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Abstract

The universality of the stellar Initial Mass Function (IMF) remains an open question to this day. Studies

where individual stars can be counted provide strong evidence for universality in and around the Milky

Way, while recent extragalactic studies find evidence for a dependence on galactic properties. In this

work, we constrain the systematic variations of the IMF that have been observed in early-type galaxies,

by constructing detailed dynamical models from kinematic observations. We account for the effects of

spatially-varying stellar populations by computing star-formation histories from the observed spectra,

and incorporating the resulting stellar mass-to-light ratio variations into the dynamical models. In

addition, we determine total mass distributions, and separate the contributions from the stellar and

dark matter components. This allows for inferences on the central dark matter fraction, as well as

constraints on scaling relations of the total mass profile slope with galactic observables.
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1
Introduction

1.1 Galaxy Formation & Evolution

Galaxy formation and evolution is a broad and critical aspect of astrophysics. It endeavours to describe

the physical mechanisms and processes that determine how, and in what environments, galaxies form,

as well as their resulting properties. To this end, much progress has been made since the field’s incep-

tion in the early twentieth century. Credit for this inception is commonly attributed to Edwin Hubble’s

confirmation that some sources visible through telescopes were extragalactic - residing outside of our

own Milky Way galaxy (Hubble, 1929). Since then, the field has solved a number of issues concerning

the origin of these extragalactic sources by establishing the hierarchical model; provoking the intro-

duction of dark matter (Rubin & Ford, 1970); and has challenged theories in cosmology through the

formation of quasars and Active Galactic Nuclei (AGN) at extremely high-redshift, which must have

formed in the very early Universe (for example, see Momjian et al., 2014).

The hierarchical model of galaxy formation - the current ‘standard model’ - dictates that haloes of

cold dark matter (CDM) merge hierarchically, seeded by primordial fluctuations in the early Universe

(White & Rees, 1978). This hierarchical merging is illustrated in Figure 1.1, created as part of the

Millennium-II Simulation project (Boylan-Kolchin et al., 2009). Once large enough, these haloes
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Figure 1.1: A simulation of the hierarchical merging of dark matter haloes. Created as part of the

Millinneium-II Simulation project (Boylan-Kolchin et al., 2009), panels from left to right show the

evolution of a region of dark matter through cosmic time, from z = 6.20 to z = 0.00 (present day). It

can be seen that the dark matter has merged gradually through time to produce the large central halo

and small satellite halos at z = 0.

provide gravitational over-densities for baryonic matter to coalesce within, which in turn form the

galaxies we observe. The CDM paradigm has been very successful in explaining a diverse range of

observations, including the accurate predictions of rotation curves of spiral galaxies (Begeman et al.,

1991). In addition, CDM simulations accurately reproduce the large scale structure in the Universe

(Springel et al., 2005). This structure is the observed grouping of galaxies and galaxy clusters into

filamentary over-densities, separated by voids in which luminous matter is relatively scarce (for exam-

ple, see Peacock et al., 2001).

Despite the progress made thus far, and the success of the hierarchical CDM paradigm, there remains

a great rift in our understanding of how luminous galaxies come to form within these CDM halos. In

particular, the formation of the various galaxy types that are observed in the present day evades a clear

explanation. Galaxies are typically separated into two broad categories; early-type (spheroidals) and

late-type (spirals), as was first illustrated by the Hubble ‘Tuning Fork’ shown in Figure 1.2 (Hubble,

1936). Early-type galaxies are, on average, more compact, redder, less morphologically complex (no

spiral arms, weak bars), and more massive than late-type galaxies. However, if galaxies form by simple

coalescence within a CDM halo, it is then unclear as to what physical processes determine the galaxy

type, or the observed variation in the present-day galaxy population. The number and relative size

of merger events since a galaxy’s assembly - its ‘merger history’ - is believed to play a key role in

the observed diversity in the present-day galaxy population. Due to the instability of a typical disk

in a late-type galaxy, it is believed that major mergers usually result in massive early-type galaxies

(Steinmetz & Navarro, 2002), since it would require very special geometric conditions to leave the disk

unperturbed. However, there has been recent evidence indicating that the orientation of the merger is

not the only concern. Through observations of the molecular gas content in merger remnants, Ueda
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Figure 1.2: A depiction of the Hubble Tuning Fork. This shows the diversity of galaxy types observed

in the present-day Universe. Early-type galaxies reside on the left, while late-type galaxies fill the right

side of the diagram.

et al. (2014) find that ‘wet’ mergers - major mergers of gas-rich progenitors - can result in the formation

of a gaseous disk. Martig & Bournaud (2010) find that the recycling of gas due to typical stellar

mass-loss mechanisms can induce growth in the disk. This is due mainly to star formation in the gas

that has remained in the ‘disk’ component following the galaxy’s earlier mergers (with the assistance

of cold gas accretion onto the disk). They find that this makes the disk less vulnerable to disruption by

subsequent merging, and they claim that this explains how we can observe disk galaxies in the present

day, despite those galaxies having gone through mergers. Steinmetz & Navarro (2002) have also found

that galaxies can re-form their disks post-merging by smooth gas accretion. Finally, simulations of

spiral-galaxy formation have shown that many different progenitor morphologies can lead to a spiral

galaxy, and that disk-dominated systems are typically accompanied by steady gas accretion (Martig

et al., 2012), supporting the findings of Steinmetz & Navarro (2002). These results indicate that

the merger history is not the only impacting factor, and that the mechanism that determines galaxy

type is a complex combination of various physical process, including gas kinematics and interactions,

stellar feedback processes, and of course gravitational interaction. Such processes are not not directly

addressed in the pure-CDM paradigm, and thus these aspects of galaxy formation remain unresolved.

1.2 Stellar Initial Mass Function

In an attempt to address many of these issues, attention has turned in recent times to the stellar Ini-

tial Mass Function (IMF). The IMF is an empirically-derived probability distribution function which

describes the distribution of stellar masses in a single star formation event. It is an important tool

in many areas of research in both theoretical and observational astrophysics. For instance, de Souza
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et al. (2014) model the expected rates of the supernova explosions of Population III stars (the first

generation of stars that formed from pure unenriched gas) in the early Universe. Since these stars have

never been detected directly, the authors argue that detection via their supernovae is the best strategy

with current technology. Their rate calculations are explicitly dependent on the assumed IMF, since

this will determine the number of stars of sufficient mass to cause a detectable supernova. They also

show that the rates of particular classes of supernovae can vary by up to a factor of 10 for different IMF

assumptions. Agertz et al. (2011) simulate the formation of disc galaxies, which includes treatment of

supernovae and stellar feedback processes. Their calculations of both stellar mass-loss and supernova

mass ejection similarly depend explicitly on the assumed IMF. Wilkins et al. (2008) characterise the

star formation rates of galaxies through cosmic time. The IMF in this context is necessary for deducing

stellar masses from the observations, which are then used to produce the star formation rates. As

can be seen, the IMF is important for an abundance of research areas, from stellar physics, to galaxy

formation and galaxy evolution.

The IMF is typically assumed to be a power law, and is expressed as

ξ (M) ≡
dn
dM

= k M−α (1.1)

where α is the normalisation, M is the stellar mass, n is the stellar count per differential mass range

M + dM , and k is the proportionality constant.

Alternatively, the IMF can be expressed as a function of logarithmic mass;

ξ
(
log10 (M)

)
≡

dN
d log10 (M)

= k M−Γ (1.2)

where N is now the stellar count per differential logarithmic mass range log10 (M) + d log10 (M).

The parameters of Eqs. 1.1 and 1.2, denoted here as α and Γ, respectively, are related by

α = Γ + 1

The IMF was initially defined in the form of Eq. 1.2 by Salpeter (1955), who observationally derived

values for Γ and k of 1.35 and 0.03, respectively. His study concluded that a single power law

characterised by these values was a good approximation to the real mass function within the range of
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Figure 1.3: The published IMFs of Salpeter, Kroupa, and Chabrier, normalised to give the same stellar

number density at 0.1 M�.

stellar masses −0.4 . log10
(
M

/
M�

)
. 1 (Salpeter, 1955). Subsequent studies introduced ranges of

masses with different exponents. For instance, the Kroupa (2001) IMF is defined piece-wise;

Γ (M) =




−0.7 0.01 < M
/
M� < 0.08

0.3 0.08 < M
/
M� < 0.5

1.3 M
/
M� > 0.5

(1.3)

The Chabrier (2003) IMF, given in Eq. 1.4, is also defined piece-wise, however the different mass bins

are described by entirely different functional forms.

ξ
(
log10 (M)

)
=




0.086
log10(M) exp

[
−

(log10(M)−log10(0.22))2

2×0.572

]
M

/
M� < 1

k M−1.3 M
/
M� > 1

(1.4)

The log-normal component of this definition (for M
/
M� < 1) is also similar to that originally proposed

by Miller & Scalo (1979). An illustration of some of the published IMF forms is given in Figure 1.3.

The IMF is of vital importance for the calculation of galaxy mass using the observed light, which

is itself of critical importance for understanding not just their formation, but galaxies in general. To

understand why the IMF is difficult to determine in galaxies, it is important to consider exactly what

is detected when observing an integrated stellar population - that is, when individual stars cannot be

resolved. Figure 1.4 (taken from Conroy & van Dokkum, 2012) illustrates the cumulative contribution
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Figure 1.4: The cumulative contribution as a function of stellar mass to the number of stars (bottom

left), mass in stars (top right), and bolometric luminosity (bottom right; with a log-linear version inset),

as found by Conroy & van Dokkum (2012). Four different IMFs were modelled (top left), using a

13.5 Gyr population with solar metallicity. The low-mass end dominates in both mass and number,

but contributes very little to the luminosity.

to the mass and luminosity of an integrated stellar population as a function of stellar mass, as modelled

by a 13.5 Gyr solar-metallicity population. It shows that in old populations, which is typically the

case in massive early-type galaxies, low-mass stars are the most numerous, and dominate the stellar

mass of the galaxy. However, they only contribute a small amount to the luminosity, which is instead

dominated by the high-mass population. Thus, the observation is itself dominated by the higher-mass

population, since it relies on the luminosity. In order to calculate the stellar mass of the galaxy, it is

necessary to infer the number of low-mass stars from measurements dominated by the higher-mass

population. Measuring stellar mass from such observations therefore depends heavily on the assumed

nature of the IMF. Thus, it is crucial to constrain the IMF forms given above, to ultimately explain how

stars form in such galaxies.
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1.2.1 Observational Constraints on the IMF

For direct measures of the IMF - that is, literally counting stars in resolved systems such as globular

clusters in theMilkyWay - binarity in stellar systems can skew the measured mass distribution (Bastian

et al., 2010). This arises simply because binaries are typically unresolved, and so appear as a single

star. Studies of the IMF, then, would include these systems as single stars with relatively high mass,

rather than counting the two lower-mass stars that the system is actually composed of. The result of

this is that extra weight is unduly given to the high-mass end of the IMF. To resolve this issue, attempts

have been made to correct IMF studies for the binary fraction. However, both the intrinsic binary

fraction and the detectability of the companion are seen to depend on stellar type (for example, see

Bastian et al., 2010; Lada, 2006, respectively). Thus, attempts to correct for the binary fraction are

complicated by this type-dependence.

Ideal observational targets for resolved IMF studies are those that have remained unchanged since their

formation (that is, have undergone no significant star formation), allowing for a direct measure of the

distribution of stellar masses. This is indeed the motivation for selecting globular clusters. However,

observations indicate that globular clusters can lose stars following dynamical interactions (Schilbach

& Röser, 2008). This means that measuring the present-day mass distribution would provide an inac-

curate measure of the IMF, even in systems that are passive (non-star-forming), and genuinely contain

only one stellar population. This poses a difficult problem for this type of study, as there is typically

very little evidence that such clusters have lost stars, or what the masses of those stars were.

The slope of the IMF depends in part on the number density of low-mass stars. However, these

stars radiate significantly less light compared to their higher-mass counterparts. This makes the IMF

particularly difficult to constrain via direct methods. Low-mass
(
M

/
M� < 0.3

)
stars have strong NaI

and Wing-Ford FeH emission lines, while these are weak or absent in higher-mass stars of the same

temperature (van Dokkum & Conroy, 2010), and so spectral information can be used to place very

strong constraints the presence of low-mass stars. However, the low-mass stars must be sufficiently

abundant in order to be detected in the spectra.

Stellar remnants such as black holes and neutron stars further complicate the issue. These types of

remnants originate frommassive stars, and so their number density contributes to the high-mass region

of the IMF. However, they radiate very little light, if any at all. Thus, a significant portion of the

high-mass population is unseen by observation because they have evolved into remnants, impacting

the measured number density of high-mass stars, and consequently the inferred IMF.
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By definition, the IMF traces a single star formation event. However, by the epoch of observation

(the present day), there has been sufficient time for galaxies to have completed multiple star formation

events. This produces complex star formation histories that make inferences of the IMF much more

difficult, since it then becomes necessary to separate populations into distinct formation events in order

to determine the contributions to the IMF, as opposed to the present-day mass function.

It is non-trivial to disentangle many of the complex evolutionary features in a population, such as

multiple star bursts, stellar ageing, and feedback processes. Thus it is clear that constraints on the IMF

via observations are difficult to obtain in practise, whatever method of investigation is adopted.

1.2.2 Universality

The most contentious aspect of the IMF is whether it is universal across space and time, or depends in

some way on galaxy parameters. A universal IMF has been the adopted norm since the IMF’s incep-

tion, though the evidence for non-universality is rapidly amassing. As discussed above, however, any

evidence for IMF variations or otherwise is particularly difficult to interpret, and is often riddled with

subtleties. Furthermore, since the direct (resolved systems) and indirect (integrated light) measure-

ments of the IMF are such distinct methodologies, comparison between the two is not straight-forward.

Evidence for variation has come solely from indirect methods, and so there has yet to be a consistent

comparison. Nevertheless, evidence both for and against is presented below to set the foundations on

which this project is built.

Studies of the Milky Way have provided strong evidence for a universal IMF (Kroupa, 2001, 2002).

Typical direct IMF methods study star clusters in the Milky Way. Star clusters are believed to form in a

single star-burst, and are hence appropriate for such IMF studies. However, only those clusters within

the Milky Way are fully resolvable, so these conclusions can not be compared to other environments.

Wyse (1997) studied environments outside the Milky Way by analysing heavy-element yields of Type

Ia and Type II supernovae, and their effect on the intracluster medium (ICM) of galaxy clusters. Of

course, the enrichment of the ICM depends on the number of massive stars that exploded as supernovae

and produced heavy elements. They modelled various IMF assumptions and found that, in order to

match observed abundances, a universal Salpeter IMF was favoured. More recently, work has been

done studying the impact of observed low-mass X-ray binaries on the IMF (Peacock et al., 2014). They

find that the number densities of these objects are roughly constant across nearby early-type galaxies

of various masses. This implies that the number densities of high-mass progenitors to these binaries,
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and subsequently the IMF, are also constant. However, as discussed above, the binary fraction is

difficult to handle, and the authors state that numbers of such binaries are poorly constrained (Peacock

et al., 2014). Further evidence for a universal IMF is based on, as mentioned above, the evolution of

globular clusters after their formation. Shanahan & Gieles (2015) model the expected effect on the

mass functions, taking into account this type of dynamical and stellar evolution. They find that after

a significant time, systems can evolve to have different observed mass distributions, even though they

were drawn from the same initial distribution, due to such things as differences in initial metallicities.

