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Abstract

Drawing on the existing literature, a utility-maximising agent is studied in

the application of a life-cycle optimal strategy of consumption, investment and

insurance to different, and unexplored, scenarios. Key factors, including time-

inconsistent preferences, an optimal stopping time and a dynamic risk environ-

ment, can affect agents’ behaviour and thereby influence their financial strategies.

In this thesis three research papers are developed to apply optimal strategies in

various circumstance.

In the first research paper, an optimal portfolio management model with hyper-

bolic discounting and luxury-type bequest motives is used to explain the annuity

puzzle—the low demand for voluntary life annuities. Using hyperbolic discount-

ing, agents’ time-inconsistent preferences can be described and measured in the

model. Two extreme types of agents’ time-inconsistent behaviours, “näıve” be-

haviour and “sophisticated” behaviour, are then examined and studied. To build

a more realistic model, the luxury-type bequest motives are further incorporated

into the model. The model in paper 1 is calibrated to Swiss data to obtain nu-

merical results.

In the second research paper, the financial planning problem of a retiree seek-

ing to enter a retirement village at a future time is studied. As the retiree is

assumed to be utility-driven and would fully annuitise her wealth at the time

of entry, her optimal strategy is a solution to problems of both optimal control
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and optimal stopping. Within the context of dynamic health states, the optimal

strategy should include an optimal plan of consumption, investment, bequest and

insurance prior to the entry date, and an optimal stopping time to conduct the

full annuitisation for entering the retirement village. For a case that has an initial

deposit requirement for entering the retirement village, the optimal solution in-

corporates an American option replication. The model in paper 2 uses Australian

data to present our numerical results.

In the final research paper, an optimal strategy is applied in a dynamic risk

environment. Jumps and regime switching are incorporated in the risky asset

diffusion to describe the dynamic risk environment. By extending the model in

Richard (1975), a system of paired Hamilton-Jacobi-Bellman (HJB) equations

is obtained and solved. Using numerical methods and calibrating to American

data, the numerical results of agents’ behaviours for different risk environments

are obtained.
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bequest (Pn in legend) . . . . . . . . . . . . . . . . . . . . . . . . 53

2.9 Expected insurance premium for näıve case with luxury-type be-
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Chapter 1

Introduction

1.1 Research Background

Agents strive to make optimal financial decisions concerning their consumption,

investment and insurance. However, compared to finance and economic theories,

agents’ decisions and behaviours are sometimes found puzzling. The need thus

arises to extend existing models to better describe and explain agents’ behaviours.

Researchers have increasingly understood the importance of optimal financial

strategy and have used various methods to model agent behaviours in order to

study optimal strategy. Among these models, one of the most famous is Merton’s

model (Merton, 1969, 1971) in which the optimal consumption and investment

strategy is derived for a utility-maximising agent with assumed constant relative

risk averse (CRRA) utility.

Following Merton’s model, a great number of optimal control models have been

1
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studied in the literature. The model of Richard (1975) is one of the many exten-

sions of Merton’s model. Richard has extended Merton’s model to incorporate

bequest motives and insurance demands in an optimal control model for utility-

maximising agents. Merton’s model uses the assumption that the agent’s lifetime

is constant; this has been generalised in Richard’s model by treating the agent’s

lifetime as being uncertain. Compared to Merton’s model, Richard’s model is

more realistic as it reflects an agent’s random lifetime. In Richard’s model, the

lifetime of agents is assumed to be random in a fixed bounded interval (i.e., life-

time is bounded by a maximum age). This extension to lifeyime uncertainty can

then complicate an agent’s optimal strategy when approaching the end of the life

cycle. Although the annuity can be used to hedge the longevity risk in a complete

market, the market can still change to become incomplete should hedging activity

be obstructed due to the dynamic health status of agents.

In a more realistic optimal control model, agents are assumed to have once-

and-for-all irreversible full annuitisation due to institutional anti-selection con-

cerns (Milevsky and Young, 2007; Kingston and Thorp, 2005). Hence, to develop

a more advanced optimal control model for utility-maximising agents, we should

include optimal strategies for not only consumption, investment and bequest but

also for full annuitisation. Furthermore, agents in Richard’s model are assumed

to receive a deterministic income stream (the value of which reflects their human

capital). In perfect and complete market setting in Richard’s model, agents are

able to capitalise future income stream—such instruments can exist is such set-
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tings. Pliska and Ye (2007) have extended Richard’s model by allowing lifetime

to be unbounded and having a fixed termination time (e.g., retirement) in the

model.

However, neither Merton’s model or Richard’s model can effectively and fully

explain various puzzling behaviours of agents in financial markets. The reason is

that many complex elements of human behaviour and market movement which

will directly affect agents’ decision making are not described in either Merton’s

model or Richard’s model.

In contrast to economic theory (Yaari, 1965), which asserts that agents with no

bequest motive should fully annuitise and agents with a bequest motive should

partially annuitise (or purchase life insurance if their optimal bequest exceeds

their wealth), agents in the real world are observed to very infrequently purchase

voluntary annuities. This prevalent trend is known as the “annuity puzzle” which

has been discussed in empirical studies such as those of Mitchell, Poterba, War-

shawsky and Brown (1999) and Bütler and Teppa (2007).

This “annuity puzzle” problem has been widely studied in literature and vari-

ous explanations have been proposed. One particular explanation for this puzzle

is time-inconsistent behaviour1. Various studies incorporate agents have time-

1The following is a simple example to demonstrate the existence of changing preferences of an
individual. Assume there are two options of receiving a payment. Option 1: people need to
wait for 1 year to receive $1. Option 2: people need to wait for 1 year plus one day to receive
$2. Almost all people will choose option 2, since they will not be bothered to wait for one
more day for a doubled payment. From their point of view, the difference between 1 year and 1
year plus one day is relative small compared to the difference in payments. Now, let us modify
our example a little bit. Assume there are two options. Option 1: people can receive $1 after
waiting for 1 day. Option 2: people can receive $2 after waiting for 2 days. In that case, some
people might choose option 1 instead of option 2. The reason is that they are craving for early
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inconsistent behaviours (Strotz, 1955; Pollak, 1968) which can be modelled by

using hyperbolic discounting factor for utilities (Maŕın-Solano and Navas, 2010;

Maŕın-Solano, Navas and Roch, 2013). Hyperbolic discounting modulates agent’s

preference as a function of the time—agent’s preference rates experience a dra-

matic decrease over a short time period. Such a non-constant discounting rate has

been introduced in Phelps and Pollak (1968) and Laibson (1997) which linked hy-

perbolic discounting with agents’ time-inconsistent behaviours. Malhotra, Loewen-

stein and O’Donoghue (2002) state that hyperbolic discounting can more appro-

priately describe the pattern revealed empirical data. However, the use of the

constant exponential discounting factor for utilities in both Merton’s model and

Richard’s model implies the time consistency of agents’ preferences, which con-

tradicts such observed time-inconsistent preferences.

Moreover, bequest motives can be regarded as another reason for the “annuity

puzzle” (Friedman and Warshawsky, 1990; Bernheim, 1991; Ameriks et al., 2011).

Bernheim (1991), Friedman and Warshawsky (1990), Vidal-Meliá and Lejárraga-

Garćıa (2006), Purcal and Piggott (2008) and Lockwood (2012) have stated that

strong bequest desire can banish agent’s annuity demand and thus serve as one

of the drivers of low annuitisation. Recent empirical data further suggests that

bequests have the features of luxury goods (De Nardi, 2004; Ameriks et al., 2011;

payment and probably can not wait for one more day. They believe that the difference between
1 day and 2 days is relatively big compared to the difference in payments. From this example
we can see that individual preference may change over time. The preferences over a long period
are quite different to the preferences over a short period. We term this changing of preferences
as time-inconsistent behaviour of the individual.
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Lockwood, 2012).

Other explanations for this “annuity puzzle” include psychological or behavioural

bias (Brown and Diamond, 2005), adverse selection (Finkelstein and Poterba,

2004) and the widespread presence of annuitised public social security (Friedman

and Warshawsky, 1990).

Thus, one could explain the observed level of voluntary annuitisation by us-

ing the bequest motive or time-inconsistent behaviour. However, still, a puzzle

remains: voluntary annuitisation is prevalent in some countries, such as Switzer-

land. The “annuity puzzle” might thus be the result of an interaction of several

factors, mostly resulting in low voluntary annuity demand, but in certain constel-

lations producing healthy voluntary annuity demand.

In both Merton’s model and Richard’s model, their studies proceeeded under

the assumption that the diffusion of risky assets follows geometric Brownian mo-

tion. However, if significant change occurs in the state of the economy, geometric

Brownian motion then imperfectly models the dynamics of the risky asset price.

To better describe such dynamics, regime switching and jumps can be incorpo-

rated into the diffusion process 2.

2See, for example, Cont and Tankov (2004), Buffington and Elliott (2002) and Elliott, Aggoun
and Moore (1994).
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1.2 Contribution of Thesis

This thesis is comprised of three separate papers, each of which form the body

of chapters 2–4. Each paper provides a sound understanding of optimal strategy

thus contributing to the overall thesis theme. The contribution of this thesis is to

develop optimal strategies of consumption, investment and insurance for various

situations by extending the model in Richard (1975). Summaries of each research

paper are given below.

Three different extensions Richard’s models have been presented in this thesis.

All three models consider the utility from the consumption and bequest motive.

The first model incorporates hyperbolic discounting and luxury bequests. The sec-

ond model includes medical costs and dynamic health states—it does not include

hyperbolic discounting or luxury bequests. The third model considers regime

switching and jumps in the financial market—it does not include hyperbolic dis-

counting, luxury bequests, medical costs or dynamic health states.

1.2.1 Paper 1: Optimal Life Insurance and Annuity De-

mand under Hyperbolic Discounting when Bequests

are Luxury Goods

A growing body of literature has studied the low demand for voluntary an-

nuities which is also known as the “annuity puzzle”. On the other hand, there

are exceptions for this “annuity puzzle” which cause more complications in the
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research of this issue. In contrast to the prevalent low annuity demand trend,

agents from some countries, such as Switzerland, are observed to have a relative

high purchase level of voluntary annuities. Hence, in this paper, our motivation

is to develop an optimal strategy which can provide explanations for both the

“annuity puzzle” and its exception.

From empirical studies, the bequest motive can also be considered as one expla-

nation for the “annuity puzzle” (Lockwood, 2012). In this paper, we use Richard’s

model (Richard, 1975), which is one extension of Merton’s famous model (Mer-

ton, 1969, 1971), to study agents’ behaviour by incorporating bequest motives. To

construct a more realistic model, bequest motives should be recognised as if be-

quests are luxury goods (De Nardi, 2004; Ameriks et al., 2011; Lockwood, 2012).

Inspired by Ding, Kingston and Purcal (2014), Richard’s model is extended in

this paper by including luxury-type bequests.

Some of the literature, such as the studies of Friedman and Warshawsky (1990),

Bernheim (1991) and Finkelstein and Poterba (2004), has also studied and given

explanations for the “annuity puzzle”. One of the explanations is time-inconsistent

behaviour. It is accepted that agents’ preferences would alter when they age.

Within the context of the optimal strategy for a utility-maximising agent, Maŕın-

Solano and Navas (2010) and Maŕın-Solano, Navas and Roch (2013) extended

Merton’s model to incorporate time-inconsistent behaviours by using the hyper-

bolic discounting factor. One of the features of hyperbolic discounting is that

the rate will decline over time and thus it can be used to model the time in-



8 CHAPTER 1. INTRODUCTION

consistency in agents’ behaviours. Following Maŕın-Solano and Navas (2010) and

Maŕın-Solano, Navas and Roch (2013), we modify Richard’s model to adopt time-

inconsistent behaviours by employing hyperbolic discounting.

With the interaction of time-inconsistent behaviours and luxury-type bequests

in our extended optimal life-cycle model, we are able to provide reasonable expla-

nations for the “annuity puzzle” and its exceptions.

The preliminary findings of this paper have been presented at the 18th Inter-

national Congress on Insurance: Mathematics & Economics, East China Normal

University, in July 2014, and at the Quantitative Methods in Finance Conference

2014, University of Technology Sydney, in December 2014.

Paper 1 is a valuable contribution to the optimal life-cycle model literature,

as few papers have studed time-inconsistent behaviours and luxury-type bequests

using Richard’s model.

1.2.2 Paper 2: Optimal Time to Enter a Retirement Vil-

lage

Population ageing is a widespread global trend and the senior population will

outnumber the younger generation in many nations in near future. Compared to

previous generations, Australians now live longer. According to the Australian

Institute of Health and Welfare (2013), females and males born in 2013 have life

expectancies of 84.2 and 79.7 years, respectively. In the light of the potential

impacts of population ageing, such as economy stagnation (Bloom, Canning and
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Fink, 2010), high demand for social security (Gruber and Wise, 2000) and in-

creased aged care spending (Knickman and Snell, 2002), Australia has now to

prepare itself for the consequences of this growing ageing trend. This rise in the

number of aged people leading to increasing demand for aged care spending was

our motivation for conducting a study on the optimal retirement strategy for

retirees.

In Australia, the Australian government spent $13 billion in 2014 to subsidise

aged care services for retirees (Australian Institute of Health and Welfare, 2014a).

This figure will continue to increase with the rising aged population. However,

before retirees start to receive aged care services, they can choose to move into

retirement villages to improve their well-being and quality of life. Retirement

village can help to relieve the government’s burden, as the related costs of living

in retirement are privately financed by retirees themselves.

It is well-documented in the literature that living in retirement villages with

features designed for seniors has a positive influence on retirees’ well-being (Buys,

2000; Lord et al., 2003), which can further alleviate the financial burden of aged

care services for the Australian government (Towart, 2005). Therefore, in this

paper, we assume that retirees will choose to enter retirement villages. Based

on this assumption, we developed a life-cycle model for retirees’ asset allocation,

consumption, bequests and insurance purchases prior to their entry into retirement

villages.

Based on the optimal strategies studied in Merton (1969) and Merton (1971),
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Ding, Kingston and Purcal (2014) incorporated luxury-type bequests in Merton’s

model by replicating a put option to generate a wealth threshold. Merton’s model

was also extended in Milevsky and Young (2007) and Kingston and Thorp (2005)

to obtain the optimal stopping time for investors to conduct a once-and-for-all

annuatisation. In this paper, following Milevsky and Young (2007) and Kingston

and Thorp (2005), we modify the extended Merton model in Richard (1975) to

study retirees’ optimal stopping time and optimal strategy prior to entering re-

tirement villages. As up-front deposits are usually required by retirement villages,

we also incorporate the replication of an American put option in our model to cre-

ate a wealth threshold for this requirement and find increasing investment in the

risky asset over time. Interestingly, empirical studies of retirement target saving

suggest such targets raise, and not lower, investment in the risky asset (Shum and

Faig, 2006).

Inspired by various studies in the literature, such as those by Rosen and Wu

(2004), Bernheim, Shleifer and Summers (1985) and Edwards (2008), we consider

health status to be a critical factor in retirees’ financial decisions. We add the

term “dynamic medical cost” to our model to capture the impact of health status.

This paper has been presented at the 2014 Ph.D. workshop, Faculty of Business

and Economics, Macquarie University, and at the 19th International Congress

on Insurance: Mathematics & Economics, Liverpool University, in July 2014.

Inspired by the comments we received at the conference, we modified our model

to consider the necessity of consumption.
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Paper 2 presents a useful model for analysing retirees’ decisions about optimal

asset allocation and the optimal time to enter retirement villages. Its incorpora-

tion of health status and target retirement saving in an optimal stopping context

is novel.

1.2.3 Paper 3: Optimal Life Insurance and Annuity De-

mand with Jump Diffusion and Regime Switching

Optimal life-cycle models, for example, Merton’s model (Merton, 1969, 1971)

and Richard’s model (Richard, 1975) are usually built under the assumption that

the diffusion of risky asset price follows a geometric Brownian motion, which im-

plies that the economic state for those models is stable and constant. However,

sudden changes in economic states are observed in empirical studies which con-

tradicts the assumed geometric Brownian motion for the diffusion of risky asset

price.

Jumps and regime switching are usually utilised in various studies in the liter-

ature, such as those by Hamilton (1989), Bollen (1998), Cont and Tankov (2004)

and Elliott et al. (2007), to describe the sudden economic change. In the context

of optimal strategy, jumps and regime switching can be incorporated into life cycle

modelling. Hanson (2007) has presented an optimal portfolio and consumption

policy with log-Uniform jump amplitude; Zhang and Guo (2004) and Sotomayor

and Cadenillas (2009) studied optimal strategies in the financial market with

regime switching.
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With the growth in human life expectancy, retirees have more flexibility for

consumption, investment and bequests (Gupta and Murray, 2003), which has

motivated us to conduct a study to examine the optimal financial strategies of

retirees in a volatile financial market.

In this paper, an optimal strategy is studied in a volatile financial environment.

In order to model retiree behaviours in a volatile financial market, we include

jumps and regime switching in the diffusion of risky asset price to extend Richard’s

model (Richard, 1975). Numerical results are then obtained and analysed.

1.3 Structure of Thesis

Following the recommendation of the Higher Degree Research Department, Fac-

ulty of Business and Economics, Macquarie University, I adopted the publications

format for this thesis. The main body of this thesis consists of three research

papers which are:

• Chapter 2 Optimal Life Insurance and Annuity Demand under Hyperbolic

Discounting when Bequests are Luxury Goods,

• Chapter 3 Optimal Time to Enter a Retirement Village, and

• Chapter 4 Optimal Life Insurance and Annuity Demand with Jump Diffu-

sion and Regime Switching.



1.4. TABLE OF NOTATIONS 13

The key findings, limitations and recommendations for future research form the

conclusion, comprising the final chapter.

1.4 Table of Notations



14 CHAPTER 1. INTRODUCTION

Symbol Definition Equation
a(t) Assumed parameter in value function 2.2.29
āt Annuity function at time t 3.2.8
b(t) Capitalised value of future income 2.2.10
Bt Standard Brownian motion 2.2.4

B(t) Optimal exercise price of an option 3.2.34
C(t) Consumption amount at time t 2.2.1
D(t) Medical cost at time t 3.2.9
f(t) Probability density function of an agent’s lifetime at time t 2.2.2
h Necessity consumption 3.2.3
Ht Health indicator at time t 3.2.7
J Uniform distributed jump amplitude ??
K Strike price of an option 3.2.35
L(t) Legacy amount left for bequest at time t 2.2.1
m(t) Annuitisation factor at time t 2.2.9
P (t) Insurance premium at time t 2.2.6

P̃ij Transition probability from state i to state j 3.2.6
P American put option price 3.2.32
qij Transition intensity from state i to state j 3.2.2
Q Transition matrix 3.2.2
r Risk-free rate 2.2.6
R Required level of wealth for retirees to enter retirement village. 3.2.32
S(t) Survival rate at time t 2.2.2
t Current time 2.2.1
T Uncertain time of death 2.2.1
U(·) Utility function 2.2.1
V (·) Value function 2.2.6
W (t) Wealth level at time t 2.2.6
Xt Risky asset price at time t 2.2.4
Y Income level 2.2.6
α Risky asset return rate 2.2.4
γ Constant that reflects risk-aversion level 2.2.8
δ(t) Hyperbolic discount rate 2.2.11
ζ Degree of impatience 2.2.11
θ(t) Discounting factor 2.2.12
λ Jump rate of the discontinuous one-dimensional Poisson process 4.2.2
µ(t) Force of mortality of an agent at time t 2.2.2
ν Constant that reflects the annuity level to agent’s spouse or children 4.2.5
ξ Constant decline rate of impatience 2.2.12
π(t) Proportion of wealth to invest in risky assets at time t 2.2.6
ρ Long-run rate of time preference 2.2.11
σ Volatility of risky asset return rate 2.2.4
τ Maximum possible survival age 2.2.6
υ Constant within the range of [0, 1] 2.2.8
ψ(t) Discontinuous one-dimensional Poisson process ??



