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Abstract

As this century unfolds we will witness the rise of the quantum computer. A quantum com-
puter is a device that utilizes the laws of one of the most fundamental theories of physics
— quantum mechanics. By utilizing properties of quantum mechanics a quantum computer
is able to perform certain information processing tasks much more efficiently than an ordi-
nary classical computer. The last century of modern society was revolutionized by some of
the simplest ideas in quantum mechanics like energy quantization and quantum tunnelling,
which led to technologies like the laser and the transistor. We can expect to see additional
technological revolutions occur in this century since we are beginning to build technologies
with some of the more complex properties of quantum mechanics such as quantum entan-
glement and quantum superposition. These quantum effects make more radical technologies
like the quantum computer possible.

This thesis is based upon the work I have done during my PhD candidature at Macquarie
University. In this work we develop quantum technologies that are directed towards realising
a quantum computer. Specifically, we have made many theoretical advancements in a type
of quantum information processing protocol called BosonSampling. This device efficiently
simulates the interaction of quantum particles called bosons, which no classical computer
can efficiently simulate. In this thesis we explore quantum random walks, which are the ba-
sis of how the bosons in BosonSampling interfere with each other. We explore implementing
BosonSampling using the most readily available photon source technology. We invented a
completely new architecture which can implement BosonSampling in time rather than space
and has since been used to make the worlds largest BosonSampling experiment ever per-
formed. We look at variations to the traditional BosonSampling architecture by considering
other quantum states of light. We show a worlds first application inspired by BosonSam-
pling in quantum metrology where measurements may be made more accurately than with
any classical method. Lastly, dealing with BosonSampling, we look at reformulating the
formalism of BosonSampling using a quantum optics approach. In addition, but not related
to BosonSampling, we show a protocol for efficiently generating large-photon Fock states,
which are a type of quantum state of light, that are useful for quantum computation. Also,
we show a method for generating a specific quantum state of light that is useful for quantum
error correction — an essential component of realising a quantum computer — by coupling
together light and atoms.
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The boundaries are imaginary,
the rules are made up, the lim-
its do not exist.

William Paul Wiebers

1
Introduction to Linear Optical Quantum

Computing

1.1 Synopsis

In the 20th century the first quantum revolution occurred. Due to most basic quantum effects,
namely wave-particle duality and quantisation, new technologies emerged that revolutionised
the world as we know it. Some of these technologies are lasers, transistors (which allow for
computers), magnetic resonance imaging, and the electron microscope. Due to these quan-
tum based technologies human civilisation has experienced the most rapid cultural changes
over the last century than ever before. These technologies however only harness the most ba-
sic aspects of the quantum world. There are much more subtle quantum effects like quantum
entanglement that promise a whole new era of human civilisation and perhaps even larger
changes as we advance through the 21st century. One of the most promising of these new
technologies is the quantum computer as it promises significant advantages over ordinary
classical computing. There are many architectures for building a quantum computer but
they are all technically very challenging. A useful approach is to build a quantum computer
optically as it has many advantages and is the focus of this thesis.

In section 1.2 we will motivate a particular type of quantum computer called a linear
optical quantum computer (LOQC) and provide a brief history of the field of quantum com-
puting. In section 1.3 we will review quantum computing in the context of linear optics,
discussing the requirements of quantum computing. In section 1.4 we discuss what classes
of problems quantum computers are known to show advantages over classical computers. In
section 1.5 we review some basic computational complexity classes in computer science that
are important to this thesis. Lastly, in section 1.6, we explain why linear optical quantum
computing remains challenging.
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1.2 Motivation

Quantum Computers are information processing devices that utilise the laws of quantum
mechanics to process information. It was the famous physicist Richard Feynman who first
postulated the idea of a quantum computer. Since then quantum computing has inspired a
huge field of research commonly referred to as quantum information processing [1]. For a
quantum computer to utilise the laws of quantum mechanics the quantum computer requires
the use of various quantum objects like atoms and photons. These objects are some of na-
ture’s smallest and most fundamental building blocks and so they are extremely sensitive to
being disturbed by their environment which is a greatly simplified reason of why realising a
quantum computer is extremely challenging.

Many different physical architectures for building a quantum computer have been pro-
posed. Some of these proposals use atom and ion traps [2, 3], superconducting qubits [4],
nuclear magnetic resonance [5], quantum dots [6], nuclear spin [7], and linear optical in-
terferometers [8]. Which of these models is likely to yield the first quantum computer? It
is likely not just one, but a composite of these technologies that will be used. Whatever
technology is used, we will need something that is efficient, by which we mean that the re-
sources used by the quantum computer scale polynomially with the size of the computation.
Likewise, if the quantum computer is inefficient we mean that the resources required scale
exponentially with the size of the computation. Inefficient devices by definition will not be
scalable and will be too costly to realise.

Optical quantum information processing is one promising candidate. It has a particularly
useful advantage over many other proposals since it harnesses light which is highly resistant
to certain forms of decoherence. Looking into the history of linear optics for quantum com-
puting, we find that it was not always believed to be a viable method for building a quantum
computer. The physics community has investigated linear optical interferometers to process
quantum information for quite some time. Before 2001 it was believed that a linear opti-
cal interferometer alone could not be engineered to make a universal quantum computer.
For example, in 1993 C̆erný proposed that a linear interferometer could be used to solve
NP-complete problems in polynomial time, but he found that the scheme suffered from an
exponential overhead in energy [9], which is inefficient. In 1996 Clauser & Dowling showed
that a linear optics Talbot interferometer could factor integers in polynomial time, which is
efficient, but with either an exponential overhead in energy or physical size [10], which is
inefficient. Again in 1996, Cerf, Adami & Kwiat demonstrated a programmable linear opti-
cal interferometer that could implement any universal logic gate (a requirement for universal
quantum computing that we talk about in section 1.3) with single photon inputs but this suf-
fered an exponential overhead in the spatial dimension which makes the scheme inefficient.
In 2002, Bartlett et al. showed that any interferometer with Gaussian states at the input and
with Gaussian measurements at the output can be efficiently simulated classically even in
the presence of quadratic nonlinearities which created a continuous variable analog of the
Gottesman-Knill theorem for discrete variables in the ordinary circuit quantum computation
model [11].

These examples, among others, led to the widespread belief that photonic linear inter-
ferometry alone could not be used to build a universal quantum computer. As a corollary
it was believed that linear optical interferometers were efficiently simulateable on an ordi-
nary classical computer. However, in 2001, Knill, Laflamme & Milburn (KLM) [8] showed
that efficient universal quantum computation can be implemented using only photon sources,
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beam splitters, phase shifters, photo-detectors, and feedback from the photo-detector’s prov-
ing that linear optical interferometers are a viable architecture. This is known as linear optical
quantum computing (LOQC).

There are many models for processing quantum information. These models include clus-
ter (or graph) states [12, 13], topological [14], adiabatic [15], quantum random walks [16],
quantum Turing machines [17], permutational [18], the one-clean qubit model [19] and the
gate model [1]. Some of these models are universal, meaning they can efficiently implement
any quantum algorithm, whereas others are restricted, meaning they implement a specific
subset of quantum algorithms. There are always errors in these schemes, such as decoher-
ence, so the scheme needs to also be made fault-tolerant, which means that a protocol for
quantum error correction is implementable. The gate model is perhaps the most intuitive and
most familiar model as it resembles classical circuit models so we will use this model to de-
scribe LOQC. In chapters 3, 4, 5, 6, and 7 we discuss the results we have on BosonSampling,
which is a special purpose implementation of LOQC and the main focus of this thesis.

