

expression of the plasma proteins was analysed by one-way ANOVA on Prism software v.7 

(graph pad). 

3.3 Results 

Plasma SWATH™-MS library generated using several protein/peptide fractionation methods  

A total of 513 distinct plasma proteins were identified by combined heathy/CRC plasma using 

HAP depletion and four peptide fractionation methodologies (Figure 3.2a). A total of 361 

plasma proteins using HpH fractionation, 295 proteins by SAX, 332 proteins by SEC and 344 
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by SCX. (Figure 3.2a). The HpH peptide fractionation method identified a most number of 

proteins with higher stringency MS-based identification criteria (40) (Supp Figure S3.1). 

Detailed information for peptide/protein identification is shown in Supp Table S3.1 which 

include (i) list of proteins identified in each fractionation method, (ii) number of unique 

peptides identified for each protein, (iii) amino acid sequences of each peptides, (iv) number 

of missed cleavages for each peptide and (v) uniqueness (uniquely mapping non-nested) of 

each peptide. Although the SCX method provided the highest number of protein identifications, 

the HpH fractionation method identified more proteins with higher stringency MS-based 

identification criteria (40), encompassing >2 non-nested, unitypic peptides where each peptide 

identified should be >9 amino acids in length and PSM, peptide and protein FDRs of <1% 

(Supp Table S3.1 and Supp Figure S3.1). 

To visualise the detectable threshold of plasma proteins in our SWATH™-MS  library, a scatter 

plot analogous to the “Anderson curve” was plotted (21).  It exemplifies the high dynamic 

plasma protein concentration range (Figure 3.2b). Based upon the Plasma Proteome Database, 

PeptideAtlas and the PubMed literature, reported concentrations for 425 proteins (out of 529 

total identified proteins) was identified. These reported concentrations were used to create a 

scatter plot (Figure 3.2b). It should be noted that, not plot all 3,509 human plasma proteins 

identified to date at high stringency by the Human (Plasma) Proteome Project (41). It should 

also be noted that the 427 proteins were uncovered spanned ~10 orders of magnitude in protein 

concentration. The concentration for the most abundant protein (hman serum albumin; ALB) 

was found to be ~40.6 mg/ml down to the lowest protein identified at 4.3pg/ml which was 

found to be multiple EGF-like domains 8 protein (MEGF8), a protein whose function is unclear 

but may be involved in cell adhesion/attachment (Figure 3.2b, Supp Table S3.2). A significant 

residual 104/529 human plasma proteins identified in the SWATH™-MS library currently have 

no reported plasma concentrations, to the best of our knowledge. Interestingly, based on a 

search against the PeptideAtlas database in May 2019, 8 plasma proteins found in our 

SWATH™-MS library compilation were reported as plasma proteins for the first time (Supp 

Table S3.2).  
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Figure 3.2: SWATH™-MS  reference library with functional annotations; Illustrates; (a) 

Venn diagram comparing a number of common, unshared and shared proteins identified 
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between four peptide fractionation methods used to compile a plasma SWATH™-MS  library, 

with (b) “Anderson curve” superimposed with gene ontology information from plasma proteins 

identified in the study. The colour code bar shown indicated on the right-hand side of Figure 

3.2b corresponds to various gene ontology characteristics applied to data points shown on the 

concentration curve. HpH: high pH C18 reversed phase separation, SAX: strong anion 

exchange, SEC size exclusion chromatography, SCX: strong cation exchange. 

Functionalities of identified plasma proteins 

To visualise the functionalities of proteins found in our plasma SWATH™-MS  library, 

UniProt was employed to annotate; (i) subcellular localisation, (ii) tissue specificity, (iii) gene 

ontology analyses (biological processes, cellular component, molecular function), and (iv) 

protein families (Supp Table S3.2, Figure 3.2b). As expected, those proteins found to lie in the 

high abundance range were mostly classical plasma proteins such as those that are known to 

be liver-derived or acute phase response proteins, including HAPs like human serum albumin, 

immunoglobulin (multiple types), fibrinogen, chylomicron proteins, transferrin, haptoglobin, 

C-reactive protein, clusterin (ApoJ), and complementary factor B. Gene ontology analysis

classifies these proteins as involved in biological processes like positive/negative activators of 

acute phase response, antimicrobial response, blood coagulation or complement activation.  

Mid-range proteins, on the other hand, consisted predominantly of peptidases, serpins, S-100 

family proteins, glycoproteins, and cell membrane binding proteins like cystatin C, CD59, 

C1Q, extracellular matrix proteins and superoxide dismutase, amongst others. Some of these 

plasma proteins were found to have roles in cell-cell signalling, angiogenesis and activation of 

MAPK activity.  

In the low abundance range, cell membrane proteins, extracellular exosome proteins, proteins 

secreted from the endoplasmic reticulum or lysosome membrane and intracellular secreted 

proteins were found. Examples included, hyaluronan-binding protein 2, galectin-3-binding 

protein, phosphatidylinositol-glycan-specific phospholipase D. The lowest discovered plasma 

proteins found were in the g/ml concentration range and included the E3 ubiquitin-protein 

ligase TRIM33 that is known to be specifically expressed in colon adenomas and 

adenocarcinomas and is thought to be a regulator of TGF-β receptor signalling pathway (42). 

A detailed list of the SWATH™-MS library specific peptides, their length, number of peptides 

per proteins and their unitypicity can be found in Supp Tables S3.1 and S3.2. 
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Identification of quantifiable plasma proteins in healthy or CRC plasmas using various 

(ultra)depletion strategies 

Having compiled a comprehensive SWATH™-MS reference library, the SWATH™-MS 

analysis on pooled human healthy and CRC plasma samples was performed. As described, 

pooled (n=20) human plasmas for each of stages I-IV CRCs and healthy controls were (i) non-

depleted, (ii) MARS-14 only depleted, (iii) ultradepleted using MARS-14 followed by API 

using purified anti-human plasma fraction chicken IgY columns (30, 31) (MARS-14→API), 

and finally (iv) ultradepleted using API-depletion followed by MARS-14 (API→MARS-14). 

Each of the nondepleted, depleted and both ultradepleted experiments were run as technical 

triplicates (refer to Figure 3.1 for an overview of the experimental plan).  Compilation of all 

SWATH™-MS experiments as outlined above, resulted in the identification and quantitation 

of a total of 444 distinct human plasma proteins from healthy or CRC plasmas (Figure 3.3a). 

Detailed information of all quantifiable plasma proteins and peptides captured by these non-

depletion and depletion strategies are illustrated in Supp Table S3.4. 

When non-depleted plasmas were analysed, a total of 315 proteins were identified and 

quantified that had been deposited prior into the SWATH™-MS library. In agreement with 

previously published studies (29), use of the Agilent MARS-14 system that removes 14 most 

highly abundant plasma proteins allowed for the identification of 362 proteins, including an 

additional 88 plasma proteins not observed in non-depleted plasmas. Equally, non-depleted 

plasmas contained 41 unique proteins not found after MARS-14 depletion, indicating the 

distinct possibility of significant co-depletion as an off-target effect of the use of MARS-14 

depletion. This observation correlates with previous work illustrating additional proteins are 

likely bound to targeted MARS-14 proteins and are unexpectedly/inadvertently co-depleted 

(43). 

To comprehensively expose lower abundance proteins differential-expression between healthy 

and clinically staged CRC plasmas, various ultradepletion approaches were undertaken. 

Systematic depletion of high-medium abundance proteins performed using MARS-14 followed 

by API identified 325 proteins. Of these 31 proteins had not been previously observed in non-

depleted or MARS-14 depleted plasmas with 29 were not seen by any other method. Reversing 

the order of ultradepletion (i.e., API depletion followed by MARS-14) identified only 244 

proteins, 12 which had not been previously observed in non-depleted or MARS-14 depletion 

whilst only 10 were newly identified.  

In summary, MARS-14 depletion allowed 28 unique proteins to be observed whilst 

ultradepletion allowed for the visualisation of 41 unique proteins (Figure 3.3a). Collectively, 
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129 proteins were identified and quantitated additionally (i.e., ~30% of the total 444 plasma 

proteome subset identified) using all (ultra)depletion strategies employed.  

To visualise the protein concentration range of these additional 129 proteins, the red dots were 

superimposed onto the complete plasma SWATH™-MS library (blue dots) on an “Anderson 

curve” (Figure 3.3b). This result demonstrates that these additional 129 proteins represented 

mostly medium-low abundance plasma proteins (e.g., LECT2, ADAMTS13 and PCDH12). 

These results show that high-medium abundance plasma protein depletion allows for even 

deeper and more comprehensive (though obvious not complete) proteome coverage. 

 

 

Figure 3.3: Quantifiable plasma proteins found in healthy/CRC plasmas from undepleted 

and multiple plasma protein depletion strategies. Venn diagram (a) showing the numbers of 

unique and common quantifiable proteins following three depletion (MARS-14, API followed 

by MARS-14 and MARS-14 followed by API) and non-depletion experiments. Protein 

concentration range (b) of the additional 129 proteins found after high-medium abundance 

protein depletion on the plasma SWATH™-MS library “Anderson curve”. 

 

Differentially expressed plasma protein biomarkers of early stages I/II CRC: 

Prior to statistical analysis, the extracted SWATH™-MS dataset from each depletion and the 

non-depletion experiment was independently normalised using total area normalisation and 

data distribution was examined using density plots and boxplots (Supp. Figure S3.2). 

Furthermore, consistency of sample replication was examined visually using hierarchical 

clustering and PCA plots (Supp. Figure S3.2).   

To discover plasma proteins that were differentially expressed between healthy and staged I-

IV CRC plasmas, one-way ANOVA and Pairwise t-test at both the protein and peptide levels 

were employed. All differentially expressed proteins were selected based on a p-value < 0.05 
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and a fold change ratio cut off of 1.5. These proteins were further filtered to retain only those 

candidates that exhibited consistent trends (up or down-regulation) in all stages compared to 

control, and these results were consolidated from all depletions. This analysis resulted in the 

identification of a total of 37 protein candidates that exhibited differential (↓↑) expression in 

all the four (I-IV) CRC stages when compared to healthy controls from a comparison of the 

non-depleted and three depleted experiments. Detailed information regarding each of these 37 

CRC biomarker protein candidates is presented in Supp Table S3.5.  

The highest number of differentially expressed proteins were found in the API→MARS-14 

ultradepleted healthy against CRC samples, whereas non-depleted samples resulted in the 

lowest number of differentially expressed proteins. It should be noted that some proteins (e.g., 

SAA2) were consistently up-regulated in disease CRC plasmas whether the data came from 

non-depleted or after MARS-14 depletion. Equally, GPX3 was consistently up-regulated in 

both MARS-14 depleted and MARS-14→API depletion experiments. Additionally, CST3 and 

CFD were consistently down-regulated in all stages of CRC plasmas using both MARS-14 and 

API→MARS-14 depletion. Figure 3.4 represents a subset of these data. CRC biomarker 

candidate proteins were subsequently selected based on biological relevance as well as 

statistical analysis (e.g., predictive modelling) discussed below. 

Of the 37 CRC protein biomarker candidates, 31 had reported known concentration whilst the 

plasma concentration of the remaining 6 proteins had not been reported. These 31 reported 

proteins were mapped onto the plasma SWATH™-MS library Anderson concentration curve 

(Figure 3.5), demonstrating that the concentrations of protein candidates were widely 

represented across a broad plasma protein concentration range.  

Gene ontology characteristics of the 37 CRC protein biomarker candidates using UniProt and 

the Human Protein Atlas to determine potential biological relevance was used. Of these, 10 

proteins were found to be liver-derived proteins (APOA2, APOC3, F2, APOC2, SERPIN6, 

PON1, AMBP, SAA1, SAA2, and HGFAC), and in toto, all 37 proteins had subcellular 

attributes associated with the cytosol (APOB, SAA1, HGFAC, S100A8,  PFN1, APOA2, F2), 

exosomes (VASN, COMP), secretory proteins (COMP, ADEC1, SODE, HGFAC, C1QC, 

ITIH3, CFAD, MASP2, SAA1, SAA2, GPX3, SAMP, AMBP, PON1), or had been shown to 

be an integral component of cell membranes (VASN). Three candidates were expressed in 

somatic tissue (MECP2), endothelial cells (ROBO4) or were known to be secreted in response 

to dendritic cell activation and maturation (ADAMDEC1; Supp Table S3.5). 



125 



126 
 

 

 

Figure 3.4: Graphical representation of differentially expressed plasma proteins between all 

CRC stages (I-IV) compared to healthy controls. Box plots for differentially expressed 

proteins between healthy control and CRC stages I-IV. * p<0.05, **p<0.005, ***p<0.0005 

and ****p<0.0001 calculated using unpaired t-tests.  
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Figure 3.5: Graphical distribution of differentially expressed plasma proteins between all 

CRC stages (I-IV) compared to healthy controls: 28 potential candidates identified from four 

biomarker discovery experiments superimposed on the SWATH™-MS reference library protein 

concentration curve plotted against protein abundance rank. The color key on the top-right 

side shows proteins identified from different biomarker discovery experiments. 

 

Verification of differentially expressed protein candidates using orthogonal technologies  

Selected early stage CRC biomarker candidates were subsequently validated using Western 

blotting and ELISA. In total, 7 of 37 plasma protein candidates discovered above were 

available based on previously established biological relevance in cancer, statistical analysis of 

data and availability of well-established, high-quality antibodies for either Western blotting or 

ELISA analyses. The expression of 6 proteins (CST3, GPX3, PON1, CFD, COMP and MRC1) 

was analysed using Western blotting on samples from the pooled healthy and staged (AJCC I-

IV) CRC plasma samples (Figure 3.6a) used in the original biomarker discovery study. The 

expression levels of ADAMDEC1 were measured using a commercially available ELISA kit 

on the same pooled, as well as the individual (n=100) healthy and staged CRC patient plasma 

samples (Figures 3.6b & 3.6c). 

Consistent with SWATH™-MS results, Western blotting confirmed statistically significant 

changes in expression levels of CST3, CFD, MRC1, COMP and PON1 were down-regulated 

in disease plasmas compared to heathy controls. Of these, CST3, MRC1 and COMP levels 
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were found to be significantly down-regulated in all CRC stages in comparison to healthy, 

whilst the levels of CFD and PON1 were found to be significantly lower in stage I and/or stage 

II compared to healthy controls. Equally, GPX3 was shown to be up-regulated in AJCC stages 

I, II and III compared to heathy plasmas (Figure 3.6a), consistent with SWATH™-MS data for 

GPX3. Full-length Western blots and Ponceau S Acid Red stained images are shown in 

Supplementary Figure S3.3. Collectively, expression levels observed in Western blotting for 

these 6 candidates was consistent with observed SWATH™-MS quantification trends. 

ELISA on pooled samples also confirmed that SWATH™-MS expression data for 

ADAMDEC1, with expression significantly elevated in stage I, II and III CRCs compared to 

healthy controls (Figure 3.6b). However, when individual patient plasma (n=100) was analysed 

by ELISA, statistically significant ADAMDEC1 expression level differences (p < 0.05) were 

only found between stage II CRC and healthy control plasma samples (n=20) (Figure 3.6c). 

ELISA studies on a larger CRC population are in progress to ascertain if ADAMDEC1 

SWATH™-MS differences between stage I, II, III, and IV and healthy controls can be 

substantiated. 
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Figure 3.6:  Western blotting and ELISA verification for 7 candidate early-stage CRC plasma 

protein biomarkers. (a) Panel shows analysis of six biomarker candidates by Western blot and 

expression level of protein in pooled plasma of all CRC stages (I-IV). (b) ADAMDEC1 ELISA 

on pooled and (c) individual patients (n=100). The bars indicate the means and SEMs. 

*p<0.05, **p<0.005, ***p<0.0005 and ****p<0.00005 calculated using unpaired t-test. 

CST3: Cystatin-C, GPX3: Glutathione peroxidase 3, CFD: Complement factor D, MRC1: 

Macrophage mannose receptor 1, COMP: Cartilage oligomeric matrix protein, PON1: Serum 

paraoxonase/arylesterase 1 and ADAMDEC1: ADAM-like decysin 1. 

 

Neural network-based classification predicts early cancer stage using differentially 

expressed CRC candidate protein biomarkers  

As illustrated above, 37 differentially expressed proteins were identified to discern early stage 

CRC by SWATH™-MS using pooled plasma samples, rather than individual plasma samples. 

This approach was used to get stable population values for each stage, but also to limit the 

enormous cost and time requirement necessary to individually ultradeplete 100 plasma samples 

in an exploratory study.  

An important caveat with the use of exhaustive ultradepletion and peptide fractionation 

methods is whether candidates identified from pooled SWATH™-MS dataset (technical 

triplicates of pooled healthy and CRC stages I-IV) are a valid representation of individuals. 

Extrapolation of pooled data carries inherent risks as the intra- and inter-patient variation of 

protein candidates is unknown. Being aware of this limitation, a model to test whether each 

proposed candidate holds statistical power when various noise is added to our pooled data. To 

overcome this problem, the dataset was synthetically augmented by simulating a large number 

of hypothetical patients, adding noise far above (up to tenfold) the variance present in our 
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technical replicates. This data-augmentation made it possible to use state-of-the-art machine-

learning based statistical approaches with our dataset to test its stringency.  

Before generating synthetic data, the variance of protein concentration from our technical 

replicates were similar for each stage, which they were (healthy = 33±28%, stage 1 = 36±34%, 

stage 2 = 42±34%, stage 3 = 45±34% and stage 4 = 31±18%) were verified. A synthetic patient 

population of a thousand patient per (1000 patients per CRC stage and 1000 healthy subjects) 

was generated, and application of a conservative variance in protein expression that was 10 

times that of the SD of pooled samples in absolute values over a normal distribution around the 

average response. Of importance, this variance was well above the observed variance of our 

validated individual concentrations verified by ELISA (Figure 3.6c). This approach gave the 

possibility to test the widest possible range of protein expression that would expect from a 

relatively heterogeneous population. At the same time, this approach should prevent overfitting 

in the training of our algorithm. As can be seen in the dissimilarity matrix per stage, our 

technical replicates for each CRC stage as well as for the synthetic cohort shows a clear 

consistency between healthy control and all 4 stages (Figure 3.7a). The distinction between 

stages also translated well when the data was plotted using the first three dimensions following 

multi-dimensional scaling, with distances increasing between clusters (healthy and CRC 

stages) as the disease progresses from an early stage I through to more advanced stage IV.  

Subsequently, various supervised classification algorithms to classify each stage separately 

was trained. Our trained classifier achieved 99.6% correct classification at 10 times the 

variance for the simulated data used (Figure 3.7b & 3.7c). the deployed algorithm was then 

verified if it could still properly classify our real dataset which was used to create the synthetic 

data but completely kept out of the training and achieved 80% correct classification (Figure 

3.7d). This is a very encouraging verification of our candidates, and advocates progressing to 

population cohort studies involving measurement of each of these 37 early stage CRC 

candidate plasma biomarkers by targeted MRM-based approaches in individual participants to 

better our predictive model.  

The number of proteins necessary were narrowed down to maintain high accuracy. Data mining 

was performed by examining the dissimilarity distances between proteins rather than in 

between stages. Five proteins showed clear potential as sufficient to maintain high accuracy, 

which was further tested. This panel included proteins SAA2, APCS, APOA4, F2 and AMBP. 