The observed M/L, for instance, has been observed to depend on metallicity (for example, see Strader

et al., 2009). Thus, if a comparison was made between two systems with different initial metallicities

using an IMF inference technique that relied on the observed M/L, a non-universal IMF would be

deduced, even if the two systems were in fact drawn from the same mass distribution. This argument,

however, can not rule out IMF variation; the authors only propose an alternate explanation for the

observations.

The evidence in favour of a varying IMF has accumulated significantly in recent years. Eisenhauer

(2001) have observed evolution of the IMF, based on analysis of the earliest star-burst galaxies in the

Universe. They claim that if the earliest galaxies were governed by the present-day Milky Way-like

IMF, there would have been too few high-mass stars to account for the enrichment of the gas content

in galaxy clusters observed in the present day. Thus, they conclude, the IMF in the early Universe

must have favoured more high-mass stars compared to the present-day IMF. Further evidence for the

evolution of the IMF has been found by van Dokkum (2008). They studied the effect of the IMF on

the evolution of the mass-to-light ratio (M/L). By observing early-type galaxies in a number of galaxy

clusters at redshifts 0.02 ≤ z ≤ 0.83, and characterising the evolution of the M/L, they find that an

IMF slope which is significantly flatter than that of a Salpeter (Γ < 1.35) is favoured at high redshift

(the high end of their redshift range). Conversely, the present-day Milky Way IMF is well-described

by a slope of Γ ∼ 1.35, and so this indicates an evolution of the slope of the IMF from early epochs

to the present day. Further evidence suggesting a time-dependent IMF has come from the analysis

of low-mass x-ray binary fractions (Weidner et al., 2013). Studying the NaI and Wing-Ford FeH

spectral features (which are particularly prevalent in very low-mass stars), van Dokkum & Conroy

(2012) have found evidence for IMF variation. Their study concluded that more massive early-type

galaxies are better described by more bottom-heavy IMFs, indicating a dependence of the IMF slope

on galaxy mass. Recently, Martín-Navarro et al. (2015) have found, from a sample of 24 ETGs, that the

IMF depends on metallicity, which itself varies between galaxies. They also posit that this metallicity

dependence is in fact the driver behind the observed IMF variation.
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1.2.3 Systematic Variation

Recently, Cappellari et al. (2012) have found strong trends of the IMF with galaxy mass. Their work

uses dynamical and spectral information, which are both integrated-light methods. Integrated-light

methods are used when the observed systems are unresolved, and so the observations are integrated

along the line-of-sight, meaning there is information only in two of the three spatial dimensions. The

aim of their work was to derive the ‘mis-match’ between the mass inferred from observation, and the

mass inferred by assuming a Salpeter IMF. They show that this mismatch increases with galaxy mass.

The authors define αdyn. ≡ (M/L)stars
/

(M/L)Salp to compute this mismatch. (M/L)stars is computed

from dynamical models. It is therefore affected by both the luminous and dark matter content of the

galaxy, which both contribute to the gravitational potential and hence the kinematics. (M/L)Salp, on the

other hand, is the M/L one would calculate by applying a Salpeter IMF to the observed light directly.

It is therefore affected only by the luminous component. With this definition, a value of αdyn. = 1

implies that the measured IMF is exactly a Salpeter. Given that it is defined using the power-law

(defined per unit mass) form of the IMF from Eq. 1.1, this implies that the value of the measured IMF

slope is α = −2.35. Any deviation from αdyn. = 1 could be attributed to either dark matter, shifting

(M/L)stars due to its contribution to the gravitational potential; to the Salpeter IMF, which may not

accurately represent the galaxy; or to a combination of these two effects. To disentangle variations

caused by dark matter from those caused by a variable IMF, various models were tested by Cappellari

et al. (2012) (defined in detail in Cappellari et al. (2013a)) which make different assumptions about

the dark matter halo. The key result of their work, given in Figure 1.5, is that the variations persist for

all treatments of dark matter. Thus, while some of the differences between dynamically-derived and

spectroscopically-derived masses could be caused by dark matter, it alone is insufficient to explain the

observations, and so IMF variation must be invoked.

The data used for this analysis is from the atlas3D survey (Cappellari et al., 2011). atlas3D collected

integral-field data of 260 local
(
D < 42 Mpc

)
early-type galaxies using the sauron (Bacon et al., 2001)

integral-field unit (IFU). The data provided by IFUs, so-called ‘data-cubes’, prove to be excellent for

unresolved IMF investigations. The three dimensions of the data cube include two spatial axes, and a

spectrum at every coordinate, which provide the spatially-resolved kinematics and stellar population

properties necessary for this type of study.

The modelling conducted to reach this result was based on a few key assumptions. Firstly, the galaxies

in the sample were assumed to be intrinsically axisymmetric oblate spheroids. The atlas3D sample

was selected based specifically on morphological type, and so this assumption is reasonable. Secondly,
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Figure 1.5: The systematic IMF trends found by Cappellari et al. (2012), for various models of the dark

matter halo (indicated in the bottom-right of each panel). The horizontal lines show where a galaxy

would lie if its IMF were of the indicated form, where x is the slope of the (linear) IMF. The points

are coloured by the effective velocity dispersion, σe. The black line is the spatially-averaged loess

(Cleveland, 1979) curve. Crucially, trends exist in all models.

the galaxies were assumed to have no spatial gradients in (M/L)Salp. As mentioned above, multiple

stellar populations can complicate inferences of the IMF. Thus, to avoid this issue, a subset of the

atlas3D sample was used for the results of Cappellari et al. (2012). The selection criterion for this

subset was that the observed H β absorption had sufficiently small spatial variation, which is interpreted

as small spatial variation in age. This is important for IMF deductions, and a consequence of this is

that the variation in (M/L)Salp should be equally small.

1.3 Mass-Density Profiles

Owing to the nature of the spatially-resolved kinematics measured by IFUs, it is possible to accurately

model the mass-density profiles of observed galaxies. These profiles can assist in placing constraints

on the IMF by providing accurate constraints on the dark matter content. Furthermore, computing

mass models of the observations in this way helps to constrain simulations of galaxy formation, which

must then produce galaxies with similar profiles. A typical mass-density profile is given in Figure 1.6.
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Figure 1.6: The total mass-density profile of NGC2685, computed by constructing a mass model from

an IFU observation, assuming a spherical total mass distribution.

It is modelled from an IFU observation, assuming a spherical total (stellar and dark matter) mass

distribution. The shape of this profile provides a lot of information regarding the contributions of

baryonic and non-baryonic matter as a function of radius.

1.3.1 Core-Cusp Problem

Recent cosmological simulations have predicted that mass-density profiles characterising the density of

pure-CDM halos should exhibit a ‘cusp’ in the central region - that is, a peak in density (for example,

see Ishiyama et al., 2013; Navarro et al., 2004). Conversely, mass-density profiles inferred from

observations indicate that these profiles should exhibit a ‘core’ towards this region - that is, a notable

plateau (for example, see Kuzio de Naray et al., 2008; Oh et al., 2008, 2011). This discrepancy, the

so-called ‘core-cusp’ problem, remains unresolved, and thus studying such mass-density profiles can

provide insight into the physics of both dark and luminous matter in the context of galaxy formation.

1.3.2 Bulge-Halo Conspiracy

From gravitational lensing studies (Bolton et al., 2006), it has recently emerged that the total mass-

density profiles have a very narrow distribution of slopes. This is the so-called “Bulge-Halo Conspir-

acy” Auger et al. (2010); Koopmans et al. (2009). The ‘conspiracy’ is that the luminous and dark

matter components of these galaxies appear to conspire in such a way as to consistently produce total

mass-density profiles with similar slope (resulting in the narrow distribution), apparently irrespective of

the individual luminous and dark matter profiles. The bulge-halo conspiracy was discovered from the

Sloan Lens Advanced Camera for Surveys (SLACS) project (Bolton et al., 2006). This work found that

the average slope of the total mass-density profile (within 1 Re) for a sample of early-type galaxies was
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〈γ′〉 = −2.078±0.027, with a remarkably low intrinsic scatter of∆γ′ = 0.16±0.02 (Auger et al., 2010).

For this result, the SLACS Survey observed 131 systems, of which 73 were confirmed to be strong

lenses (Auger et al., 2010). The lensing provides precise measurements of total enclosed mass (along

the line-of-sight), and so models of the total mass distribution were made using this data. For this

work, the distribution of orbital velocities within these systems was assumed to be completely uniform.

From these models, as well as Sloan Digital Sky Survey (SDSS) and Hubble Space Telescope (HST)

photometry, mass-density profiles were computed and analysed in order to draw conclusions about the

distribution of total mass-density profile slopes for their sample.

Further evidence in favour of a ‘bulge-halo conspiracy’ has recently come from a study out to larger

radii (∼ 4 Re) on a sample of 14 early-type galaxies, combining data from integral-field and long-slit

spectroscopy (Cappellari et al., 2015). By producing dynamical models of these data, which similarly

trace the total enclosed mass, they find comparable results, reporting 〈γ′〉 = 2.19 ± 0.03 with an

intrinsic scatter of ∆γ′ = 0.11.

However, there have not been many studies investigating the idea of the bulge-halo conspiracy, and

sample sizes are typically small. Yet, if it is corroborated by subsequent studies, a consistent total-mass

density profile slope across a broad range of galaxy masses, and possibly galaxy types, alludes to a

fundamental and universal property of galaxy formation that requires further investigation.

1.4 This Project

Themain aim of this work is to relax the assumption of spatially-constant (M/L)Salp from themodelling

conducted in § 1.2.3. The consequences of this are many-fold. Most obviously, it reduces the number

of assumptions in the modelling, producing more realistic results across the sample. Furthermore, it

may allow the sample size to be increased, by making it possible to include those galaxies within the

atlas3D sample which were initially excluded based on their H β absorption gradient. This is because

negligible age variation is no longer a requirement of the modelling, since it is taken into account by

the (M/L)Salp gradient. This in turn produces more robust statistics, and hence more reliable results.

Finally, it similarly makes it possible to apply these techniques to more general galaxy surveys, such

as SAMI (Croom et al., 2012) and MaNGA (Bundy et al., 2015), which contain all types of galaxies -

late-type and star-forming, for instance.
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In addition to improving the robustness of the modelling and exploring the implications of a non-

universal IMF, the total mass profiles can also be determined as a direct by-product of this work. In

addition to including the effects of spatially-varying stellar populations for the first time, this work will

determine the total, stellar, and dark matter mass profiles for an unprecedented number of galaxies,

observed and modelled in an accurate and homogeneous manner. This will provide strong constraints

on the validity of the bulge-halo conspiracy, and allow us to look for any additional dependency on

other galaxy parameters.



2
Common Methods

2.1 Models

2.1.1 Multi-Gaussian Expansions

The multi-Gaussian Expansion (MGE) formalism (Cappellari, 2002; Emsellem et al., 1994; Monnet

et al., 1992) is utilised for all methods in this work. The MGE process fits a series of Gaussians to the

observed isophotes of each galaxy. As a result, the parameters of the MGE are all projected quantities,

since the observations are themselves projected. This formalism provides an analytic description of

the light, in a form that is computationally straight-forward to manipulate. The MGEs used for this

work are those published by Scott et al. (2013). They are computed from SDSS r-band photometry,

and so all calculations that require the MGEs implicitly produce r-band parameters.

EachGaussian in anMGE is characterised by three projected parameters - the total countsTj , dispersion

σ j , and axis ratio q′j . An example fit using the MGE formalism is given in Figure 2.1 (Cappellari,

2002). Figure 2.2 (Scott et al., 2013) shows the Gaussians overlaid on the observed isophotes, and

Table 2.1 lists all of the parameters of this MGE. The axis ratio is dimensionless, and the dispersion is

measured in arcseconds. The units of the total counts depend on what the MGE is describing, however
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Figure 2.1: A typical 1D MGE fit to a density profile from Cappellari (2002). The top panel shows

the profile, and the series of Gaussians that compose the MGE. The bottom panel shows the absolute

error (curve), and the position of σ j for each of the Gaussians in the top panel (vertical lines).

Total Counts T [L� pc−2] Dispersion σ [′′] Axis Ratio q′

25616.793 0.31847133 0.446332

6343.7342 1.5463585 0.300000

2219.7921 1.5730268 0.592663

2168.1794 3.5394999 0.444292

428.49081 5.6308019 0.750000

616.28130 9.3102148 0.300000

75.582357 19.944932 0.750000

325.23933 21.505537 0.300000

37.826520 46.483032 0.730271

Table 2.1: The MGE parameters of NGC2685 from Scott et al. (2013).
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Figure 2.2: The observed isophotes and MGE of NGC2685 from Scott et al. (2013). The effects

of dust are clearly visible in the isophotes. The Gaussians from Table 2.1 are interpolated and the

reconstructed contours are plotted in increments of 1 mag arcsec−2.

it is always a projected quantity. The MGEs from Scott et al. (2013) describe the intrinsic luminosity,

and so they are in units of surface brightness, [L� pc−2]. It is often the case that MGEs are used to

describe the intrinsic mass (see § 2.1.2), and in this case the MGEs are in units of mass surface density,

[M� pc−2].

2.1.2 Jeans Anisotropic MGE Modelling

The Jeans Anisotropic MGE (JAM) technique (Cappellari, 2008) is used to model the kinematics of

each galaxy. Specifically, JAM attempts to predict the moments of the velocity distribution at every

location in the spatially-resolved IFU data, using the Jeans equations. To do this, the Jeans equations

are integrated and simplified to described the velocity moments of a galaxy, given a parametrisation

of both the stellar and total density. The reader is pointed to Cappellari (2008) for the mathematical

derivation of the JAM formalism that is used in this work. The simplifying assumptions adopted for

the JAM models used in this work are: (i) the orientation of the velocity ellipsoid is aligned with the

cylindrical coordinate system (R, z, φ) (ii) the galaxies are axisymmetric, eliminating an entire Jeans

equation (in the vφ direction) (iii) the anisotropy of the velocity ellipsoid, which quantifies the departure
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Figure 2.3: The best-fit JAM model for the RMS velocity field of NGC2685. The left panel is the

RMS velocity computed directly from the atlas3D data cube, according to VRMS =
√

V 2 + σ2 , where

V is the mean stellar velocity and σ is the stellar velocity dispersion, as in Cappellari et al. (2013a).

