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Abstract

In time series analysis, it is essential to check whether the observations are obtained by one

or by several different mechanisms of data generation. In recent years, this problem, which is

known as a change-point or break-point detection problem, has become a question of renewed

interest for many researchers. Problems of this type arise in a wide range of applications,

including financial time series analysis (e.g. changing volatility), signal processing (e.g.

structural analysis of EEG signals), geology data analysis (e.g. analysis of volcanic eruption

series) and environmental applications (e.g. detecting changes in ecological systems due to

climatic conditions crossing some critical thresholds). This thesis focuses on detecting the

changes in the mean level of autoregressive processes. We develop the Cross Entropy method

for estimating the locations of change-points as well as parameters of the process in each

segment. In order to identify the number of change-points, we use the Minimum Description

Length information criterion. We apply the proposed method to simulated and real data to

illustrate the usefulness of the approach.
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1
Introduction

In practice, the statistical properties of time series data, such as mean or variance, abruptly

change at unknown time point(s). This is known as a change-point problem, break-point

problem or segmentation, and arises in wide range of scientific endeavours; for example,

financial time series analysis ([36] [1]), econometrics ([5]), signal processing ([16] [46]

[26]), genomics ([32] [18]), geology ([20] [31]) and environmental applications ([25] [28]

[29] [10]). At the change points, observed data are segmented into several processes, with

adjacent segments having different statistical properties. It is inappropriate to consider a

time series a stationary process; applying the same statistical model to the whole set of

observations would lead to inaccurate estimations, predictions and forecasting. Therefore, it

is important to identify the number of change points, detect their locations and estimate the

parameters of each segment.

Many methods for working with time series or sequences have been developed. We ini-

tially classify these methods, and then specify the research problem of this thesis. Generally,
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there are two classes of change-point models: retrospective (off-line) and sequential (on-line).

In the retrospective analysis, we apply change-point methods to past collected data, instead of

at every step of data collection. The thesis does not present sequential-type methods; readers

are referred to Brodsky and Darkhovsky [11] and Ross [40].

In addition, methods for time series segmentation may be divided into frequency-domain

and time-domain methods, parametric and non-parametric methods, and in terms of linear

and non-linear and univariate and multivariate time series. Frequency-domain methods and

change-point detection literatures of multivariate time series are beyond the scope of this

thesis but readers can refer to Preuss et al. [35] for literature related to frequency-domain

method, Matteson and James [30] for multivariate time series segmentation. We will mainly

review the approaches developed for univariate time series in time domain and focus on

parametric methods.

There are essentially two branches of approaches for change-point estimation: the model

selection method and hypothesis testing. The fundamental method of hypothesis testing is

the likelihood ratio approach, originated to detect a single change point, which requires the

maximum log-likelihood functions under both null (no change point) and alternative hypothe-

ses (a single change point). The likelihood ratio approach for single change-point detection

can be extended to the multiple case; for example, one extension is the binary segmentation

(BS) algorithm ([43] [44]), the most popular method, used to detect the change in mean

and variance. Olshen et al. [32] and Fryzlewicz [19] further improved the BS algorithm,

proposing the circular BS (CBS) and wild BS approaches respectively. Moreover, Bai [4]

proposed a consistent likelihood-ratio-type test for multiple structural changes.

The general idea of the model selection method is to minimise a penalised likelihood function

by using optimisation methods. The model selection procedures based on the information

criteria normally involve a penalty term selection problem. Akaike’s information criterion

(AIC) and the Bayesian information criterion (BIC) are well known penalty functions, which

have been commonly used in change-point analysis, while the recently developed modified

Bayesian information criterion (mBIC) (see Zhang and Siegmund [47]) and minimum de-

scription length (MDL) (see Davis et al. [16]) have been proposed to estimate the number of



3

change points. The frequently used optimisation algorithms search for change points based on

the dynamic programming algorithm proposed by Auger and Lawrence [3] and Bai and Per-

ron [6]. Jackson et al. [22] further explored this, developing the optimal partitioning method;

Killick et al. [24] added pruning techniques, proposing the pruned exact linear time method

to reduce computational cost. Moreover, genetic algorithms have been used to search for

change points in time series by Doerr et al. [17]. Additionally, Evans et al. [18] proposed the

cross-entropy method with maximum likelihood approaches to estimating change points in

DNA sequences. Priyadarshana and Sofronov [36] applied a modified cross-entropy method

with BIC to detect multiple break-points in stock price series. Further, Priyadarshana and

Sofronov [38] strived to apply the cross-entropy method with modified BIC to detect multiple

change points in genomes data. Another attempt is found in Bansal et al. [8], who applied

the EM algorithm to the change-point problem.

Most of these change-point detection methods are based on the assumption of observa-

tions that are independent and identically distributed, from both Gaussian and non-Gaussian

distributions. However, in reality, many time series show an inherent dependent structure;

applying these methods to such data tends to cause false estimations. To date, there are few

studies that pay attention to this problem. Bai [4] [7] made major contributions to detecting

multiple change points in dependent structure of linear regression. Davis focused on autore-

gressive time series segmentation. The likelihood ratio test for an AR process with a single

structural break was developed in 1995 [15]. Davis et al. [16](2006) considered the MDL

information criterion as an objective function and used a genetic algorithm for optimisation;

the procedure performed well for a piecewise AR model. In recent times, Yau and Zhao [46]

(2016) proposed the likelihood ratio scan method withMDL information criterion to estimate

multiple change points in piecewise stationary AR processes. Korkas and Fryzlewicz [26]

(2017) paid attention to AR sequence segmentation, modifying the wild BS approach with

CUSUM statistics. The research problem of this thesis concerns the fact that a stationary

AR(1) model that presents moderate to strong autocorrelation is easily confused with struc-

tural breaks in the mean, and hence, may result in an overestimate problem if using common

segmentation approaches. Our interest is to provide an effective computational method to

estimate unknown multiple change points in a AR(1) process with breaks in the mean. For

this particular problem, Chakar et al. [12] (2017) proposed a specific approach for estimating
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change points in the mean of an AR(1) model.

Overall, in this thesis, we follow Davis et al. [16]’s study by using MDL information criterion

to estimate the number of change points, the autocorrelation parameter and the mean shifts

in an AR(1) model, and by using the cross-entropy method to locate and estimate the change

points. We compare the accuracy of estimates obtained from the proposed method CE-MDL

with CE-AIC, CE-BIC and some of the best performing techniques available in the literature.

Numerical experiments illustrate the robustness of this approach. The main objective of this

thesis is to present recent developments in model selection methods for retrospective time

series segmentation, and to provide clear explanations of our proposed methodology and the

details of the numerical experiments.

The thesis is structured as follows. Chapter 1 introduces the general background related to

the study and objectives of the thesis. Chapter 2 provides the details of change-point analysis

in time series, briefly presents the development of the time series segmentation methodology,

separated into hypothesis testing and model selection, and lastly, introduces and describes

our proposed method. Chapter 3 provides a detailed simulation study and presents the results

of numerical experiments both for artificially generated and real data. Finally, Chapter 4

concludes the thesis with a general discussion and future research directions.



2
Methodology

2.1 The Change-Point Problem in Time Series

In many applications, data are collected over time. Often, the statistical properties, such as the

mean and variance of the data or the coefficients of the regression model, change suddenly

at unknown time-points. This is known as the change-point problem or segmentation in

time series. Change-point tests can be classified by the distinction between posteriori,

retrospective or historical (off-line) tests versus a priori, prospective or sequential (on-line)

tests. The difference between these two methods lies in how data are collected. For the

posteriori change-point tests, the process of data acquisition is completed at the moment

the change-point test is applied, while for sequential structural break tests, the change point

is checked simultaneously as new data come in. The sequential approach is particularly

useful when a financial decision has to be made on-line, such as in risk management, asset

allocation and portfolio selection; we refer readers to Andreou and Ghysels [1] for more

details on sequential analysis in financial time series. In this thesis, we focus on retrospective
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change-point methods and applications.

2.1.1 Popular Applications

In recent years, there has been an increasing interest to the change-point problem, mainly

because it is widespread in many applications, including financial time series analysis (e.g.,

Andreou and Ghysels [1]), biomedical signal processing (e.g., Korkas and Fryzlewicz [26]),

geology data analysis (e.g., Furlan [20]) and environmental applications (e.g., Beaulieu et al.

[10]). Research effort has been concentrated in financial time series and climatological time

series analysis, while there is increasing interest in other applications, such as signal process-

ing, geology and environmental monitoring; further details are provided below.

Large volcanic eruptions are one of most catastrophic events on earth. There is an under-

recording problem in the commonly used datasets recording the dates and magnitudes of

eruptions over the last two millennia, with incomplete records before the 17th century. Furlan

[20] take this recording bias into account and apply a change-point model to better fit the

historical series of large magnitude volcanic activity. This paper gives an indication of how

to apply a change-point model to censored count data.

Figure 2.1: Plot of IBM monthly return

In the financial applications, efforts have been made to test multiple change points in financial

asset returns and volatility, as well as in the distribution of financial time series. It is common
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to describe the observations as non-stationary, with change points splitting the sample into

piecewise stationary segments. The accurate prediction and correct estimation of parameters

in non-stationary models only can be conducted after the detection of structural changes in

data. For example, Bauwens et al. [9] adapted the AR-GARCH model to estimate multi-

ple change points; the AR(0)-GARCH(1,1), AR(1)-GARCH(1,1) and AR(2)-GARCH(1,1)

models were proposed. Andreou and Ghysels [1] pointed out that multivariate volatility

models with ARCH or long memory type effects are largely unexplored, and continuous time

stochastic volatility models with structural breaks attract less attention. Figure 2.1 shows

stock monthly return data.

