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 This thesis investigates the growth temperature dependent apparent band-gap shift in 

polycrystalline indium nitride (InN) thin-films that were grown using the remote-plasma-

enhanced chemical vapour deposition (RPECVD) method. 

 The polycrystalline InN thin-films were grown between 200 and 570 °C on various types 

of substrates, including c-plane sapphire, n-type silicon, gallium nitride template, borosilicate 

glass, Schott glass, and cover glass (microscope glass slide cover slip). Trimethylindium and 

nitrogen gas were used as the precursors for indium and nitrogen, respectively. Nitrogen gas was 

also used as the carrier gas for the indium precursor vapour. Reactive nitrogen radicals were 

produced by a remote nitrogen-plasma discharge, which was induced by a microwave 

electromagnetic field with a frequency of 2.45 GHz. 

 A comprehensive range of sample characterisation analyses was conducted. The sample 

optical properties were examined by optical transmission measurements. The electronic 

characteristics were determined by Hall effect measurements. The physical and morphological 

characteristics were analysed by scanning electron microscopy (SEM), X-ray diffraction (XRD) 

and electron-backscattered diffraction (EBSD). Compositional characterisation was carried out 

using X-ray photoelectron spectroscopy (XPS), low-energy electron-induced X-ray emission 

spectrometry (LEXES), elastic recoil detection analysis (ERDA), and secondary ion mass 

spectroscopy (SIMS). Finally, electronic structure characterisation was performed using 

synchrotron soft X-ray absorption (SXA) and soft X-ray emission (SXE) techniques. 

 The research outcomes are presented in six parts and include eleven publication works, 

which were either published or submitted for publication. 

 The growth kinetics of these polycrystalline InN thin-films were found to be sensitive to 

the growth conditions used, indicating a reaction limited process.  This resulted in a regime 

where the thin-film characteristics had a strong dependency on growth temperature. The 

measured apparent band-gap was between ~ 0.9 and ~ 2.3 eV. This phenomenon was 

hypothesised to originate from the combined effects of changes in the In-N bonding 

characteristics and the presence of an increased free electron density in the material. The InN 

Abstract 

Abstract 
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films with apparent band-gaps < ~ 1.7 eV appeared to have an ionic-like bonding characteristic, 

while the samples with > ~ 1.8 eV were suggested to have a more covalent-like bonding 

characteristic. Thus, they should be treated as two different electronic materials. 
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a edge length of the basal hexagon in the wurtzite structure (Å) 
AC alternating current 
Areabulk area under the SIMS MCs+/Cs+ curve contributed from the bulk of the material 
Areasurace area under the SIMS MCs+/Cs+ curve contributed from the near-surface layers 
Areatotal total area under the SIMS MCs+/Cs+ curve 
AT atomic percentage 
  
B magnetic field 
  
c height of the hexagon prism in the wurtzite structure, or speed of light 
CB conduction band 
CBM conduction band minimum 
CMO molar content of metalorganic 
Cstandard standard molar concentration of the Ideal gas law 
  
d interplanar spacing between successive atomic planes in the crystal, or film 

thickness 
DC direct current 
DI deionised water  
  
e electron, or electron charge 
E electric field, or photon energy 
EBSD electron backscatter diffraction 
EF Fermi level 
Eg band-gap energy (eV) 
EHall Hall field 
ERDA elastic recoil detection analysis 
  
g gas physical state 
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GaN gallium nitride 
  
h Planck’s constant 
HT high temperature 
hv photon energy (eV) 
  
I electric current, or transmitted light intensity through the film 
III group three elements of the periodic table 
In indium 
In* excited indium state 
In+ indium ion 
InN indium on nitrogen antisite substitution 
InN indium nitride 
Io incident monochromatic light intensity 
  
l liquid physical state 
LEXES low-energy electron-induced X-ray emission spectrometry 
LI-CVD laser-induced chemical vapour deposition 
LI-RPE-CVD laser-induced remote-plasma-enhanced chemical vapour deposition 
LT low temperature 
  
M element of interest 
MFC mass flow controller 
MO metalorganic 
  
n number of moles, or order of diffraction, or refractive index 
N neutral ground state nitrogen atom 
N− nitrogen anion 
N(4S) neutral nitrogen ground state atom 
N+ nitrogen ion 
N2 neutral nitrogen molecule 
N2(5Σg

+) excited nitrogen precursor molecule 

N2(a1Πg) excited metastable nitrogen molecule of 8.54 eV 

N2(A3Σu
+) excited nitrogen molecule of 6.2 eV 

N2(B3Πg) excited nitrogen molecule of 7.4 eV 
N2

* excited nitrogen molecule 
N2

+ molecular nitrogen ion 
N2

M excited metastable states of nitrogen molecule 
na refractive index of air 
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Nc effective conduction band density of states (cm−3) 
ne electron carrier concentration (cm−3) 
NIn nitrogen on indium antisite substitution 
nm refractive index of medium 
  
ODS optical density squared 
ON oxygen on nitrogen lattice site substitution 
  
P pressure 
P(N2) nitrogen carrier gas line pressure 
PBN pyrolytic boron nitride 
Pcarrier carrier gas pressure 
PMO metalorganic partial pressure 
PL photoluminescence 
psi pounds per square inch 
Pstandard  standard pressure of the Ideal gas law 
Ptotal equilibrium vapour pressure 
  
RF radio frequency 
RH Hall constant 
RPE-CVD 
(RPECVD) 

remote-plasma-enhanced chemical vapour deposition 

RT room temperature 
  
s solid physical state 
S uncorrected percentage transmission data point 
Sbulk bulk segment of SIMS depth profile 
sccm stand cubic centimetre per minute 
SEM scanning electron microscopy 
SIMS secondary ion mass spectroscopy 
Ssurface initial decreasing segment of SIMS depth profile 
SXA soft X-ray absorption 
SXE soft X-ray emission 
  
T temperature 

TG growth temperature 

TM melting temperature 

TMG trimethylgallium 

TMI trimethylindium 
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TMI* excited states of trimethylindium molecule 

Tstandard standard temperature of the Ideal gas law 

  
v frequency, or vapour physical state 
V group five elements of the periodic table, or voltage, or volume 
VaIn indium-site vacancy 
VaN nitrogen-site vacancy 
VB valence band 
VBM valence band maximum 
VHall Hall voltage 
VPE vapour phase epitaxy 
Vstandard standard molar volume of the Ideal gas law  
  
x x-axis 
xb reference depth below the surface of sample 
XPS X-ray photoelectron spectroscopy 
XRC X-ray rocking curve 
XRD X-ray diffraction 
  
y y-axis 
yb intensity of the SIMS MCs+/Cs+ depth profile at a reference depth xb 
z z-axis 
  
%T percentage transmission 
%Tc corrected percentage transmission 
α absorption coefficient 

Γ centre of the first Brillouin zone 

ψ psi-axis, or polar angle 

ω omega-axis, or Bragg angle with respect to the incident and correction angles 

φ phi-axis 

λ wavelength 

θ Bragg angle 

θc correction angle 

μH Hall mobility (cm2∙V−1s−1) 

θi incident angle 

Γଵ
௖ bottom of conduction states at the centre of Brillouin zone for InN 

Γ଺
௩ top of valence band states at the centre of Brillouin zone for InN 

 

Symbols Used in This Work 
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