National Innovative Capacity in East Asia: Determinants and Evidence from Five Countries, and Particularly from Taiwan

By

Mei-Chih Hu

M.B.A., B.A.

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)

Macquarie Graduate School of Management Macquarie University Sydney, Australia

May 2004

693711 THESIS T 177 .E18 . H8 copy 1

Table of Contents

		Page
Title	e Page	i
Tab	le of Contents	ii
Cer	tification	vii
Ack	nowledgements	viii
Abs	tract	x
List	of Figures	xi
List	of Tables	xiii
List	of Abbreviations	XV
Cha	pter 1 Introduction	1
1.1	Overview and Motivation	1
1.2	Objectives of the Research	5
1.3	Research Methodology	7
1.4	Outline of the Research	8
Cha	pter 2 International Patenting Experience: Worldwide and the Five East	11
	Asian Countries	
2.1	Worldwide International Patenting Activity	11
2.2	International Patenting Experience of the Five East Asian Countries	12
2.3	The Significant Position in International Patenting Activity: the Five East Asian	21
	Countries	
2.4	Conclusion	24
Cha	pter 3 Literature Review: National Innovative Capacity and its Context	26
3.1	Introduction	26
	3.1.1 Endogenous Growth Theory	26
	3.1.2 Evolutionary Theory	28
3.2	Catch-up Strategy	29
	3.2.1 External Technology Acquisition and Technology Diffusion	29
	3.2.2 Absorptive Capacity	32
	3.2.3 State Intervention	32
	3.2.4 Related Incentives	35

3.3	Beyond Catch-up: Ways to Innovation		
3.4	National Innovation System		
	3.4.1 Er	ndogenous Growth Theory: Knowledge Production and Accumulation	40
	3.4.2 Te	chnological System of Innovation Functions	41
	3.4.3 Fa	actor Interactions of National Advantage	42
3.5	National	Innovative Capacity in the OECD Countries	44
	3.5.1 Ca	ommon Innovation Infrastructure	45
	3.5.2 En	wironments for Innovation in Industrial Cluster	47
	3.5.3 Th	e Linkages between Innovative Infrastructure and Cluster-specific	48
	Ini	novation	
	3.5.4 De	ownstream Contributors and Related Outcome Factors	49
3.6	National	Innovative Capacity in the East Asian Countries	51
3.7	Use of Pa	atent Statistics as Indicators of Innovation	53
3.8	Patenting Strategy		54
	3.8.1 Cc	ause or Effect?	55
	3.8.2 Ca	ountry-specific Patenting Strategy	57
	3.8.3 Fi	rm-specific Patenting Strategy	59
3.9	Conclusio	on – an Analytical Framework to Guide the Study	66
Chaj	pter 4 Met	hodology	70
4.1	Introduct	ion	70
4.2	Research	Limitations and Caveats	71
4.3	Qualitativ	ve Analysis	74
4.4	Modellin	g the National Innovative Capacity	75
4.5	Quantitat	ive Analytical Techniques	78
4.6	Justificat	ion of the Variables	80
	4.6.1 Ini	novation Output: International Patents Granted	81
	4.6.2 Co	ommon Innovation Infrastructure	82
	4.6.3 En	wironments for Innovation in Industrial Cluster	88
	4.6.4 Th	e Linkages between Innovative Infrastructure and Cluster-specific	91
	Ini	novation	
	4.6.5 Do	wnstream Contributors and Related Outcome Factors	92
4.7	Conclusio	on	94