Chapter 2

Paper 1

Optimal Life Insurance and Annuity Demand under

Hyperbolic Discounting when Bequests are Luxury Goods

Jinhui Zhang1 2 , Sachi Purcal1, Jiaqin Wei3

Abstract

In this paper, an optimal portfolio management model with hyperbolic dis-

counting is developed and analysed. Using the hyperbolic discounting factor, the

model recognises the time-inconsistency of the strategies that an agent adopts in

the case where there is no commitment. Under the framework of time-inconsistent

preferences, agents can be categorised into two groups: “näıve”, that is, agents

1Department of Applied Finance and Actuarial Studies, Faculty of Business and Finance,
Macquarie University, Sydney, Australia.
2Corresponding author: jinhui.zhang@students.mq.edu.au
3School of Statistics, Faculty of Economics and Management, East China Normal University,

Shanghai, China
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who are not aware of the time inconsistency of their preferences; and “sophisti-

cated”, that is, agents who are aware of the time inconsistency of their preferences.

For both the näıve and sophisticated cases, we modify Richard’s model (Richard,

1975) of optimal life insurance, annuity purchase and investment over the life

cycle by using hyperbolic discounting and allowing bequests to be luxury goods.

The solution is obtained via numerical methods. We calibrate the model to Swiss

data in presenting our results. We note this model contributes to explaining the

annuity puzzle—observed low levels of purchases of voluntary life annuities.

Keywords: Annuity puzzle, Time-inconsistent preference, Hyperbolic discount-

ing, Optimal investment, Merton’s model, Stochastic optimal control.

2.1 Introduction

Economic theory tells us that the ultimate annuitisation of wealth is often the

optimal choice for ageing consumers (Yaari, 1965). However, widespread lack

of demand for voluntary annuities can be found around the world, a fact often

known as the “annuity puzzle”. Exceptions exist complicating the search for ex-

planations: for example, Switzerland still maintains a high demand for voluntary

annuities.

The literature suggests several explanations for this puzzle. Friedman and

Warshawsky (1990), as well as Bernheim (1991), listed the bequest motive as one

potential explanation for the annuity puzzle; access to social security is also men-
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tioned as another potential explanation. Following these studies, Iskhakov, Thorp

and Bateman (2015) developed a life-cyle model for optimal annuity purchases

and further found that having access to social security, such as a means-tested

age pension, can diminish the demand for both immediate and deferred annuities.

Ameriks et al. (2011) found that aversion to public care has significant impacts

on annuitisation by households. Finkelstein and Poterba (2004) stated that the

lack of actuarially fair annuities is a reasonable explanation for low participation

in the voluntary annuity market. Explanations, such as, access to social security,

annuity loads and bequest motives, for the low annuity demand were analysed in

Horneff, Maurer and Stamos (2008) by using a life-cycle model with fixed-payment

annuities. Avanzi (2010) listed several potential reasons to explain the high level

of voluntary annuitisation in Switzerland.

Another possible explanation is that people realise their preferences will change

over time and they do not want to lock themselves into a long-term product like an

annuity. It is widely accepted that these individual preferences play a crucial part

in solving the optimal life insurance and annuity demand puzzle. Various authors

have suggested that the strategies adopted by individuals are time inconsistent.

The causality and existence of the time inconsistency of investors have been men-

tioned and discussed in many areas, for example, psychology (Ainslie, 1992), game

theory (Simaan and Cruz Jr., 1973) and behavioural economics (Strotz, 1955).

Where we have the time-inconsistent behaviour of investors, the measure of

utility is not equally distributed over time. Under such circumstances, hyperbolic
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discounting can be used to deal with these preferences. The hyperbolic discount

rate is a decreasing function of time. More specifically, the hyperbolic discount

rate drops sharply over a short time period and decreases steadily for a long time

period. This feature can capture the short-term dramatic change in the individual

preferences of time-inconsistent agents.

Using a hyperbolic discount rate in a model which includes life insurance

and annuity choice, such as Richard (1975) model, one can study the optimal

consumption and life insurance product choices for individuals with time-inconsistent

preferences. This approach also offers insight into the annuity puzzle for such

agents. Richard’s model (Richard, 1975) has its roots in that of Merton (1969,

1971) who proposed a model of stochastic optimal control for maximising the

expected utility of intertemporal consumption and bequest wealth. In Merton’s

model, the return on the risk-free asset is assumed to be constant while the

returns on the risky asset are assumed to follow geometric Brownian motion. For

investors allocating resources dynamically between consumption and investment

who aim to maximise the expected utility, closed-form results for constant relative

risk aversion (CRRA) and constant absolute risk aversion (CARA)-type utility

functions were obtained by using the model in Merton (1969, 1971).

Following Merton’s work, Richard (1975) generalised Merton’s model by in-

cluding life insurance decisions for the investor. The key insight contributed by

Richard (1975) is that the life insurance and annuity demands4 of an investor are

4Importantly, note the subtle point that one can view annuity demand as negative life insurance.
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related to the investor’s legacy and wealth. With a fair and constant discount

rate for deterministic wage income (Yaari, 1965), Richard (1975) derived closed-

form results for maximising the expected utility of an investor with CRRA by

assuming the lifetime of the investor to be stochastic with a known distribution.

The insurance demand in Richard’s model was further studied by Pliska and Ye

(2007) via numerical experiments. Purcal and Piggott (2008) offered a treatment

of Richard’s model for time-consistent agents with a necessary bequest motive.

In earlier work, bequests were assumed to be luxury goods (Atkinson, 1971).

This assumption is backed by empirical data which suggest that the bequest mo-

tives of investors are impacted by their wealth levels (Lockwood, 2012). Auten

and Joulfaian (1996) and Hurd and Smith (2002) argued that the bequest mo-

tive is related to the wealth and the income of investors. Menchik (1980) showed

the existence of luxury-type bequests via the estimated elasticity of the bequest.

De Nardi (2004), Ameriks et al. (2011) and Lockwood (2012) pointed out that the

assumption of luxury-type bequests is matched by empirical data. Ding, Kingston

and Purcal (2014) generalised Merton’s model by assuming that bequests are lux-

ury goods.

Both Merton’s and Richard’s models are built based on the time-consistent

preferences of investors—the discount factor in the utility function is exponential

with a constant rate. Strotz (1955) argued that the preferences of an investor

are time inconsistent as the behaviour of the investor is dynamic and their pre-

commitment optimal strategy of the investor might be violated. Pollak (1968)
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categorised agents into two groups: “näıve”, that is, agents who are not aware of

their time-inconsistent behaviour and who always try to pre-commit their future

behaviours (and fail) and “sophisticated”, that is, agents who recognise their time-

inconsistent preferences and adopt a consistent plan. Within the framework of

time-inconsistent preferences, Maŕın-Solano and Navas (2010) and Maŕın-Solano,

Navas and Roch (2013) extended Merton’s model and provided optimal consump-

tion and portfolio rules for “näıve” and “sophisticated” agents via a standard

Hamilton-Jacobi-Bellman (HJB) equation and a modified HJB equation, respec-

tively.

In this paper, we further study the explanation for the “annuity puzzle” and

its exceptions. We believe this puzzling problem is the result of the interaction of

several factors and have completed an analysis of the interaction of two factors:

time-inconsistent behaviours and luxury-type bequests. Drawing on the work of

Maŕın-Solano and Navas (2010) and Maŕın-Solano, Navas and Roch (2013), we

extend Richard’s model for the entire lifespan to include a hyperbolic discounting

factor to capture the time-inconsistent preference of agents. We further generalise

our model by allowing bequests to be luxury goods. Two extreme cases of agent

behaviour, that is, näıve and sophisticated are studied. Hump-shaped consump-

tion as evidenced by empirical data (Gourinchas and Parker, 2002; Fernández-

Villaverde and Krueger, 2007) is found in the näıve case. Using our model, theo-

retical explanations are provided for the reasons as well as the exceptions for the

“annuity puzzle” which can be used as an inspiration for future empirical research.
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In section 2.2, the HJB equations for näıve and sophisticated agents are derived.

Inspired by Ekeland, Mbodji and Pirvu (2012), a numerical scheme is developed

to generate numerical results in section 2.3. Finally, conclusion is presented in

section 2.4.

2.2 Model and Method

Richard (1975) proposed a generalised version of Merton (1969) model. In

Richard’s model, an agent is assumed to maximise intertemporal consumption

and bequest utility

max

{
E

[∫ T

t

U1(C(s), s)ds+ U2(L(T ), T )

]}
, (2.2.1)

where T is the uncertain time of death, and U1, C, L and U2 are utility, con-

sumption, legacy at death and utility from the bequest of the agent, respectively.

The legacy amount, L, quantitatively describes agent’s desired amount of bequest.

Both C and L must be positive.

The key insight here is that the demand for insurance products can be de-

scribed by the interaction between legacy cost L(t) and total wealth W (t). When

legacy cost exceeds wealth, that is, L(t) > W (t), individuals should purchase life

insurance for bequest purposes. When wealth is greater than legacy cost, that

is, W (t) > L(t), individuals have more wealth than they need for bequest pur-

poses and they would then purchase an annuity to maximise their utility (Yaari,
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1965). In Richard (1975), the lifetime of an agent is assumed to follow a known

distribution with this denoted by µ(t) and S(t), the force of mortality and sur-

vival probability, respectively. Both µ(t) and S(t) have the condition of being

non-negative. The density function of mortality f(t) is defined as

f(t) = µ(t) · S(t). (2.2.2)

Therefore, µ(t) = f(t)/S(t) can be regarded as the conditional instantaneous

probability of death.

Hence, following Purcal and Piggott (2008), the premium rate P (t) of actuari-

ally fair insurance is

P (t) = µ(t) [L(t)−W (t)] . (2.2.3)

When L(t) > W (t) (i.e., we have P (t) > 0), that is, the wealth amount is below

the desired bequest amount, then retirees must purchase life insurance to cover

this shortage. On the other hand, when W (t) > L(t) (i.e., we have P (t) < 0),

that is, wealth exceeds the optimal legacy/bequest amount then this means the

agent has surplus funds. These can be annuitised via the variable annuity and, we

assume, will be done so—as the expected return on the annuity, r+ µ(t), exceeds

the safe rate of return, r.

We assume that two assets, that is, one risky and one risk-free, are available in

which the agent can invest. The dynamics of the price of the risky asset Xt, t ≥ 0
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are given by the following geometric Brownian motion,

dXt = αXtdt+ σXtdBt, X0 = X, (2.2.4)

where α is the risky asset return rate, σ is the volatility of risky asset return rate

and Bt is a one-dimensional Brownian motion defined on a complete probability

space (Ω, F, P). Here, Ω is the sample space, F is the σ-algebra and P is a

real-world probability measure. Both α and σ must be non-negative.

At each moment, the agent chooses C(t), the consumption amount, P (t), the

insurance premium amount, and π(t), the proportion of wealth to invest in risky

assets. The dynamics of the wealth W (t) process can then be described as

dW (t) = −C(t)dt− P (t)dt+ Y (t)dt+ rW (t)dt (2.2.5)

+(α− r)π(t)W (t)dt+ σπ(t)W (t)dBt,

where Y (t) is the deterministic labour income rate and r is the risk-free rate.

W (t) is constrained to be non-negative.

By introducing a hyperbolic discounting factor, the model from Richard (1975)

can be re-expressed as

V (W (t), t) = max
C(t),π(t),L(t)

E

∫ τ

t

S(s)

S(t)
θ(s− t) [U1(C, s) + µ(s)U2(L, s)] ds, (2.2.6)

where τ is the maximum possible survival age. Here, V (W (t), t) is the value



24 CHAPTER 2. PAPER 1

function and θ(t) is the hyperbolic discount factor. Equation (2.2.6) is then subject

to the dynamic wealth constraint

dW (t) = [(α− r)π(t)W (t) + r ·W (t) + Y (t)− C(t)− P (t)]dt+ π(t)σW (t)dBt.

(2.2.7)

Power utility functions are adopted in this paper for both the utility of con-

sumption and bequest, that is,

U1(C(t), t) =
C(t)γ

γ
,

U2(L(t), t) = m(t)1−γ [L(t) +m(t)υ · (W (t) + b(t))]γ

γ
, (2.2.8)

where γ is a constant reflecting the risk-aversion level of an agent,

m(t) ≡ 2

3

∫ τ

t

e−r(u−t)du (2.2.9)

is employed as an annuitisation factor for the bequest motive, υ ∈ [0, 1] is a

constant and

b(t) =

∫ τ

t

Y
S(s)

S(t)
e−r(s−t)ds (2.2.10)

represents the capitalised value of future income.

The assumed value of m(t) is from Purcal and Piggott (2008). This definition

assumes that the bequest motive of the agent is to leave an annuitised payment

to the surviving spouse (assumed to be the same age as the agent) from the date
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of death to the maximum age of the mortality table. The annuitised payment is

used to cover two-thirds of the amount of optimal consumption.

From equation (2.2.8), a threshold item m(t)υ · (W (t)+b(t)) with the condition

of being non-negative is shown in the utility function of bequest. This threshold is

designed to be the annuitised desired level of consumption which reflects the fea-

ture of the luxury bequests. Here, we assume that the desired level of consumption

is a percentage of the sum of wealth and the capitalised value of future income.

A non-negative optimal bequest will be motivated only if optimal consumption is

greater than the desired consumption level. In other words, we treat bequests as

luxury goods and agents with more wealth intend to leave more bequests.

We adopt the model proposed in Barro (1999) for the hyperbolic discount rate

δ(t) and hyperbolic discounting factor θ(t),

δ(t) = ρ+ ζ exp(−ξt), (2.2.11)

θ(t) = exp(−
∫ t

0

δ(u)du) = exp

{
− ρt− ζ

ξ
[1− exp(−ξt)]

}
, (2.2.12)

where ρ is the long-run rate of time preference, ζ is the degree of impatience and

ξ is the constant decline rate of impatience.

From equation (2.2.6), we have

V (W (t), t) = max
C(t),π(t),L(t)

E

[∫ τ

t

S(s)

S(t)
θ(s− t)F (C,L, s)ds

]
, (2.2.13)
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where F (C,L, s) = U1(C, s) + µ(s)U2(L, s).

2.2.1 Dynamic programming: the two cases

In the näıve case, the agent solves equation (2.2.6) to obtain a strategy of

consumption, insurance and investment at any time t. With unrealised time-

inconsistent preferences, the previous decided strategy of this näıve agent is always

reconsidered and modified after a very short period of time. Following Maŕın-

Solano and Navas (2010) and Maŕın-Solano, Navas and Roch (2013), the derivation

of the HJB equation for the näıve case is given below.

At time t, the agent has the value function

V (W (t), t) = max
C(t),π(t),L(t)

E

[∫ t+ε

t

S(s)

S(t)
θ(s− t)F (C,L, s)ds

]
+ max

C(t),π(t),L(t)
E

[∫ τ

t+ε

S(s)

S(t)
θ(s− t)F (C,L, s)ds

]
.(2.2.14)

For small ε, that is, ε2 ≈ 0, we can have, recalling equations (2.2.11) and

(2.2.12),

S(t+ ε) = S(t)(1− µ(t)ε)
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and

θ(s− t) = exp

{
−ρ(s− t)− ζ

ξ
[1− exp (−ξ(s− t))]

}
= exp

{
− ρε+

ζ

ξ
exp(ξt) [exp(−ξs)− exp(−ξ(s− ε))]

}
× exp

{
− ρ(s− t− ε)− ζ

ξ
[1− exp (−ξ(s− t− ε))]

}
≈ exp [−ρε− ζ exp (ξt) ε] θ(s− t− ε)

≈ (1− δ(t)ε)θ(s− t− ε). (2.2.15)

Hence,

S(s)

S(t)
θ(s− t) =

S(s)

S(t+ ε)
(1− µ(t)ε)(1− δ(t)ε)θ(s− t− ε)

= (1− µ(t)ε− δ(t)ε) S(s)

S(t+ ε)
θ(s− t− ε). (2.2.16)

Equation (2.2.14) can now be written as

V (W (t), t) = max
C(t),π(t),L(t)

E

[∫ t+ε

t

S(s)

S(t)
θ(s− t)F (C,L, s)ds

]
+(1− δ(t)ε− µ(t)ε)V (W (t+ ε), t+ ε). (2.2.17)
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Using Itô’s lemma and equation (2.2.29), V (W (t+ ε), t+ ε) can be shown to be

V (W (t+ ε), t+ ε) = V (W (t), t) + Vt(W (t), t)ε

+ VW (W (t), t)[(α− r)π∗(t)W (t) + r ·W (t) + Y (t)

− C∗(t)− P ∗(t)]ε+
1

2
VWW (W (t), t)π∗2W (t)2σ2ε, (2.2.18)

where C∗(t), π∗(t) and P ∗(t) are the optimal consumption, optimal portfolio in-

vestment proportion and optimal insurance premium, respectively.

By substituting equation (2.2.18) into equation (2.2.17), the standard HJB

equation for the näıve agent at time s is now

δ(s)V (W (s), s)ε+ µ(s)V (W (s), s)ε− Vs(W (s), s)ε

= max
C(s),π(s),L(s)

E

[∫ s+ε

s

S(u)

S(s)
θ(u− s)F (C,L, u)du

]
+ VW (W (s), s)[(α− r)π∗(s)W (s) + r ·W (s) + Y

− C∗(s)− P ∗(s)]ε+
1

2
VWW (W (s), s)π∗2W (s)2σ2ε. (2.2.19)

By dividing equation (2.2.19) by ε and taking the limit ε→ 0, we now have

δ(s)V (W (s), s) + µ(s)V (W (s), s)− Vs(W (s), s)

= F (C∗, L∗, s) + VW (W (s), s)[(α− r)π∗(s)W (s) + r ·W (s)

+ Y (s)− C∗(s)− P ∗(s)] +
1

2
VWW (W (s), s)π∗2W (s)2σ2, (2.2.20)
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where L∗ is the optimal legacy cost.

If there is no commitment, the näıve agent at time t = 0 will take the action

based on the solution of equation (2.2.20) for a short time period, that is, ε. Then,

at time t = ε, the näıve agent will change this decision to the solution of

δ(s− ε)V (W (s), s) + µ(s)V (W (s), s)− Vs(W (s), s)

= F (C∗, L∗, s) + VW (W (s), s)[(α− r)π(s)W (s) + r ·W (s)

+ Y (s)− C∗(s)− P ∗(s)] +
1

2
VWW (W (s), s)π∗2W (s)2σ2.

Therefore, generally, the solution of the näıve case is this solution from the family

of HJB equations,

δ(s− t)V (W (s), s) + µ(s)V (W (s), s)− Vs(W (s), s)

= F (C∗, L∗, s) + VW (W (s), s)[(α− r)π∗(s)W (s) + r ·W (s)

+ Y (s)− C∗(s)− P ∗(s)] +
1

2
VWW (W (s), s)π∗2W (s)2σ2. (2.2.21)

Sophisticated agents notice that their behaviour can be time-inconsistent. Their

optimal strategy is time-consistent which is based on an equilibrium of a series

of future behaviours. For the sophisticated case, however, the strategy adopted

by the agent at one time point is related to the strategy at the next time point

(Maŕın-Solano and Navas, 2010). Hence, we first study the sophisticated case in

discrete time and then move on to consider continuous time. We can discretise
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equation (2.2.14) by dividing (0, τ) into N time periods of a very short length ε,

where ε2 = 0. Defining dt = ε and t = jε, we have

V (W (j), j) = maxE

[
N−j∑
i=0

S(i+ j)

S(j)
θ(i)F (C,L, i+ j)

]
ε

= maxE [F (C,L, j)] ε

+ maxE

[
N−j−1∑
i=1

S(i+ j)

S(j)
θ(i)F (C,L, i+ j)

]
ε

+ maxE

[
S(N)

S(j)
θ(N − j)F (C,L,N)

]
ε. (2.2.22)

Also, we have

V (W ((j + 1), j + 1) = maxE

[
N−j−2∑
k=0

S(k + 1 + j)

S(j + 1)
θ(k)F (C,L, k + 1 + j)

]
ε

+ maxE

[
S(N)

S(j + 1)
θ(N − j − 1)F (C,L,N)

]
ε.