Change-point analysis of electroencephalogram (EEG) is a very popular area because of

its complex structure and usefulness. An EEG signal is a recording of the electrical activity

of the brain from the scalp. The different waveforms represent different cortical electri-

cal activities (e.g., excited-drowsy-deep sleep). The large literature provides mathematical

methods for analysing EEG, with most studies treating the EEG as a non-stationary process.

Recently, articles have analysed electrocardiogram (ECG) data, used to check for problems

with the heart’s electrical activity. Figure 2.2 shows ECG data, which can be found in the R

package wavethresh.

Figure 2.2: Plot of infant electrocardiogram data

In addition, change-point analysis in the area of climatology is popular, as there is much

concern regarding environmental quality and climate change. Many multiple change-point
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detection procedures for the climate segmentation problem are based on the assumption that

the series is driven by independent and identically distributed errors. This is an unrealistic

assumption in climate time series, where the data are known to present moderate to strong

autocorrelation; in particular, as shown in figure 2.3, the periodicity of the monthly series

makes detection difficult. To address this problem, Lu et al. [29] used a MDL approach,

which demonstrated a superior empirical performance. The climate time series in figure 2.3

are built in the R package iki.dataclim.

Figure 2.3: An example of annual and monthly climate time series

Overall, change-point analysis has a wide range of applications, and many examples of non-

stationary time series exist (e.g., figure 2.2). With the unknown number and locations of

change points, as well as the complex structure of time series (the monthly climate data

in figure 2.3 represents an extreme example), it is very difficult to precisely estimate the

change points. The conventional way of modelling non-stationary time series is to identify

the structural breaks and segment the data into piecewise stationary processes. Davis et al.

[16] (2006) proposed the valuable idea of using a piecewise AR model to fit the non-

stationary process and developing the auto-PARM method to estimate the unknown number

and locations of change points, as well as the orders of the respective AR processes. Cho and

Fryzlewicz [14] (2012), Yau and Zhao [46](2016) and Korkas and Fryzlewicz [26] (2017)

followed this idea to propose the MSML method, likelihood ratio scan method and WBSts

method respectively. This research area is still very active and needs to be further explored.
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2.1.2 Mean Shifts and Autocorrelation Structure

The change-point detection method was originally introduced in quality control by Page

[34] [33] (1954, 1955) for detecting the change points suddenly occurring in the mean of

independently and normally distributed time series. Since then, many methods have been

developed, based on the assumption of normal and non-normal independent distributions,

involving single and multiple change-point detection, in univariate and multivariate time

series, in linear and non-linear sequences, with mean, variance and trend changes.

Figure 2.4 illustrates a single change point at time 50 in the (a) mean (b) variance only

(c) the mean and variance (d) the intercept of a linear regression mode (e) both the intercept

and the slope of a linear regression model (f) no change point in the AR(1) model with strong

positive autocorrelation of 0.8.

Figure 2.4: A change point in linear or non-linear time series [10]

As shown in figure 2.4 (f), the strong autocorrelation patterns in an AR(1) model can be

easily confused with change points. We tend to perceive a variation in the mean in (f), even

though there is none. As mentioned earlier, non-stationary time series can be segmented into
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a piecewise stationary ARmodel, so it is important to accurately identify the change points in

eachAR segment. This is an interesting and challenging problem. Recently, Chakar et al. [12]

(2017) proposed a new approach for estimating the number and locations of multiple change

points in the mean of a Gaussian AR(1) process. In this thesis, we develop an innovative

methodology to tackle this problem.
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2.2 Hypothesis Testing Methods

Hypothesis testing was originally designed for at most one change, but can be easily extended

to multiple change-point detection in posterior parametric change-point analysis. For single

change-point testing, the null hypothesis H0 is no change point in a time series; the alternative

H1 is that there is exactly one change, at an unknown location. Forecasting procedures may

be accurately implemented as long as the observed data satisfy the underlying no-structural-

break null hypothesis. In multiple change-point problems, the primary concern of both

likelihood test statistics and the BS method is how to choose a threshold at which to stop the

procedure.

2.2.1 Likelihood Ratio Test

In many cases, data are assumed to follow an independent normal distribution; the likelihood

ratio approach for normal and non-normal distributions can be found in [13]. Davis et al.

[15] (1995) focused on the case of a univariate segmented AR model, this specific example

is provided below.

General Likelihood Ratio Approach

Let x1, x2, . . . , xn be a sequence of random vectors with probability distribution functions

F1, F2, . . . , Fn, respectively. Then, in general, the change-point problem is to test the following

null hypothesis:

H0 : F1 = F2 = · · · = Fn (2.1)

versus the alternative hypothesis:

H1 : F1 = · · · = Fk1 , Fk1+1 = · · · = Fk2 , Fk2+1 = · · · Fkq , Fkq+1 = · · · = Fn (2.2)

where 1 < k1 < k2 < · · · < kq < n, q is the unknown number of change points and

k1, k2, . . . , kq are their respective unknown positions, which must be estimated. If q = 1,

specifically, this refers to the single change-point problem. Moreover, if the distributions

F1, F2, . . . , Fn belong to a common parametric family Fθ , then the change-point problem is to

test the null hypothesis regarding the population parameters θi, i = 1, . . . , n:

H0 : θ1 = θ2 = · · · = θn ≡ θ (2.3)
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where θ is unknown, and assumed to generate the observations, versus the alternative hy-

pothesis:

H1 : θ1 = · · · = θk1 ≡ θ , θk1+1 = · · · = θk2 ≡ θ∗1 , · · · , θkq+1 = · · · = θn ≡ θ∗q (2.4)

Thus, under the alternative hypothesis, the data are split into q + 1 segments, x1, x2, . . . , xk1 |

xk1+1, xk1+2, . . . , xk2 | · · · | xkq+1, xkq+2 . . . , xkn , with segments have different generating

parameters θ, θ∗1, θ
∗
2, · · · , θ

∗
q. The likelihood function under the alternative hypothesis is

Lq+1(θ, θ∗), θ∗ = (θ∗1, θ
∗
2, · · · , θ

∗
q), which can be compared to the likelihood Ln(θ) from the

null hypothesis. The likelihood ratio is:

Λq =
maxθ Ln(θ)

maxθ,θ∗ Lq+1(θ, θ∗)
=

Ln(θ̂n)
Lq+1(θ̂0, θ̂∗)

(2.5)

θ̂0, θ̂∗ are the maximum likelihood estimators (MLE) for each subsample. If Λq > β, we

do not reject H0; if Λq < β, we reject H0, where β is an arbitrary positive constant. Some

authors [2] consider the test statistics, Zn = max(−2 logΛq), and if Zn is large, reject the null

hypothesis. For the likelihood-based methodology, the main problem is the selection of the

threshold β.

Autoregressive Model Example

Davis et al. [15] (1995) applied the likelihood ratio test to a segmented autoregressive process

with single change point, εt ∼ i.i.d.N(0, σ2), and length of sequence T :

xt =


φ0 + φ1xt−1 + · · · + φpxt−p + εt, t = 1, . . . , k

φ∗0 + φ
∗
1xt−1 + · · · + φ∗q xt−q + εt, t = k + 1, . . . ,T

(2.6)

Assume that the change point is at lag k. Under the null hypothesis H0, k > n, the data are

generated by vector of parameters θ = (φ0, φ1, . . . , φp, σ
2). The exact likelihood function of

null hypothesis is:

L(xt, xt−1, . . . , x1; θ) = fXp,Xp−1,...,X1(xp, xp−1, . . . , x1; θ)

×
T∏

t=p+1
fXt |Xt−1,...,Xt−p (xt |xt−1, . . . , xt−p; θ)

(2.7)

Since it is difficult to compute the exact likelihood function, particularly, the joint distribution,

fXp,Xp−1,...,X1(xp, xp−1, . . . , x1; θ) may not easy to be derived, so the conditional likelihood
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function method based on the first p observation is generally used. The log of the conditional

likelihood function is:

LL(xt, xt−1 . . . , xp+1 |xp, . . . , x1; θ) = −T − p
2

log(2π) − T − p
2

log(σ2)

−
T∑

t=p+1

(xt − φ0 − φ1xt−1 − · · · − φpxt−p)2

2σ2

(2.8)

Hence, the conditional MLE of θ = (φ0, φ1, . . . , φp, σ
2)′ can be obtained by minimis-

ing
∑T

t=p+1(xt − φ0 − φ1xt−1 − · · · − φpxt−p)2, the conditional sum-of-squares. Under the

alternative hypothesis H1, 1 ≤ k < n, the data are generated by vector of parameters

θ = (φ0, φ1, . . . , φp, σ
2)′, θ∗ = (φ∗0, φ

∗
1, . . . , φ

∗
q, σ

2)′, and the exact likelihood function is:

L(xt, xt−1, . . . , x1; θ, θ∗) = LXk,Xk−1,...,X1(xk, xk−1, . . . , x1; θ)

× LXt,Xt−1,...,Xk+1(xt, xt−1, . . . , xk+1; θ∗)

= fXp,Xp−1,...,X1(xp, xp−1, . . . , x1; θ)

× fXk+q+1,Xk+q,...,Xk+1(xk+q+1, xk+q, . . . , xk+1; θ∗)

×
k∏

t=p+1
fXt |Xt−1,...,Xt−p (xt |xt−1, . . . , xt−p; θ)

×
T∏

t=k+q+2
fXt |Xt−1,...,Xt−q (xt |xt−1, . . . , xt−q; θ∗)

(2.9)

Davis et al. [15] developed a likelihood ratio test statistics for this model. The main problem

is the selection of threshold. At that time, the primary concern is the difficulty in computing

the MLE of model parameters from exact likelihood function under alternative hypothesis,

due to the complex joint distributions of sub-sequences. Nowadays, we can easily obtain the

MLE from exact likelihood function by using R package arima. It is important to note that

the likelihood ratio test is based on an assumption of known number of change-points.

