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Abstract 

The proteomes of wheat and barley grain cultivars have evolved through genetic variability 

and environmental factors. The ability to identify different cultivars, farm origin, and quality 

of wheat and barley grain are becoming increasingly important to farmers, processors, and food 

manufacturers. This will help them to diversify into higher value boutique products, or just to 

add value through security and traceability to bulk grain or flour exports. This project aims to 

use modern proteomic techniques and transcriptomics to discover proteins that can be used as 

biomarkers in wheat and barley grain to identify crop cultivars, grain provenance (farm origin) 

and possibly grain quality. Firstly, several protein extraction methods were assessed for optimal 

protein yield and diversity. This was important for maximising the discovery of potential 

protein biomarkers through proteomic analysis. By applying Tandem Mass Tags (TMTs) 

labelled shotgun proteomics, a subset of grain proteins was detected from wheat and barley 

that show statistically significant differential expression between different cultivars and 

different farm locations. Indeed, serpin and chitinase proteins (observed to be involved in stress 

response) were found to be differentially expressed in the wheat and barley sample proteomes. 

The results also indicated that the differentially expressed proteins from wheat and barley grain 

have the potential to be used as biomarkers for probable quality traits. The assigned protein 

biomarkers between cultivars or a particular cultivar from a different environment (farm 

location) have almost identical functional summaries (gene ontology [GO] Slims). 

Investigations into wheat mRNA expression between cultivars showed GO Slims that were 

analogous to the proteomic results. Further experiments involving proteomics and common 

traditional quality testing such as, 1000-kernel weight, farinograph, extensograph, baking tests 

and falling number, are needed to answer this question, and is beyond the scope of this project. 

Protein-based tests to identify cultivar, farm origin, and grain quality have the potential to 

address these needs in a manner that would be faster relative to existing quality controls.  
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Chapter 1. Introduction 

 

1.1. The Grasses 

1.1.1. Plants and the family Poaceae (grasses) 

Plants have been colonising Earth’s land masses for at least 475 million years (Wellman, et al., 

2003). Over this time, both the number of species and their increased complexity has provided 

a large variety of plant forms, from simple Bryophytes to the increasingly complex Ferns, 

Gymnosperms, Angiosperms (flowering plants), are split into Eudicots, also generally known 

as dicots, and Monocots. These two classes of Angiosperm differ in their seed structure as well 

as their vascular and pollen structure. Through this evolution, plants have been able to colonise 

almost all land surfaces including areas of extreme temperatures, and arid conditions with 

limited nutrients. The most recently evolved group – the Angiosperms – are not only the most 

successful in terms of species by number (Table 1.1), they are also successful in their ability to 

inhabit vast areas of land (Figure 1.3). This is especially apparent when looking at the scale of 

land that is covered by crops, which are themselves no more than monocultures of only a few 

domesticated plant species from the two major Angiosperm phyla, Dicots and Monocots. In 

2014, annual crops (arable land) and permanent crops together made up 12.18% of global land. 

Other commonly used plants for human consumption make up the major portion at 10.9% 

according to FAOSTAT (http://www.fao.org/faostat/en/#data/EL). Moreover, in terms of 

geographic success, it is the family of monocots known as the Poaceae (grasses), that have been 

the most successful. Especially the small number of domesticated annual crops known as 

cereals, that have evolved under human selection from the grasses., and through human 

intervention come to dominate large swathes of land.  
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As such, it is not difficult to see that in terms of geographic success, for both domesticated and 

wild species, the most successful family of monocots are the Poaceae (grasses). 

 

Table 1.1. Estimation of plant species numbers 

20,000 species of Mosses and liverworts (Bryophytes) 
13,000 species of Ferns or Fern allies (Pteridophytes) 
1,000 species of Conifers, Cycads and allies (Gymnosperms) 
352,000 species of flowering plants or (angiosperms) 
Data is from (Kew, 2016). 

1.1.2. The success story of grasses 

Since their relatively recent divergence from their fellow monocots (Figure 1.6), grasses have 

differentiated into approximately 12,000 different species (Gaut, 2002). These include 12 

subfamilies, 51 tribes, and 80 subtribes (Soreng, et al., 2015). A phylogenetic summary of the 

grasses is shown in  

 

Figure 1.1 which compares approximately 350,000-400,000 vascular plant species from 

www.theplantlist.org (Kew, 2016), making the grasses - at least in terms of numbers of species 

- one of the most diverse plant families. As discussed above, the extensive area of land covered 

by Poaceae make them easily the most successful of all plant families. Not only do they cover 

a significant portion of the Earth’s land mass, they have evolved to survive in almost every 

terrestrial environment on the planet; from arctic climates, to dense jungle, and hot and dry 

deserts (Figure 1.2 andFigure 1.3). 

 

In 2005, it was estimated that cultivated and non-cultivated grasslands covered 40.5% of the 

Earth’s land surface – excluding Greenland and Antarctica (FAO, 2005). Due to their 

importance as a primary food source, as well as an economic commodity, cereal grass crops 

are the top three harvested crops behind the weight of sugar cane stems (Table 1.2). 
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Figure 1.1. Phylogenetic summary of the grasses (Soreng, et al., 2015). PACMAD (previously known as PACC) is 
one of the two major clades of the Poaceae and is an acronym constructed from the first initials of the included 
subfamilies Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae. BOP 
(or BEP) clade is a sister group to the PACMAD clade, and contains the three subfamilies Bambusoideae, 
Oryzoideae, and Pooideae. 
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Figure 1.2. Types and extent of grasslands. Figure taken from the encyclopaedia Britannica website - 
https://www.britannica.com/science/grassland). 

 

 

 
Figure 1.3. Types of vegetation and their geographical extent. Figure was taken from 
“http://www.earthstat.org/” and Ramankutty and Foley (1999), and re-coloured to emphasise both savanah 
and grassland. 
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Table 1.2. Top ten harvested foods in the world 
for 2014 by weight (tonnes). 

 Table 1.3. Top ten harvested foods in the world 
for 2014 by area (hectare). 

Item 
World Total 
(tonnes) 

 
Item 

World Total 
(ha) 

Sugar cane 1,884,246,253  Wheat 220,417,745 
Maize 1,037,791,518  Maize 184,800,969 
Rice, paddy 741,477,711  Rice, paddy 162,716,862 
Wheat 729,012,175  Soybeans 117,549,053 
Potatoes 381,682,144  Barley 49,426,652 
Soybeans 306,519,256  Sorghum 44,958,726 
Vegetables 289,788,862  Rapeseed 36,117,722 
Oil, palm fruit 274,618,164  Seed cotton 34,747,265 
Sugar beet 269,714,066  Millet 31,432,088 
Cassava 268,277,743  Beans, dry 30,612,842 

Data is from FAOSTAT (http://www.fao.org/faostat/en/#data/QC), and the grey shading represents crops from 
the family Poaceae. 
 

1.1.3. Wheat and barley 

The coverage of the grasses was expanded by a growing human need for a stable source of 

food, hence both pasture and crops and have come to dominate vast areas of land over largely 

differing environmental conditions. A tiny subset of grass species are major crops (the cereals) 

and in 2014, they were reported to cover an estimated 693,753,042 hectares of land (Table 1.3). 

The two crops that are the focus of this project, wheat and barley, account for a total of 

873,502,171 tonnes of grain harvested (Table 1.4), and 269,844,397 hectares in crop area 

(Table 1.3). The vastness and varied environments of these cereal crops are evident in the maps 

shown in Figures 4 and 5. 

Table 1.4. Top eight Cereals in terms of worldwide tonnes harvested in 2014. 
Number Cereal Tonnes of grain 
1 Maize (Zea mays) 1,037,791,518 
2 Rice (Oryza sativa) 741,477,711 
3 Bread Wheat and Durum Wheat (Triticum aestivum and Triticum durum) 729,012,175 
4 Barley (Hordeum vulgare) 144,489,996 
5 Sorghum (Sorghum bicolor) 68,938,587 
6 Foxtail Millet and Pearl Millet (Setaria italic and Pennisetum glaucum) 28,384,668 
7 Oat (Avena sativa) 22,721,702 
8 Triticale [Wheat and Rye hybrid] (× Triticosecale) 16,953,565 

Data is from FAOSTAT (http://www.fao.org/faostat/en/#data/QC). 
 

 

http://www.fao.org/faostat/en/#data/QC
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Figure 1.4. Area of wheat under harvest in hectares (You and Wood, 2005). 

 

  
Figure 1.5. Area of barley under harvest in hectares (You and Wood, 2005). 
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1.1.4. Origins of the cereals 

The initial divergence of Poaceae was around 75-50 million years ago and further divergence 

into two clades occurred around 50 million years ago, called the PACMAD (previously known 

as PACC) and the BOP (or BEP) clade (Figure 6). One of the sub-families to emerge from the 

PACMAD clade at around 28 million years ago was the Panicoideae. This sub-family gave rise 

to the ancestors of foxtail millet (Setaria) and pearl millet (Pennisetum) at around 14 million 

years ago, and the ancestors of sorghum (Sorghum) and maize (Zea) at around 9 million years 

ago. The BEP clade, from which wheat and barley evolved, the subfamily Oryzoideae (rice) 

was the first to branch off at around 46 million years ago. This was followed by the sub-family 

Pooideae at around 25 million years ago, which then gave rise to, Avena (oats), followed by 

Hordeum (barley) and Triticum (wheat) diverging at around 13 million years ago (Figure 1.6). 

 

Figure 1.6. Evolution of cereals, adapted from Gaut (2002) and Ji, et al. (2013). 
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1.1.5. The domestication of wheat and barley 

The domestication of wheat and barley resulted from the development of human agriculture, 

both in terms of creating pastures for livestock which was mostly dominated by grasses as well 

as the various cereal crops such as maize, rice, sorghum, millet, oats, and rye. Modern wheat 

and barley are examples of how grasses and their genetic plasticity (Figure 1.7) have been 

cultivated through selection of favoured traits to dominate large swathes of the earth enabling 

them to be geographically dominant. 

 

 
Figure 1.7. Phenotypic changes to wheat spikes and grain with domestication. The figure taken from 
Dubcovsky and Dvorak (2007) showing the loss of a brittle rachis and grain hull with increasing domestication. 

 

1.1.6. Origins of wheat and barley 

There is a large body of evidence that modern durum and bread wheat, as well as barley and a 

number of other crops had their origin within an area located around southeast Turkey and 

northern Syria (Figure 1.8), known as the fertile-crescent (Abbo, et al., 2006, Lev-Yadun, et 
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al., 2000, Salamini, et al., 2002). This area is home to a number of wild cereals, one of which 

is the tetraploid wild emmer wheat (Triticum dicoccoides). This species evolved from a natural 

hybridization that occurred 500,000 years ago between a diploid wild wheat Triticum urartu 

(AA) and an unidentified diploid goat grass (genus: Aegilops - BB). Millennia later, Emmer 

wheat had a seemingly important role in the evolution of modern durum and bread wheat. The 

diploid wild einkorn wheat (Triticum boeoticum) with a somewhat overlapping but more 

extensive range than emmer wheat as well as wild barley (H. spontaneum), had a major but 

different role in the development of agriculture within the fertile-crescent. 

 

 
Figure 1.8. Extent of wild cereal coverage from (Lev-Yadun, et al., 2000). 

 

1.1.7. Early cereal cultivation 

The earliest gathering of wild cereals has been dated to approximately 19,000 years ago 

(Piperno, et al., 2004). It appears that 10,000 years ago, just after the Younger Dryas period 

(12,900 to 11,700 years ago), temperatures and rainfall diminished (Nesbitt, 2001). This 

created a shift in human food gathering from foraging to farming (Nesbitt, 2002). There is 

evidence of new sets of tools being invented around this time (Lev-Yadun, et al., 2000), as well 

as evidence of crop cultivation, through charred plant remains. This resulted in: The harvesting 

of cereal grains and lentils outside their natural habitats; barley and various wheats appearing 

at different times; weeds that only grow in cultivated fields; a decrease in the amount of smaller 

grass seeds; barley grains becoming larger; and large amounts of rodent droppings indicating 

large scale storage (Willcox and Willcox, 2008).  
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1.1.8. Domestication of wheat 

The first evidence of domesticated emmer wheat (Triticum dicoccum) appeared around 10,600 

to 9,900 years ago, with domesticated einkorn (Triticum monococum) also appearing around 

this time (Weiss and Zohary, 2011). Full domestication was a slow process, selecting for traits 

such as seed size and weight, flowering time, grain yield, plant height, number of spikes and 

kernels, weight of spikes, as well as the lack of a brittle rachis and a weak glume (Peng and 

Peng, 2011). The latter two traits are particularly important in terms of improved efficiency of 

grain harvest and grain processing (Peng, 2003). Wild wheat has a brittle rachis to allow seed 

dispersal and tough glumes for seed protection. Early domesticated relatives also have tough 

glumes but have evolved a strengthened rachis so that seed spikes do not easily break before 

or during harvesting, allowing efficient collection under human selection (Hillman and Davies, 

1990, Nesbitt, 2001). Similarly, over thousands of years, the modern wheat and barley cultivars 

had evolved a fully toughened rachis, as well as weak glumes that result in free threshing, or 

naked grain (Feldman and Kislev, 2007, Nesbitt, 2001). Quantitative trait loci (QTL) analysis 

demonstrated that while some traits seemed mostly independent of one another, many traits 

seemed to be under the control of multiple loci (gene interactions), complicating and potentially 

slowing the pace of selection (Peleg, 2011, Peng, 2003). This was possibly a result of the 

difficulty (or rarity) of selection, reduced survival fitness of domesticates, and/or farming 

practices that slowed trait selection (i.e. harvesting before maturity and not selecting for a 

toughened rachis). As such, it appears that wild cereals were grown alongside domesticates for 

almost a thousand years (Kislev, 1984). During this reportedly slow domestication, agriculture 

expanded and brought domesticated emmer (AABB) into the habitat of another goat grass 

Aegilops tauschii (DD), which prompted a hybridization between the two, resulting in a 

hexaploid wheat (AABBDD) called Spelt (Giles and Brown, 2006, Kerber, 1964, Kislev, 1980, 
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Matsuoka and Nasuda, 2004, Nesbitt and Samuel, 1996, Salamini, et al., 2002). With the 

continued cultivation of wild and domesticated forms of wheat occurring side by side, it 

appears that domestication arose multiple times according to a polycentric origin of the cereals 

(Balter, 2007, Tanno and Willcox, 2006, Willcox and Willcox, 2008). Sometime around 8,500 

years ago, the selection of spelt and emmer traits which are desired by the farmer societies 

resulted in more free-threshing types (Peng and Peng, 2011) with evidence that these traits 

were sourced from genomes of wild emmer (Dvorak et al. 2006). Over the next few millennia, 

these domesticated wheat genomes were not only adaptable enough for continued selection to 

enable the emergence of durum and bread wheat from emmer and spelt respectively, they were 

also diverse enough to allow the expansion of wheat agriculture into the multiple and varied 

terrestrial environments that we see today. A summary of the domestication of bread wheat and 

durum is shown in Figure 1.9. 
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Figure 1.9.Summary of: A) The domestication of Durum and Bread Wheat, and B) The domestication of bread 
wheat. Figures taken from (http://www.newhallmill.org.uk/wht-evol.htm; (Gupta, et al., 2008) respectively. 
The repeated capital letters represent chromosome sets of the species described (eg. for figure A above; AA, 
BB, CC and their combinations). Note the sitopsis section of Aegilops comprises: Ae. bicornis, Ae. longissima, 
Ae. sharonensis, Ae. searsii and Ae. speltoides.  

A 

B 
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1.1.9. The domestication of barley 

The domestication of barley had a similar, although slightly less complex story. McCorriston 

(2000) reported that the evidence lies in favour of barley domestication occurring a few 

hundred years after the first wheat domesticates arose, possibly due to beer brewing (Katz and 

Voigt, 1986). Domestication of barley appears to have first taken place in Turkey between 

10,600 to 9,900 years ago (Weiss and Zohary, 2011) within parts of the fertile crescent and 

areas to the north and east of this location and may have been concomitant with wheat (Figure 

1.8). Like wheat, wild barley (Hordeum spontaneum) was an important food for people within 

its growing range for thousands of years before a domesticated form of barley (Hordeum 

vulgare) was produced (Nadel, et al., 2015). As with wheat, domesticated and wild barley seem 

to have been cultivated side-by-side for hundreds of years (Hopf, 1983). Genetic flow between 

the wild and domestic barley populations, in concert with active selection, eventually led to the 

emergence of the six-row and higher protein content barley around 8800 years ago (Helbaek, 

1959). Finally, over thousands of years of continued cultivation and selection – including under 

irrigation on the steppes and deserts of the near east – led to the evolution of the two-and six-

row barley cultivars that are grown today. Botanical studies observed that the period of ripening 

for barley evolved into a narrower time-frame with the establishment of a single-season seed 

dormancy (McCorriston, 2000). 

 
In summary, grasses have taken advantage of genomic plasticity, together with a number of 

other advantageous traits such as fast growth and regeneration time, and a general tolerance to 

abiotic and biotic stress. These traits have allowed the grasses to evolve and adapt to a myriad 

of different environments all over the planet. Additionally, the growth and development of 

agriculture has been particularly important in the success of domesticated cereal crops. 

Whether the need for expanding pasturelands or crops, grasses have been the major 

beneficiaries of the synergy that exists between humans and plants. In terms of wheat and 
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barley alone, the large area and number of differing environments that they cover is remarkable. 

Clearly the genomes of these cereals have been plastic enough to introduce self-induced 

changes to their genes and gene control mechanisms, as well as exchange genes with wild 

relatives (close and distant). Thus, with human intervention, this has resulted in the evolution 

of the modern commercial forms (Triticum aestivum, Triticum durum, and Hordeum vulgare 

L.), and allowed for the breeding of the hundreds of cultivars currently used. 

 

1.2. Early wheat grain protein extraction methods 
Proteins in wheat were first investigated in 1745 (Aliscioni, et al., 2012), when Bartolomeo 

Beccari used water to wash away all soluble wheat flour proteins to investigate the insoluble 

gluten fraction. Later, Taddei (1819) used aqueous alcohol to separate gluten into the gliadin 

(alcohol soluble) and glutenin (alcohol insoluble) fractions. These extraction methods were 

refined further by Osborne and Voorhees (1893) and Aliscioni, et al. (2012) resulting in the 

four major protein fractions, known as the “Osborne” fractions: 1) Albumins, which are soluble 

in water; 2) globulins, which are soluble in salt water; 3) gliadins, which are soluble in aqueous 

alcohol; and 4) glutenins, which are insoluble in aqueous alcohol (Osborne, 1907). 

 

1.2.1. Modern extraction methods for wheat grain proteins 

Improvements in water, salt and solvent-based wheat grain protein extraction methods were 

developed by further separation and purification by gel filtration (size-exclusion 

chromatography). Several different buffers and detergents, such as urea (Pomeranz, 1965), 

SDS (Bottomley, et al., 1982, Danno, et al., 1974, Graveland, et al., 1979), urea/SDS (Gao and 

Bushuk, 1992), acetic acid/urea/cetyltrimethyl ammonium bromide (Kurowska and Bushuk, 

1988, Meredith and Wren, 1966), and Triton X (Blochet, 1991) have been used to solubilise 

proteins in order to prepare them for gel filtration. As a result, the major wheat grain proteins 
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may be separated into four main fractions of decreasing size; high-molecular-weight glutenin 

subunits (MHW-GS), ‘low-molecular weight glutenin subunits (LMW-GS), gliadins and 

albumin/globulins (Bottomley, et al., 1982, Huebner and Wall, 1976). 

 
Gel filtration is time-consuming, unfortunately, and the protein analysis data obtained were 

difficult to reproduce. The introduction of size exclusion-high performance liquid 

chromatography (SE-HPLC) allowed for a faster and more quantitative approach that could 

also be automated (Batey, 1991, Dachkevitch and Autran, 1989). Further improvements in 

wheat grain protein analysis included the use of an ultrasonic-probe in the extraction process 

(Singh, et al., 1990, Singh and MacRitchie, 1989). 

 

1.3. Protein extraction methodology 
Modern proteomics relies on the assumption that protein extracts are accurate snapshots of the 

sample proteomes at a given point in time. This can only be achieved if extraction protocols 

satisfy three conditions: 1) samples are free from contamination of non-target tissue, 2) samples 

are ground into a fine powder or paste to enable efficient protein solubilisation by buffers 

and/or detergents, solvents, and 3) all proteins are extracted while removing any contaminants 

that would affect downstream processing. 

 
Given that wheat grain is relatively dry and that an optimal sample homogenization method for 

grain had been previously optimised in our laboratory (Jerkovic, 2011), this study focuses on 

further optimising the protein extraction method. The development of a method to extract 

protein that is representative of the sample proteome has held the greatest challenge and has a 

long evolution in the history of proteomic analysis. 

 
With the introduction of 2-dimensional electrophoresis (2-DE) in the mid 1970’s by O'Farrell 

(1975), the use of two independent properties – molecular weight and isoelectric point – 



40 

allowed researchers to resolve proteins into discrete protein spots on a gel (Figure 10). The 

protein spots could then be further analysed for relative abundance and identification using gel 

image analysis software and mass spectrometry. However, 2-DE and recent proteomic 

techniques require protein samples to be free of interfering contaminants as they can modify 

proteins and/or cause charge heterogeneity and result in the generation of artefacts (Hari, 1981) 

that may lead to poor protein spot resolution and/or streaking on 2-DE gels. Plant samples are 

particularly recalcitrant for 2-DE as they have varying levels of interfering polyphenolics, 

organic acids, lipids, pigments, terpenes, polysaccharides, secondary metabolites, salts, 

proteases and oxidative enzymes (Wang, et al., 2003).  

 



41 

 
Figure 1.10. Example of a pair of 2-DE gels showing the pH ranges from 4-7 and 7-10 (image taken from 
Jerkovic, et al. (2010). The figure shows the different EST classes of the 7S globulin proteins identified with 
their corresponding EST GenBank gi number.   
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Many different methods have been applied to remove contaminants from protein extracts. They 

can be historically summarised as either additives to inactivate contaminants or solvents to 

inactivate and remove contaminants or a combination of both (Cremer and Van de Walle, 1985, 

Wang, et al., 2008). Proteolytic inhibitors such as phenylmethane sulfonyl fluoride (PMSF), 

polyvinylpyrrolidone (PVP) and polyvinylpolypyrrolidone (PVPP) were used to inactivate 

polyphenolic compounds, as well as sodium ascorbate to inactivate quinones. However, it was 

found that the inhibitors were not universally effective at inactivation and removal of 

contaminants (Cremer and Van de Walle, 1985). This led to the use of solvent based methods 

such as TCA, acetone, or phenol extraction in order to both inhibit contaminants and remove 

them from the protein sample (Cremer and Van de Walle, 1985). 

 
Hari (1981) used acetone in a precipitation and wash step after protein extraction and was the 

first to report on successful 2-DE proteome analysis of green tobacco leaves. A number of other 

successful studies using either acetone, TCA precipitation or wash steps followed, culminating 

in the establishment of the TCA/acetone method (Damerval, et al., 1986). A few years earlier, 

Schuster and Davies (1983) had developed existing protocols into the phenol extraction 

method. Both protocols are now well established as they involve different physical processes. 

The salt and solvent in the TCA/acetone method forces water from the proteins and causes 

them to precipitate, while the phenol method forces hydrophilic regions of the protein inwards, 

while the hydrophobic regions position outwards interacting with the phenol, thereby 

dissolving proteins within the phenol phase. 

 
Although the TCA/acetone and phenol protocols are commonly used, almost all studies that 

have made direct comparisons between the two methods observed different proteomic profiles 

when analysed by 2-DE. A greater protein spot number, resolution and streaking in 2-DE was 

observed for phenol-extracted proteins from tomato (Saravanan and Rose, 2004), grape berry 



43 

(Vincent, et al., 2006), sugarcane stalk tissue (Amalraj, et al., 2010), and maize leaf midrib 

Wang, et al. (2016). In contrast, the TCA/acetone method produced a higher overall quality 2-

DE gel when examining tomato pollen and black locust phloem (Sheoran, et al., 2009, Zhang, 

et al., 2015). 

 
An investigation of rice roots using 2-DE by Song, et al. (2012) reported that TCA/acetone 

gave more protein spots and less streaking than the phenol extraction method. Similarly, Zhang, 

et al. (2015) found TCA/acetone to be more suitable for 2-DE; however, they also observed 

that the phenol method yielded the best tandem mass spectrometry (MS/MS) results when 

identifying the protein spots. Generally, 2-DE comparison studies show that protein spots 

would be specific to either the TCA/acetone or phenol method, favouring either protein size 

and/or pI (Amalraj, et al., 2010, Saravanan and Rose, 2004, Song, et al., 2012, Vincent, et al., 

2006, Zhen and Shi, 2011) 

 
When considering the studies described above, both TCA/acetone and phenol methods were 

unable to adequately resolve a number of different plant tissues, and as such, led to the 

development of the TCA/acetone/phenol extraction method (Wang, et al., 2003, Wang, et al., 

2008). This protocol combined elements of the TCA/acetone and phenol extraction methods. 

Wang, et al. (2006) demonstrated that the TCA/acetone/phenol protocol could deliver good 

results in 2-DE applications from tissues such as bamboo, grape, iris, olive, lemon, pine, 

redwood, sugar-cane, tobacco, posidonia grass, apple, banana, grape, kiwi, olive, orange, pear 

and tomato fruits. A comparison between the phenol and TCA/acetone/phenol by Maldonado, 

et al. (2008) using Arabidopsis leaf, showed that the TCA/acetone/phenol method resulted in 

slightly poorer 2-DE resolution than the phenol method; however, it yielded more protein spots, 

better protein molecular weight spread and pI range with similar results observed by 
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Domżalska, et al. (2016). However, other studies (Vincent, et al., 2006, Wang, et al., 2016) 

showed that for 2-DE, the phenol extraction method gave better results in maize leaf.  

 
Further developments in protein extraction methods have been attempted to improve sample 

extraction in plant proteomics. Twenty per cent dimethyl sulfoxide (DMSO) added to 

TCA/acetone extraction for rice roots was found to give superior performance over the 

traditional TCA/acetone and phenol protocols (Song, et al., 2012). Possibly this is because 

DMSO disrupts non-covalent interactions between proteins and contaminants allowing more 

organic contaminants to be removed from the pellet. A study by Xiang, et al. (2010) on the use 

of MG/NP-40 extraction buffer gave better results than for TCA/acetone. The MG/NP-40 

extraction buffer contains NP-40 (detergent), enzyme inhibitors, and chemicals to precipitate 

common contaminants such as phenolic compounds, and for samples containing 

photosynthetic cells can increase the number of resolvable spots on 2-DE gels by reducing the 

amount of (highly abundant) Rubisco extracted. 

 
Finally, dissolving of the protein pellet is an important part of any extraction protocol with the 

resuspension buffer generally consisting of one or more combinations of urea and/or thiourea 

and/or a detergent such as SDS or NP-40 (Ashoub, et al., 2011). Physically dissolving the 

protein pellet is an important final step in any protein extraction protocol. For example, Gómez-

Vidal, et al. (2008) found room-temperature shaking of the protein pellet in re-suspension 

buffer to be more effective than using either ultrasound or heat plus shaking. In summary, the 

studies show that extraction methods will vary depending on the sample being analysed. As 

such, the researcher may be guided by the previous studies or will be required to find the most 

suitable protein extraction method specific to the sample under study. 
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1.4. Proteomic methods 

The word ‘proteome’ describes the entire complement of proteins expressed by a cell, tissue, 

or organism, and was introduced into the scientific lexicon by Mark Wilkins at a 1994 

symposium (Dunn, 1995). The word ‘proteomics’ refers to the study of the proteome. 

 
First developed in the late 1950s, SDS-PAGE has developed into the dominant technique for 

one-dimensional electrophoresis (1-DE), and remains a powerful and popular tool for looking 

at proteins. The technique of using polyacrylamide gel electrophoresis (PAGE) to separate 

charged particles was first described in the late 50s (Raymond and Weintraub, 1959) and 1-DE 

became a popular tool in discovering and classifying new sub-fractions of gliadin and glutenin 

proteins (Elton and Ewart, 1960, Graham, 1963, Woychik, et al., 1961). Summers, et al. (1965) 

added the denaturing effect of SDS (to PAGE) with these techniques further refined by 

Laemmli (1970) into the model most used today. SDS-PAGE is still applied today as a fast and 

reliable technique to analyse protein extractions. However, the separation is performed in one 

dimension, hence this technique is only useful for examining groups of proteins with 

significantly differing mass. 

 
To this end, two-dimensional electrophoresis (2-DE) was developed (O'Farrell, 1975) to allow 

protein separation using two independent properties, pI and size (Brown and Flavell, 1981, 

Kasarda, et al., 1988). In the first dimension of separation, proteins are mobilised and separated 

along a pH gradient polyacrylamide strip via an electric field. Positively charged proteins will 

migrate towards the negative electrode and negatively charged proteins will migrate towards 

the positive electrode. Proteins become negatively charged when their pH environment is 

higher than the protein’s pI and alternatively, protein becomes positively charged when the pH 

environment is lower than the protein’s pI. As such, proteins migrate in the electric field until 

their mobility is interrupted and stop as a result of their overall charge becoming neutral. This 

happens when the pI of the protein matches the pH along the pH gradient strip.  
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This technique also allows for relative quantitation of proteins between samples via image 

analysis software. Furthermore, protein spots of interest can be excised from the second-

dimension gel (size separation) for protein identification. Proteins are extracted from the 

polyacrylamide gel and then enzymatically digested into peptides using a proteolytic enzyme 

such as trypsin. The amino acid sequence of the peptides can be determined by Edman 

degradation (Rathmell, 2000), or by more modern techniques such as mass spectrometry.  

1.4.1. Mass Spectrometry in plant research 

The mass spectrometry technique of MALDI TOF-TOF is a powerful high throughput 

technique used to identify proteins (Vensel, et al., 2002). In recent years, continuing 

improvements in mass spectrometry (MS) and the wheat and barley proteomic databases 

including interconnectivity and data analysis has become a powerful tool in discovering and 

understanding biochemical systems in cereals. Analysis using mass spectrometry is done by 

one of two generally methods, unlabelled or labelled shotgun proteomics. The former involves 

peptides derived from enzymatic digestion by trypsin or another protease of the extracted 

proteins (Capriotti, et al., 2014). The proteins are fractionated in-line through liquid 

chromatography before being identified and quantified via mass spectrometry. Each protein 

sample extract is analysed separately and spectra and ion count are relatively compared in the 

analysis. The latter approach is similar except that a chemical label (called an isobaric tag) is 

covalently bonded to the peptides of each sample. Each differently labelled peptide sample is 

then pooled and analysed in a single pass through the mass spectrometer. The data is then used 

to identify and quantify both the peptide and the sample from which it came through the 

isobaric tag.  

 
Two popular chemical labels for labelled mass spectrometry analysis of peptides are isobaric 

tags for relative and absolute quantification (iTRAQ; Figure 1.11), or Tandem Mass Tags 
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(TMTs; Figure 1.12). The TMT labels are suitable for up to ten samples, or for iTRAQ up to 

eight samples (Altenbach, et al., 2010). 

 

Of course, more focussed proteomic studies require the target organ, tissue, cells, cellular 

components (or unique protein fractions) to be separated from other components. For example, 

all studies into wheat grain quality require separating gluten fractions prior to mass 

spectrometry analysis (Hurkman, et al., 2013, Pompa, et al., 2013, Skylas, et al., 2000). The 

four main protein fractions of gluten are HMW-GS, LMW-GS, gliadins and albumin/globulins. 

Gluten represents between 58-65 percent of all wheat grain proteins and consists of a 1:1 ratio 

of the glutenin and gliadin protein groups. In terms of food production (bread, pasta, etc.) it is 

the gluten proteins that are critical, with the ratios of HWM-GS to LMW-GS (gutenin proteins) 

and the overall ratio of glutenin to gliadins (as well as the proportions of different gliadin sub-

fractions) that are largely responsible for the baking/cooking qualities of doe. In contrast the 

wheat albumin/globulin proteins have (in general) little effect on food properties, being mostly 

responsible for regulating growth and/or stress response of the germinating seed (MacRitchie, 

2016, Žilić, et al., 2011). Indeed, studies investigating biotic and abiotic defence mechanisms 

require dissecting grain into tissue sections (Jerkovic, 2011). Thus isolating the tissues of 

interest (or protein fractions), will provide a more focussed picture of the proteome and how it 

differs or relates to neighbouring tissues.  
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Figure 1.11. Isobaric tags for relative and absolute quantification. The two formats are a) 4-plex and b) 8-plex. 
Image taken from website on the 9/12/18 (https://www.creative-
proteomics.com/blog/index.php/introduction-of-isobaric-tag-for-relative-and-absolute-quantitation-
itraq/). 
 

 

 
Figure 1.12. Diagrammatic representation of a tandem mass tag showing the reporter group, the cleavable 
linker, mass normalizer and peptide reactive group. Image taken from website on the 9/12/18 
(https://www.thermofisher.com/order/catalog/product/90111)  

https://www.creative-proteomics.com/blog/index.php/introduction-of-isobaric-tag-for-relative-and-absolute-quantitation-itraq/
https://www.creative-proteomics.com/blog/index.php/introduction-of-isobaric-tag-for-relative-and-absolute-quantitation-itraq/
https://www.creative-proteomics.com/blog/index.php/introduction-of-isobaric-tag-for-relative-and-absolute-quantitation-itraq/
https://www.thermofisher.com/order/catalog/product/90111
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Thus, decades of research into gluten proteins, as well as the constant evolution of laboratory 

technologies and protocols have led to a large dataset of results. Although some of these are 

contradictory, there is enough consistency to allow some general conclusions to be made on 

the quality of dough derived from wheat flour. Not only is dough quality seemingly dependent 

on a higher percentage of total protein within the wheat grain (Monaghan, et al., 2001), more 

specifically, dough quality appears to be dependent on a higher percentage of gluten within the 

grain (Guess, 1900, Halton, 1924). It has also been shown that within the gluten fraction, a 

lower proportion of gliadin to glutenin is an effective measure of quality (He, et al., 2013, 

Hoseney, et al., 1969), with Gupta and MacRitchie Gupta and MacRitchie (1994) suggesting 

gliadin as having more of a disrupting influence with the polymeric proteins. Yet, several other 

studies have demonstrated the importance of gliadin to dough quality (Branlard and Dardevet, 

1994, Metakovsky, et al., 1997, Metakovsky, et al., 1997), although these conclusions may 

well be due to incorrect classification of some of the gliadin proteins. Similarly, for the glutenin 

fraction, a higher proportion of HMW-GS to LMW-GS is correlated with improved dough 

quality (MacRitchie, et al., 1991, Zhu and Khan, 2002); however, the proportion of HMW-GS 

to LMW-GS is not the only determinant of quality, as observed by Shewry, et al. (1992). They 

have shown that the cultivar Hereward with HMW glutenin subunits 3+12 and 7+9 resulted in 

a high-quality dough, whereas all other cultivars investigated with the same set of HMW-GS 

had a lower quality. Here either the gliadin portion, the LMW-GS, a combination of both, or 

possibly even an unknown protein or set of proteins resulted in the higher quality found in the 

Hereward cultivar. 

 
In summary, the total protein fraction, absolute and relative amounts of various fractions and 

sub-fractions, as well as the quality of each protein isoform and its ability to form long 

polymers all have a quantifiable effect on gluten quality and are all under genetic control (He, 

et al., 2005). Thus, genetics in combination with environmental and biotic stress have influence 
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on the quantity and quality of gluten (and other) proteins expressed, which in turn determines 

the overall dough and baking/cooking qualities of wheat flour (Fuertes-Mendizábal, et al., 

2013, Payne, 1987, Zhu and Khan, 2002). 

 

1.5. The biotic and environmental effects on wheat and barley proteomes 
The following sections discuss the phylogenetic and proteomic changes of wheat and barley as 

a result of adaptations to biotic and environmental variability or stress. 

 

1.5.1. Changes in the wheat proteome due to drought 

According to the Food and Agriculture Organization of the United Nations 

(http://faostat3.fao.org), wheat and barley are the first and third most harvested grain in the 

world by weight respectively and have been subjected to a number of comprehensive studies 

into the effect of abiotic stress (Kosová, et al., 2011). Of these, drought represents an important 

sub-group, and is especially relevant due to a large percentage of wheat and barley crops being 

grown in areas prone to drought (Farooq, et al., 2014). Indeed, it has been reported that drought 

stress has the largest effect on the reproductive and grain-filling stages (Pradhan, et al., 2012), 

and thereby the yield. 

 
Although the proteomics of wheat and barley were studied as early as 2001 and 2002 

(Østergaard, et al., 2002, Skylas, et al., 2001), the first proteomic study into the effect of 

drought on wheat was by Hajheidari, et al. (2007). In this study, two drought susceptible 

genotypes (Arvand and Kelk Afghani) and one drought tolerant genotype (Khazar-1) were 

investigated to find proteins that could eventually be used to locate genetic markers for drought 

stress. Control and water deficit-treatments were irrigated at 75-and 150-mm evaporation, 

respectively. Mature seeds were harvested, and 121 differentially expressed proteins were 
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detected using 2-DE, with 57 being identified by MALDI. The largest functional group of 

proteins that showed differential expression (27 out of 57 total), were involved in stress 

defence, and while most of these proteins were up-regulated in all cultivars, the expression 

levels were higher in the tolerant cultivar, especially for proteins involved in ROS scavenging. 

The authors also found several isoforms of α-amylase inhibitor were up-regulated in the 

tolerant genotype after drought treatment and down-regulated in the susceptible genotype after 

drought treatment. An increase in α-amylase inhibitor is known to protect grain starch from 

catabolism (Franco, et al., 2002). Protein synthesis and assembly (13 proteins), and metabolism 

(10 proteins) were the next largest functional groups detected. Interestingly, no proteins 

involved in other functions were detected, although there were 63 unidentified, yet 

differentially express proteins (Hajheidari, et al., 2007). 

 
A similar study of durum wheat seedlings (T. durum cv. Ofanto) were subjected to drought 

stress at day eight and the first leaf harvested at day fourteen by Caruso, et al. (2009) who 

showed that thirty-six proteins were differentially expressed were evenly expressed across six 

functional groups; calvin cycle (9%), glycolysis and gluconeogenesis (18%), amino acid 

biosynthesis (12%), ROS scavenging (15%), defence mechanisms (6%), and post-

transcriptional regulation (3%). Notably, the general expression pattern seen in this study was 

very similar to the proteomic studies examined below: proteins involved in photosynthetic 

mechanisms were differentially regulated, including up-regulation of photosystem II to 

counteract a loss of photosynthetic activity, while RuBisCO subunits and some associated 

proteins were generally down-regulated to reduce ROS production. In contrast, ROS 

scavenging proteins were all up-regulated, as were most proteins involved in amino acid and 

amine biosynthesis (S-adenosylmethionine synthetase, glutamine synthetase). Amino acid and 

amine biosynthesis are important in providing raw materials for protein production, 

antioxidants, as well as molecules involved in osmoregulation. The only major functional 
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group not detected in this study were proteins involved in molecular repair or protection, such 

as heat shock proteins (Caruso, et al., 2009). 

 

In the study by Rollins, et al. (2013), the response of the wheat root proteome to drought stress 

in a drought tolerant (Nesser) and drought sensitive cultivar (Opata) was examined by inducing 

a pseudo drought-response via the plant stress hormone abscisic acid (ABA). The wheat was 

grown from seed under normal conditions for 10 days, followed by exposure to ABA for 6 

hours. The roots were harvested, proteins extracted and labelled with isobaric-tags (4-plex 

iTRAQ). The differentially expressed proteins were detected and estimated using LC-MS/MS. 

Notably, this is the first time that iTRAQ was applied to drought studies in wheat. Eight 

hundred and five differentially expressed proteins were detected after ABA treatment, and 

while 151 of these were common to both cultivars, 421 were cultivar-independent and ABA 

responsive. Of the latter, 131 proteins had a greater abundance in the tolerant cultivar, and 

represented the functional sets of proteins: defence, heat shock proteins, and signal transduction 

pathways (kinases, phosphatases, GTP-binding proteins, and 14-3-3 protein homologs). 

Notably, the proteins in both cultivars that showed differential expression (cultivar-specific 

and non-specific), had a much greater amount of significant expression in the tolerant cultivar 

(166) than for the susceptible (67). More specifically the tolerant cultivar was seen to have 

more types of heat shock proteins, proteins involved in secondary metabolism, and cell wall 

biogenesis, which suggested that Nesser had a greater number of pathways and a stronger 

response to drought stress.  

 

1.5.2. Genetic diversity and changes in wheat proteome in response to 

drought 

Peng, et al. (2009), compared the effects of drought on the root and leaf proteomes of a drought-

tolerant hybrid wheat cultivar (Shanrong No 3) and its drought-susceptible wheat parent (Jinan 
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177). With the second parent of the hybrid being the wheatgrass Thinopyrum ponticum, the 

authors believed that the genetic diversity between the hybrid with its wheat parent would help 

them to understand the effect of drought on the root and leaf proteome of both cultivars. 

Shanrong No 3 and Jinan 177 were exposed to 24 hours of drought stress (18% polyethylene 

glycol) with differential expression of ninety-three root and sixty-five leaf proteins using 2-DE 

and MALDI-TOF-TOF. These results revealed that the majority of differentially expressed 

proteins were shared by the two cultivars, with the main groups being signal transduction, 

transport, detoxification, and carbon and nitrogen metabolism. However, the tolerant cultivar 

had a generally higher induction of differentially expressed proteins. Specifically, proteins 

involved in ROS scavenging (including antioxidant production) were higher in the tolerant 

cultivar, as were enzymes such as V-ATPases that helped maintain ion and water balance. In 

contrast, the susceptible cultivar displayed a more fragmented set of RuBisCO subunit 

isoforms, while the tolerant cultivar had an increased number of chlorophyll protector proteins. 

This indicated that the susceptible cultivar was less able to maintain normal photosynthetic 

mechanisms, while the tolerant was better able to protect these mechanisms. Lastly, a higher 

level of proteins involved in the gibberellin pathway and lower level for proteins involved in 

the ethylene pathway in the tolerant cultivar implied the promotion of growth. Meanwhile the 

susceptible cultivar exhibited the opposite effect in both pathways implying senescence was 

dominating. 

 

The study by Budak, et al. (2013), was similar to that by Peng, et al. (2009), but looked at an 

even greater genetic range of plants, comparing the drought stressed proteomes of two wild 

emmer wheats (TR39477 and TTD22) with a modern durum wheat (Kiziltan cutivar). Seventy-

five differentially expressed proteins were detected by 2-DE, and 66 protein spots were 

identified with nano LC-ESI-MS/MS. Of these, the most common functional groups were those 
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involved in carbohydrate transport and metabolism, many of which were up-regulated during 

drought, including a number of proteins involved in photosynthesis. Proteins such as RuBisCO 

isoforms showed higher proteins levels in all cultivars, especially in the wild emmer wheats. 

The next largest group of proteins were those involved in energy production and conversion, 

with ion transporter proteins upregulated in wild emmer, which conversely downregulates parts 

of its photosynthetic machinery. Amino acid transport and metabolism was mostly affected in 

the more susceptible (modern Durum cultivar) variety with higher methionine synthase levels, 

which implies that growth was overriding stress tolerance. Lastly, it was found that polyamine 

oxidase was at a higher level in the tolerant cultivar despite being a source of H2O2, with the 

authors speculating that the wild tolerant variety may have an ancient alternative line of defence 

against abiotic stress. 

 

1.5.3. Proteomic changes that favour more efficient mobilisation of nutrients 

in the wheat stem under drought  

In an attempt to identify molecular mechanisms of wheat stem reserve mobilisation, Bazargani, 

et al. (2011) subjected two cultivars of wheat, with differing capacities to mobilise nutrients 

through the stem, to drought conditions. After anthesis, drought-susceptible (N14) and drought-

tolerant wheat (N49) were exposed to drought by maintaining their soil at 50% field capacity. 

Then, the tillers were harvested at 10, 20, and 30 days after anthesis. One hundred-and thirty-

six differentially expressed proteins were observed by 2-DE, eighty-two of which were 

identified by MALDI-TOF-TOF MS/MS. Overall, the tolerant cultivar (N49) showed a higher 

level of differentially expressed protein, with the peak for both cultivars being at twenty days 

after anthesis (DAA). The tolerant cultivar had 18, 74, and 23 variably expressed proteins at 

10, 20, and 30 DAA (respectively), while for the same time series, the susceptible cultivar had 

25, 38, and 21 proteins with differing expression. Although the tolerant cultivar had a greater 

number of differentially expressed proteins, most of these were down-regulated, with up-
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regulation in the tolerant cultivar only more prevalent in proteins involved in energy 

metabolism and ROS removal. RuBisCO large and small subunit, RuBisCO activase, and 

oxygen evolving proteins, were all lower in the tolerant cultivar, while SAM synthase, which 

is involved in ethylene production and senescence was up-regulated. Also, the tolerant cultivar 

showed an up-regulation of nine proteins involved in ROS removal compared to two for the 

susceptible variety. Both cultivars showed differential expression of signalling proteins, 

including 14-3-3, MFP-1, and MAF1. From these results, the authors suggest that the tolerant 

cultivar senesces faster and is more efficient at protecting cells within the stem, while the stem 

nutrients for the susceptible cultivar are more effectively transported from the stem to the 

developing grain. 

 

1.5.4. Wheat proteome changes over time during drought 

In a study by Ge, et al. (2012), the effect of drought on the wheat grain proteome over time was 

examined in developing wheat kernels. Ningchun 4 (drought-tolerant) and Chinese Spring 

(drought-susceptible) varieties were subjected to a watering regime of one-third the level of the 

control, starting 12 days prior to heading. Samples were collected at 10, 14, 18, and 26 days 

after flowering (DAF), and 152 significant proteins were detected by 2-DE, with 96 identified 

with MALDI-TOF. From these, the three largest functional groups observed were carbohydrate 

metabolism (39%), stress/defence (18%), and photosynthesis (13%). The common stress 

defence proteins were detected in both cultivars (SOD, CAT, APX), while the growth regulator 

TCTP was generally up-regulated over time only in the tolerant cultivar. In the early stages of 

grain development HSP70 increased, while LEA increased at later stages. Enzymes involved 

in glycolysis and the tricarboxylic acid cycle (TCA) were also up-regulated under drought, 

such as GAPDH, cytosolic 3-phosphoglycerate kinase, and malate dehydrogenase. β-amylase 

was up-regulated in both cultivars, while sucrose synthases were up-regulated more in the 
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tolerant cultivar, the latter potentially giving the tolerant cultivar more energy for stress 

responses. Moreover, a higher expression of Triosephosphate isomerase (TPI) in the tolerant 

cultivar indicates it has a greater tolerance to water-stress. Homeostasis of photosynthesis 

seems more effective in the tolerant cultivar, with general up-regulation of the RuBisCO large 

subunit, and an early up-regulation of the oxygen evolving complex (OEC), which gradually 

decreases over time. 

 
Similar to the paper by Ge, et al. (2012), a study by Jiang, et al. (2012) initiated a time–course 

study into the effects of drought on the developing wheat grain. The proteomic mechanisms of 

drought tolerance was examined in a drought tolerant wheat cultivar (Kauz) and a drought-

susceptible wheat cultivar (Janz) from the middle spike collected at 10, 15, 20, and 25 days 

post-anthesis. The protein extracts analysed by 2-DE revealed 153 differentially expressed 

proteins. The drought-stressed, tolerant cultivar exhibited higher levels of detoxification and 

defence proteins (ROS scavengers, peptidase inhibitors, and salt-stress-responsive proteins), 

proteins involved in carbohydrate metabolism (AGPase, sucrose synthase, and ALR), and those 

involved in signal transduction proteins (WD40 and G-beta like protein). Moreover, compared 

to Ge et al. (2012), a similar but slightly different pattern was seen in photosynthetic proteins, 

including up-regulation of OEE1 in both cultivars at the first two sampling stages, and a lower 

expression of OEE1 in the susceptible cultivar at the last two stages. For the remaining 

functional groups, there was a general up-regulation under drought stress, but little difference 

between cultivars for all time periods. 

 

1.6. Abiotic and biotic stress in barley 
Several studies have reported that climate change and extreme weather events are likely to 

decrease the geographic growing range of barley, as well as negatively affecting its yield and 

quality (Anwar, et al., 2015, Dreccer, et al., 2018). It would be of great interest to determine 
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how elements of the grain proteome respond to the abiotic and biotic stresses that could result 

from predicted changes, and whether biomarkers that would mark these changes. While the 

overall omic-complexity of barley (genome, transcriptome, and proteome) may not translate 

from biomarker discovery to the development of cultivars tolerant to climate-change stress, 

other benefits could be garnered. Aside from the potential of biomarker proteins to indicate 

climatic change, they could be developed as markers to identify cultivars and their provenance 

(see Chapter 3, Introduction). 

 

Like abiotic stress, biotic stress also has a major impact on barley yield or quality, which may 

introduce toxins or other compounds that affect animal or human health. To better understand 

barley grain-microbe interactions, Sultan, et al. (2016) examined the proteomes of the barley 

grain surface proteins and the microbes found on the seed surface. Results indicated the grain 

surface shows a relatively specific response to microbial colonization, with glucanases, 

chitinases, and alginate lygases, all being expressed to degrade bacterial, fungal and algal cell 

walls. Lower levels of antifungal and apoptotic proteins, as well as low molecular weight 

microbial proteolytic-enzyme-inhibitors, which reduce mycelium growth and spore 

germination, were also found. Also found were a number of proteins involved in a more general 

stress response such as thioredoxin reductase, and a number of stress-related proteins.  

 
Microbial proteins were detected at a much lower lever, but nonetheless, a number of proteins 

from the bacterial membrane or proteins with transmembrane domains were detected. Proteins 

involved in the control of small molecule diffusion (such as antibiotics) were also detected, as 

well as biosynthesis of secondary metabolites and toxins. Defence against the plant 

antimicrobial response was also seen in a number of microbial ROS scavenging enzymes and 

chaperones. In contrast, the fungal surface proteome showed a greater potential for plant tissue 

damage, with proteins involved in plant cell-wall and peptide degradation (including xylanases 
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and peptidases), as were proteins necessary to assist fungal growth, primary metabolism, 

nutrient acquisition, virulence factors, energy metabolism, RNA/DNA synthesis, and proteins 

involved in steroid and secondary metabolite synthesis. 

