REMOTE PLASMA ENHANCED

CHEMICAL VAPOUR DEPOSITION

GROWTH

AND

CHARACTERISATION

OF POLYCRYSTALLINE INDIUM NITRIDE

THIN FILMS

Patrick Po-Tsang Chen

Bachelor of Technology (Optoelectronic), Macquarie University, Australia.

Master of Science, Macquarie University, Australia.

A thesis presented to Macquarie University for the degree of Doctor of Philosophy.

Department of Physics and Astronomy, Macquarie University,

Sydney, NSW, Australia

October 2011

II

Table of Contents

Table of Contents	iii
Abstract	xii
Declaration	xiv
Declaration of Collaborations	XV
Publications	xvi
Symbols Used in This Work	xix
Acknowledgements	xxiii

Chapter 1 Introduction

1.1	Overview	2
	1.1.1 Group III-V Semiconductors	2
	1.1.2 Research and Development in the Group III-nitrides	7
1.2	Crystal Growth Techniques	11
	1.2.1 Thermal Decomposition of Precursor Materials	12
	1.2.2 Liquid-phase Deposition	13
	1.2.2.1 High Pressure Solution Crystal Growth	13
	1.2.2.2 Plasma-assisted Solution Crystal Growth	14
	1.2.2.3 Crystal Bar Process	14
	1.2.3 Vapour-phase Deposition	15
	1.2.3.1 Physical Vapour Deposition	15
	1.2.3.1.1 Reactive Evaporation	15

iv

1.2.3.1.2 Reactive Sputtering	16
1.2.3.1.3 Reactive Ion Plating	19
1.2.3.1.4 Plasma-assisted Molecular Beam Epitaxy (PA-MBE)	19
1.2.3.1.5 Laser-induced Molecular Beam Epitaxy (LI-MBE)	21
1.2.3.1.6 Ion Beam Deposition	21
1.2.3.2 Chemical Vapour Deposition	22
1.2.3.2.1 Vapour Phase Epitaxy (VPE)	22
1.2.3.2.2 Metalorganic Chemical Vapour Deposition (MOCVD)	24
1.2.3.2.3 Atomic Layer Epitaxy (ALE)	25
1.2.4 Hybrid Deposition Methods (PA-CVD, LA-CVD, PA-MOMBE, MOVPE,	
MOC-VPE, PA-VPE, UV-VPE and LA-MOVPE)	25
3 Historical Survey on Indium Nitride	28
4 Remarks on Substrate Pre-treatment for the Epitaxial InN Growth	49
5 Aims of the Thesis	54
6 Thesis Outline	54

Chapter 2 Preparation and Growth of InN Thin-films

2.1	Introduction	58
2.2	Preparation	58
	2.2.1 The RPECVD System Design	58
	2.2.2 Substrate Treatment	59
2.3	Film Growth	60
	2.3.1 Transport of Trimethylindium Vapour	60
	2.3.2 Remote Plasma Excitation	65

V

2.4	Chapter Remarks	76
	2.3.4 Growth Conditions	74
	2.3.3 Growth Kinetics	71

Chapter 3 Experimental Details

3.1	Introduction	78
3.2	Optical Characterisation	78
	3.2.1 Optical Transmission Measurements – Theory	78
	3.2.2 Optical Transmission Measurements – Experimental	81
	3.2.3 Combined Analysis with Electrochromic Effect	81
3.3	Electrical Characterisation	83
	3.3.1 The Hall Effect – Theory	83
	3.3.2 The van der Pauw Technique – Theory	86
	3.3.3 The van der Pauw Technique – Experimental	88
3.4	Physical and Morphological Characterisations	91
	3.4.1 Scanning Electron Microscopy (SEM)	91
	3.4.2 X-ray Diffraction (XRD)	94
	3.4.2.1 X-ray Generation and Properties	94
	3.4.2.2 XRD – Theory	96
	3.4.2.3 XRD – Experimental	98
	3.4.2.4 Graphical Method for the Precise Determination of Lattice Parameters	103
	3.4.3 Electron Backscattered Diffraction (EBSD)	104
3.5	Compositional Characterisations	106
	3.5.1 X-ray Photoelectron Spectroscopy (XPS)	106