1.3 Linear Optical Quantum Computing

In this section we introduce the LOQC approach to universal quantum computing of KLM
[8, 20]. As mentioned above it is a promising route forward for realising a universal quantum
computer and many researchers around the world are constantly improving the associated
technologies of linear optics. These technologies also promise a simple implementation of
BosonSampling, which is the primary focus of this work and facilitates development of key
technologies that will ultimately become building blocks for universal LOQC.

There are three main results in the original work of KLM [8]. Firstly, they showed
that linear optical elements are sufficient for efficient non-deterministic universal quantum
computation with photons. Secondly, the success probability of implementing the quantum
gates may be made asymptotically close to unity using a certain encoding technique. Thirdly,
the resources for obtaining accurately encoded qubits scale efficiently using quantum coding.
In addition they show that by iterating their method LOQC can be made to be fault-tolerant
[21–24].

In this section we review some of the fundamental requirements for quantum comput-
ing including the photonic qubit, some of the optical elements such as the beam splitter,
phase shifter, and photo-detectors, logic gates, the nonlinear sign-flip gate, and quatum gate
teleportation. In addition we discuss qubits on the Bloch sphere.

1.3.1 Photonic Qubit

The fundamental unit of information of a quantum computer is the qubit or quantum bit. This
is analogous to the classical bit but is instead quantum in nature and can be in a superposi-
tion of the logical zero state |0〉 and the logical one state |1〉 as well as have arbitrary phase
relationships. A qubit can also be entangled with other qubits. These properties of qubits,
superposition and entanglement, give quantum computers significant advantages over clas-
sical computers in solving many algorithms. A popular encoding of a qubit in LOQC is
one photon in two optical modes, known as dual rail encoding. Another technique is polar-
ization encoding where the qubit is encoded in the horizontal and vertical polarizations of
light. Mathematically, a qubit is represented as a unit vector in the complex two-dimensional
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vector space C2. The vector space is spanned by the basis

|0〉 =

[
1
0

]
(1.1)

|1〉 =

[
0
1

]
. (1.2)

A general quantum state may be then written as a normalised complex sum of these basis
states, i.e.

|ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉. (1.3)

By setting θ = π
2

and φ = 0 a particular qubit is obtained which has the form

|ψ〉 =
1√
2

(|0〉+ |1〉) . (1.4)

This superposition state has a 50% probability of being in logical state zero |0〉 and a 50%
probability of being in logical state one |1〉 once a measurement is made on the system in the
|0〉/|1〉 logical basis. The probability of measuring a particular logical state is obtained by
taking the absolute square of the corresponding amplitude.

1.3.2 Qubit Visualisation on a Bloch Sphere
A elegant way to visualize superposition states is to draw them on the so called Bloch sphere
as shown in Fig. 1.1. The +z component of the Bloch sphere represents the |0〉 state while
the −z component represents the |1〉 state. A qubit |ψ〉 drawn on the Bloch sphere is in a
superposition of the |0〉 and |1〉 if it is pointing anywhere except along the ±z axes, where
the state is a |0〉 or |1〉 respectively. Pure states lie on the surface of the sphere while mixed
states are contained within the sphere. Once the qubit is measured in the logical (i.e |0〉/|1〉)
basis the quantum state will probabilistically collapse to either the |0〉 or |1〉.

Figure 1.1: The Bloch sphere is a convenient way to visualize qubits. The qubit |ψ〉 is
generally in a complex superposition of the |0〉 and |1〉 logical states. The sphere is also a
convenient tool to visualize how the Pauli matrices rotate the qubit state. Pure states lie on
the surface of the sphere while mixed states are contained within the sphere.
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1.3.3 Optical Elements for Quantum Computing

There are certain optical elements necessary to implement linear optical quantum computing
including: beamsplitters, phase-shifters, photodetectors, and feedforward from the photode-
tector outputs. With these elements, it has been shown that [8],

1. Universal quantum computation can be implemented non-deterministically.

2. The probability of implementing non-deterministic quantum gates can be made asymp-
totically close to unity using an encoding technique with efficient overhead [25].

3. Error correcting codes can be implemented, enabling fault-tolerant quantum computa-
tion.

4. Quantum computation can be efficiently implemented.

In general, to build a quantum computer three essential components are required: a way
to prepare quantum states, a way to implement any operation from a universal gate set on the
qubits, and to measure quantum states. Using linear optical approaches we prepare a single
photon in the Fock basis. There are several technologies that exist such as spontaneous
parametric down conversion [26] and quantum dot sources [27] to prepare single photons,
which can be described by adding a photon to the vacuum state â†|0〉 = |1〉. This is non-
deterministic with all existing methods of generating single photon states but even with this
non-determinism it may be used for quantum computing. As technologies improve single-
photon sources are becoming more and more deterministic.

The two core optical elements that are used to implement optical gates on our prepared
quantum states are phase-shifters and beamsplitters, which are both unitary transformations
on a qubit.

Phase-Shifter

The unitary for a phase-shifter acting on a single mode is

Φ̂φ = ein̂φ, (1.5)

where n̂ is the number operator defined as n̂ = â†â.

Beamsplitter and Hong-Ou-Mandel effect

The unitary matrix for a beamsplitter may be represented by

B̂(θ, φ) =

(
cos θ −eiφ sin θ

e−iφ sin θ cos θ

)
, (1.6)

in the basis of optical modes, where φ gives relative phase between the modes and θ is
related to the reflectivity of the beamsplitter, which is r = cos2 θ. One of the most important
quantum interference effects in quantum optics is the Hong-Ou-Mandel (HOM) effect [28].
This effect is can be seen when identical single photons are incident on both of the input
modes of a 50:50 beamsplitter at the same time (i.e. |ψin〉 = â†b̂†|0〉|0〉). At the output you
see the HOM effect where the photons always tend to bunch. In other words both photons
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will always come out of the same output mode but you do not know which one it will be.
This effect can be described mathematically as,

|ψout〉 = B̂
(π

4
, 0
)
|ψin〉

= B̂
(π

4
, 0
)
â†b̂†|0〉|0〉

=
1

2

(
(â† − b̂†)(â† + b̂†)

)
|0〉|0〉

=
1

2

(
â†2 + â†b̂† − â†b̂† − b̂†2

)
|0〉|0〉

=
1

2

(
â†2 − b̂†2

)
|0〉|0〉

=
1√
2

(|2〉|0〉 − |0〉|2〉) . (1.7)

Note the quantum interference, where the middle terms from line four to line five cancel,
causing the HOM effect.