Chapter 5 Empirical Results		96
5.1	Determinants of National Innovative Capacity	97
	5.1.1 GDP Per Capita as Knowledge Stock	98
	5.1.2 Patent Stock as Knowledge Stock	101
5.2	Public Sector R&D: Extension of the OECD-based Framework and its	103
	Application to East Asian Countries	
5.3	The Sources of Dispersion in International Patenting	108
5.4	Robustness Checks	111
5.5	The Impact of National Innovative Capacity on Downstream Competitiveness	113
	Measures	
5.6	Trends in Predicted vs. Actual Innovative Output in Latecomer Countries	117
5.7	Summary of the Findings	122
Cha	pter 6 Case Study: Taiwan's Patenting Strategy	125
6.1	Introduction	125
6.2	Taiwan's IP Development	126
	6.2.1 Innovation Leaders	128
	6.2.2 Domestic Patenting Activity	131
6.3	Evolution of Taiwan's Patenting Strategy in the Private Sector	134
	6.3.1 Taiwan Semiconductor Manufacturing Corporation	135
	6.3.2 Winbond Electronics Corporation	137
	6.3.3 Vanguard International Semiconductor Corporation	138
	6.3.4 Utilisation of IP Management	140
6.4	The Role of IP in the Public Sector	143
	6.4.1 ITRI	144
	6.4.2 Benchmarks of Utilising and Integrating Patent Portfolio	149
	6.4.3 The Public IP Promotion Institute	151
6.5	Quantity and Quality of Taiwan's International Patenting Activity	153
6.6	Conclusion	157
Cha	pter 7 Conclusions and Matters for Further Discussion	160
7.1	Conclusions	160
7.2	Matters for Further Discussion	163
	7.2.1 Why IP is not a Significant Factor in Latecomer Countries' Innovative	163
	Capacity	

	7.2.2 The	Role of Public R&D Funding and Taiwan's Leverage Effect	168
	7.2.3 The	Role of Government Intervention and Singapore's Lagging	172
	Inno	wative Performance	
	7.2.4 The	Changing IP Strategy in Taiwan: from Quantity to Quality	174
7.3	Contributio	ons to the Literature	177
App	endices		182
Appe	endix A-1	Population in Asian Countries	182
Appe	endix A-2	Full-time Equivalent Scientists and Engineers (FTE S&T)	183
		Personnel Engaged in R&D Activities	
Appe	endix A-3	R&D Expenditure	184
Appe	endix A-4	GDP Per Capita	185
Appe	endix A-5	Openness to International Trade and Investment	186
Appe	endix A-6	Intellectual Property Protection	186
Appe	endix A-7	Antitrust Policy	187
Appe	endix A-8	Expense on Higher Education	188
App	endix A-9	Public R&D Funding	189
Appendix A-10		Private R&D Expenditure	190
App	endix A-11	Classes and sub-classes of Chemical, Electrical and Mechanical	191
		Classifications	
App	endix A-12	Patents Granted from the USPTO in Chemical Classification	192
App	endix A-13	Patents Granted from the USPTO in Electrical Classification	193
App	endix A-14	Patents Granted from the USPTO in Mechanical Classification	194
App	endix A-15	R&D Expenditure by University	195
App	endix A-16	Venture Capital Availability	196
App	endix A-17	Scientific Publications in East Asia	196
App	endix A-18	GDP in Asian Countries	197
App	endix A-19	Labour Force in Asian Countries	198
App	endix A-20	Non-residential Capital Stock	199
App	endix A-21	Share of Export in High-tech Industries	200
App	endix A-22	Share of Export in Aerospace Industry	200
App	endix A-23	Share of Export in Computers and Office Machinery Industry	201
App	endix A-24	Share of Export in Communications Equipment Industry	202
App	endix A-25	Share of Export in Pharmaceuticals Industry	203
App	endix B	Person Correlations	204

Appendix C-1	Interview Questions for the Public Sector	206
Appendix C-2	Interview Questions for the Private Sector	208
Appendix D-1	ITRI: Patent Awarded by Classification in Taiwan Intellectual	210
	Property Office – 1990 to 2001	
Appendix D-2	National Science Council (NSC): Patent Awarded by Classification	214
	in Taiwan Intellectual Property Office – 1990 to 2001	
Appendix D-3	Taiwan Semiconductor Manufacturing Corporation (TSMC):	216
	Patent Awarded by Classification in Taiwan Intellectual Property	
	Office – 1990 to 2001	
Appendix D-4	United Microelectronics Corporation (UMC): Patent Awarded by	217
	Classification in Taiwan Intellectual Property Office – 1990 to 2001	
Appendix D-5	Winbond Electronics: Patent Awarded by Classification in Taiwan	218
	Intellectual Property Office – 1990 to 2001	
Appendix D-6	Vanguard International Semiconductor Corporation (VISC): Patent	219
	Awarded by Classification in Taiwan Intellectual Property Office –	
	1990 to 2001	

References

1.11-12-046-13

220

Certification

This thesis is submitted in fulfilment of the requirements of the degree of PhD, in the Graduate School of Management, Macquarie University. This represents the original work and contribution of the author, except as acknowledged by general and specific references.