Classification on our synthetic population produced a 94% correct classification from the test 

dataset (i.e., trained model, Figure 3.7e & 3.7f) and achieved 100% correct classification once 

deployed on the real pooled samples that were once again kept out of the training of the 
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algorithm (Figure 3.7g). Importantly, 4 protein candidates (APCS, APOA4, F2 and AMBP) 

were identified from our in-house ultradepletion experiments (MARS-14→API or 

API→MARS-14) whilst only 1 candidate (SAA2) was identified from non-ultradepleted 

experiments. This result clearly indicates the importance of plasma proteomics depth analysis 

for improved biomarker discovery and shows that a very promising candidates for predicting 

early occurrence of the pathology. 

Figure 3.7: A shallow neural network-based classification of synthetic and real datasets with 

37 and 5 protein candidates. (a) The dissimilarity matrix (top left corner) and multi-

dimensional scatter (MDS) plot for the triplicates of pooled CRC plasma samples (e.g., healthy 

control and stages I - IV). (b) The dissimilarity matrix and MDS plot of a synthetic dataset of 

a panel of 37 protein candidates. A total of 5,000 synthetic patients (1,000 per healthy control 

and the 4 CRC stages) were created from random numbers falling within a normal distribution 

of 10 times the standard deviation (SD) of the pooled real CRC plasma samples. (c) Confusion 

matrix of the synthetic dataset (for 37 protein candidates) for the test phase of the training of 

the classifier achieved 99.6% success. (d) Confusion matrix for the testing of the classifier on 

the real dataset kept out of training achieved 80% correct classification. (e) Dissimilarity 

matrix and MDS plot of the synthetic dataset for a panel of 5 protein candidates (SAA2, APCS, 

APOA4, F2 and AMB) with a total of 5,000 synthetic patients. (f) Confusion matrix of the 

synthetic dataset (for 5 protein candidates) for the test phase of the training of the classifier 
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achieved 94% success. (g) Confusion matrix for the testing of the classifier on the real dataset 

kept out of training achieved 100% correct classification. 

3.4 Discussion 

Early stage diagnosis of CRC has immense actionable curative potential and has been estimated 

to be able to increase patient survival by >90% (5). Aside from poor compliance (~40%), stool-

based testing relies on detection of blood hemoglobin in stool samples, rendering false-positive 

results from subjects with rectal fissures, hemorrhoids or other ailments where tissue is 

damaged with consequent bleeding, causing additional burden on health systems due to 

requisite, unnecessary follow-up colonoscopies (6). In this scenario, blood-based testing would 

be undisputedly a more reliable, higher compliance (~97%), less invasive and more widely 

accepted method of screening diagnosis. However, the discovery of reliable biomarkers with 

high specificity and sensitivity for early stage CRC diagnosis from blood has proven to be 

challenging.   

 

Comprehensive plasma SWATH™-MS library 

The most significant challenge in plasma-based biomarker discovery study is the ability to 

reliably and accurately measure as many as possible plasma proteins from a single experiment 

(21). This is complicated by the dominance of many high abundant proteins (HAPs) that mask 

the identification of more biologically-relevant lower abundance proteins, which may better 

reflect disease pathophysiology (4). Some antibody-based technologies (e.g., Luminex/Bio-

Plex systems (44) have shown some promise, however their high cost has confined discovery 

to a relatively small number of protein biomarkers. MS-based techniques have made significant 

recent strides with regards to accuracy and reliability and these, combined with a plethora of 

analytical techniques (e.g., depletion, ultradepletion, protein/peptide fractionation and IDA) 

can potentially tackle this challenge.  

The use of MARS14 columns to deplete HAPs from plasma samples likely removes some low 

abundance proteins, unintentionally (43). Nevertheless, this approach is considered as a 

reliable method for depletion and biomarker discovery (45). Further, extensive fractionations 

performed on depleted samples are reported to be effective in peptide separation on different 

tryptic peptides (46-48), and hence resulted in building a comprehensive SWATH™-MS 

library. Collectively, the multi-fractionation approach covered a broad range of peptide 

characteristics. As a result, this allowed a total of 513 distinct plasma protein identifications 
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from combined healthy/CRC plasmas to occur. Moreover, this approach revealed 8 proteins 

that never previously been identified in plasma. Interestingly, many of these new plasma 

proteins appeared to be tissue leakage proteins (e.g., ODF3L1, SYN2 and ODF3L1) from 

organs including brain, testis and ovary, most likely demonstrating these proteins are low to 

medium abundance in plasma. Furthermore, two proteins of these plasma classified have been 

previously classified as Human Proteome Project (HPP) ‘missing proteins’, having a neXtProt 

protein evidence (PE) level in the PE2-4 range. This illustrates the efficacy of the peptide 

fractionation method to obtain a plasma snapshot of the human body and by extension of 

pathophysiology. 

Depletion of high abundance proteins has been previously demonstrated to allow identification 

of lower abundance proteins in human plasma (45). Untargeted proteomic analyses using 

current LC-MS/MS on MARS-14-depleted plasma do not efficiently reveal many low 

abundance, disease-specific biomarkers from human plasma (32). The reason for this detection 

disparity may be due to the particularly steep distribution of protein abundance seen with 

plasma versus cell proteomes (21). To overcome this problem, an in-house “ultradepletion” 

method that immunodepletes additional high and medium abundance human plasma proteins 

(30, 31) has been developed and used here for the first time. However, for quantification 

purposes, some inconsistencies have been reported (49). To circumvent these issues, a 

multipronged strategy was applied for reliable protein quantitation. Here either MARS-14 

alone, or an ultradepletion strategy with either API or MARS-14 was used in tandem.  

These approaches widened the quantifiable plasma proteome by an additional 129 proteins 

which were predominantly low to medium abundance proteins, demonstrated by on a plasma 

protein Anderson curve. This study unravelled proteins like MEGF8, CRISP3 and TRIM33 

that are known to occur in lower picogram levels in plasma. Of these TRIM33 is known to be 

a negative regulator of BMP signalling as well as a regulator of TGF-β receptor signaling (42), 

whist MEGF8 and CRISP-3 are found expressed on extracellular exosomes and are integral 

component of plasma membranes. These low abundance proteins sit in in lowest section of the 

Anderson concentration curve belonging to G-protein coupled receptors, Notch family, 

interleukins, integrin beta chain family members, α and β-transferins, homeobox proteins and 

zinc finger proteins. Further, proteins like proprotein convertase 9, C-C motif chemokine 16, 

SPARC-like protein, ADAMT’s like protein 4, macrophage receptor, IgG Fc-binding protein, 

Golgi membrane protein 1 and ADAMDEC1 were mapped for their tissue-specific expression 

to colon, small intestine, epithelia and lymph nodes. These proteins are known to be involved 
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in apoptosis, immune response, cell metabolism, cell differentiation and dendritic cell 

maturation, respectively. 

Revealed known potential CRC biomarkers 

It was however not surprising to note that the subset of 37 early stage CRC differentially 

expressed protein biomarkers identified through this study were observed across the entire 

range of concentrations represented by the Anderson curve. A number of biomarker studies 

have previously had similar aims to this study, albeit using different samples and analytical 

techniques. This thesis recapitulated a number of these studies that lends credence to the 

validity of our approach and suggest that these markers may indeed have significance.  

The list of differentially expressed proteins comprised many acute phase response proteins or 

those involved in the complement cascade. A number of these have been previously reported 

to be markers of CRC, including serum paraoxonase 1 (PON1), down-regulated in CRC plasma 

here as well as in other investigations (50). PON1 is a known free radical scavenger possessing 

antioxidant activities and has been reported to play an important role in CRC carcinogenesis 

and metastasis (51). Paradoxically, activity of sera PON1 has been demonstrated to be 

increased in patients with CRC (52), suggesting that a decrease in protein levels may not 

necessarily be associated with decreased activity, though the authors do propose larger studies 

needed to be performed to validate their claims.  

Plasma is the richest reserve of secretory proteins that potentially reflect abnormal physiology. 

Unsurprisingly, aberrations in several secretory proteins with relevance to tumour 

pathophysiology was discovered. The most frequently recurring marker protein was S100A8 

(53, 54) found to be elevated in our study. S100A8 is predominantly expressed in myeloid cells 

and has been identified as a serological marker for CRC in combination with S100A9 (54). 

Interestingly, Ichikawa et al., suggest S100A8/A9 promotes activation of MAPK and NF-

kappa B signaling pathways and mediates tumour development. (54, 55).  

Another previously established up-regulated marker glutathione peroxidase (GPX3) was 

found, an extracellular selenoprotein member known to play important roles in oxidative stress-

induced apoptosis (56). Barett et al., had previously demonstrated that elevated plasma GPX3 

may serve protective roles in inflammation-associated colon carcinogenesis by reducing 

oxidative DNA damage (32). However, Roman et al., reported no significant differences 

between CRC and healthy control levels of serum GPX3 (57) although they were unable to 
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validate these findings with orthogonal techniques. In our study, GPX3 was elevated across all 

CRC stages compared to healthy plasmas. Due to this apparent discrepancy with literature 

reports, Western blotting was used to validate GPX3 expression which confirmed our 

SWATH™-MS results.  

 

Apolipoproteins A4 (ApoA-IV) and Apolipoprotein B, both small intestine and duodenum 

specific proteins also stood out in the data. A recently published study established that aberrant 

ApoA-IV expression in CRC patients was associated with 8q24 oncogenic SNPs and with 

diabetes mellitus (DM) with suggestion that this protein may subsequently facilitate CRC 

development (58). In our study ApoA-IV levels across all CRC stages were found to be 

significantly down-regulated in comparison to healthy controls consistent with past genomic 

studies (58). On the other hand, elevated levels of Apo B in serum have previously been 

associated with CRC risk in a study performed on 28,098 participants, out of which incidence 

cases were identified in follow-up done from 1991-2012 with a 95% confidence interval (59). 

This correlated with data from this study where ApoB levels were found to be significantly up-

regulated across all CRC stages compared to healthy control plasmas.  

A subset of biomarkers emanating from this study have been shown to be expressed in multiple 

cancer tissue types, including CRC. For example, cystatin C (CST3) is a secretory protein 

known to be a potent cathepsin B (CTSB) inhibitor (60). It is thought that CTSB participates 

in remodeling of connective tissues during tumour growth, invasion and metastasis (61). This 

study found CST3 down-regulated in CRC stages, whereas a number of studies have associated 

up-regulation of CST3 associated with progression of cancer (62). Several studies have 

suggested CST3 is not reliable, proposing alternatively that prognostic value lies in 

disturbances in CTSB/CST3 ratios (50, 60, 63). Nevertheless, data here validated down-

regulated levels of CST3 finding significant fold change between all CRC stages and healthy 

controls. However, subsequent detailed statistical modelling indicated that CST3 did not add 

particular value in classifying CRC tumour stage. The link between uPAR and CSTB, both 

being proteases is certainly intriguing and worth investigating further as both are known to be 

significantly up-regulated and associated with poor outcomes from CRC metastasis (64). 

 

Novel CRC biomarkers 

Plasma proteins are largely secreted by liver and tissues through which they circulate (21, 24). 

In the panel of early CRC stage candidates, it was interesting to observe changes in proteins 

specifically expressed in colon and associated intestinal mucosal lining tissues. Of such 
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proteins, one interesting candidate was ADAMDEC1 which is selectively expressed and shed 

by maturing dendritic cells and macrophages predominantly in the small intestine, caecum and 

large intestine (65, 66). ADAMDEC1, a disintegrin and metalloprotease, is a particularly 

unique member of ADAM family in that it lacks a transmembrane domain which allows it to 

remain soluble (67). It is one of four ADAM’s released from thrombin-stimulated platelets and 

cleaves cell surface pro-epidermal growth factor (pro-EGF) at an arginine residue to generate 

soluble high-molecular weight EGF (HMW-EGF) (67). HMW-EGF is an effective ligand for 

EGF receptor members and ultimately triggers the EGF signal transduction pathway (67). A 

more recent study found ADAMDEC1 up-regulated in normal epithelial cells, specifically after 

these normal cells had been co-cultured with active mutant RasV12-transformed epithelial cells 

(68). This study suggested that ADAMDEC1 may be an epithelial intrinsic soluble factor that 

promotes apical extrusion of RasV12 cells, displaying anti-tumour activity, in a phenomenon 

called “epithelial defence against cancer” (68). In both studies, increased level of ADAMDEC1 

was demonstrated to play a crucial role in tumour division and progression. Here, up-regulated 

levels of plasma ADAMDEC1 in all CRC stages compared to healthy controls was observed 

and this trend was confirmed by ELISA performed on both pooled and individual patient (n=20 

per CRC stage) plasmas. This study of individual patient plasma samples allowed us to 

investigate the impact of “pooling” plasma samples in the first place, necessary to complete 

technical protocols within a reasonable grant timeframe. Although, pooling had advantages in 

discovery (discussed earlier), extrapolating protein biomarker information to individual patient 

populations based on that pooled data is counterintuitive. Therefore, ADAMDEC1 was used 

as a “example” protein to investigate the efficacy of extrapolation of pooled data for the 

complete list of all 37 candidates. Individual ADAMDEC1 SD values were then used to inform 

cut-offs for the generation of a machine learning algorithm as discussed.   

Another novel finding of this study was identification of a subset of immune system protein 

biomarkers. Any human body harbouring tumours likely initiates assault on physiological 

wellbeing. Cells of the immune system continually monitor tissues and provide protection 

against many types of pathology, including monitoring tumourigenesis (69). Macrophage 

receptor (MARCO), a scavenger receptor is expressed by suppressive tumour-associated 

macrophages (TAM) called M2 macrophages. These are known to suppress the immune system 

favouring tumour growth and promoting metastasis through pro-angiogenesis and tissue 

remodelling (70). Interestingly, Georgoudaki et al., showed targeting MARCO-expressing 

TAM’s enhance the effect of immune checkpoint therapy in both melanoma and CRC (69). 

Macrophages are recruited to the tumour via blood circulation or direct immigration to adjacent 
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tumours from surrounding tissues which might explain the elevated plasma levels of MARCO 

observed here across all CRC stages. Considerable increases in fold change ratio in later stages 

(C/III and D/IV) could be the result of immune suppression accelerating clinical tumour growth 

and metastasis. Another immune regulatory protein, macrophage mannose receptor 1 (MRC1) 

also known as CD206 is an M2 marker and has been found to be co-expressed with MARCO 

in CRC cell lines by Georgoudaki et al., (69).  A study on advanced imaging agents found that 

MRC1/CD206 a C-type lectin mannose receptor is a major binding receptor for γ-tilmanocept 

- a compound routinely used for molecular imaging and mapping of sentinel lymph nodes (71).

In our study, MRC1 was observed to be down-regulated in all CRC stages compared to healthy 

controls. In contrast, a previous study found that MRC1 was up-regulated in CRC (72). These 

data were based on a discovery cohort of only three patients, although the data were validated 

using ELISA in 96 CRC patients., Importantly, the samples analysed by Fan NJ et. al, were not 

clinically staged and were a mixed cohort, whilst our study incorporated all four stages of CRC 

in well-defined cohort as discussed in section3.2. It is also important to note that plasma 

samples were used in our study while Fan NJ et. al, used serum samples in their study. While 

it is difficult to speculate on the reasons for this discrepancy in MRC1 expression data, future 

studies should directly compare serum and plasma levels in all stages of CRC. 

Predictive neural network classification reveals a subset of potential biomarkers for early 

CRC detection  

Though ultradepletion of pooled CRC-staged plasmas allowed increased analytical depth and 

identification of novel low abundance proteins, it can also be a limitation if the overall endgame 

is to generate tangible, predictive models for high-throughput diagnosis. Machine-learning 

approaches are becoming more mainstream for proteomics studies (35). These methods are 

often ill-suited for analysis of limited datasets from demanding, economic and person-hour 

resource-intensive proteomics studies (e.g., where ultradepletion is performed). In a proof-of-

concept experiment, a synthetic patient population to train a classification algorithm was 

generated and then tested this on real patient samples. An algorithm assuming pooled plasma 

samples was trained which represented a centroid around which a normal distribution of 

biomarker concentrations would reside. This hypothetical variance present in human plasma 

protein concentration needs to be conservative, as high variability even occurs between among 

twins over time (73). Our supposed variance considered:  

1. variance between individuals over time and environmental factors;
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2. variance between technologies employed keeping in mind high throughput testing on a 

population scale is our long-term aim, and 

3. variance amongst clinical stages of CRC.   

It is important to note that our choice of potential biomarkers was stringent and based upon 

orthogonal, complementary approaches with consideration of a reasonable biological rationale. 

With these restrictions in mind, a SD as high as 10 times the SD from the mean for our 

generated population and maintaining a near perfect classification on disease stages with our 

37 candidates was implemented. High classification rates remained with as low as 5 of our 

proteins of interest. Therefore, this panel of 5 candidates is proposed as highly interesting for 

potential predictive purposes, and now propose to replace these generated samples with 

biological ones as a larger patient population dataset (individual targeted protein assays) over 

time. Of interest regarding the richness of selected biomarkers, progression of CRC from stage 

I to IV resulted in increased separation distance between stages from healthy to stage IV CRC. 

This fits very well with a narrative that would be expected as the condition of patients 

deteriorate, and biological manifestation of cancer increases. 

 

Next steps  

A review of PubMed confirms that most biomarker studies do not result in biomarkers entering 

clinical practice, and this is primarily due to the fact that most candidate markers do not meet 

stringent specificity and sensitivity criteria (62). Recent publications have promoted the idea 

of multi-variate biomarker panels (75, 76) as being more efficacious than single markers.  

In our study, potential biomarker candidates derived from multiple depletion and peptide 

fractionation with SWATH™-MS were first selected with unbiased statistical analyses, 

established biological roles in oncology were further considered for prioritising the candidates.  

After further verification using immuneassays, the following candidates were proposed as 

putative early stage CRC markers: ADAMDEC1, MARCO, MRC1, S100A8, ApoAIV, GPX3, 

COMP, PON1 and CFD. The diagnostic utility of these protein panels needs to be validated by 

measuring expression in individual healthy and staged CRC patient samples using either or 

both immunological and targeted mass spectrometry technologies. The first step would be to 

develop a first-pass parallel reaction monitoring (PRM) assay for absolute and relative 

quantification of these candidates in clinically staged pooled plasma samples. Once a 

reproducible and robust assay is developed, it could be used to quantitate and evaluate the 

specificity and sensitivity of the panel of candidates to differentiate healthy individuals from 

early stage CRC patients on using both current and a larger, independent validation cohort. In 
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addition, ELISA-based assays can also be used to quantify potential candidates in individual 

samples.  

This study then applied a machine learning model (predictive neural network classification) to 

narrow the panel down to 5 proteins that maintained accuracy in identifying early (I/II) stage 

CRC. This 5-protein marker panel (i.e. SAA2, APCS, APOA4, F2 and AMB) is a subset of the 

37 candidates identified from discovery experiments. The predictive power of the 5-protein 

marker panel will need to be validated as outlined above, but this aspect of my study highlights 

the power of predictive neural network modelling, which was used for the very first time in 

MS-based biomarker discovery.  