 
A similar study was performed by (Trümper, et al., 2016) involved infecting barley grain with 

the fungus Fusarium graminearum at anthesis and examined the grain proteome at different 

grain ripening stages. This fungus is economically important as it can reduce grain quality, and 

because fungal mycotoxins can accumulate in products such as beer, it can affect production 

and potentially human health. A number of changes in the grain proteome occurred throughout 

grain ripening. At the early to middle stages of infection, protease inhibitors and a putative 

chitinase were up-regulated, as were proteins involved in oxidative burst (flood of ROS leading 

to programmed cell death). This results in the neutralization of foreign hydrolytic enzymes and 

a physical barrier to fungal attack causing fungal cell death. At mid-infection stages, up-

regulation of protein degradation and two thaumatin-like proteins involved in hyphal and spore 

lysis indicated that the plant cells were shifting towards survival and invader attack. Finally, at 

the latter stages of infection, all proteins just mentioned were down-regulated, including a 

notable decrease in those involved in oxidative burst and stress response. Thus, over a number 

of weeks of infection, the barley grain proteome moved from defence, to attack, and finally a 

down-regulated response either because the threat had been managed or cell resources were 

exhausted. 

1.7. RNA and protein expression in plant cells 
The genome stores information on how to react and direct resources under various 

environmental conditions and exposure to pathogens. Response to stress is measurable through 

changes in RNA and protein expression within the various plant cells. The role of RNA is 

primarily an intermediary that translates information from DNA into different types of proteins 

and expression levels. In contrast to most RNA, proteins not only act directly in keeping plants 
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in a state of homeostasis, they are also responsible for actions within cells. For example, tissues 

and organs under biotic and/or abiotic stress mediate a direct return to homeostasis or at least 

prevent death until the crisis has passed. The variable speed and specificity of different 

enzymes and their isoforms, as well as their complex network of interactions, allows subtle or 

extreme variations in reactivity. They not only control the constituent processes of all parts of 

the organism but are the most immediate and effective agents of restoring cellular environments 

to homeostasis, or at least implement survival strategies that give plants a chance of survival 

under abiotic and/or biotic stress. Examining RNA and protein expression levels in various 

anatomical structures of the plant will give the greatest insight into how a plant survives, grows, 

reproduces and adapts within its environment. 

 

1.8. Aims and hypotheses 
 

1.8.1. Aims 

The aims of this thesis are to 1) determine the optimal protein extraction method for wheat and 

barley grain that will both maximise the total protein yield and expand the number of differing 

protein types captured, 2) apply TMT-labelled shotgun proteomics to identify biomarker 

proteins in wheat and barley grain that can be used to identify the cultivar, farm origin, and 

potentially relate the results to grain quality, and 3) investigate whether the next generation 

DNA sequencing technique known as RNASeq can be used to either complement TMT labelled 

shotgun proteomics, and a potential alternative method of protein biomarker discovery.  

 

1.8.2. Hypotheses 

It has been shown by both ancient cultures and modern science that the composition of mature 

wheat and barley grain is remarkably stable under the correct storage conditions. Prior to 

maturity, grain composition is influenced during its growth and development by the interplay 
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between the plant’s genes and the biotic and abiotic stresses on the plant. I hypothesise that, 1) 

at least a small subset of proteins within a grain proteome will have statistically significant 

differences in protein expression levels between different cultivars and/or farm locations, and 

between grains of differing quality and grades, 2) the protein extraction protocol can be 

optimised to improve both the yield and diversity of extracted proteins, thus improving 

detectability, and enabling the extracted protein samples to be as biochemically representative 

of the full grain proteome as possible, and 3) transcriptomics may be useful as an alternative 

or complementary technique to proteomics for the discovery of protein biomarkers to 

determine the provenance of wheat or barley grain. 
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Chapter 2. Optimisation and comparison of two 
common protein extraction methods for maximum 
yield and diversity of wheat grain proteins for high-
throughput proteomic analysis 

 

2.1. Introduction 

Protein extraction methods for proteomic analysis, such as TCA, acetone and phenol, each have 

their limitations in extracting total proteins from plant material. This is mainly due to the 

variety of protein solubility and the tough cellulose cell walls found in plants. Applying any 

single protein extraction method will result in a loss in protein diversity when attempting to 

obtain a complete proteomic profile of a given sample. As such, protein extraction methods are 

chosen based on the target protein or proteins of interest within the proteome.  

 

One of the first protein extraction methods developed enabled the targeted extraction of 

albumin, globulin and gluten protein sub-fractions from wheat grain (Osborne and Voorhees, 

1893). This method has been further refined over many decades to extract gluten fractions 

described as low-molecular-weight glutenin subunits (LMW-GS), high-molecular-weight 

glutenin subunits (HMW-GS), α-like gliadin, γ-gliadin, and ω-gliadin (Barak, et al., 2015, 

Wieser, et al., 2006). This targeted approach has been highly effective in investigating gluten 

proteins in wheat grain, especially in relation to grain quality. 

 

In the last two-to-three decades, there has been growing use of mass spectrometry and database 

centred high-throughput proteomic techniques in grain protein research. These techniques 

range from two-dimensional gel electrophoresis (2-DE) coupled with MALDI (Jiang, et al., 
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2012) to current techniques such as high-throughput and increasingly sensitive, labelled and 

unlabelled shotgun proteomics (Zhang, et al., 2013). These high-throughput proteomic 

techniques ideally require a protein extraction method that both remove all impurities but also 

capture a high yield and diversity of proteins from the sample, so that the resulting dataset of 

unique proteins accurately reflects the proteome. Yet, as reported by many studies, the 

heterogeneity of protein chemistries within a proteome makes it difficult for any general 

extraction technique to completely capture all proteins within a proteome (Amalraj, et al., 2010, 

Saravanan and Rose, 2004, Song, et al., 2012, Vincent, et al., 2006). As such, for any given 

sample, it is important to invest time to develop an optimal extraction method. Ideally, a protein 

extract with the most representative protein yield and diversity can be delivered to the mass 

spectrometer, and in turn improve the quality of the subsequent downstream computational 

analysis. 

 

Here we investigate both the optimal starting amount of sample, and whether the 

trichloroacetic-acid/acetone (TCA/acetone) or the TCA/acetone/phenol (‘combined-phenol’) 

protein extraction methods result in higher yields and greater diversity of proteins. These two 

methods perform differently in the way the denaturing agents (TCA in the TCA/acetone 

method, or phenol in the ‘combined-phenol’ method) work to purify the proteins. Phenol causes 

a much more complete denaturation, by forcing hydrophobic sections of the protein’s amino 

acid chain outwards, occupying the outer surface of the protein, and hydrophilic sections 

inwards, occupying the centre region of the protein (Pusztai, A. 1965). On the other hand, TCA 

causes a gentler unfolding of proteins into a state that allows them to stick together by 

hydrophobic aggregation and then precipitate (Sivaraman et. al. 1997; Xu, Z. 2003). These 

chemical differences result in the extraction of unique protein subsets specific to each method. 



63 

As such, we classified the identified proteins into functional groups from each protein 

extraction method to determine the types of proteins you would expect from each method. 

 

2.2. Methods 

2.2.1. Environmental conditions, grain size and morphology 

The three cultivars of wheat used in the following experiments (Gregory, Livingston, and 

Spitfire), were grown to maturity and grain harvested near the town of Wallendbeen in NSW, 

approximately 120 km north-west of Canberra. Care was taken to achieve uniform crop 

management and soil type, while the growing season included no extreme events. For each of 

the three cultivars there were three replicate plots. Unfortunately, information on the exact 

location of the farm, and the size and type of plots have been unattainable due to staff turnover 

at Grain Growers (commercial collaborator). After harvesting, the grains were dried and stored 

as per standard agricultural practice. The relatively uniform grain morphology and size for each 

cultivar reflected negligible biotic or abiotic stresses during grain development and maturity. 

From each plot a 1 kg grain sample was obtained resulting in a total of nine 1 kg wheat grain 

samples (3 cultivars x 3 replicates for each cultivar). 

 

2.2.2. Weighing and grinding samples 

The grain samples obtained from each farm were processed as follows. All samples for analysis 

were performed in biological triplicates. The 100-grain weight was calculated by weighing 500 

grains and dividing by five. For each sample, 200-grain weight of grain was rough ground in a 

coffee grinder for 20-30 s. The grinder was cleaned with 70% ethanol after each use. From the 

roughly ground grain, 300 mg was added to a 2-mL plastic tube, together with ~30 mg of 

washed sand. This powder/sand mix was then thoroughly emptied into a mortar and pestle and 
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ground to a fine powder. After each grind, the powder was scraped back into the 2-mL plastic 

tube. The finely ground powder was then used for protein extraction.  

 

2.2.3. TCA/Acetone/Phenol protein extraction 

Total proteins were extracted using a modification of the method used to extract bran from 

Jerkovic, et al. (2010). For each grain sample, the finely ground powder (10, 20, 50 and 100 

mg) were each washed twice with 1.5 mL of cold acetone in 2-mL plastic tubes, vortexed, then 

centrifuged at 15,000 g for 3 min at 4°C. After the final centrifugation, the acetone was 

discarded. To each pellet was added 1 mL of cold 10% trichloroacetic acid (TCA) in acetone 

and vortexed for 30 s. The samples were then centrifuged at 15,000 g for 3 min at 4°C. This 

step was repeated, each time discarding the supernatant. Finally, 1 mL of cold 80% acetone 

was added, vortexed for 30 s and centrifuged at 15,000 g for 3 min at 4°C. The supernatant was 

discarded, and the pellets were left to dry at room temperature until almost all the acetone had 

evaporated. The pellets were then suspended in 0.8 mL phenol (tris-buffered at pH 8.0) and 

vortexed until fully re-suspended. If necessary, the pellets were mixed with a pipette tip to 

assist re-suspension. To the re-suspended pellets was added 0.8 mL of dense SDS buffer (30% 

sucrose, 2% SDS, 0.1 tris-HCl, pH 8.0, 5% 2-mercaptoethanol) and vortexed for 30 s. The 

mixture was then centrifuged for 3 min at 10,000 g. The upper phenol layer (~650 μL) was 

removed and placed into a 10-mL Falcon tube. Care was taken to not disturb the phenol/dense 

SDS buffer interface. The protein was precipitated from the phenol layer by adding 3.25 mL 

(~5 volumes) of cold methanol, 0.1 M ammonium acetate, and placed at -20°C overnight. The 

precipitated proteins were then centrifuged at 10,000 g for 5 min at 4°C. The protein pellets 

were washed with 1 mL of cold methanol, 0.1 M ammonium acetate by vortexing for 30 s and 

centrifugation at 10,000 g for 5 min at 4°C. The supernatant was discarded, and the wash step 

was repeated. Finally, 1 mL of cold 80% acetone was added, vortexed for 30 s and centrifuged 
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at 10,000 g for 30 s. The supernatant was discarded, and the wash step was repeated. The pellets 

were air dried until the acetone had almost completely evaporated. To the semi-dried pellets 

was added 600 μL of 6 M urea. The tubes were then placed in an incubator shaker at 40°C to 

completely dissolve the pellet (~1 - 4 h). 

 

2.2.4. TCA/acetone protein extraction 

Protein was extracted using the TCA/acetone procedure commonly used for plant proteomics 

extraction (Wu, et al., 2016) with slight modifications. For each grain sample, the finely ground 

powder (10, 20, 50 and 100 mg) were each placed into separate 2-mL plastic tubes. To each 

tube was added 1.5 mL of cold TCA/acetone-DTT-PMSF solution (10% trichloroacetic acid, 

10mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, in acetone). The tubes were then 

vortexed for 30 s and then incubated at -20°C for 1 h to precipitate proteins. After incubation, 

the samples were centrifuged at 20,000 g for 30 min at 4°C. The pellets (comprising proteins 

and cell debris) were then washed in 80% cold acetone, vortexed for 30 s and centrifuged at 

10,000 g for 10 min at 4°C. This was repeated twice before the pellets were dried in a speed-

vac for 30 min at room temperature. One millilitre of 6 M Urea was then added to each pellet 

and the tubes were placed on an incubator shaker for 1 - 4 h at 40°C. If necessary, dissolution 

of the pellet was sped-up by breaking the pellet with a pipette tip, followed by aspiration. Once 

the pellets were re-suspended, they were then centrifuged at 15,000 g for 10 min to remove the 

debris from the solution. Following centrifugation, a large viscous ‘glue-like’ layer had formed 

above the pellet, leaving a thin supernatant layer. Approximately 100-200 μL of this layer was 

removed and placed into a 2-mL plastic tube. The pellets were re-suspended in 200 μL of 6 M 

urea and further centrifuged to yield approximately 100-200 μL of supernatant. The total 

amount of protein harvested from each sample was quantified using the Bradford assay. 

http://en.wikipedia.org/wiki/Dithiothreitol
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2.2.5. Protein estimation using Bio-Rad protein assay reagent 

Bio-Rad protein assay reagent was used to estimate the protein extracted as detailed below. 

The samples were measured in a PHERAstar FS plate reader (BGM Labtech), with software 

version 4.00 R4 and firmware version 1.13. Standard Bradford settings were used: 10 s of 

double orbital shaking motion (500 rpm) before reading, absorbance measured at 595 nm for 

0.1 s, including 20 flashes per well. The plates used were clear 96-well Greiner, flat bottom 

plates (Sigma-Aldrich: M2936). The blank was 3 M urea. BSA Standards were 0, 0.25, 0.5, 

0.75, 1, 1.25, 1.5, and 2.0 mg. mL-1 in 3 M urea, and samples were diluted so that their final 

urea concentration was 3 M. For each blank, standard, and sample, three 10 μL technical 

replicates were aliquoted into separate wells of a 96-well plate, followed by the addition of 200 

μL of diluted Bio-Rad protein assay reagent into each well. Sample concentrations were 

calculated from a curvilinear regression graph with concentration (mg. mL-1) vs absorbance at 

595 nm. The final amount of protein is protein concentration multiplied by the sample volume. 

 

2.2.6. Percent protein calculation 

The protein concentration was calculated by determining the total amount of protein extracted, 

divided by the total amount of starting material (finely ground wheat grain). 

 

2.2.7. SDS-PAGE 

The extracted proteins were analysed by SDS-PAGE using Bolt® 4-12% Bis-Tris plus pre-cast 

gels (Catalogue number: NW04120BOX), and run in a Bolt ® mini gel tank (Catalogue 

number: A25977) using 1× MES buffer. All equipment and solutions (excluding MES buffer) 

were purchased from Thermo Fisher Scientific. Approximately 10-20 μL of 4× Bolt® (Cat. 
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Number: B0007) LDS sample buffer was added to fresh tubes containing sample aliquots (e.g. 

2.5 μL sample buffer in 7.5 μL sample). Once the sample and sample-loading solutions were 

added together, they were vortexed and pulse centrifuged. The protein ladder used was “Broad-

range” from Bio-Rad (Catalogue Number 161-0317) - prepared as per recommended protocol, 

with 10-20 μL of sample-loading solutions added to any remaining wells. Two technical 

replicates were loaded for each cultivar. Once loaded, electrophoresis was performed at 170 V 

until the leading dye front had just run off the bottom of the gel (~40 min). The gels were then 

placed into Coomassie stain on a gentle shaker overnight, followed by de-staining for at least 

4 h in reverse osmosis (RO) water. 

 

2.2.8. Trypsin in-gel digestion 

In-gel trypsin digestion of proteins was performed using a modification of the procedure of 

Shevchenko, et al. (2007) as follows. Each sample lane of the de-stained gel was dissected into 

eight equal pieces. Each piece was then further sliced into 8–12 smaller pieces and placed into 

a well on a 96-well plate. The Coomassie stain was removed by washing twice with 200 μL of 

50% acetonitrile (ACN), 100 mM NH4HCO3 for 20 min each time. The washed gel pieces were 

dehydrated by adding 200 μL of 100% acetonitrile, incubating for 5 min at room temperature, 

followed by air drying for 10 min. The proteins within the gel pieces were then reduced with 

50 μL of 10 mM DTT in 50 mM ammonium bicarbonate for 1 h at 37°C. The proteins were 

then alkylated at room temperature in the dark for 45 min using 50 μL of 50 mM iodoacetamide 

in 50 mM ammonium bicarbonate. The gel pieces were then washed twice with 200 μL of 100 

mM ammonium bicarbonate and 200 μL of 100% acetonitrile incubating for 5 min each time. 

The gel pieces were then air-dried. Trypsin digestion followed with the addition of 30 μL of 

trypsin (6.7 ng. μL-1 trypsin in 50 mM ammonium bicarbonate) to each well, keeping the plate 

at 4°C for 30 min before incubating overnight at 37°C. The trypsin digestion was stopped and 
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peptides extracted by adding 50 μL of 2% formic acid in 50% acetonitrile incubating for 30 

min at room temperature. The supernatant was removed and placed into 0.5-mL plastic tubes. 

The supernatant was then evaporated using a speed vac. 

 

2.2.9. Peptide preparation for Mass Spectrometry 

To each 0.5-mL plastic tube containing peptides was added 21 μL of 2% formic acid and then 

centrifuged at maximum speed (10,000 g or more) for 10 min to remove leftover debris from 

solution. From the supernatant, 10 μL from each sample was pipetted into corresponding wells 

of a 96-well plate that is compatible with the mass spectrometer auto sampler. Once all samples 

were aliquoted, the plate was sealed with a plastic seal and each of the sample wells was 

punctured with a sharp blade to allow the mass spectrometer to access the solution in each well. 

 

2.2.10. Mass Spectrometry 

The peptides from the trypsin digested proteins were analysed using nanoflow liquid 

chromatography tandem mass spectrometry (nano LC-MS/MS). The reverse phase columns 

were packed in-house to approximately 8 cm (100 µm i.d.) with Magic C18AQ resin (200 Å 5 

µm, Michrom Bioresources, CA, USA) in a fused silica capillary with an integrated 

electrospray tip. Ten microliters of each sample was then injected into a C18 column using a 

“Surveyor” autosampler (Thermo Fisher Scientific). After injection, the C18 column was 

washed with buffer A (5% v/v ACN, 0.1 v/v formic acid) for 10 min at a flow rate of 1 μL. min-

1. The peptides were then eluted from the column with 0-50% buffer B (95% v/v ACN, 0.1 v/v 

formic acid) for 58 min at 500 nL. min-1 followed by a second elution of 50-95% buffer B over 

5 min at 500 nL. min-1. The eluate from the column was then directed towards the nanospray 

ionisation source of the LTQ-XL ion-trap mass spectrometer (Thermo Fisher Scientific). The 
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spectra were scanned over the range 400-1500 amu. Automated peak recognition and the 

dynamic exclusion window was set to 90 s, and MS/MS of the top six most intense precursor 

ions at 35% normalisation collision energy were performed using Xcalibur software (version 

2.06; Thermo Fisher Scientific). 

 

2.2.11. Mass spectrometry analysis 

The raw files output by the mass spectrometer were converted to the mzXML format using the 

open source proteoWizard windows application. Peptides and their associated proteins for the 

eight fractions of each sample were then determined through the global proteome machine 

(GPM) software with version 2.2.1 of the X!Tandem algorithm by searching against a trimmed 

Uniprot wheat proteome for Triticum aestivum, and including common human and trypsin 

peptide contaminants. Additional searching was performed against a reversed sequence 

database to evaluate the false discovery rate (FDR). The parameters of the search also included 

MS and tandem MS tolerances of ±2 Da and ± 0.2 Da, i.e. tolerance of up to three missed 

tryptic cleavages and K/R-P cleavages. Fixed modifications were set for carbamidomethylation 

of cysteine and variable modifications were set for oxidation of methionine. For each sample, 

non-redundant output files were generated that included identified proteins with log (e) values 

less than – 1: Including a file for each slice (8 total), and a merged data file for all 8 slices. 

 

2.2.12. Gene Ontology Data 

Gene ontology information for each protein, and gene ontology functional summaries (known 

as “Slims”) were obtained respectively by the web application “GORetriever” and 

“GOSlimViewer” (http://agbase.msstate.edu/) maintained by the Mississippi State University 

(McCarthy, et al., 2006) 
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2.2.13. Collection of GO Slims 

We first selected a subset of proteins that were identified in all three cultivars for all replicates 

and extraction methods. This allowed for a manageable list of Slims to which we could add 

expression data through a set of custom R-scripts containing three major stages. The first was 

the construction of a matrix consisting of rows made up of proteins and their associated data, 

while each column beyond the protein data is titled with a Slims identifier. A ‘zero’ or ‘one’ is 

placed in each cell under the identifier, depending on whether the protein to the left has any 

GO identifiers associated with it under the Slims identifier title of the column. The next stage 

was to total the number of ‘ones’ found in each column to get the number of proteins contained 

within each SLIM identifier, or to replace the ‘ones’ with expression data for each protein 

(row), sum those data, and then compare the sum to the total of all Slims expressed, and finally 

the expression data per SLIM with additional experimental information. The last stage consists 

of saving summary .csv files and creating various graphs which are then saved to disk. 

 

2.3. Results 

2.3.1. Protein extraction optimisation 

In order to detect potential biomarkers in wheat grain that are expressed at very low-levels, we 

implemented a protein extraction protocol that maximised the protein yield and in turn, 

revealed a diverse set of proteins representative of the wheat grain proteome. For the 

TCA/acetone method, we observed no difference in protein yield from the starting material 

(10, 20, 50 or 100 mg), whereas the ‘combined-phenol’ method displayed a small increase in 

yield as the starting amount increased (Table 2.1). In contrast, when comparing the two 

methods for each of the four starting amounts, the ‘combined-phenol’ method had double the 

yield. In addition, there was a difference in protein extraction yield between cultivars using the 

‘combined-phenol’ method (Figure 2.1). 
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Table 2.1. Comparison of percent by weight yields of protein between different starting amounts for both the 
TCA/Acetone and the combined phenol methods. Starting amounts were either 10 or 100 mg of finely crushed 
wheat grains, with three replicates for each starting weight. 

Method 10 mg 

(% protein 

recovered) 

100 mg 

(% protein 

recovered) 

T-Test, 

p-value 

Mean  StDev Mean StDev 

TCA/acetone 1.432 0.150 1.386 0.028 0.628 

‘combined-phenol’ 2.923 0.196 3.320 0.158 0.052 

 
 
Table 2.2. Comparison of percent by weight yields of protein extracted between extraction methods. Each 
comparison looked at a starting amount of either 10, 20, 50 or 100 mg of finely crushed wheat grains. 

Starting 

Weight (mg) 

TCA/acetone 

(% protein recovered) 

‘combined-phenol’  

(% protein recovered) 

T-Test, 

p-value 

Mean St Dev Mean St Dev 

10 1.432 0.150 2.923 0.196 0.0004677 

20 1.374 0.041 2.995 0.172 0.0002868 

50 1.332 0.101 3.154 0.293 0.0005215 

100 1.386 0.028 3.320 0.158 0.0000309 

 

 

 
Figure 2.1. Comparison of the protein yield from three wheat cultivars using the ‘combined-phenol’ and 
TCA/acetone extraction methods. The yield was calculated in terms of the weight of total protein extracted 
from the initial starting weight expressed as a percentage. Statistically significant difference between the 
percentage of protein recovered using either the ‘combined-phenol’ or the TCA/acetone protein extraction 
methods.  
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The proteins extracted using the TCA/acetone and ‘combined-phenol’ methods produced 

contrasting banding patterns on the reduced SDS-PAGE gel (Figure 2.2). The ‘combined-

phenol’ extraction generated more uniform banding in the upper half of the gel compared with 

TCA/acetone extractions, while TCA/acetone had more proteins below 20. There were also 

more intense bands between 36-55 kDa for the TCA/acetone method at the expected size and 

number of gluten sub-fractions, such as ω-gliadins, α−like-gliadins and LMW-GS. This 

suggests that the TCA/acetone method is more selective in extracting these sub-fractions of 

gluten proteins, although given the difference in total yield between extraction methods it is 

probably not as efficient. 

 

 
Figure 2.2. SDS-PAGE gel of wheat grain proteins extracted using either the TCA/acetone or ‘combined-phenol’ 
method. 
The cultivar abbreviations are: Spit. = Spitfire; Liv. = Livingston; Greg. = Gregory; and “R” = Replicate. Standards 
used were the “Broadrange” by Bio-Rad. The illustrated slices indicate how each lane was sectioned to size 
fractionate the proteins prior to trypsin digestion and mass spectrometry of the resulting peptides.  
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The total number of proteins identified in all biological replicates in each variety using each 

extraction method is shown in Figure 2.3. The combined extraction method thus appears to 

yield a consistently higher diversity of proteins extracted than the TCA acetone method, which 

would appear to favour biomarker discovery. 

 

 
Figure 2.3. Comparison of TOTAL number of proteins identified in each variety by extraction method. 
The total number of wheat grain proteins identified in all 3 biological replicates is shown. The difference in the 
number of proteins identified between the ‘combined-phenol’ and TCA/acetone methods were statistically 
significant. 

 

There was a total of 537 proteins identified across all varieties and extraction methods. To be 

positively identified the protein had to be present in all biological replicates at statistically 

significant levels as described in the methods. There were 293 proteins that were common in 

ALL cultivars. As shown in Figure 2.4, 85 of these proteins were uniquely extracted by 

TCA/acetone, 154 were uniquely extracted by ‘combined-phenol’, but only 89 were extracted 
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by both methods. The ‘combined-phenol’ extraction method was clearly superior in extracting 

more different types of proteins when compared with the TCA/acetone method as shown in 

Figure 2.3, and as such, this method has a greater potential for biomarker discovery, although 

there is obviously a selective extraction of proteins.  

 

Quantitative assessment of the proteins expressed using normalised spectral abundance factors 

and by presence or absence of a protein between cultivars is shown in Table 2.3.  There is a 

slight advantage in identification of differentially expressed proteins and presence/absent 

proteins between cultivars using phenol extraction compared to TCA/Acetone. This is despite 

the ‘combined-phenol’ method resulting in a higher yield of protein than the TCA/acetone, the 

latter method still did extract 85 proteins that were common in all cultivars and unique to this 

method (Figure 2.4). 

Despite the greater diversity of proteins obtained by the ‘combined phenol’ method, the 

proportion of proteins discovered per cultivar (either common or unique) remained similar for 

both methods (Figure 2.5). 
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Figure 2.4. Classification of total number of common proteins present in ALL 3 replicates of ALL three wheat 
varieties by extraction method. 

 

 

Table 2.3. Proteins displaying differential or present/absent expression between cultivars identified by each 
extraction method. 

Note: A comparison of the number of proteins between the two extraction methods in terms of biomarker 
discovery using unlabelled shotgun proteomics. The proteins of interest showed either statistically significant 
differential expression, or a presence/absence pattern between the three cultivars.  

Protein extraction method 
Number of proteins 

Present or absent  Differentially expressed 

TCA/Acetone 185 16 

Combined Phenol 187 22 

Combined between methods 241 38 
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Figure 2.5. Venn diagram of identified proteins originating from Gregory, Livingston and Spitfire wheat 
cultivars. The 38 proteins in brackets in the central overlapping section are differentially expressed between all 
three cultivars. 

 

2.3.1.1. Summary of protein functionality 

Gene ontology (GO) identifiers assigned to each identified protein in the uniport database were 

used to further characterise the list of identified proteins. It should be noted that most proteins 

have multiple GO identifiers specified but also that not all proteins have functional (gene 

ontology) information associated with them. Consistent with the larger number of identified 

proteins in the ‘combined-phenol’ groups, these groups generated a more diverse list of protein 

functions. These proteins from the different extraction methods were analysed separately to 

determine if specific classes or functions of proteins were specifically extracted or excluded 

during the process. 

 

In the list of GO identifiers any differing patterns in general functionality are potentially lost 

in the hundreds of specific functions attached to each GO identifier. To adjust for this, we used 
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a subset of GO identifiers known as GO Slims, each of which describes a group of very similar 

functions. This allowed us to sort the large list of GO identifiers into a much smaller set of GO 

SLIM categories that resulted in a functional summary of the proteome (Lomax, 2005). Then, 

with the assistance of custom R scripting, we quantitated each category by either counting the 

number of unique proteins per Slims category, or also adding the protein expression to the total 

protein count in each Slims category. In general, both quantitative methods gave similar results, 

so we focused on the latter as it contained more information. Figure 6 shows the expression 

data for one of the three parent GO’s, known as biological process (BP), as this was the most 

information rich. The findings for BP were comparable to the remaining parent ontologies of 

cellular component (CC) and molecular function (MF). Also, shown in Figure 6 is the 

expression patterns in several Slims categories that changes according to the extraction method, 

with all but two categories having statistically significant changes. For example, the GO terms 

of “response to biotic stimulus” and “response to external stimulus” derive from proteins that 

have a greater hydrophobicity, which may account for the higher amount of expression detected 

in TCA/acetone method. 
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Figure 2.6. Total wheat grain protein expression from (A) ‘combined-phenol’ extracted samples, and (B) 
TCA/acetone extracted samples summarised into gene ontology Slims terms for the parent gene ontology 
category of Biological Process. *Statistically significant difference between functional summaries of proteins 
extracted by either the ‘combined-phenol’ or TCA/acetone protein extraction methods. 

 

2.3.1.2. Protein hydrolysis from TCA 

The SDS-PAGE gel lanes (Figure 2.2) of the TCA/acetone extracted proteins showed two small 

bands (7-9 kDa and 3-4 kDa) that were not present in the ‘combined-phenol’ extracted proteins. 

By applying unlabelled shotgun proteomics, together with the size fractionation of the SDS-

PAGE gel, we examined the size profile of proteins found in the eight gel slices obtained from 

each of the sample lanes. Using R scripts, these eight slices per lane were then analysed and 

the corresponding dot-plots drawn of spectral count verses molecular weight (Figure 2.7). For 
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slices 4-8 the majority of the observed protein sizes were within the expected size range, while 

for slices 1-3 most of the protein sizes were slightly smaller than the expected range. The 

difference in the expected protein sizes verses the majority of observed protein sizes were 

proportionally smaller from the top of the gel downwards (slice-1 to -3). This was not an 

uncommon observation and may have been due to a number of factors such as the amino acid 

sequence, phosphorylation, glycosylation, and methylation changing migration of larger 

fragments. Nonetheless, the majority of proteins for each slice were detected in the expected 

or near expected size range. However, for slices four to seven there were some proteins with a 

molecular size greater than the range expected from the slice. To a lesser degree this was also 

true for the proteins extracted by the ‘combined-phenol’ method, but the second peak arose 

later at around slice five. Thus, for both methods, it appears that there may have been some 

acid hydrolysis during the protein extraction process, cutting larger proteins and resulting in 

them in gel slices with smaller proteins. The hydrolysis observed appeared to be more 

pronounced in the TCA/acetone method, presumably because of the much longer TCA 

incubation periods.  
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Figure 2.7. Normalised spectral counts (NSAF) of peptides extracted from the SDS-PAGE gel slices from the 
TCA/acetone extracted proteins from Gregory cultivar. 

 

2.3.1.3. Gluten Fractions 

Gluten is a well-studied set of proteins from wheat grain, with various protein fractions and 

sub-fractions observed to be critical for dough quality (bread, noodles, etc.). As such, we also 

investigated the effectiveness of the ‘combined-phenol’ and TCA/acetone methods in 

extracting gluten. Using an R script on the protein description column of the x-tandem files 

obtained after unlabelled shotgun proteomics, we found four gluten categories and sorted the 

remaining proteins into eight major non-gluten categories. The results from each of these 

fractions were quantitated in terms of spectral count and are summarised in Figure 2.8. We 

observed that all but one of the major gluten fractions was present. ω-gliadin remained 

undetected in both protein extraction methods (in all three cultivars), while α-like gliadin and 

γ-gliadin, as well as HMW and LMW glutenin were present. Also, it was observed that the 

TCA/acetone method was more effective and specific in extracting gluten fractions. I.e. being 

twice as efficient in extracting α-like gliadin and γ-gliadin proteins. In contrast, the ‘combined-

phenol’ method is superior at extracting most of the non-gluten proteins, again showing a 
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statistically significant increase in all the non-gluten proteins except serpins, which showed a 

decrease compared to the TCA/acetone method.  

 

 
Figure 2.8. Total wheat grain proteins extracted by ‘combined-phenol’ (top two panels), or TCA/acetone 
(bottom two panels). Results are further sorted into gluten (left-most panels) and non-gluten fractions (right-
most panels). *Statistically significant difference in expression between the two extraction methods for each 
category. 
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Table 2.4. Comparison between TCA/acetone and ‘combined phenol’ methods showing protein and gluten ratios 
and expected values used for grain quality. 

Extraction Method Protein Category NSAF Sum Expected 

‘combined-phenol’ Glu/Total Protein 21% 56-68% 

‘combined-phenol’ Gli/Glu 0.345 0.45-0.76 

‘combined-phenol’ HMW/LMW 0.199 0.37-1.44 

TCA /acetone Glu/Total Protein 35% 56-68% 

TCA /acetone Gli/Glu 0.594 0.45-0.76 

TCA /acetone HMW/LMW 0.196 0.37-1.44 

 

2.4. Discussion 
Our first investigation examined the starting amount of finely ground grain that would give the 

optimal yield of wheat grain protein (Table 2.2). Using TCA/acetone, there was no measurable 

increase in yield when sample size was increased from 10 to 100 mg. Although there was a 

slight increase in yield in the ‘combined-phenol’ method, it was not statistically significant 

(Table 2.1). When we compared the two methods between each of the 10, 20, 50, and 100 mg 

samples, the ‘combined-phenol’ method had almost double the protein yield ( 

Table 2.2). Similarly, for all consecutive experiments performed with a starting amount of 50 

mg for all cultivars, the ‘combined-phenol’ had the highest yields (Figure 2.1).  

 

We observed that the TCA/Acetone method always formed an agarose-gel-like precipitate, or 

‘plug’, which equated to ~60% of the final sample volume (precipitate and supernatant). This 

greatly reduced the volume of supernatant available for analysis. We speculate that the grey-

white semi-translucent ‘plug’ consisted of polysaccharides, principally starch and/or 

glycoproteins, being major constituent of cereal grain extracts. This is consistent with its 

absence when extracted with phenol because of the ability of phenol to remove sugars in barley 

extracts (Hurkman and Tanaka, 1986). The similarity between wheat and barley in their starchy 

grain morphology, may also account for the presence of the ‘plug’ that we observed in the 

TCA/acetone extract from wheat (Bathgate and Palmer, 1972).  
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Since the ‘combined-phenol’ method showed the highest protein yield, we investigated 

whether it also delivered the highest diversity of proteins for protein biomarker detection. 

Summarised in Figure 2.3, we found that the ‘combined-phenol’ method extracted the greatest 

number of proteins for all cultivars, with the diversity between cultivars ranging from 10 - 28%. 

protein diversity between Gregory and Spitfire cultivars. Using either extraction method 

independently the difference between varieties was not statistically significant but it was 

different when comparing these cultivars to Livingstone. However, when a T-test was 

performed between all proteins identified with both methods, statistically significant 

differences were revealed between all cultivars, as summarised in Figure 2.3. Also, we found 

that the results derived from the ‘combined-phenol’ method identified more proteins of interest 

(Table 2.3) than that of TCA/acetone method. As such, the ‘combined-phenol’ method was 

more effective in identifying proteins that were either present in one or more cultivars and 

absent in the remaining cultivar(s), or identifying proteins that had statistically significant 

differential expression between cultivars. This provided the grounds for novel cereal grain 

biomarkers by virtue of the higher yield and greater diversity of proteins. 

 

Due to the large chemical diversity of proteins found within a proteome, each protein extraction 

method extracts a unique subset of proteins (Saravanan and Rose, 2004, Zhang, et al., 2015, 

Zhen and Shi, 2011). As shown in the SDS-PAGE gel (Figure 2.2), the protein banding patterns 

are clearly different between the two methods. Specifically, looking at the size range of 55-36 

kDa, the TCA/acetone protein extract bands were very prominent, possibly due to this method 

being better at extracting certain types of gluten proteins. The ω-gliadins, α-like-gliadins, and 

LMW-GS all fall within this size range (55-36 kDa) and together all three make up a substantial 

percentage of total grain protein (18-32%). When the list of identified proteins obtained from 
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the TCA/acetone method for all three cultivars was compared with the larger list from the 

‘combined-phenol’ method, a substantial number of proteins were found to be unique to the 

TCA/acetone method (Gregory: 131, Livingston: 141, and Spitfire: 111). Meaning that while 

the ‘combined-phenol’ method had higher yield and diversity of proteins in comparison to the 

TCA/acetone method, it still did not capture the full diversity of the wheat grain proteome.  

 

Since each extraction method purifies a group of unique proteins, the two populations of 

proteins extracted by either method should each demonstrate different functional 

characteristics. We obtained gene ontology (GO) functional information from each set of 

proteins extracted from the two methods tested for the three wheat cultivars, and summarised 

these results into Figure 2.8. Again, the ‘combined-phenol’ method resulted in a statistically 

significant greater set of unique GO identifiers that each represented a specific function, which 

in total meant that a larger set of functionalities was found. 

 

Although effective, the above GO identifier list is a crude measure of proteome functionality, 

primarily due to the hundreds of GO identifiers. Any attempt to describe or summarise 

functionality is lost in the detail. Hence, to reduce this complexity and determine whether a 

common functional theme existed between TCA/acetone or ‘combined-phenol’ protein 

extracts, we used a subset of GO identifiers known as GO Slims to summarise and compare 

the functionalities. With the assistance of custom R scripting, we determined a list of GO Slims 

that represented a functional summary of the proteome under study. Then through further R 

scripting, we added expression data to the Slims and graphed the results as a proportional 

comparisons of protein expression levels for each SLIM term. These results are displayed in 

Figure 6, which compares the functional summaries of the three cultivars, as well as the two 

extraction methods. Although only the parent GO category of biological process (BP) is 
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represented here - as it is the most information rich - overall observations are similar for the 

graphs from the remaining parent categories of cellular component (CC) and molecular 

function (MF). In general terms, Figure 2.8 displays a clear difference in the Slims expression 

between the two methods, and while it visually may look as though the TCA/acetone method 

has the greater overall expression, when the numbers are summed in a table, the ‘combined-

phenol’ reveals higher expression. It is also true that out of the thirteen Slims terms graphed, 

all but three (carbohydrate metabolic process, catabolic process, and nucleobase-containing 

compound metabolic process), do not show statistically significant differences between the two 

methods. We speculate that the two largest differences between the two methods, represented 

by the SLIM terms ‘response to biotic stimulus’ and ‘response to external stimulus’, correlates 

with the chemistries of the proteins that possess that functionality. Generally, the proteins that 

fall under those two functional groups are excreted proteins with long chain sugars covalently 

bound, making these proteins highly hydrophilic. These proteins are thus more likely to be 

extracted by the TCA/acetone method. 

 

It is important to select a protein extraction method that does not excessively modify or damage 

proteins during the extraction process. As we found in this study, the 4 kDa and 8 kDa protein 

bands shown in Figure 2.2 indicate that the TCA/acetone method had potentially caused acid 

hydrolysis of proteins. Since TCA is a weak acid, it is possible that these small proteins are the 

by-products of acid hydrolysis of the larger proteins (Darragh, et al., 1996, Lugg, 1946, Sun, 

et al., 2014). Thus, it appears that several proteins have been hydrolysed, and their smaller 

hydrolysed products have moved down the gel, where after digestion, their peptides were 

detected and identified as larger proteins, outside of the expected MW range. Within this 

putative hydrolysed protein distribution, we also examined the identity of each protein and 

found that the majority were either unidentified proteins or non-gluten seed storage proteins 
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such as globulins and triticins. Interestingly, although not visible on the SDS-PAGE gel, we 

found that protein hydrolysis had also occurred within the ‘combined-phenol’ protein extracts; 

however, it started at a larger MW range and had less intensity. This latter observation is 

similarly explained by the TCA used in the second wash step of the ‘combined-phenol’ method, 

where the low amount of hydrolysis is probably due to the minimal exposure of the proteins to 

TCA during use of this method. 

 

The gluten protein fractions within wheat grain are known determinants of grain quality and 

food industry applications. We examined how effective the TCA/acetone and ‘combined-

phenol’ protein extraction methods were at purifying these proteins. Although only a few 

unique gluten proteins are found in the wheat grain proteome, they are highly expressed and 

represent 60-70% of total protein within the grain. Gluten ratios are indicators for grain quality 

(gluten/total-grain-proteins, gliadin/glutenin, and HMW-GS/LMW-GS) and as such, each 

method was examined for the suitability of this purpose (Uthayakumaran, et al., 1999, Wrigley, 

2006). This was achieved by writing a custom R-script that performed a text string search of 

the protein description, and then collated and grouped the data from the various gluten proteins, 

noting that protein description and GO information are bioinformatically different entities. For 

completeness, we also repeated the analysis for the most common types of non-gluten proteins, 

with the comparisons between the two methods for both gluten and non-gluten proteins 

summarised in Figure 2.8 and Table 2.4. We can see that for all the gluten protein categories, 

the comparative levels of expressed gluten proteins are higher for the TCA/acetone method, 

and specifically for α-like gliadins and γ-gliadins, this increase was statistically significant. 

However, there was a complete absence of ω-gliadin from both extraction methods, with the 

expected percentage within total protein should be roughly 4–8%. The comparatively greater 

efficiency that the TCA/acetone method extracts gluten may well account for the intense 
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banding seen in the TCA/acetone extracts on the SDS-PAGE gel (Figure 2.2). This was 

observed at around 36-55 kDa, especially as the three gluten sub-fractions expected around this 

size range (α-like gliadins, γ-gliadins, and LMW-GS) make up 18-32% of total grain protein. 

In contrast, half of the non-gluten protein categories were more efficiently extracted by the 

‘combined-phenol’ method, while the other half were more efficiently extracted by the 

TCA/acetone method – with all changes showing statistical significance. Although looking at 

the non-gluten proteins overall, the majority of non-gluten proteins were more efficiently 

extracted by the ‘combined-phenol’ method.  

 

The gluten quality ratios in Figure 2.8 and Table 2.4 show important ratios of various grain 

protein fractions and sub-fractions. The resulting ratios are remarkably different between the 

two extraction methods. When comparing the ratios obtained from our results with those from 

a previous study on wheat grain, it appears that our results are far below those expected (Plessis, 

2013). This is likely due to the different methodology used by Plessis (2013). In their study, 

they used Osborne-like extraction methods to extract gluten fractions and SE-HPLC for further 

sub-fractionation and quantification. It is assumed from the low protein percentages and gluten 

ratios observed from Table 2.4 in this study, that while the TCA/acetone is superior to the 

‘combined-phenol’ method for gluten protein extraction, both methods result in a dramatic loss 

of gluten. There was a difference between the two protein extraction methods, where the 

TCA/acetone ratios were closer to the expected values for two of the ratios, and within the 

expected range for the gliadin:glutenin ratio. However, the gluten over the total protein ratio 

was less than 35%, well below the expected range. Lastly, except for the gliadin:glutenin ratio 

for TCA/acetone, the remaining ratios were all below the expected range for both extraction 

methods. This demonstrated that neither method is efficient in extracting gluten proteins and 

thus is not ideal for determining gluten ratios. 
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Chapter 3. Proteomic analysis of barley grain for the 
discovery of putative protein biomarkers to identify 
cultivar and farm origin 

 

3.1. Introduction 

In both domestic and international markets, the sale of barley grain in Australia is lucrative 

with exports alone worth $2.4 billion (AU) in the financial years 2016-2017 

(http://www.agriculture.gov.au/about/commitment/portfolio-facts/grains). Yet, like any 

product in the modern world, barley grain must adapt to consumer trends. Whether that be 

organically grown barley grain, a grain with a low or high protein or carbohydrate content, or 

even a specific cultivar that uniquely delivers a certain texture and taste to a boutique beer. For 

these reasons barley grain sales are becoming less restricted to the quality and grading system 

in use within Australian states, or nationally. Container exports of barley grain and other cereals 

representing a relatively low volume but potentially higher profit, are increasing as farmers 

and/or distributors attempt to maximise their income by selling a premium product to markets 

with specific requirements. 

 

Currently the only way of guaranteeing the provenance of the barley grain is by quality 

assurance methods that involve detailed record keeping of the harvest, every stage of transport, 

storage, sales, and processing. To date there is no laboratory-based test to determine the grains 

farm origin or cultivar.  

 

It is well established that the biochemistry of a mature seed is determined by both the genetics 

of its parent plant and the biotic and abiotic influences on that plant as the seed develops 
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(Hurkman, et al., 2013, Hurkman, et al., 2009, Ma, et al., 2018). Proteins are at the core of seed 

biochemistry and determine the viability of seedlings. Thus, different cultivars from the same 

farm, or different farms using the same cultivar may potentially lead to differences in the grain 

proteome due to genetic variability or farm growing conditions (abiotic or biotic influences). 

The use of tandem mass tags (TMT)-labelled shotgun proteomics, and the subsequent 

bioinformatics analysis, is anticipated to enable the discovery of proteins with statistically 

significant differential expression. Thus, putative biomarkers may be identified for identifying 

the farm origin of the barley grain and cultivar. 

 

3.2. Methods 

3.2.1. Barley grain sample details and sample processing 

The samples for this experiment were barley grain from the Commander, Gairdner and 

Hindmarsh cultivars. Commander is a malting barley that is high yielding with mid-season 

flowering and maturity. Gairdner is also a malting barley of a semi-dwarf variety that matures 

moderately late in the season and grows well in high rainfall cropping regions. In contrast, 

Hindmarsh is a semi-dwarf feed variety that is early maturing with a high yield, plump grains, 

and good grain weight. All three cultivars were at three different farms (Breeza, Trangie 

Agricultural Research Centre [TARC], and Terry Hie Hie [THH]), and at each farm were three 

replicate plots. The grain was harvested in 2013. The farm locations are separated by hundreds 

of kilometres (Breeza to Terry Hie Hie, 240 km; Terry Hie Hie to TARC, 406 km; and TARC 

to Breeza, 324 km) while the distance between the three plots on the farm was not provided by 

the farm research facilities. 
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Location coordinates: obtained from http://weather.mla.com.au (date accessed site: 13/12/18). 

Above Mean Sea Level (AMSL) 

Breeza location: 31.2442°S, 150.4579°E, 309m AMSL 

TARC location: 32.0319°S, 147.9839°E, 234m AMSL 

Terry Hie Hie location: 29.7956°S, 150.1511°E, 285m AMSL 

 

 

Figure 3.1.: Map showing the location of the three farms of Terry Hie Hie (THH), Trangie 
Agricultural Research Centre (TARC), and Breeza. Farm sources of the barley grain used in this study 
was generated from Google Maps. 

 

According to data from the New South Wales government website known as “SEED” (Sharing 

and Enabling Environmental Data), an interactive mapping database 

(https://geo.seed.nsw.gov.au/Public_Viewer/index.html?viewer=Public_Viewer&locale=en-

AU) there are differences in the three sites in terms of crop growing capacity. “SEED” 

describes land-use sustainability in terms of “soil capability” and scores the land from 1 

(highest quality) to 8. Of the three sites, Breeza is in general the highest on this scale (level-2), 

while THH is second (level-3), and TARC being the lowest (level-4).  

http://weather.mla.com.au/
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The barley was sown (germinated upon sowing) on the 29th of May 2013 and was harvested 

around late-October/early-November (exact date unknown). The crops were not watered (only 

from rainfall) and were treated with fungicides (details obtained from Rohan Brill from the 

Department of Primary Industries, NSW Government). 

 

All weather observation data (average monthly rainfall and temperature during crop growth 

stages) was obtained from http://www.bom.gov.au/climate/data/index.shtml (date accessed: 

13/12/18). 

 
Weather station locations: 

Rainfall: 

TARC – weather station at location 

Breeza – Gunnedah resource centre was the closest location (44 km) for weather observation 

Terry Hie Hie – Bingara (40km) and Warialda PO (48km) closest weather stations 

 

Temperature: 

TARC – weather station at location 

Breeza – Gunnedah resource centre was the closest location (44 km) for weather observation 

Terry Hie Hie – Moree (52 km) closest weather stations 
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3.2.2. Experimental design 

TMTs were selected for labelling sample peptides for proteomic analysis, as this approach is 

high-throughput with high sensitivity. The experiments in this study were organised into three 

major sample groups, each using a set of 10 different TMT labels per sample group. Within 

each sample group were three biological replicates. The tenth TMT label in each experiment 

represents the ‘pool’ of the nine samples within that group. The first sample group (TMT-set-

1) is a comparison of three different cultivars (Commander, Gairdner, and Hindmarsh) all 

grown at TARC farm. The second sample group (TMT-set-2) is a comparison of the 

Commander barley cultivar grown at three different farms (TARC, THH, and Breeza). Finally, 

the third sample group (TMT-set-3) is a comparison of the Gairdner barley cultivar grown at 

three different farms (TARC, THH, and Breeza). 

 
Table 3.1. Barley grain samples – experiment design for TMT-labelled proteomics.  

TMT label 
No. 

TMT set-1 TMT set-2 TMT set-3 

1 (126) Commander-TARC-BR1-2013 Commander-TARC-BR1-2013 Gairdner-TARC-BR1-2013 

2 (127N) Commander-TARC-BR2-2013 Commander-TARC-BR2-2013 Gairdner-TARC-BR2-2013 

3 (127C) Commander-TARC-BR3-2013 Commander-TARC-BR3-2013 Gairdner-TARC-BR3-2013 

4 (128N) Gairdner-TARC-BR1-2013 Commander-THH-BR1-2013 Gairdner-THH-BR1-2013 

5 (128C) Gairdner-TARC-BR2-2013 Commander-THH-BR2-2013 Gairdner-THH-BR2-2013 

6 (129N) Gairdner-TARC-BR3-2013 Commander-THH-BR3-2013 Gairdner-THH-BR3-2013 

7 (129C) Hindmarsh-TARC-BR1-2013 Commander-Breeza-BR1-2013 Gairdner-Breeza-BR1-2013 

8 (130N) Hindmarsh-TARC-BR1-2013 Commander-Breeza-BR2-2013 Gairdner-Breeza-BR2-2013 

9 (130C) Hindmarsh-TARC-BR1-2013 Commander-Breeza-BR3-2013 Gairdner-Breeza-BR3-2013 

10 (131) Pool of all TARC farm 
biological reps 

Pool of all Commander 
Barley biological reps 

Pool of all TARC farm 
biological reps 

Legend: BR = Biological Replicate; Commander, Gairdner, and Hindmarsh = Barley cultivars; Breeza, TARC, 
and THH (Terry Hie Hie) = farms. 
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3.2.3. Barley grain sample processing 

The processing of grain samples was performed as described in Chapter 2 (Methods section) 

using the ‘combined-phenol’ extraction method, with some modifications (described below) to 

prepare the peptides for TMT-labelling. 

