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Executive summary 

 
Saltmarsh is one of the important vegetation of wetlands. Due to a range of pressures, it 

has been declared as an Endangered Ecological Community (EEC) in Australia.  Therefore, 

monitoring and mapping of the distribution of saltmarshes species are important to 

wetland management, conservation and distribution. This rigorous task requires intensive 

fieldwork and collection of ancillary data that are time-consuming. Remote Sensing offers 

a practical and economic means of plant sciences classification and biomass modelling. 

However, selecting suitable remote sensing systems and their data are important for 

mapping saltmarshes. Hyperspectral remote sensing can be used to monitor this 

endangered community. However, there are some crucial limitations of hyperspectral data 

that have been found in the current study area and discussed in the introduction. To 

overcome these limitations, Worldview-2 with its higher spatial (1.84 m) resolution is seen 

as a trade-off between the advantages of multispectral resolution satellite data and 

hyperspectral data. 

In this thesis, imagery acquired by three different sensors were used to compare the 

performance of machine learning classification methods and biomass regression models. 

Maximum Likelihood Classifier (MLC) and two advanced algorithms, Random Forest (RF) 

and Support Vector Machine (SVM) were used for classification. These two algorithms were 

also tested to develop a biomass model for Sporobolus virginicus species using 

multispectral Worldview-2 data. Reflectance and NDVI based vegetation indices derived 

from 8 bands of Worldview-2 multispectral data were used for four experiments to develop 

the biomass model. Proportional reduction of sample size (100 % to 33%) was focused to 

test the potentiality of both algorithms. RF showed significant changes in overall accuracy 

when the sample size was reduced from 100 % to 33%. Conversely, there were no 

significant changes in the accuracy for SVM when the sample size equally dropped from 

100 % to 33%. When biomass model for RF (R2 =0.72, RMSE = 0.166 kg/m2) and SVR 

(R2 = 0.66, RMSE = 0.200 kg/m2) were compared, there was a significant (p =< 0.0001) 

difference was observed. Further research is crucial to explore the sensitivity of this 

method with the spatial autocorrelation of the training samples for random forest 

application in saltmarsh monitoring.   
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General Introduction 
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1.1 Saltmarsh and its importance 

 

Wetlands are valuable natural resources due to their useful and viable economical 

products. At the same time, the whole wetland ecosystem or its subdivided parts are a 

considerable scientific interest due to their biological diversity, ecological function and 

process. Saltmarsh is one of them that is an intertidal community of plants, such as 

sedges, rushes, reeds, grasses, succulent herbs and low shrubs. Saltmarsh can tolerate 

high soil salinity and occasional inundation with salt water (Daly 2013). The term 

‘saltmarsh’ is used to describe individual plants, groups of plants and the general estuarine 

habitat dominated by these plants. Saltmarshes tend to occupy the hyper-saline soils of 

the upper intertidal zone, where saltwater inundation occurs less frequently (usually only 

during high spring tides) (Daly 2013). For example, Smooth Cordgrass (Spartina 

alterniflora) and Salt coach grass (Sporobolus virginicus) are more effective at disposing 

of excess salt and can better tolerate having its roots submerged by the daily tides (Figure 

1-1). Oppositely, Salt Marsh Hay (Spartina patens) and Common Reed (Phragmites 

australis) stay at higher levels of the marsh which are only exposed to the highest tides. 

These communities are generally found growing on the landward side of mangroves and 

are made up of salt tolerant, flowering plants in the form of low growing shrubs, herbs 

and grasses. 

 

Up to mid-nineteenth century, this ecosystem was treated as boggy swamps and 

wastelands of little practical use. Due to this many saltmarsh areas have drained, turn in 

to a degraded form for human interference, reclaimed for other purposes or otherwise lost 

(Gedan et al. 2009). Ecological value and scientific concern for this ecosystem has raised 

over the past few decades and now treated as significant ecological communities that 

provide key habitat for other marine fauna(Adam 1993). It has been recorded this special 

ecosystem provides habitat and shelter for fish and a special support for some 

commercially and recreationally important species when it is inundated (Daly 2013). 

Saltmarsh, mangrove, and seagrass ecosystems all have relatively high rates of sediment 

carbon burial. Globally at least 430 Tg of carbon is stored in the upper 50 cm of tidal 

saltmarsh soils (Chmura 2009; Chmura et al. 2003).  Saltmarsh provides an important 

buffer between land and reef, as they filter land runoff and improve the quality of water 

entering into the landward part. They also serve to buffer the coastline from storms and 

cyclones. They trap and stabilise sediment and dampen the effects of flood water (Daly 

2013). Therefore, monitoring and mapping of saltmarsh species distribution, quality, and 

quantity assessment are an important consideration in wetland management. This 

rigorous task  involves natural resources inventory, species mapping, habitat 

characterization and water quality assessment over a continuous period of time (Carpenter 

et al. 1999). In addition, it requires an up-to-date spatial information about the magnitude 

and the quality of vegetation cover in order to initiate vegetation protection and wetland 

restoration programme (He et al. 2005). However, wetland species discrimination mapping 
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requires intensive fieldwork, taxonomical information, and ancillary data, and the visual 

estimation of percentage cover for each species to be classified. This is time-consuming, 

cost-oriented and labour intensive and sometimes inapplicable due to the poor 

accessibility, and is thus, only practical on relatively small areas (Lee and Lunetta 1995). 

Due to these unique features and problems associated with the wetland ecosystem, 

mangroves and saltmarshes have been the priority for protection by the Ramsar 

Convention. The Ramsar Convention on Wetlands is the most famous and widely adopted 

wetlands protections projects. The Convention on Wetlands of International Importance 

holds the unique distinction of being the first modern treaty between nations aimed at 

conserving natural resources. The signing of the Convention on Wetlands took place in 

1971 at the small Iranian town of Ramsar. Twelve NSW wetlands are listed under an 

international convention that aims to protect their ecological character. The Hunter 

Wetlands Centre Australia is a component of the Ramsar site, and is significant for a range 

of plant communities that have been successfully re-introduced to the site. That is why 

developing a dynamic and easy monitoring tool is very essential to monitor this unique 

ecosystem. Remote sensing offers a practical and economical means of species 

classification and estimate the biochemical and biophysical parameters of the wetland 

species and it can make field sampling more focused and efficient. For more than two 

decades, various remote sensing-based methodologies have been used to obtain the 

condition and extent of this ecosystems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Thematic zonation of saltmarsh in respect of upland vegetation (i.e. Mangrove) and sea 
water (adapted from http://www.mesa.edu.au/saltmarsh/saltmarsh02.asp accessed date : 12 
August 2018) 

http://www.mesa.edu.au/saltmarsh/saltmarsh02.asp
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1.2 Remote sensing of wetland and saltmarsh ecosystems: 
Selection    of accurate satellite image 

 

Remote Sensing offers archive data for change detection over time for vegetation 

distribution in wetland. Its digital format data can be easily integrated into Geographic 

Information System (GIS) for more analysis  (Ozesmi and Bauer 2002; Shaikh et al. 2001). 

Remote Sensing analysis have been useful for vegetation types, species classification 

(Carle et al. 2014)  and biomass  studies (Mutanga et al. 2012). It helps to determine 

which saltmarsh or other wetland species are spectrally separable and which bands and 

dates are best for species discrimination. For this advantage, many researchers have used 

multispectral data (i.e. SPOT imagery and Landsat TM) to classify general vegetation 

classes (Harvey and Hill 2001; Li et al. 2005).  However, coarse to medium resolution 

image (Landsat TM and SPOT) data have been shown insufficient for saltmarsh and other 

wetland species classification due to the following limitation:  

a) Broad nature of multispectral wavebands in respect to sharp ecological gradient 

with narrow vegetation units in saltmarsh ecosystem. 

b) Spatial and spectral resolution are not high enough to detect vegetation class. 

Mostly per pixel classification method of multispectral image dominated by 

mixed pixel are often incapable of producing accurate species classification. 

 

To overcome these limitations, many authors have used and recommended hyperspectral 

data to discriminate and map wetland vegetation at the species level(Rosso et al. 2005; 

Schmidt and Skidmore 2003).  Even the use of hyperspectral techniques has been 

extended into measuring the biophysical and biochemical properties such as leaf area 

index (LAI), biomass, and water content of wetland vegetation (Proisy et al. 2007; 

Rendong and Jiyuan 2004). However, there are also some crucial limitations of airborne 

hyperspectral data that we experienced for our study area. First of all, the high cost to 

purchase aerial data if it is available. If data are unavailable for a specific study area, new 

acquisition is subject to season, sun illumination, weather conditions, flight schedules and 

aviation restrictions. In addition, time and processing costs of high dimensional (due to its 

narrow continuous bands) data are severe obstacles to general users, (e.g. wetland 

managers). In addition, the processing time and cost for hyperspectral data (Spaceborne 

or airborne) are too lengthy and expensive. 

1.3 Remote sensing for wetland and saltmarsh ecosystem: 
Selection of the spatial unit and spectral separability analysis 

 
Selection of spatial unit and sample size balance maintaining for advanced classifiers are 

still a controversial topic in image classification. It could be argued that classes with 

multimodal frequency distributions (i.e. agricultural land with different crop types and 

growing cycles) should have a greater number of samples in order for classes to be 



Chapter 1 

 5 

accurately represented in the classifier than a spectrally and temporally well-defined class 

(i.e. waterbody) (Colditz 2015). Accordingly, advance image classification trees may 

sometimes suffer from a problem of unbalanced sample sizes problem. This means in the 

standard form of classification trees, the class with the highest number of samples 

determines the class label (Colditz 2015). Most of the algorithm compares pixel spectral 

with a reference or target. This reference spectra can be derived from the spectral library 

(for hyperspectral data), a region of interest within a spectral image or individual pixel 

within a spectral image (Ground truth data).  Besides individual pixels, blocks of pixels 

(i.e. square arrays of pixels), and polygons are the spatial units commonly used for image 

accuracy assessment. Stehman and Czaplewski (1998) reviewed 33 map accuracy 

assessment to evaluate the choice of assessment unit and reported that 14 assessments 

used a pixel as the spatial unit, 10 assessments used a square block of pixels (e.g., 2x2, 

3x3), and 9 assessments used a polygon. Although  Richards (1996) and  Strahler et al. 

(2006) support a pixel-based assessment, Congalton and Green (1999) recommended 

using a block of pixels or a polygon. So the choice and sett of spatial units (pixels, block 

or polygon) affect the accuracy report and associated with the sensors data. Hereby the 

selection of sensor for image classification is closely associated with the spatial resolution, 

a spatial unit of the reference sample and the size and quality of reference sample. For 

wetland ecosystem monitoring, the spatial unit is an excellent indicator for early signs of 

any physical and chemical degradation. Therefore, a spatial unit needs to be properly 

justified before its application for wetland monitoring.  

 

1.4 Remote sensing for wetland and saltmarsh ecosystem: 
Selection of adequate algorithms for mapping and biomass 
modelling  

 

There are different image classification methods used to analyse remote sensing data. 

Spectral Angle Mapper (SAM), Multiple Endmember Spectral Mixture Analysis (MESMA) 

and Spectral Mixture Analysis (SMA) are commonly used image classification methods. For 

multispectral image analysis, Maximum Likelihood Classifier (MLC) is a commonly used 

supervised classifier whereas ISODATA and K-Means are unsupervised methods 

(Richardson and LeDrew 2006; Srivastava et al. 2012). From the review of image analysis 

methods (Lu and Weng 2007), it may be considered that a single classification method 

cannot be treated as optimal. Based on specific objectives, sometimes it needs an 

advanced algorithm (ensemble) to produce accurate classification. Advanced classification 

algorithms include support vector machines (SVM), random forest (RF), artificial neural 

networks (ANN), and Decision tree classifier (DTC) (Adam et al. 2014; Adam et al. 2010; 

Petropoulos et al. 2012). The performance of these classifiers is varied with the quality of 

the remote sensing data either passive sensor (multispectral or hyperspectral data) or 

active sensor (LiDAR) data. One of the major problems relating to the supervised 
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classification lies in the definition of a proper training set size for an accurate learning of 

classifiers (Chi et al. 2008).  Because the collection of ground-reference data is an 

expensive, time consuming and complex task. Therefore in many cases, the number of 

training samples is insufficient for a proper learning of classification systems. Within the 

supervised parametric classifiers, Maximum Likelihood Classification (MLC) is the most 

commonly used classifier and deliver excellent results when dealing with unimodal data. 

Because this classifier assumes a normal data distribution and has limitations when dealing 

with multi-modal input datasets (Liu et al. 2010).  However, in most of the cases, normal 

distribution is the main violation of RS data because the nature and causes of spatial 

variation in images are not always easily understandable. In this regards some non-

parametric supervised classifier, such as Support Vector Machine (SVM) (Mountrakis et al. 

2011), Random Forest (RF)(Breiman 2001), Artificial Neural Network (ANN) (Mas and 

Flores 2008)  and  the Classification and Regression Tree (CART),  are becoming 

increasingly popular classifiers for remote sensing data as they do not make any 

assumptions regarding frequency distribution.  A very few studies (Adam et al. 2014; 

Zhang et al. 2015) are available where these algorithms have been used, and need further 

investigation in terms of accuracy, training sample size and quality, and parameters 

settings for the application of machine learning algorithms in a wetland environment.  

1.5 Remote sensing for wetland and saltmarsh ecosystem: 
parameter optimization and variable selection 

 
Among the advanced classifiers, SVM is appealing due to its impressive ability to 

successfully handle a small training dataset by producing higher classification accuracy. It 

is proposed as a superior classifier in remote sensing than the traditional methods like 

Maximum Likelihood Classifier (MLC) (Montero et al., 2005). MLC is a probabilistic 

algorithm and less suited when data are non-normally distributed. The MLC classifier 

assumes that reflectance values of each class are normally distributed. This is a common 

violation in remote-sensing data, especially when classes or even subclasses of the main 

class contain different spectral features (Kavzoglou & Reis, 2008). To overcome this 

problem, non-parametric classifiers such as decision tree classifier (DTC), artificial neural 

networks (ANN), and Support Vector Machine (SVM) are gaining priority in recent remote 

sensing classification (Kavzoglu and Reis 2008; Otukei and Blaschke 2010; Zhu and 

Blumberg 2002). Although there is ample proof of training sample size reduction for SVM, 

very few research are available for wetland ecosystem where data collection is really a 

challenge due to hazardous access. In addition, kernel selection for SVM and its relation 

with spectral separability for each species have not been explored yet for a complex 

environment, i.e. saltmarsh ecosystem. So still there is research opportunity to work with 

SVM parameters optimization and its relation with spectral separability analysis. 
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Thematic mapping and image classification are also associated with the features selection 

methods that are a crucial issue in machine learning (RF and SVM) dealing with applied 

classification and regression problems(Hastie et al. 2001). The potential benefits of feature 

selection methods are: facilitating data visualization and data understanding, reducing 

training and utilization times, and defying the curse of dimensionality (i.e. hyperspectral 

data) to improve prediction performance. Based on available literature, only a limited 

number of studies have been done, which explore advanced feature selection methods in 

multispectral data. Recently, Adam et al. (2014) applied these two algorithms on 

multispectral RapidEye data for a heterogenous landscape classification. Although 

RapidEye has five multispectral bands including Red-edge and NIR 1, there is a gap in 

knowledge of the performance of these algorithms on high-resolution Worldview-2 

imagery. Worldview-2 (WV-2) can be spectrally differentiated from RapidEye as the former 

has three additional bands, called Coastal blue (Band1), Yellow (Band 4) and Near Infrared 

Band II (Band 8). So it is very important to evaluate the performance of all bands based 

on feature selection method using machine learning algorithms.  

1.6 Remote sensing for wetland and saltmarsh ecosystem: 
Machine learning algorithms for saltmarsh biomass modelling 

There is a crucial need to quantify large-scale plant productivity (i.e. above ground 

biomass) in coastal marshes for a better understanding of marsh resilience against sea 

level rise (Schile et al. 2014; Swanson et al. 2014). But this AGB estimation is labour 

intensive and not feasible at large spatial extents. To complement this, remotely sensed 

data are utilized to map vegetation types and provide better estimates of plant production 

(Goetz and Dubayah 2011). Since the 1980s there have been some successful application 

of remote sensing for saltmarsh biomass (Gross et al. 1987; Hardisky et al. 1983; Hardisky 

et al. 1984) using Normalized Difference Vegetation Index (NDVI). There are some major 

limitations of NDVI that have already been revealed by other studies (Gao et al. 

2000;Tucker 1977) and recommended using narrow bands of hyperspectral data to 

overcome the limitations (Blackburn 1998; Thenkabail et al. 2000). However, there are 

some crucial limitations of hyperspectral data that we experienced for our study area and 

discussed in the introduction and first two chapters. To overcome these limitations, 

Worldview-2 with its higher spatial (1.84 m) and spectral (8 bands) resolution is seen as 

a tradeoff between the advantages of multispectral resolution satellite data and 

hyperspectral data (Mutanga et al. 2012; Rasel et al. 2016).  

Another research area that is still challenging is to model biomass against remote sensing 

variables. Regression techniques are commonly used to relate remotely sensed 

information with biophysical variables but imitated to adequately capture the relationship 

and the spatiotemporal variability of the quantity (Kaheil et al. 2008). Moreover, 

multicollinearity is an important issue for multiple regression model especially when highly 

related variables (i.e bands of RS data) are selected as a predictor. An ensemble method, 

random forest (RF), has reduces the problem of the multicollinearity issue (Liaw and 

Wiener 2002b) and has been proved to reduce of bias and overfitting (Breiman 2001) of 
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a model. So there is still a huge scope for the application of machine learning algorithms 

to improve the accuracy for the prediction model of biomass estimation. 

 

1.7 Overall problem statement 
 

The first step of any image classification is to select the suitable image based on the 

condition of the study area, availability of the data and research budget. When data are 

available, it is also important to check the quality of the data. For example, EO-1 Hyperion 

hyperspectral sensor was launched in 2000 as a part of one-year technology 

validation/demonstration mission. However, this mission was decommissioned in January 

2017. But within these 17 years, these hyperspectral data have been used in many areas 

including vegetation mapping. In this research, Signal Noise Ratio (SNR) of this data was 

tested and Hyperion data were compared with the Worldview-2 data to identify the correct 

spatial and spectral resolution that was necessary for our study area. The second 

important criteria for vegetation mapping and biomass modelling is to set the spatial unit 

(region of interest or pixel), that determine the homogenous and heterogeneous condition 

of the study area followed by the accuracy of the thematic map and prediction model. In 

this research, both of the spatial unit (ROI and pixel) have been tested to determine the 

right spatial unit for mapping accuracy followed by biomass model. The spatial unit is 

associated with the spatial analysis (like any classification) algorithms. Maximum likelihood 

(MLC) is the most common supervised classification method. However, in most of the 

cases normal distribution of the classes in the spectral domain is the main violation of 

remotely sensed data. Because sometimes the reflectance values of a main class and their 

subclass contain different spectral properties that makes the application of MLC more 

difficult and less accurate. In addition, adequate ground truth information and collection 

of sufficient samples of training and validation are also impractical for wetland ecosystem. 

Therefore, the application of machine learning algorithms are increasingly popular for land 

cover mapping.   As machine learning algorithms are very new for wetland mapping and 

biomass estimation modelling, they need further investigations to improve accuracy and 

species-specific model for wetland ecosystem. Therefore, two advance machine learning 

methods, Random Forest (RF) and Support Vector Machine (SVM) have been tested for 

saltmarsh species classification and biomass prediction model.  For a robust prediction 

model, important feature selection is also a criterion and a part of machine learning 

algorithm. There is ample proof for hyperspectral remote sensing for feature selection and 

dimensionality reduction (Pal 2006; Pal and Foody 2010). However, only a limited number 

of studies have been done, which explore advanced feature selection methods in 

multispectral data.  

 

Variable selection for saltmarsh biomass estimates is challenging in terms of a single (i.e. 

water) and multi-modal distribution (seasonal variation of vegetation) features of 
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saltmarsh habitat. In this article, an embedded method recursive feature elimination (REF) 

was applied for Random Forest and SVM classifier.  Another research area that is still 

challenging is to model biomass against remote sensing variables. Regression techniques 

are common to relate remotely sensed information (i.e. spectral bands or indices) with 

biophysical variables (i.e. biomass, leaf area index etc.). However, traditional regression 

models have limitations to adequately capture the relationship and the spatiotemporal 

variability of the quantity (Kaheil et al. 2008). Moreover, multicollinearity is an important 

issue for the multiple regression model, especially when highly related variables (i.e bands 

of RS data) are selected as a predictor. The multicollinearity problem can be alleviated 

using RF where a random subset of features is chosen for each tree (Cutler et al. 2007; 

Díaz-Uriarte and Alvarez de Andrés 2006; Liaw and Wiener 2002a). Therefore, two 

machine learning algorithms will be compared to develop a species-specific biomass model 

based on optimum parameters settings and selected features. 

 

1.8 Research objectives 
 

The primary aims of this thesis were to: 

1. Investigate the signal noise ratio of spaceborne hyperspectral data to determine 

the importance of spatial and spectral resolution based on a fragmented saltmarsh 

ecosystem (Chapter 2). 

 

2. Analyse spectral separability and determine the spatial unit (region of interest or 

pixels) suitable for saltmarsh species classification using Worldview -2 (1.84-meter 

spatial resolution) and Landsat 8 OLI (30-meter spatial resolution) data (Chapter 

3). 

 

3. Evaluate the potential of machine learning algorithms (Support Vector Machine and 

Random Forest) for saltmarsh classification based on pixel-based classification 

(Chapter 4). 

 

4. Evaluate the application of a small training sample size and Support Vector Machine 

(SVM) for wetland saltmarsh classification (Chapter 5). 

 

5. Investigate different variable selection approaches and equal allocation of training 

data to improve classification accuracy based on machine learning algorithms 

(Chapter 6). 

 

6. Evaluate predictive models of aboveground biomass of a common saltmarsh 

species based on machine learning algorithms (Chapter 7). 
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1.9 Input data  
 

Three different platforms satellite data have been used in this study. They are as follows: 

 

Table 1-1. List of three different sensors used in this study  

 

Data Spatial resolution Spectral Resolution 

Spaceborne 

Hyperspectral data EO-1 

Hyperion 

30 meter 242 bands comprise of Very Near Infra-

red (VNIR, 1-70) and Short Wave Infra-

Red (SWIR, 71-242) bands. 

Landsat 8 OLI 

(Operational Land 

Imager) 

30 meter for 

band 1 to 7 and 9 

Total 11 bands including two thermal 

and 1 panchromatic. 

Worldview-2 1.84 meter High Spatial Resolution multispectral 

data with a combination of eight spectral 

bands ranging from 400 nm to 1040 nm. 

 

There are other satellite images like Sentinel that has the similar properties of Worldview-

2. However, Sentinel-2 has 4 bands with a spatial resolution of 10 m and it has also three 

other bands with a spatial resolution of 20 m, whereas Worldview – 2 has eight bands with 

a spatial resolution 1.84 bands. Fragmented marsh patches are the main characteristics 

of our study area.  That is why high spatial resolution (1.84m for WV-2) was the best 

choice for our study area.  Another commonly used high-resolution satellite data is SPOT. 

SPOT-7 (launched in 2014) has four multispectral bands with spatial resolution 6.m. These 

four multispectral bands include Blue (0.455 µm – 0.525 µm), Green (0.530 µm – 0.590 

µm), Red (0.625 µm – 0.695 µm) and Near-Infrared (0.760 µm – 0.890 µm). As one of 

the focus was to select high spatial resolution images, Worldview-2 was the best 

alternative among the available commercial satellite data.  

 

Remote sensing and spatial analysis were performed in ENVI Classic, ERDAS and ArcGIS 

10.3. All statistical calculation and analysis were performed in open source software R.  

 

1.10 The study area 
 

The study area as shown in Figure 1-2, is located in Tomago, Australia (Longitude 

151°43'40.6" E to 151°46'19.4" E and latitude 32°47'21.9" S to 32°51'29.4" S) which is 

approximately 8 km south of Raymond Terrace and 10 km north of Newcastle on the east 

coast of Australia. The dominant tree species include Avicennia marina (Grey mangrove), 

Casuarina glauca (Swamp Oak or She-oak) and ground saltmarsh species includes 

Sporobolus virginicus (Salt couch) and Phragmites australis (Common reed). The study 
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area consists of a saline coastal wetland system comprising mangroves, saltmarshes and 

mixed mangrove-saltmarsh habitats (Rogers et al. 2014). About 4,257 ha of these 

wetlands are formally protected within the Hunter Wetlands National Park and this includes 

over 2,926 ha listed as internationally important under the Ramsar Convention (1984). 

Over the past decade, tidal reinstatement programs in the lower Hunter have restored 

tidal flow to several large wetland systems including Tomago (Winning and Saintilan 

2009).  Due to this, this study site is a focus of scientific research aimed at quantifying 

the benefits of wetland restoration. My interest in this study was to better understand the 

current status of theses degraded saltmarshes in relation to other associated habitats, 

such as mangrove and casuarina sp and identify the optimum mapping accuracy for each 

saltmarsh species from remote sensing data. In addition, some ancillary data collected 

from the Office of the Environment and Heritage (OEH) were also available for this study 

site.  

 

 

 
Figure 1-1: Australia country boundary and location of Wetlands (study site) in New South Wales 
(NSW) state. The first inset picture shows the Hunter Wetland National park in NSW (Clockwise), 
the second one shows the location of NSW state in Australia and the last and main view picture 

shows the spatial extent of the study area. 
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1.11  Land cover and the species classes  
 

Land cover type of this area can be divided into three distinct strata (Table 1-2). Details explanation 

of these are: 

 

 

Table 1-2: Land cover strata and species types of the study area. 

Land 

cover 

Specific Classes ( n= 8) Description 

Trees Grey Mangrove (Avicennia marina 

(Forssk.))  

Known as grey mangrove or white mangrove, 

is a species of mangrove tree classified in the 

plant family Acanthaceae. 

Swamp Oak or She-oak (Casuarina 

glauca)( Sieb. Ex Spreng) 

Commonly known as the swamp she-oak, 

swamp oak, grey oak, or river oak. It is a 

Casuarina species native to the east coast of 

Australia. It is found from central Queensland 

coast south to the southern New South Wales 

coast. 

Die-back Swamp Oak Die-back in Casuarina glauca has occurred in 

some parts of the study area. 

Saltmarsh 

and Grass 

Phragmites australis (Cav.) Steud. This common reed forms large beds in shallow 

water. It has round, hollow stems, which 

typically grow to 2m in height 

Sporobolus virginicus ( L) Kunth Sporobolus virginicus, known by numerous 

common names including seashore dropseed, 

marine couch, sand couch and, salt couch 

grass, is a species of grass with a height of 10 

to 50 cm. This is the dominant saltmarsh 

species in study area. 

Perennial Grass This group consists of common grass species 

found in the study area, that is distinct from 

the other saltmarsh classes. 

Water and 

Wetland  

Water Shallow to deep water within the wetlands 

areas of the study site. 

Wetland soil Muddy bare land within the wetland, most of 

the time it is inundated with tidal water. 

 

1.12   Methodological flowchart and data selection 
 

 

Methodological flow, the main component of each chapter and organization of chapters 

are presented in the following flowchart. 
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Figure 1-2: Orientation of six (six) main chapters and their link to each other 
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1.13  Thesis outline 
 

This thesis comprises of an entire eight chapters, including a general introduction, six core 

chapters, and a synthesis. Each core chapter has been provided as a standalone research 

paper that has been published (Table 1-3) in or submitted to the peer-review ISI journals. 

The structure of the chapters is as follows. 

 

Chapter 1 presents the research background, general objectives, and also describes the 

study area and outline of the thesis.  

 

Chapter 2 deals with the effect of Signal Noise Ratio (SNR) in the visible-near infrared 

domain of EO-1 Hyperion data and its comparison with Worldview-2 for saltmarsh 

ecosystem. It also highlights the endmember identification from EO-1 Hyperion data. 

 

Chapter 3 analyses spectral separability and Principal Component Analysis (PCA) of 

saltmarsh species from Worldview 2 and Landsat 8 OLI data using a block of pixels or 

region of interest (ROI) based training sampling. This chapter also highlights the 

application of traditional supervised classification, Maximum Likelihood Classifier (MLC). 

 

Chapter 4 synthesizes the importance of machine learning classifiers (Support Vector 

Machine and Random Forest) and their application for saltmarsh classification and biomass 

estimation.  This is a literature review based on the application of SVM and RF for 

classification and biomass modelling. Special emphasis was given to the saltmarsh 

ecosystem. 

 

Chapter 5 applies Support Vector Machine (SVM) with small training samples for wetland 

saltmarsh environment. It applies parameter optimization, kernel selection and its relation 

spectral separability analysis.   

 

Chapter 6 applies Support Vector Machine (SVM) and Random Forest (RF) for feature 

selection and classification for saltmarsh ecosystem based on pixel-based training 

sampling. This chapter also focuses on the ‘equal training sample allocation’ for SVM and 

RF. This chapter uses grid search methods for parameter optimization and uses recursive 

feature elimination method for variable selection.  

 

Chapter 7 evaluates the performance of Support Vector Machine (SVM) and Random Forest 

(RF) for biomass estimation of a specific saltmarsh species, Sporobolus virginicus. This 

chapter also investigates feature selection algorithms from vegetation indices and spectral 

bands from Worldview-2 data  

 



Chapter 1 

 15 

Chapter 8 provides an overview of the significant research findings of the thesis. The 

contributions of the undertaken studies in this thesis in the concept of Ecologically 

Endangered Community (EEC) are discussed. Further research direction based on remote 

sensing data for saltmarsh ecosystem are also proposed. 

 

 

Table 1-3: Current status of research outputs (publication) originated from this 

thesis. 

 Description Status 

Chapter 1 Title: General Introduction 

Chapter 2:  

 

Title : Signal Noise Ratio calculation and Selection of the sensor for 

saltmarshes monitoring 

Conference article-1: Endmember identification from EO-1 

Hyperion L1_R Hyperspectral data to build saltmarsh spectral 

library in Hunter Wetland, NSW, Australia. Paper presented at 

the SPIE Remote Sensing. Proc. SPIE 9637, Remote Sensing for 

Agriculture, Ecosystems, and Hydrology XVII, 96371O (October 

14, 2015); doi:10.1117/12.2195444. 

Published 

Peer-reviewed article -1: Comparison of very near infrared 

(VNIR) wavelength from EO-1 Hyperion and Worldview 2 images 

for saltmarsh classification. ISPRS Ann. Photogramm. Remote 

Sens. Spatial Inf. Sci., III-8, 85-92. doi:10.5194/isprs-annals-

III-8-85-2016. 

Published  

(Peer 

reviewed) 

Chapter -3: 

 

Title: Spectral Separability analysis of saltmarsh species based on 

Worldview-2 and Landsat 8 OLI data  

Conference article-2: Comparative analysis of Worldview-2 

and Landsat 8 for coastal saltmarsh mapping accuracy 

assessment. Proc. SPIE 9864, Sensing for Agriculture and Food 

Quality and Safety VIII, 986409 (May 26, 2016); 

doi:10.1117/12.2222960. 

Published  

Chapter-4: 

 

Title: Scope for saltmarsh classification and biomass estimation using 

Support Vector Machine (SVM) and Random Forest (RF): A review 

Peer-reviewed article-2: Scope for saltmarsh classification 

and biomass estimation using Support Vector Machine (SVM) 

and Random Forest (RF): A review 

 Submitted to 

the Estuarine, 

Coastal and 

Shelf Science 

Chapter-5: Title: Support Vector Machine (SVM) classifier with small training 

samples for wetland saltmarsh environment 

Peer-reviewed article-3: Support Vector Machine (SVM) 

classifier with small training samples for wetland saltmarsh 

environment 

Submitted to 

Geocarto 

International 

Chapter-6:  Title: Application of Machine learning algorithms (Random Forest and 

Support Vector Machine) for Saltmarsh classification 
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Peer-reviewed article -4: An evaluation of equal training 

sample allocation for a saltmarsh environment using Random 

Forest and Support Vector Machine (SVM) classification 

algorithms.  

Submitted to 

to the 

Estuarine, 

Coastal and 

Shelf Science 

Chapter-7:  Title : Saltmarsh biomass modelling using Random Forest (RF) and 

Support Vector Machine (SVM) regressions from multispectral data 

Peer-reviewed article-5: Saltmarshes biomass modelling 

using Random Forest (RF) and Support Vector Machine (SVM) 

regressions from multispectral data 

Revised 

version 

submitted to 

the 

International 

Journal of 

Digital Earth 

Chapter-8: Synthesis : High spatial resolution multispectral image and machine learning 

algorithms for saltmarsh classification and biomass modelling 
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Chapter 2  
Endmember identification from EO-1 Hyperion and a 
comparison between hyperspectral and multispectral 
images for a saltmarsh community in the Hunter Wetland 
National Park  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Rasel, S. M., Chang, H. C., Diti, I. J., Ralph, T., & Saintilan, N. (2016). Comparison of  very near 

infrared (VNIR) wavelength  from EO-1 Hyperion and Worldview 2 images for saltmarsh 

classification. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 

3(8); doi :10.5194/isprs-annals-III-8-85-2016. 

 

Sikdar M. M. Rasel ; Hsing-Chung Chang ; Tim Ralph ; Neil Saintilan;  Endmember identification 

from EO-1 Hyperion L1_R hyperspectral data to build saltmarsh spectral library in Hunter Wetland, 

NSW, Australia. Proc. SPIE 9637, Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, 

96371O (October 14, 2015); doi:10.1117/12.2195444. 
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Abstract 
 

Saltmarsh is one of the important communities of wetlands. Due to a range of pressures, 

it has been declared as an EEC (Ecological Endangered Community) in Australia. In order 

to correctly identify different saltmarsh species, development of distinct spectral 

characteristics is essential to monitor this EEC. This research was conducted to classify 

saltmarsh species based on spectral characteristics in the VNIR wavelength of Hyperion 

Hyperspectral and Worldview-2 multispectral remote sensing data. Signal Noise Ratio 

(SNR) and Principal Component Analysis (PCA) were applied in Hyperion data to test data 

quality and to reduce data dimensionality respectively. FLAASH atmospheric correction 

was done to get surface reflectance data. Based on the spectral and spatial information a 

supervised classification followed by Mapping Accuracy (%) was used to assess the 

classification result. SNR of Hyperion data was varied according to season and wavelength 

and it was higher for all land cover in VNIR wavelength. There was a significant difference 

between radiance reflectance spectra. It was found that atmospheric correction improves 

the spectral information. Based on the PCA of 56 VNIR band of Hyperion, it was found that 

16 PCs contain 99.83 % variability. Later 16 bands were compared with 8 bands of 

Worldview-2 for classification accuracy. Overall Accuracy (OA) % for Worldview-2 was 

increased from 72 to 79 while for Hyperion, it increased from 70.47 to 71.66 when bands 

were added orderly. Considering the significance test with z values and kappa statistics at 

95% confidence level, Worldview-2 classification accuracy was higher than Hyperion data. 

Based on the small patch size and vegetation distribution pattern high spatial resolution 

data was more effective compared to narrowband coarse spatial resolution data. As ground 

truth data collection is a difficult task for wetland ecosystem, spectral separability analysis 

from pixel and region of interest (ROI) based sampling may be considered in future work 

to save time and cost.   

 

 

Keywords : EO-1 Hyperion, Signal Noise Ratio, FLAASH, Worldview -2, PCA. 
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2.1 Introduction 
 

Advanced remote sensing technology like hyperspectral data, with an ability to monitor 

more detailed changes in vegetation and species composition (Zomer et al. 2009) will 

expand opportunities for saltmarsh monitoring and mapping. High spatial and spectral 

resolution remote sensing data with more advanced geospatial technology allows mapping 

any changes in vegetation cover using species signature analysis. Some authors used 

airborne hyperspectral data, particularly, Compact Airborne Spectral Imager (CASI) 

imagery for mapping and monitoring salt marshes (Belluco et al. 2006; Hunter and Power 

2002; Thomson et al. 2003), still the data acquisition is a time-consuming and expensive 

activity for airborne hyperspectral data(Hunter and Power 2002). This problem that we 

had experienced for our study area has been discussed in the general introduction chapter. 

In this circumstances, narrow band (198 calibrated bands) coarse spatial resolution EO-1 

Hyperion data might be an alternative. But it has a low signal to noise ratio in comparison 

to airborne hyperspectral sensors. The result of the signal in this spacecraft lost to 

atmospheric absorption and the reduced energy available from surface reflectance at 

orbital altitude. Moreover, detector arrays used in this sensor were “spares” originally 

designed for another purpose, which further decreases the signal to noise ratio (Jupp and 

Datt 2004). On the other hand, High-Resolution Satellite Imagery (HRSI) data products 

are routinely evaluated during the so-called in-orbit test period, in order to verify if their 

quality (SNR and other radiometric properties) fits the desired features. High-resolution 

satellite data and its recent advances have significantly improved the coastal and 

saltmarsh vegetation mapping. Due to the sub-meter spatial resolution and the advantage 

of satellite platform for repeated data acquisition with the minimal coast, Space Imagines’ 

IKONOS and Digital Globe’s Quickbird-2 has facilitated the routine change detection 

monitoring of both salt-marsh and terrestrial vegetation. For example, with high-spatial 

resolution QuickBird-2 satellite remote-sensing data  Wang et al. (2007) mapped both 

terrestrial and submerged aquatic vegetation communities of the National Seashore 

Suffolk County, New York, and achieved approximately 82% overall classification accuracy 

for terrestrial  and 75% overall classification accuracy for submerged aquatic vegetation  

and provided an updated vegetation inventory and change analysis results. In another 

study, Ouyang et al. (2011) used Quickbird imagery to efficiently discriminate salt-marsh 

monospecific vegetation stands using object-based image analysis (OBIA) classification 

methods in terms of accuracy than pixel-based classification method.  