I hereby certify that this has not been submitted for a higher degree to any other university or institution.

Amm

Mei-Chih Hu May 2004

Acknowledgements

My deepest gratitude goes to my supervisor, Professor John A. Mathews, who suggested the topic in the first place and followed up with invaluable advice, enthusiasm, and encouragement. I thank him especially for his outstanding supervision and scholarly inspiration. Without his critical comments, this thesis would not have come into being.

I would also like to acknowledge the financial support I received from Macquarie University in 2003. This funding enabled me to conduct further field research in Taiwan.

The final stage of the research, exploring Taiwan's patenting strategy, was carried out in Taiwan's public and private sectors. My sincere thanks go to Dr Mung-Chung Wu at National Chiao-Tung University for supporting my contact with the Technology Transfer and Service Centre of Industrial Technology Research Institute (ITRI), where I received great assistance from the Director, Sao-Cheng Chiou, for gaining insight into patenting strategy in Taiwan's public institutions.

I would also like to express my deep appreciation to those interviewees from R&D and Intellectual Property Departments in Taiwan Semiconductor manufacturing Corporation (TSMC), Winbond Electronics Corporation and Vanguard International Semiconductor (VIS) whose help made this research possible (although they remain unnamed to protect their identities).

Special thanks to the Chairman of the Institute for Information Industry (III), Dr Ferng-Ching Lin, for providing me an opportunity for discussion with the managers in the Science & Technology Law Centre, and the President of the Industrial Technology Research Institute (ITRI), Dr Johnsee Lee, allowed me to meet with the managers in the Open Laboratory and Market Intelligence Centre.

My husband Ching-Yan Wu has been a great 'househusband' during my conduct of this research project. He has allowed me to spend time on my study rather than on tedious housework. Without his generous helping hand, this thesis would have been buried in dust.

Our daughters, Jenny and Sharon, are my joy and, in fact, also an inspiration for me to finish this thesis as quickly as possible so that I can spend more time with them. My mother Jin-Yun Hu, with unfailing encouragement, has always believed in my ability to achieve something. It took me more than three decades to present her with this small reward. I dedicate this thesis to her.

Abstract

The innovative capacity of a country is the basic driving force behind its economic performance. In 2002, Furman, Porter & Stern (FP&S) developed a methodology for assessing innovative capacity in terms of the national factors that influence the rate of patenting by the country in the United States Patent and Trademark Office (USPTO). They are the first to provide an integrated framework for the measurement of national innovative capacity, which they apply to a panel of 17 OECD countries over the 25 years from 1973 to 1996. My study extends the FP&S approach by applying it to five "latecomer" countries from East Asia, none of which was included in the FP&S study. In this way, this study weights the distinctive contribution of each driver on innovative activity and provides a basis for comparing innovative capacity of the OECD countries with the mechanism of innovation in the East Asian countries (particularly the *Tiger* countries).

First, this study adopts the FP&S methodology in relation to the five East Asian countries, by gathering comparable data over a comparable time period. The results here replicate those of FP&S, with some important differences: it is found that fewer national factors influence the rate of patenting in countries that have become innovative only recently, and that their patenting performance is diverging (as opposed to the convergence demonstrated by FP&S).

Second, this study extends the framework to encompass variables not considered by FP&S, in particular the impact of public sector Research & Development (R&D); the results show that this variable has exerted a significant effect on patenting rates, which reinforces its claim to be considered as part of the innovative capacity of a latecomer country.

Third, this study provides some empirical and case study evidence of current patenting trends in one of the five countries, namely Taiwan, to illustrate the depth of strategising involved in raising the level of the country's innovative performance and the indispensable role played by the public sector. In these ways, this study sheds light on the process through which a latecomer country is able to close the gap with the more developed countries, by channelling resources towards the raising of its innovative capacity.

