ADAPTABLE ROBOTIC GRASPING

Brendan Menzies

Bachelor of Engineering
Mechatronic Engineering

MACQUARIE
University

SEYDMEY -AUSTRALIA

Department of Mechatronic Engineering
Macquarie University

November 7, 2016

Supervisor: Subhas Mukhopadhyay

ACKNOWLEDGMENTS
I would like to acknowledge my academic supervisor Professor Subhas Mukhopad-
hyvay for providing his knowledge in the field of study and for his guidance through-
out the project. I would also like to thank PhD student Anindya Nag for his help

on working with sensors and equipment.

STATEMENT OF CANDIDATE

[, Brendan Menzies, declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Electronic
Engineering, Macquarie University, is entirely my own work unless otherwise ref-
erenced or acknowledged. This document has not been submitted for qualification

or assessment an any academic institution.

Student’s Name: Brendan Menzies
Student’s Signature: B. Menzies

Date: 07/11/2016

ABSTRACT

Automation is being integrated into a wider range of tasks every vear as the
technology increases to allow its development and growth. A machine that is
able to capably perform more than one task, or be able to adapt to unknown
circumstances is more beneficial than a machine that cannot. This project inves-
tigates the capabilities of low cost tactile sensors being used to determine different
properties of gripped objects to allow for an adaptable grasping svstem. These
properties include shape, material type and contact area. A cireuit was developed
to excite the sensors and condition the sensor signal so that the information can
be read by an Arduino Uno microcontroller. Alongside the sensor research, a
program was made using Matlab to control a five degrees of freedom robotic arm,
with a user interface. The program was also used to control the gripper based
on the sensor data. The tests performed on the sensors investigated the sen-
sor characteristics, variable force tests, force response test, phase shift tests and
object shape identification tests. With the system developed and tested, there
was no strong indication that any of the force-sensing resistors or interdigitated
capacitive sensors could determine object properties. With some modifications,
this system could be used to investigate other tvpes of sensors to determine their

capabilities in object determination.

Contents

Acknowledgments iii
Abstract vii
Table of Contents ix
List of Figures xiii
List of Tables xvii
1 Project Introduction 1
1.1 Introduckion i v i et e e e e e e e e 1
1.2 Project Overview i i e e e 2
121 ProjectBeoPe o o v v i i e e s e e e e e e s 2

1.2.2 Project Outcomes0 e e 2

2 Background 3
21 RoboticGrasping 3
21.1 General L 3

212 Dynamixel Servos e 4

22 TactileSensors L e e e e e e 4
221 Force Sensitive Resistors L L. 4

2.2.2 Imterdigitated Sensors L Lo Lo 7

223 Other Tactile Sensors, 8

3 Design of the System 11
3.1 Imtroductiono 11
3.2 Microcontroller oL 12
3.2.1 Microcontroller Specifications 13

Direct Digital Syvnthesis of Sinusoidal Wave 14

34 Sensors ... e e e e e e e e e e e 15
3.5 Signal Cirenits L Lol 17
351 Power Circuit e e e 17

352 Sensor Circuit e e e 18

CONTENTS

353 Rectifier Cirenit 19
3.5.4 Zero Crossing Detectors 0. 21
3.5.5 Phase Shift Detecting Cirenit 22
356 Buffer Circuit e 24
3.5.7 Amplifying Circuit 24
3.5.8 Voltage Inverter Circuit, 25
3.5.9 PCB Design and Production00 27
36 RobobiC AT . v v v 0 o v 0 v m et v ot 50 o m e a e e e e e e e 31
JBdl BEEWOE 1 i o s s s s b i b B s b b b b b B b 6 b b b B b 32
26:2 Imterface . - ¢ - o v ocieie s s s e e e a e e E E e 34
3.7 Controls and Programming L 34
3.7.1 Matlab Control Program 35
Experiments 43
4.1 Sensor Characterisation 43
4.1.1 Method e 43
412 BResulfS . o o o v oo 6 vt b5 5 600 5 8 06 s 5t b s b e s b s s 44
413 Besulfs. . . oo v v i v s vs v sn su s m s v a e s 2 e s a e a 45
414 DIScussiono e e e e e e e e e e 46
4.2 Sensor Force Test L. 47
421 Method o v i ot s it ot vt mio s 47
422 ResulfB . o o o v v v 6 vt b5 5 00 5 8 5t s st s s e s b s s 48
423 [LHSCUSSION = s o s oo 6 o 6 5 6 & & 6 & 6 & E R G R A R R b b 54
4.2.4 Piezoresistive Sensor 5V AC oo Lo, 54
425 Graphene Sensor e 54
4.3 Program Iteration Speed Test, 56
4.3.1 Method Lo 51§
432 Results. - & @ 0 e e e e e e e s 50
s s S Lo 56
4.4 Sensor Load Response Testing 57
441 Method L 57
4.42 Results. Lo a8
443 Discussion0 e e e e e e e e e 60
4.5 Sensor Phase Shift Test, 62
4.51 Method Lo 62
452 Results. e 63
e N 1 3 L 65
4.6 Object Shape Test e 67
4.6.1 Method 67
4.6.2 Results. Lo 68

4.6.3 DiSCUSSION & . v it e e e e e e e e e e e e 74

CONTENTS

xi

5 Conclusions and Future Work
5.1 Conclusions L L e e
5.2 PFuture Work e

6 Abbreviations
A Meeting Attendance

B Project Timeline and Budget
B.1 Project Timeline e
B.2 Project Budget e

C Matlab Code

D Arduino Program

Bibliography

77

78
79
81
83
83
83
85
85
90
99

102

List of Figures

2.1
2.2
2.3
24
2.5
2.6
3.1
3.2
33
3.4
35
3.6
3.7
38
3.9
3.10
3.1
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

Voltage Division Cireuit 0 o0 o o e
Flexiforce Sensor Diagram
Intertek Diagram e e e
Interdigitated Sensor Cirenit
The Force/Torque Sensor and Tactile Matrix Sensor
Center of Pressure Sensor 0oL

The Adaptable Robotic Grasping System 0.,
Arduino Uno SMD Edition
Lookup Table for the DDS Sine Wave [1]
Flexiforee A401 Sensor o i i e e e e e e
Piezoresistive Sensor oL L Lo
PDMS Sensor i e e e e e e e e e e e e
Graphene Sensor
Aluminium Sensor e e e e e e e
The Power Circuit 0 . 0 . 0 0 o e e e e e e e
The Sensor Cirenito .. Lo
Rectifier Circuit o e e e e e
Filtering Cirenit o . o o i i e e e e e e
Zero Crossing Detector Cirenits
Phase Shift Detection Cirenit

Buffer Amplifier Circuit L.
Amplifier Ciremit o
Voltage Inverter Cirenit
The Circuits Assembled on a Breadboard
The Circuit Made in DesignSpark PCB
The PCB Design With Both Layers
TopLayerofthe PCB o L.
Bottom Layerof the PCB
The Empty PCB . . o 0 v v v v s s v oo b 6s b s st s s s 60 5 06 5 s s
The Populated PCB it

2

xiv

LIST OF FIGURES

3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.43

4.1
4.2
4.3
4.4
4.5
4.6
4.7
48
4.9
4.10
4.11
4.12
413
4.14
4.15
4.16
417
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

The AX-12/18 Smart Robotic Arm 31
ORen GrPPEL -« = son o s swses sosst @ S @ S Soeed B B B EEUE o 31
Closed Gripper 0 o e e e e 31
The AX-12A-860V0: o snes et 29 @ 0% & O00E @t @ 9% & 25l who 32
The AX-12A servo EEPROM addresses [2] 33
The AX-12A servo RAM addresses [2] 34
The Dynamixel Control GUIL o it i i s s v v v 36
Slider-Callback Clodle . e woies s w s s Fuare ame & e w EEse o 37
Button Toggle Callback Codeo 0000 .. 37
The Initialisation of the Dynamixel Servos 38
The Start of the MainLoop o v it it i i vt en 39
The Movement Speed and Pause Functions 39
setting the Goal Positions . - . von v e vimn ca s om v win s 40
TheGripper Waitba] = oow somn misss 5 som m somes s o s 5 s e 40
Sensor Information Display« o e 41
The Bid of the Malli EOOP:: «uive vonos 5 i@ s deesm & 6d 5 sowed s 41
Prograny Termuinations o s soms 8 svsow soees aomos o e 6 e s 42
Aluminium Sensor Frequency Response Graph 44
PDMS Sensor Characterisation Graph 46
Flexiforce A401 DC Voltage Force Test 48
Flexiforce A401 AC Voltage Force Test 49
Piezoresistive Sensor AC Voltage Force Test 50
PDMS Sensor AC Voltage Foree Test 5l
Graphene Sensor AC Voltage Force Test 52
Aluminium Sensor AC Voltage Force Test 53
Flexiforce A401 Response Test 58
Piezoresistive Sensor Response Test 58
PDMS Sensor Response Tesh < oo o ocos 5 con w0 svmos wosme w0 sis m semos g a9
Graphene Sensor Response Test 59
Aluminium Sensor Response Test 60
Flexiforce A401 Phase Test 63
Piezoresistive Sensor Phase Test 63
PDMS Sensor Phase Test o it i i v o 64
Graphene Sensor Phase Test 64
Aluminium Sensor Phase Test 000 65
Flexiforce Finger Test - Sensor Voltage & Phase Shift 68
Flexiforce Circle Test - Sensor Voltage & Phase Shift 68
Flexiforce Cylinder Edge Test - Sensor Voltage & Phase Shift 69
Flexiforce Sphere Test - Sensor Voltage & Phase Shift 69

Flexiforce Thin Edge Test - Sensor Voltage & Phase Shift 70
Flexiforce Sharp Point Test - Sensor Voltage & Phase Shift 70
Piezoresistive Sensor Finger Test - Sensor Voltage & Phase Shift 71

LIST OF FIGURES

4.26 Piezoresistive Sensor Cirele Test - Sensor Voltage & Phase Shift

4.27 Piezoresistive Sensor Cylinder Edge Test - Sensor Voltage & Phase Shift
4.28 Piezoresistive Sensor Sphere Test - Sensor Voltage & Phase Shift
4.29 Piezoresistive Sensor Thin Edge Test - Sensor Voltage & Phase Shift
4.30 Piezoresistive Sensor Sharp Point Test - Sensor Voltage & Phase Shift . . .

A.1 Meeting Attendance Sheet. o L.

B.1 The Proposed Project Timeline.

List of Tables

3.1 Arduino Uno SMD Edition Specifications 13
4.1 Aluminium Sensor Frequency Response. 44
4.2 PDMS Sensor Characterisation Measurements 45
4.3 Flexiforee A401 DC Voltage Foree Test 48
44 Flexiforce A401 AC Voltage Foree Test 49
4.5 Piezoresistive Sensor AC Voltage Force Test 50
4.6 PDMS Sensor AC Voltage Force Test 51
4.7 Graphene Sensor AC Voltage Force Test 52
4.8 Aluminium Sensor AC Voltage Force Test 53
4.9 Program Iteration Speed Test 56

xvil

Chapter 1

Project Introduction

1.1 Introduction

Automation has become a vital part of our ability to produce, manufacture and transport
most of our resources around the world. Automation is used for its advantages over hu-
man labour, such as the cost over time being cheaper, the faster work rate, and the longer
work hours that can be performed. While these aspects exceed human efforts, not all
parts of human labour can be replaced. One of these factors is our ability of adaptation.
Automated robots are generally designed to perform specific tasks within a limited set of
parameters. Tasks that fall outside of the parameters will likely fail, or not be performed.

Early automation used clean, simple shapes, sizes and weights, such that manipulating
these objects could be done reliably without the need for feedback from the end effector.
Designs like this allowed for large margins of error. Current robots use various sensors to
determine where the robot is and the status of the object being manipulated. Informa-
tion from the sensors is fed into a controller which decides on the action the robot will
take to meet its goal. Systems like this also commonly use vision systems to monitor the
environment, which may not be a practical approach in all cases of this type of automation.

This project aims to investigate a selection of low cost sensors to determine whether
they can gather enough information about an object to assist with grasping. The two
sensor types investigated are interdigitated capacitive sensors and force-sensitive resistor
sensors. With the developed circuit, a sensor can obtain the voltage change and the
phase shift when a force is applied. This information may provide enough information to
determine the shape of the object, and therefore the force to grasp it. This could lead
to a simple and cost effective way for a robot to determine and grasp separate shapes
differently.

2 Chapter 1. Project Introduction

1.2 Project Overview

This section will give a brief overview to the project.

1.2.1 Project Scope

The main goals that the project should achieve are as follows:
e Research, design and prototype an adaptable robotic grasping system.
e Investigate different tactile sensors viability in the system.
e Program a controls system and user interface for the robotic arm.

e [ntegrate a confrols system for the griper.

1.2.2 Project Outcomes

The outcomes from this project include:
e Test results from sensors
e Program to control robotic gripper
e Signal processing circuit

e Scnsor control progralmn

Chapter 2

Background

This background will provide some detail about some of the research areas surrounding
the project.

2.1 Robotic Grasping

2.1.1 General

Robotic grasping is a wide area of study that covers several aspects of automation. Ba-
sic robotic grasping uses strict object shapes for the gripper to grasp, which minimises
the chance of error in the task. Adding basic proximity or tactile sensors allow this sort
of system to have basic automation. This approach is reliable and economic for simple
grasping tasks, but fails when any factors are introduced to the system that the gripper
cannot account for.

In order to have a grasping svstem that can work in unknown environments, it be-
comes a more expensive endeavour, such as the 3DOF robotic arm by Dollar and Howe [1].
This arm uses separate joints in the end effector which are able to conform to the grasped
objects shape. This gripper is also designed to be robust and can accommodate a variety
of objects. Limitations of this design are its cost and the need to manufacture special
fingers so that the end effector can grip a large variety of objects.

Another method fo enhance grasping capabilities is to add a learning function to the
system, such as the one developed by Saxena and others [11]. This approach takes a still
image of the object and the system tries to learn the best approach to pick up the object.
Some examples of the objects that this system were able to grasp were wine glasses, keys,
phones, knives, and other household objects. Limitations of system like this are that
objects similar to these are needed to be modelled prior to the object being identified.
Another limitation is that the object needs to be visible for the image to be taken.

4 Chapter 2. Background

Other methods of grasping also use optical feedback, but instead of imaging the ob-
ject once, constant images are taken so that changes in the state of the object can be
seen [3] [12]. This method is beneficial as it allows a program to be made that can adjust
the end effector whilst the object is being carried in response to any shift in the objects
position.

Since this is a smaller project, the budget has to be kept in mind. The robotic arm
used will be one that is being used for teaching, which is beneficial as the robotic arm is
the most expensive part of the project costs.

2.1.2 Dynamixel Servos

Research into the Dynamixel motors done by Vacek and others [14] on a 5DOF robotic
arm investigates the characteristics of the AX and MX series of the Dynamixel servo
motors. It is seen that the MX series provides more accurate positioning according to
parameters as it uses a full PID controller, which the AX series does not have.

2.2 Tactile Sensors

Tactile sensors are able to convert mechanical energy into electrical signals. Tactile sensors
will be used in the project to determine states and characteristics of objects to be gripped
by the grasping svstem. There are many different types of tactile sensors which employ
different methods of sensing tactile information [9].

2.2.1 Force Sensitive Resistors

Force-sensitive resistors (FSR), or force sensing resistors, are sensors that change their
resistance in relation to the force applied to the sensor. The main benefits of using FSRs
is that they are easily available, easy to use and are cheap in comparison to other types of
tactile sensors. The principal behind FSRs is based on voltage division, seen in Equation
2.1 and Figure 2.1.

. Ra

L‘m: = __'L':'rz 2.1
Sl (2.1)

2.2 Tactile Sensors 5

R1

Vout

i Vin —

R2

sl

Figure 2.1: Voltage Division Circuit

If) is the FSR in Equation 2.1, it can be seen that as /; is adjusted by applying
force, Vi, will also be adjusted proportionally. This is the basis of how an FSR is imple-
mented into a circuit.

The construction of a FSR consists of two main parts, the electrodes and the piezore-
sistive separator. The circuit is connected through the electrodes and the piezoresistive
material restricts the current flow. The force applied to the sensor determines the resis-
tance of the piezoresistive material, and thus how much current is passed through the
sensor. The two FSR sensors used in the project have two separate methods of posi-
tioning the electrodes. The Flexiforce sensor has the electrodes on the top and bottom
of the sensor with the piezoresistive material in between, seen in Figure 2.2, while the
Intertek sensor uses interdigitated electrodes with the piezoresistive material filling the
empty space, seen in Figure 2.3. This difference will give each sensor different character-
istics.

6 Chapter 2. Background

Top View
Top View
Side View
Figure 2.2: Flexiforce Sensor Diagram Figure 2.3: Intertek Diagram

An investigation into the characteristics of some commercial FSRs by Hollinger and
Wanderley [G]. looks at two of the FSRs that are similar to the ones used in this project.
These are made by the same manufacturers, but are not the same sensors. These are made
by Tekscan and Intertek. The factors looked into are resistance drift and hysteresis, or
lag, of the sensors. These tests determined a few factors, firstly that the Flexiforce sensor
provided a more repeatable result than the Intertek sensor, however the Intertek sensor
performed better where a quick change needed to be measured. Another experiment on
the two main manufacturers by Vecchi and others [15], focused on applying the sensors
to biomechanics and motor control applications. They found similar results to Hollinger
and Wanderly, where the Flexiforce performed better in terms of linearity, repetition of
results and time drift. The tests did not however address the issue of the Flexiforce sen-
sors response time to high frequency loads.