Photon Measurement

In order to measure the state, photodetectors are used. They destructively determine the
number of photons in a mode. A bucket detector is the simplest kind of detector which
only measures if a mode contains zero photons or more than zero photons. For states with
more than one photon a photon counting detector may be used to distinguish numbers but
it is harder to realise than a bucket detector. An effective photon-number-counting detector
referred to as a multiplexed photodetector [29–33] may be realised with bucket detectors by
using a series of beamsplitters to evenly spread out the photons over N modes and then use
bucket detectors at the output of those modes. N should be large enough that the photons are
sufficiently spread out so the probability of more than one photon going into the same bucket
detector is negligible. The probability of under-counting given that the photon number is n
is at most n(n−1)/(2N). When measuring a photon-number state projective measurements
may be used with measurement operators given by [1]

Π̂(n) = |n〉〈n|, (1.8)

where n is the photon number being measured.
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1.3.4 Logic Gates
There is a set of logic gates that are needed to manipulate qubits. We think of these gates as
performing operations on the qubit [34]. Some of the most common gates are:

Controlled-NOT (CNOT):


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.9)

Hadamard (H):
1√
2

[
1 1
1 −1

]
Pauli-X (σx):

[
0 1
1 0

]
Pauli-Y (σy):

[
0 −i
i 0

]
Pauli-Z (σz):

[
1 0
0 −1

]
Phase:

[
1 0
0 i

]
π

8
:

[
1 0
0 eiπ/4

]
.

These gates form a universal gate set. To be universal requires that any unitary operation can
be expressed as a finite sequence of gates from the set, thus there are many universal gate
sets that can be chosen. A convenient way to visualise how some of these gates act on our
quantum state |ψ〉 is to use the Bloch sphere as shown in Fig. 1.1.

The first in this list of logic gates, the CNOT gate, is a maximally entangling gate, which
is the quantum equivalent of the classical XOR gate. The latter gates are single qubit gates,
which implement rotations on the Bloch sphere. The Hadamard gateH will take a logical |0〉
or |1〉 and rotate them to a 50:50 superposition of |0〉 and |1〉 with a relative phase difference.
Specifically, H|0〉 = (|0〉 + |1〉)/

√
2 and H|1〉 = (|0〉 − |1〉)/

√
2. The Pauli-X gate σx,

Pauli-Y gate σy, and Pauli-Z gate σz will rotate the state around the x, y, and z axes by
π radians of the Bloch sphere respectively. The phase gate leaves the |0〉 state alone and
maps |1〉 → i|1〉. Similar to the phase gate, the π/8 gate applies a phase to the |1〉 state.
An advantage of using linear optics is that waveplates easily implement all of these single
qubit gates with polarisation encoded qubits [35] but a disadvantage is that implementing the
CNOT gate requires an effective Kerr non-linearity which is quite challenging in optics.

1.3.5 Nonlinear Sign-Flip Gate
One way to realise a CNOT gate is to use a nonlinear sign-flip (NS) gate [8] which imple-
ments the transformation

NS : α0|0〉+ α1|1〉+ α2|2〉 → α0|0〉+ α1|1〉 − α2|2〉, (1.10)

and is used as a building block to implement the CNOT gate. The required universal gate
set to perform quantum computing is given by the two qubit CNOT gate along with the
previously discussed single qubit gates. With a set of one- and two-qubit universal gates
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multi-qubit gates may be constructed. With photons, linear optical elements, and photode-
tection, the NS gate may be implemented but is non-deterministic.

1.3.6 Quantum Gate Teleportation

With multiple non-deterministic gates in a quantum computing circuit, the success proba-
bility of performing the computation drops exponentially with the number of gates. Over-
coming this exponential drop may be achieved by using quantum gate teleportation which
increases the probability of successfully implementing non-deterministic gates [8, 36]. To
do this, two Bell pairs (which are maximally entangled two-qubit states) act as a resource to
teleport the action of a gate onto two qubits. This teleportation trick is also non-deterministic
but still increases the success probability of the non-deterministic gate close to unity which
enables efficient quantum computation since it can be concatenated [8].

1.4 Classes of Solvable Problems on a Quantum Computer

The reason people are interested in building a quantum computer is because it promises to
solve certain problems much more efficiently than a classical computer can. So far, there
are three provable classes of problems in which a quantum computer outperforms classical
computers. These are the quantum Fourier transform (which forms the basis for various other
quantum algorithms), quantum search algorithms, and quantum simulation.

1.4.1 Quantum Fourier Transform

The first class is the quantum Fourier transform which is employed in Shor’s factoring al-
gorithm and discrete logarithms [37]. As an example of the speedup that quantum Fourier
transforms give us versus classical Fourier transforms we consider a problem with N = 2n

numbers. A classical fast Fourier transform requires N logN ≈ 2nn steps but a quantum
computer does this in log2N ≈ n2 steps [34], which is exponentially faster and thus makes
fast Fourier transforms efficient. Shor’s factoring algorithm is an interesting example in
terms of the impact it may have. Many security protocols that secure records such as finan-
cial transactions and perhaps government databases around the world rely on the conviction
that factoring a large number cannot be efficiently performed on a classical computer. Shor’s
factoring algorithm however can factor large numbers efficiently and may put many secu-
rity protocols at risk. Luckily, there are quantum security protocols that rely on the laws of
quantum mechanics to secure information that even quantum computers can not hack. This
is known as quantum cryptography [38].

1.4.2 Quantum Search Algorithms

The second class, quantum search algorithms, make use of superposition to decrease the time
it takes to search an unstructured database. The most famous example of such an algorithm
was discovered by Grover [39]. In his work he stated the problem to be a search of an
unstructured database of N elements with the goal of finding an element that satisfies a
specific property. On a classical computer this search would requireO(N) operations, whilst
a quantum search could accomplish this in O(

√
N) operations using Grover’s algorithm.
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1.4.3 Quantum Simulation
The third class is quantum simulation, where one simulates complex interacting quantum
systems with a quantum computer. The ramifications of a practical quantum simulator are
huge and would have direct applications in condensed-matter physics, high-energy physics,
atomic physics, quantum chemistry, and cosmology among others [40]. For example, in
condensed matter physics, where one could study quantum phase transitions, quantum mag-
netism, and high temperature superconductivity (one of the most sought after open problems
in condensed matter physics). It intuitively makes sense that quantum computers would
be required to simulate quantum phenomena since quantum systems are described with an
exponentially increasing Hilbert space and the number of available states in a quantum com-
puter also increases as exponentially, specifically as 2n, where n is the number of qubits.
Classical computers are good at simulating most classical phenomena such as how air plane
wings should be optimised for certain parameters such as lift and reducing drag and so too
should quantum computers be used to simulate quantum phenomena. In general a classical
computer requires exp(n) resources to simulate a typical quantum system that has n distinct
components while a quantum computer requires poly(n) qubits and time.

1.5 Computational Complexity
Computer scientists have devised a way to analyse how difficult a problem is to solve. It is
based on the fact that algorithms are used to solve certain problems and depending on the
resources required to solve a problem it is classified in a particular way. There are three
relevant classes of problems important to this thesis: decision problems, counting problems,
and sampling problems. Decision problems ask what is the answer to a particular problem.
Counting problems ask how many solutions there are to a problem. Sampling problems ask
what are the samples drawn from some distribution. More specifically the classification that
a problem falls into may be characterized by a complexity class where similar problems will
fall into the same complexity class. Here we summarize just a few important complexity
classes important for this thesis:

• P: Decision problems solvable on a deterministic Turing machine in time that scales
polynomially with the size of the system.