(2.2.23)

By substituting equation (2.2.23) into equation (2.2.22), it can be shown that

S(j)θ(N − j − 1)V (W (j), j)− S(j + 1)θ(N − j)V (W (j + 1), j + 1)

= S(j)θ(N − j − 1) maxE [F (C,L, j)] ε

+ θ(N − j − 1) maxE

[
N−j−1∑
i=1

S(i+ j)θ(i)F (C,L, i+ j)

]
ε

− θ(N − j) maxE

[
N−j−2∑
k=0

S(k + 1 + j)θ(k)F (C,L, k + 1 + j)

]
ε.

(2.2.24)



2.2. MODEL AND METHOD 31

Using Itô’s lemma, V (W (j + 1), j + 1) then becomes

V (W (j + 1), j + 1) = V (W (j), j) + Vt(W (j), j)ε

+ VW (W (j), j)[(α− r)π∗(j)W (j) + r ·W (j) + Y

− C∗(j)− P ∗(j)]ε+
1

2
VWW (W (j), j)π2(j)W 2(j)σ2ε,

(2.2.25)

With equation (2.2.25), we can simplify equation (2.2.24) to

(S(j)θ(N − j − 1)− S(j + 1)θ(N − j))V (W (j), j)

= K ε+ S(j)θ(N − j − 1) maxE [F (C,L, j)] ε

+ S(j + 1)θ(N − j)VW (W (j), j)[(α− r)π∗(j)W (j)ε

+ r ·W (j) + Y − C∗(j)− P ∗(j)] + Vt(W (j), j)ε

+
1

2
S(j + 1)θ(N − j)VWW (W (j), j)π∗2(j)W 2(j)σ2ε, (2.2.26)

where

K = maxE

N−j−1∑
i=1

S(i+ j) [θ(N − j − 1)θ(i)− θ(N − j)θ(i− 1)F (C,L, i+ j)] .

Here, we define θ(N−j) = θ(N−j−1)[1−δ(N−j)ε] and θ(k) = θ(k − 1)[1 + δ(k)ε].

By dividing equation (2.2.26) by ε and taking the limit ε → 0, we then have the
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modified HJB equation for the sophisticated case,

δ(τ − t)V (W (t), t) + µ(t)V (W (t), t)− Vt(W (t), t)

= U1(C∗, t) + µ(t)U2(L∗, t) + K (t)

+VW (W (t), t)[(α− r)π∗(t)W (t) + r ·W (t) + Y (t)− C∗(t)− P ∗(t)]

+
1

2
VWW (W (t), t)π∗2(t)W 2(t)σ2, (2.2.27)

where

lim
ε→0

S(j)θ((N − j − 1))− S((j + 1))θ(N − j)
ε

= lim
ε→0

θ(N − j − 1)(S(j)− S(j + 1)) + θ(N − j − 1)δ(N − j)S(j + 1)ε

ε

= lim
ε→0

[
θ(N − j − 1)

(S(j)− S(j + 1))

ε
+ θ(N − j − 1)δ(N − j)S(j + 1)

]
= θ(τ − t)S(t)µ(t) + θ(τ − t)δ(τ − t)S(t),

lim
ε→0

θ(N − j − 1)θ(i)− θ(N − j)θ(i− 1)

ε

= lim
ε→0

θ(N − j − 1)θ(i)− θ(N − j − 1)θ(i)(1− δ(N − j)ε)(1 + δ(i)ε)

ε

= lim
ε→0

θ(N − j − 1)θ(i)(δ(N − j)− δ(i))

= θ(τ − t)θ(s− t)(δ(τ − t)− δ(s− t))
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and

K (t) = E

∫ τ

t

S(s)

S(t)
θ(s− t) [δ(τ − t)− δ(s− t)] [U1(C∗, s) + µ(s)U2(L∗, s)] ds.

(2.2.28)

Different to the näıve agent, who modifies decisions at each time point without

the consideration of future inconsistent behaviours, sophisticated agent makes the

decision at the start of the decision period (i.e.,τ − t) and consider the future

utility5.

2.2.2 Optimal behaviours for time-inconsistent agents

Here we consider the ansatz for the value function,

V (W, t) = a(t)
(W (t) + b(t))γ

γ
, (2.2.29)

where a(t) is defined as an annuitisation factor or marginal propensity of con-

sumption.

From equations (2.2.21) and (2.2.27) and the first-order condition, the optimal

consumption, optimal portfolio investment proportion and optimal legacy amount

5K (t) can be defined as the optimal expected discounted future utility.
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can be obtained as follows,

C∗(t) = a(t)
1

γ−1 (W (t) + b(t)),

π∗(t) =
α− r

(1− γ)σ2

(W (t) + b(t))

W (t)

and L∗(t) = m(t)[C∗(t)− υ(W (t) + b(t))]

= m(t)a(t)
1

γ−1 (W (t) + b(t))−m(t)υ · (W (t) + b(t)).(2.2.30)

As a negative legacy, that is, a negative bequest motive, is not allowed in most

jurisdictions, we adopt the constraint: υ ≤ a(t)
1

γ−1 .

Hence, with equation (2.2.8), the utility functions of optimal consumption and

legacy can be shown to be,

U1(C∗(t), t) =
a(t)

γ
γ−1 (W (t) + b(t))γ

γ
,

and U2(L∗(t), t) =
m(t)a(t)

γ
γ−1 (W (t) + b(t))γ

γ
. (2.2.31)

Based on equation (2.2.3), the optimal premium amount P ∗(t) is then,

P ∗(t) = (L∗(t)−W (t))µ(t)

= µ(t)m(t)(a(t)
1

γ−1 − υ)(W (t) + b(t))− µ(t)W (t). (2.2.32)

We define Vt(W, t) = ∂V (W, t)/∂t, VW (W, t) = ∂V (W, t)/∂W and VWW (W, t) =
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∂2V (W, t)/∂W 2, respectively. Then, from equation (2.2.29), we have

VW (W, t) = a(t)(W (t) + b(t))γ−1,

VWW (W (t), t) = (γ − 1)a(t)(W (t) + b(t))γ−2

and Vt(W, t) = a′(t)
(W (t) + b(t))γ

γ
+ a(t)(W (t) + b(t))γ−1b′(t)

= a′(t)
(W (t) + b(t))γ

γ

+a(t)(W (t) + b(t))γ−1[−Y + (r + µ(t))b(t)]. (2.2.33)

For the näıve case, let us put equations (2.2.30), (2.2.31), (2.2.32) and (2.2.33)

into equation (2.2.21). Following same simplifications, we have

a′(s) + a(s)

[
(α− r)2

2σ2(1− γ)
γ + r · γ − µ(s)(1− γ − γm(s)υ)− δ(s− t)

]
= − (1 + µ(s)m(s)) (1− γ)a(s)

γ
γ−1 , (2.2.34)

where a(0) = 1 and a′(0) = 0.

Equation (2.2.34) is a Bernoulli differential equation, and we define

a(s) = d(s)1−γ, (2.2.35)

where a′(s) = (1− γ)d(s)−γd′(s).
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With equation (2.2.35), equation (2.2.34) can be written as

(1− γ)d(s)−γd′(s)+

[(
(α− r)2

2σ2(1− γ)
+ r

)
γ

− µ(s)(1− γ −m(s)υ)− δ(s− t)
]
d(s)1−γ

= − [1 + µ(s)m(s)] (1− γ)d(s)−γ. (2.2.36)

Dividing equation (2.2.36) by (1− γ)d(s)−γ and multiplying ς, we have

d′(s)ς +

[(
(α− r)2

2σ2(1− γ)
+ r

)
γ

1− γ
− µ(s)(1− γ −m(s)υ)− δ(s− t)

1− γ

]
d(s)ς

= − [1 + µ(s)m(s)] ς, (2.2.37)

where ς = exp
[∫ s

0

(
(α−r)2

2σ2(1−γ)
+ r
)

γ
1−γ − µ(u) + γµ(u)m(u)υ

1−γ − δ(u−t)
1−γ du

]
. Integrating

both sides of equation (2.2.37) from t to τ yields that

d(s) exp

[∫ s

0

(
(α− r)2

2σ2(1− γ)
+ r

)
γ

1− γ
− µ(u) +

γµ(u)m(u)υ

1− γ
− δ(u− t)

1− γ
du

] ∣∣∣∣τ
t

= −
∫ τ

t

[1 + µ(s)m(s)] exp

[ ∫ s

0

(
(α− r)2

2σ2(1− γ)
+ r

)
γ

1− γ
− µ(u)

+
γµ(u)m(u)υ

1− γ
− δ(u− t)

1− γ
du

]
ds. (2.2.38)
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Equation (2.2.38) can be simplified as

− d(t)S(t) exp

{(
(α− r)2

2σ2(1− γ)
+ r

)
γ

1− γ
t exp

[
−ρt− ζ

ξ
(1− exp(−ξt))
1− γ

]

× exp

(∫ t

0

γµ(u)m(u)υ

1− γ
du

)}
= −

∫ τ

t

[1 + µ(s)m(s)]S(s) exp

[(
(α− r)2

2σ2(1− γ)
+ r

)
γ

1− γ
s

]
× exp

{−ρs− ζ
ξ
[1− exp(−ξs)]
1− γ

}
exp

(∫ s

0

γµ(u)m(u)υ

1− γ
du

)
ds.

(2.2.39)

Expressing equation (2.2.39) in terms of d(t) gives

d(t) =

∫ τ

t

(1 + µ(s)m(s))
S(s)

S(t)
θ(s− t)

1
1−γ

× exp

[(
(α− r)2

2σ2(1− γ)
+ r

)
γ

1− γ
(s− t)

]
exp

(∫ s

t

γµ(u)m(u)υ

1− γ
du

)
ds.

Based on equation (2.2.35), the value of a(t) can now be found,

a(t) =

{∫ τ

t

(1 + µ(s)m(s))
S(s)

S(t)
θ(s− t)

1
1−γ

× exp

[(
(α− r)2

2σ2(1− γ)
+ r

)
γ

1− γ
(s− t)

]
exp

(∫ s

t

γµ(u)m(u)υ

1− γ
du

)
ds

}1−γ

.

With the closed-form result for a(t) and given the initial wealth level, we can

obtain the optimal strategy for the näıve agent via equations (2.2.29), (2.2.30)

and (2.2.32).

For the sophisticated case, substituting the optimal consumption and bequest
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equation into the modified HJB equation, equation (2.2.27) and multiplying both

sides by γ, we have the following equation

0 = a′(t)(W (t) + b(t))γ

+ a(t)
γ
γ−1 (W (t) + b(t))γ[(1− γ) + µ(t)m(t)(1− γ)]

+ a(t)(W (t) + b(t))γ
[

1

2

(α− r)2

σ2(1− γ)
γ − (µ(t) + δ(τ − t))

+ (r + µ(t))γ + γµ(t)m(t)υ

]
+ γK (t), (2.2.40)

together with the wealth constraint

dW (t) = [(α− r)π(t)W (t) + r ·W (t) + Y − C(t)− P (t)]dt+ π(t)σW (t)dBt

=

[
(α− r)2

(1− γ)σ2
+ µ(t)m(t)υ − (1 + µ(t)m(t))a(t)

1
γ−1

]
(W (t) + b(t))dt

+ [(r + µ(t))W (t) + Y ] dt+
α− r

(1− γ)σ
(W (t) + b(t))dBt. (2.2.41)

By letting W̃ (t) = W (t) + b(t), we then have

dW̃ (t) =

[
(r + µ(t)) +

(α− r)2

(1− γ)σ2
+ µ(t)m(t)υ − (1 + µ(t)m(t))a(t)

1
γ−1

]
W̃ (t)dt

+ [−(r + µ)b(t) + b′(t) + Y ] dt+
α− r

(1− γ)σ
W̃ (t)dBt. (2.2.42)

From equation (2.2.10), it follows that −(r+µ(t))b(t) + b′(t) + Y = 0. Therefore,
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we obtain

dW̃ (t) =

[
(r + µ(t)) +

(α− r)2

(1− γ)σ2
+ µ(t)m(t)υ − (1 + µ(t)m(t))a(t)

1
γ−1

]
W̃ (t)dt

+
α− r

(1− γ)σ
W̃ (t)dBt. (2.2.43)

The above equation is a geometric Brownian motion differential equation. Hence,

we have

W̃ (s)

W̃ (t)
= exp

{∫ s

t

(r − µ(t)) +
(α− r)2

(1− γ)σ2
− (α− r)2

2(1− γ)2σ2
+ µ(u)m(u)υ

− [1 + µ(u)m(u)]a(u)
1

γ−1du+
α− r

(1− γ)σ
(B(s)−B(t))

}
. (2.2.44)

Putting equations (2.2.31) and (2.2.44) into equation (2.2.28), it follows that

K (t) = (W (t) + b(t))γ
∫ τ

t

S(s)

S(t)
θ(s− t)(δ(τ − t)

− δ(s− t)) 1

γ
(1 + µ(s)m(s))a(s)

γ
γ−1 g(s)ds, (2.2.45)

where g(s) = exp

{∫ s
t

(r+µ(t))γ+ (α−r)2
(1−γ)σ2γ+µ(u)m(u)υ·γ−γ[1+µ(u)m(u)]a(u)

1
γ−1du

}
.

Based on equations (2.2.40) and (2.2.45), we obtain the integro-differential
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equation

0 = a′(t) + a(t)
γ
γ−1 [(1− γ) + µ(t)m(t)(1− γ)]

+

∫ τ

t

S(s)

S(t)
θ(s− t)(δ(τ − t)− δ(s− t))(1 + µ(s)m(s))a(s)

γ
γ−1 g(s)ds

+ a(t)

{
1

2

(α− r)2

σ2(1− γ)
γ − [µ(t) + δ(τ − t)] + (r + µ(t))γ + γµ(t)m(t)υ

}
.

(2.2.46)

Drawing on the work of Ekeland, Mbodji and Pirvu (2012), we develop a nu-

merical scheme to approximate the integro-differential equation, equation (2.2.46).

The existence and uniqueness and convergence of the numerical scheme have been

discussed in Ekeland, Mbodji and Pirvu (2012), where they point out proofs of

the existence and uniqueness are an ongoing research project. Nevertheless, these

authors have used these techniques in their published work, as do we.

We write

g(s) = exp

(∫ s

t

l + µ(u)(1 +m(u)υ)γdu

)(
A(s)

A(t)

)
, (2.2.47)

where

l = r · γ +
(α− r)2

(1− γ)σ2
γ



2.2. MODEL AND METHOD 41

and

A(s) = exp

{∫ τ

s

γ[1 + µ(u)m(u)]a(u)
1

γ−1du

}
. (2.2.48)

We define tn = τ −n∆t, where ∆t = τ/N and the total number of time units, N ,

are used to discretise the time interval [0, τ ]; Equation (2.2.46) can be written as

follows

a′(tn) = a(tn)
γ
γ−1 [γ − 1− µ(tn)m(tn)(1− γ)]

−
∫ τ

tn

S(sn)

S(tn)
θ(sn − tn)(δ(τ − tn)− δ(sn − tn))(1 + µ(sn)m(sn))a(sn)

γ
γ−1 g(sn)dsn

+ a(tn)

[
−1

2

(α− r)2

σ2(1− γ)
γ + µ(tn) + δ(τ − tn)− (r + µ(tn))γ + γµ(tn)m(tn)υ

]
.

We can write

a′(tn) = a(tn)
γ
γ−1 [γ − 1− µ(tn)m(tn)(1− γ)]

+a(tn)

[
−1

2

(α− r)2

σ2(1− γ)
γ + µ(tn) + δ(τ − tn)− (τ + µ(tn))γ + γµ(tn)m(tn)υ

]
−
∫ τ

tn

I(sn, tn)(1 + µ(sn)m(sn))a(sn)
γ
γ−1

(
A(sn)

A(tn)

)
dsn, (2.2.49)

where

I(sn, tn) =
S(sn)

S(tn)
θ(sn − tn)(δ(τ − tn)− δ(sn − tn)) exp(l(sn − tn) +

∫ sn

tn

µ(u)(1 +m(u)υ)γdu).
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For the sequence atn and Atn we have

a(tn+1) = a(tn)− a′(tn)∆t,

and

A(tn+1) = A(tn)− A′(tn)∆t

= A(tn) + γ(1 + µ(tn)m(tn))a(tn)
1

γ−1A(tn)∆t, (2.2.50)

where A′(tn) = −γ(1 + µ(tn)m(tn))a(tn)
1

γ−1A(tn). Equation (2.2.49) can then be

discretised as follows

a(tn+1) = a(tn)− a(tn)
γ
γ−1 [γ − 1− µ(tn)m(tn)(1− γ)]∆t

− a(tn)

[
−1

2

(α− r)2

σ2(1− γ)
γ + (µ(tn) + δ(τ − tn))− (r + µ(tn))γ + γµ(tn)m(tn)υ

]
∆t

− (∆t)2

n−1∑
j=0

I(tj, tn)(1 + µ(tj)m(tj))a(tj)
γ
γ−1

(
A(tj)

A(tn)

)
. (2.2.51)

Based on equations (2.2.29), (2.2.30) and (2.2.32), an optimal strategy for the

sophisticated case can be determined using the result of a(t) from (2.2.51).
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Table 2.1: Parameters used in the numerical results

t = 30 τ = 100
α = 0.0757 r = 0.0244
ρ = 0.001925 σ = 0.18

Y = 81, 012 Swiss francs γ = −0.5
ξ = 0.5 ζ = 0.25

υ = 0 or 0.02 Retirement age=65

2.3 Numerical Results

2.3.1 Parameter values

In this paper, we calibrate our model to Swiss data and present numerical

results from the starting age t = 30 to the limiting age τ = 100. We use the most

recent male population mortality in Swiss Statistics from Swiss Federal Statistical

Office (2005) to calibrate the survival rate and force of mortality.

According to Barro (1999), the parameters used in equation (2.2.12) can be

calibrated to match the exponential model. Specifically, the present values of a

perpetuity contract via the exponential model or hyperbolic model should be no

different. With the exponential rate in Purcal and Piggott (2008), that is, 0.005

and the suggested ζ and ξ value from Barro (1999), we follow Tang (2009) to

calibrate parameter values, finding ρ = 0.001925, ζ = 0.25 and ξ = 0.5.