3.5 Conclusions 

MS-based proteomics in combination with depletion strategies have the potential to identify 

multiple protein targets in human plasma. Unfortunately, not many markers identified in the 

laboratory every reach the clinic and it is essential that putative biomarkers are examined in 

larger patient cohorts and benchmarked against current screening methods. The 37 candidates 

identified in this thesis are a statistically filtered list of proteins, with no biological hypothesis 

underlying their selection. The potential biological role of 9 of these 37 candidates in CRC 

pathogenesis has been discussed in section 3.4 under “Novel CRC biomarkers.” For example, 

candidates such as MARCO and MRC1 are immune markers, which are known to suppress the 

immune system and favour tumour growth by promoting metastasis (69,70). Both candidates 

were found to be differentially expressed in control vs CRC patient plasma samples. Another 

important hypothesis regards ADAMDEC1 which shows expression limited to the intestinal 

and colon regions. The up-regulated expression of ADAMDEC1 was demonstrated to play a 

crucial role in tumour division and progression in multiple studies (67,68). Our data confirmed 

the increased levels of ADAMDEC1 in CRC patient plasma. Similarly, many of the proteins 

identified in this study, have previously been identified as standalone biomarkers or as a 

member of a panel (e.g. PON1, GPX3 and ApoB; see Section 3.4 for more information), but 

unfortunately, none of these have entered the clinic. In addition, the machine learning model 

identified a 5-protein marker panel, from the 37 potential candidates, that accurately 

discriminated early-stage CRC from healthy controls. In conclusion, in our study, the 

SWATH™-MS analysis revealed 37 protein biomarker candidates and a predictive neural 

network narrowed down 37 candidate list to 5 proteins that maintained accuracy to discriminate 
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early stage (I/II) from healthy controls. This panel of 5 protein candidates consist of both 

upregulated and downregulated proteins. The statistical strength of the panel is based on the 

combined trends of all 5 biomarkers taken together. This 5-protein marker panel will be the 

focus of future work and will be tested for specificity and sensitivity in larger patient population 

datasets. 

3.6 Limitations 

Plasma is representative of the physiological state of an individual (24). Therefore, biomarkers 

emerging from plasma may not be specific for the target disease, but rather may reflect different 

undiagnosed pathologies. For example, elevated lactate dehydrogenase is associated with 

melanoma, but also liver disease and kidney tissue damage (82,83). For this reason, multi-

variate panels of biomarkers are preferred to a single biomarker molecule (77). There are many 

examples that combination of markers provides superior sensitivity and specificity in 

biological assays (78,84). For example, Ova1 (a multi-variate test) performs better than CA-

125 (a single biomarker) in diagnosing ovarian cancer (84).  

There are > 20,000 protein coding genes and 14,500 diseases classified by the ICD code, and 

it is likely that different diseases will share proteins implicated in their pathogenesis (24). Thus, 

to identify highly specific, unique plasma biomarkers, it is vital to use appropriate negative 

controls. This could include patients with early, benign disease or a different disease of the 

same organ. In this case, an ideal negative control to test the specificity of these biomarkers 

would have been plasma samples derived from patients with benign polyps or other benign 

ailments of the GI tract. (78). Thus, although the valuable controls of benign disease were not 

included, the approach of defining a multi-variate diagnostic biomarker panel may circumvent 

this limitation (79-81).  
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Supplementary Information 

Supplementary Figures S3.1-S3.4 

Supplementary Tables S3.1-S3.5 

Supplementary Figure S3.1: Venn diagram comparison of number of common, unshared and 

shared identified proteins (containing >2 uniquely mapping non-nested peptides of amino acid 

length >9) between four peptide fractionation methods. HpH: High pH C18 reversed phase, 

SEC: Size exclusion chromatography, SAX: Strong anion exchange, SCX: Strong cation 

exchange. 
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Supplementary Figure S3.2: Extracted SWATH™-MS  dataset from (a) non-depleted, (b) 

MARS-14 depleted, (c) MARS-14→API depleted (d) API→MARS-14 depleted experiments 

were independently normalised using total area normalisation. The data distribution was 

examined using density plots and boxplots. The consistency of the sample replication was 

examined visually using heatmap hierarchical clustering and PCA plots. Healthy controls 

represented as stage E in the images. PCA: Principal component analysis. 
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Supplementary Figure S3.3: Western blotting images (left) and Ponceau stained images 

(right) of (a) Complement factor D, CST3, (b) Glutathione peroxidase 3, GPX3, (c) 

Complement factor D, CFD, (d) Macrophage mannose receptor 1, MRC1, (e) Cartilage 

oligomeric matrix protein, COMP and (f) Serum paraoxonase/arylesterase 1, PON1.  

Supplementary Tables S3.1-S3.5 

• Supplementary Table S3.1: Peptides/proteins identified using different fractionation

methods (HpH, SEC, SAX, SCX)

• Supplementary Table S3.2: Gene Ontology (GO) functions of proteins found in our

plasma SWATH™-MS library

• Supplementary Table S3.3: 8 proteins identified/observed in plasma for the very first

time via proteomics.

• Supplementary Table S3.4: Quantifiable plasma proteins and peptides captured by non-

depletion and depletion strategies

• Supplementary Table S3.5: Clinical Details of CRC Patients

The mass spectrometry raw data has been submitted on PRIDE Archive - proteomics data 

repository (https://www.ebi.ac.uk/pride/archive/) and this information would be provided as 

soon as it is available.  
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For the purpose of review of this thesis, these Supplementary Tables S3.1-S3.4 have been 

uploaded separately as supplementary data. 

Table S3.5: Clinical Details of CRC patients 

AJCC staging 

(n= 80) 

I 

(20) 

II 

(20) 

III 

(20) 

IV 

(20) 

Age 

Median + SD 65 + 7.2 70 + 7.9 65 + 9.0 62 + 8.0 

Sex 

Male 66.7% 53.3% 46.7% 60% 

Female 22.2% 46.7% 53.3% 40% 

Location of tumour/cancer 

Sigmoid 6 (40%) 6 (40%) 11 8 (53.3%) 

Low Rectal 2 (13.3%) 0 1 (6.7%) 1 (6.7%) 

Caecal 2 (13.3%) 3 (20%) 3 (20%) 3 (20%) 

Ascending colon 2 (13.3%) 2 (13.3%) 0 1 (6.7%) 

Transverse colon 2 (13.3%) 4 (26.7%) 0 0 

Descending colon 0 0 0 2 (13.3%) 

Adenoma 1 (6.7%) 0 0 0 

Metastasis/Location 

Lymph Node 0 0 15 0 

Liver 0 0 0 8 

Gall Bladder/Lung 0 0 0 1 

Ovary 0 0 0 1 

Other Colonic Regions 0 0 0 5 
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Chapter 4 

Verification of a multi-analyte signature assay for 

early diagnosis using Parallel Reaction Monitoring 

(PRM) assay

Abstract 

To support the aim of developing a new early stage CRC diagnosis blood test, the combination 

of mass spectrometry and ultradepletion was utilised to explore plasma at unprecedented depth.  

With this technical advantage, 9 protein candidates ADAMDEC1, MARCO, MRC1, S100A8, 

ApoAIV, GPX3, COMP, C1QC and CFD were identified and prioritised. After successful 

orthogonal verification of 7 of these candidates, I proceeded to develop and accurately measure 

the 9 candidates in plasma using targeted proteomics parallel reaction monitoring (PRM) 

assays. Targeted MS-based approaches are widely used to quantitate proteins. More 

specifically, the parallel PRM-based methods performed using orbitrap-quadrupole instrument 

provide high-resolution via ion trapping capabilities and have been proven a stronger method 

than other conventional triple quadrupole instruments used specifically for targeted proteomics 

(Bourmaud et al., 2016). In this study, first-pass PRM assays were optimised to perform 

relative quantification of two protein candidates ADAMDEC1 and CFD on pooled plasma. 

This first-pass assay confirmed the response profile of ADAMDEC1 and CFD as was observed 

in SWATH™-MS data of Chapter 3. This first-pass assay will further be characterised using 

CPTAC guidelines and finally will be used to test the efficiency of these candidates in 

individual patient plasma as part of future biomarker discovery studies with fresh CRC and 

healthy cohorts. The overarching aim of this study is to evaluate the diagnostic potential of the 

identified candidates from biomarker discovery experiments in Chapter 3 using a PRM-based 

assay in plasma samples. 

State of Research 

This study is ongoing and will require further assay characterisation experiments to be 

performed in accordance with relevant CPTAC guidelines, in the hope that an assay can be 

deployed into testing of individual samples and in various laboratories. The details of the 

needed experiments have been described in detail in Future Experiment section of this Chapter. 
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4.1 Introduction 

The successful development of a multi-analyte biomarker assay comprises of three broad 

phases, the identification of potential protein candidates, verification and prioritisation of 

candidates, validation before clinical approval (Paulovich et al., 2008). MS dependent 

biomarker discovery experiments use combination of depletion, multiple fractionations and 

liquid chromatography to relatively quantify hundreds of proteins. The identified proteins are 

hypothesis free and simply based on peptide detection and observed signal intensity of those 

peptides (Geyer et al., 2017). The identified peptides are carefully prioritised on basis of 

statistical analysis such as 1% FDR at the peptide level, number of unique peptides observed 

and fold change differences (±1.5) as was done in our study (chapter 3). Even after stringent 

statistical analysis there appears to be no shortage of these ‘discovered' potential candidate 

proteins. These biomarkers/potential candidates must be validated on larger patient cohorts to 

confirm their ability to differentiate between disease stage from healthy controls (Paulovich et 

al., 2008).  

 

It is not surprising that most of the existing FDA approved blood-tests are dominated by 

enzyme assays and immune-assays (Chau et al., 2008). Immune-assays such as ELISA and 

Western blotting (WB) have been considered as standard modalities for detecting protein 

abundance in biospecimens (Chau et al., 2008). In terms of translation, both these techniques 

have proved to be powerful standalone methodologies applied to clinics (as tests for HIV, 

hepatitis, pregnancy, allergen, Lyme disease, syphilis, autoimmune disorders and numerous 

others) (Hosseini S., 2018). When speaking of protein biomarker research, Western blotting 

and ELISA can be considered as worthwhile standard orthogonal checks on the validity of 

primary MS discovery phase data (Chapter 2). It is worthwhile to note that whilst these have 

been integral to bioscience for over three decades, they have some short comings. Towbin and 

colleagues, in their landmark paper describing the methodology for Westerns, acknowledge its 

limitation in accurate quantitation due to suboptimal transfer of proteins from gel to membrane 

(Towbin et al., 1979).  

 

In retrospect, ELISA and Western blotting can be limited by one or more of the following; (i) 

linear dynamic range, (ii) limit of detection, (iii) ability to multiplex, and (iv) reproducibility 

(Aebersold et al., 2013; Towbin et al., 1979). These limitations can be significantly ameliorated 
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using quantitative assays like single reaction monitoring (SRM) or parallel reaction monitoring 

assay (PRM) or targeted assay, as discussed in detail in Chapter 2.  

 

The workflow of a targeted assay relies on multiple parameters like retention time, the mass-

to-charge ratio of the precursor ion and selected fragment ions of the targeted peptide, and the 

relative signal intensities of the detected fragment (transition) signals (Ong and Mann, 2005). 

Using multiplexed data acquisition techniques and software tools, these parameters can be 

assessed and scored to determine the probability of a targeted peptide being present in the 

sample (Peterson et al., 2012). The relative presence of hundreds of proteins can be statistically 

evaluated in a single injection using targeted workflows, reproducibly, making it far superior 

to ELISA (Michaud et al., 2018; Parker et al., 2014). It is for these reasons that the proteomics 

community uses targeted assays to validate quantitative bottom-up MS data.  

 

In these targeted assays, multiple pre-selected peptides of candidate proteins are measured in 

healthy controls and disease plasma with excellent inter and intra laboratory reproducibility 

(Addona et al., 2009). Moreover, the broad applicability of these assays can be used to measure 

these proteins in CRC disease patient plasma and distinguish them from healthy controls.  

Biospecimens are often spiked with heavy labelled target peptides to compare the transitions 

to enable absolute quantification of a protein in the sample. Such peptides can be purchased 

commercially (e.g. Australian Peptides, Synpeptide Co., Ltd., OriGene Technologies, Inc.).  

 

However, the mass spectrometer does not equally ionise, separate and detect all peptides. 

The PRM methodologies enable the measurement of proteins with concentration as low as 2-

10 ng/ml in non-depleted and unfractionated plasma (Rauniyar, 2015), providing the 

measurement of protein in its innate form (Michaud et al., 2018). The PRM assays can be 

executed with a simple needle’s prick, and requires only microlitres of plasma (Michaud et al., 

2018). Targeted MS has been proposed to bridge the gap between discovery and clinical 

validation (Harlan and Zhang, 2014).  

 

In our previous study (Chapter 3), 9 protein candidates ADAMDEC1, MARCO, MRC1, 

S100A8, ApoAIV, GPX3, COMP, C1QC and CFD were identified and prioritised based upon 

statistical data and literature study. Orthogonal technologies such as immune assays evaluated 

and confirmed the expression of proteins identified from our SWATH™-MS data (Chapter 3).  

The aim of this study is to develop, and measure target peptides derived from the 9 protein 
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candidates that were identified from previous SWATH™-MS studies using the same cohort of  

100 individual patient plasma samples to evaluate diagnostic utility. The study discussed here 

is a preliminary study. Out of 9 candidates, the peptide targets for CFD and ADAMDEC1 were 

evaluated in pooled plasma samples as a first-pass assay using a workflow shown in Figure 

4.1. 

 

 

Figure 4.1: The basic workflow to develop a PRM assay A) Steps for sample preparation 

before LC-MS runs for targeted PRM. B) Step wise experiments needed to develop a targeted 

assay after method optimisations 

 

4.2 Material and Methods 

Plasma collection and sample preparation  

Plasma samples from 100 individuals, comprising of 80 clinically staged colorectal cancer (I-

IV) and 20 healthy controls were procured from the Victorian Cancer Biobank, Melbourne 

under approved human ethics (HREC Ref #5201600401 and #5201700681). Plasma samples 

were collected prior to colonoscopy and detailed clinical/pathophysiology reports information 

of individual, their inclusion/exclusion criteria have been discussed in detail in research article 

(Mahboob et al., 2015).  
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PRM assays  

Sample preparation for liquid chromatography-parallel reaction monitoring (LC-PRM) 

Plasma protein concentration was determined by a bicinchoninic acid (BCA) assay kit (Pierce 

TM #23225) according to the manufacturer's protocol. Plasma tryptic digests for 100 individual 

samples and pooled set of plasma (5 samples, n=20 pooled per staged (I-IV) and healthy 

controls) were prepared by diluting 5μl of non-depleted plasma in ratio of 1:5 with 1X PBS. 

Denaturation of cysteine bonds in proteins samples was performed using 5mM dithiothreitol 

for 30 min at 60°C. Reduced plasma samples were alkylated for 30 min at 37°C in dark with 

10mM iodoacetamide. Final tryptic digestion was performed using sequencing grade trypsin 

(Promega, Madison,WI) was added to reduced and alkylated samples in ratio of 20:1 for 16h 

at 37°C. Tryptic digested samples were desalted using C-18 custom made zip-tips prior to MS-

analysis. The sample elution was done using 50% V/V acetonitrile and 0.1% of formic acid. 

The eluted samples were lyophilised and stored at -80°C. Prior to PRM analysis, lyophilised 

samples were reconstituted in 0.1% formic acid.  

 

Potential biomarkers identified by SWATH™-MS plasma proteomics  

The target protein candidates selected for optimisations used in this study were originally 

identified from SWATH™-MS biomarker discovery experiment described in detail in previous 

chapter of this thesis (Sharma et al, Chapter 3). In summary, from the biomarker discovery 

experiments, 37 potential candidates were identified as early stage CRC detection markers. 

CRC early. Two candidates were selected for PRM assay development i.e. CFD and 

ADAMDEC1 which were also successfully validated using orthogonal technologies via 

western blotting and ELISA. 

 

LC-PRM analysis of plasma digests 

The plasma digests were tryptic digested samples were subjected to Thermo Scientific™ Q-

Exactive™ Hybrid Quadrupole-Orbitrap fitted with a nano-liquid chromatography (LC) 

system (Thermo). The LC column for peptide separation was pre-packed with michrom Magic 

C18 (75µm x 15cm, 5µm, 120 A) and was used to separate peptides. A total of 2ug peptide 

constituted in 0.1% of formic acid (total volume 10µL) were injected into the column in 99% 

buffer A (0.1% FA) and 1% buffer B (0.1% FA in ACN). The flow rate was kept at 0.3 µl/min 

with following gradient conditions (50 mins linear gradient from 1% to 65% buffer B, a 2 mins 

linear gradient from 65% to 85% buffer B, and a final 8 mins gradient from at 85% buffer B). 

Between each cell lysate sample, one blank was run whereas for recombinant proteins blank 
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was placed after three runs. An orbitrap resolution was set at 17,500, with a target AGC value 

of 1e6, maximum fill time of 250ms, and an isolation window of 2.0m/z. Collision energy for 

each pair of positively charged precursor ion and peptide fragments was optimised. The 

peptides with strongest intensities for four to eight transitions per protein were selected as the 

detection targets.   Some key considerations are important for optimisations to get high quality 

data for the targets under consideration. These optimisations include mass to charge ratio (m/z) 

of the peptide, charge of the precursor ions, optimised collision energies and peak intensities 

of transitions. Further optimisations mainly focused on the number of transitions being 

monitored every run and its effect on the signal to noise ratio of the targets in addition to 

changing parameters like dwell time, cycle time and parameters of the ion source.  

 

Heavy synthetic peptides for quantitation 

Heavy labelled peptides were custom made for selected targeted peptides that were 

reproducibly detected with high peak intensity in SWATH™-MS. Peptides are ADAMDEC1: 

modified NSVASISTCDGL [13C6-15N4-R], charge 2+, formula weight 1332.46; CFD: 

ATLGPAVRPLPWQ [13C6-15N4-R], charge 3+, formula weight 1571.85 manufactured by 

SynPeptide Co. Ltd., China) with ≥ 98% purity.  The amount of heavy labelled peptide to be 

spiked in the tryptic digest was optimised by running a serial-dilutions from range 0.7-70 

pmol/μl (dilution points at 0.7, 3.5,7,17.5,35,70) pmol/μl.   

Table 4.1. Peptide sequences and selected transitions for PRM plasma assays of selected candidate 

biomarkers  

Peptide sequence Protein 

UniProt 

I.D. 

Heavy 

Precursor 

m/z 

Light 

Precursor 

m/z 

Heavy 

peptide 

concentrat

ion 

(pmol/µl) 

NSVASISTCDGLR 

ADAM-like decysin 1 

(ADAMDEC1) O15204 695.3369++ 690.3328++ ND 

ATLGPAVRPLPWQR 

Complement factor D 

(CFD) P00746 524.6397+++ 521.3036+++ ND 
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Data analysis  

The quantification of all the two proteins targets were performed on Skyline (version 4.2) (http: 

//proteome.gs.washington.edu/software/skyline). Skyline is an open-source software that 

supports several methods of extracting chromatography-based quantitative measurements from 

the raw data files (Egertson et al., 2015). In brief, the FASTA sequences of two targets was 

uploaded to the skyline file. In the transition settings, under filter tab, the precursor charges 

were kept 2, and 3; ion charges as 1, 2, 3 and ion types as y,b, and p (Figure 4.2). The library 

settings under the transition settings, ion match tolerance was kept at 0.7 m/z. Under the full 

scan tab, MS/MS filtering was ‘targeted’, ‘QIT’ as product mass analyser with a resolution of 

0.7 m/z. Import spectral library created in biomarker discovery experiment and enter the cut-

off score at 0.95. The spectral library provides an accurate and quick match to experimental 

detected MS/MS spectra. The normalisations of peak areas, histograms, product dot ion product 

availability (dotp) and graphs were all made using Skyline and MS stats (http://msstats.org/). 