• NP: Decision problems with potentially multiple solutions where any particular solu-
tion is verifiable in time that scales polynomially with the size of the system.

• NP-Hard: The set of problems that can be reduced to any NP problem with at most
polynomial resource overhead.

• NP-Complete: The set of all problems that are in NP and NP-Hard. These contain
the most difficult problems in NP.

• #P: The set of problems that count the number of solutions to a deterministic, poly-
nomial time problem.

• #P-Hard: The set of problems that can be reduced to any #P problem with polyno-
mial resource overhead.

• #P-Complete: The set of all problems that are in #P and #P-Hard. These contain
the most difficult problems in #P.
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• PostBPP: The class of problems that may be solved on a probabilisitic classical com-
puter with postselection in time that scales polynomially with the size of the system
and with a given bounded error of 1/3.

• BQP: The class of problems that may be solved by a universal quantum computer in
time that scales polynomially with the size of the system.

• PostBQP: The class of problems that may be solved on a universal quantum computer
with postselection in time that scales polynomially with the size of the system and with
a given bounded error of 2/3.

• BosonSamplingP: The class of sampling problems that can be described by the for-
malism of BosonSampling, which is the main focus of this thesis, and is summarized
in Ch. 3.

1.6 Why is Linear Optical Quantum Computing Hard?
So far we have made this linear optical implementation of quantum computing seem quite
simple, so how come we have not built a universal linear optical quantum computer yet?
There are a myriad of technicalities spread through all of the different components and stages
of implementing the linear optical quantum computer. Some of these include generating in-
distinguishable single photons, synchronising the photons, mode-matching, fast controllable
delay lines, fast-feedforward, tuneable beamsplitters and phase-shifters, and accurate, fast,
single-photon detectors. Much of these technicalities are realisable with current technolo-
gies but the success probability of a quantum computation reduces exponentially with the
number of photons at the output; therefore, efficiencies need to be very high. Another major
problem is inefficiency, such as loss, which can happen anywhere within the circuit. Also,
with current efficiencies of photodetectors the implementation of teleportation and the more
complex two qubit gate operations are challenging.

Even though quantum computing remains challenging and seems like a distant dream
there remain many interesting problems to investigate with more frugal resource require-
ments. One such problem is BosonSampling which is the topic of Chapters 3, 4, 5, 6, 7,
and 8. BosonSampling does away with the requirement of fast-feedforward, teleportation,
and number-resolved photodetectors yet still implements an interesting problem since no
classical computer can efficiently simulate BosonSampling.

In the next chapter, however, we will review our work on quantum random walks which
may be implemented with optical techniques. Quantum random walks are a route towards
implementing quantum information processing tasks [16, 41–43] and are also an important
aspect of understanding BosonSampling as the bosons in BosonSampling are undergoing a
quantum random walk as they evolve. In fact BosonSampling is equivalent to a quantum
random walk, albeit a very complex one [44].



It is the mark of an educated
mind to be able to entertain a
thought without accepting it.

Aristotle

2
Quantum Random Walks on Congested

Lattices and the Effect of Dephasing

2.1 Synopsis

Quantum random walks are an important aspect of quantum computing. They form the basis
of several quantum algorithms that give speedups over their classical counterparts such as in
some oracular problems [45], Grover’s search algorithm [39], and the element distinctness
problem [46]. In this work we consider quantum random walks on congested lattices and
contrast them to classical random walks. Congestion is modelled on lattices that contain
static defects which reverse the walker’s direction. We implement a dephasing process after
each step which allows us to smoothly interpolate between classical and quantum random
walks as well as study the effect of dephasing on the quantum walk. Our key results show
that a quantum walker escapes a finite boundary dramatically faster than a classical walker
and that this advantage remains in the presence of heavily congested lattices. It follows that
quantum walks on congested lattices remain advantageous over classical random walks.

In section 2.2 we provide some motivation for our work and give an overview of what
we have done. In section 2.3 we introduce quantum random walks, write out a mathematical
formalism, explain their evolution, and introduce the metrics we use to characterise our
quantum random walk simulations which are variance and escape probability. In section 2.4
we introduce lattice congestion in the random walks and show our metrics for the walker
on a congested lattice in both the classical and quantum case. In section 2.5 we introduce a
model of dephasing into the quantum random walk and show how, with full dephasing, the
quantum walker behaves like a classical walker. In section 2.6 we show how our metrics
behave in the presence of both congestion and dephasing for the quantum random walk.
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2.2 Motivation
One route to implementing quantum information processing tasks with quantum computing
is via quantum random walks [16, 41–43] whereby a particle, such as a photon, ‘hops’ be-
tween the vertices in a lattice. The effects of a congested, or obstructed, lattice on a quantum
random walk (QRW) are studied and compared to a classical random walk (CRW). Conges-
tion may also be thought of as traffic and the walker is like a car trying to avoid the traffic.
The quantum walkers also suffer a dephasing process as they propagate. This study provides
insight into how random errors in the lattice and dephasing affect the dynamics of random
walks and the robustness of certain quantum features. In our model, congestion refers to
where the lattice through which the walker propagates has defects, which are like blocked
streets that the walker encounters and has to back out of during the next step. These de-
fects are stationary during the evolution of the random walk, though we average over many
such random lattices. Dephasing occurs when the state decoheres and is implemented via a
dephasing channel acting after each step. In the limit of full dephasing the QRW becomes
a CRW, so that dephasing also allows us to interpolate between the classical and quantum
regimes. For an experimental demonstration of dephasing in a QRW see Broome et al. [47],
and for related theoretical work on QRWs with phase damping see Lockhart et al. [48].

For characterising the resulting probability distributions for QRWs and CRWs we use
variance and ‘escape probability’, that is the probability that the walker escapes a finite
region of the lattice, or more picturesquely, the probability that the walker ‘beats the traffic’.

2.3 Quantum Random Walks
A QRW describes the evolution of a quantum particle through a given topological structure.
A common choice of structure is a d dimensional lattice. In a CRW, the walker probabilis-
tically follows edges through a lattice to step to an adjacent vertex. In a QRW on the other
hand, the walker spreads as a superposition of different paths through the graph. Physi-
cally, the walker can be a wide range of quantum particles, though of particular interest is
the photon as photons are readily produced, manipulated and measured using off-the-shelf
components in the laboratory. Photons have found widespread use in quantum information
processing, most notably linear optical quantum computing (LOQC) [8]. The technologies
required in LOQC provide the topological structure for implementing a QRW. They also
allow for multi-photon QRWs [44], which increases the dimensionality of the walk. For a
further review on QRWs see Refs. [16, 41–43], and see Refs. [47, 49–56] for the numerous
optical demonstrations of elementary QRWs that have been performed.