The isophotes from the observations are overlaid. The right panel is the best-fitting JAM model. The

MGE is used to compute analytic isophotes, which are overlaid here in increments of 1 magnitude.

from an isotropic orbital distribution, is constant, and defined as

βz ≡ 1 −
σz

σR
(2.1)

for the vertical and tangential velocity dispersion, σz and σR, respectively. The parametrisation used

for both the stellar and total density in themodel computed here is theMGE formalism. The JAMmodel

requires two sets of MGEs - one describing the light distribution of the kinematic tracer (in [L� pc−2]),

and one describing the gravitational potential (in [M� pc−2]), where the gravitational potential MGE is

computed by assuming an intrinsic mass density profile and projecting onto the observation. These two

MGE models are completely independent, however, and are free to have different shapes and numbers

of Gaussians. Of all the velocity moments predicted by JAM, we focus here on the Root Mean Squared

(RMS) velocity, which is defined as VRMS =
√

V 2 + σ2 , for mean stellar velocity V and stellar velocity

dispersion σ. The result of a typical JAM model is presented in Figure 2.3.

2.1.3 Stellar Templates

Single Stellar Population (SSP) templates are used to compute the (M/L)Salp profiles, thereby re-

laxing the assumption of constant (M/L)Salp. The specific templates used here are those from the

MIUSCAT library (Vazdekis et al., 2012). This library includes templates with broad ranges of age(
0.063 − 17.78 Gyr

)
and metallicity (metal fraction Z range is 0.0004 − 0.03). The templates that

comprise the library are model spectra, assigned an age and metallicity. Each spectrum is designed to



2.1 Models 19

Figure 2.4: The spectrum (black) from one spaxel of the sauron detector, and the best-fit linear

combination of templates (red) from pPXF for NGC2685. The green points are the residuals of the fit.

mimic the integrated light of a mass-complete population of stars with the particular age and metal-

licity of the template. The library covers a wavelength range of 3465 − 9469 Å, which comfortably

includes the sauron spectral range of 4810 − 5400 Å. The extraction of the (M/L)Salp maps is done

as per McDermid et al. (2015), which is conducted as follows. Each template in the library includes

tabulated data of both the mass and luminosity contained in stars and stellar remnants for its specific

age and metallicity. For this work, the relative contributions of the stars and remnants are dictated by

a Salpeter IMF. The first step of computing the (M/L)Salp profile is to fit the MIUSCAT templates

to the spectra from the IFU. The fits are made using the penalised pixel-fitting (pPXF) procedure of

Cappellari & Emsellem (2004). This procedure attempts to parametrically recover the line-of-sight

velocity distributions for each galaxy, by fitting template SSPs to the observed spectra adopting a

penalised likelihood. The best-fitting model spectrum is used to determine the velocity moments,

while the specific combination of template SSPs that the model spectrum was composed of provides

information on the relative amounts of ages and metallicities present in the population. An example of

this fit is presented in Figure 2.4.

The weights of the fit from pPXF, which are the coefficients of the linear combination of templates,

dictate the relative contributions of each template to the model spectrum, in effect describing the pro-

portion of stars in the galaxy with that age and metallicity. By scaling the tabulated mass of a particular

template by its corresponding weight from the fit, the total mass contained in stars and remnants of

that age and metallicity is determined. This is repeated for all templates with non-zero weights. A

map of weights for the full parameter space of the MIUSCAT library is given in Figure 2.5. In addition

to computing the total mass from these templates, we compute the total luminosity by scaling the

tabulated luminosity of each template by its corresponding weight. The ratio of the total mass to the

total luminosity is the (M/L)Salp for that particular data bin. In this way, the two-dimensional spatial
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Figure 2.5: The weights from the fits of the atlas3D spectra for NGC2685 to the MIUSCAT template

library. The plot shows the entire range of the MIUSCAT library, in both age and metallicity. A bright

region indicates that templates from the library with that corresponding age and metallicity have high

weighting from the fit. This implies that there is a high fraction of the population with this age and

metallicity. Dark regions indicate low or zero weighting for the corresponding templates. According

to this figure, then, the majority of stars in NGC2685 formed ∼ 10 Gyr ago, with approximately solar

metallicity.

distribution of (M/L)Salp is built up by computing this fit in every bin. The data is binned such that

the signal-to-noise (S/N) in every bin exceeds a value of 100. As a result, a bin in the outer regions

would likely include more spaxels of the IFU detector than a bin in the central region. Figure 2.6 is a

typical (M/L)Salp map created from fitting the SSP templates. The (M/L)Salp profile is then extracted

directly from this map.

This is a degenerate process, since many different combinations of templates could reproduce the data

equally well. To break this degeneracy, a regularisation is applied to the solutions. This regulari-

sation preferentially selects ‘smooth’ solutions, which are those where the weights of the templates

change gradually with age and metallicity. This regularisation does not prohibit non-smooth solutions,

which may represent intense and short-lived star-bursts in the population. However, if two different

combinations of templates reproduce the spectra equally-well, the smoothest solution will be adopted.
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Figure 2.6: The spatially-resolved map of (M/L)Salp for NGC2685 derived from the best-fitting

templates from pPXF.

2.2 Optimisation

Amajor obstacle for interpreting kinematic data (in particular that of early-type galaxies) is deprojecting

the two-dimensional image from the detector into a three-dimensional representation of the galaxy.

This is a highly degenerate process. It is clear that early-type galaxies can be either thin and heavily

inclined or thick and not inclined, and be indistinguishable by observations. Lifting this degeneracy

requires some assumptions to be made about the intrinsic shape of the galaxy. For this work, as

in § 1.2.3, this is assumed to be an axisymmetric oblate spheroid. This assumption allows for the

determination of an inclination, since projection effects have an impact along only one of the galaxy’s

axes. Adding to this degeneracy is the issue of the vertical anisotropy, βz. Since the galaxy can be fit

for various values of anisotropy and inclination, it is necessary to find the optimal combination in a

quantitative framework.

2.2.1 Least-Squares Fitting

The initial optimisation is done by finding the least-squares fit from a grid of plausible inclination and

anisotropy values. Least-squares fitting requires the minimisation of the parameter χ2, defined as

χ2 =
∑

k

(
dk − mk

(
i, βz

)
ε k

)2
(2.2)

where dk are the data points, mk are the model values for a specific choice of inclination, i, and vertical

anisotropy, βz, and ε k are the residuals of the fit. Thus, a two-dimensional grid of i and βz values is
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iterated over, and the χ2 is computed for each fit. For this work, the data ranges were sampled linearly

in βz, and intrinsic axis ratio, q. The intrinsic and projected axis ratios, q and q′, respectively, are

related to inclination as follows

q2 =

(
q′

)2
− cos2 (i)

sin2 (i)
(2.3)

The coordinate in this parameter space that results in the smallest χ2 is deemed the best-fitting set of

parameters.

To ensure this set-up produces valid results, these fits are compared directly to values in the literature.

Cappellari (2008) present their least-squares fitting of four galaxies from the atlas3D sample. A

direct comparison is presented in Figure 2.7. The purpose of these plots is locating the position of

the minima, and while the two works do in fact agree within errors in most instances, there are some

obvious differences between them that require explanation.

The differences between the two works could have arisen from many different sources. For instance,

it is necessary to interpolate between the discrete points of the grid in order to produce the smooth,

continuous surface. However, there are a number of interpolation methods - linear, cubic, nearest-

neighbour, for instance - that could be used here, and this has the potential to produce slightly varied

results.

Other caveats, based on more physical arguments, could also help explain these differences. NGC0524

for instance, was determined to be close to face-on (i = 20 ± 5 °) based on thin dust disks (Cappellari

et al., 2006). This means that there is a wide range of inclinations that can match the photometry, with

varied levels of galaxy ‘thickness’. As a result, the 3-σ contour encloses a 60° range, and so variation

between this work and Cappellari (2008) is expected. The determination of the anisotropy, however,

is evidently less degenerate and consequently better reproduced in this work. If one further introduces

the observationally-motivated (Cappellari, 2008) constraint that βz & 0.05, then it can be seen that the

physically-realistic minimum for NGC0524 is
(
βz, i

)
= (0.05, 18°), which agrees well with that found

by Cappellari (2008), as well as the inclination determined from dust morphology. This is similarly the

case for the other objects with minima in the region βz < 0.05. With this consideration, the agreement

between the two works is very good.

2.2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) Bayesian inference techniques are implemented here to more

accurately optimise the free parameters, and better characterise the errors of the optimisation, compared
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(a) NGC0524

(b) NGC2974

(c) NGC4150
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(d) NGC4459

Figure 2.7: A comparison between this work (left column) and Cappellari (2008) (right column) of

the χ2 surface from least-squares fitting. The surface is created by computing a JAM model at each of

the points in the underlying grid. This grid is constructed by sampling linearly in βz and q, which is

the reason for the non-linear sampling in i.

to the Least-Squares fitting. MCMC is a fundamentally-probabilistic inference technique, used to draw

random samples from a complex distribution where direct sampling is difficult or intractable. In this

work, we use these random samples to approximate the distribution itself, from which we extract

the sets of parameters that produce the best-fitting model. Since MCMC maximises likelihood, and

consequently minimises the χ2, for consistency and clarity these sets of parameters will be termed

optima, rather than minima or maxima. While the difference between the MCMC and Least-Squares

fitting methods may be small in a two-dimensional space, the advantages of MCMC become clear as

the dimensionality of the parameter space increases, as will be the case in later stages of this work.

Markov Chains

Markov Chains are random processes that are subjected to transitions between states of a parameter

space. The defining property of a Markov Chain is that the probability distribution of the current state

must depend only on that of the previous state. However, the Markov Chains used for MCMC require

a few additional constraints. They must be aperiodic, so that there is no cyclic behaviour in a finite

number of transitions. They must also be irreducible, so that it is possible to move from one state

to any other state in the space in a finite number of transitions. Irreducibility and aperiodicity are

illustrated in Figures 2.8 and 2.9 (from Sandberg, 2007), respectively. The Si states in the context of
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Figure 2.8: An illustration of irreducibility in Markov Chains. It is clear that all states are accessible

only in the right-hand chain, and so it is irreducible.

Figure 2.9: An illustration of aperiodicity in Markov Chains. Observe that the Markov Chain depicted

by the left-hand chain is [S1, S2, S1, S2, . . .]. This is clearly periodic, with period 2. The right-hand

chain is aperiodic, since from state S1, the chain can either move to S2 or remain at S1, and this decision

is non-deterministic.

this work are simply coordinates in the (βz, i) space, while arrows represent non-zero probabilities of

making the transition in the direction illustrated.

After many iterations, the chain will converge to its so-called equilibrium, or ‘posterior’, distribution.

Crucially, as a result of the above constraints on the Markov Chain, it is guaranteed to reach this

distribution, regardless of its initial position, within a finite number of transitions. The characterisation

of this distribution is indeed the primary use of Markov Chains, and in the context of this work, we use

this distribution to determine the optimal parameters and associated errors.

Priors

MCMC requires certain input known as “priors”. Priors, denoted here as P(model), are probability

distribution functions that are specified for each parameter by the user, based on some a priori

knowledge. In MCMC, the Markov Chain posterior distribution is characterised both by the priors and

the distribution of the samples taken during the process. After each iteration of the chain, a decision is

made by the Monte Carlo ‘walker’ as to which direction within the parameter space it will move. The

‘likelihood’, denoted P(data|model), of the current state will determine the probability of accepting

the new location, whereby states with a high likelihood have a high probability of being accepted.

However, acceptance is inherently non-deterministic, since it is based solely on probabilities. Should
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the current state be rejected, the walker will return to the previous state and branch off in a different

direction. The posterior distribution, P(model|data), is then estimated using Eq. 2.4 (Cappellari et al.,

2013a):

P(model|data) ∝ P(data|model) · P(model) (2.4)

Thus, the prior distribution (in general) contributes to the calculation of the direction and size of each

step within the parameter space. Following convergence of the chain to its posterior distribution,

the coordinate with the highest likelihood is selected as the optimal set of parameters. Using this

approach, the regions in which the likelihood is small are avoided (to save computational time), while

those regions with a high likelihood are sampled very finely to most-accurately locate the position of

the optimal solution, as well improve MCMC’s approximation to the posterior distribution.

For this work, flat priors were used for all free parameters. This means that any value within the limits

of the parameter space has equal likelihood of occurring. Of course, this is only the case prior to

the chain beginning. These priors are assumed simply because there is no physical reason why some

region of the parameter space should be favoured over others, given the data set that is used for this

work.

Posterior Distributions

Typical output of MCMC, characterising the posterior distribution for the 2-dimensional optimisation

described above, is shown in Figure 2.10. A known potential pitfall of the MCMC process is the

possibility of the walkers falling into a local optimum, rather than the global one, which skews the ap-

proximation of the posterior distribution. While the properties of the Markov Chains used for MCMC

state that the global optimum will be reached after a finite number of steps, this is not necessarily a

small number. As such, it is possible for the process to be terminated prior to this convergence, leaving

the walker in the local optimum. To avoid this issue, we set the number of Monte Carlo walkers to 30,

which is relatively high given the dimensionality of the space we are optimising within. The reason

for this is that even if one walker was to probe a local optimum for the entire process, it is exceedingly

unlikely that all walkers will follow this path, given the inherently-random nature of Monte Carlo

sampling. This assists in probing the posterior distribution more thoroughly.

As with any statistical process, the approximation by MCMC to the ‘true’ posterior distribution of

the Markov Chain improves with increasing total iterations of the MCMC process. Ideally, then, one

should opt for the maximum number of iterations possible. However, in order to include more walkers

(as above), and given the size of the atlas3D sample, the total number of iterations is kept modest
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Figure 2.10: Output from the MCMC process for NGC2685. The histograms represent MCMC’s

approximation to the posterior distribution of the Markov Chain for each parameter. The corner panel

shows the correlation between the parameters. The dots are coloured according to their likelihood

- black (minimum likelihood) to white (maximum likelihood). The evenly-spaced grid of points

overplotted in black shows the initial trial points. This grid was sampled manually prior to the

commencement of MCMC, and the point with the highest likelihood was set as the initial position of

the MCMC walkers.

to keep the total computation time realistic. To compensate, the entire parameter space is coarsely

sampled using the evenly-spaced grid visible in Figure 2.10, prior to the commencement of MCMC.

The walkers are then started at the point of the grid with the highest likelihood. This reduces the

number of ‘wasted’ iterations that would have occurred in regions of very low likelihood. For each

galaxy, each of the 30 walkers conducted 800 iterations, giving a cumulative total of 24, 000 steps.

This is shown to be sufficient for convergence, given the smooth and clearly-defined distributions such

as those in Figure 2.10.

Table 2.2 directly compares the optima, as determined by Least-Squares and MCMC techniques, for

NGC2685. Given that MCMC can probe the space on finer scales, provides estimates of the errors,

and is much more effective at handling higher-dimensional spaces, it is the clear choice for this work,

and is subsequently used for all such parameter inferences.
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Least-Squares MCMC

βz −0.2500 −0.2510 ± 0.0192

i 77.9683 77.7147 ± 0.2901

Table 2.2: The optimal solutions as determined by Least-Squares andMCMC optimisation techniques,

for NGC2685. The input data are identical. The clear advantages of MCMC are being able to sample

‘in between’ the rigid grid points of Least-Squares, and estimating the uncertainties.