2.2.2 Binary Segmentation Algorithm Family

TheBSmethod used for detectingmultiple change points is based on atmost one change-point

hypothesis test; thus, it can be considered one of the hypothesis testing methods. The BS

method also involves the problem of developing the test statistic and selecting the appropriate

threshold. The BS algorithm family includes the general BS proposed by [43], [44], CBS
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[32] and the wild segmentation algorithm [19]. In this section, we analyse the pros and cons

of BS algorithms.

General Binary Segmentation Algorithm

Consider a time series sequence x1, x2, . . . , xn, assuming the data are normally distributed

with a known variance. BS uses the likelihood ratio statistic for testing the null hypothesis (no

change point) against the alternative (exactly one change point). It is one of the most popular

methods in change-point detection, and has the advantages of having low computational cost

and being easy to code. The details of the technique are introduced in the following steps:

1. Testing the no change-point hypothesis (2.1) against the one change-point hypothesis

(2.2), starting with the entire dataset. If H0 is not rejected, stop - the output is no

change point. If H0 is rejected, a change point was detected, and we progress to step 2.

2. The change point found in step 1 partitions the data into two sub-sequences; apply the

single change-point hypothesis test separately for each sub-sequence.

3. Iterate until no further sub-sequences have change points.

The idea behind the BS algorithm is simple and logical - it searches for a single change point

at a time and never re-visits a segment that has been tested, which makes it computationally

fast, with O(n log n) computational cost. However, the BS method tends to yield crude

estimates of the number and locations of change-points. The reason for this is that, for

example, after the first test, the data are segmented into two sub-sequences, with the length

of each segment based on the location of the change point detected in the last procedure - this

causes an underestimation problem because certain segments may contain multiple change

points. Olshen et al. [32] proposed CBS to solve this problem. Fryzlewicz [19] argued that

when the length between two change points is too small, less than O(T3/4), T is the number of

observations, the BS method has a tendency to underestimate the number of change points.

Circular Binary Segmentation Algorithm

Mutations in copy number are common in cancer and other diseases, so it is important to

detect and identify the aberrant genomic regions. CBS targets analysing the change in the

mean of array-based DNA copy-number data. The method aims to detect the clustered,
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small structural breaks buried in the middle of a large dataset. The authors modified the BS

method and added the permutation approach to render it more appropriate for array DNA

sequences. The CBSmethod considers each segment or sub-segment as a circle and develops

a new likelihood ratio statistic for hypothesis testing. Moreover, the CBS method reduces the

computational cost to O(n). However, with a known number of change points, there is no

guarantee that the CBS method will obtain the optimal locations of change points.

Wild Binary Segmentation Algorithm

The motivation for the wild BS technique is to eliminate the weakness of the BS method and,

at the same time, to inherit its strength. Fryzlewicz [19] proposed two new criteria to stop the

wild BS procedure: one is based on the sub-sample CUSUM statistic, rather than the global

CUSUM statistic; the other uses the strengthened Schwarz information criterion (sSIC). The

authors introduced the model selection procedure in the BS method to improve its accuracy,

as the model selection methods mostly use exact optimisation algorithms to obtain the global

optimal. This contrasts with BS-like methods, as the solutions of model selection methods

are more accurate but involve greater computational burden. In the next section, we provide

further detail on model selection methods.



16 Methodology

2.3 Model Selection Methods

In practice, the number of change points is always unknown, and a major challenge in change-

point analysis is to determine the number of change points, as well as locating their positions.

The model selection method set out below was developed to identify the unknown number

of change points, and it promises superior performance relative to the likelihood ratio test

method in this context. To help explain this idea, we reuse the segmented autoregressive

model example demonstrated in the likelihood ratio test section. Here, the model under the

null hypothesis with no change is:

xt = φ0 + φ1xt−1 + · · · + φpxt−p + εt, t = 1, . . . ,T (2.10)

We assume the number of change points is N , the location vector is τ = (τ1, τ2, . . . , τN ),

mathematically speaking, 1 ≤ N ≤ T − 1; then the model with N change-points is:

xt =



φ0 + φ1xt−1 + · · · + φpxt−p + εt, t = 1, . . . , τ1

φ
(1)
0 + φ

(1)
1 xt−1 + · · · + φ(1)p1 xt−p1 + εt, t = τ1 + 1, . . . , τ2

...

φ
(N)
0 + φ

(N)
1 xt−1 + · · · + φ(N)pN

xt−pN + εt, t = τN + 1, . . . ,T

(2.11)

The example illustrates that the likelihood ratio test cannot be used without knowing the

number of changes N , so it is important to make an inference about N first. Bai [4] proposed

a conditional likelihood ratio test, based on the sum-of-square function for the unknown

multiple structural breaks problem, and a new test statistic was built to determine N . As

long as the N was determined, we obtain a specific model, and the change-point locations

and other model parameters can be estimated from it. Overall, different values for N refer

to models with different parameter dimensions; we need to select the best model, this is the

model selection problem.

In this thesis, we focus on the information approach, which is a general model selection

technique commonly used for detecting unknown multiple change points. Compared with

hypothesis methods, there are two main advantages to the information approach. First, it is

able to simultaneously estimate the number of changes, their locations and the other model

parameters by optimising an information criterion. Second, it can be easily adapted to diverse
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situations; not only to random variables based on assumptions of independence and normality,

but also to the linear regressionmodel with dependent structure and the autoregressive model.

Our method is based on the information approach. In following subsections, we introduce the

popular information criteria and optimisation algorithms available in change-point detection

literatures.

2.3.1 Model Selection Criteria

Let X = (X1, X2, . . . , XT ) be a data sequence of length T . Then data are segmented

by change points into N + 1 segments defined by N change points τ = (τ1, τ2, . . . , τN ),

0 = τ0 < τ1 < τ2 < · · · < τN < τN+1 = T , where the i-th segment includes observations

(Xτi−1+1, . . . , Xτi ). In general, the problem of identifying unknown multiple change points can

be considered equivalent to minimising the objective function [23]:

N∑
i=0

[
C(X(τi+1):τi+1)

]
+ P (2.12)

where the C is a cost function for a segment, and P represents a penalty term that takes model

complexity into account. Logically, we choose the model with the lowest costs in 2.12 as the

best model. In change-point analysis, the negative maximum log-likelihood, −2 logL is the

commonly used cost function; the cumulative sum is also used. In addition, Bai & Perron

used the sum of squared residuals as the cost function; Zhang and Siegmund [47] took the

length of the segment into account, combining this with the log-likelihood of each segment

to form a cost function. More recently, Beaulieu et al. [10] extended the residual sum of

squares cost function for segmenting an autoregressive AR(p) model.

Information criteria are widely used for selecting the best model from several competing

statistical models. The main idea is to choose the simplest model with good fit. The popular

information approaches to the change-point problem include the Akaike information criterion

(AIC), Bayesian information criterion (BIC) and the minimum description length principle.

The major difference between these information criteria is the amount of penalty added to

each parameter of the model. The penalty terms for the AIC and the BIC are given below:

� AIC: P = θk ∗ 2
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� BIC: P = θk ∗ log(T)

where θk represents the total number of parameters in the model. Thus, each parameter is

penalised by same amount. It is clear that the larger the number of model parameters, the

greater the penalties attached.

Compared with the AIC and the BIC, the MDL method can tailor penalties for parame-

ters having different natures, while the other information criteria treat every parameter as

imposing the same penalty. MDL methods have been demonstrated to be useful in recent lit-

erature; for example, Davis et al. [16] proposed that theMDLmethod has a superior empirical

performance for autoregressive models, and developed the penalty separately for the number

of change points, each location, the order of each segment and the mean shift parameter. Li

and Lund [28] developed an objective function in terms of log-normal distributions, to model

annual precipitation data. Lu et al. [29] also used the MDL method to segment climatic time

series. It is important to note that the penalty term P of the MDL method varies with the

posterior distribution of the observed series, so there does not exist a general expression for

the penalty term function of the MDL.

The MDL principle is rooted in information theories. We refer readers to [21] for an in-

troduction to MDL. Briefly, MDL defines the best model as the one that can compress a

large amount information by using less computer memory storage. In statistics, the amount

of computer memory is also called code length, CL. Because of the flexibility of the MDL

principle, there are multiple versions of theMDL penalty term. Here, we present the two-part

MDL, and develop our objective function by following this version.

The general procedures of the MDL approach used for estimating the number of changes

are described below:

1. Decomposition of observed data {Xt} . Decompose the data {Xt} into two parts, the

fitted model {X̂t} and the residuals model {ε̂t} conditional on the fitted model:

CL({Xt}) = CL({X̂t}) + CL({ε̂t}) (2.13)

where the total code length consists of CL({X̂t}) and CL({ε̂t}). Taking into account the

change-point problem, the data are segmented by change points into N + 1 segments,
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using locations τ = (τ1, τ2, . . . , τN ); the i-th segment is defined as ηi, and θ denotes the

other parameters of model.