2.3.1 Quantum Random Walk Formalism
To illustrate our QRW formalism we present the details for a one-dimensional discrete QRW
on an unbounded lattice without any defects. The state of a one-dimensional QRW at any
given time has the form,

|Ψ(t)〉 =
∑
x,c

γx,c|x, c〉, (2.1)

where x ∈ [−xmax, xmax] represents the position of the particle; xmax represents the size
of the lattice; c ∈ {−1, 1} is the coin value, unique for each time step, that tells the walker
whether to evolve to the left (c = −1) or right (c = 1); and |γx,c|2 is the probability amplitude
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for a given position and coin value. The dimension of the lattice is 2xmax + 1. Since there
are two coin values for each position, the probability that the walker is at position x is given
by,

P (x) = |γx,−1|2 + |γx,1|2. (2.2)

The one-dimensional walker begins at some specified input state |Ψ(0)〉 = |x0, c0〉 before
it begins to evolve at time t = 0, where x0 and c0 are the starting position and coin values
respectively. The state then evolves for a finite number of time steps. The evolution is
described by two operators: the coin Ĉ and step Ŝ operators,

Ĉ|x,±1〉 = (|x, 1〉 ± |x,−1〉)/
√

2 (2.3)
Ŝ|x, c〉 = |x+ c, c〉.

The coin operator takes a state and maps it to a superposition of new states using the
Hadamard coin,

Ĥ =
1√
2

(
1 1
1 −1

)
, (2.4)

exploiting both possible degrees of freedom in the coin while maintaining the same position.
Next, the step operator Ŝ moves the walker to an adjacent position according to the value of
c. Ĉ and Ŝ act on the state at every time step and thus the evolution of the system after t
steps is given by,

|Ψ(t)〉 = (Ŝ · Ĉ)t|Ψ(0)〉. (2.5)

If the walker begins at the origin or on an even lattice position then, as the walker evolves,
it lies on odd positions for odd time steps and on even positions for even time steps. Thus,
as the walker evolves, the allowed locations for the walker oscillate between even and odd
sites.

It is straightforward to generalise Eq. (2.1) to multiple dimensions by expanding the
Hilbert space. For example, a two-dimensional walk would have the form,

|Ψ(2)(t)〉 =
∑

x,y,cx,cy

γx,y,cx,cy |x, y, cx, cy〉, (2.6)

where x ∈ [−xmax, xmax] and y ∈ [−ymax, ymax] denote the two spatial dimensions, cx ∈
{−1, 1} indicates for the walker to move left or right, cy ∈ {−1, 1} indicates for the walker
to move down or up, and the superscript represents the dimension. The dimension of the
two-dimensional system is (2tmax + 1)2, when the lattice is both dimensions consist of the
same number of sites in each direction from the origin as total time steps tmax, which is the
case for this work. The coin and step operator can be generalised by taking a tensor product
for each respective dimension, or alternately a coin could be employed which entangles
the two dimensions. In the case of a spatially separable two-dimensional coin one obtains
Ĉ(2) = Ĉx ⊗ Ĉy and Ŝ(2) = Ŝx ⊗ Ŝy. Likewise, the Hadamard coin for two dimensions
becomes H ⊗H .

After the system evolves, a measurement is made on either the position or the coin degree
of freedom yielding the output probability distribution. With this probability distribution
various metrics can be defined to characterise the evolution of the system, which we define
next.
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2.3.2 Random Walk Metrics
The two common metrics that we use to quantify a QRW are the variance σ2 and the escape
probability Pesc. All simulations done in this work have the initial condition that the walker
begins at the origin |Ψ(0)〉 = |0, 0, 1, 1〉. Also, all statistics are averaged over one hundred
simulations unless the walk was deterministic (i.e. there was no congestion or dephasing
introduced) in which case only one simulation was needed. The sample space is exponential
in size, and so averaging over an exponential number of simulations is not tractable; however,
one hundred simulations for the size of systems we consider is sufficient for our work because
it produces stable statistics that converge to fixed values and it smooths out the oscillations
between data points.

Variance

The variance σ2 is a measure of how much the walker has spread out during its evolution. It
is defined as,

σ2 =
n∑
i=1

pi(i− µ)2, (2.7)

where pi is the position probability distribution of the walker in the spatial degree of freedom,
n = 2 tmax +1 is the number of lattice sites, and µ =

∑n
i=1 pii is the mean of the distribution.

For calculating the variance in two-dimensions we take the variance of the marginal proba-
bility distribution where the probability distribution becomes pi =

∑
j=1 pi,j and pi,j is the

two-dimensional probability distribution. Fig. 2.1a illustrates the variance versus time for
both a QRW and a CRW on a two-dimensional square lattice of size tmax = 20. The QRW
demonstrates a quadratic rate of spreading across the lattice while the CRW demonstrates a
linear rate of spreading. This quadratic spreading is one of the distinguishing features of a
QRW compared to the CRW. It forms the basis of some QRW algorithms such as the QRW
search algorithm, which is quadratically faster than the best corresponding classical algo-
rithm. For simulations of the variance we do not impose boundary conditions because the
walker never reaches the boundary.

Escape Probability

The escape probabilityPesc is a measure of how much of the walker’s amplitude leaks outside
of a certain region in the lattice. To calculate Pesc a boundary must first be defined which
depends on the size of the lattice. For the square two-dimensional lattice we let the walker
begin in the state |Ψ(0)〉 = |0, 0, 1, 1〉 and let the escape boundary be two vertical lines at
x = ±xb, where tb is the distance the escape boundary is from the origin (x = y = 0). To
calculate the escape probability on this square lattice we use,

Pesc =
∑
|x|>xb

∑
y

P (2)(x, y), (2.8)

where P (2)(x, y) = |γx,y,1,1|2 + |γx,y,1,−1|2 + |γx,y,−1,1|2 + |γx,y,−1,−1|2 is the two-dimensional
version of Eq. (2.2).

Fig. 2.1b illustrates Pesc versus t for both a QRW and a CRW on a square lattice of size
tmax = 100 with a boundary given by tb = 10. Here the QRW exhibits a dramatic jump
in escape probability compared to the CRW. This is due to both the faster rate of spreading
of the QRW, and to the QRW having larger amplitudes at the tails of its distribution. This
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Figure 2.1: (a) The variance σ2 versus time t for the CRW and QRW on a two-dimensional
square lattice defined by tmax = 100. The rate of spreading is quadratic for the QRW and
linear for the CRW. (b) The escape probability Pesc against time for the CRW and QRW on
a two-dimensional square lattice defined by tmax = 100 with a boundary defined by tb = 10.
In the quantum case, the probability of escape is significantly larger for any given time after
escaping than in the CRW.

dramatic jump is a key feature pointed out in this work that demonstrates an advantage that
QRWs have over CRWs.

For all escape probability simulations the walker is allowed to walk back into the un-
escaped region which subtracts from the probability that the walker has escaped. This, in
conjunction with the fact that the walker occupies alternating even and odd positions as the
walker evolves, explains the oscillatory nature of the escape probability.

The two metrics, σ2 and Pesc, are closely related. If the walker has a large spread in its
distribution then the walker also has a better chance to fall outside of the escape boundary,
since it is centered around the origin. At any given time step t during the evolution we can
determine the probability distribution over the lattice with Eq. (2.2) and then calculate these
various metrics to be used for quantifying a random walk.