 

Considering the prospect of HRSI, no mentionable research has been done using 

Worldview-2 for saltmarsh classification although it has finer spatial and spectral resolution 

in compare to Quickbird. Moreover, we added high spectral resolution Hyperion data to 

test the efficiency of spectral and spatial resolution. As the Signal-Noise-Ratio (SNR) is 

one of the important properties of Hyperion data, we considered this property to test the 
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quality of the data before selecting the spectral wavelength for comparison. We also 

considered the information redundancy of Hyperion data. Within 242 original bands, the 

information content of the one band can be fully or partially predicted from the other band 

in the data. This redundancy exists due to the high correlation between bands, especially 

between adjacent bands (Jiang et al. 2004). Hence specific algorithms like Principal 

Component Analysis (PCA), Minimum Noise Fraction (MNF) are generally used to remove 

redundant dimensions and to select optimum bands number for further analysis. 

 

 

The current study explores how spectral resolution (Very Near Infrared) part and spatial 

resolutions of satellite images affect salt-marsh vegetation classification. For saltmarsh 

monitoring and management, it is essential to have a knowledge of the spatial distribution 

of salt-marsh vegetation types. This study focuses on the potentiality of high-spatial and 

high-spectral resolution satellite data for reliably salt-marsh vegetation species 

classification with the help of extensive ground truth data. The objectives were (1) to 

segregate effective number of bands from Hyperion data to minimize redundancy of 

information; (2) to evaluate data quality based on Signal Noise Ratio (SNR) (3) to identify 

the efficiency of Visible to VNIR wavelength for saltmarsh classification from two sensors 

and (4) to assess the efficiency of high spatial resolution in context of coarse spectral 

resolution of the classes of interest. Although this study has ignored Short-Wave Infrared 

(SWIR) part from Hyperion, the results can then be used as a baseline information for 

further saltmarsh related monitoring program where spatial resolution is a fact due to a 

small patch of species distribution. 

 

2.2 Materials and methods 
 

2.2.1. Remote sensing and other ancillary data 
 

Satellite imagery from two sensors was used for this research. High-spectral resolution 

EO-1 Hyperion data and high-spatial-resolution data from Worldview-2 and were used to 

compare the sensor capabilities in discriminating salt-marsh vegetation. Worldview-2 

images have 0.46 m pixel resolution in the panchromatic mode and 1.84 m resolution in 

the multispectral mode. The multispectral mode consists of eight broad bands in the 

coastal blue (400-450 nm), blue (450–510 nm), green (510-580 nm), Yellow (585- 625 

nm), red (630-690 nm), red edge (705 – 745), NIR1 (770-895) and NIR2 (860-1040) 

parts of the electromagnetic spectrum.  EO-1Hyperion images have 242 narrow bands and 

a pixel resolution of 30 m. The Worldview-2 satellite data were captured on 5th May 2015, 

and the EO-1 Hyperion satellite data were captured on 6th June 2015. 
 

2.2.2. Field data 
 

For ground truth, an extensive fieldwork was conducted in the study area on 10th to 12th 

June 2015. The stratified sampling design was followed based on mangrove, saltmarsh 

and other cover types (water and grass etc.). Although homogeneity was a crucial issue 

for sampling size, however each of the sample sites were at least 30 m × 30 m so that 
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the data collected could be used for the Hyperion as well as the Worldview-2 image training 

and classification. Sampling data included vegetation species class, percentage occurrence 

of each species within the selected plot and their global positioning system (GPS) locations. 

Total 156 sampling points and related information were recorded and divided into two 

parts for training and validation. 70% of samples were used to train data and rest 30% 

were used to validate the training result. Both mages were rectified using local council 

(https://maps.six.nsw.gov.au/) ground control points (GCPs) to WGS 84 UTM Zone 56 S 

projection system. The image-processing task was carried out in ENVI Classic, ERDAS 

IMAGINE 2015 and ArcGIS 10.2. 
 

2.2.3. Processing of EO-1 Hyperion data 
 

With a single scene of Hyperion observation for classification with training data, it is not 

necessary to use atmospherically correct image data (Datt et al. 2003). Because it tends 

to amplify noise levels and reduces the Signal Noise Ratio (SNR). Considering our scene 

of wetland ecosystem we did an atmospheric correction (Figure 2-1.) but calculated SNR 

well ahead with radiance data to assess data quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

Elimination of bad bands based on reference and other information 

 

Among the 242 bands of L1_R Hyperion data, it has been found that some bands are set 

zero during level-1 processing. They are bands from 1 to 7, bands from 58 to 76 and bands 

Figure 2-1: Processing flow of EO-1 Hyperion and Worldview-2 data 
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from 225 to 242. The remaining 198 calibrated bands (Beck 2003) have been used for 

SNR calculation.  Bands 77 and 78 were removed due to low SNR (Datt et al. 2003). Water 

absorption bands 120 – 122, 126 -132, 165-182, 185- 187 and 221 – 224 also removed 

(Beck 2003)  but bands 123-125 have been retained in the image because some 

atmospheric correction programs like ENVI FLAASH require bands centres near 1380 nm 

in the strong water vapour wavelength for masking clouds. Thus 158 remaining calibrated 

bands used for radiometric calibration for radiance data followed by an atmospheric 

correction. 

 

Correction of Stripping 

 

Hyperion uses a push broom sensor where a poorly calibrated detector in either VNIR or 

SWIR has a slightly unbalanced responsivity from that of its neighbours or from its normal 

condition. It leaves a high-frequency error in the corresponding band of the image data 

known as “vertical stripes”. Ultimately vertical stripes are an arrangement of ‘abnormal 

pixel’ either continuous or intermittent form. This abnormality of pixels rises due to 

detector failure, errors during data transfer, and improper data correction (Han et al. 

2002) . Hyperion images also suffer from sensor optical properties which distort 

spectrograms (Scheffler and Karrasch 2013) commonly known as ‘SMILE’ effect. Smile 

effect is a shift of wavelength in the spectral domain (Yokoya et al. 2010). From different 

literature and study it is proved that uncorrected stripping effect will lead to faulty 

interpretation results of the data (Scheffler and Karrasch 2013) and it becomes very 

important when any research project dealing with a high similarity of spectral signature. 

As the current study deal with the spectral signature of similar saltmarsh vegetation, 

removal of the image stripes with the preservation of the original spectral information was 

very important. Based on the different existing de-stripping algorithm, “ENVI SPEAR –

Tools – Vertical Stripe Removal” has been selected to a de-stripe subset of data. This 

method recalculates nearly the whole image information based on a global algorithm. The 

advantages of this global algorithm are that it removes low-frequency (‘SMILE’) effect 

from data (Yokoya et al. 2010). 

 

 

Atmospheric correction and surface reflectance 

 

The Hyperion data has been acquired in June 2015 when there is a spectral variation in 

trees and shrubs was expected. FLAASH is an atmopheric correction tool that corrects 

wavelengths in the visible through near-infrared and shortwave infrared regions, up to 3 

µm (Somdatta and Chakrabarti 2010). The DN values of Hyperion L1_R data are scaled 

at-sensor radiance and stored as 16 bit signed integer that needs a radiometric calibration 

to get the absolute radiance. Then FLAASH atmospheric correction module has been 

selected to convert absolute radiance values in the image to its reflectance values 

(Solution 2016).  
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MNF transformation and Pixel Purity Index (PPI) 

 

The MNF transform, as modified from Green et al. (1988) is implemented in ENVI. MNF 

transformation was done on de-stripped atmospherically corrected data to omit the bands 

those are highly correlated in terms of information. Whereas Pixel Purity Image means 

that each pixel value corresponds to the number of times that pixel was recorded as 

extreme. The general purpose of the PPI image is to associate spatial information (pixel 

locations) with the probability that each pixel represents a pure image endmember. From 

32 MNF bands, first 10 bands (mostly uncorrelated) were used in the Purity Pixel Index 

(PPI) to extract pure pixel. 

 

n-D visualization 

 

The n-D visualizer can help to visualize the shape of a data cloud, with the image bands 

as plot axes (Solution 2016). This algorithm is commonly used to examine the distribution 

of points in n-D space in order to select spectral endmembers from an image (pixels that 

are pure, containing a unique type of material). This algorithm has been used in this study 

to identify endmember based on pure pixels. 

 

2.2.4. Processing of Worldview-2 data 
 

Commercials Worldview-2 products are delivered to the user as radiometrically corrected 

image pixels where the pixel values are calculated as a function of the amount of spectral 

radiance that enters the telescope aperture and the instrument conversion of that radiation 

into a digital signal. So it is very important to convert the digital number into radiance 

(figure 2-1) and then reflectance if we want to compare Worldview-2 data with other 

sensors that are related to spectral information. 

 

Conversion of DN to radiance 

 

The raw digital number (DN) has been converted to radiance data by applying the ENVI 

Worldview 2 calibration utility, available in ENVI v4.6 and greater. It uses the factors from 

the Worldview-2 metadata and applies the appropriate gains and offsets in order to convert 

those values to apparent radiance. 

 

Atmospheric correction and surface reflectance 

 

It is imperative that multispectral data be converted into reflectance prior to performing 

any spectral analysis. Currently, we have top atmospheric radiance data and have to be 

transformed into surface reflectance data. We used the FLAASH atmospheric module in 
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ENVI classic to remove atmospheric haze and to get surface reflectance data. FLAASH 

Module multiplies the reflectance data by 10000 to convert the heavy float type data (with 

decimals) into integers for fast calculations and lower data size. So, the output reflectance 

may exceed 10000 (also it include negative values related to shady areas within the image 

where FLAASH cannot calculate the solar irradiance at it.  Here we used logical equations 

(Elsaid et al. 2014) to limit the reflectance data between 0 and 1 which is more reliable 

and comparable with most spectral libraries data range. Because 

Surface reflectance = Surface radiance / Sun irradiance 

So, surface reflectance should be less than 1. 

 

2.2.5. Selective bands from both sensors 
 

A spectral subset 56 bands have been selected (table 2.1) from 158 bands based on VNIR 

to SWIR wavelength (436.99 to 1043.59 nm) to match wavelength with HRSI Worldview-

2 data. Hyperion is a narrow band hyperspectral data and contains redundancy of 

information within a narrow interval of wavelength. Minimum Noise Fraction was done to 

produce uncorrelated bands, segregate noise components and to reduce data 

dimensionality of 56 bands (Table 2.1). 

 

Table 2-1: Selection of bands from two sensors 

 

Worldview-2 EO-1 Hyperion 

Bands Lower edges 

(nm) 

Upper edges 

(nm) 

Bands Wavelength (nm) range  

Coastal 400 450 B9-10 436.99 – 447.17 

Blue 450 510 B11-16 457.34 – 508.22 

Green 510 580 B17-23 518.39 – 579.45 

Yellow 585 625 B24-B27 589.62 – 620.15 

Red 630 690 B28-B34 630.32 – 691.37 

Red Edge 705 745 B35-B41 701.55 – 762.60 

NIR1 770 895 B42- B53 772.78-884.70 

NIR2 860 1040 B64-B90 996.63-1043.59 

8 Bands   56 Bands  

 

 

2.2.6. SNR Calculation of EO-1 Hyperion data 
 

EO-1 Hyperion was designed for a one-year life as a test basis. But the instrument has 

continued to function well beyond two years with no degradation (Pearlman et al. 2003). 

It has already more than 10 years have passed and still, a lot of research are in progress 

with this sensors. So in our work, we tested SNR of 158 selected bands. After that 158 
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bands were radiometrically corrected in ENVI based on metadata information to get 

radiance data. These radiance data were used for SNR calculation. There are many 

analytical approaches (Atkinson et al. 2007) to calculate SNR. The simplest way is the 

mean over standard deviation method by which the SNR is expressed as the ratio of the 

mean signal over the standard deviation of a target interest. Standard approach uses a 

50% albedo target, however user-defined targets based on interest can be selected to 

calculate SNR. Here SNR was calculated based on different season and different year of 

acquisition to find a relation with Hyperion proposed SNR. 

 

 

2.2.7. Classification algorithm and accuracy 
 

For supervised classification, the standard statistics “Maximum Likelihood Classifier” (MLC) 

algorithm was used. Overall Accuracy (OA), Producer Accuracy (PA) and User Accuracy 

(UA) were calculated based on the confusion matrix. For the accuracy of different 

vegetation classes, Mapping Accuracy percentage (MA %) was calculated based on the 

following equation (Congalton and Green 2008), 

 

     MA (%) = (Pixels Correctly Classified)/ (Pixels Correctly classified+ Pixels Omissions + Pixels Commissions) 

* 100      (2.1). 
 

   Where   

          Pixels omissions are the number of pixels assigned to other   classes along the row of 

the confusion matrix relevant to the class considered.  

        Pixels commissions are the number of pixels assigned to other classes along the 

column of the confusion matrix relevant to the class considered. 

 

2.3. Results 

 

2.3.1 Results of the pre-processing of the Hyperion data  
 

 

Effect of De-stripping on MNF transformation 

 

Band selection and effect of de-striping on the selected band of Hyperion data were tested 

using the MNF transformation. The appearance of brightness gradient in MNF space or by 

in image difference technique is the symptom of ‘smile’ effect (figure 2-2.a, c) that 

appeared due to the push broom effect of the sensor. So removal of gradient either 

completely or partially is the indication of smile correction. As the global de-striping (ENVI 

Spear-tools vertical removal) is applied to this image, the result of applying the MNF 

transformation indicates that both the broad low-frequency effect (Bright gradient) (figure 
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2-2. a, c) and local stripes (figure. 2-2. e) have been removed significantly (figure 2-2 b, 

d, f). As seen from data image is clean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2-2: : MNF application to reduce the dimensionality of data. 

MNF band Eigenvalue  Percentage Variability Cumulative Percentage 

1 11.9191 13.2744 13.2744 

2 9.0899 10.1235 23.3979 

3 6.6892 7.4498 30.8478 

32 1.0479 1.1671 80.7723 

 

 

 

 

Figure 2-2. (a), (b) indicate the whole strip of Hyperion data for that study area before and after 
de-stripping respectively. From the image, the presence (a, c) of brightness gradient is the 
indication of smile and absence (b, d) is the indication of removal of smile.  Image (e) and (f) 
represent result of global de-stripping algorithm before (e) and after (f). 
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Pixel Purity Index (PPI) 
 

First 10 MNF bands were used in the Purity Pixel Index (PPI) to extract pure pixel. Here 

field training pixels were used to determine the threshold level. Based on the threshold 

value PPI algorithm was run with 500 iterations to select the pure pixels from the image. 

Based on the pure pixels cluster of n –D visualization different endmember were classified. 

Spectral features were explored in n-D visualization spectral plot based on the surface 

reflectance data of an atmospheric corrected image, where reflectance value was 

expressed as a scaled value (reflectance *10,000). In the study area, there is water and 

shady place that have a very low radiance. Those pixels may not model well in FLAASH 

and return negative reflectance. Sometimes these values appear very large but this is 

because the output from FLAASH is scaled by 10,000. In the study site, water spectra are 

often confusing with shade. From the spectral features, water can be identified with its 

very low reflectance from visible to SWIR part. High reflectance in visible to SWIR is the 

indication of built-up area. Vegetation group was characterized by typical vegetation 

absorption features due to photosynthetic pigments and water (figure 2-4). 

 
 

 

 

 

 
 
 

 

a b 

Figure 2-3: Study site (a) A true colour composite of band 29 (641nm), 23 (580nm) and 16 
(509nm) (b) First three MNF band displays more colourful image and all land cover from EO-
1 Hyperion. 
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2.3.2 Signal Noise Ratio Calculation (SNR) 
 

SNR varies from 0 to 110 based on the season and acquisition time. SNR is highest in 

VNIR region for both dataset and ranges 0 to 40 with a maximum of 110 at 500 nm. Figure 

2-5 and figure 2-6 show the estimated SNR for the study area in two different seasons. 

 

a 

b 

Figure 2-4: (a) Indicate group of pure pixel extraction by n-D visualization and (b) indicate 
respective endmember from each pixel group (recognized by separate colour). 

 

Figure 2-5: SNR of EO-1 Hyperion data (summer season). 
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The SNR is higher in summer for all the three land covers (figure 2-5) and lower in winter 

(figure 2-6). The estimated SNR for both seasons is in good agreement with the predicted 

SNR for EO-1 Hyperion (Pearlman et al. 2003) . The SNR was one of the parameters that 

need to be estimated to establish the quality of images acquired by the sensors. 
 

2.3.3 Principal Component Analysis 
 

PCA was applied on the atmospheric corrected and a spectral subset of 56 bands. 

Depending on the amount of information and lack of gain of the variance in the increasing 

PCs, the initial intrinsic dimensionality is reduced to 16 components (figure 2-7).  

 
 
 
 

 
 

 
 
 
 

Figure 2-6: . SNR of EO-1 Hyperion data (winter season). 
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2.3.4  Selection of Band for classification 
 

Based on the vegetation study and references (Thenkabail et al. 2004a; Thenkabail et al. 

2004b), total of 16 bands (table 2-3) were selected for further classification. 
  
Table 2-3: List of 16 selected bands for classification. 

Worldvi

ew-2 

EO-1 Hyperion 

Bands Region 

of 

Spectru

m 

Selected 

Bands 

Wavelength 

(nm) range  

Importance as per (Thenkabail et 

al. 2004a; Thenkabail et al. 

2004b) 

Coastal Visible B9 436.99 Blue absorption peak, 

chlorophyll-a 

Blue 510 B20 

B23 

548.92 

579.45 

Absorption pre-maxima, soil 

background 

Green 580 B25 599.80 

Yellow 625 B26 

B27 

609.97 

620.15 

Red 690 B29 

B33 

640.50 

681.20 

Absorption maxima, maximum 

chlorophyll absorption 

Red 

Edge 

745 B35 

B39 

B41 

701.22 

742.25 

762.60 

Sensitive to vegetative stress  

NIR1 895 B42 

B57 

772.78 

884.70 

Correlation with Biomass 

NIR2 1040 B79 

B82 

B86 

996.63 

1013.30 

1033.50 

Sensitive to moisture plant 

moisture stress  

8 Bands 16 bands 

Very small gain of 

information 

Figure 2-7: Percentage depiction of gain in variance with increase in PCs. 
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2.3.5 Analysis of radiance and reflectance spectra and supervised 
classification 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 

Radiance spectra of Hyperion data includes radiation reflected from the surface and 

affected by the source of radiation that is sun for optical imagery. From figure 2-7 (a), the 

a 

b 

Red-Edge 

Figure 2-8 Radiance (a) and surface reflectance (b) spectra for healthy forest of EO-1 
Hyperion data. 
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radiation spectra trend toward higher values at about 500 nm, because the spectrum of 

the sun peaks at about  500 nm and looks like the overall shape of the solar spectrum. 

That is for any quantitative analysis of multispectral or hyperspectral image data, radiance 

image is corrected to reflectance images. From surface reflectance spectra (figure 2-7 b), 

the spectra changed and red-edge part has smoothened sharply that is most important 

for vegetation spectral properties analysis 

 
Table 2-4: Supervised classification of Hyperion data 

Bands combination OA_Training 
% 

Kappa 
statistics 

OA_Validation 
% 

Kappa 
statistics 

RGB and NIR1 (8band) 98.42 0.978 70.47 0.51 

8 band and Coastal (10 Band) 98.42 0.978 70.43 0.51 

10 Band and Yellow(12 bands) 
12 The band and Red Edge (14 
Band) 

98.76 
 
99.15 

0.981 
 
0.988 

70.38 
 
71.59 

0.50  
 
0.52 

14 Band and NIR2 ( 16 Band) 99.27 0.988 71.66 
 

0.52 

 

 
Table 2-5: Mapping Accuracy (%) of Hyperion data for the validation classes in saltmarsh 
ecosystem. 

Band Forested 
wetlands 

Phragmites 
australis 

Sporobolus 
virginicus 

Other 
marshes 

Water 

      

RGB and NIR1(8band) 77.23 66.27 55.44 62.57 67.37 

8 band and Coastal (10 
Band) 

76.56 66.30 54.19 64.03 70.34 

10 Band and Yellow(12 
bands) 
12 The band and Red Edge 
(14 bands) 

77.46 
 
 
78.86* 

66.59 
 
 
67.85* 

55.44 
 
 
57.30 

64.38 
 
 
64.57* 

70.56 
 
 
73.54* 

16 Band together 79.12* 67.95* 57.34* 65.23* 73.87* 
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2.3.6 Analysis of radiance and reflectance spectra from Worldview-2 data 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 

 

At first radiance spectrum of different vegetation and land cover classes were visually 

observed to check their similarity and difference with the surface reflectance spectra. The 

radiance spectra (figure 2-9 a) shows high values within the blue and green part of visible 

wavelength due to aerosol scattering. But after FLASSH, the surface reflectance spectra 

(figure 2-9 b) is corrected and blue and green values are much lower and the chlorophyll 

Figure 2-9: Radiance (a) and Surface reflectance (b) of healthy vegetation from healthy 
forest spectra. 
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peak in the green wavelength is visible. Now, this spectrum is comparable with the 

corrected reflectance spectra of Hyperion data. 
 
 
Table 2-6: Supervised classification of Worldview-2 data 

 
The arrangement of 
bands for classification 

OA_Training % Kappa 
statistics 

OA_Validation % Kappa 
statistics 

     

RGB and NIR1 97.61 0.969 72.57 0.56 
RGB, NIR 1 and Coastal 97.58 0.964 72.03 0.56 
RGB, NIR1 and Yellow 
RGB, NIR1 and Red 

Edge  

98.14 
 

98.19 

0.973 
 

0.973 

76.38 
 

78.59 

0.62 
 

0.64 
 

RGB, NIR 1 and NIR2 98.19 0.972 78.66 
 

0.65 

8 Band together 99.07 0.984 79.67 0.65 
     

 
 
Table 2-7: Table 2.6 Mapping Accuracy (%) of Worldview-2 data based on the dominant 
classes 

 
Band Tree species Phragmites Sporobolus Other 

marshes 
Water 

      
RGB and 
NIR1 

81.23 68.43 74.68 66.57 78.86 

RGB, NIR 1 
and 
Coastal 

82.56 69.60 78.58* 72.53* 79.02 

RGB, NIR1 

and Yellow 
RGB, NIR1 
and Red 
Edge  

81.46 

 
88.19 

62.59 

 
72.79 

77.02 

 
78.25 

67.38 

 
70.59 

78.92 

 
81.54 

RGB, NIR 1 
and NIR2 

88.55* 73.45 77.58 71.66 
 

84.09* 

8 Band 

together 

89.12* 78.74* 81.78* 72.67* 88.56* 

      

 
 
 

It is clear from the training and validation dataset, with an increase in the number of the 

bands, the overall accuracy also increased except the coastal band. This might be due to 

the absence of seawater training data and location for validation. Overall accuracy for test 

site increased up to 7% with the combined 8 bands of Worldview-2 data.  
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2.4   Discussion 
 

Not only was the Hunter region, SNR calculated from the other parts of Australia. Using 

the mean/standard deviation method, 4 Hyperion scenes from around the coastal region 

of Australia shows that there is a strong relationship between the acquisition time of year 

and the SNR of the Hyperion data. That was a good agreement with the findings of Kruse 

et al. (2003). Calculated SNR for Hyperion SWIR data is higher in the summer and lowest 

in the winter (Figure 2.5 and 2.6) that was also similar to the finding of (Kruse et al. 2003). 

Based on the SNR based data quality assessment, Hyperion L1_R data were radiometrically 

calibrated followed by FLASSH correction. 

 

The variability at the green peak (~550nm), chlorophyll absorption (680nm) to 

approximate Red- Edge (720 nm) and water absorption features (945nm and 1190nm) 

arises due to the variation of pigment, water content and the structural components. These 

differences lead to different species or variation in health or phonological stage within the 

species. Compared to green grass (Green colour spectra) shown in Figure 2.4 b, the 

chlorophyll absorption of Casuarina glauca and Phragmites australis are weaker and they 

are structurally different. Casuarina glauca (Cyan colour spectra) is also different from 

Phragmites australis (red colour spectra). Phragmites australis can be identified at 2100 

nm to 2300 nm (red spectra is distinct) due to cellulose content. The spectral shape, 

cellulose related features and the depth of the chlorophyll absorption (shallow depth 

compared to green and cyan) could be attributed to the tall less green Phragmites 

australis. The PPI algorithm didn’t work properly to identify pure pixel for Sporobolus 

virginicus and Sarcocornia quinqueflora species. The main reason is Sarcocornia   

quinqueflora land cover fraction was very low compared to two saltmarsh species. 

 

There are clear and visible differences between radiance and reflectance spectra of WV-2 

and EO-1 Hyperion data that becomes visible after atmospheric correction. Øystein and 

Øivind (2012) proved that FLAASH corrected Worldview-2 image has a clearly lower blue 

component and an expected chlorophyll peak in the green band due to the correction of 

aerosol scattering.   In a different study conducted by Yuan and Niu (2008)  showed that 

Hyperion image showed the rich spectral information of objects after FLAASH correction.  

 

Based on the PCA of FLAASH corrected reflectance data, only 16 PCs were found that 

contained most of the information. It was similar to the findings of Chauhan et al. (2011) 

and Pervez and Khan (2015). From 155 atmospherically corrected band, Pervez and Khan 

(2015) showed that only first 10 PCs contain more than 99 % of the information. Chauhan 

et al. (2011) segregated first 13 bands that contain 97 % information from 168 bands of 

Hyperion data. In our study, among the 56 bands of atmospherically corrected Hyperion 

data, 79.01% variability was contained by the first PC, 96.31% variability was contained 

by PC2 and likewise, 16 PCs contains up to 99.83% variability due to the application of 

PCA. PCA highlights the redundancy in data due to similar responses in some wavelength 

and reduces the dimensionality of data by decorrelation. When 16 selected bands of 
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Hyperion data were compared with the 8 bands of Worldview-2 for saltmarsh classification, 

the overall classification accuracy has increased in both cases after adding band orderly. 

But the overall accuracy obtained from Worldview-2 was higher than that from the EO-1 

Hyperion image. Table 2.5 shows that OA % for Worldview-2 was increased from 72 to 79 

while for Hyperion it increased from 70.47 to 71.66. Considering the significance test with 

z values and kappa statistics at 95% confidence interval, Worldview-2, classification 

accuracy was higher than Hyperion data. These findings differ from the findings of Kumar 

and Sinha (2014). This is might be due to the spectral properties of high spatial resolution 

data and ground scene of the study area. Kumar and Sinha (2014) used Quick bird images 

that have 4 multispectral bands with 2.4 m resolution. Whereas Worldview-2 images that 

used in our study have 1.84 m spatial resolution with 8 bands in the multispectral mood. 

Moreover, they used all of the bands of Hyperion data in their study. But in our study, we 

used only 56 Hyperion band (49 VNIR and 7 SWIR) to compare with the wavelength of 

Worldview-2 images. We also segregated a number of bands to reduce the redundancy of 

information. Finally, 16 bands based on different literature were used for classification 

purposes. 
 
 

2.5 Conclusion 
 

Based on pre-processing, the data reduction algorithm, PPI and other investigation we 

conclude that EO-1 Hyperion hyperspectral data shows potential for the identification of 

the endmember from wetland components. However, it was found that two important 

factors impede the PPI endmember extraction procedure and subsequent supervised 

classification of hyperspectral data. These are the lack of pure pixels and the small patch 

size on the ground. PPI endmember extraction algorithms assume the presence of pure 

pixels and its threshold level based training pixels and image pixels. For spaceborne 

hyperspectral data with a typical 30-m spatial resolution, it is very difficult to find pure 

pixels in a wetland ecosystem. A high spatial resolution data could resolve that issue, 

specifically, when filed patch size of saltmarsh is not large enough to match with 30m pixel 

size of image data. This research describes the importance of SNR for data quality 

assessment and PCA for data reduction for EO-1 Hyperion data. Based on the VNIR of 

multispectral broadband and hyperspectral narrowband data this research explores the 

potentiality of spatial resolution over spectral resolution. Classification accuracy improved 

significantly in both cases after adding bands orderly. But overall accuracy was higher in 

case of Worldview-2 due to high spatial resolution and small patch size of species on real 

earth condition. The result of the current study can be applied to any future research 

relates to VNIR for the improvement of classification accuracy. Although this research 

ignores the importance of SWIR, next chapter will focus on the application of Landsat 8 

OLI for spectral profile analysis for saltmarsh species that has two SWIR bands. Due to 

the small patch size and difficulties in access to the study area, it was really difficult to 

collect enough sample points for calibration. So the region of interest based training 

sampling can be a recommendation for further research. In addition, spectral separability 

analysis is recommended to test the separability between species. As data collection is a 

challenging task, advance machine learning classifiers can be considered in future work as 

they work based on small sample size and multimodal distribution data. 
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Chapter 3  
Spectral Separability and spatial sampling unit analysis of 
saltmarsh species class using Worldview-2 and Landsat 8 
OLI data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

 

Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping 

accuracy assessment. Proc. SPIE 9864, Sensing for Agriculture and Food Quality and 

Safety VIII, 986409 (May 26, 2016); doi:10.1117/12.2222960. 
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Abstract 
 
 

The distribution of classes on feature space is an important parameter that often has 

overlaps which reduce the accuracy of classification. To solve this problem, the concept of 

spectral separability is introduced. So the class separability varied with sampling design 

and the spatial unit (region of interest or pixel). Spectral separability was tested based on 

divergence and Jeffries-Matusita (JM) distance to measure class separability.  The spectral 

profile was analysed based on two different sampling criteria followed by a supervised 

classification using Landsat 8 OLI and Worldview-2 data. Two different sensors, High 

Spatial Resolution Worldview 2 data and Coarse Spatial resolution, Landsat 8 were selected 

for this study. Among the selected vegetation types some patch was fragmented and close 

to the spatial resolution of Worldview 2 data and some patch was more than 30-meter 

resolution of Landsat 8 data. The main objective was to check the spectral profile 

originated from the region of interest and pixel-based sampling. Based on the spectral 

profile, Mangrove and She-oak were clearly separable using Landsat 8 data. But from 

Worldview-2 data, it was not possible to separate because error bars were overlapped. A 

similar trend was found for two saltmarsh species with Worldview-2 data. However, when 

pixel based sampling was considered, red band information was effective to differentiate 

the spectral profile of Phragmites australis and Sporobolus virginicus. Based on the region 

of interest based sampling (ROI), supervised classification provided 88.72% overall 

accuracy that was higher than the OA of Landsat 8 OLI.  However, classification error was 

evident due to the region of interest based sampling that includes heterogeneous pixel 

within the homogenous category. Due to the scattered distribution of saltmarsh species, 

pure homogenous pixels for training data were very limited. Therefore, advanced machine 

learning algorithm has been recommended for future research work.  

 

 
 
 
 
 
 
Keywords: Saltmarsh, Worldview 2, Landsat 8 OLI, spectral separability, a region of 

interest (ROI). 
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3.1 Introduction 

 

Saltmarsh usually lives with dominant mangroves in the wetland ecosystem. This causes 

a problem in selection of scale and radiometric properties of the remotely sensed data 

when performing classifications. The scale or spatial resolution is the projected area on 

the ground associated with the radiance measurement of the sensors. It is the smallest 

distinguishable spatial unit (ground resolution element) recorded in a remotely sensed 

data. For example, the spatial resolution is 2 m for Worldview-2 data and 30m for Landsat 

8 OLI or EO-1 Hyperion data. Sometimes the spatial resolution denotes the ground 

sampling distance in an image after image re-sampling that can be varied from the actual 

spatial resolution recorded by the sensor. Spectral resolution means the range over the 

electromagnetic spectrum the energy is measured and recorded by the sensor.  The use 

of higher spectral resolution images usually improves the capability of detecting spectral 

variability within a land cover by increasing the discrimination capacity (Almeida and Filho 

2004). But a spatial resolution may be more important than spectral resolution when 

spatial extent of land cover types is an issue. However, both spatial and spectral resolution 

are two fundamental characteristics of a remotely sensed image for any application, similar 

to classification or feature extraction from feature space. 

 

The distribution of classes on feature space is an important parameter that is related to 

the classification accuracy. This is because class probabilities are produced based on the 

distribution of classes in feature space. However, this distribution often has overlaps which 

reduce the accuracy of classification. To solve this problem, the concept of spectral 

separability is introduced. This concept indicates how well two classes are separated. This 

separability concept is classical in pattern recognition and independent of the coordinate 

system(Fukunaga 2013; FUKUNAGA 1990) and has an effect on classification accuracy. 

 

Remote sensing image classification accuracy is affected by other two factors: firstly, the 

influence of boundary pixels and secondly, a finer spatial resolution that increases the 

spectral –radiometric variation of land cover types (Markham and Townshend 1981). 

Optimum spectral and spatial resolution determination for vegetation mapping has been 

an ongoing area of research in remote sensing (Curran and Atkinson 1999). It becomes 

more challenging when dominant and fragmented plant species patches are distributed 

together in the same community, similarity to our study site.This study site supports an 

extensive temperate saline coastal wetland system comprising mangrove, saltmarsh and 

mixed mangrove–saltmarsh habitats (Rogers et al. 2014). About 4,257 ha of these 

wetlands are formally protected within the Hunter Wetlands National Park and this includes 

over 2,926 ha listed as internationally important under the Ramsar Convention in 1984. 

However to facilitate agriculture and industrial production, a network of 176 levees, 

culverts and floodgates that were constructed in the period 1950–1980  under the Hunter 

Valley Flood Mitigation Scheme (Winning and Saintilan 2009). As result wetland areas 
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behind levee banks have transitioned from saltmarsh to brackish reed swamps dominated 

by Sporobolus virginicus, Schoeloplectus subulatus and Phragmites australis (Winning and 

Saintilan 2009).  Due to this, the whole wetland and the surrounding part is a place of 

scientific research based on different objectives. The main interest of this stud was to 

know the current status of theses degraded saltmarshes with respect of the other co-

habitants, for example, mangrove and She-oak and to find out optimum mapping accuracy 

for each saltmarsh species from remote sensing data. Species classification based on 

spectral properties of different vegetation classes within the wetland environment is a 

challenging task. Saltmarsh vegetation types may possess similar spectral signature in the 

remotely sensed image, and spectral resolution of data may be insufficient to detect 

saltmarsh class if spatial resolution is coarse. In the previous chapter, it was found that 

found that high spectral resolution data suffer from the redundancy of information, and all 

narrow bands are not effective to give enough information. However, due to the focus on 

the other objectives, spectral separability analysis was not tested in the previous chapter. 

In addition, the effect of the spatial unit, an i.e. region of interest (ROI) or single pixel 

issues were not considered in the previous chapter as it was not related to the 

hyperspectral data.   Therefore, in this study, commonly used broadband multispectral 

data Landsat is introduced.  Then the performance of High-Resolution Satellite Imagery 

(HRSI) Worldview-2 and recently launched coarse spatial resolution Landsat 8 OLI were 

compared. Both sensors have some similarities in their spectral coverage, however, their 

spatial resolution (pixel) is very different. This paper aims to examine the effects of the 

spatial unit (ROI or pixel) based sampling on spectral separability analysis followed by 

thematic map accuracy based on spatial resolution irrespective of spectral resolution. This 

study also explores the importance of moderate resolution (30-meter) broadband data for 

two dominant species, Grey Mangrove (Avicennia marina) and She-Oak (Casuarina 

glauca).  

 

3.2     Dataset and methods 

 

3.2.1      Input Data 
 

Two different platform satellite imagery of Worldview-2 and Landsat 8 OLI were used for 

this research. Worldview-2 has a pixel resolution of 0.46m in the panchromatic mode and 

1.84 m resolution in the multispectral mode whereas recently launched Landsat 8 OLI 

consist of nine spectral bands with a spatial resolution of 30 meters for Bands 1 to 7 and 

9. New band 1 (ultra-blue) is useful for coastal and aerosol studies. Another new band 9 

is useful for cirrus cloud detection. The resolution of Band 8 (panchromatic) is 15 meters. 

Thermal bands 10 and 11 are useful in providing more accurate surface temperatures and 

are collected at 100 meters. Approximate scene size is 170 km north-south by 183 km 

east-west (106 mi by 114 mi). In our study, we did not use thermal and cirrus bands 

(table 3-1). 
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Table 3-1: Specification of Worldview-2 and Landsat 8 OLI data. 

Worldview-2 Landsat OLI imagery 

Bands Central 

Waveleng

th (nm) 

Wavelength 

range (nm) 

Bands Central 

Wavelength 

(nm) 

Wavelength (nm) 

range  

Coastal 427 400-450 Coastal 443 433 - 453 

Blue 478 450-510 Blue 482 450 - 515 

Green 546 510- 580 Green 562 525 - 600 

Yellow 608 585-625 Red 655 630 – 680 

Red 659 630-690 NIR 865 845 -885 

Red 

Edge 

724 705-745 SWIR 1 1610 1560 -1660 

NIR1 833 770- 895 SWIR 2 2200 2100 - 2300 

NIR2 949 860-1040 Pan 600 500 - 680 

Pan 627 447- 808 CIRRUS 1370 1360-1390 

 

3.2.2 Image acquisition and Image processing 
 

For Worldview-2 imagery, the raw Digital Number (DN) has been converted at sensor 

radiance using Worldview-2 calibration utility, available in ENVI V4.6 and greater. The 

image was acquired in May 2015 that is the transition of the season from summer to winter 

in NSW, Australia. Based on the initial analysis of the DN value of the image we found that 

coastal band (lower spectral region) is affected by atmospheric scattering. To compare the 

effect of atmospheric correction of image spectrum we applied atmospheric correction 

method, The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH). 