In the peptide settings, digestion via trypsin was set with no missed cleavages and 13C (6)15 

N (4) C-term Arginine and 13C (6)15 N (1) Leucine as specific isotope modifications. The 

excel file for spectral library is provided as supplementary file S1. The isolation width of m/z 

=3 was set up in MS/MS filtering tab at a resolving power of 7500 (at 400 m/z) and orbitrap as 

a mass analyser. MS/MS peak integration was performed by Skyline software for identification 

and quantification of the precursors by matching with the spectral library.  
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Figure 4.2: Skyline MS/MS filtering options and setting used in the study A) Filter features 

for selecting precursor ion charge state and type of product ion. B) Full scan features the 

isotopes peaks selection, resolution of 60,000 at 400 m/z. 
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Statistical analysis 

Histograms, bar graphs and analysis between CRC diseased and controls patients were 

performed using GraphPad Prism version 7.00 for Windows (GraphPad Software, San Diego, 

USA, www.graphpad.com). 

4.3 Results and Discussion 

Selection of light and heavy peptides 

Unique peptide targets for PRM assay development were selected based on SWATH™-MS 

biomarker discovery experiments in data-independent mode, which had identified ~450 plasma 

proteins (Chapter 3). Selected peptides; ADAMDEC1: NSVASISTCDGLR, m/z 693.3328, 2+ 

CFD: ATLGPAVRPLPWQR, m/z 521.3036, 3+ are proteotypic and were uniquely mapped to 

the ADAMDEC1 and CFD respectively. These were observed reproducibly in multiple runs of 

biomarker discovery experiments reassuring the ‘flyability’ of the peptides. Target peptide for 

ADAMDEC1 contains a modification cite at NSVASISTCDGLR and therefore special 

attention was paid during quantification of this peptide. The peptide charge state of these 

fragments was 2+ and 3+. 

 

Preliminary target measurement via PRM assay 

 The main objective of this experiment is to reproducibly detect and relatively quantify 

endogenous target peptides for proteins ADAMDEC1 and CFD using Thermo Scientific™ Q-

Exactive™ Hybrid Quadrupole-Orbitrap. The detailed m/z light precursor mass and charge is 

shown in Table 4.1. Triplicate aliquots of the trypsin digested CRC stage (I-IV) plasma samples 

and healthy controls (pooled set) without subjecting to any depletion and enrichment were 

analysed for relative quantification of the target peptides. Peptide CFD: 

ATLGPAVRPLPWQR; was reproducibly detected in all 15 runs (triplicate of 5 pooled set of 

samples, 4 for each CRC stage (I-IV) and 1 for healthy control). Peptide 

ATLGPAVRPLPWQR is proteotypic and does not contain any cite of PTM modification 

which makes it an ideal target peptide for developing a PRM assay. The selected daughter ion 

for quantification are y11: 638.8673++ (rank1), y12: 695.4093++ (rank2), y6: 796.4464+ 

(rank4), y10: 610.3566++ (rank3) and y9: 561.8302++ (rank 7), Figure 4.2. 
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Figure 4.3: Skyline MS/MS filtering for CFD. A) MS/MS spectra for the targeted peptides 

highlighting in blue matching fragments for an injected replicate as shown in Skyline for 

peptide ATLGPAVRPLPWQR with charge 3+ showing the five fragments for light 

521.3036+++. B) Chromatograms and peak intensity traces if three technical replications of 

pool of control patients C) Relative comparison of normalised peak areas between healthy 

controls and CRC stages (I-IV). ** p < 0.005. 

 

Peptide NSVASISTCDGLR with charge 2+ showing the six fragments for light 690.3328++. 

is proteotypic and contains cysteine which is carbamidomethylated after alkylation in trypsin 

digestion. The selected daughter ion for quantification are y8: 921.4458++ (rank5), y10: 

540.2611++ (rank3), y8: 461.2266++ (rank1), y7:404.6845++, b9: 920.4142+(rank 4) and b6: 

572.3039+ (rank 2) Figure 4.3.  % Coefficient of variance and statistical significance between 

technical triplicates runs of the trypsin digested plasma samples from CRC stages I-IV for 

ADAMDEC1 and CFD peptides (Table 4.2). The normalised peak area plotted using graph-

pad prism showed relative down expression of the peptide in all CRC stages (I-IV) in 

comparison to healthy which is in parallel to our SWATH™-MS and Western blot data 

discussed in the previous chapter (Chapter 3, Figure 3.2). Unfortunately, peptide 
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NSVASISTCDGLR for ADAMDEC1 was not reproducibly identified in all the triplicates, 

requiring troubleshooting and further optimisation.  

 

  

Figure 4.4: Skyline MS/MS filtering for ADAMDEC1. A) Skyline peptide tree for peptide 

NSVASISTCDGLR with charge 2+ showing the six fragments for light 690.3328++. B) 

Chromatograms and peak intensity traces if three technical replications of pool of CRC stage 

III patients C) Relative comparison of normalised peak areas between healthy controls and 

CRC stages (I-IV).  

 

Table 4.2: % Coefficient of variance and statistical significance between technical 

triplicates runs of the trypsin digested plasma samples from CRC stages I-IV for 

ADAMDEC1 and CFD peptides. ns: non-significant  

Peptide 

UniProt 

Accession 

Number 

Protein Name Total 

Variability 

(%CV) 

P-

Value 

NSVASISTCDGLR O15204 ADAMDEC1 18.40 0.035 

ATLGPAVRPLPWQR P00746 

Complement Factor 

D 15.40 

ns 

 

To develop a high-quality PRM assay, it is important to determine of lowest limit of detection 

(LoD), sensitivity and quantification using heavy-labelled peptides. Clinical Proteomic 

Tumour Analysis Consortium (CPTAC) provides general guidelines to assist in the 
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development of any targeted proteomics assay so that it best avoids inter and intra-lab 

variability (Whiteaker et al., 2016). The data presented in this study is preliminary and requires 

robust optimisation according to CPTAC guidelines which will be complied with. 

4.5 Future experiments 

To develop a sensitive and accurate assay, robust analytical characterisation must be 

performed. The proteomics community has published a common set of guidelines and an assay 

repository database that jointly form a public repository called the Clinical Proteomic Tumour 

Analysis Consortium (CPTAC) Assay Portal (http://assays.cancer.gov/). CPTAC provides 

guidelines for standard operating procedures, protocols, and assay characterisation data 

associated with targeted mass spectrometry-based assays. Out of 7 candidates confirmed using 

Western blot and ELISA in Chapter 3, only CST3 has an available PRM assay in CPTAC 

library portal. The remaining protein candidates require the development of PRM assays for 

measurement in plasma.  

 

Following the standard operating procedures, there are still multiple experiments that are 

needed for developing a well-established assay (Whiteaker, J. R. et. al., 2014). These 

experiments include: 

1) Dilution of the synthetic peptide/recombinant protein/internal standard into the trypsin 

digested plasma. This is essential to establish the stoichiometric levels between the endogenous 

peptides and internal standards by determining the limit of detection and quantification. It also 

determines the extent of interference due to the presence of the sample matrix. 

2) Evaluation of reproducibility: A minimum of three replicates of peptides spiked at three 

concentrations (i.e. low, medium, and high) to determine the reproducibility of the experiments 

at multiple concentrations. 

3) Evaluation of the variation of peptide detection in multiple biological samples to see the 

selectivity. 

4) Measuring the stability of peptides across various freeze and thaw cycles.  

5) Reproducible quantification of the peptides in a relevant matrix (in our case CRC plasma)  

 

Once a characterized assay is ready, it can be used to measure the levels of any target protein 

in individual patient samples across CRC stages. The measurements can also be evaluated 

using negative controls such as GI or other tumours to evaluate the specificity of the peptide in 
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specifically discriminating CRC patients from healthy controls. The success of these 

experiments will decide the ultimate clinical utility of all candidate biomarkers. 

4.4 Critical Appraisal and Challenges  

PRM-based methods are widely used to verify the results from discovery-based proteomic 

workflows. The relative expression of ADAMDEC1 and CFD peptides obtained from plasma 

samples of CRC patients was verified using PRM. The targeted proteomics results were 

consistent with Western blotting data for CFD, and with the ELISA data for ADAMDEC1. The 

CFD peptide was observed to be down-regulated in CRC stages (I-IV) in comparison to healthy 

controls. The ADAMDEC1 peptide was found to be up-regulated in CRC stages (I-IV) in 

comparison to healthy controls.  

 

Nevertheless, targeted proteomics still lacks the sensitivity to detect low abundant peptides 

with precision in plasma samples. This was particularly evident in my attempts to detect 

expression levels of ADAMDEC1 in healthy plasma, where the reported concentration of 

plasma ADAMDEC1 can be as high as 76 ng/ml. The consistent identification of an 

ADAMDEC peptide proved to be challenging as it was observed in only one of three healthy 

control sample runs with a reasonable intensity of 5 *106 whereas the other two replicates 

showed transition intensity of 800-1000. Careful analysis showed that the ADAMDEC1 

peptide observed in the first run may have been bleed-through from a previous sample, as a 

recombinant protein was run before initiating this experiment (Figure S4.1 E (i)). However, 

only further method development/experimentation can help to determine whether this was an 

instance of sample contamination.  

 

On the other hand, CFD has a protein concentration of 8 ug/ml based on PeptideAtlas data. The 

reproducible detection of CFD peptide successfully quantified CFD in CRC stage I-IV and 

healthy control plasma samples (Figure S4.2). It is also important to note that the methods 

described in this study determine quantification of a single proteotypic peptide. It is important 

to validate targeted-MS data using >2 proteotypic peptides (Sioud, M. 2007; Oswald et. al., 

2015). In addition, batch-to-batch digestion efficiency varies between one plasma digest to 

another. Therefore, calculation of variance between different tryptic digests, and between 

freeze thaw cycles will be an important step in evaluating future results. Furthermore, PRM 

experiments were performed using Quadrupole-Orbitrap, whereas a triple quadrupole mass 
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spectrometer linked with a nano‐ESI source and a nano‐LC system may have increased 

analytical sensitivity (Sioud, M. 2007; Rauniyar, N. 2015). 

 

Concluding remarks 

Out of the list of 37 candidates, 9 candidates were selected based on their biological roles in 

cancer and verification results using either western blot or ELISA immunoassays (Figure 3.6, 

Chapter 3). From these 9, four protein targets PON1, CST3, CFD and ADAMDEC1 were 

further processed to develop a PRM assay. 

Out of these four candidates, only ADAMDEC1 and CFD were successfully completed as 

shown in Figures 4.3 and 4.4. The remaining two candidates PON1 and CST3, did not show 

reliable identification at one retention time in consecutive runs. The error between retention 

times was greater than 5 minutes and hence further method optimisation is required to 

validation and reliably capture the transitions from PON1 and CST3 in plasma samples. In 

summary, this study provides preliminary data overviewing the trends of identified potential 

targets ADAMDEC1 and CFD. Absolute quantification of target proteins can now be obtained 

by spiking heavy peptide into plasma samples after determination of lowest limit of 

quantification of both heavy and light peptide. This study lays a foundation for the future 

development of a potentially translatable assay for CFD for early CRC diagnosis. 
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Supplementary Information 

Figure S4.1 Transitions identified from peptide NSVASISTCDGLR (ADAMDEC1) in technical triplicates of CRC stages I-IV (pooled plasma) 

and healthy controls  
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Table S4.1 ADAMDEC1 Normalised Peak Area Intensity  

Normalized 

Area 

Precursor 

Result Precursor Results Summary Protein Name Replicate 

1.74E-02 571582 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN A1 

1.96E-01 2895062 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN A2 

3.84E-02 701774 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN A3 

4.34E-02 504112 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1_HUMAN B1 

3.21E-01 15801390 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1_HUMAN B2 

4.79E-02 352682 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN B3 

1.01E-01 26125030 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN C1 

1.07E+00 1252529 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN C2 

8.07E-02 1251567 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN C3 

5.22E-02 742869 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN D1 

6.23E-01 3320430 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN D2 

3.58E-02 1008936 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN E1 

1.96E-02 3350372 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1 HUMAN E2 

2.24E-02 128802 

RT: 15.56+/-3.89 Area: 4143367+/-

7485407 sp|O15204|ADEC1_HUMAN E3 
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Figure S4.2 Transitions identified from peptide ATLGPAVRPLPWQR (CFD) in technical triplicates of CRC stages I-IV (pooled plasma) and 

healthy controls  
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Table S4.2 Complement Factor D Normalised Peak Area Intensity 

Area Normalized 

Transition Results 

Summary 

Precursor 

Result Precursor Results Summary Protein Name Replicates 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 2409645 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN A1 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 2201094 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN A2 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 1877391 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN A3 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 9537801 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN B1 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 3049100 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN B2 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 1364333 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN B3 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 2282177 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN C1 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 4710353 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN C2 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 4200453 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN C3 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 4713250 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN D1 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 2519008 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN D2 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 3274652 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN D3 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 8543592 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN E1 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 13981250 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN E2 

1.4219%+/-1.566% 

RT: 19.14+/-1.7 Area: 

113346+/-148586 8192211 

RT: 18.9+/-2 Area: 4857087+/-

3608898 sp|P00746|CFAD_HUMAN E3 
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Chapter 5 

μPAR and αvβ6 as metastatic marker of colorectal 

cancer quantified using parallel reaction monitoring 

Abstract 

The Baker research team based at Macquarie University has focused on developing strategies 

to identify novel diagnostic/prognostic markers for colorectal cancer (CRC) metastasis, whilst 

simultaneously elucidating the molecular interactions responsible for the disease. These efforts 

incorporate design and use of earlier stage plasma diagnostics, better tissue prognostic 

biomarkers and improved targeted therapeutic options to improve CRC patient survival.  

 

The objective of this chapter was to explore spatiotemporal aspects of increased expression of 

circulating uPAR and integrin αvβ6 potentially ‘shed’ from the cancer cell surface into during 

the development of CRC.  

 

The role of uPAR as a stage II prognostic marker in CRC tissues has been well established by 

our group, and it has been demonstrated that increased expression of uPAR determines the 

likelihood of CRC recurrence and overall survival in stage II CRC patients (Ahn et al., 2015). 

Similarly, αvβ6 expression has been shown to be elevated at early stages of CRC tumours, but 

not expressed in normal epithelium (Ahn S B et al., 2014, Bandyopadhyay A et al., 2009)). In 

addition, the NIH Clinical Trials database indicates at least 7 breast and prostate cancer clinical 

trials are targeting either uPAR or suPAR. It is possible that these proteins are expressed at 

extremely low levels and remained undetectable in undepleted plasma. This chapter describes 

work to identify and quantify uPAR and αvβ6 peptides from ultradepleted plasma using a 

targeted PRM-based assay approach. 
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Seong Beom Ahn and Professor Mark Baker at Macquarie University, Australia. Some of the 
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whilst others were undertaken collaboratively. The details of contributions made by both 

authors is outlined below. I acknowledge Ms Fonseka as a significant contributor to data 

generation and analysis. This work was funded by an iMQRES scholarship #2015158 and a 

Sydney Vital Research Scholarship #50468/00. 

 

Addendum:  

A detailed summary of contributions made by both first authors Ms Samridhi Sharma and Ms 

Sachini Fonseka is detailed below in Figure 5A and Table 5A. These two displays show 

schematic progress across the project and itemise contributions made by candidates in the 

completion of milestones. 

 

SS: Ms Samridhi Sharma 

SF: Ms Sachini Fonseka  

 

 

 

Figure 5A: Schematic of the workflow involved in developing a PRM assay, pictographic 

timeline and contributions from joint first authors through major milestones of the project. 
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Table 5A: Data contributed by joint first authors 

Display name  Display type  Role Definition  Contribution  

         Sharma S Foneska S 

Figure 5.1 Schematic 

representation of 

mechanism  

NA  __  __  

Figure 5.2 Data  This figure is based on experiments performed 

by SS. Results from this experiment were run 

by SS. Repeats of these experiments were 

performed by SF and data are provided as 

Supplementary Figure S5.1.  

Performed the experiments,  

analysed the data 

and prepared the figure  

__  

Table 5.1 Data  Table 5.1 is derived from SS experiments 

reported in Figures 5.1 and 5.2. The data 

generated by SF are added as Table S5.2 to 

avoid the redundancy in the thesis chapter  

Performed the experiments,  

analysed the data and made 

the figure  

__  

Figure 5.3 Data  This figure is based on experiments performed 

by SS. Results from this experiment were run 

by SS. A set of experiments were performed 

by SF and are provided as Figure S5.2.  

Performed the experiments,  

analysed the data and made 

the figure  

__  

Figure 5.4, 5.5 

and Table 5.2, 

5.3 

Data  This figure is based on experiments performed 

by SF. Results from this experiment were run 

by SF.   

__  Performed the 

experiments,  

analysed the data and 

made the figure  

Figure 5.6 and 

Table 5.4 

Data  Experiments based on whole cell lysates 

of HCT116 cell line done by SF exclusively  

__  Performed the 

experiments,  

analysed the data and 

made the figure   

Figure 5.7, 

Figure 5.8 and 

Table 5.5 

Data  uPAR and αvβ6 transitions detected in trypsin 

digested crude human plasma done by SS 

exclusively.  

Performed the experiments,  

analysed the data and made the 

figure  

__  
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5.1 Introduction 

Colorectal cancer (CRC) is the third leading cause of cancer-related morbidity and mortality 

affecting both male and female populations (Siegel et al., 2014). The survival rate of patients 

is greater than 90% when diagnosed at an early stage (AJCC, stage I/II), as the tumour is 

confined within the bowel wall and is usually curable by surgery (Haggar and Boushey, 2009). 

Unfortunately, due to the asymptomatic nature of early stage disease, tumours remain 

undiagnosed and are primarily detected when they have spread (metastasised) to local lymph 

nodes and distant organs (late stages, AJCC III/IV). Metastasis to distant organs reduces patient 

survival to lower than 13% (Siegel et al., 2014) and is responsible for 90% of cancer-related 

deaths (Seyfried and Huysentruyt, 2013). Metastasis is described as a process in which cancer 

cells leave the primary tumour and move to surrounding tissues and distant organs where they 

form new lesions (Seyfried and Huysentruyt, 2013).  

 

The sequential metastatic process can be distilled into distinct pathophysiological stages; 

emergence of the primary tumour growth, angiogenesis to meet increased metabolic demand, 

epithelial-to-mesenchymal transition (EMT), invasion, intravasation, survival in circulation, 

extravasation and dormancy or secondary tumour growth (Duffy et al., 2008; Eccles and 

Welch, 2007; Steeg, 2006). It is to be noted that the epithelial-to-mesenchymal transition 

(EMT) marks the initiation of metastasis in epithelial cancers, including CRC. During this 

transition, the epithelial cancer cell changes its interactions with basement membranes and 

undergoes biochemical changes to phenotypically transform into mesenchymal cells. This 

change provides additional motility to cells, essential for metastasis, invasiveness, resistance 

to apoptosis and increased turnover of extracellular matrix components (ECM) that assist in 

the completion of the EMT (Lamouille et al., 2014).  

