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Abstract
Natural Language Generation (NLG) is a subfield of Language Technology, which
concentrates on generating human-understandable sentences from machine-oriented
input such as databases, knowledge bases or logical forms. This involves making
many decisions on the surface representation of sentences, including lexical selec-
tion, use of referring expressions, and word order relying on manually constructed
grammars.

In this thesis we are focusing on two subtasks of NLG: realisation ranking and word
ordering . In this we are motivated by situations where there are few computational
resources, and where we need to identify alternative resources and algorithms that
guide the text generation task. We investigate two scenarios: one where there is a
manual grammar that is involved in the language generation component, and one
where there may not be.

With respect to the first scenario, which often contain a component that reranks
the output of the grammar based on system-internal representations, we look at
finding alternative resources to extract ranking features. As the first step, we look
into several supervised statistical parsers to see to what extent trees other than
those from the NLG grammar are useful. The next step is moving to unsupervised
parsing, a statistical method to generate a parse tree for any given sentence without
involving any manual grammar or treebank training. Our findings shows that
features from supervised parsers and also selected features from unsupervised
parses can improve generation ranking.

The second aspect is taking text generator internal structures as the ranking feature
and study how effective they are in ranking with respect to the grammar size.
Finally, recognising whether features from external resources such as unsupervised
parser can be coupled with text generator internal structure to rank generated text.
Our experiments reflect that using internal features lead to better ranking than the
baseline.

The second scenario is performing partial-tree linearisation in the absence of
manually crafted grammars. We introduce a novel Integer Linear Programming
(ILP) framework on top of an existing graph-based lineariser as a declarative way
of introducing linguistically motivated features into the generation process. This
framework accommodates various constraints independently and incrementally.
As part of this, we present a novel application of machine learning methods for
adjusting ILP parameters in order to improve the quality of generated strings.
Comparing with the baseline systems in terms of the coverage and the quality of
the generated text, our results prove the superiority of the ILP-based realiser when
it applies linguistically motivated constraints over the learnt ILP parameters.
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Chapter 1

Introduction

Natural Language Generation (NLG) as per definition of Reiter and Dale (2000)
is “a subfield of Artificial Intelligence (AI) and computational linguistics that
focuses on computer systems that can produce understandable texts in English or
other human languages. Typically starting from some nonlinguistic representation
of information as input, NLG systems use knowledge about language and the
application domain to automatically produce documents, reports, explanations,
help messages, and other kinds of texts.” The weather report presented in Figure 1.1
is a sample of an automatically generated text by FOG (Goldberg et al., 1994)
from structured numerical data similar to the dataset depicted in Figure 1.2.

EAST BREVOORT
EAST DAVIS
GALE WARNING CONTINUED.
WINDS SOUTH 30 TO GALES 35 DIMINISHING TO SOUTH WINDS 15
EARLY FRIDAY MORNING. WINDS DIMINISHING TO LIGHT FRIDAY
EVENING.RAIN TAPERING TO SHOWERS THIS EVENING AND CON-
TINUING FRIDAY. FOG DISSIPATING THIS EVENING.
OUTLOOK FOR SATURDAY... LIGHT WINDS..

Figure 1.1: Example forecasts from FOG.(Reiter and Dale, 2000)

There have been many different architectures proposed for NLG systems (De Smedt
et al., 1996), but the most widely agreed-upon one is the pipeline architecture, also
described by Reiter and Dale (2000). It is frequently referred to as the ‘consensus
architecture’ which consists of the following three components:

1. Document planner: determines the content and defines document structure
based on possible data availability in the input, i.e., what to say.

2. Microplaner: defines semantic structure, marks possible referring expres-
sions and determines sentence aggregations, i.e., how to structure it.

1
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Figure 1.2: Structured numerical data used for generating weather forecasts, reproduced from Figure 1.2 in Reiter and Dale (2000)
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3. Surface realiser: converts the semantic structure into human readable text
with correct word forms and performs subject elision or sentence aggregation
where possible, i.e., how to lexicalise it.

This architecture conceptually distinguishes between these three components since
each of them contributes to the quality of the generated text at a different level.
Not all computational linguistics resources and methods required by each com-
ponent have been explored equally. The document planner requires algorithms
to choose interesting aspects of data and decide how much information must be
communicated. These algorithms are numeric, e.g. spotting a significant change
in a trend, and highly relying on historical data. Structuring the text can also
be achieved through analysing similar reports where enough text is available e.g.
meteorological forecasts; otherwise this task becomes a human expert job. This
implies that automating this component as a general purpose tools seems to be very
challenging in light of the lack of historical data/reports. The second component
can be regarded as a function that maps each piece of data into a semantic structure
and so relies on knowledge bases and language-specific resources which assist
with semantic structure selection. The surface realiser is the most grammar-aware
component amongst all the three and particularly affects the readability of the
generated text. Realisers have been popular amongst researchers since they can be
found in other Natural Language Processing (NLP) applications such as abstractive
summarisers, paraphrase generation and machine translation systems. Realisers
have traditionally relied on grammars which are mainly hand crafted — very ex-
pensive to build. There have been recent efforts to improve the output of realisers
by attacking the problem from various perspectives, for instance: improving the
quality of the grammar, introducing reranking algorithms where there is more than
one sentence per piece of data, or combining traditional generation methods with
statistical methods to generate the sentences.

There are also efforts that follow other architectures, although these in some cases
are in the very early stages. The quotation below is a piece of automatically
generated text to experiment with the ability of computers to generate creative
articles using a Recurrent Neural Network (RNN) trained over a corpus of Adrienne
Lafrance’s articles.

“She told me and more like modernings in our computer. Of
course, this is not a human work. That’s the web that’s selfies that
would be the moon is that they’ll make it online. That’s not only more
importantly changed and most of them in all of those and questions
about their factors. For example, as far several cases, all this kind of
regulations for information? that’s the person who painted itself that’s
the technological change of human process... ”(Lafrance, 2016)

Not only the is the text not quite grammatical but it also does not follow any specific
topic and has no coherent semantics behind it. This implies that resources that a
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computer requires for being a creative writer have not been developed yet. There
have been recent efforts to close this gap by exploiting the synergy between NLG
and the Semantic Web (SW), like the Web-NLG project1 and the content selection
challenge from open semantic web data2, to develop robust and high quality NLG
systems capable of producing natural sounding text from SW data (Bouayad-Agha
et al., 2013). In this thesis, however, we focus on the well-developed, traditional
architecture, and specifically on the realisation component, with our aim being to
incorporate improved data-driven approaches. Our motivations will be discussed
shortly after an overview of approaches to NLG systems that are in line with the
traditional consensus architecture.

Template-based approach One of the early approaches to automatic text gener-
ation is template-based approaches. In this approach, a set of templates must be
prepared in advance. Then, at the generation time, a specific template is picked
and the content from the knowledge-base or data source would fill in the gaps.
YAG (Yet Another Generator) (Channarukul, 1999), for instance, extended the
traditional template-based approach by allowing templates to embed several types
of control expressions, in addition to simple string values. As per definition, this
approach suffers from inflexibility due to being bound to the predefined templates.

Rule-based approach Another traditional approach to address this problem is
rule-based techniques which can be dated back to Kafka (Mauldin, 1984) which
was a rule-based single sentence generation system. Systems developed with
this approach are complicated and very expensive to maintain. However, being
deterministic, such systems are still popular for commercial purposes like financial
and legal documents. Recently, Bauer et al. (2015) introduced a multilingual
text generator system that uses a set of rules to perform content selection from
structured data. The selected content is then represented by a semantic model
which is later converted to target-language text by applying language-specific rules.
Both of the discussed approaches suffer from inflexibility and demand a high level
of human involvement in development and maintenance phases. These two pain
points have directed research towards more intelligent/machine-based approaches.

Symbolic grammar approach Deploying manually-crafted grammars to find
the best ordering for a given bag-of-words is the first of these approaches. For
instance ParGram (Butt et al., 2002) grammars are deployed in the XLE framework
for both parsing and generation. A key characteristic of hand-crafted grammars in

1This is a three year research project, started at October 2014, http://talc1.loria.fr/
webnlg/stories/about.html

2This challenge was a part of Generation Challenges 2013 http://www.taln.upf.edu/
cschallenge2013/

http://talc1.loria.fr/webnlg/stories/about.html
http://talc1.loria.fr/webnlg/stories/about.html
http://www.taln.upf.edu/cschallenge2013/
http://www.taln.upf.edu/cschallenge2013/
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their basic form is that they are symbolic in nature. Generation will thus typically
result in multiple outputs: there are multiple alternatives when deciding for a given
non-terminal. Considering this fact, there will be several sentences generated for a
given linguistic representation of a sentence. The number of generated sentences
has a direct relationship with output sentence length and the quality of the grammar.
This implies that such a generator requires a module to assign rank to the generated
sentences. The main disadvantage is the need to have a symbolic grammar which
is costly to build.

Statistical approach Alternatively, statistical methods have been proposed to
bypass the use of a symbolic grammar and computational and linguistic resources
for the purpose of text generation. Machine learning methods such as maximum
entropy and annotated corpora are the key elements of this approach. A model is
trained over a large set of features extracted from a corpus and applying the model
to a given bag-of-words would result in the generated text. As Oberlander and
Brew (2000) proposed, features should capture either of the following properties:
(1) characteristics of a fluent and coherent text, or (2) characteristics of undesirable
structures. Zhang (2013) introduced a statistical text generation model where the
input varies in a cline from unstructured data, e.g., bag-of-words, to a fully defined
structure, e.g., dependency tree of the whole sentence.

Unlike the highly engineered template-based and rule-based systems that produce
one surface text per semantic representation, the last two stochastic approaches
are less expensive to build and maintain but tend to produce multiple grammatical
sentences for a given input. As mentioned above, this produces a need to rank this
multiple sentences in order to choose the one to output. These two approaches are
the focus of this thesis, and the ones we expand on below.

1.1 (Re)ranking the Output of the Surface Realiser

Ranking refers to the process of assigning priority to multiple candidates based
on some measure of goodness; often this measure of goodness is a function of the
candidate’s distance from a gold standard. One the most well-known applications
for ranking in NLP is parse ranking. It is very common for a sentence to have
more than one parse tree, due to for example structural or lexical ambiguity. The
ranker orders generated alternatives so that the higher the rank is, the closer the
tree is to the gold standard for the given input. For example, the symbolic LOGON
online parser3 produces 29 analyses for Sentence (1.1); the top three analyses
are shown in Figure 1.3. The highest ranked analysis (Figure 1.3(a)) is clearly
distinguishable from the next two alternatives and is due to ambiguity at the

3http://erg.delph-in.net/logon

http://erg.delph-in.net/logon
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grammar level. However, Figures 1.3(b) and 1.3(c) depict ambiguity in the crafted
grammar level where two exact structures only differ in the root label.

(1.1) Try pressing return in this window!

Realisers are often viewed as the converse of parsers: The former is transforming
a structure into a sentence, whilst the latter assigns a structure to a sentence.
Similarly, realisers must be paired with rankers since they are expected to produce
multiple grammatical sentences where some of them are paraphrases but the rest
are misleading. The number of generated candidates has a direct relationship with
the complexity of the input and the system’s grammar rule set. To illustrate this,
Xerox Linguistics Environment (XLE) and LOGON online generator are deployed
to regenerate Sentence (1.1); in this case the input will be the syntax tree that the
parser has chosen as the best.

Figure 1.4 is the former system’s internal representation of the sentence that will
be linearised to a sentence. The produced sentence (Sentence (1.2)) is almost
identical to the original sentence except the end of sentence exclamation mark has
been replaced by period. The XLE framework and its internal representations, as
the basis for one component of the work in this thesis, will be discussed in the
following chapters extensively.

The LOGON framework, on the other hand, produces five different sentences for
the same input sentence (listed in (1.2) - (1.6)). The first and second sentences are
almost identical to the original sentence. However grammatical they may be, the
rest of the sentences are not acceptable paraphrases semantically.

(1.2) Try pressing return in this window.

(1.3) Try pressing return, in this window.

(1.4) Try to be pressing return in this window.

(1.5) Try to be pressing return, in this window.

(1.6) Try and be pressing return in this window.

Paraphrases are sometimes inevitable due to the uncertainties in the language itself,
not for ambiguities in the manually crafted grammar. Sentences (1.7) - (1.10)
are variations generated by XLE for the internal structure depicted in Figure 1.5.
These sentences are all happen to be valid paraphrases for the original sentence
(Sentence (1.7)) due to the nature of English grammar for adverb disposition.

(1.7) The move significantly expanded Black & Decker’s product line but also
increased its debt load significantly.
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Figure 1.3: Top three parse analyses for Sentence (1.1)
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(1.8) The move significantly expanded Black & Decker’s product line but also
significantly increased its debt load.

(1.9) The move expanded Black & Decker’s product line significantly but also
increased its debt load significantly.

(1.10) The move expanded Black & Decker’s product line significantly but also
significantly increased its debt load.

Rankers are thus an essential component of text generators using systems like them
since they are responsible for examining the set of alternative generated sentences
and ranking them from the most natural to the least. The earliest approach to
reranking is using an n-gram language model (LM) (Langkilde and Knight). Due
to its limited context (the window size), an LM is not able to capture all the
language features for a long string at once. Cahill et al. (2007b) took a grammar
writer’s perspective by refining the rich manually crafted LFG German grammar to
resolve the ambiguity at the grammar level rather than at the level of the generated
text for German which is classified as a free-word-order language. They defined
various features over the NLG internal structure, similar to the one presented in
Figure 1.5. Then by feature engineering, positive or negative contributing features
were identified and selected as the most distinguishing features to perform the
reranking.

However, not many languages have such fully fledged grammars. What do we
do if a rich manually-crafted grammar is not available? Before answering this
question, it is worthwhile to clarify what sort of languages are the target of this
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Figure 1.5: XLE internal representation for Sentence 1.7.
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research. The focus ofNLP research has often been on languages that have sizeable
digital resources4 such as parallel text, treebanks, semantically tagged corpora,
or other annotated resources. These manually crafted resources have then been
used to build tools like Part of Speech (PoS) taggers, chunkers and parsers to
allow text processing. The rest of the world’s languages fall on a wide ‘resource
availability’ cline, from languages like Aatasara of Papua New Guinea with almost
zero resources5, to Persian, with limited resources6. A low-density language in
this thesis refers to a language that can be found in the middle of the resource
availability cline which might have a small and fragmentary grammar; languages
with negligible resources like Aatasara are not within the scope of this thesis. It’s
quite possible for such languages to face the ranking problem, either because
they have a manual grammar that is not elaborate enough or they have other NLP
systems that produce text without relying on a grammar. For instance, PEnT1 the
English To Persian (Farsi) translator module of PEnTrans (Saedi et al., 2009) has
its source language on the rich-end of the cline and its target language is relatively
low-density language. PEnT1 implements a rule-based approach of transferring
the parse tree from English to a valid parse tree in Farsi. It performs Word Sense
Disambiguation (WSD) on the source side using WordNet and picks the mapped
sense in FarsNet (Shamsfard, 2008) where the mapping is available7. In case
the synset in the target language has more than one word, a form of LM derived
from Google search is used to determine the final surface realisations. Given the
availability of a stand-alone realisation reranker, the quality of the system could
have been improved by finding the best sentence amongst the n-best sentences.

Returning to our specific question of interest, we want to investigate whether other
sources of structure can be useful in absence of manual grammar: specifically,
we will look into various statistical parsers as a source for structural features. In
particular, we look at the use of features from unsupervised parsers, as a resource
that is available for any language, alone or in combination with features derived
from the system grammar as in Cahill et al. (2007b).

1.2 Generation from Bag-of-Words

For manually crafted grammars, as above, the grammar takes care of word ordering.
In the absence of manually crafted grammars, a purely data-driven approach

4For instance: English, German, French, Chinese, Japanese, and Spanish.
5The only resource for Aatasara comes from the An Crúbadán project http://crubadan.

org/writingsystems which scrapes the web for text from low-resource languages; Aatasara’s
resources consist of 39 documents of 46437 words in total.

6These resources includes a couple of corpora, morphology tools and parsers and listed on
https://aclweb.org/aclwiki/Resources_for_Persian

7Otherwise, it uses a dictionary and treats all the entries and let the LM decides.

http://crubadan.org/writingsystems
http://crubadan.org/writingsystems
https://aclweb.org/aclwiki/Resources_for_Persian
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to word ordering is necessary. General purpose word ordering is a subtask of
NLG which assigns order to a given bag-of-words. It is considered as a potential
candidate for text generation/ re-generation in the absence of manually crafted
grammars. There are standard approaches in the literature to address this problem,
with the very first being applying the approach of Langkilde and Knight (1998).
Regardless of an n-gram language model’s good performance on some text, its
performance decreases in capturing long dependency between words. For example,
if two words, w1w2, have a high bi-gram score, by adding a string of size n in
between them, w1 and w2 will no longer be in the same n-gram window. It means
that we cannot use information on the relative order of these two words.

This shortcoming of LMs in addressing the generation problem suggests the use of
some kind of structure as an intermediate representation for a given bag-of-words,
so that the word order can be inferred from that with a higher confidence. Consid-
ering generation as the inverse of parsing, syntax trees seemed to be a promising
structure mainly because data-driven approaches have already proved to be helpful
in producing quality parse trees. For instance McDonald et al. (2005b) trained
a graph-based parser with a margin-sensitive online training algorithm, Margin
Infused Relaxed Algorithm (MIRA), that achieved state-of-the-art performance on
Czech and English by capturing useful dependency properties.

Wan et al. (2009) proposed for the first time using structural information in real-
isation using a graph-based approach. In an inverse of graph-based parsing, the
authors mapped the bag-of-words to a weighted graph and applied a Minimum
Spanning Tree (MST) algorithm to produce a dependency representation which
was then linearised using LM as the final string. This problem has a much higher
complexity compared to a typical parsing as there is an exponential number of
word choices for the output sentence and each has a factorial number of order-
ings (Zhang and Clark, 2011). Using a standard spanning tree algorithm, while
an improvement over an n-gram language model, produced sentences where for
example verbs had unusual number of arguments. Consequently, they proposed
an argument satisfaction model to incorporate linguistic features and improve the
linguistic validity of the generated tree.

A subsequent approach to the task, proposed by Zhang (2013), uses a search algo-
rithm over various possible input structures ranging from POS-tags to dependency
relations, termed as partial-tree linearisation. The search algorithm task looks into
two scores to find the best realisation: (1) score of the most probable parse tree for
each bag-of-words built in a bottom-up fashion relying on a treebank (2) n-gram
language model score.

In keeping with our motivation of minority languages, languages that are mapped
somewhere around the middle of the ‘resource availability’ cline, we try a new
approach that is an extension to Wan et al. (2009)’s work. In that work, the authors
showed the importance of imposing grammaticality constraints in the process of
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generating dependency trees. There are various ways to impose the grammat-
icality of trees. As proposed by McDonald et al. (2005b), quality dependency
trees can be produced using a model trained with MIRA over a dependency tree-
bank. Approaches like that of Zhang (2013) hard-code such constraints into the
search algorithm. We instead use Integer Linear Programming (ILP), as it allows
grammaticality to be implemented via declarative constraints.

Specifically, we use MIRA to learn the dependency weights and local word order
by creating a dependency tree and use an LM to decide the final word order.
ILP allows the dynamic addition or removal of constraints and MIRA learns the
dependency weights from an annotated dependency tree bank. These two main
components of the text generator make it a perfect candidate for applying it to
various languages. The first component allows the input from the human-expert,
e.g, a certain PoS tag should (not) follow another PoS tag. Such constraints can be
embedded into the system effortlessly.

1.3 Contribution

The research in this thesis, on surface realisation, tackles two specific tasks: (1)
Ranking the output of a text generation system using syntactic features extracted
from computational/linguistic resources which is applicable in situations where
such resources exists, and (2) Generating text from a bag-of-words. Within each we
follow the motivation of making surface realisers one step closer to a generic tool
i.e. available to as many languages as possible — especially minority languages
— by minimising the reliance on expensive language-specific resources such as
grammars and treebanks. The successful reranking results with statistical parsers’
features, leads us to the second part of our research: finding an alternative for
crafted grammars deployed in realisers.

With respect to the former part of the research:

1. This thesis shows that a subset of structural features from unsupervised
parsers can be as effective as features from supervised parsers where an
appropriate feature selection method is used (Chapter 3).

2. This thesis shows the high contribution of features from a manually-crafted
grammar to the reranking (Chapter 4).

3. This thesis shows that structural features from supervised parsers are as effec-
tive as features from the internal representations of a symbolic computational
grammar. (Chapter 4)

4. This thesis shows that the effect of internal versus external parse features
varies depending on the size of the grammar. (Chapter 4).
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The findings in respect to the latter part of the research are:

5. This thesis introduces a framework for surface realisation which is specifi-
cally useful for languages that lack manually-crafted-grammar or supervised
dependency parsers using a combination of statistical and declarative ap-
proaches. We present an optimisation-based method that serves as the search
algorithm to assign an intermediate structure to a given bag-of-words to guide
the realisation. This framework benefits from flexibility in adding/removing
structural/linguistic constraints. This last specification is specially valuable
when it comes to adapting the realiser to a new language (Chapter 5).

6. This thesis shows that incremental addition of constraints makes the lin-
earisation process more efficient. Also the flexibility to incorporate richer
linguistic constraints produces a better generated text. (Chapter 6)

7. This thesis confirms that languages with a treebank can benefit from MIRA to
learn the assignment of intermediate structure for linearisation purposes. The
accuracy of linearised strings learned by this algorithm beats those produced
by Maximum Likelihood Estimate (MLE)-based baselines. (Chapter 6)

8. In this thesis, we show that some of the language-specific properties are
producing a better linearisation if they are applied to the problem as soft
constraints rather than hard constraints.(Chapter 6).

1.4 Thesis Outline

This thesis is divided into seven chapters.

In Chapter 2, we review the existing literature on NLG systems focusing on the
most agreed upon architecture and generators that deploy symbolic grammars. We
provide an overview of surface realisation ranking and surface realisation and drill
down to works that are the basis of this research. We finish this chapter with a
brief discussion of the creative RNN-based text generation systems, which have
received a lot of attention recently, and why we are not investigating them in this
work.

In Chapter 3, we introduce the framework, taken from Cahill et al. (2007b), for
statistical reranking of grammar output and for evaluating reranking accuracy. We
then reproduce Cahill’s approach to using grammar-derived features, and then
we introduce several models to investigate how sources of syntactic information
external to the grammar — specifically, supervised and unsupervised parsers —
can contribute to reranking.

In Chapter 4, we investigate how features from statistical parsers investigated
in Chapter 3 can be combined with features from manually crafted grammars.
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Also, we compare the contribution of various features from two manually crafted
grammars that differ in scale.

In Chapter 5, we replicate Wan et al. (2009)’s work using an ILP approach and
further extending it by adding flexible grammaticality conditions in the form of
ILP constraints.

In Chapter 6, we use MIRA rather than MLE for assigning a dependency tree that
represents the induced syntactic structure for the generated sentence.

In chapter 7, we summarise the contribution of this thesis and suggest possible
further research.



Chapter 2

Literature Review

In this chapter we review various aspect of Natural Language Generation (NLG)
literature starting for context with the older work that evolved into the ‘consensus
architecture’, then moving to statistical approaches, then focusing on the two tasks
noted in Chapter 1, reranking and generating from a bag-of-words.

2.1 Overview of NLG Systems

NLG is the subfield of Artificial Intelligence and Computational Linguistics that
refers to the production of meaningful text from a non-linguistic representation of
information (like knowledge bases) using computer systems. Such systems basi-
cally require combining language knowledge and application domain knowledge
to perform the generation task (Reiter and Dale, 2000).

Although the above definition seems to be a standard one, Evans et al. (2002) in
“What is NLG” discussed NLG systems’ characteristics more in depth and tried to
give a more exact definition for them. They start the discussion with the necessity
of having an agreed view about what is the starting point of such systems, including:
the kind of input, the assumptions they make about it and what they do with it
before turning it into some kind of textual output. They proposed two principles
characterizing NLG system:

PRINCIPLE A: NLG is a linguistic manipulation of data.

PRINCIPLE B: NLG manipulates (linguistically) deeper information
to produce shallower information.

The first principle put the emphasis on linguistic manipulation. So it should involve
language-specific resources or the manipulation itself should be language specific.
On the other hand, the second one insists on change in the depth of information.

15
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Figure 2.1: An NLG system architecture. (Reiter and Dale, 2000)

Module Content Task Structure Task
Document Planner Content Determination Document Structuring

Microplaner
Lexicalisation Aggregation
Referring expression;
Generation

Surface Realiser Linguistic Realisation Structure Realisation

Table 2.1: The distribution of content and structure tasks per module in ‘consensus
architecture’, reproduced from Figure 3.1 from Reiter and Dale (2000)

The authors assert that summarisation or translation don’t change the information
level. These just represent the information another way.

Following these two principles and two conditions that clarify linguistic operation,
the boundary of NLG systems narrowed down and some of systems known as NLG
would be just a summariser that maps from a more to a less detailed language rep-
resentation at the same “depth". For example they consider WEATHERREPORTER,
the system used as case study through the ‘Building Natural Language Generation
Systems’ book by Reiter and Dale (2000). They discuss a subtask in that system
which is responsible for summarisation of a month’s worth of information. Evans
et al. declare this task cannot be regarded as an NLG task based on their given
principles. They assert if this step is non-linguistic, then it is ruled out by principle
A; if it is linguistic then it is ruled out by principle B. However since, Reiter and
Dale (2000)’s definition of NLG is the most widely accepted in the field, we refer
to this definition of NLG from this point onward in the thesis.

The most widely accepted architecture is the pipeline architecture, also proposed
by Reiter and Dale (2000). It is generally known as the ‘Consensus architecture’
and has three principal modules: 1. Document Planner, 2. Microplaner and 3. Sur-
face Realiser. This pipeline is depicted in Figure 2.1. These three modules are
responsible for two major groups of generation tasks, Content Tasks and Structure.
Table 2.1 represents each module along with its two major tasks.

Although the architecture mentioned is the most widely agreed upon architecture,
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Cahill et al. (1999) posed the following question:

“... whether Reiter’s ‘Consensus NL Generation Architecture’
really exists, and if so whether it is a suitable candidate for a ‘reference
architecture’ for NLG systems. Our answer to the first question is a
tentative yes, but we are less comfortable to accept the second.”

The above search for reference architecture led to RAGS (Reference Architecture
for Generation Systems) which is a specification of an abstract NLG system archi-
tecture to support sharing, re-use, comparison and evaluation of NLG technologies
(Mellish et al., 2006).

2.1.1 NLG systems

The architectures discussed above are idealised architectures. Practical systems may
vary in many ways from these; below, we review some platforms that can be used to
develop practical systems. D2S (Theune et al., 2001) is designed to generate speech
from data. It has been used for different languages like English, German, Dutch
and also for different domains like music and travel. FUF (Goldberg et al., 1994),
another platform, is actually an interpreter for functional unification grammars
and it is used for NLG systems like PLANDOC (McKeown et al., 1994) which is
implemented for English and helps telephone network engineers to document their
simulation results.

NLG systems are able to generate text from different kinds of input. For exam-
ple ModelExplainer (Lavoie and Rambow, 1997) produces text based on object-
oriented class models. Data-driven NLG is a category of generation systems that
produces text based on raw data saved in a knowledge-base. Such systems can be
very useful in situations where a human author frequently writes text from data,
e.g. reports on weather forecasts. The author should not only write the text but
also should decide how to analyse the data. Such a system consumes the raw data
directly, for example the amount of rain in a specific day. Additionally, the system
should decide where more analysis is required prior to generation, so it can clarify
the discussion or even make meaningful comparisons like calculating the average
rainfall in a given month or indicating temperature in comparison to the same day
of the previous year. This statistical analysis of input data can produce precise
reports without human intervention.

Data-Driven systems FOG (Goldberg et al., 1994) is a bilingual system that
produces text in English and French that assists meteorologists with composing
weather forecasts. The data is collected from weather stations and saved into a
database. Some of the complexities that the system faced included deciding on the
degree of details the reports cover, or where to use inexact temporal terms or more
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precise phrases, e.g. late this evening vs Friday midnight. FOG’s sample report and
input was previously provided in Figure 1.1 and Figure 1.2.

Another data-driven text generating system is SPOTLIGHT (Anand and Kahn, 1992),
a knowledge-based market analyzer. This system is responsible for converting
large amounts of data into five brief, clearly understandable reports. These reports
assist both manufacturers and retailers in tracking the scale and movement of
their products, assess the effectiveness of promotional strategies, and compare
the performance of competing products and product segments. Writing reports
on such a great amount of data is not only time consuming and error-prone, but
also it might need a domain expert to revise. This multilingual system generates
a language-independent representation of data, then maps it to each language
separately by deploying a grammar and a dictionary. André et al. (2000) and
Nijholt et al. (2003) generated real-time commentary on RoboCup simulation
league games. Nijholt et al. compared three real-time commentary systems. As all
these systems concentrate on RoboCup Simulator league the match is not visually
observed, therefore they obtain the input data from the software that monitors the
game. The input data consists of (1) information describing a player including
its location and orientation and (2) location of the ball and game information like
score and goal kicks. The output of all these systems are in speech format.

Note that due to the complexity of the language and demand for highly reliable end
product, commercial NLG systems — such as Arria NLG1, NarrativeScience2 and
Yesop3 — are heavily reliant on data-driven approaches that guarantee the quality
of the generated text.

2.2 Data-Driven Methods: Surface Realisation Rank-
ing

According to the Reiter and Dale (2000) architecture for NLG systems, a system
consists of three components: Document planner, Microplaner and Surface realiser.
The realiser converts an abstract representations of sentences or semantics into
natural language sentences. Such a realiser can also be found in other Natural
Language Processing (NLP) applications like Machine Translation or Text Sum-
marisation. The main issue with this sort of realiser4 is that it typically generates
multiple sentences that are sometimes paraphrases; some of them are equivalent

1https://www.arria.com/
2https://www.narrativescience.com/
3http://yseop.com/EN/smart-business-intelligence
4Another type of realiser is a symbolic realiser that produces only one sentence for a given input

semantic representation.

https://www.arria.com/
https://www.narrativescience.com/
http://yseop.com/EN/smart-business-intelligence
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but the rest of them are misleading. In Figure 2.2 a sample of realiser output is
shown.

In fact, the reranking process can be regarded as the reverse action of parse selection.
The output of a parser, a parse forest, includes all the possible parse trees for a given
sentence. Similarly, a generation forest (the output of a text generator) contains
one or only a few acceptable structures in addition to other similar structures that
are less preferred. Ranking the output of the realiser, the system must sort the
generated sentences so the most relevant representation comes first and so on while
for parse selection, it should choose the n-best parses from numerous parses given
for one sentence and put them in order so the best comes first.

1. remember that dogs must be on a leash.
2. remember dogs must be on a leash.
3. on a leash remember that dogs must be.
4. on a leash remember dogs must be.
5. a leash remember that dogs must be on.
6. a leash remember dogs must be on.
7. dogs remember must be on a leash.

Figure 2.2: A sets of a generated sentences using LinGO ERG. (Velldal and Oepen,
2005)

There are different approaches to perform this task and like many other NLP
applications, statistical approaches to surface realisation have shown significant
improvements over non-statistical approaches. Traditionally, realisers refer to a
corpus to build a model for the language. In that way the best word order can be
chosen by consulting that model.

Langkilde-Geary (2000) introduced the idea of statistical realisation ranking by
using a ‘lattice’, a graph where each arc is labelled with one word, to represent
corpus-based knowledge, like common phrases and decisions. There were some
drawbacks like unavoidable duplication, and the independence between many
choices cannot be fully exploited. She consequently improved her model by
converting the lattice to a forest so that a group of nodes that occurs more than once
is given a new and unique label. She proposed a bottom-up dynamic programming
algorithm for ranking the forest by comparing alternate phrases corresponding to
the same semantic input. She considers two different types of score for each phrase
in the forest: Internal (context-independent) and external (context-dependent). The
internal is computed once and saved with the phrase while the external node is
computed by considering the phrase siblings. Equation 2.1 calculates the internal
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score for the given phrase p recursively.

I(p) =

JY

j=1

I(cj) ⇤ E(cj|context(c1..cj � 1)) (2.1)

where I is internal score and, E is the external score, and cj is a child node of
p. Both I and E and context formulation depend on a language model so if the
language model is bigram-based, I(cj) would be equal to 1 for all cj and E can be
calculated as in Equation (2.2).

E = P (FirstWord(cj)|LastWord(cj � 1)) (2.2)

It is also possible to make a more complex language model by including features
such as head word, part-of-speech tag, constituent category, etc. After the score for
each phrase is computed, the ranking algorithm tries to concatenate phrases in a
way the maximum score is delivered. This ranker was used in a general-purpose
sentence generator system introduced by Langkilde-Geary (2002).

Ratnaparkhi (2000) presented three trainable systems for surface natural language
generation (NLG1, NLG2 and NLG3) to describe flights in the domain of air
travel. All of these three systems deploy annotated corpora with domain-specific
attributes and follow a two step procedure depicted in Figure 2.3. The third
system also require a corpus with syntactic dependency information annotated.
NLG1 uses phrase frequency to generate a whole phrase in one step i.e the most
frequent template in the training data that corresponds to a given set of attributes
is chosen. The other two deploy two different maximum entropy probability
models to individually generate each word in the phrase. The main difference
between these systems is that NLG3 tries to overcome the shortcomings of NLG2
in predicting the next word. So it uses conditioning on syntactically related words
to generate more accurate sentences. It incorporates conditions on the parent and
the two closest siblings and the direction of child relative to parent. It also requires
the corpora to be annotated with tree structure like the sample dependency tree
shown in Figure 2.4. Both NLG1 and NLG2 perform feature selection followed by
a search for the best tree.

2.2.1 Realisation Ranking using Log-linear Models

A major advance in statistical ranking approaches was using log-linear models.
Log-linear models aim to describe language by giving a weighted aggregation of
arbitrary features; they can be seen as a generalisation of simple language models.
So, they can be used in other NLP applications such as parse selection and Machine
Translation result ranking. Early works on log-linear models used just language
models as features. However, since then new features derived from both language
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Input to Step 1: {$city-fr, $city-to, $time-dep, $date-dep }

Output of Step 1: “a flight to $city-to that departs from $city-fr
at $time-dep on $date-dep”

Input to Step 2: “a flight to $city-to that departs from $city-fr
at $time-dep on $date-dep”,
{ $city-fr = New York City, $city-to = Seattle
,$time-dep = 6 a.m., $date-dep = Wednesday}

Output of Step 2: “a flight to Seattle that departs from New York
City at 6 a.m. on Wednesday”

Figure 2.3: Two steps of NLG process for NLG1, NLG2 and NLG3 with corre-
sponding input and output. Words starting with $ are attributes. (Ratnaparkhi,
2000)

flights

in(+)

the(-)afternoon(+)

from(+)

Chicago(+)

evening(-)

Figure 2.4: Sample dependency tree for the phrase evening flights from Chicago in
the afternoon + and - signs indicate right and left child, respectively.(Ratnaparkhi,
2000)

model scores and features related to syntactic structure are employed. Here we
give an overview of two of the most relevant research approaches that are the base
of realisation ranking in this thesis: both of these apply the log-linear models to the
output of the symbolic grammar-based generators. We briefly discuss the grammar
formalisms and resources that they used prior to the methodology discussion. We
discuss the latter research in more detail as it is the basis of the work presented in
this thesis.

2.2.1.1 Realisation Ranking using Log-linear with Head-driven Phrase Struc-
ture Grammar (HPSG)

HPSG HPSG is one of the major formalisms for syntactic theory. Being precisely
formalised, HPSG has become one of the more popular formalisms for sentence
analysis and generation. HPSG grammars are expected to have a set of base
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Figure 2.5: HPSG feature structure for pronoun she
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Figure 2.6: HPSG feature structure for pronoun walks

words which would be extended dramatically by applying a set of lexical rules.
This formalism uses an Attribute Value Matrix (AVM) to represent various word
attributes such PHON(ological) and SYNSEM (syntactic, and semantic) such as
word category, with what other words it must appear and what level in the tree
the node is. Figures 2.5 and 2.6 are AVMs for pronoun she and verb walks. As
per the annotation in Figure 2.5, walks is a verb that requires a subject and no
complementisers. As specified by its SUBJ functional structure (f-structure), the
appropriate subject must be a noun, and be third-person singular. Comparing the
expected subject f-structure with the one that describes she, it can be concluded
that she is the appropriate subject for the verb walks. This is how this formalism
enforces valid syntax and word order.
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The LinGO Redwoods treebank5 is a rich and dynamic treebank and is based on
open-source HPSG resources. This treebank is a collection of hand-annotated
corpora analysed with the LinGO English Resource Grammar (ERG)6. LinGo
Redwoods allows retrieval of linguistic data in varying granularity and in the
constant evolution and regular updating of the treebank itself (Oepen et al., 2002).
This treebank also allows alternative analyses including dispreferred ones per
utterance.

Velldal and Oepen (2005) implemented realisation ranking for LOGON, a machine
translation system with an NLG component that generates English sentences from
a semantic representation. They employ the Lingo-ERG for the generation task.