A nonlinear model of the Flexiforce and Intertek sensors was investigated by Lebosse
and others [7]. By studying the nonlinear properties of the sensors, through observing
the static and dynamic properties of both sensors, they are able to create a model to
compensate for these factors. The model found that the sensors nonlinearity is more
severe for the dynamic behaviour of the sensors. Once the sensors are fully integrated
into the adaptable grasping system, this would be beneficial to implement to improve
accuracy.

2.2 Tactile Sensors T

2.2.2 Interdigitated Sensors

Some of the sensors used within the project are based on the work of A. Nag [10]. These
sensors are thin film sensors that use interdigitated electrodes on a flexible thin film.
These sensors have uses other than tactile sensing [16]. An alternating current is passed
across the sensor and the voltage is measured across the resistor in parallel. Elements
that will effect the cirenit are the frequency and voltage of the source, as well as the value
of the sensor resistor, ;. The circuit for the sensor can be seen in Figure 2.4.

r'\:/ Function Generator

sine Sensor ——

W

Rs

Figure 2.4: Interdigitated Sensor Circuit

The sensor behaves similar to a capacitor. Since the film is flexible, the capacitance
changes as the sensor is distorted from mechanical contact. The standard equation for
capacitance of a capacitor is as follows:

ed

A

Where, C' is the capacitance of the material.
€ is the relative permittivity.

d is the distance between electrodes.

A is the area of the sensor patch.

When the patch is contacted, the values of A and d change. This gives the equation:

8 Chapter 2. Background

¢ = # (2.3)

This change in capacitance can be measured and thus the mechanical impact on the
circuit can be seen.

2.2.3 Other Tactile Sensors

Force/Torque sensors [8] use strain ganges on a shaft to detect the movements of the shaft
in response to mechanical changes, seen in Figure 2.5.a. The tip of the sensor is covered
with a rubber cover to aid gripping. Another tactile sensor type is a tactile matrix sen-
sor [8] which uses an array of smaller sensors to give an idea of the position of the force,
seen in Figure 2.5.b. The sensor uses a conductive rubber which alfers its conduetivity in
response to force applied to the sensor. The array of these sensors is arranged in a 16 by
16 grid, giving 256 different sensors. This allows the determination of the force location
and even the contact size to be measured.

G000000000000000}
D000000000000000
0000000000 000000
G000000000000000
0000000000000000¢
0000000000000000

E
GO00000000000000
EEEET I] o

R RRRER!

a.Forcef/Torque Sensor b. Tactile Matrix Sensor

Figure 2.5: The Force/Torque Sensor and Tactile Matrix Sensor

The center of pressure (CoP) sensor [5] is another thin film type sensor, seen in Figure
2.6. This sensor is advantageous due to its physical flexibility and the ability to distinguish
the force position and distribution across the sensor. Through processing the informa-
tion, it is possible to compute the grasping force required and the friction coefficient of
the object being grasped. By analysing this information and feeding it back into the
gripper, it is possible to accommodate for slip detection. The response time of the sensor
is around lms, which is ideal for use in feedback. The sensor also only requires four wires
to operate. The sensor uses a pressure sensitive material between to films of electrodes.
As pressure is applied to the sensor, the current between the electrodes changes and can
be measured.

2.2 Tactile Sensors 9

Conductive Film A Layer
Pressure Conductive Rubber

Conductive Film B Layer

Figure 2.6: Center of Pressure Sensor

These methods of tactile sensing are not ideal for the current project due to the higher
cost of these sensors in comparison to FSRs and the interdigitated sensors.

10

Chapter 2. Backeround

Chapter 3

Design of the System

3.1 Introduction

This chapter looks at the specifics to the design of the adaptable grasping system.

Sensor p=

Computer

Signal Circuit

AX12-a Smart Robotic Arm

UsSB2Dynamixel Interface

Figure 3.1: The Adaptable Robotic Grasping System

11

12 Chapter 3. Design of the System

Figure 3.1 shows how the components of the system connect to one another, and the
direction of communication between the systems. The overall system is comprised of sev-
eral components, each performing distinet functions within the system. The components
are as follows:

Microcontroller

Direct Digital Synthesis of Sinusoidal Wave

& Sensors

Signal Circuits

Robotic Arm

e Servos

e Controls

3.2 Microcontroller

The microcontroller used for the system is the Arduino Uno SMD version, which can be
seen in Figure 3.2. The microcontroller is used for the generation of the sinusoidal wave-
form that is needed as an excitation signal for the sensor. By using an Arduino for the
wave generation and not a function generator the system is significantly more portable. In
addition, it is possible to implement wireless data transmission between a computer and
the Arduino, which would allow the user to remotely operate the system, provided the
user also connected to the robotic arm in a similar manner. The actual microcontroller
is the ATmegald28 chip mounted to the Arduino PCB. The difference between the SMD
edition and the regular edifions of the Arduino Uno is how the controller chip is mounted
to the PCB. The SMD version uses a surface mount ATmega328 while the other editions
use a through hole mount.

3.2 Microcontroller

13

Microcontroller Specifications

The specification for the microcontroller are as follows:

Input Voltage: T7-12V
Operating Voltage: LY
Max Operating Frequency: | 20 MHz
Clock Frequeney: 16 MHz

Digital 1/O Pins:

14 pins, 6 of which are PWM

Analog Input Pins: 5

DC Current per I/O Pin: | 40 mA
DC Current for 3.3 V Pin: | 50 mA
Timers: 3
Flash Memory: 32 KB
SRAM: 2 KB
EEPROM: 1 KB

Table 3.1: Arduino Uno SMD Edition Specifications

Figure 3.2: Arduino Uno SMD Edition

14 Chapter 3. Design of the System

3.3 Direct Digital Synthesis of Sinusoidal Wave

Direct Digital Synthesis (DDS) is a method of generating a sinusoidal waveform using
discrete digital points. This is achieved by breaking up an analog waveform into a set
of discrete points and storing them in a lookup table. The discrete points nsed can be
seen in figure 3.3, where the points are stored in hexadecimal values. This lookup table
is called from within the Arduino program. The Arduino program was not developed for
this project, but using a code for DDS found from an online resource [1].

const int sinewave_length=25€;

const unaigned char sinewave data[] FROGEM = {

0x80, 0x&3,0xE6, 0xES, OxEc, OxEBL, 0x92, Ox95, 0x98, OxOc, 0x9F, Oxa2, Oxa5, Oxat, Oxab, Oxae,
0xb0, 0xb3, 0xbé, 0xbS, Oxbc, OXbf, Oxcl, Oxcd, OxcT, Oxc3, Oxcc, Oxce, 0xdl, Oxd3, 0xdS, O0xdE,
Oxda, Oxdc, Oxde, 0xel, 0xed, Oxed, Oxed, Ox=8, Oxea, Ox=c, Oxed, Oxel, 0x£0, OxE2, O0x£3, 0xES,
0xL6, 0x£7,0x£8, 0xL9, Onfa, Oxfh, 0x£c, Oxfc, OxEd, Oxfe, Oxfe, OxEL, 0xEL, OEL, 0xEL, 0L,
Oxff, Oxff, Oxff, Oxff, Ouff, Oxff, Oxfe, Oxfe, Oxfd, Oxfc, Oxfc, Oxfb, Oxfa, Oxfo, Oxf8, Ox{7,
0xf6, 0xf5, 0xf3, 0x£2 Oxf0, Oxef, Oxed, Oxec, Oxea, Ox=2B, Oxe6, Oxed, 0xe2, Oxed, Oxde, Oxde,
Oxda, Oxdé, 0xd5, 0xd3, 0xdl, Oxce, Oxce, Oxc9, OxcT, Oxcd, Oxcl, Oxbf, Oxbe, 0xbS, 0xb6, 0xb3,
0xb0, Oxae, Oxak, 0xat, 0xas,0xad, 0x9L, Oxdc, Ox98, 005, 0x92, 0x8L, OxEc, 0BG, 0x86, OxE3,
0x80, 0x7c, 0x79, 0%76€, 0x73, 070, 0x6d, Oxba, 0x67, 0x63, 0x60, 0x5d, 0x5a, 0x57, 0x54, 0251,
Oxdf, Oxde, 0x49, Oxd €, Oxd3, Oxd40, Ox3e, Ox3b, 0x38, Ox36, 0x33, Ox31, 0x2e, Ox2e, Ox2a, 0x27,
0x25, 0%23,0x21,0%1f,0x1d, Ox1b, 0x19, 0%17, Ox15,0%13, 0xl2, 0x10, 0x0f, Ox0d, Ox0c, Ox0a,
0x0%, 0x08, 0x07, 0x0€, 0805, 0x04, 0203, 0x03, 0x02, 0x01, 001, Ox00, 0x00, 0x00, 0200, 0x00,
0x00, 0x00, 0x00, 0x0C, 0x0Q, 0x00, 0x01, 0x01, Ox02, 0x03, 0x03, Ox04, 0x05, 0x06, 0x07, 0x0E,
0x09, 0x0a, 0x0c, 0x0d, Ox0£f, Ox10,0x12, 0x13, 0x15, Ox17, 0x19, Oxlb, Oxld, Ox1£, 0x21, 0x23,
0x25, 0%27,0%2a, 0x2e, 0X28, 031, 0x33, 0x36, 0x38, Ox3b, Ox3a, Ox40, 0x43, 0X46, 0x49, 0xde,
Ox4f, 0x51,0x54, 0857, 0u8a, 0x5d, 0xE0, OxE3, OxE7, Oxéa, Oxed, Ox70, 0x73, OxT7E, 0x79, 02T} 2

Figure 3.3: Lookup Table for the DDS Sine Wave [1]

The output from the Arduino will be a square wave pulse width modulation (PWM)
signal. This signal is too sporadic to use as an excitation signal for the sensor. A low
pass and high pass filter are nsed as a band pass filter to produce the smooth sinusoidal
signal from the PWM signal, which can be used as the excitation signal for the sensor.

3.4 Sensors

15

3.4 Sensors

Five different sensors have been investigated to assess the validity of each sensors integra-
tion for nse in adaptable grasping. Ideally the sensors will be able to provide information
of the force of the gripper and details on the object being gripped, such as shape or
size, using the phase shift of the output signal. The Flexiforce sensor and the Intertek
piezoresistive sensor are FSRs, while the other three sensors are thin film sensors that use
interdigitated electrodes to sense contact with the sensor. These will be referred to as:

e Flexiforce A401 Sensor

o Intertek piezoresistive Sensor

PDMS (Polydimethylsiloxane) Sensor

Graphene Sensor

Alumininm Sensor

Figure 3.4: Flexiforce A401 Sensor

Figure 3.5: Piezoresistive Sensor

16 Chapter 3. Design of the System

e s coitb|

Figure 3.6: PDMS Sensor Figure 3.7: Graphene Sensor

Figure 3.8: Aluminium Sensor

The PDMS sensor is made of PDMS backing and a mixture of carbon nanotubes
and PDMS for the electrodes. The graphene sensor uses graphene for the electrodes
and polyimide as the backing maferial. The aluminium sensor uses alumininm as the
electrodes and a PET film as the backing.

3.5 Signal Circuits 17

3.5 Signal Circuits

There are several different sections of the signal circuit that perform different functions,
including buffers and filters that prevent the sections interacting unintentionally. The
sections include:

o Power Circuit

o Sensor Circuit

o Rectifier Circuit

o Zero Crossing Detector (ZCD)

e Phase Shift Detecting Circuit

o Low-Pass/High-Pass Filter Circuit
e DBuffer Circuit

o Amplifying Circuit

e Voltage Inverter Circuit

3.5.1 Power Circuit

The power cirenit, seen in in Figure 3.9, is used to convert the PWM signal from the
Arduino into a smooth sinusoidal waveform. A low-pass filter and a high-pass filter are
used together to create a bandpass filter. The low-pass filter eliminates the quick response
of the PWM signal which leaves the sinusoidal signal. The high-pass filter eliminates the
DC offset from the input signal, leaving a bipolar sinusoidal input signal at a frequency
of 870 Hz. To calculate the correct components for the correct cut-off frequencies the
following formulae is used:

1

~ 27RC (1)

f:

Where f. is the cut-off frequency for the filter, R is the value of the resistor, and C is
the capacitance of the capacitor. If a resistor value of 10 K is selected arbitrarily, the
equation can be rearranged to find a value of O, so that frequencies above 700 Hz are
passed through.

1 1

o i
YT orRf. 2w10000 x 700

=22.7nF (3.2)

18 Chapter 3. Design of the System

Similarly, to filter frequencies below 1 KHz, a value of 10K is used as the resistance
and the value of C's can be found.

1 1
I N — 15.9nF 3.3

O™ BT ™ 20000 % 1000 - o (3:3)

Arduino 1 Vp

R [! AVAYA >
e 10 k22
223 nF
—_—1] C2
1042 —T 153 nF

Figure 3.9: The Power Circuit

3.5.2 Sensor Circuit

The sensor circuit is where the sensors are connected to the cireuit, seen in Figure 3.10.
The power circuit feeds the sinusoidal signal into the sensor, then through a resistor in
series and back to ground. The voltage at the node between the sensor and the sensor
resistor H, is altered as the resistance of the sensor changes. This is due to voltage
division, and can be seen in the following formula.

V. Ry

= 3.4
= (3:4)

Where V,, is the input voltage, Ry is the varying resistance of the sensor, Rs is the set
resistor, and V; is the output voltage. Since the input voltage V), is sinusoidal in nature,
the output voltage Vi is also sinusoidal. The rest of the circuits will be manipulating the
voltage V; and comparing it to the input.

3.5 Signal Circuits 19

—— Sensor

-~/ sine

Rs
1MQ

Figure 3.10: The Sensor Circuit

3.5.3 Rectifier Circuit

To read the signal, an Arduino microcontroller takes the signal into its analog input. The
analog input cannot take a negative voltage, therefore the signal needs to be rectified
to remove any negative parts. The rectifier circuit converts the bipolar sinusoidal wave
into a rectified wave, bringing the negative halves of the curve to the positive side. Since
the signal has a relatively low amplifude, a diode based rectifier would affect the signal
throngh forward voltage drops. So the circuit used is an op-amp based circuit using the
LM324 quad input chip. The circuit can be seen in Figure 3.11.

The top op-amp takes the sine wave in, and since it is referenced from ground to 5
V, the negative half of the sign wave is omitted. The diode allows the output to pass
throngh to the input. This feedback allows only the positive half of the input and the
negative halves are set to ground.

The bottom op-amp is a unity gain inverting amplifier. This takes the input and
inverts the waveform, but since the op-amp has no negative reference, the negative half
of this inverted wave is grounded. This half rectified waveform fills where the grounded
parts of the above waveform sit.

The final op-amp on the right sums the two half rectified waveforms into a complete
rectified wave, which is done using a summing amplifier.

20 Chapter 3. Design of the System

Vs

10 kQ LM324

ot %

5V
T 100 kQ
MW =

[
LM3z4
VWA ¥
100 k2
VA =
10 k02
5v
VAN -

10k LM3z4 VAN

Figure 3.11: Rectifier Circuit

The amplitude of the wave changes as the sensor is interacted with. Unfortunately
the Arduino cannot read an alternating signal easily. A filter can be used to transform
the rectified sine wave into a DC signal. This is done using a low pass filter, where the
filtered frequency is around one tenth of the signal frequency. The circuit can be seen in
Figure 3.12.

1
o= —f ~90H:z (3.5)

T

1 1
i = = 1.68uF 3.6
27R[. 271000 % 90 H (3:8)

Vout

3.5 Signal Circuits 21

Vout M VDC..

1kQ

—— 1.68 F

Figure 3.12: Filtering Circuit

The output of the filter will be a DC signal that changes depending on the sensor.
The amplitude change of this signal is small, so it is fed into the amplifying circuit, so
that a greater sensitivity can be achieved.

3.5.4 Zero Crossing Detectors

The zero crossing detectors (ZCD) are used to convert the sinusoidal waveforms into square
waves. The ZCD is made using the Schmitt Trigger, which is a hysteresis comparator
circuit. These square waves are then passed to the phase shift detecting circuit to be
processed.

22

Chapter 3. Design of the System

2.2 k0

39 kO

Vp

2.2 k0

LM339N
—

P

Vp square

39 kQ

VWA

VW

Vs

g

10 kQ

Vs square

LM339N
+

>

Figure 3.13: Zero Crossing Detector Circuits

3.5.5 Phase Shift Detecting Circuit

The phase shift circuit takes the square wave outputs from the ZCDs and feeds them into
a NAND gate, seen in Figure 3.14. As the phase shift either increases or decreases, the
pulse width output from the NAND gate is changed. When the same same filter used in
subsection 3.5.3 is applied to this output, a DC voltage which relates to the phase shift
can be obtained. This DC voltage is required to be fed into the Arduino, however the
signal is too small, so it must be fed into an amplifier beforehand.