Afterwards, the WorldView-2 imagery was registered to Map Grid of Australia (MGA94) 

Zone 56 using a high-resolution aerial photo of the local council, Land and Property 

information, NSW, Australia (https://maps.six.nsw.gov.au/). A first-order polynomial 

transformation was applied and RMSE values estimated for this transformation was 0.32 

pixels. The first order polynomial was selected because this wetland area has a generally 

flat terrain. However, the RMSE was considered well enough considering the nominal GPS 

measurement error of 3-4 m that we obtained in the field.  

 

Similarly, the DNs of the Landsat OLI data were first converted to at-sensor radiance by 

using the radiometric calibration parameters. The FLAASH algorithm was then used to 

convert radiance to reflectance. Same aerial photo (SIX Map) was used for rectification of 

Landsat OLI imagery. A first-order polynomial transformation with the nearest 

neighbourhood resampling was applied and RMSE values estimated for image 

transformation were about 0.87 pixels. 
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3.2.3 Processing of field data 
 

There are three different strata (Tree, saltmarsh and water) at the study site. Randomly 

collected ground reference sample from different strata was divided into two groups, the 

calibration and validation set. This is the basic criteria to remove any possible bias that 

could be caused by using the same set of pixels to calibrate and to validate the classifiers. 

It is known that Landsat OLI data were hampered by the low spectral dimensionality and 

spectral resolution (Xiao and Moody 2005). In this circumstances, to deal with medium 

resolution (30 m) Landsat OLI data two dataset was prepared for classification purposes. 

One dataset is prepared based on the overlaying of field sample vector file (stratified 

random sampling) over Landsat OLI and prepare region of interest ( a group of 

pixels/polygon) for each class based on homogeneity. The spatial distribution of those 

sample points are shown is chapter 1 (figure 1-2). Those reference points were used to 

identify the homogenous pixels for each species.  The homogeneity of these pixels cluster 

can be tested with the Principal Component Analysis (PCA). Because PCA used the highly 

uncorrelated bands in a 2-dimensional scatterplot (figure 2) and could be used to identify 

the individual endmembers of multiple surface components (Johnston and Barson 1993; 

Smith et al. 1985). According to Johnston and Barson (1993) and Smith et al. (1985), in 

a mixture of three substances, the first two components produced a triangle (Figure 3-1) 

in a scatterplot to locate the endmembers at the corner of the triangle. This was the best 

approach to make our training and test data unbiased as much as possible. For Worldview-

2 data, total 2228 training and 1625 test data were used for eight different classes. On 

the other hand ROI, 638 pixels were used based on principal component analysis to 

calibrate the model for Landsat 8 OLI and 529 pixels were used to validate the result. 

Another dataset was used to test the individual pixel separability analysis that is developed 

from the fieldwork and individual pixel for each species. 

 

3.2.4 Class separability 
 

There are several methods to identify class separability. For example, Jia and Richards 

(1999) mentioned the divergence and Jeffries-Matusita (JM) distance to measure class 

separability. In this research Jeffries-Matusita (J-M) distance was used to measure the 

separability between the 8 classes chosen. The value of this distances varies from 0 to 2.0 

where 0 indicates classes are same and 2.00 indicates they are very well separable.  

3.2.5 Selected classifier  
 

Maximum Likelihood Classifier (MLC): MLC is one of the statistical classifiers. It is based 

on that depends on the idea that the distribution of the data in each class is normally 

distributed and called as a parametric classifier. This classifier assumes that the statistics 

for each class in each band are normally distributed and calculates the probability that a 

given pixel belongs to a specific class. Unless a probability threshold is selected, all pixels 

are classified based on the probability of normally distributed data. Each pixel is assigned 
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to the class that has the highest probability. If the highest probability is smaller than a 

threshold, the pixel remains unclassified. More details of MLC can be found in Otukei and 

Blaschke (2010). 

3.2.6 Accuracy Assessment and kappa analysis 
 

Accuracy assessment results were discussed based on the confusion error matrix, overall 

map accuracy and kappa values.  For individual class, producer and user accuracy were 

computed based on the dominant class in each reference plot (Richards 1996; Stehman 

1997; Story and Congalton 1986)

 

3.3  Results and discussion 
 

3.3.1   Principal Component Analysis 
 

The PCA eigenvalue showed that the first three PCA components accounted for almost 

99.50% of the total variance for Worldview-2 data and 99.76% for of the total variance 

for Landsat 8 OLI data. However, if we consider the pixel resolution of Worldview-2 data 

then rest 0.50% variance is really important for 2X2 m pixels. But we can ignore rest 

0.25% variance (table 3-2) based on 30x30 m pixels resolution for Landsat OLI data to 

select independent endmember dataset for classification. In this perspective, our 

calibration data from Landsat OLI extracted a maximum number of endmember (for 

Landsat 8 it is 7) from uncorrelated PCA bands. Existing studies suggest that the pixels 

located on the corner of the scatterplot (figure 3-1) can be treated as endmember (Qu et 

al. 2014).  

 

Table 3-2: Percentage depiction of gain in variance with an increase in PCs in both 

dataset 

 Worldview-2  Landsat OLI 

  

PC

s 

Eigen 

value 

% 

Variation 

Cumulativ

e 

percentag

e 

Eigen 

value 

% 

variation  

Cumulative 

Percentage 

1 0.063954 96.9822 96.982288 0.023215 93.9802445 93.9802445 

2 0.001278 1.9380 98.920296 0.001256 5.08460853 99.0648530 

3 0.00039 0.5944 99.514739 0.000174 0.7043964 99.769249 

4 0.000195 0.2957 99.810445 0.000029 0.11739940 99.8866488 

5 0.00005 0.0758 99.886267 0.00002 0.08096510 99.9676139 

6 0.000032 0.0485 99.934793 0.000007 0.02833778 99.9959517 

7 0.000024 0.0363 99.971187 0.000001 0.0040482 100 

8 0.000019 0.0288 100    
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3.3.2 Spectral profile Analysis 
 

Based on the spectral curve originated from the region of interest (ROI / polygon), it is 

very clear that all saltmarsh species are overlapped with each other within all bands of the 

spectrum. But Mangrove and She-oak (Casuarina glauca) tree species are clearly 

separable from each other up to bands 5 (figure 3-2). Because Mangrove and She-oak are 

two dominant tree species cover a large extent of the study area that is easily detectable 

from 30-meter pixels of Landsat data.  Similarly, band 1-4 are a clear indication to 

separate Marshy wetland from the water. On the other hand for Worldview-2 data (figure 

3-3), reflectance properties of water in bands 6-8 (Red Edge, NIR1 and NIR 2) and 

reflectance of marshy wetland in band 7 are significantly different from other classes. The 

perennial grass is unique in band 3(Green) and 6 (Red Edge). However, in most of the 

bands, the error bars of Mangrove, She-Oak, Phragmites australis, and Sporobolus 

Figure 3-1: Principal Components Analysis (PCA) based endmember selection for classification of 
Landsat 8 OLI data. Scatterplot of the three PCs from Landsat OLI data to select seven 
endmember: (Clockwise) PCA 1vs PCA2: Mangrove, Grass, Phragmites australis, Water; PCA 1 vs 

PCA3: Casuarina glauca, Sporobolus virginicus, Water; PCA 2 vs PCA3: Phragmites australis. 
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virginicus overlapped with each other.  Among these species, the spectral separation is 

not very clear as there is overlap in the reflectance region. 
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Figure 3-2: Different classes extracted from 7 bands of Landsat 8 OLI data 

 



Chapter 3 

 47 

  

The box-whisker plot developed from pixel-based sampling from Worldview-2 indicates 

the spectral variability and data distribution pattern among and within 8 classes (figure 3-

4). Only annual grass (GR) is clearly separable in green, red edge and NIR bands. 

Reflectance properties of water (WA) in the last 3 bands (Red Edge, NIR1 and NIR 2) and 

reflectance of wetland soil (WS) in band 8 are significantly different from other classes. 

Within two tree species (Casuarina=CA and Mangrove=MA) the separation is not so clear, 

there are considerable spectral overlaps in different bands. Two saltmarsh species 

(Phragmites= PH, Sporobolus = SP) are clearly separable in the red band. The saltmarsh 

species also show band-specific within-species variance. For example, the variance of 

Phragmites (PH) in the coastal band is quite large and in NIR2 is relatively small. Based 

on the overall box-whisker plot, it is clear that there are no outliers for any species in any 

band. Moreover, the median is the centre of each box indicating that data are normally 

distributed. 
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Figure 3-3: Different classes extracted from Worldview-2 data 
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Figure 3-4: Box-whisker plots of median reflectance values of the 8 Worldview 2 bands for different 
wetland species derived from the reflectance pixels of the study area 
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3.3.3 Classification Result for Landsat 8 OLI 
 

The confusion matrix (table 3-3) of the MLC classifier originated from all the bands of 

Landsat 8 OLI data indicates that the producer and user accuracy for Mangrove, Casuarina 

and Grass species are higher than others species. Although overall classification accuracy 

is lower for all classifier when it was compared with that of Worldview-2 data (table 3-4). 

But the main findings is that the two dominant species of Mangrove and She-Oak are well 

classified from the Landsat 8 image. However, it was not possible to collect enough sample 

for dieback disease using coarse resolution data and has been removed from Landsat 8 

OLI. 

 

Table 3-3: Confusion matrix of MLC classification of Landsat 8 OLI data 

MLC 

Class A B C D E F G Total EC UA 

A 54 1 0 0 0 0 7 56 1.78 98.21 

B 15 65 0 9 0 0 2 91 9.89 90.10 

C 0 0 52 11 0 0 0 70 15.7

1 

84.28 

D 0 0 14 39 0 0 5 58 22.6

2 

77.37 

E 1 0 0 0 81 5 0 87 5 95 

F 3 1 0 0 4 79 1 87 6.15 93.85 

G 0 0 8 7 0 2 63 80 10 90 

Total 73 67 74 66 85 86 78 529   

EO 20.5

4 

20.3

7 

23.52 21.60 4.70 5.81 7.69           OA=82. 04% 

           Kappa =0.79 

PA 79.4

5 

79.6

2 

76.47 78.39 95.29 94.1

8 

92.30 

 

Class key: A= Water, B = Marshy Wetland, C = Phragmites australis, D = Sporobolus virginicus, E= 

Mangrove, F = Casuarina, G = Perennial Grass, EO = Error of Omission, EC= Error of Commission, 

UA= User Accuracy, PA= Producer Accuracy, OA = Overall Accuracy 

 

 

 

 

 

 

 

 

 

 

 



 

 50 

 

 

 

From the figure 3-5, it is clear that dominant species Casuarina glauca (She-oak) has been 

identified with a high accuracy as it has a larger area that can be mapped by 30x30m 

resolution data. On the other hand, small patch size of Phragmites australis has been 

misclassified that is also reflected when mapping accuracy was calculated. This 

misclassification  raised due to the spatial resolution of Landsat 8 OLI data. Although 

confusion matrices derived from Landsat 8 is showing higher accuracy for different small 

fragmented saltmarshes, this accuracy is not always acceptable. Because a 30-meter pixel 

is a combination of different species/land cover. These mixed pixels have not properly 

classified by this broadband data. However, ROI based sampling effectively classified 

dominant tree species ( Mangrove or She-Oak) that is very clear in figure 3-5. 

 

3.3.4 Classification Result for Worldview-2 data 
 

The confusion matrix (table 3-4) of the MLC classifier indicates that there is a high 

incidence of misclassification of Mangrove and She Oak from Worldview-2 data. This 

misclassification mostly comes from the similarity of the spectral properties of this tree 

species.  

Figure 3-5: (right) True color image of the part of a study area and (left) MLC classificationof 
Landsat 8 OLI. 
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Table 3-4: Confusion matrix of MLC classification of Worldview-2 data 

Class A B C D E F G H Total EC UA 

A 248 56 0 0 0 0 4 0 308 57.2 42.7 

B 58 128 0 0 0 0 4 0 190 60.1 39.8 

C 1 0 366 0 0 1 0 0 368 1.27 98.7 

D 0 0 0 286 5 0 7 1 299 12.3 87.7 

E 0 0 0 10 129 0 6 4 149 18.6 81.3 

F 1 3 3 2 1 130 2 0 142 8.45 91.5 

G 0 0 0 7 5 0 30 0 42 18.9 81.0 

H 0 0 0 1 1 0 0 125 127 1.57 98.4 

Total 308 187 369 306 141 131 53 130 1625   

EO 18.

8 

31.5 0.8 37.2 10.7 1.85 43.

4 

3.1 OA=88.73% 

Kappa =0.82 

PA 81.

1 

68.4 99.1 62.7 89.2 98.1 56.

6 

96.9 

Class key: A= Mangrove, B = Casuarina glauca, C= Water, D = Phragmites australis, E = Sporobolus 

virginicus, F= Marshy wetland, G = Dieback Casuarina, H = Perennial Grass, EO = Error of Omission, 

EC= Error of Commission, UA= User Accuracy, PA= Producer Accuracy, OA = Overall Accuracy 

 

Table 3-5: Accuracy assessment and kappa statistics 

MLC  Worldview 2 Landsat 8 OLI 

Overall accuracy 88.73 82.04 

Kappa coefficient 0.82 0.79 

Variance 0.000048 0.00027 

 

Table 3-6: Mapping accuracy assessment based on each class 

Class Worldview-2 Landsat 8 OLI 

Mangrove 66.48 89.01 

Casuarina 67.36 84.04 

Water 97.34 74.32 

Marshy Wetland 98.48 69.89 

Phragmites 91.37 56.62 

Sporobolus 84.86 45.88 

Dieback Casuarina 42.10  

Grass 99.21 66.31 

 

 

 

With Worldview-2 data, MLC produces lower MA for classes those have overlapping 

information in the electromagnetic spectrum, like as Mangrove and She-Oak. A similar 

trend was observed for Phragmites australis and Sporobolus virginicus. But MLC produces 

higher mapping accuracy for classes those have a fairly homogeneous composition of the 
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target classes at the 2X2 m spatial resolution. Because homogenous distribution results in 

relatively normal distribution of the reflectance values of that class in each of the spectral 

bands. For instance, water and grass were clearly separable and based on probabilistic 

parametric classifier MLC was giving the highest MA for these two classes.  Similar studies 

in wetland areas have also delineated water body from other wetland features (Davranche 

et al. 2010). 

 

On the other hand, the Overall Accuracy derived from Landsat 8 OLI was 82.04%. Producer 

Accuracy and User Accuracy were higher for Mangrove, She-Oak and grass due to their 

homogenous patch in the study site. These characteristics (higher spatial extent) played 

an important rule to improve Producer Accuracy and User Accuracy for these three classes. 

The main reason is that with coarse spatial resolution, dominant species with high spatial 

extent become easier to be defined. When we calculated the mean and standard deviation 

from different homogenous pixels for these two species we found a very low standard 

deviation. Due to this the error bar was not overlap within the first 5 bands for these two 

species. Contrary Worldview-2 (2m spatial resolution) data try to find out more chemical 

variation within visible to NIR due to more number of bands within the same spectrum. To 

some extent, within 2 m spatial resolution their leaf pigment or vigour might be similar 

and creates a confusion to classify it at this scale. But when it calculated the mean value 

within 30 m scales, it was clearly separable by Landsat OLI data.  For this reason, the MA 

was lower for these two tree species. These findings also supported by Roth et al. (2015)  

as they got higher OA for some species when spatial resolution increased from 12 m to 

20m. Our findings from Landsat 8 OLI are also comparable with (Chen et al. 2004) when 

they found a positive correlation between NIR and green bands with the spatial resolution 

of the image. They found that when the resolution becomes coarser, the correlation 

coefficient between the two bands is supposed to increase. In a similar way, Herold et al. 

(2004) compared simulated coarse resolution broadband IKONOS and AVIRIS data for 

classifying land cover and found that IKONOS was more appropriate than AVIIRS.  

 

Individual pixel based separability index (Appendix-I) based on Jeffries-Matisuta (J-M) and 

Transformed-Divergence (T-D), indicate that Phragmites australis and Sporobolus 

virginicus are clearly separable (1.99). Similarly perennial grass, water and wetland are 

also separable from each other as their values are 1.99 to 2.00. In most of the cases, 

Mangrove and Sho-oak are not clearly separable as the value ranges from 1.84 to 1.98. 

It means in some cases they both are separable but in some cases not. However, it is very 

clear that individual pixel based sample collected from small patch size from the 

homogenous area (2- meter of Worldview-2) help to improve saltmarsh classes. Therefore, 

further research may be focused on the application of advanced algorithms based on pixel-

based sampling originated from the small patch size of our study area. 
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3.4      Conclusion and recommendation 
 

 

This study examined the distribution of fragmented saltmarsh in the context of two other 

dominant species, Mangrove and Casuarina. The effect of various spatial resolution on the 

accuracy of classifying the dominant vegetation species was investigated. The major 

findings are summarized as follows: 

1. Highs spatial resolution Worldview-2 data with 8 spectral bands are used to make 

a map for fragmented saltmarsh where the minimum patch size is at least 2m by 

2m for each species. 

2. Coarse resolution Landsat 8 OLI data work well for classifying the dominant species 

when they spread over a wide extent. This is a good indication to map mono-

species mangrove at community or regional level with Landsat 8 OLI data. 

3. The region of Interest (ROI) based sampling is helpful to map a dominant species 

from coarse resolution data but ROI or polygon based sampling raised classification 

error for small fragmented species, i.e. Phragmites australis. 

 

Laboratory analysis can be carried for leaf pigments, Chlorophyll and other nutrients that 

are related to plant reflectance. So that maximum information can be extracted from more 

bands of Worldview-2 data to remove overlapping information between two species. Pixel-

based classification with the advanced machine learning classifiers can provide higher 

accuracy. So further research may be carried out based on the advanced machine learning 

algorithms. 
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Chapter 4  

Scope for saltmarsh classification and biomass estimation 
using Support Vector Machine (SVM) and Random Forest 
(RF): A review 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on 

 

The article that has been submitted to the Special issue on “Marine Protected Areas: 

Science, Policy & Management” of the International Journal of Estuarine, Coastal and Shelf 

Science. This is a review article. 
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Abstract 
 

Maximum likelihood (MLC) is the most common supervised classification method used in 

classification that follows a normal distribution. However, in most of the cases, the normal 

distribution is the main violation of RS data because the nature and causes of spatial 

variation in images are not always easily understandable that makes the application of 

MLC more difficult and inaccurate. In addition, adequate ground truth information and 

collection of enough sample points for training and validation are also impractical for 

wetland ecosystem that are the requirements for MLC. Therefore, the application of 

machine learning algorithms is increasingly popular for land cover mapping as they can 

handle small sample size and multi-modal distribution of data. Two machine learning 

algorithms, Support Vector Machine (SVM) and Random Forest (RF) have been reviewed 

in respect of land cover mapping and a special attention to wetland ecosystem. All types 

of remote sensing data including multispectral, hyperspectral, microwave RADAR and 

LiDAR data have been reviewed within the two broad categories of Machine learning 

classifiers. Although SVM related remote sensing works have been reviewed by  Mountrakis 

et al. (2011). New articles have been published since then, and new methods have been 

used for SVM. Very recently, Belgiu and Drăguţ (2016) reviewed Random Forest and its 

application in remote sensing. But the potentiality of ensemble classifiers for a specific 

ecosystem like saltmarsh and wetland ecosystem need to be reviewed. That is why, 

emergence and modification of machine learning algorithms and techniques in recent years 

necessitate such a review, which will be highly valuable for guiding or selecting a suitable 

classification procedure for a specific ecosystem. In respect of the  sensitivity of SVM 

application for classification and biomass modelling, t has been reviewed from the 

literature that the ability of ‘small training size’  and handle ‘multimodal distribution’  for 

model calibration are two important features of SVM. In addition, SVM does not encounter 

any over-fitting problem. As the collection of reference data for saltmarsh wetland 

classification is a challenging task, SVM might be a suitable alternative that can deal with 

a small sample size and can minimize the overfitting problem of biomass prediction model. 

However, kernel selection and other parameters (epsilon, cost and gamma) optimizations 

are major limitations that require time, skills and high computational cost.  Random forest 

(RF) has some excellent advantages that make it popular in the field of classification and 

regression modelling. High classification accuracy, a novel method of determining variable 

importance (feature selection), fewer parameters (only two) are advantages of RF. 

Random Forest (RF), has reduced the problem of the multicollinearity issue that is a 

problem of multiple regression model, commonly used algorithm for biomass estimation. 

Therefore, the RF classifier might be another good alternative for saltmarsh wetland 

classification and species based biomass modelling.  
 

 

 

 

Keywords: Saltmarsh, classification, biomass, remote-sensing, variable selection, 

Support Vector Machine (SVM) and Random Forest (RF). 
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4.1 Background 
 

Satellite data based image classification is one of the main focuses of the remote-sensing 

community, as classification results are the basis for many research questions related to 

environmental and ecological variables. Thematic mapping of land cover from remotely 

sensed data is commonly based on image classification.  Lu and Weng (2007) provide a 

review of commonly used classification methods applied to remotely sensed data and these 

methods can be divided into common and advanced image classifications (Tso and Mather 

1999). For example, the Maximum Likelihood Classifier (MLC) is a commonly used 

supervised classifier whereas ISODATA and K-Means are unsupervised methods. Advanced 

classification algorithms include support vector machines (SVM), random forest (RF), 

artificial neural networks (AN,N), and Decision tree classifier (DTC) (Adam et al. 2014; 

Adam et al. 2010). 

 

The performance of these classifiers is varied with the quality of the remote sensing data 

either collected by the passive sensor (multispectral or hyperspectral data) or active 

sensor (LiDAR) data. The new multispectral sensors include, among others, RapidEye, and 

WorldView-2 are seen as a trade-off between benefits offered by multispectral and 

hyperspectral imagery (Mutanga et al. 2012). Due to the availability of fine spatial 

resolution and a reasonable number of spectral bands, these new sensors provide an 

opportunity for more detailed species classification in a complex environment. 

Consequently, there is a constant need for improvement of classification algorithms to deal 

with these new sensors and their potential applications. 

 

One of the major problems relating to the supervised classification lies in the definition of 

a proper training set size for an accurate training of classifiers(Chi et al. 2008), because 

the collection of ground-reference data is an expensive, time-consuming and complex 

task. Therefore in many cases, the number of training samples is insufficient for a proper 

learning of classification systems. Within the supervised parametric classifiers, Maximum 

Likelihood Classification (MLC) is the most commonly used classifier and deliver excellent 

results when dealing with unimodal data. Because this classifier assumes a normal data 

distribution and has limitations when dealing with multi-modal input datasets.  

 

However, in most of the cases, the normal distribution is the main violation of Remote 

Sensing (RS) data because the nature and causes of spatial variation in images are not 

always easily understandable. Hence the  analysis has been limited to the empirical 

association between surface phenomenon and patterns in images with the implicit 

assumption that reality has a consistent spectral response in imagery.  However, as a 
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consequence of the complex interplay between factors like scene complexity, scale and 

aggregation this assumption is often violated. Therefore, simple classifiers like MLC may 

reach their limits in many applications. 

 

Non-parametric supervised classifier, such as Support Vector Machine (SVM) (Mountrakis 

et al. 2011), Random Forest (RF), Artificial Neural Network (ANN) (Mas and Flores, 2007)  

and  the Classification and Regression Tree (CART),  are becoming increasingly popular 

classifiers for remote sensing data as they do not make any assumptions regarding 

frequency distribution. They construct a set of classifiers and then classify new data points 

by taking a vote for their prediction, and, are known as ensemble classifiers. In particular, 

ensemble classifier, RF and SVM have received considerable attention due to several 

superior image-handling abilities. For example, they have the ability to handle unbalanced 

dataset and synthesize regression or classify functions based on discrete or continuous 

data sets (Breiman 2001). Moreover, they are insensitive to noise or overfitting of the 

model. Therefore, in recent years, remote sensing attention has moved into an ensemble 

classifier (Gislason et al. 2006). Ensemble classifier can be based on an individually 

supervised classifier or on a number of different supervised classifiers that are trained 

using bagging (Breiman 2001) or boosting approaches (Schapire 2003), or variations of 

these approaches. Machine learning takes a large collection of individually imperfect 

models, and, assume one-off mistakes are probably not going to be made by all models. 

That’s how ensemble models work, they build a lot of different models, and let their 

outcomes be averaged or voted across the group. 

 

Previous studies have reviewed image classification methods (Tso and Mather 1999). 

However, a comprehensive up-to-date review of classification approaches and techniques 

specifically for saltmarshes or wetland ecosystem is not yet available. Although SVM 

related remote sensing works have been reviewed by  Mountrakis et al. (2011). New 

articles have been published since then, and new methods have been used for SVM. Very 

recently, Belgiu and Drăguţ (2016) reviewed Random Forest and its application in remote 

sensing. But the potentiality of ensemble classifiers for a specific ecosystem like saltmarsh 

and wetland ecosystem is lacking. That is why, emergence and modification of machine 

learning algorithms and techniques in recent years necessitate such a review, which will 

be highly valuable for guiding or selecting a suitable classification procedure for a specific 

ecosystem. 

 

Very few studies have systematically investigated the utilization of the RF and SVM 

classifier for wetlands species mapping (Gislason et al. 2006; Tian et al. 2016). There has, 

however, been no publication to date dedicated to summarizing the use of these two 

machine learning classifiers in wetland species mapping and biomass model. This review 

will focus on this issue. Moreover, it will give a future indication for endangered saltmarsh 

species mapping and biomass estimation from these two algorithms. 
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4.2 Materials and structure of this review article 
 

This review focuses on research articles (available in June 2017) published in nine major 

journals (table 4-1) of remote sensing. Google Scholar search engine 

(https://scholar.google.com.au/) was the base search engine where listed keywords 

(shown after the abstract) and synonyms of the keywords (e.g. bog /swamp for 

saltmarshes and estuary for wetland etc.) were used to find the best articles.  A limited 

number of research papers relevant to the review objectives were selected from the high-

quality journals (Table 4-1). Based on the selected articles, we explored only the 

classification of land cover, species mapping and then evaluated the potentiality for 

saltmarsh ecosystem. 

 

Table 4-1: Number of articles used for this review paper 

Serial 

No 

Name of Journals No of 

articles 

1 Remote Sensing of Environment  10 

2 ISPRS Journal of Photogrammetry and Remote Sensing  8 

3 International Journal of Applied Earth Observation and 

Geoinformation 

9 

4 Remote sensing (MDPI) 9 

5 Remote sensing letters (MDPI) 15 

6 International Journal of Remote Sensing. 18 

7 International Journal of Digital Earth. 10 

8 IEEE Geoscience and Remote sensing letters 6 

9 IEEE Transactions on Geoscience and Remote Sensing 11 

 

4.2.1.  Support Vector Machine 
 

SVM is a machine learning distribution free classifier and does not encounter any over-

fitting problem (Burges 1998; Cortes and Vapnik 1995). This supervised method is trained 

to find an optimal classification hyperplane by minimizing the upper bound of the 

classification error. There are two supporting hyperplanes (figure 4-1) on the boundaries 

of the data distribution and the data points on the edge of these hyperplanes are the 

support vectors of the algorithm. But the problem is all classes of an image are not linearly 

separable, hence, SVM is optimized to search for a non-linear hyperplane in a 

multidimensional feature. This transformation is implicitly performed by applying kernel 

functions to the original data (Keramitsoglou et al. 2006). There are two commonly used 

functions on remotely sensed data, non-linear polynomial and radial basis function (RBF) 

kernels (Huang et al. 2002; Oommen et al. 2008). 

 

 

https://scholar.google.com.au/
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To solve the multiclass problem, all possible classifiers are performed using either a one-

against-one (binary) or one-against-all procedure and then a voting mechanism is followed 

to assign the correct class (Keramitsoglou et al. 2006; Mazzoni et al. 2005). When SVM is 

used to solve the regression problem, it is termed as SVR. Standard SVR is the ε-SVR, 

where the sample points that support the “decision surface” or “hyperplane” are known as 

support vectors. These vectors fit the data according to the criteria of Epsilon (ε), gamma 

(γ) and cost (C) parameters. Here ε controlled the width of the epsilon-insensitive zone, 

used to fit the training data, and its value can affect the number of support vectors used 

to construct the regression function (Cherkassky et al. 1999). The value of ε determines 

the level of accuracy of the approximated function. It relies entirely on the target values 

in the training set. If epsilon is larger than the range of the target values, a good result 

cannot be expected. For example, if ε is 0, it will cause an overfitting problem. By contrast, 

the bigger the epsilon, the fewer support vectors are selected although bigger ε values 

result in more ‘flat’ estimates of the model (Durbha et al. 2007). The parameter cost (C) 

determines the balance between the model complexity (flatness) and the degree to which 

deviations larger than epsilon (ε) are tolerated in the optimization formulation (Durbha et 

al. 2007).  For example, if C is too large, then the objective is to minimize the empirical 

risk disregard to the model complexity in the optimization.  Schölkopf and Smola (2002)  

proposed a modification to the ε-SVR algorithm based on the difficulty in finding suitable 

values for the tube width ε. This modified method, called ν-Support Vector Regression (ν-

SVR), automatically minimizes ε depending on the properties of the data (Axelsson et al. 

2013). Here a new parameter (ν) was introduced, in effect determining a fraction of the 

data points to be used as support vectors. The parameter C in the ordinary ε-SVR 

formulation is replaced by a parameter ν which is bounded by 0 and 1. Earlier the 

parameter C could have taken any positive value, thus this additional bound is beneficial 

in implementation. The parameter ν represents the lower and upper boundaries on the 

Figure 4-1: (Left) H1 does not separate the classes. H2 does, but only with a small margin. H3 
separates them with the maximum margin.  (right) Linear support vector machine example. 
Source: (Burges, 1998; Mountrakis et al., 2011). 
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number of examples that are support vectors and that lie on the wrong side of the 

hyperplane, respectively. However, a more detailed description on SVM theory and 

mathematical formulation can be found in (Cortes and Vapnik 1995; Mathur and Foody 

2008a). 

 

4.2.2. Random forest 
 

RF is an ensemble learning technique that uses a set of Classification and Regression Trees 

(CARTs) to make a prediction (Breiman 2001). This algorithm creates a subset (figure 4-

2) of training samples through replacement (a bagging approach). It means that the same 

sample can be selected several times, while other samples may not be selected at all. 

Usually, two-thirds of the samples (referred to as in-bag samples) are used to train the 

trees (ntrees). The remaining one third (referred to as the out-of-the-bag sample) is used 

in an internal cross-validation technique for estimating how well the resulting RF model 

performs (Breiman 2001). It means the Out-Of-Bag (OOB) sample (one-third of the total 

sample) is used to estimate the misclassification error (OOB error) and variable 

importance. At each node, a given number of input variables (mtry) are randomly chosen 

from a random subset of the features and the best split is calculated by utilizing only this 

subset of features (Figure 4.2). RF has recently been used as an algorithm for remote 

sensing image classification (Adam et al. 2014; Ozesmi and Bauer 2002). Especially, its 

ability to handle high dimensional and non-normally distributed data has made it an 

attractive and powerful option for integrating different imagery sources and ancillary data 

sources into image classification workflows (Kloiber et al. 2015). For a more detailed 

description on RF theory and its parameter optimization, the reader is directed to the study 

done by Tian et al. (2016), (Breiman 2001) and (Mutanga et al. 2012). 

 

The application of the RF classifier has received increasing attention over the last decades 

due to the speed of processing and  the excellent classification results derived from this 

classifier (Du et al. 2015; Rodriguez-Galiano et al. 2012). Another distinct advantage is 

that this classifier can be successfully used to select and rank those variables with the 

greatest ability to discriminate between the target classes, i.e. feature selection. Based on 

the application and methods used in RF, Belgiu and Drăguţ (2016) synthesized last decade 

work and made some future recommendation. 
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However, based on the review (Belgiu and Drăguţ 2016) of RF, it can be concluded that 

there is still a research paucity on sample size allocation and mislabelling of data. Because 

Mellor et al. (2015)  found that RF classification was relatively insensitive to mislabelled 

training data. Therefore that imbalanced training data can be introduced to minimize the 

errors in those classes that pose the greatest challenges to classifications. On the other 

hand, Millard and Richardson (2015) and Dalponte et al. (2013) also revealed that the RF 

classifier fails to cope with imbalanced training data and tends to favour the most 

representative classes. In another study, Jin et al. (2014) concluded that the proportionally 

allocated training sample design reduces the commission error of the under-represented 

classes and that the equally allocated training sample schema reduces the omission error 

of the under-represented classes. So, the impact of sampling design on RF classification 

results seem to be contradictory. Hence subsequent studies are required to analyse the 

sensitivity of RF classifier to training samples when using this classifier for remote sensing 

data classification. 

 

 

Figure 4-2 On the left and in the center, two trees of the forest are shown in detail: At each node, 
the feature which allows for the best class separation is chosen (with respect to the subset of features 
selected for that node). The corresponding partitioning of the feature space is shown below with the 
decision boundary plotted in purple. On the right, the decision boundary of the Random Forest is 
displayed. It is based on the majority votes of the individual trees (Adapted from (Hanselmann et 
al. 2009)). 
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4.3  Overview of Support Vector Machine application for 
vegetation mapping and land cover classification 

 

It is already mentioned that most of the works of SVM have been summarized by 

Mountrakis et al. (2011) in their review work. In this article, we are going to emphasise 

the works based on a land cover mapping  that has been done since 2002 and more focus 

on the work that has been done after 2011. Figure 4-3 is showing the development of SVM 

since 2002. It is clear that most of the works on SVM application has been done between 

2012 and 2013. However, to review the overall developments of key findings (table 4-2) 

and methodological development (table 4-3) of SVM, we reviewed all of the works where 

SVM has been used for land cover mapping and wetland monitoring. 
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Figure 4-3: Number of papers on SVM and its application in land cover 
classification published since 2002.  
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Table 4-2: Application of SVM in land cover classification and the key findings. 

Authors, data and area of interest Key findings 

Gualtieri and Cromp (1998) used 

Hyperspectral AVIRIS imagery for 

Vegetation classification.  

SVM was superior over prior classifiers developed on the 

same dataset 

Camps-Valls et al. (2004) used 

Hymap hyperspectral data for Crop 

classification. 

SVMs were not sensitive to training sample size 

Keramitsoglou et al. (2006) used 

IKONOS imagery for vegetation 

mapping. 

SVM training time was considerably lower suggesting 

improved applicability for vegetation mapping. 

Knorn et al. (2009) used Landsat 

data for binary forest classification  

Chain classification accuracy, which proved accurate even 

for lengthy sequences (e.g., six images). 

Lardeux et al. (2009) used SAR data 

for tropical vegetation classification. 

SVMs resulted in about 20% higher classification accuracy 

than the Wishart classification approach.  

Dalponte et al. (2008) used 

hyperspectral data for forest species 

classification. 

SVMs outperformed Gaussian maximum likelihood 

classification and k-NN technique. 

Dalponte et al. (2013) used boreal 

forest with HySpex hyperspectral 

data. 

There was no significant difference between the 

performance of SVM and RF classifier. 

Su and Huang (2009) evaluated 

different linkage techniques on semi-

arid vegetation mapping 

A reduced dataset of approximately 20% of the original 

size could provide comparable classification accuracy. 

Shao and Lunetta (2012) used 

MODIS data for land cover 

classification in Albemarle-Pamlico 

Estuarine System (APES) in North 

Carolina and Virginia, USA 

Sample size, sample variability and landscape 

homogeneity analysis based on three classifiers Neural 

Network, SVM and CART. SVM outperformed (77-80%) the 

CART (62-73%) and NN (67-76%). 

Zhang et al. (2015) compared 

traditional single optimized 

parameters (SOP) with multi-

parameter SVM. 

Single optimized parameter (SOP) and a novel multi-

parameter (MP) both are sensitive to landscape to be 

classified.  

 Yang et al. (2016) Wetland mapping SVM provided higher accuracy  

Fang et al. (2016) evaluated dynamic 

change analysis of wetland with time 

series data. 

Decision tree classifier (DTC) works better compare to the 

MLC and SVM 
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4.3.1  Evaluation SVM classifier and its sensitivity 
 

In early works, the main emphasis was to compare the accuracy with another parametric 

classifier. For example, Keramitsoglou et al. (2006), Su and Huang (2009), Dalponte et 

al. (2008), Lardeux et al. (2009) and  (Knorn et al. 2009) they all focused on the 

improvement of overall classification accuracy. However, the main appealing feature of 

SVM is ‘small training sample’ or reduced training data. 

 

Sample size 

 

Mathur and Foody (2008b) showed that SVM may be used to derive very accurate 

classifications (90.66%) using a smaller, intelligently defined training set. This result was 

statistically insignificant (Z =1.50) when it was compared with the traditional training 

sampling approach (92.00%). This 1.34% decrease in accuracy was achieved with a 

decrease in training set size from 450 to 130 pixels that were a huge savings of time and 

cost. Another experiment that revealed the ability to improve classification accuracy from 

small training sample is the study of Ghoggali et al. (2009). Later, Su and Huang (2009) 

investigated training data reduction using a hierarchical clustering analysis and Multiangle 

Imaging Spectro-radiometer satellite data on a vegetation classification problem. They 

proved that a two-thirds reduction of the dataset size was possible without significant 

accuracy degradation in SVM method. 

 

However, Dalponte et al. (2013) argued that SVM can be considered a complex classifier, 

both theoretically and from a usability viewpoint. Due to its nonlinear form with RBF kernel 

function, it requires the optimization of two parameters. This optimization process 

increases the computational time with respect to the other two classifiers (Random forest 

and Gaussian Maximum Likelihood). But the main advantage of SVM is that it provides 

good classification accuracies, even for minority classes (Dalponte et al. 2013). As the 

recent trend of SVM turned to focus on methodological approach, we reviewed (table 4-3) 

different modification, kernel selection, parameter optimization and customization that 

have been done on SVM based on the classification aim and study site complexity of a 

landscape. 
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Table 4-3: Application of different methods in SVM platform to solve classification 

problem 

Method Authors Application and Description 

A recursive procedure Mantero et al. (2005) They used Bayesian minimum error decision rule to 

generate prior probability estimates for known and 

unknown classes. 