 

Several distinct molecular processes collectively initiate an EMT-like activation of 

transcription factors, cell matrix remodelling and cytoskeletal proteins, ECM-degrading 

enzymes and variations in the expression of specific cell-surface proteins (Kalluri and 

Weinberg, 2009; Lamouille et al., 2014). Some specific proteins such as integrins, proteolytic 

enzymes, growth factors and their respective downstream signalling are often regarded as 

lynchpins in this process and can be used as biomarkers of EMT progression (Kalluri and 

Weinberg, 2009).  
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The expression of two proteins in focus are namely integrin αvβ6 (Bengs et al., 2013; Cantor 

et al., 2015; Niu et al., 2002) and the urokinase-type plasminogen activator receptor (uPAR) 

(Brabletz et al., 2005; Eden et al., 2011; Lester et al., 2007) have been proposed as EMT 

markers. The serine protease urokinase plasminogen activator (uPA) plays a pivotal role in 

epithelial tissue remodelling as well as cancer development and progression by interacting with 

its specific GPI-linked membrane-bound receptor uPAR (Ploug et al., 1991; Uszynski et al., 

2004). The interaction between uPA and uPAR activates downstream cell-surface plasminogen 

by proteolytic cleavage which starts plasmin-mediated pericellular ECM proteolysis, 

facilitating cell migration and invasion (Uszynski et al., 2004).  

 

Apart from its role as a specific receptor for uPA, uPAR is overexpressed in both neoplastic 

and tumour-stromal invasive microenvironments (Uszynski et al., 2004). uPAR plays a critical 

role in cancer progression through its interaction with structural ECM proteins such as integrins 

and vitronectin, in addition to functioning as a regulator of angiogenesis (Zhang et al., 2003). 

Many epithelial cancers, including CRC, have are found to exhibit uPAR expression (Lester et 

al., 2007). The expression of uPAR in CRC tumour cells is characteristically limited to the 

invasive front of tumour islands, which facilitates its ability to increase cell motility or cancer 

metastasis (Pyke et al., 1994). A close correlation has been observed between high uPAR 

expression and poor patient prognosis, especially, during the transition to an invasive 

carcinoma (Suzuki et al., 1998). Furthermore, Ahn et al., established that high epithelial cell uPAR 

expression differentiates poorer survival for stage II rectal cancer patients (Ahn et al., 2015).  

 

Another class of lynchpin protein participating in EMT transition are the integrins. They 

represent a major class of ubiquitous transmembrane α/β heterodimer glycoproteins (Hamidi 

and Ivaska, 2018). Different integrin α/β heterodimers interact with the ECM through specific, 

high-affinity ligands. Some integrin heterodimers have been found to participate in ECM 

disruption to promote the EMT (Figure 5.1). Some, such as αvβ6 that is a high-affinity 

interactor with Transforming growth factor beta 1, are specifically expressed by epithelial 

cancer cells or cells undergoing large-scale tissue remodelling. As a result, it is not surprising 

that αvβ6 is poorly expressed by normal epithelial tissues (Hamidi and Ivaska, 2018). 

Unequivocal data supports the contention that integrin αvβ6 and uPAR interact directly and 

that both are involved in cancer proliferation, adhesion, migration, invasion and the EMT - all 

hallmarks of metastasis (Cantor et al., 2015). Saldanha et al., 2007 first identified interaction 

between uPAR and αvβ6 using a human ovarian epithelial cancer cell line using forward and 
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reverse co-immunoprecipitation (Saldanha et al., 2007). This interaction was confirmed by in 

silico structural modelling and peptide array analysis and that identified the exact binding sites 

which were validated by proximity ligation assays (Ahn et al., 2014) (Sowmya et al., 2014). 

Furthermore, uPAR and αvβ6 are co-expressed at invasive regions of CRC tumours, both are 

reported to delineate clinical stage and both are independent negative survival prognostic 

factors (Bengs et al., 2013) (Boonstra et al., 2011).  

 

High expression of β6 (a subunit of the αvβ6 heterodimer) has been associated with poor patient 

survival in a study performed on 500 metastatic CRC patients (Bandyopadhyay and Raghavan, 

2009). In another study by Scharl et al., higher serum levels of β6 were observed in CRC patient 

plasma with 100% metastasis and poor patient survival (Bengs et al., 2013). In conclusion, 

multiple lines of evidence describe the association of elevated uPAR and β6 levels with cancer 

metastasis.  

 

Current determination of both αvβ6 and uPAR are based on ELISA and immunohistochemistry 

(IHC) studies, which rely upon the sensitivity and specificity of commercially available 

antibodies to produce high-quality assays. Often, antibodies are poorly characterized, leading 

to cross-reactivity with other antigens present in biological samples, thereby providing non-

robust and irreproducible results which can lead to the drawing of ambiguous conclusions (Lin 

et al., 2013). Therefore, there is a need to develop alternative, sensitive and specific assays for 

absolute protein quantification. In this context, lLiquid-chromatography (LC)-based parallel 

reaction monitoring (PRM) assays are robust and reproducible. PRM’s can be multiplexed and 

deployed for use to test different biospecimens after optimisations (Picotti et al., 2010).  

 

This study has an overarching aim to evaluate both uPAR and αvβ6 as potential EMT and CRC 

biomarkers in CRC plasma. Plasma as a biospecimen is ideal owing to its ease of accessibility 

and reflection of systemic physiology/pathology. However, the high dynamic concentration 

range of plasma makes it a particularly challenging biospecimen, as 90% of plasma is covered 

by high-abundant plasma proteins in mg/ml, whilst low abundance proteins or tissue-shed 

proteins like uPAR and αvβ6 have concentrations in the order of ng/ml. This makes 

detectability of low abundant proteins challenging. Therfore, before initiating our plasma PRM 

assay, a pilot study to optimise LC-PRM parameters was performed to determine expression 

of uPAR in the HCT116 cell line. A suitably developed PRM assay would then be deployed 

on human plasma samples to design a fit-for-purpose biomarker assay.  
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Figure 5.1: The schematic diagram of the role of uPAR and αvβ6 in the epithelial to 

mesenchymal transition at the cell surface. At the extracellular plasma membrane, the 

zymogen protease pro-uPA binds to the GPI-anchored uPAR, where it is cleaved to release 

active twin-chain uPA as part of the plasminogen activation cascade, resulting in the activation 

of plasminogen to plasmin. Plasmin triggers the release and activation of other matrix 

metalloproteases (MMPs) from stromal cells to assist in degrading the ECM basement 

membrane, culminating in intravasation. αvβ6 expression directly relates with MMP secretion 

and co-interacts with the uPAR for intracellular transduction. Adapted from (Smith and 

Marshall, 2010). Image is adapted from (Cantor et al., 2015).  

 

5.2 Materials and Methods 

All reagents, organic solvents and mass spectrometric-related chemicals employed in this study 

were obtained from Sigma Aldrich and were of MS grade with 99.9% purity, unless stated 

otherwise. 
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Recombinant proteins 

Recombinant αvβ6 and uPAR proteins were used to generate and evaluate “flyable” peptides 

and transitions for successful PRM assays. Recombinant human αvβ6, composed covalently of 

αv at 110.5kDa and β6 at 68.6kDa in a 1:1 ratio, and uPAR protein standards were obtained 

from R&D, Minneapolis, USA (R&D catalogue numbers #3817-AV-050 and #807-UK/CF-

100, respectively).  

 

CRC cell lysate preparation and determination of total protein 

This study employed two sub-clones of HCT116 cells (ATCC® CCL-247™) that were 

produced by the Baker/Wang/Doe research team at JCSMR, ANU and were gifted to our 

current research group by our colleague Dr Yao Wang, St George Hospital, NSW. Wild type 

(WT) HTC116 is a cell line derived from a stage B CRC tumour with known endogenous uPAR 

expression (Ahmed et al., 2003). The HCT116 anti-sense cell line (AS) has stable transfection 

of a uPAR-siRNA construct, resulting in an approximate 35-40% decrease in uPAR expression, 

relative to both the mock-transfected and/or wild type HCT116 cell line as determined by 

Western blotting (data not shown). The stable decrease in uPAR expression in HCT116 AS 

cell lines has been independently confirmed to be ~27% (Liu et al., 2014). In brief, cells were 

cultured to 90% confluency in 150cm tissue culture dishes in Dulbecco’s Modified Eagle 

media, supplemented with 400µg/ml Hygromycin-B at 37oC with 5% CO2. Cells were washed 

in cold phosphate-buffered saline prior to lysis in a 100mM triethylammonium bicarbonate 

(TEAB) buffer containing 0.1% sodium deoxycholate. Protein concentration in the cell lysates 

was determined using bicinchoninic acid (BCA) assay kit (PierceTM #23225) following the 

manufacturer's protocol.  

 

Plasma collection and sample preparation  

Plasma samples from 100 individuals, comprising of 80 clinically staged colorectal cancer (I-

IV; 20 in each) and 20 healthy controls were procured from Victorian Cancer Biobank, 

Melbourne under approved human ethics (HREC Ref #5201600401 and #5201700681). 

Plasma samples were collected prior to colonoscopy and detailed clinical/pathophysiology 

reports information of individual, their inclusion/exclusion criteria have been discussed in 

detail in research article (Mahboob et al., 2015) and section 3.2, Chapter 3 of this thesis. 
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Tryptic digestion of recombinant proteins, cell lysates and human plasma samples: 

All recombinant protein samples, cell lysates and human plasma samples were reduced, 

alkylated, tryptically digested and desalted as outlined in material and methods prior to analysis 

by mass spectrometry   

 

Liquid Chromatography (LC)-Parallel Reaction Monitoring (PRM)-MS analysis 

Trypsin digested lysate samples were analysed on a Thermo Scientific™ Q-Exactive™ Hybrid 

Quadrupole-Orbitrap fitted with a nano-liquid chromatography (LC) system (Thermo). The LC 

column for peptide separation was pre-packed with Michrom Magic C18 (75µm x 15cm, 5µm, 

120 A) to separate peptides. A total of 2ug peptide was reconstituted in 0.1% formic acid (total 

volume 10µL) before being injected onto the column in 99% buffer A (0.1% FA) and 1% buffer 

B (0.1% FA in ACN). The flow rate was kept at 0.3µL/min throughout the gradient conditions 

(50mins linear gradient from 1% to 65% buffer B, a 2 mins linear gradient from 65-85% buffer 

B, and a final 8mins gradient from 85% buffer B). A blank injection was performed between 

each lysate sample to avoid potential carry-over. A blank injection was performed after every 

third injection of purified recombinant protein.  

In PRM mode, a predefined precursor m/z mass for target peptides and inclusion list was 

generated. The peptide transition list was downloaded from SRMAtlas 

(http://www.srmatlas.org/), where peptide length is >8 amino acids in length, no reported post-

translational modification and charge state of +2 and +3 included in the inclusion list and 

scheduled for PRM runs.  

All peptide transitions were checked for proteotypicity using BLASTP (UniProt) and the 

unicity checker in NextProt1 and confirmed to be unique for either αvβ6 or uPAR.  In 

instrument settings, Orbitrap resolution was set at 17,500 with a target AGC value of 1e6, 

maximum fill time of 250ms, and an isolation window of 2.0m/z. Normalised collision energy 

was kept at 30 after multiple optimisations.  

Data analysis  

All raw data files from recombinant proteins, cell lysates and plasma upon subjecting to PRM 

assay were imported and processed in Skyline (v. 4.2) (MacLean et al., 2010), a freely available 

tool for PRM analysis.  
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First, the FASTA sequence of both proteins was uploaded to the software, along with basic 

information for data quality checking in order to extract the chromatograms from raw data files. 

This information included, setting up the peptide, protein and transition parameters such as 

digestion was specified as trypsin, with carboxyamidomethylation modifications enabled. In 

transition settings (under filter tab) precursor charges were kept 2, and 3; ion charges as 1, 2, 3 

and ion types as y, b and p. Under the full scan tab, MS/MS filtering was ‘targeted’, product 

mass analyser as ‘QIT’ with a resolution of 0.7m/z. Peak integration and data generation and 

normalisation was performed automatically by Skyline based on default integration 

parameters. Regression model to calculate the sensitivity of the PRM assay and an unpaired t-

test determine the significance (p-value) of uPAR expression between recombinant and cell 

lysate samples were performed using GraphPad Prism (version Prism 7). 

5.3 Results  

Proteotypic peptide selection and determination of optimal ion intensity peak for uPAR 

and β6 PRMs 

The main objective of this study was to select proteotypic peptides that allowed unambiguous 

identification and quantitation of the cancer-associated cell-surface proteins uPAR and β6. This 

step was key for the successful development of PRM assays.  

Our aim was to select at least five peptide transitions for each of the two proteins. From 100ng 

of digested recombinant protein, PRM analysis identified multiple (13) peptides from uPAR 

and 10 from β6, respectively. Representative peaks for uPAR and β6 peptides are shown in 

Figures 5.2 and 5.3 with transition data outlined in Table 5.1. The average peak area of each 

daughter ion was compared for each peptide to determine highest intensity ion for each peptide 

and is shown as mean ± standard error (SEM) as part of routine data curation and where 

selected peptides were required to be observed in every replicate for continued investigation.  

uPAR peptides: From the 13 peptides (downloaded from SRM Atlas, Table S5.1), scheduled 

for parallel reaction monitoring, four peptides demonstrated reproducible transitions with top-

ranking peak intensity for daughter ions. The selection of top-ranked daughter ions of 

respective peptides was based on the p-value significance of peak intensities of all the 

transitions detected. The summary data and statistical evaluation for daughter ions ranked from 

highest to lowest intensity are collated in Table 5.1a. Four uPAR transitions with significantly 

higher intensity compared to other uPAR peptides were for the peptides 
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GNSTHGCSSEETFLIDCR (690.63), CNEGPILELENLPQNGR (651.66), 

SGCNHPDLDVQYR (520.90) and LWEEGEELELVEK (801.90) (Figures 5.2A, 5.2B, 5.2C, 

and 5.2D, respectively).  The reproducible identification of these four peptides was confirmed 

in a separate validation experiment (Supp Figure S5.1 and Table S5.2). 

 

A) Peptide: SGCNHPDLDVQR; m/z = 520.9, charge = 3+ 

 

B) Peptide: CNEGPILELENLPQNGR; m/z = 651.66, charge = 3+ 
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C) Peptide: LWEEGEELELVEK; m/z = 801.9, charge = 2+ 

 

D) Peptide: GNSTHGCSSEETFLIDCR; m/z = 690.63, charge = 3+ 

 

Figure 5.2: Representation of uPAR peptide peak intensity and detected transitions: (A-D) The 

peak area of all reproducibly detected daughter ions from each peptide was compared in 

triplicates. Mean and SEM is shown in histograms below. Histograms without error bars were 

not run in triplicates 
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β6 peptides: From the 10 peptides procured from SRMAtlas (Table S5.1), two peptides 

showed reproducible transitions with top ranking peak intensity of daughter ions. Again, the 

selection of top-ranked daughter ions of respective peptides was based on the p-value 

significance of peak intensities of all the transitions detected. The summary data and statistical 

evaluation is outlined in Table 5.1b. The β6 peptides SCIECHLSAAGQAR (520.57) and 

GLLCGGNGDCDCGECVCR (686.92) had statistically significant top ranked ions (Figure 

5.3a and 5.3b).  The reproducible identification of these two peptides was confirmed in a 

separate validation experiment (Supp Figure S5.1 and Table 5.2). 

 

A) Peptide: GLLCGGNGDCDCGECVCR; m/z = 686.9233, charge = 3+ 

 

 

Table 5.1: uPAR and v6 transitions detected in recombinant proteins in triplicates  

a) uPAR 

Peptide sequence m/z Charge 

Daughter 

ions 

observed  

Maximum 

Peak 

Intensity 

Top 

rank ion  

GNSTHGCSSEETFLIDCR 690.63 3 5 3000 b13+ 

CNEGPILELENLPQNGR 651.66 3 7 8*104 y5+ 

SGCNHPDLDVQYR 520.9 3 3 1*104 y4+ 

LWEEGEELELVEK 801.9 2 2 2 - 

b) v6 

GLLCGGNGDCDCGECVCR 686.923 3 5 1.7*105 y12+ 

SCIECHLSAAGQAR 520.573 3 - 8*104 y1+ 
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B) Peptide: SCIECHLSAAGQAR; m/z = 520.5733, charge = 3+ 

 

 

Figure 5.3: Representation of v6 peptide peak intensity and detected transitions: (A-B) The 

peak area of all reproducibly detected daughter ions from each peptide was compared in 

triplicates. Mean and SEM is shown in histograms below. 

 

uPAR transition limit of detection (LoD) 

The LoD was determined using the linear range of recombinant uPAR transitions by measuring 

relative responses of an increasing concentration of digested recombinant uPAR (5, 2.5, 1 and 

0.1µg/mL). Samples were run in triplicate and data analysed by linear regression to assess 

accuracy of correlation between concentration and peak intensity. Reproducibly observed 

transitions with highest peak ion are shown as mean ± SEM (Figure 5.4). The lowest 

concentration point that determines a confident peak was defined as the lowest limit of 

detection. The linearity was evaluated by the correlation coefficient (R2) of the standard curve 

of multiple transitions observed. Using R2 to assess the best fit of data to a straight-line curve 

assumes that the data have a constant variance over the whole range of concentrations. 

Respective R2 and LoD of each transition are listed in Table 5.2. In terms of cartesian 

coordinates, the average correlation coefficient calculated between peptide concentration and 

peak area 0.95. GNSTHGCSSEETFLIDCR uPAR peptide, detected with high confidence in 

previous experiments, was not confidently detected in sensitivity experiment.  
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Figure 5.4: Determination of  linearity and limit of detection for high intensity uPAR 

transitions. A best-fit regression model assesed linearity and the last confident peak taken as 

the LoD. The transitions are shown as peptide sequence and top intensity daughter ion. 

Experiments to generate this data were performed by Ms Sachini Fonseka and were previously 

presented in her M.Res thesis. This figure has been reproduced and adapted from (Fonseka) 

after seeking permission. 

Table 5.2: Correlation coefficient of two linear models of uPAR transitions response curve 

and its limit of detection (LoD).  

Transitions 
Correlation coefficient 

LOD (µg/mL) 

Best fit (x=0, y=0) 

CNEGPILELENLPQNGR: y5+ 0.92 0.8746 0.1 

SGCNHPDLDVQYR: y8+ 0.9067 0.8881 0.01 

LWEEGEELELVEK: y9+ 0.962 0.9346 0.1 

Experiments to generate this data were performed by Ms Sachini Fonseka and were 

previously presented in her M.Res thesis. This table has been reproduced and adapted from 

(Fonseka) after seeking permission. 
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β6 transitions limit of detection (LoD)  

This experiment remains at a preliminary stage, as samples were only performed in singlicate 

in the concentration range of 5, 2.5, 1.25, 0.08 and 0.04µg/mL. The analysis and presentation 

of data for observed β6 transitions was the same as described with the exception discussed 

below. The peptide GLLCGGNGDCDCGECVCR (686.92) detected in the previous 

experiment was not confidently detected. Conversely, peptides SCIECHLSAAGQAR, 

LGFGSFVEKPVSPFVK, GCQLNFIENPVSQVEILK, and HILPLTNDAER were detected. 

The correlation coefficient (R2) and LoD of each transition are listed in Table 5.3. The average 

correlation coefficient between peak area and peptide concentration was 0.93 with a best-fit 

regression fit (Figure 5.5). Additional repeats are required for confident analysis. 