Any non-deterministic distribution obtained in this work was obtained using a Monte-
Carlo averaging technique. Since the sample space we are averaging over grows quadrati-
cally we are limited to about tmax ≤ 100 time steps. Next, we demonstrate how to add spatial
defects, which cause congestion, into the walkers’ lattice and explore how the variance and
escape probability are affected by this lattice congestion.

2.4 Lattice Congestion

Lattice congestion is a model of defects in a medium. For the QRW and CRW the medium is
the walkers’ lattice and the defects are modelled as blocked pathways where the walker has to
enter the pathway to realise it is blocked and then reverse out on the next step. This model is
closely related to percolation theory [57] which models defects as missing lattice nodes. For
a detailed introduction on percolation theory see [58, 59]. Percolation is generally modeled
on a d dimensional lattice with a given geometry such as a square, triangle or honeycomb.
Regardless of geometry, the lattice consists of two components: sites and bonds. A site is a
point on the lattice and a bond is the connection between the sites. These components give
two strategies for introducing the random fluctuations that define percolation theory: site
percolations and bond percolations. In site percolation the lattice sites exist with probability
p ∈ [0, 1] and when a site does not exist it is a defect in the lattice. In bond percolation the



16 Quantum Random Walks on Congested Lattices and the Effect of Dephasing

positions in a lattice are fixed while the bonds between the positions exist with probability p.
The model in this work is a variant of site percolation whereby the walker can occupy any
site, but with probability 1− p will find an obstruction and reverse direction upon hitting the
respective site.

Percolation theory has an associated scaling hypothesis that predicts critical values, such
as percolation thresholds [60], which we do not reproduce in this work due to our small lattice
sizes. Instead we observe the behavior of QRWs on congested lattices and compare them to
CRWs. However, we expect the same percolation characteristics such as percolation thresh-
olds to exist in the underlying lattice that the walkers are exploring. For a two-dimensional
square lattice with site percolations that most closely resemble the lattice used in this work,
the percolation threshold is pc ≈ 0.6 [61]. Values of p higher than this threshold produce
long-range connectedness in the lattice. We make the comparison to percolation in this work
because our spatial defects are equivalent to the defects in percolation theory; however, we
do not observe the critical values that percolation theory predicts so we call it congestion to
avoid confusion.

To generate a lattice with spatial defects a matrix of coin operators is constructed. The
matrix is the same size as the lattice and each position in the matrix corresponds to a spatial
position on the lattice. The coin operator corresponding to a given position then determines
the behaviour of the walker. The coin operators are defined as either a Hadamard coin, Eq.
(2.4), if the site is present, or a bit-flip coin,

X =

(
0 1
1 0

)
, (2.9)

if the site contains a defect. For the two-dimensional case the bit-flip coin becomes X ⊗X .
As the quantum or classical walker evolves it will walk into these defects that signify

congested points on the lattice. Upon reaching a defect the walker reverses direction, thus
slowing the walker’s rate of spread. In this work we define p as the probability that the site
is not a defect; therefore, the probability that a site is a defect is 1− p.

2.4.1 Classical Random Walk on a Congested Lattice
The lattices we are considering contain randomly distributed defects, or points of congestion
that impede the walker’s progress. Questions such as what is the probability that there is an
open path from one side of the lattice to the other, are answered by percolation theory. There
are many known applications for percolation theory [62]. A common example is asking
whether a liquid can flow through a porous material. If enough pores (or sites) exist then
the liquid can make it through. Another example is whether or not an electric current can
flow through some medium where conductive sites are spread throughout some insulator.
If enough conductive sites are present then a path will exist through the medium in the
asymptotic limit.

Within the congested lattice we examine the spread of walkers. Defects have the effect of
reducing the rate of spread of the walker, or stopping it entirely if the lattice is so congested
that there is no escape possible from the region the walker finds itself in. Fig. 2.2a shows the
variance σ2 of a CRW versus time t in the presence of varying values of congestion 1−p on a
lattice of size tmax = 75. As the congestion increases the classical walker becomes trapped.
In each case the variance preserves the linear dependence as is expected in a CRW.

In Fig. 2.2b the escape probability Pesc of a CRW is shown versus time t in the presence
of varying values of congestion 1 − p on a lattice of size tmax = 75 and escape boundary
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tb = 10. Pesc decreases as congestion is increased but remains linear modulo the oscillations
being averaged out. Again there is a threshold where in terms of Pesc the walker stops
escaping the boundary and the lattice becomes insulating.
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Figure 2.2: The variance σ2 and the escape probability Pesc for a CRW plotted as a function
of time t for varying congestion probabilities 1 − p on a two-dimensional square lattice of
size tmax = 75. (a) Reduced spreading is observed as congestion increases but the linear
dependence remains. (b) The escape probability Pesc decreases as shown with an escape
boundary of tb = 10. The walker tends to escape linearly with time.

2.4.2 Quantum Random Walk on a Congested Lattice
Classically, the state can only move in one direction at a time while quantum mechanically
the state spreads in a superposition of every direction simultaneously. As with a classical
walker, the quantum walker escapes the bounded region more often if there are less defects.
The significance of the quantum walker is both the quadratic spreading behaviour and the
resulting probability distribution having more weight in the tails. For a review of work
done on QRWs with percolation see [63] for asymptotic results and analytic solutions. See
[64] for quantum tunneling effects on a one-dimensional QRW and, for a two-dimensional
lattice, average distance measures and the order of quadratic scaling. This work is unique
from these two for several reasons. First, properties of a QRW on congested lattices with
the σ2 and Pesc metrics were not studied previously. Second, we compare QRWs to CRWs
and observe whether QRWs maintain their advantages over CRWs on congested lattices.
Third, we tune the random walks on congested lattices between being fully quantum and
fully classical using a dephasing process, described later in this chapter, which acts as an
error model that describes coupling of the walker to the outside environment.

Fig. 2.3a shows the variance σ2 versus time t for a QRW with varying values of con-
gestion 1 − p for tmax = 75. As congestion increases the variance of the walker decreases;
however, it retains its quadratic (i.e. ballistic) spreading albeit with a different quadratic coef-
ficient. This property shows that QRWs remain advantageous over CRWs, since the quantum
walker spreads faster, even in the presence of lattice defects.

Fig. 2.3b shows the escape probability Pesc versus time t for varying values of congestion
probability 1 − p on a lattice of size tmax = 75 and boundary tb = 10. For p = 1 there is
no congestion present and the Pesc metric experiences a sudden jump from t = 10 to t = 11.
This is because the QRW has most of its amplitude in its tails as it evolves. When p decreases
and the lattice becomes more and more congested the sudden jump is still present at the same
value of t but with a much smaller amplitude. This shows that QRWs retain their advantage
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over CRWs in the presence of heavy congestion. Note that the percolation threshold is around
p ≈ 0.6, below which we expect that on average there is no clear route across the graph.
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Figure 2.3: The variance σ2 and the escape probability Pesc for a QRW plotted as a function
of time t for varying congestion probabilities 1 − p on a two-dimensional square lattice of
size tmax = 75. (a) Reduced spreading is observed as congestion increases but the QRW
maintains its advantages over CRWs with congestion. (b) The walker quickly escapes the
boundary as compared to the classical walker. As p decreases the jump in Pesc becomes less
prominent as shown for an escape boundary of tb = 10.