Transductive inference 

theory  

Bruzzone et al. (2006) Define the separating hyperplane according to the 

process that integrates the unlabelled samples 

together with the training samples. 

Mixed pixel training 

samples 

Foody and Mathur (2006) Focused on mixed pixels training samples over more 

tedious, conventional pure pixels acquisition. 

Although there was no significant difference 

between mixed pixels spectral responses and the 

conventional approach, SVM based mixed pixels 

approach was easier and cheaper.  

Data reduction Foody et al. (2006) They evaluated four dataset reduction methods for 

a one-class problem (cotton vs others) using SVMs. 

They concluded that significant data reduction 

(approximately 90%) was possible with minimum 

information loss. 

Sahoo et al. (2007) They used SVM that showed additional robustness 

to small data samples in a geological classification. 

(Su 2009) Two-thirds reduction of the dataset size was possible 

without significant data. 

Primal SVM Chi et al. (2008) The primal SVM formulation makes it possible to 

optimize directly on the primal representation and 

therefore limits the number of samples. Primal SVM 

yielded competitive accuracy values as the state-of-

art alternative algorithms trained on larger datasets. 

Bootstrapped SVM  Castillo et al. (2008) The training strategy adapted in the bootstrapped 

SVM is that an incorrectly classified training sample 

in a given learning step is removed. Later it was re-

assigned with a correct label and re-introduced into 

the training set in the subsequent training cycles. 

Only 0.05% of the total number of training pixels 

were needed to achieve about the same accuracy 

level as the standard SVM. 

Ensemble methods Pal (2008) Two popular integration techniques such as boosting 

(alternating observation weight) and bagging 

(alternating observations) were tested using 

Landsat ETM+ data for an agricultural classification.  

Tan et al. (2007) Combining entropy decomposition and SVM for 

classification. 

Tuia et al. (2009) Combined morphological filters and SVMs to conduct 

land use classification using high spatial resolution 

Quickbird panchromatic images. 

Scene segmentation with 

SVM 

Li et al. (2010) A scene segmentation algorithm was integrated with 

the SVM object classifier that provided a better 

performance with Quickbird high-resolution 

imagery. 
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Parameter settings 

 

One of the major challenges regarding the application of SVMs is the choice of kernels. 

Although there are many options for the kernel, some of the kernel functions may not 

provide optimal SVM configuration for remote sensing applications. Linear, polynomial and 

a Gaussian radial basis function (RBF) are generally used as the kernel function. However, 

empirical evidence indicates that different kernels applied to the SVM-based classification 

of satellite image data produce different results (Zhu and Blumberg 2002). The input data 

are first transformed into a high-dimensional feature space using a kernel function. By 

transforming the data using a non-linear kernel function, it is possible to map non-linear 

relations using a linear model in the new feature space. The algorithm takes both 

calibration error and model complexity into account when constructing the SVM model, 

and their relationship is defined by setting regression parameters cost (C) and gamma. 

 

Feature selection on SVM 

 

Feature selection addresses the problem of finding the most compact and informative set 

of features, to improve the efficiency or data storage and processing. The feature is 

synonymous with input variable or attribute used in machine learning model (i.e. a number 

of bands of satellite data). There are three variable selection methods- filter, embedded 

and wrapper method (Mehmood et al. 2012; Saeys et al. 2007).  

 

Detailed information of these three methods is available in the studies of Guyon and 

Elisseeff (2003) and Saeys et al. (2007). SVM is an effective classification method, but it 

does not directly obtain the feature importance. There is a limited number of works found 

on variable selection in SVM classifiers.  Fisher’s criterion, output Pearson correlation 

coefficients, and mutual information are common filter method that used in variable 

selection for SVM (Guyon and Elisseeff 2003).  Support vector machine recursive feature 

elimination (SVM-RFE) is an example of an embedded feature selection method (Guyon et 

al. 2002) that has both linear and nonlinear version according to the type of kernel 

function. SVM-RFE uses criteria derived from the coefficients in the SVM model to assess 

features, and recursively removes features that have small criteria (Tang et al. 2016). 

SVM-RFE is able to make full use of the training data since the data don’t divide into the 

test set and training set (Tang et al. 2007). However, applying different feature selection 

methods does not necessarily result in significant differences in SVM classification 

performance (Pal and Foody 2010). Fassnacht et al.,(2012) reported the feature selection 

method that is independent of the SVM and can even result in better accuracy, e.g. SVM-

RFE (Bazi and Melgani 2006; Pal and Foody 2010). Besides SVM-RFE method, direct 

objective optimization with k1-norm regularization (Be et al., 2003), and a correlation bias 

reduction technique  (Tang et al. 2016; Yan and Zhang 2015) is proposed to further 

improve the performance of feature selection and classification results. 
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Pal (2006) used the SVM method for feature selection. In his study, SVM-based methods 

combined with GA were compared with the random forest feature selection method in land 

cover classification problems with hyperspectral data and small benefits were identified. 

In another study, Archibald and Fann (2007) introduced an embedded-feature-selection 

(EFS) algorithm within the SVM classification approach. They compared EFS with RFE and 

showed that major advantage of EFS is the significant reduction in computational time and 

the data-driven knowledge discovery of important bands in classification. Zhang and Ma 

(2009) used SVM approaches for feature selection but they implemented a modified 

recursive SVM  approach to classify hyperspectral AVIRIS data and found slightly better 

results. However, their method has higher computational demands compared with others. 

Further, the cost and gamma parameters selection in conjunction with feature selection 

when using SVM-RFE is still an issue (Guyon et al. 2002).  

 

 

4.3.2  Biomass modelling using Support Vector Machine Regression (SVR) 
 

There are multiple methods (linear regression, stepwise multiple linear regression, linear 

mixed ordinary least square regression, partial least squares regression) used to estimate 

biomass, which is varied in their assumptions and complexity to develop biomass model. 

The advantage of linear mixed effects regression and geographically weighted regression 

is that these sophisticated regression techniques take into account bias and the correlation 

of predictor variables rather than the somewhat rigid assumptions of ordinary least 

squares regression (Powell et al. 2010; Salas et al. 2010). Zhao et al. (2009) also noted 

that regression models are built to output biomass at a specific plot size and changing this 

plot size may affect the accuracy of results. Because population assumptions of regression 

models do not represent the heterogeneity of forest stands (Robinson et al. 2013). To 

reduce the effects of regression assumptions on plot scale biomass estimation, machine 

learning techniques such as Support Vector Machine (SVM) and  Random Forest (RF) may 

be used (Breidenbach et al., 2010; Vauhkonen et al., 2010). Because SVM and RF are 

non-parametric in the sense that no parametric model or distribution is assumed 

(Neumann et al. 2012; Robinson et al. 2013). 

 

Machine learning classification technique, SVM is also adapted to regression problem. 

However, very few studies have been found where this method has been used to estimate 

biomass. The AGB estimation performance based on SVM method are summarized (Table 

4-4) below: 
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Table 4-4: Summary of SVM application for biomass estimation 

LC Authors Major contribution 

Wheat 

(Field 

condition) 

Montes et 

al. (2011) 

Support Vector Machine Regression (SVMR) with A Gaussian 

Radial Basis Function (RBF) provided the lowest error of 

prediction (0.11) and highest R2 (=0.97) in compare with 

Partial Least Square Regression (PLSR) for Maize biomass 

under field conditions. 

Conifer 

and 

deciduous 

forest 

Chen and 

Hay 

(2011) 

SVR models achieved better performance for estimating 

canopy height (R 2= 0.81, RMSE = 4.0) and above ground 

biomass (R2 = 0.76; RMSE = 63.1 Mg/ha)  than multiple 

regression. 

Boreal 

forest 

Neumann 

et al. 

(2012) 

SVM and RF did not succeed in improving the cross-validated 

results because these methods are partly overfitted the data 

due to the noisy nature of the radar observables and an 

insufficient number of training samples.  

Heiberg 

Memorial 

Forest, 

Tully, NY, 

USA 

Gleason 

and Im 

(2012) 

Among the four different models (Linear Mixed-effects, 

Random Forest, SVM and Cubist) ,SVR produced the most 

accurate biomass model at the plot level, although all models 

provided similar results at individual tree level. 

Peat 

Swamp 

forest, 

Indonesia 

Englhart 

et al. 

(2012) 

Multivariate Linear Regression (MLR), Artificial Neural network 

(ANN) and Support Vector Machine (SVM) were examined for 

their performance to retrieve AGB from multi-frequency SAR 

data. The SVR modelled AGB was more accurate than ANN 

modelled AGB in terms of independent validation. 

Grasslands Marabel 

and 

Alvarez-

Taboada 

(2013) 

Spectroscopic determination of aboveground biomass  was 

done using spectral transformation , SVM and Partial Least 

Square Regression (PLSR). It was proved that SVM 

outperformed PLSR data when no transformation was applied 

to the reflectance data. 

 

 

4.3.3  Future directions: Applications of SVM for saltmarsh vegetation 
mapping and biomass estimation 

 

Selection of SVM key parameters i.e. the kernel functions is one of the important 

limitations to SVM methodologies application for remote sensing data. Because, a small 

value for the kernel width parameter may lead to overfitting, while large kernel width 

values may lead to over-smoothing. However, this problem is a general drawback of 

kernel-based approaches (e.g., radial basis function neural networks). Settings of the 

parameter value cost (denoted by C), which controls the trade-off between maximizing 
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the margin and minimizing the training error, is another important consideration in SVM 

application. Another limitation is SVM approaches map input data to higher dimensional 

spaces. As dimensionality increases in addition to potential separability of patterns SVMs 

exhibit outlier behaviour and increased computational demands. This is a critical drawback 

for hyperspectral analysis where the dimensionality of the original data is high and kernel 

mapping is more vulnerable to dimensionality problems. SVM follows ‘one-against the rest’ 

strategy for multi-class classification problem and can be problematic as it may result in 

unclassified instances of data. Therefore lower accuracy (Pal and Mather 2005) may be an 

issue. Sometimes due to the limited precision of image acquisition instruments, and 

atmospheric and topographic distortions cause measurement errors in remote sensing 

data. SVMs are not optimized to deal with this inherent problem of noisy data (outlier 

effects). In addition, the performance of an SVM can decrease with a relatively small 

number of mislabelled examples. 

 

Although there are some pitfalls, however, there is significant scope for extension of SVMs 

to address these pitfalls. As an example, Foody (2008) evaluated a relevance vector 

machine approach (RVMs) as a way to address the need to define the cost parameter C. 

RVMs have several advantages including automatic estimation of parameters and the 

arbitrary kernel functions that are the main challenges of SVM. In addition, RVMs allow for 

sub-pixels classification (fuzzy) of data making it possible to have a probabilistic output. 

More investigations into the potential of some of the relatively untapped lower level noise 

reduction techniques such as morphological image processing might be a remedy to the 

problem of noising. Regarding the novelty of SVM for wetland classification, Zhang et al. 

(2015) proposed a multi-parameter (MP-SVM) algorithm that divides the training set into 

several subsets which are subsequently combined. Based on these combinations, sub-

classifiers are constructed using their own optimum parameters, providing votes for each 

pixel with which to construct the final output. Based on the complexity of landscape they 

found a different result for MP-SVM and SOP-SVM (single optimized parameter). For the 

high and moderate complex landscape, MP-SVM provided better performance (OA= 82.19 

%, Kappa= 0.80) than SOP, however, for low complex landscape there was no significant 

difference between them. So this is a future indication to consider landscape complexity 

before making any customization on SVM. On the other hand, Fang et al. (2016) showed 

that Decision tree classifier (DTC) performs well in compared to SVM and MLC when they 

mapped a wetland with time series data. It gives an indication that still there is an 

opportunity to work with SVM for saltmarsh ecosystem with another non-parametric 

classifier. 

4.4  Overview of Random Forest application based on vegetation 
mapping and land cover classification 

 

It is already mentioned that RF is fairly new in the remote sensing image analysis 

technique. However, this ensemble machine learning algorithms already got a special 
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attention from the researcher due to its unique features. Various ensemble classification 

methods have been used in recent years including boosting and bagging. Boosting is based 

on sample re-weighting and bagging is bootstrapping of the sample.  RF uses bagging, or 

bootstrap aggregating to form an ensemble of classification and regression tree (CART)-

like classifier (Gislason et al. 2006). In addition, this method searches only a random 

subset of the variables for a split at each CART node, in order to minimize the correlation 

between the classifiers in the ensemble  (Breiman 2001).That is why RF is not sensitive to 

noise or overfitting. Moreover, the RF does not require any assumptions about the 

relationships between explanatory and response variables and are well suited for analysing 

complex non-linear and possibly hierarchical interactions in large data sets (Olden et al. 

2008) that are often a requirement to solve a complex classification problem. The Random 

Forest classifier has successfully been used to map land use and land cover classes (Colditz 

2015; Haas and Ban 2014; Stefanski et al. 2013), tree canopy cover and biomass mapping 

(Karlson et al. 2015)  and tree health (Wang et al. 2015). Räsänen et al. (2013) used 

Worldview-2 imagery to map boreal forest, Waske and Braun (2009) used Synthetic 

Aperture Radar (SAR) and Uhlmann and Kiranyaz (2014) used PolSAR data for land cover 

classification. Figure 4-4 highlighted the chronological development of RF over the years 

and Table 4-5 summarizes the application of the RF tool for different vegetation species 

classification.  It is already mentioned that the application and methods of RF have been 

summarized by Belgiu and Drăguţ (2016). In our study, we are going to emphasize the 

overall development of RF in respect of land cover classification only. Then we provided a 

special attention to the wetland ecosystem and the application of RF for wetland 

classification and monitoring. 
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Figure 4-4: Growth of RF and its application in land cover classification over the years. 
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Table 4-5: Summary of RF application in different vegetation species a classification and 
mapping. 

Authors Field of study Description 

Ham et al. (2005) Forest Classification 

with Hyperspectral 

data 

Two modified approaches are proposed 

based on the concept of RF and both of 

them provided a superior result in compare 

to the original frame. 

Lawrence et al. 

(2006) 

Invasive species 

classification with 

hyperspectral data 

Beiman Cutlar Classification (BCC) from RF 

can achieve substantial improvements in 

accuracy over single classification trees. 

Cutler et al. (2007) Ecology: Species 

classification 

Compared RF accuracy with other 

techniques to classify various species. RF 

proved to be superior to others 

Chen and Ho (2008) Eco tops  Comparison of RF with Adaboost and Neural 

network. RF outperformed neural network. 

Mansour et al. 

(2012) 

Rangeland 

degradation 

Application in Hyperspectral data 

Rodriguez-Galiano 

et al. (2012) 

Land cover 

classification  

Compare RF with a single decision tree  

Du et al. (2015) Synthetic Apperture 

Radar (SAR) image 

classifcation 

RandomForest and Rotation forest 

comparison 

(Karlson et al. 

2015) 

Landsat 8 for tree 

canopy cover 

Tree Canopy Cover was identified from RF 

with the coefficient of determination 0.77 

(RMSE = 8.9%). 

Shaohong et al.,  

(2016) 

Wetland mapping Comparison of SVM, RF and NN. RF 

outperformed SVM and NN. 

Fu et al. (2017) Wetland mapping Pixel and object-based classification using 

RF through wavelet principal component 

analysis (PCA). 

Mahdianpari et al., 

(2017) 

Wetland 

classification  

A novel hierarchical object-based RF 

classification is proposed. 

Franklin and Ahmed 

(2017) 

Wetland 

classification 

RE method has been used for object and 

pixel-based classification comparison and 

integration. 

Amani et al. (2017) Wetland 

classification  

Integration of SAR and Optical through 

OBIA. 
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In respect of vegetation mapping, Ham et al. (2005) investigated two approaches based 

on the concept of random forests classifiers when the quantity of training data is limited 

for hyperspectral data. Proposed two approaches were superior to those from the original 

basis, binary hierarchical classifier (BHC) algorithm and a random subspace extension of 

the BHC. Later, Cutler et al. (2007) highlighted the major advantages of RF in compare to 

the other four classifiers. According to Gislason et al. (2006) and Cutler et al. (2007), RF 

has (1) very high classification accuracy; (2) a novel method of determining variable 

importance; (3) ability to model complex interactions among predictor variables; (4) 

flexibility to perform several types of statistical data analysis, including regression, 

classification, survival analysis, and unsupervised learning; and (5) an algorithm for 

imputing missing values (6) computationally much lighter.  They observed high 

classification accuracy in all applications of RF when comparing RF to other common 

classification methods for invasive plant species.  Similarly, Chen and Ho (2008) compared 

RF with Adaboost (REF) and showed that Adaboost and Random Forest attain almost the 

same overall accuracy (close to 70%) with less than 1% difference, and both outperform 

a neural network classifier (63.7%). Random Forest, however, is faster in training and 

more stable. In a very recent study, Kalson et al (2015) achieved R2= 0.77 (rmse = 8.9 

%) from a freely available Landsat 8 for tree canopy classification.  

 

 

 

 

4.4.1  Evaluation RF classifier and its sensitivity 
 

Hughes (1968) conducted a statistical analysis and proved that the accuracy of a 

supervised classifier depends on the number of training samples or the data dimension. 

Later, this curse of dimensionality is also known as the Hughes effect or the Hughes 

phenomenon Hughes (1968). Lavergne and Patilea (2008) proposed a general 

nonparametric method trying to avoid or reduce the Hughes effect. Non-parametric 

classifiers work to accommodate the increasing number of data dimensions to mitigate the 

Hughes phenomenon. Therefore, RF is also a supervised classifier and, therefore, it is 

important to evaluate the sensitivity of RF classification, how it responds to the size of the 

training samples, data dimension and sampling design. 

 

Sampling design 

 

Colditz (2015) explored the sensitivity of the RF classifier to different sampling designs 

such as random, area proportional sample number for each class and an equal number of 

samples to each class. This land cover classification study revealed that area-proportional 

allocation of training samples per class provided the best classification accuracy.  Because 

the classes that occupy large areas require more samples than those that occupy small 
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areas Colditz (2015) for random forest classification. On the other hand, Mellor et al. 

(2015) found that RF classification was relatively insensitive to mislabelled (Forest as non-

forest or vice versa) training data and that imbalanced training data can be introduced to 

reduce the errors in those classes that pose the greatest challenges to the forest 

classifications from Landsat data. Other land cover classification studies (Rodriguez-

Galiano et al. 2012; Rogan et al. 2008) also demonstrate that RF is resistant to the 

mislabelling of the training data. 

 

Size of the training samples 

 

The sizes of the training samples sets have been found to influence the performance of 

the RF classifier for Landcover classification (Colditz 2015). Although Rodriguez-Galiano et 

al. (2012) showed that  RF has low sensitivity to the training set size reduction, 

investigations to date have reported that the sizes of the training samples  have high 

sensitivity to the performance of RF classification (Colditz 2015). Ma et al. (2017) found 

that RF is less sensitive to the effect of data dimensionality compared to the SVM, even 

though a small training set size is used. Li et al., (2016) proved that either RF or SVM 

could be used with limited training samples sizes. 

 

Spatial autocorrelation 

 

Ham et al. (2005) investigate two approaches based on the concept of random forests of 

classifiers implemented within a binary hierarchical multi-classifier system. They found 

that RF methods yielded superior results for both test and spatially disjoint test data two 

study sites, thereby indicating improved generalization to extended areas. Similarly, 

Rogan et al. (2008);Rodriguez-Galiano et al. (2012) and Colditz (2015) also found that RF 

is insensitive to spatial autocorrelation.  On the other hand, Millard and Richardson (2015) 

found that RF classifier is sensitive to the spatial autocorrelation of the training classes 

and to the proportions of the different classes within the training samples. 

 

Feature space optimization 

 

Random forest classifier can handle high dimensional data based on feature selection 

methods. This classifier has been tested as a feature space optimization technique with 

satisfactory results in numerous applications such as the mapping of land cover classes 

classification  (Chan and Paelinckx 2008; Demarchi et al. 2014), tree species 

classification(Cavallaro et al. 2016), invasive plants (Lawrence et al. 2006; Peerbhay et 

al. 2016), and grass species (Mansour et al. 2012). A number of studies have investigated 

various alternative methods for feature space optimization  (Karlson et al. 2015; Millard 

and Richardson 2015; Stumpf and Kerle 2011).  
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There are a number of feature selection methods used in combination with RF 

classification, such as filter methods, embedded methods, and the wrapper 

methods(Saeys et al. 2007; Weinmann et al. 2015). Table 4-6 summarizes the feature 

selection methods that are used in combination with RF classification. 

 

 

Table 4-6: Feature selection methods in RF platform for classification problem. 

Filter method 

Model name Application and description 

Relief and 

(MNA) 

Yu et al. (2016) used two filter methods, Relief and max-min-associated 

(MNA) to explore the potential of feature selection in global land cover 

mapping. 

Wrapper method 

Backward 

feature 

Díaz-Uriarte and Alvarez de Andrés (2006) proposed an iterative 

backward feature elimination procedure to reduce the number of less 

relevant variables. 

Forward 

feature  

Mansour et al. (2012) used this method to identify grass species form 

hyperspectral data; Dalponte et al. (2013) used Sequential Forward 

floating (SFS) for tree species classification from Hyperspectral data 

Embedded methods 

RF and Out 

of Bag 

(OOB) error 

Kursa and Rudnicki (2010) used RF algorithm to reduce noisy and highly 

correlated variables derived from LIDAR and Hyperspectral data to model 

plant composition and diversity in forested areas;  Adelabu et al. 

(2014)used Out of Bag (OOB) based feature space optimization yielded 

better results in comparison to ANOVA in a case of leaf defoliation 

analysis; Millard and Richardson (2015) applied Spearman’s rank order 

correlation to determine pair-wise correlations between 15 important 

variables identified by the RF classifier (out of 28 variables).  

Mean 

Decrease 

Accuracy 

Franklin and Ahmed (2017) used RF variable importance that is the mean 

decrease in permutation accuracy with each variable considered in turn. 

 

 

4.4.2     Evaluation of RF feature selection methods 
 

Filter methods (Univariate and multivariate methods): Univariate filter methods are fast 

and independent and multivariate filter methods identify the most relevant features 

independently of a specific classifier (Saeys et al. 2007). Euclidean distance, Principal 

Component Analysis (PCA), Chi-square test, Independent Component Analysis (ICA), 

Correlation Based Feature Selection (CBFS), Minimum Noise, Fraction (MNF) analysis 

(Zhang, 2014), Wilks’s Lambda stepwise discriminant analysis (Thenkabail et al. 2013), 
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linear discriminant analysis with stepwise feature selection, Markov Blanket filter (MDF)  

and Spearman’s rank order filter are a few examples of filter methods that can be used to 

remove redundant, noisy and irrelevant variables. A very few studies have been found in 

literature where filter methods are used in combination with an RF classifier for land cover 

mapping.  For example, (Yu et al. 2016) explored the potential of feature selection in 

global land cover mapping through two filter methods, Relief and max-min-associated 

(MNA) in RF classifier and found no significant changes in accuracy after the reduction of 

variables from 63 based on the mentioned methods. One possible reason  of this limited 

use of filter method is that no significant differences are gained between the RF 

classification results obtained by applying these filtering methods and those obtained using 

the feature selection methods embedded in the RF classifier (Dalponte et al. 2008; Millard 

and Richardson 2013).  

Embedded methods: This approach fully integrates feature selection and classifier design 

together.  For example, decision trees, weighted naïve bayes (Duda et al. 2012) and 

feature selection using the weight vector of SVM (Guyon et al. 2002; Weston et al. 2003) 

are common embedded methods (Saeys et al. 2007) of feature selection. Löw et al. (2013) 

used different sizes feature subspaces in SVM classification where the dimensionality of 

the input data set varied by incrementally adding features in the order suggested by the 

random forest by means of the OBB mean decrease of accuracy (MDA). This MDA approach 

embedded in the RF classifier is frequently used to pre-select the most important variables 

(Karlson et al. 2015; Li et al. 2014).   Díaz-Uriarte and Alvarez de Andrés (2006) proposed 

an iterative backward feature elimination procedure to reduce the number of less relevant 

variables. This procedure has been incorporated within the R software and known as 

‘‘varSelRF” package. This package has been successfully used to classify landslide objects 

from high resolution optical data such as Quick Bird, IKONOS, GeoEye-1 and aerial 

photographs (Stumpf and Kerle, 2011) and reforested landslides from LiDAR data(Chen 

and Hay 2011; Li et al. 2014), and grass species from hyperspectral data(Mansour et al. 

2012). Recently, Li et al. (2017) compared two feature selection methods, varSelRF and 

wrapper Baruta packages with three pre-filtering methods (PCA, ICA, and MNF) using 

RapidEye Spectral bands, several vegetation indices and SVM algorithms. According to 

their finding, all the five methods could improve classification accuracy, but the only 

varSelRF achieved significant improvement and outperformed the other methods. Zhang 

et al. (2016) found that embedded method allowed for assessment of the importance of 

variables by means of Gini index and the OOB subset. RF-based feature selection method 

selected 29 variables out of 114 variables (multi-temporal spectral bands, spectral indices 

and textural features) as important inputs and provided an overall accuracy of 89% and a 

Kappa statistics of 0.8522.  

 

Wrapper methods (Deterministic and Randomized): Deterministic and randomized are two 

types of wrapper methods and both of them suffer from the risk of model overfitting (Sayes 

et al., 2007). Commonly used example of wrapper methods is a sequential forward 

selection (SFS) and Sequential Backward Elimination (SBE).  The Boruta wrapper feature 
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selection method has been successfully used to reduce noisy and highly correlated 

variables derived from LiDAR and hyperspectral data, in order to model plant compositions 

and diversity in forested areas (Leutner et al. 2012). Recently evaluated feature selection 

methods for object-based land cover mapping using RF and SVM methods. They used five 

feature -importance -evaluation methods and three feature subset evaluation methods. 

Based on the evaluation of five feature-importance-evaluation methods, Ma et al. (2017) 

found that RF outperformed the SVM classifier and, the classification accuracy was 

relatively stable with the variation of features when small training set sizes were used. 

Therefore, they once again proved that the RF classifier is insensitive to the number of 

features, even for a small training sample size. However, when they evaluated the wrapper 

method with other feature selection methods, it did not retain the superiority for object-

based classification although it was claimed for pixel-based classification for Hyperspectral 

data (Chan and Paelinckx 2008; Huang and Zhang 2013; Kohavi and John 1997).  

 

However, an integration of embedded and wrapper feature selection methods was reported 

by Chan and Paelinckx (2008) and Li et al. (2017). Chan and Paelinckx (2008) examined 

the relevance of hyperspectral bands (HyMap data) for identifying land cover classes by 

applying the OOB error and the wrapper method. (Li et al. 2017) used the combination of 

embedded and wrapper method to evaluate the performance of land cove mapping. 

 

4.4.3 Application of Random Forest for wetland/saltmarshes 
classification 

 

van Beijma et al. (2014)used multisource data for saltmarsh vegetation mapping using 

multisource data and found that RF models provided higher classification accuracy from 

multisource data in comparison to either SAR or optical data alone. Very recently, 

Shaohong et al., (2016) compared three classifiers for saltmarshes mapping and RF 

classification stood out with the highest classification accuracy, showing its effectiveness 

in handling interference of soil background in the sparsely vegetated arid areas. However, 

in comparison with the other classes of the wetland, Shaolong et al., (2016) found 

relatively lower accuracy (varied from 85% to 90%) for Phragmites australis, Tamarix 

Chinensis and Echinochloa  crusgalli. Based on RF platform, Fu et al. (2017) and Franklin 

and Ahmed (2017) found improved overall accuracy using object-based image analysis. 

Similarly, Amani et al. (2017)also used object-based image analysis in RF using the 

integration of aerial imagery, SAR and optical satellite data and achieved up to 91% overall 

accuracy for wetland classification. Mahdianpari et al. (2017) used a novel hierarchical 

object-based RF for discriminating between different classes in the wetland. Based on this 

hierarchical approach, they achieved an overall accuracy of up to 94% using ALOS-2 L 

band, RADARSAT-2 C band and TerraSAR-X imagery. So based on the application of RF 

on the work of saltmarshes/ wetland, it may be summarized that most of the RF application 

on wetland is data dependent. Different authors tested several data sources, mostly SAR 

or fusion data to test the feasibility of RF. Based on our knowledge, methodological 
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approach is very rare for RF in wetland application. Although Stumpf and Kerle (2011), 

Chan et al (2012) and Du et al (2015) worked with limited data for landslides, health land 

and urban area mapping respectively sample size behaviour with RF is rarely practised for 

wetland ecosystem. 

 

4.4.4   Biomass modelling using random forest regression 
 

Traditional regression models have limitation to adequately capture the relationship and 

the spatiotemporal variability of the quantity (Kaheil et al. 2008). Moreover, 

multicollinearity is an important issue for the multiple regression model, especially when 

highly related variables (i.e bands of RS data) are selected as a predictor. Multicollinearity 

(also collinearity) is a phenomenon in which two or more predictor variables in a multiple 

regression model are highly correlated, and Variance Inflation Factor (VIF) is used to 

detect multicollinearity before the process of multiple regression. RF works on both 

‘bagging’ and ‘boosting’ algorithms (i.e.bootstrap aggregating) that aim to reduce the 

complexity of models that overfit the training data. Bagging techniques can be used to 

reduce the variance in model predictions where numerous replicates of the original data 

set are created using random selection with replacement. Each derivative data set is then 

used to construct a new model and the models are gathered together into an ensemble. 

Clearly, the mean is more stable and there is less overfit. Therefore, RF algorithm yields 

an ensemble that can achieve both low bias and low variance from averaging over a large 

ensemble of low-bias, high-variance but low correlation trees (Breiman 2001; Díaz-Uriarte 

and De Andres 2006b). RF is originated from Classification and Regression tree 

(CART)(Breiman 2001). However, decision trees suffer when features are correlated since 

they choose a single feature to maximize information gain at each step instead of a 

combination of features that also makes them unstable to small perturbations in the 

dataset. This instability is exploited in a very robust way in RF by building bagged tree 

ensembles. The multicollinearity problem is alleviated since a random subset of features 

is chosen for each tree in a random forest (Díaz-Uriarte and De Andres 2006a; Liaw and 

Wiener 2002a). In addition, it can handle thousands of input variables without variable 

deletion to fit a regression model although it has fewer parameters compared with that of 

other machine learning algorithms (e.g SVR). 

Based on the literature, only a few studies have reported the use of the RF regression in 

remote sensing applications. For example, the RF algorithm has been successfully 

employed in forest biomass ( Gleason and Im., 2012; Dube and Mutanga., 2015), wetland 

species biomass (Mutanga et al. 2012), to map biomass using Landsat temporal data 

(Frazier et al., 2014), and to map tree canopy cover and biomass using uni-temporal and 

multi-temporal Landsat. RF has also been used in precision agriculture where crop biomass 

used as an indicator of vegetation development and health. For example, Wang et al., 

(2016) used RF for wheat biomass and compared it with the other two machine learning 

algorithm, SVR and ANN and found that RF performed better than SVR.  The summary of 

RF application and its outcome for biomass estimation are presented in table 4.7: 
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Table 4-7: Summary of RF application for biomass estimation 

Land 

cover 

Authors  and their contributions 

F
o
re

s
t 

Frazier et al. (2014) investigated the importance of types of temporal Landsat 

trajectory matrices in the estimation of boreal forest biomass using RF 

algorithm. 

Mascaro et al. (2014) evaluated the performance of Random Forest in upscaling 

airborne LiDAR (Light Detection and Ranging)-based carbon estimates 

compared to the stratification approach over a 16-million hectare focal area of 

the Western Amazon. 

Tanase et al. (2014) used airborne Polarimetric L-band Imaging Synthetic 

aperture radar (PLIS) to the impact of high revisit cycle and full polarimetric 

acquisitions on biomass retrieval by means of backscatter-based multitemporal 

methods. 

Karlson et al. (2015) evaluated the utility of Landsat 8 for mapping tree canopy 

cover and biomass in a woodland landscape. 

Dube and Mutanga (2015): Although the objectives of their study were not to 

compare algorithms, the study has shown that Stochastic Gradient Boosting 

(SGB) outperformed the Random Forest (RF) algorithm in all aboveground 

biomass estimation stages. They compared Landsat 8 OLI with Landsat 7 data. 

Gleason and Im (2012) evaluated machine learning approaches –RF, SVR and 

Cubist regression trees for forest biomass estimation using Airborne LiDAR data. 

A
g
ri
c
u

lt
u
re

 Wang et al. (2016) compared RF with other two machine learning classifiers 

(SVM and ANN) to estimate wheat biomass. RF outperformed ANN and SVM.  

W
e
tl
a
n
d
 

Mutanga et al. (2012) showed that the performance of non-linear RF predictive 

model of the selective NDVIs was better ( R2= 0.76, rmse= 0.441) compared to 

stepwise multiple regression (R2 = 0.69, rmse = 0.5465) for wetland biomass. 

 

 

But for wetland biomass estimation we found only one studies that used RF algorithm 

(Mutanga et al, 2012). So, there is still a further huge scope to work on it. One possible 

reason is that most of the vegetation indices used for biomass estimation are more or less 

similar and correlated (References). Cutler et al., (2007) demonstrated that RF is not 

sensitive to collinearity. This is very valuable in modelling, especially for a complex, non-

linear system because it is commonly difficult to decide which variable to remove when 

two (or more) variables correlate with each other. 
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4.4.5  Future direction:  application of random forest for saltmarsh mapping 
and biomass modelling 

 

To evaluate the classification accuracy of RS data, parametric classifiers need additional 

effort and time to collect validation samples. Lawrence et al. (2006) and Zhong et al. 

(2014) found a solution and reported that the OOB error in the RF method could be used 

as a reliable measure of classification accuracy. However, this assertion needs to be further 

tested using a variety of datasets in different application scenarios. Because the limitation 

of RF algorithm in measuring variables importance is that it does not automatically select 

the optimal number of variables that produce the best classification accuracy (Adam et al., 

2009). Moreover, Genuer et al. (2015) reported some classification problems when the 

variable importance index is based on the Gini Purity index of RF. Previous studies also 

have demonstrated that the overall classification accuracy of the RF classifier decreases 

when the algorithm is trained in different study areas (Vetrivel et al., 2015). Later, Juel et 

al. (2015) tested the transferability of RF classification models and concluded that the 

resulting classification model was not transferable to new areas. Species composition in 

saltmarsh varies from one area to another due to different factors. Hence, the 

development of hybrid classification methods that integrate the RF classifier with explicitly 

specified models that convey the objects’ semantics (Du et al., 2015) might be a solution 

to this problem.   

 

There are some valuable investigations into the predictive power of a variety of variables 

in different classification scenarios. But the problem is the identified variables are not 

systematically organized into online features catalogues that can be easily reused by those 

interested in pursuing similar investigations in remote sensing community. In addition,  

Strobl et al. (2007b)argued that there is a bias in Random Forest variable measures in 

situations where potential predictors vary in their scale of measurement or their number 

of categories. For example,the increasing number of variables computed for the image 

objects generated through Object-Based Image Analysis ( OBIA) classification(Belgiu and 

Drăguţ 2016) might, therefore, benefit from using the VI measurement to select optimum 

features.  

However, the most important question that requires future investigation is the robustness 

of the RF classification model when the number of training samples is either increased or 

reduced (Chan and Paelinckx 2008). When noise is added to the features, the stability of 

the VI measure with iterative classifications (Millard and Richardson 2015), and the 

sensitivity of the mtry and ntree parameter to the feature space (i.e. to the number of 

variables) need further investigation. Recently, Mellor et al. (2015) reported that the 

correlation between trees increases as the number of variables for splitting the trees nodes 

increases. Therefore, feature selection and sample size still need further investigations to 

improve the stability of RF classification. 
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4.5  Concluding Remarks 
 

Most of the findings show that there is empirical evidence to support the theoretical 

formulation and motivation behind both of the machine learning algorithms, SVM and 

Random Forest. However, the most important features of SVM is its ability to generalize 

well from a limited amount of training data. Compared to other non-parametric methods, 

SVMs can yield comparable accuracy using a much smaller training sample size. This is 

due to the ‘‘support vector’’ concept that develops based on a few data points to define 

the classifier’s hyperplane.  As the acquisition of ground truth for remote sensing data is 

generally an expensive process, SVM can be a good choice that works based on small 

sample size. In addition, SVMs do not assume a known statistical distribution of the data 

to be classified. This is very important for remotely sensed imagery that usually has 

unknown distributions. Therefore SVMs outperform parametric Maximum Likelihood 

Classification (MLC). Because MLC follow normal distribution and normality does not 

always give a correct assumption of the actual pixels distribution in each class to be 

classified. 

 

On the other hand, RF classifier is less sensitive than SVM to the quality of training samples 

and to overfitting, due to a large number of decision trees produced by randomly selecting 

a subset of training samples and a subset of variables for splitting at each tree node. That’s 

why,  RF classifier has been shown to be suitable for classifying hyperspectral data, where 

the curse of dimensionality and highly correlated data pose major challenges to other 

available classifiers including SVM. In addition, RF has VI measurement that used to 

identify the most suitable seasons for identifying desired classes. Moreover, a large 

number of the investigations reviewed that the sensitivity of the RF classifier is based on 

two parameters (ntree and mtry) that are less than the number of parameters of SVM. 