The authors applied three different statistical models in their realiser, evaluating
them against each other: an n-gram language model, a discriminative maximum
entropy model using structural features, and a combination of these two. They
produced a ‘symmetric treebank’ for both training and evaluation. The notion of
symmetric treebank was first introduced by Velldal et al. (2004) and it is composed
of:

1. a set of pairings of surface forms

2. a set of alternative analyses for each surface form, and

3. sets of alternate realisations of the semantics.

The preferred realisations are automatically specified by comparing the yields of
the generated trees with original strings in a treebank. The authors employed the
Redwoods treebank then applied re-generation followed by the previously defined
process as an alignment method to create the symmetric treebank. Negative log-
probabilities were employed to rank the n-gram model. For the maximum entropy
ranker they use a conditional log-linear model which calculates the probability of
realisation r given semantic representation s. In the log-linear model described by
equation 2.3, f is a set of real-valued feature functions that describe properties of
the data, and an associated set of learned weights � that determine the contribution
of each feature.

p�(r|s) =

1
Z�(s)

q(r|s)exp((
dX

i=1

�ifi(r)) (2.3)

5http://moin.delph-in.net/RedwoodsTop
6http://www.delph-in.net/erg/

http://moin.delph-in.net/RedwoodsTop
http://www.delph-in.net/erg/
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where Z�(s) is the normalisation term defined as

Z�(s) =

X

r02Y (s)

q(r0|s)exp((
dX

i=1

�ifi(r))) (2.4)

and Y (s) gives the set of all possible realisations of s. The so-called reference
or default distribution q is often only implicit and defined as 1

Y (s) . It can also be
substituted by some other reference distribution to incorporate prior knowledge in
the model.

2.2.1.2 Realisation Ranking using Log-linear with Lexical Functional Gram-
mar (LFG)

This is a very brief overview focussing on relevant characteristics for this thesis;
for a more complete survey of the formalism, see Dalrymple (2001) or Bresnan
(2000).

LFG The LFG formalism represents the structure of syntactic constituents,
constituent structure (c-structure) and the grammatical functions, f-structure, by
trees and AVMs, respectively. These two primary structures of LFG are systemati-
cally linked. Figure 2.7 and 2.8 provides the respective analyses for sentence (2.1).

(2.1) Pierre Vinken, former Elsevier chairman, died at age 83.

Attributes in an f-structure can be either complex (embedding one or more at-
tributes) or atomic (containing a single value). An example of a complex attribute
is SUBJ. it represents the subject of a particular predicate and accepts multiple
attributes in the form of another AVM, as its value. Another example is AD-
JUNCT; since English has no limit on the number of the modifiers a noun can take,
ADJUNCT is defined as a complex attribute that accepts a set of attribute-value
pairs (Dalrymple, 2001). As can be seen ADJUNCT occurred 4 times and has
a set as its value (annotated as 97, 106, 243 and 303 in Figure 2.8)7. Unlike
complex attributes, atomic attributes accept only a value from a set of available
atomic values. For instance NUM (number) and GEN (gender) can take a value
from {SING/DUAL/PL} and {FEM/MASC}, respectively. These concepts will be
used later in Section 4.2.2 to describe f-structure feature templates.

The Xerox Linguistics Environment (XLE) provides a platform for parsing and
generating Lexical Functional Grammars (LFGs) that comes with a rich graphical

7These numbers are XLE annotations to uniquely identify attribute values
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Figure 2.7: c-structure for sentence (2.1)

user interface for writing and debugging such grammars. It is the basis for the
Parallel Grammar Project, which is developing industrial-strength grammars for
Arabic, Chinese, English, French, German, Georgian, Hungarian, Indonesian,
Irish, Japanese, Malagasy, Murrinh-Patha, Norwegian, Polish, Spanish, Tigrinya,
Turkish, Urdu, Welsh and Wolof (Sulger et al., 2013). In fact, all the LFG analyses
in this thesis were produced by XLE.

German LFG Grammar German has a reversible broad-coverage LFG gram-
mar that was initially developed as part of the ParGram project (Butt et al., 2002,
Dipper, 2003) with the initial focus on phenomena discussed in theoretical syntax.
Later, Rohrer and Forst (2006) improved the coverage benefiting from techniques
that induce grammars from treebanks. As reported by authors, this grammar had
274 LFG style rules, which compiled into an automaton with 6,584 states and
22,241 arcs. This broad-coverage grammar is also reversible i.e. it can be used for
both parsing (producing c-structure and f-structure from a given sentence) and gen-
eration (conversion of surface realisations from of a well-formed input f-structure
into a sentence). This grammar also provides an acceptable parsing coverage of
about 80% in terms of full parses on newspaper text and it falls back to a FRAG-
MENT grammar for the out-of-coverage sentences and provides a partial analyses
for them. The FRAGMENT grammar as defined by (Riezler et al., 2002, p. 1) is a
grammar that is deployed in the absence of a complete parse and allows the input
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Figure 2.8: f-structure for sentences (2.1)
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to be analysed as a sequence of well-formed chunks. The set of fragment parses is
then chosen on the basis of the fewest-chunk method. With this combination of
full and partial parsing techniques 100% grammar coverage is achieved on unseen
data.

We believe that not many languages have such fully fledged LFG grammar as
English, German, Norwegian, Japanese, Arabic, and Urdu to assist language pro-
cessing and generation. Other languages either have no computational grammars or
they are in the process of development which means it cannot be as comprehensive
as the ones listed above. To name a few, LFG grammars for Greek, Irish and
Brazilian-Portuguese are under-developement.

Parse Tree Disambiguation Disambiguation within parsing refers to the prob-
lem of choosing which subtree should be present in the final parse tree where there
is more than one way of expanding a given node so that the final tree structure
represents the given sentence the best. This is exactly the reverse task for surface
realisation: assigning the best surface text to a given structure. Riezler et al. (2002),
Riezler and Vasserman (2004) and Forst (2007) approached the parsing problem
by training a model over a set of features that represent preferred and dispreferred
parse trees for a given sentence. Riezler et al. (2002) and Riezler and Vasserman
(2004) found the use of c-structure and f-structure in ranking of generated text to
be helpful in parse tree disambiguation. Riezler et al. (2002) proposed a log-linear
model for LFG parse disambiguation for English. They defined a set of simple,
mostly locally restricted c-structure and f-structure feature templates, as listed in
Table 2.2. However, such features were claimed not to be as efficient in parse tree
disambiguation for free word order languages such as Japanese and German (Cahill
et al., 2007b). Forst (2007) showed that a significant improvement can be achieved
for parse tree disambiguation in German by extending Riezler et al.’s templates in
order to capture more of the linguistic aspects of the sentences. Such linguistically
motivated features capture language-specific characteristics such as linear order of
grammatical functions, the (surface and functional uncertainty path) distance of an
extraposed constituent to its f-structure head, the nature of a DP in relation to its
grammatical function (pronominal vs. full DP, animate vs. inanimate).

Reranking XLE output Cahill et al. (2007b,a) were inspired by this approach
and looked into the usefulness of parse disambiguation features in the reranking
task. They presented a ranking model that learns the association between a set of
structural features and the preferred and dispreferred surface realisation for German.
They used the XLE framework with the above mentioned German reversible broad-
coverage LFG grammar.

They proposed deploying Forst’s extended feature templates and studied to what
extent they can improve the realisation ranking task for German, considering the
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Table 2.2: Features used by Riezler et al. (2002), Riezler and Vasserman (2004) for
the disambiguation of English ParGram LFG parses (Cahill et al., 2007a)

feature template and parameters Explanation

fs_attrs <attrs> counts number of occurrences of attribute(s) <attrs> in the f-structure

cs_label <cat> counts number of occurrences of category <cat> in the c-structure

fs_attr_val <attr> <val> counts number of times f-structure attribute <attr> has value <val>

cs_num_children<cat> counts number of children of all nodes of category <cat>

fs_adj_attrs <attr1> <attr2> counts the number of times feature <attr2> is immediately embedded in
feature <attr1>

fs_sub_attrs <attr1> <attr2> counts the number of times feature <attr2> is embedded somewhere in
<attr1>

cs_adjacent_label <cat1> <cat2> counts the number of <cat1> nodes that immediately dominate <cat2>
nodes

cs_sub_label <cat1> <cat2> counts the number of <cat1> nodes that (not necessarily immediately) dom-
inate <cat2> nodes

cs_embedded<cat><Depth> counts the number of <cat> nodes that dominate (at least) <Depth> other
<cat> nodes

cs_conj_nonpar<Depth> counts the number of coordinated c-structures that are not parallel at
<Depth> levels under the coordinated constituent

lex_subcat<Lemma><SCFs> counts the number of times <Lemma> occurs with one of the subcategorisa-
tion frames in <SCFs>

Additional Linguistically Motivated Features
ADD-PROP MOD1 <Lemma> counts the number of times a given lemma occurs as a member of a MOD

set

ADD-PROP F2 <Lemma> <PoS> counts the number of times a given lemma occurs as a particular <PoS>

ADD-PROP ACTIVE/PASSIVE
<Lemma>

counts the number of times a (verb) lemma occurs in active/passive voice

ADD-PROP
isCommon/Def/Pronoun/... <GF>

determines whether a DP with function <GF> is common, definite, pronom-
inal, etc.

ADD-PROP DEP11 <PoS1> <Dep>
<PoS2> <PoS2>

counts the number of times a sub-f-structure of type is embedded into a (sub-
)f-structure of type <PoS1> as its <Dep>

ADD-PROP PATH counts given instantiations of functional uncertainty paths

ADD-PROP PRECEDES <GF1>
<GF2>

counts the number of times a <GF1> precedes a <GF2> of the same (sub-
)f-structure

DISTANCE-TO-ANTECEDENT
%X

distance between a relative clause and its antecedent

ADD-PROP DEP12 <PoS1> <Dep>
<PoS2> <Lemma2>

counts the number of times a sub-f-structure of type <PoS2> and with
<Lemma2> as its PRED is embedded into a (sub-)f-structure of type

ADD-PROP DEP21 <PoS1>
<Lemma1><Dep> <PoS2> <PoS2>

counts the number of times a sub-f-structure of type is embedded as its
<Dep> into a (sub-)f-structure of type <PoS1> and with <Lemma1> as its
PRED

ADD-PROP PRECEDES
<Lemma> <GF1><GF2>

counts the number of times a <GF1> subcategorised for by a PRED
<Lemma> precedes a <GF2> subcategorised for by the same PRED

ADD-PROP MOD2 <Lemma1>
<Lemma2>

counts the number of times <Lemma2> occurs in the MOD set of a (sub-)f-
structure with <Lemma1> as its PRED

ADD-PROP VADJUNCT
PRECEDES <Prep1> <Prep2>

counts the numbers of times an ADJUNCT PP headed by <Prep1> precedes
an ADJUNCT PP headed by <Prep2>, both being in an f-structure with a
VTYPE

ADD-PROP DEP22 <PoS1>
<Lemma1> <Dep> <PoS2>
<Lemma2> <PoS2>

counts the number of times a sub-f-structure of type and with <Lemma2>
as its PRED is embedded as its <Dep> into a <Dep> into a <Dep> into a
(sub-)f-structure of type <PoS1> and with <Lemma1> as its PRED
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fact that not all the structural features that contribute to parse disambiguation can
promote reranking precision and not all features that captures surface properties are
present in that template set. For example in realisation ranking lexical dependencies
are given, therefore features that capture lexical dependencies would not help. On
the other hand, realisation ranking requires more surface features such as word
order.

They a used log linear model (introduced on page 20) similar to Velldal and Oepen
(2005)’s (previously discussed on page 23) with two major differences: (1) they
used the LFG formalism instead of HPSG, and (2) they switched the language
from English to German which is a non-configurational language. They used the
German reversible broad-coverage LFG grammar to regenerate alternatives from
a unique f-structure. They applied a ranking algorithm to the alternatives. For
example, assume the f-structure illustrated in Figure 2.9 is the only analysis pro-
duced by XLE for sentence (2.2) and the generator produced multiple realisations
(Figure 2.10) these multiple realisations would be then passed to the reranker to be
ordered in terms of goodness.

(2.2) Die
The

Nato
NATO

werde
is

nicht
not

von
from

der
the

EU
EU

geführt.
led.

NATO is not led by the EU.

Their log-linear model was built upon three distinct categories of features: language
model features (LM), c-structure features (CF) and additional features (AF).

Features in the first category take advantage of the language model (LM) which is
a well-established resource to address stochastic realisation ranking (Langkilde and
Knight). A trigram language model score for each realised string and the length of
the string, i.e, number of the words, are the two deployed LM features.

However, using it on its own does not always produce good results; i.e there cases
in which the original sentence is not amongst the 5-best sentences after reranking.
They thus incorporated the language model score associated with each alternative
string as just one feature in their model.

CFs, as the name suggests, were extracted from c-structure. Such features can
include the number of times a particular category label occurs in a given c-structure,
or the number of times one particular category label dominates another.

They listed the information that can be encapsulated in f-structure features as
follows:

Linear order of functions SUBJ generally precedes OBJ,

Adjunct position sentence beginning, distance from the verb, etc.

Partial VP fronting generally marked and thus dispreferred
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(1) Die
The

Nato
NATO

werde
is

nicht
not

von
from

der
the

EU
EU

geführt.
led.

‘NATO is not led by the EU.’

"Die Nato werde nicht von der EU geführt."

'führen<[249:von], [21:Nato]>'PRED
'Nato'PRED

_COUNT +, _DEF +, _DET attr_SPEC-TYPE
strong-det_INFL

CHECK

properNSYNNTYPE

'die'PRED
defDET-TYPEDETSPEC

CASE nom, GEND fem, NUM sg, PERS 321

SUBJ

'von<[283:EU]>'PRED
'EU'PRED

_COUNT +, _DEF +, _DET attr_SPEC-TYPE
strong-det_INFL

CHECK

properNSYNNTYPE

'die'PRED
defDET-TYPEDETSPEC

CASE dat, GEND fem, NUM sg, PERS 3283

OBJ

PSEM dir, PTYPE sem249

OBL-AG

'nicht'PRED
negADJUNCT-TYPE215

ADJUNCT

werden-pass__AUX-FORM

sein_AUX-SELECT_VLEX

perfect_PARTICIPLE_VMORPH

CHECK

MOOD subjunctive, PASS-SEM dynamic_, TENSE presTNS-ASP
[21:Nato]TOPIC

CLAUSE-TYPE decl, PASSIVE +, STMT-TYPE decl, VTYPE main128

Figure 1: F-structure for (1)

Just as hand-crafted grammars, when used for parsing, are only useful for most
applications when they have been complemented with a disambiguation module,
their usefulness as a means of surface realisation depends on a reliable module for
realisation ranking. A long list of arbitrarily ordered output strings is useless for
practical applications such as summarisation, question answering, machine trans-
lation, etc.

Figure 2.9: f-structure for sentence (2.2)
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Die Nato werde von der EU nicht geführt.
Die Nato werde nicht von der EU geführt.
Nicht von der EU geführt werde die Nato.
Nicht werde von der EU die Nato geführt.
Nicht werde die Nato von der EU geführt.
Nicht geführt werde von der EU die Nato.
Nicht geführt werde die Nato von der EU.
Von der EU nicht geführt werde die Nato.
Von der EU werde die Nato nicht geführt.
Von der EU werde nicht die Nato geführt.
Von der EU geführt werde nicht die Nato.
Von der EU geführt werde die Nato nicht.
Geführt werde die Nato nicht von der EU.
Geführt werde die Nato von der EU nicht.
Geführt werde nicht von der EU die Nato.
Geführt werde nicht die Nato von der EU.
Geführt werde von der EU nicht die Nato.
Geführt werde von der EU die Nato nicht.

Figure 2.10: Alternative realisations for the f-structure in Figure 2.9 generated by
XLE.

Regardless of the potential contributions of f-structure features, they had to be
combined with other feature types; otherwise all the alternatives would get identical
feature set due to the fact that they were created from a unique f-structure. Features
in the AF category were expected to contribute to the ranking problem as it
captures more linguistic data by combining the information from both intermediate
structures. An example of such a feature is the number of children the nodes of a
particular category have.

They construct a list of 186,731 features for training a log-linear model using the
templates defined by Riezler et al. (2002), Riezler and Vasserman (2004) and Forst
(2007). Out of these, only 1,471 actually occur in their training data. They used
the cometc software8 to carry out feature selection using incremental feature
selection and l1 regularisation presented in Riezler and Vasserman (2004).

As a consequence of this selection, only 360 features were used for reranking the
alternative solutions. These feature templates along with their description are listed
in Table 2.3.

For training, they built a symmetric treebank of 8,609 packed c/f-structure repre-

8cometc provided with the XLE platform and performs maximum likelihood on standardised
feature values and offers several regularisation and/or feature selection techniques.
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Table 2.3: Features templates used by Cahill et al. (2007b) for semi-automatic
feature construction for parse disambiguation (Cahill et al., 2007b)

Name of feature template and
parameters

Explanation

C-structure Features
cs label <cat> counts number of occurrences of category <cat> in the c-structure

cs right branch counts number of right children

cs num children <cat> counts number of children of all nodes of category <cat>

cs adjacent label <cat1> <cat2> counts the number of <cat1> nodes that immediately dominate <cat2>
nodes

cs sub label <cat1> <cat2> counts the number of <cat1> nodes that (not necessarily immediately) dom-
inate <cat2> nodes

cs embedded <cat> <Depth> counts the number of <cat> nodes that dominate (at least) <Depth> other
<cat> nodes

cs conj nonpar <Depth> counts the number of coordinated c-structures that are not parallel at
<Depth> levels under the coordinated constituent

Additional Linguistically Motivated Features
ADD-PROP PATH counts given instantiations of functional uncertainty paths

ADD-PROP PRECEDES <GF1>
<GF2>

counts the number of times a <GF1> precedes a <GF2> of the same (sub-
)f-structure

ADD-PROP PRECEDES
<Lemma> <GF1>

counts the number of times a <GF1> subcategorised <GF2> for by a PRED
<Lemma> precedes a <GF2> subcategorised for by the same PRED

DISTANCE-TO-ANTECEDENT
%X

distance between a relative clause and its antecedent

Language Model Features
GEN NGRAM SCORE %X 3-gram language model score assigned to the generated sentence

GEN WORD COUNT %X number of words in the generate
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sentations in a similar to Velldal et al. (2004). They first excluded the structures
for which only one string was generated, since the log-linear model needs a pair
consisting of a preferred and a dispreferred sample to learn from at a given point
in the training. Then they followed the steps below and prepared the symmetric
treebank(Cahill et al., 2007b, p. 11):

1. Parse the input sentence from the TIGER Treebank using XLE.

2. Keep only the analyses that are compatible with the TIGER Treebank anno-
tation.

3. Of all the TIGER-compatible analyses, choose the most likely c-/f-structure
pair according to the log-linear model for parse disambiguation.

4. Generate candidate(s) from the f-structure part of this analysis.

5. If the source string is contained in the set of output strings, add this sentence
and all of its corresponding c-/f-structure pairs to the training set. The pair(s)
that correspond(s) to the original corpus sentence was/were labeled as the
preferred structure(s), while all others are marked as dispreferred.

In theory, when regenerating from a string, it is expected to have the original string
amongst the alternative strings generated by the system. However, XLE often does
not generate punctuation in all possible positions which explains the cases that the
input string does not appear in the set of generated strings. Cahill et al. (2007b)
didn’t use such strings for training.

They evaluated their system using two metrics: exact match and BLEU score
(Papineni et al., 2002). Exact match measures what percentage of the most probable
strings are exactly identical to the reference sentence. BLEU score is a more relaxed
metric and its major application is to evaluate Machine Translation (MT) systems.
Applying it to text generation, it indicates the similarity of the highest ranked
sentence with the reference sentence, by calculating the percentage of the n-grams
from the former that also exists in the later, multiplied by a brevity factor. This
factor is a ratio of the candidate sentence length to the reference sentence length.

Their results indicates that training on c-structure features alone is the worst in
exact match and BLEU score, even lower than the baseline. They argue that this is
caused by the nature of the employed features which were initially designed for
parse disambiguation. Surprisingly, the log-linear model trained on language model
features alone performs worse than the baseline language model applied directly;
but still better than c-structure model. Looking into the models that combine two
feature categories at a time—AF + LM , CF + LM and AF + CF—the first model
achieved the greatest improvement in both evaluation metrics. The BLEU score
was 0.7705, which is only a little less than the best result achieved by combining
all three feature types (0.7808).
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1. The groups who protested against plans to remove... (The GlasgowHerald;
Jun 25, 2010)

2. .. to help cover small groups that can’t get insurance ... (WSJ0518.)
3. Five miles is a long distance to walk. (Kim, 2004)
4. King prawns cooked in chili salt and pepper was very much better ... (Kim,

2004)

Figure 2.11: Agreement as a ranking problem.(Rajkumar and White, 2010)

They concluded that the language model features and the additional features had
the most contribution to the model, while the c-structure features had the least.
Nevertheless, the c-structure features were beneficial, since the best model was the
one that combined the three feature types. Despite these encouraging results, an
error analysis of the realisation ranking confirmed that further features are required
to enhance the quality of the output strings.

Cahill et al. (2007b) additionally reported the quality of reranking to provide an
indication of how close the correct string, the closest to the reference string, was to
being selected. The authors calculated the ranking score as follows:

S =

(
n�r+1

n if ris defined,
0 otherwise

where n is the total number of generated alternative realisations and r is the rank
of the gold standard string. If the gold standard string is not among the list of
potentials, i.e. r is undefined, the ranking score is defined as 0. Since the original
string was not necessarily in the set of candidate strings, they provided the upper
bound, i.e. if the ranker had chosen the correct string any time the correct string was
available. Their results indicated that in almost 62% of the cases, the original string
was generated by the system. The ranking scores for hybrid model and language
model alone were reported as 0.5437 and 0.4724, respectively. The ranking score
once again proves the superiority of the hybrid model to the baseline by ranking
the original string (when available) higher in the list of candidate strings.

2.2.1.3 Realisation Ranking using Log-linear with Combinatory Categorial
Grammar (CCG)

So far, all the discussed works focused on ranking the generated text regarding
the grammaticality of a sentence. Rajkumar and White (2010) tried to extract
features that resolve both animacy agreement between nouns and relative clauses
and number agreement for subj-verb agreement. Sentences 1 and 2 in Figure 2.11
are examples of the former agreement and sentences 3 and 4 are instances of the
latter.
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Traditionally, grammatical agreement has been handled using hard constraints in
the grammar. The problem with hard constraints is they are not capable of handling
the exceptions. Thus, the authors built a statistical realisation ranking model that
learns animacy and number agreement to rank competing preferences. Competing
preferences generally occur in text generation due to under-specification, e.g,
alternatives with relative pronouns who, that, which, etc. They used a perceptron
model9 for this purpose which also helped with reducing balanced punctuation
errors so that a post-filter will be required to handle such cases. As they used
Combinatory Categorial Grammar (CCG) formalism (Steedman, 2000), OpenCCG
was their realiser and they trained and tested their system on an enhanced version
of CCGbank (Hockenmaier and Steedman, 2007). They consider three different
features for their perceptron model to solve animacy and number agreement:

1. a log probability of the generated realisation word sequences computed ac-
cording to their linearly interpolated language model as previously suggested
by Velldal and Oepen (2005);

2. syntactic features by implementing Clark and Curran (2007) normal form in
OpenCCG; and

3. discriminative n-gram features.

For instance to rank sentences that contain relative pronouns, they engineered
features so that they took into account the name entity class of the head word
along with its stem. Consequently, the model learned that who should go with
proper nouns (NNP and NNS) and which and that are appropriate for other Part of
Speech (PoS) tags associated with nouns.

They were the first to prove that provided labelled data, linguistically motivated
features can capture language-specific features such as agreement and animacy.
They showed that incorporating such features in realisation ranking models could
significantly improve the realisation ranking results in terms of both exact match
and BLEU score.

2.3 Data-Driven Methods: Surface Realisation us-
ing Other Input

Back in 2010, Belz et al. reported that unlike PoS taggers and parsers, surface
realisers had rarely been reusable. The authors attributed this to the wide variety of
input representations used by various realisers and the lack of an established basis
for comparing the surface realisers’ output quality. As the first step to promote the
reuse of surface realisers as a tool, the authors proposed a shared task in surface

9A kind of linear supervised classifier.
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Team Organisation(s) Shallow systems Deep systems
ATT AT&T Labs Research ATT-0y -
OSU Ohio State University - OSUy

STUMABA
Universitat Stuttgart
Universitat Pompeu Fabra
Universite du Maine

STUMABA-Sx,y STUMABA-Dx,y

UCM Universidad Complutense
de Madrid UCM -

Table 2.4: SR-Task teams and systems.
x = resubmitted after fixing software bugs;
y = late submission (Belz et al., 2011)

realisation. The main challenging aspect of their proposal was to define a common-
ground representation formalism so that it can be consumed by various realisers
through mapping to their individual representation (Belz et al., 2010).

They agreed that once the common input representations can be automatically
derived from annotations in existing resources, then data can be produced in
sufficient quantities to allow participants to automatically learn mappings from
the system-independent input to their own input. They proposed a solution along
the lines of what had been done in the CoNLL’08 shared task on Joint Parsing of
Syntactic and Semantic Dependencies: combining the Penn Treebank, Propbank,
Nombank and the BBN Named Entity corpus into a dependency representation.
Their other challenge was to define an evaluation method.

The authors decide not to focus on single-best realisations, as it will not encourage
research on producing all possible good realisations.To take into account the one-to-
many nature of the realisation mapping, they proposed to adapt existing automatic
intrinsic methods, e.g. BLEU or NIST, to calculate scores for the n-best realisations
produced by a realiser and then to compute a weighted average where scores for
realisations are weighted in inverse proportion to the ranks given to the realisations
by the realiser. Also Clarity, Readability and Meaning Similarity can be assessed
by human judges.

The first surface realisation task was one of the tasks in Generation Challenges
2011(Belz et al., 2011) with five teams submitted six systems (see Table 2.4) in
the following two strands: shallow mapping from shallow input representations
to realisations and deep mapping from deep input representations to realisations.
Both representations were sets of unordered labeled dependencies; see Table 2.5
for comparison of the two representations.

Belz et al. (2012) reported that the four top-performing systems (StuMaBaD,
StuMaBa-S, DCU and ATT) were all statistical dependency realisers without an
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Representation Node Edge
Shallow Xword’s lemma

Xcoarse-grained POS-tag
Xnumber*
Xtense and participle features*
Xa sense tag id*
punctuation features:

X quotation and bracketing
X comma

X function words (complementiz-
ers and TO infinitives)

Xsyntactic edges: Pen-
ncoverter syntactic
labels

7 semantic edges

Deep Xword’s lemma
7 coarse-grained POS-tag
where appropriate:
Xnumber*
Xtense and participle features*
Xa sense tag id*
punctuation features:

Xquotation and bracketing
7 comma

7function words (complementisers
and TO infinitives)

Xsyntactic edges: Pen-
ncoverter syntactic
labels

Xsemantic edges: Prop-
bank and Nombank
semantic roles la-
bels.

Table 2.5: Comparison between Deep and Shallow representation.
* = where necessary
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explicit, pre-existing grammar. The good result is attributed to the robustness and
flexibility of statistical dependency realisers in consuming new kinds of dependency
inputs. On the contrary, the only two systems that employed a grammar, either hand-
crafted (UCM) or treebank-derived (OSU), did not produce competitive results.
Both teams with grammar-based systems experienced substantial difficulties in
mapping the common ground inputs into their systems’ expected inputs.

A conclusion to be drawn is that realisers which do not depend on grammar-based
systems are an avenue worth exploring. Below, we look at one class of approach
that uses words and dependencies as inputs, which was inspired by graph-based
dependency parsing.

2.3.1 Data-driven Dependency Parsing using Spanning Trees

Graph-based parsing uses a directed graph to represent all possible dependency
relationships between words in a sentence, and the goal is to choose some subset
that forms a good tree. Data-driven dependency parsing models, as the name
implies, require annotated corpora to learn dependencies. There exist various
models in the parsing literature but in this chapter, we only reference to those
which inspired us to perform surface realisation tasks.

McDonald et al. (2005b) used an edge-factored model to provide a general frame-
work for parsing trees for both projective and non-projective languages. Edge-
factored dependency parsing model is a popular subclass of data-driven parsing
that considers each edge as an independent factor in producing the final tree.

Figure 2.12 shows how Chu-Liu-Edmonds (CLE) — a standard algorithm in graph
theory to locate Minimum Spanning Tree (MST) — can be applied to search
space to extract an MST which serves as a dependency parse tree for a given
sentence. In this figure, weights represent the likelihood of an edge as a dependency
relation. In the absence of such algorithm, we can locate a couple of subgraphs
that are non-maximal trees, e.g. the tree composed of the following edges: root
to John, John to saw and saw to Mary. On the other hand, if we follow the
greedy selection of edges to get the maximal subgraph, the outcome would not
be necessarily satisfactory as it might not represent a tree, as in Figure 2.12(b).
The CLE algorithm is given in Algorithm 1, and is discussed in more detail in its
application to realisation in Section 2.3.2.

As suggested by the MST extraction process shown in Figure 2.12, the accuracy of
the dependency tree depends on dependency weights. Therefore, McDonald et al.
(2005a) proposed to adapt Margin Infused Relaxed Algorithm (MIRA) (Crammer
et al., 2006) to train a model to generate dependency parse trees. Their adaptation
resulted in a dependency parser with competitive accuracy without any word limit
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Figure 2.12: A step by step example of the CLE algorithm to get the MST for
Sentence (5.1). (a) create initial digraph and assign weights to each dependency;
(b) greedily choose incoming dependencies with minimum weight; (c) contract the
cycle into a temporary node t and recalculate the weights; (d) once again, greedily
choose incoming dependencies with minimum weight which results in a valid tree;
(e) revert t to its original building nodes to get the MST (McDonald et al., 2005b).
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on the sentence, as opposed to Taskar et al. (2004)’s attempt to formulate parsing
with max-margin which had a word limit of 15.

McDonald and Satta (2007) provided an extensive comparison between projective
and non-projective parsing in addition to an indepth study of the problematic key
areas in learning and inference methodologies for graph-based dependency parsing:
(1) Finding the Argmax, (2) Calculating the partition function and (3) Assigning
edge weights, by looking into existing algorithms. The authors showed that each
of the above mentioned values can be tractably calculated for the non-projective
in polynomial time with the assumption that dependency relations are mutually
independent.

The authors also discussed the limitations of edge-factored such as horizon-
tal/vertical Markovization and incorporation of arity. The above mentioned inde-
pendency assumption does not allow a given edge to look at its neighbourhood, i.e,
lack of non-local information which results in trees of unbounded arity, and neigh-
bouring dependencies which can be crucial to obtaining high parsing accuracies.

As a result, exhaustive methods have been proposed to weaken edge-factored
assumptions including both approximate methods (McDonald and Pereira, 2006),
and exact methods through Integer Linear Programming (ILP) (Riedel and Clarke,
2006) or branch-and-bound algorithms (Hirakawa, 2006).

2.3.2 Parse Trees as Intermediate Structures for String Regen-
eration

Wan et al. As noted at the start of Section 2.3, there’s a range of generic input
representations that aren’t tied to particular grammar formalisms, which would be
particularly applicable in cases where grammar resources aren’t available at all.
Wan et al. (2009) considered the case of the input being just a bag of words, and had
as their goal (similar to the reranking work discussed in Section 1.2) to regenerate
the original sentence. The idea in that work was to induce some partial structure
to assist the word ordering. In particular, they drew on the ideas of McDonald
et al. (2005b) to assign an MST to a bag-of-words to serve as a guiding structure.
They addressed the problem by redefining it as a graph-theory problem: finding the
Minimum Spanning Tree (MST) to serve as a dependency tree.Wan et al. (2009)
mapped the search space into a complete weighted digraph, so that each node
represents a word and each edge denotes a potential dependency. Figure 2.13
represents such a digraph for a bag-of-words consisting of n nodes, where Ni,
i 2 1..n, is the ith word, and wij represents the weight of the dependency where
Ni is the head and Nj is the dependent.

Wan et al. adapted Collins (1996)’s definition to assign edge weights using
Maximum Likelihood Estimate (MLE). For a given edge e = (u, v) 2 E and
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w12

w13

w1n

w23

w2n
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w31
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w32
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wn3

Figure 2.13: A complete digraph for a bag-of-words of size n. Each Ni represents
a word and each wij denotes the weight for a dependency which Ni is the head and
Nj is the dependent .

direction d 2 D consulting the Penn Treebank, the edge weight is calculated as:

s((u, v), d) = � log probdep(u, v, d) (2.5)

probdep(u, v, d) =

cnt((u, pos(u)), (v, pos(v), d)

co-occurs((u, pos(u)), (v, pos(v)))
(2.6)

where s((u, v), d) is the log probability of the number of the times that (v, pos(v))
is modifying (u, pos(u)) in direction d divided by the number of the times (u, pos(u))

and (v, pos(v)) co-occur in a sentence in the training set. Following Collins
(1996)’s work, they back off to PoS, for unseen dependency samples. They used
the CLE algorithm (see Algorithm 1), as McDonald did for parsing.

Figure 2.12 shows how CLE is applied to sentence (5.1) step-by-step to produce an
MST for it. For each node, this algorithm picks the incoming edge with minimum
weight (Figure 2.12(b)). If these edges altogether form a tree then the task is done,
otherwise there must be at least one cycle. The graph is then modified so that
each cycle (C) is contracted to one node and the weight for the outgoing edge to
node a, where a /2 C, would be equal to the highest scoring edge from any vertex
of the cycle-participating nodes. The incoming edge weight from a given node
a, where a /2 C, would be the score of the best spanning tree originating from a
that includes the vertices in the cycle (Figure 2.12(c)). The algorithm will repeat
choosing edges with minimum weights and applying contraction steps until no
cycle exists in the graph (Figure 2.12(d)). Finally, all the contracted node(s) must
be expanded back to their original state to get the final MST (Figure 2.12(e)).

Since CLE is a pure MST algorithm, it fails to incorporate linguistic properties:
for example, the tree’s branching factor might not be appropriate for verb valency.
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Algorithm 1 Chu-Liu-Edmonds Algorithm with adaption to include linear prece-
dence (Wan et al., 2009)

1 Tw  (u, v) 2 E : 8v2V,d2D arg min(u,v) s((u, v), d)
2 if Mw = (Vw, Tw) has no cycles then
3 return Mw

4 end if
5 for all C ⇢ Tw : C is a cycle in Mw do
6 (e, d) arg mine⇤,d⇤ (se⇤, d⇤) : e 2 C
7 for all c = (vh, vm) 2 C and dc 2 D do
8 for all e0 = (vi, vm) 2 E and d0 2 D do
9 s(e0, d0) s(e0, d0)� s(c, dc)� s(e, d)

10 end for
11 end fors(e, d) s(e, d) + 1

12 end for
13 Tw  (u, v) 2 E : 8v2V,d2D arg min(u,v) s((u, v), d)
14 return Mw

To tackle this problem, Wan et al. (2009) introduced an Argument Satisfaction
Model termed the Assignment-Based (AB) system. In this model they defined a
maximum number of argument positions for different word categories, e.g. nouns
and verbs. Hence for a given head v, function q maps it into a set of attachment
positions {vdj}, where d specifies whether the modifier is a right branch attachment
(r) or left one (l), and j states the relative order on each side:

q(v) =

8
><

>:

{vr1}, if v = w0, the root
{vri, vlj|i, j 2 N}, if pos(v) is a verb and vis the child of w0

{vlj|j 2 N}, otherwise

q can be defined with more sophistication, for example by constraining based on
PoS tags in order to strengthen the linguistic aspect of dependency selection.

Wan et al. also allow a two-way competition: head words’ argument positions
compete with each other to find a modifier, and at the same time, modifiers compete
with each other to be assigned to a head. To obtain a balanced dependency tree a
branching factor, the maximum number of dependents per head, is specified for
each node. Sentence (2.3) and Figure 2.14 illustrate a tree where such constraints
have been applied to e.g. the verb remains, to enforce a typical valency; similarly
for the preposition in. Once an edge is assigned to a node which has already gone
past its maximum branching factor, a penalty is applied to the weight of that edge.

(2.3) Concerning your Sept. 21 page-one article on Prince Charles and the
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root

remain

burdening:# r2

hosts:# r1

displaced:# r1

in:# r1

Dilli:# r1

still:# l2people:# l1

Figure 2.14: The spanning tree of the sentence: People still remain displaced in
Dili, burdening hosts. Pages 188–189 of Wan et al. (2009) describe the process
step-by-step.

leeches : It ’s a few hundred years since England has been a kingdom.

This dynamic weight change of the graph makes the problem an NP-hard problem
(McDonald and Satta, 2007). They represent the problem of finding the dependency
tree as an instance of the assignment problem. The assignment problem is an
optimisation problem and consists of finding a maximum weight matching (or
minimum weight perfect matching) in a weighted bipartite graph where a match
in a graph is a set of edges without common vertices. Consequently, instead of
CLE, they applied the Hungarian algorithm which is one the standard algorithms
that solve this problem in a polynomial time. Figure 2.15 compares two trees
produced by the CLE and AB algorithms. The final word sequence is determined
by traversing the tree using a greedy edge selection algorithm. However, it is a
crucial task to decide the order of the modifiers of an individual head with the same
dependency direction; to do this, an n-gram language model score is calculated for
all possible word orders.