 

Figure 5.5: Determination of  linearity and limit of detection for high intensity identified 

transitions of β6. A best-fit regression model assesed linearity and the last confident peak taken 

as the limit of detection (LoD). The transitions are shown as peptide sequence and top intensity 

daughter ion. Experiments to generate this data were performed by Ms Sachini Fonseka and 

were previously presented in her M.Res thesis. This figure has been reproduced and adapted 

from (Fonseka) after seeking permission. 
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Table 5.3: The correlation coefficient of two linear models of the β6 transitions standard 

curve and its limit of detection (LoD).  

Transitions 

Correlation coefficient 

LOD (µg/mL) 

Best fit (x=0, y=0) 

HILPLTNDAER: b3+ 0.8937 0.8759 0.08 

LGFGSFVEKPVSPFVK: y7+ 0.9719 0.9682 0.04 

GCQLNFIENPVSQVEILK: y7+ 0.9168 0.8977 1.25 

SCIECHLSAAGQAR: y7+ 0.9144 0.9096 0.08 

Experiments to generate this data were performed by Ms Sachini Fonseka and were 

previously presented in her M.Res thesis. This figure has been reproduced and adapted from 

(Fonseka) after seeking permission. 

 

uPAR PRM-MS assay validation in HCT116 whole cell lysates  

The aim of this experiment was to test applicability of the uPAR PRM assay using the HCT116 

cell line. Furthermore, the sensitivity was tested using the HCT116 AS cell line which has a 

reported 35-45% knock-down of uPAR protein (Liu et al., 2014).  Ten transitions and six uPAR 

peptides were detected from the inclusion list (Figure 5.6, Table 5.4). The sequence location 

of detected peptides within the mature uPAR protein map to each of the three domains of uPAR 

- one from each of domain D1 and the so-called domain linker region D2D3 and four from 

domain D3. This data clearly indicated the presence of many peptides and hence full-length 

uPAR protein in HCT116 whole cell lysates. The six peptides detected were consistently 

observed including from analysis of recombinant protein samples in both experiments. In 

contrast to the multiple daughter ions per peptide observed in the recombinant analysis in the 

lysate, all peptides except CNEGPILELENLPQNGR and SGAAPQPGPAHLSLTITLLMTAR 

were detected by a single daughter ion (Figure 5.6E, 5.6F,5.6G,5.6H,5.6I, and 5.6J), Table 5.4. 

All transitions showed the expected reduced intensity in the AS lysate compared to WT, with 

a reduction range of 13% to 58%. Transition CNEGPILELENLPQNGR: b6+ had the highest 

reduction of 58% whereas SGAAPQPGPAHLSLTITLLMTAR: b8+ had the lowest of 13% 

(Table 5.4).  On average, the transitions have a 33.8% decreased intensity in the AS cell line 
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when compared to WT. This decrease in intensity was significant for 5 out of the 10 transitions 

(Table 5.4).   

 



200 
 

 

Figure 5.6: uPAR transitions detected in HCT116 WT and AS whole-cell lysates. An 

unpaired t-test determined significance reduced expression of uPAR peptides between WT and 

AS cell lines. Experiments to generate this data were performed by Ms Sachini Fonseka and 

were previously presented in her M.Res thesis. This figure has been reproduced and adapted 

from (Fonseka) after seeking permission. 
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Table 5.4: uPAR transitions detected in HTCC WT and AS lysate  

Transitions WT AS 
% 

decrease 

Compariso

n  

GNSTHGCSSEETFLIDCR b9+ 
2.4x106 ± 

3.7x104 

1.5x106 ± 

1.2x105 
37 p=0.02* 

CNEGPILELENLPQNGR y14++ 
2.2 x107 ± 

9.8 x105 

9.9 x106 ± 

6.5 x105 
55 p=0.009** 

CNEGPILELENLPQNGR b7++ 
8.3 x106 ± 

2.1 x106 

4.7 x106 ± 

8.6 x105 
43 p=0.25 

CNEGPILELENLPQNGR b14 
4.6 x106 ± 

1.6 x105 

3.2 x106 ± 

5.1 x105 
31 p=0.11 

CNEGPILELENLPQNGR b6+ 
3.8 x106 ± 

3.3 x105 

1.6 x106 ± 

5.2 x104 
58 p=0.02* 

SGCNHPDLDVQYR y6+ 
7.1 x106± 

2.8 x105 

4.6 x106 ± 

4.3 x104 
34 p=0.01* 

LWGGTLLWT b7+ 3.6 x107 
3.0 x107 ± 

3.0 x106 
17 N/A 

LWEEGEELELVEK y7+ 
6.3 x106 ± 

3.0 x105 

4.2 x106 ± 

1.4 x105 
32 p=0.03* 

SGAAPQPGPAHLSLTITLLMTAR b8+ 
4.7 x106 ± 

3.5x105 

4.0 x106 ± 

3.7 x105 
18 p=0.32 

SGAAPQPGPAHLSLTITLLMTAR b4+ 
2.3 x106 ± 

9.0x104 

2.0 x106 ± 

1.9 x105 
13 p=0.30 

Experiments to generate this data were performed by Ms Sachini Fonseka and were previously 

presented in her M.Res thesis. This table has been reproduced and adapted from (Fonseka) 

after seeking permission. 
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Proteotypic peptide identification for quantitation of uPAR and vβ6 in human plasma 

samples  

The detection of uPAR and vβ6 peptides from human plasma samples was performed using 

2ug and 5ug of plasma samples. 2ug of undepleted plasma did not show any data in spectral 

graphs and therefore, the amount of protein was increased from 2ug to 5ug.  

uPAR: 5ug of plasma sample yielded precursor ion peaks for five peptides, four of which 

matched with the peptides identified from recombinant proteins (Figure 5.2). Peptide, 

LWEEGEELELVEK; m/z = 801.8985, charge = 2+ was reproducibly identified from 

recombinant uPAR digest (Figure 5.2 and Supp Figure 5.1) with 6 reported transitions and a 

maximum peak intensity of 6x108, whereas in 5ug human digested plasma, this same peptide 

was identified with peak intensity of 300 and with one precursor ion peak. Peptide 

CNEGPILELENLPQNGR, m/z = 651.66, charge = 3+ was detected with multiple transitions 

and high peak intensity in recombinant proteins (Figure 5.2 and Supp Figure 5.1), but a single 

peak of peptide was observed in plasma with an intensity of 200 and not a single transition was 

identified (Table 5.5 and Supp Figure 5.5). Further, peptides GNSTHGCSSEETFLIDCR; m/z 

= 690.6266; charge = 4 and peptide SGCNHPDLDVQYR; m/z = 520.9002; Charge = 3+ were 

identified with one precursor ion peak. It is important to note that no transition was observed 

for these two peptides from 5ug of plasma. Another peptide VEECALGQDLCR, m/z = 

725.3267 and charge = 2 + was identified with maximum peak intensity of 3x104 (Table 5.5 

and Figure 5.7).  However, no clear transition peaks were observed for this peptide.  

 

A) Peptide: LWEEGEELELVEK; m/z = 801.8985, charge = 2+  
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B) Peptide: CNEGPILELENLPQNGR, m/z = 651.66, charge = 3+  

 

C) Peptide: GNSTHGCSSEETFLIDCR; m/z = 690.6266; charge = 4+  

 

 

 

D) Peptide: VEECALGQDLCR; m/z = 725.3267; charge = 2+ 

 

 

 

Figure 5.7:  uPAR peptide peak intensity and detected transitions from 5g of trypsin digested 

non-depleted plasma: (A-D) The peak area of all reproducibly detected daughter ions from 

each peptide was compared in triplicates. Mean is shown in histograms. 
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β6: The precuror ion of peptide GLLCGGNGDCDCGECVCR, m/z = 686.92, charge = 3+ was 

identified with a peak intensity of 5000 and only one daughter ion (Table 5.5 and Supp Figure 

5.3). In comparison to recombinant protein data, this peptide was reproducibly detected from 

v6 recombinant proteins with 2 transitions and maximum peak intensity of 1x104. Peptide 

SCIECHLSAAGQAR, m/z = 520.5733, charge = 3+ only shows a straight line that doesn’t 

qualify as a valid peak. Peptide WQTGTNPLYR, m/z = 309.6596, charge = 4+ was identified 

with maximum peak intensity of 450 (Table 5.5 and Figure 5.8). The data for both uPAR and 

vβ6 peptides has been tabulated in Table 5.5. 

 

A. Peptide 1: GLLCGGNGDCDCGECVCR, m/z = 686.92, charge = 3+  

 

B. Peptide 2: WQTGTNPLYR, m/z = 309.6596, charge = 4+ 

 

 

Figure 5.8:  v6 peptide peak intensity and detected transitions from 5g of trypsin digested 

non-depleted plasma: (A-B) The peak area of all reproducibly detected daughter ions from 

each peptide was compared in triplicates. Mean is shown in histograms. 
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5.4 Discussion  

uPAR and vβ6 are established EMT drivers and have been suggested to orchestrate cancer 

metastasis (Cantor et al., 2015; Lester et al., 2007). Several studies have associated elevated 

levels of uPAR and β6 in plasma independently with cancer progression (Bengs et al., 2013; 

Boonstra et al., 2011).  

In this study, the aim was to design/develop robust LC-PRM assays as alternatives to 

immunoassays. These could be used to accurately monitor levels of uPAR and β6 as markers 

of the metastatic CRC phenotype and identify the EMT. A pilot study to verify and quantify 

uPAR and β6 from HCT116 cell lysates was performed.  

The first step was to reproducibly identify highest product ions, number of transitions and 

highest peak intensities from a complete digest of recombinant proteins. Multiple runs of the 

proteins are expected to produce equimolar peptides in multiple runs following no other 

variations is expected to produce equimolar peptide. However, differences in peak intensity (or 

relative abundance) were observed, which was likely due to the peptide performance variability 

in the MS (Keshishian et al., 2007). Thus, peak intensity was used as a measure of transition 

performance. Low-intensity transitions at a high concentration (10µg/ml in the transition 

detection experiment) are more likely to be undetectable in a plasma sample with much lower 

(~ng/mL) target protein (Keshishian et al., 2007; Liu et al., 2013).  

Table 5.5:  uPAR and v6 transitions detected in trypsin digested crude human plasma 

uPAR 

Peptide sequence m/z Charge 

Daughter 

ions 

observed 

Maximum 

Peak 

Intensity 

Top 

rank 

ion 

GNSTHGCSSEETFLIDCR 690.63 3 - 800 - 

CNEGPILELENLPQNGR 651.66 3 - 200 - 

SGCNHPDLDVQYR 520.9 3 - - - 

LWEEGEELELVEK 801.9 2 - 300 - 

VEECALGQDLCR 725.3267 2 - 4*104 - 

v6 

GLLCGGNGDCDCGECVCR 682.92 3 - 5000 - 

SCIECHLSAAGQAR 520.5733 3 - - - 

WQTGTNPLYR 309.6596 4 - 450 - 
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Peptides that produce high ion-current responses and high abundance fragment ions are likely 

to have the best detection sensitivity (Fusaro et al., 2009). Therefore, all ions detected from 

each peptide were compared using an unpaired t-test analysis to determine the highest intensity 

transition for each peptide. uPAR peptides from the recombinant protein, 

YLECISCGSSDMSCER (651.92), NQSYMVR (449.22) LGDAFSMNHIDVSCCTK 

(652.29) and NSSDIVQIAPQSLILK (863.98) (Table S5.1) were never detected in scheduled 

PRM. This was expected considering that peptides can have varying mass spectrometry 

detectability due to varying ionisation efficiencies (Keshishian et al., 2007). Additionally, poor 

chromatography, solubility problems, matrix interference and failure of recovery from digest 

can all effect the peptides detection (Jaffe et al., 2008).  

Further, the most important factor to be considered while designing a PRM-based assay is 

selection of a target peptide (Liebler and Zimmerman, 2013). The peptides when subjected to 

PRM enter the Q1 quadrupole that filters peptides of interest based on m/z. The mass inclusion 

list used for scheduled-PRMs contains m/z of signature proteotypic peptides and can be 

developed by in-house DIA experiments or identification from data repositories such as 

MRMaid (Mead et al., 2009) and SRMAtlas (Kusebauch et al., 2014) or in silico computational 

methods such as OpenMS/TOPP (Nahnsen and Kohlbacher, 2012).  

In this study, SRMAtlas, an extension of PeptideAtlas, was used to generate inclusion lists for 

uPAR and β6. After performing experiments, selected peptide transitions were evaluated on 

basis of mass spectrometric characteristics such as length of peptides, number of amino acids 

(aa), hydrophobicity, proteotypicity, number of observations and known single nucleotide 

polymorphisms (SNPs) (Uchida et al., 2013). All reproducible peptides observed were between 

10-16 aa in length and observations from multiple experiments has been reported by 

PeptideAtlas. Recommendations for peptide evaluation includes a hydrophobicity check as 

water-soluble peptides are preferred for optimal LC performance (Keshishian et al., 2007), 

therefore, peptide hydrophobicity was calculated and confirmed to be less than 40% using an 

online tool Peptide 2.0. The transitions selected for uPAR and β6 fulfil the aforementioned 

criteria of detectable signature proteotypic peptides for PRM, though, their detectability with 

plasma matrix as a background is yet to be determined. As stated above, it is important to select 

peptides that have previously been observed in other MS/MS experiments, as this confirms 

their ‘detectability/flyability’ and utility for successful PRM assay development. However, 

most β6 and uPAR data in SRMAtlas is derived from tissue and cell line studies, suggesting 
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that these two proteins are understudied in plasma or may have limited detection due to their 

plasma low abundance.  

In PeptideAtlas, two (2) integrin β6 and eleven (11) uPAR peptides were previously observed 

by the diagnostic company Roche in plasma proteome studies and through other unpublished 

data. The transition optimisation cannot solely rely on information derived from SRMAtlas or 

PeptideAtlas as endogenous peptides show different properties in different matrices. The best 

strategy would be to include peptides generated from SWATH™-MS or DIA or label-free MS 

studies, but that will also require further transition optimisation to develop a comprehensive 

PRM assay. 

The quality of a ‘fit for purpose’ diagnostic assay is based on sensitivity, peptide stability and 

requirement for standardisation. In order to characterise the analytical performance of a PRM 

assay, it is important to establish, via a systematic process, that endogenous peptides are 

efficiently performing in clinical settings (Shrivastava et al., 2011). This is done via 

determination of LoQ and LoD, which measure the lowest concentration of endogenous peptide 

that can be measured by mass spectrometry. LoD is an important step in discriminating between 

the presence and absence of a peptide from the biological sample while LoQ can reliably 

measure low level of peptides for PRM assay. The recombinant proteins used in this study 

assessed the fragmentation pattern of the peptide and the transition stability (variables 

determined through LoD/LoQ).  

 

It is important to note that the chromatographs and fragmentation pattern of endogenous 

peptides is identical to that of a peptide derived from recombinant protein. This is a part of 

method evaluation as establishing these parameters can increase the robustness and the 

statistical confidence of an experiment (Mani et al., 2012). It accounts for the variability in 

various concentration ratios which might be encountered while working with endogenous 

samples. Further, in a step towards developing a reproducible PRM assay, it is a common 

strategy to use isotopically labelled peptides as internal standards. This technique is widely 

known as stable isotope dilution (SIS) (Ozcan et al., 2017). The stable isotope peptides 

correspond to endogenous peptide of interest and are synthetically produced with a heavy 

arginine or lysine. The endogenous sample is spiked with stable isotope peptides in a 1:1 ratio. 

Again, owing to similar chromatographic, ionisation, and fragmentation patterns with 

endogenous peptides, spiking the samples helps in absolute and relative quantification of 

endogenous peptides by measuring LoD and LoQ (Ozcan et al., 2017). However, it is important 
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to note that both peptide selection and transitions are affected by the biological matrix, and the 

experiment. Therefore, each study needs to be optimised to the highest sensitivity and 

specificity based upon biological samples and specific instrument settings (Ozcan et al., 2017). 

In summary, determination of LoD and LoQ tests using recombinant protein and use of isotope 

peptides as internal standards is imperative for method development especially for studies 

where PRM assays are to be deployed into large scale clinical samples (Ozcan et al., 2017).  

 

The sensitivity or LoD of the transitions was determined by assessing dynamic range and the 

linearity of uPAR and β6 transitions. Many peptides from uPAR or β6, detected in the previous 

experiment, were not detected in the LoD experiment.  This may be attributed to peptide 

degradation within the prepared protein digest stock. Here, %CV calculation for multiple PRM 

runs at various time points and between freeze/thaw cycles according to CPTAC guidelines 

can assist development of a robust and reproducible assay. In this study, the sensitivity of 

identified peptides was evaluated by best-fit linear regression. This strategy was employed 

because of the broad concentration range used for uPAR and β6, and because MS standard 

curves are known to lose linearity at very high concentrations (Tang et al., 2004; Tang and 

Kebarle, 1993). The best fit regression was accurate at modelling higher concentrations but 

accurate modelling at lower concentrations is yet to be determined.  

 

Hence, more experiments are required to complete determination of sensitivity and specificity 

of uPAR and β6 transitions using plasma as the sample matrix/background. Specifically (i) 

robust and reproducible determination of uPAR and β6 peptides, at more than 6 time points 

and between freeze/thaw sessions, (ii) the uPAR and β6 transitions with the lowest LoD should 

be re-identified concentrating on robust transitions observed in previous experiments, and (iii) 

determination of specificity and sensitivity of both proteins with plasma as a background and 

should be analysed for matrix interference. Upon successful completion of this, heavy labelled 

peptides should be employed in a series of future quantification experiments.  

The proof-of-concept for uPAR PRM assay validation in CRC cell lysate  

The aim of this experiment was to perform a proof-of-concept study to determine 1) uPAR 

recovery from whole lysates, 2) identify transitions using cell lysates as a matrix background 

and 3) test the sensitivity of the PRM assay to detect and verify decreased uPAR expression 

from HCT116 AS cell lines and mock wild type HCT116 (known to express unaffected uPAR 

levels)  (Ahmed et al., 2003).  
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In total, ten (10) uPAR transitions and six (6) uPAR peptides were identified from whole cell 

lysate of both HCT116 WT and the HCT116 AS cell lines. The six peptides observed, 

originated from all three D1-D3 domains of uPAR, indicating the presence of full-length uPAR 

in our cell lysates and that HCT116 whole cell lysate preparation sufficiently recovered 

membrane GPI-anchored uPAR.  

Further, it is important to comment on the transitions observed between endogenous (cell 

lysate) and recombinant uPAR. It was evident that the recombinant protein uPAR could be 

detected with multiple transitions whilst single daughter ion transitions were observed from 

cell lysate PRMs. This further corroborates variability in peptide fragmentation or ion detection 

in the presence of a complex background matrix (Barnes et al., 2011). Despite the variability 

observed in detection of daughter ions, similar and high peptide intensities were observed 

between cell lysates and recombinant uPAR. To further explain this, peptide 

CNEGPILELENLPQNGR was seen with highest intensity from the recombinant protein 

analysis and the same peptide had the 2nd highest intensity from cell lysates. Similarity in the 

intensity of recombinant and endogenous peptides indicates consistent ionization and behavior 

in MS, validating the use of recombinant proteins for assay optimization 

It should be noted that not all peptides detected from HCT116 cell lysates were detected in the 

recombinant uPAR PRM analysis. This was not unexpected considering a lysate extraction is 

liable to protein loss, or degradation and biological variability (Feist and Hummon, 2015). 