 

In a nutshell, it can be concluded that although SVM can deal with small sample size, less 

number of parameters settings and reliable variable selection method make RF easier to 

apply in image classification. In addition, sample proximity measurement available with 

the RF algorithm identifies outliers in training sample that is important when classifying 

objects in complex environments, i.e. wetland ecosystem. 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



82 

Chapter 5  

Support vector machine (SVM) classifier with small training 
samples for wetland saltmarsh environment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on  

 

the article that has been submitted to the journal Geocarto International “Support vector 

machine (SVM) classifier with small training samples for wetland saltmarsh environment”. 
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Abstract 

 

Coastal saltmarsh is highly diverse, floristically and spatially heterogeneous, factors that 

make it challenging for remote sensing to map at species level. In addition, ground truth 

data collection for species level mapping is made challenging by limited access and 

hazardous conditions in some wetland ecosystems. Support Vector Machine (SVM) was 

selected for species level mapping for its unique behaviour with limited reference sample 

data.  The accuracy of classification for coastal saltmarsh resulting from SVM is compared 

with that of the Maximum Likelihood Classifier (MLC).  With a limited number of training 

sample, the overall accuracy (OA) for 8 classes was around 56.25% (kappa = 0.50) for 

MLC, 78.12 % (kappa=0.75) for SVM (radial basis function) and 78.90% (kappa=0.76) 

for SVM (polynomial). The results show SVM (either RBF or polynomial kernel) provide 

significantly (95% confidence interval) better results than MLC. There was no significant 

difference between the two maps produced from two different kernel functions at a 95% 

confidence interval. The relationship between kernel smoothness parameter and spectral 

separability are also investigated. When the polynomial kernel increased from 2 to 4, 

producer accuracy (%) increased from 81.25% to 87.50% and 53.22% to 66.67 % for 

Mangrove and Casuarina respectively. This accuracy is acceptable as only 15% of the 

required sample provided for 79% overall accuracy from SVM and is comparable to other 

previous studies where multispectral and airborne hyperspectral data have been used. 

However, in terms of data acquisition cost, reference data collection and processing cost, 

this study showed a promising approach for broad management application. 

 

 

Keywords: saltmarsh, classification, maximum likelihood classifier (MLC), support vector 

machine (SVM), Worldview 2, multispectral.  
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5.1 Introduction 
 

High spatial and spectral resolution remote sensing data with more advanced geospatial 

technology allows for the mapping of many changes in vegetation cover using species 

signature analysis. Some authors used airborne hyperspectral data such as PROBE -1, 

Compact Airborne Spectral Imager (CASI) imagery for mapping and monitoring salt 

marshes (e.g. Zomer et al., 2009; Belluco et al. 2006; Hunter and Power 2002; Thomson 

et al. 2003).  However, aerial data acquisition is still considered relatively expensive 

(Hunter and Power 2002). Alternatively, high-resolution satellite imagery (HRSI) data and 

its recent advancement have the potential to significantly improve coastal and saltmarsh 

vegetation mapping. Due to the sub-meter spatial resolution and the advantage of satellite 

platform for repeated data acquisition with the minimal coast, Space Imagines’ IKONOS 

and Digital Globe’s Quickbird-2 have facilitated the routine change detection monitoring 

of both salt-marsh and terrestrial vegetation. For example, with high-spatial resolution 

QuickBird-2 satellite remote-sensing data, Wang (2007) mapped both terrestrial and 

submerged aquatic vegetation communities of the National Seashore Suffolk County, New 

York, using a combination of stratified and ISODATA classifier based on a previously 

classified map. The results achieved approximately 82% overall classification accuracy for 

terrestrial and 75% overall classification accuracy for submerged aquatic vegetation and 

provided an updated vegetation inventory and change analysis results. 

 

One of the main purposes of any land cover classification is to achieve a high level of 

accuracy with a limited number of training samples to make mapping as practical and 

economical as possible. However, field data collection is not only time consuming and 

costly but potentially hazardous in the wetland environment. As a result, it is important to 

select a classifier that performs well with a limited number of ground reference samples. 

One attractive classifier for this application is a support vector machine (SVM) (Mathur 

and Foody, 2008). Literature shows that scientists have improved SVMs to successfully 

work with a limited quantity of training samples. Foody and Mathur (2004), for example, 

showed that limited training data (only 37 samples of the original 150 training samples) 

collected from SPOT high-resolution satellite imagery was enough to give the same 

accuracy for a two-crop classifier. In another study, Mantero et al. (2005) estimated 

probability density of thematic classes using SVM and confirmed the method effectiveness 

based on a limited number of ground reference samples. In addition,  Bruzzone et al 

(2006) showed that modified SVM was effective in solving the ill-posed remote sensing 

classification problems associated with limited quantity and quality of training samples. As 

SVM is a supervised classification, it separates classes by identifying the support vectors 

from training samples. However, for a very large number of training samples, it is 

sometimes impossible for SVM to use all of them to determine support vectors ( Koggalage 

& Halgamuge, 2004). In addition, a large training set size can limit the speed of SVM.   As 

mentioned before, one of the major obstacles for wetland classification is accessibility to 
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collect ground samples, and classifier SVM might be an alternative to improve classification 

problem based on a limited number of ground truth data. 

 

As SVMs are appealing due to their impressive ability to successfully handle a small training 

dataset by producing higher classification accuracy, it is proposed as a superior classifier 

in remote sensing than the traditional methods like Maximum Likelihood Classifier (MLC) 

(Montero et al., 2005), because, MLC is a probabilistic algorithm and less suited when data 

are non-normally distributed. The MLC classifier assumes that reflectance values of each 

class are normally distributed. This is a common violation in remote-sensing data, 

especially when classes or even subclasses of the main class contain different spectral 

features (Kavzoglou & Reis, 2008). To overcome this problem, non-parametric classifiers 

such as decision tree classifier (DTC), artificial neural networks (ANN), and Support Vector 

Machine (SVM) are gaining priority in recent remote sensing classification (Zhu and 

Blumberg 2002; Kavzoglu and Reis 2008; Otukei and Blaschke 2010). Among these, SVMs 

has been reported as the superior classifier in the work of Heinzel and Kotch (2012); Pal 

and Mather (2005); Huang et al., (2002) and Chen and Ho (2008). A comprehensive 

introduction of SVM can be found in the previous studies (Vapnik & Kotz, 1982; Zhu and 

Blumberg, 2002; Tso and Mather, 2009 and Vapnik, 2013) therefore it will not be further 

explained in this paper. 

 

There is a close relationship between the choice of the kernel function and the performance 

of SVM (Tso & Mather, 2009). According to Huang et al., (2002), the function of a kernel 

has a major contribution in locating complex decision boundaries between classes. In any 

land cover classification, either wetland or terrestrial, one of the most important criteria is 

the distribution pattern of data. If the data is linear, a separating hyperplane may be used 

to separate the data into classes. However, it is common in remote sensing that boundaries 

between classes of interest are more likely to be non-linear and due to this linear kernel 

performed worse than nonlinear kernels (Huang et al., 2002). The solution is to use kernels 

in a higher dimensional space when solving the linear hyperplane. These are used to non-

linearly map the input data to a high dimensional space. Therefore, the new mapping 

becomes linearly separable. As the kernel technique allows the support vector machine to 

form non-linear boundaries, different kernel functions (Cristianini & Taylor, 2000) have 

been introduced for SVM. Of these, polynomial and radial basis function (RBF) are two 

important functions used for remote sensing classification.  

 

The distribution of classes on feature space is another important parameter that is related 

to the classification accuracy. This is because class probabilities are produced based on 

the distribution of classes in feature space. However, this distribution often has overlaps 

which reduce the accuracy of classification. To solve this problem, the concept of spectral 

separability is introduced. This concept indicates how well two classes are separated. This 

separability concept is classical in pattern recognition and independent of the coordinate 

system (Fukunaga, 1990; Fukunaga 2013) and has an effect on classification accuracy. 



 

 86 

 

Based on these considerations, this study focuses on the potential of high-spatial-

resolution satellite data for reliably classifying salt-marsh vegetation species with higher 

accuracy from limited field survey data. The main questions addressed in this study 

include: (1) how training size and parameter optimization influence SVM for species 

classification in a wetland? ; (2) how spectral separability index influences the kernel 

smoothness value and ultimately the classification accuracy?; (3) what mapping accuracy 

for individual saltmarsh species  can be achieved? The results can then be used as baseline 

information for other related studies to develop a spatial data-based method of monitoring 

the condition of saltmarsh species in terms of degradation and rehabilitation. 

 

 

5.2 Materials  
 

The study area is dominated by Salt coach ( Sporobolus virginicus), and reedbeds of  

Phragmites australis  (figure 5-1). Coastal swamp Oak (Casuarina glauca) and the grey 

mangrove tree (Avicennia marina) are two dominant tree species. In addition, there are 

some scattered saltmarsh species including  Saueda australis and Sarcocornia 

quinqueflora. Due to their scattered distribution, those species were not classified as 

individual species in this study. 

 

a b 

d C 

Figure 5-1:  Different saltmarsh species identified in the field (a) Phragmites australis (b) 
Sporobolus virginicus (c) Mixed Phragmites and Schoeloplectus (d) Schoeloplectus sp mixed with 
tree Casuarina glauca (She-Oak). 
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5.2.1 Satellite and field data 
 

Worldview-2 satellite imagery was the primary remote sensing data used in this analysis. 

It has 0.46 m pixel resolution in the panchromatic mode and 1.84 m resolution in the 

multispectral mode. The multispectral mode consists of eight broad bands in the coastal 

blue (400-450 nm), blue (450–510 nm),green (510-580 nm),  yellow (585- 625 nm), red 

(630-690 nm), red edge (705 – 745 nm), NIR1 (770-895 nm) and NIR2 (860-1040 nm) 

parts of the electromagnetic spectrum. The Worldview-2 satellite data used here was 

captured on 5th May 2015.  Two extensive fieldwork campaigns were conducted in two 

different seasons to check the variation in phenology of the target species if any. These 

are conducted from 10th to 14th June 2015, and from 7th to 12th December 2015. 

 

 

5.2.2. Collection and processing of field data 
 

The stratified sampling design was followed based on trees, saltmarsh and grass and 

others (water and wetland soil) (table 5-1). Within each stratum, reference pixels were 

randomly selected for calibration and validation purposes. Although homogeneity was a 

crucial issue for sampling size, however, each of the sample sites was more than 2 m x 2 

m so that the data collected could be matched with the non-pan-sharpened pixels (2 m x 

2 m) of Worldview-2. Sampling data included vegetation species class, percentage 

occurrence of each species within the selected plot and their global positioning system 

(GPS) locations. A total of 256 pixels were chosen from three different strata manually 

identified (Table1). Randomly collected ground reference sample from three different 

strata was divided into two groups, training and validation set. Hence, 50% pixels (128 

Pixels) were selected for training and rest 50% (128 pixels) to calibrate the classifier 

algorithm (table 5-1). 

 

Table 5-1: Different land cover pixels selected for training and validation dataset 

Land cover Specific Class Calibration pixels 

( N= 128) 

Validation Pixels 

( N= 128) 

Trees Mangrove  16 16 

Casuarina 16 16 

Casuarina dieback 16 16 

Saltmarsh and 

Grass 

Phragmites australis 16 16 

Sporobolus virginicus 16 16 

Perennial Grass 16 16 

Others Water 16 16 

Wetland Soil 16 16 
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5.2.3 Training data set 
 

Selection of training data is one of the major factors determining the extent to which the 

classification rules can be generalized to unseen samples over the study site (Paola and 

Schowengerdt 1995). This selection of training pixels could be me more important for 

obtaining accurate classifications than the selection of classification algorithms (Hixson et 

al. 1980). To assess the impact of training data size on classification accuracy, an equal 

number of samples for each class were trained and validated with all bands of Worldview-

2.  As mentioned, 50% samples (128 pixels) were separated for training purposes where 

each class has an equal number of pixels (16 pixels for each class).  On each trial, 

validation sample number was equal to the training sample number but using independent 

sets. There were 9 trials and the sample size was increased from 8 to 16 with a step size 

of 1. This randomization technique was used to minimize the effect of spatial 

autocorrelation (Campbell 1981) and was the best approach to check the effect of training 

sample on SVM with limited sample number. 

 

5.2.4 SVM Kernel size 

 

The kernel parameter of SVM has a significant effect on the decision boundary of two 

classes. The width parameter of the Gaussian Kernel and the degree of the polynomial 

kernel control the flexibility of the resulting classifier (Ben-hur & Weston, 2010). The 

lowest degree polynomial is the linear kernel and is not sufficient if there is a non-linear 

relationship between the features to be classified. In ENVI, the minimum value is 1 

(default), and the maximum value is 6 for the degree of the polynomial kernel. Increasing 

this parameter more accurately delineates the boundary between classes (Harris 

Geospatial Solution, 2015). A value of 1 represents a first-degree polynomial function, 

which is essentially a straight line between two classes. This value works well if there are 

two distinctive classes in an image. However, in most cases, land cover classification deals 

with  imagery that has a high degree of variation and mixed pixels. Thereby increasing the 

polynomial value causes the algorithm to more accurately follow the contours between 

classes (Harris Geospatial Solution, 2015).  

Besides choosing a kernel type, it is also essential to specify the bias in kernel function. 

In ENVI the default bias value is 1.00. Similarly, it is also important to set the gamma 

parameter used in the kernel function. This value is a floating value greater than 0.01. 

The penalty parameter is a floating-point value greater than 0.01. In ENVI the default 

penalty value is 100.0. This parameter allows a certain degree of misclassification, which 

is particularly important for non-separable training sets. This parameter controls the 

magnitude the penalty of training samples that lie on the wrong side of the hyperplane 

parameter.  The more the user increases the value, the easier it is easy to control if making 

changes to other parameters (Harris Geospatial Solution, 2015). Increasing this value also 
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increases the cost of misclassifying points and creates a more accurate model that may 

not generalize well (Tso & Mathur, 2009). In SVM, the best kernel functions are data 

dependent (Beh-Hur and Weston, 2010). Therefore it is imperative to try different kernel 

functions with an associated parameter to select the best one. In this study, different 

kernel functions were tested to select the optimal one for wetland mapping.  

 

5.2.5 Class separability 
 

There are several methods to identify class separability. For example, Jia & Richard  (1999) 

mentioned the divergence and Jeffries-Matusita (JM) distance to measure class 

separability. In this research Jeffries-Matusita(J-M) distance was used to measure the 

separability between  the 8 classes chosen. The value of this distances varies from 0 to 

2.0 where 0 indicates classes are same and 2.00 indicates they are very well separable.  

 

5.2.6 Evaluation of classification and mapping accuracy (MA) 
 

Accuracy assessments were conducted using the confusion error matrix, overall map 

accuracy and kappa values.  For individual classes, producer and user accuracy were 

computed based on the dominant class in each reference plot (Story and Congalton 1986; 

Congalton 1991; Richards 1996;  Stehman 1997). In addition, MA [Equation 5.1] 

(Congalton and Green 1999) was computed based on the following formula: 

 

 

𝑀𝐴% =  
𝑃𝑖𝑥𝑒𝑙𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑃𝑖𝑥𝑒𝑙𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑+𝑃𝑖𝑥𝑒𝑙𝑠𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛+𝑃𝑖𝑥𝑒𝑙𝑠𝐶𝑜𝑚𝑚𝑖𝑠𝑠𝑖𝑜𝑛
× 100           (5.1)      

 

 

 

 

 

The Z- statistics (Congalton and Mead 1986) was used to evaluate the significance of the 

difference between the resulting classifications obtained by two methods: SVM and MLC. 

For example, the difference between the two classifier or two individuals in two different 

classifiers is considered to be significant at 95% confidence level if the absolute value of 

the Z-statistics exceeded 1.96. The Z- Statistics [Equation 5.2] is calculated as below: 

 

 

 

𝑍𝑎𝑏 =
 ⎸𝐾𝑎−𝐾𝑏⎸

√𝑉𝑎𝑟𝐾𝑎+𝑉𝑎𝑟𝐾𝑏

                                                                     (5.2) 
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Where Zab is the Z-statistic for comparison of classification a and b; Ka and Kb are the 

kappa coefficients of classifications a and b; and var(Ka) and var(Kb) are the asymptotic 

variances of Ka and Kb, respectively. All statistical computing was performed in open source 

R software. (R core team, 2014). 

 

 

5.3 Results 
 

5.3.1 Data distribution pattern 
 

The box-whisker plot in figure 5-2 indicates the spectral variability and data distribution 

pattern among and within 8 classes. Only annual grass (GR) is clearly separable in green, 

red edge and NIR bands. Reflectance properties of water (WA) in the last 3 bands (Red 

Edge, NIR1 and NIR 2) and reflectance of wetland soil (WS) in band 8 are significantly 

different from other classes. Within two tree species (Casuarina=CA and Mangrove=MA) 

the separation is not so clear, there are considerable spectral overlaps in different bands. 

Two saltmarsh species (Phragmites= PH, and Sporobolus = SP) are more or less 

overlapped in different bands. The saltmarsh species also show band-specific within-

species variance. For example, the variance of Phragmites (PH) in the coastal band is quite 

large and in NIR2 is relatively small. Based on the overall box-whisker plot, it is clear that 

there are no outliers for any species in any band. Moreover, the median is in the centre of 

each box indicating that data are normally distributed. 
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Figure 5-2: Box-whisker plots of median reflectance values of the 8 Worldview 2 bands for different 
wetland species derived from the reflectance pixels of the study area 
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5.3.2 Maximum Likelihood Classification (MLC) 
 

The confusion matrix (table 5-2) of the MLC classifier with 16 training samples from each 

class indicates that there is a high incidence of misclassification of mangrove and 

Casuarina sp. This confusion mostly comes from the similarity of the spectral properties 

of these tree species (Figure 5-2). Another source of classification error come from the 

similarity of the spectral profile of Sporobolus virginicus with Phragmites australis. 

 

 

Table 5-2: Confusion matrix of MLC classifier 

Class MA CA WA PH SC SP GR WS Total EC UA 

MA 9 5 1 0 4 1 2 1 23 60.87 39.13 

CA 3 8 0 0 0 1 0 0 12 33.33 66.67 

WA 0 2 11 0 0 0 0 0 13 15.38 84.62 

PH 0 0 0 7 1 0 0 0 8 12.50 87.50 

SC 4 1 1 8 10 6 8 1 39 74.36 25.64 

SP 0 0 0 1 1 8 0 1 11 27.27 72.73 

GR 0 0 0 0 0 0 6 0 6 0.00 100.00 

WS 0 0 3 0 0 0 0 13 16 18.75 81.25 

Total 16 16 16 16 16 16 16 16 128   

EO 43.75 50.00 31.25 56.25 37.50 50.00 62.50 18.75 OA=56.25% 

Kappa =0.50 PA 56.25 50.00 68.75 43.75 62.50 50.00 37.50 81.25 

 

Class key: MA= Mangrove, CA = Casuarina, WA= Water, PH = Phragmites australis, SC = Casuarina 

dieback, SP= Sporobolus virginicus, GR = Grass, WS = Wetland Soil, EO = Error of Omission, EC= 

Error of Commission, UA= User Accuracy, PA= Producer Accuracy, OA = Overall Accuracy. 

 

 

5.3.3 Support Vector Machine (SVM) 
 

Determination of parameter 

 

As described earlier, both RBF and polynomial kernels of SVM were tested. To determine 

the parameter for Radial Basis Function (RBF) in the SVM classifier, we did different trials 

of gamma in kernel function ranging from ENVI default value, 0.125 to 7.00.  Based on 

this trial it was found that there was no change of OA when gamma varied from the default 

value to 7.0. Therefore the ENVI default gamma kernel value 0.125 has been selected for 

the RBF SVM classifier. In respect of the penalty parameter, the ENVI default value is 100. 

Other parameters were tested ranging from value 5 to 200 to check the effect of penalty 

parameter in classification accuracy and kappa followed by a McNamara test. It was proved 
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that OA increased from 72.65% (Kappa = 0.68) to 78.12 % (Kappa =0.75) when the 

penalty parameter was raised to value 130. However, it remained unchanged up to value 

140 and reduced once again when it was set as 150 or more. These differences in 

classification accuracy were significant at the 0.05 probability level. As a result, penalty 

value 130 with a game value 0.125 was treated as the best performance for RBF 

classification.  

 

For the polynomial, varying order from value 2 to 4 resulted in an increase in overall 

classification accuracy from 77.34% (kappa = 0. 74) to 78.90 % (kappa= 0.75) but 

accuracy reduced once again when order values of 5 and 6 were used ( OA 75.78 % with 

kappa 0.75). However, based on the McNamara test, this difference was not significant at 

the 0.05 probability level. As polynomial order 4 was given the highest OA, this value was 

selected for the remaining trials of other parameters of the polynomial SVM classifier. Due 

to the change of penalty parameter from value 5 to 100, the OA increased from 71.87 

(kappa = 0.67) to 78.90% (kappa = 0.75). But it reduced once again when penalty 

parameter set at more than 100. In this study, penalty parameters from 5 to 5000 were 

tested. However, based on the McNamara test the classification accuracy at a penalty 

value 5000 was not significantly different from the accuracies for other penalty values. 

Therefore, the highest OA 78.90% with kappa 0.75 obtained from polynomial kernel 4 and 

a penalty value 100 has been used for further comparison and mapping accuracy 

calculation. 

 

Table 5-3: Confusion matrix of SVM (RBF) classifier 

Class MA CA WA PH SC SP GR WS Total EC UA 

MA 14 4 0 0 2 0 0 0 20 30.00 70.00 

CA 2 9 0 0 0 0 0 0 11 18.18 81.82 

WA 0 3 14 0 1 0 0 1 19 26.32 73.68 

PH 0 0 0 13 2 1 0 0 16 18.75 81.25 

SC 0 0 1 1 6 1 1 0 10 40.00 60.00 

SP 0 0 0 2 5 14 0 0 21 33.33 66.67 

GR 0 0 0 0 0 0 15 0 15 0.00 100.00 

WS 0 0 1 0 0 0 0 15 16 6.25 93.75 

Total 16 16 16 16 16 16 16 16 128   

EO 12.50 43.75 12.50 18.75 62.50 12.50 6.25 6.25 OA=78.12% 

Kappa =0.75 PA 87.50 56.25 87.50 81.25 37.50 87.50 93.75 93.75 

 

Class key: MA= Mangrove, CA = Casuarina, WA= Water, PH = Phragmites australis, SC = Casuarina 

dieback, SP= Sporobolus virginicus, GR = Grass, WS = Wetland Soil, EO = Error of Omission, EC= 

Error of Commission, UA= User Accuracy, PA= Producer Accuracy, OA = Overall Accuracy. 
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Table 5-4: Confusion matrix of SVM (Polynomial) classifier 

Class MA CA WA PH SC SP GR WS Total EC UA 

MA 14 3 0 0 2 0 0 0 19 26.32 73.68 

CA 2 10 0 0 0 0 0 0 12 16.67 83.33 

WA 0 3 14 0 1 0 0 1 19 26.32 73.68 

PH 0 0 0 13 2 1 0 0 16 18.75 81.25 

SC 0 0 1 1 6 1 1 0 10 40.00 60.00 

SP 0 0 0 2 5 14 0 0 21 33.33 66.67 

GR 0 0 0 0 0 0 15 0 15 0.00 100.00 

WS 0 0 1 0 0 0 0 15 16 6.25 93.75 

Total 16 16 16 16 16 16 16 16 128   

EO 12.50 37.50 12.50 18.75 62.50 12.50 6.25 6.25 OA=78.90% 

Kappa =0.76 PA 87.50 62.50 87.50 81.25 37.50 87.50 93.75 93.75 

 

Class key: MA= Mangrove, CA = Casuarina, WA= Water, PH = Phragmites australis, SC = Casuarina 

dieback, SP= Sporobolus virginicus, GR = Grass, WS = Wetland Soil, EO = Error of Omission, EC= 

Error of Commission, UA= User Accuracy, PA= Producer Accuracy, OA = Overall Accuracy. 

 

From figure 3 it is very clear how the Phragmites australis patch has been misclassified by 

MLC and further pixels have been purified by SVM. Similarly, Table 5-2, 5- 3 and 5-4 prove 

that classification improved by application of SVM for all eight classes. From Table 3 and 

4, it is true that accuracy slightly improved by application of the polynomial kernel, 

however, producer and user accuracy for all classes remain unchanged except Mangrove 

and Casuarina sp. The reason is that the smoothness parameter of polynomial kernel 

mainly works on the poorly separable classes, as discussed in next section. 
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Figure 5-3: Classification results highlighting Phragmites australis, Sporobolus virginicus 
and Casuarina sp, (a) MLC (b) SVM-Polynomial (c) SVM-RBF; Classification highlighting 
Mangrove, Water Channels and Grass dominant area (d) MLC (e) SVM-polynomial (f) 
SVM-RBF 
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5.3.4  Relation between class separability and kernel smoothness parameter 
 

Based on different training pixels, it was found that the value of separability index depends 

on the number and choice of pixels (table 5-5). For example, the J-M separability index 

for Mangrove and Casuarina sp, varied from 1.48 to 1.99 based on different pixels number. 

For this reason, the relation between class separability (J-M) and kernel function was 

tested in terms of polynomial degree. 

 

Table 5-5: Class separability and Kernel function 

Separability index (J-M) Training  Set Kernel function 

Mangrove Casuarina Trial Number Pixel  Polynomial  Degree 

1.99 3 10   2 to 6 

1.93 5 12  2 to 6 

1.91 6 13 2 to 6 

1.77 7 15 2 to 6 

1.48 8 16  2 to 6 

 

Different degree of the polynomial kernel was tested followed by contingency table 

classification accuracy (table 5-6). It was found that the order of polynomial degree 

worked for poorly separable classes (for example, Casuarina and Mangrove) and improved 

classification accuracy. According to expectation, for well separable class (higher J-

Mvalues) classification accuracy improved and sensitivity to degree function reduced. 

Conversely,  for lower class separability (Mangrove-Casuarina; table 5-6), the role of 

smoothness parameter of degree becomes higher and accuracy also changed. From the 

confusion matrix table (table 5-6), it is also evident that found that higher degree value 

works to separate poorly separable class and thereby improve classification accuracy. 

When 16  a pixel size training set was tested against varying polynomial degree, PA % 

and UA % both improved with the change of degree.  This argument is also supported by 

Goumehei (2010) who found the similar relationship of JM separability distance with kernel 

smoothness parameter. 

 

Table 5-6: Relation between kernel function and classification accuracy 

User accuracy (%) Producer accuracy (%) Overall 

accuracy 

Polynomial 

degree 

Pixel size 

Mangrove Casuarina Mangrove  Casuarina 

72.22 76.92 81.25 53.22 77.34 2 16 

73.68 83.33 87.5 66.67 78.12 3 16 

73.68 83.33 87.5 66.67 78.90 4 16 

66.67 80 87.5 66.67 75.78 5 16 

76.47 81.82 81.25 60 76.56 6 16 
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5.3.5 Mapping Accuracy Assessment 
 

 

Table 5-7: Mapping Accuracy (%) of different wetland classes 

 

Class MLC SVM( RBF) SVM(Polynomial) 

Mangrove 30.00 63.63 66.66 

Casuarina 40.00 50.00 55.55 

Water 61.11 66.66 66.66 

Phragmitis australis 41.11 68.42 68.42 

Casuarina dieback 22.22 30.00 30.00 

Sporobolus virginicus 42.10 60.86 60.86 

Grass 37.5 93.75 93.75 

WetlandSoil 68.42 88.23 88.23 

 

 

From Table 5-7, it is annual grass, achieved higher MA (93.75%) followed by wetland soil 

(88.23%) from the SVM classifier. Except for Mangrove and Casuarina sp. all other six 

classes remain the same in both kernel type of SVM (table 5-7). The reason is very clear 

from the separability value and smoothness parameter relationship that is discussed in 

the previous section.    

 

5.3.6 Evaluation of performance 
 

Table 5-8 shows the results of kappa analysis over three classification results. It is very 

clear that the overall accuracy and kappa coefficient by SVM (either RBF or Polynomial) 

are significantly (95% confidence interval) higher than that of MLC. Because in both cases 

Z –statistics are higher than 1.96 (table 5-9). Although SVM (Polynomial) provides slightly 

higher accuracy than SVM (RBF), however, their differences are not significant (95% 

confidence interval) since Z-statistics are smaller than 1.96 (table 5-9). 

 

Table 5-8: Kappa analysis 

 MLC SVM(RBF) SVM(Polynmial) 

Overall accuracy 0.5625 0.7812 0.7890 

Kappa coefficient 0.5011 0.7512 0.7589 

Variance 0.001923 0.001335 0.001300 
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Table 5-9: Z-statistics among classification results 

Pair comparison Z-statistics 

MLC vs SVM (RBF) 3.8325 

MLC Vs SVM (Polynomial) 3.9908 

SVM (RBF) Vs SVM (Polynomial) 0.0288 

 

 

 

5.4 Discussion 
 

The literature often suggests that the size of the training set required is a function of 

spectral wavebands used and generally a sample comprising at least 30 times the number 

of spectral bands used is required in the analysis process (Mather, 2004; Mathur and Foody 

2008). Moreover, it is proved that training set size has a positive relationship with the 

classification accuracy (Zhuang et al., 1994, Arora and Foody 1997, Pal and Mathur 2003, 

Foody and Mathur 2004a). That is why conventional classification scheme (like MLC) 

require a large training set spread all over the study area. In this perspective, our 

Worldview 2 data requires at least 240 pixels for each class to run a conventional MLC 

algorithm. Whereas, only 15% (16 pixels for each class) of the required training sample 

(240 pixels) provided up to 79% accuracy. This accuracy is acceptable not only based on 

cost-benefit analysis but the feasibility test as well. For wetland in many settings, it was 

difficult and expensive to collect at least 240 pixels of training data for each class to test 

MLC performance. The findings of the current study are supported by  Mathur and Foody 

(2008): when they reduced training size from 450 pixels to 130 pixels and classification 

accuracy reduced only 1.34% (statistically not significant). Although SVM provided 1.34% 

less accuracy (90.66%) compare to MLC (92.00%), Mathur and Foody (2008) concluded 

in favour of the superiority of SVM for small training size and cost of analysis.  

 

The study differs from Carle et al., (2014) who suggested MLC performed better than SVM 

if data are normally distributed. Although our data were normally distributed, still SVM 

performed better than MLC. The main reasons are our high spatial resolution data allowing 

a  small training set size. Jin et al., (2005) demonstrated that the difficulty in MLC dealing 

with texture features of high-resolution images, especially with a small training set size 

situations. In addition, MLC suffers from the Hughes effect or the curse of dimension 

(Hughes 1968, Pal and Mather 2003). This means that with a fixed number of training 

samples performance declines with the increasing dimensions due to the decreased 

reliability of estimates of statistical parameters needed to calculate the probability 

(Oommen et al. 2008). Our SVM findings challenge previous findings where highest 

classification accuracy has been achieved with the SVM classifier using a Radial Basis 
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Function (RBF) kernel. For example, Pal and Maher (2005) found optimum classifier 

performance both for mapping agricultural crops from Landsat ETM+ data and for mapping 

broad land-cover classes from hyperspectral data with RBF kernel gamma value 2, and a 

penalty value of 5000. Similarly, Kavzoglu and Colkesen (2009) found that the RBF kernel 

with a gamma value of 3 and penalty value of 250 was optimal for superior accuracy for 

broad land-cover classes using Landsat ETM+ and Terra ASTER imagery. However, their 

findings also support the argument that it is essential to optimize each kernel based on 

classification task and imagery type. So kernel determination depends on image type and 

classification task.   

 

Our findings are similar to Dixon and Candade (2008) who obtained optimal results using 

the polynomial kernel with an order of 3 and penalty value of 1000 from Landsat TM 5 

data. Our finding also supported by the findings of Huang et al (2002) who applied this 

algorithm to two different satellite data sources. So it may be summarized that optimal 

kernel choice is also highly variable among remote-sensing applications. This results also 

concur with other coastal vegetation studies where high-resolution data has been used. 

For example, Collins and Planes (2011) achieved more than 0.90 kappa coefficient with 

SVM from Worldview 2 data. It is true that our accuracy is lower than Collins and Planes 

(2011), however, this lower accuracy is mainly due to our exclusive focus on individual 

species where spectral signatures overlapped. When Collins and Planes (2011) showed 28 

pairwise comparisons in their land cover classification, only 1 showed a separability index 

inferior to 1.99. In our dataset, out of the 28 pairwise comparisons possible, 13 pairs 

displayed an inferior index to 1.99 (2.00 is a perfect discrimination) [See Appendix 1] and 

acted as an obstacle to improve accuracy after a certain degree. Dixon and Candade 

(2008) and Immitzer, Atzberger, and Koukal (2012) similarly found user’s accuracies 

ranging from 57% to 100% and producer accuracies ranging from 33% to 100% for 

individual species using Landsat 5 TM  and Worldview 2 respectively. In addition, our 

accuracy makes a cost-effective effort with the limited sample and less expensive imagery 

compare to the accuracies achieved for species-specific classification using hyperspectral 

imagery (Filippi and Jensen 2006; Belluco et al. 2006). 

 

5.5 Limitations and further research scope 
 

It is imperative to use a grid search method for parameter optimization that provides the 

best value for all parameters using the training dataset with a cross-validation approach. 

In this experiment, we used a random value for parameters in ENVI software. Feature 

selection for SVM although introduced in chapter 4, however, have not used yet. SVM has 

a large number of parameters that need to be optimized. So its performance needs to be 

compared with another ensemble classifier that has less number of parameters. Lastly, 

the proposed training sample size is restricted to 16 pixels for each class. Therefore, it is 
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essential to test the impact of larger training sample size that will prove the robustness of 

SVM’s performance.  

 

 

5.6 Conclusion  
 

The wetland area selected for this research has a unique feature in terms of the 

construction of levies for management purposes, prior history of disconnection of water 

channels from the sea, and a subsequent restoration. This has resulted in degradation of 

saltmarsh habitat, complex patterns of species invasion following hydrological alteration, 

and subsequent dieback and restoration of saltmarsh of saltmarsh habitat in some 

locations. The mosaic of saltmarsh and other coastal wetland vegetation patterns 

represented at Tomago provides a challenging test vegetation classification and mapping. 

We were particularly interested in testing the effect of limiting reference collection given 

the impediment this is placed on global saltmarsh mapping to date. Our challenge was to 

find a good classifier that works well with limited training data for saltmarsh wetland 

classification. To test the strength of conventional MLC performance, the required training 

size (240 pixels for each class) was unavailable in this study and acknowledged limitation. 

However, when 15% of the required training sample provided up to 79% accuracy from 

SVM was achieved, a result is acceptable in respect of cost and feasibility analysis for 

wetland environment. The SVM (either RBF or polynomial kernel) clearly outperform the 

traditional MLC especially when the training dataset has a small size of 16 samples. In 

terms of less expensive data cost and processing time, these SVM accuracies are 

competent and rival those findings using similar multispectral and airborne Hyperspectral 

sensors. Relative to the use of conventional MLC classifier, SVM provides 21.87% more 

accurate result with small sample size and provides a significant cost advantage. From the 

result of spectral separability, it was also found that higher degree kernel value works to 

separate poorly separable class. For example,  when polynomial kernel increased from 2 

to 4, producer accuracy increased from 81.25% to 87.50% and  53.22% to 66.67 % for 

Mangrove and Casuarina respectively. Although support vector machine requires some 

effort and time for kernel and parameter optimization for specific remote sensing 

application, it is a good choice to provide a satisfactory result when reference data 

collection is a big issue. 
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Chapter 6  

An evaluation of equal training sample allocation for a 
saltmarsh environment using Random Forest (RF) and 
Support Vector Machine (SVM) Classification algorithms  
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the article that has been submitted to the Special issue on “Marine Protected Areas: 

Science, Policy & Management” of International Journal of Estuarine, Coastal and Shelf 

Science. 

 

 

 

 



Chapter 6 

 103 

Abstract 

 

Ground truth data collection for species level mapping is made challenging by limited 

access and hazardous conditions in some wetland ecosystems.  Instead of area based 

proportional sample allocation, an equal number of samples allocation strategies have 

been proposed for 8 classes within a saltmarshes community. Random Forest (RF) and 

Support Vector Machine (SVM), two machine learning algorithms were selected for species 

level mapping due to their unique behaviour with multi-modal data distribution and limited 

reference sample size.  Only RF showed significant changes in overall accuracy when the 

sample size was reduced from 100% level to 33% : accuracy dropped from 79% to 72 %. 

Conversely, there were no significant changes in the accuracy of SVM, when samples size 

equally dropped from 100% to 33%. Based on equal sample allocation strategies, only 

15% of the required samples provided for 75% of the overall accuracy of SVM. However, 

there was no significant difference among all the possible combinations of three 

experiments (100 %, 66% and 33% of the original samples) which originated from two 

classifiers based on an equal sample distribution scheme. The importance of each spectral 

bands was evaluated through Classification and Regression Training (CARET) and Random 

Forest (RF) packages in R environment. Learning Vector Quantization (LVQ) and Recursive 

Feature Elimination (RFE), both feature selection methods selected six important features. 

No significant differences in classification accuracy were observed when these six 

important features were selected instead of all available features. This accuracy is 

acceptable and is comparable to other previous studies where multispectral and airborne 

hyperspectral data have been used. However, in terms of data acquisition cost, reference 

data collection and processing costs, this study showed a promising approach toward  

broad management application for the saltmarshes community that is ecologically 

endangered, and demand a special attention. 