2.4.3 Varying Escape Boundary
In the previous simulations involving escape probability the escape boundary was set to be
near the initialised position of the walker. The next topic we consider on a congested lattice
is how the escape probability on a congested lattice changes as tb varies. Consider Fig. 2.4
which shows Pesc as a function of tb with varying values of congestion p for the CRW (a) and
the QRW (b). Both walkers evolve for tmax = 50 steps and Pesc is calculated at t = tmax. In
both the CRW and QRW Pesc reduces with increased congestion and when tb is farther from
the walker’s initial position. What is interesting is that the QRW maintains a significantly
larger Pesc than the CRW as the escape boundary moves away.
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Figure 2.4: The escape probability Pesc versus a varying escape boundary tb for several
values of congestion 1 − p for the CRW (a) and the QRW (b). The walker evolves for
tmax = 50 time steps. The QRW maintains a significantly larger Pesc as the boundary moves
away from the initial starting position than the CRW. In both cases Pesc goes to zero as the
boundary approaches the end of the lattice.
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2.5 Dephasing
Next, we consider what happens to a QRW subject to dephasing. Dephasing represents
decoherence caused by unwanted interaction with the environment which can be related to
measurement errors caused by thermal fluctuations, white noise, photons interfering with the
quantum walker, etc. To explore this we first introduce a model of dephasing and characterise
it with our two metrics: variance and escape probability.

Consider a QRW where after each step, each basis state has probability pd of acquiring
a π phase flip. We can model this process as choosing to apply one of a set {Fj} of unitary
matrices covering all the combinations of±1 on the diagonal. If Fj has s -1’s on the diagonal
we choose it with probability psd(1− pd)m−s.

The probability of a particular sequence of Fj’s will be the product of the probabilities
of the Fj appearing since they are independently chosen at each step. If ρseq is the final pure
density matrix appearing with probability pseq, then in general the final state of the system is
described by,

ρ =
∑
seq

pseqρseq. (2.10)

For any POVM element E we have,∑
seq

pseqTr{Eρseq} = Tr{Eρ}. (2.11)

We algorithmically implement dephasing by randomly flipping the signs of individual
basis states in the walker’s state with probability pd, and average measurement results over a
large number of independent trials. This in effect samples from the distribution represented
by ρ and is automatically weighted by the probability of a given sequence.

That this whole process represents dephasing is not immediately obvious. To see it, we
first rewrite ρ as the vector |ρ〉 using the vec operation which simply stacks its columns on
top of each other [65]. Using the identity |ABC〉 = CT⊗A |B〉 for any three square matrices
A, B, and C; then grouping the terms that turn up, we can write,

|ρ〉 = . . .

(∑
k

pkDkU

)(∑
j

pjDjU

)(∑
i

piDiU

)
|ρ0〉, (2.12)

where Dj = F ∗j ⊗Fj = F⊗2
j , U represents the step and coin operations, and |ρ0〉 is the vec-

torised initial density matrix. This shows that after each step we apply the process described
by the dynamical matrix,

D =
∑
j

pjF
⊗2
j . (2.13)

The matrices Fj are diagonal so we write the diagonal as a vector denoted by |f〉j , so
that the diagonal of F⊗2

j is |f〉j|f〉j . Since |f〉j has only real entries we can rearrange it into
the matrix |f〉j〈f |. We can do a similar arrangement with D so that,

|d〉〈d| =
∑
j

pj|f〉j〈f |. (2.14)

It is worthwhile pausing and noting what this matrix represents. From Eq. (2.12) we can see
that the diagonal of D multiplies the elements of the vectorised |ρ〉. Hence when we arrange
the values into a matrix, the entries of |d〉〈d| multiply the corresponding entries in ρ.
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The first thing to note is that this matrix is symmetric. We will denote the entries of |f〉j
by fk and drop the reference j for clarity. The diagonals of |f〉j〈f | are of the form f 2

k = 1
and since

∑
j pj = 1 the diagonal of |d〉〈d| is unity and the process does not change the

amplitudes of the states. The off-diagonals are of the form frfs where r 6= s and their sum
over j has the value,

(1− pd)2 + p2
d − 2(1− pd)pd = (1− 2pd)

2. (2.15)

The terms on the left are the probabilities that both fr and fs are positive, both negative,
or one of each respectively. Each of these terms is multiplied by the binomial sum of the
probabilities of all the combinations of ±1 on all the other elements of |f〉j and not r or s,
which evaluates to 1. Note that this result holds for any dimension. In summary, the map
that is performed by D multiplies every off-diagonal element of ρ by (1 − 2pd)2. This is a
dephasing map.

If pd = 0 none of the signs are flipped, and if pd = 1 all of the signs are flipped. Since
the QRW is invariant under a global phase flip, these two extremes reproduce an ideal QRW.
When 0 < pd < 1 dephasing is introduced into the system. A value of pd = 1/2 corresponds
to complete dephasing which causes the walker to behave classically. The classical results
in this work were produced by using our QRW code with a value of pd = 1/2. This was
checked with purely classical simulations to verify that we are indeed obtaining a CRW.

If we imagine an weak measurement of the QRW at every step where it is projectively
measured with probability pm or otherwise left alone, this map would describe dephasing
by a dynamical matrix which multiplies all the off diagonal elements of ρ by 1 − pm. So
our dephasing process is equivalent to a measurement performed with a probability pm =
4(1− pd)pd.

In this work, dephasing is a method for introducing quantum decoherence to the QRW.
To illustrate the effect of dephasing in our model we plot the probability distribution at the
final time tmax = 75 of various random walks in Fig. 2.5. In Fig. 2.5a the walk has no
dephasing pd = 0 and is thus completely deterministic. We see that this probability dis-
tribution has one main peak near the positive x and positive y direction, which is in the
initialised direction of the coins, and is at the edge of the lattice. This strong peak is the
result of constructive interference with walkers moving in this direction and destructive in-
terference with walkers moving in other directions [66]. This is in contrast to what occurs
when dephasing is introduced. Fig. 2.5b shows the same evolution again but with a dephas-
ing probability of pd = 0.01. With this value of dephasing the distribution retains most of its
quantum behaviour. Fig. 2.5c shows the same evolution again but with a dephasing probabil-
ity of pd = 0.03. With this value of dephasing the probability distribution loses much of its
quantum behaviour and begins behaving like a CRW. Finally in Fig. 2.5d we show the same
evolution but with pd = 0.5 and obtain the probability distribution of a CRW.

We notice that with sufficiently strong dephasing the probability distribution becomes
localized around the origin so that the QRW behaves like a CRW distribution. Note that
the corresponding value of pd that collapses the QRW to a CRW depends on tmax. As tmax

increases the underlying lattice has more sites where dephasing can occur and thus a smaller
pd will cause the corresponding collapse. By incrementing pd we can smoothly interpolate
between QRWs and CRWs, which is a key feature of this work.
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Figure 2.5: The QRW probability distribution shown at the final time step over a two-
dimensional square lattice defined by tmax = 75 with no defects present. (a) The QRW
with no dephasing pd = 0 always yields a deterministic probability distribution with ballistic
spreading. (b) The same QRW but with a dephasing probability of pd = 0.01. It has a similar
probability distribution but begins approaching classical statistics. (c) The same QRW again
but with a dephasing probability of pd = 0.03. Here the probability distribution becomes
centred around the origin and begins to qualitatively look much like the statistics of a CRW.
(d) The same QRW again but with a dephasing probability of pd = 0.5. This is complete
dephasing and the walk become identical to a CRW.