CL({X̂t}) = CL({N̂}) + CL({τ̂}) + CL({θ̂}) (2.14)

CL({X̂t}) = CL({N̂}) + CL({η1, η2, . . . , ηN+1}) + CL({θ̂}) (2.15)

Davis et al. [16] suggested that equation 2.14 and 2.15 are interchangeable, as when

the locations of the change points are known, the information (length) of each segment

is completely known. The main task is to find the computational expressions for code

length.

2. Calculate the total code length. According to Shannon’s information theory, CL({ε̂t})

is given by the negative log-likelihood of the fitted model. To derive the expression

CL({X̂t}), we follow two basic principles, which are the essence of the MDL method.

First, a real-valued parameter computed from a large number of observations, for

example, the whole series T , takes up log2(T)/2 bits of memory, thus log(T)/2 is used

as the code length for matching the calculation of the log-likelihood. Second, an integer

parameter bounded by Q that can be encoded with log2(Q) bits, such as log(Q), is used

for developing an objective function.

3. Find the minimal code length. From MDL’s point of view, the best model is the

one that produces minimal code length. After obtaining the calculable expression of

total code length according to the principles from step 2, we can apply optimisation

algorithms to obtain the minimised optimal code length.



20 Methodology

2.3.2 Dynamic Programming Algorithms

Dynamic programming (DP) algorithms can be used as amathematical optimisation technique

in change-point segmentation. It is complementary to BS-type algorithms, with significant

computational costs but the ability to output the global optimum. In contrast to BS algorithms,

DP algorithms and derivations provide exact solutions. In the BS procedure, the current

change-point locations are conditional on change points detected in the last step, whereas DP

algorithms obtain the optimal segmentations by reusing all previous information of possible

combinations. As the datasets become larger, the entire segmentation space and possible N

increase, and this causes a heavy computational burden to minimise the cost function 2.12,

this is the main concern regarding DP methods. Many methods have been developed to

reduce computational complexity.

Segment Neighbourhood Algorithm

Auger and Lawrence [3] (1989) proposed the segment neighbourhood (SN) algorithm, by

setting a maximum number of change points Nmax to reduce the possible segments, with only

candidate segmentations with change points between 0 to Nmax involved in the computation.

It identifies the optimal partitions for Nmax change points by reusing the results calculated

for Nmax − 1. Further, the method allows an arbitrary penalty term. Hence, this exhaustive

search technique has a slow computational speed, with O(NmaxT2) computational cost.

Bai and Perron’s Method

The authors [7] (2003) further explored the SN algorithm, aiming to improve computational

speed by adding a step of setting the minimum segment length and using the DP algorithm

to optimise the sum of least-squares objective function. The method allows for a dependent

structure of linear regression observations, and both numerical and theoretical results suggest

that the procedure has excellent empirical properties. Bai and Perron [6] (1998) solved the

theoretical properties of using the sum of least-squares residuals as the cost function to detect

the unknown multiple structural changes in linear models. Therefore, this is one of the most

widely used methods. Weideman et al. [45] (2017) recently applied Bai and Perron’s method

to identify if there were structural breaks in the renewable energy market of South Africa in

the period 1990 to 2010.
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PELT Approach

Themain problem ofDP algorithms is computational complexity, especiallywhen the number

of change points linearly increases with the length of the dataset; for example, in analysing

larger regions of genomes or recordingfinancial time series over longer periods, in this context,

the SN method will yield a computational cost of O(T3). To reduce computational cost, with

as high a detection accuracy as possible, the pruned exact linear time (PELT) method was

developed. The PELT method is based on the optimal partitioning (OP) method proposed

by Jackson et al. [22]. The PELT method modified the OP algorithm by adding a pruning

step, which aimed to remove the values that can never be minima from the optimization

procedures, abandoning them in the next iteration, and hence, reducing computational cost

to O(T). However, both the OP and the PELT methods are limited by their assumptions: that

data are independent within a segment, and that the penalty term used in 2.12 is a constant

that does not depend on the number or location of change points.
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2.3.3 Evolutionary Algorithms

Evolutionary Algorithms (EAs) have been implemented in a wide range of applications, with

the dramatic development in technologies. EAs are designed to solve the difficult optimisation

problem by using evolutionary computation techniques. It is natural to consider applying EAs

for solving the multiple change-point detection problem by minimising an objective function

2.12. One of the EAs, the genetic algorithm (GA), has been studied by several authors in

change-point analysis, such as [16], [28],[29] and [17]. Most have focused on models with

complex dependent structures. In addition, few authors have considered the application of

the EM algorithm to the change-point problem [27], [8]. Recently, the cross-entropy (CE)

method has been considered for detecting break points in biological sequences [38], [18] and

financial time series [36].

Compared with DP methods, EAs are able to provide exact solutions without making re-

strictive assumptions about the objective function; as mentioned above, the PELT method

is based on the assumption of a constant penalty term. This is the main advantage of EAs.

However, evolutionary type algorithms have the same problem as DP methods - high com-

putational costs. We provide below a brief introduction of the GA, but focus on the CE

method.

Genetic Algorithm

AGA is a stochastic optimisation method designed to follow the principle of ’Darwinian nat-

ural selection’ and mimic the natural evolution process. The selection procedure guarantees

that the objective function values of the offspring will gradually be improved over generations

and approach the near-global optimum. The formal structure of the GA for minimising the

objective function is displayed below:

1. Initially, generate a random population, which is called chromosomes.

2. Obtain the minimal values of the objective criterion, to determine the fitness of chro-

mosomes.

3. Repeat

(a) Choose healthy parent chromosomes from the initial population, the lower the
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value of the objective function calculated from the population, the higher the

possibility of being chosen.

(b) Perform crossover or mutation on the chosen parent chromosomes to produce

offspring.

(c) Determine the fitness of child chromosomes.

4. Until the most fit individual is chosen.

Because of this unique evolutionary selection procedure, GA is indifferent to the expression

of the objective function. This is the competing feature of GA. For example, as the MDL

objective function of the segmented AR(p) process contains a large number of parameters

and optimising MDL(N , τ1, τ2, . . . , τN , p1, p2, . . . , pN ) is tedious, Davis et al. [16] proposed

that GA promises a good result for minimising this complex objective function. Lu et al. [29]

used GA to solve the optimisation problem for the periodic climate time series model.

Cross-Entropy Algorithm

The CE method is an evolutionary computing technique developed by Rubinstein and Kroese

[41] to solve the complex optimisation problem in the multiple change-point detection prob-

lem. It is based on one of the fundamental concepts in modern information theory Kullback-

Leibler information or cross-entropy [37]. Entropy is a fundamental quantity to measure total

information-entropy of a message per bit multiplied by the length of that message. It is also

defined as a functional of probability distributions in mathematics. CE measures the directed

distance between the two probability distributions. The basic idea behind the CE method is

summarised as a three-step iteration process: first, simulate a vector of candidate solutions for

the problem, based on an appropriate statistical distribution. Next, calculate the performance

function score for each candidate solution. Third, obtain the improved solution set in the

next iteration by updating the parameters of the statistical distribution throughminimisingCE.

Compared with GAs or other stochastic optimisation methods, the CEmethod implements all

its optimisation procedures by updating a parametrised probability distribution. The proba-

bilistic approach enables the current best solution to have a greater probability of appearing

in the next iteration. This distribution-based feature is the main advantage of the CE method

compared with other optimisation approaches.
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In addition, the CE method is an ideal methodology to address the unknown multiple change-

point problem. First, as one of the best EAs, it does not require strict assumptions about the

objective function, and performs well with an objective function containing a large number

of uncertain parameters. Second, as mentioned earlier, in most applications, the number

and locations of change points are not known in advance; by using the CE method, we can

estimate the number of change points and their corresponding locations together. The details

of this procedure are presented below:

Algorithm 1 The general CE algorithm for estimating both the number of change-points and

their locations
1: Given the search space for the number of change-points Nmin ≤ N ≤ Nmax , and for each

value of N , repeat,

(1) Set the statistical distribution with the initial parameters θ(0), let the sample size be

M , the iteration starts with k = 1.

(2) Generate M sets of change-point locations vector τ(1), τ(2), . . . , τ(M) from sta-

tistical distribution with parameters θ(k−1) from last iteration, where τ(i) =

(τ(i)1 , τ
(i)
2 , . . . , τ

(i)
N ), i = 1, 2, . . . , M .

(3) For each sample i, order the simulated locations in ascending order and calculate

the performance function score or the values of objective function based on 2.12,

sort all M samples in increasing order.

(4) Obtain the first Melite samples from last step, Melite = α ×M , the elite samples can

be used to update the parameter of statistical distribution in step 1.

(5) Once the process has met a stopping criterion, we stop the process. The current

solution is the estimates of locations.

2: In order to obtain the estimates of N , minimize the the performance function score with

the estimates of locations from previous step.