 

3.2.4. Reduction and alkylation of protein extract 

The extracted proteins were reduced by adding 2.5 µL of 1 M dithiothreitol (DTT) to 500 µL 

of resuspended protein solution (5 mM DTT final concentration), followed by incubating for 

15 minutes at room temperature (RT). Alkylation was then performed by addition of 5 µL of 1 

M iodoacetamide (IDC) to the 500 µL resuspended protein solution (10 mM final IDC 

concentration), followed by incubating in the dark for 30 minutes at RT. Alkylation was 

quenched by addition of 2.5 µL of 1 M DTT and incubating for 15 minutes in the dark at RT. 

The final DTT concentration was 10 mM. 

 

3.2.5. Methanol/chloroform precipitation 

The samples were precipitated using methanol/chloroform method adapted from (Montealegre, 

et al., 2010). To the 0.5 mL sample was added 2 mL of methanol, then 0.5 mL of chloroform 

and finally, 1.5 mL of MilliQ water. Note: the samples were vortexed following each addition 

of the following solutions. The resulting ratio of this mixture was 1:4:1:3, 

(sample:methanol:choloroform:water). The samples were left to stand for 5 minutes at RT and 

then centrifuged at 14,000 rpm for 5 minutes. The top water/methanol layer on top of the 

interface was removed without disturbing the interface and then discarded. The protein pellet 

was washed with 2 mL (4 volumes) of cold methanol and vortexed. Finally, the sample was 

centrifuged at 14,000 rpm for 2 minutes, the supernatant removed and the pellet left to semi-

dry. Care was taken to avoid allowing the pellet to completely dry in order to aid in 

resuspension. To further assist resuspension (presumably from the freeze thaw cycle), the pellet 
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was placed in the freezer at -20°C for 30 min. After freezing, 500 µL of 8 M urea in 50 mM 

Tris-HCl (pH 8.8) was added to the pellet and placed on an orbital shaker at 35°C until it had 

completely dissolved, typically 60 min. 

 

3.2.6. Protein digestion 

To prepare for protein digestion, 150 µg of each protein sample extract was placed into a fresh 

1.5-mL plastic tube. For the pooled samples, a total of 150 µg of protein extract was added to 

a fresh 1.5-mL plastic tube. Each sample was then diluted eight-fold by adding 7x the sample 

volume with 50 mM Tris-HCl, pH 8.8 to each tube. To each diluted sample was added 1.5 µg 

of Lys-C endoproteinase, resulting in a 1:100 ratio of Lys-C to sample (1.5 µg Lys-C to 150 

µg protein). The samples were then left to incubate overnight at 37°C. Following incubation, 

1.5µg of trypsin was added to each sample (again, at a 1:100 ratio) and incubated for 4 hours 

or overnight at 37°C. Trypsin was inactivated by addition of 100% TCA so that the final TCA 

concentration in each sample was 1%, then pH strips were used to make sure the samples pH 

was <= 2.0. This is important, as a low pH is needed for the next desalting step (stage tipping), 

hence more TFA was added when necessary. A small amount of each sample was analyzed by 

SDS-PAGE to ensure that the digestion was complete.  

 

3.2.7. SDS-PAGE 

The method for examining protein extraction quality using SDS-PAGE is described in chapter 

2 (Methods section). 

 

3.2.8. Constructing SDB-RPS tips for sample desalting (stage tipping) 

A 1 mL pipette tip was cut at the 0.5 mL mark. Using a Hamilton 16-gauge needle (# 90516), 

a small disc was cut from a 3M SDB-RPS Empore Disc. One small disk was used for each 100 
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µg of sample peptide. Each small disc was cut so that the SDB-RPS disc/s is/are retained in the 

needle. The needle was placed into the opposite end of the cut pipette tip (the larger opening), 

and the small discs gently pushed out of the needle and into the pipette tip using the plunger. 

The discs were pressed into the pipette tip to the point of resistance. The plunger was used to 

gently pat the other end of the discs flat into the small end of the cut pipette tip. Finally, the 

plunger was placed back into the large end of the pipette tip and was used to gently push down 

further on the disc until further resistance was felt. Caution was taken to not compress the SDB-

RPS too much as it could prevent the flow-through of the wash and elution solutions. 

 

 

 
 

 

 
 

Figure 3.2. Elements of SDB-RPS tip construction. 
16-guage needle and rod to fit the inside of the needle, and the pipette tip with gently compacted SDB-RPS 
disk that had been cut out by the needle and pushed out of the needle by the rod. 
Image taken from: 
https://cbs.umn.edu/sites/cbs.umn.edu/files/public/downloads/Stage_Tip_MCXProtocol_w_photos_CMSP_20
150817.pdf 

 

3.2.9. SDB-RPS de-salting (stage tipping) 

The stage tips were constructed as described above and labelled. Each sample was loaded into 

its appropriately labelled stage tip. The samples were then centrifuged at 2,000 x g until each 
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sample had passed through each tip (the peptides should be retained due to the low pH). The 

filter tips were washed twice with 200 µL of 0.2% trifluoroacetic acid (TFA). Each sample was 

eluted by adding 200 µL of ‘Elution 3’ solution (5% ammonium hydroxide, 80% acetonitrile 

[ACN]). The eluate was collected by centrifugation at 2,000 x g. Another 200 µL of ‘Elution 

3’ solution was added and the centrifugation step was repeated. The 400 µL eluent samples 

were dried-down in a SpeedVac at RT overnight. Each sample was then resuspended in 150 

µL of 100 mM HEPES buffer (pH 8). 

 

3.2.10. Micro-BCA assay of desalted peptide samples for TMT labelling 

Micro-BCA working solution was prepared as per manufacturer’s instructions (Thermo Fisher 

Scientific Australia, Micro-BCA protein assay kit, #23235), with the total volume made to 

25:24:1 of solutions A, B, and C, respectively. Micro-BCA standards (Bovine Serum Albumin 

[BSA]) were prepared in water at the following protein concentrations: 0.2, 0.04, 0.02, 0.01, 

0.005, 0.0025, 0.001 and 0.0005 µg.µL-1. The samples were diluted 1 in 4 with 100 mM 

HEPES-NaOH buffer (pH 8). The loadings on the 96-well Greiner flat-bottomed plate (Sigma-

Aldrich: M2936) were 10 µL of standard and 5 µL of sample. To each well was added 150 µL 

of Micro-BCA working stock. Three technical replicates were loaded for each standard and 

sample. The plates were then measured using a PHERAstar FS plate reader (BMG LABTECH), 

with software version 4.00 R4 and firmware version 1.13. Standard BCA settings were applied: 

10 seconds of orbital shaking at 500 rpm was performed prior to reading, and the absorbance 

measured at 562 nm for 0.1 s, at 20 flashes per well. 

 

3.2.11. Sample preparation for TMTs 

The peptide sample size (in µg) was chosen based on the lowest peptide sample amount. The 

maximum volume was calculated so that the appropriate volume of 100 mM HEPES-NaOH 
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(pH 8) could be added to each tube to maintain a uniform volume and concentration of peptide 

across all samples. In the following procedure, extra dry, sealed, reagent quality ACN was used 

(100 mL Bottles, each packed in a septum sealed “Acroseal” bottle, Chem Supply Pty Ltd, 

#326811000). The 10 TMT labels were removed from the freezer (-20°C), making sure they 

were in the correct order. To each TMT label was added 84 µL of ACN. Each of the TMT tubes 

were vortexed for 10 s, followed by pulse centrifugation. To each tube was added 20 µL of the 

appropriate label. When performing this step, all of the contents of the first label was added to 

the appropriate samples until moving onto the second label (e.g. add TMT-126 to all samples 

requiring TMT-126, then TMT-127N to all those requiring TMT-127N, and so on). Once all 

of the TMT labels had been added, samples were briefly vortexed and pulse centrifuged. All 

samples were incubated at RT for 1 hour. The reaction was stopped following the addition of 

8 µL of 5% hydroxylamine. Each TMT set was pooled into a 2-mL plastic tube, or split equally 

between two 2-mL plastic tubes when the sample volume was too large for one tube per set. 

The pooled samples were dried overnight in a SpeedVac. The dried sample pools were stored 

at -20°C. Finally, the dried peptides of each TMT set were resuspended with 1 mL of 1% formic 

acid (e.g. if there were two tubes for each TMT set, add 500 µL of 1% formic acid to each tube, 

then combine into one tube). 

 

3.2.12. Preparing a test run of TMT labelled sample sets for mass 

spectrometry 

From each TMT sample set was removed 10 µg (41.7 µL) of peptides to be prepared for a test 

run on the mass spectrometer to measure sample quality related to TMT labelling. The samples 

to be tested were desalted by stage tipping as described previously. For example, the SDB-RPS 

tips were constructed and then the peptides were desalted by stage tipping. Following this, the 
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samples were dried in the SpeedVac and resuspended in 20 µL of 0.1% formic acid. From the 

resuspension was taken 10 µL and loaded into a vial ready for mass spectrometry. 

 

3.2.13. SCX fractionation 

Offline SCX fractionation was carried out to reduce the complexity of the mixture, using an 

Agilent 1260 quaternary HPLC pump with a PolyLC polysulfoethyl aspartamide column (200 

mm×2.1 mm, 5μm, 200 Å; PolyLC, Columbia, MD). The column was equilibrated with buffer 

A (5 mM KH2PO4, 25% v/v ACN, pH 2.72), which is also used for sample resuspension, 

sample injection and peptide adsorption to the column. Peptide elution was achieved with a 

linear gradient of 10–45% buffer B (5 mM KH2PO4, pH 2.72, 350 mM KCl, 25 % ACN) for 

70 minutes, which is then rapidly increased from 45 to 100% buffer B for 10 minutes at a flow 

rate of 300 μL.min-1. The peptides were detected with an in-line UV detector at 210 nm. A total 

of 36 fractions of varying volumes were collected in a 96-well collection plate and dried down 

by vacuum centrifugation. To each of the 36 peptide-containing wells, 100 μL of 1% TFA was 

added and then vortexed thoroughly for 10 min at 4°C, before being combined into 12 fractions 

based on UV absorbance. These 12 fractions were desalted using SDB-RPS stage tips, dried 

down in SpeedVac and reconstituted in 0.1 % formic acid in preparation for LC-MS/MS. 

 

3.2.14. Mass Spectrometry for TMT labelled samples 

Peptide samples were separated on an EASY-nLC1000 liquid chromatography system 

(Thermo-Scientific) which was coupled to a Q Exactive Orbitrap mass spectrometer (Thermo-

Scientific). Reversed-phase chromatographic separation was carried out on a 75 μm id.×100 

mm, C18 HALO column, 2.7 μm bead size, 160 Å pore size. A linear gradient of 1-30% solvent 

B (99.9% ACN/0.1% FA) was run over 170 minutes. The mass spectrometer was operated in 

the data-dependent mode to automatically switch between Orbitrap MS and ion trap MS/MS 
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acquisition. Survey full scan MS spectra (from m/z 350–1850) were acquired at a precursor 

isolation width of 0.7 m/z, resolution of 70,000 at an m/z of 400 and an AGC (Automatic Gain 

Control) target value of 1×106 ions. For the identification of the TMT labelled peptides, the ten 

most abundant ions were selected for higher energy collisional dissociation (HCD) 

fragmentation. HCD normalized collision energy was set to 35% and fragmentation ions were 

detected in the Orbitrap at a resolution of 70,000. Target ions that had been selected for MS/MS 

were dynamically excluded for 90 s. For accurate mass measurement, the lock mass option was 

enabled using the polydimethylcyclosiloxane ion (m/z of 445.12003) as an internal calibrant. 

 

3.2.15. Making a multi-FASTA file for proteomics searches 

A protein (FASTA) database was constructed for barley to analyse the peptide mass spectra 

following mass spectrometry. Firstly, an NCBI protein search was performed on barley 

(https://www.ncbi.nlm.nih.gov/protein/?term=txid112509), then the complete result 

downloaded as a FASTA file. Any poorly annotated and partial sequences from the FASTA 

file were removed by the program CD-Hit, which was downloaded from 

https://github.com/weizhongli/cdhit/. Command line instructions were as follows: “cd-hit –i 

sequence.fasta -o nr100 -c 1.00 -n 5 -d 120 -l 50”. Input filename is “sequence.fasta”, and the 

output is filename is “nr100.fa”. The sequence identity threshold was set to 1.0, word-length 

to 5, with a length of description set to 120, and all sequences less than 50 amino acids were 

discarded. The latter arbitrary value resulting in the loss of a few (if any) small functional 

proteins from the database, in favour of removing a greater number of unwanted expressed 

sequence tags (ESTs) that would slow down protein matching algorithms. 
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3.2.16. Protein identification and quantitation 

The raw data files were generated by Xcalibur software (Thermo-Scientific) and processed 

using Proteome Discoverer V1.3 (Thermo-Scientific) through a local MASCOT server 

(version 2.3; Matrix Science, London, UK). The MS/MS spectra were searched against the 

appropriate custom barley FASTA database, which was constructed as described in section 

3.2.15. The MS tolerance was set to ±10 ppm, MS/MS tolerance to 0.1 Da and trypsin digest 

settings enabling one missed cleavage. Carbamidomethylation of cysteine, 10-plex TMT tags 

on lysine residues and peptide N-termini were set as a static modification, while oxidation of 

methionine and deamidation of asparagine and glutamine residues were set as a variable 

modification. Search result filters were selected as follows: only peptides with a score >15 and 

below the Mascot significance threshold filter of p = 0.05 were included and single peptide 

identifications required a score equal to, or above the Mascot identity threshold. Protein 

grouping was enabled such that when a set of peptides from one protein was equal to, or 

completely contained within the set of peptides of another protein, the two proteins were 

contained together in a protein group. Proteins with at least two unique peptides were regarded 

as confident identifications. Relative quantitation of proteins was achieved by pairwise 

comparison of TMT reporter ion intensities. For example, the ratio of the labels for each of the 

treatment replicates (numerator) versus the labels of their corresponding control replicates 

(denominator). These results were then saved as a tab-delimited file for further analysis. 

 

3.2.17. Statistical analysis of identified proteins using “TMTPrePro” 

General statistical analysis and quality control of the data was performed using the TMTPrePro 

software package (developed by APAF), as described in the paper by Mirzaei, et al. (2017). 

There were two necessary file format inputs required to run this package. The first is a tab-

delimited file of protein search results from Proteome Discoverer. The second, shown in Table 
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2, was a design file in Excel format that is made up of two tabs. The first of which contains the 

label, replicate, and grouping information in columns; and the second containing the protein 

file name and information on which the label is to be used as a reference (denominator). In 

TMTPrePRo, there were four adjustable parameters, which after some initial tests, were set to 

a 1.3-fold count cut-off (FCCutoff), a Z-score (ZScoreCutoff; 100×log(ratio)/Variability) cut-

off of 2, a counts cut-off (CountsCutoff) of 1, and P-value cut off (PvalCutoff) of 0.05. After 

running TMTPrePro, a number of tables and graphs were produced that described the quality 

of the run and samples, the degree of similarity of sample sets, and whether any proteins had 

statistically significant differential expression. Two of the output files (ResultsOverall.xlsx, 

and the design file) were then used by various custom R-scripts for further analysis as will be 

described in chapters 4 and 5. 

 

Table 3.2. Example design spreadsheet for TMTPrePro. 

“xlsx” file - TAB 1 (Design) 
Label Replicate Group 
126 Comm-BR1 1TARC-Comm 
127_N Comm-BR2 1TARC-Comm 
127_C Comm-BR3 1TARC-Comm 
128_N Gaird-BR1 2TARC-Gaird 
128_C Gaird-BR2 2TARC-Gaird 
129_N Gaird-BR3 2TARC-Gaird 
129_C Hind-BR1 3TARC-Hind 
130_N Hind-BR2 3TARC-Hind 
130_C Hind-BR3 3TARC-Hind 
131 Pool 1Pool 
“xlsx” file - TAB 2 (References) 
File UseReference 
160826_PW_06_proteinGroups_proteingroups.txt 131 

Note: The spreadsheet contains two tabs as represented by the table above. Tab 1 is title “Design”, and tab 2 is 
titled “References”. 
 

3.2.18. Custom R-script: PCA.R 

This custom R-script gathers data from a number of sources: 1) the design file used by 

“TMTPrePro”, 2) the summary table of protein expression and other statistical results output 
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by “TMTPrePro”, and 3) a FASTA database (file) of barley proteins. Other inputs (and script 

sections) are redundant and were only included for future expansion of the script. Minor 

manipulation of the script allowed the inclusion of either all detected proteins, or the selection 

of proteins that showed statistically significant differential expression. Thus, either the full data 

set or the reduced set (of putative biomarker proteins) were used for plots of principle 

component analysis (PCA), drawing heat-maps, as well as box-plots and violin-plots with or 

without the display of underlying data points (Appendix B, section B.6.1). 

 

3.3. Results 

3.3.1. TMT-barley grain experiment 

The barley grain protein extract from the various samples (as described in the Materials and 

Methods section of this Chapter), was analysed by TMT-labelled shotgun proteomics, to 

identify and measure differentially expressed proteins. Three sample groups were compared to 

a pool of sample groups. Each sample group was made up of three biological replicates that 

originated from a specific farm and cultivar combination, and replicates from the same location 

and cultivar are defined as sample groups. 

 

3.3.2. Barley grain sample weights 

There was some variation in the measured starting weight of 200-grains for each sample, with 

a difference of 1.329 g between the highest and lowest sample result (Table 3.3; and Appendix 

B, table B.1.). The lowest weight-average was Commander grain harvested from THH farm 

resulting in 7.82 g per 200-grains, while the highest of 9.15 g came from Commander grain 

harvested at Breeza farm. The lowest farm average 200-grain weight, which includes all 

cultivars for a particular farm was 8.2 g from the THH farm and the highest was 9.03 g from 

the Breeza farm. The TARC farm had an average 200-grain weight of 8.36 g (Table 3.3). When 
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looking at differences in 200-weight by either grouping samples according to location or 

cultivar, statistical significance was seen between the TARC-Breeza or THH-Breeza location 

comparisons (Appendix B, Table B.1.1). When 200-weight results were first grouped 

according to location followed by a comparison between cultivars at each location, statistical 

significance was seen between Commander and Gairdner comparisons at all locations 

(Appendix B, Table B.1.3). Hindmarsh was excluded as it was only grown at TARC. 

 

Table 3.3. Averages of 200-grain weight measurements. 

Sample group code Farm location Cultivar 

Average 
200-grain 
weight 
(g) 

Average farm 
location 200-
grain weight  
(g) 

Br-Comm-2013 Breeza Commander 9.15 9.03 Br-Gaird-2013 Breeza Gairdner 8.91 
TARC-Comm-2013 TARC Commander 8.80 

8.36 TARC-Gaird-2013 TARC Gairdner 7.86 
TARC-Hind-2013 TARC Hindmarsh 8.44 
THH-Comm-2013 Terry Hie Hie Commander 7.82 8.20 THH-Gaird-2013 Terry Hie Hie Gairdner 8.59 

Location: Br = Breeza farm, TARC farm, THH farm 
Cultivar: Comm = Commander barley, Gaird = Gairdner barley, Hind = Hindmarsh barley. 
 

3.3.3. Protein quantitation 

Following protein extraction, the proteins were quantified by the Bradford assay, which 

revealed a large variation in extraction efficiency. This was observed by the amount of protein 

recovered from each sample group and their replicates (Table 3.4). The lowest result (460 µg 

from TARC farm, Commander grain, replicate-3), could be explained by some loss during the 

protein extraction for that particular replicate. The remaining lesser variation possibly due to 

small errors during the multiple supernatant removal and wash steps, or the difficulty of pellet 

re-suspension. Variation was observed to be much reduced at the later SDB-RPS de-salting 

stage both in the measures of extracted protein weights (table 3.4), and highly similar protein 

banding patterns of replicate samples run on SDS-PAGE (eg. Figure 3.11). 
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The lowest average protein extract weight was from Commander grain harvested from TARC 

farm at 460 µg, while the highest of 1715 µg came from Hindmarsh grain harvested also at 

TARC farm. The lowest farm location average protein extract weight, which includes all 

cultivars from that farm was 828 µg from the Breeza farm and the highest was 1253 µg from 

the TARC farm. The THH farm had an average of 1024 µg protein extract weight (Table 3.4). 

For protein extract weight (Table 3.4) no statistical significance was seen, whether comparing 

either location, cultivar, or focussing on cultivar data at each of the three locations (Appendix 

B, Table B1b.1, Table B.1b.2, and Table B.1b.3). 

 

Table 3.4. Bradford assay results showing the amount of protein recovered following the ‘combined-phenol’ 
extraction method. 

Sample ID Farm location Cultivar Biological 
replicate 

Weight 
of sample 
protein 
extract 
(µg) 

Average 
weight of 
sample 
protein 
extract per 
farm 
(µg) 

TARC-Comm-BR1-2013 TARC Commander 1 1535 

1253 

TARC-Comm-BR2-2013 TARC Commander 2 1240 
TARC-Comm-BR3-2013 TARC Commander 3 460 
TARC-Gaird-BR1-2013 TARC Gairdner 1 725 
TARC-Gaird-BR2-2013 TARC Gairdner 2 1660 
TARC-Gaird-BR3-2013 TARC Gairdner 3 1400 
TARC-Hind-BR1-2013 TARC Hindmarsh 1 1715 
TARC-Hind-BR2-2013 TARC Hindmarsh 2 1265 
TARC-Hind-BR3-2013 TARC Hindmarsh 3 1275 
THH-Comm-BR1-2013 Terry Hie Hie Commander 1 1000 

1024 

THH-Comm-BR2-2013 Terry Hie Hie Commander 2 1050 
THH-Comm-BR3-2013 Terry Hie Hie Commander 3 740 
THH-Gaird-BR1-2013 Terry Hie Hie Gairdner 1 875 
THH-Gaird-BR2-2013 Terry Hie Hie Gairdner 2 1435 
THH-Gaird-BR3-2013 Terry Hie Hie Gairdner 3 1045 
Br-Comm-BR1-2013 Breeza Commander 1 625 

828 

Br-Comm-BR2-2013 Breeza Commander 2 935 
Br-Comm-BR3-2013 Breeza Commander 3 845 
Br-Gaird-BR1-2013 Breeza Gairdner 1 690 
Br-Gaird-BR2-2013 Breeza Gairdner 2 1065 
Br-Gaird-BR3-2013 Breeza Gairdner 3 810 

*Total volume of resuspended protein was 500 µL. 
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Figure 3.3. ‘Combined-phenol’ extracted proteins run by SDS-PAGE from barley grain of the Commander 
cultivar that was grown at TARC. 

 

3.3.4. Preparation of samples for mass spectrometer 

The trypsin and LysC protein digestion were successful, indicated by the missing protein bands 

in the qualitative SDS-PAGE gel (Figure 3.12). There were 71 µg to 150.7 µg of peptides per 

sample (Table 3.5). In terms of weight, this yield ranged between 5-33% of the total protein 

measured following the initial protein extraction (Table 3.4). 

 

 
Figure 3.4. SDS-PAGE analysis of Lys-C and trypsin digested proteins from the barley grain samples that were 
extracted using the ‘combined-phenol’ method. St. = standards, A1 = undigested Commander barley proteins, 
A2 = digested Commander barley proteins, B = digested Gairdner barley proteins, and C = digested Hindmarsh 
barley proteins.  
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The lowest average peptide extract weight was from Hindmarsh grain harvested from TARC 

farm. This was 71 µg, while the highest of 150.7 µg came from Commander grain harvested 

also at TARC farm. The lowest farm location average peptide weight, which includes all 

cultivars from that farm, was 94.1 µg from the TARC farm and the highest was 103.1 µg from 

the Breeza farm. The THH farm had an average of 97.4 µg peptide weight (Table 3.4). Data on 

the weight of peptides recovered for each sample (Table 3.5) showed no statistical significance 

between Commander and Gairdner samples when each location was examined (Appendix B, 

Table B.1b.3; Hindmarsh data was not included as this cultivar was only grown in one 

location). 

 
Table 3.5. Barley sample peptide concentration determined by micro BCA. 

Sample ID Farm 
location Cultivar Biological 

replicate 

Total 
peptide 
(µg) 

Total 
peptide per 
farm 
(µg) 

TARC-Comm-BR1-2013 TARC Commander 1 95.9 

94.1 

TARC-Comm-BR2-2013 TARC Commander 2 99.9 
TARC-Comm-BR3-2013 TARC Commander 3 150.7 
TARC-Gaird-BR1-2013 TARC Gairdner 1 109.3 
TARC-Gaird-BR2-2013 TARC Gairdner 2 83.0 
TARC-Gaird-BR3-2013 TARC Gairdner 3 79.5 
TARC-Hind-BR1-2013 TARC Hindmarsh 1 71.3 
TARC-Hind-BR2-2013 TARC Hindmarsh 2 71.0 
TARC-Hind-BR3-2013 TARC Hindmarsh 3 86.6 
THH-Comm-BR1-2013 THH Commander 1 102.6 

97.4 

THH-Comm-BR2-2013 THH Commander 2 75.2 
THH-Comm-BR3-2013 THH Commander 3 103.6 
THH-Gaird-BR1-2013 THH Gairdner 1 133.6 
THH-Gaird-BR2-2013 THH Gairdner 2 83.2 
THH-Gaird-BR3-2013 THH Gairdner 3 86.0 
Br-Comm-BR1-2013 Breeza Commander 1 147.7 

103.1 

Br-Comm-BR2-2013 Breeza Commander 2 90.6 
Br-Comm-BR3-2013 Breeza Commander 3 109.1 
Br-Gaird-BR1-2013 Breeza Gairdner 1 77.7 
Br-Gaird-BR2-2013 Breeza Gairdner 2 87.6 
Br-Gaird-BR3-2013 Breeza Gairdner 3 105.6 
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3.3.5. Data quality – matched and filtered data 

Following discovery of the matched and filtered proteins, this data were checked for quality. 

Density plots and box plots of protein expression data for each of the nine samples were 

examined with the tenth serving as a pool for comparison, and the general uniformity of the 

results showed the data to be of good quality (Appendix B, Figure B.1). 

 

3.3.6. Sample uniformity/diversity for matched and filtered protein samples 

Despite the general uniformity of results, the nine individual samples from each of the three 

TMT sets did show some differentiation in the matched and filtered proteins from each sample. 

Analysis of the heat-maps, PCAs and correlation plots of the protein expression data for each 

sample revealed that not all of the sample replicates clustered into their sample groups (Table 

3.6). The PCAs for the three TMT sets showed a large variation within same sample groups 

while displaying very tight clustering of points for other sample groups (Appendix B, Figure 

B.2,Figure B.3 and Figure B.4). 

 

 

Table 3.6. Summary of data quality for matched and filtered barley grain proteins. 
TMT 
set 

Sample group 
(Each containing 3 
biological replicates) 

Complete heat-map 
sample group 
clustering 
( or ) 

Complete PCA 
sample group 
clustering 
( or ) 

Complete correlation 
heat-map sample group 
clustering 
( or ) 

1 TARC-Comm-2013   Very Poor  
1 TARC-Gaird-2013   Poor  
1 TARC-Hind-2013    
2 TARC-Comm-2013   Very Poor  
2 THH-Comm-2013    
2 Br-Comm-2013    
3 TARC-Gairdner-2013    
3 THH-Gairdner-2013    
3 Br-Gairdner-2013    

Original data for the above table has been taken from Figure B.2,Figure B.3, and Figure B.4 in Appendix C. 
Note: Each sample group is made up of three biological replicates.  
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A 

 
 

B 

 
 

Figure 3.5. (A) PCA for TMT set-1 showing close plotting points for replicate samples from Hindmarsh barley 
grown at TARC farm, (B) PCA for TMT set-3 showing close plotting points for replicate samples from Gairdner 
barley grown at Breeza farm. The sample data is of matched and filtered proteins. 

 

3.3.7. Sample clustering after putative biomarker discovery 

The discovery of putative biomarker proteins was performed by ‘TMTPRePro’ (section 

3.2.17). Looking at the expression data of putative biomarkers in each sample it was observed 

that there was great similarity between sample replicates, and little similarity between sample 

groups (compare Table 3.6 and Table 3.7). All heat-maps and correlation plots displayed 

clustering of samples into their groups (Table 3.6), and PCAs showed close plotting of replicate 

samples into their sample groups and good separation between these different groups 

(Appendix B, Figure B.5, Figure B.6 and Figure B.7). 

 
Table 3.7. Summary of data quality for putative biomarker discovery from samples. 

TMT 
set 

Sample group 
 

Complete heat-map 
sample group 
clustering 
( or ) 

Complete PCA 
sample group 
clustering 
( or ) 

Complete correlation 
heat-map sample group 
clustering 
( or ) 

1 TARC-Comm-2013    
1 TARC-Gaird-2013    
1 TARC-Hind-2013    
2 TARC-Comm-2013    
2 THH-Comm-2013    
2 Br-Comm-2013    
3 TARC-Gairdner-2013    
3 THH-Gairdner-2013    
3 Br-Gairdner-2013    

Original data for the above table has been taken from Figure B.5, Figure B.6 and Figure B.7 in Appendix C. 
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Note: Each sample group is made up of three biological replicates. 
 

A 

 
 

B 

 
 

Figure 3.6. Example of the improvement in sample group clustering when sample expression data moves from 
(A) matched and filtered proteins to that of (B) putative biomarker proteins. 

 

3.3.8. SCX fractionation 

The TMT-labelled samples were run on a mass spectrometer prior to being fractionated through 

SCX. The number of proteins detected was 745 (TMT set-1), 789 (TMT set-2) and 745 (TMT 

set-3). In terms of matched and fractionated proteins, the addition of SCX fractionation almost 

doubled the number of proteins: 1,312 (TMT set-1), 1,200 (TMT set-2) and 1,314 (TMT set-

3; Figure 8). Putative biomarker detection also increased with SCX fractionation: from 50 

(TMT set-1), 26 (TMT set-2) and 18 (TMT set-3), to 80 (TMT set-1), 31 (TMT set-2) and 21 

(TMT set-3; Table 3.9). 
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Table 3.8. Increase in numbers of matched and filtered proteins detected using SCX fractionation of samples. 

Run type 

Number of detected proteins 

TMT set-1 
Comparing 
proteomes across 
cultivars 

TMT set-2 
Comparing 
proteomes across 
farm locations 

TMT set-3 
Comparing 
proteomes across 
farm locations 

TMT test runs (non-SCX 
fractionation of samples) 745 789 745 

TMT full runs 
(SCX fractionation of samples) 1312 1200 1314 

 

Table 3.9. Increased putative biomarker discovery using SCX fractionation. 

Run type 

Number of putative biomarkers 

TMT set-1 
Comparing 
proteomes across 
cultivars 

TMT set-2 
Comparing 
proteomes across 
farm locations 

TMT set-3 
Comparing 
proteomes across 
farm locations 

TMT test runs (non-SCX 
fractionation of samples) 50 26 18 

TMT full runs 
(SCX fractionation of samples) 80 31 21 

 

3.3.9. Discovery of putative biomarkers 

TMT set-1 revealed 80 putative biomarkers relating to proteomic differences between cultivars. 

The list of these putative biomarkers is displayed in Appendix, Table 3.11. TMT sets-2 and-3 

revealed 31 and 21 putative biomarkers (respectively) relating to proteomic differences across 

farm locations (Appendix B, Table 3.12 and Table B.1). Only 4 putative biomarkers were found 

to be common in TMT sets-1 and-2 (two-homologous 22.0 kDa class IV heat shock proteins 

[M0UGW6 and M0Y7H8], two-homologues of Haegeman factor inhibitor proteins [M0ULY1 

and M0YS73], with only 2 common putative biomarkers in TMT sets-2 and-3 (microtubule 

associated protein [F2CTI9]; and defensin D2 [F2EKF1]. There was only one putative 

biomarker common to TMT sets-1 and -3 (late embryogenesis abundant protein [M0VEJ0]). 

There were no putative biomarkers common to all of the TMT sets (TMT sets-1, -2 and -3). 
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Table 3.10. Number of putative biomarkers from the entire set of TMT-labelled barley samples. 

Set Study Testing cultivar 
variation or location 

Number of 
putative protein 

biomarkers 

TMT set-1 Commander, Gairdner and Hindmarsh 
cultivars at TARC farm Cultivar 80 

TMT set-2 TARC, THH and Breeza farms growing 
Commander barley Location 31 

TMT set-3 TARC, THH and Breeza farms growing 
Gairdner barley Location 21 

 

3.3.10. Functionality of putative biomarker proteins 

We investigated the putative biomarker proteins discovered from the three TMT sets. The 

Uniprot identifiers were input into ‘GORetriever’ and ‘GOSlimViewer’ at the ‘AgBase’ web 

site (http://agbase.arizona.edu/cgi-bin/tools/index.cgi) and a list of gene ontology summary 

functional categories (Slims) was obtained and counted. The three figures below (Figure 3.7; 

Appendix B, Figure B.8 and Figure B.9) graphically describe the Slims protein functionality 

results for the three lists of putative biomarkers.  

 

The biomarker functionality of TMT set-1 is represented in Figure 3.7. Under the ‘Biological 

process’ gene ontology parent term, the functions of ‘metabolic process’ and ‘cellular process’ 

are particularly high, while for the parent term of ‘molecular function’ the number of proteins 

(biomarkers) counted to have the function ‘binding’ was up to 26. For this bar-graph the parent 

term of cellular component did not have any outstanding SLIM terms. TMT set-2 and TMT 

set-3 did not generate enough SLIM terms from their smaller list of proteins to show any 

functionality of interest (Appendix, Figure B.8 and Figure B.9)  
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Figure 3.7. TMT set-1 GO-Slims functional summary of putative biomarkers in barley grain (proteome 
comparison across cultivars). Only GO Slims categories that are associated with 2 or more putative biomarker 
proteins are included. 

 

3.4. Discussion 

3.4.1. Overview 

In this chapter, we applied TMT-labelled shotgun proteomics for the discovery of proteins that 

can be used as potential biomarkers for cultivar identification of farm origin and farm plot 

location. The proteomic analysis did reveal putative biomarkers. Many of the proteins 

identified as putative biomarkers were involved either directly or indirectly in stress response. 

Furthermore, GO Slims terms, or in other words functional summaries of the identified proteins 

also show that they have similar functional profiles whether we looked at proteomes comparing 

location (TMT sets-2 and -3) or cultivar (TMT set-1). 
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3.4.2. Barley grain sample variation 

The variation in 200-grain weights between farms do not appear to match the differences in 

rainfall that each farm experienced during the growth of the crops. TARC experienced the 

highest total rainfall during this period, followed by THH and Breeza (Figure 3.8). When this 

data was compared with the 200-grain weight measurements of barley, there was an inverse 

trend in the pattern between the total water that each farm had received and the 200-grain 

weight (compare Figure 3.9 with Figure 3.8). A possible explanation is that drought stressed 

barley may have a higher growth rate than barley that is well-watered. The end result being 

complete grain fill, but each plant having less tillers, spikes and grains (H. Samarah, 2005). As 

such, the barley from the TARC and THH farms may have had larger total yields (this data was 

not supplied with the samples) with slightly less grain fill, resulting in the lower 200-grain 

weight for the Breeza crop. It appears that the amount of photosynthetically active radiation 

(PAR) didn't have an impact on either grain weight or the amount of protein extracted from 

seed samples. Data from the Australian Bureau of Meteorology 

(http://www.bom.gov.au/jsp/ncc/climate_averages/solar-exposure/index.jsp) showed that for 

the growing season of 2013, the highest and lowest average readings of solar radiation had a 

difference of only a 6% that was even lower (5%) for the expected period of seed development. 

Moreover, in terms of highest to lowest solar radiation the location order is: TARC, Breza, and 

THH; which is different to the grain protein yield for location (highest to lowest: TARC, THH, 

Breeza) and seed weight (highest to lowest: Breeza, TARC, THH). 

  



114 

 
Figure 3.8. The average total rainfall during the crop growth period (May to October; 2013) obtained for the 
three different farm locations: TARC, Breeza and Terry Hie Hie. 

 

 

Figure 3.9. The average 200-grain weights of barley grain obtained from three different farm locations: TARC, 
Breeza and Terry Hie Hie. 

 

The protein extract levels shown in Figure 3.10 displays an observable trending pattern with 

the total rainfall. Although the 200-grain weight was the highest for Breeza, the lower 200-

grain weights for TARC and THH yielded more protein. This is likely due to the larger 

proportion of the grain (the starch) being overrepresented and the proteins from the aleurone 

and germ cells being underrepresented in the protein extract. The three locations were involved 
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in nitrogen trials so soil nitrogen would have been equivalent at all locations for all cultivars 

and not a factor in differing protein levels. 

 

There was also no observable correlation between grain fill and average monthly temperatures 

during this growth period (Figure 3.11). This is likely due to the average monthly temperature 

range difference being only 2.4oC. 

 

The proteins identified in barley from the TMT sets-2 and-3 (farm comparison) revealed 

proteins associated with drought stress, such as 20 kDa chaperonin, 10 kDa chaperonin, 

defensin D2, class IV heat shock protein, late embryogenesis abundant protein (Ge, et al., 2012, 

Stotz, et al., 2009, Wendelboe-Nelson and Morris, 2012). Since this study does not pinpoint 

which farm the differences in protein expression are from, it can only be speculated that the 

proteins are likely associated with samples obtained from the Breeza farm as it has experienced 

less rain (Figure 3.8).  

 
Figure 3.10. The average protein extract from barley grown at three different farms: TARC, Breeza 
and THH.  
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Figure 3.11. The average temperatures correlate with increasing latitude. TARC being the furthest south and 
THH being the furthest north. 

 

3.4.3. Variability of Proteomes 

Researchers have shown that seed proteomes can vary due to abiotic and biotic stress during 

seed development This is also observed in this study in the matched and filtered proteins 

detected in barley grain samples (Appendix B, Figure B.2, Figure B.3 and Figure B.4). Even 

though these proteins have been put through some basic data processing via Proteome 

Discoverer and the Mascot database, the sample does not always cluster into their sample 

groups. The PCAs, heat-maps and correlation plots often show one or two samples that have 

quite different expression data profiles than others in their sample group. Normally, this 

difference is eliminated with the discovery of putative biomarker proteins; however, in test 

runs following the same protocol as above, if the initial matched and filtered data is of poor 

quality characterized by high variability within sample groups, the number of putative 

biomarkers discovered is reduced. This was observed in a number of test runs with poor results 
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(such as high intra-sample group variation), as well as for the barley TMTs being described in 

this chapter. This will be elaborated further in chapter 4. 

 

3.4.4. Analysis of differentially expressed proteomes 

After the matched and filtered proteins had been examined, this data was applied to the 

‘TMTPrePro’ package, and putative biomarkers were discovered in all three TMT sets. The 

putative biomarkers found in each sample resulted in very tight clustering of samples into their 

sample groups. This observation indicates good sample quality control (QC) and gives weight 

to the assumption of biotic and abiotic stress changing the grain proteome. 

 
For TMT set-2 and -3, because each set is looking at only one cultivar across multiple sites, 

theoretically biotic and abiotic stress make stress-response the only variable within these two 

sets. For example, if one cultivar is grown at Breeza, TARC and THH the greatest variation in 

grain proteins should be observed at the location where conditions (biotic and abiotic) are most 

challenging. Indeed while within-group sample data (biological replicates) should be similar 

the data between groups should be different for the proteins involved in stress response; as seen 

PCA, correlation plots and heat-map analyses (Appendix B, Figure B.5, Figure B.6 and Figure 

B.7). 

 

3.4.5. Putative biomarkers 

3.4.5.1. Biomarker results 

The analysis of each TMT-set resulted in the discovery of a number of putative biomarkers. 

The differences between cultivars (Commander, Gairdner, and Hindmarsh) in TMT set-1 were 

examined – which were all grown at the TARC farm. For this set, 80 putative biomarkers were 

discovered. 
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The differences between locations were examined in TMT sets-2 and -3. TMT set-2 compared 

Commander barley grown at three different farm locations (TARC, THH, and Breeza), and 

TMT set-3 compared Gairdner barley at these same locations. The results of this analysis 

identified 31 and 22 putative biomarkers respectively. 

 
There was minimal overlap between the groups of proteins in the three experiments. The lack 

of significant overlap in the comparisons of cultivar differences with location differences is to 

be expected, as we would not necessarily expect the same proteins to differ between cultivars 

and locations. Considering there was only two overlapping proteins identified between 

cultivars in the location testing, comparing TMT sets-2 and -3, this suggests that any 

prospective provenance testing will likely be limited to individual cultivars as there is 

insufficient identification of proteins across all cultivars that could provide a protein profile for 

provenance that would work with all cultivars.  

 

The proteomic differences between cultivars is unsurprising given that cultivars can be 

distinguished from each other using genetic testing. However, it is still somewhat surprising 

that 80 proteins were identified as being potentially able to distinguish between these cultivars. 

Further sampling in other growing seasons would help clarify if all 80 of these protein 

biomarkers can be consistently and robustly used for cultivar differentiation. Moreover, 

repeating these experiments over one or more seasons would also verify whether protein 

biomarkers exist that could consistently be used to determine the farm origin of the grain.  
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3.4.5.2. Stress response proteins 

In TMT set-1, 80 putative protein biomarkers were discovered, of which 27 proteins are 

directly related to stress response (Table 3.11). For TMT set-2, there were 31 putative protein 

biomarkers discovered, of which seven are related to stress response (Table 3.12). Finally, there 

were 22 putative protein biomarkers discovered in TMT set-3, seven of these are known to 

have a stress-response role (Table 3.13).  

 
Table 3.11. TMT set-1: List of putative biomarker proteins from barley grain. 

Barley fasta ID Uniprot Protein Description 
MLOC_5173.1 C3W8L1 Glucose-1-phosphate adenylyltransferase 
AK375106 F2EG29 Late embryogenesis abundant protein 
MLOC_6278.1 A0A0B4J2W8 Late embryogenesis abundant protein 1b 
MLOC_24874.2 M0VEJ0 Late embryogenesis abundant protein 
AK370848 F2E3X4 Proteasome subunit alpha type 
AK374275 F2EDQ0 Gibberellin receptor GID1L2 
AK363153 F2DGY6 Acyl CoA binding domain containing protein 6 
MLOC_44325.2 F2CQQ1 2-dehydro-3-deoxyphosphooctonate aldolase putative expressed 
AK367326 F2DTV8 Nuclear transcription factor Y subunit C 2 
AK364296 F2DK78 Peroxidase 8 
AK355507 F2CV55 Peroxidase 4 
MLOC_5958.2 F2CWU8 Eukaryotic translation initiation factor 2 beta subunit putative expressed 
AK364831 F2DLR3 Proteasome activator subunit 4 like 
MLOC_21677.1 F2DXR4 Ripening related protein 
MLOC_57898.2 F2EAZ9 Early nodulin like protein 
MLOC_7780.1 M0Z6C2 Malate dehydrogenase 
MLOC_2337.1 M0VDB7 17.4 kDa class I heat shock protein 3 
MLOC_53175.2 M0WNE6 5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase putative expressed 
MLOC_61465.1 M0XMW5 Acyl [acyl carrier protein] desaturase 
MLOC_78140.1 M0Z714 Serpin 2 
MLOC_10834.2 M0UGW6 22.0 kDa class IV heat shock protein 
AK248736.1 P20115 Citrate synthase 
MLOC_79770.1 M0Z9Q3 Serpin 2 
AK252829.1 Q9FXT9 26S protease regulatory subunit putative 
MLOC_67715.1 M0YBZ9 Acidic endochitinase 
MLOC_66477.1 M0Y7H8 22.0 kDa class IV heat shock protein 
MLOC_67147.1 M0YA06 VIP1 protein 
MLOC_81761.1 Q5URW6 Puroindoline B 
MLOC_38476.1 M0VYA0 Non specific lipid transfer protein 
AK373733 F2EC58 Cysteine proteinase inhibitor Cystatin  
AK375664 F2EHN7 Late embryogenesis abundant protein 
AK249268.1 B8B9K6 Ribosomal protein 
MLOC_68101.1 F2D4L0 Glutathione transferase F5 
AK374553 F2EEH7 Bifunctional inhibitor lipid transfer protein seed storage 2S albumin like protein 
AK367973 F2DVQ5 Diacylglycerol kinase like protein 
MLOC_4683.1 F2DML5 Peroxidase 12 
AK362311 F2DEJ4 Eyes absent like protein 
AK362492 F2DF25 Heat shock 70 kDa protein 5 
MLOC_17045.1 M0V1Y1 F box WD 40 repeat containing protein 
MLOC_46003.1 M0WA02 Low molecular weight glutenin subunit 

Note: Rows highlighted in cream are proteins involved in stress response. 

(Table continued next page) 
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(Continued from previous page [Table 3.11]) 
MLOC_12143.1 M0ULY1 Hageman factor inhibitor 
MLOC_81977.1 M0ZD98 Elongation factor Tu 
AK248705.1 P12782 Phosphoglycerate kinase 
MLOC_72278.1 M0YS73 Hageman factor inhibitor 
MLOC_73077.1 M0YUE3 Beta 1,3-glucanase 2 
MLOC_21198.1 M0VAF1 Grain softness protein 
MLOC_55594.1 M0WY96 Malonyl CoA acyl carrier protein transacylase containing protein expressed 
AK252468.1 Q0JPT4 BES1 BZR1 homolog 4 LENGTH 325 
AK250641.1 P36428 Alanine trna ligase 
MLOC_10176.1 M0UEE6 Serpin 2 
MLOC_34492.1 F2DW24 OTU domain containing protein 6B 
AK355136 F2CU34 Heat shock protein 90 
MLOC_73966.1 Q9FUM8 Homocysteine S methyltransferase 3  
AK364178 F2D009 ATP dependent RNA helicase putative 
AK372029 F2CVV8 Superoxide dismutase 
AK368827 F2DY59 Chaperone protein htpG family protein LENGTH 780 
AK376513 F2EK36 Chitinase 
MLOC_12224.1 F2DR19 Histidinol dehydrogenase 
AK358224 F2D2W7 Unknown protein 
MLOC_5618.2 M0X173 Heat shock protein 90 
MLOC_14295.2 M0UUA7 Late embryogenesis abundant protein 
MLOC_5404.1 M0WRH5 Aldose 1 epimerase 
AK250175.1 P08927 60 kDa chaperonin 2 
MLOC_2934.1 M0VI12 NAD-dependent epimerase dehydratase 
MLOC_10218.1 M0UEJ7 Aldehyde dehydrogenase putative 
MLOC_8329.1 M0ZDY0 Defensin 
AK252683.1 A5D8P8 UPF0510 protein INM02 
MLOC_71318.1 M0YP02 DNA repair helicase rad5 16 putative 
MLOC_70189.1 M0YKC6 Expansin protein 
MLOC_17935.1 M0V3Y6 Citrate binding protein putative expressed 
AK252423.1 Q9FMA3 Peroxisomal targeting signal 1 receptor 
MLOC_61812.1 M0XP66 Pectin lyase like superfamily protein LENGTH 476 
MLOC_52601.1 M0WL85 Zinc finger CCCH domain containing protein 
AK365300 F2DN32 Transmembrane protein 87A 
MLOC_63625.1 M0XW86 purple acid phosphatase 27 LENGTH 611 
AK252610.1 Q4R347 Cell differentiation protein rcd1 putative expressed 
AK252728.1 Q6Z351 Aldehyde oxidase 
MLOC_25678.1 M0VF46 Cysteine proteinases superfamily protein LENGTH 361 
MLOC_66422.2 M0Y7B9 WD repeat containing protein putative 
MLOC_59653.1 M0XFS5 Gibberellin receptor GID1L2 

Note: Rows highlighted in cream are proteins involved in stress response. 
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Table 3.12. TMT set-2: List of putative biomarkers proteins from barley grain and their functions. 

Barley fasta ID Uniprot Protein Description 
MLOC_56924.1 M0X4B4 Jasmonate induced protein 
MLOC_5168.1 Q4VM11 Beta amylase 
AK361994 F2DDM7 Tryptophan tRNA ligase 
MLOC_77043.1 M0Z4S0 11S seed storage globulin 
AK252834 A5BUU4 40S ribosomal protein SA 
MLOC_38209.1 M0VXI9 RNA exonuclease 
MLOC_43717.1 M0W4U0 S phase cyclin A associated protein in the endoplasmic reticulum 
MLOC_15911.1 F2CPQ3 Unknown protein 
MLOC_22184.1 F2CTI9 Microtubule associated protein family protein putative expressed 
AK369479 F2E008 Aldose 1 epimerase 
MLOC_6055.1 M0XJ70 Ubiquitin conjugating enzyme variant 
AK366209 D5KWD4 starch synthase 2 LENGTH 792 
MLOC_11338.3 M0UIV1 Nup98 protein 
AK353926 F2CQM4 Cysteine proteinase 
MLOC_4753.2 F2CRD9 Late embryogenesis abundant protein 
MLOC_13881.1 F2CSZ1 Unknown protein 
AK371185 F2E4W1 Magnesium and cobalt efflux protein corC putative 
MLOC_71136.2 F2E7V8 Cinnamyl alcohol dehydrogenase 
AK376628 F2EKF1 Defensin D2 
MLOC_12143.1 M0ULY1 Hageman factor inhibitor 
AK250295 Q43767 Non-specific lipid transfer protein 
MLOC_72278.1 M0YS73 Hageman factor inhibitor 
AK249385 Q07661 Nucleoside diphosphate kinase 
AK252139 Q9M330 Proteasome inhibitor like protein 
AK365973 F2CXV7 20 kDa chaperonin 
AK364344 F2DKC6 Unknown protein 
AK369476 F2E005 Unknown protein 
MLOC_36316.1 F2DQP5 Annexin 2 
MLOC_10834.2 M0UGW6 22.0 kDa class IV heat shock protein 
AK248808 P93026 Vacuolar sorting receptor 1 putative 
MLOC_66477.1 M0Y7H8 22.0 kDa class IV heat shock protein 

Note: Rows highlighted in cream are proteins involved in stress response. 