3.5 Signal Circuits

23

Vs from ZCD

Vp from ZCD

Figure 3.14:

A i

1kQ

—Q— 1.68 uF

Phase Shift Detection Circuit

0gf

06 -

04 -

nzr

0z

04

06 F

08 -

— |nput Signal

—— Sarsar Signal

1

2

3

4 5 [} 7]

Figure 3.15: The Input Signal and Sensor Signals From the ZCD

08~

06 -

o

02

ok

-0z

04t

<06

08 -

=1
o

A
1

2

3

4 5 & T B

Figure 3.16: The Signal After Passing Through the NAND Gate

24 Chapter 3. Design of the System

The input signals can be seen in Figure 3.15, where the output has a phase shift,
relative to the input. Figure 3.16 shows that the signal remains high unless both the
input signal and the sensor signal are low. The pulse width of this NAND gate signal
changes, and therefore the DC voltage changes after the signal has been filtered.

3.5.6 Buffer Circuit

The buffer circuit is a simple circuit using an op-amp which can relay a signal while
stopping other circuit elements from altering the original circuit (cirenit loading). The
collection of the signal circuit uses four of these buffer amps, by utilising a quad input
LM324 op-amp. One buffer is used to retain the original sinusoidal signal from the power
circuit, another is used to retain the sinusoidal signal from the sensors voltage. The last
two are used to transfer the output from the two ZCDs to the NAND gate. Since the
output has a high output impedance and a low input impedance, the signal can be trans-
ferred to the next circuit.

5V

Vout

Vin

Figure 3.17: Buffer Amplifier Circuit

3.5.7 Amplifying Circuit

The amplifier circuit is required to increase the available range of the DC output from
rectifier circuit, as well as the phase shift detecting cirenit. Without the amplifier, the
DC voltage change is small and difficult to determine smaller changes in voltage. The
amplifier uses an LM324 op-amp with the signal to be amplified into the non-inverting
input. The output is connected to the inverting input through resistor Rs, this input is
connected to ground through resistor ;. The circuit can be seen in Figure 3.18. The
gain of the amplifier depends on the values of the resistors R, and Rs. This relationship
can be seen in Equation 3.7.

Gain =1+ % (3.7)

3!

3.5 Signal Circuits 25

The signal needed to be amplified, however too much amplification would result in
the signal clipping at the maximum value the Arduino can input, 5 V. To fit within these
limitations, a gain of four was determined to be sufficient. The values for the resistors
was caleulated below.

R
4=1+2= R, =3R, (3.8)
R

Looking at standard resistance values, the desired gain can be approximated with
resistor values of Ry = 22K and Ry = 68K ().

5v

+ Vout
LM324 —

Vin

R2

Figure 3.18: Amplifier Circuit

3.5.8 Voltage Inverter Circuit

The voltage inverter circuit uses a DC-DC converter to convert the 5V output from the
Arduino into a -5V output. This is necessary for the LM324 chip which supports the four
buffer amplifier circuits as the Arduino is only capable of outputting a positive voltage.
If the buffer amplifiers do not get a negative supply, any voltage that is put through the
amplifier that is below 0V will be elipped at 0V. Since sinusoidal signals are being passed
through, it is necessary to go below 0V, The cirenit is based on the TCT7662B 1C chip,

26 Chapter 3. Design of the Svstem

which is a DC-DC converter, commonly used as a voltage inverter. The circuit connec-
tions can be seen in Figure 3.19.

5V

cap+ TCT662B osc |-

10 yF —— _r GND LOW =
Cap- Voutly) '

10 pF —/—

Figure 3.19: Voltage Inverter Circuit

3.5 Signal Circuits 27

3.5.9 PCB Design and Production

The circuit was connected via a breadboard initially, some images of this can be seen in
Figure 3.20.

o A ¥

Figure 3.20: The Circuits Assembled on a Breadboard

The issue with this set-up was about the reliability of the circuit. Since the circuit is
using an AC voltage of close to 1 kHz, interference can be introduced to the circuit as
the wires can act as antenna to transmit and receive. This interference would affect any
results of the system. Additional interference may be introduced from the breadboard
if the internal connections are faulty, or if any of the tracks are not insulated from an
another correctly. To solve this issue, the circuit was recreated into DesignSpark PCB,
which can take a circuit and transfer the circuit to a PCB. Figure 3.21 shows the circuit
assembled in DesignSpark PCB, Figure 3.22 shows the PCB design in full and Figures
3.23 and 3.24 show the top and bottom layer of the PCB respectively.

28

Chapter 3. Design of the System

'='1:E
-

Figure 3.21: The Circuit Made in DesignSpark PCB

29

3.5 Signal Circuits

JAVETS

1

1

PCB Design With Bot

Figure 3.22: The

Figure 3.24: Bottom Layer of the PCB

Top Layer of the PCB

Figure 3.23:

30 Chapter 3. Design of the System

This PCB design was then sent off to be produced. Figure 3.25 shows the empty
board that was recieved, Figure 3.26 shows the PCB after it has been populated with the
components, and the connections to the Arduino board, which can be mounted to the
top. The circuit should now be free from any interference that may have be caused by
using a breadboard.

Figure 3.25: The Empty PCB

Figure 3.26: The Populated PCB

3.6 Robotic Arm 31

3.6 Robotic Arm

The robotic arm used was supplied by Macquarie University as a teaching kit, the AX-
12/18 smart robotic arm. It has five degrees of freedom, driven by seven separate AX-12A
Dynamixel servos. The body of the robotic arm is made from anodised alumininm sec-
tions, connected through the servos. The base of the unit is designed to be mounted at

three points before use.

Figure 3.27: The AX-12/18 Smart Robotic Arm

Figure 3.28: Open Gripper Figure 3.29: Closed Gripper

The gripper included in the robotic arm is an angular gripper with a design which
tries to minimise the effect that the angle has on gripping.

32 Chapter 3. Design of the System

3.6.1 Servos

The robotic arm uses the Dynamixel AX-12A smart actuator serves, made by Robotis.
Some important specifications are:

s Weight: 54.6g

e Dimension: 32mm x 50mm x 40mm

e Resolution: 0.29°

e Gear Reduction Ratio: 254:1

e Stall Torque: 1.5N.m (at 12.0V, 1.5A)

s No Load Speed: 59%rpm (at 12V)

Figure 3.30: The AX-12A servo.

The servos have two connection ports, one for input and one for output. The servos
can connect together in series and only connect to the computer via one cable. To allow
this, each servo must be assigned an ID from 0-253. The servos require a voltage of 9- 12V
in order to function. They may draw high a high current and therefore cannot be powered
via USB interface. They must have an external power supply. The USB2Dynamixel is
used to connect the power and the data together.

The AX-12A has several features regular servos do not have. There is an internal
register inside the servo which allows you to read and write data to the servo. This allows
a variety of values to be read from the servo during operation, such as current position,
torque, speed, ete. Additionally parameters can be set for each individual servo this way.
For example the maximum movement speed, the angle limits for clockwise and counter
clockwise rotation, as well as the torque limit before the unit shuts down fore safety. Be-
ing able to control these variables is useful to prevent the unit from potentially damaging
itself during use.

3.6 Robotic Arm 33

The register within the servo is split into two portions, the EEPROM and the RAM.
The contents within the RAM are erased when the servo is turned off, or disconnected
from power, the EEPROM contents, however, are saved. This means that long term data
storage of information such as the servo 1D, baud rate, and angle limits are stored on the
EEPROM so that these variables do not need to be input every time the servo is turned
on. The disadvantage of the EEPROM is that it is slower to access this data than it
is to access other storage mediums, such as RAM. The RAM holds temporary data for
the servo, such as the goal position, moving speed, and any present values of the servo.
The disadvantage of using RAM is that the information stored can only be held when
the power is on. The table for the addresses of the servos can be seen in figures 3.31 and
3.32, for the EEPROM and RAM respectively.

] (i
000 Mol Namber(L) Lewest byte of mode] number R 12 {0XDC)
L0X0D) Model Number(H) Highest brte of model number E 0 (0000
200 Version of Fumvaage Informatson on ibe version of frmware E
LT ik m [0 of Dynamnixed RW 1 (OX01)
4 {004 Baud Rate Band Rate of Dymamsxel W 1 (01}
{005 Fetumn Debiy Tame Fetemn Debay Tame W Z300NEA)

£ S(0KDE) CW Angle LamitL) Lowest byte of clockwise Angle Lirit RW 0 (000}
E T{OX0T CW Angle Limit[H) Highest byte of clockwise Angle Limit RW 0 (EOX00)
P F{0X0E) COW Angle Lanat(L) Lowest byte of coumenclockiise Angle Linit W 223 (DAIFF)
R ORI COW Angle Lumut(H)y Haghest tie of counterciockwass Angle Lamst R 3 (EE03Y
o 11 (0X0B) the Hegheas [amat Temperanme Tenemmal Linnin Tesperane EW 0 (0004
M1 12 osocy the Lowest Limst Voltage Lowest Limit Voltage RW 60.{033C)
13 (030D the Highest Lisut Vottage Highest Lamit Voltxge W 140 (OMBE)
14 (UXCE) Max Tenque(L) Lowest byyte of Max. Torqee R 255 (UXFF)
15 (0X0F) Me Topqpas(H) ‘Highest bryte of Mae Torque W 3 (03}
16 010y Status Retom Level Stavus Retom Level EW 3 o0y
17 (0X11) Al LFD LED for Alaem BW 324y
15 (0X12) Alarmn Shiadown Shutdown for Alarm RW IE24)

Figure 3.31: The AX-12A servo EEPROM addresses [2]

34 Chapter 3. Design of the System

3.6.2 Interface

The kit uses the USB2Dynamixel interface to connect to a computer. This USB device
connects into the USB port of the computer and provides a port to connect to the servos.
Ounly one servo needs to connect to the device, as they are all connected in series. The
external power supply brides the connection between the USB adaptor and the servo at
the base of the arm. This power supply provides 12V DC to the servos and can supply
up to 5A if necessary.

3.7 Controls and Programming

The robotic arm is controlled throngh Matlab, and is connected to a computer via a USB
interface. The Matlab code displays a GUI for the user to use and has a variety of options
for moving the arm. Sliders allow each joint to be moved, as well as input boxes for
specific angles. Information such as the current angle can be read. Currently the gripper
is simply controlled by a goal angle, but once the sensor is implemented, the information
will be taken from an Arduino to the computer and the angle will be adjusted based on
that information.

24 (01E) Torgue Enable Tarque OniOff BW [0)]

25 (OK19) LED LED On06f R 0 (UX00)

26 (0X1A) CW Compliance Margin CW Cogapliance mangsn R 1(0X01)

27 (0X1B) COW Compliance Margin COW Compliance pargin R/ 10X01)

28 (UKICH CW Comphance Slope CW Compliance slope R s =y

2000X1D) CCW Commplizce Shope CCW Compliance skope RW 32 (032

30 (OXIE} (Goal Position(L) Lervest tte of Goal Pasitien RW

31 (UXIE) Gioal Position(H) Highest byte of Goal Positicn RW

32 (00020 Moving Speed(L) Lowvest btz of Movieg Speed (Moviag Veloay) FW

33 (02 Moving Speed(EH) Hiighest bvte of Moving Speed (Moving Velsiny) W

34 (022 Towgo Lanis(Ly Lowest byte of Torgoe Limit (Geal Torque) RW ADDI4
E 35 023 Teoque Linai{H) Highest tyie of Teeque Lisnit iGoal Torgoe) RW ADDIS
A 36 (I024) Present Postion(l) Laoest byte of Current Pasiton (Present Velooaty) R

37 (025 Present Position(H) Highest bryte of Current Position (Present Velociny) R

38 (000 Fresent Speed(L) Lowest b of Cusrent Speed R

30 (0XKET Fresent Speed(H) Highest byse of Cusent Spend R -

40 (028 Present Load(Ly Lowest byte of Corrent Lead R

A1 (02T Present Lead(H) Eghest byte of Current Load R

42 (034 Present Voltge Current Volage R

43 (D028} Present Temperatare Current Temperatre .4

44 (0X20) Registered Means if Instrsction s regrstersd R 0 (0X00)

48 (D) Maning NMpams if thare s sy mavemsint R 0 (0X00)

47 (00CE) Lotk Lockmg EFPROM W 0 (0X00)

4B (00CR0) Pumch(L) Lawest ryte of Punch B 32 (0D020)

40 (0331) Punch{H) Highest byte af Puzch RW 0.(0X00)

Figure 3.32: The AX-12A servo RAM addresses [2]

3.7 Controls and Programming 35

3.7.1 Matlab Control Program

The control program for the robotic arm is made in Matlab R2016a edition. The code is
spread across two separate Matlab files, one is for the physical control of the servos on the
arm, and the other is used to interact with the GUI. The interface for the program can
be seen in Figure 3.33, which has been made in the Matlab tool set GUIDE (GUI devel-
opment environment) with some additional code added. In order to correctly code for the
Dynamixel servos, DLL file (dynamic-link library) must be used, which are found on the
manufacturers site. This library allows access to the EEPROM and RAM on the servos,
as seen in Section 3.6. The syntax of the commands to the Dynamixel servos are as follows:

calllib (“dynamixel " | READ OR WRITE, 1D, FUNCTION, VALUE);

The Dynamixel DLL library is called, either the read or write word command is used,
depending on whether data is being sent or received. The ID of the servo determines
which servo is affected. The function is a numerical value which corresponds to addresses
in the servos memory. The list of functions can be seen in Figures 3.31 and 3.32. Finally,
the value is used when writing to the servo, its action is dependent on the function used.
It is usnally for setting a value between 0 and 1023, but some functions have a greater
range.

GUI

The GUI has several functions which the user can interact with fo control the robotic
arm. The five joints of the arm are displayed as a slider and a designated angle. The first
joint is the base of the arm (servo 1), the second joint is the next two servos up (servos 2
and 3), the third joint is the two servos after that (servos 4 and 5), the fourth joint is the
wrist of the arm (servo 6) and the fifth joint is the gripper (servo 7). The user has several
different options to control the position of the joints. The slider can be either clicked and
dragged to a set position, with the sides of the slider setting the angle limits, or the user
can click the arrows on the side of the slider to move the servo by its smallest increment,
0.29°. Additionally a text box is provided to the right of the slider where the user can
input a value, in degrees, for the joint to move to, when the ‘Set Angle’ button is pressed.
The numbered text to either side of the sliders indicate the set angle limits each joint has.
The text underneath each joint name indicates the current goal angle that has been set,
in a numerical value.

Underneath the sliders four different values are displayed to the user: ‘Sensor Reading’,
‘Phase Shift’, *Loop Iteration Count” and ‘Gripper Load’. The sensor reading displays the
voltage received by the Arduino from the sensor, after the signal has been conditioned
by the circuif. The phase shift is similar to the sensor reading, but for the value of the
phase shift. The loop iteration displays how many loops the program has performed since
entering the main loop of the program. This is useful for two main reasons, firstly to see

36 Chapter 3. Design of the System

:._ dynamixel_gui — x

Joimn 1 Set Angle
o -

Joint 2
2E N
250

==
‘ -

R | o zsa
85
Join &
Set Angle
5
Jeint 5 B
MIs . 261
- -
T Sensar Resding ==
v
e EYisesSE OGrip OSTOP (Home 2 Pause O Reset Alarms

S Looossioncoon [JHIE GrpperLoas s

Figure 3.33: The Dynamixel Control GUI

how fast the program is progressing as well as knowing how long is left before the program
performs a shutdown from a timeout. The gripper load reads a value stored in the servo
that estimates the load on the servo. It should be noted that this is not accurate enough
to measure anything useful, it is used as a indication of the direction of the load.

Next to the value outputs are several radial buttons that can perform functions to the
arm. These are: ‘Grip’, ‘Stop’, ‘Home', ‘Panse’, and ‘Reset Alarms’. The grip button
changes the grippers mode, so thaf it is no longer controlled by the slider, but a function
that increments the gripper position until the sensor detects that an object has been ad-
equately grasped. Toggling the button again returns the gripper to slider control mode.
The stop button starts the shutdown sequence of the program. This sequence correctly
closes any COM ports that are open, takes the torque off the servos and closes the GUIL
The home button returns the joints of the arm to their default position. The pause button
pauses the loop iterations and takes the torque off the servos until the pause button is
pressed again. The reset alarms button is used to reset the gripper servo in case of it
tripping the overload alarm. This should be used with caution as continued use over its
limit can damage the servo. Finally there is a ‘Set Move Speed’ button and associated
input box. Here the user can decide the speed at which all of the joints move at, from a
range of 0 to 1023, where the default is 75.

3.7 Controls and Programming 37

The GUI code uses eallback functions to perform actions within the program. These
callbacks are only called when the interface element is interacted with, for example when
the slider is moved or when a button is pressed. The slider movement code can be seen
in Figure 3.34 and the code for toggling the status of a button can be seen in Figure 3.35.

% —--- Executes on slider movement.
Jfunction sl_slider Callback(hObject, eventdata, handles)
| global slpos;:

handles=guidata (hQbject):

set (handles.sl value, 'string', num2Zstr(get(handles.sl slider, 'value'))):
slpcs = (get(handles.sl slider, 'value')}/0.29:

guidata(hobject, handles);:

Figure 3.34: Slider Callback Code

-

% —-—— Executes on button press in stop button.