 

 

 

Keywords: saltmarsh, wetland, maximum likelihood classifier (MLC), machine learning, 

Worldview 2, multispectral.   
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6.1 Introduction 
 

Thematic mapping of any land cover from remotely sensed data is commonly based on 

image classification methods. Lu and Weng (2007) provide a review of commonly used 

classification methods applied to remotely sensed data and these methods can be divided 

into common and advanced image classification (Tso and Mather 1999). For example, the 

Maximum Likelihood Classifier (MLC) is a commonly used supervised classifier whereas 

ISODATA and K-Means are unsupervised methods (Richards and Jia 1999; Srivastava et 

al. 2012). Advanced classification algorithms include support vector machines (SVM), 

random forest (RF), artificial neural networks (ANN), and  Decision tree classifier 

(DTC)(Adam et al. 2014; Adam et al. 2010). The performance of these classifiers varies 

with the quality of the remote sensing data either passive sensor (multispectral or 

hyperspectral data) or active sensor (e.g. LiDAR) data. One of the major problems relating 

to the supervised classification lies in the definition of a proper training set size for an 

accurate learning of classifiers(Chi et al. 2008). 

 

Sample size balance maintaining is still a controversial topic in image classification. It 

could be argued that classes with multimodal frequency distributions, e.g., agricultural 

land with different crop types and growing cycles, should have a greater number of 

samples in order for classes to be accurately represented in the classifier than a spectrally 

and temporally well-defined class i.e. waterbody (Colditz 2015). Accordingly, classification 

trees may sometimes suffer from a problem of unbalanced sample sizes problem. This 

means in the standard form of classification trees, the class with the highest number of 

samples determines the class label (Colditz 2015). 

 

To analyze the sample size problem for SVM and RF, we synthesized two review works of 

SVM and RF done by Mountrakis et al. (2011) and Belgiu and Drăguţ (2016) respectively. 

Based on the review of RF, it can be concluded that there is still a research paucity / gap 

on sample size and mislabelling of data. However, Mellor et al. (2015) found that RF 

classification was relatively insensitive to mislabelled training data and that imbalanced 

training data can be introduced to reduce the errors in those classes that pose the greatest 

challenges to classifications. Conversely, Millard and Richardson (2015) and Dalponte et 

al. (2013) found that the RF classifier fails to cope with imbalanced training data and tends 

to favour the most representative classes. In another study, Jin et al. (2014) concluded 

that the proportionally allocated training sample design reduces the commission error of 

the under-represented classes and that the equally allocated training sample schema 

reduces the omission error of the under-represented classes. In these circumstances, the 

impact of sampling design on RF classification results seem to be contradictory. Hence 

subsequent studies are required to analyse the sensitivity of the RF classifier to training 

samples allocation when using this classifier for remote sensing data classification. 
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As SVM for remote sensing classification has reviewed (Mountrakis et al. 2011) several 

years ago, we additionally synthesized most  of the recent  works in which SVM was used 

to classify land cover or wetland vegetation. Accordingly, we found that Carle et al. (2014) 

observed MLC performed better in comparison to SVM when wetland vegetation data are 

normally distributed. Recently,Fang et al. (2016)  also found a better result from a decision 

tree classifier (DTC) than SVM when they classified wetland from multisource data. Zhang 

et al. (2015) used multi-parameter optimization (MP-SVM) that is a modified form of single 

parameter optimization (SOP-SVM) and achieved a better result. It was also revealed that 

single optimized parameter (SOP) and a novel multi-parameter (MP) both are sensitive to 

landscape to be classified. As a result, evaluation of SVM parameter performance based 

on different sample sizes is still a current research gap that can be assessed in a saltmarsh 

environment where single to multi-modal distributions are prevalent. 

 

Since 1996 RF and SVM has been widely explored in Land Use Land Cover (LULC) 

classification utilising commonly used multi-spectral imagery. Recently Adam et al. (2014)  

applied these two algorithms on multispectral RapidEye data for a heterogenous landscape 

classification. Although RapidEye has five  multispectral bands including Red-edge and NIR 

1, there is a gap in knowledge of the performance of these algorithms on high-resolution 

Worldview-2 imagery. Worldview-2 (WV-2) can be spectrally differentiated from RapidEye 

as the former has three additional bands, called Coastal blue (Band1), Yellow (Band 4) 

and Near Infrared Band II (Band 8). Moreover, there is no mentionable research where 

these two algorithms were compared to examine the proportional sample reduction on 

user and producer’s accuracy for a saltmarsh environment. Consequently, this study 

sought to compare the performance of the relatively new advanced machine-learning RF 

and SVM classifiers on the new-generation WV-2 imagery in a degraded saltmarsh wetland 

to determine the optimum sample size for classification and mapping purposes. We focus 

on the following research questions (1) How do machine learning algorithms RF and SVM 

respond to the proportional reduction (100 % to 33%) of sample size? (2) Which machine 

learning approach provides reasonable accuracy with limited sample number? (3) Do the 

selected features of WV-2 change classification accuracy significantly compared to using 

all bands of WV-2? 

 

6.2  Materials 
 

 

6.2.1  Collection and processing of field data 
 

 

There are three major strata in the study area i.e. trees, saltmarsh and wetland. Within 

each stratum, reference pixels were randomly selected for calibration and validation 
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purposes. As pixel number was the main focus of this study, we did not collect sample 

classes based on their represented sizes within the study area but we allocated equal 

pixels numbers to all classes within each stratum. Two extensive fieldwork campaigns were 

conducted in two different seasons (winter and summer) to check the variation in 

phenology of the target species if any. These were conducted from the 10th to 14th of 

June 2015, and from the 7th to 12th of December 2015. 

 

A total of 1536 pixels were chosen from eight different manually identified classes (Table 

6-1). Randomly collected ground reference samples from these eight different classes were 

divided into two sets: training and validation sets. Hence, 50% pixels (768 pixels) were 

selected for training and the rest 50% (768 pixels) was used to calibrate the classifier 

algorithm. The validation set was performed without including any samples inside the eight 

classes of the training subset. Therefore, the bias in the accuracy evaluation due to the 

use of the same data sets of pixels for both calibration and validation was avoided.  

Ground-based field samples were then collected from each class by traversing the study 

area where access was possible. Additional reference data for hard-to-reach locations were 

obtained by visual interpretation of Near map, NSW “six map” spatial database website 

and Office of Environment and Heritage (OEH) database. 

 

Table 6-1: List of three different experiment sets based on the pixel number 

Experiment Number of 

variables 

Calibration Validation Total pixels for 

calibration and 

validation 

1 8 spectral 

bands 

Pixel No. =16 Pixels No. =16 16*8=128 

2 8 Spectral 

bands 

Pixels No. = 

32 

Pixels No. = 32 32*8=256 

3 8 Spectral 

bands 

Pixels No. = 

48 

Pixels No. = 48 48*8=384 

Total     786 pixels 

 

6.2.2 Processing of satellite data 
 

Worldview-2 satellite imagery was the primary remote sensing data used in this analysis. 

It has a 0.46 m pixel resolution in the panchromatic mode and 1.84 m resolution in the 

multispectral mode. The multispectral mode consists of eight broad bands (Table 6-2). 

The Worldview-2 satellite data used here was captured on the 5th May 2015.  The pixels 

value (Digital Number) were converted to ‘at sensors’ radiance and then we performed an 

atmospheric correction with the ENVI module (ENVI Classic) FLAASH to retrieve 

reflectance data.  
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Table 6-2: Summary of the variables derived from the Worldview 2 data used 

Variables Wavelength (nm) 

Band 1 (Coastal bands) 400- 450 nm 

Band 2 (Blue) 450 – 510 nm 

Band 3 (Green)  510 – 580 nm 

Band 4 (Yellow)  585 – 625 nm 

Band 5 (Red)  630 – 690 nm 

Band 6 (Red Edge)  705 – 745 nm 

Band 7 (Near Infrared 1)  770 – 895 nm 

Band 8 (Near Infrared 2) 860 – 1040 nm 

 

 

6.2.3  Random Forest (RF)  
 

RF is an ensemble learning technique that uses a set of CARTs to make a prediction 

(Breiman 2001). This algorithm creates a subset of training samples through replacement 

(a bagging approach).Therefore, the same sample can be selected several times, while 

other samples may not be selected at all. Usually, two-thirds of the samples (referred to 

as in-bag samples) are used to train the trees (ntrees). The remaining one third (referred 

to as out-of-the-bag samples) is used in an internal cross-validation technique for 

estimating how well the resulting RF model performs (Breiman 2001). This means that the 

OOB sample (one-third of the total sample) is used to estimate the misclassification error 

(OOB error) and variable importance. At each node, a given number of input variables 

(mtry) are randomly chosen from a random subset of the features and the best split is 

calculated by utilizing only this subset of features. RF is now a widely used algorithm for 

remote sensing image classification (Ozesmi and Bauer 2002). Its ability to handle high 

dimensional and non-normally distributed data has made it an attractive and powerful 

option for integrating different imagery sources and ancillary data sources into image 

classification workflows (Kloiber et al. 2015). For a more detailed description on RF theory 

and its parameter optimization, the reader is directed to studies done by  Breiman (2001), 

Tian et al. (2016), Lin et al., ( 2010), Mutanga et al. (2012). 

  

6.2.4 Support Vector Machine (SVM) 
 

SVM is a machine learning distribution free classifier and does not encounter any over-

fitting problem (Burges 1998; Cortes and Vapnik 1995). This supervised method is trained 

to find an optimal classification hyperplane by minimizing the upper bound of the 

classification error. There are two supporting hyperplanes on the boundaries of the data 

distribution and the data points on the edge of these hyperplanes are the support vectors 

of the algorithm. But the problem is all classes of an image are not linearly separable, 
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hence, SVM is optimized to search for a non-linear hyperplane in a multidimensional 

feature. This transformation is implicitly performed by applying kernel functions to the 

original data (Keramitsoglou et al. 2006). There are two commonly used functions on 

remotely sensed data, non-linear polynomial and radial basis function (RBF) kernels 

(Huang et al. 2002; Oommen et al. 2008). Seeing as all classes of an image are not linearly 

separable, SVM is optimized to search for a non-linear hyperplane in a multidimensional 

feature. This transformation is implicitly performed by applying kernel functions to the 

original data (Hornik et al. 2006). Two functions are commonly used on remote sensing 

data, non-linear polynomial and radial basis function (RBF) kernels (Huang et al. 2002; 

Oommen et al. 2008). In this study, eight bands of Worldview 2 were used for defining 

the space feature of SVM through a radial basis kernel function. We used RBF because a 

number of authors have found that the RBF outperforms the polynomial function(Kavzoglu 

and Colkesen 2009; Oommen et al. 2008; Waske and Braun 2009). In addition, this RBF 

is computationally fast and easy to implement as it requires only two tuning parameters, 

cost (c) and gamma (γ). More detailed information about SVM can be found in the 

literature by Hornik et al. (2006); Cortes and Vapnik (1995), and Mathur and Foody 

(2008a). 

 

6.2.5 Feature Selection 

 

Random Forest (Breiman 2001) is based on a similar technique to Classification and 

Regression Tree (CART), however, instead of a single tree ( as in CART), RF grows a large 

number to trees to build a forest. Here accuracy can be measured based on Out-of-

Bag(OOB) error, i.e. the mean square error (for prediction) and misclassification error (for 

classification) averaged over observations from all trees for which they have been OOB 

(Lu and Petkova 2014). Two variable selection approaches, Linear Vector Quantization 

(LVQ) and Recursive Feature Elimination (RFE) were used that are available in Caret 

packages in R.  The Learning Vector Quantization algorithm (or LVQ) is an artificial neural 

network algorithm. Feature selection through LVQ that can reduce the dimensionality of 

the input variables, which can improve the accuracy of the method. LVQ suffers from the 

same curse of dimensionality in making predictions as K-Nearest Neighbours. To overcome 

this problem, we used another feature selection, called recursive feature elimination 

method (RFE). 

 

6.2.6 Parameter optimization  
 

RF works based on two tuning parameters, the number of trees in the ensemble (centre), 

and the number of variables randomly sampled at each node to be considered for splitting 

(mtry) (Peters et al. 2002). In principle, one should simultaneously optimize the number 

of trees (ntree) and mtry. Usually, the default number of trees (ntree) is 500, while the 

default value for the number of variables (mtry) is the square root of the total number of 

spectral bands used in the study (Breiman 2001). In our study, a grid-search approach 
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based on the accuracy  was used to find the optimal combination of these two parameters 

(Tian et al. 2016). The grid search value for mtry varied from 1 to 8, while the grid search 

value for the ntree parameter varied from 500 to 2500 with an interval of 500. Then the 

optimal setting for RF parameters (mtry and ntree) was  input into the R platform to 

retrieve the confusion matrices of accuracy. However, this computation process is 

intractable. We used the Random Forest, e1071 library, and Caret (Kuhn 2008) packages 

in the R statistical software (R development core team 2016) to tune the parameter, 

variable selection and execute the machine learning regression method. For SVM, we used 

the Radial Basis Function (RBF) kernel that is composed of two parameters, cost (C) and 

gamma (γ). The C value is used for adjusting the error of misclassifying instants of the 

training dataset and γ is used to determine the width of the kernel. 

 

6.2.7 Evaluation of performance 
 

The Z-statistic (Congalton and Mead 1986) was used to assess the significance of the 

difference between resulting classifications obtained by different experiment sets based 

on original and reduced band numbers. The difference between the two classification 

results is considered to be significant at the 95% confidence level if the absolute value of 

the Z-statistic exceeded 1.96. The Z-statistics is calculated as below: 

 

𝑍𝑎𝑏 =
|𝐾𝑎 − 𝑘𝑏|

√𝑣𝑎𝑟(𝐾𝑎) − 𝑉𝑎𝑟(𝐾𝑏)

 

where Zab is the Z-statistic for comparison of classification a and b; Ka and Kb are the 

kappa coefficients of classifications a and b; and var(κa) and var(κb) are the asymptotic 

variances of κa and κb, respectively. 

 

6.3 Results 
  

 6.3.1  Parameter optimization in RF 
 

The results of Random Forest parameters (mtry and ntree) are shown in figure 6-1. The 

optimization was performed using the three calibration datasets and the accuracy. RF 

parameters (ntree and mtry) clearly affected the error of prediction. We varied both 

parameters across a wide range of values (number of trees: 500 to 2,500) and (number 

of random split variables at each node: 1 to 8).  The overall accuracy for all three 

experiments was derived from 10-fold cross-validation of the calibration dataset. Using 

two randomly selected input variables per node delivered better accuracy than using 4, 6 

or 8 variables for experiment 2 and 3. A high number of trees (>2000) produced the lowest 
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prediction errors. These selected ntree and mtry values were further used to develop the 

confusion matrix from the test dataset.  

 

  

Figure 6-1: . Effect of the number of trees (ntree)  and the number of random split variables 

at each node (mtry) on the overall accuracy of the  RF classification using the 10 folds cross 
validation on 8 bands of WorldView-2. 
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Results from the parameter optimization indicated different ntree and mtry values for each 

of the three experiment sets. The default mtry value of 2 combined with a ntree value of 

500 produced the lowest OOB error rate (23.44%) for the 32 pixels experiment set (table 

6-3). When this dataset was tuned with optimized parameter (ntree = 1000, mtry = 2), 

the OOB error rate reduced to 22.66 % that is the lowest OOB error rate within the three 

experiment sets. The study of error estimates for bagged classifiers in (Breiman, 2001), 

gives empirical evidence to show that the out-of-bag estimate is as accurate as using a 

test set of the same size as the training set. However, when three calibration sets were 

validated with an independent test data set, RF classification accuracy reduced when 

sample size was proportionally reduced. 

 

 

Table 6-3: OOB error rate before and after parameter optimization for Random Forest 
classification. 

Calibration set OOB error % Parameter tuning After tuning OOB% 

48 pixels 24.44 ntree= 2000, mtry =2 23.96 

32 pixels 23.44 ntree= 1000, mtry =2 22.66 

16 pixels 31.25 ntree= 1500, mtry =4, 30.47 

 

 

6.3.2 Relationship between pixels number of the dataset and classification 
accuracy 

 

 

Table 6-4: Random  Forest confusion matrix for 48 pixels dataset 

 CA DI MA GR PH SP WA WS Total EO UA 

CA 29 1 9 1 0 0 4 1 45 35.5 64.4 

DI 0 41 0 1 9 0 2 4 57 28.1 71.9 

MA 11 0 33 2 0 0 1 0 47 29.7 70.2 

GR 3 0 5 42 1 2 3 0 56 25 75 

PH 0 2 0 1 37 2 1 0 43 13.9 86.0 

SP 3 1 0 1 1 44 0 0 50 12 88 

WA 2 1 1 0 0 0 34 1 39 12.8 87.1 

WS 0 2 0 0 0 0 3 42 47 10.6 89.3 

Total 48 48 48 48 48 48 48 48 384   

EC 39.58 14.58 31.25 12.5 22.9 8.33 29.16 12.5 O A = 0.79 

Kappa = 0.76 PA 60.41 85.41 68.75 87.5 77.1 91.6 70.83 87.5 
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Table 6-5: Random Forest Confusion matrix for the 32-pixel dataset.  

 CA DI MA GR PH SP WA WS Total EC UA 

CA 14 0 6 1 0 0 2 0 23 39.1 60.9 

DI 0 28 0 1 5 0 5 2 41 31.7 68.3 

MA 11 0 19 2 0 0 2 0 34 44.1 55.8 

GR 2 0 6 27 1 3 0 0 39 30.7 69.2 

PH 0 2 0 1 25 2 1 0 31 19.4 80.6 

SP 3 0 0 0 1 26 0 1 31 16.1 83.8 

WA 2 1 1 0 0 1 22 1 28 21.4 78.6 

WS 0 1 0 0 0 0 0 28 29 3.4 96.5 

Total 32 32 32 32 32 32 32 32 256   

EC 56.25 12.5 40.62 15.62 21.87 18.75 31.25 12.5 OA = 0.74 

Kappa  = 0.70 PA 43.75 87.5 59.38 84.37 78.12 81.25 68.75 87.5 

 

 

Table 6-6: Random Forest confusion matrix for 16-pixel dataset. 

 CA DI MA GR PH SP WA WS Total EC UA 

CA 4 1 1 0 0 2 0 2 10 60 40 

DI 0 11 0 0 5 0 1 0 17 35.29 64.7 

MA 9 0 15 0 0 0 1 0 25 40 60 

GR 1 0 0 14 0 0 2 0 17 17.65 82.3 

PH 0 2 0 0 11 0 0 0 13 15.38 84.6 

SP 0 1 0 2 0 14 1 0 18 22.22 77.7 

WA 0 0 0 0 0 0 11 1 12 8.33 91.6 

WS 2 1 0 0 0 0 0 13 16 18.75 81.2 

Total 16 16 16 16 16 16 16 16 128   

EO 75 31.25 6.25 12.5 31.25 12.5 25 18.75 O.A = 0.72 

PA 25 68.75 93.75 87.5 68.75 87.5 75 81.25 Kappa = 0.68 

 

Key for (table 4,5 & 6): CA=Casuarina, DI= Dieback Casuarina, MA= Mangrove, GR= 

Grass(perrenial), PH = Phragmites australis, SP=Sporobolus virginicus, WS = Wetland Soil. PA = 

Producer Accuracy, UA = User Accuracy, EC = Error of commission, EO= Error of Omission. 
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As sample size increased, error in general decreased (table 6-3). Therefore, increasing 

sample size, lead to improved classification accuracy. This is for both the calibration set 

with cross-validation (table 6-3) and the independent test dataset (table 6-4,6-5 and 6-

6). From confusion matrix table of independent test dataset, it is clear that classification 

accuracy dropped from 79% to 72% when pixels number is reduced from 48 to 16 per 

class (table 6-4,6-5 and 6-6). 

 

6.3.3  Parameter optimization in SVM 
 

The tune function for parameter optimization resulted in the same gamma value for all 

experiment sets (table 6-7) except the 48-pixel dataset (Figure 6-2). The cost parameter 

varied from 1.00 to 2.00 for all three of the calibration datasets. Tuned parameters also 

improved the accuracy of all three calibration datasets (Table 6-7). A significant 

observation was found for the16 pixels dataset where accuracy improved from 0.78 to 

0.86 when tuned parameters were applied (table 6-7). 

 

 

 

 

  

 

Figure 6-2: Optimization of SVM parameters (cost and gamma) based on the tune function. 
Lighter blue indicates greater accuracy. 
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Table 6-7: Tuning of SVM parameter 

Experiment set Accuracy Tuned parameter Accuracy P value 

16 pixels set 0.78 

Kappa= 0.75 

Cost = 1, Gamma = 0.5 0.86 

Kappa = 0.84 

< 0.0000001 

32 pixels set 0.81 

Kappa = 0.78 

Cost = 2, Gamma= 0.5 0.85 

Kappa = 0.83 

< 0.0000001 

48 pixels set 0.79 

Kappa = 0.75 

Cost = 2, Gamma = 2 0.82 

Kappa= 0.80 

< 0.0000001 

 

 

Like RF, the SVM classifier was also trained using three training sets, respectively, and 

then those calibrated classifiers were applied to classify the testing set.  Figure 6-2 and 

Table 6-7 (SVM calibration) illustrate the changes of accuracy against training set size by 

this method. The accuracy of wetland classification results by SVM is significantly higher 

than that of RF for all training sets. Whilst the cross-validation of RF provided 70% 

accuracy for the 16-pixel data set (Table 6-3), SVM increases to 86% (Table 6-7).  

 
 

6.3.4. The relation between pixels number of the training dataset and 
classification accuracy for SVM 

 

 

Table 6-8: SVM Confusion matrix for 16 pixels dataset 

 CA DI MA GR PH SP WA WS Total EO UA 

CA 3 0 1 0 0 1 0 0 5 40 60 

DI 0 12 0 0 4 0 0 0 17 23.52 76.47 

MA 9 0 15 0 0 0 1 0 23 34.78 65.21 

GR 0 0 0 14 0 0 2 0 16 12.5 87.5 

PH 0 3 0 1 12 0 1 1 17 29.41 70.58 

SP 0 0 0 1 0 15 0 0 16 6.25 93.75 

WA 0 0 0 0 0 0 10 0 12 16.6 83.33 

WS 4 1 0 0 0 0 2 15 22 31.8 68.18 

Total 16 16 16 16 16 16 16 16 128   

EC 81.25 18.75 6.25 12.5 25 6.25 37.5 6.25 OA = 0.75 

Kappa = 0.71 PA 18.75 81.25 93.75 87.5 75 93.75 62.5 93.75 
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Table 6-9: SVM  Confusion matrix for 32 pixels dataset 

 CA DI MA GR PH SP WA WS Total EC UA 

CA 15 0 8 3 0 0 2 0 28 46.42 53.57 

DI 0 26 0 1 3 0 3 2 35 25.71 74.28 

MA 9 0 17 1 0 0 1 0 28 39.28 60.71 

GR 3 0 6 26 1 2 0 0 38 31.57 68.42 

PH 0 5 0 1 27 2 1 0 36 25 75 

SP 3 0 0 0 1 28 0 0 32 12.5 87.5 

WA 2 1 1 0 0 0 23 1 28 17.85 82.14 

WS 0 0 0 0 0 0 2 29 31 6.45 93.54 

Total 32 32 32 32 32 32 32 32 32   

EC 53.12 18.75 46.87 18.75 15.62 12.5 28.12 9.37 256 OA = 0.75 

Kappa = 0.71 PA 46.87 81.25 53.12 81.25 84.37 87.5 71.87 90.62  

 

 

Table 6-10: SVM  Confusion matrix for 48 pixels dataset 

 CA DI MA GR PH SP WA WS Total EC UA 

CA 27 0 8 3 0 0 2 1 41 34.14 65.85 

DI 1 40 0 1 7 0 4 2 55 27.27 72.72 

MA 11 0 35 1 0 0 1 0 48 27.08 72.91 

GR 0 0 4 41 2 2 2 0 51 19.60 80.39 

PH 0 4 0 1 38 3 1 0 47 19.14 80.85 

SP 3 1 0 1 1 43 1 1 51 15.68 84.31 

WA 4 0 1 0 0 0 32 0 37 13.51 86.48 

WS 2 3 0 0 0 0 5 44 54 18.51 81.48 

Total 48 48 48 48 48 48 48 48 384   

EO 43.75 16.66 27.08 14.58 20.83 10.41 33.33 8.33  OA = 0.76 

Kappa = 0.72 PA 56.25 83.33 72.91 85.41 79.16 89.58 66.66 91.66  

 

Based on the optimized parameters applied to the test data set, it was demonstrated that 

Overall accuracy (OA) did not change when pixel numbers were reduced from 48 pixels to 

16 pixels per class ( Tables 6-8,6-9 & 6-10). 

 

6.3.5 Feature selection and its effect on accuracy 
 

We examined the explanatory power of the 8 spectral bands of Worldview 2 data in the 

classification of the 6 plant species with other two land cover classes using the following 

measures of variable importance: Learning Vector Quantization and Recursive feature 

elimination. At first, the measures of variable importance were evaluated in combination 

with the pairwise correlations shown in figure 4. 
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Recursive Feature Elimination (RFE) (figure 6-5) selected 6 variables that were highly 

important and were similar to the selection of the LVQ model (figure 6-5)  and covariance 

matrix (figure 6-4) information. Based on our findings coastal band and yellow are less 

important. Although band 7 (Near Infra-Red 1) and band 8 (Near Infrared 2) are highly 

correlated (figure 6-4), still they are important for vegetation and wetland soil 

classification (Tarantino et al. 2012). Coastal blue and yellow bands are mainly used for 

open sea water and sandy coastal area classification (Tarantino et al. 2012) that are absent 

in our study area. For all vegetation classes, red-edge (Band 5) is very important due to 

its sensitivity to the vegetation chlorophyll content and canopy structure (Mutanga et al. 

2012). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3: Pairwise correlation between different bands of Worldview 2 data based on 32 pixels 
data set. 
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Figure 6-4: Linear Vector Quantization (LVQ) feature selection based on 32 pixels set 
calibration data. 
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By varying the sample size and running classifications (with repeated cross-validation), it 

was evident that when dimensionality was reduced and only the most important variables 

were considered, OOB error % percentages were much more similar to the OOB error 

percentages of the “all variables” classification (Table 6-3 and 6-11). However, there was 

no change in the kappa when SVM was applied for selected features only (table 6-12). 

 

 

Table 6-11: OOB error rate before and after parameter optimization for RF classification 
(for the selected feature only). 

Calibration set OOB error % Parameter tuning After tuning OOB% 

48 pixels set 23.70 ntree = 1000, mtry =2 22.66 

32 pixels set 25.78 ntree= 2000, mtry=2 24.22 

16 pixels set 30.47 ntree= 2000, mtry = 4 28.91 

 

 

 

 

 

 

 

 

 

 

Figure 6-5: Figure 6. Recursive Feature Elimination (RFE) for feature selection from Worldview 2 
data. 
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Table 6-12: SVM accuracy after feature selection 

Experiment set Parameter Accuracy Kappa 

16 Pixel set C = 1, γ = 0.5 0.76 0.72 

32 Pixel set C = 2, γ = 0.5 0.76 0.72 

48 Pixel set C = 2, γ = 2 0.75 0.72 

 

 

Classification matrices originating from these two different datasets (optimal six bands 

and original eight bands) are presented in the Figure of 6-6,6-7, 6-8 and 6-9. Figures 6-7 

and 6-9 show the effect of feature selection on three experiment sets for R classification. 

In both cases, the classification trend is similar and hence there is no significant difference 

between the user’s accuracy in 8 different classes. When the number of bands number is 

reduced from 8 to 6 based on feature selection method, user’s accuracy and overall 

accuracy did not change significantly (Figure 6-7 and 6-9). This demonstrates the 

importance of feature selection for RF and how it preserves the accuracy level even with 

the reduced number of bands. 
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Figure 6-6: Spider charts representing the user accuracies for the Random Forest 
classification based on two different band combinations for all bands of Worldview-2 
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Figure 6-7: Spider charts representing the user accuracies for the Random Forest 
classification based on two different band combinations for only selected bands of 
Worldview-2 chosen by recursive feature elimination (RFE).   

 

Figure 6-8: Spider charts representing the user accuracies for the Support 
Vector Machine (SVM) classification based on two different band combinations, 
(top) for all bands of Worldview 2. 
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Comparing the two charts (Figure 6-8 & 6-9), the effect of feature selection is very clear. 

User accuracies have not changed significantly when only selected six bands were used 

for classification.  

 

 

Table 6-13: Maximum Likelihood Classifier (MLC) for the 48-pixel dataset (confusion 
matrix) with a summary of 32 and 16-pixel datasets. 

 
 CA DI MA GR PH SP WA WS Total EC UA 

CA 27 0 20 3 0 0 3 1 54 50 50 

DI 0 42 0 0 4 0 7 2 55 23.64 76.3 

MA 16 0 19 2 0 0 0 0 37 48.65 51.3 

GR 1 0 7 35 2 5 2 0 52 32.69 67.3 

PH 1 6 0 4 41 5 2 1 60 31.67 68.3 

SP 1 0 0 1 1 38 1 1 43 11.63 88.3 

WA 1 0 0 3 0 0 31 0 35 11.43 88.5 

WS 1 0 2 0 0 0 2 43 48 10.42 89.5 

Total 48 48 48 48 48 48 48 48 384   

EO 43.75 12.50 60.42 27.08 14.58 20.83 35.42 10.42  OA = 0.71 

Kappa= 0.67 PA 56.25 87.50 39.58 72.92 85.42 79.17 64.58 89.58  

32 pixels data set OA =0.69 Kappa=0.65 

16 pixels data set OA =56.25 Kappa= 0.50 
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Figure 6-9: Figure 8: Spider charts representing the user accuracies for the Support Vector 
Machine (SVM) classification based on two different band combinations, (top) for all bands of 
Worldview 2 and (bottom) only selected bands of Worldview 2 chosen by recursive feature 

elimination (RFE). 
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We also evaluated the traditional Maximum Likelihood Classifier (MLC) and it was found 

that maximum accuracy obtained from MLC was 71% from the 48-pixel dataset.  However, 

it is evident that with the increase of the sample size classification accuracy greatly 

improved. That is the traditional nature of MLC and need a large sample size for improved 

accuracy. 

 

6.3.6 Evaluation of performances 
 

An overview of all classification results based on significance level (Z –statistic) is provided 

in Table 6-14. The following models are compared: Random Forest versus Support Vector 

Machine (All possible combinations within three experiment sets, and all bands versus 

reduced bands (selected features). 

 

 

Table 6-14: Z-statistics among classification result 

Pair comparison  Z -statistics 

Worldview 2 ( 8 spectral bands)  

16 Pixels – RF vs 32 Pixels -RF 0.414 

32-Pixels RF vs 48-Pixels RF 1.562 

48-Pixels RF vs 16 Pixels RF 1.980* 

16 Pixels-SVM vs 32 Pixels-SVM NS 

32 Pixels SVM vs 48 Pixels SVM NS 

48 Pixels SVM vs 16 Pixels SVM NS 

16 Pixels RF vs 16 Pixels SVM 0.521 

32 Pixels RF vs 32 Pixels SVM 0.248 

48 Pixels RF vs 48 Pixels SVM 1.264 

Optimal bands (after feature selection)  

16 Pixels – RF vs 32 Pixels -RF 0.387 

32-Pixels RF vs 48-Pixels RF 1.562 

48-Pixels RF vs 16 Pixels RF 1.980* 

16 Pixels-SVM vs 32 Pixels-SVM NS 

32 Pixels SVM vs 48 Pixels SVM NS 

48 Pixels SVM vs 16 Pixels SVM NS 

16 Pixels RF vs 16 Pixels SVM 0.544 

32 Pixels RF vs 32 Pixels SVM 0.212 

48 Pixels RF vs 48 Pixels SVM 0.677 
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6.4 Discussion 
 

6.4.1 Performance of non-parametric classifiers 
 

The non-parametric RF and SVM classifiers performed almost equally as there is no 

significant difference between the performances of these two. Comparing RF and SVM 

regarding their requirements on the data, we see the following advantages of RF for 

wetland classification: in contrast to MLC, the non-parametric SVM and RF classifiers do 

not make any assumptions about data distribution. Therefore, unlike MLC, they can handle 

multi-modal data distributions. In our study, the classes were mostly normally distributed 

leading to similar results with RF and SVM. However, this is not always the case for image 

analysis with remote sensing data. There are a couple of advantages of RF for wetland 

species classification. Firstly, RF does not require that the classes have a common 

covariance matrix, which often is not the case in wetland species classification and hence 

limits the use of parametric classifiers. In addition, RF provides a reliable measure of 

variable importance, i.e., RFE (Recursive Feature Elimination) that is very helpful for 

feature selection, as demonstrated in the paper. 

 

This study differs from Carle et al. (2014) who suggested that MLC performed better than 

SVM when data are normally distributed. Although our data were normally distributed, still 

SVM and RF both performed better than MLC. The main reasons are our high spatial 

resolution data allowing a small training set size. Jin et al. (2005) demonstrated that MLC 

has difficulty dealing with texture features of high-resolution images, especially in small 

training set size situations. In addition, MLC suffers from the Hughes effect or the curse of 

dimension  (Hughes 1968; Pal and Mather 2003) . This means that with a fixed number of 

training samples, performance declines with increasing dimensions due to the decreased 

reliability of estimates of statistical parameters needed to calculate the probability 

(Oommen et al. 2008). 

 

We used a nonlinear RBF kernel function to perform SVM classification. A nonlinear kernel 

is a robust method to solve inseparability problems that may be found in the heterogeneous 

classes of wetland ecosystem (Adam et al. 2014). The findings of our study obtained from two 

classifiers are consistent with Pal (2005), Sesnie et al. (2010) and Adam et al. (2014). However,   

Pouteau et al. (2012)  and Nitze et al. (2012) found incomparable classification accuracy from 

the two classifiers. Both RF and SVM were unable to improve the user accuracy for Grey-

mangrove and Swamp-oak species due to the spectral similarities between them. Similar 

problems also observed by  Duro et al. (2012)  when they used high spatial resolution data for 

pixel-based classification for a heterogeneous landscape. Although different authors (Duro et 

al. 2012; Schuster et al. 2012) recommended a post-classification process to improve the 

accuracy, we did not use the post-classification process as our study aimed at pixel-based 

classification(Adam et al. 2014). 
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6.4.2 Training sample size 
 

The literature often suggests that the size of the training set required is a function of 

spectral wavebands used and generally a sample comprising at least 30 times the number 

of spectral bands used is required in the analysis process (Mathur & Foody, 2008). 

Moreover, it has been demonstrated that training set size has a positive relationship with 

the classification accuracy(Arora and Foody 1997; Pal and Mather 2003). That is why 

conventional classification method (like MLC) require a large training set distributed 

throughout the study area. With this approach, Worldview-2 data requires at least 240 

pixels for each class to run a conventional MLC algorithm. In contrast, only 15% (16 pixels 

for each class) of the possible required training sample (240 pixels) provided up to 75% 

accuracy from machine learning classifications. This accuracy is acceptable not only based 

on cost-benefit analysis but the feasibility test as well. For wetlands in many settings, it 

has been difficult and expensive to collect at least 240 pixels of training data for each class 

to test MLC performance. The findings of the current study are supported by Mathur and 

Foody (2008)   when they reduced training size from 450 pixels to 130 pixels and 

classification accuracy reduced only 1.34% (statistically insignificant). In their study, SVM 

provided 1.34% less accuracy (90.66%) than MLC (92.00%),   Mathur and Foody (2008a) 

concluded in favour of the superiority of SVM due to small training size requirements and 

the relatively low cost of analysis. 

 

From the findings shown in Figure 6-2 and Table 6-7 (cross-validation for training data), 

it is evident that SVM is quite tolerant to training set size, having a super generalization 

capability even with a small set of training samples. This is also supported by Song et al. 

(2012) who received similar results using Artificial Neural Network. The main reason is 

that only support vectors that consist of a few margin samples are considered by SVM for 

classification; other samples make no more contribution to classification (Foody and 

Mathur 2004). That is why a small set of samples can be separated into a few groups to 

train the SVM for obtaining its optimal parameters by the cross-validation method.  

 

The results of this study also demonstrate that RF image classification is sensitive to 

training data sample size. A larger training sample size produced a lower OOB, therefore 

increased accuracy. Unlike SVM, larger training sample sizes are recommended to improve 

classification accuracy and stability with the RF classifier. Our findings are consistent with 

the findings of Millard and Richardson (2015) as they also revealed that RF is sensitive to 

training sample size and larger training size increases the overall accuracy. One of the 

limitations of RF is that running iterative classifications using the same training and input 

data was found to produce different classification results. Therefore parameter 

optimization based on cross-validation was performed before testing the model 

performance. These optimized parameters also controlled the overfitting of the final model. 
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Although Millard and Richardson (2015) found that RF variable importance measures and 

rankings varied with iterative classifications, our variable importance measures provided 

consistent results from both of the feature selection methods. 

 

6.4.3 Equal sample allocation for training and validation datasets 
 

The process of training data creation for remote sensing image classification is a crucial 

issue and involve methodological choices that provide trade-offs in data quality (class 

representativeness) and quantity (size of the data). Therefore, training data points where 

field validation has been done result in high certainty in the training dataset with a 

minimum level of bias. But as mentioned before, these points are often difficult to obtain 

and therefore there may be a tendency for researchers to use fewer training data sample 

points. This may be especially the case for wetland environments, time and access 

constraints may require researchers to obtain classifications with minimal training sample 

points. Many researchers conduct image classification from training sample points 

collected from imagery (i.e. area of interest/polygon) that is quick and easy. This method 

produces highly clustered training sample points (within a polygon) with inherently high 

spatial autocorrelation (Millard and Richardson 2015). Although this method produces 

greater accuracy (Rasel et al. 2016a), a high level of bias is also an issue when training 

samples are highly autocorrelated (Millard and Richardson 2015). In this study, individual 

pixels collected from the field were randomly distributed and independent from training 

sets that help to avoid bias (Song et al. 2012). Equal numbers of samples were allocated 

and reduced gradually to observe the effect on accuracy. Although the performance of 

SVM based on small sample sizes has already demonstrated, equal number of sample 

distribution provided the robustness of the model. This was ensured as each time 

calibration models were validated with an independent test dataset from eight classes.  RF 

draws its validation data from the training dataset and provides OOB error for assessment. 