Therefore, undetected uPAR peptides may either have been degraded, lost or not recovered 

after lysis. Additionally, HCT116-derived uPAR could have endogenous posttranslational 

modifications (PTMs) that cannot be observed in the recombinant protein (Hoofnagle and 

Wener, 2009). Fortunately, MRM/PRM-MS has the advantage that the known PTMs and 

isoforms can be targeted by extending the selection criterion for peptides (Liu et al., 2013). 

Therefore, if necessary, known uPAR glycosylation variants can be included in the PRM assay 

design (Ploug et al., 1991). 

The PRM assay developed to detect uPAR differential expression between WT and AS 

HCT116 cells is adequately sensitive. The observed peptide intensity data suggested what we 

know from experience to be  an ~33% decrease in uPAR expression in HCT116 AS cells as 

this closely parallels published protein knock-down data of ~27% (Ahmed et al., 2003; Liu et 

al., 2014). In addition, the use of the HCT116 CRC cell line confirms the applicability of the 

endogenous uPAR test to quantitatively measure this protein. 
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Measurement of uPAR and vβ6 peptides in plasma samples 

The aim of this study was to evaluate the capability of PRM assay to detect uPAR and αvβ6 

from human plasma sample. Considering the complex nature of plasma, and interference 

caused by abundant proteins in MS studies, the first basic criteria adopted was to reproducibly 

and precisely detect uPAR and αvβ6 peptide transitions from non-depleted plasma.  

 

In a PRM experiment, several single reaction monitoring transitions are monitored in a single 

assay. The reliability of the transitions and metrics of reproducibility are calculated using 

product ions of the peptides (i.e. uPAR and αvβ6) by assessing the reproducibility of signal 

peak intensity. The average of signal peak intensity for the m/z peaks observed for product ions 

is calculated across experiments including the %CV (coefficient of variance) and with standard 

deviation values. These statistics indicate the reproducibility of the fragment ions for a given 

precursor and also suggest number of PRM experimental runs needed to observe a reliable 

result for the transitions.  

 

While peptides from endogenous proteins (uPAR and αvβ6) were reproducibly observed in the 

non-depleted human plasma samples, the transitions fragmentation pattern did not show good 

peak intensities. In this study, the uPAR peptide VEECALGQDLCR was observed with a peak 

intensity of 0.3 X 102 with no reproducible transitions and product ions. The detection of low 

intensity precursor ion peaks suggested the presence of circulating fragments of uPAR and 

αvβ6 peptides in plasma. Further optimisation is therefore required and may include changes 

to sample preparation and using plasma digests after MARS14 depletion. Since uPAR and 

αvβ6 are CRC stage II prognostic and metastatic markers, respectively (Ahn S B et al., 2014 

and Ahn S B et al., 2015), using later stages of CRC (i.e. stage II and III) plasma digests could 

also allow reliable detection of these peptides, as both protein increase in expression with CRC 

progression. 

 

5.5 Next Steps  

In conclusion, while preliminary data using recombinant uPAR and αvβ6 proteins provide 

promising starting points to developing a PRM assay, translation of this assay to cell lysates 

and plasma have not met the robustness to reach clinical assay standards. While certain peptides 

and transitions can be reproducibility detected, the primary concern continues to be that of 
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detectable peak intensities in plasma. In addition to optimising sample processing and the PRM 

protocol itself, a possible alternative would be to explore and mimic an accurate model of an 

uPAR expressing patient tumour.  

 

Clinical translation of any biomarker requires massive population screening, with success 

hinging upon achieving the best sensitivity and specificity with accurate determination of 

protein concentration. A PRM assay, once fully developed and optimised, stands to offer 

immediate implementation and cost-efficient verification of numerous markers and high 

throughput in larger cohorts (Anderson and Hunter, 2006; Gallien et al., 2011).  

 

Further clinical evaluation of these markers may help in diagnosing CRC patients before 

progression to later stage disease or prior to initiation of the metastatic process and result in 

considerably improved patient survival. 
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Supplementary Information 

Supp Figure S5.1: Representation of uPAR peptide peak intensity and detected transitions: 

(A-D) The peak area of all reproducibly detected daughter ions from each peptide was 

compared in triplicates. Mean and SEM is shown in histograms below. The experiment for the 

data in this figure was performed by Ms Sachini Fonseka and is presented in her M.Res. thesis. 

This figure has been reproduced and adapted from (Fonseka) after seeking due permissions. 
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Supp Figure S5.3: Validation of reproducible uPAR peptide transitions from recombinant 

proteins and between freeze/thaw cycles. The peak area of all reproducibly detected daughter 

ions from each peptide was compared in triplicates (A-D). Mean and SEM is shown in 

histograms. 

A) Peptide: GNSTHGCSSEETFLIDCR; m/z = 690.63, charge = 3+ 

 

 

 

 

B) Peptide: CNEGPILELENLPQNGR; m/z = 651.66, charge = 3+ 
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C) Peptide: LWEEGEELELVEK; m/z = 801.9, charge = 2+ 

 

 

 

D) Peptide: SGCNHPDLDVQYR; m/z = 520.9002, charge = 3+ 
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Supplementary Tables 

Supp Table S5.1: Peptide mass inclusion list for identifying reproducible transitions 

 

 

Table S5.1. Peptide mass inclusion list for PRM MS analysis  

uPAR 

Peptide sequence m/z Charge 

GNSTHGCSSEETFLIDCR 690.63 3 

GPMNQCLVATGTHEPK 870.41 2 

CNEGPILELENLPQNGR 651.66 3 

YLECISCGSSDMSCER 651.92 3 

YLECISCGSSDMSCER 977.38 2 

SGCNHPDLDVQYR 520.9 3 

LWGGTLLWT 523.79 2 

NQSYMVR 449.22 2 

LWEEGEELELVEK 801.9 2 

SGAAPQPGPAHLSLTITLLMTAR 768.42 3 

ITSLTEVVCGLDLCNQGNSGR 1147.05 2 

SPEEQCLDVVTH 707.32 2 

LGDAFSMNHIDVSCCTK 652.29 3 

v6 

Peptide sequence m/z Charge 

HILPLTNDAER 426.9 3 

LGFGSFVEKPVSPFVK 579.99 3 

NSSDIVQIAPQSLILK 576 3 

NSSDIVQIAPQSLILK 863.98 2 

GCQLNFIENPVSQVEILK 696.7 3 

VGDTASFSVTVNIPHCER 663.66 3 

NEYSMSTVLEYPTIGQLIDK 767.72 3 

SCIECHLSAAGQAR 520.57 3 

WQTGTNPLYR 618.31 2 

GLLCGGNGDCDCGECVCR 686.92 3 
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Table S5.2. a) uPAR transitions detected in recombinant protein sample triplicates 

Peptide sequence  m/z Charge 

# 

daughter 

ions obs. 

Maximum 

Peak 

Intensity  

Top 

rank 

ion 

Top ranking 

ion 

significance  

GNSTHGCSSEETFLIDCR 690.63 +3 7 7.3x106   y6+ p=0.03* 

CNEGPILELENLPQNGR 651.66 +3 9 7.8x108   y5+ p=0.03* 

SGCNHPDLDVQYR 520.9 +3 12 3.1x109 y8+ p=0.04* 

LWEEGEELELVEK 801.9 +2 6 6.0x108    Y9+ p=0.02* 

b)  αvβ6 transitions detected in recombinant protein sample triplicates 

 

SCIECHLSAAGQAR 

 

520.57 

 

+3 

 

7 

 

3.0x106 

 

y7+ 

 

p=0.03* 

 

GLLCGGNGDCDCGECV

CR 

 

686.92 

 

+3 

 

2 

 

1.0x104 

 

y6+ 

 

p=0.03* 

The data shown in this table is derived from experiments conducted by Ms Sachini Fonseka and Ms 

Samridhi Sharma. The table is reproduced and modified to fit in the manuscript (Fonseka) 
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Chapter 6  

General Discussion, Conclusion and Future directions 

6.1 General discussion 

Broadly, this thesis is an attempt to address and add novel additions to the two branches of HPP 

a) C-HPP and b) B/D-HPP. Chapter 1 of this thesis focuses on the analysis undertaken to 

demonstrate that the rate of progress of the HPP in finding PE1 proteins needs to be accelerated 

in order to meet proposed HPP timeline/schedules. However, the rate of identification of 

missing proteins seems to have slowed down in past few years as discussed in publication I. 

The goal of which is to ultimately hasten the progress of identification of whole human 

proteome and identify all the missing proteins. To do so, there are few avenues that can be 

explored: 

• Capture and account for all credible scientific data for PE2-4 missing proteins including 

genomic and antibody-based evidences.  

• Understanding the characteristics of the proteins in PE2-4 categories to elucidate the 

reasons for them falling through the cracks from current data analysis via mass 

spectrometry. 

Another strategy to expedite the above-mentioned point is to group missing proteins with 

respect to their descriptions (as mentioned in neXtProt). Currently, neXtProt is only available 

source that exclusively classifies and provides missing proteins information. Hence, neXtProt 

descriptors can be used to group proteins together to study the differences in the composition 

and sequences of proteins. This exercise will allow understanding of why certain proteins 

cannot be identified using mass spectrometry due to placement of arginine and lysine in 

transmembrane domains for an example. This is covered in Introduction chapter, publication 

II of this thesis. Similar study can be performed on taste receptors and other G-protein coupled 

receptor due to a common transmembrane domain in all these proteins.  

The above-mentioned strategies, and complementary MissingProteinPedia as information 

engine can improve the rate of progress of the HPP and assembling information in one single 

platform towards completion of C-HPP. 

The second branch of HPP the biology and disease driven HPP was strategised to associate the 

dysregulation of human proteins with biology and disease condition of a human, which in our 
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case was colorectal cancer (CRC). This particular aspect was extensively explored in chapter 

3, 4 and 5 of this thesis. Chapter 3 focused on identification of early stage markers for CRC to 

improve patient survival using proteomics-based technologies. The past years has seen 

technological progress of MS-based proteomics in aspects of plasma-based biomarker 

discovery and the application of these was well exploited in initial biomarker discovery.  

Specifically, design a workflow that involves intense sample preparation and multi-stage 

fractionation to quantify the plasma proteome via SWATH™-MS. This study was conducted 

on pooled plasma samples as a strategy adopted to identify differentially expressed proteins 

candidates to be verified later by orthogonal technology and targeted proteomics.  But, if the 

workflow used in this thesis is to be deployed in the individual plasma samples, there needs to 

develop a fast and automated workflow for initial biomarker discovery. This need for an 

automated system to identify maximum number of plasma proteins, is a goal yet to be achieved 

in MS technology in future. The large initial number of plasma proteome profiles from 

hundreds of individual samples has maximum likelihood of revealing a statistically significant 

pattern that might differentiate healthy controls from early stage CRC. However, the aim is to 

develop a robust method that can find in-depth of plasma proteome without the depletion of 

plasma sample. This objective could require a lot of technological advances not only in 

proteomics-based techniques but also more sensitive and high throughput mass spectrometers. 

This aim is yet to be accomplished in terms of technology. 

 

Colorectal cancer (CRC), a malignant neoplasm of colon, rectum and appendix, remains to be 

the third most common cause of cancer-related morbidity and mortality (IARC Global Cancer 

Observatory web site (http://gco.iarc.fr/)). The overall patient survival is directly related to the 

time of diagnosis of CRC. It is estimated that more than one -third of patients are often 

diagnosed when CRC has already metastasised to distant organs. At this stage, CRC is rarely 

curative via surgery and often leads to poor patient survival rate. On contrary, if CRC is 

detected at an early stage, it is curable after surgical resection and dramatically improves patient 

survival. Several screening modalities have been implemented for early CRC screening which 

includes stool-based tests like gFOBT and FIT, later to be confirmed by gold standard 

colonoscopy, if positive (Wolf et al., 2018). Despite of multiple annual stool-screening 

programs in place to detect CRC early, the patient compliance for stool-based tests is 

approximately 40% (Wolf et al., 2018). In addition, the reliance of these tests on blood 

haemoglobin in stool samples renders false-positive results and exposes them to unnecessary 
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invasive colonoscopic procedure. The discovery of reliable biomarkers with high sensitivity 

and sensitivity for early stage diagnosis is a logical choice.  

The primary aim of this thesis was to identify and evaluate novel biomarkers with diagnostic 

ability that can differentiate early CRC stages from healthy controls. While achieving the 

primary goal, this thesis focuses on the challenges of plasma as an ideal, though a challenging 

source of biomarkers. To overcome this challenge of identifying similar repertoire of plasma 

proteins, the combinatory power of the immunoaffinity depletion columns (MARS14 and in-

house IgY depletion columns) was utilised for in-depth analysis plasma proteome. Using these 

techniques, high and mid abundant plasma proteins that mask the low abundant proteins were 

depleted. Further, to accurately measure and reproducibly quantify plasma proteins, the current 

state-of-art proteomics technology SWATH™-MS was used. The plasma library generation is 

a pre-requisite for a SWATH™-MS experiment. This was achieved using strength of multiple 

fractionation methods (SCX, SAX, SEC and HpH). The resulting library identified proteins in 

concentration range of 50 ug/ul-2ng/ml, which was represented on a protein concentration 

curve, or “Anderson Curve”. The final biomarker discovery experiments identified 37 potential 

candidates that could distinguish CRC early stages from healthy controls. These proteins were 

observed across the entire concentration range of the library Anderson curve showing the broad 

functional coverage of plasma protein across the concentration range. Of these 37 proteins, 10 

proteins were found to be liver-derived proteins (APOA2, APOC3, F2, APOC2, SERPIN6, 

PON1, AMBP, SAA1, SAA2, and HGFAC), and in toto, all 37 proteins had subcellular 

attributes associated with the cytosol  (APOB, SAA1, HGFAC, S100A8,  PFN1, APOA2, F2), 

exosomes (VASN, COMP), secretory proteins (COMP, ADEC1, SODE, HGFAC, C1QC, 

ITIH3, CFAD, MASP2, SAA1, SAA2, GPX3, SAMP, AMBP, PON1), or had been shown to 

be an integral component of cell membranes (VASN). Three candidates were expressed in 

somatic tissue (MECP2), endothelial cells (ROBO4) or were known to be secreted in response 

to dendritic cell activation and maturation (ADAMDEC1). Many of observed proteins were 

identified as CRC biomarkers in more than one proteomics study encouraging the confidence 

in the data.  

Further, the biomarker discovery study done in this thesis was performed on pooled patient 

data. Though, the biomarkers must be measured in individual samples in future studies, for 

discovery/identification of potential candidates, pooling is advantageous. It not only reduces 

the sample numbers but also reduces the sample volume required. More so, a pooling strategy 
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reduces the cost of depletion and fractionations which are must for sample preparation in 

plasma-based proteomics as discussed in Introduction section 2.8. Further, plasma 

ultradepletion with SWATH™-MS is extremely time consuming as was demonstrated by our 

3-year preliminary study. Our study used deep ultradepletion discovery on pooled CRC staged 

plasmas followed by scalable high-throughput technologies. The discovered candidates are 

amenable to quantitative multiplexing via (MRM/ELISA) for further validation and absolute 

quantitation of novel candidate biomarkers. 

Mass spectrometry is an analytical technique and results from it leads to generation of large 

datasets. It is always accompanied with bioinformatic approaches to perform data analysis, for 

fold-change determination, normalisation, gene-ontology classification, to map the pathways 

or to determine the protein and protein interactors. Realising the need of machine learning 

approaches in handling large proteomics data sets (Swan. et al., 2013). Machine learning has 

now taken a big leap into determining the predictive candidates using predictive neural 

networks (Zhang, Fan, et al.,2013). The predictive neural networks emulate the brain 

functioning. Just like the connections of a neuron and the network is activated-based on the 

signal received. Each neuron is a variant of linear classifiers. Multiple neurons can be included 

in the different neurons and layers resulting in formation of complex network laying a 

foundation for non-linear classifiers. This application has now bled into proteomics and was 

employed in this thesis (chapter 3) to identify protein candidates from large proteomics data 

sets. In a proof-of-concept experiment, a classification algorithm was trained to identify 

potential candidates from real patients and synthetic patient populations was generated to train 

panel of 5 protein candidates to discriminate early stage CRC from healthy. The profile of 37 

candidates (including these 5) managed to yield perfect cancer stage classification, not only for 

the presence of cancer, but also in differentiating the actual clinical stage (I-IV) of disease. 

Therefore, our study proposes this 5-protein marker panel of candidates as highly interesting 

for potential predictive purposes, and now propose to replace these generated samples with 

biological ones as a larger patient population dataset.  

Further, the few of potential candidates of 37 identified candidates were validated using 

orthogonal immune assays confirming and backing up the mass spectrometry data (from 

chapter 3). The results obtained in this study encourage further evaluation of these biomarkers 

on individual datasets.   
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The fourth chapter of this thesis focused on employing the strength of targeted proteomics to 

accurately measure identified potential candidates from SWATH™-MS biomarker discovery 

study in individual patient samples. The experiments are still in preliminary stages with the 

first-pass assay for CFD in place, which relatively quantifies and confirms the SWATH™-MS 

data encouraging to do furthermore validations on individual population cohorts. 

6.2 Applications and Limitations 

Circulating plasma is one of the most useful biofluids for the study of human pathology and 

biomarker discovery. This is because, plasma contains a repertoire of proteins that are 

dynamically modulated based on the pathology of an individual (Geyer et al., 2018). In the 

case of diseases like cancer, plasma often contains proteins derived from tissue and tumour 

leakage that may otherwise not be present in plasma. Using proteomics, CRC staged (I-IV) 

patients were compared to “healthy” controls to identify CRC-specific plasma protein markers. 

One of the limitations of this study was the use of pooled plasma samples for the biomarker 

discovery phase. A total of 20 patients for each stage of the four CRC stages (I-IV) and 20 

healthy controls were employed in this study. To identify unique CRC stage-specific plasma 

biomarkers, the 20 plasma samples from each stage were pooled prior to SWATH™-MS 

analysis. While pooling specimens is not the best practice for developing biomarkers (Geyer et 

al., 2017), the goal was to verify the SWATH™-MS data using individual specimens. This 

two-step approach relied on the fact that SWATH™-MS is a powerful and sensitive protein 

detection method (Doerr, 2014). The verification experiments performed on 7 proteins to date 

on pooled samples, confirm the SWATH™-MS quantitation. However, many proteins remain 

to be validated, and additional work is required in order to determine the value and accuracy 

of performing discovery proteomics in pooled rather than individual patient samples. Another 

critical limitation of using this approach is that proteomic data could not be analysed based on 

patients’ clinical outcomes such as recurrence-free or overall survival due to pooling of plasma 

samples.  

 

Another important consideration and potential limitation of SWATH™-MS is that it involves 

an intensive workflow, which initially involves developing a robust peptide library followed 

by subjecting samples to mass spectrometry analysis. Nevertheless, SWATH™-MS was 

selected due to its sensitivity and the increased likelihood of detecting low abundance 

circulating CRC biomarkers. In DDA experiments, where the most abundant precursor ions are 
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selected for MS/MS analyses, low abundant proteins may be missed. Although beyond the 

scope of this thesis, it would have been interesting to compare the data derived from DDA and 

SWATH™-MS experiments. 