 
Table 3.13. TMT set-3: List of putative biomarkers proteins from barley grain, their functions, and a protein 
subset involved in stress response (cream colour). 

Uniprot 
Ids Protein description 

M0VEJ0 Late embryogenesis abundant protein  
F2DAA1 PEBP family protein 
F2EG62 Succinate dehydrogenase iron sulfur subunit 
F2D961 Lipoxygenase 
M0VUI3 Lipoxygenase 
F2CVY7 Phosphorylase  
M0W7R3 Nucleolar protein 5 
Q40004 Ribulose bisphosphate carboxylase small chain 
F2CTD8 Defensin 
P34893 10 kDa chaperonin 
F2DMW8 UPF0061 protein 
F2EKF1 Defensin D2 (Defence response) 
M0YRS3 UDP glycosyltransferase 
M0WDU5 Amine oxidase 
F2CTI9 Microtubule associated protein family protein putative expressed 
F2E6F3 Coatomer subunit gamma 
F2CUZ5 Glycogen synthase 
M0WCD7 rRNA N glycosidase 
M0W6F2 Acidic endochitinase 
M0X060 Adenine nucleotide alpha hydrolases like protein 
M0UFT6 Inosine 5' monophosphate dehydrogenase 
M0W433 Carbonic anhydrase 

Note: Rows highlighted in cream are proteins involved in stress response. 
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3.4.6. Putative biomarkers and Slims 

Functional summaries of all the biomarker proteins from the three TMT sets, in the form of 

GO Slims, are summarised in (Figure 3.7; Appendix B, Figure B.9 and Figure B.9). The bar 

graph shows that for the parent GO category of ‘biological process’ the most commonly 

associated functions were ‘metabolic process’ followed by ‘cellular process’. For the parent 

category of ‘molecular function’ the most common function was ‘binding’. For all three GO 

Slims, the counts were noticeably higher compared to the remaining GO Slims.  

 

The results presented in this chapter reveal that labelled shotgun proteomics can potentially 

deliver a set of putative biomarkers that would be able to identify the farm of origin and cultivar 

of barley grain. In all three TMT sets tested, a number of putative biomarker proteins have been 

discovered, and many of these are involved either directly or indirectly with stress-response. 

Slims that are most represented by these putative biomarkers are those where stress response 

proteins are likely to reside such as ‘metabolic process’. Moreover, these biomarkers could be 

candidates for an immune-based test such as an ELISA that use a panel of these proteins to 

deliver a fast and inexpensive test for the identification of the origin and cultivar of the grain.  
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Chapter 4. Proteomic analysis of wheat grain for the 
discovery of putative protein biomarkers to identify 
cultivar and farm origin 

 

4.1. Introduction 
The wheat industry is a substantial contributor to the Australian economy. In the years 2016-

2017, the value of export wheat sales was a little over $6 billion AUD 

(http://www.agriculture.gov.au/abares/research-topics/agricultural-commodities/sept-

2018/wheat). The wheat industry needs to adapt to the expectations of producers of wheat-

based products to meet consumer demands in providing quality assurance procedures that track 

provenance and grain quality. The difficulties in providing quality assurance is that there are 

no advanced laboratory-based tests to determine the farm origin of wheat grain (or any other 

cereals). Such quality assurance parameters may include: the ‘general health’ of the grain, such 

as poor quality due to damage caused by rain at harvest, drought or pathogenic attack. Hence, 

the variable nature of the wheat proteome due to influences of biotic and abiotic stress in 

combination with natural genetic variation is anticipated to provide enough variability for the 

identification of proteins that can act as biomarkers to address these issues.  

 
In this chapter, it is hypothesised that TMT-labelled proteomic analysis can be applied to wheat 

grain for the discovery of putative biomarkers. Similar to Chapter 3, I aim to discover potential 

biomarkers for identifying the farm location or cultivar of wheat grain using high throughput 

proteomic analysis of grain samples of three different wheat cultivars that were grown in three 

different farm locations. 

 

http://www.agriculture.gov.au/abares/research-topics/agricultural-commodities/sept-2018/wheat
http://www.agriculture.gov.au/abares/research-topics/agricultural-commodities/sept-2018/wheat
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4.2. Methods 

4.2.1. Wheat grain sample details and sample processing 

Tandem-Mass-Tags (TMTs) are utilized for the proteomic analysis in the identification and 

quantitation of putative biomarkers. The grain samples consisted of the three wheat cultivars: 

Gregory, Livingston, and Spitfire. Spitfire grain is classified as Australian Prime Hard (APH), 

making it a high protein milling wheat. It has an early to mid-maturity with early seedling 

vigour, is high yielding, and has a large grain size and high protein accumulation. Gregory is 

also ranked as APH with mid-season sowings and has a medium to slow maturity. Livingston 

is classified as an Australian Hard (AH) wheat with high to medium levels of protein. It has a 

high temperature tolerance and is an early maturing main season wheat in New South Wales. 

All three wheat cultivars were sampled using three biological replicates. Hence each replicate 

is from one of three different plots on the farm and three different farm locations (Breeza, 

TARC, and Terry Hie Hie [THH]).  

 

The wheat was sown on the 8th of May 2013 and did not germinate until the 23rd of May. The 

crop was harvested around early to mid-November (exact date unknown). The crops were not 

watered (only from rainfall) and were treated with fungicides (details obtained from Rohan 

Brill from the Department of Primary Industries, NSW Government). 

 

For location coordinates and weather observations, see 3.2.1 

 

4.2.2. Experiment design 

The proteomic analysis of the grain samples was divided into four separate TMT sets. Each 

TMT set consisted of ten TMT’s. All of the following TMT sets include three biological 

replicates of each cultivar, and likewise each farm location. The experimental configuration for 
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each TMT set and TMT-identification number allocation is outlined in Table 4.1. The sample 

comparisons are described as follows: 

 

TMT set-1 – The Gregory cultivar was compared between three different farm locations 

(Breeza, TARC, and THH).  

TMT set-2 – The Spitfire cultivar was compared between three different farm locations 

(Breeza, TARC, and THH). 

TMT set-3 – The Livingston cultivar was compared between three different farm locations 

(Breeza, TARC, and THH). 

TMT set-4 – The proteomes of the three different cultivars grown in the same location, were 

compared with three biological replicates of each cultivar (Gregory, Spitfire or Livingston) 

from sets-1 to -3 pooled. This pool represented the particular cultivar for that particular farm 

location. These pooled samples were then used to compare the different cultivars for each farm 

location. For example, the pooled samples Gregory, Spitfire and Livingston that were all grown 

in the Breeza farm location were each compared. This was repeated for the two other farm 

locations (Table 4.1). 
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Table 4.1. TMT allocations for proteomics analysis of samples. 

TMT label 
No. TMT Set 1 TMT Set 2 TMT Set 3 TMT Set 4 

1 (126) Gregory-Breeza-BR1-
2013 Spit-Breeza-BR1-2013 Liv-Breeza-BR1-2013 Greg-Breeza-Pool 

2 (127N) Greg-Breeza-BR2-2013 Spit-Breeza-BR2-2013 Liv-Breeza-BR2-2013 Greg-TARC-Pool 

3 (127C) Greg-Breeza-BR3-2013 Spit-Breeza-BR3-2013 Liv-Breeza-BR3-2013 Greg-THH-Pool 

4 (128N) Greg-TARC-BR1-2013 Spit-TARC-BR1-2013 Liv-TARC-BR1-2013 Spit-Breeza-Pool 

5 (128C) Greg-TARC-BR2-2013 Spit-TARC-BR2-2013 Liv-TARC-BR2-2013 Spit-TARC-Pool 

6 (129N) Greg-TARC-BR3-2013 Spit-TARC-BR3-2013 Liv-TARC-BR3-2013 Spit-THH-Pool 

7 (129C) Greg-THH-BR1-2013 Spit-THH-BR1-2013 Liv-THH-BR1-2013 Liv-Breeza-Pool 

8 (130N) Greg-THH-BR2-2013 Spit-THH-BR2-2013 Liv-THH-BR2-2013 Liv-TARC-Pool 

9 (130C) Greg-THH-BR3-2013 Spit-THH-BR3-2013 Liv-THH-BR3-2013 Liv-THH-Pool 

10 (131) Greg-THH-Pool-2013 Spit-THH-Pool-2013 Liv-THH-Pool-2013 Spit-All_Farms-Pool-
2013 

Note: BR = Biological replicate, TR = Technical replicate; Greg = Gregory, Spit = Spitfire, Liv = Livingston; 
Breeza = Breeza farm, TARC = TARC farm, THH = Terry Hie Hie farm. 
 

4.2.3. Wheat grain sample details and sample processing 

The samples for this experiment were wheat grain from the Gregory, Livingston and Spitfire 

cultivars that were all grown in three different plots at the three different farms (Breeza, TARC, 

and Terry Hie Hie [THH]). The farm locations are separated by hundreds of kilometres (Breeza 

to Terry Hie Hie, 240 km; Terry Hie Hie to TARC, 406 km; and TARC to Breeza, 324 km) 

and the distance between the three plots on the farm was not provided by the farm research 

facilities. 

 

4.2.4. Weighing and grinding samples 

The weighing and grinding of samples was performed as described in Chapter 2 (Methods 

section).  
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4.2.5. TCA/acetone/phenol (‘combined-phenol’) protein extraction 

The starting amount of fine ground grain was 100 mg per sample. The processing of grain 

samples was performed as described in Chapter 2 (Methods section) using the ‘combined-

phenol’ extraction method, with some modifications (described below) to prepare the peptides 

for TMT-labelling. 

 

4.2.6. Reduction and Alkylation 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.7. Methanol/chloroform precipitation 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.8. Bradford Assay 

Sample protein concentration was determined as described in Chapter 2 (Methods section). 

 

4.2.9. Percent protein calculation 

The percent protein was determined as described in Chapter 2 (Methods section). 

 

4.2.10. Protein digestion 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.11. SDS-PAGE 

The method for examining protein extraction quality using SDS-PAGE is described in Chapter 

2 (Methods section). 
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4.2.12. Construct laboratory-made SDB-RPS tips for sample de-salting 

(stage tipping) 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.13. SDB-RPS De-Salting (stage tipping) 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.14. Micro-BCA assay of desalted peptide samples for TMT labelling 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.15. Sample preparation for TMTs 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.16. Preparing a test run of TMT labelled sample sets for Mass 

Spectrometry 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.17. SCX fractionation 

Samples were processed as described in Chapter 3 (Methods section). 

 

4.2.18. Mass Spectrometry for TMT labelled samples 

Samples were processed as described in Chapter 3 (Methods section). 
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4.2.19. Making a multi-FASTA file for use in proteomics searches 

A protein (FASTA) database was constructed for barley to analyse the peptide mass spectra 

following mass spectrometry. Firstly, an NCBI protein search was performed on wheat 

(https://www.ncbi.nlm.nih.gov/protein/?term=txid4565), then the complete result downloaded 

as a FASTA file. Any poorly annotated and partial sequences were removed by the program 

CD-Hit, which was downloaded from https://github.com/weizhongli/cdhit/. The command line 

instructions were as follows: “cd-hit –i sequence.fasta -o nr100 -c 1.00 -n 5 -d 120 -l 50”. The 

input filename is “sequence.fasta”, and the output is filename is “nr100.fa”. The sequence 

identity threshold was set to 1.0, word-length to 5, with a length of description set to 120, and 

all sequences less than 50 amino acids discarded. 

 

4.2.20. Protein identification and quantitation 

The MS/MS spectra were searched against the appropriate custom wheat FASTA database, 

which was constructed as described in section 4.2.19. Otherwise, the samples were identified 

and processed as described in 3.2.16. 

 

4.2.21. Identification of significant proteins using TMTPrePro 

Samples were processed as described in 3.2.17. 

  



 130 

Table 4.2. Example design spreadsheet for TMTPrePro. 

“xlsx” file - TAB 1 (Design) 
Label Replicate Group 
126 Greg-Br-R1 1Greg-Br 
127_N Greg-Br-R2 1Greg-Br 
127_C Greg-Br-R3 1Greg-Br 
128_N Greg-TARC-R1 2Greg-TARC 
128_C Greg-TARC-R2 2Greg-TARC 
129_N Greg-TARC-R3 2Greg-TARC 
129_C Greg-THH-R1 3Greg-THH 
130_N Greg-THH-R2 3Greg-THH 
130_C Greg-THH-R3 3Greg-THH 
131 Pool 4Pool-S7-9 
“xlsx” file -TAB 2 (References) 
File UseReference 
160826_PW_06_proteinGroups_proteingroups.txt 131 

Note: The spreadsheet contains two tabs as represented by the table above. Tab 1 is title “Design”, and tab 2 is 
titled “References”. 
 

4.2.22. Custom R-script: PCA.R 

A FASTA database (file) of wheat proteins was used; otherwise, the samples were processed 

as described in 3.2.18.  
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4.3. Results 

4.3.1. Sample weights 

The 200-grain weight of the samples ranged from a minimum weight of 6.50 g for Spitfire 

grain grown at Breeza farm to a maximum weight of 8.54 g for Spitfire grain grown at the 

TARC farm. The farm that had the lowest average 200-grain weight (includes all cultivars) was 

Breeza (6.65 g); the next highest was THH (7.46 g); and the highest was TARC (7.86 g; Table 

4.3). Looking at differences in 200-weight by either location or cultivar a statistically 

significant difference was seen only between the TARC and Breeza farms, and none for any 

cultivar comparisons (Appendix C, Table C.1.3, Table C.1.4, and Table C.1.5). When this data 

was further divided into the three locations, and at each a comparison made between the three 

cultivars, only THH gown samples showed statistically significant difference in 200-weight 

between all three cultivars (Appendix C, Table C.1.3, Table C.1.4, and Table C.1.5). 

 

Table 4.3. Averages of 200-grain weight measurements. 

Sample code Farm location Cultivar Average 200-
grain weight (g) 

Farm average 
200-grain 
weight (g) 

Br-Greg-2013 Breeza Gregory 6.86 
6.65 Br-Liv-2013 Breeza Livingston 6.60 

Br-Spit-2013 Breeza Spitfire 6.50 
TARC-Greg-2013 TARC Gregory 7.29 

7.86 TARC-Liv-2013 TARC Livingston 7.75 
TARC-Spit-2013 TARC Spitfire 8.54 
THH-Greg-2013 Terry Hie Hie Gregory 6.55 

7.46 THH-Liv-2013 Terry Hie Hie Livingston 7.51 
THH-Spit-2013 Terry Hie Hie Spitfire 8.33 

 

4.3.2. Protein extraction and SDS-PAGE 

The average amount of protein extracted between all of the wheat samples was 1232 µg. The 

protein extract ranged from minimum of 945 µg (Gregory cultivar, THH farm) to a maximum 

of 1,679 µg (Spitfire cultivar, Breeza farm). The protein extract from the THH farm had the 

lowest average of 1,099 µg, TARC farm had an average of 1,211 µg, and the Breeza farm had 
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the highest average of 1,386 µg (Table 4.4). Protein extraction quality was qualitatively 

examined by SDS-PAGE of the Gregory cultivar grown at TARC, which displayed good 

protein banding (Figure 4.1). 

 

Examining the weight of sample proteins recovered from the three cultivars as well as the three 

cultivars at which they were grown (Table 4.4), statistical significance was only observed 

between the TARC and Breeza farms (Appendix C, Table C.1b.1, Table C.1b.2). Further 

dividing results the into the three locations and then comparing cultivar results at each location, 

the Livingston-Gregory and Spitfire-Gregory comparisons at Breeza farm showed statistical 

significance (Appendix C, Table C.1b.3, Table C.1b.4, and Table C.1b.5). 
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Table 4.4. Amount of wheat protein extract recovered from the ‘combined-phenol’ method. 

Sample ID Farm 
location Cultivar Biological 

replicate 

Total amount of 
sample proteins 
recovered 
(µg) 

Average 
amount of 
sample 
proteins 
recovered (µg) 

Br-Greg-2013-BR1 Breeza Gregory 1 1145 

1,386 

Br-Greg-2013-BR1 Breeza Gregory 2 1231 
Br-Greg-2013-BR1 Breeza Gregory 3 1092 
Br-Spit-2013-BR1 Breeza Spitfire 1 1428 
Br-Spit-2013-BR1 Breeza Spitfire 2 1665 
Br-Spit-2013-BR1 Breeza Spitfire 3 1679 
Br-Liv-2013-BR1 Breeza Livingston 1 1412 
Br-Liv-2013-BR1 Breeza Livingston 2 1354 
Br-Liv-2013-BR1 Breeza Livingston 3 1469 
TARC-Greg-2013-BR1 TARC Gregory 1 1238 

1,211 

TARC-Greg-2013-BR1 TARC Gregory 2 1145 
TARC-Greg-2013-BR1 TARC Gregory 3 997 
TARC-Spit-2013-BR1 TARC Spitfire 1 1433 
TARC-Spit-2013-BR1 TARC Spitfire 2 1329 
TARC-Spit-2013-BR1 TARC Spitfire 3 1290 
TARC-Liv-2013-BR1 TARC Livingston 1 1128 
TARC-Liv-2013-BR1 TARC Livingston 2 1101 
TARC-Liv-2013-BR1 TARC Livingston 3 1234 
THH-Spit-2013-BR1 THH Spitfire 1 1071 

1,099 

THH-Spit-2013-BR1 THH Spitfire 2 1216 
THH-Spit-2013-BR1 THH Spitfire 3 1149 
THH-Greg-2013-BR1 THH Gregory 1 1053 
THH-Greg-2013-BR1 THH Gregory 2 945 
THH-Greg-2013-BR1 THH Gregory 3 1145 
THH-Liv-2013-BR1 THH Livingston 1 1172 
THH-Liv-2013-BR1 THH Livingston 2 1056 
THH-Liv-2013-BR1 THH Livingston 3 1083 
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Figure 4.1. Example of ‘combined-phenol’ extracted proteins run on an SDS-PAGE gel, from three replicates (A, 
B and C) of Gregory wheat grain grown at TARC. 

 

4.3.3. Protein digestion and SDS-PAGE 

Enzymatic digestion of proteins was performed successfully as indicated by the qualitative 

SDS-PAGE gel in Figure 4.2. There was no protein banding in the peptide lanes of the gel for 

all samples of the digested proteins. 

 
Quantitation of sample peptides was performed by Micro-BCA assay. The average amount of 

peptides from all of the wheat samples was 45.44 µg. The peptide concentrations between all 

samples ranged from minimum of 32.79 µg (from THH farm) to a maximum of 59.86 µg (from 

THH farm). The THH farm had the lowest average of 43.2 µg, TARC farm had an average of 

44.1 µg, and Breeza farm had the highest average of 49.02 µg (Table 4.5). 

 

For total peptide weight (Table 4.5), if the results were divided into three groups based on 

location, statistically significant differences between cultivars were seen at Breeza and THH 

(Appendix C, Table C.1b.6, Table C.1b.7, and Table C.1b.8). At Breeza this was only seen in 

the Livingston-Gregory and Spitfire-Gregory comparisons (Appendix C, Table C.1b.6), while 
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at THH statistical significance was only seen in the Spitfire-Gregory and Spitfire-Livingston 

comparisons (Appendix C, Table C.1b.8). 

 

 

Figure 4.2. SDS-PAGE confirmation of Lys-C and trypsin digest of barley and wheat grain proteins (green 
rectangle). St. = Standards, A1 = undigested Commander barley proteins, A2 = digested Commander barley 
proteins, B = digested Gairdner barley proteins, and C = digested Hindmarsh barley proteins. D1 = Undigested 
Gregory proteins, D2 = Digested Gregory proteins, E = Digested Livingston proteins, F = Digested Spitfire 
proteins.  
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Table 4.5. Amounts of wheat sample peptides determined by Micro-BCA. 

Sample ID Farm 
location Cultivar Biological 

replicate 

Total 
peptides 
(µg) 

Average 
peptides 
(µg) 

Br-Greg-2013-BR1 Breeza Gregory 1 41.65 

49.02 

Br-Greg-2013-BR1 Breeza Gregory 2 48.01 
Br-Greg-2013-BR1 Breeza Gregory 3 42.04 
Br-Spit-2013-BR1 Breeza Spitfire 1 52.42 
Br-Spit-2013-BR1 Breeza Spitfire 2 48.93 
Br-Spit-2013-BR1 Breeza Spitfire 3 51.35 
Br-Liv-2013-BR1 Breeza Livingston 1 53.71 
Br-Liv-2013-BR1 Breeza Livingston 2 53.96 
Br-Liv-2013-BR1 Breeza Livingston 3 49.14 
TARC-Greg-2013-BR1 TARC Gregory 1 54.08 

44.10 

TARC-Greg-2013-BR1 TARC Gregory 2 42.62 
TARC-Greg-2013-BR1 TARC Gregory 3 41.99 
TARC-Spit-2013-BR1 TARC Spitfire 1 51.75 
TARC-Spit-2013-BR1 TARC Spitfire 2 48.46 
TARC-Spit-2013-BR1 TARC Spitfire 3 35.20 
TARC-Liv-2013-BR1 TARC Livingston 1 46.74 
TARC-Liv-2013-BR1 TARC Livingston 2 39.45 
TARC-Liv-2013-BR1 TARC Livingston 3 36.60 
THH-Greg-2013-BR1 THH Gregory 1 36.04 

43.20 

THH-Greg-2013-BR1 THH Gregory 2 39.53 
THH-Greg-2013-BR1 THH Gregory 3 44.51 
THH-Spit-2013-BR1 THH Spitfire 1 49.53 
THH-Spit-2013-BR1 THH Spitfire 2 58.01 
THH-Spit-2013-BR1 THH Spitfire 3 59.86 
THH-Liv-2013-BR1 THH Livingston 1 32.79 
THH-Liv-2013-BR1 THH Livingston 2 34.20 
THH-Liv-2013-BR1 THH Livingston 3 34.30 

 

 

4.3.4. Data quality – matched and filtered data 

Following the identification of the matched and filtered proteins, the data was checked for 

quality. The general uniformity of the ‘density plots’ and ‘box plots’, representing protein 

expression data for each of the nine samples, were observed to be of good quality through close 

clustering of samples to their respective sample groups (Appendix C, Figure C.1). 
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4.3.5. Sample uniformity/diversity for matched and filtered protein samples 

The wheat samples with their data of matched and filtered proteins showed some clustering 

into sample groups. For TMT sets-1 and -2, the clustering was limited (Appendix C, Figure 

C.2, Figure C.3 and Figure C.4; parts A and B), However, for TMT sets-3 and -4, the samples 

all clustered into their sample groups for heat-maps, PCAs and correlation plots (Appendix C, 

Figure C.2, Figure C.3 and Figure C.4; parts C and D). The difference between sample 

clustering of TMT sets-1 and -2 compared to TMT sets-3 and -4 is illustrated by the PCAs in 

Figure 4.3. TMT sets-1 to -3 are all based on the same design each having their variation based 

on farm location, whereas TMT set-4, compares the variation due to the three cultivars. 

 

A 

 
 

B 

 
 

Figure 4.3. Comparison of PCAs from (A) TMT set-1 and (B) TMT set-3, from samples of matched and filtered 
proteins.  

  



 138 

Table 4.6. Summary of data quality for matched and filtered wheat grain proteins. 

TMT 
set 

Sample group 
(Each containing 3 
biological replicates) 

Complete heat-map 
sample group 
clustering 
( or ) 

Complete PCA 
sample group 
clustering 
( or ) 

Complete Correlation 
heat-map sample group 
clustering 
( or ) 

1 Gregory-Breeza    
1 Gregory-TARC    
1 Gregory-THH    
2 Spitfire-Breeza    
2 Spitfire-TARC    
2 Spitfire-THH    
3 Livingston-Breeza    
3 Livingston-TARC    
 Livingston-THH    
 Gregory-All_Farms    
 Spitfire-All_Farms    

3 Livingston-All_Farms    
Original data for the above table is a summary of Figure C.2, Figure C.3, and Figure C.4 in Appendix C. 
Note: One sample group is made up of three biological replicates. 
 

 

4.3.6. Sample clustering after putative biomarker discovery 

The ‘TMTPRePro’ software described in Chapter 3, section 3.2.17, performed the discovery 

of statistically significant differentially expressed proteins (‘putative biomarkers’). From the 

expression data of the putative biomarkers, samples from all TMT sets were seen to cluster into 

their sample groups (Table 3.7), and PCAs showed increasing relatedness within sample groups 

and increasing un-relatedness between sample groups (Appendix C, Figure C.6). All heat-maps 

and correlation plots displayed clustering of samples into their groups (Table 4.7; Appendix C, 

Figure C.5 and Figure C.7). Only two sample groups failed to display complete clustering in 

heat-maps – Gregory wheat grown at TARC and THH. The sample groups of Gregory wheat 

grown at THH farm and Spitfire wheat as a pool of all three farms, failed to cluster in 

correlation plots (Table 3.7). 
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Table 4.7. Summary of data quality for putative biomarker discovery from samples.  

TMT 
set 

Sample group 
 

Complete heat-
map sample 
group clustering 
( or ) 

Complete PCA 
sample group 
clustering 
( or ) 

Complete 
Correlation plot 
sample group 
clustering 
( or ) 

1 Gregory-Breeza    
1 Gregory-TARC    
1 Gregory-THH    
2 Spitfire-Breeza    
2 Spitfire-TARC    
2 Spitfire-THH    
3 Livingston-Breeza    
3 Livingston-TARC    
3 Livingston-THH    
4 Gregory-All_Farms    
4 Spitfire-All_Farms    
4 Livingston-All_Farms    

Original data for the above table is a summary of Figure C.5, Figure C.6 and Figure C.7 in Appendix C. 
Note: One sample group is made up of three biological replicates. 
 

4.3.7. Putative Biomarker discovery 

The TMT sets-3 and -4 displayed the better data, having more biomarkers discovered and better 

clustering of samples into the sample groups (Appendix C, Figure C.5, Figure C.6 and Figure 

C.7). This difference in data quality corresponded to putative biomarker discovery, with TMT 

set-1 and TMT set-2 only detecting 9 and 13 putative biomarkers, respectively, while 56 

putative biomarkers were detected in TMT set-3 and 173 from TMT set-4. Previously we had 

also performed a test TMT run with the same workflow and sample numbers minus the SCX 

fractionation. For the test run the numbers of putative biomarkers detected was higher in three 

out of four TMT sets and only lower in TMT set-3. Returning to the full run (using fractionated 

samples), only ten of the putative biomarkers detected were duplicated in two out of three TMT 

sets, and no proteins were detected in all four TMT sets. 

  



 140 

Table 4.8. Numeric comparison of putative biomarkers from test TMT run (unfractionated samples) and full run 
(SCX sample fractionation) of TMT-labelled wheat grain sample sets. 

Set Study 

Testing 
variation of 
cultivar or 
location 

Number of 
putative 
protein 
biomarkers 
from ‘full TMT 
run’ 

Number of 
putative 
biomarkers from 
‘test TMT run’ 

TMT Set 1 Breeza, TARC and THH farms 
growing Gregory wheat Location 9 17 

TMT Set 2 Breeza, TARC and THH farms 
growing Spitfire wheat Location 13 15 

TMT Set 3 Breeza, TARC and THH farms 
growing Livingston wheat Location 56 49 

TMT Set 4 Gregory, Spitfire and Livingston 
cultivars at all 3 farm locations Cultivar 73 157 

 

Table 4.9. Proteins common to selected TMT sets. 
Common to TMT sets-1 and-2 Common to TMT sets-1, -3, and-4 
Identifier Description Identifier Description 
T1N5G8 Uncharacterized protein P16851 Alpha-amylase/trypsin inhibitor CM2 
B2CGM6 Triticin Q41540 CM 17 protein 
M7Z1Z4 Serpin-Z2B C7C4X0 Alpha amylase inhibitor CM1 (Fragment) 

 

4.3.8. Putative Biomarker functionality 

The functionality of the putative biomarker proteins identified in the four TMT sets was 

investigated. Similar to the results in barley Chapter 3, a set of GO Slims were obtained to give 

a functional overview of the set of putative biomarker proteins discovered in each TMT set. 

For TMT sets-1 and -2, the number of protein biomarkers discovered was not sufficient to 

present any result of interest because the GO SLIM counts were too low (Appendix C, Table 

C.4 and Table C.5). For TMT sets-3 and -4, the functions summarised by the GO Slims terms 

‘molecular process’ and ‘cellular process’ stood out (qualitatively higher) within the ‘biological 

process’ parent category (Figure 4.4). Meanwhile, the functions of ‘catalytic activity’ and 

‘binding’ were noticeably higher within the ‘Molecular Function’ parent category for TMT set-

4 (Figure 4.5). 
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Figure 4.4. TMT set-3 Gene Ontology ‘Slims’ functional summary of putative biomarkers discovered. 
Only data with a count of 2 or more are included. 

 

 
Figure 4.5. TMT set-4 Gene Ontology ‘Slims’ functional summary of putative biomarkers discovered. 
Only GO Slims categories that exist in 2 or more of the putative biomarker proteins are included. 
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4.4. Discussion 

4.4.1. Overview 

Tandem Mass Tag shotgun proteomics was shown to be a valid approach in putative biomarker 

discovery in Chapter 3 for barley grain. A modified experimental design (compared to the one 

in Chapter 3) to aid biomarker discovery was also successfully trialled (Table 4.1), many of 

which were similar stress response protein biomarkers to that of barley. The functionality of 

the discovered putative protein biomarkers was summarised for each TMT set (Figure 4.4 and 

Figure 4.5; Appendix C, Table C.4 and Table C.5).  

 

4.4.2. Replicate variation 

Wheat grain samples were visually examined for physical damage such as broken grain and 

degradation, weighed, and processed consistently between all experiments. The protein 

expression profile results for each sample showed some variation within sample groups, as well 

as the expected variation between sample groups. For example, replicate plots that were grown 

next to each other can be subjected to different conditions such as: differences in the exposure 

to rainfall, localised pathogen attack and soil composition. As a result, a greater sample 

variation tended to translate to the discovery of fewer putative biomarkers. This is mostly due 

to proteins that are close to the pass/fail threshold of biomarker discovery (statistically 

significant differential expression) being masked by higher levels of variation in sample 

replicates (i.e. too much data noise).  

 

One of the causes of the variation between farms could potentially be due to the differences in 

rainfall that each farm experienced during the growth of the crops. TARC experienced the 

highest total rainfall during this period, followed by THH and Breeza (Figure 4.6). When this 

data was compared with the 200-grain weight measurements, there was an observable trend 

between the total water that each farm had received and the 200-grain weight (compare Figure 
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4.6 and Figure 4.7). It is well known that when wheat experience drought, the grain fill is 

compromised and result in low kernel weights (Farooq, et al., 2014, Madani, et al., 2010). 

There was however no observable correlation between grain fill and average monthly 

temperatures during this growth period (Figure 3.11). This may be likely due to the average 

monthly temperature range difference being only 2.4°C. 

 
Figure 4.6. The average total rainfall during the crop growth period (May to October; 2013). 
Data obtained for the three different farm locations: TARC, Breeza and Terry Hie Hie. 
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Figure 4.7. The average 200-grain weights of grain obtained from three different farm locations: TARC, Breeza 
and Terry Hie Hie. 

 

The proteins identified in wheat from the farm comparison of TMT sets-1 to-3 revealed 

proteins associated with drought stress (Table 4.10, Table 4.11, Table 4.12). Since this study 

does not pinpoint which farm the differences in protein expression are from, it can only be 

speculated that the proteins are likely associated with samples obtained from the Breeza farm 

as it has experienced less rain. 

 

However, the protein extract levels shown in Figure 4.8 display an observable inverse trend 

pattern with the total rainfall (Figure 4.6). Although the 200-grain weight was the lowest for 

Breeza, the higher 200-grain weights for TARC and THH yielded less protein. This is likely 

due to the larger proportion of the grain (the starch) in the TARC and THH samples being 

overrepresented and the proteins from the aleurone and germ cells being underrepresented in 

the protein extract. 
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Figure 4.8. The average protein extract from wheat grown at three different farms: TARC, Breeza and THH. 

 

4.4.3. Biomarker discovery 

The experimental design was modified to increase statistical robustness, so that each individual 

sample was compared against one sample group. As described in Table 4.1, the rearranged 

design makes a comparison of nine individual samples against a pool of one sample group 

(three biological replicates), rather than a comparison against a pool of all nine samples as seen 

in the barley experiment of Chapter 3. This new design was successful in discovering putative 

biomarkers in all four TMT sets, although results were mixed. For TMT set-1 there were 9 

putative biomarkers discovered and for TMT set-2 there were 13 putative biomarkers 

discovered. Both were comparing proteomes across three different locations. Compared with 

the barley results (TMT sets-1 and -2), which also compared proteomes across farm locations, 

these numbers represented a notable drop in numbers. It was possible that the different protein 

profile of barley compared to wheat was the likely source of this reported difference in putative 

biomarker discovery. However, TMT set-3 used the same design (variation of proteome across 

farms) as TMT sets-1 and -2 yet resulted in the discovery of 56 putative biomarkers while TMT 

set-4 resulted in the discovery of 173 putative biomarkers. Looking at all the data it appears 
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highly likely that the main reason for the large differences in results for TMT sets-1 and -2 

compared to TMT sets-3 and -4 was the quality of the data. Heat maps, PCAs, and correlation 

plots of unrefined data (matched and filtered proteins) for TMT sets-1 and-2, showed poor 

clustering of replicate samples into their respective groups, and larger sample variation within 

groups. In contrast, TMT set-3 (and TMT set-4) show good sample clustering into their 

respective groups, and the PCA displays smaller sample variation within sample groups. Thus, 

the lower data noise of TMT sets-3 and -4 seem to have resulted in a greater number of putative 

biomarkers discovered. 

 

4.4.4. Putative biomarker functionality 

The proposed idea that stress-response proteins are more variable within a proteome, is further 

reinforced by the fact that of the nine putative biomarkers detected in TMT set-1, six of these 

are known to be involved in stress response. Also, for TMT set-2, of the 13 putative biomarkers 

four are related to stress-response (Table 4.10 and Table 4.11). Due to the low number of 

putative biomarker proteins identified in TMT sets-1 and -2, it was difficult to identify proteins 

that were common in all four TMT sets. There was one serpin protein common to both TMT 

sets-1 and-2, which is a class of protein involved in stress response (Zhou, et al., 2016). 

Meanwhile TMT sets-3 and -4 had nine common proteins, six of which are involved in stress 

response (Table 4.12).  
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Table 4.10. TMT set-1: List of putative biomarkers from wheat grain. 
Uniprot Identifier Protein description 
B8YLY9 Beta purothionin 
B8YM21 Beta purothionin 
E6Y2L2 Salt tolerant correlative protein 
B8ZX17 High molecular weight glutenin subunit 1Bx13 
B9A8E3 Protein disulfide isomerase 
M7Z1Z4 Serpin-Z2B 
M7ZK46 12S seed storage globulin 1 
M8A7I9 Chitinase 2 
H6S4F5 WAMP-3, antimicrobial peptide 

Note: Rows highlighted in cream are proteins involved in stress response. 

 

Table 4.11. TMT set-2: List of putative biomarkers from wheat grain. 
Uniprot Identifier Protein description 
Q0Q5D8 High-molecular-weight glutenin By8 
M8A6J5 Proteasome subunit beta type-6 
Q9SQG8 Pathogenesis-related protein 4 (Fragment) 
B2CGM6 Triticin 
B2LXU4 Phosphorylase 
M7YN66 Isocitrate dehydrogenase [NADP] 
D2CPI7 HMW glutenin subunit 
H9AXB3 Serpin-N3.2 (100% identity to Serpin-Z2B) 
J3RHG6 Beta-glucosidase 4 (Fragment) 
M7Z1Z4 Serpin-Z2B 
Q07810 rRNA N-glycosidase 
M7Y7F4 Glutamine synthetase 
M8A4K5 Histone H2A 

Note: Rows highlighted in cream are proteins involved in stress response. 

 

Table 4.12. Proteins common to TMT sets-3 and -4. 
Uniprot Protein names 
P17314 Alpha-amylase/trypsin inhibitor CM3 [Defense] 
A4ZIX1 Monomeric alpha-amylase inhibitor (Fragment) 
C7C4X0 Alpha amylase inhibitor CM1 (Fragment) 
M7Z9L8 Uncharacterized protein 
P83207 Chymotrypsin inhibitor WCI (Chloroform/methanol-soluble protein WCI) [Defense] 
Q9ST57 Serpin-Z2A (TriaeZ2a) (WSZ2a) 
A4ZIY9 Monomeric alpha-amylase inhibitor (Fragment) 
A5HMG1 HMW glutenin subunit 1Bx13 
Q8L6B4 Gamma gliadin 

Note: Cream colour rows indicate proteins involved in stress response. 
 

4.4.5. Functional summaries of biomarkers 

To avoid describing long lists of proteins I have chosen to only comment on the functionality 

of proteins from TMT sets-3 and -4 in more general terms of functional summaries. As for 

Chapter 3, four TMT sets were examined in terms of gene ontology. Functional summaries 
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(GO Slims) from the 57 putative biomarkers of TMT set-3, showed that a few Slims functions 

were counted well above others (Figure 4.4). Namely, these ‘metabolic process’ and ‘cellular 

process’ for the parent category of ‘biological process’; and ‘catalytic activity’, ’binding’, and 

‘enzyme regulator activity’ for the parent category of ‘molecular function’. TMT set-4 (Figure 

4.5) has these same Slims but also includes ‘cytoplasm’, ‘cell’ and ‘intracellular, membrane’ 

from the ‘cellular component’ parent category.  

 

4.4.6. Conclusion 

The experiments presented above have shown that TMT-labelled shotgun proteomics is a 

powerful tool in putative protein biomarker discovery. Some tuning of sample input is needed 

to address the variations between biological replicate samples; however, the purpose of 

discovering protein biomarkers was to extract proteins and simulate what would be extracted 

and analysed in the field. On the other hand, for the purpose of better quality analysis for a 

more sensitive examination of biomarkers, an initial set of four to five replicate samples, per 

sample group, would be appropriate to perform a ‘test’ run through the mass spectrometer to 

determine the least variable sample for a full (fractionated sample) mass spectrometer run. This 

would reduce the intra-sample variation, or data noise, and allow more accurate discovery of 

statistically significant differential expression. 

 

Finally, the most likely candidates for potential biomarkers for farm location are the ones 

related to biotic or abiotic stress. In an Australian context an important set of stress-response 

proteins would be those that respond to heat and/or drought (two abiotic stresses), with these 

two factors likely to play a large part in the mature grain during its growth period. Of course, 

these same proteomic studies would have to be repeated over several years to determine 

whether candidate biomarkers would indeed be predictive for farm location. In the current 
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study, serpin and alpha-amylase proteins have been observed to be associated with drought 

(Zhou, et al., 2016), and identification of specific proteins from these two groups appear to 

correlate with the 200-grain weight and weather conditions experienced on the farm during the 

growth period. 

 

The proteins serpin and alpha-amylase inhibitor are associated with drought or heat and appear 

to correlate with the 200-grain weight and weather conditions experienced at the Breeza plots 

during the growth period (Zhou, et al., 2016). For the cultivar identification, proteins associated 

with phenotype and endosperm composition (non-stress related proteins listed in Table 4.10, 

Table 4.11and Table 4.12), such as gluten and metabolic process proteins will be the most 

likely candidates. 
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Chapter 5. Detection of differentially transcribed 
mRNA transcripts in wheat grain for putative 
protein biomarker discovery and comparison with 
proteomic analysis 

 

5.1. Introduction 

The quantitation of types of messenger RNA (mRNA) is a commonly used technique to 

examine gene expression in organelles, cells, tissues, organs and whole organisms (Rangan, et 

al., 2017). With the advent and development of next generation sequencing for RNA 

(RNASeq), measuring the levels of individual RNA transcripts between samples has become 

increasingly accurate and cost effective (Lowe, et al., 2017). While broadly similar to 

proteomics in the sense of sorting and counting individual molecules (mRNA for RNASeq and 

peptide for proteomics), the technique of RNASeq has the advantage of amplifying the mRNA 

signal. Although the mRNA itself is not amplified, it is transcribed into cDNA which is 

subsequently amplified. While amplification may increase the chance of detecting low-copy 

transcripts that presumably code for low-copy proteins that are currently-undetectable via 

proteomics, it also introduces the potential for errors during the transcription and amplification 

stages. Moreover, mRNA transcripts do not necessarily get translated directly to protein, as 

they may be subject to post-transcriptional modification or degraded. Researchers of maize 

have shown that the levels of mRNA transcription are not always equivalent protein expression 

levels (Barros, et al., 2010). It may be that some of the proteins in mature grain are required for 

an immediate response – both during dormancy and germination – while the mRNA represents 

a longer term and more nuanced response to germination and seedling survival. Despite these 
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potential differences between mRNA and protein levels, differentially transcribed mRNA is a 

potential candidate for biomarker discovery. 

 

The aim was to measure and identify differentially expressed mRNA transcripts in wheat grain 

as a method to identify biomarkers that would have the potential to determine the provenance 

and farm location. Sample transcriptomes of the spitfire wheat grain examined and the proteins 

they encode compared to the differentially expressed proteins from the wheat grain results of 

Chapter 4. 

 

 

5.2. Methods 

5.2.1. Wheat grain samples 

Refer to Chapters 3 and 4 methods for the details of the grain samples. 
 

5.2.2. Testing RNA extraction methods 

In determining the most suitable RNA extraction method in terms of yield and integrity/quality, 

three different published RNA extraction methods were compared. In all tests, fresh, finely 

ground wheat grain powder was prepared from the Spitfire sample. Extraction ‘Method 1’ was 

adapted from Li and Trick (2005), ‘Method 2’ was adapted from a combination of Holding, et 

al. (2007), and Reyes, et al. (2011), and ‘Method 3’ was the standard method for RNA 

extraction using TRI reagent as described by the manufacturer (Sigma-Aldrich). 

 

5.2.2.1. RNA extraction ‘Method 1’ 

Adapted from the RNA extraction method described in Li and Trick (2005), 400µl of 

‘Extraction Buffer I’ (100 mM Tris-HCl, pH8.0; 150 mM LiCl; 500 mM EDTA, 1.5% SDS, 

and 1.5% 2-Mercaptoethanol) was added to each 2 mL sample tube containing finely ground 
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grain (~0.1 g, which includes ~ 10% washed sand). The mixture was vortexed until the powder 

was fully suspended into the buffer. Phenol-chloroform (400 µL; 1:1, pH 4.7) was added to the 

tube and mixed well by inversion and centrifuged immediately at 13,000 x g for 15 minutes at 

4°C. The upper aqueous phase (~400 µL) was transferred to new 2 mL plastic tube. TRI 

Reagent (1.2 mL; 3x sample volume) was added and the sample was mixed by gentle inversion 

followed by incubation at room temperature for 10 minutes. Following incubation, 208 µL 

(13% of the total volume) of chloroform-isoamyl alcohol (24:1) was added making 1.6 mL 

final volume. The sample was centrifuged at 13,000 x g for 15 minutes at 4°C. After 

centrifugation, the upper aqueous layer was placed into a fresh plastic tube. Isopropanol was 

added to a final concentration (sample volume + isopropanol + NaCl) of 30%, and NaCl to 

~0.28 M. For example, 1.24 mL of sample was removed after centrifugation. To this volume 

was added 420 µL of 100% isopropanol and 109 µL of 5 M NaCl. The sample was mixed by 

inversion and placed on ice for 15 minutes, followed by centrifugation at 13,000x g for 15 

minutes at 4°C. The supernatant was discarded and the pellet (containing RNA) was washed 

with 1 mL of 70% cold ethanol. The pellet was air-dried for 20 minutes at 4°C, then 

resuspended in 100 µL of RNase free water. An aliquot (10 µL) of the resuspended RNA was 

put aside for quality control. All samples were stored at -80°C. 

 

5.2.2.2. RNA extraction ‘Method 2’ 

‘Method 2’ was adapted from Holding, et al. (2007), and Reyes, et al. (2011). The Tris-buffered 

phenol was shaken to equilibrate at pH 8.0 and then stored at 4°C to settle. To approximately 

0.1 g of finely ground wheat grain was added 500 µL of NTES buffer (20 mM Tris-HCl, pH 

8.0; 100 mM NaCl; 10 mM EDTA, pH 8.0; and 1% SDS), followed by 250 µL of Tris- buffered 

phenol (pH 8.0), and finally 250 µL of 100% chloroform. The sample was aspirated using a 

pipette and vortexed followed by centrifugation at 10,000 x g for 10 minutes at 4°C. 
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Chloroform (500 µL) was added to each tube, shaken vigorously for 15 seconds and then placed 

on ice for 2.5 minutes prior mixing by inversion. The tubes were placed back on ice for another 

2.5 minutes and then centrifuged at 10,000 x g for 10 minutes at 4°C. The upper aqueous phase 

was pipetted into a fresh 2 mL plastic tube (~ 300 µl), followed by addition of 900 mL of TRI 

Reagent (3x sample volume), and vigorously shaken for 15 seconds. The mixture was 

incubated for 5 minutes at room temperature before addition of 60 µL of chloroform (1/5 

sample volume), incubation for a further 3 minutes at room temperature, followed by 

centrifugation at 10,000 x g for 10 minutes at 4°C. The upper aqueous phase (700 µL) was 

pipetted into a fresh plastic tube and to this was added 700 µL of 2-propanol (1x sample 

volume), mixed well and incubated for 10 minutes on ice. The sample was centrifuged at 

10,000 x g for 10 minutes at 4°C, the supernatant removed and the pellet washed with 1 mL of 

cold ethanol (70%). The pellet containing RNA was air-dried for 20 minutes at 4°C, then 

resuspended in 100 µL of RNase free water. An aliquot (10 µL) of the resuspended RNA was 

put aside for quality control. All samples were stored at -80°C. 

 

5.2.2.3. RNA extraction ‘Method 3’ 

The third method was adapted from the standard Sigma-Aldrich protocol for using TRI 

Reagent. To approximately 0.08 g of finely ground wheat grain was added 1 mL of TRI Regent, 

then centrifuged at 12,000 x g for 10 minutes at 4°C. The supernatant was transferred to a fresh 

plastic tube and incubated at room temperature for 5 minutes. Chloroform (0.2 mL) was added 

to the sample and shaken vigorously by hand for 15 seconds. The mixture was left to incubate 

at room temperature for 3 minutes, followed by centrifugation at 12,000 x g for 15 minutes at 

4°C. The upper aqueous phase of each sample was placed in a fresh plastic tube and to each 

tube was added 0.5 mL of 100% isopropanol (IPA), incubated at room temperature for 10 

minutes, followed by centrifugation at 12,000 x g for 10 minutes at 4°C (the resulting pellet 
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appears gel-like). The supernatant was discarded, and the pellet was washed with 75% cold 

ethanol briefly vortexed and centrifuged at 7,500 x g for 5 minutes at 4°C. The pellet was air 

dried at 4°C for 15 minutes then resuspended in 100 µL of RNase-free water. An aliquot (10 

µL) of the resuspended RNA was put aside for quality control. All samples were stored at -

80°C. 

 

5.2.3. Phenol/chloroform RNA extraction, post DNase treatment 

Phenol/chloroform (phenol at pH 4.5, ratio 1:1) was added to the DNase extraction at a 1:1 

ratio, mixed by inversion, and then centrifuged at 14,000 rpm for 2 min. The upper aqueous 

layer was removed and placed in a fresh plastic tube. To this was added two volumes of 100% 

cold ethanol. Precipitation of RNA occurred after incubating at -20°C for approximately 1 hour. 

This was then centrifuged at 14,000 rpm for 5 minutes. The supernatant was removed and the 

pellet was rinsed with 70% ethanol. Finally, the washed pellet was resuspended in molecular 

grade purity RNase-free water. 

 

5.2.4. RNA preparation for Illumina sequencing 

RNA was extracted from grain samples of the Spitfire wheat cultivar using ‘Method 2’ (section 

5.2.2.2). Three replicates for each of the three sites (Breeza, TARC, and Terry Hie Hie [THH]) 

were prepared. The quality of the RNA extraction was checked on an agarose gel. Samples 

were prepared for gel loading by adding 400 ng or more of RNA extract to a fresh plastic tube 

and mixing with RNase free loading dye (50% high-grade glycerol, 1 mM EDTA, and 0.4% 

bromophenol blue). The agarose gel was prepared by making a hot 1% agarose solution to 

which 2% (v/v) gel red (Biotium) was added before being poured into a mould. Once solidified, 

the gel was placed into an electrophoresis tank containing 1x TAE buffer. The molecular 

weight ladder (Quick-Load® 1 kb DNA Ladder - N0468S - by New England Biolabs) and 
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samples were then loaded and run at 100-volts until a visible dye front from the loading buffer 

had almost run off the gel closest to the anode. The gel was then visualised by UV and digitally 

captured by a Gel Logic 2200 pro (manufactured by Carestream). Once the RNA samples 

passed visual inspection, the concentration of RNA was determined by using a NanoDrop™ 

2000/2000c Spectrophotometer (Thermo Scientific™). DNase digests were then set up in a 

total volume of 250 µL. The volume of RNA sample and buffer were kept constant, while the 

volumes of DNase and water were adjusted so that the ratio of DNase to DNA/RNA was 1 Unit 

Enzyme to 1 µg Nucleic Acid. The DNase treated RNase samples were purified using the 

phenol/chloroform extraction method described in section 5.2.3. Samples were checked again 

by agarose gel and the RNA concentration and quality was determined using a NanoDrop as 

described above. These samples and their details were then sent to AGRF on dry ice to be 

sequenced on the Illumina HiSeq2500 sequencing platform, using a strand sensitive protocol 

and sequenced to a 100 bp length for both forward and reverse sequences. 