-] function stop |

global program loop;

o Q
0
o
Il
(=1
~

program loop = 1;

-end

Figure 3.35: Button Toggle Callback Code

Program Initialisation

The program initialisation is performed as the program starts. This sets the baud rate
and COM port of the USB2Dynamixel adaptor, as well as the Arduino. Here global values
of the servo limits are stored, as well as some other values such as a program termination
iteration limit, initial positions for the servos, grip thresholds, ete. Matrices to store the
sensor voltage data and phase shift data are also created here.

Before data can be sent and received by the servos, they must be initialised within
the code. Figure 3.36 shows the command to initiate the connection. Once connected

38 Chapter 3. Design of the System

the angle limits for the clockwise and counter-clockwise directions are set from a matrix
that stores these values. A loop cycles through each servo and sets the limits. The initial
moves speed is set to all of the servos in a similar manner. Finally the gripper servo is
set to a higher limit of torque than the other servos, as it is required for gripping heavier
items. Increasing the other servos is not advised as it may have negative effects if the
gripper gets caught on an object.

%initialises the connection

res = calllib{'dynamixel', 'dxl_initialize', DEFAULT_PORTNUM, DEFAULT BAUDNUM) ;

id = i;

calllib{'dynamixel", 'dx]l write_ word', id,P_CCW AMGLE LIMIT,Limits(i,1)):
calllib('dynamixel', 'dx]l write word',id,P_CW ANGLE LIMIT.Limits(i,2));

end

Cfor 1i = 1:6
id = i;
calllib("dynamixel®, 'dxl write word', id,P_MOVE_SPEED,move s

end

fmove speed for gripper
calllib('dynamixel', 'dxl write word',7,P MOVE SPEED,175);

ttorque limit for gripper

calllib('dynamixel', 'dxl write word',7,P TORQUE LIMIT L,1023}:

Figure 3.36: The Initialisation of the Dynamixel Servos

Main Loop

The main loop is where the program flows through until one of two conditions are met,
either the user presses the ‘Stop’ button or the program reaches the loop iteration shut-
down count. The main loop communicates and translates information between the GUI
(the user) and the servos. The start of the loop can be seen in Figure 3.37. At the start
the loop reads the value of the sensor voltage and phase shift voltage and stores them into
their respective matrices. The ‘handles’ of the GUI are updated each iteration, these are
the information that can be taken from the GUI, such as slider position, which is needed
to set the goal positions.

3.7 Controls and Programming

39

whiles (poogzam locp == 1) &6 (2F < shotdowm cimer+l) imain loop. comtinues until Programlesp i falas .

wout = readVoltage (s, "A"i:
phase = raedvoltageds, Al');
voltage marri(zz) = vaue:
phase_matrix{zz) = phase?

hardles = guihardles [dyramixel gui);

Figure 3.37: The Start of the Main Loop

Next the program checks whether or not the program has been paused, or the user has
changed the speed of the servos. Reading and writing to the servos is a time consuming

task, which is why the speed is only addressed if the user has changed the speed, and not

every iteration. This can be seen in Figure 3.38.

if = 1;
¥write move speed
for i = 1:6
id = i;
calllib('dynamixel','dx]l write word',id,P MOVE SPEED,move
end
change speed = 0;
end
while pr == 1
¥Disables torgue on motors when stop is pushed
for i = 1:7
id = i;
calllib({'dynamixel', 'dxl write word',id,P TORQUE ENABLE,0):
end
pause(0.1);
end

Figure 3.38: The Movement Speed and Pause Functions

The goal positions are also only addressed when they change due to the read and write
speed of the servos. Previous versions of the program wrote the speed each iteration, and

this dramatically slowed the program down. This is an issue as a quick response time is
necessary to gather the sensor data and adjust the arms grip in time to affect the gripped
object. Now the previous set goal position is stored at the end of the main loop and this
is compared to the current goal position. Ounly if these two differ do the servos get ad-
dressed, seen in Figure 3.39. The goal position is changed in the GUI side of the program
when action occur that would change the goal position. These include: moving the slider,

setting a goal through the text box, or pressing the home position button.

40 Chapter 3. Design of the System

gwrite goal position

if prev_slpos ~= slpos
calllib('dynamixel', "dxl_write word',1,30,slpos);

end

if prev_s2pos ~= s2pos
calllib('dynamixel', "dxl write word',2,30,s2
calllib('dynamixel®, "dxl write word',3,30,s

end

if prev_s4pos ~= sdpos
calllib('dynamixel', "dxl write word',4,30, s4pos);
calllib('dynamixel', "dx]l write word',S5,30,sdpos);

end

if prev_sépos ~= sépos
calllib ('dynamixel’, 'dxl write word', 6,30, s6pos);

end

Figure 3.39: Setting the Goal Positions

When the ‘Grip’ button is pressed in the GUL the gripper servo no longer responds
to the slider, instead the gripper is controlled by the sensor voltage. This can be seen in
Figure 3.40. A threshold variable is stored in the program, which is the corresponding
minimum voltage for the gripper to have a reasonable grip on an object. If this is not
reached, the goal position is incremented by 5, out of 1023, until this threshold is met.
This mode remains active until the ‘Grip’ button is pressed again on the GUI and the
servo will respond to the slider again.

fgripper control - gripper mode closes gripper until set wvoltage

if (voltoutput < grip threshold) && (voltoutput ~= 0)
sTpos = sTposts;
end
calllib('dynamixel', 'dxl_write_wcrd',7,P_GOAL_POSITION, s7pos);:
else
s7pos = {(get(handles.s7 slider, 'value'})/0.29;
calllib('dynamixel', 'dxl write word',7,30,s7pos);

Figure 3.40: The Gripper Control

3.7 Controls and Programming

41

Although every reading from the sensor voltage and phase shift is stored, they are not
all displayed to the user in the GUI as the values change so fast, it is not very useful to

the user. Instead, an average of a set number of samples is displayed to the GUI, which
can be modified by the ‘voltage_samples’ variable. The more samples, the more accu-
rate the measurement and easier it is to read, but also more time is taken to determine
the value. A balance needs to be found so that the feedback to the gripper is not too slow.

average matrix(l,voltage zamples) = wout:
phase matrix(l,volrage samplas} = phase;

imean (average matrix,2);

woltoutput = meanlaverage matrix,2):
phasecutput = mean (phase_matrix, 2):
set (handles.s7_voltage, "string', woltoutput); %sensoxr v
set (handles.phase shifz_text, 'string', phaseoutput);
i r_load = 111ib('dynamixel’, 'dxl read word',7,P

sat (handlas.gripper load walua, 'string', grippar load

elae
average _matrix(l,rem(zz, voltage_samples)) = vout:
phase matrix(l,rem(zz,voltage_samples)) = phase;
end

1d resets value

if rem(zz, voltage samples) = 0 %stores voltmax every x iteraticns

Figure 3.41: Sensor Information Display

At the end of the main loop the current goal position of each servo is stored so it can
be used as the previous goal position for the next iteration. The iteration value in the
GUI is updated and the variable storing the iteration count is incremented. All of this

can be seen in Figure 3.42.

%store current goal positions for next loop
prev slpos = slpos;

e
2p

prev_s2pos

]
w

w

Qs ;
prev_sdpos o
prev sépos

Il
w
Y
L
7

sépos;

set (handles.iterations,

zz = zz+l; %increment iteration count

string', zz); %iteration count

Figure 3.42: The End of the Main Loop

42 Chapter 3. Design of the System

Program Termination

When either of the program termination conditions are met, the program begins its shut-
down. The program ensures that all of the servos are still connected. Next the torque in
all of the servos is disabled. Finally, the connection to the Arduino and the Dynamixel
servos are both disconnected and the GUI is closed. Figure 3.43 shows this.

res = calllib({'dynamixel', 'dxl _initialize', DEFAULT PORTNUM, DEFAULT BAUDNUM) ;

tpisables Torgue on ors whan stop is pushed

for i = 1:7
id = 1i;
calllib|'dynamixel’, ':ix'._'.:f'_:e_:.':-:c',id,P_TORQU‘E_ENABLE,D]:

end

iTerminates connection and closes qui
clear a;

calllib{'dynamixel', "dxl termir
unloadlibrary ('dynamixel"}
clese all force

nate'):

22 I'vVars

Figure 3.43: Program Termination

Chapter 4

Experiments

4.1 Sensor Characterisation

The sensor characterisation tests are used to determine the operating conditions of the
sensors, so that this can be replicated by the sensor circuit.

4.1.1 Method
Aluminium Sensor Characterisation

To find the optimal operating frequency of the aluminium sensor, a set input voltage
was applied to the sensor and the frequency was varied using the HP Agilent 33120A
function/arbitrary waveform generator. Measurements were taken using an Agilent DSO-
X-2024A digital oscilloscope, seen in Table 4.1.

PDMS Sensor Characterisation

This test looked at the relationship between the input voltage and the output voltage
of a sinusoidal wave using the PDMS sensor. The test was also carried across several
frequencies. The waveform generator and the oscilloscope were used for this test.

43

44 Chapter 4. Experiments

4.1.2 Results

Aluminium Sensor Characterisation

Frequency | Vi, | Vour

1 Hz 2153 | 0.64
10 Hez 213 | 1.33
100 Hz 215 | 1.97
1 kHz 215 | 2.13

10 kHz 213 | 2.13
50 kHz 213 | 2.09
100 kHz 213|201
500 kHz 213 | 1.85
1 MHz 215 | 1.77

Table 4.1: Aluminium Sensor Frequency Response.

Qutput Voltage Vs Freguency

tn

Output Veltage (V)

=

1 10 100 1000 10000 100000 1000000

Frequency [Hz) —— Vout

Figure 4.1: Aluminium Sensor Frequency Response Graph

4.1 Sensor Characterisation

45

PDMS Sensor Characterisation

4.1.3 Results

Frequency | Vi, (mV) [Vo (V) Frequency | Vi, (mV) [Vo, (mV)
100 Hz 230 40 50 kHz 230 25
430 56 430 40
630 72 630 55
840 92 840 70
1040 110 1040 90
1240 125 1240 105
1480 140 1480 120
1700 155 1700 140
1880 177 1880 150
2090 200 2090 190
500 Hz 230 33 100 kHz 230 25
430 55 430 40
630 7D 630 55
840 95 840 G5
1040 105 1040 80
1240 125 1240 95
1480 145 1480 110
1700 160 1700 125
1880 185 1880 140
2090 205 2090 150
1 kHz 230 30 500 kHz 230 20
430 50 430 32
630 70 630 45
840 90 840 60
1040 110 1040 70
1240 120 1240 85
1480 145 1480 95
1700 1170 1700 110
1880 180 1880 125
2090 200 2090 135
10 kHz= 230 35 1 MHz 230 20
430 50 430 32
630 70 630 45
840 90 840 60
1040 110 1040 72
1240 125 1240 85
1480 140 1480 100
1700 155 1700 111
1880 170 1880 125
2090 190 2090 139

Table 4.2: PDMS Sensor Characterisation Measurements

46 Chapter 4. Experiments

PDMS Sensor Characterisation

o
=)

Q 500 1000 1500 2000 2500

Wolzage In [V

Figure 4.2: PDMS Sensor Characterisation Graph

4.1.4 Discussion

Aluminium Sensor

Looking at the results in Figure 4.1, the optimal frequency of the sensor is from 100 Hz
to 100 kHz, as the peak output voltage spans this range.

PDMS Sensor

All of the tested frequencies show a linear relationship between the output voltage as the
input voltage increases. The output voltage of the lower frequencies appears to be greater
than the higher frequencies for the same input frequencies.

4.2 Sensor Force Test 47

4.2 Sensor Force Test

The sensor force test is used to investigate the relationship between the force and the
output voltage for the sensors.

4.2.1 Method

The sensors were tested to measure response under a known force. The test involved
using a finger to press on the sensor until a weight was reached. Initially a mass carrier
with disk weights was used to take these force measurements, as it would have provided
a steadier reading. This did not work as the inferdigifated sensors could not respond
correctly to the weights and the piezoresistive sensors struggled to recognise the force due
to the large surface area of the mass carrier base. To help improve the readings from the
scale, three measurements were taken and the average result was used. The voltage read-
ing is measured by the Arduino and displayed in the program, which is how the program
reads the sensor voltage. Since the program is iterating quickly without the arm attached,
the average of 20 samples is taken and displayed to the GUI, which helps improve accuracy.

The Flexiforce sensor was tested twice, once using a straight 5 V DC signal and again
using the same AC signal as the other sensors. This was done because the manufacturer
recommends using a DC signal, so any loss of functionality should be looked into. The
reason AC would be better as the extra information of the phase shift can be obtained,
which the DC signal cannot provide.

43 Chapter 4. Experiments

4.2.2 Results
Flexiforce A401 5V DC

Weight (Kg) | V) Va Vs | Average (V)
0 0.029 | 0.014 | 0.024 0.02
0.05 0.738 | 0.650 | 0.777 0.72
0.1 1.41 1.39 | 1.23 1.34
0.2 1.45 | 1.50 | 1.57 1.51
0.4 1.58 | 1.55 | 1.62 1.58
0.6 1.90 | 1.88 | 2.00 1.93
0.8 2.08 | 2.06 | 2.07 2.07
1 2.19 | 2.16 | 2.18 2.18
1.2 225 | 2.27 | 2.26 2.26
1.4 237 | 239 | 238 2.38
1.6 2.65 | 2.55 | 2.52 2.54

Table 4.3: Flexiforce A401 DC Voltage Force Test

Flexiforce A401 - Force vs DC Voltage

3.00

2.00

tage

150

QutputVe

1.00

050

0o 0.2 04 0.6 08 1 12 14 16 18
Weight Applied (Kg)

Figure 4.3: Flexiforce A401 DC Voltage Force Test

4.2 Sensor Force Test 49
Flexiforce A401 5V AC
Weight (Kg) | V) vy Vi | Average (V)

0 0.733 | 0.696 | 0.727 0.720

0.05 1.70 | 1.74 | 1.69 1.7l

0.1 1.71 | 1.89 | 1.83 1.81

0.2 1.92 | 1.83 | 1.93 1.89

0.4 2,12 | 208 | 2.16 2.12

0.6 219 | 224 | 2.18 2.20

0.8 228 | 230 | 2.32 2.30

1 247 | 237 | 246 243

1.2 254 | 245 | 2.54 2.51

14 2.65 | 2.64 | 2.62 2.64

1.6 2,68 | 2.68 | 2.69 2.68

Table 4.4: Flexiforce A401 AC Voltage Force Test

Flexiforce A401 - Force vs AC Voltage
300
250
= 200
;é 1.50
g 1.00
050
0.00

0 02 0.4 06 0.8 1 12 14 1.6 18

Weight (Kg)

Figure 4.4: Flexiforce A401 AC Voltage Force Test

50

Chapter 4. Experiments

Piezoresistive Sensor 5V AC

3.00

OutputVoltage (V)
s 3

=
(=]
[=]

050

Weight (Kg) | V) Vi Vi | Average (V)
0 1.02 | 1.01 | 1.03 1.02
0.05 2471250 | 248 2.48
0.1 2.50 | 2.51 | 2.48 2.48
0.2 248 | 2.51 | 2.52 2.50
0.4 2.53 | 2,52 | 2.50 2.52
0.6 250253 | 249 2.51
0.8 2.49 | 2.50 | 2.52 2.50
1 2.50 | 2,51 | 2.54 2.52
12 2.50 | 2.53 | 2.49 2.51
1.4 249|249 | 2.52 2.50

Table 4.5: Piezoresistive Sensor AC Voltage Force Test

Piezoresistive Sensor - Force vs Voltage

0.2 04 0.6 08 1 1.2 14
Weight (Kg)

Figure 4.5: Piezoresistive Sensor AC Voltage Force Test

4.2 Sensor Force Test 51

PDMS Sensor 5V AC

Weight (Kg) | V) vy Vi | Average (V)
0 0.123 | 0.129 | 0.127 0.130
0.05 0.358 | 0.466 | 0.461 0.430
0.1 0.543 | 0.566 | 0.619 0.580
0.2 0.675 | 0.709 | 0.687 0.690
0.4 0.865 | 0.846 | 0.849 0.850
0.6 0.879 | 0.996 | 0.917 0.930
0.8 0.950 | 0.916 | 0.920 0.930
1 0.967 | 0.979 | 0.962 0.970
1.2 1.02 | 1.00 | 1.03 1.02
1.4 1.oo | 1.02 | 098 1.00
1.6 1.04 | 1.30 | 1.01 1.12

Table 4.6: PDMS Sensor AC Voltage Force Test

PDMS Sensor - Force vs Voltage

s
b
(=

0.80

Output Voltage (V)

0.00
v 02 0.4 05 08 1 12 14 16 is
Weight (Kg)

Figure 4.6: PDMS Sensor AC Voltage Force Test

52 Chapter 4. Experiments

Graphene Sensor 5V AC

Weight (Kg) Vi Ve Vs Average (V)
0 0.0502 | 0.0460 | 0.0488 (0.050
0.05 1.50 1.56 1.49 1.52
0.1 1.98 2.m 2.03 2.01
0.2 2.25 2.20 2.22 2.22
0.4 2.40 2.33 2.32 2.35
0.6 2.36 2.30 2.39 2.35
0.8 2.35 2.33 2.29 2.32
1 2.40 2.39 2.35 2.38
1.2 2.29 2.37 2.30 2.32
14 2.38 2.35 2.38 2.37