Other works Similar to Wan et al. (2009), Zhang and Clark (2011) addressed the
word-ordering problem by finding the best parse tree in the search space. However,
instead of inducing structure via a graph-based dependency parse method, they use
CCG parsing as described below.

They extracted the grammar by reading rule instances from CCGbank10 (Hocken-
maier and Steedman, 2007) to guide the parse tree creation. This grammar is used
to construct the parse trees in a bottom-up fashion, starting from single words. The
algorithm uses beam search to locate the highest score hypothesis and expands it.
The expansion was performed by either applying unary rules to a hypothesis or

10A translation of the Penn Treebank into a corpus of CCG derivations.
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(a) MST for sentence (2.3) using CLE algorithm.
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(b) MST for sentence (2.3) using Hungarian algorithm.

Figure 2.15: Comparison of CLE and Hungarian algorithms output. Comparing
trees in 2.15(a) and 2.15(b) shows the effectiveness of using branching factor in
the later.
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binary rules to combine existing hypotheses. The complexity of each hypothesis
expansion is kept linear in the size of a beam.

Later work by Zhang et al. (2012) showed that adding n-gram language model
scores to such a system improves the output. The authors redefined the weight for
edge e to be linear interpolation of syntax model f(e) and n-gram score g(e) as:

F (e) = f(e) + g(e) (2.7)
= f(e) + ↵ · gfour(e) + � · gtri(e) + �.gbi(e)

where gfour,gtri, and gbi are the log probabilities of the corresponding n-gram
language model score and ↵, �, and � are score weights.

In the latest and best performing model, Zhang (2013) switched to dependency
features for the search algorithm, sticking to the same training framework as Zhang
and Clark (2011). This work demonstrated that BLEU score improvement in Zhang
et al. (2012) was due to the guided search framework, not the features’ type.

Linguistic constraints are hardcoded in both approaches proposed in Wan et al.
(2009) and Zhang and Clark (2011). However, there are many possible linguistic
constraints, so we want to be able to add arbitrarily many: as an example consider
the tight coupling between the language and the domain. The former approach
allows an easier translation to a declarative approach compared to the latter’s
bottom-up approach. Therefore, we take the approach of Wan et al. (2009) as our
starting point to define a declarative string regeneration framework.

It is worthwhile to note that the correspondence between an unordered dependency
tree and a sentence has been also valued by researchers with a more linguistic
focus. Kahane and Lareau (2016) showed that linearisation can be seen as a
graph rewriting process. However, unlike what we pursue, less reliance on crafted
grammar, they took a mathematical/theoretical approach — not computational —
and proposed a general formalism for a dependency grammar that can be used
for both parsing (sentence to dependency tree) and realisation (dependency tree to
sentence).

2.4 Creative NLG Systems

The immense rise of processing power combined with new techniques and archi-
tecture that addressed the pitfalls of traditional Neural Network (NN) — such
as getting stuck in local optimas and training deep networks — contributed to
the successful re-emergence of these methods under the name Deep Learning
for solving various problems across fields of Artificial Intelligence (AI) such as
image recognition and speech processing. The recent improvements to Neural Net-



46 CHAPTER 2. LITERATURE REVIEW

Figure 2.16: feed-forward neuralnetwork with two hidden layers, reproduced from
Figure 2 from Goldberg (2015).

work (NN) enabled them to model the NLP problems and increase their popularity.
Goldberg (2015) provided a substantial tutorial survey on NNs for NLP; thus in
this section, we briefly recap two popular NN architectures and how they deal with
textual input.

NNs are a loose inspiration of computational model that distributes the process to a
multi-layer network of neurons. Figure 2.16 depicts a feed forward NN. The very
first layer feeds the input to the network and the top most layer returns the output.
The layers in between are called hidden layers and traditionally, each node in layeri
is connected to all the nodes in layeri+1 using a weight. This weight indicates the
importance of the given connection. Each neuron applies a non-linear function,
such as the sigmoid function, and passes it to the next layer. Such networks are
called feed forward for the forward flow of data. These traditional networks are
suitable for sequence-independent tasks with fixed-size vector as input/output.
Sequence-dependent tasks with variable size input/output are hard to be modelled
by plain NNs, since the variable-size sequence must be transformed, if possible
at all, into a fixed-size input. As a consequence, some structural properties of
the sequences such as order might be discarded which is a significant heuristic
for language based problems. Another limitation of NNs is the fixed amount of
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(a)
(b)

Figure 2.17: 2.17(a) the unrolled graphical representation of an RNN, reproduced
from Figure 5 from Goldberg (2015). 2.17(b) The rolled graphical representation
of an RN, reproduced from Figure 6 from Goldberg (2015).

computational steps, e.g., layers.

Recurrent Neural Network (RNN)s are a variation of NN that address the above
mentioned shortcomings of NNs by introducing a flexible sequence-based com-
putational model. Each neuron in an RRN applies function R to to its input xi to
produces state si. R is a recursive function that relies on the previous neuron’s
state si�1, for instance s4 is calculated as follows:

s4 = R(s3, x4)

= R(R(s2, x3), x4)

= R(R(R(s1, x2), x3), x4)

= R(R(R(R(s0, x1), x2), x3), x4)

This recursion is the characteristic of RNNs that incorporates sequence for more
effective modelling. In addition to R, each neuron maps its state si into output yi
using a function O. Figures 2.17(a) and 2.17(b) present the recursive and unrolled
graphical representation of an RNN, respectively. The former representation is
suitable for arbitrarily long sequences whilst the latter is the unrolled version
of recursive representation and best describes a finite size input sequence. It is
noteworthy that the R and O functions are the same across the network. Also the
parameter ✓ that is included in the representation indicates that the same parameters
are shared across all the states. The example in Figure 2.18 shows a few examples
of RNNs handling sequential input/output or both.
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It has only been recently that RNNs have been deployed for text generation (Wen
et al., 2015, Sutskever et al., 2011). Provided a large corpus for training, these
networks are capable of generating at character level, i.e. they are able to produce a
text by generating one character at a time. Lately, Andrej Karpathy publicly shared
a code for such an RNN11. This means they require no lexicon, no document
plan, no content selection, and no grammar. However, as briefly mentioned in the
Chapter 1, texts produced with such systems lack coherent semantics. What they
essentially do, at the time of writing this thesis, is more sequence modelling, and
less generating text with the purpose of communicating with the human reader.

Given the current approach of using deep learning methods at this stage, such
systems can be beneficial to tasks with no context, like image captioning. For
instance, Karpathy and Li (2015) introduced an image captioning system12 that is
trained over a set of images and their corresponding sentence descriptions. They
combined a Convolutional Neural Networks over image regions, bidirectional
Recurrent Neural Networks over sentences, and a structured objective that aligns
the two modalities through a multimodal embedding.

Manning (2015), who acknowledges the success of deep learnings methods in
producing state-of-the-art results, used a tsunami as the analogy for the recent
popularity of deep learning in major NLP publications. He argued that such meth-
ods would not solve NLP, mainly due to the domain specific nature of language.
He attributed the gains reported for NLP problems to the use of distributed word
representations than from the deep learning itself — the use of a hierarchy of
more abstract representations to promote generalisation. The author encouraged
researchers to return some emphasis within NLP to cognitive and scientific investi-
gation of language rather than almost exclusively using an engineering model of
research that aims to beat numbers. He suggested the field requires more efforts
into problems, approaches and architectures, for instance if meaning composition
functions can be built into Deep Leaning systems.

In this thesis, we embrace his idea and focus on the approaches to text generation
problems with regards to minority languages within the consensus architecture
noted above. Given that existing deep learning approaches have similar problems in
terms of grammaticality of output, it is possible that some of the ideas we propose
— for example, the imposition of soft grammaticality constraints on output — could
be adapted for those.

11https://github.com/karpathy/char-rnn
12The source code is available at https://github.com/karpathy/neuraltalk2

https://github.com/karpathy/char-rnn
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Figure 2.18: Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors
are in blue and green vectors hold the RNN’s state (more on this soon). From left to right: (1) Vanilla mode of processing without
RNN, from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image captioning takes
an image and outputs a sentence of words). (3) Sequence input (e.g. sentiment analysis where a given sentence is classified as
expressing positive or negative sentiment). (4) Sequence input and sequence output (e.g. Machine Translation: an RNN reads a
sentence in English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. video classification where
we wish to label each frame of the video). Notice that in every case there are no pre-specified constraints on the lengths sequences
because the recurrent transformation (green) is fixed and can be applied as many times as we like (reproduced from an example
provided in http://karpathy.github.io/2015/05/21/rnn-effectiveness/ )

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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2.5 Summary

In this chapter, we reviewed the existing literature of grammar-based realisation
ranking and realisation from bag-of-words input. Our aim is to identify resources
and methods to address these two tasks with regards to languages that lack compu-
tational resources: for example, have a grammar still being developed that could
benefit from cheaply obtained features, or have no grammar at all. In the case of
grammar-based realisation ranking, we focussed on the log-linear models of e.g.
Cahill et al. (2007b), which allow arbitrary features to be included. In Chapters 3
and 4 we go on to investigate features for a log-linear model derived from parsers
that could, for a language lacking computational resources, usefully complement a
grammar.

We also reviewed generation from a bag of words, with a focus on the model of
Wan et al. (2009), which adapted graph-based parsing methods to realisation. A key
insight in that work was to construct trees during the realisation process that incor-
porated linguistic properties. In chapters 5 and 6 we focus on regeneration from a
bag-of-words. We combine the strength of the ILP methods incorporation of declar-
ative constraints with the learning capability of MIRA in learning dependencies
between words, previously proved to be useful in dependency parsing.



Chapter 3

Grammatical Structures for
Reranking

3.1 Introduction

In this chapter, we approach the realisation reranking problem, previously discussed
in Section 2.2, from the low-density language perspective1 defined in pageref
ch1:lowdensitydef. To recap, all rankers depend on multiple structures produced
by the respective large-scale symbolic grammars to rank the output. For much
smaller symbolic grammars, and those in the process of development — e.g.
Lexical Functional Grammar (LFG) grammars for Indonesian (Arka et al., 2009)
or Arrernte (Dras et al., 2012), or Head-driven Phrase Structure Grammar (HPSG)
grammars for Persian (Müller, 2010) or Wambaya (Bender, 2008) — these multiple
structures will not be available or will be quite impoverished. The supervised
approach is an ideal upper bound from a resource-rich language, and the techniques
that are presented in this chapter aim to close the gap by looking into alternative
resources for the extraction of the structural features.

We investigate multiple reranking models using features from various statistical
parsers as potential alternatives to manually-crafted grammars. We take n-gram
language model (LM) score, the traditional resource for reranking, as our baseline
and start off by deploying a set of templates from a supervised parser as features,
and do the same with an unsupervised parser. As we anticipate, the unsupervised
parser features would lead to lower quality features, we also study the effect of
two feature selection methods to close the gap between the resource-rich and
resource-poorer languages.

In Section 3.2, we describe work we will draw on in this chapter, in particular work

1The work presented in this chapter was published in Motazedi et al. (2012).
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np/ball

noun/ball

ball

det/the

the

verb/put

put

Figure 3.1: A tree showing head information (Charniak, 2001).

on parser-based models for ranking and on unsupervised parsing. In Section 3.3,
we describe our models based on statistical parsers, and the experimental set-up
for investigating them. In Section 3.4, we discuss our results, and conclude in
Section 3.5.

3.2 Related Work

We reviewed the use of ranking in the realisation in Section 2.2. The other work
we draw on in this chapter is the use of statistical parsers in ranking, and work on
unsupervised parsing; we review these below.

3.2.1 Parser-based Ranking

Charniak (2001) initiated the use of immediate-head parser as a source for structural
language model. They implemented a generative immediate-head parser:

immediate-head means all of the properties of the immediate descendants of a
constituent c are assigned probabilities that are conditioned on the lexical
head of c. As an example in Figure 3.1 the probability that the vp expands
into v np pp is conditioned on the head of the vp, "put". Formulated precisely
in (3.1), the probability of each parse tree p(⇡) is calculated in a top down
manner so that for each constituent c, first guessing the Part of Speech (PoS)
tag of c, t(c) (t for "tag"), then the lexical head of c, h(c) (label of c, such as
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np), and finally the expansion of c into further constituents e(c) :

p(⇡) =

Y

c2⇡
p(t(c)|l(c), H(c)) (3.1)

.p(h(c)|t(c), l(c), H(c))

.p(e(c)|l(c), t(c), h(c), H(c))

where H(c) is the relevant history of c captured from the context outside of
c, such as label, head and PoS tag for the parent of c.

generative means for a sentence s, the parser tries to find the parse ⇡ defined by :
arg max⇡ p(⇡|s) = arg max⇡ p(⇡, s)

By calculating p(s) =

P
⇡ p(⇡, s) each sentence can be assigned a probability

which then can be used for ranking sentences, in a manner analogous to n-gram
language models. That is the structural language model.

The idea has been applied a number of times in Machine Translation (MT), for
example by Charniak et al. (2003) or Post and Gildea (2008); it has also been
applied in Natural Language Generation (NLG), where Mutton et al. (2007) showed
that a combination of parser-based metrics correlated with human judgements of the
quality of generated text. To our knowledge, all work applying parser-based ranking
has used supervised parsers. There is also an interesting piece of work by Cherry
and Quirk (2008) where implicit discriminative syntactic LMs are constructed,
using a latent Support Vector Machine (SVM) to train an unlexicalised parser to
judge sentences produced by an MT system. The authors discuss some similarities
to unsupervised parsing, in that both sorts of parsers are trained on sentences
without the benefit of annotated parse trees. Using unsupervised parse trees as
we do in this chapter, however, can benefit from lexicalisation and, potentially,
linguistic knowledge embodied in the parser (see below).

3.2.2 Unsupervised Parsers

Unsupervised parsing refers to the induction of a statistical parsing model from raw
text. The first unsupervised parser that convincingly beat fairly simple baselines,
such as constructing a right-branching tree, was the Dependency Model with
Valence (DMV) model of Klein and Manning (2004). In their model, a dependency
(sub)tree T (h) with root (h)is generated as follows:

P (T (h)) =

Y

d2l,r

h Y

a2D(h,d)

P!(¬! |h, d, ? )Pv(a|h, d)P (T (a)
i
P!(! |h, d, ? ) (3.2)
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For each observed coarse symbol s:
1. Draw top-level infinite multinomial over subsymbols �s ⇠ GEM(�).
2. For each subsymbol z of symbol s:

(a) Draw word emission multinomial �sz ⇠ Dir(�0).
(b) For each context value c:

(i) Draw child symbol generation multinomial ✓szc ⇠ Dir(✓0).
(ii) For each child symbol s0:

(A) Draw second-level infinite multinomial over subsymbols
⇡s0szc ⇠ DP(↵, �s0).

foreach tree node i generated in context c by parent symbol s0 and parent
subsymbol z0:

1. Draw coarse symbol si ⇠Mult(✓s0z0).
2. Draw subsymbol zi ⇠Mult(⇡sis0z0c).
3. Draw word xi ⇠Mult(�sizi).

Table 3.1: The generative process for model parameters and parses, where s is an
observed coarse symbol, z is a hidden refined subsymbol, and x is an observed
word. s0 and z0 represent the parent of the current node symbol and subsymbol.
In the above GEM, DP, Dir and Mult refer respectively to the stick breaking
distribution, Dirichlet process, Dirichlet distribution, and multinomial distribution.
Reproduced from Table 2 in Naseem et al. (2010).

where d is the direction of the dependency — l for left and r for right. D(h, d) is
the set of dependents of h in direction d; P!(h, d, ? ) is the probability of stopping
the generation of dependents in direction d and ? is a binary variable indicating
whether any dependents have been generated or not; Pv(a|h, d) is the probability
of generating the dependent word a, conditioned on the head h and direction d and
P (T (a)) is (recursively) the probability of the subtree rooted at a.

Bod (2007) combined DMV with Constituent Context Model (CCM) model and
reported improvements for not only unsupervised parsing but also phrase structure
parsing and dependency parsing. There have been various developments in unsuper-
vised parsing since then: Headden III et al. (2009) introduced basic valence frames
and lexical information, along with a smoothing technique to handle resulting
data sparsity; Berg-Kirkpatrick and Klein used a phylogeny-structured model of
parameter drift; and Naseem et al. (2010) based their work on the hypothesis that
universal linguistics knowledge can improve unsupervised dependency grammar
induction. Their parser consisted of (1) a probabilistic model that explains how
sentences are generated from latent dependency structures and (2) a technique for
incorporating declarative constraints into the inference process.
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Root! Verb Verb! Noun Noun! Adjective
Root! Auxiliary Verb! Pronoun Noun! Article
Auxiliary! Verb Verb! Adverb Noun! Noun
Preposition! Noun Verb! Verb Noun! Numeral
Adjective! Adverb

Table 3.2: The manually-specified universal dependency rules used by Naseem
et al. (2010)

Probabilistic model takes as input a set of sentences where each word has been
tagged with a coarse PoS tag2 (see Table 3.1 for more technical detail).
Similar to the DMV model, after a node is drawn, children are generated
on each side until a designated STOP symbol is produced. The authors
encoded more detailed valence information than the original DMV model
(Klein and Manning, 2004) and condition child generation on parent valence.
The authors distinguished their work from the original DMV model in the
following aspects: (1) it explicitly generates words x rather than only part-
of-speech tags w, (2) it encodes richer context and valence information, and
(3) it imposes a Dirichlet prior on the symbol distribution ✓.

Inference with constraints The authors constrained the posterior to satisfy the
rules in expectation during inference. This effectively biases the inference
toward linguistically plausible settings. For this purpose the authors compiled
a set of language-independent rules over coarse PoS tags (see Table 3.2).

Naseem et al. (2010) concluded that encoding a compact, well-accepted set of
language-independent constraints significantly improves accuracy on languages
like English, Danish, Portuguese, Slovene, Spanish, Swedish.

We use this last one in our work, as it gives state-of-the-art results as of 2010, and
embodies potentially useful hard-coded universal tendencies. Notwithstanding that
state-of-the-art performance, directed dependency results for that system range
from only 50.9% (Slovene) to 71.9% (English), and importantly, as in previous
work, these cross-linguistic evaluations are only carried out on sentences of 10 or
fewer words.

Since the work described in this chapter was published, transfer parsing has arisen
as an alternative to unsupervised parsing. We will discuss this type parser later in
the end of this chapter.

2For instance, the coarse-grained PoS tag Noun covers for fine-grained PoS tags like NN, NNS,
NNP, NNPS, NNP.
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3.3 Experimental Setup

Our goal is to evaluate the usefulness of the structural information proposed
by an unsupervised parser in assessing the quality of sentences generated by a
symbolic grammar, given its noticeably lower quality than supervised parsers. Like
Cahill et al. (2007b) (described in Section 2.2.1.2, we use the Xerox Linguistics
Environment (XLE) system and construct a symmetric treebank by parsing and
re-generating sentences: this gives both positive examples (those that match the
original sentence) and negative examples (those that don’t). Details of the various
aspects of this process follow.

3.3.1 Data and Evaluation

We took the Penn Treebank sections 2–21 for training, consisting of 38008 sen-
tences, and section 23 for testing, consisting of 2245 sentences. We parsed them
using XLE and the large-scale ParGram grammar of English (Butt et al., 2002), and
then used XLE’s re-generate facility to produce the multiple candidate realisations.
As Cahill et al. (2007b) did, we found that XLE could not parse and re-generate
all sentences; and for the purposes of constructing a training set, only instances
that re-generated more than one sentence were useful3. In addition, we excluded
the few sentences that contained more than 1000 re-generated sentences. This
resulted in a training set of 20613 (sets of) sentences and a test set of 1168 (sets of)
sentences.

Also as Cahill et al. (2007b) did, we found that not all sets of re-generated sen-
tences contained the original sentence in its exact form: this was often because
of small differences such as use of abbreviations (e.g. Nov for November) or use
of punctuation. In contrast to their approach, where they discarded these cases,
we used minimum edit distance (MED) to determine the re-generated candidate
closest to the original.

Following this, we constructed training and test sets of pairs of re-generated
sentences by taking as the positive example the one with smallest MED from the
original sentence, and as the negative example one of two alternatives: either the
one with largest MED (greatest) or a random selection from those candidates that
did not have the smallest MED (random) . greatest always gave the higher result
in the classification experiments below, often by several percentage points (which
is not surprising, as the differences are larger and the classification hence easier), so
we mostly only report results for random. We used the maximum entropy learner

3There is also a technical issue in re-generating numerals. To get around this problem, we
preprocessed the text to change numerals to those that could be re-generated.
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MegaM (fifth release) by Hal Daumé III.4 Our evaluation metric is the classification
accuracy of predicting the positive example from each pair. We took a slightly
different approach by opting for binary classification rather than assigning a score
to each alternative as Cahill et al. (2007b) did. In this thesis, ranking model is built
upon pairwise evaluation which proved to be useful in other NLP applications such
as MT, see Dras (2015). As discussed in this research, this method is a common
approach for human ranking of the goodness of the sentences. In this thesis we
report on ranking results over just a pair out of many possible alternatives for a
given sentence. In a real-world scenario this process can be altered so that all the
alternatives get ranked when the pairwise ranking is applied repeatedly.

3.3.2 Parsers and Language Models

Before answering any questions about the usefulness of unsupervised parsers, we
address the question, Do supervised parsers produce structural information that is
useful for realisation ranking? If the answer is yes (and based on the work cited
in Section 3.2 and others, we would think it likely), the supervised parsers and
a large LM would constitute an upper bound on the efficacy of using parsers to
rank candidate sentences generated by XLE. The supervised parsers we use are
the Stanford parser (Klein and Manning, 2003) and the Charniak and Johnson
(henceforth C&J) parser (Charniak and Johnson, 2005). These parsers are both
quite accurate: the Stanford parser gets a labelled f-score of 85.61 on the WSJ, and
the C&J 91.09.

From the Stanford parser we examined both horizontal slices of parse trees, in effect
treating them as sets of CFG production rules, and dependencies; the production
rules and dependencies were either lexicalised or unlexicalised, and the depen-
dency relations either named or unnamed. This gives two constituency and four
dependency feature representations from the Stanford parser: prod-rule-lex and
prod-rule-unlex; and dep-lex-named, dep-lex-unnamed, dep-unlex-named

and dep-unlex-unnamed.

C&J is a reranking parser; the reranker uses 13 feature schemas such as tuples
covering head-to-head dependencies, preterminals together with their closest maxi-
mal projection ancestors, and subtrees rooted in the least common ancestor. We
took two types of features from C&J: production rules; and the instantiated fea-
ture schemas from the parse reranking process, making them do ‘double duty’
as realisation ranking features. C&J is used as a complement to the Stanford
parser here, with respect to production rules, as an easy way of getting something
approximating the compound features used in realisation ranking discussed in
Section 3.2.

4MegaM software is available on http://www.cs.utah.edu/~hal/megam/.
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The large LM was constructed using SRILM (Stolcke, 2002) on the Gigaword
corpus.5 We use the 64K 4-gram and the 64K 2-gram (where the size nK represents
the use of the top n words occurring in the training text as vocabularies), which are
at the two extremes of size. We refer to these as l-lm4 and l-lm2.

For the unsupervised structure that is the main interest of the chapter, we used the
parser of Naseem et al. (2010),6 which constructs dependency trees. Relation names
are not inferred, so the two alternative representations are lexicalised (unsuper-lex)
and unlexicalised (unsuper-unlex).

For a small LM that would be of a realistic size for the scenario we are interested in
— i.e. the development of a symbolic grammar for a language with few resources
— we considered the size of corpora produced by An Crúbadán7 (Scannell, 2007).
This is a web crawler whose specific goal is the “automatic development of large
text corpora for minority languages”. As examples, it has produced corpora of
⇠2M words for Akan (Ghana), ⇠5M words for Tamil, and ⇠7M words for Turkmen.
Consequently, we use the Penn Treebank (⇠4M words) as our realistically-sized
LM. On this sized corpus, we derive both 4-gram and 2-gram LMs from SRILM
using the default settings; we refer to these as s-lm4 and s-lm2.8

3.3.3 Models

3.3.3.1 Base Models, Supervised and Unsupervised

The basic models are then the structural models described above. We used the LMs
both as baselines and in combination with the structural models. (Note that the
C&J parser already includes a LM in its reranking feature templates that we use, so
we do not combine in this case.) In the base cases, we use all structures (production
rules, templates or dependencies as appropriate) returned by the relevant parser.9

5http://www.keithv.com/software/giga/ was the source for these models. They
used interpolated, modified Kneser-Ney smoothing, bigram cutoff 3, trigram cutoff 5.

6http://groups.csail.mit.edu/rbg/code/dependency/
7http://borel.slu.edu/crubadan/
8We note that these are in-domain LMs, in contrast to the Gigaword-derived ones, and so will

have a bit of an advantage.
9We treated positive and negative instances with identical feature representations differently

when building the training set and test set. In the former we discarded the identical pair as they
provide no information for training, and in the test set we kept the instances and made a random
choice for assigning a class to each.

http://www.keithv.com/software/giga/
http://groups.csail.mit.edu/rbg/code/dependency/
http://borel.slu.edu/crubadan/
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Figure 3.2: Unsupervised dependency tree for a sample sentence. Edges in bold are the dependencies that are identified by both
supervised and unsupervised parser.
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Figure 3.3: Supervised dependency tree for sample sentence of Fig 3.2. Edges in bold are the dependencies that are identified by
both supervised and unsupervised parser.
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For the unsupervised parser, the major issue is that the parses are generally of
lower quality. As an illustration, Figures 3.2 and 3.3 represent unsupervised and
supervised parses of the same sentence (common edges are indicated in bold).
The supervised parse looks relatively reasonable, while the unsupervised parse
makes some odd choices (mr. being a dependent of the root, the verb having no
special status, etc), and contains many adjacent dependencies. Figures 3.4 and 3.5
represent another pair of parse trees, this one with a few longer dependencies than
the previous pair.

We take two approaches to finding higher quality individual dependencies for use
as features: one is the calculation of fine-grained accuracy rates for dependencies,
and the other is Information Gain (IG). In the case of fine-grained accuracy rates,
we are assessing which dependencies are likely to be reliable, by comparison
with a gold standard,10 and in the case of IG, we identify which dependencies are
particularly strongly associated with positive or negative examples.

3.3.3.2 Unsupervised with Reliability-based Selection

To measure unsupervised dependency reliability, raw precision / recall scores would
capture some of that notion — e.g. VBD TO, with 6593 gold-standard instances
and 1520 correctly identified (recall = 0.231), is almost certainly more reliable than
NNP IN with 7031 gold standard instances and only 547 correctly identified (recall
= 0.078) — but they would obviously overrepresent low frequency dependency
pairs, which are likely to be particularly unreliable. Taking the precision and recall
scores as probabilities of correctness, we therefore adopted a prior ↵ to smooth the
scores. Given the relevant denominators Np for precision or Nr for recall for each
dependency pair type, our modified scores use Np + ↵ and Nr + ↵ respectively;
this leaves a probability mass ↵

↵+Np
(resp. ↵

↵+Nr
) for unseen instances of each

dependency. By inspection of the actual raw scores on the training set, we chose
↵ = 20. We then select features with modified scores above various thresholds.

For lexicalised dependencies, with their much greater data sparsity issues, we based
the choice on the corresponding unlexicalised dependency: if the parts of speech
of the lexicalised dependencies matched an unlexicalised dependency above a
particular threshold, we selected that lexicalised dependency. (So the man would
deemed reliable if DT NN were deemed reliable.)

10The Penn Treebank dependency gold standard was derived using http://nlp.cs.lth.
se/software/treebank_converter/.

http://nlp.cs.lth.se/software/treebank_converter/
http://nlp.cs.lth.se/software/treebank_converter/
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3.3.3.3 Unsupervised with IG Selection

We calculate IG over the training set, using a standard formulation of Yang and
Pedersen (1997):

IG(r) = �
Pm

i=1 Pr (ci) log Pr (ci)

+ Pr (r)

Pm
i=1 Pr (ci|r) log Pr (ci|r)

+ Pr (r̄)

Pm
i=1 Pr (ci|r̄) log Pr (ci|r̄)

with r representing a dependency, c a binary class, and m = 2. We then select
features with IG scores above various thresholds. The application to unlexicalised
features is straightforward: IG is applied to the unlexicalised dependencies, and
some subset of these chosen based on the resulting ranking and a particular thresh-
old. For lexicalised dependencies, there are two alternatives. One is to apply IG
to the lexicalised dependencies directly (direct); the second is the same as the
approach for unsupervised dependencies with reliability selection above, where we
extract all the lexicalised dependencies that have corresponding selected unlexi-
calised dependencies (indirect).

Of course, both of these refinements of unsupervised parse features require some
kind of annotation, and we discuss the implications for our scenario later in
Section 3.4; but here we are just interested in the question of the extent to which
unsupervised parsers can produce dependencies that are at all useful for realisation
ranking.
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Figure 3.4: Unsupervised dependency tree for another sample sentence. Edges in bold are the dependencies that are identified by
both supervised and unsupervised parser.
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Figure 3.5: Supervised dependency tree for sample sentence of Fig 3.4. Edges in bold are the dependencies that are identified by
both supervised and unsupervised parser.
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3.4 Results

Base models (supervised) Table 3.3 gives classification accuracy results for the
large LMs, and for the supervised parsers, both separately and in combination
with the LM, all on the random test set (see Section 3.3.3.1). We incorporated
LM score as an additional feature to the structural feature set to build +l-lm4 and
+l-lm2. The key results here are:

1. Using parse features alone almost always outperforms the LM (except in
the case of dep-unlex-unnamed), and the combination with the LM al-
ways improves over just parse features alone. This is broadly in line with
the findings discussed in Section 2.2.1.2 on using structural features from
symbolic grammars, and suggests that using external statistical parsers is a
valid alternative approach to carrying out realisation ranking.

2. While the l-lm4 LM forms quite a strong baseline, the l-lm2 version is
somewhat weaker. It does still, however, contribute to an improvement in
performance when added to the dependency feature models, of around 2%.
This is not unexpected, as it would be contributing information that is com-
plementary to the dependencies, which (in the cases where the dependencies
are not adjacent) give longer-distance information. For the same reason,
adding this bigram data to the production rule models produces a much
smaller improvement.

3. Production rule features are better than dependency features; presumably
one reason for this is that there are more production rule features (i.e. the
ones consisting of only non-terminal nodes in the tree).

4. The C&J parser’s templates — one particular set of choices for representing
compound structural features — outperform just production rules combined
with a LM, quite substantially. This also fits with previous work on using
compound features.

5. In comparison with the results for the greatest test set (Table 3.4), as
mentioned above, random is always consistently lower, for each comparable
cell in the table. This is expected on the assumption that our MED method
for choosing positive and negative examples is an accurate reflection of their
goodness with respect to the original sentence. There is generally the same
pattern for subsequent results as well, so henceforth we only report random,
as the more conservative of the two measures and as a more realistic scenario
(comparing a reference sentence against some arbitrary one, not one that we
know is the ‘worst’ of a set of candidates).
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model acc.% +l-lm4 +l-lm2

l-lm4 68.36 - -
l-lm2 64.16 - -
C&J 90.50 - -
prod-rule-lex 79.48 80.76 80.33
prod-rule-unlex 71.49 72.24 71.64
dep-lex-named 72.45 76.18 74.68
dep-lex-unnamed 71.51 75.54 74.72
dep-unlex-named 69.88 72.92 71.55
dep-unlex-unnamed 63.41 66.75 65.04

Table 3.3: Classification scores for supervised parse features and large LM on
random: accuracy on parse features; parse features plus large l-lm4 LM over these
sentences; parse features plus large l-lm2 LM over these sentences

model acc.% +l-lm4 +l-lm2

l-lm4 71.83 - -
l-lm2 65.19 - -
C&J 91.61 - -
prod-rule-lex 84.25 84.45 84.19
prod-rule-unlex 75.81 76.56 76.01
dep-lex-named 76.78 81.11 78.58
dep-lex-unnamed 75.75 80.42 77.98
dep-unlex-named 73.25 75.75 74.38
dep-unlex-unnamed 66.80 69.84 66.97

Table 3.4: Classification scores for supervised parse features and large LM on
greatest: accuracy on parse features; parse features plus large l-lm4 LM over
these sentences; parse features plus large l-lm2 LM over these sentences

model overall acc.% #sent acc.%
unsuper-lex 62.67 941 65.73
unsuper-unlex 58.26 791 62.20

Table 3.5: Classification scores for unsupervised parse features and large LM on
random: accuracy on parse features; number of sentences where feature vectors
differ for positive and negative examples; accuracy over effective test set.
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model #sent l-lm4 +l-lm4 l-lm2 +l-lm2

unsuper-lex 941 75.29 70.03 69.65 68.97
unsuper-unlex 791 75.53 67.95 71.49 67.95

Table 3.6: Classification scores for unsupervised parse features and large LM
on random: number of sentences where feature vectors differ for positive and
negative examples; accuracy of language models (individually, or combined with
unsupervised model) over effective test set.

model #sent s-lm4 +s-lm4 s-lm2 +s-lm2

unsuper-lex 941 67.80 68.76 67.48 68.76
unsuper-unlex 791 67.95 64.48 67.48 63.84

Table 3.7: Classification scores for unsupervised parse features and small LM
on random: number of sentences where feature vectors differ for positive and
negative examples; accuracy of language models (individually, or combined with
unsupervised model) over effective test set.

Base models (unsupervised) Table 3.5 gives results when unsupervised parse
structures are combined with a large LM, see Section 3.3.3.1. Not surprisingly,
these results are quite a lot worse than for the supervised: a drop of around 13%
for lexicalised dependencies and 8% for unlexicalised. These are also lower than
the LMs in Table 3.3. For a more detailed look, we calculated the classification
accuracy over those sentences where the feature representation differed (which we
refer to as theeffective test set) and hence the model makes a genuine prediction,11

to see whether a back-off model would be appropriate: if the accuracy for the
unsupervised models is higher than for the LM over the effective test set, the
decision for that subset could be based on the unsupervised model decision, with
a back-off to the LM. Since the effect test set differs from one model to another,
numbers can’t are not directly comparable. Table 3.5 includes the effective test set,
and the unsupervised classification accuracy scores over that set, for each model.

The LMs may also differ over the effective test sets: we present the classification
accuracies for these in Table 3.6 (for the large LMs) and Table 3.7 (for the small
LMs). The tables include both the accuracy of the LMs alone (e.g. the column
l-lm4), as well as the accuracy of the LM in combination with the unsupervised
model (e.g. +l-lm4). It is apparent that the effective test sets for the unsupervised
models are also in fact easier for the large LMs: their scores on these subsets are all
higher than the overall LM accuracies. They are also higher than the unsupervised
models, and the combinations are lower than for the LMs alone. The story is
different for the small LMs: while the LMs are higher than the unsupervised
models, the combinations are better than both, by 3% in the lexicalised case. The

11Recall that in cases where the model cannot make a prediction, it chooses at random.
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conclusion here would be that if a very large LM is available, raw unsupervised
parse features would not be helpful; but if only a small LM is available, they would
still contribute.

Unsupervised with reliability-based selection Table 3.8 presents the results
for our recall-based reliability measure (presented in section 3.3.3.2) along with
the effective test set sizes for four thresholds across dependencies with a positive
reliability score.12 These are uniformly poor, and in fact marginally worse than the
raw unsupervised features in Table 3.5, so we do not present combinations with
the LMs. We looked at the 10 highest- and 10 lowest-ranked features under this
measure (Table 3.9), along with their raw counts in the training corpus. The highest-
ranked ones were believable as reliable instances of dependencies: infinitival to in
VB TO seems likely to be often correct, as does existential there in the first three
cases. However, it is quite possible that many of the reliable ones such as PRP
VBZ are actually poor at distinguishing between positive and negative examples by
virtue of their frequency — they may occur equally often with both, in the same
way that words like the are useless in general text classification.

Another possibility is that our reliability metric is not capturing the right phe-
nomenon: that it is flagging as errors systematic intentional choices that the unsu-
pervised parser is making, just because they happen to disagree with the systematic
choices of the gold standard. For example, in Figures 3.4 and 3.5, the unsupervised
parse contains the dependency MD VB, choosing serial attachment of auxiliaries and
modals to the main verb, while the supervised parser contains MD VBN, choosing
attachment of all to the main verb instead. Here the unsupervised parser does not
necessarily seem incorrect. Indeed, the very smallness of the proportion of correct
instances in the lowest-ranking dependency pairs in Table 3.9 suggests that these
are not just random (and almost always incorrect) choices by the unsupervised
parser; four of them in fact appear to relate to the sort of verb attachment choices
mentioned. The issue of the difficulty of comparing dependency treebanks in
general, perhaps because of fairly arbitrary decisions about headedness, is raised
in Zeman et al. (2012); this would appear to be relevant to the task here too.