In this study, equal amounts of samples (gradually reduced) controlled the overfitting of 

the RF model as each time the RF subset originated from the independent data that equally 

represented each class and were not spatially autocorrelated.   

 

6.4.4  Feature selection and accuracy 
 

Our findings show that variable reduction should be performed to obtain the optimum 

classification. Although our dataset was limited to 8 spectral bands, six optimum bands 

did not affect the overall accuracy. This demonstrates the power of the feature selection 

methods. Not only this, Millard and Richardson (2015) found that when high dimensional 

datasets were used, classification results were noisy. Other previous research (Millard and 

Richardson 2015) has shown that although RF can handle high dimensional data, 

classification accuracy remains relatively unchanged when only the most important 

predictor variables are used.  Similarly, we demonstrated that removing less important 

variables from the original variables did not change the accuracy. Removing variables of 
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lesser importance also improved the stability in classification, based on the model 

parsimony test.  This was because fewer variables maintained the performance of models 

and require less computational work than high dimensional data. 

 

6.5. Conclusion and recommendation 
 

Two types of advanced non-parametric classifiers, Random Forest (RF) and Support Vector 

Machine (SVM), were tested for saltmarsh dominant wetland classifications using 8 band 

Worldview 2 images. This work utilised equal sample allocation strategies and reduced the 

sample sizes proportionally (100% to 33%) to assess the effect of sample size on 

calibration and validation of the classifier. All classifiers produced acceptable classification 

results with all sizes of training set data but the RF performed slightly better than SVM 

models according to kappa analysis with testing data. Only RF showed significant changes 

when the sample size was reduced from the 100% level to 33% and overall accuracy 

dropped from 79% to 72 %. But there were no significant changes in the accuracy when 

samples size equally dropped from 100% to 33% for SVM. Based on equal sample 

allocation strategies, only 15% of the required samples provided for 75% of the overall 

accuracy from the SVM. However, there was no significant difference among the all 

possible combinations of three experiments (100 %, 66% and 33% of the original 

samples) originated from two classifiers based on equal sample distribution scheme.  Two 

feature selection methods provided by Classification and Regression Training (CARET) and 

Random Forest (RF) packages in R environment were evaluated to test the importance of 

spectral bands. Learning Vector Quantization (LVQ) and Recursive Feature Elimination 

(RFE), both selected six important features. No significant differences were observed when 

these six important features were selected instead of all features for classification 

accuracy. Although two near-infrared bands are highly correlated, they are very important 

for classification with a red edge and red bands. This accuracy is acceptable and is 

comparable to other previous studies where multispectral and airborne hyperspectral data 

have been used. However, in terms of data acquisition cost, reference data collection and 

processing cost, this study showed a promising approach for broad management 

applications for  saltmarsh community that are ecologically endangered, and demand a 

special attention. 
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Chapter 7  

Saltmarshes biomass modelling using Random Forest (RF) 
and Support Vector Machine (SVM) regressions from 
multispectral data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on 

 

The article that has been submitted to the International Journal of Digital Earth. Based on 

the first submission, reviewers recommended for publication with a major revision. 

Therefore, this chapter is  the revised format that has been submitted (Ist revision) to the 

International Journal of Digital Earth (IJDE). 
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Abstract 
 

Assessing large-scale plant productivity of coastal marshes is essential to understand the 

resilience of these systems to climate change. Two machine learning approaches, Random 

Forest (RF) and Support Vector Machine (SVM) regression were tested to estimate biomass 

of a common saltmarshes species, salt couch grass (Sporobolus virginicus). Reflectance 

and vegetation indices derived from 8 bands of Worldview-2 multispectral data were used 

for four experiments to develop the biomass model. These four experiments were, 

Experiment-1: 8 bands of the Worldview-2 image, Experiment-2: a Possible combination 

of all bands of Worldview-2 for Vegetation Indices, Experiment-3: Combination of bands 

and Vegetation Indices, Experiment-4: Selected variables derived from experiment-3 

using variable selection methods. The main objectives of this study are (i) to recommend 

an affordable low-cost data source to predict biomass of a common saltmarshes species 

(ii) to suggest a variable selection method suitable for multispectral data (iii) to assess the 

performance of RF and SVM for the biomass prediction model. Cross-validation of 
parameter optimizations for SVM showed that the optimized parameter of ɛ-SVR failed to 

provide a reliable prediction. Hence, ν-SVR was used for the SVM model. Among the 

different variable selection methods, Recursive Feature Elimination (RFE) selected a 

minimum number of variables (only 4) with an RMSE of 0.211 (kg/m2). Experiment-4 

(only selected bands) provided the best results for both of the machine learning regression 

methods, RF (R2= 0.72, RMSE= 0.166 kg/m2) and SVR (R2= 0.66, RMSE = 0.200 kg/m2) 

to predict biomass. When a 10-fold cross validation of the RF model was compared with a 

10-fold cross validation of SVR, a significant difference (p= <0.0001) was observed for 

RMSE. One to one comparisons of actual to predicted biomass showed that RF 

underestimates the high biomass values, whereas SVR overestimates the values; this 

suggests a need for further investigation and refinement.  

 

Keywords: Worldview-2, Salt couch, Spectral band, Vegetation Indices, Variable Selection 
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7.1 Introduction 
 

There is a crucial need to quantify large-scale plant productivity (i.e. above ground 

biomass) in coastal marshes for a better understanding of marsh resilience against sea 

level rise (Schile et al. 2014; Swanson et al. 2014). Aboveground biomass (AGB) is an 

important input parameter to develop models that forecast how coastal marsh elevations 

will respond to sea level rise (Morris et al. 2002; Swanson et al. 2014) . Moreover, AGB 

can be used to estimate belowground biomass (Gross et al. 1991) and soil organic carbon 

(Rasel et al. 2017). But this AGB estimation is labour intensive and not feasible at large 

spatial extents. To complement this, remotely sensed data are utilized to map vegetation 

types and provide better estimates of plant production (Goetz and Dubayah 2011). 

Combining field surveys and satellite observations for estimating AGB of wetland 

vegetation will help further the applications of belowground biomass and soil organic 

carbon (Rasel et al. 2017) and, indirectly, contribute to the climate change model of sea 

level rise. 

Since the 1980s there have been some successful application of remote sensing for 

saltmarsh biomass (Gross et al. 1987; Hardisky et al. 1983; Hardisky et al. 1984) using 

Normalized Difference Vegetation Index (NDVI). Jensen et al. (2002) explained up to 70% 

of data variance when they used high-resolution image to map marsh biomass. Recently, 

the application of a red-edge band in an NDVI type index estimated biomass of wetland 

vegetation with relatively lower error (13% of observed mean biomass) (Mutanga et al. 

2012). However, there are some major limitations of NDVI that have already been 

revealed by other studies (Gao et al. 2000; Jackson and Huete 1991; Kaufman et al. 1992; 

Middleton 1991; Qi et al. 1995; Sellers 1985; Tucker 1977). Several studies recommended 

using narrow bands of hyperspectral data to overcome the limitations (Blackburn 1998; 

Thenkabail et al. 2000). Other studies (Chen et al. 2009; Mutanga and Skidmore 2004a), 

using hyperspectral data, estimated biomass at full canopy cover with high accuracy. 

However, there are some crucial limitations of hyperspectral data that we experienced for 

our study area. First of all, the high cost to purchase aerial data if it is available. If data 

are unavailable for a specific study area, new acquisition is subject to season, sun 

illumination, weather conditions, flight schedules and aviation restrictions. In addition, 

time and processing costs of high dimensional (due to its narrow continuous bands) data 

are severe obstacles to general users, (e.g. wetland managers). 

To overcome these limitations, Worldview-2 with its higher spatial (1.84 m) and spectral 

(8 bands) resolution is seen as a tradeoff between the advantages of multispectral 

resolution satellite data and hyperspectral data (Mutanga et al. 2012; Rasel et al. 2016b). 

WorldView-2 contains a special band named red-edge that facilitates vegetation related 

predictions. This is the region of abrupt change in the leaf reflectance between 680 and 

780 nm due to the combined effects of strong chlorophyll absorption in red wavelengths 

and high reflectance  in the NIR wavelengths(Horler et al. 1983) . Moreover, Worldview-2 
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data reduced the redundancy of information that is a problem of hyperspectral data (Omar 

2010; Sridharan 2010). Recently some authors (Byrd et al. 2014; Mutanga et al. 2012) 

have used WorldView-2 imagery for estimating biomass in the wetland area. However, 

Byrd et al. (2014) predicted biomass with Landsat 7 (R2 = 0.56, RMSE = 20.9%) that was 

slightly better than the results of Worldview 2 ((R2 = 0.45, RMSE = 21.5%) for a mixed 

species model for two saltmarsh species. So there is a research gap for a species-specific 

model for saltmarsh biomass estimation from a multispectral platform. Moreover, Byrd et 

al. (2014) also recommended considering the tradeoffs between cost, spectral information 

and the high spatial resolution of most commercial satellite imagery, which can identify 

within-site variability for the small, fragmented marshes common to the Hunter Wetland 

National park. Although Sentinel-2 imagery has 13 spectral bands in the Visible Near 

Infrared (VNIR) and Shortwave infrared (SWIR) spectrum, the 10 m spatial resolution of 

Sentinel -2 is not enough to deal with the fragmented vegetation pattern in our study area. 

The earlier study (Rasel et al. 2016b) showed that high spatial resolution was important 

to deal with the spectral properties of saltmarsh species in a fragmented patch.  

Another research area that is still challenging is to model biomass against remote sensing 

variables. Regression techniques are common to relate remotely sensed information (i.e. 

spectral bands or indices) with biophysical variables (i.e. biomass, leaf area index etc). 

However, traditional regression models have limitations to adequately capture the 

relationship and the spatiotemporal variability of the quantity (Kaheil et al. 2008) . 

Moreover, multicollinearity is an important issue for multiple regression model, especially 

when highly related variables (i.e bands of RS data) are selected as a predictor. 

Multicollinearity (also collinearity) is a phenomenon in which two or more predictor 

variables in a multiple regression model are highly correlated, and Variance Inflation Factor 

(VIF) is used to detect multicollinearity before the process of multiple regression. 

An ensemble method, random forest (RF), has reduced the problem of the multicollinearity 

issue (Liaw and Wiener 2002a) and has been proved to reduce of bias and overfitting 

(Breiman 2001) of a model. Considering two model approaches (bagging and boosting) of 

ensemble methods, RF works on both ‘bagging’ and ‘boosting’ algorithms (i.e.bootstrap 

aggregating) that aim to reduce the complexity of models that overfit the training data. 

Bagging techniques can be used to reduce the variance in model predictions, where 

numerous replicates of the original data set are created using random selection with 

replacement. Each derivative data set is then used to construct a new model and the 

models are gathered together into an ensemble. Clearly, the mean is more stable and 

there is less overfit. Therefore, the RF algorithm yields an ensemble that can achieve both 

low bias and low variance from averaging over a large ensemble of low-bias, high-variance 

but low correlation trees (Breiman 2001; Díaz-Uriarte and De Andres 2006b). RF 

originated from Classification and Regression tree (CART )(Breiman 2001) . However, 

decision trees suffer when features are correlated since they choose a single feature to 

maximize information gain at each step instead of a combination of features that also 

makes them unstable to small perturbations in the dataset. This instability is exploited in 

a very robust way in RF by building bagged tree ensembles. The multicollinearity problem 
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is alleviated since a random subset of features is chosen for each tree in a random forest 

(Cutler et al. 2007; Díaz-Uriarte and De Andres 2006a; Liaw 2002; Liaw and Wiener 

2002b). This algorithm has been successfully employed in forestry for modelling 

quantities, forest biomass (Dube and Mutanga 2015) and wetland species biomass 

(Mutanga et al. 2012). Like RF, Support Vector Machine (SVM) is another machine learning 

approach that is already used in different fields of application (Brown et al. 2000; 

Kwiatkowska and Fargion 2003; Schölkopf and Smola 2002). For instance, Bruzzone and 

Melgani (2005) showed that SVMs reduced computational costs maintaining higher 

accuracy levels . A full description of both methods can be found in the following studies 

(Ben-Hur and Weston 2010; Breiman 2001; Camps-Valls et al. 2004; Smola and Schölkopf 

2004).   

Variable selection is a crucial issue in machine learning (RF and SVM) dealing with applied 

classification and regression problems(Hastie et al. 2001). There are three variable 

selection methods- filter, wrapper and the embedded method (Mehmood et al. 2012; 

Saeys et al. 2007). Detailed information of these three methods is available in Guyon and 

Elisseeff (2003) and Saeys et al. (2007). Very few studies (You et al., 2017) have been 

found where filter methods are used in combination with an RF classifier for land cover 

mapping. However, wrapper and embedded methods have been more commonly used 

with RF classifier (Dalponte et al. 2013; Genuer et al. 2010; Li et al. 2017; Millard and 

Richardson 2015). The RF itself provides three independent variable importance measures, 

Mean Decrease Accuracy (MDA) measure, the Gini Purity Index, and the number of times 

each variable is selected (Breiman 2001; Mansour et al. 2012). But the limitation of the 

RF algorithm, in measuring variables importance, is that it does not automatically select 

the optimal number of variables that produce the best classification accuracy (Adam et al., 

2009). Moreover, Genuer et al. (2015) reported some classification problems when the 

variable importance index is based on the Gini Purity index of RF. In addition, Strobl et al. 

(2007a) argued that there is a bias in Random Forest variable measures in situations 

where potential predictors vary in their scale of measurement or their number of 

categories. This topic of variable selection still continues to be of interest. Addressing this 

issue, Díaz-Uriarte and De Andres (2006a) proposed an iterative backward feature 

elimination procedure to reduce the number of less relevant variables and Mansour et al. 

(2012) used a forward feature selection method embedded in RF for grass species 

degradation assessment from Hyperspectral data. The embedded approach Recursive 

Feature Elimination (RFE), has recently been used for feature importance in bamboo 

classification (Ghosh and Joshi 2014) from multispectral and landslides mapping (Stumpf 

and Kerle 2011) and from Hyperspectral data through the Random Forest classifier. Based 

on the documented limitations of RF, Genuer et al. (2015) proposed Variable Selection 

Using Random Forest (VSURF) packages in R to improve the feature selection accuracy. 

The embedded approach RFE has also been used with SVM for feature selection from 

Hyperspectral data (Pal 2006; Pal and Foody 2010) and known as RFE-SVM. RFE-SVM is 

a classical effective feature selection method by Guyon et al. (2002) that uses the 

coefficients in the SVM model to assess features, and recursively removes features that 



Chapter 7 

 133 

have small criteria (Tang et al. 2016). It has both linear and nonlinear versions, according 

to the type of kernel function and commonly used algorithms for SVM feature selection.  

To our knowledge, only a limited number of studies have been done, which explore these 

advanced feature selection methods in multispectral data. In contrast, there is ample proof 

for hyperspectral remote sensing for feature selection and dimensionality reduction (Pal 

2006; Pal and Foody 2010). In this article, we present an embedded method, using 

recursive feature elimination (REF) for Random Forest and SVM classifier. However, 

variable selection for saltmarsh biomass estimates is challenging in terms of a single (i.e 

water) and multi-modal distribution (seasonal variation of vegetation) features of 

saltmarsh habitat. Therefore, we compared the performance of RFE with another feature 

selection method, VSURF to test the performance of these two methods for multispectral 

data, where there is still a research gap. The VSURF method has two advantages, (1) it 

finds out the important variables that are highly relevant to the response variables (Genuer 

et al. 2010); (2) it searches for a small number of variables sufficient for a good prediction 

of the response variables (Genuer et al. 2010). Byrd et al. (2014) also suggested wetland 

managers need to consider tradeoffs between cost, additional spectral information and the 

high spatial resolution of most commercial satellite imagery, which can identify within-site 

variability for the small, fragmented marshes common to the Hunter Wetland National 

park. Although many vegetation indices have been proposed in previous research (Dube 

and Mutanga 2015; Mutanga et al. 2012; Wang et al. 2016), depending on the diversity 

of species assemblage, indices vary in their relationships with biomass. However most of 

the important vegetation indices, like, Nitrogen Reflectance Indices (NRI), Green NDVI 

(GNDVI), Structure Insensitive Vegetation indices (SIPI), Normalized Difference Infrared 

Index (NDII) are similar to NDVI, which means they are also two band combinations. As 

we focused on the band importance of Worldview-2, we also calculated NDVIs involving 

all possible band combinations from the Worldview-2 imagery. In these circumstances, the 

primary objectives of this study were: to evaluate predictive models of aboveground 

biomass of a common saltmarsh plant species based on a low cost remote sensing data 

platform (objective-1); to evaluate different variable selection approaches to find out the 

best predictors for a response variable from multispectral data (objective-2); to use the 

spectral reflectance of Worldview-2 sensor as an input to compare two machine learning 

algorithms (Random Forest and Support Vector Machine), to estimate above ground 

biomass (objective-3). 

 

7.2 Materials and Methods  
 

7.2.1    Study site 
 

The study area as shown in Figure 1, is located in Tomago, Australia (Longitude 

151°43'40.6" E to 151°46'19.4" E and latitude 32°47'21.9" S to 32°51'29.4" S) which is 

approximately 8 km south of Raymond Terrace and 10 km north of Newcastle on the east 
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coast of Australia. The dominant tree species include Avicennia marina (Grey mangrove), 

Casuarina glauca (Swamp Oak or She-oak) and ground saltmarsh species includes 

Sporobolus virginicus (Salt couch) and Phragmites australis (Common reed). This study is 

only based on the training sample collected from the present distribution pattern (Figure 

7-1) of salt coach (Sporobolus virginicus). 

   

Figure 7-1: Australia country boundary and location of Wetlands (study site) in New South Wales 
(NSW) state. The first inset picture shows the Hunter Wetland National park in NSW (Clockwise), 
the second one shows the location of NSW state in Australia and the last and main view picture 
shows the study area with the distribution of Sporobolus virginicus species. 
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7.2.2. Field data collection 
 

For Salt couch, a 20 m × 20 m vegetation plot was created to include a homogenous area 

of the same species. Three to five subplots (0.5m × 0.5m) were then randomly selected 

within each plot to measure the AGB. AGB was clipped within the subplots (0.5m × 0.5 

m) and fresh biomass was then subsequently measured using a digital weighing scale. 

Based on these subplot measurements (n = 3–5), then average fresh above ground 

biomass per plot was calculated (Cho et al. 2007; Mutanga et al. 2012; Mutanga et al. 

2004). The Worldview-2 satellite data used here were captured on 5th May 2015 that was 

the only cloud-free available data for this site. An extensive fieldwork campaign was 

conducted from 10th to 16th May 2015, just after the acquisition of the image. May is the 

dry month in eastern Australia and there was no surface water under the saltmarsh. Based 

on 0.5 % sampling intensity a total of 70 plots were required ((DoF 2010) for this study 

area. In total, 74 location (plots) were visited using a GPS. Each plot location was recorded 

with a meter level of accuracy of the global positioning system. 

 

 

7.2.3. Remote sensing data acquisition and pre-processing 
 

Worldview-2 satellite imagery was the primary remote sensing data used in this analysis. 

It has 0.46 m pixel resolution in the panchromatic mode and 1.84 m resolution in the 

multispectral mode. The multispectral mode consists of eight broad bands in the coastal 

blue (400-450 nm), blue (450–510 nm), green (510- 580 nm), yellow (585- 625 nm), red 

(630-690 nm), red edge (705 – 745 nm), NIR1 (770-895 nm) and NIR2 (860-1040 nm) 

parts of the electromagnetic spectrum. Digital number (DN) of Worldview-2 data has been 

converted to radiance data by applying the ENVI Worldview 2 calibration utility, available 

in ENVI v4.6 and later versions. It uses the factors from the Worldview-2 metadata and 

applies the appropriate gains and offsets in order to convert those values to apparent 

radiance. The FLAASH atmospheric module has been used in ENVI classic to remove 

atmospheric haze and to obtain surface reflectance data.  

 

7.2.4. Extracting image spectra for model development 
 

This paper adapted methods of extracting image spectra reported in earlier studies (Cho 

et al. 2007; Mutanga et al. 2012). Firstly, in situ data were collected in the study area. 

Then a window of 4x4 pixels (i.e 8mx8m) was used, as the vegetation plot, based on the 

GPS coordinates of each of the samples by overlapping the samples points and Worldview-

2 images in ArcGIS 10.3. This window was used in ENVI Classic to extract the average 

spectra from each vegetation plot based on each spectral band of the Worldview-2 data. 
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7.2.5. Experiments for model calibration 
 

At first 8 spectral bands from Worldview-2 data were selected as one of the inputs for the 

model and treated as Experiment-1. Then vegetation indices (VIs) were computed 

(Mutanga et al. 2012) from all possible two band combinations of Worldview-2. In this way 

total, (NxN=64) Vegetation Indices (VIs) were computed based on the following formula: 

 

 

𝑽𝑰 =
(𝑹(𝒊,𝒏)−𝑹(𝒋,𝒏))

(𝑹(𝒊,𝒏)+𝑹(𝒋,𝒏))
          (7.1) 

 

where R(i,n) and R(j,n) are the reflectances of any two bands from the selected bands for the 

spectral sample (n).  

 

From these 64 VIs, 56 VIs were used as an experiment (Experiment-2). Here 8 VIs were 

removed from this Experiment considering their null value. Experiment-3 was the 

combination of experiments 1 and 2, so (56 VIs+8 bands of Worldview 2= 64) 64 variables 

were used as input. Then experiment-4 was based on the selected variables identified by 

the different variable selection methods from experiment 3 (Table 7-1). 

 

Table 7-1: Four different sets used in this study. 

Experimental 

Set  

Data used Description 

1 Spectral bands All bands of Worldview-2 data ( 8 bands, from 

coastal to NIR2 region) 

2 Vegetation Indices 

(VIs) 

All possible combinations (56) of VI from 8 

bands of Worldview-2 data 

3 VIs and Bands Combination of 56 VIs and 8 spectral bands 

4 Selected variables Most important variables selected by variables 

section methods from the experiment 3. 

 

7.2.6. Methodological flowchart for Random Forest and Support Vector 
Machine Regression 

 

A general methodology summarized in figure 7-2, of the random forest (RF) and support 

vector machine (SVR) is described below:  

(1) Data pre-processing:  The spectral data were normalized to 0 ≤ x ≤ 1   to avoid the 

over-weighting due to the features presenting the highest absolute values.  

(2) Kernel: Different kernel types, linear, polynomial and radial basis function (RBF) were 

tested and the linear kernel was found to be most reliable to run the model. (This step is 

only for SVR). 
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(3) Cross-validation and grid search: Tune function of caret package was applied to tune 

mtry and ntree parameters for RF.  Similarly, parameters C, γ and ε were solved by cross-

validation and grid search on the training dataset. Then the value of epsilon (ε), gamma 

(γ) and cost (C) were determined to test the model. Details of these parameters will be 

discussed under the following subheadings of RF and SVM.  

(4) Then the fine-tuned parameters were applied to the selected variables and 

performance (R2 and RMSE) of the model were tested based on the validation data set. 

 

 

Figure 7-2: Workflow of machine learning algorithms for regression model. 
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7.2.6.1. Parameter optimization for the random forest (RF) and variable selection 

 

RF works based on two tuning parameters, the number of trees in the ensemble (ntree), 

and the number of variables randomly sampled at each node to be considered for splitting 

(mtry) (Peters et al. 2002). In principle, one should simultaneously optimize both 

parameters before applying them to a model development. However, this computation 

process is intractable. We used the ‘random Forest’ library for RF regression, ‘e1071’ 

library for SVM regression, ‘VSURF’ (Genuer et al. 2015) and Classification and Regression 

Training (Caret) packages (Kuhn 2008) for feature selection. R statistical software (R 

development core team 2016) was used to tune the parameter, variable selection and 

execute the machine learning regression method. Two feature-selection methods used in 

this study are: 

Recursive Feature Elimination (RFE): It is an optimization algorithm that aims to find the 

best performing feature subset from the original data set. At each iteration, it repeatedly 

creates models and keeps aside the best or the worst performing feature. Then it 

constructs the next model with the left features until all the features are exhausted. Finally, 

it ranks the features based on the order of their elimination. This method is used in RF 

and SVM for feature selection to resolve the problem of classification or regression. 

Variable Selection Using Random Forest (VSURF): Genuer et al. (2010) used a two-step 

procedure for the VSURF method to select variables, where step -1 involves the 

preliminary elimination and ranking of variables and step-2 is the variable selection step 

through nested and predictive models. A brief explanation of these two steps is available 

in the Genuer et al. (2010).  

 

 

7.2.6.2. Parameter optimization for Support Vector Regression (SVR) algorithm 

and variable selection 

 

Epsilon SVR ( ε-SVR): Standard SVR is the ε-SVR, where the sample points that support 

the “decision surface” or “hyperplane” are known as support vectors. These vectors fit the 

data according to the criteria of Epsilon (ε), gamma (γ) and cost (C) parameters. Here ε 

controlled the width of the epsilon-insensitive zone, used to fit the training data, and its 

value can affect the number of support vectors used to construct the regression function 

(Cherkassky et al. 1999; Vapnik and Kotz 1982). The value of ε determines the level of 

accuracy of the approximated function. It relies entirely on the target values in the training 

set. If epsilon is larger than the range of the target values, a good result cannot be 

expected. For example, if ε is 0, it will cause an overfitting problem. By contrast, the bigger 

the epsilon, the fewer support vectors are selected although bigger ε values result in more 

‘flat’ estimates of the model (Durbha et al. 2007). The parameter cost ( C) determines the 

balance between the model complexity (flatness) and the degree to which deviations larger 
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than epsilon (ε) are tolerated in the optimization formulation (Durbha et al. 2007).  For 

example, if C is too large, then the objective is to minimize the empirical risk without 

regard to the model complexity part in the optimization. 

Νu (ν) Support vector regression: Schölkopf and Smola (2002) proposed a modification to 

the ε-SVR algorithm based on the difficulty in finding suitable values for the tube width ε. 

This modified method, called ν-Support Vector Regression (ν-SVR), automatically 

minimizes ε depending on the properties of the data (Axelsson et al. 2013). Here a new 

parameter (ν) was introduced, in effect determining a fraction of the data points to be 

used as support vectors. The parameter C in the ordinary ε-SVR formulation is replaced 

by a parameter ν which is bounded by 0 and 1. Earlier the parameter C could have taken 

any positive value, thus this additional bound is beneficial in implementation. The 

parameter ν represents the lower and upper boundaries on the number of examples that 

are support vectors and that lie on the wrong side of the hyperplane, respectively. 

 

RFE can be applied for SVR (Clevers et al. 2007) through a caret package based on the 

same principle of RFE and known as RFE-SVR. Beside RFE-SVR, Clevers et al. (2007) 

proposed another method named SVM band shaving that is also based on the RFE 

approach of classification problem (Guyon et al. 2002). In this study, we used RFE-SVR 

based on Caret package to optimize SVM parameters. 

 

7.2.7 Model validation and accuracy assessment 
 

K-fold cross-validation is implemented in this study to optimize the parameters for both 

algorithms (RF and SVR), based on training data sets (70% of the whole data).  Finally, 

the calibrated model that comes from k-fold cross validation is tested once again with the 

independent test dataset (30% of the data) to estimate RMSE, R2 and bias of the model. 

 

 

7.3 Results 

 

7.3.1  Descriptive statistics of biomass (kg/m2) 
 

Standing biomass of Salt couch ranged from 0.450 kg/m2 to 2.175 kg/m2. The average biomass was 

1.3828 kg/m2 with a standard deviation of 0.3899 kg/m2. Based on the Shapiro-Wilk normality test 

(W= 0.9818, p value = 0.3673) and skewness ( -0.2499402) and kurotosis ( -0.2130938), it was 

found that biomass (kg/m2) was normally distributed (figure 7-3) . 
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7.3.2 Optimum parameter of random forest (RF) algorithm to estimate biomass 
 

Instead of default (1/3 of the total number of variables), mtry, lowest Out-Of-Bag (OOB) 

error rate was used to determine the best value of mtry (table 7-2). In the OOB method, 

some of the training data are excluded for each regression tree generation, and the errors 

for these data can be used to inform the RF of the relative strength (Dube and Mutanga 

2015). 

 

 

Table 7-2: Maximum and minimum OOB errors obtained using different mtry values. 

mtry   3 (minimum)  21 (default)  28 (optimum)  

ntree (default) 500 500 500 

OOB error rate  42.64 33.23 32.13 

Variability explained (%) 57.36 66.77 67.87 

 

Here cross-validation in parameter optimization was done to select the best mtry value 

based on RMSE. Best on the cross-validation result (figure 7-4), mtry value 28 was 

selected as the best on the lowest RMSE (0.227 kg/m2). 

 

Figure 7-3: Biomass ( kg/m2) of Sporobolus virginicus  distribution pattern shows that 
data are normally distributed. 
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The earlier mtry parameter was tuned as it has an effect on the final accuracy. Whereas 

the ntree parameter is different, in that it can be as large as the user wants, and continues 

to increases the accuracy up to a certain point. From the figure 7-5, it is clear that ntree 

have a very minimal effect on the results of RMSE (kg/m2) and R2. We can see that the 

most accurate value for ntree was perhaps 4000 with a mean RMSE of 0.2270 kg/m2. It 

held a constant value for mtry (i.e 28) that was optimized in the previous step. Based on 

the cross-validation result, mtry value =28 and ntree = 4000 are acceptable as both value 

provided the same RMSE (0.227 kg/m2). 

 

 

Figure 7-4: Optimization of random forest parameters (mtry) based on RMSE (kg/m2). 
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7.3.3  Variable Selection From Different Methods in Random Forest 
 

7.3.3.1  Recursive Feature Elimination (RFE) method 

 

The recursive feature elimination (RFE) was able to identify the smallest number of explanatory 

variables that would offer the best predictive ability of the random forest (figure 7-6). Here four 

variables were selected and those are (a) Near Infrared II (Band 8), (b) Near Infrared I (Band 7), 

(c) Red-edge (Band 6), and (d) Yellow (Band 3). The use of these four variables produced the lowest 

RMSE using 10-fold cross validation (0. 166 kg/m2), while the use of entire variables (n = 64) 

produced the highest RMSE for 10-fold cross validation (0.211 kg/m2) (Figure 7- 6).  

 

Figure 7-5: Tuning of the Random Forest (RF) parameter (ntree) for Sporobolus virginicus biomass 
(kg/m2) estimation. 
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Figure 7- 6:The RMSE obtained during the recursive variable selection (RFE) process. The lowest 
RMSE (kg/m2) obtained from the lowest number of variables (here 4 variables are selected). 

 

 

3.3.2.  Variable Selection Using Random Forest (VSURF) method 
 

In the VSURF method, the important variables (1 to 10) are respectively selected (figure 7-7) based 

on the optimized model parameter of ntree = 4000 and mtry = 28, which are values of the main RF 

model previously determined.  Four sequential plots of Figure 7-8 describe the four main steps of 

the VSURF algorithm for variables selection (Genuer et al. 2015). Four steps of figure 6 are discussed 

below: 
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Figure 7-7: Variable selection procedures for interpretation and prediction for Sporobolus virginicus 
biomass (kg/m2) data based on VSURF function. 

 

 

 

Variable ranking (Figure 7-7, top left): Here the variables were ranked by sorting the Variable 

Importance (VI) in descending order. The results (presented on the top left graph) for all variables 

(n=64) shows that true variable are significantly more important than the noisy variables. 

Variable elimination (Figure 7-7, top right): The standard deviations of variable importance (VI) can 

be found in the top right graph of figure 6. It is clear that true variables standard deviation is large 

compared to the noisy variables. This step retains more variables (here 20 variables) than necessary 

in order to make a careful choice later (Genuer et al. 2010). 

Variable selection procedure for interpretation (Figure 7-7, bottom left): This graph shows the OOB 

error rate of RF (using default parameters of RF) of the nested models starting from the one with 

the single most important variable, and ending with the one involving all important variables kept 

previously. Ultimately, the selected variables of nested models lead to the smallest OOB rate. It is 

clear that the error decreases quickly and reaches its minimum when the first 5 true variables are 

selected in the model.   
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Variable selection for interpretation (Figure 7-7, bottom right): The graph shows the results of 

variable selection for the prediction model. In the predictive model, a variable is added only if the 

error gain exceeds a threshold. Here RMSE (kg/m2) starting from 0.245 (MSE 0.060) decreases up 

to 0.228 (MSE 0.052) when five variables added to the model. This RMSE is slightly higher than the 

RMSE of the RFE method.   

 

7.3.4  Optimum parameter of Support Vector Machine (SVM) algorithm and 
variable selection 

 

Tune function shows that cost = 5.0, epsilon = 0.2 and gamma= 0.5 were found most suitable 

(figure 7-8) for  SVM parameter. Where dark blue indicates lower RMSE and lighter blue indicates 

higher RMSE. Figure 9 shows the effect of a decreasing number of variables in terms of RMSE (kg/m2) 

for fresh biomass. From this figure, we can conclude that the predictive power of a model with the 

least number (here four) has a RMSE (kg/m2) less than 0.180 kg/m2, which can be considered as 

good for this dataset. These four variables were the following bands: (a) Near Infrared II (Band 8) 

(b) Near Infrared I (Band 7) (c) Red-edge (Band 6) and (d) Yellow (Band 3). 

 

 

Figure 7-8: Optimization of SVR parameters (cost, epsilon and gamma) based on RMSE (kg/m2). 
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Figure 7-9. RMSE (kg/m2) results of the RFE in SVR for biomass with a varying number of features 
(all bands and all vegetation indices). 

 
In the feature selection, RFE- SVR was developed based on a linear kernel (Table 7-3), even though 

it provided good results for feature selection in terms of RMSE and least number of variables. This 
method provided the lowest RMSE (0.1761 kg/m2) using the three variables. When a 4th variable 
was added, there were a very minor change in RMSE (0.1777 kg/m2). Therefore, to maintain the 

consistency of variable selection between RF and SVM, we also picked 4 variables from the RFE-SVR 
method. 
 
Table 7-3: Results of the biomass prediction in terms of RMSE (kg/m2) using different 
methods based on an entire variable (n=64) of calibration data. 

 

Method of feature selection No of  selected variables RMSE (Kg/m2) 

RF (Default) 5 0.227 

RFE 4 0.211 

VSURF 5 0.228 

RFE-SVR 4 0.176  

 

7.3.5  Performance of Machine Learning Regression (MLR) 
 
The results in Table 7-4 shows above ground biomass estimates for Salt couch derived from the 
spectral band (n= 8) and vegetation indices (n=56) of Worldview-2. It is clear that high AGB 
estimates were obtained from the use of the selected spectral bands (Experiment set iv), compared 

to the other three experiments where different vegetation indices and combinations of vegetation 
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indices and spectral bands were used.  It can be observed that the random forest regression 

produced the highest R2 (0.72) and the lowest RMSE (0.166 kg/m2) using the four important 
predictors, (a) Near Infrared II (Band 8) (b) Near Infrared I (Band 7) (c) Red-edge (Band 6) and (d) 
Yellow (Band 3). Although an optimized parameter (Figure 7-7) of ɛ-SVR with linear kernel worked 

well for calibration data, it provided unreliable results when treated with a validation dataset using 
other different kernel types. Hence, based on the recommendation of Axelsson et al. (2013), ν 
regression was found more reliable for biomass prediction. Similarly, SVM also produces the highest 

R2 (0.66) and lowest RMSE (0.200 kg/m2) from the experiment set-iv with the four selected bands 
(table 4), whereas the lowest performance resulted from the experiment set ii where only vegetation 
indices (n= 56) were used.  
 
Table 7-4: Summary of above ground biomass (ABG) estimations from two machine 
learning approaches based on four different experiment sets. 

 

Experiment Set Validation set (n=22) 

RF regression model R2 RMSE (kg/m2) Bias 

I (Only spectral bands) 0.70 0.202 -0.03859945 

II ( Only VIs) 0.19 0.294 0.102 

III (All bands and VIs) 0.67 0.188 -0. 0237859 

IV ( Selected variables) 0.72 0.166 -0.0559891 

Νu SVR regression  

 SVM R2 RMSE (kg/m2) Bias 

I (Only spectral bands) 0.66 0.208 -0.0480 

II ( Only VIs) 0.008 3.270 -3.2579 

III (All bands and VIs) 0.63 0.236 0.08041 

IV ( Selected variables) 0.66 0.200 0.03553 

 
A one to one relationship between actual and predicted biomass, for both regression models, is 
shown in Figures 10 and 11 for RF and SVR respectively. The RF model, based on all four 
experiments, tended to underestimate the high biomass values that fall beyond the range (figure 7-

10). Whereas in all four experiments the SVR model overestimated that value (figure 7-11). 
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Figure 7-10: Relationships between actual and predicted biomass of Sporobolus virginicus using the 
random forest regression model. 

 
 



Chapter 7 

 149 

 
 
 
Figure 7-11: Relationships between actual and predicted biomass of Sporobolus virginicus using the  
ν-SVR regression model.  

 

 

7.3.6  Comparison of RF and SVR model 
 

Descriptive statistics developed from two machine learning models are presented in table 5 to 
compare with the validation test data collected from the field. The minimum standard deviation was 
observed in the RF model. 
 
Table 7-5: Comparison of descriptive statistics derived from field observation and 
model-derived data. 

Model N Max Min mean SD 

Field data 22 2.17 0.4505 1.38 0.390 

RF 22 1.98 0.5914 1.276 0.383 

SVM 22 2.51 0.5487 1.302 0.427 

 
A scatterplot matrix (Figure 712) was developed when results of RF were compared to SVR results, 

based on four selected variables only. This matrix is valuable when considering whether the 
predictions from two different algorithms are uncorrelated. If weakly correlated, they are good 

candidates for being combined in an ensemble prediction. For example, RF and SVR look weakly 
correlated. 
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Figure 7-12: Comparison of Machine Learning Algorithms (SVM and RF) in scattering Plots. 