 

5.2.5. Custom R-Script: “tximportAfterKallisto.R” 

The initial quantification of mRNA transcript abundance was performed by the program 

Kallisto (Bray, et al., 2016). The R-script “tximportAfterKallisto.R” (Appendix E, section 0; 

which incorporated the R-package “tximport”) converted the estimated expression counts, 

generated by Kallisto, into raw transcript counts. This conversion was necessary to fit the 

negative binomial model assumed by many downstream RNASeq analysis programs such as 

the R-package “DESeq2”. Other R-packages - "dplyr" (Wickham, et al., 2017), “DESeq2” 

(Love, et al., 2014), "readr" (Wickham, et al., 2017), "AnnotationDbi" (Pagès, et al., 2017), 

“ReportingTools” (Huntley, et al., 2013) - are also included within this script to assist access 

to databases, re-formatting, as well as data preparation and manipulation. 
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5.2.6. DESeq2 R-package - summary of methods 

DESeq2 is a software package that allows differential expression analysis of RNASeq data. To 

summarise, a table of mRNA raw counts (transcripts) is input into Deseq2 from the workflow 

discussed above, as is a design file that serves as a source for metadata. First, library size and 

mRNA composition bias are corrected by internal normalisation, and for each gene/transcript 

the geometric mean is calculated across all samples (rows of data). In each sample, counts for 

every gene are divided by this mean, and the median of these results (each sample), giving the 

size factor for that sample. Shrinkage estimation is used to calculate dispersion and fold-

changes, with a model fit procedure calculating a dispersion value for each gene. A negative 

binomial model is fitted for each gene, and the Wald or LRT test is then used to calculate 

significance for each gene. DESeq2 also uses several data filters, such as outlier counting, the 

elimination of genes with normalised count means below a DESeq2 determined threshold, and 

removal through Cooks’ distance (a method to determine important datapoints [usually 

outliers] that may warrant investigation, validation, or possibly deletion). For more detail on 

DESeq2 and its underlying algorithms see Love, et al. (2014). 

 

5.2.7. Custom R-Script: “DESeq2_Functions.R” 

The R-script “DESeq2_Functions.R” uses data either generated directly or imported from a 

saved file from the previous R-script “tximportAfterKallisto.R” to quality check the mRNA 

expression data and find the genes or RNA transcripts that show statistically significant 

differential expression. At the core of this script are a number of DESeq2 functions including 

quality control graphs, estimation of size factors, estimation of dispersion, and tests for 

significance through the likelihood ratio test (LRT) or Wald test. The R-packages "ggplot2" 

(Wickham, 2016), "RColorBrewer" (Neuwirth, 2014), "DESeq2" (Love, et al., 2014), 

"pheatmap" (Kolde, 2015), and "ReportingTools" (Huntley, et al., 2013), are additionally used 
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within this script for data manipulation and production of graphical and tabular summaries. 

Quality control plots, and graphical and text summaries are written to new folders. The full 

“DESeq2_Functions.R” script can be found in the Appendix E, section 0 

 

5.2.8. GO-Slims and the AgBase web service 

The “AgBase” website, hosted by the Mississippi State University, has a number of web-based 

tools available to investigate protein functionality through gene ontology. Output from the 

AgBase website is used by several of my custom R-scripts. A list of UniProt identifiers found 

to have statistically significant differential expression is generated and is manually fed into the 

web tool “GO-Retriever”, where the gene ontology terms are retrieved for each protein. The 

resulting tabular file is then manually fed into the “GO SLIM Viewer” tool to summarise the 

functionality of the initial protein list in the form of GO Slims. A final zipped file is produced, 

which is manually saved and extracted to a target directory for analysis. 

 

5.2.9. Custom BLAST database construction 

To perform custom blast searches, the ‘blast’ suite of programs was installed from NCBI 

(‘ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/’). A custom BLAST database 

for wheat was then constructed using the ‘customblastdb’ using the default parameters and the 

wheat amino acid FASTA file as described in section 4.2.19 (Chapter 4). 

 

5.2.10. Custom R-Script: “gtfToFastaThenBlastx.R” 

This R-script “gtfToFastaThenBlastx.R” gathers information from the wheat Gene Transfer 

Format (GTF) file, the wheat genome sequence file (FASTA file), and the list of significant 

differentially expressed genes determined by the “DESeq2_Functions.R” script to ultimately 

enable a BLASTX search. Prior to running this script, the GTF and wheat-genome-FASTA file 
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were obtained from the Ensembl Plants FTP site for wheat: 

ftp://ftp.ensemblgenomes.org/pub/plants/release-

36/gtf/triticum_aestivum/Triticum_aestivum.TGACv1.36.gtf.gz. 

ftp://ftp.ensemblgenomes.org/pub/plants/release-

36/fasta/triticum_aestivum/dna/Triticum_aestivum.TGACv1.dna.toplevel.fa.gz 

The script loads these ensemble plant files into memory, as well as the list of significant 

transcripts determined by the DESeq2_Functions.R script. This R-script then invokes and 

directs two command line programs. The first, “gnugrep”, creates a wheat GTF subset file that 

only maps transcripts that match the previously determined (by “DESeq2_Functions.R”) 

transcripts of interest. The second, “gffread”, from the cufflinks package (Trapnell, et al., 

2010), uses this GTF subset to produce a wheat FASTA file that only contains genes which 

match significant transcripts (i.e. genes and their isoforms). The “seqinr” R-package (Charif 

and Lobry, 2007) and custom scripting then subsets the FASTA file further so that it only 

contains genes of interest (no isoforms). This final FASTA file is then submitted to a BLASTX 

search that transcribes the DNA sequence of each gene into an amino acid sequence that is then 

matched against the same protein FASTA file that has been used for previous protein searches 

for wheat (Chapter 4, 4.2.19). The resulting tabular data is then filtered and summarised using 

the “Dplyr” R-package (Wickham, et al., 2017) and the data saved as both a “.csv” file and a 

text file list of UniProt protein identifiers, the latter of which is used to gather Gene Ontology 

information through the “GO-Retriever” web service (5.2.8). The script 

“gtfToFastaThenBlastx.R” can be found in Appendix D, section D.8.3. 

 

5.2.11. Custom R-Script: “extraGOScript.R” 

The “extraGOScript.R” uses a number of custom R-functions, as well as the “GO.db” (Carlson, 

2016) and “Annotation.Dbi” (Pagès, et al., 2017), to gather gene ontology and GO-Slims data, 

and add this data to the tabular result of the BLASTX search (Custom R-Script: 
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“gtfToFastaThenBlastx.R”, see Chapter 5, section 5.2.10). The GO-Slims data is first merged 

into a single table and then manipulated into a form that allows the merging with the BLASTX 

summary data file. This extended table of BLAST and gene ontology results for each identifier 

is then saved to file. 

 

5.2.12. Custom R-Script: “makeFastaFromTable.R” 

This script loads the “…blastxPlusFullInfo.csv” file that was created from the custom R-script 

‘extraGOScript.R’ described above section 5.2.11. The UniProt identifier and its sequence is 

read and used by the script to create a FASTA amino acid file, which is then saved to disk. 

 

5.2.13. Custom BLASTP 

In order to extract the same set of ‘UniProt’ identifiers described in Chapters 3 and 4, a custom 

‘blastp’ was then run using the custom protein database created by ‘makeblastdb’ from NCBI 

(download from: “ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/.”), in 

conjunction with the FASTA amino acid file created by the R-script ‘makeFastaFromTable.R’ 

(5.2.12). The tabular output was then saved to disk for further analysis. This output included 

the type of protein identifiers described in Chapters 3 and 4, as well as their brief functional 

descriptions. 

 

5.3. Results 

5.3.1. RNA extraction method selection 

In order to extract the purest and least degraded mRNA, we tested three different common 

RNA extraction methods as described in section 5.2.2. Based on the qualitative analysis of the 

agarose gel of the RNA extracts, all three methods were found to provide good quality 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
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extractions. Of the three methods, ‘method 2’ was selected as it appeared to have the least 

amount of RNA degradation (Figure 5.1). 

 

 
Figure 5.1. RNA sample runs on a 1% agarose gel, visualised with gel red showing three different RNA 
extraction methods (see section 5.2.2 for details). Samples A and B were extracted using ‘method 1’; C and D  
  from ‘method 2’; and F, G, H, I and J from ‘method 3’. St = molecular weight marker. 

 

5.3.2. RNASeq – data quality 

RNASeq was applied to examine the mRNA found in wheat grain from the Spitfire cultivar 

that had been grown at three different geographical/farm locations (Breeza, TARC, and Terry 

Hie Hie [THH]). After receiving the sequencing analysis results from the Australian Genome 

Research Facility (AGRF), they were put through our bioinformatics pipeline until we had 

counts of raw transcripts. Examination of the raw read count revealed some variation between 

samples and sample groups, ranging from 7 to 9.2 million, which based on previous experience 

seems acceptable. Normalisation of the raw read count was applied, however, it made little 

difference (Figure 5.2). Density plots of the data showed a good result with Spitfire wheat 

samples from Breeza, TARC and THH, each neatly overlaying one another, thus indicating 

that the sample preparation and RNA sequencing run was relatively consistent for all samples 

(Figure 5.3). Correlation plots of each sample’s raw counts showed that the samples clustered 
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into their sample groups, except for one of the TARC replicates (Figure 5.4). The principal 

component analysis (PCA) plot of the raw count data was acceptable, although the samples 

from the TARC and THH farms plotted further apart than those from Breeza (Figure 5.5).  

 

 
Figure 5.2. Raw and normalised transcript counts for all Spitfire wheat grain samples grown at three different 
farm locations. 
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Figure 5.3. Density plots of transcript counts for all nine Spitfire wheat samples grown at three different farm 
locations. 

 

 

 
Figure 5.4. Correlation heat-map for the nine Spitfire wheat samples grown at three different 
geographical/farm locations. Note: only replicate-1 grown at the TARC farm clusters outside of its sample 
group. 
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Figure 5.5. PCA of raw RNA transcript counts from the nine Spitfire wheat samples grown at Breeza, TARC, and 
THH farms. 
 

 

The scatterplot of counts displaying mean versus variance (Appendix D, Figure D.1) shows 

that the data followed a negative binomial distribution as required by the DESeq2 R-package 

to examine the differential expression of RNA transcripts. Similarly, the plot of dispersion 

estimates revealed that the data is appropriate for assumptions made by DESeq2 (Figure 5.6). 
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Figure 5.6. Plot of dispersion estimates for all transcripts 

 

 
Functions within DESeq2 were used to calculate differential expression of RNA transcripts. 

Two sample groups (with three biological replicates each group) were used as ‘input’ – to make 

a comparison. Following data manipulation (as described in the methods), the differential 

expression of transcripts in all nine samples is ‘output’ and the likelihood-ratio-test (LRT), or 

Wald test, was applied to determine statistical significance. Initially all possible combinations 

of the three sample groups (farm locations) were compared, ignoring the reversal of 

combinations (Table 5.1). The samples grown at Breeza were compared against those grown 

at TARC using the Wald test. The comparison revealed 338 transcripts with a p-adjusted value 

below the 0.05 threshold, while the same sample comparison using LRT resulted in 613 

transcripts of statistical significance (p = <0.05). When Breeza was compared against THH, it 

resulted in even higher numbers of transcripts – 1,264 (Wald test) and 2,350 (LRT) – that were 
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statistically significant. The TARC comparison with THH resulted in 17 (Wald test) and 41 

(LRT) statistically significant transcripts. 

 

5.3.2.1. Breeza against TARC, and Breeza against THH comparisons 

The Breeza and TARC comparisons, as well as the Breeza and THH comparisons listed in the 

first four rows of Table 5.1, shows a large range in significant transcripts detected (from 238 

up to 2,350). However, the underlying data of statistically significant transcripts seemed poor. 

There was little difference between the PCA from raw transcript counts and the PCA of counts 

showing statistical significance (Figure 5.5; Appendix D, Figure D.6). Heat-maps had 

incomplete clustering of samples into groups, and volcano plots showed an abrupt transition 

from non-significant transcripts to significant transcripts (Figure D.2, Figure D.3, and Figure 

D.5; Parts A to D). 

 

5.3.2.2. TARC against THH comparison 

In the remaining comparisons shown in Table 1 (TARC and THH), there were relatively small 

numbers of significant transcripts detected, with 17 for the LRT and 41 for the Wald test. The 

sample groups clustered as expected in PCAs and heat-maps (Appendix D, Figure D.6 

andFigure D.4. Same as for Figure D.2, except the comparison was between TARC and THH 

transcript expression data. LRT (A) or the Wald test (B) were also used to discover transcripts 

with statistically significant differential expression. 
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5.3.3. D.3 Volcano plots of sample-transcript expression 

 
In the remaining comparisons shown in Table 1 (TARC and THH), there were relatively small 

numbers of significant transcripts detected, with 17 for the LRT and 41 for the Wald test. The 

sample groups clustered as expected in PCAs and heat-maps (Appendix D, Figure D.7,Figure 

D.8,Figure D.9 and Figure D.11- parts E and F), and the volcano plots had a smoother transition 

from points of non-significant transcripts to significant transcripts (Appendix D, Figure D.10 

– parts E and F). 

Table 5.1 Results of tests for significance of transcripts using the LRT or Wald test. 

Comparison Test for significance Significant transcripts count 
Breeza compared to TARC LRT 238 
Breeza compared to TARC Wald 613 
Breeza compared to THH LRT 1,264 
Breeza compared to THH Wald 2,350 
TARC compared to THH LRT 17 
TARC compared to THH Wald 41 

 

There were large differences in the numbers of significant transcripts detected between the six 

comparisons (Table 5.1). The same comparisons were then examined in reverse orientation. 

Similarly, the differences between largest and smallest counts were substantial. The obtained 

results of the significant transcript counts are shown in Table 5.3. TARC compared to Breeza 

yielded 581 significant transcript counts using LRT (to determine significance) while the Wald 

test of the same comparison resulted in 974. The comparison between THH and Breeza yielded 

the identification of 954 (LRT) and 1769 (Wald test). Finally, the comparison between THH 

and TARC yielded the identification of 17 (LRT) and 41 (Wald test) significant transcripts. 
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Table 5.2. Summary of sample group clustering for heat-maps, PCAs, and spread of significant data on volcano 
plot. 

Comparison Complete 
heatmap sample 
clustering 
( or ) 

Complete PCA 
sample clustering 
( or ) 

Spread of 
significant data on 
volcano plot 
( or ) 

Breeza compared to TARC    
Breeza compared to TARC    
Breeza compared to THH    
Breeza compared to THH    
TARC compared to THH  *  
TARC compared to THH  *  

* = One sample outlier for both TARC and THH replicates 
For original data refer to Appendix D, Figure D.2 toFigure D.6 
 
 
Table 5.3. Results of tests for significance using the reverse orientation of sample comparisons as shown in Table 
1. 

Comparison Test for significance Significant transcripts count 
TARC compared to Breeza LRT 581 
TARC compared to Breeza Wald 974 
THH compared to Breeza LRT 954 
THH compared to Breeza Wald 1769 
THH compared to TARC LRT 17 
THH compared to TARC Wald 41 

 

The resulting data from the comparisons of Table 5.3 was highly analogous to that of Table 

5.1. The first four comparisons listed in Table 5.3 showed a large range of statistically 

significant transcripts varying from 581 to 1,769. The average to poor quality of this data was 

also reflected in the PCA, heat-map and volcano plots as summarised in Table 5.4 (original 

data in Appendix, Figure D.7 to Figure D.11). In the comparison from the last two rows of 

Table 5.3 (THH compared to TARC), 17 transcripts with a p-value 0.05 or less were detected 

by LRT, while 41 were detected with the Wald test. Note: the result of the previous comparison 

(in the reverse order) of TARC compared to THH (Table 5.1, rows 5 and 6), also resulted in 

17 and 41 statistically significant transcripts. 
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Table 5.4. Summary of sample group clustering for heat-maps, PCAs, and spread of significant data on volcano 
plot. 

Comparison 

Complete heat-
map sample 
clustering 
( or ) 

Complete PCA 
sample clustering 
( or ) 

Spread of 
significant data 
on volcano plot 
( or ) 

TARC compared to Breeza 2   
TARC compared to Breeza 2   
THH compared to Breeza 1   
THH compared to Breeza 1   
THH compared to TARC    
THH compared to TARC    

* = One sample outlier for both TARC and THH replicates 
For original graphs refer to Appendix, Figure D.7 to Figure D.11. 
 

The DESeq2 was used to examine all three-sample groups in an ANOVA-like approach to 

determine differential expression. Only LRT was used to calculate significance using this 

method, revealing 1767 transcripts that had p-values less than 0.05. The analysis was repeated 

with removing transcripts that had less than 10 counts across all nine samples. This resulted in 

a slight increase in significant transcripts to 1880. In reducing the complexity of the data, we 

picked an arbitrary p-adjusted value of 0.0001, which resulted in 253 significant transcripts 

across the nine samples. Despite the reduced number, the clustering of samples did not 

improve. A heat-map of the results is shown in Figure 5.7 and the volcano plot and PCA in 

Appendix D, Figure D.13 and Figure D.14. 
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Figure 5.7. Heat-map of differentially expressed transcripts after AVOVA-like comparison across three sample 
groups and selecting data with a p-adjusted value of 0.0001 or lower after testing for significance using LRT. 

 

 

Twelve-sample group comparisons were made, including one comparison across all three-

sample groups. These comparisons and the resulting counts of significant transcripts are 

summarised in (Figure 5.8). For all of the sample comparisons involving wheat grain that was 

grown and harvested at Breeza farm, the counts ranged from high (338) to extremely high 

(2350). None of these results were symmetrical. When applying the Wald test, Breeza 

compared with TARC gave a different result to TARC compared against Breeza. In contrast, 

samples that did not include Breeza in the comparison, and using the same test for significance, 

gave the same answer no matter the order of comparison. Samples grown on TARC farm 

compared against those grown at THH farm resulted in 17 transcripts with differential 

expression and for the same comparison using the Wald test 41 transcripts with differential 

expression were found. The reverse order (THH compared to TARC) gave the same results.  
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Figure 5.8. Summary bar graph of significant transcripts found after various comparisons that used either the 
LRT or Wald test. 

 

 

The higher quality of data for the THH and TARC farm comparison shown in Figure 5.8, led 

us to examine further the 41 transcripts detected with differential expression. This was done 

due to the fact that they give the same number of significant transcripts no matter the 

comparison order. After a BLASTX search on each transcript sequence, we detected 30 unique 

proteins from the initial list of 41 transcripts. The results are listed in Table 5.5 (rows with no 

protein match for a transcript were removed), including a few examples of multiple transcripts 

that code for one protein (each highlighted in a colour). The UniProt Identifiers were then input 

into ‘GORetriever’ and ‘GOSlimViewer’ at the ‘AgBase’ web site 

(http://agbase.arizona.edu/cgi-bin/tools/index.cgi) and a list of gene ontology ‘Slims’ was 
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obtained and counted. Figure 5.9 is a summary of the Slims result, showing protein 

functionality for the 30 significant proteins derived from the 41 transcripts. We observe that 

functionality associated with the categories of metabolic process, cellular process, and 

carbohydrate metabolic process are in the top three for the parent gene ontology term of 

Biological Process. The parent term of cellular component, membrane, intracellular, and cell 

categories are in the top three categories, while catalytic activity, binding and transferase 

activity are in the top three for the gene ontology parent term of Molecular Function. 
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Table 5.5. List of unique transcripts and their uniport identifier equivalents. Duplicate uniprot identifiers are 
highlighted in the same colour. 

Transcript Id Uniprot Id Protein names 
TRIAE_CS42_7AL_TGACv1_557592_AA1783720.1 M7YYP5 Copper transport protein ATOX1 

TRIAE_CS42_6AL_TGACv1_473156_AA1529060.1 Q9ZP25 Small heat shock protein Hsp23.5 

TRIAE_CS42_5DL_TGACv1_435700_AA1453740.1 M8A900 Putative aldehyde oxidase-like protein 

TRIAE_CS42_2AL_TGACv1_094696_AA0301730.1 Q9ZPJ1 S-adenosylmethionine decarboxylase proenzyme (EC 4.1.1.50) 

TRIAE_CS42_5BL_TGACv1_404534_AA1303340.1 M8A900 Putative aldehyde oxidase-like protein 

TRIAE_CS42_1DL_TGACv1_063686_AA0229870.1 M7YXH3 Cytochrome P450 71D10 

TRIAE_CS42_6AL_TGACv1_471999_AA1516750.1 Q94KM0 HSP17 (Small heat shock protein HSP17.8) 

TRIAE_CS42_3DS_TGACv1_273985_AA0934140.1 Q94KM0 HSP17 (Small heat shock protein HSP17.8) 

TRIAE_CS42_5BL_TGACv1_404407_AA1298710.1 M7Z1U5 Uncharacterized protein 

TRIAE_CS42_2DL_TGACv1_158033_AA0506710.1 A0A1D5UH06 Uncharacterized protein 

TRIAE_CS42_3DS_TGACv1_274198_AA0935000.1 M8A6E3 Bowman-Birk type trypsin inhibitor 

TRIAE_CS42_5AL_TGACv1_374738_AA1207960.1 O82072 Phospoenolpyruvate carboxylase 

TRIAE_CS42_1DL_TGACv1_061207_AA0188800.1 M8A7A1 UDP-glucose 4-epimerase GEPI48 

TRIAE_CS42_2AS_TGACv1_113492_AA0356900.1 M8A8W1 Premnaspirodiene oxygenase 

TRIAE_CS42_2BL_TGACv1_130219_AA0406550.1 M7Z617 26S proteasome non-ATPase regulatory subunit 1 homolog 

TRIAE_CS42_6DS_TGACv1_544490_AA1748530.1 A0A1D6BGV3 Uncharacterized protein 

TRIAE_CS42_1AL_TGACv1_002363_AA0041170.1 M7YXH3 Cytochrome P450 71D10 

TRIAE_CS42_5AL_TGACv1_375837_AA1227780.1 Q84XZ4 Mitogen-activated protein kinase 

TRIAE_CS42_6BL_TGACv1_500556_AA1606450.1 Q43210 Phenylalanine ammonia-lyase (EC 4.3.1.24) 

TRIAE_CS42_6BS_TGACv1_513261_AA1636450.1 A0A1D6AVB2 Uncharacterized protein 

TRIAE_CS42_U_TGACv1_640869_AA2077820.1 M7Z5S2 Uncharacterized protein 

TRIAE_CS42_5DL_TGACv1_434877_AA1443000.1 M7ZZ82 Uncharacterized protein 

TRIAE_CS42_6BS_TGACv1_514543_AA1661230.1 A0A1D6AZL6 Uncharacterized protein 

TRIAE_CS42_6BL_TGACv1_500879_AA1611210.1 A0A1D6AR04 Uncharacterized protein 

TRIAE_CS42_2AL_TGACv1_093415_AA0279740.1 A0A1D6RIE6 Uncharacterized protein 

TRIAE_CS42_4DS_TGACv1_361964_AA1174830.1 A5A8T7 17.6kDa heat-shock protein 

TRIAE_CS42_7BL_TGACv1_577339_AA1872660.1 Q6T484 Class I chitinase (EC 3.2.1.14) 

TRIAE_CS42_6DL_TGACv1_527510_AA1705040.1 M8A8A8 Protein WAX2 

TRIAE_CS42_5AL_TGACv1_376126_AA1232370.1 M7ZFG4 Cellulose synthase-like protein E6 

TRIAE_CS42_1AL_TGACv1_001031_AA0023780.1 M8AGD8 Monosaccharide-sensing protein 2 

TRIAE_CS42_3DS_TGACv1_271732_AA0906990.1 M7YJ37 60S ribosomal protein L9 

TRIAE_CS42_5BL_TGACv1_418722_AA1368920.1 M7ZZ82 Sucrose-phosphate synthase 1 

TRIAE_CS42_3DS_TGACv1_273985_AA0934130.1 A5A8T7 17.6kDa heat-shock protein 

TRIAE_CS42_3DS_TGACv1_272328_AA0919130.1 M8ARL2 Sucrose-phosphate synthase 1 

TRIAE_CS42_5AS_TGACv1_392807_AA1264980.1 M7ZT04 Germin-like protein 8-4 

TRIAE_CS42_4AL_TGACv1_290422_AA0985250.1 M8A472 Elongation factor 2 
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Figure 5.9. Bar graph of gene ontology ‘Slims’ counts (y-axis) per go summary term (x-axis), derived originally 
from the 41 RNA transcripts detected from the THH and TARC comparison using the Wald test. 

 

  



 174 

5.4. Discussion 

5.4.1. Sample choice 

In this analysis, the mRNA expression from Spitfire wheat that was grown at three different 

farms locations (Breeza, TARC, and THH) was examined. There were three biological 

replicates per sample group from each farm location. This was done in the hope to correlate 

proteomic data from Chapters 2 and 4. While appreciating a previous study on grain samples 

having limited success in comparing proteomic results with transcriptomic results (Barros, et 

al., 2010), another study was more successful (Garcia-Seco, et al., 2017). The potential 

knowledge gain and the reality of ever improving technology and software, as well as 

expanding databases, made this attempt to find a correlation between significantly expressed 

RNA transcripts and proteins (putative biomarkers) an investigation worth attempting. 

 

5.4.2. Quality of extracted RNA 

As for any experiment, a critical factor in a reliable result is the quality of the initial input. This 

is especially true of next generation RNA sequencing (also known as RNASeq) due to the vast 

amounts of amplified product that results from the initial input of RNA. Degraded RNA, or an 

incomplete extraction of RNA will result in an unrepresentative pool. This error will then be 

magnified by the subsequent amplification of RNA fragments. To avoid this problem, three 

methods of RNA extraction were investigated. The first, by Li and Trick (2005), reported 

improvements in avoiding sample solidification (due to starch) and the problem of starch co-

precipitating with RNA. The second used the same principle of keeping RNA in separate 

phases but used a different solubilisation buffer and other chemicals. The third was simply the 

Tri-Reagent manufacturers (ThermoFisher) recommended protocol. As seen in Figure 5.1, 

there was little difference in the quality of RNA extracted by the three methods. After reviewing 
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the possible choices described above, the second method was chosen because it had the least 

RNA degradation. 

 

5.4.3. Initial RNA-Seq data quality 

The extracted RNA was sent to Australian Genomic Research Facility (AGRF) for next 

generation sequencing of the sample mRNA and the results were delivered in the form of 

FASTQ files which were then further analysed as described in the methods section. All the 

initial analyses led to the conclusion that the data was of good quality. The FASTQ files were 

of a suitable and consistent size (approximately 5 Mb), which is a simple but effective marker 

of quality, and the density plots showed little variation (Figure 5.3). All indications pointed to 

there not being an issue with the RNA input or the sequencing run. However, the correlation 

plot and PCA (Figure 5.4 and Figure 5.5) of each sample’s transcript counts did show some 

variation between samples. The spacing of sample point in the PCA showed greater variation 

within each of the THH and TARC sample groups and greater similarity between sample 

groups, especially when compared to Breeza. Although this variation was not excessive, it was 

something to remain aware of due to the comparative method employed by the R-package 

(DESeq2) that was used for determining differential expression and assigning significance to 

the thousands of transcripts detected in each sample. Potential issues with sample variation will 

be discussed below. 

 

5.4.4. The form of sample data 

Another critical point in RNA-Seq analysis is determining whether the data is suitable for the 

software that will be used to calculate statistically significant differential expression. Numerous 

prior experimental results had shown that RNA data was generally observed to fit the negative 

bionomical distribution, and many software packages used to search for differentially 
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expressed RNA transcripts have this as underlying core assumptions. Together with the R-

package, we have chosen to use DESeq2. For this experiment, scatter plots of the three sample 

groups (Figure D.1) and a plot of dispersion estimates (Figure 5.6) all verified that the data 

presented here does indeed display a negative binomial distribution. 

 

5.4.5. Statistically significant differential expression 

Although DESeq2 uses multiple algorithms and is capable of looking at multiple factors within 

the data, for this experiment DESeq2 was used to determine statistically significant differential 

expression of transcripts in only two ways as described in the methods section of this chapter. 

The first was via a comparison of two sample groups (similar to a T-test) to determine 

differential expression, followed by the use of the likelihood ratio test (LRT) or Wald test to 

assess significance. The second is a comparison of all three sample groups (ANOVA-like 

comparison) and can only use the LRT to test significance. Initially, only six combinations of 

two sample groups each were tested (Table 5.1), with a resulting large variation in differentially 

expressed transcripts being detected for all six combinations, ranging from a high of 2,350 to 

a low of 17 (Table 5.1). The higher results (in the thousands) of differentially expressed 

transcripts, especially 2,350 for Breeza compared to THH, seemed too high to be possible. 

Current proteomic technology has only enabled the discovery of up to 3,000 different proteins 

from seeds and only a fraction of these will be differentially expressed between samples due to 

differing genetics or environmental effects (biotic and abiotic). Moreover, as described in the 

results section, some of the underlying data is not robust, with inconsistent heat-maps, 

correlation plots and PCAs of results from comparisons. The exception being the comparison 

between samples from TARC and THH farms. For these two locations, the samples within their 

respective sample groups cluster well together in heat-maps, correlation plots and PCAs, 
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although the number of significantly expressed transcripts is low, with only 17 detected using 

LRT and 41 using the Wald test. 

 

5.4.6. Sample group comparisons 

5.4.6.1. Reverse comparisons 

The unusual results described in section 5.4.5 were further investigated by looking at the same 

comparisons in reverse order. A similarly large variation in the number of significantly 

expressed proteins was found for all (reversed) comparisons except that of THH compared 

TARC. Between the two sample groups of THH and TARC, the direction of comparison made 

no difference to the number of differentially expressed transcripts. Whether the comparison 

was TARC compared to THH, or THH compared to TARC, the result was always 17 when the 

LRT was used to determine significance and 41 when the Wald test was invoked. Moreover, 

when comparing these two sample groups, the resulting heat-maps, correlation plots and PCAs 

(Appendix D, Figure D.9; Figure D.10 and Figure D.11, Parts E and F), all displayed clustering 

of samples into their sample groups. 

 

5.4.6.2. ANOVA-like comparison 

An ANOVA-like comparison of all three sample groups was also performed but resulted in 

1,880 significantly expressed transcripts. Even when the adjusted p-value for significance was 

reduced to 0.0001 the quality of the data quality of these new results did not improve as this 

did not improve the PCAs, heat-maps and correlation plots (Figure D.12, Figure D.13 and 

Figure D.14). Indeed, the sample clustering on the graphs looked equal whether the adjusted 

p-value was set to 0.05 (1,880 significant transcripts detected) or down to 0.0001 (253 

transcripts detected). 
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5.4.6.3. Breeza sample group 

The Breeza sample group comparisons results appeared unreliable. Figure 5.8 shows that when 

the Breeza sample group is involved in comparisons to determine differentiation and 

significance, the result has either too many false positives or too many false negatives. This 

can be a result of the variation in the raw transcript data observed in the PCA of Figure 5.5. It 

is likely that the tight plotting of Breeza samples to each other in the PCA, and the much looser 

plotting of TARC and THH samples to their own sample groups is unbalancing the underlying 

data. A similar example of this in much greater detail is given by the DESeq2 authors 

(http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#if-i-

have-multiple-groups-should-i-run-all-together-or-split-into-pairs-of-groups). To this end, 

because of the good underlying data, only the differentially expressed transcripts resulting from 

the TARC and THH comparison with the Wald test were further investigated for function and 

relatedness to putative biomarkers reported in Chapter 2 and 4. 

 

5.4.7. Functional summaries to assist biomarker discovery 

Having found 41 transcripts with differential expression, we then investigated whether the 

proteins that they coded for were related to the proteins that originated from the same sample 

group tested in Chapter 4 (Spitfire wheat grown at Breeza, THH, and TARC farms). No 

common proteins between the two studies could be found, however, there was only one with 

good homology found (chitinase; approximately 95%). The 30 proteins derived from the 41 

significant transcripts did diminish the probability of successful matches, considering the small 

number of putative biomarkers discovered in the proteomics analysis (Table 4.8). 

 

5.4.8. Conclusion 

Although differentially expressed transcripts of statistical significance were observed in this 

experiment, sample expression data variation within sample groups negatively influenced the 

http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#if-i-have-multiple-groups-should-i-run-all-together-or-split-into-pairs-of-groups
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#if-i-have-multiple-groups-should-i-run-all-together-or-split-into-pairs-of-groups
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results. The number of transcripts of interest was either unreliable (in terms of data quality), 

or, had their numbers reduced due to data noise. Nonetheless, with the correct comparisons, 

reliable data of statistically significant differential expression of RNA transcripts was obtained 

and the protein products determined. From functional descriptions derived from UniProt, there 

were many similarities between the putative biomarkers described in Chapter 4 and the derived 

proteins from the transcripts of interest found in this chapter. However, when the amino acid 

sequences were compared (blastp), only one chitenase was found to be homologous (95%) 

between proteins identified in Chapter 4 and 5. 
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Chapter 6. Conclusion and Future Directions 

6.1. Conclusion 

This thesis firstly introduced the history of grasses and their path to the successor crops wheat 

and barley that we consume today. The challenges in extracting wheat proteins for analysis was 

been addressed in Chapter 2, with a comparative study validating the ‘combined-phenol’ as the 

preferred choice for extracting proteins for proteomic analysis. This method gave the best yield 

and protein diversity. The samples were analysed by unlabelled shotgun proteomics which 

identified differential expression and the presence/absence of proteins. The optimised protein 

extraction method was applied in the labelled proteomics analysis of barley and wheat (Chapter 

3 and 4, respectively). Despite not being able to detect proteins with presence/absence across 

proteins groups, the labelled proteomic analysis was worth the gain in the number of potential 

biomarkers and the higher throughput in processing the grain samples. In both chapters, there 

was success in identifying many candidate proteins for biomarkers, which will allow for future 

work to be conducted in how these biomarkers can be applied in the test-kits for barley and 

wheat through ELISA. Transcriptomics (RNAseq) identified statistically significant 

differentially expressed mRNA transcripts encoding proteins in the wheat grain transcriptomes 

of Spitfire cultivar, which showed variation between the three different farm locations. 

However, no correlation was found between the putative biomarkers identified by 

transcriptomics compared with TMT-labelled proteomics. In the following section (Future 

Directions), some potential approaches and considerations for the development of test-kits 

utilising the discovered protein biomarkers and potential applications for the mRNA analysis 

of samples will be discussed. 
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6.2. Future directions 

6.2.1. Protein biomarker-based testing 

 
The potential biomarkers identified in this study indicate variably expressed proteins within 

each cultivar and the same cultivar at different farm locations caused by the specific conditions 

on that farm at that point in time. The growing conditions will likely change for every 

consecutive crop grown at that farm and thus the levels of biomarker will most likely change. 

To address this, a reference sample of the same cultivar for that particular harvest date will be 

required in order to create a ‘fingerprint’ using multiple protein biomarkers to match to the 

reference sample. Cultivars from farms that have had identical or very similar growing 

conditions such as temperature, soil nutrients, rain and plant pathogens will likely show similar 

proteomic profiles, which may require additional analysis. This may require an additional 

‘fingerprint’ assay that utilises a different set of biomarkers. The annual change in conditions 

will require a yearly survey of biomarker expression levels, from samples representing standard 

locations and cultivars. However, once the appropriate biomarkers have been determined they 

themselves should not change, and hence the wheel will not need to be reinvented but only 

maintained. 

 

The selection of potential biomarkers for identifying cultivars is anticipated to be different from 

the biomarkers used to identify farm location, since the latter are most likely to be related to 

biotic and/or abiotic stress response. Also, biomarker proteins that have overlap (similar 

proteins) between the farm location and cultivar identification biomarker proteins may not be 

very useful for either purpose. Considering the above, the potential biomarkers for cultivar 

identification are likely to be proteins that are associated with grain characteristics such as 

endosperm proteins and general house-keeping proteins. Biotic and abiotic stress proteins may 

also be applied in the cultivar identification as long as they do not overlap with those proteins 
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specific to farm location; especially cultivars that are known to be more resistant to biotic 

and/or abiotic stress. 

 

Following the results gathered in this thesis, it is suggested the future direction of this project 

is to develop a test-kit assay that can detect levels of a small number of the most likely candidate 

putative biomarkers. The test-kits could involve an immuno-chemistry assay-based test, such 

as an ELISA, or a colour strip test (antibody-based) similar to a pregnancy test. In the case of 

the ELISA, multiple wells of a 96-well plate can be utilised with each well containing a 

different antibody generating a specific biomarker fingerprint. A positive result may be where 

each well in the plate needs to indicate antigen binding. Similarly, the colour strip test method 

is envisaged to be lined with a number of antibodies and the fingerprint compared to a 

previously determined reference chart of a particular cultivar or farm. Moreover, as mentioned 

above, once chosen the biomarker proteins should not need to be changed from year to year, 

but baseline readings will need to be established annually for all farms and the cultivars they 

grow. These tests will need to be simple and robust so that someone in the field (such as a 

farmer) could perform it with the minimal amount of test equipment or laboratory.  

 

6.2.1. RNA biomarker based testing 

Investigations into the wheat grain transcriptome have shown that while discovery of 

statistically significant differential expression of mRNA is possible, the encoded proteins were 

not matched with the protein biomarkers that were discovered in the proteomics analysis. 

Hence more work will need to be done since the transcriptomic results were rather limited as 

only the Spitfire cultivar was analysed. Further work in this approach may provide mRNA 

sequences for RNA-based assays test-kits that could be developed that target the most 

promising putative mRNA biomarkers. At the moment, the disadvantage of this approach is 
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that it requires laboratory-based equipment and specially trained staff capable of performing 

cDNA synthesis, PCR amplification and qPCR. However, with the advancement of sequencing 

technology, future analysis may be done using a hand-held sequencing device.



 184 

Appendix A.  

 

 
Figure A.1. Percentage of protein extracted from starting amount of grain powder 
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Appendix B.  

B.1 Barley grain weights 
Table B.1. 200 grain sample weights for all barley cultivars samples grown at Breeza, TARC, and THH. 

Sample Code Farm Location Cultivar Biological 
Replicate 

Harvest 
Year 

Measured 200-
weight 
(g) 

Br-Comm-BR1-2013 Breeza Commander 1 2013 9.151 
Br-Comm-BR2-2013 Breeza Commander 2 2013 9.166 
Br-Comm-BR3-2013 Breeza Commander 3 2013 9.198 
Br-Gaird-BR1-2013 Breeza Gairdner 1 2013 8.907 
Br-Gaird-BR2-2013 Breeza Gairdner 2 2013 8.996 
Br-Gaird-BR3-2013 Breeza Gairdner 3 2013 8.779 
TARC-Comm-BR1-2013 TARC Commander 1 2013 8.797 
TARC-Comm-BR2-2013 TARC Commander 2 2013 8.896 
TARC-Comm-BR3-2013 TARC Commander 3 2013 8.841 
TARC-Gaird-BR1-2013 TARC Gairdner 1 2013 7.857 
TARC-Gaird-BR2-2013 TARC Gairdner 2 2013 7.857 
TARC-Gaird-BR3-2013 TARC Gairdner 3 2013 7.834 
TARC-Hind-BR1-2013 TARC Hindmarsh 1 2013 8.44 
TARC-Hind-BR2-2013 TARC Hindmarsh 2 2013 8.317 
TARC-Hind-BR3-2013 TARC Hindmarsh 3 2013 8.444 
THH-Comm-BR1-2013 Terry Hie Hie Commander 1 2013 7.822 
THH-Comm-BR2-2013 Terry Hie Hie Commander 2 2013 7.812 
THH-Comm-BR3-2013 Terry Hie Hie Commander 3 2013 7.818 
THH-Gaird-BR1-2013 Terry Hie Hie Gairdner 1 2013 8.587 
THH-Gaird-BR2-2013 Terry Hie Hie Gairdner 2 2013 8.573 
THH-Gaird-BR3-2013 Terry Hie Hie Gairdner 3 2013 8.64 

 

Table B.1.1. P-value results, examining 200-weight differences of barley samples between farm locations, based 
on table B.1. 

Comparison (farms) P-adj 
TARC-Breeza 0.009391905 
Terry Hie Hie-Breeza 0.003742214 
Terry Hie Hie-TARC 0.717354511 
ANOVA (overall): 0.002765008 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Table B.1.2. P-value results, examining 200-weight differences of barley samples between cultivars, based on 
table B.1. 

Comparison (cultivars) P-adj 
Gairdner-Commander 0.782016199 
Hindmarsh-Commander 0.814506869 
Hindmarsh-Gairdner 0.989548869 
ANOVA (overall): 0.7393875 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Table B.1.3. P-value results, examining 200-weight differences between Commander and Gairdner barley 
cultivars grown at a single location (either Breeza, THH, or TARC). 

Comparison (cultivars) P-adj 
Commander-Gairdner 0.04226 
Commander-Gairdner 0.0005444 
Commander-Gairdner 0.0003966 

Note: P-value calculated by t-test. Hindmarsh barley was not included as it was grown only at one location  
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B.1b Barley extracted protein weights 

 

Table B.1b. Barley - weight of extracted proteins in µg 

Sample Code Farm location Cultivar 
Biological 
replicate 

Harvest 
Year 

Sample 
protein 
weight_µg 

TARC-Comm-BR1-2013 TARC Commander 1 2013 1535 
TARC-Comm-BR2-2013 TARC Commander 2 2013 1240 
TARC-Comm-BR3-2013 TARC Commander 3 2013 460 
TARC-Gaird-BR1-2013 TARC Gairdner 1 2013 725 
TARC-Gaird-BR2-2013 TARC Gairdner 2 2013 1660 
TARC-Gaird-BR3-2013 TARC Gairdner 3 2013 1400 
TARC-Hind-BR1-2013 TARC Hindmarsh 1 2013 1715 
TARC-Hind-BR2-2013 TARC Hindmarsh 2 2013 1265 
TARC-Hind-BR3-2013 TARC Hindmarsh 3 2013 1275 
THH-Comm-BR1-2013 Terry Hie Hie Commander 1 2013 1000 
THH-Comm-BR2-2013 Terry Hie Hie Commander 2 2013 1050 
THH-Comm-BR3-2013 Terry Hie Hie Commander 3 2013 740 
THH-Gaird-BR1-2013 Terry Hie Hie Gairdner 1 2013 875 
THH-Gaird-BR2-2013 Terry Hie Hie Gairdner 2 2013 1435 
THH-Gaird-BR3-2013 Terry Hie Hie Gairdner 3 2013 1045 
Br-Comm-BR1-2013 Breeza Commander 1 2013 625 
Br-Comm-BR2-2013 Breeza Commander 2 2013 935 
Br-Comm-BR3-2013 Breeza Commander 3 2013 845 
Br-Gaird-BR1-2013 Breeza Gairdner 1 2013 690 
Br-Gaird-BR2-2013 Breeza Gairdner 2 2013 1065 
Br-Gaird-BR3-2013 Breeza Gairdner 3 2013 810 

 

Table B.1b.1. P-value results, examining protein sample weight (µg) differences of barley samples between farm 
locations, based on table B.2. 

Comparison (farms) P-adj 
TARC-Breeza 0.049883874 
Terry Hie Hie-Breeza 0.540867339 
Terry Hie Hie-TARC 0.374182754 
ANOVA (overall): 0.05863339 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Table B.1b.2. P-value results, examining protein sample weight (µg) differences of barley samples between 
cultivars, based on table B.2. 

Comparison (cultivars) P-adj 
Gairdner-Commander 0.636321 
Hindmarsh-Commander 0.097082 
Hindmarsh-Gairdner 0.288946 
ANOVA (overall): 0.1149416 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
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Table B.1b.3. P-value results, examining protein sample weight (µg) differences between Commander and 
Gairdner cultivars grown at a single location (either Breeza, THH, or TARC). 

Comparison (cultivars) P-adj 
Commander-Gairdner (Breeza) 0.7303 
Commander-Gairdner (THH) 0.3938 
Commander-Gairdner (TARC 0.6887 

Note: P-value calculated by t-test. 
 

 
Peptide sample weights: P-values 
 

Table B.1b.4. P-value results of peptide sample weight (µg) differences between Commander and Gairdner 
cultivars grown at a single location (either Breeza, THH, or TARC). 

Comparison (cultivars) P-adj 
Commander-Gairdner (Breeza) 0.2999 
Commander-Gairdner (THH) 0.7286 
Commander-Gairdner (TARC 0.269 

Note: P-value calculated by t-test. Hindmarsh barley was not included as it was grown only at one site. 
 

 

 
Figure B.a. The average weight of sample protein extract for barley grain samples grown at TARC, THH, and 
Breeza farms (error bars are ± standard deviation). 
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Figure B.b. The average weight of sample protein extracts for Commander, Gairdner, and Hindmarsh barley 
cultivars grown at TARC, THH, and Breeza farms (error bars are ± standard deviation). 
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B.2 Density plots and box plots of initial protein expression data 

 

 
A) TMT set-1 

 
 

B) TMT set-2 

 
 

C) TMT set-3 

 
 

Figure B.1. Density plots of matched and filtered sample proteins from barley: A = TMT set-1, B = TMT set-2, C 
= TMT set-3. 
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B.3 Data summary for TMT sets 1 to 3: matched and filtered proteins. 

 

B.3.1 TMT set-1 matched and filtered protein data 

 
A 

 
B 
 

 
 

C 

 
 

Figure B.2. (A) Heatmap, (B) PCA, and (C) Correlation Plot summaries for TMT set-1 consisting of matched and 
filtered protein expression (before putative biomarker discovery) from barley grain samples. 
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B.3.2 TMT set-2 matched and filtered protein data 

 

Figure B.3. (A) Heatmap, (B) PCA, and (C) Correlation Plot summaries for TMT set-2 sample data consisting of 
matched and filtered protein expression (before putative biomarker discovery) from barley grain samples. 
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B.3.3 TMT set-3 matched and filtered protein data 

 

Figure B.4. (A) Heatmap, (B) PCA, and (C) Correlation Plot summaries for TMT set-3 sample data consisting of 
matched and filtered protein expression (before putative biomarker discovery) from barley grain samples. 
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B.4 Data summary for TMT sets 1 to 3: putative biomarkers. 

 

B.4.1 TMT set-1: Putative biomarker proteins 

 

Figure B.5. Heatmap and PCA summaries of TMT set-1 sample data consisting of putative biomarker protein 
expression. 

 
  

A 

 
 

 
B 

 

C 

 
 



 194 

B.4.2 TMT set-2: Putative biomarker proteins 

 

Figure B.6. Heatmap and PCA summaries of TMT set-2 sample data consisting of putative biomarker protein 
expression extracted from barley grain samples. 
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B.4.3 TMT set-3: Putative biomarker proteins 

 

Figure B.7. Heatmap and PCA summaries of TMT set-3 sample data consisting of putative biomarker protein 
expression extracted from barley grain samples. 
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Table B.1. TMT set-3: List of putative biomarker proteins from barley grain  
Barley fasta ID Uniprot Protein Description 
MLOC_24874.2 M0VEJ0 Late embryogenesis abundant protein 
AK360814 F2DAA1 PEBP family protein 
MLOC_15248.2 F2EG62 Succinate dehydrogenase iron sulfur subunit 
MLOC_70664.2 F2D961 Lipoxygenase 
MLOC_37378.1 M0VUI3 Lipoxygenase 
AK355790 F2CVY7 Phosphorylase 
MLOC_44617.2 M0W7R3 Nucleolar protein 5 
AK248995 Q40004 Ribulose bisphosphate carboxylase small chain 
AK354890 F2CTD8 Defensin 
AK248920 P34893 10 kDa chaperonin 
AK365236 F2DMW8 UPF0061 protein 
AK376628 F2EKF1 Defensin D2 
MLOC_72146.1 M0YRS3 UDP glycosyltransferase 
MLOC_4986.2 M0WDU5 Amine oxidase 
MLOC_22184.1 F2CTI9 Microtubule associated protein family protein putative expressed 
MLOC_65690.1 F2E6F3 Coatomer subunit gamma 
AK355447 F2CUZ5 Glycogen synthase 
MLOC_48429.1 M0WCD7 rRNA N glycosidase 
MLOC_44240.1 M0W6F2 Acidic endochitinase 
MLOC_55976.1 M0X060 Adenine nucleotide alpha hydrolases like protein 
MLOC_10567.1 M0UFT6 Inosine 5' monophosphate dehydrogenase 
MLOC_43331.1 M0W433 Carbonic anhydrase 

 

B.5 GO Slims – Summary of functionality for putative biomarker proteins 
 

 
Figure B.8. TMT set-2 GO-Slims functional summary of putative biomarkers discovered (proteome comparison 
across cultivars). Only data with a count of 2 or more are included. 
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Figure B.9. TMT set-3 GO-Slims functional summary of putative biomarkers discovered (proteome comparison 
across cultivars). Only data with a count of 2 or more are included. 