12This consequently does not include dependencies with recall-based reliability zero. We do not
present the precision-based ones here.
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model cut-off% acc.% #sent
unsuper-lex 100 65.19 915
unsuper-lex 75 64.33 897
unsuper-lex 50 64.37 856
unsuper-lex 25 64.55 708
unsuper-unlex 100 61.44 721
unsuper-unlex 75 62.39 686
unsuper-unlex 50 62.00 629
unsuper-unlex 25 62.44 442

Table 3.8: Classification scores for unsupervised parse features selected by reliabil-
ity on random: threshold cut-off accuracy on parse features; number of sentences
where feature vectors differ for positive and negative examples (effective test set)

Highest Lowest
feature correct # in gold feature correct # in gold
EX VBZ 72 179 VBZ VBP 1 201
EX VBP 45 110 VBP VBP 1 218
EX VBD 27 72 VBD NNP 1 292
DT VBZ 108 364 VBP VBD 1 335
$ TO 151 541 VBZ VBD 2 696
PRP VBZ 509 1792 IN CD 2 860
RP VBN 60 222 NN $ 1 481
PRP VBD 600 2423 CD RB 1 485
VB TO 1520 6593 CD TO 1 487
NNS JJ 28 103 IN MD 1 694

Table 3.9: Highest- (left) and lowest- (right) ranking dependency features based on
reliability measure. For each, columns represent the dependency; the number of
times it was correct in an unsupervised parse; and the number of times it occurred
in the gold standard.
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model cut-off% acc.% #sent l-lm4

unsuper-lex (direct) 100 71.97 710 80.28
unsuper-lex (direct) 75 82.17 300 81.17
unsuper-lex (direct) 50 83.26 242 80.58
unsuper-lex (direct) 25 90.00 185 82.70
unsuper-lex (indirect) 100 74.57 920 78.80
unsuper-lex (indirect) 75 82.56 894 78.91
unsuper-lex (indirect) 50 85.19 849 79.62
unsuper-lex (indirect) 25 89.53 717 79.50
unsuper-unlex 100 60.84 738 79.20
unsuper-unlex 75 60.59 708 79.45
unsuper-unlex 50 61.08 657 80.29
unsuper-unlex 25 62.06 506 80.90

Table 3.10: Classification scores for unsupervised parse features selected by IG:
threshold cut-off; accuracy on parse features; number of sentences where feature
vectors differ for positive and negative examples (effective test set); large LM score
over these sentences
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rank features
1–5 TO VB VBN VB VB VBN VB TO VBG VB

6–10 VB VBG NNS TO IN RBR VBN TO DT RP

Table 3.11: Highest ranking features based on IG.

Unsupervised with IG selection Table 3.10 shows the results for selecting the
top k% unsupervised parse features ranked by positive IG scores (described in
Section 3.3.3.3).13 We see a dramatic improvement in the lexicalised case (direct)
over the raw features (Table 3.5). The effective test set also falls a lot more for
the direct lexicalised case; this is not surprising, as the top (say) 25% lexicalised
features on the training set are much less likely to occur in the test set than the
top 25% unlexicalised features. On the other hand, the indirect lexicalised case —
where lexicalised features are instantiated on the basis of IG-ranked unlexicalised
dependencies — have a sentence coverage that is much greater, as would be
expected, but perhaps surprisingly an accuracy that is comparable to the direct

method, and in fact even higher for three of the four thresholds presented in
Table 3.10. For the 25% threshold on the indirect method, the model performs
around 10% higher on around 60% of the total test set, making a back-off model a
very suitable option.

Table 3.11 presents the top 10 unlexicalised features. It is not immediately apparent
why there is a preponderance of paired verbs, such as VB VBG or VB TO (with the
infinitival to probably indicating another verb following). Perhaps verb sequences
indicate poor sentences, although this would require further inspection of the data.

Illustration of Generated Content To see how unsupervised parses, though
bad, might contribute useful structure, we present an example where the unsu-
pervised parse model predicted the better candidate, while the other models did
not. The original sentence is given in (3.1), the preferred candidate in (3.2), and
the dispreferred candidate in (3.3). The preferred candidate is basically the same
as the original, slightly odd punctuation notwithstanding, while the dispreferred
candidate has obvious problems in terms of ordering.

(3.1) For example, their selling caused trading halts to be declared in USAir
Group, which closed down 3 7/8 to 41 1/2, Delta Air Lines, which fell 7
3/4 to 69 1/4, and Philips Industries, which sank 3 to 21 1/2.

(3.2) For example their selling, caused trading halts to be declared in USAir
Group which closed, down 3 7/8 to 41 1/2 Delta Air Lines which fell 7 3/4

13That is, those cases with an IG of zero — i.e. entirely non-distinguishing between positive
and negative examples — are excluded, which is why the 100% scores are higher than for the raw
features of Table 3.5.
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to 69 1/4 and Philips Industries which sank 3 to 21 1/2.

(3.3) For example to be declared in USAir Group, their selling, caused trading
halts which closed, down 3 7/8 to 41 1/2 Delta Air Lines which fell 7 3/4
to 69 1/4 and Philips Industries which sank 3 to 21 1/2.

Figure 3.6 shows the unsupervised (upper) and supervised (lower) parses for the
preferred candidate (3.2). For the most part, the supervised parser makes sensible
linguistic choices: it identifies as the head of e.g. Delta Air Lines which fell 7 3/4
to 69 1/4 the final noun of the named entity, which in turn is a dependent of the
head of the previous parallel clause; the unsupervised parser, by contrast, has as
the ultimate head the final numeral, with odd choices in the intermediate edges as
well such as which being the head of the named entity in each case. However, the
supervised parser makes a fundamental error in grouping two chunks of numerical
quantities (i.e. down 3 7/8 to 41 1/2 and fell 7 3/4 to 69 1/4) being associated with
the same named entity. The unsupervised parse does not do this: while it makes
odd choices, they are consistent odd choices. This consistency of choices may in
fact not be accidental, and is further reason to reconsider our approach to assessing
the reliability of unsupervised parse edges.

Implications If the reliability-based selection for unsupervised parse features
had proved effective, it would have been necessary to find some mechanism to
approximate a check against a gold standard, such as constructing a committee of
unsupervised parsers and using only those dependencies that received a sufficient
number of votes. However, this is not warranted by the results.

For the IG-based selection, what is necessary is a binary annotation of sentence
pairs as preferred or dispreferred. This is much less intensive than treebank
annotation, and so a reasonable alternative to constructing supervised parsers. As
noted, a large LM outperforms raw unsupervised features; but even constructing
large corpora (semi-)automatically for many of the world’s languages, as per
Scannell (2007), is challenging, and the IG-selected features in any case do better
than the large LM alone and better still in conjunction with it.

3.5 Summary

For symbolic grammars that are small and/or in development, there may well
not be many resources to draw on for building good realisation ranking models
for natural language generation. In this chapter we have examined unsupervised
parsers as a possible source of structural features for such models, notwithstanding
their generally much poorer quality of parses than supervised parsers.
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We found that they can indeed be useful. In the general case, unsupervised parse
features contribute in the case of smaller language models, of the sort that might
be available for many less resourced languages. They also contribute very strongly
over reasonable sized subsets of the test set once useful features have been identified
by Information Gain: there are improvements of up to 10% in classification
accuracy over 60% of the test set, making a model that uses unsupervised features
and then backs off to a language model an attractive option. This would be feasible
in scenarios where it is possible to annotate pairs of sentences as preferred and
dispreferred.

Choosing features by a reliability-based measure did not prove useful. However,
this may be related to systematic choices made by the unsupervised parser that
were different from the gold standard’s choices, rather than bad parsing; an option
for aligning systematic choices is the HamleDT approach and software of Zeman
et al. (2012). In addition to the unsupervised parser that is used in this chapter,
Naseem (2014) introduces two other linguistically motivated models that seem to
be effectively performing for the languages which only a light level of supervised
training can be achieved. For computationally resource-poor languages, transfer
dependency parsers can be regarded as promising alternative to the unsupervised
parser and has gained increasing attention in the field. To recap we briefly describe
one of the prominent works in that area. McDonald et al. (2011) showed that train-
ing parsers on delexicalised data can be transferred between languages and produce
higher accuracies compared to existing unsupervised parsers. Their finding allows
minority languages who lack parser and treebanks to have access to remarkable
parsing technology. With their direct transfer, as the name implies, they simply
mapped PoS tags from the language that parser was originally trained on to the
target language. However, their projected transfer parser requires a large parallel
corpus to perform parsing, starting from the direct transfer algorithm and gradually
learn to parse lexicalised sentence in the target language. The authors also showed
that using multiple languages as the source of learning would improve the overall
quality of the parse trees for the target language. One consideration about their
proposed approach, as raised by Täckström et al. (2013) was that it worked well for
similar languages. To address this shortcoming, Täckström et al. (2013) proposed
selective parameter sharing based on typological and language-family features.

Another option for improving performance is the use of compound features, as is
used in much of the work discussed in Section 3.2. The results in this chapter for
the supervised parsers showed that the model with compound (or ‘higher order’)
features dramatically outperformed the ones with simple features; it could be
promising to extend these to the dependency models, as for example in their use in
parse reranking, such as by Hall (2007) and Wang and Zong (2011). In addition to
evaluating the approach by measures other than binary classification accuracy (e.g.
BLEU or the ranking score of Cahill et al. (2007b)), and examining other potential
comparators (e.g. the treebank-trained generator of Belz (2005)), the next major
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step would be applying it to one of these smaller languages that has motivated the
work in this chapter.

Now that we have established that structural features from outside a symbolic
grammar — specifically, from both supervised and unsupervised statistical parsers
— can be useful in realisation ranking, the next step is to see how they perform in
combination with features derived from the symbolic grammar: are they comple-
mentary?





Chapter 4

Combinations with Internal
Structures for Reranking

4.1 Introduction

In this chapter, we detail the hybrid reranking models that use system internal repre-
sentations alone or in conjunction with statistical parser features. The objective of
this part of research is to study the contribution of features extracted from existing
internal structures to reranking quality and whether combining these features with
features from external statistical parsers promotes reranking quality.

To recap from Section 2.2.1.2, system internal representations are intermediate
structures produced by language processing systems in the text analysis/generation
process. Since the Xerox Linguistics Environment (XLE) is the text generation
engine in this research, Lexical Functional Grammar (LFG) primary structures—
constituent structure (c-structure) and functional structure (f-structure)—are the
intermediate structures.

In this chapter, we combine the work of Cahill et al. (2007b) that motivates using
system-internal representations for reranking, with the approaches that use external
resources to extract representations similar to the ones derived from statistical
parsers and proved to be successful in Chapter 3. We investigate our approach over
two grammars that are in two different stages of development. The first grammar is
mature and almost comparable to the one used in Cahill et al. (2007b). The results
over this grammar can confirm the positive contribution of internal representations
in reranking as previously concluded by Cahill et al. (2007b) over German. The
second grammar is a basic grammar that only specifies the right branching factor.
Building models using these grammars allows us to study the effect of grammar
maturity/size in reranking and compare the contribution of features from statistical
parsers when combined with features from either of these grammars. To be more

77
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precise, we would like to see if the external parsers capture additional information
to the manual grammar, i.e., to what extent features from a statistical parser can
enhance reranking when combined with features from the manual grammar. If
the answer to this question is positive, we would further investigate the effect of
grammar size on the reranking quality. In Section 4.2, we introduce the proposed
models for reranking using features from the internal representation and their
combination with statistical parser features. Finally the experiment configurations
and experimental results are discussed and compared with Cahill et al. (2007b)’s
result in Section 4.3. We also discuss whether the conclusion that Cahill et al.
(2007a) made for German can be applied to English.

4.2 Features from Intermediate Structures

Reranking features are the distinguishing elements between various models we use
for reranking. We are using mostly the same features as Cahill et al. (2007b): when
we use only internal structures, we are broadly replicating their work. The aim is
to compare this with the hybrid models that include features derived from external
structures. These features are extracted from the c-/f-structure of the alternatives
regenerated from a given gold sentence using XLE. We introduce these reranking
in the next two subsections followed by an overview of how each model is set-up.

4.2.1 C-structure Features

In Chapter 3, the best reranking result was achieved by applying features from the
C&J parser. The high accuracy is likely to be somehow related to the usage of the
various templates that are used in the parser’s reranking process. Each template
captures some bit of information and combining them together will result in a
model that has a better representation of correct word order, given the internal
structure. In this part of the research, we extend our models from only production
rules to hybrid models. Inspired by templates deployed in previous works by
Charniak and Johnson (2005), Cahill et al. (2007b), we introduced the following
four c-structure features as part of the proposed hybrid reranker:

PARENT & CHILD (CS-PC) counts the occurrences of parent-child instance.
This feature proved to be helpful in realisation reranking as discussed in the
previous chapter. PARENP-NP is an example of parent-child relationship
that is highlighted in Figure 4.1(a).

GRANDPARENT, PARENT & CHILD (CS-GPC) counts the occurrences of three
nodes descending from one another directly, e.g., NPadj-NPzero-PARENP
triple in Figure 4.1(b) is an instance of CS-GPC.
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Figure 4.1: Examples of the realisation reranking c-structure features; subtrees are
extracted from the c-structure presented in Figure 2.7: (a) CS-PC, (b) CS-GPC, (c)
CS-SB, and (d) CS-NC.

SIBLINGS (CS-SB) counts the occurrences of a set of nodes that all descend
from a single node. There is no limit on the number of the children. Pierre-
Vinken-PARENP represents such feature in Figure 4.1(c).

PARENT & CHILDREN (CS-NC) counts the number of CS-SB that descend
from a certain parent node. NPzero-Pierre-Vinken-PARENP and PARENP-,-
NP-, would be the CS-NC features in the subtree in Figure 4.1(d).

The last three tree features are comparable to the Rule schema from the C&J

reranking parser. These four features are designed so that they can encode in-
formation provided by c-structure in various levels: CS-PC captures single-level
vertical structure of the tree. CS-GPC extends CS-PC and looks into vertical slices
of depth of two. CS-SB captures horizontal slices of the structure at all levels of
the analysis, where each slice is defined as a set of nodes that descend from one
parent. This feature is contributing to the ordering of nodes: words or nodes’ labels,
depending on the depth of the slice, at a phrase level. CS-NC in a sense combines
CS-GPC with CS-SB as it captures the horizontal and vertical slices at the same
time. This combination of terminals and non-terminals allows the model to learn
about the structure and word order at the same time.

4.2.2 F-structure Features

There is a structural difference between the research carried out by Cahill et al.
(2007b) and this research: ranking vs reranking. The former ranks the alternative
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Figure 4.2: FS-ATTRS

strings just by regenerating them from the unique f-structure they all share. How-
ever, in our work we assume that the reranker may be an independent module (so
as to incorporate external features). Therefore, it analyses the candidates from
scratch, i.e., parsing them to get the c-structure and f-structure. Reparsing reduces
the likelihood of having a unique f-structure for all candidates regenerated from
one string. Consequently, f-structure becomes a potential feature source. In this
section, we list the f-structure features that we use for reranking. These features
were previously used for parse ranking but not for realisation ranking by Cahill
et al. (2007b).

ATTRIBUTES (FS-ATTRS) is a feature template that counts the number of oc-
currences of a given attribute within an f-structure. ADJUNCT is an example
of such an attribute in Figure 4.2 with 4 occurrences, so the feature value pair
for ADJUNCT looks like FS-ATTRS-ADJUNCT 4. FS-ATTRS can take
multiple f-structure attributes as a parameter, rather than just one. Similar to
Cahill et al. (2007b)’s work we only consider one attribute at a time. There
is no obvious process a priori for how attributes should be grouped in order
to form an informative set of parameters for FS-ATTRS.

ATTRIBUTE-VALUE PAIRS (FS-ATTR-VAL) takes two parameters: an f-structure
attribute and a potential value for this attribute. This template can be re-
garded as an extended version of CS-PC, since it captures more than ter-
minal production rules, i.e. the ones that do not exist in c-structure. For
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Figure 4.3: FS-ATTR-VAL

instance, FS-ATTR-VAL-TENSE-past counts how often the atomic at-
tribute TENSE has the value past. Figure 4.3 highlights the bits that form
the FS-ATTR-VAL-PRED-chairman feature.

ADJACENT ATTRIBUTES (FS-ADJ-ATTR) is another template extracted from
an f-structure. It is the f-structural equivalent of non-terminal produc-
tion CS-PC. It takes two f-structure attributes as parameters, and counts
how often the first (necessarily complex) attribute directly embeds the
second attribute (which can be either complex or atomic). In Figure 4.4,
FS-ADJ-ATTR-ADJUNCT-PRED is a feature that occurred 4 times.

SUB-ATTRIBUTES (FS-SUB-ATTR) feature template is a generalised/non-local
variant of FS-ADJ-ATTR. Similar to FS-ADJ-ATTR it accepts two f-structure
attributes as parameter but the first attribute can indirectly embed the second
attribute. As highlighted in Figure 4.5 FS-SUB-ATTR-OBJ-DET is an
instance of this template.

AUNT ATTRIBUTES (FS-AUNT-ATTR) feature template represent the rela-
tionship between three attributes where the first two attributes are descend-
ing from one attribute (siblings) and the third attribute is the direct de-
scendant of either of the first two attributes. In other words, this tem-
plate extends FS-ADJ-ATTR by including the sister of the parent attribute.
FS-AUNT-ATTR-SUBJ-ADJUNCT-OBJ is an instance of this template
highlighted in Figure 4.6
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Figure 4.4: FS-ADJ-ATTR
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Figure 4.5: FS-SUB-ATTR



4.2. FEATURES FROM INTERMEDIATE STRUCTURES 83

2

66666666666666666666666666666666664

PRED ‘die

⌧h
72 :Vinken

i�
’

SUBJ

72

2

66666666664

PRED ‘Vinken’

ADJUNCT

8
>>><

>>>:

2

6664

PRED ‘chairman’

ADJUNCT
h

PRED ‘former’
i

MOD
h

PRED ‘Elsevier’
i

3

7775

9
>>>=

>>>;

NAME-MOD
h

PRED Pierre’
i

3

77777777775

ADJUNCT

2

66666666666664

PRED ‘at

⌧h
250 :age

i�
’

OBJ

250

2

66666664

PRED ‘age’

ADJUNCT

8
<

:

2

4
PRED ‘of h[ 311 :83]i’

OBJ 311

h
PRED ‘83’

i
3

5

9
=

;

SPEC


DET

h
PRED ‘the’

i�

3

77777775

3

77777777777775

3

77777777777777777777777777777777775

1

Figure 4.6: FS-AUNT-ATTR

LEXICAL SUB-CATEGORIES (FS-LEX-SUBCAT) is a feature template that
counts how often a given verb has one of args sets as arguments. FS-LEX-SUBCAT
for die is PASSIVE -, STMT-TYPE declarative, VTYPE main,
LAYOUT-TYPE unspec. Since this feature is expected to be identical for
alternative sentences, its helpfulness will be discussed later in Section 4.3 .

VERB ARGUMENTS (FS-VERB-ARGS) is another feature template that specif-
ically looks at verbs. This feature captures the verb arguments. As can be
seen in Figure 4.8, FS-VERB-ARGS-die-SUBJ-ADJUNCT is the only
instance of this template since the example contains only one verb. This fea-
ture is not expected to discriminate between candidates since the candidates’
f-structure generally do not vary in this respect.

Table 4.1 summarises the features described in this sections.
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Table 4.1: Reranking templates extracted from f-structure features

Name of feature template and
parameters

Explanation

c-structure Features
CS-PC <cat1> <cat2> counts number of times category <cat1> produces category <cat2> in the

given c-structure

CS-GPC <cat1> <cat2> <cat3> counts number of times category <cat1> produces category <cat2> and cat-
egory <cat2> produces category <cat3>

CS-SB <cat1> <cat2>. . . <catn> counts the number of <cat1> node has nodes <cat2>-<catn> as its sibling

CS-NC <cat1> <cat2>. . . <catn> counts number of the times where <cat1> node directly dominates <cat2>-
<catn> nodes

F-structure Features
FS-ATTRS counts number of occurrences of attribute(s) <attrs> in the f-structure

FS-ATTR-VAL <attr> <val> counts number of times f-structure attribute <attr> has value <val>

FS-ADJ-ATTR <attr1> <attr2> counts the number of times feature <attr2> is immediately embedded in
feature <attr1>

FS-SUB-ATTR <attr1> <attr2> counts the number of times feature <attr2> is embedded somewhere in
<attr1>

FS-AUNT-ATTR <attr1> <attr2>
<attr3>

counts the number of times feature <attr1> and <attr2> are siblings and
<attr3> is the direct descendant of either.

FS-LEX-SUBCAT counts how often a given verb pred has one of args sets as arguments; args
are features/values that describe the verb, i.e., Passive feature can be either +
or -.

FS-VERB-ARGS captures and counts verb along with its arguments, i.e SUBJ-ADJUNCT

Language Model Features
NGRAM SCORE %X 3-gram language model score assigned to the generated sentence
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4.2.3 Other Considerations

4.2.3.1 Grammar Size

Since one of the key aspects of this research is finding resources for reranking auto-
matically generated texts in minority languages, we extracted the above mentioned
features using two different grammars:

ParGram English Grammar (Large Grammar) which is a very large gram-
mar and available upon request from the ParGram project. This grammar
has a very good coverage. All the examples of the c-/f-structures discussed
so far have been produced by the Large Grammar.

Starter English Grammar (Small Grammar) that comes with XLE1. This very
basic grammar is mainly used as a template to extend the grammar for other
languages.

In contrast to the richly-annotated structures produced by the large grammar,
the small grammar produces structures that are generic with almost no sentence-
specific analysis. It maps all the sentences to a right branching tree so that all
the leaf nodes in c-structure are labelled as TOKEN (versus word specific POS
tag in large grammar) and all the internal nodes are labelled as FRAGMENTS
(versus grammatical functions such as NPs). The same right-branching approach
applies to f-structure. Attributes are either First or REST. First are the attributes
that enclose a token (leaf node) and REST attributes comprises a pair of FIRST
and REST attributes. This grammar is simple to the point that it does not face
much real ambiguity when it comes to regeneration. We note then that results
across small and large grammars thus cannot be directly compared: the alternative
sentences generated by each are radically different, and for the large grammar,
much richer. The small grammar is just to give an idea about how combination of
internal and external features might differ across grammar size. If the proposed
approach works, the next step would be to build grammars of different sizes by
incorporating various subsets of the large grammar English lexicon into the Starter
Grammar.

Figures 4.9 and 4.10 depict c-/f-structure for sentence 2.1 produced by the small
grammar. Comparing these two structures with their equivalents produced by the
large grammar (Figures 2.7 and 2.8) confirm that the small grammar produces
much simpler representations than the ParGram English grammar.

1 or can be downloaded http://www2.parc.com/isl/groups/nltt/xle/doc/
PargramStarterGrammar/

http://www2.parc.com/isl/groups/nltt/xle/doc/PargramStarterGrammar/
http://www2.parc.com/isl/groups/nltt/xle/doc/PargramStarterGrammar/
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Figure 4.9: c-structure for sentence (2.1) using ParGram Starter Grammar
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Figure 4.10: f-structure for sentence (2.1) using ParGram Starter Grammar
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C-structure features
Model CS-PC CS-GPC CS-SB CS-NC lx

C1 + - - - -
C2 - + - - -
C3 - - + - -
C4 - - - + -
C5 + + + + -
C6 + - - - +
C7 - + - - +
C8 - - + - +
C9 - - - + +

C10 + + + + +

Table 4.2: List of model names; + and - represent the presence or the absence of
the given feature.

F-structure Features
Model FS-ATTRS FS-ATTR-VAL FS-LEX-SUBCAT FS-ADJ-ATTR FS-SUB-ATTR FS-VERB-ARGS FS-AUNT-ATTR

F1 + - - - - - -
F2 - + - - - - -
F3 - - + - - - -
F4 - - - + - - -
F5 - - - - + - -
F6 - - - - - + -
F7 - - - - - - +
F8 + + + + + + +

Table 4.3: List of model names; + and - represent the presence or the absence of
the given feature.

4.2.3.2 Incorporation of Features from Statistical Parsers

In Chapter 3 we looked at a range of statistical parsers and identified their level of
contribution to reranking problem. By introducing hybrid reranking models which
incorporate various features from statical parsers with c-/f-structure features and
comparing their accuracy with their base models, we aim to answer the following
question:

How distinct is the information captured by a statistical parser com-
pared to human authored grammars? Consequently, can they be use-
fully combined?

4.2.4 Models
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Base and hybrid models with internal structures The ten models listed in
Table 4.2 study the contribution of each set of c-structure feature template(s) to the
quality of reranking. Similarly, a list of models built upon f-structure templates
are introduced in Table 4.3. We named all the models following the same naming
convention that reflects which internal structure is present in the model; models that
contain letter F deploy f-structure features and models with C deploy c-structure
features. These model names will be used later in Section 4.3 for discussion of the
experiment results.

Later on, the best performing models regarding their feature category (c-/f-structure)
will be picked. The L and S in the model names reflect the features are extracted
from the large grammar and small grammar, respectively.

Dependency features for hybrid models To answer the question of whether
any reranking-helpful information can be folded in from other resources, we choose
four feature template extractable from dependency trees; that’s what unsupervised
parsers produce, and we can also derive this structure from supervised parsers (see
Section 3.3.2).These templates are introduced as a pair or triple of nodes where
ni represents the ith element in the pair. With respect to the model lexicalisation
choice, lexicalised or unlexicalised, the elements are either words or Part of Speech
(PoS) tags. Figure 4.11 depicts the dependency tree and the four feature templates
for sentence (2.1).

1. head-dep (dep): A pair (n1, n2) where n1 is the head of n2. In Chapter 3,
this feature proved to be helpful in reranking as the sole source of structural
information (see Figure 4.11(b)).

2. ancestor-head-dep: A triple (n1, n2, n3) where n2 is the dependent of n1 and
the head of n3. In other words, n1 is the ancestor of n3. In Figure 4.11(c),
(died, Vinken, chairman) is an instance of this template.

3. siblings: An n-tuple of words that share the same head word. The pair
(former, Elsevier) in Figure 4.11(d) is a valid lexicalised sibling feature.

4. mother-siblings: A head word and all of its dependents without any limitation
on the number of the dependents, e.g. the triple (chairman, former, Elsevier)
(Figure 4.11(e)) where the word chairman is the head word for the other two.

We combine these four dependency features into 7 different models. Considering
both lexicalised and unlexicalised versions as we did in Section 3.4, the number of
the models is doubled, thus giving 14 in total. These models are listed in Table 4.4.
The initial letter, D, in the model name refers to the nature of features used, i.e.
dependency features. This naming convention serves as a clue later in identifying
feature types present in each hybrid model.
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NNP NNP , JJ NN NN , VBD IN NN CD .
Pierre Vinken , former Elsevier chairman , died at age 83 .

root

(a)

NNP , JJ NN NN , VBD
Vinken , former Elsevier chairman , died

(b)

NNP , JJ NN NN , VBD
Vinken , former Elsevier chairman , died

(c)

NNP , JJ NN NN , VBD
Vinken , former Elsevier chairman , died

(d)

NNP , JJ NN NN , VBD
Vinken , former Elsevier chairman , died

(e)

Figure 4.11: (a) is the dependency tree for sentence (2.1). In (b), (Vinken, died)
pair is an example of lexicalised dep feature. The (VBD, NNP, NN) triple in (c)
represents an unlexicalised instance of the ancestor template. (d) The lexicalised
pair (former, Elsevier) are two siblings that share chairman as their mother. Finally,
(e) represents the mother-siblings template by the (chairman, former, Elsevier)
triple.
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Model dep ancsstr sbl fathrSbl

D1 unlx - - -
D2 - unlx - -
D3 - - unlx -
D4 - - - unlx
D5 unlx unlx - -
D6 unlx unlx unlx -
D7 unlx unlx unlx unlx
D8 lx - - -
D9 - lx - -
D10 - - lx -
D11 - - - lx
D12 lx lx - -
D13 lx lx lx -
D14 lx lx lx lx

Table 4.4: Naming convention for various models using dependency structure

4.3 Experiment Configuration and Experiment Re-
sults

In the previous chapter we confirmed the helpfulness of features from statistical
parsers in reranking. This chapter’s aim is to answer the following two questions:

RQ4.1 Do features extracted from NLG internal structures contribute to the quality
of the reranker? This is essentially the question asked by Cahill et al. (2007b)
but with the additional features defined in this chapter for the independent
ranking module context.

RQ4.2 Are these features orthogonal to features extracted from statistical parsers?
In other words, to what extent would the reranker quality be enhanced if both
set of features are deployed.

Prior to answering these questions by analysing the experiment results, we describe
the data preparation and experiment setup.

4.3.1 Data Preparation and Experiment Setup

We used the same data and followed the same approach that was described in the
previous chapter. To avoid the repetition, we quickly review the configuration from
a high level point of view, but a detailed discussion on data and pair selection can
be found in Section 3.3.1. We took sections 2-21 of the Penn Treebank for training
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and section 23 for testing. Data preparation has been done in the following three
steps:

1. Creating alternatives: using XLE to parse the sentences and then using the
re-generation module to build the alternatives.

2. Pairing the alternatives and labelling them: The alternative with the highest
MED score would be labelled as the positive example. For the negative
example, an alternative is randomly selected out of the alternatives with
MED score less than the largest MED.

3. Feature extraction: For each model the associated features are extracted
using the corresponding grammar and/or parser. For instance, the model
which is built upon the internal structures and labelled as small grammar has
its features extracted from the small-scale ParGram grammar.

The next step is building a reranking model using MegaM. Here MegaM takes
training pairs, in the form of a set of labeled features, as input and returns a model,
i.e., a set of weights associated with each feature. Later, this model will be used to
assign labels to the test data. Our evaluation metric is the classification accuracy of
predicting the correct label for positive and negative example from each pair. We
identified the notion of effective test set in Section 3.4: this is the set of pairs for
which the features differ. In Chapter 3, we concluded that a back-off strategy —
where the feature-based reranker is used for the effective test set, and the n-gram
language model for the remainder — could improve performance. In this chapter,
we thus present the overall accuracy under this back-off strategy. We give the
overall accuracy (T ) as per definition (4.1) to study each feature set contribution to
reranking.

T = (Te ⇤ Tecov%) + (T 0
e ⇤ T 0

ecov%) (4.1)

where Te is the effective test set, Tecov% is the coverage percentage and T 0
e = 1�Te.

As for the back-off strategy, we use our baseline language model (LM), sl-lm2 that
was previously introduced in Section 3.4.

4.3.2 Experiment Results

4.3.2.1 Base Models

Base models are designed to answer RQ4.1 asked on page 91 of this chapter.

C-structure models Table 4.5 presents the coverage, effective test set and overall
accuracy for the models that are built just upon c-structure features from both large-
scale (Table 4.5 (a)) and small-scale (Table 4.5 (b)) grammar. These models were
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Te

Model cov% acc.% acc.%
CL1 85.9 85.37 84.18

CL2 90.97 83.73 82.46

CL3 90.97 79.56 78.67

CL4 90.97 79.56 78.67

CL5 92.86 83.41 82.03

CL6 86.59 86.73 85.77
CL7 91.83 85.52 84.57

CL8 90.54 79.28 78.46

CL9 90.54 79.28 78.46

CL10 93.64 84.97 83.88

(a)

Te

Model cov.% acc.% acc.%
CS1 58.56 87.21 80.88

CS2 58.56 87.06 80.79

CS3 57.7 88.21 81.48

CS4 57.7 88.21 81.48

CS5 58.56 87.06 80.79

CS6 69.99 95.45 89.73

CS7 69.99 95.45 89.73

CS8 57.7 88.21 81.48

CS9 57.7 88.21 81.48

CS10 69.99 95.57 89.81
(b)

Table 4.5: Results of reranking with c-structure features extracted from the large
grammar (a), and the small grammar (b).

previously introduced in Table 4.3. As can be seen in that table, C6-C10 models
are the lexicalised version of C1-C5; this explains why Ci and Ci + 5, where
i 2 {1, 2, 3, 4, 5}, are always paired up in the analysis of the results.

The large-scale grammar consistently resulted in a high coverage on the test set
(about 90%), with CL5 and CL10 ranked highest due to their feature variety.
Grouping the models by accuracy, the best group is CL3 and CL4 and their lex-
icalised models (CL8 and CL9) with similar accuracy. This similarity implies
the highly related features that these models are deploying; in other words, the
presence of the parent node in the features has no added value to reranking. Com-
parison of accuracies over Te and T for CL1-CL5 models with their corresponding
lexicalised models (CL6-CL10) reveals that both accuracies follow the same trend:
There is a consistent decline from CL1 to CL3, no change to CL4, followed by
an increase at CL5 which its value is slightly smaller than CL2. As expected,
the lexicalised models outperforms the unlexicalised models; but it is not a major
gap. CL6 that only uses CS-PC has the highest contribution to reranking (highest
accuracy over Te and T ).

Models with features from small-scale grammar (4.5 (b)) have a noticeable lower
coverage. Inspecting the training and test set, many pairs happen to have an
identical feature set for the preferred and dispreferred sample sentences which
forces the system to back off to LM for such pairs. These frequent identical features
are the outcome of using the features from right-branching structures with only two
non-terminal symbols: FRAGMENTS, TOKEN. Accuracies for Te are surprisingly
better than the expectation with regards to the amount of information captured by
the features. We will discuss this unexpected result in Section 4.3.3. The total
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Te

Model cov% acc.% acc.%
FL1 64.66 63.96 66.38

FL2 54.17 69.6 69.52

FL3 45.66 54.8 62.6
FL4 67.58 55.03 60.15

FL5 64.75 64.81 67.07

FL6 45.4 57.29 63.71

FL7 66.04 69.01 69.73
FL8 69.3 69.17 69.43

(a)

Te

Model cov.% acc.% acc.%
FS1 61.56 84.08 79.49

FS2 67.41 91.2 86.11
FS3 0 0 70.42

FS4 63.2 54.15 60.83

FS5 63.11 79.16 76.66

FS6 0 0 70.42

FS7 61.39 84.31 79.66

FS8 71.45 87.24 83.96

(b)

Table 4.6: Results of reranking with f-structure features extracted from the large
grammar (a), and the small grammar (b).

accuracy has remained acceptably high after the back-off to the baseline.

Using the small-scale grammar, the gap between the accuracy of lexicalised and
unlexicliased models becomes larger. However, there is still an unexpected re-
sult: No improvement is achieved by substituting PoS tags in CS3-CS4 with the
actual words in CS8-CS9. In other words there is no difference in the captured
information by either of these features. Excluding CS8 and CS9, the total accura-
cies within each category (lexicalised and unlexicalised) do not vary significantly.
The best model with small-scale grammar is CS10, the combination of all the
c-structure features, with the highest accuracy over Te and T .

If we were to compare results for the large-scale and small-scale grammars directly,
it would seem that features from the small-scale grammar are better at deciding
among alternative realisations. However, this is not a suitable comparison. We
discuss the issue of grammar size further in Section 4.3.4.

F-structure only models Table 4.6 compares the reranking results for models
with f-structure features using large-scale (Table 4.6 (a)) and small-scale (Ta-
ble 4.6 (b)) grammar. These models and their corresponding features were previ-
ously summarised in Table 4.3.

On average the coverage of the models for the large-scale grammar is a bit lower
than coverage for CS models (Table 4.5). Similar to the small-scale grammar case
in c-structure models, there are many pairs with identical feature sets. This is
due to the fact that f-structure describes the relationship between the grammatical
components of a sentence regardless of its word order. Considering the fact that
all these alternatives were built upon the same f-structure at the first stage, the
probability of getting a very similar or identical f-structure is high.
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Accuracy over Te implies that f-structure features, unlike c-structure features,
cannot effectively distinguish between the positive and negative alternatives in
a pair. As a matter of fact these features are no better than the baseline for the
large-scale grammar. So even though our task context differs a little from Cahill
et al. (2007a), such that could potentially have been useful, it turns out that they
are not.

Switching from large-scale grammar to small-scale grammar, the coverage for
Te has seen no significant change except for FS3 and FS6 that suddenly dropped
to 0. These two models use FS-LEX-SUBCAT and FS-VERB-ARGS features,
respectively. Regarding the above mentioned reason for identical feature sets in
pairs, the very simplistic grammar and the nature of the features explains why the
all the pairs ended up with identical feature set for both sentences.

The most striking result so far belongs to the accuracy over Te using the small
grammar. Considering the accuracies from large and small-scale for C models
(CL vs. CS) along with the unexpectedly low accuracies for FL models lowered
the accuracy expectation for the FS models to the same level or a bit higher;
however, a sudden increase has been observed in the accuracies, except for FS4.
This unexpected rise can be explained by the fact that FL models suffer from
sparsity versus FS models, which have a very limited number of features and so
their frequency for each alternative becomes a reliable distinguishing factor. FL7
and FS2 are the best reranking models with f-structure features for the large and
small grammars respectively.

4.3.2.2 Combination of C- and F-structure Models

To answer the second research question for this chapter, we introduce multiple
hybrid systems2 that are incrementally built upon the models discussed so far.
There are three sets of hybrid models: (1) Combination of the best c-structure
model with the best f-structure model for small and large grammars (CFS and
CFL), (2) Combination of the best c-structure model with various dependency
models (CS+SD, CS+UD, CL+SD and CL+UD) and (3) Combination of the
best c-/f-structure with dependency features(CFS+SD, CFS+UD, CFL+SD and
CFL+UD).