3: Finally, the optimal estimates of N and its corresponding locations are acquired.
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2.4 Detecting Change-points in AR(1) Structure

In this section, the detailed description of our methodology is provided. We utilize the MDL

criterion to estimate the number of change-points, and apply the cross-entropy method to

obtain the locations of change-points as well as estimating the parameters of each segment in

a Gaussian AR(1) process. We call this new method the CE-MDL method. At the beginning

of chapter two, we display many interesting problems in time series segmentation. In this

thesis, we are interested in detecting the mean shifts in AR(1) process, and will not consider

the problem of detecting change-points in an ambitious model.

Figure 2.5: An example of true mean shift

We reuse the examples (a) and (f) shown in Figure 2.4 to display our research problem. There

are several steep slopes in the AR(1) process which has a strong autocorrelation, they are

likely to be wrongly identified as change-points when using most of existing change-point

detect techniques. In other words, the inherent autocorrelation structure of AR(1) process is

easily confused with true mean shifting. The CE-MDL method is developed to address this

type of problem. We build an AR(1) model with changes in the mean.
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2.4.1 Model Settings and Assumptions

Let X = (X1, X2, . . . , XT ) be a data sequence of length T . Suppose the number of change-

points is N , then datasets are segmented into N + 1 segments, each segment is defined as ηi,

τ = (τ1, τ2, . . . , τN ) is the location vector, 0 = τ0 < τ1 < τ2 < · · · < τN < τN+1 = T , where

the i-th segment includes observations (Xτi−1+1, . . . , Xτi ). In this thesis, we consider an AR(1)

model with mean shifts and assume that the autocorrelation coefficient ρ is same for each

segment and σ2 is homogeneous:

Xt = ρXt−1 + δiIbτi−1+16t6τic + εt, t = 1, 2, . . . ,T (2.16)

with independent and identically distributed εt ∼ N(0, σ2), where I = 1 for τi−1 + 1 6

t 6 τi and 0 everywhere else, 1 6 i 6 N + 1, which allows for shifts in the mean level,

δ = (δ1, δ2, . . . , δN+1).

2.4.2 The MDL Setup

The first and foremost task is to develop an objective function based on information criterion

in order to apply CE algorithm. Firstly, we need to derive the penalty term of the MDL based

on the proposed model 2.16, the procedure is presented below:

1. Decomposition of observed data {Xt} . Decompose the data {Xt} into two parts, the

fitted model {X̂t} and the residuals model {ε̂t} conditional on the fitted model, in the

expression of:

CL({Xt}) = CL({X̂t}) + CL({ε̂t}) (2.17)

The code length of the fitted model:

CL({X̂t}) = CL({N̂}) + CL({η1, η2, . . . , ηN+1}) + CL({ ρ̂}) + CL({σ̂2}) (2.18)

CL({X̂t}) = CL({N̂}) + CL({τ1, τ2, . . . , τN }) + CL({ ρ̂}) + CL({σ̂2}) (2.19)

Davis et al. [16] proposed that equation 2.18 and 2.19 are equal, since the locations

of change-point are known, the length of each segment would also be completely

known. So we developed two versions of the MDL penalty term based on 2.18 and

2.19 respectively. We refer them to MDL1 and MDL2.
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2. Calculate the total code length. The MDL principle views the best model as the one

that consumes less computer space with compressing relatively more information. In

order to obtain the objective function, it is necessary to convert the computer language

to statistical expressions. CL({ε̂t}) can be interpreted as −2LL(X | N, τ, ρ, δ, σ2), the

double negative maximum likelihood is given by the fitted model. In order to derive

the expression of CL({X̂t}), we follow the two basic principles under real-valued

parameters and integer parameters. For a real-valued parameter, if it is estimated from

T observed data, it needs log2 T/2 bits memory; For an integer parameter, the code

length is the space that its upper bound takes. The penalty term for each parameter is

given as follows,

(1) For the number N , the penalty terms is log(N). Since it can be considered as an

integer parameter without being bounded, the code length is log2(N).

(2) For mean shift δ j , the penalty term is log(τj+1 − τj − 1)/2, which is a real-valued

parameter that needed to be estimated from piecewise τj+1 − τj − 1, thus, it needs

log2(τj+1 − τj − 1)/2 computer space.

(3) For the location τj , the penalty term is log(τj+1). Considering the integer parameter

principle, because of log(τj) < log(τj+1), computing τj needs log2(τj+1) bits memory.

(4) For each segment η j , the penalty term is log(T). Because maximum length for each

segment can not beyond T , under the integer parameter principle, all η j can be encoded

with log2(T) bits.

(5) For model parameter ρ, the penalty term is log(T)/2. As a real-valued parameter,

it is estimated from whole datasets, so the code length is log2(T)/2.

(6) For model parameter σ2, the penalty term is log(T)/2, so like ρ the code length is

also log2(T)/2. .

After transforming the total code length to calculable expressions, we can get the objective

functions based on AIC, BIC, MDL1 and MDL2 for the proposed model. N + 3 is the total

parameters of model, δ is estimated from each segment, there are N + 1 segments in total,

σ2 and ρ are estimated from the whole datasets respectively.

FAIC = −2LL(X | N, τ, ρ, δ, σ2) + 2(N + 3), (2.20)

FBIC = −2LL(X | N, τ, ρ, δ, σ2) + log(T)(N + 3), (2.21)
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FMDL1 = −2LL(X | N, τ, ρ, δ, σ2) + 2(N + 2) log(T) + 2 log(N)

+

N∑
i=0

log(τi+1 − τi − 1). (2.22)

FMDL2 = −2LL(X | N, τ, ρ, δ, σ2) + 2 log(T) + 2 log(N)

+

N∑
i=0

log(τi+1 − τi − 1) + 2
N∑

i=0
log(τi+1). (2.23)

2.4.3 Maximum Likelihood Framework

The next task is to obtain the MLE from proposed model. Even though our model is much

simper than the segmented AR(p) process proposed by Davis et al. [16], the exact likelihood

function is still complex, as seen below.

LL(X | N, τ, ρ, δ, σ2) = −N + 1
2

ln
(

2πσ2

1 − ρ2

)
−

N∑
i=0

τi+1 − τi − 1
2

ln(2πσ2)

−
N∑

i=0

(Xt − δi+1/(1 − ρ))2
2σ2/(1 − ρ2)

−
N∑

i=0

τi+1∑
t=τi+2

(Xt − δi+1 − ρXt−1)2
2σ2 .

Since the number of change-points is unknown, the search space is quite large, applying CE

method will cause extra computational burden. Therefore, we added one pruning procedure

to the general CE algorithm in order to avoid computing the maximum likelihood function

under the model with unknown multiple change-points. In algorithm 1, after finishing the

step (5), we can acquire the estimates of change-point locations, this implies that the estimated

mean δ̂ of each segment is given, by parallel shifting each segment, once the process return

to a stationary state, we can easily calculate the maximum likelihood under the stationary

AR(1) model by using R package, arima. In the next section, we explain this procedure in

details.

2.4.4 The Cross-Entropy Algorithm for AR(1) Model

The CE method in Priyadarshana and Sofronov [38] and Priyadarshana and Sofronov [36]

consider four-parameter beta distributions, whereas in this thesis, in order to detect the mean

shifts, we use the normal distribution. The modified algorithm is summarized as:
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Algorithm 2 The CE-AR(1) algorithm

1: Choose initial sets for µ(0) =
(
µ
(0)
1 , µ

(0)
2 , . . . , µ

(0)
N , µ

(N+1)
1 , µ

(N+2)
2 , . . . , µ

(2N+1)
N

)
and

(σ2)(0) =
(
(σ2

1 )
(0), (σ2

2 )
(0), . . . , (σ2

N )(0), (σ2
N+1)

(0), (σ2
N+2)

(0), . . . , (σ2
2N+1)

(0)) . The length

of both vectors is 2N + 1 with the first N components corresponding to N change-points

and the last N + 1 components corresponding to the vector δ. Set k = 1.

2: Generate a random sample c(1), c(2), . . . , c(M) from the normal distributions with pa-

rameters
(
µ(k−1), (σ2)(k−1)) , where c(i) =

(
c(i)1 , c

(i)
2 , . . . , c

(i)
N , c

(i)
N+1, c

(i)
N+2, . . . , c

(i)
2N+1

)
, for

i = 1, 2, . . . , M , where the first N components
(
c(i)1 , c

(i)
2 , . . . , c

(i)
N

)
is a change-point vector.

3: For each i = 1, 2, . . . , M , order
(
c(i)1 , c

(i)
2 , . . . , c

(i)
N

)
from smallest to biggest. After adjusting

themean levels in each segment, estimate the autocorrelation coefficient ρ using the entire

data sequence.

4: Evaluate the objective function (either (2.20), (2.21) or (2.22), (2.23)) for each

c(1), c(2), . . . , c(M). Define the elite sample, which is the best performing combinations of

the change-points. Let Melite = βM be the size of the elite sample.

5: For all j = 1, 2, . . . , 2N + 1, estimate the parameters µ(k)j and (σ2
j )(k) using the elite

sample and update the current parameter sets as follows:

µ
(k)
j =

∑
i∈I

c(i)j

Melite
,

(
σ2

j

) (k)
=

∑
i∈I

(
c(i)j − µ

(k)
j

)2

Melite
,

where I is the set of indices of the best performing samples.

6: Stopping criterion is max j(σ2
j )(k) < ε.

7: If the stopping criterion is met, then stop the process and identify the combination of the

positions of change points and the values of mean levels for all segments that minimizes

the objective function. Otherwise set k = k + 1 and iterate from step 2.
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3
Numerical Results

In this section, we discuss two classes of numerical examples: artificial generated data and

real data analysis. In the simulation study, we compare the performance of CE-AIC, CE-BIC,

CE-MDL1, and CE-MDL2 against the best available methods implemented in R packages.