	3.5.1.1 XPS – Theory	106
	3.5.1.2 XPS – Experimental	110
	3.5.1.3 XPS Peak Fitting and Qualitative Analysis	111
	3.5.1.4 CasaXPS Peak Fitting and Quantitative Analysis	111
	3.5.2 Low-energy Electron-induced X-ray Emission Spectrometry (LEXES)	112
	3.5.2.1 LEXES – Theory	112
	3.5.2.2 LEXES – Experimental	113
	3.5.3 Elastic Recoil Detection Analysis (ERDA)	114
	3.5.3.1 ERDA – Theory	114
	3.5.3.2 ERDA – Experimental	115
	3.5.4 Secondary Ion Mass Spectroscopy (SIMS)	118
	3.5.4.1 SIMS – Theory	118
	3.5.4.2 SIMS – Experimental	120
	3.5.4.3 The Reference Standards for Semi-quantification – by Combined	
	Analysis with ERDA	123
3.6	Electronic Structure Characterisation	125
	3.6.1 Soft X-ray Spectroscopy – An Overview	125
	3.6.2 Soft X-ray Absorption (SXA)	126
	3.6.3 Soft X-ray Emission (SXE)	127
	3.6.4 Synchrotron Radiation – An Overview	128
	3.6.5 The Undulator Beamline	131
	3.6.6 Synchrotron Soft X-ray Emission and Absorption Spectroscopic Measurements	133
3.7	Chapter Remarks	134

Chapter 4 Research Outcomes

4.1	Intro	duction	136
4.2	Part	1: General Properties of Nitride Films Grown by the RPECVD Method	136
	4.2.1	Growth Temperature Dependence of Deposition Uniformity and Sample Colouration in InN Thin-films	136
	4.2.2	Properties of InN Grown by Remote Plasma Enhanced Chemical Vapour Deposition (Publication I)	139
	4.2.3	Nitride Film Growth Morphology Using Remote Plasma Enhanced Chemical Vapor Deposition (Publication IX)	143
4.3	Part	2: Confirmation of Electrochromic Effect in InN	149
	4.3.1	Revisiting Electrochromism in InN (Publication III)	149
	4.3.2	Surface Oxidation Effect and Electrochromism in InN	154
4.4	Part	3: Method Development for the Elastic Recoil Detection Analysis	156
	4.4.1	Challenges in Accurate Stoichiometry Analysis for InN Thin-films	156
	4.4.2	Nitrogen Depletion of Indium Nitride Films During Elastic Recoil Detection Analysis (Publication IV)	158
	4.4.3	Compositional and Structural Characterisation of Indium Nitride Using Swift Ions (Publication VI)	177
4.5	Part	4: Considerations of a Rigid Electronic Band Structure and Stoichiometry	
	Effe	ect on the Apparent Band-gap Shift in InN Films	183
	4.5.1	Apparent Band-gap Shift in InN Films Grown by Remote-plasma-enhanced CVD (Publication VII)	183
	4.5.2	Non-stoichiometry and Non-homogeneity in InN (Publication II)	192
	4.5.3	Stoichiometry Effects and the Moss-Burstein Effect for InN (Publication V)	197
	4.5.4	The Nature of Nitrogen Related Point Defects in Common Forms of InN (Publication VIII)	207
		(1 uonoution + 111)	201

Table of Conten	nts
-----------------	-----

4.6	Part 5: Properties of Narrow Band-gap Polycrystalline InN Films	220
	4.6.1 Effects of Crystallinity and Chemical Variation on Apparent Band-gap Shift in Polycrystalline Indium Nitride (Publication X)	220
4.7	Part 6: Band Modification and Apparent Band-gap Shift in InN	227
	4.7.1 X-ray Studies of the Electronic Structure of Nitrogen-rich Polycrystalline Indium Nitride Thin-films Grown by RPECVD (Publication XI)	227
4.8	Chapter Remarks	258