Table 4.7: Graphene Sensor AC Voltage Force Test

Graphene Sensor - Force vs Voltage

2.50
> s I

2.00
3
Y 150
¥
]
>
2 1.00
5
=]

0.50

0.00

0 02 04 056 0.8 1 12 14 1.6
Weight (Kg)

Figure 4.7: Graphene Sensor AC Voltage Force Test

4.2 Sensor Force Test 53
Aluminium Sensor 5V AC
Weight (Kg) L vy Vi Average (V)
0 0.0395 | 0.0415 | 0.0405 0.0400
0.05 2.25 2.34 2.37 2.32
0.1 2.33 2.34 2.37 2.35
0.2 2.33 2.34 2.37 2.35
0.4 2.38 2.36 2.41 2.38
0.6 2.24 2.20 2.27 2.26
0.8 2.28 2.31 2.32 2.30
1 24T 2.22 2.20 2.20
1.2 2.42 2.40 241 2.41
1.4 2.43 241 2.42 242
Table 4.8: Aluminium Sensor AC Voltage Force Test
Aluminium Sensor - Force vs Voltage
3.00
250
E 2.00
g
E 1.50
é 1.00
050
000
o 0.2 0.4 0.6 08 1.2 15

Figure 4.8: Aluminium Sensor AC Voltage Force Test

Weight (Kg)

b4 Chapter 4. Experiments

4,2.3 Discussion
Flexiforce A401 5V DC

The force versus voltage curve for the DC voltage, seen in Figure 4.3, appears logarithmic
in form. The voltage change at lower loads increases significantly faster than at higher
loads. The curve becomes closer to a linear relationship between 0.4 kg and the maximum
recorded value of 1.6 kg. The DC voltage curve appears to be able to distinguish smaller
forces with a better resolution than the same sensor excited with a sinusoidal signal. seen
in Figure 4.4,

Flexiforce A401 5V AC

The force versus voltage curve of the Flexiforce sensor with the AC excitation signal ap-
pears to be less sensitive to smaller forces than the same sensor using a DC input. The AC
input however, appears to act in a linear manner at a lower force than its DC counterpart.
If the sensor is not used for small forces, this may be more beneficial to the user. Using
the sensor for grasping, measuring small forces accurately would be beneficial. The AC
input does provide another piece of information to be gathered from the sensor that the
DC input cannot provide, the phase shift of the signal. This is the reason the AC signal
will be used for most of the tests.

4.2.4 Piezoresistive Sensor 5V AC

The piezoresistive sensor does not appear to have any states between on or off. If there is
a relationship between force and voltage, is does not present itself with this cireunit. This
sensor can still be used for tactile sensing as it is able to determine contact. The phase
shift may also be a determining factor to this sensors usefulness.

PDMS Sensor 5V AC

This sensor has the best low force sensitivity of all of the sensors tested, and reaches a
relatively linear state around 0.4 kg, Due to the material of the electrodes in the sen-
sor and the resistance associated, this sensor has the lowest output voltage of all of the
sensors. This means that any noise in the signal would have the greatest impact on the
results of this sensor, rather than the others.

4.2.5 Graphene Sensor

The graphene sensor has a sharp relationship between force and voltage, increasing to-
wards its peak value at 0.4 kg. This sensor seems to be more useful at much lower forces.

4.2 Sensor Force Test 55

This result may be due to the high conductivity of graphene.

Aluminium Sensor 5V AC

The force versus voltage graph for this sensor is the least useful for gripping applications
as the voltage reaches maximum as soon as the sensor is touched, at 0.05 kg. The result
is relatively steady onwards. This seems to be due to the high conductivity of the alu-
minium electrodes used within the sensor,

Errors in Test

There are several aspects of this test that may have introduced errors into the results.
Firstly, pressing and holding the sensor at the correct weight is difficult to stay steady.
Therefore the measurements may have not been taken at exactly the correct weight. Ad-
ditionally, the output voltage also appears to be related to the surface area of contact,
across all sensors. For the larger weights the finger pressed down would have been pressed
into a larger surface area, which may have had an effect on the results. Finally errors may
have been introduced in either the calibration of the scales, or with the measurement of
the voltage within the Arduino.

To help minimise the impact that these errors may have had on the test, many results
were taken to obtain an average. For each recorded value, the Matlab program had taken
the average of 20 voltage samples. Three of these recorded values were taken and an
average was used. This helps reduce the errors introduced when trying to hold the sensor
steady at the set weight.

56 Chapter 4. Experiments

4.3 Program Iteration Speed Test

The following tests, Sections 4.4, 4.5 and 4.6, are all logged through the Matlab program
and are therefore bound by the speed of the program. This test is to measure the speed
of the iterations so that a time base for the following tests can be established.

4.3.1 Method

The method to measure the time per iteration is to time several iterations of the program
and take an average of five tests. The robotic arm is not attached for the following tests,
as the communication to the servos is a time consuming task and will slow down the
program. The program was timed for 800 iterations with a stopwatch and the average
was taken from five runs.

4.3.2 Results

Sample No. | Time (s)
1 37.07
2 36.86
3 36.69
4 37.00
5 37.08
Average 36.94

Table 4.9: Program Iteration Speed Test

4.3.3 Discussion

As seen from the results in Table 4.9, the average speed of 800 iterations is 36.94 s. This
means that it takes 46.175 ms per iteration, or 21.67 iterations per second. This will give
a time basis for the following results.

4.4 Sensor Load Response Testing 57

4.4 Sensor Load Response Testing

The sensor load response is used to determine each sensors response to applied loads for
varied times.

4.4.1 Method

To test the response of the sensors, a load was applied for a varied amount of time to
the sensors. The load was a finger pushed onto the sensors, with an even force across
all sensors. 1000 iterations of the program was run and the sensor voltage was recorded
within Matlab. The times of when the load was applied can be seen below, in terms of
the program iterations.

0 - 100: No load

e 100 - 150: Load applied
e 150 - 300: No load
e 300 - 400: Load applied
e 400 - 500: No load
e 500 - 700: Load applied

e 700 - 1000: No load

58 Chapter 4. Experiments

4.4.2 Results
Flexiforce A401

5% Foxiforcs A401 Response Test

'.""b\,." '.w«"-"'- |

% Moty

| aci
.-!I.:\" J r-'".ﬁ "pl‘,“‘ﬁh
I.'_*-\L4 1

by,

aresor Yolage [W)

-
b=

\
r "\','\l._

=

i Ty,
14+ bt PRI
|

-

o X0 &) dix; 500 B T [£ LlUe

Figure 4.9: Flexiforce A401 Response Test

Piezoresistive Sensor

B Fiezoresistive Sensor Response Test

i i T Tty

24 | | 1

22 | | 1

Sensor Voltage (V)
[:-]

— | PPN e s |
1 h

o 100 200] 400 500 00 00 B00 900 1000
Herations.

Figure 4.10: Piezoresistive Sensor Response Test

4.4 Sensor Load Response Testing 59

PDMS Sensor

POMS Response Test

il ;
f A
| ,'-I'l'“ L

Sansor Voltage (V)

Pl i i \pmimryasPolral g
= . : :

] 100 200 30 400 500 00 o 800 00 1000
lerations.

Figure 4.11: PDMS Sensor Response Test

Graphene Sensor

Graphens Response Test
24 T

22t o s 1
4 ' f\ et

Sensor Volatge (V)
= =

Y
T
L

\ LY
1} | | s \ .
MR Mg APt

0e - .
1] 00 200 00 400 500 600 To0 a00 800 1000

Herations

Figure 4.12: Graphene Sensor Response Test

60 Chapter 4. Experiments

Aluminium Sensor

Aluminium Response Test
T

22 T
T
.) vl
2F i
| | M f |
| P
18+ !
S
< |
@
[|
=
S16F
=1
g | |
@ | |
14+ |
12 4
/
' |
Iy e WPedeAabey TR Vi T e e
1 h L
[} 100 200 300 400 500 600 700 300 800 1000

Herations

Figure 4.13: Alumininm Sensor Response Test

4.4.3 Discussion
Flexiforce A401 Sensor

Once the load is applied to the sensor at 100 iterations, you can see that when it is re-
moved, the sensor does not return to its initial voltage immediately. The magnitude of
this voltage offset seem to increase the longer the load is applied for. This can be seen
with the 100 iteration load application and the 200 iteration. This is not an ideal response
for a sensor that is working in a feedback system, as it does not promote quick changes to
the signal. The reason the sensor responds this way may be due to the construction of the
sensor. The piezoresistive layer between the electrodes is not recovering from its strained
state quick enough, and thus the sensor appears to be partially activated. This effect
seems to carry on to the phase shift signal measured, when can be seen in the following
tests, Sections 4.5 and 4.6. If an object was gripped for a long period of time and then
suddenly changed, the sensor may not be able to respond quick enough to detect this
change. The fluctuations at the peaks of where the load is applied may be due to the
distribution of the load not being steady on the sensor.

Piezoresistive Sensor

The piezoresistive sensor shows an ideal voltage signal, in terms of sensor response. The
signal has a quick rise time and fall time, and unlike the Flexiforce A401, the voltage re-
turns straight to its initial state. The length of the applied load seems to have no impact

4.4 Sensor Load Response Testing 61

on the sensor. The signal also seems noticeably less noisy in this sensor in comparison to
the Flexiforce sensor. The peak voltage of the response also reaches a higher value, 2.5

V, compared to the Flexiforce sensor, 2.3 V.

PDMS Sensor

The PDMS sensor shows similar results to the piezoresistive sensor, albeit with a signifi-
cantly lower voltage peak, 1.55 V versus 2.5 V, and with greater noise within the signal.
The rise and fall time of the loads in comparable to the piezoresistive sensor. The voltage
also refurns to its initial value after the load is removed, unlike the Flexiforce sensor.

Graphene Sensor

The graphene sensor shows a less ideal response than the PDMS sensor or the piezore-
sistive sensor. In this signal the rise time has been affected slightly. Instead of a sharp
change between unloaded and loaded, the peak has a slight curve towards the top. This
increases the rise time before the peak value is reached. A similar effect can be seem when
the load is removed. The fall time is curved at the base of the signal, instead of immedi-
ately returning to its initial value. This result is still better than the response from the
Flexiforce sensor, however. The signal voltage is comparable to the piezoresistive sensor,
which is desirable.

Aluminium Sensor

The rise time of the aluminium sensor is comparable to the graphene sensor, but the
curve at the peak of the signal is more apparent. The fall time of the signal is signifi-
cantly better than the graphene sensor, returning to the initial value immediately. This
is comparable to the piezoresistive sensor and the PDMS sensor. The sensor voltage also
peaks at a reasonable level, 2.1 V which isn’t too far below the piezoresistive sensor, 2.5 V.

Errors in Test

Errors in the results may have come from a few sources. First, although the force was
around the same for all of the tests, it is hard to ensure that the exact force is used across
all sensors. Similarly, the contact area of the finger on the sensor is going to vary, based
on the shapes of the sensors, as some are round while others are rectangular. Human
response time would have affected how close to the right iterations the load was applied
and removed, although these small errors would have had minimal impact on the results.
Finally, errors with the Arduino measurement may have impacted the recorded results.

62 Chapter 4. Experiments

4.5 Sensor Phase Shift Test

The sensor phase shift is a test to determine the phase shift response from the sensor
when a load is applied. This test compares all five sensors abilities phase shift response
together, to determine which sensors show any sign of phase shift. The phase shift may
be a factor in determining the type of load applied to the sensor, which will be addressed
in the next test, Section 4.6.

4.5.1 Method

The method is similar to the one employed in Section 4.4, but is purely looking at the
response in the phase shift. The test looks at the impact of a finger placed on the sensor,
and the circular end face of plastic cylinder with a diameter of 15mm. Matlab is used to
take in the measurement data. The sensor has no load initially, at 100 iterations a finger
is placed on the sensor, it is held until the program reaches 200 iterations and then the
load is removed. At 300 iterations the cyvlinder is applied to the sensor until the program
reaches 400 iterations and the load is removed. The force of the finger and the cylinder
will remain the same. This method will also allow the response after the load has been
removed to be examined.

4.5 Sensor Phase Shift Test

63

4.5.2 Results
Flexiforce A401

24

o
23p

Flexiforce A401 Phase Shift

| lﬂ...,l:.lll,illlll.»'-,nll;.‘mII,:I

'ilf il ‘U'” IM' !‘h I

NI

100 150 200 250 300 350 400 480
herations:

Figure 4.14: Flexiforce A401 Phase Test

Piezoresistive Sensor

& T

Plaznrnsistive Sansor Phiasae Shift
T T

Please Shill {v)
I
"

Figure

L ek, ol Y A
-,\'I"'I_ v '-I.'|‘|fI]'J| I\ |_|,

" e i)
1 Iﬂ-I| by | Ly
1

4 . Npeal g Lk
f Iu,- I\'.,‘\'J,' il \'ll Wl i PRI .||I._II~I,\-|'i

| | ' 1 | '
100 150 200 200 0 35 400 430
Horticrs

4.15: Piezoresistive Sensor Phase Test

il . I".‘. FI -|I‘. ,1| .P.:lll

PDMS Sensor

I , ﬁ‘ﬂn\iﬁf‘ﬂ | Y “‘wa I

18
’ ¢ ” = m i 0 380 00 150 500
.......

Graphene Phase Shift

1.8)
’ “ e iz 0 50 300 80 400 450 500

4.5 Sensor Phase Shift Test 65

Aluminium Sensor

Aluminium Somor Fhase Shift

@ 1|f“‘1|k" LT T

25

.1'.” \ '|\

2ar

23 | 1

ra

LX)
T
i

Phase Shift (V)
ra

.‘L~|ul|l| ; VJ.I- u“ F

18 L L L .
1] 50 100 150 200 250 300 350 400 as0 500

Iterations

Figure 4.18: Alumininm Sensor Phase Test

4.5.3 Discussion
Flexiforce A401 Sensor

The phase shift graph for the Flexiforce sensor shows that it is receptive to hoth the
finger load and the plastic cylinder. The phase shift response has a short rise and fall
time, which is ideal. The issue of the sensor not returning to its initial state after the
load has been removed, seen in Section 4.5, is still present for the phase shift response.
Once the load is removed the phase shift increases to a certain level, then slowly begins
to drift towards its initial state. This is not ideal for a sensor used in a feedback system,
which requires short response times. The phase shift magnitude reached by both loads
rests at similar levels. The signal shows significant noise at steady state, which may be
an issue for obtaining an exact value. This may be reduced by taking the average of a
few measurements, but this may compromise the response time. The change between the
loaded and unloaded states of the sensor is significant enough to determine between the
two states.

Piezoresistive Sensor

The piezoresistive sensor shows more desirable phase shift results than the IFlexiforce sen-
or. The sensor returns to its initial state straight after the load is removed and the noise
level is significantly less than the Flexiforce sensor. The sensor is receptive to both types

66 Chapter 4. Experiments

of loads, and both loads produce a similar phase shift response. The only issue with the
piezoresistive sensor seems to be that it does not have any levels between loaded and
unloadec.

PDMS Sensor

The phase shift response of the PDMS sensor provides not clear details. The signal noise
is extreme, much higher than all of the other sensors, to the point where the signal over-
laps between its loaded and unloaded state. A phase shift can be seen where the finger
load was applied, but there is no real change when the plastic cylinder is applied.

Graphene Sensor

The graphene sensor responded well to the finger load applied, but when the load was
removed, the phase shift did not return immediately to its initial state. Similar to the
PDMS sensor, the graphene sensor does not appear to respond to the plastic cylinder, but
it is difficult to tell as the sensor had not recovered from the first load when the second
load was applied. The noise levels and the phase shift magnitude seem to be in similar
levels to the Flexiforce sensor.

Aluminium Sensor

The aluminium sensor provides the best results from the three interdigitated sensors.
There is a clear trough in the signal where the finger load was applied, then the signal
quickly recovers to its initial state. The cylinder load does not appear to impact the signal
at all. The noise levels and the phase shift magnitude appear to fall somewhere between
the Flexiforce sensor and the piezoresistive sensor,

Errors in Test

The errors in this test can be attributed to the same errors seen in Section 4.4.

4.6 Object Shape Test 67

4.6 Object Shape Test

This test looks at the impact that the shape of the gripped object has on the sensor
voltage or the phase shift of the signal. Different results for different shapes would allow
the arm to identify befween a few shapes, and therefore adjust the gripping method to
allow for the best gripping results. This test was only performed on the Flexiforce A401
foree sensing resistor and the piezoresistive sensor as the other sensors were not sensitive
to non-conductive materials.

4.6.1 Method

The test involved six different shapes being applied to the two sensors, these were:
s Finger
e Circle

e Cylinder edge

L]

Sphere

.