 

B.6 R-scripts mentioned in Chapter 3 
 

B.6.1 ‘PCA.R 

 
# BiocManager::install("UniProt.ws", version = "3.8") 
# # Install "ggbiplot" if not already installed 
# install_github("vqv/ggbiplot") 
options(scipen=999) 
if(.Platform$OS.type == "windows"){ 
 Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jdk1.8.0_191') 
} 
library("UniProt.ws") 
library("pheatmap") 
library("tidyr") 
library("rJava") 
detach("package:rJava", unload=TRUE) 
library("ggbiplot") 
library("dplyr") 
library("RColorBrewer") 
library("gridExtra") 
library("grid") 
library("tcltk") 
library("rChoiceDialogs") 
library("ggplot2") 
library("readxl") 
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#################### SAVE HEATMAP Function #################### 
#Save pheatmap function 
save_pheatmap <- function(x, filename, width=1500, height=800) { 
 stopifnot(!missing(x)) 
 stopifnot(!missing(filename)) 
 png(filename = filename, width = width, height=height) 
 grid::grid.newpage() 
 grid::grid.draw(x$gtable) 
 dev.off() 
} 
 
unfactorize <- function(df){ 
 for(i in which(sapply(df, class) == "factor")) df[[i]] = 
as.character(df[[i]]) 
 return(df) 
} 
 
####!Function to split a dataframe of "AK" and "MLOC" barley identifiers 
into two vectors 
splitBarleyIds = function(idInput){ 
 #Find only the idInput beginning with "AK" 
 akIdentifiers = as.character(idInput[grep("AK[0-9]*|AK[0-9]*\\..*", 
idInput[[1]]), ]) 
 #If you need to you can remove the decimal point from the Identifier 
 akIdentifiers = gsub("(AK.*)(\\.[0-9]*$)", "\\1", akIdentifiers) 
 #Find only the identifiers beginning with "MLOC" 
 mlocIdentifiers = as.character(idInput[grep("MLOC_[0-9]*|MLOC_[0-
9]*\\..*", idInput[[1]]), ]) 
 #Remove the decimal point from the Identifier 
 #mlocIdentifiers = gsub("(AK.*)(\\.[0-9])", "\\1", mlocIdentifiers) 
 allList = list(akIdentifiers = akIdentifiers, mlocIdentifiers = 
mlocIdentifiers) 
 return(allList) 
} 
 
 
getUniprotFromMlocAk = function(idsList){ 
 #Load the "UniProt.ws" package into R 
 library("UniProt.ws") 
 #Get "ak" identifers from the list named "idsList" 
 #From "splitBarleyIds" function 
 akIdentifiers = unlist(idsList["akIdentifiers"]) 
 #Get "MLOC" identifers from the list named "idsList" 
 #From "splitBarleyIds" function 
 mlocIdentifiers = unlist(idsList["mlocIdentifiers"]) 
 #Set the Taxon number for Barley (Wheat = 4565) 
 speciesId <- UniProt.ws(taxId=112509) 
 #Key Type or Database the program looks into for "AK" identifiers 
 ak_kt = "EMBL/GENBANK/DDBJ" 
 #Key Type or Database the program looks into 
 mloc_kt = "ENSEMBL_GENOMES PROTEIN" 
 #Data columns that will be output 
 columns <- "UNIPROTKB" 
 #The command to retrive UniProt Identifiers from "AK" Identifiers (if 
they exist) 
 akRetrieve <- UniProt.ws::select(speciesId, akIdentifiers, columns, 
ak_kt) 
 #Change the name of the first column in the akRetrieve data.frame 
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 names(akRetrieve)[1] = "Identifier_Input" 
 #The command to retrive UniProt Identifiers from "MLOC" Identifiers 
(if they exist) 
 mlocRetrieve = UniProt.ws::select(speciesId, mlocIdentifiers, columns, 
mloc_kt) 
 #Change the name of the first column in the mlocRetrieve data.frame 
 names(mlocRetrieve)[1] = "Identifier_Input" 
 #Join the tables together 
 retrieveAll = rbind(akRetrieve, mlocRetrieve) 
 return(retrieveAll) 
} 
 
convertBarleyIds = function (AllIdsColumn) { 
 idInput = AllIdsColumn 
 #List of MLOC and AK Identifiers 
 idsList = splitBarleyIds(idInput) 
 #Get Uniprot Ids from MLOC and AK Identifier List 
 #Result is a data.frame 
 idsListSplit = getUniprotFromMlocAk(idsList) 
 #Find the rows of the data.frame that have NULL (missing) values in 
UniProt column 
 getIdsWithMissingUniprot = 
idsListSplit[is.na(idsListSplit$UNIPROTKB),] 
 #Remove the UniProt column and turn the AK and MLOC Ids into a character 
vector 
 getVectorOfMissingIds = getIdsWithMissingUniprot$Identifier 
 if (length(getVectorOfMissingIds) > 0) { 
  #Make a small FASTA file from the vector of AK and MLOC Ids 
  mkSmallFASTAList = makeSmallFASTAList(getVectorOfMissingIds) 
#Input a vector of characters ("Identifiers") 
  #Use the "mkSmallFASTA" list in memory to perform a BLASTP 
  #The result is a dataframe of MLOC and AK Identifiers in one 
column 
  #UniProt identifiers in the other column 
  blastpTable = blastpResult(mkSmallFASTAList) 
  # Remove the descriptions and keep identifiers 
  blastpTable$Identifier_Input = gsub("(MLOC_[0-9]*|MLOC_[0-
9]*\\.[0-9]*|AK[0-9]*|AK[0-9]*\\.[0-9]*)(_)(.*)", 
             
       "\\1", 
blastpTable$Identifier_Input) 
  # Remove any decimal numbers from identifiers so the vector will 
match 
  blastpTable$Identifier_Input = gsub("(AK[0-9]*)\\.[0-9]*", 
"\\1", blastpTable$Identifier_Input) 
  # The blastpTable and idsListSplit are combined, giving a full 
list of Uniprot and AK, MLOC Identifiers 
  tableOfIdsAndBlast = idsListAndBlastptable(blastpTable, 
idsListSplit) 
  # Remove any rows with missing data 
  # tableOfIdsAndBlast = na.omit(tableOfIdsAndBlast) 
  return(tableOfIdsAndBlast) 
 } 
 tableOfIdsAndBlast = idsListSplit 
 return(tableOfIdsAndBlast) 
} 
 
 
getBarleyDescription = function(barleyIds, proteinFastaFile) { 
 library("seqinr") 
 #Load the "fasta" file into a list format via the "seqinr" package 
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 fastaFile <- read.fasta(file = proteinFastaFile, seqtype = "AA", 
as.string = TRUE) 
 # Seqinr function "getName" to get sequence names 
 seqNames = getName(fastaFile) 
 #Tidy up the names so that "getAnnot" will work well 
 listNamesFasta = gsub("(MLOC_[0-9]*|MLOC_[0-9]*\\.[0-9]*|AK[0-
9]*|AK[0-9]*\\.[0-9]*)(_)(.*)", "\\1", names(fastaFile)) 
 names(fastaFile) = listNamesFasta 
 trimmedFasta = fastaFile[charmatch(barleyIds, names(fastaFile))] 
 #Get annotations from each listed item (protein) 
 trimmedFastaAnnot = getAnnot(trimmedFasta) 
 #Remove any NULL entries from the "trimmedFastaAnnot" list 
 trimmedFastaAnnot = trimmedFastaAnnot[!sapply(trimmedFastaAnnot, 
is.null)] 
 trimmedFastaAnnot = unlist(trimmedFastaAnnot) 
 trimmedFastaAnnot = gsub("(MLOC_[0-9]*|MLOC_[0-9]*\\.[0-9]*|AK[0-
9]*|AK[0-9]*\\.[0-9]*)(_)(.*)", "\\1\\|\\3", trimmedFastaAnnot) 
 trimmedFastaAnnot = gsub(">", "", trimmedFastaAnnot) 
 trimmedFastaAnnot = strsplit(trimmedFastaAnnot, split = "\\|", fixed = 
FALSE, perl = FALSE, useBytes = FALSE) 
 ##### Function Call ##### 
 finalIdAndDescriptionDF = getDescriptionDF(trimmedFastaAnnot) 
 ##### 
 finalIdAndDescriptionDF["description"] = 
gsub(".*(unknown.protein).*|.*(unknown.function).*", "Unknown protein", 
ignore.case = TRUE, finalIdAndDescriptionDF$description) 
 return(finalIdAndDescriptionDF) 
} 
 
 
getWheatDescription = function(wheatIds, proteinFastaFile){ 
 library("seqinr") 
 #Load the "fasta" file into a list format via the "seqinr" package 
 fastaFile <- read.fasta(file = proteinFastaFile, seqtype = "AA", 
as.string = TRUE) 
 # Seqinr function "getName" to get sequence names 
 seqNames = getName(fastaFile) 
 #Tidy up the names so that "getAnnot" will work well 
 listNamesFasta = gsub("^.*\\|(.*)\\|.*", "\\1", names(fastaFile)) 
 names(fastaFile) = listNamesFasta 
 trimmedFasta = fastaFile[charmatch(wheatIds, names(fastaFile))] 
 #Get annotations from each listed item (protein) 
 trimmedFastaAnnot = getAnnot(trimmedFasta) 
 #Remove any NULL entries from the "trimmedFastaAnnot" list 
 trimmedFastaAnnot = trimmedFastaAnnot[!sapply(trimmedFastaAnnot, 
is.null)] 
 trimmedFastaAnnot = unlist(trimmedFastaAnnot) 
 idList = gsub("^.*\\|(.*)\\|.*", "\\1", trimmedFastaAnnot) 
 trimmedFastaDesc = gsub("(^.*\\|.*\\|)(.*) OS=.*$", "\\2", 
trimmedFastaAnnot) 
 trimmedFastaDesc = gsub("^[A-Z|0-9]*_[A-Z|0-9]* ", "", 
trimmedFastaDesc) 
 #trimmedFastaDesc = gsub(" ", "_", trimmedFastaDesc) 
 finalIdAndDescriptionDF = data.frame(idList, trimmedFastaDesc) 
 names(finalIdAndDescriptionDF) = c("Identifier_Input", "description") 
 return(finalIdAndDescriptionDF) 
} 
 
#--------------------- END FUNCTIONS ---------------------# 
#--------------------------------------------------------# 
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if(.Platform$OS.type == "windows"){ 
 designPath = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall", 
caption = "Select the heatmap design", 
             
   multi = FALSE, filters = NULL, index = 1) 
} else { 
 designPath = tk_choose.files(default = 
"~/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall", caption = 
"Select the heatmap design", 
             
   multi = FALSE, filters = NULL, index = 1) 
} 
 
if(.Platform$OS.type == "windows"){ 
 dataTablePath = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall", 
caption = "Select the table of values for heatmap", 
             
    multi = FALSE, filters = NULL, index = 1) 
} else { 
 dataTablePath = tk_choose.files(default = 
"~/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall", caption = 
"Select the table of values for heatmap", 
             
    multi = FALSE, filters = NULL, index = 1) 
} 
 
if(.Platform$OS.type == "windows"){ 
 fastaDatabaseFile = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/DataBases/Protein/Databases_used_in_Mascot
_Search", caption = "FASTA database path", 
             
    multi = FALSE, filters = NULL, index = 1) 
} else { 
 fastaDatabaseFile = tk_choose.files(default = 
"~/Google_Drive/PhD/DataBases/Protein/Databases_used_in_Mascot_Search", 
caption = "FASTA database path", 
             
    multi = FALSE, filters = NULL, index = 1) 
} 
 
if(.Platform$OS.type == "windows"){ 
 SlimsSummaryAllFile = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall/Sl
ims_Summary_Outputfiles", caption = "Full Slims table (fullSlimsTable.csv)", 
             
      multi = FALSE, filters = NULL, index = 1) 
} else { 
 SlimsSummaryAllFile = tk_choose.files(default = 
"~/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall/Slims_Summary_O
utputfiles", caption = "Full Slims table (fullSlimsTable.csv)", 
             
      multi = FALSE, filters = NULL, index = 1) 
} 
 
studyDirPath = dirname(dataTablePath) 
studyName = gsub(".*/(.*)$", "\\1", studyDirPath) 
outDir = paste0(studyDirPath, "/Pheatmap_Outputfiles") 
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if (!file.exists(outDir)) { 
 dir.create(outDir) 
} else { 
 print("File Exists!") 
} 
 
 
designFile = gsub("^.*\\/(.*)\\.xlsx$", "\\1", designPath) 
dataTableFile = gsub("^.*\\/(.*)\\.xlsx$", "\\1", dataTablePath) 
 
 
TMTDesign = read_excel(path = designPath, sheet = "design", range = 
cell_cols("A:C")) 
TMTDesign = TMTDesign[colSums(!is.na(TMTDesign)) > 0] 
 
 
 
dataTable = read_excel(path = dataTablePath, sheet = "AllData", range = 
cell_cols("A:O")) 
dataTable = dataTable[order(dataTable$Clusters),] 
# dataTable = na.omit(dataTable) 
names(dataTable)[1] = "Identifier_Input" 
 
 
 
 
 
 
#### Determine whether the identifiers are Wheat or Barley and start the 
initial tidy of data 
prepPro_AllIds = dataTable 
if (any(grepl("^MLOC_|^AK[0-9]*", prepPro_AllIds[[1]]))) { 
 species = "Barley" 
 proteinFastaFile = fastaDatabaseFile 
} else { 
 species = "Wheat" 
 proteinFastaFile = fastaDatabaseFile 
} 
print(species) 
#prepPro_AllIds = prepPro_AllIds[order(prepPro_AllIds$Clusters),] 
########## Make a dataframe of IDs only ########## 
AllIdsColumn = prepPro_AllIds[1] 
names(AllIdsColumn) = "Identifier_Input" 
# Original Identifiers and then add uniprot Ids plus descriptions 
start.time <- Sys.time() 
if (species == "Barley") { 
 SlimsSummaryAllsub = read.csv(SlimsSummaryAllFile, stringsAsFactors = 
FALSE) 
 SlimsSummaryAllsub = SlimsSummaryAllsub[ , c("Identifier_Input", 
"uniprot", "description")] 
 Identifier_Input = AllIdsColumn 
 Identifier_Input$Identifier_Input = gsub("(^AK.*)\\..$", "\\1", 
Identifier_Input$Identifier_Input) 
 idsTable = left_join(Identifier_Input , SlimsSummaryAllsub, by = 
"Identifier_Input") 
} else if (species == "Wheat") { 
 uniprot = AllIdsColumn 
 names(uniprot) = "uniprot" 
 idsTable = cbind(AllIdsColumn, uniprot) 
 Identifier_Input = idsTable$Identifier_Input 
 descriptionTable = getWheatDescription(Identifier_Input, 
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proteinFastaFile) 
 idsTable$description = 
descriptionTable$description[match(idsTable$Identifier_Input, 
descriptionTable$Identifier_Input)] 
} 
end.time <- Sys.time() 
time.taken <- end.time - start.time 
time.taken 
 
 
 
sampleNames = names(dataTable)[grep("^R1.X(.*$)", names(dataTable))] 
comparisonLabel = unique(gsub("^.*\\.(.*$)", "\\1", sampleNames)) 
# Save the row to be deleted if needed 
TMTDesignLabelRow = TMTDesign[grep(comparisonLabel, TMTDesign$Label), ] 
TMTDesign = TMTDesign[grep(comparisonLabel, TMTDesign$Label, invert = TRUE), 
] 
 
 
sampleDF = data.frame(Sample = sampleNames, stringsAsFactors = FALSE) 
sampleDF$Label = gsub("^R1.X(.*$)", "\\1", sampleDF$Sample) 
sampleDF$Label = gsub("(^.*)\\..*$", "\\1", sampleDF$Label) 
 
fullDesign = TMTDesign %>% full_join(sampleDF, by = "Label") 
fullDesign = fullDesign[ ,c(ncol(fullDesign), 1:3)] 
fullDesign[ , "Sample"] = gsub("^R1\\.X(.*)$", "\\1", fullDesign$Sample) 
     
 
        # #This is the full design to 
aid in making other plots 
        #  #such as violin plots 
        # fullDesign = read.csv(file = 
designPath, header = TRUE, stringsAsFactors = FALSE) 
        # names(fullDesign)[1] = 
"Sample" 
        # fullDesign[ , "Sample"] = 
gsub("^R1\\.X(.*)$", "\\1", fullDesign$Sample) 
 
 
 
#The design to be used for making a matrix for the heatmap 
Design = fullDesign 
rowNamesDesign = Design$Sample 
    rowNamesDesign = gsub("^R1.X(.*$)", "\\1", rowNamesDesign) 
    Design[,"Sample"] = NULL 
    rownames(Design) = rowNamesDesign 
 
 
#Merge datatable and dataTable to get identifiers 
dataTable$Identifier_Input = gsub("(^AK.*)\\..$", "\\1", 
dataTable$Identifier_Input) 
dataTable = dataTable %>% full_join(idsTable, by = "Identifier_Input") 
idsAndDescriptions = dataTable[ ,c(1,ncol(dataTable))] 
    names(dataTable) = gsub("^R1.X(.*$)", "\\1", 
names(dataTable)) 
namesWanted = names(dataTable[c(1,ncol(dataTable))]) 
dataTable = dataTable[ ,c(namesWanted, rowNamesDesign)] 
dataTable = unfactorize(dataTable) 
dataTable = na.omit(dataTable) 
dataTableNums = dataTable[,rowNamesDesign] 
#dataTable = cbind(idsAndDescriptions, dataTableNums) 
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write.csv(dataTable, file = paste0(outDir, "/All_", dataTableFile, 
"_dataTable.csv"), row.names = FALSE) 
dataTableWriteLog = cbind(dataTable[ , c(1,2)], log10(dataTable[ , 
c(3:11)])) 
write.csv(dataTableWriteLog, file = paste0(outDir, "/All_", dataTableFile, 
"_dataTable_log10_All.csv"), row.names = FALSE) 
 
# dataTable = read.csv(file = dataTablePath, row.names = 1, header = TRUE, 
stringsAsFactors = FALSE) 
dataTable.log.ids = log10(dataTable[ ,rowNamesDesign]) 
row.names(dataTable.log.ids) = dataTable$Identifier_Input 
 
### Annotate our heatmap (optional) 
annotation <- data.frame(Group = Design[,"Group"], 
row.names=row.names(Design)) 
 
# Reorder Density levels 
annotation$Group = factor(annotation$Group, levels = 
unique(annotation$Group)) 
choiceColours = c("red", "green", "blue", "yellow", "orange", "purple") 
 
AnnCol = choiceColours[1:(length(levels(annotation$Group)))] 
names(AnnCol) <- levels(annotation$Group) 
 
 
AnnColour <- list( 
 Group = AnnCol) 
 
 
 
 # Clustering Distance options = "euclidean", "maximum", "manhattan", 
"canberra",  
 # "binary" or "minkowski" 
 # CLustering Method options = "ward.D", "ward.D2", "single", 
"complete", "average",  
 # "mcquitty", "median", "centroid" 
sigProteins_heatmap = pheatmap(dataTable.log.ids, color = 
colorRampPalette(c("lawngreen", "black", "firebrick1"))(100), 
     cluster_rows = TRUE, show_rownames=TRUE, annotation= 
annotation, annotation_colors = AnnColour, border_color = NA, 
     width = 10, height = 8, fontsize = 10, fontsize_row 
= 6, scale = "row", annotation_names_col = FALSE, 
     clustering_distance_cols = "manhattan", 
clustering_method = "complete", 
     legend_breaks = c(-2,-1,0,1,2,2.1), main = "", 
legend_labels = c("-2", "-1", "0", "1", "2", "  \n\n(log10)")) 
      
 
# Draw grobs to improve the look of the graph 
fillerRectangle = grid.rect(width = 0.5, height = 0.5, gp = gpar(fill = 
"white", col = "white", alpha = 0.8)) 
grid.arrange(fillerRectangle, sigProteins_heatmap[[4]], fillerRectangle, 
nrow=1, widths = c(1,20,1)) 
 
# Save the grobs (including the pheatmap heatmap) to disk 
png(paste0(outDir, "/All_", dataTableFile, "_ids.png"), width = 10, height 
= 8, res = 600, units = "in") # Open a new pdf file 
grid.arrange(fillerRectangle, sigProteins_heatmap[[4]], fillerRectangle, 
nrow=1, widths = c(1,20,1)) 
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dev.off() 
 
# With protein descriptions in the Y-axis instead of identifiers 
dataTable.log.desc = log10(dataTable[ ,rowNamesDesign]) 
rowNamesHeatmapDesc = make.names(gsub(" ", "_", dataTable$description), 
unique = TRUE) 
row.names(dataTable.log.desc) = rowNamesHeatmapDesc 
 
# The below graph is too messy with the descriptions 
  # sigProteins_heatmap_with_Desc = pheatmap(dataTable.log.desc, 
color = colorRampPalette(c("lawngreen", "black", "firebrick1"))(100), 
  #           
     cluster_rows = TRUE, show_rownames=TRUE, 
annotation= annotation, annotation_colors = AnnColour, border_color = NA, 
  #           
     width = 10, height = 8, fontsize = 10, 
fontsize_row = 6, scale = "row", annotation_names_col = FALSE, 
  #           
     clustering_distance_cols = "manhattan", 
clustering_method = "complete", 
  #           
     legend_breaks = c(-2,-1,0,1,2,2.1), main = "", 
legend_labels = c("-2", "-1", "0", "1", "2", "  \n\n(log10)")) 
  #  
  #  
  # # Draw grobs to improve the look of the graph 
  # fillerRectangle = grid.rect(width = 0.5, height = 0.5, gp = 
gpar(fill = "white", col = "white", alpha = 0.8)) 
  # grid.arrange(fillerRectangle, sigProteins_heatmap[[4]], 
fillerRectangle, nrow=1, widths = c(1,20,1)) 
  #  
  # # Save the grobs (including the pheatmap heatmap) to disk 
  # png(paste0(outDir, "/All_", dataTableFile, "_desc.png"), width 
= 10, height = 8, res = 600, units = "in") # Open a new pdf file 
  # grid.arrange(fillerRectangle, 
sigProteins_heatmap_with_Desc[[4]], fillerRectangle, nrow=1, widths = 
c(1,20,1)) 
  # dev.off() 
 
 
#-------------------- PCA --------------------# 
dataTable2 = dataTable[c(1,3:11)] 
dataTableTranspose = t(dataTable2) 
dfNames = dataTableTranspose[1,] 
dataTableTranspose = data.frame(dataTableTranspose, stringsAsFactors = 
FALSE) 
dataTableTranspose = dataTableTranspose[c(2:nrow(dataTableTranspose)), ] 
names(dataTableTranspose) = dfNames 
dataTableTranspose$TMT = row.names(dataTableTranspose) 
dataTableTranspose = dataTableTranspose[c(ncol(dataTableTranspose), 
1:(ncol(dataTableTranspose)-1))] 
row.names(dataTableTranspose) = NULL 
dataTableTranspose[ , c(2:ncol(dataTableTranspose))] = 
as.data.frame(lapply(dataTableTranspose[,c(2:ncol(dataTableTranspose))], 
as.numeric)) 
 
 
dataTableTranspose["Group"] = NA 
 
for (i in 1:nrow(dataTableTranspose)) { 
 dataTableTranspose$Group[i] = 
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fullDesign$Group[match(dataTableTranspose$TMT[i], fullDesign$Sample)] 
} 
dataTableTranspose = dataTableTranspose[c(1, c(ncol(dataTableTranspose), 
2:(ncol(dataTableTranspose)-1)))] 
# Generate PCA 
dataTablePCA_Result <- prcomp(dataTableTranspose[ , 
c(3:ncol(dataTableTranspose))], 
          center = TRUE, 
          scale. = TRUE) 
# Prepare graph 
ir.species = dataTableTranspose[ ,"Group"] 
 
library(ggbiplot) 
PCA_Plot <- ggbiplot(dataTablePCA_Result, obs.scale = 1, var.scale = 1, 
var.axes = FALSE, 
       groups = ir.species, ellipse = TRUE,  
       circle = TRUE) 
PCA_Plot <- PCA_Plot + scale_color_discrete(name = '') 
PCA_Plot <- PCA_Plot + theme(legend.direction = 'horizontal',  
        legend.position = 'top') 
 
print(PCA_Plot) 
PCA_Plot_Figure = ggsave(file = paste0(outDir, "/All_", dataTableFile, 
"_PCA_plot.png"), plot = PCA_Plot, h=6, w=6, units="in",dpi=600) 
 
#-------------------- END PCA --------------------# 
#-------------------------------------------------# 
 
 
 
 
#################### VIOLIN AND BOX PLOTS #################### 
# prepare data for Violin Plot 
#New dataframe name 
dataTable.log.df = dataTable.log.ids 
#Add column 
dataTable.log.df$Protein = row.names(dataTable.log.ids) 
# Re-arrange columns to improve table 
dataTable.log.df = dataTable.log.df[ ,c(ncol(dataTable.log.df), 
1:(ncol(dataTable.log.df)-1))] 
# Remove row names 
row.names(dataTable.log.df) = NULL 
# Make a wide table into a long table 
dataTable.log.df_long = dataTable.log.df %>% 
 gather(TMT, Log_10_value, 2:10) 
# Add a new column called "Group" and fill it with empty values 
dataTable.log.df_long["Group"] = NA 
 
 
# Refer to the design table to replace "TMT" with the appropriate "Group" 
name 
for (i in 1:nrow(dataTable.log.df_long)) { 
 dataTable.log.df_long$Group[i] = 
fullDesign$Group[match(dataTable.log.df_long$TMT[i], fullDesign$Sample)] 
} 
 
# Get order of x-axis from pheatmap 
col.order = sigProteins_heatmap$tree_col$order 
 
# Turn the "TMT" character variable into a factor and define levels 
dataTable.log.df_long$TMT = factor(dataTable.log.df_long$TMT, levels = 



 207 

unique(dataTable.log.df_long$TMT)) 
    # # Change the "TMT" levels to be the same as the x-
axis from the "pheatmap"  
    # dataTable.log.df_long$TMT = 
factor(dataTable.log.df_long$TMT, 
levels(dataTable.log.df_long$TMT)[col.order]) 
 
# Draw a violin plot 
violin_plot = ggplot(dataTable.log.df_long, aes(x = TMT, y = Log_10_value, 
fill = Group)) + 
 geom_violin() + ylab("Expression (Log10)") + theme(axis.text.x = 
element_text(angle = 90)) 
violin_plot 
ggsave(paste0(outDir, "/All_", dataTableFile, "_violin_plot.png")) 
 
#Draw a boxplot with points of data underlaying it 
box_plot = ggplot(dataTable.log.df_long, aes(x = TMT, y = Log_10_value, fill 
= Group)) + 
geom_boxplot(outlier.shape = NA) + ylab("Expression (Log10)") + 
theme(axis.text.x = element_text(angle = 270)) 
box_plot = box_plot + geom_point(colour = "black", size = 4, alpha = 0.2) 
box_plot 
ggsave(paste0(outDir, "/All_", dataTableFile, "_box_plot.png"), dpi = 600, 
units = "cm", width = 29.7, height = 21) 
 
#Draw a violin plot with points of data underlaying it 
dot_violin_plot = ggplot(dataTable.log.df_long, aes(x = TMT, y = 
Log_10_value, fill = Group)) + 
geom_violin() +  
ylab("Expression (Log10)") + theme(axis.text.x = element_text(angle = 90)) 
dot_violin_plot = dot_violin_plot + geom_point(colour = "black", size = 4, 
alpha = 0.2) 
dot_violin_plot 
ggsave(paste0(outDir, "/All_", dataTableFile, "_dot_violoin_plot.png"), dpi 
= 600, units = "cm", width = 29.7, height = 21) 
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Appendix C.  

 

C.1 Additional Figures and Tables for Chapter 4 

 

Table C.1. 200-grain weight measurements of samples 
Sample 
Code 

Location Variety Biological 
Replicate 

200-Weight 
(g) 

Br-Greg-BR1-2013 Breeza Gregory 1 6.64 
Br-Greg-BR2-2013 Breeza Gregory 2 6.74 
Br-Greg-BR3-2013 Breeza Gregory 3 7.20 
Br-Liv-BR1-2013 Breeza Livingston 1 6.83 
Br-Liv-BR2-2013 Breeza Livingston 2 6.65 
Br-Liv-BR3-2013 Breeza Livingston 3 6.34 
Br-Spit-BR1-2013 Breeza Spitfire 1 6.98 
Br-Spit-BR2-2013 Breeza Spitfire 2 6.28 
Br-Spit-BR3-2013 Breeza Spitfire 3 6.25 
TARC-Greg-BR1-2013 TARC Gregory 1 8.01 
TARC-Greg-BR2-2013 TARC Gregory 2 5.78 
TARC-Greg-BR3-2013 TARC Gregory 3 8.07 
TARC-Liv-BR1-2013 TARC Livingston 1 8.23 
TARC-Liv-BR2-2013 TARC Livingston 2 7.21 
TARC-Liv-BR3-2013 TARC Livingston 3 7.81 
TARC-Spit-BR1-2013 TARC Spitfire 1 7.72 
TARC-Spit-BR2-2013 TARC Spitfire 2 8.75 
TARC-Spit-BR3-2013 TARC Spitfire 3 9.15 
THH-Greg-BR1-2013 Terry Hie Hie Gregory 1 6.41 
THH-Greg-BR2-2013 Terry Hie Hie Gregory 2 6.64 
THH-Greg-BR3-2013 Terry Hie Hie Gregory 3 6.60 
THH-Liv-BR1-2013 Terry Hie Hie Livingston 1 7.56 
THH-Liv-BR2-2013 Terry Hie Hie Livingston 2 7.32 
THH-Liv-BR3-2013 Terry Hie Hie Livingston 3 7.64 
THH-Spit-BR1-2013 Terry Hie Hie Spitfire 1 8.30 
THH-Spit-BR2-2013 Terry Hie Hie Spitfire 2 8.24 
THH-Spit-BR3-2013 Terry Hie Hie Spitfire 3 8.45 
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Table C.1.1. P-value results, examining 200-weight differences of wheat samples between farm locations, based 
on table C.1. 

Comparison (farms) P-adj 
TARC-Breeza 0.005753 
Terry Hie Hie-Breeza 0.073735 
Terry Hie Hie-TARC 0.501337 
ANOVA (overall): 0.00690326 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Table C.1.2. P-value results, examining 200-weight differences of wheat samples between cultivars, based on 
table C.1. 

Comparison (cultivars) P-adj 
Livingston-Gregory 0.583322 
Spitfire-Gregory 0.075571 
Spitfire-Livingston 0.41124 
ANOVA (overall): 0.09108327 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Table C.1.3. P-value results, comparing 200-weight results between replicate samples of cultivars at Breeza only 
Comparison P-adj 
Livingston-Gregory 0.6326875 
Spitfire-Gregory 0.4286640 
Spitfire-Livingston 0.9219048 

 

Table C.1.4. P-value results, comparing 200-weight results between replicate samples of cultivars at TARC only 
Comparison P-adj 
Livingston-Gregory 0.8148216 
Spitfire-Gregory 0.2876709 
Spitfire-Livingston 0.5714488 

 

Table C.1.5. P-value results, comparing 200-weight results between replicate samples of cultivars at THH only 
Comparison P-adj 
Livingston-Gregory 0.000314869 
Spitfire-Gregory 0.000008341 
Spitfire-Livingston 0.000721514 

 

  



 210 

Table C.1b. Weight of extracted wheat proteins in µg 

Sample Code Farm location Cultivar 
Biological 
replicate 

Harvest 
Year 

Sample 
protein 
weight_µg 

Br-Greg-2013-BR1 Breeza Gregory 1 2013 1145 
Br-Greg-2013-BR1 Breeza Gregory 2 2013 1231 
Br-Greg-2013-BR1 Breeza Gregory 3 2013 1092 
Br-Spit-2013-BR1 Breeza Spitfire 1 2013 1428 
Br-Spit-2013-BR1 Breeza Spitfire 2 2013 1665 
Br-Spit-2013-BR1 Breeza Spitfire 3 2013 1679 
Br-Liv-2013-BR1 Breeza Livingston 1 2013 1412 
Br-Liv-2013-BR1 Breeza Livingston 2 2013 1354 
Br-Liv-2013-BR1 Breeza Livingston 3 2013 1469 
TARC-Greg-2013-BR1 TARC Gregory 1 2013 1238 
TARC-Greg-2013-BR1 TARC Gregory 2 2013 1145 
TARC-Greg-2013-BR1 TARC Gregory 3 2013 997 
TARC-Spit-2013-BR1 TARC Spitfire 1 2013 1433 
TARC-Spit-2013-BR1 TARC Spitfire 2 2013 1329 
TARC-Spit-2013-BR1 TARC Spitfire 3 2013 1290 
TARC-Liv-2013-BR1 TARC Livingston 1 2013 1128 
TARC-Liv-2013-BR1 TARC Livingston 2 2013 1101 
TARC-Liv-2013-BR1 TARC Livingston 3 2013 1234 
THH-Spit-2013-BR1 THH Spitfire 1 2013 1071 
THH-Spit-2013-BR1 THH Spitfire 2 2013 1216 
THH-Spit-2013-BR1 THH Spitfire 3 2013 1149 
THH-Greg-2013-BR1 THH Gregory 1 2013 1053 
THH-Greg-2013-BR1 THH Gregory 2 2013 945 
THH-Greg-2013-BR1 THH Gregory 3 2013 1145 
THH-Liv-2013-BR1 THH Livingston 1 2013 1172 
THH-Liv-2013-BR1 THH Livingston 2 2013 1056 
THH-Liv-2013-BR1 THH Livingston 3 2013 1083 

 

200-weights: P-values 
Table C.1b.1. P-value results, examining the differences of the weights of extracted proteins for wheat samples, 
between farm locations (based on table C.1). 

Comparison (farms) P-adj 
TARC-Breeza 0.005753 
Terry Hie Hie-Breeza 0.073735 
Terry Hie Hie-TARC 0.501337 
ANOVA (overall): 0.00690326 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Table C.1b.2. P-value results examining the differences of the weights of extracted proteins for wheat samples, 
between cultivars (based on table C.1). 

Comparison (cultivars) P-adj 
Livingston-Gregory 0.583322 
Spitfire-Gregory 0.075571 
Spitfire-Livingston 0.41124 
ANOVA (overall): 0.09108327 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
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Protein extraction weights: P-values 
 
Table C.1b.3. P-value results, comparing extracted protein weight (µg) of replicate samples between cultivars at 
Breeza only 

Comparison P-adj 
Livingston-Gregory 0.040825534 
Spitfire-Gregory 0.003657993 
Spitfire-Livingston 0.137896215 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Table C.1b.4. P-value results, comparing extracted protein weight (µg) of replicate samples between cultivars at 
TARC only 

Comparison P-adj 
Livingston-Gregory 0.92824275 
Spitfire-Gregory 0.05476470 
Spitfire-Livingston 0.08711153 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Table C.1b.5. P-value results, comparing extracted protein weight (µg) of replicate samples between cultivars at 
THH only 

Comparison P-adj 
Livingston-Gregory 0.6813164 
Spitfire-Gregory 0.3537254 
Spitfire-Livingston 0.8036222 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 

Peptide extraction weights: P-values 
Table C.1b.6. P-value results, comparing extracted peptide weight (µg) of replicate samples between cultivars 
at Breeza only 

Comparison (cultivars) P-adj 
Livingston-Gregory 0.02404184 
Spitfire-Gregory 0.04937812 
Spitfire-Livingston 0.82401919 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 
Table C.1b.7. P-value results, comparing extracted peptide weight (µg) of replicate samples between cultivars 
at TARC only 

Comparison P-adj 
Livingston-Gregory 0.6504982 
Spitfire-Gregory 0.9805424 
Spitfire-Livingston 0.7571680 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test. 
 
Table C.1b.8. P-value results, comparing extracted peptide weight (µg) of replicate samples between cultivars 
at THH only 

Comparison P-adj 
Livingston-Gregory 0.220239889 
Spitfire-Gregory 0.007378158 
Spitfire-Livingston 0.001342270 

Note: P-value calculated by one-way ANOVA, followed by the Tukey test.  
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C.2 Density plots and box plots of initial protein expression data 

 

 

A) TMT set-1 

 
 

B) TMT set-2 

 
 

Figure C.1. Density and box plots to check quality of data for TMT experiment 1, 2013 harvest for matched and 
filtered proteins from wheat grain. 
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C) TMT set-3 

 
 

D) TMT set-4 

 
 

Figure continued from above (Figure C.1) 
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C.3 Data summary for TMT sets 1 to 4: matched and filtered proteins. 
 

 

C.3.1 Heatmaps for TMT sets 1 to 4 for matched and filtered proteins 

 

A) TMT set-1 

 
 

B) TMT set-2 

 
 

Figure C.2. Heat-maps to check quality of data for TMT experiment 1, 2013 harvest for matched and filtered 
proteins from wheat grain.  
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C) TMT set-3 

 
 

D) TMT set-4 

 
 

Figure continued from above (Figure C.2) 
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C.3.2 PCAs for TMT sets 1 to 4 for matched and filtered proteins 

 

A) TMT set-1 

 
 

B) TMT set-2 

 
 

Figure C.3. PCAs to check quality of data for TMT experiment 1, 2013 harvest for matched and filtered proteins 
from wheat grain.  
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C) TMT set-3 

 
 

D) TMT set-4 

 
 

Figure continued from above (Figure C.3) 
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C.3.3 Correlation plots for TMT sets 1 to 4 for matched and filtered proteins 

 

A) TMT set-1 

 
 

B) TMT set-2 

 
 

Figure C.4. Correlation plots to check quality of data for TMT experiment 1, 2013 harvest for matched and 
filtered proteins from wheat grain.  
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C) TMT set-3 

 
 

D) TMT set-4 

 
 

Figure continued from Figure C.4. 

  



 220 

C.4 Data summary for TMT sets 1 to 4: Putative biomarker proteins. 
 

C.4.1 Heatmaps for TMT sets 1 to 4 for putative biomarkers 

 

A) TMT set-1 

 
 

B) TMT set-2 

 
 

Figure C.5. Heat-maps to check quality of data for TMT experiment 1, 2013 harvest for putative biomarker 
proteins. 
Greg = Gregory wheat, Spit = Spitfire wheat; THH = Terry Hie Hie farm, Br = Breeza farm, TARC = TARC farm  
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C) TMT set-3 

 
 

D) TMT set-4 

 
 

Figure continued from above (Figure C.5) 
Greg = Gregory wheat, Spit = Spitfire wheat, Liv = Livingston wheat; THH = Terry Hie Hie farm, Br = Breeza 
farm, TARC = TARC farm 
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C.4.2 PCAs for TMT sets 1 to 4 for putative biomarkers 

 

A) TMT set-1 

 
 

B) TMT set-2 

 
 

Figure C.6. PCAs to check quality of TMT data for putative biomarker proteins. 
Greg = Gregory wheat, Spit = Spitfire wheat; THH = Terry Hie Hie farm, Br = Breeza farm, TARC = TARC farm 
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C) TMT set-3 

 
 

D) TMT set-4 

 
 

Figure continued from above (Figure C.6). 
Greg = Gregory wheat, Spit = Spitfire wheat, Liv = Livingston wheat; THH = Terry Hie Hie farm, Br = Breeza 
farm, TARC = TARC farm  
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C.4.3 Correlation plots for TMT sets 1 to 4 for putative biomarkers 

 

A) TMT set-1 

 
 

B) TMT set-2 

 
 

Figure C.7. Correlation plots to check quality of TMT data for putative biomarker proteins. 
Greg = Gregory wheat, Spit = Spitfire wheat; THH = Terry Hie Hie farm, Br = Breeza farm, TARC = TARC farm 
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C) TMT set-3 

 
 

D) TMT set-4 

 
 

Figure continued from above (Figure C.7). 
Greg = Gregory wheat, Spit = Spitfire wheat, Liv = Livingston wheat; THH = Terry Hie Hie farm, Br = Breeza 
farm, TARC = TARC farm 
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C.5 Putative biomarker proteins discovered in TMT sets 3 to 4. 
Table C.2. TMT set-3: List of putative biomarkers from wheat grain. 

Uniprot Identifier Protein description 
P17314 Alpha-amylase/trypsin inhibitor CM3 
A4ZIY9 Monomeric alpha-amylase inhibitor (Fragment) 
C7C4X0 Alpha amylase inhibitor CM1 (Fragment) 
F8THZ6 Protein disulfide isomerase 
Q9XHL9 Histone H1 WH1B.1 
M7ZL27 Ribonuclease 3-like protein 3 
M7YFC4 Acyl-CoA dehydrogenase family member 10 
M8AU00 Putative alpha,alpha-trehalose-phosphate synthase [UDP-forming] 7 
P83207 Chymotrypsin inhibitor WCI 
P32032 Alpha-2-purothionin 
Q2A784 Avenin-like a1 
A5A4L5 Avenin-like b4 
Q8S4P7 Thaumatin-like protein 
Q41540 CM 17 protein 
Q7X9L4 Proteinase inhibitor Rgpi9 (Fragment) 
A4ZIX1 Monomeric alpha-amylase inhibitor (Fragment) 
M7Y5T3 NAD(P)H-dependent 6'-deoxychalcone synthase 
M8A380 Globulin-1 S allele 
M7YY08 Aspartyl-tRNA synthetase, cytoplasmic 
S5YTU4 NADH-dependent glutamate synthase 
M7Z4H0 11S globulin seed storage protein 2 
T1MZG3 Uncharacterized protein (Fragment) 
Q9ZR34 Amylogenin 
R4ZCU3 M-2 
M7ZD73 Uncharacterized protein 
R4ZA22 L-1 
Q8L6B4 Gamma gliadin 
M8AMT5 Primary amine oxidase 
M7Z277 Putative O-methyltransferase 2 
M7Z077 Uncharacterized protein 
M7ZD13 Uncharacterized protein 
M7Z9L8 Uncharacterized protein 
Q41593 Serpin-Z1A 
Q9ST57 Serpin-Z2A 
A5HMG1 HMW glutenin subunit 1Bx13 
B8XU65 High molecular weight glutenin x-type (Fragment) 
H9AXB3 Serpin-N3.2 
M8A601 Protein strawberry notch-like protein 1 
R9XUY1 Omega-gliadin 
Q6R2V1 High-molecular-weight glutenin subunit 1Dx2.1 
M7Z0E2 Histone H2A 
B7U6L3 Globulin 3C (Fragment) 
J3RHG6 Beta-glucosidase 4 (Fragment) 
M7YIZ5 Histone H4 
M8A0P8 60S ribosomal protein L35-2 
M7Z1Z4 Serpin-Z2B 
Q7DMU0 Storage protein 
Q07810 rRNA N-glycosidase 
M8A580 60S ribosomal protein L4-1 
Q5XUU9 Cytoplasmatic ribosomal protein S13 
M8AIP1 DnaJ homolog subfamily C member 2 
Q9SQG8 Pathogenesis-related protein 4 (Fragment) 
M8ALV4 Chitinase 5 
M7YPU0 Uncharacterized protein 
T1NDB5 Uncharacterized protein 
M7ZFP8 Uncharacterized protein 
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Table C.3. TMT set-4: List of putative biomarkers from wheat grain. 
Uniprot Identifier Protein description 
Q41629 ADP, ATP carrier protein 1, mitochondrial 
Q43312 Protein H2A.7 
P16851 Alpha-amylase/trypsin inhibitor CM2 
P17314 Alpha-amylase/trypsin inhibitor CM3 
P81713 Bowman-Birk type trypsin inhibitor 
P46274 Mitochondrial outer membrane porin 
Q8H0K8 Xylanase inhibitor (Precursor) 
Q8GZB0 Non-specific lipid-transfer protein (Precursor) 
Q8RWR5 Beta-D-glucan exohydrolase 
Q7X9K5 ATP synthase (Fragment) 
Q5XUV7 Proteasome subunit beta type 
A4ZIX1 Monomeric alpha-amylase inhibitor (Fragment) 
A6N862 Puroindoline b 
A7UME6 Xylanase inhibitor 801NEW 
B1Q3K4 Basic region leucine zipper protein 
B7U6L4 Globulin 3 
C3VWL8 Dimeric alpha-amylase inhibitor 
C3VWP8 Dimeric alpha-amylase inhibitor 
C7C4X0 Alpha amylase inhibitor CM1 (Fragment) 
D0PRB4 Peroxiredoxin 
I3NM23 Lipoxygenase 
M8AIC9 Prohibitin-1, mitochondrial 
M7ZD89 Nucleolin 
M7ZLM2 Uncharacterized protein 
M8A3F7 Anthocyanidin reductase 
M7ZXD7 2,3-bisphosphoglycerate-independent phosphoglycerate mutase 
M7ZZV1 Uncharacterized protein 
M7YXZ5 Uncharacterized protein 
M7Z0X1 Aldose reductase 
Q9ZSR6 Heat shock protein HSP26 
M7YLR0 Protein IN2-1-like protein B 
M7ZS22 Uncharacterized protein 
Q8GV48 LEA2 protein 
M7ZIQ2 Putative glutathione S-transferase GSTF1 
T1MF37 Uncharacterized protein (Fragment) 
M7YRL6 Cytochrome c 
M7ZXI3 Uncharacterized protein 
M8A2Z1 Aldose 1-epimerase 
M7Z222 Uncharacterized protein 
Q75RZ3 Putative beta-xylosidase (Fragment) 
M8ATC6 Lysosomal alpha-mannosidase 
M7YZW0 Uncharacterized protein 
T1NKC7 Uncharacterized protein 
M7YU16 ATP synthase subunit d, mitochondrial 
M7YIB4 Reticulon-like protein 
M7ZPE5 Ubiquitin thioesterase otubain-like protein 
M7ZQK6 Uncharacterized protein 
M7Z2P5 Ubiquitin carboxyl-terminal hydrolase 
Q7XAP6 Uncharacterized protein 
M8AAX5 Multiprotein-bridging factor 1a 
M7ZAS8 Peroxidase 52 
T1MQQ6 Uncharacterized protein 
M7ZDV3 Uncharacterized protein 
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Part 2 of 4 for Table C.3, continued from above. 
M7YKK8 Prohibitin-2 
M7ZBW9 Uncharacterized protein 
S5A8C3 S-formylglutathione hydrolase-like protein 
M7ZVK3 60S ribosomal protein L10a-3 
M7ZMS4 Endoglucanase 11 
M7ZM54 Putative O-methyltransferase 2 
M8AMW7 Bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase 
M7Z5S9 Basic 7S globulin 
T1M621 Uncharacterized protein (Fragment) 
M8AU47 U1 small nuclear ribonucleoprotein A 
T1NCT0 Uncharacterized protein (Fragment) 
M8AD20 Peroxisomal membrane protein 11-5 
M8A410 Putative 6-phosphogluconolactonase 4, chloroplastic 
M7Z9L8 Uncharacterized protein 
M8AIQ3 Putative NADP-dependent oxidoreductase P1 
T1LH91 Uncharacterized protein (Fragment) 
P22701 Em protein CS41 
P83207 Chymotrypsin inhibitor WCI 
Q9ST57 Serpin-Z2A 
A5JPR2 Peroxisomal ascorbate peroxidase 
Q9FS79 Triosephosphate isomerase 
Q41539 Endochitinase (Precursor) 
Q8RVZ1 Putative xylanase inhibitor protein (Precursor) 
Q7XYB5 Pyruvate orthophosphate dikinase (Fragment) 
Q0Q5E3 Globulin 1 
Q0Q5D9 Globulin 1 
A4ZIY9 Monomeric alpha-amylase inhibitor (Fragment) 
A5HMG1 HMW glutenin subunit 1Bx13 
A7BJ77 Xylanase inhibitor 
B2CGM6 Triticin 
B5B0D5 Major allergen CM16 
B5B1F8 Aspartate aminotransferase (Fragment) 
B7U6L5 Globulin 3B 
B8XU40 Gamma gliadin 
D3KVP5 27k protein (Fragment) 
D8L9S2 Glutamate decarboxylase, putative, expressed 
E3W165 Waxy B1 (Fragment) 
F4Y5A7 Heat shock protein 90 
I0JTW3 Cystatin, expressed 
J9Q8Q6 High molecular weight glutenin subunit 1Ay protein 
M8ABB2 Tubulin beta-4 chain 
M8A8M0 Glyceraldehyde-3-phosphate dehydrogenase, cytosolic 3 
M7YUQ6 Aspartic proteinase oryzasin-1 
M8APZ6 Nucleoside diphosphate kinase 
M7ZMA4 Glutamate decarboxylase 
M7ZK46 12S seed storage globulin 1 
T1M4L5 Uncharacterized protein (Fragment) 
Q5BLQ9 Grain softness protein-1B1 (Fragment) 
T1M2W9 Uncharacterized protein 
M7YVM9 Chitinase 1 
T1MN05 Uncharacterized protein 
M7ZRL7 Alanine aminotransferase 2 
M7ZY01 Pullulanase 1, chloroplastic 
M7ZB42 Calreticulin 
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Part 3 of 4 for Table C.3, continued from above. 
M7ZY11 Uncharacterized protein 
Q7M1M7 High-molecular-weight glutenin 
Q8L6B4 Gamma gliadin 
M7ZIE1 Calreticulin 
M7ZCZ3 Uncharacterized protein 
M7ZFH6 Alpha-galactosidase 
Q2PCC5 Type 2 non specific lipid transfer protein (Precursor) 
M7YLW1 Uncharacterized protein 
M7Y803 Ubiquitin carboxyl-terminal hydrolase 
M7ZZZ7 Coatomer subunit beta'-2 
Q9SQG3 PR-4 (Fragment) 
M7YIW7 Uncharacterized protein 
M7ZEB5 Sulfurtransferase 
M7Y780 Aldose 1-epimerase 
M8AYL7 Alpha-L-arabinofuranosidase 1 
M8A555 Uncharacterized protein 
M7ZMH5 Isoamylase 1, chloroplastic 
M7ZPU9 DEAD-box ATP-dependent RNA helicase 27 
M7YRA6 Uncharacterized protein 
M7YHL1 Uncharacterized protein 
P33432 Puroindoline-A 
Q6J160 S-type low molecular weight glutenin L4-55 (Fragment) 
Q0Q5D8 High-molecular-weight glutenin By8 
Q0WX49 Xylanase inhibitor TL-XI (Precursor) 
A3FKE5 Superoxide dismutase (Fragment) 
D2T2K0 Non-specific lipid-transfer protein (Fragment) 
T1MDN2 Uncharacterized protein 
M7ZX56 60S ribosomal protein L10-1 
M7YQ69 Uncharacterized protein 
M8A7U9 Enolase 
M8A0V0 Dihydroxy-acid dehydratase 
M7ZIZ5 Peroxidase 66 
M8ARD9 Spermatogenesis-associated protein 20 
T1LYJ4 Uncharacterized protein 
M7ZB26 Isocitrate dehydrogenase [NADP] 
M7Z1S0 Glycyl-tRNA synthetase 1, mitochondrial 
T1L8G1 Uncharacterized protein 
M7ZAQ9 Oxalate oxidase 2 
T1LTB6 Uncharacterized protein (Fragment) 
T1NA49 Uncharacterized protein 
M7ZVA5 Uncharacterized protein 
T1MPQ4 Uncharacterized protein 
M8A0Y6 Uncharacterized protein 
M7YYS2 Sister chromatid cohesion protein PDS5-like protein B 
T1LDN5 Uncharacterized protein (Fragment) 
M8A6W6 50S ribosomal protein L14 
M7YGW3 Dihydroorotate dehydrogenase (Quinone), mitochondrial 
M7YRC9 Uncharacterized protein 
M7ZP14 Protein MAM3 
M7ZM38 Actin-97 
Q6RUI9 Glutamine synthetase 
D3YE92 70 kDa heat shock protein 
D8L9G7 Phosphorylase 
M7ZVX5 Histone H2B.3 
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Part 4 of 4 for Table C.3, continued from above. 
M7ZSG9 Catalase 
M7ZIW6 RuBisCO large subunit-binding protein subunit beta, chloroplastic 
M8A1S2 Trypsin/alpha-amylase inhibitor CMX1/CMX3 
M7ZMF2 Uncharacterized protein 
M8A8I0 Nucleoside diphosphate kinase 
M7ZKL1 Uncharacterized protein 
T1LIW9 Uncharacterized protein 
M7ZU03 Mitochondrial import inner membrane translocase subunit TIM44 
M8A584 Uncharacterized protein 
M7YIH7 Prolyl 4-hydroxylase subunit alpha-2 
M7ZH92 E3 ubiquitin-protein ligase UPL3 
M7Z2F8 Uncharacterized protein 