These models are listed in Table 4.7. The first column lists the model names
and the rest of the columns specify the other features/models which their features
are deployed. The hybrid models follow the same self-descriptive convention as
before, each letter in the name specifies the presence of its best model, e.g. CFS
stands for the combination of features from CS10 and FS2 extracted from the
Small-scale grammar. Since all the hybrid models with features from the small

2Each hybrid system feature combines features from specified base models with equal weight.
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parserType LFG models
Model parser Dep. Models c-structure f-structure grammar
CFS - - CS10 FS2 small
CFL - - CL6 FL7 large
CS+SD[1-14] Sup D[1-14] CS10 - small
CS+UD[1-14] Unsup D[1-14] CS10 - small
CL+SD[1-14] Sup D[1-14] CL6 - large
CL+UD[1-14] Unsup D[1-14] CL6 - large
CFS+SD[1-14] Sup D[1-14] CS10 FS2 small
CFS+UD[1-14] Unsup D[1-14] CS10 FS2 small
CFL+SD[1-14] Sup D[1-14] CL6 FL7 large
CFL+UD[1-14] Unsup D[1-14] CL6 FL7 large

Table 4.7: Naming convention for various models using dependency structure

Te

model cov% acc.% acc.%
CFS 69.91 94.83 76.43
CFL 88.22 84.75 77.37

Table 4.8: Reranking results for the combination of the best c-structure and f-
structure models

scale grammar would have CS10 and/or FS2 prefix, the names are contracted to
letters only, followed by the grammar size, CS/CFS. The same argument is valid
for models with large scale grammar features, CL and CFL are the abbreviated
forms of CL6 and FL7, respectively.

CF models The first two combinations investigate the quality of reranking by
combining the best c- and f-structure models. The results in Table 4.8 present the
coverage and accuracy for CFS and CFL. Along the lines of the previous results,
the same trade-off exists between the coverage and accuracy for small and large
grammar. The accuracies become quite close after backing off to the baseline
which is LM.

c-structure + dependency features Table 4.9 reports the reranking results for
hybrid models that combine dependency features with the best small-scale grammar
c-structure feature. The main contribution of adding dependency parser features
can be seen in the coverage over Te; about 26% increase from 69.99% (CS10
coverage) to 97.85% and 96.22% (the average coverage for CS+SD and CS+UD
models). This dramatic change is due to the variety of these additional features that
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Te

Model cov% acc.% acc.%
CS+SD1 96.5 86.64 86.17

CS+SD2 96.6 86.88 86.42

CS+SD3 98.3 85.71 85.48

CS+SD4 98.4 84.87 84.6
CS+SD5 96.8 88.04 87.57

CS+SD6 98.5 86.4 86.13

CS+SD7 98.5 86.76 86.49

CS+SD8 97.1 89.97 89.45
CS+SD9 96.9 85.34 85.01

CS+SD10 98.7 83.95 83.64

CS+SD11 98.7 83.18 82.88

CS+SD12 97.1 89.83 89.31

CS+SD13 99 87.91 87.73

CS+SD14 99 88.31 88.13

(a)

Te

Model cov.% acc.% acc.%
CS+UD1 95.5 86.15 85.83

CS+UD2 96.1 85.5 85.07

CS+UD3 94.2 87.49 87.05
CS+UD4 94.2 86.5 86.12

CS+UD5 96.2 85.04 84.67

CS+UD6 96.5 85.37 84.94

CS+UD7 96.5 85.94 85.49

CS+UD8 97.3 87.17 86.74

CS+UD9 97.4 84.64 84.31

CS+UD10 95.1 85.55 85.23

CS+UD11 95.4 85.44 85.13

CS+UD12 97.4 87.14 86.74

CS+UD13 97.7 87.03 86.64

CS+UD14 97.7 87.21 86.82

(b)

Table 4.9: Results of reranking using various combinations of (a) supervised and (b)
unsupervised dependency parser features added to CS-structure features extracted
from the small grammar

prevent identical feature sets in a pair. Comparing the coverage of the supervised
versus unsupervised models, the numbers are quite close with the supervised parser
almost always beating the unsupervised except for 4 models (CS+SD3/CS+SD10
and CS+SD4/CS+SD11). These dependency models deploy CS-SB (unlx/lx) and
CS-NC (unlx/lx) features. The same relationship exists for the both accuracies:
supervised models beat the unsupervised ones except for the four aforementioned
models. In the previous chapter, we had to do feature selection to get a close result
with unsupervised parser and make it comparable to supervised parser. However,
in the hybrid models, the accuracies for these two features types are quite close
(on average less than 2%) which suggests that c-structure features dominates the
decision making. Comparing all the overall accuracies from Tables 4.5, 4.6, 4.8,
and 4.9, CS10 in Table 4.5 still leads with a minor superiority. It means there is no
added information in the dependency features to boost the reranking quality.

As can be seen in Table 4.10, switching to the large-scale grammar for c-structure
features, the same trend for coverage is still valid. Similarly, the models with super-
vised features slightly outperformed the unsupervised ones, except for CL+SD10
and CL+SD11. Similar to CS+SD and CS+UD models, the overall accuracies are
better than the statistical parser models only but none of the CL+SD or CL+UD
models beat CL6.
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Te

Model cov% acc.% acc.%
CL+SD1 96.9 84.25 83.92

CL+SD2 96.9 85.17 84.82
CL+SD3 97.4 85.1 84.76

CL+SD4 97.5 84.99 84.68

CL+SD5 97 85.02 84.65

CL+SD6 97.5 84.87 84.52

CL+SD7 97.5 84.68 84.33

CL+SD8 97 85.04 84.71

CL+SD9 96.9 84.36 84.06

CL+SD10 97.8 83.3 83.03

CL+SD11 97.8 83.36 83.12

CL+SD12 97 85.13 84.8
CL+SD13 97.9 84.38 84.07

CL+SD14 97.9 84.38 84.07

(a)

Te

Model cov.% acc.% acc.%
CL+UD1 98.1 83.83 83.62

CL+UD2 98.2 83.39 83.22

CL+UD3 96.7 84.5 84.15
CL+UD4 96.7 83.77 83.4
CL+UD5 98.2 83.79 83.6
CL+UD6 98.5 83.47 83.25

CL+UD7 98.5 83.92 83.69

CL+UD8 99.1 83.99 83.92

CL+UD9 99.1 82.32 82.23

CL+UD10 97 83.78 83.49

CL+UD11 97.1 83.49 83.19

CL+UD12 99.1 84.16 84.09

CL+UD13 99.3 84.1 84.04

CL+UD14 99.3 84.01 83.95

(b)

Table 4.10: Results of reranking using various combinations of (a) supervised
and (b) unsupervised dependency parser features added to CL-structure features
extracted from the large grammar

c- and f-structure + dependency features The final two experiments involve
adding f-structure features to the CS+SD, CS+UD, CL+SD and CL+UD models.

In Table 4.11, the results for CFS+SD can be compared with CFS (Table 4.8) and
CS+SD (Table 4.9). CFS+SD8 is the best model amongst the hybrids of supervised
features, with accuracy 88.82. This model is ranked lower than CS+SD8 (89.45),
but higher than CFS (76.43). Switching to dependencies from the unsupervised
parser, CFS+UD8 is the best model amongst all the CFS+UD models. As expected
its accuracy, 86.60, is less than its supervised peer but maintain the same ranking
position: below CS+UD3(87.05) but above CFS(76.43). The coverage over the
effective set has been slightly improved due to the addition of f-structure features.

Similarly, the CFL+SD results (Table 4.12) can be compared to the three models
which its features are incrementally derived from: CL+SD (Table 4.10) and CFL
(Table 4.8). For hybrid models with supervised dependency features, CFL+SD7
with accuracy 84.03 is ranked above CFL, 77.37, but below CL+SD2 84.82. Switch-
ing to unsupervised features, CFL+UD8 with accuracy 83.84, is slightly lower than
its supervised peer, ranked above CFL but below its CL+UD3 unsupervised peer
(84.15).

These two experimental results reinforce the initial assumption that no extra rerank-
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Te

Model cov% acc.% acc.%
CFS+SD1 96.5 87.11 86.62

CFS+SD2 96.6 87.54 87.05

CFS+SD3 98.3 84.9 84.68

CFS+SD4 98.4 84.24 83.98

CFS+SD5 96.8 88.22 87.74

CFS+SD6 98.5 86.13 85.87

CFS+SD7 98.5 87.3 87.02

CFS+SD8 97.1 89.32 88.82
CFS+SD9 96.9 85.15 84.83

CFS+SD10 98.7 83.95 83.64

CFS+SD11 98.7 83.09 82.79

CFS+SD12 97.1 88.9 88.41

CFS+SD13 99 87.47 87.3
CFS+SD14 99 87.51 87.34

(a)

Te

Model cov.% acc.% acc.%
CFS+UD1 95.6 85.8 85.48

CFS+UD2 96.2 85.62 85.22

CFS+UD3 94.3 86.62 86.22

CFS+UD4 94.3 86.23 85.85

CFS+UD5 96.3 85.26 84.91

CFS+UD6 96.6 85.59 85.18

CFS+UD7 96.6 85.96 85.54

CFS+UD8 97.4 87 86.6
CFS+UD9 97.5 84.3 84.01

CFS+UD10 95.2 85 84.73

CFS+UD11 95.4 84.99 84.69

CFS+UD12 97.5 86.8 86.4
CFS+UD13 97.8 86.6 86.25

CFS+UD14 97.8 86.78 86.43

(b)

Table 4.11: Results of reranking using various combinations of (a) supervised
and (b) unsupervised dependency parser features added to c-/f-structure features
extracted from the small grammar

ing helpful information can be extracted from f-structure features in reranking
(Cahill et al., 2007a).

To summarise the results for reranking with dependency models combined with
internal structure features, Table 4.13 lists the best models from each dependency
hybrid model, grouped by grammar size in an ascending order. The main result
of the chapter is that the best of the external features didn’t improve over just
internal features. Comparing models with external features from supervised vs.
unsupervised parsers, the hybrid models rank similarly across both grammars:
regardless of the parser type, CS+D has been ranked the highest, followed by
CF+SD in the second place and finally, CL+D and CFL+D have been ranked as
the third and fourth hybrid models.

4.3.3 Discussion on the Results of the Small Grammar

The simple grammar consistently produced high accuracies over a smaller Te

compared to the large grammar which seemed to be unexpected since the small
grammar produces the same right-branching tree for every input sentence: feature
sparsity would no longer be a problem and due to the repetition of the TOKEN
and FRAGMENT non-terminals, features that include these two labels would get a
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Te

Model cov% acc.% acc.%
CFL+SD1 97 84.19 83.85

CFL+SD2 96.9 83.8 83.52

CFL+SD3 97.5 83.93 83.65

CFL+SD4 97.5 83.26 82.95

CFL+SD5 97.1 83.75 83.41

CFL+SD6 97.5 83.78 83.49

CFL+SD7 97.5 84.33 84.03
CFL+SD8 97.2 84.11 83.79

CFL+SD9 97.1 83.38 83.05

CFL+SD10 97.8 82.34 82.09

CFL+SD11 97.8 81.99 81.78

CFL+SD12 97.2 84.11 83.79

CFL+SD13 97.9 83.58 83.32

CFL+SD14 97.9 83.49 83.24

(a)

Te

Model cov.% acc.% acc.%
CFL+UD1 98.2 82.76 82.61

CFL+UD2 98.2 82.7 82.53

CFL+UD3 96.9 83.5 83.19

CFL+UD4 96.9 83.19 82.93

CFL+UD5 98.3 82.99 82.77

CFL+UD6 98.5 82.58 82.32

CFL+UD7 98.5 82.31 82.05

CFL+UD8 99.1 83.5 83.43
CFL+UD9 99.1 81.94 81.89

CFL+UD10 97.2 83.32 83.02

CFL+UD11 97.2 83.12 82.81

CFL+UD12 99.1 83.32 83.26

CFL+UD13 99.3 83.17 83.11

CFL+UD14 99.3 83.35 83.29

(b)

Table 4.12: Results of reranking using various combinations of (a) supervised
and (b) unsupervised dependency parser features added to c-/f-structure features
extracted from the large grammar

Model acc.%
CS10 89.81

CS+SD8 89.45

CFS+SD8 88.82

CS+UD3 87.5
CFS+UD8 86.6
FS2 86.11

CFS 76.43

(a)

Model acc.%
CL6 85.77

CL+SD2 84.82

CFL+SD7 84.3
CL+UD3 84.15

CFL+UD8 83.43

CFL 77.37

FL7 69.73

(b)

Table 4.13: Summary of ranking results for various combinations of features
from external resources with (a) the small grammar and (b) the large grammar.
Regardless of the size of the grammar, and the best of the external features didn’t
improve over just internal.

higher occurrence rate per sentence. For instance for the c-structure presented in
Figure 4.9, only 14 features per each CS-PC and CS-GPC can be extracted (see
Table 4.14). Two of these features consist of non-terminals with a high frequency
and the rest of the features consist of a non-terminal and a terminal node with
only one occurrence. A similar argument is valid for features that represent the
horizontal slices of the c-structure. Since such features cannot capture any sentence-
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Encoded Feature Feature #Occurence

F_CS_1 FRAGMENTS-TOKEN 13
F_CS_2 FRAGMENTS-FRAGMENTS 13
F_CS_3 TOKEN-Pierre 1
F_CS_4 TOKEN-Vinken 1
F_CS_5 TOKEN-, 2
...

...
...

F_CS_14 TOKEN-. 1

F_GP_1 FRAGMENTS-FRAGMENTS-TOKEN 12
F_GP_2 FRAGMENTS-FRAGMENTS-FRAGMENTS 12
F_GP_3 FRAGMENTS-TOKEN-Pierre 1
F_GP_4 FRAGMENTS-TOKEN-Vinken 1
F_GP_5 FRAGMENTS-TOKEN-, 2
...

...
...

F_GP_14 FRAGMENST-TOKEN-. 1

F_SB_1 TOKEN-FRAFMENTS 12
F_SB_2 Pierre 1
F_SB_3 Vinken 1
F_SB_4 , 2
...

...
...

F_SB_13 . 1

Table 4.14: Encoded CS-PC and CS-GPC features along with their count. F_CS_3–
F_CS_14 and F_GP_3–F_GP_14 are following are following FRAGMENTS-wi

and FRAGMENTS-FRAGMENTS-wi templates, where wi can be replaced by
any word from sentence (2.1). As discussed above, the small grammar is unable
to assign a detailed structure including grouping words into phrases and so on.
Consequently, the features in such a shallow tree becomes quite repetitive, e.g.,
FRAGMENTS-TOKEN has been observed 13 times

specific structure, all the sentences will get the TOKEN-FRAGMENTS slice in
addition to the unigrams of their terminals. This implies none of the c-structure
features are able to encode the word order into the model.

The number of unique features will be dropped even further for unlexicalised fea-
tures. The unlexicalised version of F_CS_1 and F_CS_2 would remain unchanged
but the 12 unique TOKEN-word features would be reduced to 7: FRAGMENTS-
TOKEN-PoS, where PoS may refer to the PoS tag of any given word in the
sentence: Pos 2{N, COMMA, A, V, P, D, NUMBER, .}.
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Features presented in Table 4.14 can also confirm that none of the features capture
any word order-relevant information. To understand this curious effect, we had to
look into the data set. To recap, we had deployed the large grammar to produce
alternatives and we followed the random pairing (see page 56) to pair alternatives.
Remember that the small grammar is capable of regenerating more than one
alternative which is a match for the input sentence. The generated alternatives for
sentence (2.1) have been labeled with A1 to A4 as follows:

A1: Pierre Vinken, former Elsevier chairman died at the age of 83.

A2: Pierre Vinken, former Elsevier chairman, died at the age of 83.

A3: At the age of 83 pierre Vinken, former Elsevier chairman died.

A4: At the age of 83 pierre Vinken, former Elsevier chairman, died.

These alternatives vary in both length and word order, but due to the nature of
the small grammar, the features describing these alternatives are only capable of
reflecting sentence length and word form — in lexicalised models — but not word
order differences. For the very same reason, only four pairs, {{A1, A2}, {A2, A3},
{A3, A4}, {A1, A4}}, out of 6 possible pairings, would get non-identical feature
set for preferred and dispreferred instances, as they differ in length: one instance
has an extra comma. Depending on the alternatives, the feature set may differentiate
by containing a new feature (in the case of word form differences) or an increment
to the number of occurrence of the feature (additional word/punctuation).

This explains why approximately 30% (depending on the model) of the test set has
not been covered in the experiment. The further drop in the coverage for the models
with the unlexicalised features can be explained by the fact that sometimes alterna-
tives only differ in the word form: e.g. U.S. vs. US which after de-lexicalisation
features sets become identical.

As a result we can conclude that with the small grammar, the model indeed become
sensitive to unigram surface features such as punctuation and word forms since
other structural features are almost the same for both preferred and dispreferred
sentences.

4.3.4 Summary

The experiment results support the usefulness of text generator internal structures
as a feature source for reranking, providing the suitable grammar and feature types.

Combining all the lexicalised c-structure feature types extracted from the small
grammar has affected the reranking quality the best. On the other hand, F-structure
features extracted from the large grammar (FL) have the least contribution to
reranking: the accuracies are even worse than baseline (just using language model).
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Similar to German (Cahill et al., 2007a), the symbolic grammar’s internal structure
contributes to the reranking of the generated text in English. This finding suggests
that in practice such features can be used universally and independent from the
language or formalism deployed by the realiser.

However, the answer to our second question for this chapter, RQ4.2 on page 91,
is negative. Adding in external structural features to the internal ones does not do
better than internal ones alone, suggesting that the structures are too similar rather
than being usefully complementary.





Chapter 5

An ILP Framework for String
Regeneration

5.1 Introduction

In this chapter and the next, we turn to the second task that we tackle in this thesis.
String regeneration or general purpose word ordering refers to the task of assigning
word order to a given bag-of-words. This task can be regarded as a subtask in a
number of Natural Language Generation (NLG)-related applications, such as Text
Summarisation (Wan et al., 2009) and Text Generation (Reiter and Dale, 1997)
itself.

In Chapter 1, we discussed how the linearisation task in NLG can be regarded as the
reverse of parsing, in the sense of transition between a sentence and its grammatical
structure form where the former task’s search space can be exponentially larger.
In Section 2.3.2, we looked at one the popular approaches for surface realisation:
finding an intermediate structure for a given bag-of-words and then linearising it.
Several of these recent approaches share a common ground: a machine learning
method that learns features’ weights; a search algorithm that imposes a structure
on the input e.g., a parse tree; and a lineariser which flattens the structure into a
sentence. Structures can be as simple as assigning n-grams (Langkilde and Knight)
or as intricate as using Latent Semantic Analysis (LSA) to model the language
(Dennis, 2013).

Zhang (2013) characterises string regeneration from bag-of-words as one end of
a cline, with linearisation from a full syntactic structure at the other; the cline
corresponds to the availability of varying amounts of input structure. For instance,
take sentence (5.1) as the target string for the string regeneration problem. On
one end of the cline, the input has been annotated with minimal structure: bag-of-
words along with Part of Speech (PoS) tags (see the set of words in (5.2)). In the

105
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saw Mary John
VBD NNP NNP

ROOT

Figure 5.1: The bag-of-words (5.2) annotated with gold standard dependencies
that can be served as an input to the ordering task.

middle of the cline, some structural information has been incorporated in the input;
dependency relations between tokens constitute one such piece of information.
Figure 5.1 contains dependencies for the bag-of-words in (5.2).

(5.1) John saw Mary.

(5.2) {saw/VBD, Mary/NNP, John/NNP}

We are interested in approaches to string regeneration that consider assigning a
syntactic form to the input as an intermediate task to regeneration, since it can
benefit from any existing structure that comes with the input by directly embedding
it into that intermediate structure and this can help the regeneration. We discussed
some previous works that follow this approach in Section 2.3: to recap, Wan et al.
(2009) took this approach and chose dependency trees as the intermediate syntactic
form. They represented the bag-of-words with a complete weighted digraph so
that edge ei,j serves as a potential dependency between words wi and wj — see
Figure 5.2(a) that represents such a graph for Sentence (5.3).

(5.3) the cat eats the mouse in the kitchen,

They extracted dependency weights from the Penn Treebank, by calculating the
log probability of such a dependency when these two words were observed in one
sentence. Their aim was to construct a dependency tree by extracting a Minimum
Spanning Tree (MST) from the weighted digraph. They applied the CLE algorithm
(see Section 2.3.2) to get the MST. Since the weights are calculated using a
dependency treebank, the MST can be viewed as a dependency tree.

Since the CLE algorithm is a pure graph algorithm, its only criteria for selecting an
edge to participate in the final MST is that edge’s weight which is typically a func-
tion of co-occurrence of the head and dependent. For instance compare the two pos-
sible dependencies between eats and kitchen in Figure 5.2(a): eats 112 �� kitchen

shows a weaker association than its counterpart eats 19�! kitchen dependency,
i.e., eats is more likely to be the head of kitchen. The same argument is valid
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ROOT

in kitchen

mouse cat

eats

38

91

300

300

300

300

97

59

116
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(a) The complete graph for sentence (5.3)

ROOT

in kitchen

mouse cat

eats

19

39
39

19

100

(b) CLE-generated MST

ROOT

in kitchen

mouse cat

eats

38

39
39

19

100

(c) ILP-generated MST

Figure 5.2: Comparison of the two MSTs generated by Wan et al. CLE-based
approach and ILP for Sentence (5.3). Note that base NPs are represented by their
head. e.g. cat is the head of the cat base NP.
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for in 91 � kitchen and in
38�! kitchen dependencies where the latter forms a

stronger association. This means in being the parent of kitchen is a more plausible
choice than the other way around. So, in and eats can be the potential heads for
kitchen. The CLE algorithm chooses eats ! kitchen as it has a larger weight
(Figure 5.2(b)).

This choice, however is not a top pick from a linguistic perspective as it makes
both eats and in suffer from an incorrect number of arguments. To address this
issue and allow linguistically plausible structures, Wan et al. (2009) additionally
drew on the graph-theoretic assignment problem as a way of matching heads
and dependents and deployed the Hungarian algorithm. With this algorithm they
managed to have more control over each node’s arity by assigning a maximum
number of dependents to different word categories.

Wan et al. do not incorporate existing information into the input which is later
addressed by Zhang and Clark (2011). They featured the use of input from the
cline ranging from PoS tags to subtree in their bottom-up approach of building a
Combinatory Categorial Grammar (CCG) parse tree as the intermediate syntactic
representation. Clearly, the generated string would be closer to the target sentence
as the input gets closer to the richer end of the cline.

Another shortcoming of the above mentioned frameworks is that adding or modify-
ing dependency tree properties is an elaborate task, as they are implicitly embedded
into the model e.g., in the form of weights or hypothesis scores. It would be
desirable to be able to declare structural requirements along with its linguistic
properties independently and impose them on the problem at once or incrementally.

In this part of the thesis we propose a string regeneration framework which is
graph-based (similar to Wan et al.) and is able to consume input from the Zhang
and Clark’s cline. Additionally, this framework would allow the declarative incor-
poration of the structural and linguistically-motivated constraints. ILP seems to be
a promising choice since it allows a wide variety of constraints to be imposed to the
problem at once or incrementally. To date no research has employed ILP to create
a dependency tree from a bag-of-words but given its contribution to dependency
parsing (Riedel and Clarke, 2006, Martins et al., 2009) and Wan et al.’s success-
ful adaptation of McDonald et al.’s dependency parsing for string regeneration
suggests the usefulness of introducing ILP to our framework.

We aim for a string regeneration framework that can benefit from any available
structural information without having a set expectation of the input richness. Such
structural information will serve as the basis of our proposed framework, rather
than a complementary piece of information that can contribute to the quality of
the output. This means the estimation of missing structures will be the first step
in our regeneration process. This makes the representation of such information
in the framework of a high importance as each structure (1) must be encoded
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independently of the others i.e., to provide the aforementioned flexibility (2) must
include information about word order within its own scope, and (3) must have
feature(s) that allow data-driven approaches to performing modelling from the
existing structures and estimating the missing ones.

Such a framework will suit languages which lack linguistic resources to induce
structural information as well as languages that are in the process of developing
resources and have little structural information to start with (see discussion on
p.8). It is worth re-emphasising that the languages we are interested in can use
universal dependency parsers to cover resources used in this part of the research.
For instance, a parser can be built based on a universal parser or transfer-based
approach discussed earlier in Chapter 3. This parser can used to build a treebank to
get the dependency weights and branching factors.

After a quick review of ILP and its application to dependency parsing, where we
give the intuition behind how ILP can be applied to our generation problem, we
will discuss the technical aspects of our proposed framework.

5.2 Related work

5.2.1 Brief Review of ILP

Translation of the real-world optimisation problem into a mathematical form:
an objective function and a set of constraints is a standard method for solving
optimisation problems. ILP is a mathematical model that optimises an objective
function subject to some linear constraints. Constraints can be described with either
equalities or inequalities or both. A full overview is available from a standard
text, such as Nemhauser and Wolsey (1988); we are just going to give a brief
review below. The canonical form of an ILP problem as defined by Nemhauser
and Wolsey (1988) is:

maximize: F (x) = c

Tx

subject to: Ax  b, (5.1)
x � 0, and
x 2 Z

In the definition (5.1), the objective function and all the constraints have to be
linear and all the variables must be integer. c and b are integer vectors while A is
a matrix with integer values. Related methods follow the same canonical form but
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differ in details: for example, for quadratic programming the objective function is
not a linear function any more.

One of the standard methods to solve ILP problems is the graphical method. The
first step is to construct a graphical representation of the feasible region by plotting
the constraints and identifying the area of the valid side of the constraints. The
second step is to draw two objective function lines to determine the direction of
improvement. The next step is finding the optimal point by moving the objective
function line along the desired direction, and algebraically calculating the coordi-
nates of the optimal point. The final step is the calculation of the objective function
value for the optimal solution.

Consider an example problem from Bertsimas and Tsitsiklis (1997):

minimise: � x1 � x2

subject to: 2x1 + 2x2  3, (5.2)
x1 + 2x2 < 3and
x1, x2 > 0

This optimisation problem can be regarded as a cost minimisation problem for
manufacturing two products: x1 and x2 and each constraint describes one of the
limitations that the producer has to deal with, for instance, the availability of the
raw material and the expected labour, respectively.

The first step is identifying the feasible region using the provided constraints —-
the shaded area in Figure 5.3. To find an optimal solution, we follow the proposed
the steps above. For any given scalar z, we consider the set of all points whose
cost c0x is equal to z; this is the line described by the equation �xl � x2 = z. Note
that this line is perpendicular to the vector c = (�1,�1). Different values of z
lead to different lines, all of them parallel to each other. In particular, increasing z
corresponds to moving the line z = �xl � x2 along the direction of the vector c.
Since we are interested in minimising z, we would like to move the line as much as
possible in the direction of �c, as long as we do not leave the feasible region. The
best we can do is z = �2 (see Figure 5.3) , and the vector x = (1, 1) is an optimal
solution.

However, not all optimisation problems are as simple to formulate. Operations
Research (OR) is one of the fields that employs optimisation methods to model
real life problems such as production planning, scheduling, telecommunication
networks, etc. These tasks are crucial to businesses as they can directly affect
the business and the quality of service/product by optimising the processes and
potentially offer some cost cutting. An example is the fleet assignment problem in
the airline industry. For instance according to Delta, after applying the optimised
schedule, the savings during the period from June 1 to August 31, 1993 were
estimated at about $220,000 per day over the old schedule. Rajgopal (2004)
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Figure 5.3: Graphical solution of the problem in Example (5.2), reproduced from
Bertsimas and Tsitsiklis (1997).

described the problem as follows:

Delta Airlines flies over 2500 domestic flight legs each day and
uses about 450 aircraft from 10 different fleets, and the objective was
to assign aircraft to flight legs in such a way that revenues from seats
are maximised. The tradeoff is quite simple — if a plane is too small
then the airline loses potential revenue from passengers who cannot
be accommodated on board, and if it is too large then the unoccupied
seats represent lost revenue (in addition to the fact that larger aircraft
are also more expensive to operate). Thus the objective is to ensure that
an aircraft of the “correct” size be available when required and where
required. Unfortunately, ensuring that this can happen is tremendously
complicated since there are a number of logistical issues that constrain
the availability of aircraft at different times and locations.

Subramanian et al. (1994) modelled this problem using a very large mixed-integer1

linear program — a typical formulation could result in about 60,000 variables and
40,000 constraints. The planning horizon for each problem is one day since the
assumption is made that the same schedule is repeated each day2.

1Only some of the variables, xi, are constrained to be integers, while other variables are allowed
to be non-integers.

2Exceptions such as weekend schedules are handled separately.
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objective function tries to minimise the sum of operating costs (including such
things as crew cost, fuel cost and landing fees) and costs from lost passenger
revenues.

constraints fall into one of the following groups: (1) conservation of flow of
aircraft from the different fleets to different locations around the system at
different scheduled arrival and departure times; (2) governing the assignment
of specific fleets to specific legs in the flight schedule; and (3) the availability
of aircraft in the different fleets, regulations governing crew assignments,
scheduled maintenance requirements, and airport restrictions.

Traditionally, the first step in solving an ILP problem is to solve the relaxed
problem, i.e, without any integrality constraints. Then, the next step is to work
out the solutions that satisfy the constraints. ILP problems are known to to be of
NP-hard complexity in the worst case scenario. Depending on the complexity of
the objective function, sparsity and dimensions of constraints matrix and the search
method it can be solved in polynomial time. For instance, Branch and Bound is
the generic search algorithm for the optimisation problem but if the problem is an
intractable one, heuristic methods such as Simulated annealing, Hill climbing, etc
suit better.

Models that describe real-world problems, such as the one discussed above, are
generally large-scale and computationally intensive. That explains why many com-
mercial and open-source software packages such as Gurobi3, LpSolve4, Symphony5,
Clp6, GLPK7 provide highly sophisticated implementations of linear programming
solvers and even APIs for various programming languages to allow effective mod-
elling and solving of optimisation problems. We will discuss optimisation problems
in the context of multi-objective optimisation later in Section 5.6.2.1.

Given the solid mathematical background of these methods, the availability of
high quality computational packages, and most important of all their flexibility and
scalability, we think of them as a suitable candidate to model NLP/NLG problems.
In the next section we review some previous works that use ILP to address parsing
and that inspired us to use this optimisation method to address the problem of
generation from bag-of-words.

3http://www.gurobi.com/
4http://lpsolve.sourceforge.net/5.5/
5https://projects.coin-or.org/SYMPHONY
6https://projects.coin-or.org/Clp
7https://www.gnu.org/software/glpk/
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5.2.2 ILP in Graph-based Parsing

We described graph-based dependency parsing, as introduced by McDonald et al.
(2005b), in Section 2.3.1. Riedel and Clarke (2006) reformulated this graph-based
labelled dependency parsing as an ILP problem, using constraints to define the
MST. Under this approach, global constraints can be added to a problem individ-
ually as opposed to algorithms like CLE that have been applied to dependency
parsing (as noted in Section 2.3.1), which lack this flexibility.

Unlike previous works that tend to solve the ILP problem at one go, Riedel and
Clarke (2006) considered the incremental addition of constraints to improve ef-
ficiency and also to avoid intractable ILP problem when searching for a labelled
dependency parse tree. They modified the underlying dependency model of Mc-
Donald et al. (2005b) to include dependency labels. Their function to optimise the
total weight of the dependency tree as the sum of the edge weight is:

s(x,y) =

X

(i,j,l)2y

s(i, j, l) (5.3)

=

X

(i,j,l)2y

w · f(i, j, l) (5.4)

where, x is a sentence, y is a set of labeled dependencies, f(i, j, l) is a multi-
dimensional feature vector representation of the edge that connects token i to token
j with label l with weight w. Finding the best parse tree amounts to finding the y

for a given x that maximises s(x,y):

y0 = argmaxys(x,y)

They extended this basic model to conform with ILP so that each labelled edge is
represented with a binary variable:

ei,j,l 8i 2 0..n, j 2 1..n, l 2 bestk(i, j)

where index 0 specifies root of the dependency tree, n is the number of tokens,
and bestk(i, j) is the set k labels with the highest s(i, j, l). ei,j,l is 1 if the specified
edge exists in the parse, otherwise 0. bestk(i, j) provides the set of top k labels for
the dependency that exists between token i and j. Additionally, they used a set of
binary auxiliary variables di,j, 8i 2 0..n, j 2 1..n to represent the existence of a
dependency between tokens i and j. They connected these to the ei,j,l variables by
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the constraint:

di,j =

X

l2bestk(i,j)

ei,j,l

In Riedel and Clarke’s ILP framework, the objective function is then
X

i,j

X

l2bestk(i,j)

s(i, j, l).ei,j,l

which picks the best parse tree, subject to (1) tree constraints and (2) linguistically
motivated constraints that altogether ensure a well-formed tree.

The “Base Constraints” as their name implies are added to the problem at the start.
For instance ONLY-ONE-HEAD is a tree constraint and ensures each word has one
and only one head, and is defined as:

X

i

di,j = 1

for non-root tokens (j > 0) in x, with an exception for an artificial root node,
where (j = 0):

X

i

di,0 = 0

UNIQUE-LABEL also belongs to "Base Constraints" and is a linguistically motivated
constraint that ensures each head word with index i has at most one outgoing edge
with label l:

X

j

ei,j,l  1

On the other hand, the “Incremental Constraints” are those constraints that are
too expensive to be added in advance. Hence they are added to solve the problem
only in the cases where they are violated. For instance NO-CYCLE, which forbids
cycles in the tree, consists of multiple constraints depending on the tree size (see
Section 5.5). Enumerating all the possible cycles and adding them to the ILP
problem creates a bottleneck in parsing. However, not many of the candidate
dependency structures produced by base constraints are cyclic. Therefore, it is
plausible to create the dependency parse tree first and if it is cyclic, re-solve the ILP
problem with a specific constraint that forbids the cycle. This process continues
until an acyclic structure is produced as MST.

For speed reasons, Riedel and Clarke (2006) trained their dependency model using
the CLE search algorithm and single-best Margin Infused Relaxed Algorithm
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(MIRA) as a learner on the Dutch Alpino Corpus. Then this model uses ILP
at test time to study how effectively it can recognise appropriate dependencies.
Comparing with baseline, the incorporation of the linguistic constraints resulted in
performance increases of 0.5% for both labelled and unlabelled accuracy.

Later, Martins et al. (2009) introduced a concise ILP formulation for non-projective
dependency parsing with a polynomial size. Their formulation improved on Riedel
and Clarke (2006)’s work in three different areas: (1) The number of variables and
constraints are polynomial in the sentence length, therefore no need for incremental
procedure, (2) LP relaxation allows fast online discriminative training of the
constrained model, and (3) there is the capability of learning soft constraints to
handle higher-order arc interactions and model word valency. This model accepts
prior knowledge as hard constraints but it is also able to learn soft constraints from
data such as correlations among neighbouring arcs (siblings and grandparents),
word valency, and tendencies toward nearly projective parses. They used a max-
margin framework for learning the model’s parameters using a linear programming
relaxation.

They evaluate their model with multiple languages (English, Danish, Dutch, Por-
tuguese, Slovene, Swedish and Turkish) using the unlabelled attachment score
(UAS). This score represents the percentage of tokens with correct head. The
reported performance showed improvement compared the existing state-of-the-art
methods.

In the following section, we will discuss how we can adapt the successful use of
ILP in parsing to the text generation problem.

5.3 An ILP Framework for Surface Realisation

This section describes the application of the ILP framework, introduced in Sec-
tion 5.2.1, to the text generation problem. It focuses on the definition of the
objective function and how the combination of linguistic constraints with tree
constraints are responsible for creating plausible dependency trees.

The parsing work of McDonald et al. (2005b) described in Section 2.3.2 used
a simple directed graph, where there is at most one edge from one vertex to
another. The complication for text generation over parsing is that in addition to
selecting which dependencies to include, we need to specify word order. Having
no predefined word order makes four possible dependencies given a bag-of-words
of size 2 (See Figure 5.4).

Consequently, we need to redefine the dependency notation to include relative word
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w1 w2

r

(a) w1w2r

w1 w2

l

(b) w1w2l

w2 w1

r

(c) w2w1r

w2 w1

l

(d) w2w1l

Figure 5.4: All the possible dependencies for two words. (a) and (b) describe
Forward word order. In (a) w1 precedes w2, and the dependency is right pointing r,
i.e, the right-most word w2 is the dependent. Word order in (b) is identical to (a)
but the dependency direction is left pointing l which makes w1 the dependent and
w2 the head. In (c) w2 precedes w1 and the dependency is right pointing. (d) has
the similar word order to (c) but the dependency is left pointing.

order for the head and dependent. In the dependency d(w1, w2, dir), any word
that fills w1 slot precedes w2 and dependency direction dir marks the dependency
arrow head that can be either left pointing l or right pointing r. For example, a left
dependency dir =‘l’ means w2 is the head word.

So a restricted kind of multigraph is necessary here, when there are at most
two edges from one vertex to another, with one of these edges representing the
dependency for one ordering of the words and the other edge the reverse ordering.
We now give the formal definition.

For a bag-of-words X we construct a weighted directed multigraph Gx = (Vx, Ex)

as follows.

1. NODES The vertex set Vx consists of the following nodes:

• Each Base Noun Phrase (base NP) is represented by a distinct node
corresponding to the head of the NP. We do this to be compatible
with previous work (Wan et al., 2009, Zhang and Clark, 2011, Zhang
et al., 2012) where base NPs are considered atomic units in the input
sentence.

• Each other element in X (i.e. single words) is represented by a node.