Implementation

The actualMCMC computation is done in Python, using an implementation of theMetropolis-Hastings

algorithm (Hastings, 1970) termed emcee (Foreman-Mackey et al., 2013). Another package, pyMC

(Fonnesbeck et al., 2015), was also trialled, however there are a few technical differences that made

emcee the preferred package. For instance, the optimum in pyMC is taken as the mean of the posterior

distribution after the total number of iterations. However, this method tends to depend on the amount

of “burn-in” specified. The burn-in in MCMC is the number of iterations that are removed from the

start of the chain. This is done to remove any effects of both the initial position of the walkers (which

may or may not be arbitrarily specified), as well as the initial transitions, which are likely to be far from

the optimum. These iterations would clearly skew the posterior distribution away from the optimum,

so burn-in is recommended. However, there is no clear prescription for how many iterations to burn.

In addition, pyMC sends one Monte Carlo walker to conduct the total number of iterations, while

many walkers are desired for reasons previously stated. In addition to avoiding local optima, using

many walkers with emcee allows for effective multi-threading (since each walker’s path is completely

independent of the others) which dramatically reduces computation time. Thus, to remove the depen-

dence on burn-in and include many walkers, emcee is used throughout this work. emcee simply selects

that coordinate with the highest likelihood, which clearly has no dependence on any other iteration,

including the initial few. It also allows for the specification of the number of walkers to divide the total

number of iterations amongst.

The correlation panel in Figure 2.10 shows the full range of each parameter that could have been

probed by the MCMC walker (plus some numerical padding for aesthetics only). The limits for βz

are set at ±0.5. Anisotropies of this magnitude are quite extreme, and we observe that the Monte

Carlo walkers do not approach these limits in realistic models. However, they are set as such to give

the walkers sufficient freedom. The inclination bounds need to be set dynamically for each galaxy.

The JAM model requires that the minimum (intrinsic) axis ratio qmin ≥ 0.05. To find the minimum

inclination bound, we consider the flattest projected axis ratio in the MGE. In the definition of Scott
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et al. (2013), the flattest axis ratio corresponds to the minimum value from Column (3) of Table 2.1,

which in turn sets the minimum for how face-on the galaxy can be. Mathematically, we solve Eq. 2.3

for imin by setting q′ to the flattest projected axis ratio and q = 0.05. The maximum inclination is set

to 90°, which corresponds to a completely edge-on galaxy.

2.3 Mass-follows-Light

We present here our JAM models of the full atlas3D sample, without yet introducing the (M/L)Salp

gradient. We do this to verify our optimisation and modelling process, as well as to provide the

benchmark for which we compare later results to. For this benchmark, the mass is assumed to follow

the light exactly, which corresponds to Model (A) from Cappellari et al. (2013a). This assumption

implies that the MGEs for the light and gravitational potential are identical. Dark matter is not

disregarded in this way, but rather it is assumed to be spatially distributed exactly like the luminous

matter. Within 1 Re, which is approximately the extent of the atlas3D data, this is a reasonable

assumption, since the baryonic matter is believed to dominate in this region (Cappellari et al., 2013a).

When conducting the JAM fit, the central 2′′ is excluded from the fit to avoid any bias to the observed

velocity distribution of the inner-most stars due to the presence of a supermassive black hole with

uncertain mass (though a point mass is included in our models to account for this black hole, with mass

derived from the relation of Ferrarese & Merritt (2000)). This region is excluded throughout this work

for all JAM models produced. Our initial benchmark and comparison to the literature is presented in

Figure 2.11.

As can be seen, the agreement between our models and those of Cappellari et al. (2012) is very good.

It is clear that for the lower-mass galaxies, the dynamical masses inferred from modelling agree well

with Chabrier- or Kroupa-like IMF slopes, while intermediate-mass galaxies prefer a Salpeter-like

slope. The heaviest galaxies tend towards ‘heavier’ IMF slopes. Since αdyn. is a mass normalisation,

we know only that the inferred slope of the IMF for these galaxies is significantly deviant from that of a

Salpeter. Galaxies in this mass range could be described by either a bottom-heavy IMF, where there is

an abundance of low-mass stars, or a top-heavy IMF, which contains the remnants of high-mass stars.

Thus, the blue line is degenerate in slope between α = −2.8 and α = −1.5. Indeed, this may explain

why there is a comparatively broad range of galaxy masses with αdyn. ∼ 1.5. In addition to the general

trend of αdyn., the trend in velocity dispersion is matched equally well in our work.

While Figure 2.11 provides a convenient visual comparison, it shows only that the two works agree on
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Figure 2.11: A comparison of the variation in the IMF mis-match parameter αdyn. between this work

(left panel) and Cappellari et al. (2012) (right panel). The horizontal lines mark various power-law

IMFs, with slopes of Chabrier (red dot-dashed line), Kroupa (green dashed line), Salpeter (magenta

solid line), and either −2.8 or −1.5 (blue dotted line). The data points are coloured by effective velocity

dispersion, σe.

average - that is, the qualitative trends match. A quantitative comparison is presented in Figure 2.12,

where the published values of (M/L)stars from Cappellari et al. (2013a) (Column (6), Table 1) are

compared directly to the values determined by this work. The agreement here is excellent. From the

coefficients of the straight-line fit, it can be seen that deviations from an ideal correlation are less than

1%. Points denoted by × are those which have a data quality of 0 as listed in Column (8) of Table 1 in

Cappellari et al. (2013a). A data quality of zero indicates that the IFU data contains any combination

of low (S/N ), prominent bar or dust features, or usual kinematic features such as counter-rotating

components. These factors negatively affect the JAM model, and these objects are hence excluded

from conclusions drawn. Such objects are consistently represented by × symbols throughout this work.

The main goal of our work is to take into account the effects of stellar population variations on the

results of Cappellari et al. (2012). Having matched their results adequately with our own modelling,

we now introduce these effects in the form of a (M/L)Salp gradient. To observe its effect on the IMF,

we thus attempt to reproduce Figure 2.11 in both the Scaled Potential (Chapter 3) and General Power

Law (Chapter 4) methods, in order to compare and contrast with our benchmark.
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Figure 2.12: A direct, quantitative comparison of the (M/L)stars between Cappellari et al. (2013a) and

this work for the mass-follows-light model. The figure was made using the lts_linefit procedure of

Cappellari et al. (2013a). The green diamonds are those points which are automatically excluded by

lts_linefit from the fitting process. All blue and green points have error bars. The black line is the

best-fitting line of the general form y = a + b (x − x0) (with x0 = 0 in this case, and a and b inset).

The dashed and dotted red lines are the 1- and 2.6-σ ranges, respectively (enclosing 68% and 99% of

the values, respectively). εy is the intrinsic scatter, and ∆ is the observed scatter. Points with quality 0

are overplotted, but excluded from the fit.
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3
Scaled Potential

3.1 Methodology

In our first approach to incorporate the effects of spatial variations in the stellar populations, and

consequently in the stellar M/L, the MGE describing the gravitational potential is scaled by the

measured M/L at every spatial location. We thus refer to this as the Scaled Potential method. In order

to compute the scaling values, we convert the two-dimensional map of (M/L)Salp given in Figure 2.6

into a one-dimensional profile. To do this, the map is parametrised on elliptical annuli aligned with

the kinematic position angle, as measured by Krajnović et al. (2011). The annulus that will scale the

j-th Gaussian has a radius of σ j , with a maximum thickness of 3′′. Here, we have equated the physical

radius to the dispersion of the Gaussians. To justify this, note that the j-th Gaussian contributes

maximally at σ j . As a result, it is reasonable to set σ ≈ r . The thickness is reduced for consecutive

Gaussians that are less than 3′′ apart, to produce contiguous annuli with the common border half-way

between the two dispersion values. The j-th annulus has ellipticity 1 − q′j , to ensure the shape of the

annuli match the Gaussians of the MGE. The profile is then composed of the mean (M/L)Salp values

within each of the annuli. Thus, the scaling of the j-th Gaussian occurs as follows:

T ′j = Tj × (M/L)Salp (σ j ) (3.1)
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Figure 3.1: The (M/L)Salp profile of NGC2685. Each data point is the mean value of the annulus of

radius σ j . The error bars are computed from the standard deviation of the (M/L)Salp values within

each annulus. The black dashed line is the luminosity-weighted constant (M/L)Salp (Cappellari et al.,

2013b) that is assumed for our initial benchmark in § 2.3.

where T ′j and Tj are the scaled and unscaled total counts, respectively, of the j-th Gaussian, and

(M/L)Salp(σ j ) is the value of the profile at σ j . Crucially, the Gaussians referred to here are only from

the MGE that describes the gravitational potential, since of course the light remains unchanged. It can

be seen that Eq. 3.1 is effectively converting a surface brightness [L� pc−2] into a mass surface density

[M� pc−2].

A typical (M/L)Salp profile is given in Figure 3.1. It is clear from the profile that the spatial variation

in the stellar M/L is significant. It has been shown that changes in the stellar M/L are closely

linked to variations in age and metallicity within the stellar population (Kuntschner et al., 2010). In

particular, metallicity is seen to decline with galactic radius (for example, see Forbes et al., 2011;

La Barbera et al., 2012). Metallicity affects the opacity of the stars, which in turn directly impacts

the observed luminosity. Thus, for decreasing metallicity, the measured L is increased due to lower

opacity, subsequently reducing M/L in agreement with the general trend presented in Figure 3.1. It

should be noted that the discontinuities present in the figure are simply plotting artefacts, since the

MGE is computed at discrete locations. Following the scaling by this profile, both MGEs are given to

JAM, and the modelling proceeds as it did in § 2.3. Since the only aspect of the models we change

here is the introduction of the (M/L)Salp profile, we emphasise that this is still under the assumption

of mass-follows-light.
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Figure 3.2: The observed variation of αdyn. for the Scaled Potential method (right panel) contrasted

with the initial benchmark (left panel). Note the elevation of αdyn. in this method compared to mass-

follows-light, and the increased gradient of the trend at high mass. Crucially, the IMF is still required

to vary systematically, even taking the spatial variations in stellar populations into account.

3.2 Results & Discussion

The variation of αdyn. with (M/L)stars as computing using the Scaled Potential method is presented in

Figure 3.2. The most obvious conclusion from this result is that the systematic variation published by

Cappellari et al. (2012) is not removed by accounting for radial variations in the stellar M/L, which

are due to age and metallicity variations. This further strengthens evidence for a non-universal IMF.

In addition, Figure 3.2 shows a general shift to higher αdyn., compared to Figure 2.11. The luminosity-

weighted spatially-constant (M/L)Salp value that was assumed for the mass-follows-light method is

shown in Figure 3.1. The M/L from the central regions dominate the computation of this value,

because they contribute more light compared to the outer regions. However, it can be seen that the

outer values are relatively low, which are believed to be the result of (in general) lower metallicities in

the outer regions (Kuntschner et al., 2010). Specifically, these outer values are lower than the constant

(M/L)Salp value. Since in the Scaled Potential method we no longer compute a single average, but

rather multiple values at various radii, the outer regions have a more significant impact on the model.

The net result is that (M/L)Salp is reduced, with respect to the values in the mass-follows-light models,

consequently increasing αdyn.. The magnitude of this shift would depend on the (M/L)Salp profile

itself, which of course varies between galaxies. In addition to the elevation, Figure 3.2 appears to show

a steeper trend, in particular in the low-mass region, when compared to Figure 2.11. We note that the
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colours of the points represent the central velocity dispersion of each galaxy, and show a weak trend of

increasing mass normalisation, αdyn., for increasing velocity dispersion, as found by others (Cappellari

et al., 2013a; La Barbera et al., 2013; Spiniello et al., 2014).

There are a number of areas in which this method could be refined. For instance, since the stellar

MGEs are computed from SDSS images, they are significantly more extended than the sauron field.

This poses an issue regarding the computation of, and scaling by, the (M/L)Salp profile. The profiles

are computed from the sauron data, and so the outer-most Gaussians of the MGE do not have corre-

sponding annuli in the (M/L)Salp map. To resolve this issue for this work, all the Gaussians outside the

sauron field were scaled by the (M/L)Salp value of the outer-most annulus. This was done to avoid

complex curve-fitting, since these (M/L)Salp profiles are in general neither monotonic nor a straight-

line gradient. In addition, the spacing of the dispersion values of the Gaussians is often very irregular,

further complicating attempts to fit curves. One possible resolution to this issue would be taking data

using IFUs with larger fields. This is currently undergoing development, in fact, with instruments

such as muse (Bacon et al., 2010) recently acquiring first-light. Alternatively, dynamical models have

been made by combining current IFU observations of central regions with long-slit spectroscopy of

the outer regions (Cappellari et al., 2015), to probe the galaxies on scales more akin to the extent of

the MGEs.



4
General Power Law

4.1 Methodology

The mass-follows-light and Scaled Potential methods utilise Model (A) of Cappellari et al. (2013a),

which assumes any darkmatter that may be present follows the same spatial distribution as the observed

luminosity. For this method, however, we make use of Model (D), which is composed of a JAMmodel

with a generalised spherical Navarro, Frenk, andWhite (NFW) dark matter halo (Navarro et al., 1996),

in addition to the stellar component. An NFW halo profile is a broken power law with a slope of −1

for the inner region, and −3 for the outer region. However, it has been seen that attempting to describe

both baryonic and dark matter can result in predictions of densities in the inner region that do not match

observations. For instance, Gnedin et al. (2004) explain that the difference in geometry of the dark and

baryonic components can lead to an overprediction of the inner dark matter densities. This is the result

of the dark component typically being treated by assuming adiabatic contraction (on spherical shells),

while the baryons are subject to violent (highly-elliptical) mergers within these haloes. Thus, in order

to describe the total (stellar plus dark) mass distribution in our galaxies, we adopt the generalised

total mass-density power law presented by Wyithe et al. (2001) (based on the analytic models of Zhao

(1996)). We thus refer to this approach as the General Power Law method. Given in Eq. 4.1, and

illustrated in Figure 1.6, the use of this power law in the context of our work is motivated by the work
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of Barnabè et al. (2012) and Cappellari et al. (2015).

ρTot. (r) =
ρs

2

(
r
rs

)γ′ (
1 +

r
rs

)−γ′−3
(4.1)

where rs is the break radius, ρs is the density at the break radius, and γ′ is the slope of the profile. This

break radius is that at which the density profile is exactly isothermal (ρ(r) ∝ r−2). The “generality” of

this power law arises from the fact that it allows for a central region with a slope that is distinct from

(though not independent of) the outer one. For this work, rs is held fixed at 20 kpc. This is the optimal

value found by Cappellari et al. (2013a), who also show that, since the extent of the data is always

significantly less than 20 kpc, fitting for this parameter has a negligible effect on the results.

Using similar MCMC techniques to those described in § 2.2.2, the free parameters of this profile,

log10
(
ρs

)
and γ′, are optimised by finding the best-fit JAMmodel to the atlas3D kinematics. We thus

have four free parameters for this method, (βz, i, log10
(
ρs

)
, γ′), requiring MCMC optimisation within

a four-dimensional space. An example of this optimisation is presented in Figure 4.1.