Then we apply our method for a real data - United States inflation rate data from September

of 2000 to December 2015, comparing with Bai & Perron’s method.

3.1 Artificial Data Analysis

Following model (2.16), we generated 9 sets of 1000 AR(1) sequences with autocorrelation

coefficient ranging from 0.1 to 0.9 and σ = 1 for each example. Example 1, deals with the

single change-point problem, we generate a location at τ = 25 and τ = 5 respectively within

51 data, have the same mean shift equals 1. Then, in example 2 and 3, we introduced 2 and 3

abrupt change-points in 101 observations with positions τ = (τ1 = 30, τ2 = 60), mean shifts

δ = (δ1 = 0, δ2 = −1, δ3 = 1) and τ = (τ1 = 10, τ2 = 30, τ3 = 60), and the mean levels
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δ = (δ1 = 0, δ2 = −1, δ3 = 1, δ4 = 2).

We run the CE algorithm with the following simulation parameters: the elite proportion

value β = 0.05, the sample size M = 200 and the stopping cut-off value ε = 0.01. Let

CE-AIC, CE-BIC, CE-MDL1 and CE-MDL2 denote the CE algorithms with the objective

functions AIC, BIC and two version MDL, respectively. Since the limited space of the table,

we use the lower case letter. All following tables compare the number of change-points

obtained by the CE-AIC, CE-BIC, CE-MDL algorithms and the other best available methods

that implemented in R package. It is important to note that we only consider the changes in

the mean level, and limit the maximum number of change-points to five in all methods.

A list of all competing methods used is:

1. changepoint package [23], which implements the fast methods - BS method and the

PELT method, we use the default BIC penalty.

2. strucchange implemented Bai & Perron’s method for multiple change-points detec-

tion especially suitable for general regression problem.

3. wbs package implements the wild binary segmentation algorithm, we use sSIC penalty

as model selection criterion.

4. Segmentor3IsBack, is based on a pruned dynamic programming algorithm developed

by [39], which performs a fast exact segmentation on data and allows for use of various

cost functions.

5. AR1seg, corresponds to the implementation of the robust approach for estimating

change-points in the mean of an AR(1) Gaussian process by using the methodology

described in the paper [12].

6. breakpoint, applies the CE method to multiple break-point detection mainly focus

on independent sequences.

We will provide the summary of results for all methods in simulated data analysis at the end

of this section, instead of describing the results separately.
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3.1.1 Example 1: Simulated data with single change-point

Example 1.1: Simulated data with single change-point, the location is 25, mean shift

equals 1

Table 3.1: Estimated number of single change-point for various competing methods over

1000 simulated sequences with location at τ1 = 25, mean shift δ1 = 0, δ2 = 1

Algorithm ρ
N̂

ρ
N̂

0 1 2 3 > 4 0 1 2 3 > 4

BS-Bic

0.3

165 655 147 27 6

0.5

149 466 254 93 38

PELT-Bic 123 578 217 65 16 87 351 303 169 88

WBS-sSic 0 0 0 0 1000 0 0 1 0 999

B&P 0 745 205 43 7 0 541 285 130 39

Seg3IsB 23 164 323 85 405 55 199 280 108 358

bkpoint 19 529 328 94 30 0 318 386 193 103

AR1seg 558 264 93 44 41 544 217 107 72 60

CE-Aic 0 0 0 16 984 0 0 2 13 985

CE-Bic 0 31 62 122 784 0 28 64 118 790

CE-mdL1 0 916 70 9 5 0 875 93 19 13

CE-mdL2 0 780 130 39 51 0 729 154 52 65

BS-Bic

0.7

86 242 286 220 166

0.9

11 58 165 250 527

PELT-Bic 33 126 269 286 251 3 23 120 232 622

WBS-sSic 0 0 0 0 1000 0 0 0 0 1000

B&P 0 291 302 262 145 0 97 225 338 340

Seg3IsB 100 220 211 125 344 158 213 219 151 259

bkpoint 0 186 394 285 135 0 175 395 318 112

AR1seg 497 178 136 98 91 236 193 191 188 192

CE-Aic 0 0 2 6 992 0 0 1 16 983

CE-Bic 0 17 46 115 822 0 23 52 118 807

CE-mdL1 0 844 114 22 20 0 807 110 50 33

CE-mdL2 0 671 174 65 90 0 635 153 100 112
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Figure 3.1: The true profile (black solid line) and the profile plots estimated by the CE-AIC

algorithm (red twodash line), the CE-BIC algorithm (purple dashed line), the CE-MDL1

algorithm (green dotdash line) and CE-MDL2 algorithm (cyan longdash line)
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Example 1.2: Single change-point, the location is 5, mean shift equals 1

Table 3.2: Estimated number of single change-point for various competing methods over

1000 simulated sequences with location at τ1 = 5, mean shift δ1 = 0, δ2 = 1

Algorithm ρ
N̂

ρ
N̂

0 1 2 3 > 4 0 1 2 3 > 4

BS-Bic

0.3

397 477 102 20 4

0.5

289 354 224 100 33

PELT-Bic 314 415 175 73 21 175 259 283 178 97

WBS-sSic 0 1 0 0 999 0 01 0 1 998

B&P 0 782 147 63 8 0 562 254 147 33

Seg3IsB 9 342 299 58 292 16 351 268 94 271

bkpoint 65 371 323 197 44 25 192 381 273 129

AR1seg 694 154 79 39 34 637 148 98 66 51

CE-Aic 0 0 2 15 983 0 0 4 15 981

CE-Bic 0 42 54 129 775 0 21 66 112 801

CE-mdL1 0 904 69 17 10 0 862 102 23 13

CE-mdL2 0 773 127 44 56 0 710 156 64 70

BS-Bic

0.7

86 219 283 236 176

0.9

14 64 178 265 479

PELT-Bic 32 115 271 284 468 5 29 140 241 436

WBS-sSic 0 0 0 0 1000 0 0 0 0 1000

B&P 0 270 337 257 116 0 99 275 346 228

Seg3IsB 66 257 202 148 327 155 196 188 203 258

bkpoint 6 114 387 322 171 1 110 412 311 166

AR1seg 553 133 133 81 100 249 190 196 171 194

CE-Aic 0 0 1 8 991 0 0 1 17 982

CE-Bic 0 6 58 114 822 0 21 53 127 799

CE-mdL1 0 840 113 26 21 0 743 163 57 37

CE-mdL2 0 653 180 87 80 0 576 208 99 117
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Figure 3.2: The true profile (black solid line) and the profile plots estimated by the CE-AIC

algorithm (red twodash line), the CE-BIC algorithm (purple dashed line), the CE-MDL1

algorithm (green dotdash line) and CE-MDL2 algorithm (cyan longdash line)
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3.1.2 Example 2: Simulated data with two change-points

Table 3.3: Estimated number of two change-points for various competing methods over 1000

simulated sequences with location at τ1 = 30, τ2 = 60, mean shift δ1 = 0, δ2 = −1, δ3 = 1

Algorithm ρ
N̂

ρ
N̂

≤ 1 2 3 4 > 5 ≤ 1 2 3 4 > 5

BS-Bic

0.3

113 605 226 44 12

0.5

120 293 301 169 117

PELT-Bic 67 530 260 111 26 40 208 286 240 226

WBS-sSic 103 471 181 134 111 70 206 187 151 386

B&P 149 733 116 2 0 184 536 248 28 0

Seg3IsB 252 246 135 367 0 272 212 122 394 0

bkpoint 61 631 223 68 17 58 347 316 177 102

AR1seg 572 293 77 58 0 647 177 107 69 0

CE-Aic 0 0 11 201 788 0 1 17 174 808

CE-Bic 11 219 180 278 312 20 141 188 264 387

CE-mdL1 631 344 21 4 0 761 209 23 5 2

CE-mdL2 431 506 41 16 6 600 320 50 21 9

BS-Bic

0.7

44 119 177 232 428

0.9

7 12 32 55 894

PELT-Bic 7 54 97 195 653 0 0 16 41 943

WBS-sSic 10 52 61 103 774 1 1 11 23 964

B&P 139 399 357 97 8 38 203 363 325 71

Seg3IsB 308 211 131 350 0 368 183 173 276 0

bkpoint 33 188 284 266 229 20 120 279 308 273

AR1seg 673 138 92 97 0 434 185 180 201 0

CE-Aic 0 1 5 161 833 1 2 22 206 769

CE-Bic 25 116 150 289 420 42 89 170 259 440

CE-mdL1 788 176 28 6 2 718 207 50 18 7

CE-mdL2 628 276 60 22 14 613 242 71 45 29
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Figure 3.3: The true profile (black solid line) and the profile plots estimated by the CE-AIC

algorithm (red twodash line), the CE-BIC algorithm (purple dashed line), the CE-MDL1

algorithm (green dotdash line) and CE-MDL2 algorithm (cyan longdash line)
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3.1.3 Example 3: Simulated data with three change-points

Table 3.4: Estimated number of three change-points for various competing methods over

1000 simulated sequences with location at τ1 = 10, τ2 = 30, τ3 = 60, mean shift δ1 = 0, δ2 =