 

 

C.6 Putative biomarker proteins discovered in TMT set-1 and -2 

 

Table C.4. GO Slims identifiers and their counts for putative biomarker proteins discovered from TMT set-1. 
Slims GO ID GO Term Count Process 
GO:0006950 response to stress 2 Biological Process 
GO:0005975 carbohydrate metabolic process 1 Biological Process 
GO:0008152 metabolic process 1 Biological Process 
GO:0009987 cellular process 1 Biological Process 
GO:0019725 cellular homeostasis 1 Biological Process 
GO:0005615 extracellular space 1 Cellular Component 
GO:0005623 cell 1 Cellular Component 
GO:0003824 catalytic activity 1 Molecular Function 
GO:0005488 binding 1 Molecular Function 
GO:0016787 hydrolase activity 1 Molecular Function 

  



 231 

Table C.5. GO Slims identifiers and their counts for putative biomarker proteins discovered from TMT set-2. 
Slims GO ID GO Term Count Process 
GO:0008152 metabolic process 4 Biological Process 
GO:0009987 cellular process 4 Biological Process 
GO:0005975 carbohydrate metabolic process 2 Biological Process 
GO:0006950 response to stress 2 Biological Process 
GO:0009058 biosynthetic process 2 Biological Process 
GO:0019538 protein metabolic process 2 Biological Process 
GO:0006412 translation 1 Biological Process 
GO:0009056 catabolic process 1 Biological Process 
GO:0009605 response to external stimulus 1 Biological Process 
GO:0009607 response to biotic stimulus 1 Biological Process 
GO:0005622 intracellular 3 Cellular Component 
GO:0005623 cell 3 Cellular Component 
GO:0005615 extracellular space 2 Cellular Component 
GO:0005634 nucleus 1 Cellular Component 
GO:0005737 cytoplasm 1 Cellular Component 
GO:0005739 mitochondrion 1 Cellular Component 
GO:0009536 plastid 1 Cellular Component 
GO:0009579 thylakoid 1 Cellular Component 
GO:0003824 catalytic activity 4 Molecular Function 
GO:0005488 binding 4 Molecular Function 
GO:0016787 hydrolase activity 3 Molecular Function 
GO:0000166 nucleotide binding 2 Molecular Function 
GO:0003677 DNA binding 1 Molecular Function 
GO:0005515 protein binding 1 Molecular Function 
GO:0016740 transferase activity 1 Molecular Function 

 

 

C.7 R-script: ‘PCA.R’ 

 

# BiocManager::install("UniProt.ws", version = "3.8") 
# # Install "ggbiplot" if not already installed 
# install_github("vqv/ggbiplot") 
options(scipen=999) 
if(.Platform$OS.type == "windows"){ 
 Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jdk1.8.0_191') 
} 
library("UniProt.ws") 
library("pheatmap") 
library("tidyr") 
library("rJava") 
detach("package:rJava", unload=TRUE) 
library("ggbiplot") 
library("dplyr") 
library("RColorBrewer") 
library("gridExtra") 
library("grid") 
library("tcltk") 
library("rChoiceDialogs") 
library("ggplot2") 
library("readxl") 
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#################### SAVE HEATMAP Function #################### 
#Save pheatmap function 
save_pheatmap <- function(x, filename, width=1500, height=800) { 
 stopifnot(!missing(x)) 
 stopifnot(!missing(filename)) 
 png(filename = filename, width = width, height=height) 
 grid::grid.newpage() 
 grid::grid.draw(x$gtable) 
 dev.off() 
} 
 
unfactorize <- function(df){ 
 for(i in which(sapply(df, class) == "factor")) df[[i]] = 
as.character(df[[i]]) 
 return(df) 
} 
 
####!Function to split a dataframe of "AK" and "MLOC" barley identifiers 
into two vectors 
splitBarleyIds = function(idInput){ 
 #Find only the idInput beginning with "AK" 
 akIdentifiers = as.character(idInput[grep("AK[0-9]*|AK[0-9]*\\..*", 
idInput[[1]]), ]) 
 #If you need to you can remove the decimal point from the Identifier 
 akIdentifiers = gsub("(AK.*)(\\.[0-9]*$)", "\\1", akIdentifiers) 
 #Find only the identifiers beginning with "MLOC" 
 mlocIdentifiers = as.character(idInput[grep("MLOC_[0-9]*|MLOC_[0-
9]*\\..*", idInput[[1]]), ]) 
 #Remove the decimal point from the Identifier 
 #mlocIdentifiers = gsub("(AK.*)(\\.[0-9])", "\\1", mlocIdentifiers) 
 allList = list(akIdentifiers = akIdentifiers, mlocIdentifiers = 
mlocIdentifiers) 
 return(allList) 
} 
 
 
getUniprotFromMlocAk = function(idsList){ 
 #Load the "UniProt.ws" package into R 
 library("UniProt.ws") 
 #Get "ak" identifers from the list named "idsList" 
 #From "splitBarleyIds" function 
 akIdentifiers = unlist(idsList["akIdentifiers"]) 
 #Get "MLOC" identifers from the list named "idsList" 
 #From "splitBarleyIds" function 
 mlocIdentifiers = unlist(idsList["mlocIdentifiers"]) 
 #Set the Taxon number for Barley (Wheat = 4565) 
 speciesId <- UniProt.ws(taxId=112509) 
 #Key Type or Database the program looks into for "AK" identifiers 
 ak_kt = "EMBL/GENBANK/DDBJ" 
 #Key Type or Database the program looks into 
 mloc_kt = "ENSEMBL_GENOMES PROTEIN" 
 #Data columns that will be output 
 columns <- "UNIPROTKB" 
 #The command to retrive UniProt Identifiers from "AK" Identifiers (if 
they exist) 
 akRetrieve <- UniProt.ws::select(speciesId, akIdentifiers, columns, 
ak_kt) 
 #Change the name of the first column in the akRetrieve data.frame 
 names(akRetrieve)[1] = "Identifier_Input" 
 #The command to retrive UniProt Identifiers from "MLOC" Identifiers 
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(if they exist) 
 mlocRetrieve = UniProt.ws::select(speciesId, mlocIdentifiers, columns, 
mloc_kt) 
 #Change the name of the first column in the mlocRetrieve data.frame 
 names(mlocRetrieve)[1] = "Identifier_Input" 
 #Join the tables together 
 retrieveAll = rbind(akRetrieve, mlocRetrieve) 
 return(retrieveAll) 
} 
 
convertBarleyIds = function (AllIdsColumn) { 
 idInput = AllIdsColumn 
 #List of MLOC and AK Identifiers 
 idsList = splitBarleyIds(idInput) 
 #Get Uniprot Ids from MLOC and AK Identifier List 
 #Result is a data.frame 
 idsListSplit = getUniprotFromMlocAk(idsList) 
 #Find the rows of the data.frame that have NULL (missing) values in 
UniProt column 
 getIdsWithMissingUniprot = 
idsListSplit[is.na(idsListSplit$UNIPROTKB),] 
 #Remove the UniProt column and turn the AK and MLOC Ids into a character 
vector 
 getVectorOfMissingIds = getIdsWithMissingUniprot$Identifier 
 if (length(getVectorOfMissingIds) > 0) { 
  #Make a small FASTA file from the vector of AK and MLOC Ids 
  mkSmallFASTAList = makeSmallFASTAList(getVectorOfMissingIds) 
#Input a vector of characters ("Identifiers") 
  #Use the "mkSmallFASTA" list in memory to perform a BLASTP 
  #The result is a dataframe of MLOC and AK Identifiers in one 
column 
  #UniProt identifiers in the other column 
  blastpTable = blastpResult(mkSmallFASTAList) 
  # Remove the descriptions and keep identifiers 
  blastpTable$Identifier_Input = gsub("(MLOC_[0-9]*|MLOC_[0-
9]*\\.[0-9]*|AK[0-9]*|AK[0-9]*\\.[0-9]*)(_)(.*)", 
             
       "\\1", 
blastpTable$Identifier_Input) 
  # Remove any decimal numbers from identifiers so the vector will 
match 
  blastpTable$Identifier_Input = gsub("(AK[0-9]*)\\.[0-9]*", 
"\\1", blastpTable$Identifier_Input) 
  # The blastpTable and idsListSplit are combined, giving a full 
list of Uniprot and AK, MLOC Identifiers 
  tableOfIdsAndBlast = idsListAndBlastptable(blastpTable, 
idsListSplit) 
  # Remove any rows with missing data 
  # tableOfIdsAndBlast = na.omit(tableOfIdsAndBlast) 
  return(tableOfIdsAndBlast) 
 } 
 tableOfIdsAndBlast = idsListSplit 
 return(tableOfIdsAndBlast) 
} 
 
 
getBarleyDescription = function(barleyIds, proteinFastaFile) { 
 library("seqinr") 
 #Load the "fasta" file into a list format via the "seqinr" package 
 fastaFile <- read.fasta(file = proteinFastaFile, seqtype = "AA", 
as.string = TRUE) 
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 # Seqinr function "getName" to get sequence names 
 seqNames = getName(fastaFile) 
 #Tidy up the names so that "getAnnot" will work well 
 listNamesFasta = gsub("(MLOC_[0-9]*|MLOC_[0-9]*\\.[0-9]*|AK[0-
9]*|AK[0-9]*\\.[0-9]*)(_)(.*)", "\\1", names(fastaFile)) 
 names(fastaFile) = listNamesFasta 
 trimmedFasta = fastaFile[charmatch(barleyIds, names(fastaFile))] 
 #Get annotations from each listed item (protein) 
 trimmedFastaAnnot = getAnnot(trimmedFasta) 
 #Remove any NULL entries from the "trimmedFastaAnnot" list 
 trimmedFastaAnnot = trimmedFastaAnnot[!sapply(trimmedFastaAnnot, 
is.null)] 
 trimmedFastaAnnot = unlist(trimmedFastaAnnot) 
 trimmedFastaAnnot = gsub("(MLOC_[0-9]*|MLOC_[0-9]*\\.[0-9]*|AK[0-
9]*|AK[0-9]*\\.[0-9]*)(_)(.*)", "\\1\\|\\3", trimmedFastaAnnot) 
 trimmedFastaAnnot = gsub(">", "", trimmedFastaAnnot) 
 trimmedFastaAnnot = strsplit(trimmedFastaAnnot, split = "\\|", fixed = 
FALSE, perl = FALSE, useBytes = FALSE) 
 ##### Function Call ##### 
 finalIdAndDescriptionDF = getDescriptionDF(trimmedFastaAnnot) 
 ##### 
 finalIdAndDescriptionDF["description"] = 
gsub(".*(unknown.protein).*|.*(unknown.function).*", "Unknown protein", 
ignore.case = TRUE, finalIdAndDescriptionDF$description) 
 return(finalIdAndDescriptionDF) 
} 
 
 
getWheatDescription = function(wheatIds, proteinFastaFile){ 
 library("seqinr") 
 #Load the "fasta" file into a list format via the "seqinr" package 
 fastaFile <- read.fasta(file = proteinFastaFile, seqtype = "AA", 
as.string = TRUE) 
 # Seqinr function "getName" to get sequence names 
 seqNames = getName(fastaFile) 
 #Tidy up the names so that "getAnnot" will work well 
 listNamesFasta = gsub("^.*\\|(.*)\\|.*", "\\1", names(fastaFile)) 
 names(fastaFile) = listNamesFasta 
 trimmedFasta = fastaFile[charmatch(wheatIds, names(fastaFile))] 
 #Get annotations from each listed item (protein) 
 trimmedFastaAnnot = getAnnot(trimmedFasta) 
 #Remove any NULL entries from the "trimmedFastaAnnot" list 
 trimmedFastaAnnot = trimmedFastaAnnot[!sapply(trimmedFastaAnnot, 
is.null)] 
 trimmedFastaAnnot = unlist(trimmedFastaAnnot) 
 idList = gsub("^.*\\|(.*)\\|.*", "\\1", trimmedFastaAnnot) 
 trimmedFastaDesc = gsub("(^.*\\|.*\\|)(.*) OS=.*$", "\\2", 
trimmedFastaAnnot) 
 trimmedFastaDesc = gsub("^[A-Z|0-9]*_[A-Z|0-9]* ", "", 
trimmedFastaDesc) 
 #trimmedFastaDesc = gsub(" ", "_", trimmedFastaDesc) 
 finalIdAndDescriptionDF = data.frame(idList, trimmedFastaDesc) 
 names(finalIdAndDescriptionDF) = c("Identifier_Input", "description") 
 return(finalIdAndDescriptionDF) 
} 
 
#--------------------- END FUNCTIONS ---------------------# 
#--------------------------------------------------------# 
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if(.Platform$OS.type == "windows"){ 
 designPath = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall", 
caption = "Select the heatmap design", 
             
   multi = FALSE, filters = NULL, index = 1) 
} else { 
 designPath = tk_choose.files(default = 
"~/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall", caption = 
"Select the heatmap design", 
             
   multi = FALSE, filters = NULL, index = 1) 
} 
 
if(.Platform$OS.type == "windows"){ 
 dataTablePath = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall", 
caption = "Select the table of values for heatmap", 
             
    multi = FALSE, filters = NULL, index = 1) 
} else { 
 dataTablePath = tk_choose.files(default = 
"~/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall", caption = 
"Select the table of values for heatmap", 
             
    multi = FALSE, filters = NULL, index = 1) 
} 
 
if(.Platform$OS.type == "windows"){ 
 fastaDatabaseFile = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/DataBases/Protein/Databases_used_in_Mascot
_Search", caption = "FASTA database path", 
             
    multi = FALSE, filters = NULL, index = 1) 
} else { 
 fastaDatabaseFile = tk_choose.files(default = 
"~/Google_Drive/PhD/DataBases/Protein/Databases_used_in_Mascot_Search", 
caption = "FASTA database path", 
             
    multi = FALSE, filters = NULL, index = 1) 
} 
 
if(.Platform$OS.type == "windows"){ 
 SlimsSummaryAllFile = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall/Sl
ims_Summary_Outputfiles", caption = "Full Slims table (fullSlimsTable.csv)", 
             
      multi = FALSE, filters = NULL, index = 1) 
} else { 
 SlimsSummaryAllFile = tk_choose.files(default = 
"~/Google_Drive/PhD/TMT_Results/TMTSummaries/ResultsOverall/Slims_Summary_O
utputfiles", caption = "Full Slims table (fullSlimsTable.csv)", 
             
      multi = FALSE, filters = NULL, index = 1) 
} 
 
studyDirPath = dirname(dataTablePath) 
studyName = gsub(".*/(.*)$", "\\1", studyDirPath) 
outDir = paste0(studyDirPath, "/Pheatmap_Outputfiles") 
if (!file.exists(outDir)) { 
 dir.create(outDir) 
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} else { 
 print("File Exists!") 
} 
 
 
designFile = gsub("^.*\\/(.*)\\.xlsx$", "\\1", designPath) 
dataTableFile = gsub("^.*\\/(.*)\\.xlsx$", "\\1", dataTablePath) 
 
 
TMTDesign = read_excel(path = designPath, sheet = "design", range = 
cell_cols("A:C")) 
TMTDesign = TMTDesign[colSums(!is.na(TMTDesign)) > 0] 
 
 
 
dataTable = read_excel(path = dataTablePath, sheet = "AllData", range = 
cell_cols("A:O")) 
dataTable = dataTable[order(dataTable$Clusters),] 
# dataTable = na.omit(dataTable) 
names(dataTable)[1] = "Identifier_Input" 
 
 
 
 
 
 
#### Determine whether the identifiers are Wheat or Barley and start the 
initial tidy of data 
prepPro_AllIds = dataTable 
if (any(grepl("^MLOC_|^AK[0-9]*", prepPro_AllIds[[1]]))) { 
 species = "Barley" 
 proteinFastaFile = fastaDatabaseFile 
} else { 
 species = "Wheat" 
 proteinFastaFile = fastaDatabaseFile 
} 
print(species) 
#prepPro_AllIds = prepPro_AllIds[order(prepPro_AllIds$Clusters),] 
########## Make a dataframe of IDs only ########## 
AllIdsColumn = prepPro_AllIds[1] 
names(AllIdsColumn) = "Identifier_Input" 
# Original Identifiers and then add uniprot Ids plus descriptions 
start.time <- Sys.time() 
if (species == "Barley") { 
 SlimsSummaryAllsub = read.csv(SlimsSummaryAllFile, stringsAsFactors = 
FALSE) 
 SlimsSummaryAllsub = SlimsSummaryAllsub[ , c("Identifier_Input", 
"uniprot", "description")] 
 Identifier_Input = AllIdsColumn 
 Identifier_Input$Identifier_Input = gsub("(^AK.*)\\..$", "\\1", 
Identifier_Input$Identifier_Input) 
 idsTable = left_join(Identifier_Input , SlimsSummaryAllsub, by = 
"Identifier_Input") 
} else if (species == "Wheat") { 
 uniprot = AllIdsColumn 
 names(uniprot) = "uniprot" 
 idsTable = cbind(AllIdsColumn, uniprot) 
 Identifier_Input = idsTable$Identifier_Input 
 descriptionTable = getWheatDescription(Identifier_Input, 
proteinFastaFile) 
 idsTable$description = 
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descriptionTable$description[match(idsTable$Identifier_Input, 
descriptionTable$Identifier_Input)] 
} 
end.time <- Sys.time() 
time.taken <- end.time - start.time 
time.taken 
 
 
 
sampleNames = names(dataTable)[grep("^R1.X(.*$)", names(dataTable))] 
comparisonLabel = unique(gsub("^.*\\.(.*$)", "\\1", sampleNames)) 
# Save the row to be deleted if needed 
TMTDesignLabelRow = TMTDesign[grep(comparisonLabel, TMTDesign$Label), ] 
TMTDesign = TMTDesign[grep(comparisonLabel, TMTDesign$Label, invert = TRUE), 
] 
 
 
sampleDF = data.frame(Sample = sampleNames, stringsAsFactors = FALSE) 
sampleDF$Label = gsub("^R1.X(.*$)", "\\1", sampleDF$Sample) 
sampleDF$Label = gsub("(^.*)\\..*$", "\\1", sampleDF$Label) 
 
fullDesign = TMTDesign %>% full_join(sampleDF, by = "Label") 
fullDesign = fullDesign[ ,c(ncol(fullDesign), 1:3)] 
fullDesign[ , "Sample"] = gsub("^R1\\.X(.*)$", "\\1", fullDesign$Sample) 
     
 
        # #This is the full design to 
aid in making other plots 
        #  #such as violin plots 
        # fullDesign = read.csv(file = 
designPath, header = TRUE, stringsAsFactors = FALSE) 
        # names(fullDesign)[1] = 
"Sample" 
        # fullDesign[ , "Sample"] = 
gsub("^R1\\.X(.*)$", "\\1", fullDesign$Sample) 
 
 
 
#The design to be used for making a matrix for the heatmap 
Design = fullDesign 
rowNamesDesign = Design$Sample 
    rowNamesDesign = gsub("^R1.X(.*$)", "\\1", rowNamesDesign) 
    Design[,"Sample"] = NULL 
    rownames(Design) = rowNamesDesign 
 
 
#Merge datatable and dataTable to get identifiers 
dataTable$Identifier_Input = gsub("(^AK.*)\\..$", "\\1", 
dataTable$Identifier_Input) 
dataTable = dataTable %>% full_join(idsTable, by = "Identifier_Input") 
idsAndDescriptions = dataTable[ ,c(1,ncol(dataTable))] 
    names(dataTable) = gsub("^R1.X(.*$)", "\\1", 
names(dataTable)) 
namesWanted = names(dataTable[c(1,ncol(dataTable))]) 
dataTable = dataTable[ ,c(namesWanted, rowNamesDesign)] 
dataTable = unfactorize(dataTable) 
dataTable = na.omit(dataTable) 
dataTableNums = dataTable[,rowNamesDesign] 
#dataTable = cbind(idsAndDescriptions, dataTableNums) 
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write.csv(dataTable, file = paste0(outDir, "/All_", dataTableFile, 
"_dataTable.csv"), row.names = FALSE) 
dataTableWriteLog = cbind(dataTable[ , c(1,2)], log10(dataTable[ , 
c(3:11)])) 
write.csv(dataTableWriteLog, file = paste0(outDir, "/All_", dataTableFile, 
"_dataTable_log10_All.csv"), row.names = FALSE) 
 
# dataTable = read.csv(file = dataTablePath, row.names = 1, header = TRUE, 
stringsAsFactors = FALSE) 
dataTable.log.ids = log10(dataTable[ ,rowNamesDesign]) 
row.names(dataTable.log.ids) = dataTable$Identifier_Input 
 
### Annotate our heatmap (optional) 
annotation <- data.frame(Group = Design[,"Group"], 
row.names=row.names(Design)) 
 
# Reorder Density levels 
annotation$Group = factor(annotation$Group, levels = 
unique(annotation$Group)) 
choiceColours = c("red", "green", "blue", "yellow", "orange", "purple") 
 
AnnCol = choiceColours[1:(length(levels(annotation$Group)))] 
names(AnnCol) <- levels(annotation$Group) 
 
 
AnnColour <- list( 
 Group = AnnCol) 
 
 
 
 # Clustering Distance options = "euclidean", "maximum", "manhattan", 
"canberra",  
 # "binary" or "minkowski" 
 # CLustering Method options = "ward.D", "ward.D2", "single", 
"complete", "average",  
 # "mcquitty", "median", "centroid" 
sigProteins_heatmap = pheatmap(dataTable.log.ids, color = 
colorRampPalette(c("lawngreen", "black", "firebrick1"))(100), 
     cluster_rows = TRUE, show_rownames=TRUE, annotation= 
annotation, annotation_colors = AnnColour, border_color = NA, 
     width = 10, height = 8, fontsize = 10, fontsize_row 
= 6, scale = "row", annotation_names_col = FALSE, 
     clustering_distance_cols = "manhattan", 
clustering_method = "complete", 
     legend_breaks = c(-2,-1,0,1,2,2.1), main = "", 
legend_labels = c("-2", "-1", "0", "1", "2", "  \n\n(log10)")) 
      
 
# Draw grobs to improve the look of the graph 
fillerRectangle = grid.rect(width = 0.5, height = 0.5, gp = gpar(fill = 
"white", col = "white", alpha = 0.8)) 
grid.arrange(fillerRectangle, sigProteins_heatmap[[4]], fillerRectangle, 
nrow=1, widths = c(1,20,1)) 
 
# Save the grobs (including the pheatmap heatmap) to disk 
png(paste0(outDir, "/All_", dataTableFile, "_ids.png"), width = 10, height 
= 8, res = 600, units = "in") # Open a new pdf file 
grid.arrange(fillerRectangle, sigProteins_heatmap[[4]], fillerRectangle, 
nrow=1, widths = c(1,20,1)) 
dev.off() 
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# With protein descriptions in the Y-axis instead of identifiers 
dataTable.log.desc = log10(dataTable[ ,rowNamesDesign]) 
rowNamesHeatmapDesc = make.names(gsub(" ", "_", dataTable$description), 
unique = TRUE) 
row.names(dataTable.log.desc) = rowNamesHeatmapDesc 
 
# The below graph is too messy with the descriptions 
  # sigProteins_heatmap_with_Desc = pheatmap(dataTable.log.desc, 
color = colorRampPalette(c("lawngreen", "black", "firebrick1"))(100), 
  #           
     cluster_rows = TRUE, show_rownames=TRUE, 
annotation= annotation, annotation_colors = AnnColour, border_color = NA, 
  #           
     width = 10, height = 8, fontsize = 10, 
fontsize_row = 6, scale = "row", annotation_names_col = FALSE, 
  #           
     clustering_distance_cols = "manhattan", 
clustering_method = "complete", 
  #           
     legend_breaks = c(-2,-1,0,1,2,2.1), main = "", 
legend_labels = c("-2", "-1", "0", "1", "2", "  \n\n(log10)")) 
  #  
  #  
  # # Draw grobs to improve the look of the graph 
  # fillerRectangle = grid.rect(width = 0.5, height = 0.5, gp = 
gpar(fill = "white", col = "white", alpha = 0.8)) 
  # grid.arrange(fillerRectangle, sigProteins_heatmap[[4]], 
fillerRectangle, nrow=1, widths = c(1,20,1)) 
  #  
  # # Save the grobs (including the pheatmap heatmap) to disk 
  # png(paste0(outDir, "/All_", dataTableFile, "_desc.png"), width 
= 10, height = 8, res = 600, units = "in") # Open a new pdf file 
  # grid.arrange(fillerRectangle, 
sigProteins_heatmap_with_Desc[[4]], fillerRectangle, nrow=1, widths = 
c(1,20,1)) 
  # dev.off() 
 
 
#-------------------- PCA --------------------# 
dataTable2 = dataTable[c(1,3:11)] 
dataTableTranspose = t(dataTable2) 
dfNames = dataTableTranspose[1,] 
dataTableTranspose = data.frame(dataTableTranspose, stringsAsFactors = 
FALSE) 
dataTableTranspose = dataTableTranspose[c(2:nrow(dataTableTranspose)), ] 
names(dataTableTranspose) = dfNames 
dataTableTranspose$TMT = row.names(dataTableTranspose) 
dataTableTranspose = dataTableTranspose[c(ncol(dataTableTranspose), 
1:(ncol(dataTableTranspose)-1))] 
row.names(dataTableTranspose) = NULL 
dataTableTranspose[ , c(2:ncol(dataTableTranspose))] = 
as.data.frame(lapply(dataTableTranspose[,c(2:ncol(dataTableTranspose))], 
as.numeric)) 
 
 
dataTableTranspose["Group"] = NA 
 
for (i in 1:nrow(dataTableTranspose)) { 
 dataTableTranspose$Group[i] = 
fullDesign$Group[match(dataTableTranspose$TMT[i], fullDesign$Sample)] 
} 
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dataTableTranspose = dataTableTranspose[c(1, c(ncol(dataTableTranspose), 
2:(ncol(dataTableTranspose)-1)))] 
# Generate PCA 
dataTablePCA_Result <- prcomp(dataTableTranspose[ , 
c(3:ncol(dataTableTranspose))], 
          center = TRUE, 
          scale. = TRUE) 
# Prepare graph 
ir.species = dataTableTranspose[ ,"Group"] 
 
library(ggbiplot) 
PCA_Plot <- ggbiplot(dataTablePCA_Result, obs.scale = 1, var.scale = 1, 
var.axes = FALSE, 
       groups = ir.species, ellipse = TRUE,  
       circle = TRUE) 
PCA_Plot <- PCA_Plot + scale_color_discrete(name = '') 
PCA_Plot <- PCA_Plot + theme(legend.direction = 'horizontal',  
        legend.position = 'top') 
 
print(PCA_Plot) 
PCA_Plot_Figure = ggsave(file = paste0(outDir, "/All_", dataTableFile, 
"_PCA_plot.png"), plot = PCA_Plot, h=6, w=6, units="in",dpi=600) 
 
#-------------------- END PCA --------------------# 
#-------------------------------------------------# 
 
 
 
 
#################### VIOLIN AND BOX PLOTS #################### 
# prepare data for Violin Plot 
#New dataframe name 
dataTable.log.df = dataTable.log.ids 
#Add column 
dataTable.log.df$Protein = row.names(dataTable.log.ids) 
# Re-arrange columns to improve table 
dataTable.log.df = dataTable.log.df[ ,c(ncol(dataTable.log.df), 
1:(ncol(dataTable.log.df)-1))] 
# Remove row names 
row.names(dataTable.log.df) = NULL 
# Make a wide table into a long table 
dataTable.log.df_long = dataTable.log.df %>% 
 gather(TMT, Log_10_value, 2:10) 
# Add a new column called "Group" and fill it with empty values 
dataTable.log.df_long["Group"] = NA 
 
 
# Refer to the design table to replace "TMT" with the appropriate "Group" 
name 
for (i in 1:nrow(dataTable.log.df_long)) { 
 dataTable.log.df_long$Group[i] = 
fullDesign$Group[match(dataTable.log.df_long$TMT[i], fullDesign$Sample)] 
} 
 
# Get order of x-axis from pheatmap 
col.order = sigProteins_heatmap$tree_col$order 
 
# Turn the "TMT" character variable into a factor and define levels 
dataTable.log.df_long$TMT = factor(dataTable.log.df_long$TMT, levels = 
unique(dataTable.log.df_long$TMT)) 
    # # Change the "TMT" levels to be the same as the x-
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axis from the "pheatmap"  
    # dataTable.log.df_long$TMT = 
factor(dataTable.log.df_long$TMT, 
levels(dataTable.log.df_long$TMT)[col.order]) 
 
# Draw a violin plot 
violin_plot = ggplot(dataTable.log.df_long, aes(x = TMT, y = Log_10_value, 
fill = Group)) + 
 geom_violin() + ylab("Expression (Log10)") + theme(axis.text.x = 
element_text(angle = 90)) 
violin_plot 
ggsave(paste0(outDir, "/All_", dataTableFile, "_violin_plot.png")) 
 
#Draw a boxplot with points of data underlaying it 
box_plot = ggplot(dataTable.log.df_long, aes(x = TMT, y = Log_10_value, fill 
= Group)) + 
geom_boxplot(outlier.shape = NA) + ylab("Expression (Log10)") + 
theme(axis.text.x = element_text(angle = 270)) 
box_plot = box_plot + geom_point(colour = "black", size = 4, alpha = 0.2) 
box_plot 
ggsave(paste0(outDir, "/All_", dataTableFile, "_box_plot.png"), dpi = 600, 
units = "cm", width = 29.7, height = 21) 
 
#Draw a violin plot with points of data underlaying it 
dot_violin_plot = ggplot(dataTable.log.df_long, aes(x = TMT, y = 
Log_10_value, fill = Group)) + 
geom_violin() +  
ylab("Expression (Log10)") + theme(axis.text.x = element_text(angle = 90)) 
dot_violin_plot = dot_violin_plot + geom_point(colour = "black", size = 4, 
alpha = 0.2) 
dot_violin_plot 
ggsave(paste0(outDir, "/All_", dataTableFile, "_dot_violoin_plot.png"), dpi 
= 600, units = "cm", width = 29.7, height = 21) 
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Appendix D.  

 

D.1 Scatterplots 

 
A 

 

B 

 
C 

 
 

Figure D.1. Scatterplot of counts, mean versus variance for the three sample groups of Spitfire wheat grain, 
grown at Breeza, TARC, and THH farm. Data for both axes is log10 scale. 
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D.2 Heatmaps of sample-transcript expression 

 
A - LRT 

 
B – Wald test 

 
Figure D.2. Messenger RNA transcript expression from Spitfire wheat grain that was grown at Breeza, TARC, 
and THH farms. Results are after a Breeza and TARC comparison of expression data, with testing for 
significance using LRT (A) or the Wald test (B) to discover transcripts with statistically significant differential 
expression. 
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A) LRT 

 
B) Wald test 

 
Figure D.3. Same as for Figure D.2, except the comparison was between Breeza and THH transcript expression 
data. LRT (A) or the Wald test (B) were also used to discover transcripts with statistically significant differential 
expression. 
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A) LRT 

 
B) Wald test 

 
 

Figure D.4. Same as for Figure D.2, except the comparison was between TARC and THH transcript expression 
data. LRT (A) or the Wald test (B) were also used to discover transcripts with statistically significant differential 
expression. 
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D.3 Volcano plots of sample-transcript expression 

 
A 

 
LRT 

B 

 
Wald test 

C 

 
LRT 
 

D 

 
Wald test 

E 

LRT 

F 

 
Wald test 

Figure D.5. Volcano plots of data after calculating differential expression of RNA transcripts.  
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D.4 PCAs of sample-transcript expression 

 

A 

 
Breeza against TARC with LRT 
 

B 

 
Breeza against TARC with Wald test 
 

C 

 
Breeza against THH with LRT 
 

D 

 
Breeza against THH with Wald test 
 

E 

 
TARC against THH with LRT 
 

F 

 
TARC against THH with Wald test 
 

Figure D.6. PCA plots of sample data, with data from each sample representing differentially expressed 
transcripts detected after comparisons described above (A to F), followed by tests for significance using either 
LRT or Wald test (listed in A to F). 
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D.5 Heatmaps of sample-transcript expression – opposite comparison order 
 

A) LRT 

 
B) Wald test 
 

 
Figure D.7. Messenger RNA transcript expression from Spitfire wheat grain that was grown at Breeza, TARC, 
and THH farms. Results are after a TARC and Breeza comparison of expression data, with testing for 
significance using LRT (A) or the Wald test (B) to discover transcripts with statistically significant differential 
expression. 
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A - LRT 

 
B – Wald test 

 
Figure D.8. THH compared with Breeza using LRT (A) or the Wald test (B) to discover transcripts with 
statistically significant differential expression. 
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A - LRT 

 
B – Wald test 

 
 

Figure D.9. THH compared with TARC using LRT (A) or the Wald test (B) to discover transcripts with statistically 
significant differential expression. 

  



 

 251 

D.6 Volcano plots of sample-transcript expression - opposite comparison 
order 

 

A 

 
LRT 

B 

 
Wald test 

C 

 
LRT 

D 

 
Wald test 

E 

 
LRT 

F 

 
Wald test 

Figure D.10. Volcano plots displaying significant and non-significant RNA transcript data around an axis of 
negative and positive (log2) fold change. Comparison of farms sites used is at the top of each graph (A to F).  
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D.7 PCAs of sample-transcript expression – opposite comparison order 

 

 

A 

 
TARC compared to Breeza using LRT 

B 

 
TARC compared to Breeza using Wald test 

C 

 
THH compared to Breeza using LRT 

D 

 
THH compared to Breeza using Wald test 

E 

 
THH compared to TARC using LRT 

F 

 
THH compared to TARC using Wald test 

Figure D.11. PCA plots of sample data. Data from each sample represented differentially expressed transcripts 
detected after comparisons described above (A to F), followed by tests for significance using either LRT or 
Wald test (listed in A to F). 
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Figure D.12. Heatmap of expression levels of transcripts for determined after an ANOVA-like comparison 
across all three sample groups and significance calculation via LRT. The heatmap contains 1880 rows of 
transcript data. 

 

 
Figure D.13. PCA plots calculated from transcript data of wheat grain samples after an ANOVA-like comparison 
and significance calculation via LRT (p-adjusted value of 0.0001). The sample groups are spitfire wheat grain 
harvested from three different farms: Breeza (Br), TARC, and Terry Hie Hie (THH). 
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Figure D.14. Volcano plots of significant and non-significant transcript data from wheat grain samples after an 
ANOVA-like comparison and significance calculation via LRT (p-adjusted value of 0.0001). 

 

 

D.8 R-scripts mentioned in Chapter 5 

 

D.8.1 R-script: ‘tximportAfterKallisto’ 

# if (!requireNamespace("BiocManager", quietly = TRUE)) 
#   install.packages("BiocManager") 
# BiocManager::install("rtracklayer", version = "3.8") 
# BiocManager::install("tximport", version = "3.8") 
# BiocManager::install("DESeq2", version = "3.8") 
# BiocManager::install("AnnotationDbi", version = "3.8") 
# BiocManager::install("rhdf5", version = "3.8") 
 
 
# # Windows Computer 
# if(.Platform$OS.type == "windows"){ 
#   Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jdk-11.0.1') 
# } 
if(.Platform$OS.type == "windows"){ 
  Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jdk1.8.0_191') 
} 
library("tcltk") 
library("rJava") 
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detach("package:rJava", unload=TRUE) 
library("rChoiceDialogs") 
library("tximport") 
library("AnnotationDbi") 
library("readr") 
library("rtracklayer") 
library("dplyr") 
library("DESeq2") 
library("rhdf5") 
 
#Name the base directory and its path 
##### Input paths for conditional statement below ##### 
macPathExHD = "/Volumes/Seagate_Backup_Plus_Drive/" 
macPath = "/Users/Paul/" 
desktopPath = "/Users/43533698/" 
 
 
 
# Point to the protein or RNA expression file 
if(.Platform$OS.type == "windows"){ 
  base_dir = tk_choose.dir(default = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/RNASeq_Data/RNASeq_Wheat_Folder
_5-12-16",  
                                  caption = "Select the folder with Kalisto 
data ('D_Kallisto/Kallisto_Output')") 
} else { 
  base_dir = tk_choose.dir(default = 
"/Users/Paul/Google_Drive/PhD/DEanalysis/RNASeq_Data/RNASeq_Wheat_Folder_5-
12-16",  
                            caption = "Select the folder with Kalisto data 
('D_Kallisto/Kallisto_Output')") 
} 
 
 
# Check what is in the directory 
list.files(base_dir) 
#Get the sample identifiers (In this case directory names) 
sample_id = list.dirs(base_dir, full.names = FALSE, recursive = FALSE) 
#Construct full paths to each sample directory 
kal_dirs <- sapply(sample_id, function(x) file.path(base_dir, x)) 
 
#Load in table of experimental information 
raw_text = " 
sample Cultivar Harvest_Year Biological_Replicate condition 
1_Br_2013_S_SR1_TR1 Spitfire 2013 1 Breeza 
2_Br_2013_S_SR2_TR1 Spitfire 2013 2 Breeza 
3_Br_2013_S_SR3_TR1 Spitfire 2013 3 Breeza 
4_TARC_2013_S_9_R1 Spitfire 2013 1 TARC 
5_TARC_2013_S_35_R1 Spitfire 2013 2 TARC 
6_TARC_2013_S_57_R1 Spitfire 2013 3 TARC 
7_THH_2013_S_SR1_R1 Spitfire 2013 1 THH 
8_THH_2013_S_SR2_R1 Spitfire 2013 2 THH 
9_THH_2013_S_SR3_R1 Spitfire 2013 3 THH 
" 
summaryTable <- read.table(header=TRUE, text=raw_text, stringsAsFactors = 
FALSE) 
 
##################### ".tsv files from Kallisto ##################### 
##### Import ".tsv" files from Kallisto 
# Vector of file paths to the "abundance.tsv" file 
files <- file.path(kal_dirs, "abundance.tsv") 
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names(files) <- summaryTable$sample 
all(file.exists(files)) 
 
    # ##################### OR use ".h5" files from Kallisto 
##################### 
    # ######### Import ".h5" files from kallisto output ########## 
    # #Read in a vector of ".h5" files with sample data 
    # files <- file.path(kal_dirs, "abundance.h5") 
    # #Add names to the "files" vector (Make it a named vector) 
    # names(files) <- summaryTable$sample 
    # #Check that the paths and files are correct  
    # all(file.exists(files)) 
    # ######### End Import ".h5" files ########## 
 
##### Get the transcript and gene identifiers from the ".gtf" file for wheat 
  #using "import" from the "rtracklayer" package 
 
if(.Platform$OS.type == "windows"){ 
  gtfData = 
import("C:/Users/paul_/Google_Drive/PhD/DataBases/RNASeq/Triticum_aestivum.
TGACv1.35.gtf") 
} else { 
  gtfData = 
import("~/Google_Drive/PhD/DataBases/RNASeq/Triticum_aestivum.TGACv1.35.gtf
") 
} 
 
 
geneData = gtfData@elementMetadata 
# Select only rows with "transcript" in the "type" column of the "geneData" 
dataframe 
geneData = geneData[grep("transcript", geneData$type),] 
# Select only the "transcript_id" and "gene_id" columns 
geneData = as.data.frame(geneData[,c("transcript_id", "gene_id")]) 
# Save memory and remove the "gtfData" object 
# rm(gtfData) 
 
# Copy and rename the dataframe and rename one of the columns 
tx2gene = geneData  
# Again, save memory and remove "geneData" data frame 
# rm(geneData) 
 
############# Gene estimates ############ 
# Import Gene and transcript level estimates 
  # uses "readr" to load data faster (reader = read_tsv) 
txi <- tximport(files = files, type = "kallisto", tx2gene = tx2gene) 
 
# Check that the import worked 
check = as.data.frame(txi[["counts"]]) 
check = cbind(row.names(check), check) 
rownames(check) = NULL 
names(check)[1] = "id" 
############# End Gene estimates ############ 
 
 
################### Alternative where gene-level summation is avoided 
################### 
      # # Avoid gene-level summarization 
      # # Use the original transcript level estimates as a list of matrices. 
      # txi.tx <- tximport(files, type = "kallisto", txOut = TRUE, tx2gene 
= tx2gene,  
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      #                    reader = read_tsv) 
      # # These matrices can then be summarized afterwards 
      #   # using the function "summarizeToGene".  
      # txi.sum <- summarizeToGene(txi.tx, tx2gene) 
      # all.equal(txi$counts, txi.sum$counts) 
 
 
 
################################################## 
    # # Get sample names from the "txi" object (from tximport) 
    #   # Turn the column names into row names to  
    # rownames(summaryTable) <- colnames(txi$counts) 
 
# Creating a DESeqDataSet for use with DESeq2: 
# Turn the condition column into factors 
summaryTable$condition = as.factor(summaryTable$condition) 
# Keep "sample" column as text 
summaryTable$sample = as.character(summaryTable$sample) 
# Get sample names from the "txi" object (from tximport) 
# Turn the column names into row names to  
rownames(summaryTable) = summaryTable$sample 
# Delete the "sample" column as this is now "row.names" 
summaryTable$sample = NULL 
ddso <- DESeqDataSetFromTximport(txi, summaryTable, ~condition) 
 
#Raw Expression Data 
head(counts(ddso)) 
#Experimental Data 
ddso@colData 
 
# Prepare raw counts for saving to ."csv" file 
rawRNACountsViaTximport = data.frame(counts(ddso)) 
rawRNACountsViaTximport$ids = row.names(rawRNACountsViaTximport) 
rawRNACountsViaTximport = 
rawRNACountsViaTximport[,c(length(rawRNACountsViaTximport), 
1:(length(rawRNACountsViaTximport)-1))] 
row.names(rawRNACountsViaTximport) = NULL 
 
# Check directory exists and write it if necessary 
if (dir.exists("~/Google_Drive/PhD/DEanalysis/preDESeq2Data/")) { 
  print("Directory exists!") 
} else  {dir.create("~/Google_Drive/PhD/DEanalysis/preDESeq2Data/")} 
 
# Save raw counts to ".csv" 
write.csv(rawRNACountsViaTximport, file = 
"~/Google_Drive/PhD/DEanalysis/preDESeq2Data/rawRNACountsViaTximport.csv", 
row.names = FALSE) 
write.csv(summaryTable, file = 
"~/Google_Drive/PhD/DEanalysis/preDESeq2Data/summaryTable.csv", row.names = 
FALSE) 
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D.8.2 R-script: ‘DESeq2_Functions.R’ 

# if (!requireNamespace("BiocManager", quietly = TRUE)) 
#   install.packages("BiocManager") 
# BiocManager::install("rtracklayer", version = "3.8") 
# BiocManager::install("tximport", version = "3.8") 
# BiocManager::install("DESeq2", version = "3.8") 
# BiocManager::install("AnnotationDbi", version = "3.8") 
# BiocManager::install("ReportingTools", version = "3.8") 
 
## Gene-level differential expression analysis using DESeq2 
 
# Load in the necessary R packages 
# if (!requireNamespace("BiocManager", quietly = TRUE)) 
#   install.packages("BiocManager") 
# BiocManager::install("DESeq2", version = "3.8") 
library("ggplot2") 
library("RColorBrewer") 
library("DESeq2") 
library("pheatmap") 
library("ReportingTools") 
 
    #  
    # rawRNACountsViaTximport = read.table(file = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/preDESeq2Data/rawRNACountsViaTx
import.csv", row.names = 1, stringsAsFactors = FALSE, sep = ",", header = 
TRUE) 
    # rawRNACountsViaTximport = as.matrix(rawRNACountsViaTximport) 
    #  
    # summaryTable = read.table(file = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/preDESeq2Data/summaryTable.csv"
, stringsAsFactors = FALSE, sep = ",", header = TRUE) 
    # summaryTable = as.matrix(summaryTable) 
 
 
####################  SAVE HEATMAP Function #################### 
#Save pheatmap function 
save_pheatmap <- function(x, filename, width=1500, height=800) { 
  stopifnot(!missing(x)) 
  stopifnot(!missing(filename)) 
  png(filename = filename, width = width, height=height) 
  grid::grid.newpage() 
  grid::grid.draw(x$gtable) 
  dev.off() 
} 
#################### END FUNCTION #################### 
 
# Clear all plots from memory 
graphics.off() 
# Can also use the following but you will get an error if nothing is open: 
# dev.off(dev.list()["RStudioGD"]) 
 
 
##### tximport via "tximportAfterKallisto" script has created 
# DESeq2 object 
 
#Experimental Data from tximport object 
summaryTable = data.frame(ddso@colData) 
# Turn the condition column into factors 
# if they are not already 
summaryTable$condition = as.factor(summaryTable$condition) 
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# # Complex designs - last factor should be the condition of interest 
#   # Example: 
# design <- ~ sex + age + treatment 
#  
# # Interactions can also be added like so: 
#   # Example: 
# design <- ~ sex + age + treatment + sex:treatment 
 
##### Check Raw counts and experimental data ##### 
#Raw Expression Data 
tximportDESeq2RawCounts = as.data.frame(counts(ddso)) 
head(tximportDESeq2RawCounts) 
#Experimental design information 
  #Needed to construct DESeq2 object using "DESeqDataSetFromMatrix" 
tximportDESeq2Experiment = as.data.frame(ddso@colData) 
 
### Check that sample names match in both files 
all(colnames(tximportDESeq2RawCounts) %in% rownames(summaryTable)) 
all(colnames(tximportDESeq2RawCounts) == rownames(summaryTable)) 
 
  # Check raw counts 
  # tximportDESeq2RawCounts 
 
 
 
        # barplot(colSums(tximportDESeq2RawCounts)/1000000,  
        #         main="Total number of reads per sample (million)", 
        #         #col=c("red","green", "blue"), 
        #         col=summaryTable$condition,  
        #         #        names.arg = "",  
        #         las=1,  horiz=TRUE, 
        #         ylab="Samples", cex.names=0.5, 
        #         xlab="Million counts") 
        #  
        #  
        # epsilon = 1 
        # ## Boxplots 
        # boxplot(log2(tximportDESeq2RawCounts + epsilon), 
col=summaryTable$condition, names.arg = summaryTable$condition, pch=".",  
        #         horizontal=TRUE, cex.axis=0.5, 
        #         las=1, ylab="Samples", xlab="log2(Counts +1)") 
 
 
## Density 
## We will require one function from the affy package 
if(!require("affy")){ 
  source("http://bioconductor.org/biocLite.R") 
  biocLite("affy")   
} 
library(affy) 
plotDensity(log2(tximportDESeq2RawCounts + 1), lty=1, xlab="log2(RNA Seq Raw 
Counts)", col=summaryTable$condition, lwd=2) 
grid() 
col.strain <- c("Breeza"="green","TARC"="orange", "THH"="red") # Choose one 
color per strain 
legend("topright", legend=names(col.strain), col=col.strain, lwd=2) 
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dds <- DESeqDataSetFromMatrix(countData = tximportDESeq2RawCounts, colData 
= tximportDESeq2Experiment, design = ~ condition) 
 
#Remove any rows with no counts 
dds <- dds[ rowSums(counts(dds)) > 10, ] 
 
# Check dimensions 
dim(dds) 
 
 
#################### Normalisation of counts #################### 
##Run analysis 
dds <- DESeq(dds) 
    # dds <- DESeq(dds, test="LRT", reduced=~1) 
 
res <- results(dds) 
############################################################ 
 
 
# Plot the distribution of RNA-Seq counts (Histogram) 
RNASeqDist = ggplot(tximportDESeq2RawCounts) + 
  geom_histogram(aes(x = tximportDESeq2RawCounts[,1]), stat = "bin", bins = 
200) + 
  xlab("Raw expression counts") + 
  ylab("Number of genes") 
print(RNASeqDist) 
 
if(.Platform$OS.type == "windows"){ 
  ggsave("RNASeqDist.png", plot = RNASeqDist, path = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} else { 
  ggsave("RNASeqDist.png", plot = RNASeqDist, path = 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} 
 
# Same as above but zooming in on the region -5 to 500 counts 
RNASeqDistzoom = ggplot(tximportDESeq2RawCounts) + 
  geom_histogram(aes(x = tximportDESeq2RawCounts[,1]), stat = "bin", bins = 
200) +  
  xlim(-5, 500) + ylim(0, 500) + 
  xlab("Raw expression counts (if y > 500, data removed") + 
  ylab("Number of genes") 
print(RNASeqDistzoom) 
 
if(.Platform$OS.type == "windows"){ 
  ggsave("RNASeqDistzoom.png", plot = RNASeqDistzoom, path = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} else { 
  ggsave("RNASeqDistzoom.png", plot = RNASeqDistzoom, path = 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} 
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##### The RNASeq data should be modeled around the negative bionomial 
distribution 
#Check with a scatter plot of mean verses variance of data 
# Preparation code to plot mean versus variance 
 
# ----- BREEZA ----- 
mean_counts <- apply(tximportDESeq2RawCounts[, 1:3], 1, mean) 
variance_counts <- apply(tximportDESeq2RawCounts[, 1:3], 1, var) 
df <- data.frame(mean_counts, variance_counts) 
 
#Check if data fits negative binomial distribution 
# Plot variance against the mean for -- Breeza -- 
checkBreezaData = ggplot(df) + 
  geom_point(aes(x=mean_counts, y=variance_counts)) +  
  geom_line(aes(x=mean_counts, y=mean_counts, color="red")) + 
  scale_y_log10() + 
  scale_x_log10() + 
  ggtitle("Breeza") +  
  theme(plot.title = element_text(face="bold", hjust = 0.5)) 
print(checkBreezaData) 
# Check directory exists and write it if necessary 
if(.Platform$OS.type == "windows"){ 
  if 
(dir.exists("C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_A
LL")) { 
    print("Directory exists!") 
  } else  
{dir.create("C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_A
LL")} 
} else { 
  if (dir.exists("~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL")) { 
    print("Directory exists!") 
  } else  
{dir.create("~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL")} 
} 
 
 
if(.Platform$OS.type == "windows"){ 
  ggsave("checkBreezaData.png", plot = checkBreezaData, path = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} else { 
  ggsave("checkBreezaData.png", plot = checkBreezaData, path = 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} 
 