Chapter 5 Concluding Discussion and Future Work

5.1	Concluding Discussion	60
	5.1.1 Thermal Stability of Polycrystalline InN Thin-films 2	60
	5.1.2 Temperature Dependence of the Optical Properties for Polycrystalline InN Films . 2	60
	5.1.2.1 The Effect of Physical and Morphological Variations on the Band-gapShift	61
	5.1.2.2 The Effect of the Electrical Properties on the Band-gap Shift 2	64
	5.1.2.3 The Effect of Compositional Variation on the Band-gap Shift 2	67
	5.1.2.4 The Effect of Band Modification on the Band-gap Shift 2	72
	5.1.2.5 The Effect of Non-homogeneity on the Band-gap Shift 2	73
5.2	Summary and Concluding Remarks 2	74
5.3	Suggestions for Future Work 2	76
Ref	2 srences	77
Арј	endix A United States Patent Publication 20080272463 - Method and Apparatus	

for Growing a Group (III) Metal Nitride Film and a Group (III) Metal Nitride	
Film	308

viii

Appendix B Other Work Submitted for Publication Prior to This Research

B.1 Nitrogen-rich Indium Nitride	364
B.2 Piezoelectricity in Indium Nitride	369
B.3 InN Grown by Remote Plasma-enhanced Chemical Vapor Deposition	374
B.4 High Energy Urbach Observed for Gallium Nitride Amorphous Surface Oxide	379

Appendix C The RPECVD System Design

C.1 The Growth Chamber	384
C.2 The Gas Delivery System	387
C.3 The Control Panel	390
C.4 RPECVD System Operating Procedures	394
Appendix D X'Pert XRD Alignment Procedures	400
Appendix E XPSPEAK – XPS Peak Fitting	406
Appendix F Supplementary Experimental Results	
F.1 Optical Transmission Measurements	412
F.1.1 Growth Series $1 - \%T$	412
F.1.2 Growth Series $2 - \%$ T	413
F.1.3 Growth Series 3 – %T	415
F.1.4 Growth Series 4 – %T	417
F.2 Electrical Measurements	418
F.2.1 Growth Series 1 – The Hall Effect Measurements	418
F.2.2 Growth Series 2 – The Hall Effect Measurements	419
F.3 SEM Micrographs	422
F.3.1 Growth Series 1 – SEM	422

	F.3.2 Growth Series 2 – SEM	423
	F.3.3 Growth Series 3 – SEM	432
	F.3.4 Growth Series 4 – SEM	434
F.4	XRD Measurements	436
	F.4.1 Growth Series 1 – XRD	436
	F.4.2 Growth Series 2 – XRD	438
	F.4.2.1 Growth Series 2 – Powder XRD Results	438
	F.4.2.2 Growth Series 2 – High Resolution XRD Results	445
	F.4.3 Growth Series 3 – XRD	456
	F.4.4 Growth Series 4 – XRD	458
F.5	XPS Measurements	460
	F.5.1 Growth Series 2 – XPS	460
	F.5.2 Growth Series 3 – XPS	462
	F.5.3 Growth Series 4 – XPS	463
F.6	LEXES Measurements	464
F.7	ERDA Measurements	465
F.8	SIMS Measurements	470
	F.8.1 Growth Series 2 – SIMS MCs ⁺ /InCs ⁺ Ratio Depth Profiles	470
	F.8.2 SIMS RPECVD InN Reference Standards	472
	F.8.2.1 InN Standard with Sapphire Substrate	472
	F.8.2.2 InN Standard with Borosilicate Glass Substrate	475
	F.8.3 SIMS Semi-quantification Results	477
	F.8.4 Oxygen Concentration Depth Profiles	480

xi

Appendix G Related Work in Progress

G.1	G.1 Low Activation Energy for the Removal of Excess Nitrogen in Nitrogen Rich		
	Indium Nitride	484	
G.2	The Two Materials Model for Indium Nitride	487	

This thesis investigates the growth temperature dependent apparent band-gap shift in polycrystalline indium nitride (InN) thin-films that were grown using the remote-plasma-enhanced chemical vapour deposition (RPECVD) method.