We set the risky asset return rate at α = 0.0757 (p.a.) and the risk-free rate

at r = 0.0244 (p.a.), based on the geometric mean of the SIX Swiss Exchange

Index (1990–2014) and the yield of Swiss federal bonds over the last 25 years

(1990–2014). From the Six Index, we also calculated the average volatility over
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the last 25 years, finding that, σ = 0.18 (p.a.). In addition, we use the Swiss

average monthly wage (2009–2011) from the Swiss Federal Statistical Office to

obtain the annual income, Y = 81, 012 Swiss francs6 which is also assumed to

be the initial wealth amount. In our model, agents are set to receive a constant

annual income, that is, Y = 81, 012 Swiss francs, before the retirement age and

have no income stream, that is, Y = 0, after retirement. Here, we assume υ to be 0

or 0.02 to demonstrate the effect of luxury-type bequests. We set the compulsory

retirement age at age 65.

The closed-form of Richard’s model for the control variables is stated in equa-

tion (2.2.30), where W (t) is the state variable and a(t) is still unknown. In section

2.2.2, we give analytic solutions for a(t) for both the näıve and sophisticated cases

stated in section 2.2. Hence, the value of the control variables can be determined

for a given W (t).

From equation (2.2.43), the dynamics of combined wealth and capitalised in-

come follow the geometric Brownian motion; the wealth path W (t) is not de-

terministic. Thus, we adopt a simulation approach to determine the expected

value of the state and control variables. Specifically, following Purcal and Piggott

(2008), we average 10,000 simulations to generate the expected time path of all

variables. It can be shown that relative mean error7 (RME) is small given that

10,000 simulations are used.

6This figure is the median male gross income in 2014 from the Swiss Federal Statistical Office.
Due to the complexity of the Swiss tax system, we use the gross income instead of net income.
7See table 2.2 for these values. Note the relative mean error is defined as the standard error

divided by the mean.
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Table 2.2: RME for both näıve and sophisticated agents

Age Näıve case with
ζ = 0.25 and υ = 0

Näıve case with
ζ = 0.25 and
υ = 0.02

Sophisticated case
with ζ = 0.25 and
υ = 0

Sophisticated case
with ζ = 0.25 and
υ = 0.02

40 0.006782 0.006533 0.006506 0.006399
50 0.01071 0.009778 0.010186 0.010025
60 0.015043 0.013078 0.013746 0.013345
70 0.021945 0.017227 0.017844 0.018040
80 0.026585 0.020455 0.020894 0.020936
90 0.027674 0.024114 0.026247 0.028249
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Figure 2.1: Expected consumption comparison between exponential discounting
case (Cexp in legend) and hyperbolic discounting cases (Cn and Cs in legend)

2.3.2 Comparison with exponential discounts

To explore the time-inconsistent preferences inherent in hyperbolic discount-

ing, we conduct a comparison with the time-consistent preferences case, that is,

the exponential discounting case, and the hyperbolic discounting cases, including

the näıve, näıve with luxury-type bequest, sophisticated and sophisticated with

luxury-type bequest cases as shown in figures 2.1 and 2.2. In figure 2.1 (which is
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our only diagram on a log scale), utility-maximising näıve agents consume more

than both sophisticated agents and agents with exponential discounting in the

early stages of life. The result, therefore, is that we expect those näıve agents to

have less wealth as they age which leads to their low consumption afterwards. In

contrast, the sophisticated agents who realise their time-inconsistent preferences

would consciously reduce their consumption in their early years. Their sophisti-

cated behaviour even allows them to consume more in the later stages of their life

than agents with time-consistent preferences (the exponential discounting case).

In figure 2.2, näıve agents continue to indicate their demand for life insurance

while sophisticated agents and agents with time-consistent preferences utilise their

wealth ultimately for annuitisation. As will be recalled, in our model, a posi-

tive premium amount means demand for life insurance while a negative premium

amount means annuitisation. Again, with their awareness of time-inconsistent

preferences, sophisticated agents end up with wealth that is surplus to bequests

with this used to purchase annuities.

Figures 2.1 and 2.2 indicate the luxury bequest effect would induce both higher

consumption and demand for annuities. This arises from the reduced need to

leave a legacy.

2.3.3 Legacy amount comparison

As will be recalled, Richard’s model provides the insight that agents buy life

insurance when the legacy amount, L(t), exceeds wealth, W (t); the sum assured
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Figure 2.2: Expected insurance premium comparison between exponential dis-
counting case (Pexp in legend) and hyperbolic discounting cases (Pn and Ps in
legend)

amount is measured by L(t)−W (t).

Drawing on Purcal and Piggott (2008), we assume that desired legacy (be-

quest motive) is to leave a payment commencing at the death of the legator and

payable to the limiting age of the legatee. As can be seen from figure 2.3, there

is a noticeable difference in legacy behaviours between the two forms of time-

inconsistent agents studied. When bequests are treated as luxury goods, näıve

agents, compared to sophisticated agents, have greater legacy amounts, that is,

stronger bequest motives, in the early stage of life together with lower legacy

amounts, that is, weaker bequest motives, in the later stage of life. This can be

explained by the difference in consumption patterns between näıve and sophis-

ticated agents, particularly as the legacy amount is described in this paper as

two-thirds of optimal consumption from current age to the limiting age. When
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Figure 2.3: Expected legacy amount for näıve case and sophisticated case

bequests are treated as luxury goods, we continue to observe this pattern: in

comparison with sophisticated agents, näıve agents have higher legacy amounts

in the earlier stage of life while having lower legacy amounts in the later stage of

life.

When there are luxury-type bequests, agents are less motivated to provide be-

quests and prefer to annuitise their wealth—due to the effects of the consumption

threshold in the bequest utility function. As a result, the legacy amount is lower

for both näıve and sophisticated agents over most of their lifespan compared to

the no-luxury-goods case. The exceptions for agents at senior ages arise from

superior returns from annuitisation of wealth towards the end of life.
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Figure 2.4: Expected consumption for näıve case without luxury-type bequest
(Cn in legend)

2.3.4 Expected consumption paths

Equation (2.2.12) links time-inconsistent preferences with the value of the de-

gree of impatience, ζ. Higher ζ values means that agents are more impatient in

their behaviours. Hence, with different values of ζ, we can explore the impact

of different time-inconsistent preferences on the patterns of consumption and life

insurance demand.

Intuitively, we believe that agents with higher impatience are more “short-

sighted or myopic”, thus, there should be some over-consumption in the earlier life

stage. As shown in figure 2.4, when bequests are not luxury goods, consumption

is greater among näıve agents with a higher ζ value in the early stage of life. For

agents who are less “short sighted or myopic”, that is, who have a lower ζ value,

consumption increases substantially and, in the later stages of life, overwhelms
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Figure 2.5: Expected consumption for näıve case with luxury-type bequest (Cn
in legend)

that of agents with higher ζ values. Hump-shaped consumption is exhibited for

some ζ values which matches the empirical data8.

The consumption of näıve agent with luxury-type bequests is demonstrated in

figure 2.5. When bequests are treated as luxury goods, we can still observe similar

patterns of consumption. These are now at higher levels, with the peaks almost

60% above their level in figure 2.4.

In figure 2.6 and figure 2.7, sophisticated agents are shown to have patterns dif-

ferent from those of naẗıve agents. Sophisticated agents with a higher impatience

level, that is, a higher ζ value, would consume less in the earlier stages of life

and consume more in the later stages whether or not bequests are luxury goods.

This phenomenon can be explained by the fact that sophisticated agents have the

ability to notice their hyperbolic preference and then deliberately choose to hold

8See, for example, Gourinchas and Parker (2002) and Fernández-Villaverde and Krueger (2007).
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Figure 2.6: Expected consumption for sophisticated case without luxury-type
bequest (Cs in legend)

their consumption when they are impatient. However, the impatience impact be-

comes greater in the later life stage for cases both with or without luxury-type

bequests. As mentioned before, when bequests are luxury goods, agents allocate

less wealth to bequests and more to consumption. Compared to näıve agents,

using time-consistent strategies, sophisticated agents have higher consumption

levels9. For the sophisticated case, hump-shaped consumption can be observed

where the turning point for a decrease is in the range from age 95 to age 100.

9The high consumption levels in the later life state that are shown in figure 2.6 and figure 2.7
indicate that agents who survive to that age would like to consume a large proportion of their
wealth for utility maximisation.
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Figure 2.7: Expected consumption for sophisticated case with luxury-type bequest
(Cs in legend)

2.3.5 Expected insurance premium paths

The expected insurance premium paths for näıve and sophisticated agents with

different ζ10 and υ values are shown in figures 2.8–2.11. In our model, positive in-

surance premiums follow from the requirement that the sum assured should cover

the legacy cost while negative premiums mean that wealth in excess of the legacy

cost is used to purchase annuities to maximise utility. For näıve agents with or

without luxury-type bequests, their higher impatience levels, that is, higher ζ val-

ues, mean higher life insurance premiums; that is, they require more life insurance

payouts. For different ζ values, most of the time, näıve agents without luxury-

type bequests do not have the excess wealth needed for annuitisation and require

10As stated in Barro (1999), the ζ value should be around 0.5. We choose the ζ value to be
either 0.2, 0.25, 0.3, 0.35 or 0.4 for our calculations.
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Figure 2.8: Expected insurance premium for näıve case without luxury-type be-
quest (Pn in legend)

positive insurance premiums, as shown in figure 2.8. However, this requirement

is lower when bequests are luxury goods, as shown in figure 2.9. Näıve agents

with luxury-type bequests have less bequest motive and more excess wealth and

start to purchase annuities for utility maximisation. The transition from working

to compulsory retirement for the näıve case both with and without luxury-type

bequests are seen in the kinks around age 65 in figures 2.8 and 2.9.

As indicated on figures 2.10 and 2.11, sophisticated agents with or without

luxury-type bequests spend part of their wealth to purchase life insurance in

their earlier life stage and then annuitise strongly. Larger annuity amounts are

associated with sophisticated agents with luxury-type bequests compared to those

sophisticated agents without luxury-type bequests. The impacts of luxury-type

bequests which increase wealth annuitisation are also identified in figures 2.10
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Figure 2.9: Expected insurance premium for näıve case with luxury-type bequest
(Pn in legend)
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Figure 2.10: Expected insurance premium for sophisticated case without luxury-
type bequest (Ps in legend)
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Figure 2.11: Expected insurance premium for sophisticated case with luxury-type
bequest (Ps in legend)

and 2.11. The transition from working to retirement for the sophisticated case is

also shown in figures 2.10 and 2.11. The non-monotonic patterns of annuitisation,

which include the reduction in annuitisation from roughly age 93 to 97, have been

observed at the end life in both figures 2.10 and 2.11. We believe that the reduction

in annuitisation is due the wealth constraint and increasing consumption during

that age range. When the consumption starts to decline after reaching its peak,

retirees then have the enough wealth to increase the annuitisation11 level again

which results a peak in premium amount around age 97.

11Note that we assume retirees can purchase a variable annuity to annuitise their wealth at any
age, that is, the annuity market is complete.
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2.4 Conclusion

In this paper, we have sought to provide a novel explanation for the “annu-

ity puzzle”. In our view, the “annuity puzzle” and its exceptions results from

the interaction of several factors. The combined effects of two factors, time-

inconsistent preferences and luxury-type bequest motives, are examined in our

numerical demonstration.

We extend Richard’s model to explain the thinness of the voluntary annuity

market and the high demand for voluntary annuities in Switzerland. One of the

explanations for the “annuity puzzle” is the existence of agents’ time-inconsistent

behaviours of the agents. Here, we use the hyperbolic discounting factor to capture

time-inconsistent behaviours.

Note that there are other influences, such as psychological bias, trust of the

annuity provider and public social security12, on agent’s choice of annuitisation

which is not captured in out model.

Maŕın-Solano, Navas and Roch (2013) have also studied the optimal strategies

for agents with time-inconsistent behaviours using the Richard model. In their

work, a simplified discounting function13 is used in order to obtain analytic solu-

tions for sophisticated agents. Compared to their work, we use a more theocrati-

cally appropriate discount function and then have developed a numerical solution

12Please refer to Avanzi (2010), Brown and Diamond (2005) and Friedman and Warshawsky
(1990).
13In fact, they use a a rate of simple discount, not compound discount. Our approach uses a
more appropriate compound discount approach.
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based on hyperbolic discounting. To obtain a more generalised result and further

explain the exceptions to the “annuity puzzle”, we further extend Richard model

by allowing bequests to be luxury goods. This generalisation of our model also

brings us closer to reality. In the real world, agents are found to treat bequests

as luxury goods, as demonstrated by the work of Lockwood (2012).

In relation to agent behaviour, we examine two extreme cases: näıve and so-

phisticated. The dynamic programming equations of both cases have been derived

in the paper. We then use numerical schemes and simulation of the wealth path,

that is, the state variable, to obtain the numerical results.

Our results show different behaviours between näıve agents and sophisticated

agents in terms of consumption and insurance demand. The behaviour of näıve

agents with or without luxury-type bequests modelled in this paper demonstrates

over-consumption in earlier life stages and under-consumption in later life stages

compared to sophisticated agents. Demand for life insurance to fulfil the bequest

motive is shown for näıve agents without luxury-type bequests. Hump-shaped

consumption has also been exhibited in the näıve case with or without luxury-type

bequests. In contrast, the behaviour of sophisticated agents results in reasonable

consumption, enough wealth for the bequest motive and for annuitisation of excess

wealth to maximise utility. The sophisticated agents in the model are aware of

their inconsistent behaviours and impatience level and would accordingly adjust

their strategy.
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From our results, the model of näıve agents can be used to replicate the be-

haviours of the real-world agents. Based on the empirical data of some countries,

for example, Japan14 or Australia15, agents are observed to have hump-shaped

consumption and they are not intending to purchase voluntary annuities. These

phenomena are shown in the behaviours of näıve agents without luxury-type be-

quests16. Based on the empirical data of some countries, for example, Switzerland,

agents are observed to have hump-shaped consumption and yet they annuitise

wealth, which is reflected in the behaviours of näıve agents with luxury-type be-

quests. We can conclude that, like the näıve agents, agents in the real world could

have time-inconsistent behaviours. Future research can use our results to further

study the “annuity puzzle”.

14See Abe, Inakura and Yamada (2007).
15See Beech, Dollman, Finlay and LaCava (2014).
16Note that there are many other factors can impact agents’ behaviours. Our model just provides
another explanation for the discrepancy in agents’ annuitisation behaviours among different
countries.
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Optimal Time to Enter a Retirement Village
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Abstract We consider the financial planning problem of a retiree wishing to

enter a retirement village at a future uncertain date. The date of entry is de-

termined by the retiree’s utility and bequest maximisation problem within the

context of uncertain future health states. In addition, the retiree must choose op-

timal consumption, investment, bequest and purchase of insurance products prior

to her full annuitisation on entry to the retirement village. A hyperbolic absolute

risk-aversion (HARA) utility function is used to allow necessary consumption for

basic living and medical costs. The retirement village will typically require an
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initial deposit upon entry. This threshold wealth requirement leads to exercising

the replication of an American put option at the uncertain stopping time and

results in an increasing proportion invested in the risky asset over time. From our

numerical results, active insurance and annuity markets are shown to be a critical

aspect in retirement planning.

Keywords: Retirement village, Optimal control, Optimal stopping, HARA,

American put option, Long-term care needs, costs and products for the elderly,

Disability/health state transitions, Life-cycle modelling related to the retirement

phase.

3.1 Introduction

With the reduced mortality rate, life expectancy is continuing to increase glob-

ally (World Health Organization, 2015). In next 40-50 years, the percentage of

people aged over 60 years will nearly double all over the world. People are pre-

dicted to have longer lives and extended retirement living.

Australia has one of the longest life expectancies in the world, that is, 79.7

years for males and 84.2 years for females (Australian Institute of Health and

Welfare, 2013). With the growing ageing population, Australia is now facing a

more profound ageing problem. The potential impact includes economy stag-

nation, high demand for pensions and increased aged care spending, which has

caught Australian Government’s attention (Australian Government, 2004).
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As reported by the Australian Institute of Health and Welfare (2014a), 28.31%

of the population aged 65 or over receive aged care services. This requires recurrent

annual expenditure of more than A$13 billion for the Australian federal, state

and territory governments. Almost 70% of the total spending on aged care is

allocated to residential aged care services, that is, aged care homes (Australian

Institute of Health and Welfare, 2014b). The increasing demand for aged care

has become a burden for the Australian government. Hence, improving wellness

during retirement living has become a more profound topic.

For the growing senior population, retirement villages which are linked with

“active ageing” and “community support” present an alternative high-quality re-

tirement living option. A retirement village or retirement community can be de-

fined as an organised residential place with a certain level of service for a voluntary

age-specified retired or partially retired person (Glass and Skinner, 2013). The

retirement village should provide its residents with shared activities and facilities

in a community that offers secured living (Bernard et al., 2007).

In the United States, a retirement village is usually called as retirement commu-

nity. According to the size, scale, location, and facilities and activities provided,

the retirement community can be classified into different categories, such as senior

apartments, continuing-care retirement communities, leisure-oriented retirement

communities, congregate housing, etc. (Glass and Skinner, 2013). In the United

Kingdom (UK), the retirement village is now growing as a new growing long-term

residential option for retirees (Bernard et al., 2007).
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It is well documented in the literature that residing in a retirement village can

improve well-being. Factors that contribute to well-being include community facil-

ities, accessibility features and 24-hour emergency assistance (Retirement Living

Council, 2015b), social contact (McDonald, 1996; Buys, 2000), living indepen-

dence (Kingston et al., 2001) and organised group activity and exercise (Lord

et al., 2003).

The Retirement Living Council (2015a) states that currently over 177,000 se-

niors aged 65 and over (i.e., only 5% of the total number) reside in an Australian

retirement village. However, as stated by the Australian Bureau of Statistics

(2013a), males have recently been stated to close the life expectance gap. This

prevailing tendency implies that retirees are expected to live a longer time as a

part of a couple. As an alternative retirement living option for a spouse, retire-

ment villages would attract more demand (Glass and Skinner, 2013).

Optimal strategies of consumption and investment have been studied in the

life cycle model literature, while modelling the optimal strategies for retirees can

help us to achieve a clear vision of the financial problems associated with age-

ing. Merton (1969, 1971) developed a well-known optimal asset allocation and

consumption model for an investor with a fixed lifetime. In the model, utility is

measured by a constant relative risk-aversion (CRRA) function and is maximised

by the investor to determine her optimal strategy. Ding, Kingston and Purcal

(2014) used put option replication to create a wealth threshold in Merton’s model

to allow for a luxury bequest. Noting the conclusion from Yaari (1965) that in-



3.1. INTRODUCTION 63

vestors benefit from a life annuity, Merton’s model was extended in Richard (1975)

in which investors were assumed to have a stochastic lifetime and access to the

purchase of insurance products, that is, life insurance and life annuities.

Within the framework of Merton’s model, Milevsky and Young (2007) studied

an optimal stopping problem for investors seeking a once-and-for-all annuitisation.

Kingston and Thorp (2005) extended the work of Milevsky and Young (2007) to

the more general case of hyperbolic absolute risk-aversion (HARA) utility.

Health status is another aspect which impacts on financial decision. Rosen and

Wu (2004) showed that self-rated health status is a profound indicator for portfolio

choice. Bernheim, Shleifer and Summers (1985) studied the circumstances under

which health status can initiate bequest motives. Edwards (2008) explored the link

between health status and portfolio selection. Specifically, in Edwards (2008), the

decline of financial risk observed after investors’ retirement is partially explained

by investors’ health risk which usually increases along with age. Furthermore,

the existence of medical costs associated with their health risk can vary retirees’

financial strategy. Retirees who pay out-of-pocket medical costs consequently have

less wealth (Yogo, 2016) and tend to save more (De Nardi, French and Jones,

2010).