Х

List of Figures

		Page
Figure 2.1	International Patents Granted	17
Figure 2.2	International Patents Per Million Persons	17
Figure 2.3	International Patents Per 10,000 Full-time Scientists and Engineers	18
Figure 2.4	International Patents Per Unit of R&D Expenditure	18
Figure 3.1	Porter's Diamond of National Advantage	43
Figure 3.2	The Conceptual Framework of National Innovative Capacity	67
Figure 4.1	Composition of USPTO Patent Granted by Technological Class, 1995	89
Figure 5.1	Export Value in High-tech Industries	116
Figure 5.2	Trends in National Innovative Capacity	119
Figure 5.3	Actual Patents Per Million Persons	119
Figure 5.4	Comparison of Predicted and Real Patents Per Capita – Taiwan 1985-2000	120
Figure 5.5	Comparison of Predicted and Real Patents Per Capita – South Korea 1985-2000	120
Figure 5.6	Comparison of Predicted and Real Patents Per Capita – Singapore 1985-2000	121
Figure 5.7	Comparison of Predicted and Real Patents Per Capita – Hong Kong 1985-2000	121
Figure 5.8	Comparison of Predicted and Real Patents Per Capita – China 1985-2000	122
Figure 6.1	The Number of Patent Applications and Approvals in Taiwan from 1951 to 2001	131
Figure 6.2	Domestic and Foreign Patent Granted in the Taiwan's IPO – Invention Type	133
Figure 6.3	Domestic and Foreign Patent Granted in the Taiwan's IPO – Utility and New Model Types	134
Figure 6.4	TSMC's R&D Expenditure and Innovation Performance – 1995 to 2002	136
Figure 6.5	Winbond's R&D Expenditure and Innovation Performance – 1995 to 2002	138

Figure 6.6	Vanguard's R&D Expenditure and Innovation Performance – 1995	139
	to 2002	
Figure 6.7	Destinations of Personnel Dissemination from ITRI	145
Figure 6.8	Personnel Dissemination from ITRI to Industries	145
Figure 6.9	ITRI's R&D Expenditure and Innovation Performance	146
	- 1995 to 2002	
Figure 7.1	Trends of Actual Innovation Outputs and Technology Purchasing in	164
	Taiwan	
Figure 7.2	Countries from which Taiwan Purchased Technologies,	165
	1988 - 2000	

List of Tables

		Page
Table 2.1	Worldwide Patents Demand	12
Table 2.2	U.S. Patents Granted, by Residence of Inventors (Utility Patents	16
	Only)	
Table 2.3	Top Three Technology Classes in the Five East Asian Countries	19
Table 2.4	Top Patenting Firms and Institutions: Taiwan, Korea, Singapore,	20
	and China, 1997-2001	
Table 2.5	Top 12 Innovative Countries: USPTO 1975-2001	22
Table 2.6	Country Statistics: Averages for 5- and 30-year periods (Utility	23
	Patent Only)	
Table 2.7	Top 12 Patenting Organisations in the USPTO, 1997-2001	24
Table 3.1	Primary Channels of Foreign Technology Acquisition	30
Table 3.2	Summary of the Literature Review	63
Table 4.1	Data Sources of Variables and Measures	73
Table 4.2	Doctoral S&T Degrees Earned in Origin and the US Universities	85
Table 4.3	Venture Capital in Industrialising East Asia	92
Table 5.1	Descriptive Statistics – Five East Asian Countries from 1975-2000	96
Table 5.2	Simple Regression on Scale-dependent Measures	97
Table 5.3	Determinants of National Innovative Capacity (GDP/POP as	99
	Knowledge Stock)	
Table 5.4	Determinants of National Innovative Capacity (Patent Stock as	102
	Knowledge Stock)	
Table 5.5	Extension of the OECD-based Framework to East Asian Countries	104
Table 5.6 (a)	The Comparisons of Determinants of National Innovative Capacity	107
	between OECD and Latecomer Countries (GDP/POP as	
	Knowledge Stock)	
Table 5.6 (b)	The Comparisons of Determinants of National Innovative Capacity	108
	between OECD and Latecomer Countries (Patent Stock as	
	Knowledge Stock)	
Table 5.7	Exploring the Sources of Dispersion in International Patenting	110
Table 5.8	Exploring Robustness	112
Table 5.9	Exploring Relationship to GDP and International Trade	114
Table 6.1	Top 10 Taiwanese Patentees in the USPTO – 1990 to 2002	129