In this expanded parameter space, at each iteration of MCMC, the current values of γ′ and log10
(
ρs

)
are used to create a new MGE model for the gravitational potential using the mge_fit_1d procedure

of Cappellari (2002). This MGE is then, along with the unscaled stellar MGE, passed to JAM to fit to

the kinematics and compute the likelihood of that coordinate.

The ranges of βz and i remain identical to those used in previous methods. The limits on log10
(
ρs

)
are

set to ±6. Like βz, we do not observed such extreme values in our models, and thus they are set as such

to provide sufficient freedom to the Monte Carlo walkers. γ′ is bounded between −4 ≤ γ′ ≤ 0. The

upper bound of 0 is set because it is physically unreasonable to allow for the total density to increase

with radius. Slopes steeper than −4 are similarly never observed in any of our realistic models.

Following the convergence of MCMC, the most likely values of γ′ and ρs are inserted into Eq. 4.1

to construct the best-fitting total mass-density profile. Since the main objective of this work is to

constrain the IMF, it is necessary at this stage to decompose this profile into its stellar and dark matter

components. Note that a key advantage of this General Power Law approach is that since the stellar

MGE is fed to JAM unscaled, and the subsequent decomposition is conducted only on the region

2′′ ≤ r ≤ rmax, what happens to the stellar M/L outside this range is of no consequence. Whereas for

the Scaled Potential method, the (M/L)Salp profile was extrapolated beyond the spectral data, for the

General Power Law method, the stellar M/L beyond the region considered in the decomposition can

be explicitly ignored, and therefore has no influence on the IMF and dark matter fraction inferred for
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Figure 4.1: Typical MCMC output for the 4-dimensional parameter space of the General Power Law

approach. This is completely analogous to Figure 2.10, but shows the correlations between all pairs of

parameters.

the regions where we have spectroscopic data.

In order to maintain generality, we describe the dark matter density profile with a generalised NFW

profile. It has the same form as Eq. 4.1, but with a fixed slope of −1, respecting the NFW model. This

is given in Eq. 4.2

ρDM (r) =
ρDM,s

2

(
r
rs

)−1 (
1 +

r
rs

)−2
(4.2)

where ρDM,s is the density of dark matter at the break radius, and rs remains fixed at 20 kpc as above.

The stellar profile is constrained by the MGE fit to SDSS imaging data. However, for consistency with

the spherical total and dark matter profiles, we must ‘circularise’ the stellar MGE - that is, transform

the shape of the Gaussians from elliptical to circular, whilst conserving their integrated mass. This is

done because we aim to compare all three profiles directly, and is achieved with the following mapping

(Cappellari et al., 2013a)

(σ j, q′j ) −→
(
σ j

√
q′j , 1

)
(4.3)
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The profile is constructed directly from the stellar MGE, using the circularised components and the

following equation (from Cappellari et al. (2015))

ρstar (r) = αdyn.

N∑
j=1

Mj exp
[
−r2

/
2σ2

j

]
erf


r

√
1 −

(
q′j

)2 / (
q′j

)
σ j
√

2


4πσ2
j r

√
1 −

(
q′j

)2
(4.4)

where global scaling constant is exactly the αdyn. parameter from previous analyses, and is the only

free parameter of this equation. Mj , σ j , and q′j are the deprojected mass, dispersion, and axis ratio of

the j-th Gaussian, respectively. The deprojected mass of the Gaussians is computed in two steps:

1. Compute the deprojected luminosity, L j [L�], from the surface brightness of the stellar MGE

using

L j = 2πTjσ
2
j q′j (4.5)

as in Cappellari et al. (2013a).

2. Scale eachGaussian by its corresponding value of the (M/L)Salp profile to convert the deprojected

luminosity into a deprojected mass, Mj [M�], as

Mj = L j × (M/L)Salp (σ j ) (4.6)

In this way, the General Power Law method retains the additional constraint of stellar population

information, however it is introduced after fitting to the original data (that is, without any direct scaling

of the gravitational potential).

It is then necessary to constrain αdyn. and ρDM,s. To do this, we set ρTot. = ρstar + ρDM, and find the

best combination of αdyn. and ρDM,s to fit ρTot.. A typical decomposition is presented in Figure 4.2.

These fits are conducted only in the region 2′′ ≤ r ≤ rmax. Since the central 2′′ is excluded from the

JAM model (§ 2.3), the JAM model is not constrained by the data within this region. We thus omit it

from the fit of the density profiles. Furthermore, some galaxies in the sample have an effective radius

that is larger than the extent of the sauron observation (see Column (13) of Table A1). Thus, rmax -

the largest elliptical coordinate within the sauron data - is set as the upper limit instead of Re, meaning

we consistently fit only where we have kinematic data.
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Figure 4.2: The decomposition of the total mass-density profile of NGC2685 into its stellar and dark

components. The top panel is the full radial extent of the profiles. The bottom panel zooms in on the

region that was used to make the fit, which is bounded by 2′′ ≤ r ≤ rmax. The break radius is shown

for scale.

4.2 Results & Discussion

4.2.1 IMF Constraints

The variation of αdyn. with (M/L)stars as computed using the General Power Law method is presented

in Figure 4.3. Once again, it is clear that taking into account stellar population effects, as well as the

dark matter halo, does not eliminate the systematic trend of the IMF normalisation. In addition, this

method produces systematically-lower αdyn. values compared to both methods presented above. In

§ 3.2, we posited that the systematic increase from the Scaled Potential method was due to the fact that

accounting for the spatial variation in M/L had the net result of reducing (M/L)Salp. Here, however,

the dark matter halo is able to account for some of these mass differences. This allows for the mass
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Figure 4.3: The observed variation of αdyn. for the General Power Law method (right panel) contrasted

with the initial benchmark (left panel). Note the reduction in αdyn., compared to both methods

considered earlier. Crucially, the trend of higher αdyn for higher (M/L)stars persists after taking into

account stellar population and dark matter effects, with the generalised potential technique.

attributed to stellar populations to be reduced, and balanced by the dark matter content. That is, the

M in (M/L)stars is reduced, consequently reducing the αdyn. parameter. Indeed, this is also observed

in the original results from Cappellari et al. (2012), where all models considered in Figure 1.5 (except

the mass-follows-light; Panel a) show similarly reduced αdyn. values, all of which include explicit

treatments of dark matter.

4.2.2 Dark Matter Fractions

Unlike the mass-follows-light approach employed with the Scaled Potential method, the General Power

Law approach allows us to explicitly separate the contributions to the gravitational potential into stars

and dark matter. The main motivation for this was to further refine our determination of αdyn. by

accounting for independent stellar and dark matter profiles, in addition to the spatially-varying stellar

M/L. Consequently, we also use this approach to estimate the dark matter fraction using the best-fitting

value of ρDM,s in Eq. 4.2. To do this, we integrate the best-fitting dark matter profile up to Re, and

find the ratio with the total mass profile, which is also integrated up to Re. These determinations are

presented in Figure 4.4. The green curve is given by Cappellari et al. (2013a), and is determined

from abundance-matching techniques of cosmological simulations (Moster et al., 2010), which aim to
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Figure 4.4: The fraction of dark matter within 1 Re is shown as the blue points for data quality > 0,

and crosses for data quality = 0. Mstar is the stellar mass inferred from the integrated stellar density

profile. The green curve (given in Eq. 4.7) is an empirical fit to the dark matter fractions inferred

by Cappellari et al. (2013a), assuming dark matter halo masses from abundance-matching in CDM

simulations (Moster et al., 2010).

match CDM halos to their corresponding baryonic galaxies, based on the galaxy and DM halo mass

functions. As a result, their dark matter fractions have an explicit mass-dependence, determined to be

fDM ∼ 0.13 + 0.24 ×
(
log10 (Mstars) − 10.6

)2 (4.7)

The scatter in our estimates is too large to constrain the nature of any trend present. We note that

Cappellari et al. (2013b) also find an increase in scatter when the DM halo is fitted explicitly (as is the

case for our result), compared to imposing a fixed halo from cosmological simulations.

In the current implementation, the slope of the dark matter power law is fixed at −1. In future work,

we look to leave this slope as a free parameter, and fit for it along with αdyn. and ρDM,s during the

decomposition stage. This will allow more general determinations of both the central dark matter

fraction, and the IMF parameter, since they are extracted from the same fit.
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Figure 4.5: A comparison of the total slope distribution (left panel) and the stellar slope distribution

(right panel) for all galaxies with a data quality > 0. Inset are the mean and scatter, with associated

errors. The stellar slopes are computed directly from the MGE, after scaling by the (M/L)Salp profile,

as the mean logarithmic slope given by γ = −∆ log10
(
ρstar

) /
∆ log10 (r). This is calculated within the

region 2′′ ≤ r ≤ rmax.

4.2.3 Mass-Density Profile Slopes

The slopes of both the total and stellar mass-density profiles can be extracted as a result of themodelling

conducted in the General Power Law approach, and are used to explore the relationship between these

profiles, if any. The total mass-density profile slope, γ′, is a free parameter of the fit to the atlas3D

kinematics, and is thus determined directly from the MCMC optimisation. The slope of the stellar

profile, γ, is found by decomposing the total density profile into its stellar and dark matter components,

as described in §4.1. The slope is then computed as the mean logarithmic slope of the best-fitting

stellar profile, given by γ = −∆ log10
(
ρstar

) /
∆ log10 (r). As with the component decomposition,

the stellar slopes are computed in the region 2′′ ≤ r ≤ rmax. In addition, since we are computing

the slope of the stellar profile given in Eq. 4.4, the result already contains information on the stellar

population variation (as per Eq. 4.6). Figure 4.5 shows the comparison between total and stellar slope

distributions. The mean total slope found by this work is 〈γ′〉 = −2.1295 ± 0.0161 with a scatter of

∆γ′ = 0.1690 ± 0.0168. The mean stellar slope is found to be 〈γ〉 = −2.5067 ± 0.0212 with a scatter

of ∆γ = 0.2515 ± 0.0212. The scatter for these results is computed using the Normalised Median

Absolute Deviation (NMAD). The NMAD is defined as

∆ = 1.4826 ×median(|xi −median(x) |) (4.8)
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Figure 4.6: 1000 randomly-drawn iterations from a total of 24, 000 from the Markov Chain for

NGC2685. A very high transparency value is used to emphasise the region with the most curves. The

overlaid red curve is produced from the final optimum, given in the inset table. The dashed grey lines

represent the region on which all fits are computed, bounded by 2′′ ≤ r ≤ rmax.

where xi is a single measurement, and x is the vector of all measurements. The NMAD is used here

to compute the statistical dispersion since it is more robust to outliers compared to, for example, the

standard deviation (for example, see Leys et al., 2013; Rousseeuw & Croux, 1993). Errors on both

quantities are computed using Monte Carlo methods. A subset of slopes is drawn randomly assuming

a uniform distribution, and the mean and NMAD are computed. This is repeated 2000 times, and the

dispersion on the set of means and NMADs is given as the error of the mean and NMAD, respectively.

In addition to the corner plots presented in Figures 2.10 and 4.1, another convenient visualisation

of Bayesian inference techniques is presented in Figure 4.6 to emphasise the tendency of the total

density profiles towards nearly-isothermal slopes. In this type of visualisation, iterations of the Markov

Chain are drawn at random, and plotted on the same axes. In this way, the region with the high-

est density of curves is that which was probed the most by the Monte Carlo walkers (based on the

probability of it being selected from the chain from a random draw), indicating that it has a high

likelihood. It can be seen that the number of curves increases smoothly, from both above and below,

as the slope tends towards isothermal. Furthermore, it is clear from the contrast that the majority of

curves are approximately isothermal. These features indicate that optimal slopes of ∼ −2 are genuinely

favoured over any other slope in the parameter space, and are not statistical artefacts of the MCMC
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Figure 4.7: The profiles of the full atlas3D samples of the total mass-density (left panel) and the

stellar mass-density (right panel). All curves are plotted with very high transparency to accentuate the

densest regions. Green dashed curves represent galaxies with a data quality of 0.

process.

It is clear that the total mass profiles have a smaller scatter around a nearly-isothermal slope of −2.1,

compared to the stellar-only mass profiles. This suggests that the total slope is the more fundamental

property, since we observe a strong tendency towards this mean value for all of our galaxies. Despite

the significant scatter in the stellar-only slopes, and the 2 orders of magnitude in stellar mass that is

spanned by the sample of 258 galaxies, we find remarkably low scatter about this mean value. It thus

appears that differences in the stellar densities among galaxies are compensated for by their respective

dark matter components in a way that consistently results in a total mass-density profile that is nearly-

isothermal. This finding is consistent with the so-called Bulge-Halo Conspiracy.

These results are in very good agreement with previous work. Auger et al. (2010) report 〈γ′〉 =

2.078 ± 0.027 with a scatter of ∆γ′ = 0.16 ± 0.02 from gravitational lensing of 73 early-type galaxies,

by constructing mass models assuming isotropic (that is, with strictly zero vertical anisotropy) velocity

distributions. Cappellari et al. (2015) report 〈γ′〉 = 2.19 ± 0.03 with a scatter of ∆γ′ = 0.11 from

dynamical modelling out to much larger radii, with a sample of 14 early-type galaxies. They also

report 〈γ′〉 = 2.15 ± 0.03 with a scatter of ∆γ′ = 0.10 for Re/10 < r < Re, which is similar to the

range used in this work. To further compare to Cappellari et al. (2015), Figure 4.7 shows both the total

and stellar profiles of our sample. The agreement here is excellent. Despite the differences in data
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Figure 4.8: The trend of total mass-density profile slope with effective radius. A small correlation is

observed, with significant scatter.

range and sample size, the results of both Cappellari et al. (2015) and our work show nearly-isothermal

slopes over the full radial range of the total mass profiles. Additionally, it can be seen that the stellar

profiles are steeper than isothermal in the central regions, and steepen further to ρ ∝ r−3 in the outer

regions, which is also in very good agreement with Cappellari et al. (2015).

4.2.4 Scaling Relations with γ′

The results of the General Power Law method can be used to further constrain scaling relations of

the total mass-density profile slope with galactic observables that have been studied previously. Such

relations may illuminate the physical processes behind the so-called Bulge-Halo Conspiracy, as well

as its implications for galaxy formation. The correlations constrained here are those of total slope with

Re and σe (Cappellari et al., 2015; Dutton & Treu, 2014), presented in Figures 4.8 and 4.9, respectively.