• There is an artificial node called ROOT.

2. EDGES The edge set Ex is defined as follows:

• The subgraph consisting of all non-root nodes Gw
x = (Vx�{ROOT}, Ew

x )

is a complete directed multigraph, such that for any nodes vi, vj 2
Vx � {ROOT}, there are two weighted edges (vi, vj) and two weighted
edges (vj, vi); in each pair one is labelled with an l (for forward word
order where the dependent is on the left side of head) and the other
with r (for reverse word order where dependent is on the right side of
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Forward word-order (F-WO)

j

i

w ijl

w ijr

Reverse
word-order (R-WO)

i

j

w jir

w jil

Figure 5.5: A complete weighted digraph for two words; it specifies word-order
and dependency direction at the same time.

head). Figure 5.5 demonstrates such a subgraph consists of two nodes.

• From the artificial node ROOT, there are two outgoing edges to each
other node vi 2 Vx � {ROOT}. Again, one of each pair is labelled with
an l and the other with r.

Following Wan et al. (2009), the first structure we assign to the words is the straight
MST, not yet including linguistic constraints. What we need then is an objective
function and a set of constraints for us expressed via ILP. The spanning tree T of
an undirected graph G is a subgraph that is a tree which includes all of the vertices
of G. This definition asks for a connected graph with two limitations: (a) no cycle
at all; and (b) all the vertices should be present. These limitations can be expressed
by ILP constraints. If we want this tree to be an MST, we are looking for a set
of edges so that the sum of the weights will be maximised (in the case of using
cost instead of weight, we go for minimisation). In the parsing work, the ILP is a
straightforward reformulation of CLE since any sentence can be mapped to a graph.
However, when it comes to text generation, the representation of the bag-of-words
becomes a multigraph as described before. This requires just a small adaptation to
the ILP formulation of the CLE by imposing constraints that only permit one edge
between any two vertices to get a tree. The following constraints are parallel to
those of Riedel and Clarke (2006), and outlined in Section 5.2.2 adapted for our
multigraph.
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5.4 Defining an Objective Function

The objective function that obtains an MST from a graph Gx derived from a bag of
words X as defined in Section 5.3 is defined as follows:

max :

X

k2{l,r}

NX

m=0

NX

n=0

smnkxmnk (5.5)

where m and n are indices that we arbitrarily assigned to words in the input, k is
dependency direction (see EDGES in Section 5.3), and smnk is the score for edge
dmnk (We discuss estimating smnk in Chapter 6). There are N + 1 nodes in Vx

with N words (|X|= N ) and the artificial node ROOT that is indexed with 0. In the
objective function (5.5) xmnk is a binary variable that specifies whether the edge
mnk participates in the final MST or not. ILP constraints below define how these
variables relate to each other.

5.5 Enforcing Tree Structure

The optimisation result must be a spanning tree that contains all the words; a
linguistic interpretation is a dependency tree. Therefore, both linguistic constraints
and tree constraints must be present in the problem definition. Tree constraints
ensure the solution is a valid MST. No self-loops, no cycles, and a unique parent
head for individual child modifiers are instances of such constraints. Linguistic
constraints guarantee that the given MST is a valid dependency tree, e.g., that
the root of the tree is always ROOT, etc. The rest of this subsection discusses the
construction of these constraints.

CONNECTIVITY All the nodes must be present in the final tree. The definition
of connectivity for an N -node graph asks for N � 1 edges. This feature is simply
represented by a single constraint.

X

k2{l,r}

NX

m=0

NX

n=0

xmnk = N (5.6)

Equation (5.6) is necessary to satisfy the connectivity, but is not sufficient. Com-
bining this constraint with the NO-CYCLE constraint guarantees the connectivity.

NO-CYCLE There is no such single constraint that forbids cycles in a graph. For
a graph of size N , all the possible cycles with length 2 to N must be identified.
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Then, each individual cycle would be described by one constraint.

For a graph Gx with |Vx|= N , cycles of length 2 would be prevented by constraints
of the form:

xijl + xijr + xjil + xjir  1

Cycles of length 3 would be prevented by constraints of the form:

x13l + x13r + x31l + x31r  1

x32l + x32r + x23l + x23r  1 (5.7)
x12l + x12r + x21r + x21l  1

x12l + x12r + x13l + x13r + x23l + x23r

+x21l + x21r + x31l + x31r + x32l + x32r
= 2 (5.8)

See Figure 5.6 for a sample graph of size 3. The first set of constraints avoids
cycles of length 2 by picking each pair of nodes and enforces choosing at most one
them at a time (inequalities in Equation (5.7)).

The number of cycle-forbidding constraints for a graph of size N is calculated in
Equation (5.9).

CycleCount(N) =

NX

i=2

✓
N

i

◆
(5.9)

The number of constraints of this type increases exponentially with the increase in
the graph size.

The exponential number of constraints can lead to a dramatic increase in the
processing time. This approach seems even less favourable considering that there
are numerous solutions that are cycle-free by themselves, before applying any
cycle-forbidding constraints. Therefore, we follow Riedel and Clarke (2006) by
adding cycle constraints incrementally. In that case all the constraints except the
cycle-forbidding ones are provided to the solver to find the best tree. If a cycle
is found in a solution, then a cycle constraint is added accordingly until a tree is
found. In Section 6.4, the iterative constraint addition is depicted in the ILP module
in Figure 6.6.
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Forward word-order (F-WO)
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Reverse
word-order (R-WO)
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32r
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Figure 5.6: A complete weighted digraph for three words with word order and
dependency direction specified at the same time
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NO-SELF-LOOP-ON-THE-NODES Self-loops are cycles of length 1 that must
be avoided as well. Equations of type (5.10) prevents self-loops in the graph.

X

k2{l,r}

NX

n=0

xnnk = 0 (5.10)

5.6 Imposing Linguistic Constraints

5.6.1 A Hard Encoding

Constraints introduced in this section transform a tree into a valid dependency tree
with respect to structure and balance it using linguistically driven information. One
of the structural properties of a dependency tree is the presence of a node called
ROOT. This node has the same function as a root node in general trees, e.g. a
traversal can be started from that node. However, it has some specific features
that are described by constraints. Recall that this is assigned index 0 in the ILP
representation.

Another structural property of a dependency tree is that the branching factor
for each node depends on the word it represents. Linguistically speaking, some
categories of words can be the modifier of some other, e.g., a preposition cannot
be the modifier of a determiner and vice versa. Therefore, there must be some
constraints that assign modifier(s) of an acceptable category to each given head
word. Figure 2.15, which we used to illustrate Wan et al’s motivation for including
linguistic factors, shows the importance of imposing branching factor constraints
on words in the process of assigning dependents to each headword.

5.6.1.1 Dependency Tree Constraints

ROOT is the head node for one and only one node (ROOT-HEAD) This restric-
tion that sets the branching factor of ROOT to 1 is implemented using one constraint.
Equation (5.11) expresses that amongst all the edges that leave the ROOT node,
only one can be present in the final tree.

NX

n=1

x0nr = 1 (5.11)

(5.12)
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Root shouldn’t be a modifier (ROOT-NO-MODIFIER) Equation (5.13) disal-
lows the edges with root node marked as their modifier from participating in the
final tree.

NX

n=1

xn0r + x0nl = 0 (5.13)

Unique head for individual modifier (ONLY-ONE-HEAD) Each individual node
can be considered as modifier for only one head. Equation (5.14) represents N
separate constraints, one for each possible value of n.

8n2{1,2,..,N}

NX

m=1

xmnl +

NX

m=1

xnmr = 1 (5.14)

5.6.1.2 Branching Factor Constraints

As discussed in Section 2.3.2, each node’s arity i.e. number of modifiers or branch-
ing factor as termed in graph theory, affects the shape of a tree and consequently
the quality of the regenerated string. In this work, we introduce constraints to
keep the branching factor for each node within a linguistically reasonable range.
These constraints would be defined based on the head word’s PoS tag. Arity for
nouns and verbs are calculated based on a data-driven approach which allows a
customised upper and lower bounds for arity per word. Coordination conjunctions,
prepositions and punctuation get their distinct arity boundaries since they have
different grammatical roles.

Nouns and verbs as head of a dependency (NOUN-VERB-ARITY) Since the
produced spanning tree represents a dependency tree, we can include some linguis-
tic information to avoid implausible dependency trees. For example consider a tree
for an n word sentence where the ith takes all the other words as its dependents
which (1) exceeds its own maximum branching factor and (2) violates other nodes’
minimum number of dependents requirement (See Figure 5.7) 8. In this section we
impose constraints that are hard but not tight to prevent this: we enforce minimum
and maximum numbers of dependents, depending on the part of speech of the
word.

8In the previous constraint one modifier for ROOT is enforced. Therefore one of the words
becomes the modifier of the root and the rest become the modifiers of this individual
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x1 x2 ... xi�1 xi xi+1 ... xn

ROOT

wi1

wi2

wi3

wi... wii+1

wi...

win

Figure 5.7: An example of a dependency tree where xi has violated its maximum
branching factor and caused some of the other nodes not to have the expected
number of dependents.

Google syntactic n-grams (Goldberg and Orwant, 2013) is the resource we use
to determine minimum and maximum acceptable branching factor for nouns and
verbs. Google syntactic n-grmas is a dataset of over 10 billion distinct counted
dependency-tree fragments extracted from a corpus of 3.5 million English books,
and so is a promising resource to estimate a branching factor. They defined a
syntactic n-gram as a rooted connected dependency tree, which is a subtree of a
dependency tree over an entire sentence. The n-gram also indicates the relative
word order although neither the distance between the words, nor any missing
material between the nodes is included. They produced these trees by training a
PoS tagger and dependency parser on several corpora including WSJ Penn, Brown
corpus and the Question Treebank. A reimplementation of a beam-search shift-
reduce dependency parser (Zhang and Clark, 2008) performed the parsing using
the feature-set introduced in Zhang and Nivre (2011).

For the purpose of setting a minimum for right and left modifiers per head word, we
looked at the unlexicalised version of dependencies. Since most of the entries have
an instance of dependency with one modifier on one side and no modifier on the
other side, the minimum number of modifiers tends to be 0 almost all the time which
does not seem to be helpful in our case. Therefore, we picked the dependency entry
with the greatest frequency as the most frequent template for valency and call it the
MODE template. We use the number of left modifiers for such entries (MODEL)
as the minimum number of modifiers on the side of the head word and similarly
the number of the right modifiers for the most frequent dependency (MODER), to
specify the minimum for the number of the right modifiers. Other useful extracted
values are maximum number of left modifiers (MAXL) and maximum number
of right modifiers (MAXR). These two values as implied by their names indicate
the maximum number of modifiers on each side of the headword. The last two
measures were not necessarily extracted from a single dependency entry e.g. the
most frequent one. In Table 5.1, we present the entry for the verb wake:

Equation (5.15) uses these values to limit the branching factor of noun or verbs
in bag-of-words X . Taking the set of head words with noun/verb PoS tags in the
sentence as follows,



124 CHAPTER 5. AN ILP FRAMEWORK FOR STRING REGENERATION

Head word # mode template MODEL MODER MAXL MAXR
wake 179298 1 1 6 7

Table 5.1: Mode and maximum values of the branching factor for WAKE extracted
from google syntactic n-gram.

H = {index(head) : head 2 X [ head.pos = N [ head.pos = V}

We apply the limits over these heads.

X

h2H

NX

m=1

xmhl  maxL

X

h2H

NX

m=1

xmhl � modeL (5.15)

X

h2H

NX

m=1

xhmr  maxR

X

h2H

NX

m=1

xhmr � modeR

For example, if wake is the ith word in a sentence, its left and right valency
constraint pairs are defined by inequalities in (5.16).

NX

m=1

xmil  6

NX

m=1

xmil � 1 (5.16)

NX

m=1

ximr  7

NX

m=1

ximr � 1
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These enforce that wake must have at least one dependent on each side (subject
on its left and PRP or PR on its right) and no more than 6 on its left and 7 on
its right. In case of base-NPs, recall that they are treated as an atomic unit: the
noun as a head word has already taken its immediate modifiers. Therefore, it is
linguistically meaningless to dictate an extra branching factor for such a node and
force it to choose some dependents as its modifiers. As result, we simply don’t put
any constraint for base-NPs.

Coordinating conjunctions as head of a dependency (COORD-VALENCY) An-
other category of words that we can define valency for is coordinators. Riedel
and Clarke (2006) prepared a list of symmetric and asymmetric coordinators for
German. These two lists are consulted every time a coordinator is available then
suitable valencies are applied. (5.17) and (5.18) provide the branching factor for
each conjunction token h that forms a symmetric and asymmetric coordination,
respectively. Taking H as the set of symmetric coordinators, the constraints would
be defined as:

H = {index(head) : head 2 X [ head.pos = conjsymmetric}

X

h2H

NX

m=1

xmhl � 1 (5.17)

X

h2H

NX

m=1

xhmr = 1

Taking H as the set of asymmetric coordinators, the constraints would be defined
as:

H = {index(head) : head 2 X [ head.pos = conjasymmetric}
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X

h2H

NX

m=1

xmhl = 0 (5.18)

X

h2H

NX

m=1

xhmr � 2

Branching factor for prepositions (PREP-VALENCY) Considering the way
prepositions are used in English grammar, we bound prepositions to have only one
dependent on their right side and none on their left.

H = {index(head) : head 2 X [ head.pos = prep}

X

h2H

NX

m=1

xmhl = 0 (5.19)

X

h2H

NX

m=1

xhmr = 1

Branching factor for punctuation (PUNC-VALENCY) Unlike the Stanford de-
pendency parser (De Marneffe et al., 2006), we let punctuation participate in
dependencies but only as modifiers. Equation (5.20) forbids punctuation to serve
as heads while equation (5.21) ensures they are modifying one head word at a time.

H = {index(head) : head 2 X [ head.pos = punct}

X

h2H

(

NX

m=1

xmhl +

NX

m=1

xhmr) = 0 (5.20)

X

h2H

(

NX

m=1

xmhr +

NX

m=1

xhml) = 1 (5.21)
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5.6.2 A Flexible Encoding

In the dependency tree creation task, each word’s branching factor must take into
account the others. The objective function along with all of the constraints defined
above are aligned with this goal. As a side effect, there are some cases where
NOUN-VERB-ARITY constraints cause the ILP solver to fail in locating a feasible
solution. Consider the case where we have a sentence of length n and one of the
nodes has a large minimum arity such as n

2 . If the rest of the words have a moderate
branching factor, e.g. 0 or 1, the dependency tree will be generated smoothly;
however, if there exists at least one more word in the sentence that expects at
least n

2 modifiers, then the ILP problem becomes an infeasible one. This problem
occurs because the sum of the imposed minimum branching factors in that sentence
exceeds n� 1. Another case would be the one where all the words have a small
value as their minimum branching factor. If the upper bounds are also small, so that
the sum of the upper bounds do not reach to n� 1, and CONNECTIVITY constraints
cannot be satisfied. Consequently the problem would be an infeasible one.

One naive solution would be to allow 0 to be the minimum number of dependents
and assign the largest observed valency as the upper bound. The program will
always find a solution, but then the constraints are not word specific. Moreover,
assigning a minimum and maximum number of modifiers to each word, as the
accepted range for the number of modifiers, implicitly implies that there is no
superiority amongst these different branching factors; presumably, all the valid
solutions are equally good. However, that is not true.

To address this issue, we need to change our perspective to develop a novel way
of describing this fuzzy boundary defined by each word’s valency. This new
approach would rank the feasible solutions by incorporating the difference between
each node’s branching factor and its reference valency. This reference valency is
preferred to be word specific, in contrast to one valency for all words. It is also
necessary to take into account all the words’ valencies during the MST construction
— valencies selected dynamically based on the available slots — and not just by
looking at the appointed reference.

5.6.2.1 Multi-objective Optimisation

We first review some relevant literature on incorporation of constraints into an
objective function before applying them to our problem. The problem of constraint
satisfaction for combinatorial problems is well studied in mathematics (Bertsekas,
1982), operational research (Brailsforda et al., 1999) and computer science, es-
pecially Evolutionary Computation (Smith and Coit, 1997, Michalewicz, 1995).
Generally there are two ways of dealing with infeasible areas in optimisation. The
first one is single objective optimisation. It introduces the infeasible areas by one
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or more constraints. This is our approach in Section 5.6.1 to make an MST for
the input graph. The other solution is redefining the constraint as an objective and
then incorporating it into the main objective function as a penalty term. The first
method requires the constraints to strictly distinguish the feasible and infeasible
areas. These boundaries restrict the solver to search the feasible areas to find the
optimum solution.

The second method is useful for the cases where the infeasible areas are hard
to precisely describe by mathematical functions. Therefore, an estimate of the
constraint is defined in the form of an objective function so that the estimation gets
closer to the original value as it is maximised/minimised. This new term is added
into the main objective function as a penalty term. These two terms can sometimes
move in opposite directions, therefore there is not necessarily one global optimum
solution for the problem but a set of Pareto-optimal solutions. The penalty term
discourages the solver from exploring the infeasible areas by applying a large
penalty which subsequently increases the value of the objective function. In case of
minimisation, all the infeasible solutions’ score are larger than the feasible ones. To
adjust the penalty term, a new parameter � is introduced to scale the penalty term.
This scaling defines the severity of the penalty. The main challenge here is to define
the penalty term so that it approximates the constraints as well as possible. The
other challenge is selecting the value of �, because the optimal solution frequently
lies on the boundary of the feasible region (Smith and Coit, 1997).

Multi-objective optimisation problems are conventionally solved using the La-
grange Multiplier method. Assume we want to solve the optimisation problem
below.

minimize: F (x, y) = x2y � ln(x)

subject to: 8x + 3y = 0

First we need to write y as a function of x that is, y = �8
3x and then create a single

objective function f(x).

f(x) = F (x,�8

3

x) = �8

3

x3 � ln(x)
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We then take the derivatives to

f 0
(x) = �8x2 � 1

x

f 00
(x) = 16x +

1

x2

f(x) = �1
2 > 0 so x = �1

2 is the relative minimum of f and therefore, y =

4
3 .

The Lagrange multiplier method is defined so that, if F (x, y) is the objective
function and g(x, y) is a constraint, then H(x, y) will be F (x, y) + zg(x, y). If
(a, b) is the relative extremum of F subject to g(.) = 0, then there exists some
value z = � such that

@H

@x
|a,b,�=

@H

@y
|a,b,�=

@H

@z
|a,b,�= 0 (5.22)

In the above equation, � is also known as the Lagrange multiplier.

On the other hand, Evolutionary methods such as Genetic Algorithms (GA) and
Particle swarm optimization (PSO) tend to solve optimisation problems numerically.
Contrary to traditional models such as simulated annealing, these algorithms have a
set of random starting points. For example in GA, each starting point is a proposed
solution and is called a genome or chromosome. A set of random genomes forms
the first generation. In each iteration, genomes of the current generation are ranked
by their fitness score. The selection algorithm picks some genomes for populating
the next generation and discards the rest.

The terminology used in evolutionary processing is slightly different from the
Lagrange Multiplier method we just discussed. F (.) and g(.) are called the fitness
function and penalty function respectively. � is known as the severity of the penalty.
Both penalty function and severity multiplier are problem-dependent and need
to be tuned. Generally, penalty functions are categorised into three main classes:
static, dynamic, and adaptive (Smith and Coit, 1997). Static penalty functions
penalise the objective function by applying a constant penalty to the infeasible
solutions. Dynamic penalty functions, on the other hand change the severity of the
penalty by time/generation. In other words, it is likely for the program to search
the infeasible areas at the beginning and it becomes less likely as evolution occurs.
Adaptive penalty functions are meant to penalise the solution based on the success
of the search within an interval. This way, the penalty function can guide the search
by looking at multiple generations and the search trajectory.

Graph problems such as the MST problem are favourite optimisation problems.
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They have been modelled as both single-objective and multi-objective problems in
the evolutionary computing field. We will briefly explain some models used for
solving the Minimum Vertex Cover (MVC) and the MST problem. To start with, we
look at the research carried out by Neumann and Wegener (2007). They argued that
with evolutionary algorithms, using a multi-objective variant of a single-objective
problem can lead to a more efficient optimisation process. They tested their claim
on the MST problem for weighted undirected graphs. Their test set was composed
of a set of randomly chosen dense graphs with reasonable size. They defined the
fitness function for the multi-objective approach as f(s) = (c(s), w(s)), where s
is a subgraph proposed as the solution, c(s) indicates the number of connected
components in s, and w(s) the subgraph’s total weight.

Khuri and Bäck (1994) applied GA as another approach to find the MVC for a
given graph G = (V,E). The MVC is characterised as a set of vertices V 0 where
V 0 ✓ V such that 8(i, j) 2 E, i 2 V 0 or/and j 2 V 0. In this work, edges are
represented using a binary adjacency matrix, such that eij is 1 if an edge exists
between nodes i and j and 0 otherwise.

They encode the MVC solution as a binary string of length n where each bit
represents a node. Therefore, each genome is a string with length n and the bits
associated with nodes in the proposed cover are set to 1. A two-point cross-over is
used to populate the new generation. The fitness function is defined as below:

f(x) =

nX

i=1

(xi + n(1� xi).
nX

j=1

(1� xj)eij)

The first term of f(x) determines size of the potential cover V 0 and the second
term of f(x) penalises those V 0s that are not covers.

In many graph theory problems, the solution is a specific sub-tree within a given
graph. If the genomes encode the solution, there is high risk of missing good
genomes during the search process: Because the GA operators are not designed
for creating trees, the offsprings trees may not be related to their parents. To
address this issue, weighted codings were introduced (Palmer and Kershenbaum,
1994) and can be applied to a number of combinatorial problems such as the
traveling salesman problem (Julstrom, 1998) and the multiple container packing
problem (Raidl, 1999) amongst others. Weighted codings define genomes to be
strings of weights that temporarily bias parameters of the problem instance. A
decoding algorithm identifies the structure a chromosome represents using the
biased parameters, and the chromosome’s fitness is that structure’s fitness calculated
with the original parameters. Searching the space of weights provides a search of
the target problem’s search space.
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Palmer and Kershenbaum (1994) used weighted-encoding for the MST problem. It
assigns each vertex a random weight from a uniform distribution. For a given node
i, its weight wi is included in the cost of all the participating edges. Therefore, the
cost value for the edge connects vertex i to j would be:

c0i,j = ci,j + wi + wj (5.23)

These biased costs identify the MST using Prim’s algorithm (Prim, 1957) (see
Cormen et al. (2001)). The original costs, however, are used for the genomes’
fitness calculation.

For example, if (C) is the cost matrix for a 3 node graph, and W is the random
weights array, then (C 0) is calculated using equation 5.23.

C =

0

@
0 17 72

17 0 42

72 42 0

1

A

W = h16, 54, 35i

C 0
=

0

@
0 87 123

87 0 131

123 131 0

1

A

Raidl and Julstrom (2000) proposed using multiplication in (5.23) instead of
addition. They applied it to Degree-constrained MST. a variation of MST where
none of the nodes could have a degree exceeding k (k � 2).

Therefore, the edge costs are calculated as

c0i,j = ci,j.wi.wj (5.24)

This way the decoding algorithm enforces constraints, so all the genomes represent
feasible solutions. In other words, there is no need to discard, repair, or penalise
invalid chromosomes.

As discussed above one standard way of dealing with constraints that are hard to
describe and may cause many solutions to be infeasible is to reformulate them
so that they could be added to the original objective function with a multiplier.
This redefinition of the constraints as penalty terms has the benefit of directing the
search to the optimal solution by keeping the distance from infeasible areas. The
reformulation of a single objective to multi-objective seems a promising approach
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to the NOUN-VERB-ARITY constraints. This means each node’s branching factor
would be as close as possible to its reference valency without imposing a hard
constraint on each node that can cause potential failure.

Now we are going to use the idea of embedding the constraints into the objec-
tive function. We study the effect of this transformation by keeping the same
optimisation method and other constraints unchanged.

5.6.2.2 Reformulation of MST to a Multi-objective Problem

To convert the single objective optimisation solution proposed in Section 5.3 to a
multi objective optimisation, the first step would be redefining the NOUN-VERB-
ARITY hard constraint as another objective function.

For a given word, let the reference valency be the weighted mean of all its observed
branching factors in Google Syntactic n-gram. One way to encourage reasonable
valencies in the MST is by minimising the distance between the ILP-assigned
valency v(n) and the reference valency vr(n).

min :

NX

n=0

dist(v(n), vr(n)) (5.25)

where N is the size of Y ✓ X such that Y contains the head words of the base NPs
and the verbs of bag-of-words X . Converting NOUN-VERB-ARITY to the penalty
term described in Equation (5.26) transforms our single-objective optimisation
problem into a multi-objective problem. In this redefinition, we attempt to minimise
two terms at the same time: the total weight of the tree and the sum of distances
between the v(n) and vr(n) terms. We define the dist function for a word n as
(v(n)�vr(n))2

s , with vr being the weighted mean v̄, and s the weighted standard
deviation that is used as the normalisation term for the differences. Therefore, the
penalty function would be:

�
NX

n=0

(v(n)� v̄(n))

2

s
(5.26)

As can be seen, the distance function is a quadratic function. This makes the
program a quadratic optimisation problem.

As an example, consider sentence (5.4). The words that can serve as a head word
are underlined. The word book is not marked as a head word, since it is the head of
a Base Noun Phrases (base NPs) and base NPs are treated as atomic parts of the
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left v right v # occurrence
0 0 61515
0 1 13925
0 2 1933
0 3 308
0 4 41
0 5 12
0 9 11
1 0 266
1 1 482
1 2 12
2 0 752
2 1 272
2 2 42
2 3 41
3 1 15

(a)

right v # occurrence probability
0 62533 78.53
1 14694 18.45
2 1987 2.49
3 349 0.44
4 41 0.05
5 12 0.01
9 11 0.01

left v # occurrence probability
0 77745 97.63
1 760 0.95
2 1107 1.39
3 15 0.02

(b)

Table 5.2: (a) Valency templates for the word eat. (b) Probability of right and left
valencies are calculated.

eat cats mice
left right left right left right

v̄ 0.03 0.25 0.21 0.50 0.22 0.58
s 0.06 0.28 0.32 0.44 0.28 0.52

Table 5.3: Weighted mean (v̄) and weighted standard deviation (s) of the left and
the right valencies of the head words in sentence (5.4)

sentence based on the problem description. The reference valency for these head
words must be calculated, and included in the penalty term.

(5.4) mice eat cats in this fiction book.

Table 5.2 (a) lists the right and left valencies for the word eat. These values are
extracted by looking into each template (as in the example of Table 5.1) and
counting the right and left modifiers. Tables 5.2 (b) contains right and left valency
counts independently from one another. These numbers are used for calculating the
marginal probability of each word, and serve as weights for the weighted mean and
weighted standard deviation calculation. These numbers are listed in Table 5.3.

As an example, label the words eat, cats, mice, book with indices 1, 2, 3, 4, which
then constitute our set of nodes Y , and let m,n 2 Y and k 2 {l, r}. Following
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Section 5.3, wmnk is the weight of the edge between node m and n; while ymnk is
the binary value that indicates the presence of the edge that connects words m to n.
The penalty term that looks after valencies for the word eat is calculated, based
on the summation in Equation (5.26), and the values for v̄ and s from the lefthand
entries of Table 5.3, is:

(y12r + y13r + y14r � 0.25)

2

0.28

+

(y12l + y13l + y14l � 0.03)

2

0.06

(5.27)

The penalty term for the other two head words are calculated similarly. The result
penalty term that will be added to the objective function as follows

min :

X

k2{l,r}

4X

m=0

4X

n=0

wmnkymnk + �
3X

m=1

X

k2{l,r}

4X

n=1

(

ymnk � v̄mk

smk
)

2 (5.28)

where, v̄ and s represent weighted mean and standard deviation.

As can be seen the objective function in (5.28) is a quadratic objective function:
x2
mnk. This reformulation makes the optimisation problem to be Quadratic Pro-

gramming (QP).

So far we assumed the wmnk will be calculated using formula (2.5). However,
we can train a model to learn the weights. The details of the learning process
for dependency weights through a machine learner will be discussed in the next
chapter, followed by the experiment results of each of these frameworks and where
they sit compared to one another and with respect to baselines that do not include
linguistic information.

5.7 Conclusion

The focus of this chapter was on string regeneration from a bag-of-words. Our
high level goal is to find the most probable dependency tree for a bag-of-words
and linearise it to get a sentence. Along the lines of Wan et al., we mapped
the bag-of-words to a multi-graph with edge weights being the probability of a
dependency relation between any two given nodes. Then we framed the problem
of finding a dependency tree to finding an MST for such a multi-graph with the
ILP framework, to allow constraints on tree structure to be included declaratively.
To improve the quality of the dependency tree, we introduced linguistic constraints.
In our first formulation, these are defined as hard constraints, and may lead to
infeasible optimisation problem. To allow more flexibility for such linguistic
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constraints, we extend the single objective optimiser ILP framework to a multi
objective optimisation QP by redefining such constraints as additional objectives.

In Chapter 6, we carry out experiments on the sentence regeneration problem
using these frameworks. We propose a method for learning the edge weights
on the graph, analogous to the MIRA approach for dependency parsing used by
McDonald et al., and then compare the ILP and QP frameworks, as methods for
incorporating linguistic constraints, against various baselines.





Chapter 6

Applying the ILP Framework

6.1 Introduction

Chapter 5 described the Integer Linear Programming (ILP) framework for string
regeneration that assigns a Minimum Spanning Tree (MST) to a bag-of-words as
an intermediate structure prior to the linearisation. This framework relies on an
objective function and constraints to guide the optimiser, either ILP or QP. ILP
uses the hard-coded constraints to assign a MST, whilst QP intends to improve ILP
by embedding the hard-coded NOUN-VERB-ARITY constraints into the objective
function in the form of penalty terms i.e. soft constraints. The framework of the
previous chapter just provides a method for finding an MST. Another necessary
component is a way of assigning weights to the edges of the graph over which
the MST is calculated. One approach — the one taken by Wan et al. — is to just
use the Maximum Likelihood Estimate (MLE) calculated over a large dependency
treebank (see Equation 2.5). However, these may not be the most useful weights
for finding a good MST: rather, ones learnt specifically for the objective function.

The proposed ILP framework deployed hard-coded dependency weights which
were calculated using MLE method over a large dependency treebank. In this
chapter, we therefore review the Margin Infused Relaxed Algorithm (MIRA)
(Crammer et al., 2006) which has been used for learning dependency weights in
dependency parsing by McDonald et al. (2005a). We discuss how the learning
process can be modified so that the model learns the precedence of dependency
elements in addition to dependency weights, given a bag-of-words. We expect
models using MIRA weights to rely less on gold standard dependency data than
MLE-based weights do and as a result to be extendable to any other language that
comes with a small dependency treebank, even a de-lexicalised one. We believe
that such flexibility with the size of manually annotated data makes this method
suitable for low-density languages.

137
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Given the framework, then, for constructing a weighted graph from a bag-of-words
and a method for finding an MST that can incorporate linguistics criteria, we carry
out an empirical investigation into the following questions:

RQ6.1 How successful is the ILP model in string regeneration compared to our
baselines CLE and AB-based baselines, starting first with the MLE weights
used by Wan et al.?

RQ6.2 Does the presence of linguistically-motivated constraints contribute to the
quality of the regenerated string?

RQ6.3 Are soft constraints as implemented in our Quadratic Programming (QP)
framework better than hard constraints as implemented in ILP?

RQ6.4 Is MIRA capable of learning the precedence of the dependency element,
in addition to the dependency weight?

RQ6.5 Finally, can QP with MIRA weights outperform our other proposed models
that use MLE weights in terms of the quality of the re-generated text?

6.2 Related Work: Online Large Margin Learning

To briefly recap the work of Wan et al. (described in Section 2.3.2) that we use
as our starting point, they represent the bag-of-words by a weighted complete
di-graph; each dependency’s weight was calculated as the log probability of that
dependency in the Penn treebank using formula (2.5). These weights would then
be used in guiding the Chu-Liu-Edmonds (CLE) algorithm for finding an MST as
the intermediate representation. This representation would further assist with the
linearisation. In chapter 5, we replaced the CLE algorithm with the ILP framework.
In this chapter, we take a different approach to learning the dependency weights,
rather than Wan et al.’s pure MLE estimates, mainly for the two following reasons:
(1) it would be also expected to perform better to have weights tailored to the
specific task, and (2) to pursue the initial motivation of this thesis, of improving
text generation for minority languages.

Much recent research in parsing and string regeneration has opted for learning
weights in a model using machine learning methods. MIRA is one of the learning
algorithms that was reported to be effective on learning NLP-related features.
This algorithm performs multi-class classification and learns model parameters by
iterating through the training set items and classifying each item individually. For
example, Bohnet (2009) used MIRA for syntactic and semantic parsing; this system,
taking part in the CoNLL shared task in 2009, achieved the highest syntactic parsing
for English and German.
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John hit the ball with the bat
N V D N P T N

root

Figure 6.1: Dependency tree for sentence John hit the ball with the bat..

In this section, we describe MIRA as it is applied to learning dependency weights
for parsing. This application can be modified relatively straightforwardly to suit
our intended task. One of the first pieces of research that combined graph-based
search for dependency parsing and learning dependency weights with machine
learning methods is the work by McDonald et al. (2005b). In this section, we will
illustrate MIRA with reference to this work.

Algorithm 2 gives an overview of an Online Large Margin Learner (McDonald
et al., 2005a). The core of this algorithm is its updating strategy (line 4). The
number of times that the learner iterates through the training dataset is indicated by
N . T is the training set size. xt and yt are the gold standard dependency trees and
the candidate dependency tree from training data, respectively. w(i) represents the
features’ weights at the ith update.

Algorithm 2 Generic online learning algorithm (McDonald et al., 2005a)
1 i 0, w(0)  0

2 for n:=1 to N do
3 for t:=1 to T do
4 w(i+1)  update w(i) according to {xt, yt}
5 i i + 1

6 end for
7 end for
8 return

PN⇥|T |
j=1 w(j)

N⇥|T |

The general update strategy is described as an optimisation problem. The com-
ponents of this optimisation problem, e.g. objective function and loss function,
are problem-specific. McDonald et al. trained a model using a supervised learner,
MIRA, to learn dependency weights from a set of dependency features. The CLE
algorithm (previously discussed in Algorithm 1 on page 42) was used as the search
algorithm to find a spanning dependency tree.

Dependency parsing can be regarded as a classification problem in which each
dependency tree is a class and the classifier’s task is to find the appropriate tree for
a given sentence x.
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feature template example
p-wrd, p-pos p-wrd=‘hit’, p-pos:‘V’
p-wrd p-wrd:‘hit’
p-pos p-pos:‘V’
c-wrd, c-pos c-wrd:‘with’, c-pos:‘P’
c-wrd c-wrd:‘with’
c-pos c-pos:‘P’

(a) Basic Uni-gram Features

feature template example
p-wrd, p-pos, c-wrd, c-pos p-wrd:‘hit’, p-pos:‘V’, c-wrd:‘with’, c-pos:‘P’
p-pos, c-wrd, c-pos p-pos:‘V’, c-wrd:‘with’, c-pos:‘P’
p-wrd, c-wrd, c-pos p-wrd:‘hit’, c-wrd:‘with’, c-pos:‘P’
p-wrd, p-pos, c-pos p-wrd:‘hit’, p-pos:‘V’, c-pos:‘P’
p-wrd, p-pos, c-wrd p-wrd:‘hit’, p-pos:‘V’, c-wrd:‘with’
p-wrd, c-wrd p-wrd:‘hit’, c-wrd:‘with’
p-pos, c-pos p-pos:‘V’, c-pos:‘P’

(b) Basic Big-ram Features

feature template example
p-pos, b-pos, c-pos p-pos:‘V’, b-pos:‘D’, c-pos:‘P’
p-pos, p-pos+1, c-pos-1, c-pos p-pos:‘V’, p-pos+1:‘D’, c-pos-1:‘N’, c-pos:‘P’
p-pos-1, p-pos, c-pos-1, c-pos p-pos-1:‘N’, p-pos:‘V’, c-pos-1:‘N’, c-pos:‘P’
p-pos, p-pos+1, c-pos, c-pos+1 p-pos:‘V’, p-pos+1:‘D’, c-pos:‘P’, c-pos+1:‘D’
p-pos-1, p-pos, c-pos, c-pos+1 p-pos-1:‘N’, p-pos:‘V’, c-pos:‘P’, c-pos+1:‘D’

(c) In Between PoS Features

feature template example
p-wrd, p-pos, c-wrd, c-pos,
dir, dist

p-wrd:‘hit’, p-pos:‘V’, c-wrd:‘with’, c-pos:‘P’,
dir:‘R’, dist:‘2’

p-pos, c-wrd, c-pos, dir, dist p-pos:‘V’, c-wrd:‘with’, c-pos:‘P’, dir:‘R’,
dist:‘2’

p-wrd, c-wrd, c-pos, dir, dist p-wrd:‘hit’, c-wrd:‘with’, c-pos:‘P’, dir:‘R’,
dist:‘2’

p-wrd, p-pos, c-pos, dir, dist p-wrd:‘hit’, p-pos:‘V’, c-pos:‘P’, dir:‘R’, dist:‘2’
p-wrd, p-pos, c-wrd, dir, dist p-wrd:‘hit’, p-pos:‘V’, c-wrd:‘with’, dir:‘R’,

dist:‘2’
p-wrd, c-wrd, dir, dist p-wrd:‘hit’, c-wrd:‘with’, dir:‘R’, dist:‘2’
p-pos, c-pos, dir, dist p-pos:‘V’, c-pos:‘P’, dir:‘R’, dist:‘2’

(d) Extended Features

Table 6.1: Features used in dependency parser (McDonald, 2006) replaced by p
and c prefixes indicate parent node and child node respectively. wrd is the actual
word and pos is the PoS tag of the given node. c-pos+1 represents the PoS tag to
the right of the child node while c-pos-1 refers to the PoS tag to the left of the child
node. The example column is illustrating such features based on the dependency
tree in Figure 6.1.
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If y is the dependency tree for x, it represents all the directed dependencies from
word xi to word xj: (i, j) 2 y. The dependency tree s(x, y) score is calculated by
accumulating the score of all the dependencies in y (Eisner, 1996):

s(x, y) =

X

(i,j)2y

s(i, j) =

X

(i,j)2y

w · f(i, j) (6.1)

where f(i, j) is a binary feature representation of (i, j) and w is its corresponding
weight vector.