 
We can see pair-wise statistical significance scores (Table 7-6). The lower row of the table shows p-
values for the null hypothesis (distributions are the same), where smaller is better. When the value 
of the upper row is 1.0, there is no difference between the models. The lower row indicates the p 
values from the significance test. We can see a significant difference in RMSE (kg/m2) between SVM 

and RF. We can also see little difference between the distributions of R2 for SVM and RF, although 
they are not statistically significant at the 95% confidence interval. 
 
Table 7-6: Statistical differences between two models 

Model RMSE R2 

 SVM RF SVM RF 

SVM  -0.03427  0.07336 

RF 0.000022  0.0006525  

Upper row: estimates of the difference; Lower row: p-value for H0: difference = 0 
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7.4 Discussion 
 

7.4.1  Performance of Worldview 2 spectral bands for biomass estimation 
 

Based on the four experiments, selected variable (four selected bands) based machine 

learning regression clearly produced a more robust fit than different vegetation based 

indices based regression. Results from this study indicate that the Salt couch species 

biomass is accurately estimated with the spectral information of the new red-edge (Band 

6), NIRI (Band 7) and NIRII (Band 8) bands. In this commercial multispectral data, the 

red-edge is one of the additional spectral bands that detects energy on a narrow band 

between 705 and 745 nm at 1.84 m spatial resolution. Similarly, in a different study, 

Eckert (2012) showed that the texture measures mean derived from band 3( green), band 

4 (yellow), band 6 ( red edge), and bands 7 and 8 (both NIR bands) indicate a strong 

relationship with biomass and carbon. Considering the benefit of the additional 4 bands of 

Worldview-2, Digital Globe (2010) mentioned that although NIR II (860 -1040 NM) 

overlaps with the band NIR I ( 770- 895 nm), NIR II enables biomass analysis as it is less 

affected by the atmospheric influence. Wolf (2010) also mentioned that the red band stays 

true to lower reflectance levels than the NIRII band, which has a higher value than 

traditional broad NIR bands, hence a higher NDVI value is produced that is important for 

any vegetation property analysis. That is why both NIRI and NIRII bands were useful to 

improve the accuracy of biomass estimation. Marshall et al. (2012) suggested that the 

yellow band of Worldview-2 would be very important to discriminate Buffalo grass if the 

image had been acquired in dry the season. In our study, the Worldview-2 image was 

acquired at the onset of the dry season and played a significant role in estimating biomass.  

  

Our results are supported by Lawrence and Ripple (1998) and Gadallah and Csillag (2002) 

when they regressed band wise information against above ground biomass using aerial 

photo and Landsat TM respectively. Recently Dube and Mutanga (2015) found a better R2 

(0.33) and RMSE (63.61%) from a combination of spectral information and vegetation 

indices rather than the individual use of spectral information (R2 = 0.27, RMSE = 67.15%) 

and VIs (R2= 0.23, 68.28%) when they estimated forest biomass from the latest Landsat 

8 OLI data. One possible explanation is that the band wise regression approach allows for 

the decoupling of bands and make the analysis easier to discover different relationships 

between the response variable and each band, including different polynomials, 

coefficients, and transformations (Lawrence and Ripple 1998). However, this flexibility is 

not possible with regression against vegetation indices (Lawrence and Ripple 1998).  

 

There are other findings where different authors used different vegetation indices to 

predict saltmarsh biomass. For example, (Gross et al. 1986) and (Hardisky et al. 1983; 

Hardisky et al. 1984) found spectral radiances based indices worked well to predict 

biomass for Spartina alternflora, one of the tallest saltmarsh varieties. Because tall 

vegetation structure increases light scattering and absorption in spaces between the 

vegetation(Byrd et al. 2014)  leading to lower overall canopy reflectance (Mutanga and 
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Skidmore 2004a). In a recent study, Mutanga et al. (2012) showed that different modified 

VIs can predict biomass of wetland, although they did not compare those VIs with spectral 

information separately. However, their findings showed that instead of traditional NDVI, 

modified VIs (three VIs generated from band 6 and 7) worked better to predict wetland 

biomass. VIs that are associated with band 6 (Red-edge) and band 7 (Near infrared band) 

resulted in robust predictions for a high-density wetland biomass (Mutanga et al. 2012) 

dominated by Cyperus papyrus and Phragmites australis, two tall varieties. Our findings 

also revealed that band 6 and 7 were two important variables to predict biomass of S. 

virginicus, a spreading perennial that is rarely affected by the obstacles associated with 

taller varieties. This may be another reason why spectral bands based machine learning 

performed better, in comparison to VIs and combination of VIs with spectral bands. 

 

 

Our findings are also supported by Mutanga and Skidmore (2004b), where they indicated 

that the red edge (700–750 nm) and longer wavelengths of the red edge (750–780 nm), 

yielded higher correlations with biomass (R2 = 0.77) than the standard NDVI. In a different 

study, Cho et al. (2007) who found the better predictive performance of the red-edge 

extracted from airborne HyMap imagery in estimating grass/herb biomass in the Majella 

National Park. Our results indicate how tremendous saving of money can be made as well 

as reductions in time spent on hyperspectral data acquisition and processing.  Moreover, 

the results from this study also confirmed the tradeoffs between cost, additional spectral 

information and the high spatial resolution of most commercial satellite imagery that was 

one of the recommendations of Byrd et al. (2014). Clearly, it can be questioned whether 

similar results can be found for more complex and mixed species ecosystems, but this can 

be evaluated in future studies. 

 

7.4.2 Performance of variable selection methods and machine learning 
algorithms 

 

Among the three different algorithms of variable selection, it was found that recursive 

feature elimination provided the lowest RMSE (kg/m2) with the least number of variables. 

Although RFE-SVM selected three variables and we added the 4th variable to keep the 

consistency with RFE-RF, there was no change in the result when RFE-SVM was run with 

the three variables. This was the limitation of RFE-SVM and this was also supported by 

Tang et al. (2016). When some of the candidate features are highly correlated, the 

assessing criteria of the importance of these features will be underestimated (Tang et al. 

2016) and this limitation is called “correlation bias”. That was the main cause of poor 

performance of RFE-SVM compared to RFE-RF. The best performance of RFE is also 

demonstrated by (Ismail et al. 2010) when they found an OOB error rate of 8.34% from 

14 variables in comparison with OOB error rate of 8.23% from 21 variables using a 

backward selection approach.  

From the findings of our study, it is clear that RF performs better than SVM. As these 

differences are statistically significant for RMSE (kg/m2), there are a couple of arguments 

for why RF performed better than SVR. It might be due to the degree of multicollinearity, 

and how well the SVR parameters are tuned (Axelsson et al. 2013). As mentioned 

previously, RF deals with small subsets to find the pure variables, omitting the 

multicollinearity problem of regression analysis, and provide better predictions. Two band 

combination vegetation indices used in this study are correlated, however, as 
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demonstrated by Cutler et al. (2007), RF is not sensitive to collinearity. Moreover, the grid 

search used for parameters tuning was automatic and the tuning process of ε-SVR and ν-

SVR proved to be difficult and time-consuming (Axelsson et al. 2013). It took a long time 

to learn how to set the intervals and boundaries of the grid search properly in R interface. 

In addition, the optimized parameters of ɛ-SVR were providing overestimated predictions 

for biomass, and alternatively, ν-regression was selected based on the recommendation 

of (Axelsson et al. 2013). 

 

There are other studies (Axelsson et al. 2013; Clevers et al. 2007) where authors revealed 

the better performance of SVR when it was compared with Partial Least Square (PLS) 

based on transformed ( i.e continuum removal) data. But in contrary, Marabel and Alvarez-

Taboada (2013), showed that SVR outperformed PLS regarding RMSE when no 

transformations were applied to reflectance data. However, in this research, we did not do 

any transformation of reflectance data and it was not compared with PLS. One aspect of 

SVR is essential to consider that the accuracy of the SVR model was influenced not only 

by its parameters but also by the spectral region used as variables (Marabel and Alvarez-

Taboada 2013). This argument was confirmed in our finding when fine-tuned parameters 

of calibration model failed to provide a reliable estimation for validation data.  

 

Although we compare, for the first time, use of RF and SVM regression for remote sensing 

of saltmarsh biomass estimation, further investigations are required to improve prediction 

performance of the model. In our results, the random forest tended to underestimate the 

high biomass values that fall beyond the range whereas SVM overestimate that value that 

might be a subject for further studies using additional data sets. Results demonstrated 

that SVR and RF regressions, are both used to predict biomass. However, the ability of 

automatically producing accuracy assessments and measuring the variable importance 

make Random Forest algorithms more effective.  

 

7.5 Conclusions 
 

Our results have shown that the commercial multispectral sensor Worldview-2 is a 

potential data-source for wetland managers for an acceptable (R2 = 0.72, RMSE = 0.166 

kg/m2) saltmarsh biomass estimation model. Recursive Feature Elimination (RFE) is a 

more powerful, robust and dependable technique that can select variable for model 

prediction. Both of the machine learning algorithms (RF and SVR) perform well to predict 

biomass for saltmarsh species. However, RF outperformed SVR in respect of RMSE due to 

its special settings of the subset that finds pure variables omitting the multicollinearity 

problem. Although there are some recent findings of Worldview 2 for wetland biomass 

estimation, this result was developed based on common saltmarsh focusing on a species-

specific model. Moreover, two famous machine learning approaches were compared to 

make them user-friendly at the local level (i.e. wetland manager).  Although further 
investigation is recommended for ɛ-SVR with additional data to check its behaviour with 

independent data set, ν-SVR was an alternate option to estimate biomass.  The results of 

this work  will be helpful for reliable aboveground biomass estimation for wetland 

managers and ecologists. 
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Chapter 8  
 

Synthesis: High spatial resolution multispectral image and 
machine learning algorithms for saltmarsh classification 
and biomass modelling  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is the synthesis of the whole thesis. It also highlights the special 

contribution of the author in this research. 
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Up to mid-nineteenth century, saltmarsh ecosystem was treated as wastelands and boggy 

swamps. Many saltmarsh areas have drained and lost due to a lack of recognition of its 

ecological value and less attention to their restoration (Gedan et al. 2009). It has attracted 

more attention as the understanding of its ecological value has improved over the past 

few decades and now treated as significant ecological communities that provide key 

habitat for other marine fauna (Adam 1993). Therefore, monitoring and mapping of 

wetland plant species distribution are important in wetland management, conservation 

and restoration . This rigorous task requires intensive field-work, a collection of ancillary 

data, and the visual estimation of percentage cover for each species to be classified. This 

is time-consuming, costly and labour intensive (Lee and Lunetta 1995). To overcome these 

limitations, remote sensing offers a practical and economical means of plant species 

classification and estimates the biochemical and biophysical parameters of the wetland 

species. Remote sensing helps improve the efficiency and effectiveness  of fieldwork for 

monitoring the temporal changes of wetland habitats.  

 

Selecting suitable  remote sensing systems and their data are important for mapping land 

use and land cover (LULC). The accuracy of classifying saltmarshes and other wetland 

plant species varies based on the spatial and /or spectral resolutions of the remotely 

sensed data.  Mostly pixel-based classification method of multispectral image dominated 

by mixed pixel are often incapable of producing accurate species classification. Traditional 

pixel-based classification methods assume that the reflectance of each subclass is normally 

distributed. This is a common violation in remote-sensing data, especially when classes or 

even subclasses of the main class contain different spectral features (Kavzoglu and Reis 

2008). To overcome this problem, non-parametric classifiers such as decision tree 

classifier (DTC), artificial neural networks (ANN), and Support Vector Machine (SVM) are 

getting more attention in recent  classification techniques applied to remotely sensed data 

(Zhu and Blumberg 2002; Kavzoglu and Reis 2008; Otukei and Blaschke 2010). Especially 

SVMs are capable to handle small sample size data for training. But a large number of 

parameters settings and kernel selection are the major limitations of SVMs. Alternatively, 

random forest (RF) is a relatively new ensemble classifier that has a minimal number (only 

two) of parameters and embedded variable selection method that are easy to apply. The 

variable selection is another important part of the machine learning algorithm and their 

applications. Based on the literature review of this thesis, only a very few research has 

been done where advance variable selection methods were applied for saltmarsh 

classification and biomass estimation. Therefore, this thesis intends to fill this research 

gap.    

 

 

As a part of a suitable sensor selection, the author compared spaceborne hyperspectral 

data (EO-1 Hyperion) with multispectral Worldview-2 in chapter 2. Four different images 

of a spaceborne hyperspectral data (EO-1 Hyperion) scenes from around the coastal region 

of Australia were tested, it shows that there is a strong relationship between the acquisition 

time of year and the SNR of the Hyperion data. Calculated SNR for Hyperion SWIR data is 

higher in the summer and lowest in the winter (Figure 2.5 and 2.6) that was similar to the 

finding of Kruse et al. (2003).  Chapter 2 of this thesis explored the maximum number of 



Chapter 8 

 157 

endmembers that can be retrieved from the Hyperion data. Based on the Principal 

Component Analysis (PCA) of atmospheric effect corrected reflectance data, the first 16 

principal components were found that contained most (99.83 %) of the information. It 

was similar to the findings of Chauhan et al. (2011) and Pervez and Khan (2015). In this 

study, only 56 bands from the Very Near Infrared (VNIR) bands that were similar with the 

wavelength of Worldview-2 data were selected for PCA. Among the 56 bands of 

atmospherically corrected Hyperion data, 79.01% variability was contained by the first PC, 

96.31% by PCs 1-2 and likewise 99.83% by PCs 1-16. PCA highlights the redundancy in 

data due to similar responses in some wavelengths and reduces the dimensionality of data. 

When 16 selected bands of Hyperion data were compared with the 8 bands of Worldview-

2 for saltmarsh classification, the overall classification accuracy has increased in both cases 

after adding band orderly. But the overall accuracy obtained from Worldview-2 was higher 

than that from the EO-1 Hyperion image. Table 2-6 shows that OA % for Worldview-2 was 

increased from 72 to 79 while for Hyperion it increased from 70.47 to 71.66. Considering 

the significance test with z values and kappa statistics at 95% confidence interval, 

Worldview-2, classification accuracy was higher than Hyperion data. So this  study 

explored that the importance of spatial or spectral resolution is depends on the feature of 

the study area. Although hyperspectral data have narrow bands to retrieve a full spectral 

profile, due to small patch size of vegetation pattern, 30-meter spatial resolution was not 

effective to classify them using EO-1 Hyperion data. As the spatial resolution was the 

important consideration for saltmarsh classification, the author considered two sampling 

methods, pixel-based and region of interest (ROI) from  the Worldview-2 and Landsat-8 

OLI data discussed in chapter 3. 

 

 

The distribution of classes in feature space is an important factor related to the 

classification accuracy. Because class probabilities are produced based on the distribution 

of classes in feature space. However, different classes often have overlaps which reduce 

the accuracy of classification. To address this problem, the concept of spectral separability 

is introduced. A very few research studies (Collin and Planes 2011) worked on spectral 

separability analysis for saltmarshes species community. Selection of spatial unit (pixel) 

and collection of training samples also affect the separation between two species classes 

within a feature space and have an impact on the accuracy of the thematic map. determine 

how much distance are present within a feature space for two species and regulate the 

thematic accuracy of the map. Therefore, chapter 3 investigates the spectral separability 

derived from the region of interest (a group of homogenous pixels) or individual pixel 

based training sample. In addition, it also explores the  potentiality moderate resolution 

(Landsat 8 OLI) broadband data for two dominant species, Grey Mangrove (Avicennia 

marina) and She-Oak (Casuarina glauca). 

 

Based on spectral curve originated from the region of interest (ROI) sampling, it was 

evident that all saltmarsh species were overlapped within all bands of the spectrum for 

Landsat 8 OLI data. But Mangrove and She-oak (Casuarina glauca) tree species were 

clearly separable from each other up to bands 5. Because Mangrove and She-oak are two 

dominant tree species cover a large extent of the study area that is easily detectable by 

30-meter pixels of Landsat data. On the other hand for Worldview-2, perennial grass (GR) 

was clearly separable in green, red edge and NIR bands. Reflectance properties of water 

(WA) in the last 3 bands (Red Edge, NIR1 and NIR 2) and reflectance of wetland soil (WS) 
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in band 8 are significantly different from other classes. Two saltmarsh species (Phragmites 

australis and  Sporobolus virginicus) were clearly separable in the red band when pixel 

based sampling was followed for separability analysis. The saltmarsh species also show 

band-specific within-species variance. For example, the variance of Phragmites australis 

in the coastal band is quite large and in NIR2 is relatively small. Based on the spatial unit 

(pixel) distribution, it is clear that there are no outliers for any species in any band (figure 

3-4). Moreover, the median is the centre of each box indicating that data are normally 

distributed. Further research can be carried out to evaluate the performance of different 

classifiers and  machine learning algorithms.  Because most of the time, saltmarsh spatial 

distribution is multimodal and need advance classifier to handle this distribution pattern. 

To address this issue the author reviewed most of the works of machine learning classifiers 

related to saltmarsh and wetland classification and was discussed in chapter 4. 

 

 

Chapter 4 reviewed the application of machine learning and advance classifiers for 

saltmarshes and wetland ecosystem. Maximum likelihood (MLC) is the most common 

supervised classification method. However, in most of the cases, the normal distribution 

of the classes in the spectral domain is the main violation of remotely sensed data. Because 

sometimes the reflectance values of the main class and their subclass contain different 

spectral properties that make the application of MLC more difficult and less accurate. In 

addition, adequate ground truth information and collection of sufficient samples of training 

and validation are also impractical for wetland ecosystem. Therefore, the application of 

machine learning algorithms is increasingly popular for land cover mapping.  Although 

SVM related remote sensing studies were reviewed by Mountrakis et al. (2011), other 

types of machine learning methods have been advanced since then. New articles have 

been published since then, and new methods have been used for SVM. Very recently, 

Belgiu and Drăguţ (2016) reviewed Random Forest and its application in remote sensing. 

But the potentiality of ensemble classifiers for a specific ecosystem like saltmarsh and 

wetland ecosystem need to be reviewed. That is why, emergence and modification of 

machine learning algorithms and techniques in recent years necessitate such a review, 

which will be highly valuable for guiding or selecting a suitable classification procedure for 

a specific ecosystem.  

 

 

Among the machine learning algorithms, SVM is appealing due to its impressive ability to 

successfully handle a small training dataset while producing higher classification accuracy. 

It is proposed as a superior classifier in remote sensing than the traditional methods like 

Maximum Likelihood Classifier (MLC) (Montero et al., 2005). Although there is ample proof 

of training sample size reduction for SVM, very few research are available for wetland 

ecosystem where data collection is really a challenge due to hazardous access. In addition, 

kernel selection for SVM and its relation with spectral separability for each species have 

not been explored yet for a complex environment, i.e. saltmarsh ecosystem. Chapter 5 

focused on this and evaluated the performance of SVM based on kernel selection and 

spectral separability indices.  Chapter 5 also highlighted the application of small training 

size for wetland classification. Literature often suggests that the size of the training set 

required is a function of spectral wavebands used and generally a sample comprising at 

least 30 times the number of spectral bands used is required in the analysis process 

(Mather, 2004; Mathur and Foody 2008). That is why conventional classification scheme 
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(like MLC) require a large training set spread all over the study area. Based on this 

requirement, Worldview-2 data would require at least 240 pixels for each class to run a 

conventional MLC algorithm. Whereas, only 15% (16 pixels for each class) of the required 

training sample (240 pixels) provided up to 79% accuracy. This chapter also explored that 

optimal kernel choice is also highly variable among remote-sensing applications. This 

results also concur with other coastal vegetation studies where high-resolution data has 

been used. For example, Collin and Planes (2011) achieved more than 0.90 kappa 

coefficient with SVM from Worldview 2 data. Although the accuracy found in this chapter 

was lower than  the one by  Collin and Planes (2011), however, this lower accuracy was 

mainly due to our exclusive focus on individual species where spectral signatures 

overlapped. When Collins and Planes (2011) showed 28 pairwise comparisons in their land 

cover classification, only 1 showed a separability index inferior to 1.99. In our dataset, out 

of the 28 pairwise comparisons possible, 13 pairs displayed an inferior index to 1.99 (2.00 

is a perfect discrimination) [See Appendix 1] and acted as an obstacle to improving 

accuracy after a certain degree. 

 

Major limitations of this experiment were that parameters were randomly optimized 

instead of grid searching and cross-validation method. Feature selection is another 

important criterion of machine learning method application that was not considered in this 

experiment. In addition, the performance of SVM was not compared with any other 

ensemble classifiers to test the robustness of the SVM model. Finally, a sample size of this 

experiment was limited and fixed (16 pixels per class), therefore there was no scope to 

test the current results with a large sample size.  To overcome these limitations, the author 

set another experiment that was discussed in chapter 6. 

 

 

Ground truth data collection for species-level mapping is made challenging by limited 

access and hazardous conditions in some wetland ecosystems. Especially, saltmarsh 

classification is challenging in terms of a single (i.e water) and multi-modal distribution 

(seasonal variation of vegetation) features of saltmarsh habitat. Random Forest (RF) and 

Support Vector Machine (SVM) classifiers have been evaluated that are similar in their 

unique behaviour with multi-modal data distribution. However, there are some 

contradictory findings on the sensitivity of RF for sample size and labelling that are 

different from SVM. Therefore instead of area-based proportional sample allocation, an 

equal number of samples allocation strategies have been proposed for 8 classes within a 

saltmarshes community.  

 

Feature or variable selection is a crucial issue in machine learning (RF and SVM) when 

dealing with advanced classification and regression problem (Hastie et al. 2001). To our 

knowledge, only a limited number of studies have been done, which explore advanced 

feature selection methods in multispectral data. Chapter 6 compared the performance of 

the relatively new advanced machine-learning RF and SVM classifiers on Worldview-2 

imagery in a degraded saltmarsh wetland to determine the optimum sample size for 

classification and mapping purposes. This chapter contributes by answering the following 

research questions (1) How do machine learning algorithms of RF and SVM respond to the 

proportional reduction (100 % to 33%) of sample size? (2) Which machine learning 

approach provides reasonable accuracy with a limited number of samples? (3) Do the 

selected features of Worldview-2 change classification accuracy significantly compared to 



 

 160 

using all bands of Worldview-2? In addition, this chapter highlights the parameter 

optimization process that was identified in chapter 5 as a major limitation. 

 

The results of RF in chapter 6 showed a significant decrease in overall accuracy when the 

sample size was reduced from 100% level to 33%, the corresponding accuracy dropped 

from 79% to 72 %. Conversely, there were no significant changes in the accuracy of SVM, 

when samples size equally dropped from 100% to 33%. However, there was no significant 

difference among all the possible combinations of three experiments (100 %, 66% and 

33% of the original samples) which originated from two classifiers based on an equal 

sample distribution scheme. The importance of each spectral bands was evaluated through 

Classification and Regression Training (CARET) and Random Forest (RF) packages in R 

scripting. Learning Vector Quantization (LVQ) and Recursive Feature Elimination (RFE), 

both feature selection methods selected six important features. No significant differences 

in classification accuracy were observed when these six important features were selected 

instead of all available features. This accuracy is promising and is comparable to other 

previous studies where multispectral and airborne hyperspectral data have been used. 

However, in terms of data acquisition cost, reference data collection and processing costs, 

this study showed a promising approach toward  broad management application for the 

saltmarshes community that is ecologically endangered, and demand a special attention. 

 

 

Besides mapping, there is a crucial need to quantify large-scale plant productivity, i.e. 

above ground biomass (AGB), in coastal marshes for a better understanding of marsh 

resilience against sea level rise (Schile et al. 2014; Swanson et al. 2014). But this AGB 

estimation is labour intensive and not feasible at large spatial extents. To complement 

this, remotely sensed data are utilized to map vegetation types and provide better 

estimates of plant production (Goetz and Dubayah 2011). Since the 1980s there have 

been some successful applications of remote sensing for saltmarsh biomass (Gross et al. 

1987; Hardisky et al. 1983; Hardisky et al. 1984) using Normalized Difference Vegetation 

Index (NDVI). There are some major limitations of NDVI that have already been revealed 

by other studies  (Gao et al. 2000; Tucker 1977). This studies recommended using narrow 

bands of hyperspectral data to overcome the limitations(Blackburn 1998; Thenkabail et 

al. 2000). However, there are some crucial limitations of hyperspectral data that we 

experienced for our study area and discussed in the introduction and first two chapters. 

To overcome these limitations, Worldview-2 with its higher spatial (1.84 m) and spectral 

(8 bands) resolution is seen as a tradeoff between the advantages of multispectral 

resolution satellite data and hyperspectral data (Mutanga et al. 2012; Rasel et al. 2016b).  

 

Another research area that is still challenging is to model biomass against remote sensing 

spectral bands. Regression techniques are common to relate remotely sensed information 

with biophysical variables (i.e. biomass, leaf area index etc). However, they are also 

imitated to adequately capture this relationship and the spatiotemporal variability of the 

number of biophysical variables(Kaheil et al. 2008) . Moreover, multicollinearity is an 

important issue for the multiple regression model, especially when highly related variables 

(i.e bands of RS data) are selected as a predictor. An ensemble method, random forest 

(RF), has reduced the problem of the multicollinearity issue (Liaw and Wiener 2002a) and 

has been proved to reduce of bias and overfitting (Breiman 2001) of a model. Variable 

selection is a crucial issue in machine learning regression problem (Hastie et al. 2001). To 
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our knowledge, only a limited number of studies have been done, which explore these 

advanced feature selection methods in multispectral data (Pal 2006; Pal and Foody 2010). 

To address these problems, chapter 7 highlighted the performance of RF and SVM for 

saltmarsh biomass estimation using advance feature selection method embedded in RF 

and SVM. 

 

Two machine learning approaches, Random Forest  and Support Vector Machine  

regression were tested to estimate biomass of a common saltmarshes species, salt couch 

grass (Sporobolus virginicus). Reflectance and  NDVI based vegetation indices derived 

from 8 bands of Worldview-2 multispectral data were used for four experiments to develop 

the biomass model. The main objectives of this study are (i) to recommend an affordable 

low-cost data source to predict biomass of a common saltmarshes species (ii) to suggest 

a variable selection method suitable for multispectral data (iii) to assess the performance 

of RF and SVM for the biomass prediction model. Cross-validation of parameter 
optimizations for SVM showed that the optimized parameter of ɛ-SVR failed to provide a 

reliable prediction. Hence, ν-SVR was used for the SVM model. Among the different 

variable selection methods, Recursive Feature Elimination (RFE) selected a minimum 

number of variables (only 4) with an RMSE of 0.211 (kg/m2). Experiment-4 (only selected 

bands) provided the best results for both of the machine learning regression methods, RF 

(R2= 0.72, RMSE= 0.166 kg/m2) and SVR (R2= 0.66, RMSE = 0.200 kg/m2) to predict 

biomass. When a 10-fold cross validation of the RF model was compared with a 10-fold 

cross validation of SVR, a significant difference (p= <0.0001) was observed for RMSE. One 

to one comparisons of actual to predicted biomass showed that RF underestimates the 

high biomass values, whereas SVR overestimates the values; this suggests a need for 

further investigation and refinement. 

 

 

The application of Random Forest and Support Vector Machine for predicting saltmarshes 

classification and biomass estimation at the species level is a new field of research and are 

not entirely investigated. However, the findings of this thesis enlighten the use of two 

machine learning algorithms for saltmarsh species classification and biomass estimation. 

This thesis focused on data comparison and data selection for a specific study area and 

then moved to the methodological approaches for classification and regression for 

saltmarshes monitoring.  

 

In line with the application of Random Forest and variable selection methods, further 

studies could be undertaken along three lines: using airborne hyperspectral data collected 

from the same study area. Unnamed aerial vehicles (UAV) and any other hyperspectral 

image can be used. EnMAP, will be launched in 2019 and can be a good alternative for 

this. Another recommendation is the application of the same method and variable selection 

in the different study area with different species composition and considering the spatial 

autocorrelation of the samples for Random Forest application. Finally, different study area 

might follow the non-normal distribution pattern and will be useful to match the results of 

this research. 

 

 

In this study, spaceborne hyperspectral data, Hyperion was compared with multispectral 

data. To make it compatible, the author selected only the very infrared part (VNIR) of the 
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EO-1 Hyperion that was similar with the wavelength of the multispectral Worldview-2 data. 

However, spatial resolution (30 m) of the EO-1 Hyperion was still an issue to detect 

saltmarsh species. Whereas, airborne hyperspectral data have very high spatial and 

spectral resolution which must be considered in saltmarsh mapping and biomass 

modelling. Although data acquisition is a challenging task due to several factors that have 

been discussed in chapter 2, 6 and 7, further research may be conducted if airborne 

hyperspectral data are available.  

 

Saltmarsh species composition in the Hunter Wetland National park is limited in number 

and spatial size (small patches or fragmented). Only two major species, Sporobolus 

virginicus and Phragmites australis cohabit with other two tree species Avicennia marina 

and Casuarina glauca. Therefore the application of multispectral data Worldview-2, 

broadband data Landsat -8 OLI and hyperspectral data (either spaceborne or airborne) 

required to be investigated in a different study area with a complex vegetation 

composition. Although spaceborne hyperspectral data, EO-1 Hyperion has been 

decommissioned in 2017, another spaceborne hyperspectral data EnMAP will be launched 

in 2019 and can be considered in similar research. 

 

In this study, Random Forest, a new ensemble classifier has been investigated for 

saltmarsh classification and biomass estimation. However, this classifier is sensitive to the 

spatial autocorrelation of the training classes (Millard and Richardson 2015) and 

imbalanced training classes (Dalponte et al. 2013) that have not been considered in this 

thesis. Further research is crucial to explore the sensitivity of this method with the spatial 

autocorrelation of the training samples and imbalanced allocation (different sample size 

for different classes) for random forest application in saltmarsh monitoring.  

 

The results of this work, however, provide the necessary insight and motivation for wetland 

groups; ecologists, remote sensing group, machine learning users and environmentalists 

to shift toward the most affordable and easily accessible remote sensing sensors necessary 

for reliable aboveground biomass estimation for saltmarsh environment. 
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Appendix I: 
Input File: WV_2_RST_Bil_Edited.tif   

    ROI Name: (Jeffries-Matusita, Transformed Divergence)   

   

Mangrove [Red] 16 points:   

    Casuarina [Green] 16 points: (1.84873406 1.98410535)   

    Water [Blue] 16 points: (1.99985020 2.00000000)   

    Phragmitis [Yellow] 16 points: (1.99873220 2.00000000)   

    Sporobolus [Cyan] 16 points: (1.98635925 1.99997682)   

    Wetland_Soil [Magenta] 16 points: (1.99982229 2.00000000)   

    Dieback [Sea Green] 16 points: (1.84074828 1.99718994)   

    Grass [Magenta] 16 points: (1.99420002 1.99999807)   

   

Casuarina [Green] 16 points:   

    Mangrove [Red] 16 points: (1.84873406 1.98410535)   

    Water [Blue] 16 points: (1.97828754 2.00000000)   

    Phragmitis [Yellow] 16 points: (1.99711086 2.00000000)   

    Sporobolus [Cyan] 16 points: (1.98769264 1.99981308)   

    Wetland_Soil [Magenta] 16 points: (1.99548826 1.99999999)   

    Dieback [Sea Green] 16 points: (1.85521470 1.99967536)   

    Grass [Magenta] 16 points: (1.99868982 2.00000000)   

   

Water [Blue] 16 points:   

    Mangrove [Red] 16 points: (1.99985020 2.00000000)   

    Casuarina [Green] 16 points: (1.97828754 2.00000000)   

    Phragmitis [Yellow] 16 points: (1.99984369 2.00000000)   

    Sporobolus [Cyan] 16 points: (1.99809415 2.00000000)   

    Wetland_Soil [Magenta] 16 points: (1.97902903 1.99999216)   

    Dieback [Sea Green] 16 points: (1.98265840 2.00000000)   

    Grass [Magenta] 16 points: (2.00000000 2.00000000)   

   

Phragmitis [Yellow] 16 points:   

    Mangrove [Red] 16 points: (1.99873220 2.00000000)   

    Casuarina [Green] 16 points: (1.99711086 2.00000000)   

    Water [Blue] 16 points: (1.99984369 2.00000000)   

    Sporobolus [Cyan] 16 points: (1.94248532 1.99923084)   

    Wetland_Soil [Magenta] 16 points: (1.99945312 2.00000000)   

    Dieback [Sea Green] 16 points: (1.81660665 1.99913961)   

    Grass [Magenta] 16 points: (1.99994145 2.00000000)   
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Sporobolus [Cyan] 16 points:   

    Mangrove [Red] 16 points: (1.98635925 1.99997682)   

    Casuarina [Green] 16 points: (1.98769264 1.99981308)   

    Water [Blue] 16 points: (1.99809415 2.00000000)   

    Phragmitis [Yellow] 16 points: (1.94248532 1.99923084)   

    Wetland_Soil [Magenta] 16 points: (1.99870232 1.99999999)   

    Dieback [Sea Green] 16 points: (1.48373069 1.87270344)   

    Grass [Magenta] 16 points: (1.99653838 1.99998930)   

   

Wetland_Soil [Magenta] 16 points:   

    Mangrove [Red] 16 points: (1.99982229 2.00000000)   

    Casuarina [Green] 16 points: (1.99548826 1.99999999)   

    Water [Blue] 16 points: (1.97902903 1.99999216)   

    Phragmitis [Yellow] 16 points: (1.99945312 2.00000000)   

    Sporobolus [Cyan] 16 points: (1.99870232 1.99999999)   

    Dieback [Sea Green] 16 points: (1.97060942 1.99999982)   

    Grass [Magenta] 16 points: (2.00000000 2.00000000)   

   

Dieback [Sea Green] 16 points:   

    Mangrove [Red] 16 points: (1.84074828 1.99718994)   

    Casuarina [Green] 16 points: (1.85521470 1.99967536)   

    Water [Blue] 16 points: (1.98265840 2.00000000)   

    Phragmitis [Yellow] 16 points: (1.81660665 1.99913961)   

    Sporobolus [Cyan] 16 points: (1.48373069 1.87270344)   

    Wetland_Soil [Magenta] 16 points: (1.97060942 1.99999982)   

    Grass [Magenta] 16 points: (1.97437798 1.99927483)   

   

Grass [Magenta] 16 points:   

    Mangrove [Red] 16 points: (1.99420002 1.99999807)   

    Casuarina [Green] 16 points: (1.99868982 2.00000000)   

    Water [Blue] 16 points: (2.00000000 2.00000000)   

    Phragmitis [Yellow] 16 points: (1.99994145 2.00000000)   

    Sporobolus [Cyan] 16 points: (1.99653838 1.99998930)   

    Wetland_Soil [Magenta] 16 points: (2.00000000 2.00000000)   

    Schoeloplectus [Sea Green] 16 points: (1.97437798 1.99927483)   

   

Pair Separation (least to most);   

   

Sporobolus [Cyan] 16 points and Dieback [Sea Green] 16 points - 

1.48373069   

Phragmitis [Yellow] 16 points and Dieback[Sea Green] 16 points - 

1.81660665   

Mangrove [Red] 16 points and Dieback[Sea Green] 16 points - 1.84074828   

Mangrove [Red] 16 points and Casuarina [Green] 16 points - 1.84873406   
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Casuarina [Green] 16 points and Dieback [Sea Green] 16 points - 

1.85521470   

Phragmitis [Yellow] 16 points and Sporobolus [Cyan] 16 points - 1.94248532   

Wetland_Soil [Magenta] 16 points and Dieback[Sea Green] 16 points - 

1.97060942   

Dieback [Sea Green] 16 points and Grass [Magenta] 16 points - 1.97437798   

Casuarina [Green] 16 points and Water [Blue] 16 points - 1.97828754   

Water [Blue] 16 points and Wetland_Soil [Magenta] 16 points - 1.97902903   

Water [Blue] 16 points and Dieback [Sea Green] 16 points - 1.98265840   

Mangrove [Red] 16 points and Sporobolus [Cyan] 16 points - 1.98635925   

Casuarina [Green] 16 points and Sporobolus [Cyan] 16 points - 1.98769264   

Mangrove [Red] 16 points and Grass [Magenta] 16 points - 1.99420002   

Casuarina [Green] 16 points and Wetland_Soil [Magenta] 16 points - 

1.99548826   

Sporobolus [Cyan] 16 points and Grass [Magenta] 16 points - 1.99653838   

Casuarina [Green] 16 points and Phragmitis [Yellow] 16 points - 1.99711086   

Water [Blue] 16 points and Sporobolus [Cyan] 16 points - 1.99809415   

Casuarina [Green] 16 points and Grass [Magenta] 16 points - 1.99868982   

Sporobolus [Cyan] 16 points and Wetland_Soil [Magenta] 16 points - 

1.99870232   

Mangrove [Red] 16 points and Phragmitis [Yellow] 16 points - 1.99873220   

Phragmitis [Yellow] 16 points and Wetland_Soil [Magenta] 16 points - 

1.99945312   

Mangrove [Red] 16 points and Wetland_Soil [Magenta] 16 points - 

1.99982229   

Water [Blue] 16 points and Phragmitis [Yellow] 16 points - 1.99984369   

Mangrove [Red] 16 points and Water [Blue] 16 points - 1.99985020   

Phragmitis [Yellow] 16 points and Grass [Magenta] 16 points - 1.99994145   

Wetland_Soil [Magenta] 16 points and Grass [Magenta] 16 points - 

2.00000000   

Water [Blue] 16 points and Grass [Magenta] 16 points - 2.000000
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