Both figures show weak correlations. Trends with Re are in qualitative agreement with those of Dutton

& Treu (2014). They report that the weakest correlation of total slopes is with velocity dispersion,

as is the case in our work also, however the difference in aperture definitions for effective velocity

dispersion between our work and Dutton & Treu (2014) prevents direct comparison. Our results also

agree qualitatively with those of Auger et al. (2010). Conversely, Cappellari et al. (2015) report no
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Figure 4.9: The trend of total mass-density profile slope with effective velocity dispersion. A very

weak negative correlation is observed, with significant scatter.

correlations for either Re and σe. However, given the weak statistical significance of the results of our

work and the large scatter, we can not make strong statements about possible relations between these

parameters. Conclusions in this regard will require more robust statistics, likely from an increase in

sample size using data from the next generation of IFU projects, including CALIFA (Sánchez et al.,

2012), SAMI (Croom et al., 2012), and MaNGA (Bundy et al., 2015). Indeed, the extension of all

studies conducted in this work will benefit from the use of such data, and this is a key driver for future

work.
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Discussion & Conclusions

5.1 Methods Comparison

Presented in Figure 5.1 are the data and JAM models for the Scaled Potential and General Power Law

methods of every galaxy in the atlas3D sample. This figure highlights the fact that differences between

the two methods are typically small. Despite the important differences between the methods, JAM

ultimately attempts to fit the observed RMS velocity distribution, which is unaltered throughout this

work. Furthermore, the features that result in a data quality of 0 (Table A1) are visible, such as the

prominent dust lane in NGC5866 and its impact on the subsequent JAM models.

We see also that the models are able to reproduce the kinematics well in general. This is quantified

by the reduced χ2 values in Table A1, which have a median of 4.37 for the full sample. Furthermore,

the models are able to match a wide range of kinematic structures, from typical ‘lobe’ features such

as NGC4564, to centrally-concentrated rotation such as NGC5845, and combinations of these features

such as NGC4350.
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Figure 5.1: Comparison of all observed (and symmetrised) VRMS maps (top row of each set of panels)

with the correpsonding JAM model VRMS maps from the Scaled Potential (middle row) and General

Power Law (bottom row) methods. The observations have isophote contours overlaid, and the models

have the corresponding MGE contours shown. Tick marks are 10 ′′ apart, and the VRMS colour limits

are inset. The central 2 ′′, excluded from the JAM model, is masked with the grey ellipse and black

cross.
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5.2 IMF Variation

This work has provided robust evidence in favour of systematic IMF variation as a function of

dynamically-derived galaxy mass from a large sample of early-type galaxies, accounting for dark

matter content and spatial variation in age. The implication of this result is that stars of certain mass

are more or less likely to form in a particular galaxy based on its total mass. Whereas star formation is

typically considered to be a relatively local process, this finding seems to suggest that the star formation

process is influenced by the global gravitational potential within which the galaxy resides (however

we note the restricted extent of our observations). The determination of the stellar mass in galaxies is

further complicated by a variable IMF. As mentioned in § 1.2, the IMF is necessary for the derivation

of galaxy mass from the observed light. However, should the IMF depend on galaxy mass, one would

need to know the mass a priori in order to determine the most suitable IMF normalisation.

5.3 Galaxies with Strong H β Gradients

Without any consideration of the spatial variation in (M/L)Salp, the αdyn. parameter is expected to

be very high for the strong H β gradient galaxies, because young stars contribute significantly to the

luminosity of the stellar M/L. That is, the L in (M/L)Salp is increased, reducing (M/L)Salp, and

subsequently increasing αdyn.. Presented in Figure 5.2 are the variations of αdyn. with (M/L)stars for

the mass-follows-light, Scaled Potential, and General Power Law methods, including those galaxies in

the atlas3D sample that are flagged as having strong spatial gradients in H β absorption (plotted as star

symbols). Indeed, panel (a), which is for the mass-follows-light approach assuming a spatially-constant

(M/L)Salp, shows exactly this elevation of αdyn., as expected. Panels (b) and (c) are for the Scaled

Potential and General Power Law methods, respectively. It is clear that accounting for the gradients

in (M/L)Salp has the effect of reducing αdyn. towards the general galaxy population, which exhibit no

strong dust or age variations. This indicates that galaxies with strong (M/L)Salp variation are modelled

more consistently (with respect to those without strong variation) in both approaches introduced in this

work. Furthermore, it is clear that the General Power Law method offers further improvement on the

Scaled Potential results. This may be due to the extra freedom in the mass constraints, and the fact that

we avoid any dependence on the extrapolated (M/L)Salp profiles in this approach.

While the αdyn. values of galaxies with strong H β gradients are reduced by the two methods used in

this work, we observe that they are still slightly elevated. The presence of dust in the photometry has

detrimental effects on the MGE model (Davis et al., 2013), which subsequently impacts the inferred

M/L. Dust corrections were applied to the r-band photometry from Scott et al. (2013) prior to
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Figure 5.2: The variation in αdyn. with galaxy mass, including galaxies with strong spatial variation in

H β absorption. Panel (a) is for the mass-follows-light method. Panel (b) is for the Scaled Potential

method. Panel (c) is for the General Power Law methods. The round points are the objects which

were included in previous sections of this work. The objects which exhibit strong gradients in H β are

denoted as stars. All points are coloured by effective velocity dispersion.

constructing the MGE. This correction is based on the identification and correction of outlier pixels in

a g − i colour map. However, this technique may be inadequate in the presence of strong and extended

dust features. Such dust is typical in galaxies exhibiting strong stellar age gradients, as discussed

in Davis et al. (2013). The inclusion of photometric and spectroscopic observations at near-infrared

wavelengths in future studies would make our techniques much more robust against these detrimental

dust effects.

5.4 Mass Profiles and the Bulge-Halo Conspiracy

We have placed very strong constraints on the distribution of total mass-density profile slopes with the

modelling conducted in the General Power Law method. The strength of these results arises from a

number of factors. Our models are both accurate and general, in that they fit high quality spatially-

resolved maps of the stellar kinematics; accurately reproduce a wide variety of surface brightness

distributions and isophote shapes; and allow for different orbital anisotropies as a free parameter.

Furthermore, our sample is large and volume-limited, and thus representative of the near-by Universe.

These results highlight the total mass-density of galaxies as a fundamental property, and support the

notion of a ‘conspiracy’ towards consistent slopes of the total mass density, despite varying stellar

density profiles. This conspiracy, suggested previously by earlier work with stronger assumptions, now

appears to form a key piece in the puzzle of how dark matter and ordinary matter interact and arrange
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themselves in galaxies. Should this conpiracy be further corroborated in future work, it is particularly

compelling due the consideration highlighted byAbadi et al. (2010), who state that their models suggest

“that the response of the halo does not depend solely on the final mass and radial distribution of baryons

in the central galaxy, but also on the mode of their assembly”, and yet this tendency towards a slope of

−2 still exists. It will be very interesting to see if this conspiracy is reproduced by the next generation

of high-resolution numerical simulations, such as eagle (Schaye et al., 2015), and if it is sensitive to

the detailed baryonic physics and feedback processes included in such simulations.

5.5 Conclusions

This work has undertaken distinct methodologies to constrain the observed variation of the stellar IMF

in early-type galaxies. By first treating the dark and luminous matter as co-spatial in Chapter 3, we

accounted for stellar population effects by fitting SSP templates to spectra from the atlas3D survey

and producing dynamical models. The inclusion of stellar population fitting has accounted for subtle

variations in age within the population that had yet to be included in such dynamical modelling. The

stellar IMF was still seen to vary systematically with galaxy mass, being consistent with a Milky

Way-like IMF at lower masses, and with a heavier IMF at the highest masses.

By then considering the dark and luminous matter as spatially separate in Chapter 4, we accounted for

stellar population and dark matter effects simultaneously. This further allowed for constraints on the

central dark matter content of these galaxies, which is shown to agree well with previous works that

did not include such consideration of the stellar population. Once again, the stellar IMF was seen to

vary systematically with galaxy mass.

By producing mass profiles of the galaxies in our sample from the modelling results, we constrained

the distributions of total and stellar profile slopes. We found that the total slopes show small scat-

ter of ∆γ′ = 0.1690 ± 0.0168 about a nearly-isothermal mean slope of 〈γ′〉 = −2.1295 ± 0.0161,

while the stellar slope distribution showed steeper slopes (〈γ〉 = −2.5067 ± 0.0212) and larger scatter

∆γ = 0.2515± 0.0212. These results provide strong evidence in favour of the Bulge-Halo Conspiracy.

They place constraints on theories and simulations of galaxy formation, which must produce early-type

galaxies that are described by approximately-isothermal total mass-density profiles, regardless of their

stellar density, stellar population effects, or dark matter density, individually.

These analyses should now be applied to late-type galaxies to constrain foremost the universality of
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the IMF. While variations with galaxy mass were constrained in this work, it would be interesting to

investigate possible variations with galaxy type. The inclusion of both star-forming early-type galaxies

and (likely star-forming) late-type galaxies would provide muchmore general conclusions on the nature

of the IMF, in addition to improving the statistical significance of the trends that were investigated. We

included similar objects, which highlighted that difficulties introduced by dust at optical wavelengths,

and the advantages that near-IR observations would provide (for example, see Norris et al., 2014).

Should these galaxies also show similar trends with total mass-density slope, it would allude to some

fundamental facet of galaxy formation that enforces this tendency towards γ′ = −2.1.

The results found here are one of the first to simultaneously constrain stellar populations effects, dark

matter content, and total mass-density scaling relations on a sample of this size. Progress has already

been made, however, with the conception of broader IFU surveys, including CALIFA (Sánchez et al.,

2012), SAMI (Croom et al., 2012), and MaNGA (Bundy et al., 2015), making use of larger IFUs, such

asmuse (Bacon et al., 2010) and koala (Ellis et al., 2012). The size and diversity of the galaxy samples

resulting from these works will make it possible to reach stronger statistical conclusions concerning

the nature of the IMF, the distribution of dark matter within these galaxies, and the significance of the

total mass-density profile as a fundamental galactic property.
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

IC0560 −0.499 72.790 −3.749 −2.160 6.444 0.896 −3.381 3.030 0.13 0 2 1.713

IC0598 +0.360 73.186 −3.128 −1.879 6.675 0.685 −2.821 2.877 0.21 0 2 2.986

IC0676 −0.419 59.068 −3.469 −1.949 12.501 1.581 −3.700 3.781 0.09 0 0 1.063

IC0719 +0.500 76.102 −2.594 −1.641 8.949 1.116 −2.331 8.310 0.35 0 3 3.553

IC0782 −0.201 71.504 −3.001 −1.629 8.090 0.869 −2.744 5.028 0.52 1 1 1.207

IC1024 +0.495 77.908 −3.193 −1.776 15.151 1.472 −2.934 4.772 0.23 0 2 3.245

IC3631 +0.477 70.335 −5.182 −2.746 10.694 0.099 −4.832 0.738 0.02 0 0 2.413

NGC0448 +0.217 81.284 −3.095 −1.962 4.219 0.389 −2.664 3.378 0.20 1 2 3.841

NGC0474 −0.004 89.770 −3.367 −2.363 5.452 0.516 −3.098 4.081 0.16 1 1 0.993

NGC0502 −0.070 63.135 −4.344 −2.715 6.921 0.276 −4.287 2.828 0.01 1 1 1.281

NGC0509 +0.442 81.144 −3.457 −1.790 12.640 0.886 −3.295 3.751 0.25 1 0 3.278

NGC0516 +0.333 81.203 −3.306 −1.644 11.851 0.469 −3.096 3.400 0.40 1 2 2.291

NGC0524 −0.498 39.519 −2.482 −1.971 2.944 0.961 −2.791 6.621 0.09 1 0 1.237

NGC0525 −0.052 69.757 −3.836 −2.301 8.963 0.759 −3.252 4.907 0.11 1 1 1.622

NGC0661 +0.084 89.530 −2.883 −2.118 2.733 1.201 −2.424 9.036 0.23 1 1 1.526

NGC0680 +0.015 89.716 −3.048 −2.272 3.895 0.655 −2.618 5.625 0.19 1 1 1.401

NGC0770 +0.250 63.752 −3.097 −1.951 6.170 0.432 −2.585 3.337 0.23 1 0 2.434

NGC0821 +0.500 62.138 −2.889 −2.124 2.741 0.789 −2.531 6.377 0.29 1 2 1.036

NGC0936 −0.500 36.926 −2.453 −1.900 8.600 0.724 −2.314 5.226 0.37 1 2 1.392

NGC1023 +0.082 74.196 −3.281 −2.360 4.827 0.428 −3.883 3.297 0.01 1 3 1.296
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC1121 +0.055 78.013 −3.046 −2.124 5.394 0.794 −2.471 6.647 0.13 1 2 3.379

NGC1222 +0.500 33.053 −2.238 −1.364 48.364 1.017 −2.014 4.233 0.79 0 0 1.449

NGC1248 +0.228 42.843 −3.576 −2.175 5.898 0.553 −3.305 2.085 0.11 1 2 1.549

NGC1266 −0.235 89.682 −3.697 −2.255 10.343 1.135 −6.286 3.987 0.00 0 0 1.157

NGC1289 +0.220 89.678 −3.241 −2.155 5.729 0.860 −2.894 4.177 0.22 1 1 1.556

NGC1665 +0.292 59.742 −3.375 −2.076 6.243 0.901 −3.614 3.175 0.09 1 1 1.410

NGC2481 +0.343 80.264 −3.191 −2.248 6.909 0.562 −2.682 5.044 0.10 1 2 3.789

NGC2549 +0.247 81.321 −3.108 −2.090 6.812 0.825 −2.368 6.036 0.22 1 3 2.177

NGC2577 −0.033 69.720 −2.941 −2.165 3.180 0.881 −2.510 7.687 0.18 1 3 1.793

NGC2592 −0.334 87.814 −3.457 −2.446 5.291 0.814 −2.877 7.197 0.06 1 1 1.892

NGC2594 +0.027 89.191 −3.593 −2.418 8.694 0.752 −2.991 5.328 0.05 1 1 4.129

NGC2679 +0.159 89.635 −3.629 −2.229 28.331 0.971 −3.710 3.478 0.08 1 0 1.114

NGC2685 +0.014 76.224 −3.271 −1.986 5.405 0.464 −2.817 2.930 0.24 1 3 2.340

NGC2695 +0.289 48.455 −2.973 −2.215 4.914 0.746 −2.603 5.458 0.16 1 2 1.765

NGC2698 −0.022 74.045 −3.432 −2.483 20.016 0.560 −2.901 5.215 0.05 1 3 2.722

NGC2699 −0.015 37.113 −3.519 −2.352 6.368 0.562 −2.909 3.856 0.09 1 1 2.134

NGC2764 +0.166 71.923 −3.149 −1.952 9.936 1.804 −3.150 4.438 0.14 0 2 2.173

NGC2768 +0.330 89.959 −2.538 −1.955 2.645 1.133 −2.850 8.482 0.13 1 1 0.893

NGC2778 +0.500 41.237 −3.282 −2.256 3.577 1.243 −2.824 7.154 0.10 1 2 1.414

NGC2824 −0.500 89.926 −2.953 −1.935 9.600 1.319 −2.544 4.074 0.23 0 0 2.475
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC2852 −0.111 89.633 −4.365 −2.841 9.325 0.469 −3.691 6.407 0.01 1 1 2.403