The MIRA learning procedure is an optimisation problem as shown in defini-
tion (6.2). At each training epoch, the new weight vector w(i+1) must be the closest
vector to current weight vector w(i) subject to satisfying the following constraint:
using the new weights, the dependency tree score difference between the gold
standard tree y and the incorrect tree y0 must be less than or equal to the loss
function L(y, y0).

minimise:
��w(i+1) � w(i)

�� (6.2)
subject to: s(x, y)� s(x, y0)  L(y, y0)

8y0 2 dt(xt)

where dt(xt) represents the set which contains all the possible dependency trees for
the given sentence x. It can be seen from the third line in definition (6.2) that the
number of constraints is highly dependent on the number of possible dependency
trees dt(xt). Looking at all the possible dependency trees, 8y0 2 dt(xt) for each
training item makes the learning process computationally expensive and quite slow.
McDonald et al. reduced the number of constraints by only looking at the k-best
trees. Their initial assumption was that the incorrect trees with the highest score
are those ones that actually matters for the learner. The weight update using single
best tree is as follows:

minimise:
��w(i+1) � w(i)

�� (6.3)
subject to: s(x, y)� s(x, y0)  L(y, y0)

where y0 = argmaxy0s(xt, y
0
)

Evaluating parsers that used MIRA with definitions (6.2) and (6.3) update schemes
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individually validated their assumption by showing a negligible degradation in
performance of k-best MIRA. Single-best MIRA refers to the case that the first
best tree is only used for training purposes.

To clarify how the weights are updated using single-best MIRA, we give an artificial
example. Figure 6.2 illustrates the gold standard tree y for a sample sentence x.
Figure 6.3 shows the 1-best y0 for x which differs from the gold standard in only
one edge — this will thus be the loss function value. Therefore, the new weight
vector will be the one that has the closest values to w(0) , min

��w(i+1) � w(i)
��,

satisfying the following constraint:

s(x, y)� s(x, y0) L(y, y0)
X

(i,j)2y

s(i, j)�
X

(i,j)2y0

s(i, j) 1

X

(i,j)2y

w(1)f(i, j)�
X

(i,j)2y0

w(1)f(i, j) 1

X

(7,6)2y

w(1)f(7, 6)�
X

(5,6)2y0

w(1)f(5, 6)1

UH , PRP VBD RB JJ NNP .
No , it was n’t black Monday .

ROOT

INTJ
DEPj

NP-SBJ DEP DEP

DEP

NP-PRD

Figure 6.2: Gold standard dependency tree.

UH , PRP VBD RB JJ NNP .
No , it was n’t black Monday .
1 2 3 4 5 6 7 8

ROOT

Figure 6.3: First best predicted parse tree.

The real world case of course has more incorrect dependencies like the tree depicted
in Figure 6.4. As can be seen in Equation (6.4), single-best MIRA creates a more
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complicated constraint to update the weights.

UH , PRP VBD RB JJ NNP .
No , it was n’t black Monday .
1 2 3 4 5 6 7 8

ROOT

Figure 6.4: Second best predicted parse tree.

s(x, y)� s(x, y0) L(y, y0)
X

(i,j)2y

s(i, j)�
X

(i,j)2y0

s(i, j) 2 (6.4)

X

(i,j)2y

w(1)f(i, j)�
X

(i,j)2y0

w(1)f(i, j) 2

where,
X

(i,j)2y

w(1)f(i, j) =

X

(7,6)2y

w(1)f(7, 6) +

X

(4,5)2y

w(1)f(4, 5)

X

(i,j)2y0

w(1)f(i, j) =

X

(5,6)2y0

w(1)f(5, 6) +

X

(7,5)2y0

w(1)f(7, 5)

6.3 Feature Selection and Feature Extraction

As explained in the previous section, Margin Infused Relaxed Algorithm (MIRA)
has been proved to be useful in learning dependency parsing (McDonald et al.,
2005b). Therefore, we take this algorithm and adapt it, so that in addition to
its original application, it will be capable of partial word-ordering: assigning
precedence to one of the dependency elements, i.e. head or dependent.

The adaptation has to regard the differences between dependency assignment to
a sentence and to a bag-of-words in both feature definition and feature extraction
levels. For feature definition, features listed in Table 6.1 must be revised to assign
a dependency based on the proposed order and direction, excluding any other
word-order inclusive information. For example, neighbourhood information used
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in Table 6.1(c) is not extractable from a bag-of-words. Similarly, the dist feature in
Table 6.1(d) must be excluded from all the templates. Table 6.2 lists features used
in our MIRA approach.

Now that we have defined features that can capture word order, we have to decide
how to assign word-order at feature extraction time. As discussed in Section 5.3,
there exist 4 possible dependencies given a pair of words. This forms the search
space previously described in Figure 5.5. This search space consists of two planes
that differ in word order: F-WO plane represents dependencies where participating
pairs follow the gold standard word order, and R-WO plane represents dependencies
where the participating pair have reverse word order compared to the gold standard.

At the training phase with the presence of the gold standard dependency, we only
extract features from dependencies in the (F-WO) plane. This way we reinforce the
expected word order per pair. However, for testing, R-WO features are included in
addition to F-WO features. We call this feature set FR-WO.

Since we trained our model over F-WO features, it is expected that dependencies
with similar word order to gold standard dependency dg have the largest feature sets
(as the likelihood of having seen the dependency during the training phase is much
higher) whilst the ones from the R-WO suffer from sparsity as the likelihood of
having seen such dependencies in the training data is lower. For further clarification
on how feature sets for four possible dependencies differs for a given pair of words,
Figure 6.5 shows the encoded features for {A, B} pair extracted using FR-WO
scheme for testing a model trained over F-WO features.

Assume that we know from labelled data that d2 is the dg and just by looking at the
encoded dependencies, we can see that d3 and d2 must have similar dependency
components — parent, child and direction — but different word order as they share
a number of features (highlighted with purple). Similarly, d1 and d4 must be similar
in terms of dependency component. Features that are unique to each dependency,
belong to the Extended (i.e. the ones given in Table 6.2.c), as they capture both
word order and dependency components. d3 and d4 have the least number of unique
features which can be an indication of no such pair — with the exact word order
and dependency components — having been observed during the training. This
makes these two pairs less likely to be present in the final dependency tree.

In the rest of this chapter we go through the details of the training and the testing
process and how all the modules discussed so far will be combined to form QP-
MIRA that is capable of learning dependency weights and direction.
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feature template example

p-word, p-pos p-word=‘hit’, p-pos=‘V’
p-word p-word=‘hit’
p-pos p-pos=‘V’
c-word, c-pos c-word=‘with’, c-pos=‘P’
c-word c-word=‘with’
c-pos c-pos=‘P’

(a) Basic Uni-gram Features

feature template example

p-word, p-pos, c-word,c-pos p-word=‘hit’, p-pos=‘V’, c-word=‘with’, c-
pos=‘P’

p-pos, c-word, c-pos p-pos=‘V’, c-word=‘with’, c-pos=‘P’
p-word, c-word, c-pos p-word=‘hit’, c-word=‘with’, c-pos=‘P’
p-word, p-pos, c-pos p-word=‘hit’, p-pos=‘V’, c-pos=‘P’
p-word, p-pos, c-word p-word=‘hit’, p-pos=‘V’, c-word=‘with’
p-word, c-word p-word=‘hit’, c-word=‘with’
p-pos, c-pos p-pos=‘V’, c-pos=‘P’

(b) Basic Bi-gram Features

feature template example

p-word, p-pos, c-word, c-pos,
dir

p-word=‘hit’, p-pos=‘V’, c-word=‘with’,
c-pos=‘P’, dir=‘R’

p-pos, c-word, c-pos , dir p-pos=‘V’, c-word=‘with’, c-pos=‘P’, dir=‘R’
p-word, c-word, c-pos , dir p-word=‘hit’, c-word=‘with’, c-pos=‘P’,

dir=‘R’
p-word, p-pos, c-pos , dir, p-word=‘hit’, p-pos=‘V’, c-pos=‘P’, dir=‘R
p-word, p-pos, c-word , dir p-word=‘hit’, p-pos=‘V’, c-word=‘with’,

dir=‘R’
p-word, c-word , dir p-word=‘hit’, c-word=‘with’, dir=‘R’
p-pos, c-pos , dir p-pos=‘V’, c-pos=‘P’, dir=‘R’

(c) Extended Features

Table 6.2: Features used in the QP-MIRA model. p- and c -prefixes indicate parent
node and child node, respectively. word is the actual word and pos is the PoS tag of
the given node. c-pos+1 represents the PoS tag to the right of the child node while
c-pos-1 refers to the PoS tag to the left of the child node. The example column
used the dependencies in Figure 6.1.
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Dependency Alias Encoded Dependency Features

A B d1
128 86 96 99 308 312 314 927
929 930 931

A B d2
66 70 72 138 140 142 148 34

635 636 637 638 639 640

B A d3 18 42 66 70 72 138 140 142 148

B A d4 320 344 68 308 312 314 341 722 727

Figure 6.5: Some of the encoded features for 4 possible dependencies given two
words A and B. These features are defined in Table 6.2 and extracted from a model
trained over the F-WO plane of training data. We colour-coded the features for
easier reference. All the purple features — shared between d2 and d3 — like 66,
must be of basic Uni-gram and/or basic Bi-gram features, as these two dependencies
share the same dependency direction: A is the head and B is the dependent; similar
argument is valid for blue features for d1 and d4. The features highlighted with
orange and gray must be of the Extended feature group, since they are unique
to the dependency. We did not highlight unique dependencies for d3 and d4 for
readability purposes. Represented with fewer unique features indicates that the
last two dependencies have no exact match in the training set, but still partially
matched with some instances, e.g. 18 represents p-pos, c-pos, dir feature (see
Figure 6.3 for feature sets prior to encoding).
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6.4 Training

The preliminary step of training with MIRA is creating a repository of F-WO
features using the above mentioned templates. This process is explained formally
in Algorithm 3.

Algorithm 3 creates the gold feature repository by extracting features from the
dependency treebank. This function is called once and its result is saved for later
use.

1 function ExtarctModelFeatures
2 for tree t in TreeBank do
3 goldDeps ReadDeps(t)
4 FeatureID  null
5 for dependency d in goldDeps do
6 FeatureBank.FeatureID.Add(encode(unigramFeatures(d)))
7 FeatureBank.FeatureID.Add(encode(bigramFeatures(d)))
8 FeatureBank.FeatureID.Add(encode(extendedFeatures(d)))
9 end for

10 end for
11 FeatureBank.Scr  null
12 for featureID f in FeatureID do
13 FeatureBank.Scr[f ] 0

14 end for
15 return FeatureBank
16 end function

The unigramFeatures, bigramFeatures, and extendedFeatures methods follow their
respective templates described in Table 6.2. Once the features along with their
initial scores are saved in the FeatureBank repository, they would be accessible
for further use.

The rest of the training process would be applying the steps for every sentence in
the training set:

1. Shuffle the ith sentence si from training set i.e., generating a bag-of-words.

2. Create its complete graph in the F-WO plane and calculate each dependency
weight by applying the dependency score formula (Equation (6.1)) to its
features’ score.

3. Apply the MST-ILP or MST-QP algorithm to the graph to get the MST tree.

4. Update the feature weights using single best MIRA algorithm.

Figure 6.6 gives a visual description of the training phase and resources involved.
The preliminary step is drawn with a different color to be distinguishable from the
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Figure 6.6: ILP-MIRA/QP-MIRA diagram
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rest of the repeated training steps.

The first step is shuffling the words in the sentence and keeping the mapping for
later reference. The feature extraction step then creates a complete weighted graph
for each sentence and extracts features per dependency (Fi). For instance, the
features extracted for all the four possible dependencies between the root and eats
nodes in Figure 5.2 are shown in Table 6.3.
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Dependency Feature Group Dependency Features

root eats

basic uni-gram pw:pp:root:rt, pw:rt, pp:rt, cw:cp:eat:vp, cw:eat, cp:vp
basic bi-gram pw:pp:cw:cp:root:rt:eat:vp, pp:cw:cp:root:eats:vp, pw:cw:cp:root:eats:vp

pw:pp:cp:root:rt:vp, pw:pp:cw:root:rt:eat, pw:cw:root:eat, pp:cp:root:vp
extended pw:pp:cw:cp:d:root:vp:eat:vp:r, pp:cw:cp:d:rt:eats:vp:r, pw:cw:cp:d:root:eats:vp:r,

pw:pp:cp:d:root:rt:vp:r, pw:pp:cw:d:root:rt:eat:r,pw:cw:d:root:eat:r, pp:cp:d:rt:vp:r

root eats

basic uni-gram pw:pp:eat:vp, pw:eat, pp:vp, cw:cp:root:rt, cw:root, cp:rt
basic bi-gram pw:pp:cw:cp:eat:vp:root:rt, pp:cw:cp:eat:root:rt, pw:cw:cp:eat:root:rt, pw:pp:cp:eat:vp:rt,

pw:pp:cw:eat:vp:root, pw:cw:eat:root, pp:cp:vp:rt
extended pw:pp:cw:cp:d:eat:vp:root:rt:r, pp:cw:cp:eat:d:root:rt:r, pw:cw:cp:d:eat:root:rt:r,

pw:pp:cp:d:eat:vp:rt:r, pw:pp:cw:d:eat:vp:root:r, pw:cw:d:eat:root:r, pp:cp:d:vp:rt:r

eats root

basic uni-gram pw:pp:eat:vp, pw:eat, pp:vp, cw:cp:root:rt, cw:root, cp:rt
basic bi-gram pw:pp:cw:cp:eat:vp:root:rt, pp:cw:cp:eat:root:rt, pw:cw:cp:eat:root:rt, pw:pp:cp:eat:vp:rt,

pw:pp:cw:eat:vp:root, pw:cw:eat:root, pp:cp:vp:rt
extended pw:pp:cw:cp:d:eat:vp:root:rt:l, pp:cw:cp:eat:d:root:rt:l, pw:cw:cp:d:eat:root:rt:l,

pw:pp:cp:d:eat:vp:rt:l, pw:pp:cw:d:eat:vp:root:l, pw:cw:d:eat:root:l, pp:cp:d:vp:rt:l

eats root

basic uni-gram pw:pp:root:rt, pw:root, pp:rt, cw:cp:eat:vp, cw:eat, cp:vp
basic bi-gram pw:pp:cw:cp:root:vp:eat:vp, pp:cw:cp:root:eats:vp,
extended pw:pp:cw:cp:d:root:rp:eat:vp:l, pp:cw:cp:d:root:eats:vp:l, pw:cw:cp:d:root:eats:vp:l,

pw:pp:cp:d:root:rt:vp:l, pw:pp:cw:d:root:rt:eat:l, pw:cw:d:root:eat:l, pp:cp:d:root:vp:l

Table 6.3: Extracted features for the dependency (root,eats) from the complete graph presented in Figure 5.2 using FR-WO scheme.
Notation: pw: parent word, cw: child word, pp: parent PoS tag, cp: child PoS tag.
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Algorithm 4 describes feature extraction, i.e. creation of weighted graph, for a set
of sentences in more detail.

Algorithm 4 creates a feature set for a bag-of-words given that there is a depen-
dency between any two given words.

1 function CreateCompleteGraph(goldSen)
2 for w1 = 0;w1 < len(goldSen);w1 + + do
3 for w2 = w1 + 1;w2 < len(goldSen);w2 + + do
4 for dir = 0; dir < 2; dir + + do
5 d CreateDep(w1, w2, dir)
6 ftrs GenerateFeatures(d)
7 F [w1][w2][dir] =AssignFeatures(ftrs)
8 if (IncludeReverseFeatures) then
9 d CreateDep(w2, w1, dir)

10 ftrs GenerateFeatures(d)
11 F [w2][w1][dir] =FilterFeatures(ftrs)
12 end if
13 end for
14 end for
15 end for
16 return F
17 end function

This algorithm uses the same notation for the dependency representation as in Sec-
tion 5.3. That is, F [w1][w2][d] means w2 follows w1 and dir decides the direction
of the dependency, i.e. which word serves as head and which as dependent. The
for loops in lines 2-4 are responsible for creating the complete graph. The first two
loops pair up words (w1, w2) and the final loop assigns right and left dependencies
to them. In lines 5-7, features for a given dependency d are extracted and then fil-
tered to only contain those that are in the repository; see algorithm 5. This explains
why there are different numbers of features for each dependency in Table 6.5. The
default model consists of F-WO features unless IncludeReverseFeatures is set to
true (line 8). R-WO features are made by creating a new dependency considering
the new word order by swapping the order of w1 and w2.

Algorithms 4 and 5 appeared in Figure 6.6 under the modules named Feature
Extractor and Weight Calculator respectively.

When the complete weighted graph is prepared for a given sentence, the graph is
then passed to the optimiser module which is responsible for finding a subgraph that
complies with the constraints discussed in Sections 5.5 and 5.6.1. This subgraph
T 0
i is then inspected for cycles. As long as T 0

i does not represent a tree, the cycle-
forbidding constraints are added incrementally; otherwise it would be sent back
to the next step in the learning model. As previously discussed in Section 5.5, the
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Algorithm 5 searches feature set and return features for a given dependency.
1 function FilterFeatures (ftrs)
2 ftrList null
3 for features f in ftrs do
4 if FeatureBank.FeatureID.contains(f) then
5 ftrList.Add([f, FeatureBank.Scr[f ]])

6 end if
7 end for
8 return ftrList
9 end function

incremental constraint addition enables me to work with sentences of any length.
However, the ILP solver response time drops due to the larger search space. To
have a tractable training/testing time, we introduce two new parameters to our
model. The first one is a timer that was added to the solver. This timer bounds the
searching time for each given graph. If an optimal or a suboptimal solution can’t
be found within this period, the system would back off to the baseline. The other
parameter limits the number of times Cycle Constraint Adder can be called. This
parameter avoids the worst case scenario where the system creates all the cycle-
forbidding constraints and adds them to the problem incrementally. Algorithm 6
explains the constraint addition process.

Algorithm 6 Incremental constraint addition
1: functionGenerateILPDepTree (TreeConstraints, LinguisticConstraints,

weights)
2: MAX  maxIterations
3: timeOut N
4: ILP.Add(TreeConstraints)
5: ILP.Add(LinguisticConstraints)
6: ILP.AddObjFunction(weights)
7: res ILP.solve(timeOut)
8: if not(res == OPTIMAL or res == SUBOPTIMAL) then
9: return null;

10: end if
11: while tree.HasCycle() and count < MAX do
12: c tree.DetectCycle()
13: ILP.Add(CycleConstraints(c))
14: tree ILP.Solve()
15: end while
16: return tree
17: end function



6.5. A SMALL-SCALE TRIAL AND ILLUSTRATION 153

Module MST Finder in 6.6 represents this process. Tree Compare finds the
dissimilarity (as discussed in Section 6.2) between T 0 and T and uses it to update
the feature weights in Weight Calculator. The weights are updated following the
single-best MIRA rule (Equation (6.3)). The feature repository is updated with the
new weights, prior to the processing of the next sentence. After the model reaches
the point where the dependency scores become constant, the model is ready to be
used/tested.

6.5 A Small-Scale Trial and Illustration

To re-generate from a bag-of-words, we need a feature repository that contains
feature scores, an optimiser that is capable of making a tree whose nodes (the
words) are partially ordered, and finally a lineariser. Figure 6.7 depicts such system.
As expected most of the modules are shared between the training and testing
systems.

As an illustration, we used a set of 50 random sentences to train and test MIRA
with F-WO and FR-WO models, defined in Section 6.3, for comparing their results
within the ILP hard constraint framework. Sentence (6.1) is the last sentence in this
set. Its dependency trees for F-WO and R-WO (discussed in earlier in Section 6.3)
are presented in Figures 6.8 and 6.9 respectively.

(6.1) The White Sands missile range and CIA contractor Mitre Inc. were among
the targets.

White Sands is contracted to WS for the sake of compactness. Appendix A provides
a step-by-step picture of weight update per iteration. These dependency trees
are the MSTs, given the weights in the tables, and only reflect the dependencies
selected by the ILP module not the lineariser output. Tables 6.4 and 6.5 demonstrate
the weight matrices for these two MSTs where the highlighted weights indicate the
edges that are present in the corresponding trees.

6.6 Experiment Setup

6.6.1 General Details

In this section, we discuss three systems based on the frameworks defined in
Chapter 5 and the weight-learning process defined in this chapter. The first two
systems are based on the ILP and QP formulations described in Chapter 5, with
the MLE edge weights used by (Wan et al., 2009). For the third system we take the
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Figure 6.7: MST_MIRA diagram

The WS missile range and CIA contractor Mitre Inc. were among the targets .

7.06

4.88

ROOT

0.0
4.08

1.700.0

Figure 6.8: ILP generated tree with initial weights. Each Arc’s label is the
dependency weight associated with it, highlighted in Table 6.4.
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root range and Inc. were among targets .
root 0 1.475 -0.845 4.051 0.138 -0.384 0.205 0

range 3.580 0 2.719 7.666 3.122 3.116 3.534 3.580
and 1.436 3.141 0 5.894 1.333 1.053 1.514 1.436
Inc. 2.831 4.395 2.364 0 2.520 2.431 2.966 2.831

were 2.529 4.256 1.735 7.061 0 2.356 2.749 3.301
among 0.156 1.741 -0.689 4.317 -0.139 0 0.482 0.156
targets 2.961 4.890 2.162 7.139 2.680 2.505 0 2.961

. 0 1.475 -0.845 4.051 -0.311 -0.384 0.205 0
root 0 2.016 0.845 3.772 1.208 0.384 0.839 0

range 2.656 0 3.518 6.446 2.949 3.033 3.370 2.656
and 3.161 5.637 0 7.747 3.886 3.545 3.747 3.161
Inc. 2.490 4.684 4.361 0 2.800 2.929 3.250 2.490

were 2.539 4.760 3.486 6.760 0 3.282 3.410 4.085
among 0.620 2.857 1.465 4.900 0.964 0 1.703 0.620
targets 2.013 4.249 3.245 5.849 2.384 2.392 0 2.013

. 0 2.016 0.845 3.772 0.311 0.384 0.839 0

Table 6.4: Weight matrix for sentence (6.1) using F-WO model.

The WS missile range and CIA contractor Mitre Inc. were among the targets .

2.73

5.60

ROOT

4.77

3.47

3.33
2.75

Figure 6.9: ILP Each Arc’s label is the dependency weight associated with it,
highlighted in Table 6.5.
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root range and Inc. were among targets .
root 0 1.158 -1.053 3.555 0.144 -0.966 -0.268 0

range 3.462 0 2.379 7.038 2.977 2.355 3.282 3.462
and 1.118 2.444 0 5.03 0.795 0.153 0.466 1.118
Inc. 2.733 3.788 2.013 0 2.272 1.758 2.465 2.733

were 1.663 3.194 0.626 5.603 0 0.754 1.266 2.289
among -0.728 0.495 -1.781 3.110 -1.220 0 -1.02 -0.728
targets 2.869 4.604 1.630 6.411 2.395 1.862 0 2.869

. 0 1.158 -1.053 3.555 -0.461 -0.966 -0.268 0
root 0 1.547 1.053 2.390 1.670 0.966 1.012 0

range 2.167 0 3.163 4.563 2.750 3.294 3.187 2.167
and 2.861 4.777 0 5.911 3.70 3.827 3.105 2.861
Inc. 1.746 3.314 3.473 0 2.207 2.693 2.758 1.746

were 2.135 3.921 3.221 4.943 0 3.332 3.204 3.385
among 1.425 3.464 2.478 4.428 1.878 0 2.750 1.425
targets 1.105 2.677 2.029 3.442 1.539 2.116 0 1.105

. 0 1.547 1.053 2.390 0.461 0.966 1.012 0

Table 6.5: Weight matrix for sentence (6.1) using R-WO model.

more flexible QP system and apply the MIRA weights to it; we refer to this system
as QP-MIRA.

Since the plain ILP and QP systems borrow dependency weights from Wan et al.
(2009)’s work, they require no training; the evaluation process for these systems
involves applying the corresponding algorithms to the test set. By contrast, QP-
MIRA must be trained over a set of gold standard dependency trees to learn
dependency weights prior to being tested. Cycle-forbidding threshold and solver
timeout value were chosen based on a grid search over the dev set reordering
results.

Data Penn treebank constituency-based trees were converted to dependency trees
(Marcus et al., 1994) using the LTH conversion tool (Johansson and Nugues, 2007)
to serve as gold trees. Trees in sections 2–21 of this converted treebank were
used for the training purpose and sections 23 and 24 for test and development set,
respectively.

Baseline We compare our work with two baselines. The first baseline is the CLE
system (Wan et al., 2009). This work serves as a benchmark for the bare ILP system,
no linguistic constraint, as both are using an MST approach to assign a dependency
tree to a bag-of-words. The second baseline is the Assignment-based (AB) system
(Wan et al., 2009). This system extends the CLE system by introducing argument
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Word Valency Constraints
Model Name PUNC COORD PREP NOUN-VERB

M1 0 0 0 0
M2 0 0 0 1
M3 0 0 1 0
M4 0 0 1 1
M5 0 1 0 0
M6 0 1 0 1
M7 0 1 1 0
M8 0 1 1 1
M9 1 0 0 0
M10 1 0 0 1
M11 1 0 1 0
M12 1 0 1 1
M13 1 1 0 0
M14 1 1 0 1
M15 1 1 1 0
M16 1 1 1 1

Table 6.6: List of model names; presence of each constraint is indicated by 1

valency at dependency assignment time. Considering the intention of the linguistic
constraints in the ILP and QP methods, the AB system becomes an appropriate
baseline for comparison. Both of these baseline algorithms were discussed in the
Section 2.3.2 in depth.

In case of failure at any stage of the word-ordering process, the model under
investigation would back off to either of these baseline algorithms.

6.6.2 Models

Given the four sets of valency constraints that are introduced in Section 5.6.1, there
are sixteen possible ways to combine them. To study the effect of an individual
or a group of constraints, each combination will be regarded as a model. These
models are all listed in Table 6.6. The presence of a specific constraint in a model
is indicated by its value in the corresponding row, i.e. 1 means the constraint is
active and 0 inactive.

We will evaluate ILP and QP with all the combinations (M1-M16) to investigate
the effects of individual constraint types. For QP-MIRA we look just at M1, M15
and M16: that is, the version with no linguistic constraints, the version with the
hardcoded linguistic constraints (i.e. without noun-verb valency), and the version
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with all linguistic structure included. We will again specify which constraint sets
have been used as we discuss each model’s results.

6.6.3 Evaluation Metrics

Following the previous work reviewed in Section 2.3.2, we took BLEU1 to measure
the similarity between each original sentence and its re-generated alternative. This
score is defined as the product of the n-gram precision and the brevity penalty. The
n-gram is calculated for n ranging from 1 to 4. The brevity factor penalises the
n-gram score if the target sentence length doesn’t match the source sentence length,
and is 1 otherwise. The more words are missed, the larger the penalty would be.

Assigning dependency trees to long sentences tends to be harder. Consequently, a
higher rate of failure is expected in the process of reordering long sentences.

Through the following example, we demonstrate the relationship between a sys-
tem’s BLEU score and the length of the missing sentence(s). This has consequences
for the use of the BLEU metric in comparing systems, as we illustrate below.

Figure 6.10 is an eight sentence sample of the ILP system output, T 0, aligned
with their source sentences, T . In Table 6.7, the BLEU scores of this ILP system
along with six hypothetical systems (H1-H6) are listed for comparison. Each
hypothetical system is able to regenerate all the given sentences except in a few
cases, marked with BLEU score 0. H1, H2, and H3 failed in re-generating T1, T6,
and T8 respectively; all the three sentences have the same BLEU score of 0.41
when successfully re-generated (BlueScore(T 0

1) = BlueScore(T 0
6) = BlueScore(T 0

8)
= 0.41). However, the overall BLEU score of these systems differ. H2 has the
lowest overall score, as it misses the longest sentence amongst the three. The
same argument is valid for the high score of the H3 as it misses the shortest
sentence. H6 describes a system that has a tendency towards regenerating short
sentences. Regardless of the acceptable individual score for successful sentences,
the overall score is rather low, due to the length of the missing sentences2.We prefer
to experiment on a generic model that covers sentences of arbitrary length. In
other words, H6’s overall score is so low that there is no indication of its success in
re-generating the three of the eight of the input sentences with the score of 0.41.

Consequently, we report the quality of each system by two numbers.

1The first surface realisation task (Belz et al., 2011) was carried out around the time this part of
research was conducted. They used BLEU, NIST, METEOR and TER. The authors made no firm
conclusion about superiority of these metrics but by just looking at results (see Table 6 in Belz et al.
(2011)), they seems to give the same rankings. Therefore, there is no advantage or complementarity
to use more than one.

2This can be regarded as a positive point for H6, if the purpose is to rank short sentences.
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T1 no , it was n’t black monday .

T

0
1 , was n’t black monday no it

T2 but while the new york stock exchange did n’t fall apart friday as the dow jones indus-
trial average plunged 190.58 points - most of it in the final hour - it barely managed
to stay this side of chaos .

T

0
2 this side of the dow jones industrial average plunged the new york stock exchange it the final

hour to but in - n’t as while most did friday 190.58 points fall apart stay managed barely
chaos

T3 some ‘ circuit breakers ’ installed after the october 1987 crash failed their first test ,
traders say , unable to cool the selling panic in both stocks and futures .

T

0
3 stocks circuit breakers , and to ‘ some traders say in after the selling panic both futures failed

their first test unable installed cool the october 1987 crash

T4 the 49 stock specialist firms on the big board floor - the buyers and sellers of last resort
who were criticized after the 1987 crash - once again could n’t handle the selling
pressure .

T

0
4 criticized the big board floor of last resort and the selling pressure on - n’t were who the 49

stock specialist firms after could handle once again the 1987 crash sellers the buyers

T5 big investment banks refused to step up to the plate to support the beleaguered floor
traders by buying big blocks of stock , traders say .

T

0
5 , to of by big blocks up big investment banks stock traders say buying support step refused the

plate

T6 heavy selling of standard & poor ’s 500-stock index futures in chicago relentlessly beat
stocks downward .

T

0
6 & of stocks in chicago selling standard heavy downward beat relentlessly poor ’s 500-stock

index futures

T7 seven big board stocks - ual , amr , bankamerica , walt disney , capital cities div abc ,
philip morris and pacific telesis group - stopped trading and never resumed .

T

0
7 , walt disney philip morris and pacific telesis group - seven big board stocks trading never ual

resumed stopped amr bankamerica capital cities div abc has

T8 the finger-pointing has already begun .

T

0
8 has already begun the finger-pointing

Figure 6.10: A subset of test set sentences along with their reordered alternative
generated by ILP and QP systems. These sentences will be used to show the brevity
penalty effect on the total BLEU a subset with missing sentences.
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overall BLEU score per sentence
System BLEU T 0

1 T 0
2 T 0

3 T 0
4 T 0

5 T 0
6 T 0

7 T 0
8

ILP 0.31 0.41 0.32 0.26 0.31 0.10 0.41 0.39 0.41
H1 0.29 0 0.32 0.26 0.31 0.10 0.41 0.39 0.41
H2 0.26 0.41 0.32 0.26 0.31 0.10 0 0.39 0.41
H3 0.30 0.41 0.32 0.26 0.31 0.10 0.41 0.39 0
H4 0.23 0 0.32 0.26 0.31 0.10 0 0.39 0
H5 0.23 0.41 0 0.26 0.31 0.10 0.41 0.39 0.41
H6 0.0042 0.41 0 0 0 0 0.41 0 0.41

Table 6.7: Comparison of the BLEU score for the six hypothetical systems

1. The coverage percentage, cnt(Ts)
cnt(T ) %, the ratio of successfully generated sen-

tences Ts to the whole test set T ;

2. BLEU score calculated over the set T 0
s.

Here, T is the test set and Ts ⇢ T is defined as a set of sentences that were
successfully re-generated using the proposed algorithm. We will refer to such
re-generated sentences as T 0

s. Tf , the set of failed sentences, is defined as T � Ts.
In other words, Tf is the set of test sentence that the proposed algorithm failed to
linearise, either because the cycle limit or the time limit was exceeded during the
assignment of a tree to the bag-of-words.

Each model within each system has a unique Ts. Therefore, we applied baseline
algorithms to each Ts and calculated BLEU score over T 0

s to provide an evaluation
of those re-generated sentences for which a tree could be generated. These scores
are listed in all the result tables under the passed (T 0

s) header. We also provided
the BLEU score for the baseline algorithms over Tf under the header failed (T 0

f ) .
Finally, the overall BLEU score per model reports the BLEU score of T 0

= T 0
s+T 0

f ,
where T 0

s is the set of reordered sentences using the proposed constraints and
algorithm, and T 0

f is the set of reordered sentences produced by the specified
baseline algorithm. Assuming H4 backs off to either CLE or AB, T 0

s and T 0
f would

be as follows:

T 0
s = {T 0

2, T
0
3, T

0
4, T

0
5, T

0
7}

T 0
f = {T 0

1, T
0
6, T

0
8}

For all the introduced systems, all the above scores will be provided in a table
followed by two diagrams that compare models against the baselines over T 0

s and
T 0 respectively.

Coverage percentage is the other indicator of each model confidence. To study
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the correlation between the size of a bag-of-words and the presence of various
constraints, we group the sentence length into the five following buckets:

• SS (short-sentence) for 1–10 words;

• MS (medium-sentence) for 10–20 words;

• LS (long-sentence) for 20–25 words;

• VLS (very long-sentence) for 25–30 words; and

• XLS (extremely long-sentence) for 30+ words.

The coverage percentages are then broken down into these buckets for each Model.
We use stacked bar charts to provide a visual comparison of the competency of each
model in handling bag-of-words with various length. Each bucket is represented
by a unique color in those bar charts.

As a final note, to keep consistency with the previous experiments and make the
results comparable, the minimum alterations were applied to each module. For ex-
ample, the learning algorithm, MIRA, is adapted from the released3 implementation
of dependency parsing (McDonald et al., 2005a,b).

Also, for the linearisation, we used the LM-based linearisation module that Wan
et al. (2009) developed for their work. This module assigns the final word sequence
by traversing the MST using a greedy edge selection algorithm. For nodes with
more than one dependent, an n-gram language model score is calculated over all
the possible combinations of those sibling nodes, and then the one with the highest
score would be chosen as the best sequence to represent the given set of siblings.

We used Lpsolve and Gurobi libraries as the optimisation problem solver in the
ILP and QP systems, respectively.

6.7 Evaluation Results

6.7.1 ILP

All the models including ILP consume the bag-of-words version of test sentences
and assign each a dependency tree whose nodes are partially ordered using the
ILP method with various combinations of valency constraints. These dependency
trees are then linearised to produce the output sentences, T 0

s. The initial objective
of using the ILP method was its flexibility to add new constraints conveniently.
However, the competency of the ILP system must be proved by answering the
RQ6.1 and RQ6.2.

3http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html

http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
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Figure 6.11: ILP coverage rate broken down by the length bucket: SS: 1–10 words
MS: 10–20 words, LS: 20–25 words, VLS: 25–30 words, XLS: 30+ words.

ILP with no constraints vs CLE To answer RQ6.1 we need to look at Table 6.8
and the M1 row which specifies the model with no linguistically-motivated con-
straints i.e. the equivalent to the CLE. Comparing their BLEU% over the Ts shows
that the ILP tends to beat both baselines. This behaviour can be seen consistently
with all the other models (M2–M15). We attribute this to the fact that there are
not necessarily one unique MST per graph and the idiosyncrasies of these two
algorithms, e.g. their cycle removal process, lead each algorithm to a different tree.
According to the BLEU%, the trees that are produced by ILP tend to have a better
linearisation.