The polycrystalline InN thin-films were grown between 200 and 570 °C on various types of substrates, including *c*-plane sapphire, n-type silicon, gallium nitride template, borosilicate glass, Schott glass, and cover glass (microscope glass slide cover slip). Trimethylindium and nitrogen gas were used as the precursors for indium and nitrogen, respectively. Nitrogen gas was also used as the carrier gas for the indium precursor vapour. Reactive nitrogen radicals were produced by a remote nitrogen-plasma discharge, which was induced by a microwave electromagnetic field with a frequency of 2.45 GHz.

A comprehensive range of sample characterisation analyses was conducted. The sample optical properties were examined by optical transmission measurements. The electronic characteristics were determined by Hall effect measurements. The physical and morphological characteristics were analysed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron-backscattered diffraction (EBSD). Compositional characterisation was carried out using X-ray photoelectron spectroscopy (XPS), low-energy electron-induced X-ray emission spectrometry (LEXES), elastic recoil detection analysis (ERDA), and secondary ion mass spectroscopy (SIMS). Finally, electronic structure characterisation was performed using synchrotron soft X-ray absorption (SXA) and soft X-ray emission (SXE) techniques.

The research outcomes are presented in six parts and include eleven publication works, which were either published or submitted for publication.

The growth kinetics of these polycrystalline InN thin-films were found to be sensitive to the growth conditions used, indicating a reaction limited process. This resulted in a regime where the thin-film characteristics had a strong dependency on growth temperature. The measured apparent band-gap was between ~ 0.9 and ~ 2.3 eV. This phenomenon was hypothesised to originate from the combined effects of changes in the In-N bonding characteristics and the presence of an increased free electron density in the material. The InN

films with apparent band-gaps $< \sim 1.7$ eV appeared to have an ionic-like bonding characteristic, while the samples with $> \sim 1.8$ eV were suggested to have a more covalent-like bonding characteristic. Thus, they should be treated as two different electronic materials.

Declaration

This thesis is submitted according to the regulations for the degree of Doctor of Philosophy by Research in the Department of Physics and Astronomy, Faculty of Science at Macquarie University. The thesis contains original work performed by me. Several parts of this thesis represent a collaborative work with my supervisors and other research institutions. They have been acknowledged and their contribution is recognised in the section where their assistance was received. I declare that the research work described herein has not, either in whole or in part, been submitted for a higher degree to any other university or institution.

Patrick P Chen

24 October 2011

Declaration of Collaborations

I declare that the PhD candidate, Patrick P. Chen, whom I have co-supervised during his PhD candidature, has truthfully represented his contribution to the papers that he has authored and co-authored as described in this thesis. Patrick Chen's thesis therefore provides a true representation of his work towards the Doctor of Philosophy by Research in the Department of Physics and Astronomy, Faculty of Science at Macquarie University.

Sott Butter

Professor K. Scott A. Butcher Honorary Associate, Macquarie University

Publications

The following publications listed in Roman numerals are presented in their published form in this thesis, and were either published or submitted for publication during the period of candidature for the degree. These relevant papers are part of the distinct contribution to the knowledge of the thesis. A United States Patent Publication on method and apparatus for growing group (III) metal nitrides by RPECVD is presented in Appendix A. Several works conducted prior to the commencement of this research have also been published during the period of candidature, and are presented in Appendix B.

Publication I (primary author):

P. P.-T. Chen, K. S. A. Butcher, M. Wintrebert-Fouquet, and K. E. Prince, "*Properties of InN grown by remote plasma enhanced chemical vapour deposition*", 2004 Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD 2004), Brisbane, Australia, 8-10 December 2004, IEEE COMMAD 2004 Proceedings, pp. 85-88.