 

Another aspect which could be worth exploring is tissue-based proteomics. It offers the most 

accurate insight of bioprocesses and pathogenic pathways contributing to disease progression. 

These candidates are, therefore, also the most sought-after targets for therapeutics. The 

biomarkers obtained from such an analysis are also most easily translated into clinical assays 

like immunohistochemistry assays, following biopsy. However, from a clinical perspective, 

translational utility of tissue biomarkers necessitates highly invasive procedures (Kalinina et. 

al., 2011). Therefore, blood-based biomarkers were the most attractive choice for CRC 

screening. Blood is a rich source of tissue leakage proteins, immunoglobulins and exosomes. 

It would be interesting to map the proteomic profile of CRC plasma against matched CRC 

tissues, across stages to correlate trends. This exercise could potentially yield a subset of 

markers released in blood from tumour tissues representative of CRC stage progression. The 

comparison of circulating and tissue derived markers was beyond the scope of this thesis.  

Proteomic technologies have been extensively used in the identification of disease biomarkers 

in the circulation and yet most of these putative biomarkers have not been independently 

validated and never reach the clinic. A major reason for this lack of biomarker confirmation is 

the lack of a consistent, structured pipeline to validate putative candidates and evaluate their 

diagnostic utility. This is not difficult to achieve but does require meticulous characterisation 

of the discriminating power each protein, and careful consideration when generating multi-

protein panels. These validation steps are discussed in Chapter 6, Future Directions. 

 

Machine-learning approaches are becoming more mainstream for proteomics studies. 

Particularly use of artificial neural network that emulates the human brain network has been 

used in breast cancer early detection imaging studies (Zhang, Fan, et al. 2013). This technology 

was used to determine a panel of candidates that distinguish early stages of CRC from healthy 

on a synthetic data set. However, machine learning techniques often suffer from data overfitting 

which is inherent to all machine learning techniques, and it is hard to completely disprove. This 

could happen especially while using technical triplicate data, which usually has a low standard 

error. Another cause for data overfitting could be model learning the details and noise of the 

data set and using it as a concept which could negatively impact the ability of the model to 
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generalise the results. There are some avenues adopted in our study that ensures that 

overfitting is minimised: 

i). In training algorithms, we trained several biomarkers with a different response profile 

independently. The results suggested that no single marker cluster in hyperspace, whereas a 

panel of biomarkers shows a well-defined clustering. 

ii). For supervised learning, the training dataset algorithm was kept separate from the testing 

data. In our case, we trained our model on a very noisy synthetic patient dataset with 10-fold 

standard deviation. 10-fold standard deviation was derived from the standard deviation values 

obtained from ADAMDEC1 concentration observed in individual patient data (n=100). The 

trained model was then tested on the real data from mass spectrometry experiments and hence 

the results observed prove that the algorithm generalises to the new dataset.  

iii). Another avenue that was used in our study is that, a small percentage of the training dataset 

(15% in our case) was kept for the internal validation of our algorithm to prevent over-fitting 

(70% training, 15% validation and 15% testing). There was no difference in any of the scores 

for all three components. 

iv). For supervised learning, the training dataset algorithm was kept separate from the testing 

data. In our case, we train our model on a very noisy synthetic patient dataset with 10-fold 

standard deviation. 10-fold standard deviation was derived from the standard deviation values 

obtained from ADAMDEC1 concentration observed in individual patient data (n=100). The 

trained model was then tested on the real data from mass spectrometry experiments and hence 

the results observed prove that the algorithm generalises to the new dataset. The next step 

would be to get more patient data in order to further test the generalisation power of our trained 

model, and gradually, to replace the synthetic data for the training phase as well. 

 

The advancements in field of plasma biomarker discovery using proteomics has been 

extensively exploited to identify, thousands of diagnostic, prognostic or therapeutic markers. 

Unfortunately, many of these falls through the cracks, failing to reach the clinic. One of the 

major reasons is a lack of a structured pipeline to pursue the identified candidate and evaluate 

its diagnostic ability in preliminary stages. This is not difficult to achieve but does require 

meticulous characterisation of the discriminating power of these proteins, as a panel.  These 

steps are discussed below in the future directions. 
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6.3 Future directions  

There are many challenges to develop a highly sensitive, accurate and clinically relevant 

biomarkers for disease diagnosis, prognosis and treatment prediction.  

In this study, some interesting circulating plasma protein candidates for early stage CRC 

detection were identified. Many of these have an established biological role in tumour 

development and progression. In order to extend this work, and validate the diagnostic value 

of these markers, a series of potential additional experiments are outlined below: 

1. Development of a multiplex quantitative MRM assay for prioritised potential 

candidates - ADAMDEC1, MARCO, MRC1, S100A8, ApoAIV, GPX3, COMP, C1QC 

and CFD, and the 5-protein marker panel (SAA2, APCS, APOA4, F2 and AMB) 

identified from predictive neural network classification.  

2. Benchmark new protein panels against current CRC screening modalities. This includes 

establishing normal reference ranges for new biomarkers in healthy controls, 

comparing sensitivity and specificity of the new biomarker against existing screening 

modalities such as stool-based test (gFOBT/FIT). 

3. Measuring uPAR and v6 peptide fragments in CRC plasma samples using MRM for 

accurate quantification.  

4. Estimating cost/benefit effectiveness of any new test in the Australian National Bowel 

Cancer Screening Program (NBCSP). The long-term effectiveness of a blood based 

multi-variate biomarker test should be determined through a modelled economic 

evaluation. The patient compliance to such a test would be evaluated based on findings 

of a discrete choice experiment (DCE). This includes evaluating patient compliance to 

a new test and measuring cost effectiveness per early stage CRC case identified (i.e., 

adenomas and stage I/II), cost per life years gained and cost per Quality Adjusted Life 

Year gained (Lansdorp-Vogelaar et al., 2009; Siebert et al., 2012). 

 

Recent Technical Advances in Biomarker Discovery 

The last two decades have seen advancements in proteomics-based workflows for biomarker 

discovery; and mass spectrometry has been at the epicenter of proteomics and biomarker 

research (Aebersold and Mann, 2003). The technical advances in mass spectrometry in terms 

of method developments have been instrumental in providing insights to understand the 

pathophysiology of several diseases. These tools, thereby, behold the potential to unveil protein 

markers that function as lynchpins in CRC progression. SWATH™-MS is an emerging mass 



230 
 

spectrometry approach that allows comprehensive proteome profiling (Röst et al., 2014). The 

use of this SWATH™-MS for early detection of CRC has helped to identify several novel 

putative CRC biomarkers along with four previously known CRC markers (Chapter 3). A 

major goal ahead is to ascertain their diagnostic value in clinics and understand their role in 

CRC pathobiology.  

 

Integrative research has been the hallmark of life-science research in the past decade. This is 

especially true for the multi-omics research. A landmark endeavour projecting the 

advancement of proteomics is personalised integrative personal omics profiling (iPOP). iPOP 

is a breakthrough in improved disease diagnosis, risk assessment and monitoring response to 

treatment. It involves examination of patient blood/plasma/serum samples while accounting 

for environment (including diet, exercise, etc.), medical history, and clinical data and performs 

the omics analysis (including genetic variations, proteomics, RNA and DNA information), 

matching data to the chromosomes (Li-Pook-Than et al., 2013). The data is integrated at 

multiple time points. It is then compared over the period and further integrated with DNA 

variants and pharmacogenome to assess disease risk. The integrative profiling system is 

underway to determine personalised health care measures in addition to providing a better 

understanding of biochemical mechanisms in disease manifestations. This approach could 

particularly bridge the missing link between DNA sequence mutation, their variants and their 

protein products. This approach also circumvents the challenges posed by tumour 

heterogeneity in accurate diagnosis and treatment of malignancies. As an extension of the work 

presented in this thesis, the iPOP model could be implemented to study individual patient 

cohorts and profile CRC samples pre and post tumour resection. This approach may also bring 

to light any predominant mutation in a given population that might be associated with these 

malignancies (Bedard et al.,2013). 

 

One part of this thesis focused largely on in-depth measurement of the entire plasma proteome 

for plasma library generation. A new alternative and more comprehensive approach to identify 

novel peptides and CRC associated proteins is via proteogenomics. In a proteogenomic 

approach, genomic and transciptomics data is used to generate customised proteins sequences 

to interpret proteomics data (Nesvizhskii and Alexey, 2014). Recently, a proteogenomic study 

of human colon cancer performed on 110 CRC patients produced a catalog of colon cancer 

associated proteins and phosphosites including known and putative new markers and drug 

targets (Vasaikar et al., 2019). It contained genomically inferred targets including copy number 
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alterations, driver mutations and derived neoantigens but also yielded novel findings. It will be 

interesting to compare the individual patient data with the catalogue presented in this study. 

The re-analysis of SWATH™-MS proteomics can also help in integration of new proteomics 

data with existing genomics data. This effort can demonstrate the ability of proteogenomic to 

reveal new insights into the colon cancer biology. The success and potential of proteogenomic 

approach inspired national cancer institute initiated International Cancer Proteogenomic 

Consortium (ICPC) in year 2016 (Rodriguez et. al., 2018). This consortium also unites the 

experts across the cancer researchers towards a common goal of eradicating cancer.  

 

The proteomics community has also come together to form a collection of common guidelines 

and an assay repository database that jointly form a public repository called the Clinical 

Proteomic Tumour Analysis Consortium (CPTAC) Assay Portal (http://assays.cancer.gov/) as 

described extensively in Chapter 4. The goal of the CPTAC portal is to disseminate assays to 

the scientific community, at large. CPTAC provides guidelines that pertain to standard 

operating procedure, protocols and assay characterisation data associated with targeted mass 

spectrometry-based assays. An effort that would significantly increase the clinical significance 

of the work in this thesis, would be, to develop an assay that aligns with these guidelines. A 

foundation is set towards this endeavour using PRM-based workflows as defined in Chapter 4.  

 

The aforementioned advances are currently representative of the constantly evolving field of 

proteomics that can identify and measure novel peptides accurately. In the context to CRC 

diagnosis, these technologies could be instrumental in filling the void of standard iterative 

methods that can build a connection between discovery, identification and validation of 

relevant CRC early stage detection markers.  

6.4 Clinical significance of the multi-variate protein biomarker assays. 

The 5-year survival of CRC is ~85% only if diagnosed early (i.e., AJCC stages I/II), when 

tumour is localised within the mucosa or submucosa (Figure 2.6). Once the tumour infiltrates 

the lymph nodes, the survival rates drop to ~62% and is reduces to ~10% by the time liver 

metastasis occurs (Figure 2.6). This study identified circulating proteins, many shown 

previously to be associated with metastatic CRC, that differentiated early stage CRC patients 

from healthy controls. Although, validation of these putative biomarkers in fresh and individual 

cohorts is necessary, there is substantial value in identifying sensitive and selective blood-based 
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early diagnostic markers. These liquid biopsies can decrease unnecessary procedures, diminish 

associated co-morbidities and prevent mortalities as discussed in section 2.4.2.2, as well as 

lowering the economic burden of a preventable disease. The clinical significance of a multi-

variate blood-based biomarkers of early stage CRC would be extremely high, as diagnosis by 

blood-based testing has patient compliance of more than 90% in comparison to existing faecal-

based tests, with compliance rates of <40% (Wolf et al., 2018). 
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Appendix V: High-resolution images of Publication 1. 

High Resolution images for Section 1.4 (From Baker, Mark S., et al. "Accelerating the search 

for the missing proteins in the human proteome." Nature communications 8 (2017): 14271.) 

 

 

 

Figure 1: Extrapolation of linear best-fit rate equations demonstrates the rate at which various 

HPP input databases and GPMDB are currently finding PE2-4 proteins. 
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Figure 2: Top 20 missing protein families to determine protein families enriched in the 

February 2016 neXtProt PE2-4 report list. 
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Figure 3: Most prolific PE1 and 12 PE2-4 UniProt protein families represented in the HPP 

neXtProt February 2016 release. 
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Figure 4: Phylogenetic analysis of PE distribution across GPCRs and olfactory receptors. 

 

 

 

 

Figure 5: Positional mapping of the PE1 (757) and PE2-4 (139) proteins along human 

Chromosome 7. 
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Figure 6: Fragmentation spectra of two IL-9 proteotypic peptides detected in the secretome of 

activated T-cells. 
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Appendix VI: Age, sex TNM staging, 5-year survival and 5-year recurrence data for 

recruited patients and healthy controls (n=100). 

 

Age, sex TNM staging, 5-year survival and 5-year recurrence data for recruited patients and healthy 

controls (n=100). E: Healthy controls, A: CRC Stage I patients, B: CRC stage II patients, C: CRC 

stage III patients, D: CRC stage IV patients 

IDs Descriptio

n  

Sex age overall 

stage 

TNM 5-yr 

Overall 

survival 

5-yr 

Recurrence 

E1 06AH087 M 69 E   Alive No 

E2 06AH276 F 58 E   Alive No 

E3 06AH301 M 73 E   Alive No 

E4 06AH360 F 66 E   Alive No 

E5 06AH367 F 65 E   Alive No 

E6 07AH130 F 50 E   Alive No 

E7 07AH253 M 55 E   Alive No 

E8 09AH109 F 53 E   Alive No 

E9 09AH296 F 54 E   Alive No 

E10 09AH695 M 65 E   Alive No 

E11 09AH710 M 68 E   Alive No 

E12 09AH727 M 69 E   Alive No 

E13 09AH794 F 57 E   Alive No 

E14 09AH795 M 79 E   Alive No 

E15 10AH033 M 57 E   Alive No 

E16 10AH484 M 75 E   Alive No 

E17 13AH0086 M 56 E   Alive No 

E18 13AH0087 F 62 E   Alive No 

E19 12MH0815 F 61 E   Alive No 

E20 12MH0063 F 65 E   Alive No 

A1 07AH359 M 56 A T2, N0, MX. Alive No 

A2 08AH228 F 70 A pT1,N0,MX Alive No 

A3 09AH457 F 63 A T2 N0 MX Alive No 

A4 09AH671 M 58 A T2 N0 MX Alive Yes 

A5 09NH111 F 64 A T1, N0, MX, R0 Alive No 

A6 09NH115 M 74 A T2, N0, MX, R0 Alive No 
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A7 09NH135 F 71 A pT2, L1, V0, N0, 

Mx 

Alive No 

A8 09NH209 M 66 A pT1, V1, L1, N0, 

MX 

Alive No 

A9 09NH231 M 78 A pT1, N0, Mx Alive No 

A10 10AH547 M 68 A pT2, N0, MX Alive No 

A11 10AH703 M 62 A T1 N0 Mx Alive No 

A12 10AH752 F 55 A pT1, N0 Alive No 

A13 10NH154 M 54 A pT1,N0,Mx Alive Yes 

A14 11AH0281 M 66 A pT1 N0 Alive No 

A15 11AH0558 M 57 A pT2 N0 MX Alive No 

A16 05RMH238 F 79 A   Alive No 

A17 08WH253 F 72 A pT1 N0 MX V0 

R0 

Alive No 

A18 11WH0063 F 51 A pT1 pN0 MX R0 

V0 G2) 

Alive No 

A19 12WH0182 F 62 A T2 N0 MX V0 

R0 

Alive No 

A20 12WH0194 F 56 A   Alive No 

B1 05AH277 F 74 B Pt3n0 Alive No 

B2 05AH425 M 51 B T3,N0 Alive No 

B3 05AH452 M 76 B T3, N0, Mx Alive No 

B4 06AH023 M 75 B T3, N0, MX Alive No 

B5 06AH287 F 66 B T3, N0, MX Alive No 

B6 06AH309 M 74 B T3,No,Mx Dead No 

B7 06AH352 F 52 B T3, N0, MX Alive No 

B8 07AH500 M 66 B T3N0MX Alive No 

B9 07AH613 F 73 B pT3,N0,MX Alive No 

B10 08AH702 M 68 B pT3, N0 Alive No 

B11 08AH726 F 70 B T4, N0, Mx Alive Yes 

B12 10NH059 F 78 B pT3b, N0, Mx Dead Yes 

B13 10NH137 M 72 B pT3b, V0, L1, 

N0, Mx 

Alive No 

B14 10NH191 F 70 B   Alive No 

B15 10NH261 F 68 B pT3 N0 Alive No 
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B16 11AH0208 F 76 B pT3 N0 Alive No 

B17 11AH0227 M 64 B pT3 NO Alive No 

B18 11AH0341 F 78 B pT3 N0 Dead Yes 

B19 11NH0038 M 64 B pT3, N0 Dead Yes 

B20 11NH0060 M 71 B pT3 N0 Alive No 

C1 05AH355 F 73 C T3, N1, MX. Dead Yes 

C2 06AH097 M 66 C T3N1 Alive No 

C3 06AH319 F 56 C T3, N2, MX Alive No 

C4 07AH070 F 76 C   Alive No 

C5 07AH233 M 52 C T4, N2, MX Dead Yes 

C6 07AH351 M 65 C pT1, N1, MX Alive No 

C7 07AH373 M 63 C TNM T4, N2, 

MX 

Dead Yes 

C8 07AH572 M 68 C pT4, N1, M0 Alive No 

C9 08NH066 F 54 C pT3b, N1, L0, 

V0, Mx 

Alive No 

C10 09NH062 F 72 C pT3a, N1, Mx Alive No 

C11 09NH217 M 51 C pT2, V1, L1, N1, 

MX 

Dead Yes 

C12 09NH219 M 56 C pT3A, N2, MX Alive No 

C13 10NH004 F 69 C pT3,N2,MX Dead Yes 

C14 10NH009 F 58 C T3B, N2, Mx Dead Yes 

C15 10NH024 F 79 C pT3d, V1, L0, 

N2, Mx 

Dead Yes 

C16 10NH052 F 58 C T3 N1 MX Alive No 

C17 11NH0126 F 58 C pT4a, N1 Alive No 

C18 11NH0210 M 67 C pT3, N2a Alive No 

C19 11NH0250 M 55 C pT3 N1b Alive No 

C20 12NH0036 F 57 C pT3, N2b Alive No 

D1 07AH401   M 79 D T3 N1 M1 Alive - 

D2 10AH277   F 69 D pT4 N2 M1 Dead - 

D3 11AH0102   M 61 D  pT3, N2a, M1 Dead - 

D4 11AH0490   F 71 D - Dead - 

D5 12AH0446   M 74 D pT4a, N2b, M1a Dead - 

D6 13AH0040 F 55 D pT4a, N2b, M1a Dead - 
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D7 05WH102   M 53 D T4 N2 M1 Dead - 

D8 05RMH117   F 59 D   Dead - 

D9 05WH131   M 63 D T4 N2 M1 Dead - 

D10 06WH132   M 73 D T3,N2,M1 Alive - 

D11 06WH176   M 62 D T4, N2, M1 Dead - 

D12 07RMH006   M 62 D   Dead - 

D13 07WH211   F 61 D T4,N1,M1,V0,R

2 

Dead - 

D14 07WH218   F 75 D T3 N2 M1 V1 

RX 

Dead - 

D15 07RMH580   M 56 D T3 N0 M1 Dead - 

D16 08WH075   F 67 D T4, N2, M0 Alive - 

D17 08RMH268   F 62 D   Alive - 

D18 08RMH506   F 78 D T3 N1 M1 V2  Dead - 

D19 08SH655   F 63 D Pt3n1m1 Alive - 

D20 10SH613   F   D T4a, N2b Alive - 

 

 