Thin edge

L]

Sharp point

The finger is used as a reference point, as most of the testing has been done with this
shape. The circle is the circular face of a cylinder with a diameter of 15mm, and is pressed
onto the sensor. The cylinder edge is the rounded length of the same cylinder pressed
onto the sensor. The sphere is used to see the response of the contact point of a spherical
object. The thin edge is a plastic ruler pressed onto the sensor. Finally, the sharp point
is the tip of a pen pressed onto the sensor. All of the measurements were taken using a
similar amount of force.

The measurements were taken from the Matlab program, using 300 iterations. The
different shaped loads were applied at 100 iterations and removed at 200 iterations. This
gives the initial state, the loaded state and the response to the loads. The sensor voltage
and the phase shift voltage were plotted using Matlab.

68

Chapter 4. Experiments

4.6.2 Results

Flexiforce A401 Finger Test

Flexiforce A401 Finger Test

i thll’or?:m1 Finger Test o
| 2as |l tnilt 0. a i
2 o
| | ”‘\-!_"4 hl"— Rl | |
i3 | [238 | ||||l| ||
< | s
%13 | ";‘ 23
z | B 25 |
17 £
a £
o
18 L m
[
| n Aw W
i3 ||
205
14 2
50 100 150 200 50 0 50 100 150 200 =0 300
Haratians terations

Figure 4.19: Flexiforce Finger Test - Sensor Voltage & Phase Shift

Flexiforce A401 Circle Test

Floxifores A401 Circlo Tost

Floxiforcs A401 Circlo Tost

22 24
- 3 I |I ul ‘,I_ [
35 - 235 |]| \ll HAI” “
r 23 LI
2 f |
= .f - szﬁ | 1t Al I:ll":
Z1a f S = 22 I“'" WIHHT' II'\l
Sis | W25 f
3 i
E L g ¥
L] | |
205
15 | |
2
| il
L f 195 III] 'I ” ﬁf“ 1]
14 - 19
50 100 150 200 50 0 50 100 150 200 0 300
Heratians aestions

Figure 4.20: Flexiforce Circle Test - Sensor Voltage & Phase Shift

4.6 Object Shape Test

69

Flexiforce A401 Cylinder Edge Test

i Fi A401 Cylinder Edge Test
. 0 W 5
1.75 - [|
v
17 - |
= |
B165-
B
3 |
& 18-
1.55 - |
v,
14 - N
erna i
1.45
L] B0 100 180 200 =0 00
Ierations

]

p z I.\.I: 'I','.l','i. lHg]I‘[.'I-rl‘ljllllljl-.

Phaze Sht (V)
5
@

Flesiforee A401 Cylinder Edge Test

:1, I,) :_I l;lrib I' |‘\ N .fL

o 2] 100 180 230 250 i)
Inrabons

Figure 4.21: Flexiforce Cylinder Edge Test - Sensor Voltage & Phase Shift

Flexiforce A401 Sphere Test

Flexiforce A401 Sphore Tost

Sensor Valtage (V)
=

Q 5 100 150 00 =0 300
Iteraticns

Phase Shift (V)
r M
o R o R
oo w o =

2]
o

21

Flexifore A401 Sphare Test

I i
T f‘{r Jk ll.'l e
i Y POy L
' | f
|
Lo DA |
(| .u,mlﬂ\ AN
o 50 100 150 200 250 o
Iterafions

Figure 4.22: Flexiforce Sphere Test - Sensor Voltage & Phase Shift

70

Chapter 4. Experiments

Flexiforce A401 Thin Edge Test

Sensar Vollage (V)

2

&

3

o

oL
@

=
@

-
o

Flexiforce A401 Thin Edge Test

50 100 150 200 50 300

Iterations

Figure 4.23: Flexiforce Thin Edge Test

Flexiforce A401 Sharp Point Test

Sensor Volateg (V)
= = -
&] &

=
=

Flexifarce A0 Sharp Point Tost

p e
f—r I E'RAL!

.,
Y

i 100 150 200 =0 300

Heratians

Flexiforce A401 Thin Edge Test

24
|'.la_ "r"‘ll i (Aot e ||
23 L k ' rl|['J"l" ! fll"l ’:1' I']IJ If'I H‘A'Hrﬂ'h !"lrl
g 22 I|
2 " |
Eﬂ 21 N
I A h
: W tll.ﬂl;rnil hJ‘LH“l'. 1\.
14
o 50 100 150 200 250 300
Iterations

- Sensor Voltage & Phase Shift

" =
e : P i o
b 3 = & »

Phiese Shill (V)

e
i

22

Flexiferce A401 Shorp Point Test

|"'|'Nf M' il hﬂ V u}ii I |,|.|||‘r ||\

‘1 '.-i.iqml[".lll '}”"!'Ir ‘

Q 50 100 150 200 =0 300

terations

Figure 4.24: Flexiforce Sharp Point Test - Sensor Voltage & Phase Shift

4.6 Object Shape Test

71

Piezoresistive Sensor Finger Test

Piezarasistive Sensof Finger Test

pa
@

Sangot Valtage (V)
s s o Mmoo
L~ R T I Y

-

o
@

100 180

Iberations

200

Phase Shift (V)

Pizzaresistive Sensor Fingar Test

25
y 1
24

23

A

N
M I. 1‘|'-'q||-l | JIT'. II'\'!II}

21
|

2 |
Wt i Adkiss MR 4
it M

1.9

o 2] 100 180 230 250 i)

Inrabons

Figure 4.25: Piezoresistive Sensor Finger Test - Sensor Voltage & Phase Shift

Piezoresistive Sensor Circle Test

P istive Sensor Cirche Test

™
£

Sansor Valtage (V)
aiogh g g]
B B B B oM m B

[=%:}
100 150

Iterabions

Sensor Circle Test

24

| .\l.|-|'|:4.|'7l_lili\\'{‘}r'l"."-J"_'.'f'_"‘lv

PN M

iy

0 100 180

lierakongs

00

Figure 4.26: Piezoresistive Sensor Circle Test - Sensor Voltage & Phase Shift

T2

Chapter 4. Experiments

Piezoresistive Sensor Cylinder Edge Test

Sensor Valtage (V)

Piezoresistive Sensor Cylinder Edge Test

L 100 150

Husratianes

200

Figure 4.27: Piezoresistive Sensor Cylinder Edge

Piezoresistive Sensor Sphere Test

Piozoresistive Sonsor Sphere Test

el
i

Sarsmor Valage (V)
- = = P
Bl @ om W om

ha

=
t

8
g

Herations

180 200 230

25

24

23

Phase Shift (V)
na
I

24

Phase Shift (V)
o P
b o

o

Piezoresistive Sensor Cylindsr Edge Test

1 el gl s TR I
I'I|"| iI| “II ll“'.l“"l FIL]ll\ ||'-'|H n”,‘lq |'l‘ Ir-ld
|
| |
| e |
) ilﬁlu “ |1 lll'.l' | "'ql |'I
[} B 100 150 200 250 g
Lsrations

Test - Sensor Voltage & Phase Shift

Plozoresistive Sensor Sphore Test

|'.|'-I II ﬂll nﬁ I*"r IqlllllI |'J‘. Il;" I'ltl [

":‘ | P:'Ial-l |.I*I'.1L.I'|I.I-;"

—
""i,',_“u \PLiyeni

Q L] 100 150 200 =0 30

terations

Figure 4.28: Piezoresistive Sensor Sphere Test - Sensor Voltage & Phase Shift

4.6 Object Shape Test

73

Piezoresistive Sensor Thin Edge Test

i ‘Sensor Sharp Edge Test

-

Sangat Valtage (V)
B R B B oW B

o8

] B0 100 180 200 =0 00
Iberations

. Piezoresistive Sensor Sharp Edge Test

Y e ket

A1 Mt 1
i Phtah

Figure 4.29: Piezoresistive Sensor Thin Edge Test - Sensor Voltage & Phase Shift

Piezoresistive Sensor Sharp Point Test

28 Pigzoresistive Sonsor Sharp Point Test

24 -

22 -

]

Sersor Valtage (V)

Q 5 100 150 00 =0 300
Iteraticns

Iterafions

Figure 4.30: Piezoresistive Sensor Sharp Point Test - Sensor Voltage & Phase Shift

21 |
|
2
¥ W II.Ilﬂ,‘\!I L
1.9
o &0 100 180 230 250 i)
Inrabons
Pigzoresistive Sensor Sharp Point Test
. h h . A ; » M Ralsl gr
| -'.'I I1I‘... 'f. _h\-"m FL;‘I"I-IQ'J' -',‘.
23
2
|
b=
@23
]
&
&
21
2
W -.",.I.I._._.Jlu. m o
19
o 50 100 150 200 250 o

T4 Chapter 4. Experiments

4.6.3 Discussion
Flexiforce A401 Sensor

With the finger test for the Flexiforce sensor, the results are similar to the response test
for the sensor voltage, where after the load is removed from the sensor, the sensor does
not return to its initial state immediately. There is a sharp decline to a point above the
initial value, then a very slow decline can be seen. The phase shift results are similar to
the sensor voltage as the phase shift after the load has been removed is slightly lower than
the initial phase shift.

The circle fest shows some interesting results. After the load has been removed, the
sensor voltage stays noticeably higher than the finger test, sitting at around 1.9 V as
opposed to 1.7 V. This may be due to the uniform spread of force across the large contact
area of the circle in comparison to the finger which has an uneven contact area and the
load distribution may not have been even. Another potential reason for this result may
be due to the material type. The circle face is a hard plastic material in contrast to the
soft and malleable finger. Although this result may be able to distinguish elements of
a gripped object, it is not entirely useful for a quick assessment of a gripped object, or
continued monitoring, as it requires the load to be applied and removed to see the results.
Another noticeable aspect of these results is the phase shift response not return to its
initial state,

The cylinder edge test and the thin edge test show similar results, which makes sense
as they are similar shapes. The sensor voltage in both tests appears to be noisy when the
load is applied. This may be due to the distribution of the force not being steady across
the entire edge of the object, causing some fluctuations. Other than the noisy signal, the
results from the sensor voltage and phase shift appear to fall in line with the standard
load test when using a finger, with a slightly lower voltage, reaching just under 1.8 V for
the cylinder edge and 1.75 V for the thin edge as opposed to around 2.1 'V for the finger
test. This smaller voltage may be attributed to the smaller overall contact area of both
edge tests in comparison to the finger test. The phase shift in both edge tests reaches
similar levels as the reference finger test.

The sphere test shows no significant differences between the reference finger test. The
only difference is that after the load has been removed, the voltage returns closer to the
initial state. This is likely to be due to the smaller contact area of the sphere in compar-
ison.

The sharp point test shows some unexpected results. When the load was applied to
the sensor the voltage decreased instead of the expected increase, as per all other tests.
This decrease in voltage is much smaller in magnitude than the other results, being only
0.08 V decreased in comparison to the reference test results of 0.6 V. The change is small,
but very distinet. This test was performed several times to verify the results, and this

4.6 Object Shape Test 75

occurred every time. Another interesting note on these results is that the phase shift
also decreases, even though the sensor voltage decreased. These results indicate that the
Flexiforce A401 sensor may be able to distinguish a sharp point of contact separately for
other types of loads. While this has no obvious use at the moment for adaptable grasping,
this may have an application in some more specific uses.

Piezoresistive Sensor

The piezoresistive sensor results show that the shape of the load applied to the sensor
has no significant impact to the sensor voltage or the phase shift response of the cir-
cuit for this particular sensor. Unlike the Flexiforce A401, this sensor does not seem to
have only two real states of operation, full load and no load, where the Flexiforce sensor
can determine the force applied. What is worth noting is that the sensor voltage and the
phase shift appear to be clearer signals than the signals produced by the Flexiforce sensor.

Errors in Test

There are a few ways that errors may have been introduced into this test which may have
affected the results. Firstly is the force used to apply the load. While the forces applied
each time were similar, it is difficult to get it exact using human input. This may have
resulted in variations in the result. Similarly, the distribution needs to be applied evenly
across the contact surface which is difficult to do by hand. Finally, errors in the Arduino
measurements may have contributed small errors to the results.

Shape Test Summary

The results do not provide enough evidence to suggest that the sensor voltage or the
phase shift can determine an objects shape while the load is applied. While the shape
cannot be determined, it can be seen that the contact area of the object on the sensor
does appear to affect where the sensor voltage returns to after the load has been removed.
Since this can only be determined after the load has been removed, its application to
adaptable grasping is not apparent. The results from the sharp point test on the Flexi-
force A401 sensor may be useful for applications that benefit from identifying sharp points
for other types of load on the sensor, however this is not useful for the current application.

76

Chapter 4. Experiments

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis project investigated the use of low cost tactile sensors being used for adaptable
grasping. The force-sensing resistors investigated were a Flexiforce A401 sensor and an
Intertek piezoresistive sensor. The interdigitated capacitive sensors investigated were a
PDMS and carbon nanotube sensor, a graphene sensor, and an aluminium sensor. A
circuit was developed to provide an input signal for the sensors, and provide two pieces
of information for the microcontroller. The ecircuit filtered the signal so that the a DC
output voltage was supplied which related to the force on the sensor, and the phase shift
of the sensor output was compared to the input, and also filtered into a DC voltage. The
robotic arm control program was developed using Matlab to control all five axis of the
arm, including the gripper. This program provided a user interface to interact with the
arm, and to gather data about the arm and the sensors. The program allowed the gripper
to grip to a voltage, correlating with the sensor force. This threshold was adjustable by a
variable. Had the sensors provided object characteristic information, this variable could
have been adjusted for certain object shapes, therefore adapting to the object. Various
tests were performed with the five sensors, including sensor characterisation, variable
force tests, force response tests, phase shift tests and object shape tests. Looking at these
results together, there is no indication that these particular sensors in this developed
system can determine different characteristics of separate objects. The system could be
modified to test different types of sensor to see if they can provide this information.

78 Chapter 5. Conclusions and Future Work

5.2 Future Work

After performing the investigation into adaptable grasping, there are a few different areas
where the research could be expanded, listed as follows.

Improvements

One area where the project could be improved is the servos used. The Dynamixel AX12-a
servos are good servos to use in terms of accessibility and functions available straight from
the servo, however they are not as powerful as desired. In terms of gripping, the servos
tripped their maximum torque limit settings for heavier loads, which limited what tasks
the robotic arm could perform. Stronger servo motors would open up different tasks and
actions the arm could perform.

Sensor Investigation

As the sensors investigated were not suitable for the adaptable grasping application, in-
vestigating more sensors would be an area to proceed in. The reason that the sensors
were used was due to their low cost, so a more expensive approach may be necessary. The
center of pressure sensor would be a good option to investigate as the sensor is able to
provide a pressure map of sorts. This would open up the sensor to implementing other
features such as slip detection.

Mapping Signal Values

While this project mainly looked at change in voltage and phase shift of the sensor, a
model could be made to more accurately determine the degree of phase shift or the value
of the force on the sensor. Had there been more time for the project and the sensors
provided object determination results, this would have been performed.

Slip Detection

Slip detection is another area that could be investigated. This would also increase the
cost of the project as more sensors may need to be implemented, on top of the currently
investigated sensors. Optical systems are typically used for this purpose, in tandem with
other sensors. This would increase the complexify of the system. Other methods of slip
detection include micro-vibration sensors and array matrix sensors, which would also he
expensive options.

Chapter 6

Abbreviations

COM Port
CoP

DDS

DLL

DOF
EEPROM
FSR

GUI
GUIDE
PCB
PDMS

PID Controller

PWNM
RAM
USB
ZCD

Communications Port
Center of Pressure
Direct Digital Synthesis
Dynamic-link Library
Degrees of Freedom
Electrically Erasable Programmable Read-Only Memory
Force Sensitive Resistor
Graphical User Inferface
GUI Development Environment

rinted Circuit Boarc
Printed C t Board

i rlsi At

Polydimethylsiloxane
Proportional-Integral-Derivative Controller
Pulse Width Modulation

£ Access v
Random Access Memory

miversal Serial Bus
U 1 Serial B
Zero Crossing Detector

80

Chapter 6. Abhreviations

Appendix A

Meeting Attendance

Consultation Mectings Attendance Form

—

o] N —
L
| 2 [V (G0 e sy |
AL \ﬁh"‘”vl | e
|4 |sfo L aed |F

RE A ™
6 | Shun [Tt e e,
BB Yo
K7 i 7
(Lo (Wpom | ¥ | 44~
TN [atone | Hlem
ERE 0 l”%““

Ld

T Buperviser's

igraturs

Yoy
by
H
Fhodop dlges
#‘”‘“‘ﬁ”"'ﬁ |
Hombogsdingey
) 'UAlw{‘-_hj'L'-q-.'t—;rf
Helaopadiprr
4#‘.‘-‘“""{&-&—!«‘«}1—,‘5

_au“““’"“"m]

Figure A.1: Meeting Attendance Sheet,

81

82

Chapter A. Meeting Attendance

Appendix B

Project Timeline and Budget

B.1 Project Timeline

Figure B.1: The Proposed Project Timeline.

B.2 Project Budget

The project has only one cost associated with it as most of the parts used were already
available from Macquarie University. The only bought component was printing the sensor
circuit onto a PCB which cost $145.90.

83

84

Chapter B. Project Timeline and Budget

Appendix C
Matlab Code

C.1 Control Program Code

The following is the code developed to control the robotic arm using Matlab. It calls
upon the GUI code run the user interface. This is provided in the next section.