−1, δ3 = 1, δ4 = 2

Algorithm ρ
N̂

ρ
N̂

≤ 1 2 3 4 > 5 ≤ 1 2 3 4 > 5

BS-Bic

0.3

113 325 385 138 39

0.5

103 234 261 228 274

PELT-Bic 74 254 418 173 64 50 121 266 272 291

WBS-sSic 114 247 294 160 185 84 113 172 164 467

B&P 180 576 225 18 0 220 428 286 61 5

Seg3IsB 2 408 48 542 0 3 455 52 490 0

bkpoint 130 447 350 62 11 126 311 359 153 51

AR1seg 610 161 148 81 0 712 115 89 84 0

CE-Aic 0 0 5 136 859 0 0 7 132 861

CE-Bic 20 55 145 309 471 29 57 130 284 500

CE-mdL1 774 157 60 7 2 896 57 36 10 1

CE-mdL2 653 181 115 38 13 773 85 82 49 11

BS-Bic

0.7

36 112 164 209 479

0.9

4 8 29 72 887

PELT-Bic 8 39 75 168 710 0 2 8 34 956

WBS-sSic 16 42 46 83 813 2 2 5 22 971

B&P 230 336 293 123 12 70 185 371 299 0

Seg3IsB 45 404 108 443 0 232 243 183 342 0

bkpoint 68 211 280 273 168 27 105 286 332 250

AR1seg 676 140 87 97 0 381 240 185 194 0

CE-Aic 0 1 12 148 839 0 2 18 183 797

CE-Bic 39 54 134 287 486 37 92 142 255 474

CE-mdL1 897 71 24 6 2 676 173 72 43 36

CE-mdL2 790 103 67 29 11 555 199 111 75 60
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Figure 3.4: The true profile (black solid line) and the profile plots estimated by the CE-AIC

algorithm (red twodash line), the CE-BIC algorithm (purple dashed line), the CE-MDL1

algorithm (green dotdash line) and CE-MDL2 algorithm (cyan longdash line)
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3.1.4 Summary of Simulation Study

The tables provide the estimated number of change-points by applying extensive methods.

We present several results below:

1. We use changepoint to implement BS method and the PELT method, both of them

tend to heavily overestimate the change-points as the ρ get larger, especially when

ρ = 0.9. The reason may be that BS method and the PELT method assume the

observations are independently distributed.

2. strucchange implements Bai & Perron’s method, which behave poorly as the auto-

correlation gets stronger. In addition, it performs not well when the change occurred

at 5.

3. wbsmethod with sSIC penalty clearly shows that it is not developed for detecting single

change-points, the method performs well in multiple change-points situation.

4. Segmentor3IsBack does not perform well in the situation with three change-points.

It displays a high computation efficiency.

5. AR1seg is based on themethodology described in the paper [12]which aims at detecting

the mean shifts. It shows less accuracy in simulated data with three change-points

comparing with the other examples.

6. breakpoint also has a tendency to overestimate the number of change-points, mainly

because the method is designed for independent sequences.

We simulated the data sequence by using R package, arima. The mean of simulated data

may largely diverge from theoretical mean, which may effect the accuracy of true profile.

Therefore, it is necessary to consider the real data example.



42 Numerical Results

3.2 Real Data Analysis

In this example, we analyse United States seasonally adjusted and annualized quarterly

inflation rate data from September 2000 to December 2015. Figure 3.5 shows the estimated

mean shifts obtained by the CE methods with AIC, BIC and MDL information criteria

compared with Bai & Perron method that implemented in [42]. Since the actual number

and the locations of change-points are unknown, we look for the agreement between the

methods. The Bai & Perron method presents the 2 possible change-points in September

2003 and September 2007. The CE-AIC method estimates the 5 possible change-points

in March 2004, March 2007, December 2007, September 2010 and March 2013, CE-BIC

estimates 3 change-points occurred in March 2004, March 2006 and March 2008, while the

CE-MDL1 and the CE-MDL2methods present the different results, CE-MDL1 only estimates

one change-point, while CE-MDL2 estimates March 2004 and March 2006. All methods

have correctly identified the period from 2004 to 2007 with high annual inflation rate, in

addition, the estimated segment mean of Bai & Perron method, CE-BIC and CE-MDL2 are

very close.

Figure 3.5: Annual inflation rate and profile plots of Bai & Perron method (black solid line)

and the CE-AIC algorithm (red twodash line), the CE-BIC algorithm (purple dashed line),

the CE-MDL1 algorithm (green dotdash line) and CE-MDL2 algorithm (cyan longdash line)
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Data Information

The United States data are seasonally adjusted monthly and quarterly for the period March

1960 to June 2015. The United States national accounts data are from the National Income

and Product Account (NIPA) tables from the United States of America, Bureau of Economic

Analysis (BEA) and downloaded on 2 and 3 September 2015 except for Table 1.1.6 which

was downloaded on 21 November. The data are available at www.BillRussell.info. Inflation

defined as the log change in the price level (USqtlydata Database dlipfc)
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4
Discussion and Future Directions

4.1 Discussion

In this thesis, we have proposed to use the cross-entropy method for identifying change-

points in AR(1) sequence with shifts in the mean level. The important feature of the proposed

method is that it allows us to estimate all parameters of the model such as the mean level

at each segment, the autocorrelation for the whole data as well as the number and the

locations of change-points. In order to estimate the correct number of change-points we use

information criteria such as the AIC, the BIC and two versions of MDL. Comparing the

performance of these information criteria attract less attention in change-point analysis. The

numerical results in the thesis show that the standard information criteria, the AIC and the

BIC have a strong tendency to overestimate the number of change-points mostly because both

of them were designed for Gaussian independent data. Oppositely, the MDL criterion tends

to underestimate the number of change-points. The data simulation process may be a factor

to cause this problem, the sample means may heavily deviate from the theoretical means at



46 Discussion and Future Directions

each segment, producing inaccurate estimates of the model parameters, which include the

number and the positions of change-points. It is an inevitable problem of analysing artificially

generated data. On the other hand, the underestimation problem of MDL may be due to the

fact that we assume the autocorrelation coefficient is the same for all segments, which may

contradict with the assumption that adjacent segments are independent. This suggests that

the penalty function for the MDL may not accurate. Therefore, it is clear that we need to

develop a new criterion or modify an existing one to address this problem, which can be

considered as one of our future research.

4.2 Future Directions

Throughout the abundant literature on retrospective change-point detection problems, the

common assumption is that univariate time series are either serially independent or short

range dependent whereas fewer authors put emphasis on endogenous dependency of time

series. In addition, for multivariate time series, it is usually assumed that observations are

independent Gaussian. In this thesis, since we only focus on univariate time series, detecting

change-points in multivariate data could be one of our future works.

The objective of our study is to develop an effective computational method to estimate

unknown multiple change-points in the mean level of simple AR(1) model. We plan to

develop new efficient methods to deal with the more complex models such as AR(p) model

or the multiple change-point problems in discrete data. Moreover, we consider to develop

new time series segmentation approach based on existing computational methods such as EM

algorithm, Markov chain Monte Carlo and BS algorithms.
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An Appendix

A.1 Algorithm 2: CE-AR(1)

##############################################################

library(MASS)

#chp.est is the vector of the segment length

all_fit=function(yy,chp.est,mu.est)

{

dd=length(chp.est)

mu_aux=NULL

for (ii in 1:dd)

{

mu_aux=c(mu_aux,rep(mu.est[ii],chp.est[ii]))

}

yy_aux=yy-mu_aux
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ar.fit=

arima(yy_aux,order=c(1,0,0), method="ML",include.mean=FALSE,

optim.method = "Nelder-Mead")

}

##############################################################

T = 101

N_sim = 1000

D_max = 5

InfCrit1_all=array(0,dim=c(9,N_sim,6,D_max))

InfCrit2_all=array(0,dim=c(9,N_sim,6,D_max))

gamma_all1_all= array(0,dim=c(9,N_sim,1,D_max))

gamma_all2_all= array(0,dim=c(9,N_sim,1,D_max))

ChangePoints1_all= array(0,dim=c(9,N_sim,D_max,D_max))

ChangePoints2_all= array(0,dim=c(9,N_sim,D_max,D_max))

mu_est1_all =array(0,dim=c(9,N_sim,D_max,D_max+1))

mu_est2_all =array(0,dim=c(9,N_sim,D_max,D_max+1))

for (g in c(3,5,7,9))

{

yy <- read.table(paste("data_T",T,"_MS1","_gamma",g,".txt",sep=""),

sep=",",header = FALSE)

print("-------------------")

print("Gamma")

print(g)

for (nn in 1:N_sim)

{

y = as.numeric(yy[nn,])

print("Number Sim")

print(nn)

InfCrit1 = array(0,dim=c(6,D_max))
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# 1 - LogLik

# 2 - AIC

# 3 - BIC

# 4 - mBIC

# 5 - MDL1

# 6 - MDL2

gamma_all1= array(0,dim=c(1,D_max))

ChangePoints1= array(0,dim=c(D_max,D_max))

mu_est1 =array(0,dim=c(D_max,D_max+1))

InfCrit2 = array(0,dim=c(6,D_max))

# 1 - LogLik

# 2 - AIC

# 3 - BIC

# 4 - mBIC

# 5 - MDL1

# 6 - MDL2

gamma_all2= array(0,dim=c(1,D_max))

ChangePoints2= array(0,dim=c(D_max,D_max))

mu_est2 =array(0,dim=c(D_max,D_max+1))

# Phase 1 #

N = 200

rho =0.05

Nelite =round(N*rho)

smooth=1

for (d in 1:D_max)