Publication II (co-author):

K. S. A. Butcher, M. Wintrebert-Fouquet, **P. P.-T. Chen**, K. E. Prince, H. Timmers, S. K. Shrestha, T. V. Shubina, S. V. Ivanov, R. Wuhrer, M. R. Phillips, and B. Monemar, "*Non-stoichiometry and Non-homogeneity in InN*", physica status solidi (c), 2 (2005) 2263-2266.

Publication III (co-author):

K. S. A. Butcher, M. Wintrebert-Fouquet, **P. P.-T. Chen**, R. Wuhrer, and Matthew R. Phillips, *"Revisiting electrochromism in InN"*, physica status solidi (c), 2 (2005) 2293-2296.

Publication IV (co-author):

S. K. Shrestha, H. Timmers, K. S. A. Butcher, M. Wintrebert-Fouquet, and **P. P.-T. Chen**, "*Nitrogen depletion of indium nitride films during Elastic Recoil Detection analysis*", Nuclear Instruments and Methods in Physics Research B, 234 (2005) 291-307.

Publication V (co-author):

K. S. A. Butcher, H. Hirshy, R. M. Perks, M. Wintrebert-Fouquet, and **P. P-T. Chen**, "Stoichiometry effects and the Moss-Burstein effect for InN", physica status solidi (a), 203 (2006) 66-74.

Publication VI (co-author):

H. Timmers, K. Scott A. Butcher, S. K. Shrestha, **P. P.-T. Chen**, M. Wintrebert-Fouquet, and R. Dogr, "*Compositional and structural characterization of indium nitride using swift ions*", Journal of Crystal Growth, 288 (2006) 236-240.

Publication VII (primary author):

P. P.-T. Chen, K. S. A. Butcher, M. Wintrebert-Fouquet, R. Wuhrer, M. R. Phillips, K. E. Prince,
H. Timmers, S. K. Shrestha, and B. F. Usher, "*Apparent band-gap shift in InN films grown by remote-plasma-enhanced CVD*", Journal of Crystal Growth, 288 (2006) 241-246.

Publication VIII (co-author):

K. S. A. Butcher, A. J. Fernandes, **P. P.-T. Chen**, M. Wintrebert-Fouquet, H. Timmers, S. K. Shrestha, H. Hirshy, R. M. Perks, and Brian F. Usher, "*The nature of nitrogen related point defects in common forms of InN*", Journal of Applied Physics, 101 (2007) 123702.

Publication IX (co-author):

M. Wintrebert-Fouquet, K. S. A. Butcher, **P. P-T. Chen**, and R. Wuhrer, "*Nitride film growth morphology using remote plasma enhanced chemical vapor deposition*", physica status solidi (c), 4 (2007) 2285-2288.

Publication X (primary author):

P. P.-T. Chen, J. E. Downes, A. J. Fernandes, K. S. A. Butcher, M. Wintrebert-Fouquet, R. Wuhrer, and M. R. Phillips, "*Effects of crystallinity and chemical variation on apparent band-gap shift in polycrystalline indium nitride*", Thin Solid Films, 519 (2011), 1831-1836.

Publication XI (primary author):

Patrick P.-T. Chen, James E. Downes, K. Scott A. Butcher, Marie Wintrebert-Fouquet, Yufeng Zhang, Kevin E. Smith, and Brian F. Usher, "*X-ray studies of the electronic structure of nitrogen-rich polycrystalline indium nitride thin-films grown by RPECVD*", submitted for publication.

Publication XII (co-author):

Kenneth Scott Alexander Butcher, Marie-Pierre Francoise Wintrebert ep Fouquet, **Patrick Po-Tsang Chen**, John Leo Paul Ten Have, and David Ian Johnson, *Method and apparatus for growing a group (III) metal nitride film and a group (III) metal nitride film*, United States Patent Publication, Publication Number: US2008/0272463 A1, November 6, 2008.