%Dynamixel Smart Robotic Arm Control Program

Y%Written By Brendan Menzies 42849969

s[YoMacquarie University Mechatronic Engineering

%For use in Research Thesis Intelligent Robotic Grasping
',;?,’]’l'uglsl'nlll Initialisation

loadlibrary ("dynamixel ’, "dynamixel . h ")} ;

DEFAULTRPORTNUM = 4; %C0OM Port Number
| |DEFAULTBAUDNUM = 34; %1 for 1lmbps, 34 for 57142 kbs

| %Servo Limits

lobal variables are shared with the gui

07 o
OF

global slmax; slmax = 890;
global slmin; slmin = 30;
global s2max; s2max = 890;

global s2min; s2min = 440;
global s3max; s3max = s2max;
global s3min: s3min = s2min;
global sdmax; sdmax = 890;

global s4min; sdmin = 250;
global sbmax; sdmax = sdmax;
global shmin; sbmin = sd4min;

global sGmax; sbmax = T80;
global s6min; s6min = 160;

global sTmax:; sTmax = 900;
global sTmin; sTmin = 495;

global slpos; slpos = 150/0.29;

1| set

86 Chapter C. Matlab Code

global s2pos; s2pos 250/0.29;
global sdpos:; sdpos 85/0.29;
global sGpos; sGpos = 145/0.29;

global grip_button.var; grip_.button.var = 0;
global program_pause; program_pause = [;
global program_loop; program_loop = 1;
global move_speed; move_speed = T75;

global change_speed; change_speed = 0

i Limits = [slmax slmin:s2max s2min:s3max s3min:sdmax sdmin;:shmax sSmin:sfmax

sbmin;sTmax sTmin]; %hard limits on servos, to prevent damage

YAX—12a function addresses

P_GOALPOSITION = 30:

:| P PRESENT_POSITION = 36:

PMOVESPEED = 32;

7| PMOVING = 46:

P.CWANGLELIMIT = 6;

|P.CCW_ ANGLELIMIT = §;:

P.TORQUEENABLE = 24;

1| P TORQUELLIMIT L = 34;

P TORQUELIMIT H = 35;:
PVOLTAGE = 42;

PPRESENT LOAD = 40
%other variables
*|grip_-threshold = 1.5;
voltage_samples = 3;
| voltoutput = 0;
shutdown_timer = 300;

| prev_slpos = 0;

prev.s2pos = 0;

| prev_sdpos = (;

prev_stpos = 0;

average_matrix l:voltage_samples;

s| phase_matrix = 1l:voltage_samples;

voltage_matrix zeros ([1 shutdown_timer]);
phase_matrix = zeros ([l shutdown_timer]):

n|%GUL Setup

Y%this stuff needs to only run once. The gui opening function loops.

handles = gunihandles (dynamixel_gui);

Y%set start position

| set (handles. sl_slider , "value’, 150);

set (handles. s2 _slider , *value’®, 250);

set (handles. s4_slider , 'value’, 85);

set (handles. sG_slider , "value’, 145);
(handles. s7_slider , 'value’, 145);

sl set (handles .

7| set (handles.

| zz = 1; Y%counts loop

C.1 Control Program Code

87

Y%Display
set (handles

start position
.8l_value ,
52 _value ,
sd.value ,
s._value ,

s7.value ,

set(handles.

set (handles.

sTpos = (get(handles.s7

Yarduino setup
a

%Servo Sctup

%initialises the
res = calllib ("dynamixe

connec

arduino ("OOM3') %Hok<NOPTS>

‘string 7, 150);
"string ', 250);
'string ', 85);
'string?, 145);
"string ', 145);

-slider , ’'value'))/0.29; %sets s7 initial

pos

stops errors appea I'illﬁ

iterations

tion
1, *dxl.initialize

", DEFAULT PORTNUM,

DEFAULT BAUDNUM) ; Y&#tok <«NASGLUE

Yeset
for

angle limits

i 1:7

id i

calllib("dynamixel
calllib(dynamixel

| end

m|%write move speed

for i = 1:6
11 id = l
calllib("dynamixel
s end

15| Hmove speed

| while (program_loop

for gripper
calllib("dynamixel >, "dx

for
calllib{ "dynamixel

%torque limit

' hdx

| %dynamixel_gui %loads G

3| %Program Loop

until ProgramLoop is

vout =
phase = readVoltage
voltage matrix(zz)

ohdxlowrite_word 7 id ,PMOVESPEED, move_speed) ;

l_write_word’ ,7 ,PMOVESPEED,175) ;

gripper

l.write_word’ ,7 ,P.TORQUELIMITL,1023);

UL

1) && (zz < shutdown_timer+1) %main loop, continues

false i.e. stop buton

readVoltage(a, "AD");

(a, ’ALl’);
vout

Yhdxlowrite.word 7 id ,P.CCWANGLE LIMIT, Limits (i ,1));
Y, hdxlowrite.word 7, id ,P.CW_ANGLE LIMIT, Limits (i ,2) };

88

Chapter C. Matlab Code

phase_matrix(zz) = phase;

handles = guihandles(dynamixel_gui);
if change.speed =— 1;
Yewrite move speed
for i = 1:6
id = iy
calllib("dynamixel”, "dxl_write_word " ,id ,PMOVESPEED, move_speed
| H
end
change_speed = 0;
end

while program_pause = 1
%Disables torgque on motors when stop is pushed
for 1 = 1:7
id = i;
calllib("dynamixel”, "dxl_write_word ' ,id ,P.TORQUEENABLE,0) ;
end
pause (0.1);
end

%write goal position
if prev_slpos "= slpos
calllib ("dynamixel ", "dxl_write_word *,1,30,slpos);
end
if prev_s2pos "= s2pos
calllib ("dynamixel ", "dxl.write_word *,2,30,s2pos) ;
calllib { "dynamixel”, "dxl_write_word ’,3,30,s2pos) ;
end
if prev_sdpos "= sdpos
calllib("dynamixel *, "dxl_write_word * ,4,30,sdpos) ;
calllib ("dynamixel ", "dxl_write_word’ ,5,30,sdpos);
end
if prev_sbpos "= sGpos
calllib ("dynamixel ", "dx]l_write_word ’ ,6,30,s6pos) ;

end

%old gripper control gripper val is based off pressure applied

% mapped.val = sTmin + (vout —0)#(sTmax—sTmin) /2; %0 is voltage min,
2 is voltage max from sensor

% calllib ("dynamixel *, ' dxl.write.word ' ,7 ,P.GOAL_PQSITION , mapped.val
) B

% %sct(handles.s7T_voltage , ’string ', num2str{mapped_val));

% set (handles. s7_slider , "wvalue’, mapped.val+0.29);

Y%gripper control gripper mode closes gripper until set voltage

if grip_button_var = 1;

if (voltoutput < grip.threshold) && (voltoutput "= 0)
sTpos = sTpos+5;
end

C.1 Control Program Code 89

calllib ("dynamixel ', "dxl_write_word " ,7 ,P.GOAL POSITION, sTpos) ;
clse

sTpos = (get(handles.s7_slider , “value’))/0.29;

calllib { "dynamixel’, " dxl_write_word’,7,30,s7pos);

end

Yreset alarms

il get({handles.alarm_button, ‘wvalue’) = 1
calllib {("dynamixel’, "dxl_write_.word ' ,7 ,P.TORQUE_LIMIT L,1023) ;
calllib ("dynamixel’, "dxl.write.word’ ,7 ,P.TORQUEENABLE, 1) ;

end

if rem(zz, voltage_samples) = 0 %stores volimax every x iterations and

resets wvalue
average_matrix (1, voltage_samples) = vout;
phase_matrix(1,voltage_samples) = phase;
Ymean(average.matrix ,2);
voltoutput = mean(average matrix ,2); %average matrix(1.,1);
phascoutput = mean(phase_matrix ,2);
set(handles.s7.voltage , ’string’, voltoutput); %sensor voltage
set(handles. phase_shift_text , 'string’, phaseoutput); %sensor

voltage

oa | % gripper_load = calllib ('dynamixel’, dxl_read_word ’,7,
P PRESENT LOAD) ;
% set (handles. gripper_load_value , “string’, gripper_load — 1024);

else
average_matrix (1 ,rem(zz,voltage_samples)) = vout;
phase_matrix(1,rem(zz,voltage_samples)) = phase;

end

Kt set (handles.s7_voltage , “string ', vout); %sensor voltage

% sct (handles . phase_shift_text , 'string ', phase); %phase shift

Ystore current goal positions for next loop

prev_slpos = slpos;

prev_s2pos = s2pos;

prev_sdpos = sdpos;

prev_sbpos = slpos;

set (handles. iterations , 'string’, zz); %iteration count

2z = zz41; %increment iteration count

end

%Program Shutdown

res = calllib(’'dynamixel’, "dxl.initialize ', DEFAULTPORTNUM,
DEFAULT BAUDNUNM) ;

90 Chapter C. Matlab Code

%Disables torque on motors when stop is pushed

for i = 1:7

=g

calllib("dynamixel ", "dx]l_write_word ’ ,id ,P. TORQUE_ENABLE, 0} ;
end

%Terminates connection and closes gui

as| elear a;

calllib ("dynamixel’, "dxl_terminate ') ;

a5l unloadlibrary (' dynamixel 7)

close all force

|%clearvars

C.2 GUI Code

The following is the code for the GUI portion of the Matlab code. It is called upon by
the above control code and presents the user interface.

%GUI Program to accompay dynamixel_control program.

2|%Generated from GUIDE

%Other code written by Brendan Menzies 12849969

i|%Macquarie University Mechatronic Engineering

%For use in Research Thesis Intelligent Robotic Grasping
function warargout = dynamixel_gui(varargin)

% Last Modified by GUIDE v2.5 14—-0Oct—2016 15:31:44

% Begin initialization code DO NOT EDIT

gui_Singleton = 1;

gui_State = struct(’'gui_Name ', mfilename ,
"gui_Singleton’, gui_Singleton ,
TeniOpeningFen ', @dynamixel_gui_OpeningFen ,
"gui OutputFen ', @dynamixel_gui_OutputFen ,
'gui_LayoutFen ', [] f
"gui-Callback ", [1);

if margin &k ischar(varargin{l})

gui_State.guni_Callback = str2func(varargin{l});
end

if margout

[varargont {1:nargout }| = gui_mainfen(gui_State , varargin{:});
else

gui_mainfen (gui_State , varargin {:});
end

global k; k =1;
!

% End initialization code DO NOT EDIT

C.2 GUI Code

91

% Execut

«| global slma
global
w| global
global
izl global
global
| global
global
global
global

s2ma

Yshow
/| set (handles .
set (handles.
| set {handles .
set (handles.
i| set {handles.
set {handles.
| set (handles .
set (handles.
set (handles.
set (handles .

e

slider
| set {handles .
set (handles.
st set (handles .
set (handles.
| set (handles .
set (handles .
set (handles.
set (handles.
7| set (handles .
set (handles.

Yoset

=

slider

71| set (handles .
set (handles.
| set { handles .
set {handles.
set (handles.

Cset

3

-

guidata (hOhj

min and max

es just

X

slmin;

X3

52min ;
sdmax ;
sdmin ;
sbhmax ;
s6imin ;
sTmas
s7Tmin ;

Xy

sl_max ,
s2_max ,
sd_max ,
s6_max ,
s7.max ,
s1_min ,

s2.min, 'string’, num2str
sd_min, ’string’, num2str
s6_min, 'string’, num2str

s7.min ,

max and min

sl_slider |
s2_slider ,
sd _slider ,
sb_slider ,
sT.slider ,
sl _slider ,
52 _slider ,
54 _slider |
sboslider ,
s7_slider ,

step

sl _slider ,
52 _slider ,
sd _slider |
sb_slider ,
s7.slider ,

ect ,

before

labels

Tstring ’
'string’
‘string ”
‘string’
"string ’
‘string ’

‘string ’

"sliderstep ',
"sliderstep
"sliderstep ',
"sliderstep’
"sliderstep ’,

dynamixel_gui

function dynamixel_gui_OpeningFen(hObject ,

num2str
num?2str
num2str
num2str
num?2str

num2str

values

‘max’, slmaxx0.29)
‘max’, s2max*0.29)
"max’, sdmax*0.29)
"max’, sGmax#0.29)
‘max’, sTmax*0.29)
“min’, slminx0.29)
"min’, s2min#0.29)
"min’, sdmin#0.29)
"min’, sGminx0.29)
“min’, sTmin#0.29)

handles.output = hObject;
handles) ;

is made

eventdata ,

(slmax+0.29));
(s2max*0.29)):
(sdmax+0.29));
(s6maxx0.29));
(sTmax=0.29)):
num2str(slminx0.29));
(82min=0.29));
(s4dmin+0.29));
(s6min=0.29)):
(sTmin=0.29));

slmax—slmin)
s2max—s2min)
sdmax—sdmin) ,
smax—s6min)
sTmax—s7min)

visible.

=N =JN==1g=]

handles ,

varargin)

»

¥

3

92 Chapter C. Matlab Code

sl varargout {1} = handles.output;

if isequal(get(hObject, BackgroundColor'), get(0,’
defaultUicontrolBackgroundColor ’))
set (hObject , 'BackgroundColor* ,[.9 .9 .9]);

end

%o Executes on slider movement.

ol funetion sl1_slider_Callback (hObject , eventdata, handles)

clobal slpos;:
handles=guidata (hObject) ;

slpos = (get(handles.sl_slider , “value’)) /0.29;

guidata (hObject , handles);

i : :
P Executes on slider movement.

function s2_slider_Callback (hObject , eventdata, handles)
global s2pos;
handles=guidata { hObject) ;

wl guidata (hObject , handles);

% Executes during objeet creation, after setting all
function s2_slider_CreateFen(hObject, eventdata, handles)

if isequal(get{hObject , 'BackgroundColor'), get(0,’
defaultUicontrolBackgroundColor ’))
set (hObject , 'BackgroundColor* ,[.9 .9 .9]);

end

% Executes on slider movement.

function sd_slider_Callback (hObject, eventdata, handles)
global sdpos;

handles=guidata(hObject) ;

% - Ountputs from this function are returned to the command line.
| function varargout = dynamixel_gui_OutputFen (hObject, eventdata, handles)

function sl_slider_.CreateFen(hObject, eventdata, handles)

set (handles.sl_value, 'string’, num2str(get(handles.sl_slider , ’value’}));

set (handles.s2_value , “string’, num2str(get(handles.s2_slider , “value’)));
i|s2pos = (get(handles.s2_slider , "value’})/0.29;

properties.

=

3

C.2 GUI Code

93

set (handles.sd_value, “string ', num2str(get{ handles.sd_slider , "value’)));

sdpos = (get(handles. sd_slider , ‘value’))/0.29;

s| guidata (hObject , handles);

% - Executes during object ereation, after setting all
function sd_slider_.CreateFen(hObject, eventdata, handles)

if isequal (get (hObjeet , 'BackgroundColor '), get (0,
defaultUicontrolBackgroundColor "))
h‘{‘[.(h()hj(!(.‘[. , 'BackgroundColor’ ._[.5] .9 '-]]} "

end

% Executes on slider movement.

funetion s6_slider_Callback (hObject , eventdata , handles)
global sGpos;

handles=guidata (hObject)

properties.

set {(handles . s6_value ., “string ', num2str(get(handles.s6_slider , "value’)));

sGpos = (get(handles.s6_slider , “value’))/0.29;

Jguidata (hObject , handles);

%o Executes during object creation, after setting all
function s6_slider.CreateFen({hObject, eventdata, handles)

if isegqual (get(hObjeet , "BackgroundColor '), get(0,’
defaultUicontrolBackgroundColor '))
set (hObject , 'BackgroundColor ' ,[.9 .9 .9]);

end

% - Executes on slider movement.
function sT7_slider_Callback (hObject, eventdata, handles)
handles=guidata (hObject) ;

properties.

set (handles.s7_value, “string’ ', num2str(get{handles.s7_slider , “value’)));

guidata (hObject , handles);

%o Executes during object creation, after setting all

7| funetion s7_slider_CreateFen{hObjeet, eventdata, handles)

if isegqual (get(hObjeet , 'BackgroundColor '), get(0,’
defaultUicontrolBackgroundColor '))
set (hObject , 'BackgroundColor ' ,[.9 .9 .9]);

end

properties.