With the growing numbers of retirees choosing to use retirement village as

their living option (Hu et al., 2017), we are interested in examining the optimal

retirement strategies for retirees seeking long-term retirement village living. Our

research takes into account retirees’ health care needs over the life cycle, since
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medical costs related to the health state can impact retirees’ annuitisation levels4.

Since there are various types of retirement living options with different services

provided, the retirement village fee schemes are complicated (Kyng and Stolz,

2016; Hu et al., 2017; Jones et al., 2010). For certain retirement living options,

we use our model to link the entry deposit to prudent investment behaviour and

financial instruments that can be harnessed to improve financial outcomes.

This arising ageing problem provided us with the motivation to develop a life-

cycle model involving retirement living choices while considering asset allocation,

consumption, bequests and insurance purchase, thus contributing to our under-

standing of the optimal financial behaviour of retirees. In our model, retirees are

found to have an increasing proportion of wealth invested in risky assets in line

with their increasing age when there is a wealth requirement threshold to enter

a retirement village. This increasing proportion trend during retirement is also

noted in Kingston and Fisher (2014), Ding, Kingston and Purcal (2014) and Pfau

and Kitces (2013). By allowing for dynamic health states, our model can also be

more attuned to ageing problems.

In this paper, we study retirees’ optimal strategies for different cases in sec-

tion 3.2. Numerical demonstrations are presented in section 3.3, followed by the

conclusion in section 3.4.

4Reichling and Smetters (2015) studied the impacts of health shocks that are related to mor-
tality risk and related lump sum medical costs on agents’ annuitisation decisions.
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3.2 Model and Method

We assume that risky assets available in the market follow the geometric Brow-

nian motion:

dXt = αXtdt+ σXtdBt, (3.2.1)

where α and σ are the expected return rate and volatility of the risky assets Xt

and Bt is the standard Brownian motion.

In this paper, we use a HARA utility function for consumption, that is,

U1(C) =
(C − h)γ

γ
,

where C is consumption, h is consumption of necessities for basic living (not

including medical costs) and γ is a constant that reflects the individual’s level of

risk aversion.

With inspiration from Haberman and Pitacco (1998), we assume the retiree’s

health status is stochastic and is modelled by a continuous Markov chain process

with the transition matrix shown as follows

Q =

 q11 q12

q21 q22

 , (3.2.2)

where q11 is the intensity of staying in a healthy state, q12 is the intensity of
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becoming sick from a healthy state, q21 is the intensity of recovery from a sick

state to a healthy state and q22 is the intensity of staying in a sick state. Here

state 1 represents a healthy condition and state 2 represents a sick condition. For

the homogeneity case, we have the transition probability of staying healthy, being

sick from a healthy state, recovery from being sick to a healthy state and staying

in a sick state, that is, P̃11, P̃12, P̃21 and P̃22

P̃11(t, T ) =
1

q12 + q21

[q21 + q12e
−(q12+q21)(T−t)] (3.2.3)

P̃12(t, T ) = 1− P̃11(t, T ) (3.2.4)

P̃21(t, T ) = 1− P̃22(t, T ) (3.2.5)

P̃22(t, T ) =
1

q12 + q21

[q12 + q21e
−(q12+q21)(T−t)], (3.2.6)

where P̃ij(t, T ) is the transition probability from state i to state j with time

interval (t, T ).

In our model, a known distribution is assumed to describe the lifetime of re-

tirees. The density function of mortality fx(t) is defined as follows,

fx(t) = µ(t) · S(t),

where µ(t) is the force of mortality and S(t) is the survival probability.

Further, retirees are assumed to have short-sighted or myopic vision about

their future health state. That is, although their health state can continually
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change, reflected in the modelling above, our myopic agents make their plans

assuming their current health state will continue indefinitely into the future. We

make this assumption to reduce the complexity of our already complex model.

Allowing retirees to plan their future while being aware of future health changes

is recognised as a mathematically difficult problem (Guo, 2001), and we leave this

task for future research. Unlike Milevsky and Young (2007), we do not explore

asymmetric information between insured/annuitant and insurer, and so we assume

insurers share the retirees’ myopia.

With an assumed two-state health stochastic process {H(s), t ≤ s ≤ τ}, the

presence of myopic retirees making financial plans at some time t implies

µ(s) =


µ1(s), H(t) = ht = 1, t ≤ s ≤ τ

µ2(s), H(t) = ht = 2, t ≤ s ≤ τ

(3.2.7)

with its corresponding S(s), and so myopia implies H(s) = ht, t ≤ s ≤ τ , for some

deterministic maximum age τ , and where ht is the realisation of the individual’s

current health state at time t, µi(s) and its corresponding Si(s) are the future

force of mortality and survival probability at time s for health state i. In this

paper, state 1 represents the healthy state and state 2 represents the sick state.

Hence, µ1(s) ≤ µ2(s) and S1(s) ≥ S2(2).
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3.2.1 Case 1: no bequest and incomplete insurance market

In Australia, several types of housing are offered by retirement villages (Kyng

and Stolz, 2016; Jones et al., 2010). One common type is the serviced apartment

offered by a lease contract, such as, leasehold discussed in Hu, Xia, Skitmore,

Buys and Zuo (2017). These apartment-type residential options for seniors can

also be found in other countries, as the UK and the United States. For this case,

the retirees rent the apartment on a pay-as-you-go basis to move into a retirement

village. According to Iskhakov, Thorp and Bateman (2015), an owner-occupied

house asset can be treated as a bequest. As retirees do not own the residential

property in the retirement village, we assume that these retirees have no bequest

motive. Consequently, as these retirees have no bequest motive they have no need

to access the insurance market prior to their full annuitisation on their entry to

the retirement village.

Meanwhile, retirees are assumed to maximise their utilities by consumption and

investment before the optimal time τ̃ , that is, the chosen optimal time to enter

retirement villages. At time τ̃ , retirees without a bequest motive would use all

their remaining wealth to purchase a life annuity at the time they enter retirement

villages.
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Therefore, the value function of this optimal problem is as follows:

V = max
π,C,τ̃

E

{∫ τ̃

t

S(s)

S(t)
e−ρ(s−t)U1(C(s))ds+

∫ τ

τ̃

S(s)

S(t)
e−ρ(s−t)U1(

W (τ̃)

āτ̃
)ds
∣∣∣Ht

}
= max

π,C,τ̃
E

{∫ τ̃

t

S(s)

S(t)
e−ρ(s−t)U1(C(s))ds+ e−ρ(τ̃−t)S(τ̃)

S(t)
āτ̃U1(

W (τ̃)

āτ̃
)
∣∣∣H(s) = ht, t ≤ s ≤ τ

}
,

(3.2.8)

with the wealth dynamics as

dW (t) = (rW (t)−D(t)W (t)− C(t) + (α− r)π(t)W (t))dt+ σπ(t)W (t)dBt,

where t is the starting age, π(t) is the proportion of total wealth invested in risky

assets, āt =
∫ τ
t
S(s)
S(t)

e−(r−D(t))(s−t)ds is the annuity function which is net of medical

expense and D(t) is the medical cost represented by a percentage of wealth. As

with the force of mortality and survival rate,

D(s) = Dht(s), t ≤ s ≤ τ. (3.2.9)

Following Purcal and Piggott (2008) and the discussion in their paper, we set the

time preference rate equal to the risk free rate, ρ = r.

From Milevsky and Young (2007) and Kingston and Thorp (2005), the optimal

stopping time τ̃ has been proven to be deterministic for CRRA utility and HARA

utility. Based on Milevsky and Young (2007) and Øksendal (2003), the variational
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inequality is shown as follows,

(ρ+ µ(t))V ≥ Vt + (r −D(t))W (t)VW + max
c

[U1(C(t))− C(t)VW ]

+ max
π

[(α− r)πW (t)VW +
1

2
σ2π2W (t)2VWW ], t ∈ [0, τ̃ ] (3.2.10)

and

V ≥ ātU1(
W (t)

āt
), t ∈ (τ̃ , τ). (3.2.11)

We consider the following ansatz for the value function V ,

V =
1

γ
(W (t)− Ŵ (t))γa(t)1−γ, (3.2.12)

where

Ŵ (t) =
h

r −D(t)
(1− e−(r−D(t))(τ−t))

is the ’floor’ or ’protected’ wealth, and r−D(t) reflects the continuous compound-

ing rate of interest to give the retirees an income stream covering health costs up

to the maximum possible age τ . Such protection is needed as they are assumed
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to have no access to insurance markets prior to entry to the retirement village.

Here, a(t) is defined as an annuitisation factor and further note that a(t) is health

state dependent.

We also write W̃ (t) = W (t) − Ŵ (t) as the difference between wealth and

protected wealth which is known as ‘surplus’ wealth.

The derivatives of the value function are then

Vt =
1− γ
γ

W̃ (t)γa(t)−γa′(t) + W̃ (t)γ−1a(t)1−γh,

VW = W̃ (t)γ−1a(t)1−γ,

and VWW = (γ − 1)W̃ (t)γ−2a(t)1−γ. (3.2.13)

Following Milevsky and Young (2007), and Kingston and Thorp (2005), we

can use the first order derivative condition of equation (3.2.10) to show that the

optimal consumption C∗(t) and optimal proportion invested in risky assets are

C∗(t) = W̃ (t)a(t)−1 + h,

π∗(t) =
α− r

σ2(1− γ)

W̃ (t)

W (t)
. (3.2.14)

and C∗(t) depends on the current health state.

We substitute equations (3.2.12), (3.2.13) and (3.2.14) into (3.2.10) and (3.2.11):
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for t ≤ τ̃ , we have

−1 ≥ a′(t) +
1

1− γ

[
γr − γD(t)− ρ− µ(t) +

1

2

(α− r)2γ

σ2(1− γ)

]
a(t), t ∈ [0, τ̃ ],

(3.2.15)

while for t > τ̃ , we have

a(t) ≥ āt, t ∈ (τ̃ , τ). (3.2.16)

We adopt the hypothesis from Milevsky and Young (2007) which assumes the

time before full annuitisation is of the form (0, τ̃)5. With this hypothesis, τ̃ is set

to be deterministic and we write φ(t) as the solution of equations (3.2.15) and

(3.2.16) and let η1(t) = 1
1−γ

[
γr − γD(t)− ρ− µ(t) + 1

2
(α−r)2γ
σ2(1−γ)

]
. Hence, for t ≤ τ̃ ,

we have

−1 = φ′(t) + η1(t)φ(t). (3.2.17)

Multiplying equation (3.2.17) by e
∫ t
0 η1(u)du, the equation can be shown as

−e
∫ t
0 η1(u)du = φ′(t)e

∫ t
0 η1(u)du + η1(t)φ(t)e

∫ t
0 η1(u)du. (3.2.18)

5Similar to Milevsky and Young (2007), the optimal stopping time in our model for this case
is treated as the full annuitisation time—but with the addition that retirees have a dynamic
health status and related medical costs. That is, the model of these authors and the model at
hand have similar structures and so similar approaches are appropriate.
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Integrating equation (3.2.18) from t to τ̃ , we can have

∫ τ̃

t

−e
∫ s
0 η1(u)duds =

[
φ(s)e

∫ s
0 η1(u)du

]τ̃
t

and

φ(t) = āτ̃e
∫ τ̃
t η1(u)du +

∫ τ̃

t

e
∫ s
t η1(u)duds. (3.2.19)

For t > τ̃ , the solution φ is

φ(t) = āτ̃ .

To find the optimal stopping time, we can differentiate the value function with

respect to τ̃ :

∂V

∂τ̃
=

1− γ
γ

W γ(t)φ−γ(t, τ̃)
∂φ(t, τ̃)

∂τ̃
,

and noting ∂āτ̃/∂τ̃ = (µ(τ̃)+ρ)āτ̃ −1 and ∂φ(t, τ̃)/∂τ̃ = [(µ(τ̃)+ρ)āτ̃ ]e
∫ τ̃
t η1(u)du+

āτ̃e
∫ τ̃
t η1(u)duη1(τ̃), with W (t), φ(t) and āτ̃ always positive, then

∂V

∂τ̃
∝ µ(τ̃) + ρ+ η1(τ̃) (3.2.20)

and the optimal stopping time is given when this expression is zero.
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3.2.2 Case 2: with bequest and complete insurance market

The most common housing type offered by retirement villages in Australia

is the resident-funded unit, such as, loan/licence title as discussed in Hu, Xia,

Skitmore, Buys and Zuo (2017). Retirees need to purchase a licence to reside in the

retirement village and can sell the licence when they exit. This type of agreement

is similar to a purchase in the real-estate market. Retirees who have a licence to

live in a resident-funded unit can be regarded as house owners. Similarly, in the

UK, retirees can purchase retirement housing on a leasehold basis6 or as a property

owner. In the United States, it is also common for retirees to purchase properties

in leisure-oriented retirement communities for retirement living. Following the

assumption by Iskhakov, Thorp and Bateman (2015)—that the owner-occupied

house can be treated as a bequest—we can assume that those retirees have bequest

motives and access to the insurance market prior to full annuitisation.

In this case, retirees are assumed to have bequest motives from time t to τ̃ . We

continue to use the power utility function for the bequest motive U2

U2(L(t)) = m(t)1−γL(t)γ

γ
,

where L(t) is the legacy amount and m(t) = 2
3

∫ τ
t
e−r(u−t)du. In our calculation,

we use τ to represent the deterministic maximum age.

We also assume that insurance products, that is, life insurance and annuities,

6Retirees need to pay a large amount in upfront fees to live in such community and have the
right to re-sell the occupation right of the property.
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are available in the market. Before the optimal time to enter a retirement village

τ̃ , retirees use consumption, bequests and the purchase of insurance products to

maximise their utility. From Richard (1975), the insurance premium is related to

L(t) and wealth W (t)

P (t) = µ(t)[L(t)−W (t)].

At time τ̃ , retirees split their wealth into two parts: υWτ̃ and (1 − υ)Wτ̃ .

The first part, υWτ̃ is used to purchase lifetime annuity products with this being

similar to the behaviour of retirees without a bequest motive. The second part,

(1− υ)Wτ̃ is planned to be delivered to their heirs at time τ̃ as a pre-inheritance.

Hence, the value function is

V = max
π,C,L,τ̃

E

{∫ τ̃

t

S(s)

S(t)
e−ρ(s−t) [U1(C(s)) + µ(s)U2(L(s))] ds

+

∫ τ

τ̃

S(s)

S(t)
e−ρ(s−t)U1(

υW (τ̃)

āτ̃
)ds+

S(τ̃)

S(t)
e−ρ(τ̃−t)U2((1− υ)W (τ̃))

∣∣∣H(s) = ht, t ≤ s ≤ τ

}
= max

π,C,L,τ̃
E

{∫ τ̃

t

S(s)

S(t)
e−ρ(s−t) [U1(C(s)) + µ(s)U2(L(s))] ds+ e−ρ(τ̃−t)S(τ̃)

S(t)
āτ̃U1(

υW (τ̃)

āτ̃
)

+
S(τ̃)

S(t)
e−ρ(τ̃−t)U2((1− υ)W (τ̃))

∣∣∣H(s) = ht, t ≤ s ≤ τ

}

with the wealth dynamics

dW (t) = (rW (t)−D(t)W (t)− C(t) + (α− r)π(t)W (t)− P (t))dt+ σπ(t)W (t)dBt.
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The variational inequality is then shown as

(ρ+ µ(t))V ≥ Vt + rWVW − P (t)VW + max
C,L

[U1(C(t)) + µ(t)U2(L(t))− C(t)VW ]

+ max
π

[(α− r)πW (t)VW +
1

2
σ2π2W (t)2VWW ], t ∈ [0, τ̃ ] (3.2.21)

and

V ≥
(υW (t)

āτ̃
)γ

γ
āτ̃ +

((1− υ)W (t))γm(t)

γ
, t ∈ (τ̃ , τ). (3.2.22)

Similar to the case in section 3.2.1, we have

V =
1

γ
(W (t)− Ŵ (t))γa(t)1−γ,

where

Ŵ (t) = h

∫ τ

t

S(s)

S(t)
e−(r−D(t))(s−t)ds.

For the time t ≤ τ̃ , the value function reduces to Richard’s model (Richard,

1975) in which the optimal consumption C∗(t), optimal legacy amount L∗(t),

optimal proportion invested in risky assets π∗(t) and optimal insurance premium
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P ∗(t) are shown as follows

C∗(t) = W̃ (t)a(t)−1 + h,

L∗(t) = m(t)W̃ (t)a(t)−1,

π∗(t) =
α− r

σ2(1− γ)

W̃ (t)

W (t)
,

and P ∗(t) = (L∗(t)−W (t))µ(t)

= µ(t)m(t)W̃ (t)a(t)−1 − µ(t)W (t). (3.2.23)

The utility function with optimal consumption and optimal legacy is then shown

as

U1(C∗) =
W̃ (t)γa(t)−γ

γ
,

U2(L∗) =
m(t)W̃ (t)γa(t)−γ

γ
. (3.2.24)

By substituting equations (3.2.12), (3.2.13), (3.2.23) and (3.2.24) into equations

(3.2.21) and (3.2.22), for t ≤ τ̃ , we have

−(1 + µ(t)m(t)) ≥ a′(t) +
[ γ

1− γ
(r −D(t))− 1

1− γ
ρ− µ(t) +

1

2

(α− r)2γ

(1− γ)2σ2

]
a(t)

(3.2.25)
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and for t > τ̃ , we have

a(t) ≥
[
υγ ā1−γ

t + (1− υ)γm(t)
] 1

1−γ . (3.2.26)

We write φ as the solution of a and η2 = γ
1−γ (r−D(t))− 1

1−γρ− µ(t) + 1
2

(α−r)2γ
(1−γ)2σ2 .

Hence, for t ≤ τ̃ ,

−(1 + µ(t)m(t)) = φ′(t) + η2(t)φ(t). (3.2.27)

Multiplying equation (3.2.27) by e
∫ t
0 η2(u)du, it can be shown as

−(1 + µ(t)m(t))e
∫ t
0 η2(u)du = φ′(t)e

∫ t
0 η2(u)du + η2(t)φ(t)e

∫ t
0 η2(u)du. (3.2.28)

Integrating equation (3.2.28) from time t to τ̃ , the equation can be shown as

−
∫ τ̃

t

(1 + µ(s)m(s))e
∫ s
0 η2(u)duds =

[
φ(s)e

∫ s
0 η2(u)du

]τ̃
t
.

and

φ(t) =
[
υγ ā1−γ

τ̃ + (1− υ)γm(τ̃)
] 1

1−γ e
∫ τ̃
t η2(u)du +

∫ τ̃

t

[1 + µ(s)m(s)]e
∫ s
t η2(u)duds.

(3.2.29)
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For t > τ̃ , the solution φ is

φ(t) =
[
υγ ā1−γ

t + (1− υ)γm(t)
] 1

1−γ . (3.2.30)

To find the optimal stopping time, we can differentiate the value function with

respect to τ̃ :

∂V

∂τ̃
=

1− γ
γ

W̃ γ(t)φ−γ(t, τ̃)
∂φ(t, τ̃)

∂τ̃
,

where

∂φ(t, τ̃)

∂τ̃
= η2(τ̃)[υγ ā1−γ

τ̃ + (1− υ)γm(τ̃)]
1

1−γ e
∫ τ̃
t η2(u)du + [1 + µ(τ̃)m(τ̃)]e

∫ τ̃
t η2(u)du

+
1

1− γ
[υγ ā1−γ

τ̃ + (1− υ)γm(τ̃)]
γ

1−γ

{
υγ(1− γ)ā−γτ̃ [(µ(τ̃) + ρ)āτ̃ − 1]

+ (1− υ)γ[rm(τ̃)− 2

3
]
}
e
∫ τ̃
t η2(u)du.