Symbols Used in This Work

Some of the symbols have been assigned more than one meaning in this thesis, and are redefined in the relevant chapters and sections.

a	edge length of the basal hexagon in the wurtzite structure (Å)
AC	alternating current
Area _{bulk}	area under the SIMS MCs^+/Cs^+ curve contributed from the bulk of the material
Area _{surace}	area under the SIMS MCs^+/Cs^+ curve contributed from the near-surface layers
Area _{total}	total area under the SIMS MCs ⁺ /Cs ⁺ curve
AT	atomic percentage
В	magnetic field
	beight of the havegon price in the wartzite structure, or speed of light
c CB	height of the hexagon prism in the wurtzite structure, or speed of light conduction band
СВ	conduction band minimum
	molar content of metalorganic
$C_{\rm MO}$	
$C_{ m standard}$	standard molar concentration of the Ideal gas law
d	interplanar spacing between successive atomic planes in the crystal, or film
	thickness
DC	direct current
DI	deionised water
e	electron, or electron charge
E	electric field, or photon energy
EBSD	electron backscatter diffraction
$E_{ m F}$	Fermi level
E_{g}	band-gap energy (eV)
E_{Hall}	Hall field
ERDA	elastic recoil detection analysis
g	gas physical state

xx Symbol	s Used in This Work
GaN	gallium nitride
h	Planck's constant
HT	high temperature
hv	photon energy (eV)
Ι	electric current, or transmitted light intensity through the film
III	group three elements of the periodic table
In	indium
In [*]	excited indium state
In^+	indium ion
In _N	indium on nitrogen antisite substitution
InN	indium nitride
Io	incident monochromatic light intensity
l	liquid physical state
LEXES	low-energy electron-induced X-ray emission spectrometry
LI-CVD	laser-induced chemical vapour deposition
LI-RPE-CVD	laser-induced remote-plasma-enhanced chemical vapour deposition
LT	low temperature
М	element of interest
MFC	mass flow controller
MO	metalorganic
п	number of moles, or order of diffraction, or refractive index
Ν	neutral ground state nitrogen atom
N^{-}	nitrogen anion
$N(^4S)$	neutral nitrogen ground state atom
N^+	nitrogen ion
N_2	neutral nitrogen molecule
$N_2(^5\Sigma_g^+)$	excited nitrogen precursor molecule
$N_2(a^I\Pi_g)$	excited metastable nitrogen molecule of 8.54 eV
$N_2(A^3 \Sigma_u^+)$	excited nitrogen molecule of 6.2 eV
$N_2(B^3\Pi_g)$	excited nitrogen molecule of 7.4 eV
N_2^*	excited nitrogen molecule
N_2^+	molecular nitrogen ion
N_2^{M}	excited metastable states of nitrogen molecule
n _a	refractive index of air

xxi

$N_{ m c}$	effective conduction band density of states (cm ⁻³)
ne	electron carrier concentration (cm ⁻³)
N _{In}	nitrogen on indium antisite substitution
<i>n</i> _m	refractive index of medium
ODS	optical density squared
O_N	oxygen on nitrogen lattice site substitution
Р	pressure
$P(N_2)$	nitrogen carrier gas line pressure
PBN	pyrolytic boron nitride
Pcarrier	carrier gas pressure
P_{MO}	metalorganic partial pressure
PL	photoluminescence
psi	pounds per square inch
P _{standard}	standard pressure of the Ideal gas law
P_{total}	equilibrium vapour pressure
RF	radio frequency
$R_{ m H}$	Hall constant
RPE-CVD (RPECVD)	remote-plasma-enhanced chemical vapour deposition
RT	room temperature
S	solid physical state
S	uncorrected percentage transmission data point
$S_{ m bulk}$	bulk segment of SIMS depth profile
sccm	stand cubic centimetre per minute
SEM	scanning electron microscopy
SIMS	secondary ion mass spectroscopy
S _{surface}	initial decreasing segment of SIMS depth profile
SXA	soft X-ray absorption
SXE	soft X-ray emission
Т	temperature
$T_{\rm G}$	growth temperature
$T_{\rm M}$	melting temperature
TMG	trimethylgallium
TMI	trimethylindium