{

mu0=seq(from=T-(T-1)/(d+1),by=-(T-1)/(d+1),length.out=d)

sd0=rep((T-1)/(2*(d+1)),d)

t=1

mu_new=mu0
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sd_new=sd0

mu_old=mu0

sd_old=sd0

#var_beta = (alpha*beta*(T-1)^2)/((alpha+beta)^2*(alpha+beta+1))

t_max=200

while ((max(sd_new)>0.1)&(t<=t_max))

{a=array(0,dim=c(N,d))

for (i in 1:d)

{

aa=rnorm(N,mean=mu_new[i],sd=sd_new[i])

b1=round(apply(a,1,sort))

if (d==1)

{

b1=t(as.matrix(b1))

}

if (d>1)

{

for (j in 1:N)

{

bb=b1[,j]

while (length(which(diff(bb)==0))>=1)

{

bb1=which(diff(bb)==0)

bb[bb1]=bb[bb1]+2*rbinom(length(bb1),1,0.5)-1

bb=sort(bb)

bb=ifelse(bb>(T-1),T-1,bb)

bb=ifelse(bb<2,2,bb)

}

b1[,j]=bb

}

}
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b=array(0,dim=c(d+1,N))

b[1,]=b1[1,]

b[d+1,]=T-b1[d,]

if (d>1)

{

for (i in 2:d)

{

b[i,]=b1[i,]-b1[(i-1),]

}

}

a1=array(0,dim=c(d+1,N))

for (i in 1:(d+1))

{

if (i==1)

{

for (j in 1:N)

{

a1[1,j]=mean(y[1:b1[1,j]])

}

}

if ((i>1)&(i<(d+1)))

{

for (j in 1:N)

{

a1[i,j]=mean(y[(b1[(i-1),j]+1):b1[i,j]])

}

}

if (i==(d+1))

{

for (j in 1:N)

{

a1[(d+1),j]=mean(y[(b1[d,j]+1):T])
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}

}

}

score=array(0,dim=c(1,N))

score_aux=array(0,dim=c(1,N))

score_sigma2=array(0,dim=c(1,N))

for (j in 1:N)

{

score[j]=all_fit(y,t(b[,j]),t(a1[,j]))$loglik

score_aux[,j]=all_fit(y,t(b[,j]),t(a1[,j]))$coef

score_sigma2[,j]=all_fit(y,t(b[,j]),t(a1[,j]))$sigma2

}

score_sorted=sort(score,decreasing=TRUE,index.return=TRUE)

#print(score_sorted$x)

elite_index=score_sorted$ix[1:Nelite]

elite_sample=b1[,elite_index]

#print(score_sorted$x[1])

if (d>1)

{

mu_new=apply(elite_sample,1,mean)

sd_new=apply(elite_sample,1,sd)

}

if (d==1)

{

mu_new=mean(elite_sample)

sd_new=sd(elite_sample)

}

mu_new=smooth*mu_new+(1-smooth)*mu_old

sd_new=smooth*sd_new+(1-smooth)*sd_old

mu_old=mu_new

sd_old=sd_new

#print(c(t,mu_new,sd_new))



A.1 Algorithm 2: CE-AR(1) 53

t=t+1

}

estimate=mu_new

gamma_all1[d]=score_aux[,score_sorted$ix[1]]

LogLik=score_sorted$x[1]

Sigma2_est=score_sigma2[,score_sorted$ix[1]]

NumPar=d+3

# d+1 is the number of means, 1 is gamma, 1 is sigma^2

Pen_mBIC=sum(log(c(estimate[1],diff(estimate[1:d]),T-estimate[d])))

+(2*d-1)*log(T)

Pen_MDL=log(d)+(d+2)*log(T)

+sum(log(c(estimate[1],diff(estimate[1:d]),T-estimate[d])))*0.5

Pen_MDL1=log(d)+log(T)

+sum(log(c(estimate[1],diff(estimate[1:d]),T-estimate[d])))*0.5

+sum(log(estimate[1:d]))

#print(LogLik)

InfCrit1[1,d]=LogLik

InfCrit1[2,d]=-2*LogLik+2*NumPar # AIC

InfCrit1[3,d]=-2*LogLik+log(T)*NumPar # BIC

InfCrit1[4,d]=-2*LogLik+Pen_mBIC # mBIC

InfCrit1[5,d]=-2*LogLik+2*Pen_MDL # MDL1

InfCrit1[6,d]=-2*LogLik+2*Pen_MDL1 # MDL2

ChangePoints1[d,1:d]=estimate[1:d]

mu_est1[d,1:(d+1)]=a1[,score_sorted$ix[1]]

# Phase 2 #

N = 200

rho =0.05

Nelite =round(N*rho)

smooth=1
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mu0=c(mu_new,a1[,score_sorted$ix[1]])

sd0=c(sd_new,rep(0.25,d+1))

t=1

mu_new=mu0

sd_new=sd0

mu_old=mu0

sd_old=sd0

t_max=200

while ((max(sd_new)>0.01)&(t<=t_max))

{

a=array(0,dim=c(N,d))

for (i in 1:d)

{

aa=ifelse(aa>(T-1),T-1,aa)

aa=ifelse(aa<2,2,aa)

a[,i]=aa

}

b1=round(apply(a,1,sort))

if (d==1)

{

b1=t(as.matrix(b1))

}

if (d>1)

{

for (j in 1:N)

{

bb=b1[,j]

while (length(which(diff(bb)==0))>=1)

{

bb1=which(diff(bb)==0)
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bb[bb1]=bb[bb1]+2*rbinom(length(bb1),1,0.5)-1

bb=sort(bb)

bb=ifelse(bb>(T-1),T-1,bb)

bb=ifelse(bb<2,2,bb)

}

b1[,j]=bb

}

}

b=array(0,dim=c(d+1,N))

b[1,]=b1[1,]

b[d+1,]=T-b1[d,]

if (d>1)

{

for (i in 2:d)

{

b[i,]=b1[i,]-b1[(i-1),]

}

}

a1=array(0,dim=c(d+1,N))

for (i in 1:(d+1))

{

a1[i,]=rnorm(N,mean=mu_new[i+d],sd=sd_new[i+d])

}

score=array(0,dim=c(1,N))

score_aux=array(0,dim=c(1,N))

score_sigma2=array(0,dim=c(1,N))

for (j in 1:N)

{

score[j]=all_fit(y,t(b[,j]),t(a1[,j]))$loglik

score_aux[,j]=all_fit(y,t(b[,j]),t(a1[,j]))$coef

score_sigma2[,j]=all_fit(y,t(b[,j]),t(a1[,j]))$sigma2

}
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score_sorted=sort(score,decreasing=TRUE,index.return=TRUE)

#print(score_sorted$x)

elite_index=score_sorted$ix[1:Nelite]

elite_sample=b1[,elite_index]

#print(score_sorted$x[1])

elite_sample1=a1[,elite_index]

if (d>1)

{

mu_new=apply(elite_sample,1,mean)

sd_new=apply(elite_sample,1,sd)

}

if (d==1)

{

mu_new=mean(elite_sample)

sd_new=sd(elite_sample)

}

mu_new1=apply(elite_sample1,1,mean)

sd_new1=apply(elite_sample1,1,sd)

mu_new=c(mu_new,mu_new1)

sd_new=c(sd_new,sd_new1)

mu_new=smooth*mu_new+(1-smooth)*mu_old

sd_new=smooth*sd_new+(1-smooth)*sd_old

mu_old=mu_new

sd_old=sd_new

t=t+1

}

estimate=mu_new

gamma_all2[d]=score_aux[,score_sorted$ix[1]]

LogLik=score_sorted$x[1]

Sigma2_est=score_sigma2[,score_sorted$ix[1]]

NumPar=d+3

# d+1 is the number of means, 1 is gamma, 1 is sigma^2
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Pen_mBIC=sum(log(c(estimate[1],diff(estimate[1:d]),T-estimate[d])))

+(2*d-1)*log(T)

Pen_MDL=log(d)+(d+2)*log(T)

+sum(log(c(estimate[1],diff(estimate[1:d]),T-estimate[d])))*0.5

Pen_MDL1=log(d)+log(T)

+sum(log(c(estimate[1],diff(estimate[1:d]),T-estimate[d])))*0.5

+sum(log(estimate[1:d]))

#print(LogLik)

InfCrit2[1,d]=LogLik

InfCrit2[2,d]=-2*LogLik+2*NumPar # AIC

InfCrit2[3,d]=-2*LogLik+log(T)*NumPar # BIC

InfCrit2[4,d]=-2*LogLik+Pen_mBIC # mBIC

InfCrit2[5,d]=-2*LogLik+2*Pen_MDL # MDL1

InfCrit2[6,d]=-2*LogLik+2*Pen_MDL1 # MDL2

ChangePoints2[d,1:d]=estimate[1:d]

mu_est2[d,1:(d+1)]=estimate[-c(1:d)]

}

InfCrit1_all[g,nn,,]=InfCrit1

InfCrit2_all[g,nn,,]=InfCrit2

gamma_all1_all[g,nn,,]=gamma_all1

gamma_all2_all[g,nn,,]=gamma_all2

ChangePoints1_all[g,nn,,]=ChangePoints1

ChangePoints2_all[g,nn,,]=ChangePoints2

mu_est1_all[g,nn,,]=mu_est1

mu_est2_all[g,nn,,]=mu_est2

}

}

##############################################################
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