NGC2859 −0.113 89.882 −3.123 −2.264 3.250 0.406 −2.632 3.655 0.27 1 2 0.953

NGC2880 −0.422 55.449 −3.001 −2.047 4.500 0.758 −2.472 4.686 0.29 1 1 1.268

NGC2950 +0.130 55.458 −3.296 −2.287 4.053 0.621 −2.450 3.924 0.15 1 1 1.601

NGC2962 −0.043 75.826 −3.474 −2.501 5.340 0.697 −5.572 6.162 0.00 1 1 1.063

NGC2974 +0.424 57.342 −2.722 −2.149 2.621 1.407 −2.421 9.396 0.17 1 3 1.496

NGC3032 +0.051 34.444 −3.673 −2.224 10.746 2.184 −3.216 1.929 0.14 0 0 1.062

NGC3073 −0.042 84.709 −3.873 −2.109 20.763 1.091 −3.400 2.036 0.32 0 0 0.972

NGC3098 +0.380 89.972 −2.840 −1.851 3.360 0.583 −2.432 5.029 0.22 1 0 4.588

NGC3156 +0.500 64.381 −3.248 −1.765 10.110 1.131 −3.232 2.595 0.17 0 1 1.928

NGC3182 +0.157 46.309 −2.775 −1.708 6.887 0.690 −2.501 3.857 0.53 1 0 1.012

NGC3193 +0.030 87.540 −2.905 −2.172 2.457 0.482 −2.717 3.668 0.20 1 2 0.944

NGC3226 +0.005 88.568 −3.154 −2.221 3.980 1.195 −4.958 7.290 0.00 1 2 0.743

NGC3230 +0.249 68.396 −2.852 −2.132 4.637 0.727 −2.665 5.887 0.16 1 2 1.832

NGC3245 +0.012 65.642 −3.108 −2.228 5.586 0.549 −2.672 4.351 0.15 1 3 1.547

NGC3248 +0.305 59.805 −3.524 −2.166 4.542 0.609 −2.979 2.992 0.24 1 2 1.363

NGC3301 +0.213 75.280 −3.259 −2.095 4.051 0.703 −2.977 2.535 0.14 1 3 1.606

NGC3377 +0.211 89.935 −3.371 −2.174 7.323 0.528 −2.697 3.782 0.28 1 1 1.249

NGC3379 +0.268 36.365 −2.637 −2.040 2.042 0.683 −2.042 5.131 0.37 1 3 0.862

NGC3384 +0.213 61.962 −3.115 −2.148 1.912 0.407 −2.320 2.990 0.38 1 3 0.914
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC3400 +0.222 57.394 −3.153 −1.835 7.279 0.945 −2.845 4.249 0.26 1 2 1.631

NGC3412 −0.077 58.431 −3.187 −1.989 3.136 0.465 −2.438 2.513 0.43 1 1 1.028

NGC3414 +0.116 82.144 −2.924 −2.200 3.482 0.791 −2.695 6.113 0.17 1 1 0.898

NGC3457 −0.051 80.676 −3.664 −2.112 8.024 0.465 −3.151 2.081 0.12 1 0 1.735

NGC3458 −0.129 56.208 −3.261 −2.305 4.168 0.602 −2.705 4.509 0.09 1 2 2.218

NGC3489 −0.239 61.995 −3.235 −2.026 4.112 0.455 −2.525 1.793 0.29 0 2 1.328

NGC3499 −0.248 26.752 −3.406 −2.032 12.234 0.668 −2.757 2.782 0.19 1 0 2.302

NGC3522 +0.319 89.559 −3.202 −1.972 5.229 0.799 −2.671 5.015 0.30 1 0 1.795

NGC3530 +0.370 84.455 −2.928 −1.874 3.440 0.680 −2.437 5.213 0.20 1 0 4.382

NGC3595 +0.381 66.865 −3.451 −2.338 6.714 0.490 −3.107 3.898 0.10 1 1 1.812

NGC3599 −0.497 39.882 −4.012 −2.278 5.797 0.487 −3.500 1.892 0.19 1 0 0.766

NGC3605 +0.273 66.532 −3.966 −2.356 4.771 0.518 −3.299 2.874 0.09 1 1 1.826

NGC3607 +0.309 44.569 −2.694 −2.154 1.957 0.653 −2.492 4.837 0.23 1 2 0.777

NGC3608 +0.101 87.297 −2.896 −2.083 3.997 0.632 −2.533 5.181 0.27 1 0 0.980

NGC3610 +0.008 89.749 −3.115 −2.230 6.144 0.539 −2.468 3.173 0.18 1 3 1.702

NGC3613 +0.235 89.396 −2.788 −2.148 2.393 0.691 −2.540 5.873 0.19 1 2 1.422

NGC3619 +0.008 41.452 −3.152 −2.232 5.071 0.853 −2.751 4.899 0.27 1 1 0.756

NGC3626 −0.263 70.482 −3.260 −2.151 6.265 1.041 −2.773 2.762 0.22 0 1 1.345

NGC3630 +0.026 82.486 −3.079 −2.155 3.844 0.491 −2.437 4.662 0.16 1 3 2.562

NGC3640 −0.000 89.970 −2.743 −2.023 3.487 0.540 −2.536 4.016 0.31 1 2 0.875
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC3641 −0.474 27.706 −3.368 −2.322 7.072 1.199 −2.454 6.285 0.20 1 0 1.159

NGC3648 +0.389 58.171 −2.826 −2.031 4.402 0.823 −2.350 6.902 0.24 1 2 2.098

NGC3658 +0.166 41.759 −3.505 −2.395 4.173 0.655 −3.600 3.696 0.04 1 3 1.168

NGC3665 −0.079 88.347 −2.532 −2.005 3.286 0.840 −2.651 6.267 0.20 1 2 0.798

NGC3674 +0.182 75.932 −3.087 −2.276 3.310 0.709 −2.507 7.000 0.11 1 2 2.428

NGC3694 +0.366 43.811 −2.552 −1.525 10.925 0.602 −2.226 3.298 0.58 0 0 1.855

NGC3757 +0.326 35.137 −3.208 −2.237 5.946 0.839 −2.350 4.828 0.13 1 0 2.391

NGC3796 +0.500 56.389 −3.190 −1.891 6.182 0.882 −2.677 2.970 0.27 0 0 2.112

NGC3838 +0.188 78.685 −3.529 −2.317 5.314 0.469 −2.780 3.817 0.09 1 2 2.827

NGC3941 +0.215 58.680 −3.528 −2.298 2.784 0.438 −2.944 2.495 0.10 1 1 1.280

NGC3945 −0.401 88.372 −2.914 −2.148 5.373 0.513 −2.508 4.268 0.26 1 1 1.155

NGC3998 +0.499 38.088 −2.719 −2.210 2.180 1.243 −1.909 9.347 0.26 1 2 1.042

NGC4026 +0.132 83.063 −3.250 −2.250 3.394 0.565 −2.623 4.705 0.11 1 2 1.802

NGC4036 −0.095 74.979 −2.861 −2.154 4.650 0.627 −2.803 5.057 0.11 1 2 1.687

NGC4078 +0.231 89.836 −3.090 −2.218 7.111 0.863 −2.649 7.357 0.11 1 1 3.908

NGC4111 +0.306 88.580 −3.394 −2.345 3.683 0.681 −2.926 4.439 0.05 0 2 2.973

NGC4119 +0.277 71.689 −3.136 −1.645 6.836 0.777 −3.071 3.304 0.35 1 3 1.257

NGC4143 +0.185 64.607 −2.975 −2.153 3.538 0.659 −2.343 5.665 0.17 1 1 1.566

NGC4150 −0.156 53.734 −3.545 −2.108 5.305 1.174 −3.375 2.626 0.06 0 3 1.704

NGC4168 +0.117 72.676 −2.365 −1.682 2.574 0.973 −2.242 8.019 0.48 1 0 0.761
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC4179 +0.155 83.888 −3.022 −2.160 2.693 0.645 −2.466 5.918 0.16 1 3 1.944

NGC4191 +0.115 88.640 −3.140 −2.091 4.541 0.763 −2.804 4.453 0.21 1 1 1.627

NGC4203 +0.025 89.650 −3.951 −2.598 3.594 0.347 −5.472 3.291 0.00 1 0 0.634

NGC4215 +0.283 89.860 −3.223 −2.195 5.085 0.585 −3.007 4.021 0.10 1 2 2.440

NGC4233 −0.156 67.463 −2.698 −2.068 6.790 0.787 −2.257 6.686 0.28 1 2 1.315

NGC4249 −0.191 88.427 −2.842 −1.466 7.796 0.414 −2.580 3.846 0.72 1 0 1.103

NGC4251 −0.004 80.009 −3.098 −2.062 3.443 0.341 −2.563 2.560 0.26 1 1 1.675

NGC4255 −0.062 72.559 −3.183 −2.276 4.704 0.875 −2.637 6.406 0.11 1 3 2.024

NGC4259 +0.239 88.751 −2.996 −1.842 5.200 0.490 −2.500 4.398 0.34 1 0 2.340

NGC4261 +0.222 89.971 −2.256 −1.923 1.830 0.818 −2.073 8.218 0.45 1 1 0.702

NGC4262 +0.110 26.431 −3.600 −2.549 6.946 0.661 −2.524 5.846 0.06 1 2 2.177

NGC4264 −0.049 38.525 −2.751 −1.770 4.377 0.771 −2.506 3.908 0.33 1 0 1.479

NGC4267 −0.394 25.879 −3.318 −2.247 3.263 0.510 −2.545 3.843 0.42 1 1 0.850

NGC4268 +0.142 75.869 −2.909 −2.028 12.010 1.121 −2.425 6.898 0.25 1 1 1.530

NGC4270 +0.257 89.828 −3.567 −2.409 4.891 0.558 −3.873 3.365 0.02 1 1 2.219

NGC4278 +0.489 28.222 −2.561 −2.123 4.161 1.139 −2.090 6.747 0.24 1 1 0.993

NGC4281 −0.015 75.895 −2.742 −2.164 7.764 1.173 −2.502 9.135 0.15 1 2 1.546

NGC4283 −0.010 16.860 −4.279 −2.653 3.837 0.470 −4.212 3.661 0.00 1 1 1.560

NGC4324 +0.173 65.401 −3.029 −1.842 5.187 0.550 −2.546 3.030 0.34 1 1 1.432

NGC4339 −0.089 37.098 −3.876 −2.433 6.346 0.770 −5.129 4.609 0.00 1 0 0.680
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC4340 −0.225 89.515 −3.200 −2.043 4.411 0.627 −2.731 4.060 0.39 1 0 0.875

NGC4342 +0.311 89.933 −3.379 −2.457 3.906 1.069 −2.322 9.730 0.04 1 3 5.284

NGC4346 +0.117 76.366 −3.132 −2.083 3.530 0.602 −2.477 4.348 0.20 1 3 1.776

NGC4350 +0.180 87.028 −3.051 −2.194 2.914 0.607 −2.437 6.091 0.13 1 3 2.679

NGC4365 +0.138 89.171 −2.625 −2.099 1.019 0.677 −2.695 5.481 0.19 1 2 0.676

NGC4371 −0.064 89.810 −2.760 −1.871 2.805 0.577 −2.396 5.117 0.40 1 1 0.811

NGC4374 +0.069 87.863 −2.426 −2.058 1.362 0.780 −2.357 6.569 0.23 1 1 0.680

NGC4377 +0.231 33.280 −2.500 −1.738 17.833 0.540 −1.923 3.338 0.49 1 0 1.528

NGC4379 −0.069 88.994 −3.544 −2.232 4.279 0.540 −2.940 3.942 0.13 1 1 1.294

NGC4382 +0.362 46.495 −2.374 −1.800 1.023 0.685 −2.130 4.291 0.65 1 0 0.461

NGC4387 +0.189 89.502 −3.616 −2.219 4.356 0.462 −3.110 3.733 0.10 1 1 1.882

NGC4406 +0.121 89.334 −2.590 −1.991 1.162 0.733 −2.599 5.688 0.35 1 1 0.317

NGC4417 +0.257 80.947 −3.182 −2.138 3.160 0.500 −2.607 4.416 0.17 1 2 1.757

NGC4425 +0.472 89.928 −3.283 −1.865 4.922 0.644 −2.960 4.122 0.25 1 0 2.351

NGC4429 +0.142 89.837 −3.131 −2.325 4.786 0.814 −5.030 6.019 0.00 1 0 1.011

NGC4434 −0.123 89.032 −4.417 −2.698 6.346 0.229 −4.071 2.486 0.02 1 1 1.382

NGC4435 +0.172 68.175 −2.993 −2.085 3.062 0.524 −2.490 4.011 0.22 1 3 1.515

NGC4442 +0.184 72.444 −3.203 −2.323 2.876 0.570 −3.240 4.609 0.03 1 3 1.247

NGC4452 +0.308 88.321 −3.173 −1.778 4.365 0.547 −2.849 5.163 0.26 1 3 4.674

NGC4458 +0.170 45.906 −3.666 −2.155 5.873 0.651 −3.433 3.385 0.09 1 1 1.106
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC4459 +0.071 47.000 −2.890 −2.077 3.867 0.808 −2.714 4.370 0.18 1 1 0.851

NGC4461 +0.103 71.007 −3.266 −2.197 3.251 0.631 −2.779 4.384 0.15 1 3 1.293

NGC4472 +0.082 89.754 −2.407 −2.041 0.956 0.819 −4.336 5.519 0.00 1 1 0.358

NGC4473 +0.205 68.481 −2.755 −2.052 1.505 0.548 −2.219 5.267 0.30 1 2 1.537

NGC4474 +0.051 85.966 −3.537 −2.134 5.366 0.475 −2.931 3.189 0.20 1 2 1.780

NGC4476 +0.443 62.827 −3.385 −1.938 7.589 0.677 −2.794 2.945 0.31 0 0 1.560

NGC4477 +0.331 26.191 −2.323 −1.789 2.263 0.845 −1.910 5.395 0.61 1 1 0.628

NGC4478 +0.074 88.615 −3.296 −2.265 3.140 0.659 −3.283 5.196 0.03 1 3 1.808

NGC4483 +0.116 66.720 −3.160 −1.897 4.173 0.563 −2.625 4.362 0.31 1 1 1.390

NGC4486 +0.043 88.790 −2.239 −1.927 1.980 1.316 −5.351 7.523 0.00 1 2 0.567

NGC4486A −0.025 88.687 −4.673 −2.870 13.077 0.484 −5.145 4.462 0.00 1 1 2.148

NGC4489 −0.490 48.819 −3.062 −1.634 6.459 0.443 −2.578 2.946 0.64 1 0 0.975

NGC4494 +0.033 87.780 −2.781 −1.934 2.914 0.495 −2.402 3.983 0.44 1 1 0.799

NGC4503 +0.205 69.345 −3.275 −2.227 3.389 0.693 −3.006 5.293 0.10 1 3 1.196

NGC4521 +0.204 83.392 −2.609 −1.906 3.859 0.654 −2.330 7.128 0.30 1 3 1.916

NGC4526 +0.164 77.312 −2.836 −2.204 2.988 0.754 −4.664 5.565 0.00 1 1 1.206

NGC4528 −0.135 58.387 −3.313 −2.113 6.557 0.695 −2.563 3.716 0.16 1 2 1.980

NGC4546 +0.168 69.008 −3.159 −2.298 4.093 0.669 −2.519 5.361 0.12 1 3 1.864

NGC4550 +0.248 78.835 −2.802 −1.756 9.409 0.579 −2.393 5.011 0.30 1 3 2.743

NGC4551 +0.148 89.660 −3.342 −2.090 3.556 0.669 −3.025 4.923 0.10 1 2 1.625
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC4552 +0.229 30.786 −2.426 −2.014 2.445 0.807 −1.928 6.452 0.42 1 2 0.712