xxii Symbols	s Used in This Work
TMI^*	excited states of trimethylindium molecule
T_{standard}	standard temperature of the Ideal gas law
v	frequency, or vapour physical state
V	group five elements of the periodic table, or voltage, or volume
Va _{In}	indium-site vacancy
Va _N	nitrogen-site vacancy
VB	valence band
VBM	valence band maximum
V_{Hall}	Hall voltage
VPE	vapour phase epitaxy
V _{standard}	standard molar volume of the Ideal gas law
<i>x</i>	x-axis
x _b XPS	reference depth below the surface of sample
XRC	X-ray photoelectron spectroscopy X-ray rocking curve
XRD	X-ray diffraction
AND	
у	<i>y</i> -axis
${\mathcal Y}$ b	intensity of the SIMS MCs^+/Cs^+ depth profile at a reference depth x_b
Ζ	z-axis
%T	percentage transmission
%T _c	corrected percentage transmission
α	absorption coefficient
Γ	centre of the first Brillouin zone
ψ	psi-axis, or polar angle
ω	omega-axis, or Bragg angle with respect to the incident and correction angles
ϕ	phi-axis
λ	wavelength
θ	Bragg angle
$ heta_{ m c}$	correction angle
$\mu_{ m H}$	Hall mobility $(cm^2 \cdot V^{-1}s^{-1})$
$ heta_{ m i}$	incident angle
Γ_1^c	bottom of conduction states at the centre of Brillouin zone for InN
Γ_6^{v}	top of valence band states at the centre of Brillouin zone for InN

Acknowledgements

I wish to express my appreciation to my supervisor **Dr. Scott Butcher**. Scott has been both supervisor and friend throughout the period of this project. His extensive knowledge of the group III-nitride semiconductors, interest in the low-temperature RPECVD III-nitride film growth and apparatus design, diverse research collaborations with other prominent research organisations nationally and abroad along with his quality guidance and encouragement are the foundation of this thesis.

I would also like to thank my supervisor **Dr. James Downes** for his supervision and work on the synchrotron X-ray measurements. His knowledge of the synchrotron radiation spectroscopy has consolidated my understanding in InN and the research direction. I am grateful to James and Scott's assistance in reviewing the publication manuscripts and thesis chapters.

I also acknowledge **Dr. Marie Wintrebert-Fouquet** for her refreshing coffee-time break conversations as well as support in the glass substrate cleaning process, the SEM image measurements, the RPECVD system maintenance work, and the supply of RF-sputtered InN thin-films.

My acknowledgements also extend to **Dr. Simon Pleasant** for his glass substrate cleaning method and work, **Alanna Fernandes** for her support in the use of the XPSPEAK fitting program, **Associate Professor Judith Dawes** for her discussions on the thesis structure, the **Macquarie Engineering Technical Services** staff members for the quality support in the RPECVD system design, construction and maintenance work, **Dr. Richard Wuhrer** and **Professor Matthew Phillips** of University of Technology, Sydney for the SEM access time and providing the SEM images, **Dr. Kathryn Prince** of the Australian Unclear Science and Technology Organisation for providing the SIMS data, **Dr. Santosh Shrestha** of University of New South Wales at the Australian Defence Force Academy in Canberra and **Dr. Heiko Timmers** of Australian National University for the ERDA measurements, **Dr. Brian Ushers** of La Trobe University for providing the XRD time and discussion, **Dr. William Schaff** of Cornell University (USA) and **Dr. Sergei Ivanov** of the Ioffe Institute (Russia) for providing the MBE grown InN samples.

xxiv Acknowledgements

I would like to acknowledge the support of a Macquarie University ICS PGRF grant for sample characterisation, a Macquarie University Research Development Grant, an Australian Research Council Discovery Grant DP0556391 for sample growth and characterisation, the Australian Institute of Nuclear Science and Engineering for the SIMS time through an AINSE award, the technical support from the Department of Nuclear Physics, Australian National University, an Australian AMRF grant 05/06-S-56, US ARO funding, and the US DOE for the synchrotron beamline access.

Finally, I sincerely thank my parents, sisters, brother and friends for their endless support and encouragement during my study.