94 Chapter C. Matlab Code

% Executes on button press in stop.button.

function stop.button_Callback(hObject, eventdata, handles)

| global program._.loop;

if program_loop =— 1
program_loop = 0;

else
program_loop = 1;
nd
% Hint: get(hObject, ' Value’) returns toggle state of stop.button
96| % Executes on button press in pause_button .

function pause_button_Callback (hObject, eventdata, handles)

global program_pause:

% Hint: get{hObject,'Value’) returns toggle state of pause.button
il program_pause == ()
program_pause = 1;
else
program_pause = (;
end
% Executes on button press in alarm_button .

function alarm_button_Callback {hObject, eventdata, handles)

| function sl_textb_Callback (hObject, eventdata, handles)

| guidata (hObject , handles)

% Executes during object creation, after setting all properties.
function sl_textb_CreateFen(hObject, eventdata, handles)

if ispe && isequal (get (hObject , " BackgroundColor 7)), get(0,’
defaultUicontrolBackgroundColor "))

set (hObject , "BackgroundColor ', "white ') ;
end

function s2_textb.Callback (hObject, eventdata, handles)

function s2_textb_CreateFen(hObject, eventdata, handles)

if ispc && isequal (get (hObject , 'BackgroundColor '), get(0,’

™

x

&

7

| funetion s6.textb.Callback (hObject, eventdata ,

| function s7_textb_Callback (hObject, eventdata ,

C.2 GUI Code

95

defaultUicontrolBackgroundColor "))
set (hObject , "BackgroundColor ', "white ') ;
end

function sd_textb_Callback (hObject, eventdata, handles)

creation , after
function sd_textb_CreateFen (hObject , eventdata ,

% —— Executes during object setting all

handles)

if ispc && isequal(get(hObject, BackgroundColor’),
defaultUicontrolBackgroundColor "))
set (hObject , "BackgroundColor ', "white ') ;

get (0,

| end

handles)

% Executes during object creation, after setting all

funetion s6_textb_CreateFcen(hObject, eventdata, handles)

if ispc && isequal(get (hObject, BackgroundColor'),
defaultUicontrolBackgroundColor '))
set (hObject , "BackgroundColor ', "white ') ;

end

handles)

set (handles.sl_slider , “value’, setAngle);

properties.

properties.

get(0,’

properties.

% Executes during object creation, after setting all
| funetion s7_textb_CreateFen (hObject, eventdata, handles)
if ispec && isequal(get(hObject, BackgroundColor '), get(0,’
defaultUicontrolBackgroundColor "))
set (hObject , "BackgroundColor ', "white ') ;
end
%o Executes on button press in sl_button.
funetion sl_button_Callback (hObject , eventdata, handles)
| handles=guidata (hObject) ;
setAngle = str2double (get (handles.sl_textb , ‘string’));

96 Chapter C. Matlab Code

set (handles.sl_value, 'string’, num2str(get(handles.sl_slider ,

guidata (hObject , handles);

% Executes on button press in s2_button.

Jfunction s2_button_Callback (hObject, eventdata, handles)

handles=guidata (hObject) ;

|setAngle = str2double(get{handles.s2_texth, ’string ')):

set (handles. s2 _slider , "value’, setAngle);

set (handles.s2_value, 'siring’, num2str(get(handles.s2_slider ,

guidata (hObject, handles);

% Executes on button press in s4_.button.

function sd_button_Callback (hObject, eventdata, handles)

| handles=guidata(hObject) ;

setAngle = str2double (get (handles.sd_texth , “string "));
set (handles.sd_slider , “value’, setAngle);

set (handles.sd_value , “string’, num2str(get(handles.sd_slider |

guidata (hObject ., handles):

% Executes on button press in sG.button.

| function sB_button.Callback (hObject, eventdata, handles)

handles=guidata(hObject) ;

setAngle = str2double (get (handles.s6_textb , “string "});
set (handles. s6_slider , "value’, setAngle);

set (handles.s6_value, 'string’, num2str(get(handles.s6_slider ,

guidata (hObject, handles);

% Executes on button press in s7_button.

| funetion s7_button_Callback (hObject , eventdata, handles)

handles=guidata(hObject) ;

w| setAngle = str2double (get (handles.s7_texthb, “string '));

set (handles.s7_slider , "value’, setAngle);

set (handles.s7_value , "string’, num2str({get(handles.s7_slider |

guidata (hObject , handles)

‘value')));

*value’)));

‘value'}));

*value’)));

‘value'}));

z

x

wi| global sdpos; sdpos

176 | % Executes during object creation, after setting all properties.
funetion move_speed_text_CreateFen(hObjeet, eventdata, handles)
if ispc && isequal(get(hObject, BackgroundColor’), get(0,’
defaultUicontrolBackgroundColor "))
set {hObject , "BackgroundColor ', "white ') ;
end

i|global slpos; slpos

C.2 GUI Code

97

134 | %6 Executes on button press in grip.button.

function grip.button_Callback (hObject . eventdata, handles)
global grip_.button_var;

if grip_-button_var = 0
grip_button_var = 1;
else
grip.button.var = 0;
end

i| % Executes on button press in home_button.

funetion home_button_Callback (hObject , eventdata, handles)
handles=guidata (hObject) ;

%set start position
set (handles. sl_slider ,
set (handles.s2_slider , alue’, 250);
set (handles. s4 _slider |, alue ', 85);
set {handles.s6_slider , “wvalue’, 145);
set (handles.s7_slider , “value’, 145);

<

alue’, 150});

< <

%Display start position

set (handles.sl_value, ’string’', 150);
set (handles.s2_value, ’string’, 250);
set (handles.sd_value, 'string’', 85);:
set (handles.s6.value, ’string ', 145);
set (handles.sT7_value, ’string’, 145)

150/0.29;
250/0.29;
85/0.29;

145/0.29;

global s2pos; s2pos

global sGpos; s6pos

guidata (hObject , handles);

function move_speed_text_Callback (hObjeet, eventdata, handles)

¥

98 Chapter C. Matlab Code

1| % Executes on button

press in move_speed_button.
function

move_speed_button_Callback (hObject , eventdata, handles)
global move_speed;

clobal change_speed:

move_speed = str2num(get (handles. move_speed_text , “string’));
change_speed = 1;

Appendix D

Arduino Program

This is the program that was used to output a PWM signal from the Arduino. This was
not developed for the project, made by G. Hill [1].

1| f#

sinewave_pcm

i #*

Generates 8—bit PCM sinewave on pin 6 using pulse—width modulation (PAWM).

|* For Arduino with Atmega368P at 16 MHz.

|# Uses timers 1 and 0. Timer 1 reads the sinewave table, SAMPLERATE times

1
second .
The sinewave table has 256 entries. Consequently, the sinewave has a
frequency of
f = SAMPLERATE / 256

Fach entry in the sinewave table defines the duty—ecyecle of Timer 0. Timer

*%

holds pin 6 high from 0 to 255 ticks out of a 256—tick evele, depending
o1

|# the current duty cycle. Timer 0 repeats 62500 times per second (16000000

2536) ,
much faster than the generated sinewave generated [requency.

|* References:

+ hitp://www.atmel.com/dyn/resources/prod_documents /doe2542 . pdf
http://www.analog .com/library/analogdialogue/archives /38—-08/dds.html
http://www. evilmadseientist .com/article .php/avrdac

| * http://www. arduino. ce/playground /Code /RZAPCMAudio

#+ http://www.scienceprog.com/generate —sine —wave—modulated —pwnr-with—avr—

| mierocontroller/

#* http://www.scienceprog.com/avr—dds—signal —generator—v10/
http://documentation. renesas.com/eng/products/region /rtas /mpumen/apn/
sinewave , pdf

% http://wwl. microchip.com/downloads/en/AppNotes /00655a. pdf

*

= By Gary Hill
99

*
%
#

100 Chapter D. Arduino Program

Adapted from a script by Michael Smith <michael@hurts.ca>

o Py

#include <stdint.h>

i|#include <avr/interrupt.h>

#include <avr/io.h>

ir|#include <avr/pgmspace . h>

#define SAMPLERATE 8000

T| *

wl /) 8 ksps
[*
i|* The sinewave data needs to be unsigned, 8-hit
*
sinewavedata.h should look like this:
const int sinewave_length=256;
const unsigned char sinewave_data [] PROGMEM = {0x80,0x83,
*/

|#include "sinewavedata .h”

. int outputPin = 6; // (PCINT22/0C0A/AINO)PDG, Arduino Digital Pin 6

volatile nintlG.t sample;

// This is called at SAMPLERATE kHz to load the next sample.
ISR (TIMER1.COMPA vect) |

if (sample >= sinewave_length) {

sl sample = —1;

-l else {

OCROA = pgm_read_byte(&sinewave.data [sample]) ;
++sample;

void startPlayback ()

pinMode (outputPin , OUTPUT) ;
1 // Set Timer 0 Fast PWM Mode (Section 14.7.3)

// WM = 0b011 = 3

7| (Table 14-8)

J// TOP = 0xFF, update OCROA register at BOTTOM
TCCROA |= BV(WGMI) | _BV{WGMD);
TCCROB &= ~ BV (WCMR) ;

21| // Do non—inverting PAM on pin OCOA, arduine digital pin 6

S/ COMDA = 0bl0, elear OCOA pin on compare match,

set DCDA pin at BOTTOM (Table 14-3)

| TOCROA = (TCCROA | BV(COMOAL)) & ~_BV(COMDAD) ;

/) COMDB = 0b00, OCOB disconnected (Table 14-6)

| TOCROA &= ~(BV (COMOB1) | BV (COMOBO)) :

// No prescaler, C5 = 0b001 (Table 14-9)
TCCROB = (TOCROB & ~(-BV(CS02) | -BV(CS01))) | -BV(CS00);
J// Set initial pulse width to the first sample.

[|OCROA = pgm._read_byte(&sinewave_data [0]) ;

// Set up Timer 1 to send a sample every interrupt.

cli();

101

/) disable interrupts

s/ Set CTC mode (Section

15.9.2 Clear Timer on Compare Match)

J/ WM = 0b0100, TOP = OCRIA, Update OCRIA Immediate (Table 15—4)

| // Have to set QCRIA =afters, otherwise it

TCCRIB = (TCCRIB & ~.BV(WGMI13))

|TCCRIA = TCCRIA & ~(_BV(WGMI1)

gets reset to 0!
| BV(WGMI12) ;
| BV (WGMIO)) ;

// No prescaler, C8 = 0b001 (Table 15-5)

+|TCCRIB = (TCCRIB & ~(_BV(CS12)

| BV(CS11))) | BV(CS10);

|// OCRIA is a 16—bit

[/ Set the compare register (OCRIA).
register , so we have
[/ interrupts disabled to be safe.

to do this with

+|OCRIA = F.CPU / SAMPLERATE:

// 16e6 / 8000 = 2000

| // Enable interrupt when TCNT1 == OCRIA (p.136)

TIMSK1 |= BV(OCIEIA) ;

| sample = 0;

sei();

| // enable interrupts

}

| void setup ()
| startPlayback () ;
| void loop ()

| while (true);

| sinewavedata . h

/# Sinewave table

i|* Reference:

http://www.scienceprog.com/generate —sine —wave—modulated —pwm-with—avr—

sl mierocontroller /

19| 0x30, 0x83 ,0x86 ,0 x589

17| const

*/

int sinewave_length=256;

char sinewave_data [] PROGMEM = {

O x8c ,0x8f,0x92,0x95.,0x98,0x9c,0x9f,0xa2 ,0xa5,0xa8 ,0xab

const unsigned

[}xh[}.f}{;‘;‘li;._[lxb[)'._[]xh!},_[]xl)c,_Uxbf._chl L0xed ,0xeT,0xe9,0xce ,0xce ,0xdl ,0xd3,0xd5
121 [}xda.f][;{:zt?c.._[l xde,0xel ,0xe2 ,0xed ,0xe6,0xe8 ,0xea,0xec,0xed,0xef ,0xf0,0xf2,0xf3
ﬂx[ﬁ.f}ﬂk:f??h,_ﬂxfﬁ LO0xf9 0xfa 0xib 0xfe 0xfe . 0xfd ,0xfe O0xfe ,0xff 0 xif 0 xif 0xif
] f}xff-.,uﬂx_ftgfr,_ﬂxff L xff 0 xff 0xff ,0xfe ,0xfe ,0xfd ,0xfe ,0xfe ,0xfb ,0xfa ,0xi9 ,0xi8
ﬂx[ﬁrf}f;{:fgﬁr,_ﬂxm L0 xf2 0xf0 .0 xel ,Oxed ,0xec . Oxea ,0xe8 , 0xe6 ., 0xed ,0xe2 0xel 0 xde
,0xde,
| Oxda, 0xd&,0xd5,0xd3 ,0xd]l ,0xce . 0xce ,0xc® ,0xe7,0xcd ,0xcl ,0xbf ,0xbe,0xb9,0xbi
[}xb[}.f][;)lz);\!c.._[lmb L0xa8 ,0xad,0xa2,0x9f,0x9c,0x98,0x95,0x92,0x8f ,0x8c ,0x89,0x86
Ux&(]{ltfj‘?c‘,[lx?g LOxT6,0x73,0x70,0x6d ,0x6a,0x67,0x63,0x60,0x5d,0x5a,0x57,0x54

1| 000, 0x00, 000 ,0x00,0x00,0x00,0x01,0x01,0x02,0x03,0x03

12| 0x25,0x27 .0x2a . 0x2¢ ,0x2e ,0x31 ,0x33.0x36,0x38,0x3b ,0x3e

102 Chapfer D. Arduino Program

L0x51,

0x4f,0x4c ,0x49 ,0x46 ,0x43 ,0x40,0x3e .0x3b,0x38,0x36,0x33,
L0x27,

| 0x25,0x23,0x21 ,0x1f,0x1d ,0x1b,0x19,0x17,0x15,0x13,0x12
L0x0a,

0x09,0x08,0x07.0x06.0x05,0x04,0x03,0x03,0x02,0x01.0x01
LO0x00,

L0x08,
0x09,0x0a,0x0c,0x0d ,0x0f,0x10,0x12,0x13,0x15,0x17,0x19
,0x23,

,0xdc,
O0x4f,0x51,0x54,0x57 ,0x5a ,0x5d,0x60,0x63,0x67 ,0x6a,0x6d,
0xTe };

0x31

L0x10
000
L0x04
.0xlb

L0x40

0x70

L0x2e¢
L0x0f
L0 x00
L0x05
0x1d
L0x43

,0x73

Jx2c
L0 x0d
L0 x00

L0 x06

O xd6

LO0xT6

LO0x2a
A xle
L0 x00

L0 =07

LOx1f,0x21

L0x49

.0x79

Bibliography

(1]

2]

(3]

[4

..—.
ot

(6]

(7]

(8]

9]
[10]

[11]

Pwm sine wave generation. [Online|. Available: http://web.csulb.edu/~hill/eed70/

Lab%202d%20-%20Sine-Wave_Generator.pdf

Robotis e-manual (v1.25.00). [Online]. Available: http://support.robotis.com/en/
product/dynamixel/ax_series /dx]_ax_actuator.htm

P. K. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “Automated tracking and
grasping of a moving object with a robotic hand-eve system,” IEEE Transactions on
Robotics and Automation, vol. 9, no. 2, pp. 152-165, 1993.

A. M. Dollar and R. D. Howe, “Simple, robust antonomous grasping in unstructured
environments,” in Proceedings 2007 IEEE International Conference on Robotics and
Automation. 1EEE, 2007, pp. 4693-4700.

D. Gunji et al., “Grasping force control of multi-fingered robot hand based on slip
detection using tactile sensors,” IEEE International Conference on Robotics and Au-
tomation, 2008.

A. Hollinger and M. M. Wanderley, “Evaluation of commercial force-sensing resis-
tors,” in Proceedings of International Conference on New [nterfaces for Musical Ex-
pression. Citeseer, 2000.

C. Lebosse, B. Bayle, M. de Mathelin, and P. Renaud, “Nonlinear modeling of low
cost force sensors,” in Robotics and Automation, 2008. ICRA 2008. IEEE Interna-
tional Conference on. 1EEE, 2008, pp. 34373442,

C. Melchiorri, “Slip detection and control using tactile and force sensors.”
IEEE/ASME Transactions on Mechationics, vol. 5, no. 3, pp. 235-243, Sep 2000.

B. Menzies, “Final project plan,” 2016.

A. Nag and S. Mukhopadhyay, “Tactile sensing from laser-ablated metallized pet
films.”

A. Saxena, J. Driemeyer, J. Kearns, and A. Y. Ng, “Robotic grasping of novel ob-
jects,” in Advances in neural information processing systems, 2006, pp. 1209-1216.

103

104

BIBLIOGRAPHY

12]

(13]

(14]

[15]

[16]

A. Saxena, J. Driemeyer, and A. Y. Ng. “Robotic grasping of novel objects using
vision,” The Internafional Journal of Robotics Research, vol. 27, no. 2, pp. 157-173,
2008.

P. A. Schmidt et al., “A sensor for dynamic tactile information with applications
in human-robot interaction and object exploration,” Robotics and Autonemation.
vol. 54, no. 12, pp. 1005-1014, Dec 2008.

M. VACEK, J. ZILI{OVA, and M. PASTOR._ “Regulation of dynamixel actuators in
robot manipulator movement,” Acta Flectrotechnica et Informatica, vol. 14, no. 3,
pp. 32-35, 2014.

F. Vecchi, C. Freschi, S. Micera, A. M. Sabatini, P. Dario, R. Sacchetti et al., “Exper-
imental evaluation of two commercial force sensors for applications in biomechanics
and motor control,” in 5th Ann. Conf. of Int. FES, 2000.

L. Xie, “An electrochemical impedance spectroscopy based nitrate sensor for practical
application: a project report submitted in partial fulfillment of the requirements for
the degree of master of engineering in electrical and electronics engineering. school
of engineering and advanced technology, massey university, palmerston north, new
zealand,” Ph.D. dissertation, Massey University, 2016.

	Adaptable Robotic Grasping
	by Brendan Menzies