Table 6.2	Taiwan's Top 10 Patentees in the TIPO – 1990 to 2002	132
Table 6.3	Domestic and Foreign Patent Granted in the Taiwan's IPO	133
Table 6.4	TSMC: the Operational Facts from 1995 to 2002	136
Table 6.5	Winbond: the Operational Facts from 1995 to 2002	137
Table 6.6	VIS: the Operational Facts from 1995 to 2002	139
Table 6.7	ITRI: the Operational Facts from 1995 to 2002	146
Table 6.8	Taiwan's US Patents Performance in the CHI's 30 Technology	155
	Areas (Utility Patents Only)	
Table 7.1	Summary of the Empirical Study	162
Table 7.2	Price and Royalty Fluctuations of CD-R for Taiwanese Firms	166
Table 7.3	Import Value of Technology by Industry	167
Table 7.4	Government Ownership in Singapore	172
Table 7.5	U.S. Patents Granted to Singapore Organisations: 1997-2001	174

List of Abbreviations

APEC	Asia Pacific Economic Cooperation
APIPA	Asia Pacific Intellectual Property Association
CAFC	Court of Appeals for the Federal Circuit
CD-R	Compact Disk-Read Only Memory
CII	Current Impact Index
CPU	Central Processing Unit
DVD	Digital Video Disk
ED SHARE	Share of GDP spent on higher education
E-G	Ellison-Glaeser specialisation formulation in mechanical, chemical, and
	electrical classes
EPO	European Patent Office
ESOP	Employee Stock Option Program
EU	European Union
FDI	Foreign Direct Investment
FP&S	Furman, Porter and Stern
FTE S&T	Full-time Equivalent Scientists and Engineers
IC	Integrated Circuit
IDT	Integrated Device Technology
III	Institute for Information Industry
IMD	International Institute for Management Development
IP	Intellectual Property
IPRs	Intellectual Property Rights
IT	Information Technology
ITRI	Industrial Technology Research Institute
JPO	Japan Patent Office
LC	Legal Centre
LED	Light Emitting Diode
LICs	Late Industrialising Countries
MNCs	Multinational Corporations
MOEA	Ministry of Economic Affairs
MOS	Metal-Oxide Silicon
NBER	National Bureau of Economic Research

NI	National Semiconductor Incorporated
NICs	Newly Industrialised Countries
NSC	National Science Council
NSEL	National Systems of Economic Learning
ODM	Original Design Manufacturing
OEM	Original Equipment Manufacturing
PC	Personal Computer
POP	Population
PPP	Purchasing Power Parity
PWT	Penn World Table
R&D	Research and Development
RTA	Relative Technological Advantage
S.D.	Standard Deviation
S&E	Scientists and Engineers
SIA	Semiconductor Industry Association
SMEs	Small-Medium Size Enterprises
SOC	Systems-On-a-Chip
S&T	Science and Technology
STLC	Science and Technology Law Centre
TFT-LCD	Thin Film Transistor - Liquid Crystal Display
TDP	Technology Diffusion Project
TI	Texas Instrument Incorporated
TIPO	Taiwan Intellectual Property Office
TSMC	Taiwan Semiconductor Manufacturing Corporation
TTLA	Taiwan's TFT-LCD Association
TTSC	Technology Transfer and Service Centre
TWTM	Taiwan's Technology Marketplace
UMC	United Microelectronics Corporation
UNIDO	United Nations Industrial Development Organisation
USPTO	United State Patent and Trademark Office
USTR	United State Trade Representative
VC	Venture Capital
VISC	Vanguard International Semiconductor Corporation
WIPO	World Intellectual Property Organisation