Contribution of constraints To study the effect of linguistically motivated con-
straints, we need to compare M1 with M2–M16 in Table 6.8. Comparing M1’s
coverage that has no valency constraint with either of M2, M3 and M5, it is appar-
ent that the presence of the NOUN-VERB-ARITY, PREP-VALENCY, and COORD-
VALENCY constraints contribute to coverage percentage. On the other hand, PUNC-
VALENCY constraint has no steady influence on the coverage: Compare M1 with
M9 (no change), M2 with M10 (decrease) and M8 and M16 (increase). As each
group of the valency constraints targets a specific class of words, it is expected
that a higher coverage is gained by applying a combination of positively con-
tributing constraints. Interestingly, the combination of NOUN-VERB-ARITY and
PREP-VALENCY in absence of COORD-VALENCY always improves the coverage
compared to each alone. In other words, M4’s coverage is better than either M2 or
M3; the same observation can be made for M12 when compared with M10 and
M11.



6.7. EVALUATION RESULTS 163

passed-only failed-only back-off
model cov. ILP CLE AB CLE AB CLE AB

M1 31.49% 40.68 31.18 33.48 29.06 32.37 31.49 34.08
M2 31.83% 39.31 31.44 33.57 29.07 32.45 31.27 33.88
M3 31.79% 42.66 31.42 33.34 29.02 32.43 31.82 34.59
M4 31.92% 41.98 31.75 33.36 29.01 32.48 31.63 34.53
M5 51.32% 34.21 28.64 30.78 29.80 33.14 31.81 33.62
M6 50.55% 33.33 28.80 31.15 29.87 33.21 31.79 33.26
M7 51.32% 35.74 28.58 30.80 29.84 33.20 32.54 34.34
M8 50.64% 35.19 28.85 31.09 29.84 33.24 32.07 34.13
M9 31.49% 40.81 31.37 33.40 29.01 32.39 31.48 34.12
M10 31.62% 39.26 31.44 33.59 29.09 32.46 31.29 33.87
M11 31.75% 42.74 31.54 33.46 28.99 32.44 31.96 34.62
M12 31.79% 42.16 31.87 33.65 28.98 32.50 31.91 34.57
M13 51.36% 34.27 28.73 30.76 29.74 33.15 31.80 33.65
M14 50.51% 33.30 28.80 31.13 29.87 33.22 31.81 33.26
M15 51.32% 35.79 28.67 30.80 29.77 33.19 32.52 34.37
M16 50.72% 35.33 28.88 30.96 29.76 33.27 32.11 34.21

Table 6.8: The ILP evaluation result: coverage and BLEU% over Ts and T along
with the corresponding CLE and AB scores. The back-off column is over the whole
set T and represents the ILP system backing off to CLE or AB in case of failure.
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Figure 6.12: Comparison of the ILP system and the baseline algorithms over Ts.

A further observation is that COORD-VALENCY has the highest contribution to
the coverage percentage, M5. As Coordination conjunctions are more likely to
be present in long sentences, the expectation is that the increase is due to ability
of this constraint to handle long sentences. A more clear picture of coverage
percentage is provided in Figure 6.11. Each color in each bar represents the
previously introduced length buckets (see page 161). This figure supports the
above mentioned hypothesis; COORD-VALENCY constraints specifically assists in
assigning dependency tree to sentences that are marked as long, very long, and
extremely long.

Figure 6.12 compares these three systems. It is apparent that all the ILP models
perform better than both baselines over their own specific Ts. It is worthwhile to
remind the reader that in this stage Ts for each model is different. Therefore, each
model can only be compared with its baselines, and not with one another. The best
model, the one with the largest difference to its baselines, is M3. This enhancement
suggests the PREP-VALENCY constraint creates better dependency trees whose
nodes are partially ordered. ILP models based on M5–M8 and M13-M16 suffer
from a noticeable drop in the BLEU score over Ts, compared to M1–M4 and
M8–M12. Similar behaviour can be seen with their corresponding baselines but
with a slighter degree. This suggests the difficulty in ordering long sentences.

Figure 6.13 compares the BLEU scores of all these system over the whole test set
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Figure 6.13: Overall comparison of the ILP system and the baseline algorithms.

T ; ILP backed-off to one of the baselines when it failed. This figure shows the
superiority of ILP over the baselines. In other words, those 30%–50% of sentences
that were re-generated by ILP caused this enhancement in BLEU score. A slight
drop in the BLEU score is observed when NOUN-VERB-ARITY is added to any
model; Compare M(2N +1) to M(2N +2) for 0  N  7. This drop indicates the
way NOUN-VERB-ARITY constraints are defined is not contributing to the BLEU
score. The QP System that employs a different definition of NOUN-VERB-ARITY
constraint is the next model to be evaluated.

6.7.2 QP

Following the discussion in Section 5.6.2 and the evaluation results of the ILP
system in the previous section, NOUN-VERB constraints are not guiding the search
as well as might be hoped. In the QP system, such constraints were redefined
and embedded into the objective function as the penalty terms in the form of a
quadratic function. It is essential to evaluate QP to establish the effect of this
alteration in dependency tree creation and re-generating task. In the QP system,
models with NOUN-VERB are those who have the penalty term in the objective
function activated, and the rest has no such constraint at all.

All the experimental results for the QP along with their corresponding baseline
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passed-only failed-only back-off
model cov. QP CLE AB CLE AB CLE AB

M1 36.54% 40.47 30.56 33.42 27.48 32.33 31.73 34.14
M2 96.58% 30.21 29.32 32.38 32.03 0.71 30.28 30.11
M3 35.82% 43.25 31.10 33.93 27.24 32.25 32.35 34.79
M4 96.62% 30.28 29.34 32.38 28.37 0.65 30.34 30.17
M5 54.05% 34.46 28.72 31.54 27.90 32.94 32.00 33.64
M6 96.58% 30.21 29.32 32.38 32.03 0.71 30.28 30.11
M7 53.42% 36.93 29.07 31.72 27.60 32.88 32.99 34.75
M8 96.62% 30.26 29.33 32.37 28.37 0.65 30.32 30.15
M9 32.78% 40.28 31.36 34.18 27.26 32.25 31.50 33.95

M10 96.58% 30.19 29.32 32.38 32.03 0.71 30.26 30.10
M11 33.71% 43.23 31.85 34.21 27.12 32.23 32.21 34.70
M12 96.62% 29.51 29.13 32.78 19.49 1.52 29.56 29.45
M13 51.98% 34.38 28.72 31.39 27.80 33.04 31.91 33.64
M14 96.58% 30.19 29.32 32.38 32.03 0.71 30.26 30.09
M15 52.45% 36.86 29.04 31.48 27.60 32.97 32.96 34.7
M16 96.62% 30.24 29.33 32.37 28.37 0.65 30.30 30.13

Table 6.9: Coverage and BLUE score of QP over Ts as well as the over all BLEU
score along with the baseline algorithms’ scores over the corresponding test sets.
The back-off column is over the whole set T and represents the QP system backing
off to CLE or AB in case of failure.

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

0

20

40

60

80

100

pa
ss

ed
se

nt
en

ce
s%

SS
MS
LS

VLS
XLS

Figure 6.14: QP coverage rate broken down to length bucket: SS: 1–10 words MS:
10–20 words, LS: 20–25 words, VLS: 25–30 words, XLS: 30+ words.



6.7. EVALUATION RESULTS 167

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

28

30

32

34

36

38

40

42

44

B
LE

U
%

fo
rT

s

CLE AB QP

Figure 6.15: Comparison of the QP system and the baseline algorithms over Ts.

scores are listed in Table 6.9. Figure 6.14 demonstrates the relationship between
the presence of the penalty term and the coverage percentage. The high coverage
rate for models ending with even number implies that NOUN-VERB-ARITY are
more beneficial in successful dependency tree creation if presented as penalty term
in the objective function than being applied as hard constraints.

Figure 6.15 compares the quality of the QP reordered sentences with the baseline
algorithms. Similar to the COORD-VALENCY case in the ILP system, those long
sentences that were covered by NOUN-VERB-ARITY cause a drop in BLEU score
so that those models can only beat the CLE baseline but not the AB baseline.

The high coverage of models with the NOUN-VERB-ARITY constraint, about 96.5%,
makes backing-off to baseline ineffective, regardless of which algorithm it backs-
off to. This explains why backing-off to CLE and AB for such models score
almost the same in Figure 6.16. This figure compares the overall BLEU scores
of the QP system and the two baseline algorithms. As expected, models with no
NOUN-VERB-ARITY beat both of the baselines. Models with NOUN-VERB-ARITY
as a penalty term are still superior to the CLE baseline.

In conclusion, the relatively low BLEU score for the NOUN-VERB models suggest
reviewing the dependency selection parameters. The most important dependency
selection parameter is dependency weights. Consequently, the next model’s target
is to find the best weights for dependency.
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Figure 6.16: Comparison of the QP system and the baseline algorithms over Ts.

6.7.3 QP-MIRA

The two previously discussed models employ exactly the same weights as CLE
and AB algorithms. In this section, the goal is to analyse the quality of reordering
performed by a system that learns the dependency weights from a treebank using
the MIRA learning algorithm (see Section 6.1).

To study the effect of different parameters in learning, the QP-MIRA system is
trained and tested over seven new models. These models are defined in Table 6.10
based on M1, M15, and M16, which were previously introduced in Table 6.6; we
choose these as the basis for the seven new models for the following reasons.

Our QP models allow more flexibility as we move from hard to soft constraints, by
embedding NOUN-VERB-ARITY to objective function as penalty terms. However,
it seems that the weights from Wan et al. (2009) are not effective anymore. So
provided MIRA proves to be helpful in learning weights for this scenario, it means
it can learn dependency weights in case of less complicated models such as our
ILP models and also for languages that do not have a dependency treebank large
enough to extract weights e.g., using dependencies’ log-probability.

Our selected models for the QP-MIRA system were M1, M15 and M16. From the
previous section, M15 (all constraints less noun-verb arity) is one of the two top
models, and M16 is M15 with the noun-verb arity constraint — the one that has



6.7. EVALUATION RESULTS 169

model # training iterations cycle-forbidding constraints threshold ILP/QP model
MIRA1 1 50 M1
MIRA2 1 50 M15
MIRA3 2 50 M15
MIRA4 1 100 M16
MIRA5 2 100 M16
MIRA6 5 100 M16
MIRA7 1 350 M16

Table 6.10: QP_MIRA system is trained and tested over MIRA1–MIRA7 models
which are based on three ILP models M1, M15 and M16 (discussed in the previous
section) and differ in the number of iterations used for training MIRA (learning
weights) and the threshold used for controlling the incremental generation of
cycle-forbidding constraints.

passed-only failed-only back-off
model cov.% QPMIRA CLE AB CLE AB CLE AB

MIRA1 82 36.38 28.25 31.25 24.18 26.43 34.02 34.45
MIRA2 84 38.80 27.98 31.57 24.55 26.55 36.43 36.84
MIRA3 71 38.51 28.54 31.41 24.89 27.48 34.37 35.26
MIRA4 81 37.69 28.25 31.61 24.00 26.69 34.99 35.66
MIRA5 63 36.85 28.30 31.41 26.08 28.64 32.83 33.81
MIRA6 42 38.40 29.03 31.82 26.00 29.01 30.36 32.24
MIRA7 84 37.13 28.14 31.73 24.43 25.96 34.92 35.24

Table 6.11: Coverage and BLUE score of QP over Ts as well as over T , along with
the baseline algorithms score over the corresponding test sets.

not had any positive impact so far — included. M1 is the usual baseline with no
linguistic constraints.

Similar to previously discussed systems, the evaluation results are shown in Ta-
ble 6.11 followed by the corresponding comparative graphs in Figure 6.17 and
Figure 6.18.

Since the coverage percentages have been improved and MIRA modifies the initial
dependency weights, we would like to see how close the produced dependency
trees are to the Gold standard trees. Figure 6.17(a) compares the quality of the
generated dependency trees using QP-MIRA. MIRA2, MIRA4 and MIRA7 have
the closest proportion of generated trees to the gold standard trees, amongst all
(Figure 6.17(b)); they have the lowest failure rate and the precision of the most
of the generated trees, T 0

s, fell in bucket 25%–50%. Also these models have the
largest share of the two top precision buckets.
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Figure 6.17: (a) Quality of generated dependency trees trees using QP-MIRA;
(b) QP-MIRA Coverage rate broken down to length bucket: SS: 1–10 words MS:
10–20 words, LS: 20–25 words, VLS: 25–30 words, XLS: 30+ words.
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Figure 6.18: QP-MIRA compared to its baseline algorithm (a) over Ts and (b) over
the whole test set T .



172 CHAPTER 6. APPLYING THE ILP FRAMEWORK

The two bar charts in Figure 6.18 compare the quality of these models over Ts

and T respectively. The results in Figure 6.18(b) confirms that QP-MIRA beats
both baseline for both test sets by a large margin. Unlike the two previous systems
that compromise between the coverage and quality of the generated sentences,
this system provides high coverage and quality sentences at the same time. These
improvements confirm that learning dependency weights enhances the result of
the regeneration task. However, the gradual drop in the quality of dependencies,
coverage, and BLEU score for higher numbers of training iterations suggests either
overfitting or the training is not done against quite the right factors. This issue
requires further study.

Figures 6.19(a) and Figure 6.19(b) compare M1 (aka MIRA1), M15 (aka MIRA2)
and M16 (aka MIRA4) for ILP, QP and QP-MIRA. It can be clearly concluded
that QP-MIRA not only retains the high coverage but also provides a significant
increase in the BLEU score; compare QP and QP-MIRA in M16. However,
comparing QP-MIRA for M15 and M16 shows that NOUN-VERB-ARITY even as
a penalty term does not enhance the BLEU score.

6.8 Comparison and Conclusion

The main goal of the current study was to answer the following three questions:

• Are mathematical optimisation methods such as ILP able to do MST identi-
fication as effectively as the CLE algorithm?

• Given some linguistic constraints applied to the MST problem, how much
do such constraints contribute to the quality of the linearised string?

• Do learning dependency weights improve the output of the string regenera-
tion?

The first question can be answered by looking at the M1 column in Figure 6.13.
M1 has only tree constraints. It can be seen that the ILP beats both of the baselines
it backs-off to. Unlike AB, CLE and ILP assign an MST to a string in the absence
of any linguistic preferences. Both algorithms use the same set of weights, but as
there is not just one unique MST for many of the input strings, each system ends up
with a different set of dependency trees. One interpretation for this improvement
in the BLEU% could be that ILP tends to pick trees that are linguistically more
plausible. Therefore, it can be concluded that string regeneration can benefit from
mathematical approaches in the MST creation phase.

To answer the rest of the research questions, we compare the systems against one
another. Figure 6.20 compares the BLEU% of the ILP and the QP systems over
the whole test set. In theory, the QP models with no NOUN-VERB-ARITY are
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Figure 6.19: Comparison of ILP, QP and QP-MIRA when tested with three
different constraint sets in terms of their (a) BLUE score over T when backed off
to the baseline models, and (b) coverage% over Ts. M1 is the model with tree
constraints only; M15 has tree constraints plus PUNC-VALENCY, COORD-VALENCY
and PREP-VALENCY constraints; M16 has NOUN-VERB-ARITY in addition to all
the M15 constraints.
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Figure 6.20: Comparison of the ILP and QP over the test set, T .

identical to their corresponding models in the ILP system. One interpretation of
slight difference in the BLEU score can be due to the individual solvers’ choices at
the tree building phase.

Following the comprehensive comparison of the linguistic constraints in Sec-
tion 6.7.1, and the BLEU% of M1 and M15 in Figure 6.19(a), it can be concluded
that linguistic constraints contributing to the quality of re-generated strings signif-
icantly. As NOUN-VERB-ARITY constraint does not contribute to the ILP in the
expected way, they are converted into penalty terms in QP. This switch causes a
noticeable increase in coverage. However, this high coverage has a negative impact
on the BLEU score. The intention of QP-MIRA is to fix this problem by learning
the dependency weights from scratch.

As the final conclusion, QP-MIRA is superior to QP and ILP, regardless of
the algorithm it backs off to. These findings further support the idea of training
dependency weights for the sentence re-generation task, as for parsing. ILP and
its related mathematical optimisation methods e.g. QP are useful approaches in
string regeneration task using MST as their constraints provide a flexible tool to
include extra information individually. This extra information changes the task
into a partial word-ordering problem.

Improvement of the NOUN-VERB-ARITY constraints is one of the subjects of future
work. The other possible future work could focus of the drop in the quality of the
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Model CLE AB ILP QP QP-MIRA
- - +CLE +AB +CLE +AB +CLE +AB

BLEU 28.30 31.57 32.54 34.62 32.99 34.79 36.43 36.84

Table 6.12: Comparison of our baselines (CLE and AB) with the best of ILP,
QP and QP-MIRA over the whole test set, T , where +CLE and +AB specify the
back-off algorithms.

dependency trees, coverage%, and BLEU score with the increase in the number of
training iterations.

The goal of these two chapters was to look at the effect of modelling the graph-
based approach of Wan et al. using declarative constraints and ILP. Hence all the
comparisons have been with respect to that approach (see Table 6.12). Nevertheless,
we also comment on the results of Zhang et al. (2012).

Comparing the BLEU scores, Zhang et al. (2012) results are better than ours. Even,
Zhang and Clark (2011) alone has a larger improvement (BLEU 40.1). However,
a closer study shows that the improvements in Zhang et al. (2012) are for the
most part via formalism-specific adjustments, e.g. in the algorithm for building
derivations, or in tuning the supertagger for lexical pruning; not relevant to the
graph-based approach. Other improvements come from improving the language
model used. Consequently, we can conclude that their proposed approach which
has led to fairly large improvements is orthogonal to the work we presented in this
chapter.

Since we showed that it’s helpful to use ILP and declarative constraints in the
graph-based approach, it could possibly be complementary to their alternative
approach. Potentially interesting to explore.





Chapter 7

Conclusion

7.1 Summary of Findings

The principal motivation of this thesis has been to investigate techniques for
realisation in Natural Language Generation that will be useful in the context of
minority languages — languages with a small grammar, a grammar in development
phase or no computational grammar for generation — with surface realisation,
specifically through two approaches: (1) grammar-based realisation ranking and
(2) realisation from bag-of-words input. Previous studies addressed these two tasks
with methods that heavily revolve around manually-crafted grammars and/or rich
treebanks that allow grammar induction. Since these resources are expensive and
time-consuming to obtain our aim was to identify methods and resources that could
move surface realisers one step closer to a generic tool, similar to universal parsers.

In Chapter 3, we looked at various types of statistical parsers ranging from super-
vised PCFG parsers to unsupervised dependency parsers as potential resources for
extracting grammatical features that could be an alternative to those extracted from
symbolic grammars. The ranking models’ accuracies gradually dropped as we
moved towards the unsupervised parser but still, given the use of suitable feature
selection criteria, structural features extracted from unsupervised parsers served
as suitable source for incorporating grammaticality into the surface order. This
becomes noteworthy if we compare the amount of effort required to build symbolic
grammars, supervised parsers and unsupervised parsers. In terms of suitable feature
selection criteria, we found the Information Gain was effective at incorporating
unsupervised parser features. We also looked at reliability-based measures as
another feature selection criteria which did not prove useful. We attribute its poor
performance to systematic choices made by the unsupervised parser that were
different from the gold standard’s choices, rather than bad parsing. We also showed
that the structural information captured by such features are somehow orthogonal
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to the word order information provided by n-gram language models, as models that
were built upon the combination of these features provided higher accuracies. The
experimental results confirmed our speculations about the relationship between
the size of the language model and its contribution to the accuracy: the larger the
language model, the more accurate the ranking model is.

Following the contribution of features extracted from the unsupervised parser to
the ranking realisation model, in Chapter 4, we looked into how such features work
when compared against/combined with features extracted from generators internal
representation. The latter set of features were previously proved to be helpful
in ranking alternatives in German (Cahill et al., 2007b). Following Cahill et al.
(2007b), we used an LFG-based text generator, so we looked at similar features
for our generator’s internal representation features and built various models using
different combinations of c-/f-structure features. Our experimental results with
internal features were in line with the previous research in terms of the usefulness
of such features in ranking the realiser’s output.

The accuracies of the hybrid models — combinations of statistical parser features
with the system’s internal representation features — were, however, no better than
models built upon features from the symbolic grammar. This demonstrates that our
features from the statistical parsers were not capable of capturing more that what
features from manually crafted grammars can capture. In other words, given our
choices of parsers and grammar, these two resources are not complementary to one
another.

We also looked at the effects of size of the grammar, by investigating the fragment
LFG grammar that comes with XLE. Models with features from the small grammar
tended to have higher accuracies over a smaller effective test set. However, further
analysis revealed that the generated alternatives with the small grammar only differ
in uninteresting ways. Thus, the contribution of the large and small grammars to
realisation ranking is not comparable.

The second task that we tackled was based on a graph-based data-driven gener-
ation model that generates sentences from a bag-of-words input. Our proposed
framework, introduced in Chapter 5, is based on the previous work of Wan et al.
(2009). Under this framework we reduced the generation problem into finding the
Minimum Spanning Tree (MST) as an intermediate structure from which word
order can be inferred. The key idea in the framework of this thesis has been
to replace the Chu-Liu-Edmonds (CLE) algorithm with an Integer Linear Pro-
gramming (ILP)-based approach to benefit from the flexibility that comes with
declarative constraints. Constraints provide a consistent way of defining and em-
bedding structural and grammatical expectations, i.e. a connected, cycle-free
structure with maximum weights that has limitation on the number of dependents
each node can take, such that all of them can be satisfied at the same time. However,
we found that some of the language-specific constraints like node arity may lead



7.2. LIMITATIONS AND FUTURE OUTLOOK 179

to infeasibility. As a solution, we proposed a second version of the framework
where we changed the single objective nature of the problem (finding the MST)
into a multi-objective problem (finding the MST whilst keeping each node’s arity
as close to gold standard valency as possible). For this purpose, we redefined
arity constraints whose goal is to keep the number of each node’s dependents
within hard-coded lower and upper bounds, to be penalty terms so the objective
function is penalised proportional to the arity distance from the gold standard
valency. Since we used a quadratic term to represent the above mentioned distance,
the optimisation problem become a quadratic (QP) one rather than linear.

In pursuit of the original motivation of promoting algorithms and resources for
minority languages, in Chapter 6, we attempted to learn dependency weights using
the Margin Infused Relaxed Algorithm (MIRA) within the same framework rather
than relying on the existence of a large dependency treebank for deriving MLE
estimates of these dependency weights. Our experiment results showed that our
novel ILP-based framework beats both baselines from Wan et al. (2009): the CLE
one noted above, and their method for incorporating linguistic structure. Switching
to QP in order to incorporate preferred word valencies had a noticeable increase
in the coverage of sentences that the model can generate a structure for, but had a
negative impact on the BLEU score. However, models that used MIRA not only
maintained the high coverage but also showed superiority in terms of BLEU score
compared to ILP and QP-based models.

7.2 Limitations and Future Outlook

The discoveries of the thesis have also led to a recognition of various limitations
and caveats.

In this thesis, we attempted to replace or minimise the use of manually-crafted
resources, such as symbolic grammars and treebanks to promote realisation and
realisation ranking for languages that lack such resources or have them in develop-
ment. One avenue for further exploration could involve looking at LFG grammars
in development for other languages. These would be somewhere in size between
the large English grammar and the fragment grammar, and it is possible the use of
features derived from external features could be useful there.

As for realisation ranking, we suggest looking into other feature selection measures
and other parser types such as transfer-based parsers. We also recommend future
researchers to convert dependency trees to a universal format to avoid systematically
different choices made by various parsers/grammars which influence the usefulness
of the models; as we found out, the reliability-based feature selection method
cannot be helpful with our existing set-up.
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Intuitively, noun-verb-arity constraints seem to be a key type of constraint for
useful linguistic tree structure. Our experimental results showed that neither of the
implementations of such constraints improved results: ILP was too constraining,
and QP wasn’t constraining enough. One possible solution is to use the hard con-
straint formulation and incrementally relax constraints. Relaxation is a modelling
strategy and provides and easy-to-solve approximation of a difficult problem; once
ILP problem found to be infeasible, the hard constraints can be incrementally
relaxed until the problem becomes feasible. The other possible approach is to find
a better way of incorporating a penalty function in QP, for instance redefining the
penalty function.

We used Google syntactic n-gram to guide our search for a reasonably grammatical
tree which proved to be helpful when combined with the MIRA learning algorithm.
As valuable it is, it is expensive to build such syntactic n-gram language model,
regarding the gigantic corpora used in the project. As an alternative, we suggest
development of an automatic or semi-automatic language-independent approach
that can provide an estimation words’ left and right arities using unsupervised
parsers.

We discussed the recent popularity of deep learning in addressing the text genera-
tion problem in Chapter 2.4. In addition to suffering from almost no coherence,
grammaticality of the generated sentences is another major issue with systems
built upon deep learning methods. We propose a future study on incorporating the
grammaticality constraints into Recurrent Neural Network (RNN)s to improve the
produced text.



Appendix A

Small-Scale Trial

Weight matrices and their Maximum Spanning Tree (MST) generated by ILP (T 0)
during the training phase are presented to enable the in-depth comparison of both
models and also how the weights are changing from one iteration to the next.

Tables A.1-A.4 show weight matrices during the four-iteration training with FR-WO
features, followed by their alternative MSTs in Figures A.1-A.4).

root range and Inc. were among targets .

root 0.000 0.318 -0.300 1.281 0.056 -0.364 -0.091 0.000
range 1.302 0.000 0.989 2.604 1.111 0.876 1.247 1.302

and 0.429 0.803 0.000 1.845 0.295 0.065 0.159 0.429
Inc. 0.851 1.121 0.646 0.000 0.665 0.483 0.760 0.851

were 0.709 1.183 0.435 2.102 0.000 0.405 0.564 0.946
among -0.300 0.034 -0.600 1.077 -0.499 0.000 -0.385 -0.300
targets 0.838 1.269 0.449 2.085 0.647 0.458 0.000 0.838

. 0.000 0.318 -0.300 1.281 -0.186 -0.364 -0.091 0.000
root 0.000 0.512 0.300 0.851 0.670 0.364 0.375 0.000

range 0.931 0.000 1.207 1.793 1.174 1.353 1.309 0.931
and 1.046 1.684 0.000 2.167 1.380 1.410 1.062 1.046
Inc. 0.498 1.005 0.992 0.000 0.684 0.854 0.872 0.498

were 0.863 1.475 1.216 1.823 0.000 1.347 1.260 1.338
among 0.526 1.208 0.827 1.588 0.709 0.000 1.036 0.526
targets 0.315 0.774 0.534 1.134 0.491 0.698 0.000 0.315

. 0.000 0.512 0.300 0.851 0.186 0.364 0.375 0.000

Table A.1: Objective function (weight matrix) for sentence (6.1) in the first iteration
of training with FR-WO features.
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The White Sands missile range and CIA contractor Mitre Inc. were among the targets .
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Figure A.1: ILP genereated tree with initial weights. Arcs’ labels are dependencies’
weights
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root range and Inc. were among targets .

root 0 0.473 -0.388 1.412 0.056 -0.390 -0.108 0
range 1.360 0 0.959 2.779 1.157 0.907 1.289 1.360

and 0.403 0.948 0 1.950 0.266 0.013 0.140 0.403
Inc. 1.048 1.480 0.756 0 0.855 0.654 0.939 1.048

were 0.669 1.297 0.286 2.233 0 0.289 0.508 0.922
among -0.296 0.188 -0.684 1.234 -0.502 0 -0.408 -0.296
targets 1.176 1.896 0.712 2.561 0.978 0.770 0 1.176

. 0 0.473 -0.388 1.412 -0.192 -0.390 -0.108 0
root 0 0.630 0.388 0.940 0.690 0.390 0.419 0

range 0.833 0 1.196 1.777 1.075 1.278 1.256 0.833
and 1.076 1.866 0 2.286 1.423 1.466 1.185 1.076
Inc. 0.636 1.277 1.222 0 0.829 1.018 1.055 0.636

were 0.867 1.597 1.266 1.970 0 1.345 1.311 1.375
among 0.580 1.387 0.968 1.776 0.769 0 1.126 0.580
targets 0.464 1.108 0.801 1.371 0.647 0.875 0 0.464

. 0 0.630 0.388 0.940 0.192 0.390 0.419 0

Table A.2: Objective function (weight matrix) for sentence (6.1) in the second
iteration of training with F-WO features.

The White Sands missile range and CIA contractor Mitre Inc. were among the targets .

1.04

2.23

1.89

ROOT

1.22

1.34
1.12

Figure A.2: ILP genereated tree with initial weights. Arcs’ labels are dependencies’
weights
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root range and Inc. were among targets .

root 0 0.473 -0.388 1.412 0.056 -0.390 -0.108 0
range 1.360 0 0.959 2.779 1.157 0.907 1.289 1.360

and 0.403 0.948 0 1.950 0.266 0.013 0.140 0.403
Inc. 1.048 1.480 0.756 0 0.855 0.654 0.939 1.048

were 0.669 1.297 0.286 2.233 0 0.289 0.508 0.922
among -0.296 0.188 -0.684 1.234 -0.502 0 -0.408 -0.296
targets 1.176 1.896 0.712 2.561 0.978 0.770 0 1.176

. 0 0.473 -0.388 1.412 -0.192 -0.390 -0.108 0
root 0 0.630 0.388 0.940 0.690 0.390 0.419 0

range 0.833 0 1.196 1.777 1.075 1.278 1.256 0.833
and 1.076 1.866 0 2.286 1.423 1.466 1.185 1.076
Inc. 0.636 1.277 1.222 0 0.829 1.018 1.055 0.636

were 0.867 1.597 1.266 1.970 0 1.345 1.311 1.375
among 0.580 1.387 0.968 1.776 0.769 0 1.126 0.580
targets 0.464 1.108 0.801 1.371 0.647 0.875 0 0.464

. 0 0.630 0.388 0.940 0.192 0.390 0.419 0

Table A.3: Objective function (weight matrix) for sentence (6.1) in the third
iteration of training with FR-WO features.

The White Sands missile range and CIA contractor Mitre Inc. were among the targets .
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Figure A.3: ILP genereated tree with initial weights. Arcs’ labels are dependencies’
weights.
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root range and Inc. were among targets .

root 0.000 0.511 -0.474 1.501 0.056 -0.406 -0.113 0.000
range 1.469 0.000 0.981 2.982 1.266 1.004 1.393 1.469

and 0.479 1.063 0.000 2.115 0.342 0.073 0.211 0.479
Inc. 1.192 1.662 0.874 0.000 1.000 0.782 1.079 1.192

were 0.688 1.355 0.220 2.354 0.000 0.300 0.523 0.942
among -0.299 0.239 -0.773 1.321 -0.504 0.000 -0.418 -0.299
targets 1.226 1.987 0.676 2.726 1.028 0.804 0.000 1.226

. 0.000 0.511 -0.474 1.501 -0.192 -0.406 -0.113 0.000
root 0.000 0.667 0.474 1.014 0.690 0.406 0.424 0.000

range 0.907 0.000 1.356 1.925 1.149 1.382 1.335 0.907
and 1.234 2.059 0.000 2.517 1.580 1.639 1.347 1.234
Inc. 0.775 1.452 1.564 0.000 0.967 1.173 1.199 0.775

were 0.894 1.661 1.379 2.095 0.000 1.392 1.343 1.402
among 0.601 1.474 1.075 1.872 0.790 0.000 1.149 0.601
targets 0.472 1.153 0.894 1.466 0.654 0.899 0.000 0.472

. 0.000 0.667 0.474 1.014 0.192 0.406 0.424 0.000

Table A.4: Objective function (weight matrix) for sentence (6.1) in the fourth
iteration of training with FR-WO features.

The White Sands missile range and CIA contractor Mitre Inc. were among the targets .
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Figure A.4: ILP genereated tree with initial weights. Arcs’ labels are dependencies’
weights.
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Tables A.5-A.8 show weight matrices during the four-iteration training with F-WO
features, followed by their alternative MSTs (Figures A.5-A.8).

root range and Inc. were among targets .

root 0 0 0 0 0 0 0 0
range 1.404 0 0 0 0 0 0 0

and 0.501 1.152 0 0 0 0 0 0
Inc. 1.014 1.604 0.871 0 0 0 0 0

were 1.062 1.731 0.808 2.797 0 0 0 0
among 0.055 0.639 -0.253 1.628 -0.059 0 0 0
targets 1.099 1.811 0.774 2.655 0.991 0.943 0 0

. 0 0.554 -0.308 1.535 -0.121 -0.146 0.078 0
root 0 0.782 0.308 1.352 0.481 0.146 0.326 0

range 0 0 1.356 2.413 1.145 1.181 1.320 1.040
and 0 0 0 2.808 1.417 1.272 1.277 1.126
Inc. 0 0 0 0 0.959 1.007 1.132 0.838

were 0 0 0 0 0 1.345 1.373 1.620
among 0 0 0 0 0 0 0.669 0.246
targets 0 0 0 0 0 0 0 0.774

. 0 0 0 0 0 0 0 0

Table A.5: Objective function (weight matrix) for sentence (6.1) in the first iteration
of training with F-WO features.

The White Sands missile range and CIA contractor Mitre Inc. were among the targets .
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Figure A.5: ILP genereated tree with initial weights. Arcs’ labels are dependencies’
weights
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The White Sands missile range and CIA contractor Mitre Inc. were among the targets .
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Figure A.6: ILP genereated tree with initial weights. Arcs’ labels are dependencies’
weights

root range and Inc. were among targets .

root 0 0 0 0 0 0 0 0
range 1.458 0 0 0 0 0 0 0

and 0.601 1.313 0 0 0 0 0 0
Inc. 1.155 1.806 0.964 0 0 0 0 0

were 1.017 1.736 0.678 2.847 0 0 0 0
among 0.067 0.723 -0.288 1.744 -0.054 0 0 0
targets 1.215 2.008 0.881 2.900 1.100 1.035 0 0

. 0 0.614 -0.356 1.634 -0.128 -0.157 0.097 0
root 0 0.839 0.356 1.507 0.487 0.157 0.336 0

range 0 0 1.436 2.583 1.194 1.223 1.367 1.072
and 0 0 0 3.162 1.624 1.483 1.565 1.326
Inc. 0 0 0 0 1.126 1.178 1.302 0.998

were 0 0 0 0 0 1.316 1.369 1.622
among 0 0 0 0 0 0 0.689 0.254
targets 0 0 0 0 0 0 0 0.844

. 0 0 0 0 0 0 0 0

Table A.6: Objective function (weight matrix) for sentence (6.1) in the second
iteration of training with F-WO features.
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The White Sands missile range and CIA contractor Mitre Inc. were among the targets .

0.0

2.89

2.03

ROOT

0.0
1.69

0.70

Figure A.7: ILP genereated tree with initial weights. Arcs’ labels are dependencies’
weights.

root range and Inc. were among targets .

root 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
range 1.458 0.000 0.000 0.000 0.000 0.000 0.000 0.000

and 0.601 1.319 0.000 0.000 0.000 0.000 0.000 0.000
Inc. 1.180 1.837 0.981 0.000 0.000 0.000 0.000 0.000

were 1.043 1.768 0.704 2.891 0.000 0.000 0.000 0.000
among 0.073 0.735 -0.282 1.769 -0.048 0.000 0.000 0.000
targets 1.229 2.035 0.896 2.933 1.114 1.036 0.000 0.000

. 0.000 0.620 -0.356 1.652 -0.128 -0.160 0.083 0.000
root 0.000 0.842 0.356 1.536 0.487 0.160 0.350 0.000

range 0.000 0.000 1.444 2.619 1.202 1.234 1.375 1.080
and 0.000 0.000 0.000 3.191 1.624 1.486 1.578 1.326
Inc. 0.000 0.000 0.000 0.000 1.161 1.215 1.351 1.033

were 0.000 0.000 0.000 0.000 0.000 1.353 1.408 1.700
among 0.000 0.000 0.000 0.000 0.000 0.000 0.706 0.257
targets 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.838

. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.7: Objective function (weight matrix) for sentence 6.1 in the third iteration
of training with F-WO features.
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root range and Inc. were among targets .

root 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
range 1.491 0.000 0.000 0.000 0.000 0.000 0.000 0.000

and 0.601 1.319 0.000 0.000 0.000 0.000 0.000 0.000
Inc. 1.194 1.850 0.994 0.000 0.000 0.000 0.000 0.000

were 1.043 1.768 0.704 2.918 0.000 0.000 0.000 0.000
among 0.073 0.735 -0.282 1.796 -0.048 0.000 0.000 0.000
targets 1.229 2.035 0.896 2.960 1.114 1.036 0.000 0.000

. 0.000 0.620 -0.356 1.679 -0.128 -0.160 0.083 0.000
root 0.000 0.842 0.356 1.569 0.487 0.160 0.350 0.000

range 0.000 0.000 1.471 2.686 1.229 1.260 1.402 1.106
and 0.000 0.000 0.000 3.225 1.624 1.486 1.578 1.326
Inc. 0.000 0.000 0.000 0.000 1.188 1.242 1.378 1.060

were 0.000 0.000 0.000 0.000 0.000 1.353 1.408 1.700
among 0.000 0.000 0.000 0.000 0.000 0.000 0.706 0.257
targets 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.838

. 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table A.8: Objective function (weight matrix) for sentence (6.1) in the fourth
iteration of training with F-WO features.

The White Sands missile range and CIA contractor Mitre Inc. were among the targets .

0.0

2.91

2.03

ROOT

0.0
1.69

0.700.0

2.91

2.03

ROOT

0.0
1.69

0.70

Figure A.8: ILP genereated tree with initial weights. Arcs’ labels are dependencies’
weights
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