It then follows, noting our approach for case 1 above, that

∂V

∂τ̃
∝
∂φ(t, τ̃)

∂τ̃
(3.2.31)

and so we can determine our optimal stopping time.
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3.2.3 Case 3: with bequest, complete insurance market

and wealth floor

In addition to resident-funded unit and serviced apartment, some non-profit

Australian retirement villages offer a type of housing (e.g., independent living

unit) with an entry contribution (Jones et al., 2010). To reside in such place,

retirees are required to make a contribution deposit. This deposit might contribute

to the maintenance or improvement of a retirement village. In the United States,

an entry contribution with monthly fees is a payment option for continuing-care

retirement community living. We can treat this contribution requirement as a

threshold for the wealth level for retirees to enter a retirement village, that is,

W (t) ≥ R,

where R is the certain level of wealth required for retirees to enter a retirement

village. This R can be explained as a combination of the management fee, upfront

loading fee of the retirement village or the transaction cost of asset relocation.

Inspired by Ding, Kingston and Purcal (2014), retirees in our model are as-

sumed to dynamically allocate assets to achieve their saving targets. Specifically,

we assume that retirees would still follow the optimal strategy of consumption,

bequests and entering a retirement village as in case 2 but that they would change

the proportion of wealth invested in risky assets to meet the new threshold. As-

set allocation paths over the life cycle has been discussed in Kingston and Fisher
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(2014).

In letting W (t) can fulfil this requirement, we are inspired by Ding, Kingston

and Purcal (2014) and assume that retirees would separate their wealth into two

parts: surplus wealth W̃ (t) and protected wealth Ŵ (t):

W (t) = Ŵ (t) + W̃ (t),

where Ŵ (t) = hāt. The protected wealth is used for necessity consumption h,

which can be basic living costs and medical costs.

In terms of their surplus wealth, retirees can use it for consumption and bequest

purposes. To ensure that W̃ (t) is greater than the certain required level R, retirees

can replicate a put option by separating their surplus wealth into two parts:

W̃ (t) = W̃κ(t) + P(W̃κ(t), R, t). (3.2.32)

The first part W̃κ(t) is the remaining wealth used for consumption, investment

and insurance and the second part is used to replicate an American put option:

P(Wκ(t), R, t)), with the underlying asset Wκ(t) and strike price R.

At the optimal time of entering a retirement village, retirees will then exercise

the option to let wealth W (t) have the minimum value R:

W̃ (t) = W̃κ(t) + max(0, R− W̃κ(t)) = max(W̃κ(t), R).
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We now define the value function as

V = max
π,C̃κ,L̃κ,τ̃

{∫ τ̃

t

S(s)

S(t)
e−ρ(s−t)

[
U1(C̃κ(s)) + µ(s)U2(L̃κ(s))

]
ds

+

∫ ∞
τ̃

S(s)

S(t)
e−ρ(s−t)U1(

υW̃κ(τ̃)

āτ̃
)ds+

S(τ̃)

S(t)
e−ρ(τ̃−t)U2((1− υ)W̃κ(τ̃))

∣∣∣H(s) = ht, t ≤ s ≤ τ

}
= max

π,C̃κ,L̃κ,τ̃

{∫ τ̃

t

S(s)

S(t)
e−ρ(s−t)

[
U1(C̃κ(s)) + µ(s)U2(W̃κ(s))

]
ds+ e−ρ(τ̃−t)S(τ̃)

S(t)
āτ̃U1(

υW̃κ(τ̃)

āτ̃
)

+
S(τ̃)

S(t)
e−ρ(τ̃−t)U2((1− υ)W̃κ(τ̃))

∣∣∣H(s) = ht, t ≤ s ≤ τ

}

with the wealth dynamics

dW̃κ(t) = (rW̃κ(t)−D(t)W̃κ(t)− C̃κ(t) + (α− r)π(t)W̃κ(t)− P̃κ(t))dt+ σπ(t)W̃κ(t)dBt,

where C̃κ(t) and P̃κ(t) are the consumption and insurance premium at time t by

using the surplus wealth W̃κ(t). The form of the value function is assumed be

V =
1

γ
W̃κ(t)

γa(t)1−γ,

in which the solution of a is in equations (3.2.29) and (3.2.30). Then for W̃κ(t)

the optimal consumption C∗κ(t), optimal legacy amount L∗κ(t), optimal proportion

invested in risky assets π∗κ(t) and optimal insurance premium P ∗κ (t) are shown as

follows
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C∗κ(t) = W̃κ(t)a(t)−1 + h,

L∗κ(t) = m(t)W̃κ(t)a(t)−1,

π∗κ(t) =
α− r

σ2(1− γ)

W̃ (t)

Ŵ (t) + W̃κ(t)
,

P ∗κ (t) = (L∗κ(t)− Ŵ (t)− W̃κ(t))µ(t)

and where all controls, apart from π∗κ(t), depend on the health state at time t.

To replicate an American put option, we use the delta hedging defined in Huang,

Subrahmanyam and Yu (1996),

Delta =
∂P

∂X
= −N(−d1(X,K, T − t))−

∫ T

t

r

σ
√

2πu
e−

d̃1
2 du, (3.2.33)

where d̃1 =
(

ln X
B

+ (r + σ2

2
)u
)
/σ
√
u and B(t) is defined as the optimal exercise

price for underlying asset X.

Based on the definition of B(t), the dynamics of the American put option price

are the same as those for the price of the European put option, when the S(t) is

greater than B(t). Hence, from Black and Scholes (1973), we have

∂P

∂t
+

1

2
σ2X2

t

∂2P

∂X2
t

+ rSτ̃ − rP = 0, X ∈ (B(t),∞). (3.2.34)

The American put options should be exercised at the strike price K when the S(t)
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is less than B(t)

P(X(t), K, t) = K −X(t), X ∈ (0,B(t)). (3.2.35)

The boundary condition of the American put option is

lim
X(t)→∞

P(X(t), K, t) = 0. (3.2.36)

The American put option price P(Xt, K, t) also has the following conditions

at the fixed exercise boundary B(t),

P(B(t), K, t) = K −B(t),
∂P(B(t), K, t)

∂X
= −1. (3.2.37)

At the time of expiration, all unexercised American put options will be exer-

cised or expired. As B(τ̃) is the optimal exercise price, the terminal condition is

provided by

P(B(τ̃), τ̃ , K) = 0, X ∈ (B(τ̃),∞) with τ̃ = 0 and B(0) = K. (3.2.38)

To obtain the optimal exercise price B(t), we use the front fixing finite difference

method from Wu and Kwok (1997). We transform the option price P(St, K, t) ,
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asset price St and the fixed boundary B(t) respectively, as follows

P̃ =
P

K
, B̃(τ̃) =

B(t)

K
, X̃(t) =

X(t)

K
, K̃ =

K

K
= 1,

where P represents the American put option price P(X(t), t,K) and P̃ repre-

sents the transformed American put option price at time τ̃ about the underlying

asset X̃(t) and the strike price K̃.

Here the dynamics of P̃ are described by equations (3.2.34) and (3.2.35) with

K = 1. Equations (3.2.36), (3.2.37) and (3.2.38) still hold for P̃, X̃ and B̃ with

K = 1.

In Wu and Kwok (1997), a new variable ỹ at time τ̃ which was introduced to

transform the the unknown boundary to a known fixed one is defined as

ỹ(t) = ln
X̃(t)

B̃(t)
. (3.2.39)

The process of ỹ is shown as follows:

ỹ(t) = lnX̃(t)− lnB̃(t),

dỹ(t) = dlnX̃(t)− dlnB̃(t)

=

(
r − σ2

2
+

B̃′(t)

B̃(t)

)
dt+ σdBt.

Following Wu and Kwok (1997), the partial differential equation (PDE) of the
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new variable ỹ is obtained by forming a direct substitution to equation (3.2.34):

∂P̃

∂t
+
σ2

2

∂2P̃

∂y2(t)
+ (r − σ2

2
)
∂P̃

∂y(t)
− rP̃ +

B̃′(t)

B̃(t)

∂P̃

∂y(t)
= 0. (3.2.40)

Equation (3.2.40) is the PDE of a transformed American put option price P̃

with fixed boundary B̃(t). Using the finite difference scheme defined in Wu and

Kwok (1997), we can explicitly solve equation (3.2.40) and obtain the numerical

result for B(t).

Substituting the B(t) value into equation (3.2.33), we can obtain the delta

value of an American put option. With this delta value, an American put option

can be replicated by risky assets in the market.

3.3 Numerical Results

In this paper, we calibrate our parameters to Australian data to obtain numer-

ical results for a starting age of t = 65 to a maximum age of τ = 109. Survival

probabilities and the force of mortality are from the Australian Government Actu-

ary (2014). In particular, we use the tabulated values from Australian Government

Actuary (2014) for S1(s) and µ1(s). To determine survival rates and force of mor-

tality for the sick state, we adopt the frailty model from Su and Sherris (2012).

For S2(s) and µ2(s), we simply set S2(s) = Su1 (s) and µ2(s) = u× µ1(s), where u

is defined as a frailty factor and is assumed to be a constant here.

The risky return rate, α = 8.112%, and volatility of risky assets, σ = 0.15685,
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are based on the 5-year average rate (from 2009 to 2014) of the ASX 200

(http://www.asx.com.au/). We use the average of five years’ of cash rates (from

2009 to 2014) from the Reserve Bank of Australia (http://www.rba.gov.au/statistics/cash-

rate/) as our risk free rate, that is, r = 3.4% p.a.7. As was done by Milevsky

and Young (2007) and Kingston and Thorp (2005), we set the rate of time pref-

erence to be equal to the risk-free rate, ρ = r. The average annual income,

Y = AUD$47 736, is from Australian Bureau of Statistics (2013b). Retirees in

our model are assumed to have total wealth of 10Y from previous savings and

have no future income. Following Purcal and Piggott (2008), the risk-aversion

parameter γ is set to be −0.5. In this paper, retirees with bequest motives are

assumed to use 80% of their wealth, υ = 0.88, to annuitise and use the rest as

a pre-inheritance disbursement at the time of entering the retirement village. In

this paper, we set the frailty factor u to be 1.29. Medical costs are assumed to

be 1% of total wealth for agents in the healthy state and be 2% of total wealth

for agents in the sick state, that is, D1 = 0.01 and D2 = 0.02, respectively. With

expenditure as estimated by Australian Bureau of Statistics (2011), the necessary

consumption amount h is set to be AUD$12 000 per annum. As mentioned above,

7Note that the cash rate is the overnight money market interest rate determined by the Reserve
Bank of Australia.
8Following consideration of the expected wealth levels at stopping times for all cases, we set
υ = 0.8 to ensure that retirees have the enough money for future living. Higher values of υ imply
higher annuitised income stream; conversely, low values of υ are associated with meager future
income streams. Having regard to retirement village implied rents, as discussed in Kyng and
Stolz (2016), a value of υ = 0.8 appears appropriate for current Australian retirement village
conditions.
9Note that a higher frailty factor in the sick state is linked with lower level of wealth, con-

sumption and annuitisation. We have chosen a value of 1.2 as illustrative–this level produces
behaviours which are clearly distinguished from the healthy state. We have not determined this
value by calibrating to data at this time and leave this task for future research.
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we set the maximum survival age to 109.

Table 3.1: Parameters used in the numerical simulation

.

t=65
q12=0.04
α=0.08112
ρ=0.034
Y=AUD$47,736
υ=0.8

D1=0.01
h=AUD$12,000 p.a.

τ=109
q21=0.4
r=0.034
σ=0.15685
γ=−0.5
u=1.2

D2=0.02
τ=109

In our numerical demonstration, three cases are studied. For the serviced apart-

ment case (case 1), there is no bequest motive and agents have no access to the

insurance market prior to entering the retirement village; retirees can purchase

neither life insurance nor a variable annuity. Retirees are assumed to be fully

annuitisated (purchase of a fixed annuity) at the time of entering the retirement

village. For the resident-funded unit case (case 2) and the early contribution unit

case (case 3), retirees have bequest motives and can purchase life insurance or a

variable annuity in the insurance market prior to entering the retirement village.

In addition, retirees are assumed to leave part of their wealth as a pre-inheritance

disbursement and use the rest for full annuitisation when entering the retirement

village. Furthermore, in the entry contribution case (case 3), a minimum wealth

requirement is a prerequisite for retirement village entry. These retirees are then

assumed to replicate an American put option to clear this financial hurdle.

We present the expected consumption path for case 1 in Figure 3.1. From

the plot, we see the expected consumption path is hump-shaped—similar to con-
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Figure 3.1: Expected consumption path for case 1 retirees, starting in the healthy
state at age 65 with total wealth of 10Y , and truncated at the optimal case 1
stopping times. This captures the expected consumption outcomes of agents with
no bequest motive. Note that these agents have no access to insurance markets,
and are assumed to purchase a term certain annuity to protect their basic con-
sumption needs—which is much more expensive than a life annuity, particularly
at older ages.

sumption observed in empirical studies (Gourinchas and Parker, 2002; Fernández-

Villaverde and Krueger, 2007). This phenomenon can be attributed to both mar-

ket incompleteness (lack of access to insurance markets) and low wealth levels in

the later life stages.

In figure 3.2, the expected consumption for cases 2 and 3 rises in line with

increasing age. Due to uncertainty arising from the unknown future health state,

the market is not entirely complete and thus expected consumption is slightly

convex. Compared to figure 3.1, figure 3.2 reflects the ability of retirees in cases

2 and 3 who have bequest motives to spend more on consumption as they have

access to an active insurance market to carry out annuitisation or to purchase
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insurance. Figure 3.2 also shows that retirees in case 3 have less consumption

than those in case 2, due to the cost of replication of the American put option to

ensure they can clear the wealth hurdle required for entry.

Our calculations indicate health changes impact optimal consumption decisions.

As one would expect, agents in the poorer health state consume more than those

in the healthy state10.

We display the expected wealth path for cases 1, 2 and 3 in figure 3.3. For

most of time, retirees in case 1 are in possession of more expected wealth than

those in case 2 and case 3. As there is no active insurance market in case 1, self-

insurance due to precautionary motives is found to be another driver for holding

wealth (Ameriks et al., 2011). Hence, figure 3.3, suggests retirees tend to draw on

their wealth more cautiously when there is no active insurance market. Moreover,

the wealth floor requirement in case 3 demands more outgoes and results in less

wealth.

The expected insurance premiums for life insurance or receipt of variable an-

nuity income for cases 2 and 3 are displayed in figure 3.4. A positive or negative

premium value is linked to the demand for life insurance or a variable annuity,

respectively. In figure 3.4, retirees in cases 2 and 3 are shown to purchase a vari-

able annuity in order to maximise utility. Compared to those in case 2, retirees

in case 3 have a lower annuitisation amount, reflecting the resources they have to

10Agents in the poorer health state have less incentive for partial annuitisation but higher
consumption desires prior to the entering to a retirement village, since their expected lifespan
is shorter.
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Figure 3.2: Expected consumption, truncated at optimal stopping times, for case
2 and case 3 agents commencing at age 65 in the healthy state with total wealth of
10Y . The figure captures the expected consumption paths for agents with bequest
motives. These agents, in contrast to case 1, have access to perfect insurance
markets.

put toward replicating the American put option to secure their retirement village

entry.

We calculate the proportions of total wealth in risky assets for cases 2 and 3,

and display the expected paths of the proportion of surplus wealth, W̃ , invested

in the risky assets in figure 3.5. Retirees in case 2 appear to invest a constant

proportion of surplus wealth in risky assets, very much in line with the Merton

ratio Merton (1969, 1971). Indeed, the high values seen are characteristic of

the Merton ratio for the parameters chosen and also reflect the lack of short-

selling/borrowing restrictions in the modelling. The situation is very different

for retirees in case 3 who are target savers and who are assumed to replicate an

American put option to meet their target. These retirees, who want to hedge
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Figure 3.3: Expected wealth, truncated at optimal stopping times, for case 1, 2
and 3 agents commencing at age 65 in the healthy state with total wealth of 10Y .
Recall case 1 agents have no access to insurance markets, while case 3 agents
replicate an American put option to ensure their savings target is met.
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Figure 3.4: Expected insurance premiums paid by case 2 and case 3 agents, trun-
cated at optimal stopping times, for those commencing at age 65 in the healthy
state with a total wealth of 10Y . Negative insurance premiums mean the agents
are receiving funds from the insurers, that is, they are in receipt of an annuity.
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risk, are encouraged to have an increasing risk exposure while they are ageing 11.

Interestingly, in an empirical study Shum and Faig (2006) find that retirees in

case 3, who have a retirement saving target, have higher levels of investment in

risky assets. In figure 3.5, the proportion of surplus wealth for case 3 rises along

with age, producing a convex shape. The trend in figure 3.5 is similar to that

reported in the study by Ding, Kingston and Purcal (2014), in which retirees are

assumed to replicate a European put option for their wealth requirement.

Health changes are seen not to impact investment decisions for our health my-

opic agents as we chose a level of risk aversion, γ, that was constant between

health states. It should be clear from our myopic health modelling above that if

this value differed between states then this would lead to investment behaviour

that differed between states. That is, if investors were more risk averse in the sick

state, then they would also invest less in the risky assets (compare Merton ratios).

We also test the impacts of some variables on optimal stopping times. As

shown in table 3.2, we try different risk-aversion parameter values for case 1, that

is, no bequest motive and an incomplete insurance market, and case 2, that is,

with bequest motives and a complete insurance market, respectively. With an

increasing risk-aversion level for both cases, retirees are shown to be more afraid

of potential risks in the markets and prefer an earlier stopping time. The stopping

times for case 2 are more sensitive to change in the risk-aversion parameter value.

This phenomenon can be explained by the extra risk aversion generated by the

11Retirees are also found to use increasing risk exposure to hedge against risk in other studies,
such as Hulley et al. (2013) and Thorp, Kingston and Bateman (2007).
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Figure 3.5: Expected proportion of surplus wealth, W̃ , invested in the risky assets,
or π∗W/W̃ , by agents starting at age 65 in the healthy state with a total wealth
of 10Y . The expected paths are truncated at the optimal stopping times for case
2 and case 3, respectively. The differing behaviour of the case 3 target savers is
clear.

bequest motive utility function.

Table 3.3 shows the results of our tests on the impact of excess returns, α−r, on

the stopping time for case 1, that is, no bequest motive and an incomplete insur-

ance market, and case 2, that is, with bequest motives and a complete insurance

market, respectively. As we expected, higher excess returns are more attractive to

retirees and defer the stopping time for both cases. This trend can be also found

in Kingston and Thorp (2005).

The impact of volatility, σ, on the stopping time for case 1 and case 2 is demon-

strated in table 3.4. For both two cases, retirees are seen to enter the retirement

village earlier when the market is more volatile.

As shown in table 3.5, we also study the impact of the frailty factor on the
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Table 3.2: Expected stopping times by level of risk aversion for case 1 and case
2 agents aged 65, in the healthy state, and with total wealth of 10Y—and other
parameters as given in table 3.1. Increasing levels of risk aversion lead to falling
stopping times. Also, the bequest motives of case 2 agents produce results much
more sensitive to the level of risk aversion. Indeed, at γ = −0.5 case 2 agents
abandon their conservative behaviour and embrace the risky investment environ-
ment.