NGC4564 +0.134 75.367 −3.268 −2.239 2.715 0.562 −2.659 4.789 0.14 1 3 2.239

NGC4570 +0.253 82.985 −2.950 −2.114 2.936 0.522 −2.449 4.992 0.16 1 3 2.743

NGC4578 −0.140 50.802 −3.108 −1.988 3.842 0.668 −2.549 4.454 0.44 1 1 1.092

NGC4596 +0.494 37.155 −2.744 −1.954 3.901 0.861 −2.495 4.773 0.35 1 2 0.659

NGC4608 +0.217 25.880 −2.997 −2.002 3.081 0.657 −2.542 4.151 0.44 1 2 0.484

NGC4612 +0.444 41.709 −2.877 −1.763 5.734 0.617 −2.393 2.607 0.58 1 0 0.983

NGC4621 +0.130 79.570 −2.860 −2.168 1.464 0.716 −2.585 5.847 0.18 1 3 0.900

NGC4623 +0.343 89.499 −2.925 −1.568 4.955 0.452 −2.629 4.736 0.50 1 1 2.051

NGC4624 −0.083 83.070 −3.191 −2.148 3.238 0.618 −3.112 4.342 0.17 1 1 0.557

NGC4636 +0.108 89.917 −2.429 −1.820 1.729 0.928 −2.341 7.976 0.41 1 0 0.424

NGC4638 +0.218 78.241 −3.232 −2.117 3.336 0.406 −2.686 3.029 0.14 1 3 3.550

NGC4643 +0.355 25.028 −2.848 −2.103 2.875 0.711 −2.474 4.760 0.23 1 2 0.672

NGC4649 +0.186 48.706 −2.283 −2.017 1.004 1.081 −3.609 6.957 0.01 1 2 0.502

NGC4660 +0.138 71.708 −3.170 −2.229 2.896 0.557 −2.395 4.918 0.12 1 2 2.778

NGC4684 +0.325 74.152 −3.389 −1.913 5.968 1.011 −2.882 2.353 0.26 1 2 1.797

NGC4690 +0.202 58.732 −3.497 −2.230 7.123 1.112 −6.075 3.772 0.00 1 1 1.095

NGC4694 +0.281 72.412 −4.736 −2.585 12.131 0.387 −6.115 1.393 0.00 0 0 1.096

NGC4697 +0.420 67.177 −2.837 −2.043 2.019 0.720 −2.641 4.861 0.24 1 3 0.629

NGC4710 +0.133 89.983 −3.322 −2.143 5.117 0.628 −3.321 4.492 0.08 1 1 2.535
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NGC4733 +0.008 87.515 −3.805 −1.959 9.138 0.641 −6.428 2.240 0.00 1 0 0.900

NGC4753 −0.172 89.198 −2.610 −1.927 3.701 1.025 −3.663 4.251 0.03 1 1 0.689

NGC4754 +0.129 60.130 −2.864 −2.063 3.779 0.619 −2.336 4.745 0.31 1 2 1.188

NGC4762 +0.134 89.685 −2.922 −1.990 3.960 0.355 −2.772 3.733 0.24 1 3 3.049

NGC4803 +0.314 63.805 −2.440 −1.435 6.723 0.357 −2.191 4.936 0.61 1 0 2.215

NGC5103 +0.051 89.740 −3.246 −2.036 5.663 0.407 −2.696 3.488 0.20 1 0 2.949

NGC5173 +0.451 33.889 −3.011 −1.976 10.551 0.796 −2.614 2.452 0.25 1 0 1.830

NGC5198 +0.104 89.725 −3.031 −2.246 3.471 0.794 −4.951 6.158 0.00 1 1 1.165

NGC5273 −0.500 89.919 −3.433 −1.922 6.472 0.908 −3.376 3.013 0.18 1 1 0.879

NGC5308 +0.320 85.495 −2.799 −2.152 3.220 0.620 −2.521 6.613 0.13 1 3 3.422

NGC5322 +0.259 89.603 −2.574 −2.062 3.781 0.972 −2.500 4.829 0.27 1 1 0.807

NGC5342 +0.208 80.534 −2.813 −1.956 18.513 0.760 −2.283 7.027 0.23 1 0 3.100

NGC5353 +0.129 79.581 −2.298 −1.927 5.227 0.616 −2.114 6.912 0.25 1 2 1.962

NGC5355 +0.167 60.153 −2.780 −1.607 7.204 0.853 −2.506 3.743 0.46 0 0 1.715

NGC5358 +0.143 89.898 −2.986 −1.751 5.892 0.646 −2.598 4.859 0.36 1 0 2.198

NGC5379 +0.038 89.866 −3.058 −1.700 11.247 1.559 −2.982 7.952 0.27 0 1 1.751

NGC5422 +0.129 85.021 −2.893 −2.060 5.851 0.679 −2.574 6.072 0.21 1 1 1.983

NGC5473 +0.271 37.746 −2.385 −1.878 3.709 0.777 −2.014 4.848 0.48 1 0 1.037

NGC5475 +0.229 79.080 −2.907 −1.806 5.721 0.664 −2.618 4.818 0.29 1 2 2.686

NGC5481 +0.090 89.166 −3.682 −2.423 10.588 1.111 −5.385 5.466 0.00 1 0 0.951
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/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC5485 +0.134 88.340 −2.645 −1.895 3.388 0.831 −2.399 7.046 0.34 1 0 0.916

NGC5493 +0.008 75.815 −2.789 −1.999 3.538 0.496 −2.475 2.963 0.25 1 3 3.036

NGC5500 +0.100 65.205 −3.530 −2.140 16.579 1.027 −3.327 5.045 0.12 1 0 1.207

NGC5507 −0.041 63.641 −2.917 −2.109 4.075 0.797 −2.373 6.653 0.19 1 3 1.804

NGC5557 +0.145 89.039 −2.862 −2.233 13.722 0.676 −2.788 4.674 0.16 1 1 0.849

NGC5574 +0.426 89.882 −3.541 −2.065 6.907 0.668 −3.182 2.559 0.13 0 0 2.528

NGC5576 +0.130 89.957 −3.514 −2.473 3.997 0.376 −3.041 2.767 0.13 1 2 1.015

NGC5582 +0.389 52.017 −2.924 −2.055 4.858 0.722 −2.436 5.265 0.45 1 1 0.921

NGC5611 +0.166 72.172 −3.375 −2.235 6.206 0.755 −2.678 4.992 0.11 1 3 3.125

NGC5631 +0.002 89.343 −2.955 −2.077 3.158 0.692 −2.540 4.251 0.32 1 0 0.965

NGC5638 +0.214 27.746 −2.365 −1.705 3.288 0.672 −2.074 4.707 0.55 1 0 0.819

NGC5687 +0.067 77.351 −3.030 −2.183 3.730 0.940 −2.566 8.012 0.28 1 1 1.013

NGC5770 −0.018 25.910 −4.396 −2.603 11.072 0.406 −4.089 2.418 0.02 1 0 1.244

NGC5813 +0.057 89.470 −2.425 −1.905 2.535 0.744 −2.204 7.439 0.57 1 0 0.684

NGC5831 +0.105 64.087 −3.108 −2.154 3.617 0.806 −2.809 4.601 0.21 1 0 0.898

NGC5838 −0.029 70.163 −3.074 −2.418 3.429 0.862 −2.899 7.732 0.05 1 3 1.383

NGC5839 −0.170 88.855 −3.650 −2.379 6.435 0.600 −3.059 5.170 0.11 1 0 1.286

NGC5845 +0.190 63.266 −3.840 −2.680 3.360 0.397 −2.723 4.854 0.02 1 3 3.943

NGC5846 +0.115 46.328 −2.337 −1.830 2.303 0.962 −2.422 8.059 0.28 1 1 0.723

NGC5854 +0.238 73.110 −3.218 −2.020 5.141 0.724 −3.115 2.670 0.11 1 3 1.988
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

NGC5864 +0.391 75.506 −3.225 −2.081 4.996 0.773 −3.270 3.705 0.09 1 3 2.430

NGC5866 +0.376 89.212 −2.661 −1.860 3.856 0.926 −2.929 4.548 0.09 1 0 1.242

NGC5869 +0.013 86.473 −2.950 −2.128 4.277 0.914 −2.396 7.020 0.31 1 1 1.030

NGC6010 +0.165 84.061 −2.991 −2.099 4.732 0.809 −2.667 5.843 0.15 1 1 2.603

NGC6014 −0.460 85.597 −3.472 −2.116 7.914 1.508 −7.000 4.288 0.00 0 0 0.878

NGC6017 +0.051 88.602 −4.091 −2.526 11.159 0.404 −3.363 2.636 0.05 1 1 3.159

NGC6149 −0.149 85.840 −3.103 −1.925 7.468 0.636 −2.699 4.622 0.28 1 0 2.168

NGC6278 +0.210 66.121 −3.023 −2.273 5.543 0.713 −2.874 5.514 0.09 1 0 2.007

NGC6547 +0.133 89.950 −2.963 −2.160 7.578 0.806 −2.519 6.526 0.17 1 1 2.484

NGC6548 −0.446 18.602 −2.674 −1.941 5.083 1.193 −2.156 7.209 0.62 1 1 0.838

NGC6703 +0.058 26.270 −3.233 −2.330 3.354 0.901 −3.433 5.832 0.05 1 1 0.736

NGC6798 +0.198 72.841 −3.027 −2.029 4.559 0.570 −2.619 4.552 0.24 1 2 2.061

NGC7280 +0.497 52.266 −3.239 −2.077 6.894 1.071 −2.822 3.651 0.24 0 1 1.379

NGC7332 +0.234 83.351 −3.355 −2.210 6.513 0.363 −2.967 2.168 0.10 1 1 3.605

NGC7454 +0.300 60.366 −3.045 −1.948 4.978 1.069 −2.897 5.261 0.19 1 0 1.117

NGC7457 +0.311 65.875 −2.972 −1.592 6.310 0.488 −2.683 3.267 0.54 1 1 1.160

NGC7465 +0.224 88.361 −3.470 −2.128 16.508 0.560 −2.853 2.297 0.17 0 0 2.444

NGC7693 +0.334 42.606 −3.384 −1.906 8.734 1.830 −3.280 4.005 0.16 0 1 1.303

NGC7710 +0.227 76.217 −3.773 −2.263 11.581 0.431 −3.040 3.257 0.10 1 1 2.901

PGC016060 +0.214 76.400 −3.030 −1.863 11.383 0.679 −2.705 4.439 0.23 0 2 4.320



78
Param

eterTable

Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

PGC028887 +0.445 59.413 −3.032 −1.994 6.372 1.017 −2.518 7.149 0.31 1 0 2.015

PGC029321 −0.473 89.522 −2.786 −1.319 15.375 0.341 −2.561 2.878 0.73 0 0 1.698

PGC035754 +0.337 56.481 −3.946 −2.453 10.568 0.550 −3.171 3.565 0.11 1 1 1.927

PGC042549 +0.285 54.539 −3.150 −2.002 6.103 0.917 −2.750 3.227 0.19 1 1 2.438

PGC044433 +0.408 89.796 −3.130 −2.072 4.514 0.740 −2.544 6.184 0.16 1 1 2.863

PGC050395 +0.275 54.966 −2.549 −1.368 9.330 0.483 −2.329 4.377 0.69 1 0 1.796

PGC051753 +0.376 72.635 −3.066 −1.746 6.251 0.639 −2.744 4.986 0.31 1 1 2.836

PGC054452 +0.500 41.530 −3.364 −1.913 7.111 1.164 −3.056 3.757 0.22 1 1 1.642

PGC056772 +0.372 65.700 −3.606 −2.176 11.274 1.010 −3.237 3.938 0.12 0 1 2.554

PGC061468 +0.192 89.694 −2.562 −1.252 15.619 0.608 −2.435 7.305 0.75 0 0 1.693

PGC170172 +0.083 89.610 −3.483 −1.890 49.108 0.486 −2.974 1.639 0.26 1 0 2.294

UGC03960 +0.080 88.894 −3.587 −2.165 15.637 1.120 −3.340 5.361 0.19 1 0 0.866

UGC04551 −0.040 75.622 −3.408 −2.394 3.619 0.489 −2.619 4.772 0.08 1 2 2.465

UGC05408 −0.499 89.133 −6.000 −3.234 19.254 0.048 −5.031 1.537 0.00 0 0 2.501

UGC06062 +0.198 57.472 −2.851 −1.946 4.122 0.767 −2.409 5.838 0.28 1 1 1.923

UGC06176 −0.500 89.791 −2.798 −1.742 11.767 1.817 −2.500 5.092 0.34 0 0 1.677

UGC08876 +0.312 89.880 −3.612 −2.416 5.967 0.642 −2.945 5.562 0.06 1 1 3.057

UGC09519 +0.052 66.392 −3.295 −2.000 7.782 1.056 −2.739 3.696 0.17 0 1 3.700
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Name βz i log10(ρs) γ′ χ̂2 αdyn. log10(ρDM,s) M/Lstars fDM(Re) H β Quality rmax
/
Re

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Table A1: A table of galactic properties, as found using the General Power Law method of Chapter 4. Column (1): The galaxy name. Column (2):

The best-fitting value of the vertical anisotropy. Column (3): The best-fitting value of inclination, in degrees. Column (4) The best-fitting value

of the total mass-density at the break radius, in [M� pc−3]. Column (5): The best-fitting value of the total mass-density profile slope. Column (6):

The reduced χ2 (χ2 per degree-of-freedom) of the JAM model fit to the data, computed from the values of Columns (2)-(5). Column (7): The

best-fitting value of the αdyn. parameter. Column (8): The best-fitting value of the global scaling of the dark matter mass-density at the break radius,

in [M� pc−3]. Column (9): The best-fitting M/L from JAM for the mass-follows-light model. This is the only model that allows the dynamical M/L

to be fit for, and so these values were used as a consistent baseline throughout this work. Column (10): The fraction of dark matter within 1 Re.

Column (11): A flag denoting those galaxies with sufficiently small observed H β emission (< 2.3Å), from Table 1 of Cappellari et al. (2013b).

Column (12): A rating of the data and model quality, from 0 (very poor data quality) to 3 (excellent data quality and model fit), from Table 1 of

Cappellari et al. (2013a). Column (13): The ratio of rmax to Re. All results of this work (except the dark matter fractions) were constrained by rmax,

rather than Re, since some of these ratios are less than 1.
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