 
 
# ----- TARC ---- 
mean_counts2 <- apply(tximportDESeq2RawCounts[, 4:6], 1, mean) 
variance_counts2 <- apply(tximportDESeq2RawCounts[, 4:6], 1, var) 
df2 <- data.frame(mean_counts2, variance_counts2) 
 
# Plot variance against the mean for -- TARC -- 
checkTARCData = ggplot(df2) + 
  geom_point(aes(x=mean_counts, y=variance_counts)) +  
  geom_line(aes(x=mean_counts, y=mean_counts, color="red")) + 
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  scale_y_log10() + 
  scale_x_log10() + 
  ggtitle("TARC") +  
  theme(plot.title = element_text(face="bold", hjust = 0.5)) 
print(checkTARCData) 
 
if(.Platform$OS.type == "windows"){ 
  ggsave("checkTARCData.png", plot = checkTARCData, path = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} else { 
  ggsave("checkTARCData.png", plot = checkTARCData, path = 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} 
 
 
# ----- THH ---- 
mean_counts3 <- apply(tximportDESeq2RawCounts[, 7:9], 1, mean) 
variance_counts3 <- apply(tximportDESeq2RawCounts[, 7:9], 1, var) 
df3 <- data.frame(mean_counts3, variance_counts3) 
 
# Plot variance against the mean for -- THH -- 
checkTHHData = ggplot(df3) + 
  geom_point(aes(x=mean_counts, y=variance_counts)) +  
  geom_line(aes(x=mean_counts, y=mean_counts, color="red")) + 
  scale_y_log10() + 
  scale_x_log10() + 
  ggtitle("THH") +  
  theme(plot.title = element_text(face="bold", hjust = 0.5)) 
print(checkTHHData) 
 
 
if(.Platform$OS.type == "windows"){ 
  ggsave("checkTHHData.png", plot = checkTHHData, path = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} else { 
  ggsave("checkTHHData.png", plot = checkTHHData, path = 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} 
 
 
##### Mapping and quantitation of transcripts 
# 1. Splice aware mapping to genome (STAR, etc.) 
# OR 
# 2. Pseudoalignment (Sailfish, Salmon, Kallisto) 
# Then: 
# Quantitation: 
# 1. Count unique reads mapped to genes 
# 2. Normalisation of counts 
# a. Account for Gene level and sample level ????? 
#3. Differential exression (DE) analysis 
 
 
#################### Normalisation of counts #################### 



 

 263 

 
# #*** Generate size factors, separately to "DESeq" function 
# dds <- estimateSizeFactors(dds) 
 
#Check the normalisation for size --- SIZE 
sizefactorNormalised = sizeFactors(dds) 
 
#*** Retrieve normalized counts from matrix --- NORMALISED COUNTS 
normalized_counts = counts(dds, normalized=TRUE) 
normalized_counts_df = data.frame(normalized_counts) 
normalized_counts_df$ids = row.names(normalized_counts_df) 
normalized_counts_df = 
normalized_counts_df[,c(length(normalized_counts_df), 
1:(length(normalized_counts_df)-1))] 
row.names(normalized_counts_df) = NULL 
 
 
 
if(.Platform$OS.type == "windows"){ 
  #Save normalised counts in a tab-delimited table --- SAVE NORMALISED COUNTS 
  write.csv(normalized_counts_df, 
file="C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL/DESe
q2Normalized_counts_df.csv", row.names = FALSE) 
} else { 
  #Save normalised counts in a tab-delimited table --- SAVE NORMALISED COUNTS 
  write.csv(normalized_counts_df, 
file="~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL/DESeq2Normalized_
counts_df.csv", row.names = FALSE) 
} 
 
##### Sample level QC 
# Log2 transformed normalised counts are used to check similarity between 
samples 
# Including PCA and hierachical clustering 
 
###***t Transform counts for data visualization 
rld <- rlog(dds, blind=TRUE) 
# To check the transformed data use "assay" 
head(assay(rld)) 
 
### Plot PCA 
# Need an rlog object ("rld" as above) 
# Need the intgroup (column of metadata of interest) 
# Use DESeq2 PCA 
plotPCA(rld, intgroup="condition", ntop = 50000) 
 
# Plot PCA via ggplot2 
ggplotPCA = plotPCA(rld, intgroup="condition", ntop = 50000, 
returnData=TRUE) 
percentVar <- round(100 * attr(ggplotPCA, "percentVar")) 
PCAplot = ggplot(ggplotPCA, aes(PC1, PC2, color=condition)) + 
geom_point(size=3) + 
  xlab(paste0("PC1: ",percentVar[1],"% variance")) + 
  ylab(paste0("PC2: ",percentVar[2],"% variance")) + 
  theme(legend.title=element_blank()) 
print(PCAplot) 
 
if(.Platform$OS.type == "windows"){ 
  ggsave("PCAplot.png", plot = PCAplot, path = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
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         dpi = 600) 
} else { 
  ggsave("PCAplot.png", plot = PCAplot, path = 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} 
 
### Extract the rlog matrix from the object 
rld_mat <- assay(rld)    ## assay() is function from the 
"SummarizedExperiment" package that was loaded when you loaded DESeq2 
 
### Compute pairwise corrrelation values 
rld_cor <- cor(rld_mat)    ## cor() is a base R function 
 
## check the output of cor(), make note of the rownames and colnames 
head(rld_cor) 
 
### Plot heatmap 
pairCorrHeatMap = pheatmap(rld_cor) 
 
if(.Platform$OS.type == "windows"){ 
  save_pheatmap(pairCorrHeatMap, 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL/pairCorrH
eatMap.png") 
} else { 
  save_pheatmap(pairCorrHeatMap, 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL/pairCorrHeatMap.png") 
} 
 
 
# Heatmap with different colours 
heat.colors <- brewer.pal(6, "Blues") 
pairCorrHeatMap2 = pheatmap(rld_cor, color = heat.colors, border_color=NA, 
fontsize = 10,  
                           fontsize_row = 10, height=20) 
if(.Platform$OS.type == "windows"){ 
  save_pheatmap(pairCorrHeatMap2, 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL/pairCorrH
eatMap2.png") 
} else { 
  save_pheatmap(pairCorrHeatMap2, 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL/pairCorrHeatMap2.png") 
} 
 
 
#################### General summary data #################### 
# Get size factors 
sizeFactors(dds) 
# Total number of raw reads for each sample 
countsPerSample = colSums(counts(dds)) 
# Total number of reads per sample after normalisation 
normalisationPerSample = colSums(counts(dds, normalized=TRUE)) 
#NOTE: Other gene specific normalization factors can be applied to data such 
as GC content 
 
#################### Data Frame of raw and normalised counts 
#################### 
dfRawNormal = data.frame(countsPerSample, normalisationPerSample) 
#New column from row names 
dfRawNormal$sample = row.names(dfRawNormal) 



 

 265 

#Delete row names 
row.names(dfRawNormal) = NULL 
#Rearrange columns 
dfRawNormal = dfRawNormal[,c(3,1,2)] 
# Write the raw mean of normalised counts per sample 
if(.Platform$OS.type == "windows"){ 
  write.csv(dfRawNormal, file = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL/rawNormal
isedValuesSum.csv", row.names = FALSE) 
} else { 
  write.csv(dfRawNormal, file = 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL/rawNormalisedValuesSum
.csv", row.names = FALSE) 
} 
 
#Reshape the columns for graphing with ggplot2 
library(reshape2) 
dfRawNormalMelt = melt(dfRawNormal, variable.name = "name", 
                       value.names = "value", id.vars = c("sample")) 
 
# Plot to compare raw counts verses normalised counts 
rawVnormalized = ggplot(dfRawNormalMelt, aes(x = sample, y=value, 
fill=name)) + geom_bar(stat = "identity", position = position_dodge()) + 
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) 
print(rawVnormalized) 
 
if(.Platform$OS.type == "windows"){ 
  ggsave("rawVnormalized.png", plot = rawVnormalized, path = 
"C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} else { 
  ggsave("rawVnormalized.png", plot = rawVnormalized, path = 
"~/Google_Drive/PhD/DEanalysis/results/DESeq2_QC_ALL", 
         scale = 1, width = 20, height = 20, units = "cm", 
         dpi = 600) 
} 
 
 
 
############################################################ 
#################### GENE WIDE dispersions #################### 
#2 Estimating gene-wise dispersions 
# Dispersion is a measure of spread or variability in the data, such as 
Variance, standard deviation, IQR, etc. 
# dispersion (α), Var = μ + α*μ^2 
 
##### Plot dispersion estimates ##### 
# Genes with surrounding blue dots around black are not shrunken 
# as they probably do not follow modelling assumptions 
# Shrunken log2 foldchanges (LFC) 
# DESeq2 shrinks the LFC estimates toward zero when the  
# information for a gene is low (Low counts, High dispersion values) 
plotDispEsts(dds) 
 
 
############################################################ 
#################### WALD Test Function #################### 
waldTestFunction = function (dds, contrastColumn, numerator, denominator) { 
    saveString = paste0(numerator, "_V_", denominator) 
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    if(.Platform$OS.type == "windows"){ 
      specificResultsDir = 
paste0("C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/", saveString, 
"_Wald/") 
    } else { 
      specificResultsDir = paste0("~/Google_Drive/PhD/DEanalysis/results/", 
saveString, "_Wald/") 
    } 
 
    if (dir.exists(specificResultsDir)) { 
      print("Directory exists!") 
    } else  {dir.create(specificResultsDir)} 
       
    # Set contrasts and extract results table 
    res_Wald = results(dds, contrast=c(contrastColumn, numerator, 
denominator)) 
    #Examine Data 
    head(res_Wald) 
    #Examine the object 
    class(res_Wald) 
    # Extract information about each column (of "res_Wald") 
    mcols(res_Wald, use.names=TRUE) 
    ##### 
    ## **** Summarize results **** ## 
    summary(res_Wald, alpha = 0.05) 
    ##### 
    ## ****Add a fold change threshold **** ## 
    # This is needed because stringency needs to be increased which is  
    # done by filtering for values above a certain fold change threshold 
    ### Set threshold variables 
    padj.cutoff <- 0.05 
    lfc.cutoff <- 0.58 #Equivalent to 1.5 fold change 
    ##### 
    #Create a logical vector whose length is equal to the total number of 
genes in the dataset 
    threshold <- res_Wald$padj < padj.cutoff & abs(res_Wald$log2FoldChange) 
> lfc.cutoff 
    #How many of the above vector are true 
    #How many genes are differentially expressed according to our criteria 
    length(which(threshold == TRUE)) 
    #Add "threshold" values to the "res_Wald" object 
    res_Wald$threshold <- threshold 
    #Subset the values (rows) that pass the threshold 
    subset(res_Wald, threshold == TRUE) 
    #Check data 
    head(res_Wald, n = 10) 
     
    # Plot expression for single gene 
    #plotCounts(dds, gene="TRIAE_CS42_1AL_TGACv1_000002_AA0000030", 
intgroup="condition") 
     
    # Create dataframe for plotting 
    df_res_Wald = data.frame(res_Wald) 
     
    # Volcano plot 
    volcano = ggplot(df_res_Wald) + 
      geom_point(aes(x=log2FoldChange, y=-log10(padj), colour=threshold)) + 
      xlim(c(-2,2)) + 
      ggtitle(paste0(numerator, "_V_", denominator)) + 
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      xlab("log2 fold change") +  
      ylab("-log10 adjusted p-value") + 
      theme(#legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5), 
        axis.title = element_text(size = rel(1.5)), 
        axis.text = element_text(size = rel(1.25)))   
    # Draw plot 
    volcano 
    # Save plot 
     
    ggsave(paste0(saveString, "_volcano.png"), plot = volcano, path = 
specificResultsDir, 
             scale = 1, width = 20, height = 20, units = "cm", 
             dpi = 600) 
 
    # Sort the results tables 
    res_Wald_ordered <- res_Wald[order(res_Wald$padj), ] 
    # Get significant genes from object 
    sig_Wald_genes <- 
row.names(res_Wald_ordered)[which(res_Wald_ordered$threshold)] 
    # Normalised counts into a new object 
    normWald_sig = normalized_counts[sig_Wald_genes,] 
     
    # Make a data frame of values 
    sig_Wald_genes_df = data.frame(res_Wald_ordered[sig_Wald_genes, ]) 
    sig_Wald_genes_df$Ids = row.names(sig_Wald_genes_df) 
    sig_Wald_genes_df = sig_Wald_genes_df[c(length(sig_Wald_genes_df), 
1:length(sig_Wald_genes_df)-1)] 
    row.names(sig_Wald_genes_df) = NULL 
    # Make a dataframe of ids and their values then save it 
    write.csv(sig_Wald_genes_df, file = paste0(specificResultsDir, 
saveString, "_Wald_values.csv"), row.names = FALSE) 
    # Save the text file of identifiers 
    write.table(sig_Wald_genes_df$Ids,  
                file = paste0(specificResultsDir, saveString, 
"_Wald_Sig_Ids.txt"),  
                row.names = FALSE, sep = "\t", col.names = FALSE) 
    # Also save a copy in the 
"~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/" folder for the blastx 
workflow 
     
     
    if(.Platform$OS.type == "windows"){ 
      write.table(sig_Wald_genes_df$Ids,  
                  file = 
paste0("C:/Users/paul_/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/", 
saveString, "_Wald_Sig_Ids.txt"),  
                  row.names = FALSE, sep = "\t", col.names = FALSE) 
    } else { 
      write.table(sig_Wald_genes_df$Ids,  
                  file = 
paste0("~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/", saveString, 
"_Wald_Sig_Ids.txt"),  
                  row.names = FALSE, sep = "\t", col.names = FALSE) 
    } 
 
     
    ### Annotate our heatmap (optional) 
    annotation <- data.frame(sampletype=summaryTable[,'condition'], 
                             row.names=row.names(summaryTable)) 
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    ### Set a color palette 
    heat.colors <- brewer.pal(6, "YlOrRd") 
     
    ### 1. Run pheatmap "norm_sig" 
    wald_heatmap = pheatmap(normWald_sig, color = heat.colors, cluster_rows 
= T, clustering_distance_cols = "manhattan", 
                            show_rownames=F, annotation= annotation, 
border_color=NA, fontsize = 10, scale="row",  
                            fontsize_row = 10, height=20, main = 
paste(numerator, "V", denominator, "Fold Comparison")) 
    # Save pheatmap: 
    save_pheatmap(wald_heatmap, paste0(specificResultsDir, saveString, 
"_Wald_heatmap.png")) 
     
    #norm_LRTsig = res_tableLRT_sorted[sigLRT,] 
    normWald_sig_DataFrame = data.frame(normWald_sig) 
    normWald_sig_DataFrame$ids = row.names(normWald_sig_DataFrame) 
    normWald_sig_DataFrame = 
normWald_sig_DataFrame[,c(length(normWald_sig_DataFrame), 
1:(length(normWald_sig_DataFrame)-1))] 
    row.names(normWald_sig_DataFrame) = NULL 
    write.csv(normWald_sig_DataFrame, file = paste0(specificResultsDir, 
saveString, "_Wald_Exp.csv"), row.names = FALSE) 
     
    #################### HTML Report #################### 
    ##### Write a HTML report 
    # First re-set working directory for R, then continue 
    setwd(specificResultsDir) 
    htmlRep <- HTMLReport(shortName = "Report",  
                          title = "Differential expression analysis", 
                          reportDirectory = paste0(saveString, 
"_HTMLreport")) 
    publish(normWald_sig_DataFrame, htmlRep) 
    url <- finish(htmlRep) 
    #browseURL(url) 
    # Return R working directory to normal 
    setwd(specificResultsDir) 
    #################### END HTML Report #################### 
} 
#################### END Function #################### 
 
 
###################################################################### 
#################### Run Wald Test Function #################### 
# Samples (locations): 
      # Breeza 
      # TARC 
      # THH 
 
waldTestFunction(dds, "Breeza", "THH", "TARC") 
waldTestFunction(dds, "condition", "Breeza", "THH") 
waldTestFunction(dds, "condition", "TARC", "THH") 
waldTestFunction(dds, "condition", "Breeza", "TARC") 
 
waldTestFunction(dds, "condition", "TARC", "Breeza") 
waldTestFunction(dds, "condition", "THH", "Breeza") 
waldTestFunction(dds, "condition", "THH", "TARC") 
 
 
#################### END Wald Test #################### 
############################################################ 
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############################################################ 
#################### LRT: LIKELIHOOD RATIO TEST ####################  
 
################################################## 
##### First step in the likelihood ratio test ##### 
dds1 <- DESeq(dds, test="LRT", full = ~ condition, reduced = ~ 1) 
 
 
#################### FUNCTION: Likelihood ratio test and Fold Change 
#################### 
lrtFunction = function (dds_lrt, contrastColumn, numerator, denominator) { 
    saveString = paste0(numerator, "_V_", denominator) 
          #saveString = "_AnovaVolco_" 
    if(.Platform$OS.type == "windows"){ 
      specificResultsDir = 
paste0("C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/", saveString, 
"_LRT/") 
    } else { 
      specificResultsDir = paste0("~/Google_Drive/PhD/DEanalysis/results/", 
saveString, "_LRT/") 
    } 
     
    if (dir.exists(specificResultsDir)) { 
      print("Directory exists!") 
    } else  {dir.create(specificResultsDir)} 
     
    # Set contrasts and extract results table 
    dds_lrt = results(dds, contrast=c(contrastColumn, numerator, 
denominator)) 
          #dds_lrt = results(dds) 
 
    #Set cutoff 
    LRT.padj.cutoff = 0.0001 
    #Define a threshold (FDR) 
    LRT.lfc.cutoff <- 0.58 #(1.5 fold) 
     
    threshold_LRT = dds_lrt$padj < LRT.padj.cutoff & 
abs(dds_lrt$log2FoldChange) > LRT.lfc.cutoff 
    #threshold_LRT = dds_lrt$padj < padjLRT.cutoff 
    # Add a column of significant genes 
    dds_lrt$threshold_LRT <- threshold_LRT 
    #Count the values (rows) that pass the threshold 
    numberThatPassed = subset(dds_lrt, threshold_LRT == TRUE) 
    length(numberThatPassed$threshold_LRT) 
     
    # Sort the results tables 
    dds_lrt_sorted <- dds_lrt[order(dds_lrt$padj), ] 
    # Get significant genes from object 
    sigLRT <- 
row.names(dds_lrt_sorted)[which(dds_lrt_sorted$threshold_LRT)] 
     
    # Plot expression for single gene 
    #plotCounts(dds, gene="TRIAE_CS42_1AL_TGACv1_000002_AA0000030", 
intgroup="condition") 
     
    # Create dataframe for plotting 
    df_res_LRT = data.frame(dds_lrt) 
     
    # Volcano plot 
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    volcano = ggplot(df_res_LRT) + 
      geom_point(aes(x=log2FoldChange,y=-log10(padj), 
colour=threshold_LRT)) + 
      xlim(c(-2,2)) + 
      #ggtitle(paste0(numerator, "_V_", denominator)) + 
      xlab("log2 fold change") +  
      ylab("-log10 adjusted p-value") + 
      theme(#legend.position = "none", 
        plot.title = element_text(size = rel(1.5), hjust = 0.5), 
        axis.title = element_text(size = rel(1.5)), 
        axis.text = element_text(size = rel(1.25)))   
    # Draw plot 
    volcano 
    # Save plot 
    ggsave(paste0(saveString, "_volcano.png"), plot = volcano, path = 
specificResultsDir, 
           scale = 1, width = 20, height = 20, units = "cm", 
           dpi = 600) 
     
    # Normalised counts into a new object 
    norm_LRTsig <- normalized_counts[sigLRT,] 
    # Write identifiers of interest 
    norm_LRTsig_genes = data.frame(row.names(norm_LRTsig)) 
    names(norm_LRTsig_genes) = "Ids" 
     
     
     
    if(.Platform$OS.type == "windows"){ 
      if 
(dir.exists("C:/Users/paul_/Google_Drive/PhD/DataBases/RNASeq/sigIdentifier
s/")) { 
        print("Directory exists!") 
      } else  
{dir.create("C:/Users/paul_/Google_Drive/PhD/DataBases/RNASeq/sigIdentifier
s/")} 
    } else { 
      if 
(dir.exists("~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/")) { 
        print("Directory exists!") 
      } else  
{dir.create("~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/")} 
    } 
     
 
    # Save the text file of identifiers 
    write.table(norm_LRTsig_genes$Ids,  
                file = paste0(specificResultsDir, saveString, 
"_LRT_Sig_Ids.txt"),  
                row.names = FALSE, sep = "\t", col.names = FALSE) 
    # Also save a copy in the 
"~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/" folder for the blastx 
workflow 
     
    if(.Platform$OS.type == "windows"){ 
        write.table(norm_LRTsig_genes$Ids,  
                  file = 
paste0("C:/Users/paul_/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/", 
saveString, "_LRT_Sig_Ids.txt"),  
                  row.names = FALSE, sep = "\t", col.names = FALSE) 
    } else { 
        write.table(norm_LRTsig_genes$Ids,  



 

 271 

                  file = 
paste0("~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/", saveString, 
"_LRT_Sig_Ids.txt"),  
                  row.names = FALSE, sep = "\t", col.names = FALSE) 
    } 
 
    # Make a dataframe of significant ids and their values then save it 
    df_lrt_values = data.frame(dds_lrt_sorted) 
    sig_lrt_values = df_lrt_values[sigLRT,] 
    sig_lrt_values$Ids = row.names(sig_lrt_values) 
    sig_lrt_values = sig_lrt_values[c(length(sig_lrt_values), 
1:length(sig_lrt_values)-1)] 
    sig_lrt_values = data.frame(sig_lrt_values, row.names = NULL)  
    write.csv(sig_lrt_values, file = paste0(specificResultsDir, saveString, 
"_LRT_values.csv"), row.names = FALSE) 
 
     
    ### Annotate our heatmap (optional) 
    annotation <- data.frame(sampletype=summaryTable[,'condition'],  
                             row.names=row.names(summaryTable)) 
     
    ### Set a color palette 
    heat.colors <- brewer.pal(6, "YlOrRd") 
     
    ### Run pheatmap 
    LRT_heatmap = pheatmap(norm_LRTsig, color = heat.colors, cluster_rows = 
T, clustering_distance_cols = "manhattan",  
                           clustering_method = 'average', show_rownames=F, 
annotation= annotation, border_color=NA,  
                           fontsize = 10, scale="row", fontsize_row = 10, 
height=20) 
    save_pheatmap(LRT_heatmap, paste0(specificResultsDir, saveString, 
"_LRT_heatmap.png")) 
     
    norm_LRTsig_DataFrame = data.frame(norm_LRTsig) 
    norm_LRTsig_DataFrame$ids = row.names(norm_LRTsig_DataFrame) 
    norm_LRTsig_DataFrame = 
norm_LRTsig_DataFrame[,c(length(norm_LRTsig_DataFrame), 
1:(length(norm_LRTsig_DataFrame)-1))] 
    row.names(norm_LRTsig_DataFrame) = NULL 
    write.csv(norm_LRTsig_DataFrame, file = paste0(specificResultsDir, 
saveString, "_LRT_Exp.csv"), row.names = FALSE) 
     
     
    #################### HTML Report #################### 
    ##### Write a HTML report 
    # First re-set working directory for R, then continue 
    options(scipen=999) 
    setwd(specificResultsDir) 
    htmlRep <- HTMLReport(shortName = "Report",  
                          title = paste("Normalised LRT differential 
expression for", saveString), 
                          reportDirectory = paste0(saveString, 
"_HTMLreport")) 
    publish(norm_LRTsig_DataFrame, htmlRep) 
    url <- finish(htmlRep) 
    #browseURL(url) 
    # Return R working directory to normal 
    setwd(specificResultsDir) 
    #################### END HTML Report #################### 
} 
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###################################################################### 
#################### Run Likelihood Ratio Test Functions 
#################### 
lrtFunction(dds_lrt, "condition", "Breeza", "THH") 
lrtFunction(dds_lrt, "condition", "TARC", "THH") 
lrtFunction(dds_lrt, "condition", "Breeza", "TARC") 
 
lrtFunction(dds_lrt, "condition", "TARC", "Breeza") 
lrtFunction(dds_lrt, "condition", "THH", "Breeza") 
lrtFunction(dds_lrt, "condition", "THH", "TARC") 
 
#################### END LRT Function #################### 
############################################################ 

 
 

 
 

D.8.3 R-script: ‘gtfToFastaThenBlastx.R’ 

 
 
################################################## 
#### Before starting this script, do the following: ##### 
#*****Decide whether you need transcripts or genes and perform part 1 based 
on that information 
 
#1 Run tximport and DESeq2 to get the list of genes, or the list of 
transcripts, and save as: 
# ~/Google_Drive/PhD/DataBases/RNASeq/RNASeqSignificantIds.txt 
######################################## 
 
 
########## START ########## 
#2 Use the list of transcripts or genes from above (1) to subset a GTF file 
# through the grep (gnugrep) command: 
 
 
###########################################################################
############### 
########## COPY THE NECESSARY TEXT FILE OF SIGNIFICANT IDENTIFIERS, TO: 
############### 
########## "~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/BLASTtemp" 
############# 
###########################################################################
############### 
 
#NOTE: If the script fails try "dos2unix" on the file of 'Identifiers' 
 
# Load in the necessary packages: 
library(seqinr) 
library(dplyr) 
 
 
##### Input paths for conditional statement below ##### 
macPath = "/Users/Paul/" 
desktopPath = "/Users/43533698/" 
externalHD = "/Volumes/Seagate_Backup_Plus_Drive/" 
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##### Check which computer is being used ##### 
##### Add Paths ###### 
if (file.exists(macPath)){ 
      if (file.exists(externalHD)){ 
      #Paths in 
      sourceGTF = 
"/Volumes/Seagate_Backup_Plus_Drive/DataBases/RNASeq/Triticum_aestivum.TGAC
v1.35.gtf" 
      sourceGenomeFASTA = 
"/Volumes/Seagate_Backup_Plus_Drive/DataBases/RNASeq/Triticum_aestivum.TGAC
v1.dna.toplevel.fa" 
      } else  
        {print("Connect the external HD to the laptop!")} 
} else if (file.exists(desktopPath)){ 
  #Paths in 
  sourceGTF = 
"~/BioInformatics/DataBases/RNASeq/Triticum_aestivum.TGACv1.35.gtf" 
  sourceGenomeFASTA = 
"~/BioInformatics/DataBases/RNASeq/Triticum_aestivum.TGACv1.dna.toplevel.fa
" 
} else {print("Check Paths!")} 
 
 
################################################## 
##### Use "gnugrep" called by R (system) to subset GTF ##### 
 
# Construct the query string 
# Using gnugrep as it is many times faster than default 
idsInputDir = 
"~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/BLASTtemp/" 
getBlastFile = list.files(idsInputDir) 
inputFile = grep("Sig_Ids.txt", getBlastFile, value = TRUE) 
idString = gsub("(^.*_.*_.*_.*)_.*_.*.txt$", "\\1", inputFile) 
outputDirBase = "~/Google_Drive/PhD/DataBases/RNASeq/Blastx_Results/" 
 
outputDirResults = paste0(outputDirBase, idString, "_BlastxResults/") 
if (dir.exists(outputDirResults)) { 
  print("Directory exists!") 
} else  {dir.create(outputDirResults)} 
 
grepSystemScript = paste("gnugrep -F -f", 
                         paste0(idsInputDir, inputFile),  
                         sourceGTF,  
                         paste0("> ", outputDirResults, idString, 
"_GTF_Subset.gtf")) 
 
## Print the command to screen to check syntax ## 
print(grepSystemScript) 
# Send out a system call for terminal to process grep subsetting 
system(grepSystemScript) 
 
 
################################################## 
##### Subset the GTF file ##### 
#3 Use the subsetted gtf file of significant transcripts or genes 
("TritAv_RNASeqSignifGenes.gtf") 
##### Step 2 ##### 
gffreadSystemScript = paste("gffread",  
                            "-w", paste0(outputDirResults, idString, 
"_FASTA_subset.fa"), 
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                            "-M -g", sourceGenomeFASTA, 
                            paste0(outputDirResults, idString, 
"_GTF_subset.gtf")) 
 
## Print the command to screen to check syntax ## 
print(gffreadSystemScript) 
# Tell R to run the command in the terminal 
system(gffreadSystemScript) 
 
# Load in the fasta file "RNASeqSignificantIdsFASTA.fa" that was generated 
by the above script 
  # which is a set of significantly expressed genes (or genes and transcripts) 
in fasta format 
    # Gel all the transcripts, the set of genes can be subset later 
subset_IdsOfInterest_FASTA = read.fasta(file = paste0(outputDirResults, 
idString, "_FASTA_subset.fa"), seqtype = "DNA", as.string = TRUE, 
set.attributes = TRUE) 
#################### STOP HERE IF LIST OF ALL SIGNIFICANT TRANSCRIPTS IS 
ENOUGH #################### 
########## Continue if the subset of genes is needed ########## 
# (One sequence per gene instead of one sequence per transcript) # 
 
#################### GENES ONLY #################### 
##### Use script below to subset genes from all transcripts ##### 
# Subset of transcripts of significant interest are in 
"subset_IdsOfInterest_FASTA" 
 
# Get the list of significantly expressed genes from 
"RNASeqSignificantGenes.txt" 
genesOfInterest = read.table(file = paste0(idsInputDir, inputFile), 
stringsAsFactors = FALSE, col.names = "ids") 
# Turn the table into a character vector 
genesOfInterest = genesOfInterest$ids 
 
# Get a subset of genes from the transcripts 
  # If there are multiple transcripts per gene  
    # only the first transcript will be chosen per gene  
subset_Genes_FASTA = 
subset_IdsOfInterest_FASTA[match(paste0(genesOfInterest, ".1"), 
names(subset_IdsOfInterest_FASTA))] 
# Check that the number of "genesOfInterest" equals the 
  # Number in the "subset_Genes_FASTA" list 
length(genesOfInterest) == length(names(subset_Genes_FASTA)) 
# Get annotations to use as names when saving fasta file 
sub_Genes_fa_ANNOT = getAnnot(subset_Genes_FASTA) 
#Remove the ">" to avoid ">>" when saving the fasta file 
  #write.fasta automatically adds a ">" character to the name 
  #so if one exists there will be two written to file 
  #hence the ">>" characters that must be removed 
sub_Genes_fa_ANNOT = lapply(sub_Genes_fa_ANNOT, function(x) gsub(">","",x)) 
 
#################### Save FASTA file of genes of interest 
#################### 
# Save FASTA file of genes using the annotations as names 
  # This retains the coding region information (eg. "CDS = 1, 1000") 
    # The final file is: "subset_Genes_FASTA.fasta" 
write.fasta(sequences = subset_Genes_FASTA, names = sub_Genes_fa_ANNOT, 
            nbchar = 60, file.out = paste0(outputDirResults, idString, 
"_subset_Genes.fa")) 
 
#################### Save FASTA file of all transcripts #################### 
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# Get annotations to use as names when saving fasta file 
subset_IdsOfInterest_fa_ANNOT = getAnnot(subset_IdsOfInterest_FASTA) 
#Remove the ">" to avoid ">>" when saving the fasta file 
#write.fasta automatically adds a ">" character to the name 
#so if one exists there will be two written to file 
#hence the ">>" characters that must be removed 
subset_IdsOfInterest_fa_ANNOT = lapply(subset_IdsOfInterest_fa_ANNOT, 
function(x) gsub(">","",x)) 
 
write.fasta(sequences = subset_IdsOfInterest_FASTA, names = 
subset_IdsOfInterest_fa_ANNOT, 
            nbchar = 60, file.out = paste0(outputDirResults, idString, 
"_subset_All_Ids_FASTA.fa")) 
 
# The previous "_FASTA_subset.fa" file (around line 90) is equivalent to 
"_subset_All_Ids_FASTA.fa" 
  # Therefore delete this file 
rmString = paste("rm", paste0(outputDirResults, idString, 
"_FASTA_subset.fa")) 
system(rmString) 
 
################################################## 
########## Make BLAST Database ########## 
##### The above script will result in a FASTA file for both the genes of 
interest 
  # and all the transcripts (isoforms) of the genes of interest 
# Gene = TRIAE_CS42_1AL_TGACv1_000756_AA0018500 
# Transcripts of gene = TRIAE_CS42_1AL_TGACv1_000756_AA0018500.1, 
TRIAE_CS42_1AL_TGACv1_000756_AA0018500.2 
                      # TRIAE_CS42_1AL_TGACv1_000756_AA0018500.3, 
TRIAE_CS42_1AL_TGACv1_000756_AA0018500.4 
 
#################### First run "MAKEBLASTDB" through R #################### 
# This will first make a blastdb database and then run a blastx query 
 
if 
(!file.exists("~/Google_Drive/PhD/DataBases/BLASTproteinDB/wheatBLASTdb/whe
atBLASTdb.psd")) { 
  # Run makeBLASTdb  
  #4a Make a BLAST database from the current wheat genome 
("uniprot_wheat_2017_plusIsoforms_Download.fasta") 
  makeDbCommandString = paste("makeblastdb",  
                              "-in", 
"~/Google_Drive/PhD/DataBases/BLASTproteinDB/wheatBLASTdb_plusIsoforms/unip
rot_wheat_2017_plusIsoforms_Download.fasta",  
                              "-dbtype", "prot", "-parse_seqids",  
                              "-out", 
"~/Google_Drive/PhD/DataBases/BLASTproteinDB/wheatBLASTdb_plusIsoforms/whea
tBLASTdb_plusIsoforms") 
  # Print the script to screen for checking 
  print(makeDbCommandString) 
  # Run the makeblastdb command 
  system(makeDbCommandString) 
   
} else  {print("Blastdb exists!")} 
 
 
############################## BLASTX ############################## 
#4b Run a blastx command to transcribe DNA to amino acid sequence to search 
a protein database 
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########## Function to unfactorise all factored columns ########## 
unfactorize <- function(df){ 
  for(i in which(sapply(df, class) == "factor")) df[[i]] = 
as.character(df[[i]]) 
  return(df) 
} 
#################### END Function #################### 
 
 
blastxCommandString = paste("blastx", "-query", paste0(outputDirResults, 
idString, "_subset_Genes.fa"),  
                            "-db 
~/Google_Drive/PhD/DataBases/BLASTproteinDB/wheatBLASTdb_plusIsoforms/wheat
BLASTdb_plusIsoforms",  
                            "-outfmt '10 qseqid sseqid bitscore pident 
evalue'", 
                            "-evalue .001 -max_target_seqs 1", 
                            "-out", paste0(outputDirResults, idString, 
"_BlastxResult.csv")) 
 
# Print the script to screen for checking 
print(blastxCommandString) 
# Run the blastx command 
system(blastxCommandString) 
 
# Load in blastx results 
IdsAfterBlastx = read.csv(file = paste0(outputDirResults, idString, 
"_BlastxResult.csv"), header = FALSE) 
names(IdsAfterBlastx) = c("queryId", "fullUniprotIds", "bitscore", "pident", 
"evalue") 
IdsAfterBlastx$uniprotIds = gsub("^.*\\|(.*)\\|.*$", "\\1", 
IdsAfterBlastx$fullUniprotIds) 
IdsAfterBlastx = IdsAfterBlastx[,c(1:2, 
length(IdsAfterBlastx),4:length(IdsAfterBlastx)-1)] 
 
    # source("https://bioconductor.org/biocLite.R") 
    # biocLite("UniProt.ws") 
#Load the "UniProt.ws" package into R 
library("UniProt.ws") 
# Need to detach "dplyr" or the "Uniprot.ws" package will not work 
detach("package:dplyr", unload = TRUE) 
 
###########Connect to UniProt and get UniProt Identifiers from Barley 
Identifiers######## 
#Set the Taxon number for Barley (Wheat = 4565) 
speciesId = UniProt.ws(taxId=4565) 
#Key Type or Database for the input Identifiers 
inputKeyType = "UNIPROTKB" 
#Data columns that will be output 
outputColumn = c("PROTEIN-NAMES", "SEQUENCE") 
#The command to retrive UniProt information 
identifierList = IdsAfterBlastx$uniprotIds 
 
# Get the amino acid sequence attached to the uniprot identifier 
retrievedIdsSequence = select(speciesId, identifierList, outputColumn, 
inputKeyType) 
#Change the name of the first column in the akRetrieve data.frame 
names(retrievedIdsSequence)[1] = "uniprotIds" 
detach("package:UniProt.ws", unload = TRUE) 
library("dplyr") 
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# Match "uniprotIds" column between "retrievedIdsSequence" and 
"IdsAfterBlastx" tables and add matched data to "IdsAfterBlastx" 
IdsAfterBlastx$Protein_Names = retrievedIdsSequence$`PROTEIN-
NAMES`[match(retrievedIdsSequence$uniprotIds, IdsAfterBlastx$uniprotIds)] 
IdsAfterBlastx$AA_Sequence = 
retrievedIdsSequence$SEQUENCE[match(retrievedIdsSequence$uniprotIds, 
IdsAfterBlastx$uniprotIds)] 
# Turn any factorised columns to character type 
IdsAfterBlastx = unfactorize(IdsAfterBlastx) 
# Save the full data frame to file 
write.csv(IdsAfterBlastx, file = paste0(outputDirResults, idString, 
"_BlastxAndSequence.csv"), row.names = FALSE) 
# Save the Identifiers to file for use in GO Retriever or other Gene Ontology 
packages 
write.table(IdsAfterBlastx$uniprotIds, file = paste0(outputDirResults, 
idString, "_Ids_For_GO.txt"), sep = "\t", row.names = FALSE, col.names = 
FALSE) 
 
###########################################################################
################################### 
#################### Use "GORetriever" to get gene ontology Identifiers from 
protein identifiers #################### 
 
# Get GO Identifiers using "_Ids_For_GO.txt" file 
 
################################################## 
########## Get paste0(idString, "_All_GO.csv") - GO Retriever ########## 
########## Get paste0(idString, "_GO_Slim.txt") - GO Slims Viewer ########## 
########## Get "goSlims" from "goslimviewer" ########## 
################################################## 
 
 

 

D.8.4 R-script: ‘extraGOScript.R’ 

 
 
 
options(scipen = 0) 
 
library("GO.db") # Also loads in "AnnotationDbi" for using command "Term" 
below 
                    # This command gets GO Terms from GO Ids 
 
if(.Platform$OS.type == "windows"){ 
  # Set input directory 
  idsInputDir = 
"C:/Users/paul_/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/BLASTtemp/
" 
} else { 
  # Set input directory 
  idsInputDir = 
"~/Google_Drive/PhD/DataBases/RNASeq/sigIdentifiers/BLASTtemp/" 
} 
 
# Check filenames in the directory 
getBlastFile = list.files(idsInputDir) 
# Capture the file of interest 
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inputFile = grep("Sig_Ids.txt", getBlastFile, value = TRUE) 
# Get the information string from the file of interest 
idString = gsub("(^.*_.*_.*)_.*_.*.txt$", "\\1", inputFile) 

if(.Platform$OS.type == "windows"){ 
  # Set an output base directory 
  outputDirBase = 
"C:/Users/paul_/Google_Drive/PhD/DataBases/RNASeq/Blastx_Results/" 
} else { 
  # Set an output base directory 
  outputDirBase = "~/Google_Drive/PhD/DataBases/RNASeq/Blastx_Results/" 
} 

# Set the full output directory 
outputDirResults = paste0(outputDirBase, idString, "_BlastxResults/") 

################################################## 
########## Get paste0(idString, "_All_GO.csv") ########## 
########## Get paste0(idString, "_GO_Slim.txt") ########## 
################################################## 

# Load in the file ending in "_All_GO.csv" after getting go:ids and go:Slims 
from agbase website 
idsTable = read.csv(file = paste0(outputDirResults, idString, 
"_All_GO.csv"), stringsAsFactors = FALSE) 
# Select the columns needed 
idsTable = idsTable[, c("Input_Accession", "Input_GOID", "Input_GO_Name", 
"GO_Type")] 
# Replace spaces or commas with "_" 
idsTable$Input_GO_Name = gsub(" ", "_", idsTable$Input_GO_Name) 
idsTable$Input_GO_Name = gsub(",", "_", idsTable$Input_GO_Name) 
# Aggregate the columns based on the protein identifier (similar to "wego" 
format) 
idsTable = aggregate(cbind(Input_GOID, Input_GO_Name, GO_Type) ~ 
Input_Accession, data = idsTable, paste, collapse = " ", na.action = na.pass) 
names(idsTable)[1] = "Ids" 

# Load in the results from the BLASTX 
blastxTable = read.csv(file = paste0(outputDirResults, idString, 
"_BlastxAndSequence.csv"), stringsAsFactors = FALSE, header = TRUE) 
# Copy the blastxTable data frame and use "match" to construct more columns 
blastxPlusFullInfo = blastxTable 
blastxPlusFullInfo$GO_ID = 
idsTable$GO_ID[match(blastxPlusFullInfo$uniprotIds, idsTable$uniprotIds)] 
blastxPlusFullInfo$GO_Term_Name = 
idsTable$GO_Term_Name[match(blastxPlusFullInfo$uniprotIds, 
idsTable$uniprotIds)] 
blastxPlusFullInfo$Aspect = 
idsTable$Aspect[match(blastxPlusFullInfo$uniprotIds, idsTable$uniprotIds)] 

# Load in the "GO_Slim" results saved as ".csv" 
goSlimTable = read.table(file = paste0(outputDirResults, idString, 
"_GO_Slim.txt"), stringsAsFactors = FALSE, header = FALSE, sep = "\t") 
titles = c("uniprotIds", "goSlim", "goSlim_Aspect") 
names(goSlimTable) = titles 
# Get the GO Term from the GO Ids 
go_Terms = Term(goSlimTable$goSlim) 
goSlimTable$goSlim_Terms = go_Terms 
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# Rearrange the table 
goSlimTable = goSlimTable[c(1:2, length(goSlimTable), length(goSlimTable)-
1)] 
# Replace spaces or commas with "_"  
goSlimTable$goSlim_Terms = gsub(" ", "_", goSlimTable$goSlim_Terms) 
goSlimTable$goSlim_Terms = gsub(",", "_", goSlimTable$goSlim_Terms) 
# Aggregate so the data can be matched with blastx results 
goSlimTable = aggregate(cbind(goSlim, goSlim_Terms, goSlim_Aspect) ~ 
uniprotIds, data = goSlimTable, paste, collapse = " ", na.action = na.pass) 
# Grow the blastx table using the "match" command 
blastxPlusFullInfo$goSlim = 
goSlimTable$goSlim[match(blastxPlusFullInfo$uniprotIds, 
goSlimTable$uniprotIds)] 
blastxPlusFullInfo$goSlim_Terms = 
goSlimTable$goSlim_Terms[match(blastxPlusFullInfo$uniprotIds, 
goSlimTable$uniprotIds)] 
blastxPlusFullInfo$goSlim_Aspect = 
goSlimTable$goSlim_Aspect[match(blastxPlusFullInfo$uniprotIds, 
goSlimTable$uniprotIds)] 
blastxPlusFullInfo[is.na(blastxPlusFullInfo)] = "Uncharacterized protein" 
names(blastxPlusFullInfo)[1] = "Ids" 
# Write the table to disc 
write.csv(blastxPlusFullInfo, file = paste0(outputDirResults, idString, 
"_blastxPlusFullInfo.csv"), row.names = FALSE) 
# rm(list = ls(pattern="[^blastxPlusFullInfo]")) 
 
################################################################## 
########### Make a GO Slims summary and save it###################### 
library("dplyr") 
#get the "path" to the "biological process" file for go Slims 
bpPath = list.files(path = paste0(outputDirResults, "goSlims/"), pattern = 
".*\\.bp\\.txt", all.files = FALSE, full.names = TRUE) 
#get the "path" to the "cellular component" file for go Slims 
ccPath = list.files(path = paste0(outputDirResults, "goSlims/"), pattern = 
".*\\.cc\\.txt", all.files = FALSE, full.names = TRUE) 
#get the "path" to the "molecular function" file for go Slims 
mfPath =  list.files(path = paste0(outputDirResults, "goSlims/"), pattern = 
".*\\.mf\\.txt", all.files = FALSE, full.names = TRUE) 
 
#Read the tab delimited file from GOSlimViewer and turn it into a data.frame 
biologicalProcess = read.table(bpPath, header = FALSE, stringsAsFactors = 
FALSE, sep = "\t") 
#Write in the column names (vectors) 
names(biologicalProcess) = c("Slims_GO_ID", "go_Term", "Count") 
#Add a new column and fill it with the "Biological Process" description 
biologicalProcess$Process = "Biological Process" 
 
#Read the tab delimited file from GOSlimViewer and turn it into a data.frame 
cellularComponent = read.delim(ccPath, header = FALSE, stringsAsFactors = 
FALSE) 
#Write in the column names (vectors) 
names(cellularComponent) = c("Slims_GO_ID", "go_Term", "Count") 
#Add a new column and fill it with the "Biological Process" description 
cellularComponent$Process = "Cellular Component" 
 
#Read the tab delimited file from GOSlimViewer and turn it into a data.frame 
molecularFunction = read.delim(mfPath, header = FALSE, stringsAsFactors = 
FALSE) 
#Write in the column names (vectors) 
names(molecularFunction) = c("Slims_GO_ID", "go_Term", "Count") 
#Add a new column and fill it with the "Biological Process" description 
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molecularFunction$Process = "Molecular Function" 

#Bind the "biologicalProcess", "cellularComponent", "molecularFunction" 
data.frames together 
allSlims = bind_rows(biologicalProcess, cellularComponent, 
molecularFunction) 
#Remove any rows with "_" in the go_Term column (these are level one terms) 
allSlims = allSlims %>% filter(!grepl(".*_.*", go_Term)) 

# Write the GO Slims summary to disc 
write.csv(allSlims, file = paste0(outputDirResults, idString, 
"_allSlimsList.csv"), row.names = FALSE) 

if (any(grepl("(^.*)\\.[0-9]*$", blastxPlusFullInfo$Ids))){ 
# Do the following for genes - not transcripts 
  blastxPlusFullInfo$Ids = gsub("(^.*)\\.[0-9]*$", "\\1", 
blastxPlusFullInfo$Ids) 
print("Changed!") 
} 

if(.Platform$OS.type == "windows"){ 
  getValuesPathBase = "C:/Users/paul_/Google_Drive/PhD/DEanalysis/results/" 
} else { 
  getValuesPathBase = "~/Google_Drive/PhD/DEanalysis/results/" 
} 

getFullValuesPath = paste0(getValuesPathBase, idString, "/") 
studyId = gsub("^(.*_.*_.*)_.*$", "\\1", idString) 

studyId = "All_anova_like_LRT" 
listFiles = list.files(getFullValuesPath, pattern = "values.csv") 
Values = read.csv(file = paste0(getFullValuesPath,listFiles), 
stringsAsFactors = FALSE) 

ValuesJoinBlastx = left_join(Values, blastxPlusFullInfo, by = "Ids") 
ValuesJoinBlastx = unique(ValuesJoinBlastx) 
ValuesJoinBlastx = 
ValuesJoinBlastx[!is.na(ValuesJoinBlastx$fullUniprotIds), ] 

write.csv(ValuesJoinBlastx, file = paste0(outputDirResults, idString, 
"_ValuesJoinBlastx.csv"), row.names = FALSE) 

D.8.5 R-script: ‘makeFastaFromTable.R’

# If prior steps which require connection to Unipro.ws database do not work, 
  # get the protein identifiers and manually do a Uniparc search 
  # with a conversion to UniprotKB 

# Use seqinr to make a fasta file 



281 

library("seqinr") 
options(scipen=999) 
if(.Platform$OS.type == "windows"){ 
  Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jdk1.8.0_191') 
} 
library("rJava") 
detach("package:rJava", unload=TRUE) 
library("tcltk") 
library("rChoiceDialogs") 

unfactorize <- function(df){ 
  for(i in which(sapply(df, class) == "factor")) df[[i]] = 
as.character(df[[i]]) 
  return(df) 
} 

if(.Platform$OS.type == "windows"){ 
  rnaseqAndBlastxTablePath = tk_choose.files(default = 
"C:/Users/paul_/Google_Drive/PhD/DataBases/RNASeq/Blastx_Results", caption 
= "Select the table ('..._blastxPlusFullInfo.csv') with amino acid sequence 
and names", 

multi = FALSE, filters = NULL, index = 1) 
} else  { 
  rnaseqAndBlastxTablePath = tk_choose.files(default = 
"~/Google_Drive/PhD/DataBases/RNASeq/Blastx_Results", caption = "Select the 
table ('..._blastxPlusFullInfo.csv') with amino acid sequence and names", 

multi = FALSE, filters = NULL, index = 1) 
} 

rnaseqAndBlastxTableFile = paste0(gsub( "^(.*)\\.csv", "\\1", 
rnaseqAndBlastxTablePath), "_FASTA.faa") 

rnaseqAndBlastxTable = read.csv(rnaseqAndBlastxTablePath, stringsAsFactors = 
FALSE) 
rnaseqAndBlastxTableSeqAndNames = rnaseqAndBlastxTable[ ,c("AA_Sequence", 
"uniprotIds")] 

write.fasta(sequences = 
as.list(rnaseqAndBlastxTableSeqAndNames$AA_Sequence), names = 
rnaseqAndBlastxTableSeqAndNames$uniprotIds, file.out = 
rnaseqAndBlastxTableFile, as.string = TRUE) 
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Appendix E. 

Pages 283-298 of this thesis have been removed as they contain published 
material under copyright. Removed contents published as: 

Mirzaei M., Wu Y., Worden P., Jerkovic A., Atwell B.J. (2016) How Proteomics 
Contributes to Our Understanding of Drought Tolerance. In: Salekdeh G. (eds) 
Agricultural Proteomics Volume 2. Springer, Cham. 
https://doi.org/10.1007/978-3-319-43278-6_6 
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Appendix F. 

Pages 300-310 of this thesis have been removed as they contain 
published material under copyright. Removed contents published as: 

Robert D. Willows, Paul Worden, Mehdi Mirzaei, (2017) Barley Grain 
Proteomics, in Colgrave, M. L. (Ed.), Proteomics in Food Science, (pp. 
75-88) Academic Press. 
https://doi.org/10.1016/B978-0-12-804007-2.00005-9 
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