Expected stopping time (years)
Gamma Case 1 Case 2
−0.5 11.65 13.22
−0.6 11.04 10.53
−0.7 10.56 8.28
−0.8 10.04 6.23
−0.9 9.54 4.50
−1 9.13 2.99

Table 3.3: Expected stopping times by level of equity premium for case 1 and case
2 agents aged 65, in the healthy state, and with total wealth of 10Y—and other
parameters as given in table 3.1. Increasing the equity premium results in longer
stopping times, as agents exploit the more profitable investment environment.
The situation illustrated is for agents with risk aversion of γ = −0.5, where case
2 agents are less conservative than case 1 agents. With more risk averse agents,
this boldness of agents with bequest motives over those without is reversed.

Expected stopping time (years)
α− r Case 1 Case 2
0.02 5.49 6.38
0.03 7.76 9.02
0.04 10.07 11.60
0.05 12.27 13.87
0.06 14.31 16.06
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Table 3.4: Expected stopping times by level of market volatility for case 1 and case
2 agents aged 65, in the healthy state, and with total wealth of 10Y—and other
parameters as given in table 3.1. Increasing market volatility results in shorter
stopping times, as agents shy away from the riskier environment. The situation
illustrated is for agents with risk aversion of γ = −0.5, where case 2 agents are
less conservative than case 1 agents. With more risk averse agents, this boldness
of agents with bequest motives over those without is reversed.

Expected stopping time (years)
σ Case 1 Case 2
0.12 14.62 16.45
0.13 13.67 15.46
0.14 13.44 14.51
0.15 12.10 13.70
0.16 11.42 12.99

stopping time. In both case 1 and case 2, when retirees are more frail in the

sick state, and consequently have more mortality risk, they intend to stop earlier.

These findings are in line with Kyng and Stolz (2016), who uses a very different

(actuarial) approach, to discover that retirees entering retirement villages when

they are younger and healthier are financially better off.

Table 3.5: Expected stopping times by frailty factor u for case 1 and case 2 agents
aged 65, in the healthy state, and with total wealth of 10Y—and other parameters
as given in table 3.1. Increasing frailty results in shorter stopping times, as less
healthy agents choose the safer retirement village world sooner. The situation
illustrated is for agents with risk aversion of γ = −0.5, where case 2 agents are
less conservative than case 1 agents. With more risk averse agents, this boldness
of agents with bequest motives over those without is reversed.

Expected stopping time (years)
u Case 1 Case 2
1.1 13.40 14.15
1.2 11.65 13.22
1.3 10.15 12.38
1.4 8.85 11.58
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3.4 Conclusion

This paper provides an innovative contribution in its investigation of several

cases of retirees entering retirement villages by using Richard’s model with a

HARA utility function and a dynamic health state. In our research, in which the

time of entering the retirement village is the stopping time, we study the optimal

strategy with the optimal stopping time for retirees.

We make several different assumptions for bequest motives and the insurance

market to resemble the options faced by retirees when entering retirement villages

in the real world. To address those problems, we obtain numerical results of

consumption, wealth, insurance premiums and stopping times. In our generalised

model, retirees are assumed to have the necessary consumption, dynamic health

status and medical costs.

Retirees are found to have divergent consumption and stopping time trends,

when the assumptions of bequest motives and the insurance market change. If

retirees are assumed to have a bequest motive and access to insurance and annuity

products, they are found to annuitise their excess wealth and to have a higher

level of consumption. Otherwise, retirees are shown to have less consumption and

to hold more wealth for precautionary purposes. Our numerical results indicate

the importance of complete insurance markets for self-reliance in retirement—for

increasing the consumption level prior to full annuatisation. This finding implies

that the existence of a life insurance market for retirees is essential and critical for
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retirees’ financial strategy. Our finding supports the argument of Blake (1999) and

others for deepening insurance and annuity markets. A new research direction is

then suggested in the insurance market in relation to the ageing problem. Stopping

times are also impacted by the risk-aversion parameter, excess returns and the

frailty factor.

In this paper, we also study the investment proportion in risky assets. In the

case where there is a wealth requirement (wealth floor), retirees are assumed to

replicate an American put option. Those retirees with a retirement savings target

are shown to have an increasing proportion invested in risky assets over time.

Shum and Faig (2006)12, in empirical work, find agents with a retirement savings

motive invest more in stocks. In our numerical results, retirees are shown to be

more conservative and have an increasing proportion of wealth invested in risky

assets over the life cycle. These differences merit further investigation.

12Note that Shum and Faig (2006) found that the increased investment in risky assets, which is
positively related to the retirement saving target, is for those holding stocks. The investment
level will fall for other risky assets.



Chapter 4

Paper 3

Optimal Life Insurance and Annuity Demand with Jump

Diffusion and Regime Switching
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Abstract Classic Merton optimal life-cycle portfolio and consumption models

are based on diffusion models for risky assets. In this paper, we extend the life-

cycle model in Richard (1975) by allowing jumps and regime switching in the

diffusion of risky assets within a model including life insurance and annuities.

Agents are then exposed to varying degrees of background risk (jumps) as well

as a business cycle (regimes). We develop a system of paired Hamilton-Jacobi-

Bellman (HJB) equations. Using numerical methods, we obtain results for agents’
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behaviour. Agents are more conservative in consumption and annuitisation when

the economic environment is more volatile and the bequest motive is stronger.

Interestingly, under certain conditions, agents increase their exposure to risky

assets in the face of increasing background risk.

Keywords: Stochastic optimal control, Richard’s model, Optimal investment,

Jumps, Regime switching.

4.1 Introduction

In this paper, we extend Richard’s model (Richard, 1975) to study investors’

behaviour by allowing jumps and regime switching in the underlying asset dynam-

ics. Empirical evidence that underlying asset dynamics are impacted by changes

in the state of the economy drives our motivation for assuming that underlying as-

set dynamics reflect the sudden changes in the economy which could be attributed

to jumps and regime switching.

The presence of regime switching and jumps in the underlying asset dynamics

is widely studied in the context of option pricing. A discontinuous model was

proposed and examined in Merton (1976) for pricing options with an assumed

log-normal distributed jump size. Cont and Tankov (2004) described jumps in

the underlying asset dynamics for option pricing via an exponential Lévy process

model. Elliott et al. (2007) utilised a Markov-modulated pure jump process to de-

rive the regime-switching partial differential equations for European options, bar-
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rier options and American options. In Hamilton (1989), a discrete-state Markov

process was introduced for regime-switching parameter values to allow endoge-

nous structural breaks. Following Hamilton (1989), various numerical methods

were presented in the literature for pricing options with regime switching. The

lattice-based method, quadratic approximation method and front-fixing method

were presented and studied in Bollen (1998), Brown (2001) and Wu and Kwok

(1997), respectively.

Optimal investment strategy has been studied in the existing literature. The

classic Merton model was developed in Merton (1969) with the assumed con-

stant relative risk aversion (CRRA) utility function. Richard (1975) generalised

the Merton model by including the bequest motive and insurance demand in the

model. To capture market dynamics, jumps and regime switching have been stud-

ied in the literature for optimal investment strategy. Based on Richard (1975),

Wang and Purcal (2005) introduced a jump-diffusion environment with a fixed

jump size. Hanson (2007) utilised CRRA utility and log-uniform jump ampli-

tude to present optimal portfolio and consumption policies. Song, Yin and Zhang

(2006) developed a numerical scheme for controlled regime-switching jump diffu-

sions. For financial markets with regime switching, Zhang and Guo (2004) intro-

duced nearly optimal strategies and Sotomayor and Cadenillas (2009) presented

explicit solutions for the optimisation problem of consumption and investment.

As they are made on a daily basis, financial decisions are evidently impacted

by the changing market. According to Heaton and Lucas (2000), investor be-
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haviours would deviate due to changes in the market risk. Shocks, such as the

global financial crisis are documented as having influence on the portfolio choices

of investors (Bateman, Islam, Louviere, Satchell and Thorp, 2011). Therefore,

investors, especially retirees, face risks not only from consumption, investment

and longevity but also from rapid changes in the market or economic state. How-

ever, compared to the large amount of research on the investment optimisation

problem, the post-retirement optimal financial strategy problem has not received

much attention (Gupta and Murray, 2003). This motivates us to build a post

retirement-model to study the retiree behaviours of consumption, investment and

bequests when there are regime switching and jumps in the financial market.

Drawing on the existing literature, we seek to determine agents’ optimal strate-

gies. With an extension to Richard’s model, retirees’ optimal consumption, in-

vestment and insurance decisions can be obtained within a financial environment

containing jumps and regime switching. Numerical results are obtained for the

optimal consumption, investment and insurance strategies in order to study the

bequest motive and market risk effects. The addition of regime switching, captur-

ing the economy’s movements through the business cycle, result in a finding that

elderly investors should still embrace risk.

This paper is organised as follows. Section 4.2 extends the Richard’s model to

the regime-switching jump diffusion environment. Section 4.3.2 demonstrates the

numerical results and analyses the findings while section 4.4 concludes the paper.
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4.2 Model and Method

From Hanson (2007), the dynamics of the risky asset price, X(t), are assumed

to be

dX(t) = X(t) (α(t)dt+ σ(t)dB(t) + Jdψ(t)) ,

where α(t) and σ(t) are the return rate and volatility of the risky asset price,

dB(t) is the standard Brownian motion, J is a uniform distributed jump size on

[G1(t),G2(t)] and ψ(t) is a discontinuous one-dimensional Poisson process with a

jump rate λ.

The agent is assumed to have a random time of death which is modelled by the

survival rate, S(t), and the force of mortality, µ(t), with the density function of

mortality, f(t) = µ(t) · S(t).

Here we assume the agent has utility from consumption, that is, U1, as well

as utility from leaving bequests, that is, U2. Then the objective of a utility-

maximising agent is

max
C(t),π(t),Z(t)

Et

[∫ τ

t

S(T )

S(t)

(
θ(T )

θ(t)
U1(C, T ) + µ(T )

θ(T )

θ(t)
U2(L, T )

)
dT

]
,
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which is subject to the dynamics of wealth W ,

dW (t) = [(α(t)− r(t))π(t)W (t) + r ·W (t) + Y − C(t)− P (t)] dt+ π(t)σ(t)W (t)dq(t)

+ πW (t)

dψ(t)∑
k=1

J(T−k ),

where r(t) is the risk-free rate, consumption, C(t), proportion of wealth invested

in risky assets, π(t), and legacy amount, L(t), are the control variables, P (t) is

the insurance premium, P (t) = µ(t)(L(t)−W (t)), Y is the deterministic income

which is set to be zero for retirees, and T−k is the pre-jump time.

A continuous-time Markov chain process X := {Xt}t∈T is defined here with

a finite state space {e1, e2, ..., eN}, where ei = (0, ..., 1, ..., 0)′ ∈ RN . The element

Xt = ei of the Markov chain demonstrates that, at time t, the economy is in

the ith state. Elliott, Aggoun and Moore (1994) showed that the Markov chain

process X = {Xt, t ∈ T } satisfies the following semi-martingale representation

theorem:

Xt = X0 +

∫ t

0

QXudu+Mt

where M = {Mt, t ∈ T } is a martingale with respect to the filtration generated
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by X and Q is the intensity matrix for N number of regimes,

Q =



q11 q12 · · · q1N

q21 q22 · · · q2N

...
. . . . . .

...

qN1 qN2 · · · qNN


. (4.2.1)

The risk-free rate {rt}t∈T , risky asset return rate {αt}t∈T and volatility {σt}t∈T

in the underlying asset dynamics are defined as:

r(t) := r(t,Xt) = 〈r,Xt〉 =
N∑
i=1

ri〈Xt, ei〉,

α(t) := α(t,Xt) = 〈α,Xt〉 =
N∑
i=1

αi〈Xt, ei〉,

σ(t) := σ(t,Xt) = 〈σ,Xt〉 =
N∑
i=1

σi〈Xt, ei〉,

where r := (r1, r2, . . . , rN), α := (α1, α2, . . . , αN), σ := (σ1, σ2, . . . , σN) with σi >

0 for all regimes i = 1, 2, . . . , N and 〈·, ·〉 denotes the inner product in space

RN . We use Vi to denote the objective function for regime i. Then the dynamic
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programming equation is

0 = (U1(C, t) + µ(t)U2(L, t))− µ(t)V (W (t), t)− r(t)V (W (t), t)

+ VW (W (t), t) [(α− r)π(t)W (t) + r ·W (t) + Y − C(t)− P (t)]

+
1

2
VWW (W (t), t)π2W (t)2σ2(t) + Vt(W (t), t)

+
λ(t)

G2(t)− G1(t)

∫ G2(t)

G1(t)

[V (W (t) + π(eu − 1)W )− V (W )]du+
∑
j

qjiVj(W (t), t),

(4.2.2)

where qji is the intensity rate from regime j to i. We use the power utility function

for consumption and bequests,

U1(C(t)) =
C(t)γ

γ
, (4.2.3)

U2(L(t)) = m(t)1−γL(t)γ

γ
, (4.2.4)

where γ is the risk aversion parameter and m(t)1−γ is the discount function for

bequests,

m(t) = e−ρt/(1−γ)ν

∫ τ

t

e−r(u−t)du (4.2.5)

and ν is a constant that reflects the annuity level an agent’s spouse or children

compared to the current consumption amount.
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From Richard (1975) and Purcal and Piggott (2008), the original value function

V has the assumed form,

V (W, t) = a(t)
W γ

γ
. (4.2.6)

Following Song, Yin and Zhang (2006), we can rewrite equation (4.2.6) as

Vi(W, t) =
∑
j

P̃ijaj(t)
W γ

γ
, i = 1, 2, ..., (4.2.7)

where Vi(W, t) is the value function for regime i, P̃ji is the transition probability

of state j switching to state i and ai(t) is the coefficient in the value function at

time t for regime i.

Applying the first-order condition and substituting equation (4.2.6) into equa-

tion (4.2.2) in each regime, we have the optimal control variables

C∗(t) =
∑
i

ai(t)
1

γ−1W · 1{Xt=i}, (4.2.8)

π∗(t) =
1

(1− γ)σ2(t)

[
α(t)− r(t) +

λ(t)

G2(t)− G1(t)

∫ G2(t)

G1(t)

G(u)γ−1(eu − 1)du

]
· 1{Xt=i},

(4.2.9)

and

L∗(t) =
∑
i

m(t)ai(t)
1

γ−1W · 1{Xt=i}, (4.2.10)
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where G(u) = 1 + π∗(t)(eu − 1). Equation (4.2.9) does not have a closed-form

result. We need to use a numerical method to obtain the value of π for the given

parameter values.

Given that the current regime is i, then substituting equations (4.2.6)–equation

(4.2.10) into equation (4.2.2) and dividing it by W γ/γ, we can have

0 = µ(t)m(t)ai(t)
γ
γ−1 + ai(t)

γ
γ−1 − (µ(t) + ρ)ai(t) + a′i(t)

− γ(1 + µ(t)m(t))ai(t)
γ
γ−1 + (r(t) + µ(t))ai(t)γ + (α(t)− r(t))π∗ai(t)γ

+
1

2
σ2(t)(π∗)2(γ − 1)ai(t)γ +

λ(t)ai(t)

G2(t)− G1(t)

∫ G2(t)

G1(t)

(Gγ − 1)du+
∑
j

qijaj(t).

(4.2.11)

By rearranging equation (4.2.11), we can have

ai(t)
γ
γ−1 [(γ − 1)(1 + µ(t)m(t))]

= a′i(t) + ai(t)
[
− µ(t)− ρ+ (r + µ(t))γ + (α(t)− r(t))γπ∗

+
1

2
σ2(t)(π∗)2(γ − 1)γ +

λ(t)

G2(t)− G1(t)

∫ G2(t)

G1(t)

(Gγ − 1)du+
∑
j

qij
aj(t)

ai(t)

]
.

(4.2.12)

As we have the dynamic programming equation as equation (4.2.12) for each

regime, we end up with a system of equations. Through the numerical schemes

from Song, Yin and Zhang (2006), we can solve equation (4.2.12) and obtain

the numerical solution for coefficient ai(t). The consumption, investment and
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insurance premiums can then be calculated. We can show the existence and

uniqueness of the solution under some certain conditions4.

4.3 Numerical Results

4.3.1 Parameter values

Table 4.1: Parameters used in the numerical results

t=65
Y=USD$52,250
G1=−0.5
r1=0.04187
r2=0.03
r3=0.025

τ=109
γ=−2 or − 0.8

G2=0.5
α1=0.0592
α2=0.04
α3=0.03

ρ=r1 = 0.04187
ν=2/3 or 1
λ=0, 0.2, 0.4 and 0.6
σ1=0.1853
σ2=0.3
σ3=0.4

In this paper, the American survival probabilities and forces of mortality are

obtained from the American 2010 life table for males Human Mortality Database

(N.d.). We calibrate our parameters to the American data to obtain numerical

results from the starting age t = 65 to the maximum age ω = 109.

We calculate the regime 1 risk-free rate, r1, by using the 1-year yield rate

(from 1990 to 2010) from the US Department of the Treasury (2015). The agent’s

time preference is assumed to be same as the risk-free rate, ρ = r1 for simplicity.

Meanwhile, the regime 1 risky asset return rate, α1, and volatility, σ1 are calibrated

to Standard & Poor’s (S&P) 500 data from 1990 to 2010.

We also adopt the average income, Y = $52 250 from Noss (2013). Agents in

our model are assumed to have total wealth of 10Y from previous savings and

4See, e.g., Sotomayor and Cadenillas (2009).
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have no future income. The risk aversion parameter γ is set to be −2 for the

jump case and −0.8 for the regime switching case.5 Here, the ν value illustrates

the annuity level left for the surviving spouse or children which is an indicator for

a bequest motive. From Purcal and Piggott (2008), we set ν to be two-thirds for

a low bequest motive, that is, agents will only leave two-thirds of their current

consumption level for the surviving spouse or children. As we want to further

study the effects from a higher bequest motive, we also calculate our result for

ν = 1 for a high bequest motive.

For the jump case, we assume the values of G1 and G2 to be −0.5 and 0.5,

respectively. To test the jump effects, different values are tried for the jump

frequency, that is, λ = 0, 0.2, 0.4 and 0.6. When λ = 0, this means that there

is no jump in the risky asset. Higher frequency rate means the financial market

becomes more volatile.

To demonstrate the numerical results for the case with jumps and regime switch-

ing, we assume there are three regimes: regime 1 “good”, regime 2 “okay” and

regime 3 “bad”. We assume that agents initially start in the good regime. For

regime 2 and 3, we assume the following risk-free rates, risky asset return rates

and volatility rates, regime 2: r2 = 0.03 α2 = 0.04 σ2 = 0.3; regime 3: r3 = 0.025

α3 = 0.03 σ3 = 0.4. With these preset values, a worse economic environment

is described by the lower risk-free rate, lower risky asset return rate and higher

5This change in risk aversion was done for computational reasons. Adding regime switching
to our numerical solution with jumps added more complexity to an already complex model. In
this final environment, we were not able to find numerical solutions with γ = −2; solutions were
forthcoming, however, with γ = −0.8.
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volatility. We assume the preset intensity rates for switching are as follows,

Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 =


−1 1 0

0 −1 1

1 0 −1

 . (4.3.13)

This implies a regularity of movement between states: from 1 to 2, then 2 to 3,

then 3 back to 1, and so on6. That is, the agents find themselves in a business

cycle, moving progressively from good to bad, then returning immediately to good

and repeating. The annual probability of staying in a particular state (and not

moving to the next) is 1/e or 0.37. The preset intensity rates used to obtain

numerical results are for illustrative purposes. More realistic assumption (e.g.,

state 1 to 2, then 2 to 3, then 3 back to 2, then 2 back to 1 and so on.) bring

difficulties in calculation with the solution method failing to return results. We

will leave more realistic assumptions for future research.

4.3.2 Case with jumps and no regime switching

Here, we compare the cases with different levels of jump frequency and bequest

motive, that is, λ = 0, 0.2, 0.4 or 0.6 and ν = 2/3 or 1. Specifically, we calculate

the expected proportions of wealth, consumption, insurance premium and risky

asset investment for each λ and ν value, as shown in figures 4.1–4.4.

As our model is to study the post-retirement period, the wealth level will decline

6For this particular case, the duration of this cycle is 3 years.
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Figure 4.1: Expected wealth with jumps (no regime switching)
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Figure 4.2: Expected wealth with jumps (no regime switching)
γ = −2, ν = 1, λ = 0, 0.2, 0.4 or 0.6
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Figure 4.3: Expected consumption with jumps (no regime switching)
γ = −2, ν = 2/3, λ = 0, 0.2, 0.4 or 0.6
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Figure 4.4: Expected consumption with jumps (no regime switching)
γ = −2, ν = 1, λ = 0, 0.2, 0.4 or 0.6
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Figure 4.5: Expected insurance premium with jumps (no regime switching)
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Figure 4.6: Expected insurance premium with jumps (no regime switching)
γ = −2, ν = 1, λ = 0, 0.2, 0.4 or 0.6



4.3. NUMERICAL RESULTS 115

when agents are ageing. From figures 4.1 and 4.2, we observe that a higher

jump frequency can result in less wealth for both levels of bequest motive. This

phenomenon can be linked with variations in the proportion of wealth invested

in risky assets, that is, π due to different jump frequencies. Table 4.2 shows that

agents would reduce their exposure to risky assets when jumps are more frequent.

Comparing the results in figure 4.1 and 4.2, agents with a higher bequest motive

are willing to hold more wealth.

From figure 4.3 and 4.4, the expected increases in consumption level in line

with increasing age for different λ values can be found for both levels of bequest

motive. With a higher jump frequency, that is, a higher λ value, the expected

consumption level is lower in line with increasing age. We also notice that agents

have a propensity to consume less when they have a higher bequest motive.

In our model, the insurance premium is the indicator for life insurance or annu-

ity demand. A positive insurance premium, that is, P , indicates agent’s demand

for life insurance while a negative insurance premium indicates the demand for an-

nuitisation. In figure 4.5, we have all negative insurance premiums which illustrate

agents’ annuitisation intention. With more frequent potential jumps in the risky

assets, agents reduce their annuitisation amount due their lower level of wealth.

However, as shown in figure 4.6, with a higher bequest motive, agents’ demand

for life insurance starts a few years after retirement for all market environments,

with the higher level of demand corresponding to the higher λ value.



116 CHAPTER 4. PAPER 3

Table 4.2: Investment proportion in risky assets for different jump frequencies (no
regime switching present). Results are independent of the degree of altruism.

λ π with ν = 2/3 or 1
0 0.1680

0.2 0.1668
0.4 0.1662
0.6 0.1659

4.3.3 Case with jumps and regime switching

We conduct another set of numerical experiments for the case with jumps, but

this time augmented by the presence of regime switching. To study the effects

of regime switching and a bequest motive, we calculate the numerical results

with or without regime switching for different levels of bequest motive, as shown

in figures 4.7–4.10, when there are jumps in the financial market. For reasons

discussed above, we alter our focus from an agent with a risk aversion parameter

of γ = −2 to one who is less risk averse, with γ = −0.8.

From figure 4.7 and 4.8, agents with both low and high bequest motives are

found to have less consumption motivation when there are additional risks present

due to regime switching. Bequest motive effects are also detected here, as agents

tend to consume less for higher ν value in an effort to meet their chosen level of

responsibility to their legatees.

Similarly, as shown in figures 4.9–4.10, agents choose lower annuitisation amounts

when they are faced with additional risks from regime switching. Furthermore,

agents reduce their annuitisation intention if they have a higher level of bequest
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Figure 4.7: Expected consumption with jumps and regime switching
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Figure 4.9: Expected insurance premium with jumps and regime switching
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motive.

In table 4.3 we also calculate the proportion of agents’ wealth invested in risky

assets in the economic environment with jumps and in the economic environ-

ment with jumps and regime switching (the latter in expection: over the different

states). Comparing the π values for the jump only case with the expected π val-

ues for the jumps with regime switching case we see agents tend to reduce their

exposure to risky assets when regime switching occurs. Interesting, we see a very

different pattern of behaviour for the two different cases. In the jump-only envi-

ronment agents react with apparent indifference to the increases in background

risk. With the introduction of regime switching, however, the increasing prob-

ability of the potentially worse economic environment that is captured by more

frequent jumps leads agents to increase their investment proportion 7. That is,

in the face of increasing background risk, the agents choose to invest more in the

risky asset. We explore this further below.

Table 4.3: Investment proportion in risky assets with jumps and regime switching

E[π] with jumps
λ π with jumps and regime switching
0 0.2800 0.1256

0.2 0.2786 0.1438
0.4 0.2779 0.1579
0.6 0.2774 0.1691

In figure 4.11 we tease out the regime-specific behaviour of π in the face of

increasing background risk. Wang and Purcal (2005) show that negative (non-

7Please refer to figure 4.11 for the investment proportion in specific economic states.
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symmetric) jumps in risky asset returns leads to uniformly lower investment in

risky, with increasing jump frequency exacerbating the result. Their model in-

cluded no regime-switching. The regime switching in this model, and the jump

symmetry (negative and positive), are the point of departure from Wang and Pur-

cal (2005). Their inclusion generates an interesting result in terms of increasing

background risk—seen when the jump frequency increases. The jump symmetry8

and promise of better economic conditions as one moves through the business cy-

cle9 leads agents, in the two worst economic states, to increase their investment in

risky assets as background risk increases, while in the best economic state agents

temper their exposure to risky somewhat with the increasing background risk.

While it is known that under certain circumstances increases in background risk

reduce demand for other independent risks, this is not true in general (Gollier,

2001), and our above result is a case in point. While empirical studies have found

increasing background risk leads to less investment in stocks (Dimmock, 2012;

Palia, Qi and Wu, 2014), these studies do not control for the stage of the business

cycle.

4.4 Conclusion

In this paper, we extend Richard’s model (Richard, 1975) to examine agents’

investment behaviour during changes in the economic state. Using our model,

8Our results are driven by the constant jump frequency and symmetric jump size distribution
in each economic state.
9Regime switching between different states can be regarded as the business cycle movement.
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we study agents’ post-retirement investment behaviour in relation to risky assets

when economic dynamics are described by jumps and regime switching.

Based on our numerical results for the case with jumps, agents’ behaviour

deviates when they experience changes in the economic state. When agents detect

potential future jumps, they will reduce their exposure to risky assets which will

result in lower wealth, consumption and annuitisation. This type of behaviour will

become more substantial with a higher jump frequency. When the agents’ bequest

motive is higher, they might further reduce their consumption and annuitisation.

In fact, agents will seek life insurance, if their wealth cannot cover the legacy

amount.

When there are both potential jumps and regime switching in the market,

agents have the tendency to further reduce their consumption and annuitisation
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compared to when the market has jumps only. With a higher bequest motive,

this trend is more obvious. However, according to our calculations, agents would

plan to enhance their exposure to risky assets when jumps are more frequent.

We can conclude that agents’ behaviour will be different when they are in

the presence of risks from a changing economic state. With reduced wealth,

they will be more conservative which is shown in their reduced consumption and

annuitisation. From agents’ behaviour, we find that having a bequest motive has

negative effects on consumption and annuitisation. However, in our model for

different volatility values, agents can either exhibit their preference for risk taking

or risk aversion when the market is more volatile. Specifically, agents who are

in regime 1, that is in a good economic state, reduce their proportion of wealth

invested in risky assets along with increasing jump frequency. Meanwhile agents

who are in regime 2 and 3, which are worse economic states, raise their proportion

of wealth invested in risky assets along with increasing jump frequency. When

agents are confronting a market that has a high degree of variation, it is more

common for us to anticipate risk averse behaviour rather than the risk taking

behaviour. However, in our model, jumps are assumed to be both negative and

positive. Agents in regime 2 and 3 are confronting lower return rates but higher

volatility. Those agents then take on more risk due to the possibility of positive

jumps and probability of switching to a better regime. On the other hand, agents

in regime 1 hold fears for downward movements in returns and choose to be more

conservative.



Chapter 5

Conclusion

5.1 Summary and Findings

In this thesis, we use the life-cycle model to investigate the optimal strategies for

consumption, investment and insurance demand. Our optimal strategy study is

developed with the motive being to provide explanations for investors’ behaviours

in relation to real-world problems.

Many research papers have studied optimal financial strategy via the life-cycle

model. Among these studies, the famous Merton’s model (Merton, 1969, 1971)

and its extension, Richard’s model (Richard, 1975), bring us important insights

on agents’ behaviours in relation to consumption, investment and insurance.

Although these two models provide us with useful information about agent’s

behaviours, certain limitations are generated by the assumptions used. In these

two models, utility-maximising agents are assumed to have constant preferences
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and consistent behaviours. In addition, health status and the financial market

are set to be stable without change. However, to develop optimal strategy for

practical problems, we need to integrate extra elements in the life-cycle model

to describe the time-inconsistent behaviours, dynamic health status and unstable

financial market which are observed in the empirical data.

5.1.1 Paper 1

The first research paper provides a novel explanation of the “annuity puzzle” by

using the life-cycle model. The interactions of time inconsistency and luxury-type

bequest motives that are integrated into our extended life-cycle model help us to

describe possible reasons behind the “annuity puzzle” and its exceptions.

In this paper, Richard’s model (Richard, 1975) is generalised by adopting the

hyperbolic discounting factor as well as a luxury-type legacy amount to describe

agents’ time-inconsistent behaviours and luxury-type bequest motives. These two

factors are observed in empirical data and have been studied in the literature.

Based on the type of time-inconsistent behaviour, we categorise agents into two

groups, “näıve” and “sophisticated”, and calculate numerical results for optimal

decisions for each group. The consumption pattern of näıve agents is observed

to be hump-shaped which is similar to the empirical data. The demand of näıve

agents for insurance or annuities is impacted by luxury-type bequests. The näıve

agents with hyperbolic preferences may switch from purchasing life insurance to

annuitisation at stages of the life cycle when they possess luxury-type bequest
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motives. In contrast to näıve agents, sophisticated agents have more rational

behaviours and exhibit a larger amount of consumption as well as annuitisation

of excess wealth.

In paper 1, we find that our modelled behaviours of näıve agents resemble

the behaviours of agents in the real world. With the interaction of hyperbolic

discounting and luxury-type bequest motives, näıve agents can manifest the de-

mand for life insurance or annuitisation. This bi-directional behaviour can clearly

explain the “annuity puzzle” observed in most developed countries and the excep-

tions in Switzerland and the Netherlands. Based on our research, the behaviours

of real-world agents could be justified by hyperbolic discounting and luxury-type

bequests.

5.1.2 Paper 2

In paper 2, we develop a useful model to analyse retirees’ decisions about their

optimal strategy and the optimal time to enter a retirement village. Using different

bequest and insurance market assumptions, we replicate retirement village options

faced by a utility-maximising retiree with an uncertain future health status. Re-

tirees determine the entry date as an optimal stopping time for full annuitisation.

We generalise our model by including dynamic health status. For each health

state, retirees are assumed to have a specific mortality rate and medical costs

that reflect the impact of health status. Following the idea of the frailty model, a

healthier state is linked with a lower mortality rate and lower medical costs.
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We find that retirees’ consumption and wealth are influenced by bequest mo-

tives and the existence of an active insurance market. When retirees with bequest

motives can purchase life insurance or annuities in the market, they will annuitise

their excess wealth and will have a higher consumption level. Hence, these retirees

need to hold less accumulated wealth in their optimal strategies. The availability

of the insurance market initiates wealth annuitisation and, furthermore, generates

better outcomes.

When retirees are faced with a wealth requirement threshold to enter the re-

tirement village (a retirement savings target), they are assumed to replicate an

American put option. Consequently, the proportion of wealth invested in risky

assets is found to have an increasing trend. Interestingly, this is in contrast to

some empirical work, which finds agents with a retirement savings target will tend

to invest more in stocks (Shum and Faig, 2006).

5.1.3 Paper 3

In paper 3, we investigate the optimal strategy for an agent in volatile circum-

stances—with bequest motives and being within a risky financial environment that

contains jumps and regime switching. To obtain optimal strategies, we extend

the Richard (Richard, 1975) model to determine retirees’ optimal consumption,

investment and insurance decisions.

Based on our numerical results, when the economic state experiences jumps,

agents would accordingly adjust their optimal strategy by reducing the proportion
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they have invested in risky assets. Falling wealth, consumption and annuitisation

are consequently observed. This trend would be more obvious when the jump

frequency as well as the bequest motive is higher.

We find that agents lower their levels of consumption and annuitisation when

there are not only jumps but also regime switching in the financial environment.

Furthermore, our results show that agents with a higher bequest motive are more

impacted by such a risky environment. For our chosen parameter set, agents, on

average, exhibit a greater tendency to invest in risky assets when they are facing

an economic state with a higher frequency of potential jumps (that is, higher levels

of background risk).

In our model, agents show different behaviours within the two risky modelled

financial environments. Agents can either demonstrate aggressive or conservative

investment behaviour in reaction in increasing background risk, depending on the

presence of regime switching. Empirical studies suggest increasing background

risk results in more conservative behaviour (Dimmock, 2012; Palia, Qi and Wu,

2014).

5.2 Limitations and Recommendations for Fu-

ture Research

• The retirees in paper 2 are assumed to be “myopic” or short-sighted, that is,

they näıvely believe that their future health state and optimal strategy will
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not change. To obtain more generalised results, the “sophisticated” case,

that is, retirees who realise that their health status is uncertain and that

they consequently need to adjust their optimal strategies, could be included

in the model for future research.

• The risk-aversion parameter γ is set to be constant and is applied to all

health states in paper 2. In future research, different risk-aversion param-

eters could be applied for dynamic health states to resemble real-world re-

tirees’ behaviours.

• In paper 2, we establish a financial threshold combined with option repli-

cation to meet the wealth floor requirement. The replication can result in

investment behaviour that differs from the constant Merton ratio. This ob-

servation merits further exploration, particularly as it contrasts to empirical

findings (Shum and Faig, 2006).

• The bequest motive utility function used in paper 3 implies that the bequest

is a necessity. This utility function could be extended in future to incorpo-

rate the luxury-type bequest feature as suggested by Lockwood (2012).

• In paper 3, we determine that in the presence of jumps and a business cycle

agents will increase their exposure to risky assets, on average, as background

risk increases. This observation merits further investigation, particularly as

it contrasts to empirical findings (Dimmock, 2012; Palia, Qi and Wu, 2014).
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Maŕın-Solano, Jesús, Jorge Navas and Oriol Roch. 2013. “Non-constant discount-

ing and consumption, portfolio and life insurance rules.” Economics Letters

119(2):186–190.

McDonald, John. 1996. “Community participation in an Australian retirement

village.” Australian Journal on Ageing 15(4):167–171.

Menchik, Paul. 1980. “The importance of material inheritance: The financial

link between generations”. In Modeling the distribution and intergenerational

transmission of wealth, ed. James D. Smith. Vol. 46. University of Chicago

Press pp. 159–186.



BIBLIOGRAPHY 139

Merton, Robert C. 1969. “Lifetime portfolio selection under uncertainty: The

continuous-time case.” The Review of Economics and Statistics 51(3):247–257.

Merton, Robert C. 1971. “Optimum consumption and portfolio rules in a

continuous-time model.” Journal of Economic Theory 3(4):373–413.

Merton, Robert C. 1976. “Option pricing when underlying stock returns are

discontinuous.” Journal of Financial Economics 3(1):125–144.

Milevsky, Moshe A. and Virginia R. Young. 2007. “Annuitization and asset allo-

cation.” Journal of Economic Dynamics and Control 31(9):3138–3177.

Mitchell, Olivia S., James M. Poterba, Mark J. Warshawsky and Jeffrey R Brown.

1999. “New evidence on the money’s worth of individual annuities.” 89(5):1299–

1318.

Noss, Amanda. 2013. “Household income: 2012.” United States Census Bureau,

US Department of Commerce 12(2).

Øksendal, Bernt. 2003. Stochastic differential equations. Springer.

Palia, Darius, Yaxuan Qi and Yangru Wu. 2014. “Heterogenous Background Risks

and Portfolio Choice: Evidence from Micro-level Data.” Journal of Money,

Credit and Backing 46(8):1687–1720.

Pfau, Wade D. and Michael E. Kitces. 2013. “Reducing retirement risk with a

rising equity glide-path.” Available at SSRN 2324930.



140 BIBLIOGRAPHY

Phelps, Edmund S and Robert A Pollak. 1968. “On second-best national saving

and game-equilibrium growth.” The Review of Economic Studies 35(2):185–199.

Pliska, Stanley R. and Jinchun Ye. 2007. “Optimal life insurance purchase and

consumption/investment under uncertain lifetime.” Journal of Banking & Fi-

nance 31(5):1307–1319.

Pollak, Robert A. 1968. “Consistent planning.” The Review of Economic Studies

35(2):201–208.

Purcal, Sachi and John Piggott. 2008. “Explaining low annuity demand: An opti-

mal portfolio application to Japan.” Journal of Risk and Insurance 75(2):493–

516.

Reichling, Felix and Kent Smetters. 2015. “Optimal annuitization with stochas-

tic mortality and correlated medical costs.” The American Economic Review

105(11):3273–3320.

Retirement Living Council. 2015a. “Profile: Retirement vil-

lage residents.” Property Council of Australia. (last accessed

on 4 April 2015 on http://www.retirementliving.org.au/wp-

content/uploads/2013/12/Retirement-Village-Residents-Profile.pdf).

Retirement Living Council. 2015b. “Retirement villages and nurs-

ing homes compared.” Property Council of Australia. (last ac-

cessed on 5 April 2015 on http://www.retirementliving.org.au/wp-



BIBLIOGRAPHY 141

content/uploads/2013/12/Retirement-Villages-and-Nursing-Homes-

Comparison.pdf).

Richard, Scott F. 1975. “Optimal consumption, portfolio and life insurance rules

for an uncertain lived individual in a continuous time model.” Journal of Fi-

nancial Economics 2(2):187–203.

Rosen, Harvey S. and Stephen Wu. 2004. “Portfolio choice and health status.”

Journal of Financial Economics 72(3):457–484.

Shum, Pauline and Miquel Faig. 2006. “What explains household stock holdings?”

Journal of Banking & Finance 30(9):2579–2597.

Simaan, Marwan and Jose B. Cruz Jr. 1973. “On the Stackelberg strategy

in nonzero-sum games.” Journal of Optimization Theory and Applications

11(5):533–555.

Song, Q. S., G. Yin and Z. Zhang. 2006. “Numerical methods for controlled

regime-switching diffusions and regime-switching jump diffusions.” Automatica:

A journal of IFAC 42(7):1147–1157.
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