2.6 Congestion and Dephasing Combined

Next we combine congestion and dephasing and examine the joint effects. Fig. 2.6a shows
the variance obtained at the final time step of the QRW as a function of the congestion
probability 1 − p for varying values of the dephasing probability pd on a two-dimensional
square lattice of size given by tmax = 75. A monotonic decrease is observed in the variance
for a given p as pd is increased and a quadratic rate of spreading is maintained for small
values of pd. Fig. 2.6b shows Pesc with boundary tb = 10 as a function of congestion
probability 1 − p for varying values of dephasing probabilities pd on a two-dimensional
square lattice defined by tmax = 75. When pd = 0 the walk is fully quantum so more of the
probability distribution escapes the boundary. When dephasing is increased process errors
are introduced, reducing Pesc for any given value of p.



22 Quantum Random Walks on Congested Lattices and the Effect of Dephasing

● ● ● ● ● ● ●
●

●

●

●

■ ■ ■ ■ ■ ■ ■ ■
■

■

■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆

◆

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

● 0
■ 0.03
◆ 0.06
▲ 0.1
▼ 0.2
○ 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

● ● ●
●

●

●

●

●

●

●

●

■ ■ ■ ■
■

■

■

■

■

■

■

◆ ◆ ◆ ◆ ◆
◆

◆
◆

◆

◆

◆

▲ ▲ ▲ ▲ ▲
▲

▲
▲

▲
▲

▲

▼ ▼ ▼ ▼ ▼ ▼
▼

▼
▼

▼
▼

○ ○ ○ ○ ○ ○
○

○
○

○
○

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.6: The variance σ2 and escape probabilityPesc obtained at the final time step plotted
against the congestion probability 1 − p for varying values of the dephasing probability pd

on a square two-dimensional lattice of size given by tmax = 75. (a) The propagation of the
walker decreases monotonically with the congestion rate for increasing values of dephasing
pd. A quadratic behavior remains for small values of pd. (b) The escape boundary is at
tb = 10. With decreasing pd the quantum walker has a larger chance to escape the boundary.
As pd increases the QRW enters the classical regime and quantum advantages are lost.

2.7 Summary
Quantum random walks are a promising route towards quantum information processing,
exhibiting many unique features compared to the classical random walk as motivated in
Sec. 2.2. We review quantum random walks in Sec. 2.3. Then we introduced a model for
adding congestion to the underlying lattice via the introduction of bit-flip coins in Sec. 2.4.
Congestions inhibits the spread of the classical and quantum walker, reducing the escape
probability and variance metrics. We found that as a quantum random walk evolves it will
suddenly and dramatically escape a finite boundary. It maintains this property even in the
presence of congestion.

We also introduce a dephasing error model in Sec. 2.5. Dephasing errors are errors on
the quantum walker caused by coupling to the environment as it evolves. In the limit of large
dephasing the quantum random walk spatially localises and behaves like a classical random
walk. The spread of the walker is sensitive to small amounts of dephasing in our dephasing
model and becomes more sensitive as the size of the lattice increases. Dephasing also allows
for a mapping between quantum and classical walks, via the coin operator, to allow for a
direct comparison of the two.

We studied the effects of spatial defects and dephasing together on the propagation of the
walker in Sec. 2.6 and found a monotonic decrease is observed in the variance and escape
probability for a given congestion probability as the dephasing probability is increased. Our
results indicate that a quantum walker on a lattice with defects and dephasing still exhibit a
quadratic rate of spreading. Thus, as the quadratic spread of quantum walks is one of the key
features that make them applicable to quantum information processing applications, such as
the quantum search algorithm, we expect that quantum walkers on congested lattices may
retain their advantage over CRWs despite the congestion.

In the coming chapters we will look at BosonSampling, which can be regarded as a partic-
ular type of multi-walker quantum walk that simulates the output statistics of a linear optics
network fed with multiple single-photon states.



If I have seen further it is by
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3
An Introduction to BosonSampling

3.1 Synopsis
BosonSampling is a problem that studies the interference via linear optics of many bosonic
particles. It can be thought of as a simplified model for quantum computing and it may hold
the key to implementing the first ever post-classical quantum simulation. BosonSampling
is significantly more straightforward to implement than any universal quantum computer
proposed so far.

We begin this chapter in section 3.2 by motivating BosonSampling and discussing some
of its history. We then, in section 3.3, summarize the BosonSampling formalism giving a
simplistic and detailed model, discuss what the permanent represents physically, and explain
errors in BosonSampling. In section 3.4 we discuss BosonSampling and the implications it
has on the extended Church-Turing thesis. In section 3.5 we discuss the feasibility of building
a BosonSampling device with a particular focus on photon sources, linear optical networks,
and photodetection. In section 3.6 we go into some applications inspired by BosonSampling
one of which was our own work and, later, go into extensive detail in chapter 7.

3.2 Motivation for BosonSampling
Aaronson & Arkhipov (AA) surprised the quantum optics community when they argued that
a passive linear optical interferometer with Fock state inputs cannot likely be efficiently sim-
ulated by a classical computer [67]. This has become known as the BosonSampling problem.
Since the first appearance of this work in 2010, research into BosonSampling has exploded.
There have been a number of experimental implementations that utilize three photons from
spontaneous parametric down conversion (SPDC) sources [68–74] (although the validity of
one of these experiments are under debate as not all three photons were heralded single pho-
tons [75]). There have also been many theoretical developments in BosonSampling that con-
sider the effects of loss, noise, decoherence, non-Fock inputs, scalability of SPDC sources,
ion-trap implementations, and so forth [76–84]. We will discuss and summarise some of
these results in the sections and chapters below.



24 An Introduction to BosonSampling

Why is BosonSampling attracting so much hype? What is it good for? BosonSampling
can be implemented on passive linear optical interferometers and thus it may be physically
implemented with significantly reduced experimental overhead as compared to building a
universal quantum computer. Yet, it still implements a computationally complex problem
that no classical computer can efficiently simulate. It is the first interesting example of a re-
alistically implementable post-classical computing problem although the potential of Boson-
Sampling is yet to be fully understood.

To be more specific about what is computationally hard in BosonSampling for a classical
computer to simulate we must take a look at the output distribution. The output distribution
has an exponentially large number of possible output configurations which are sampled us-
ing photon-number detectors. In addition to there being an exponentially large number of
output configurations, the sample is computed by solving a matrix permanent, which has no
known efficient algorithm unlike matrix determinants. In other words one cannot predict the
outcome with a classical computer unless they were to wait an exponential amount of time
or use an exponential amount of resources.

A logical question to ask is weather a passive linear optical interferometer can be used
for anything interesting other than BosonSampling? BosonSampling itself has no known
applications other than being able to efficiently sample the distribution of bosons that a clas-
sical computer cannot efficiently simulate. However, it was recently shown by MORDOR
that passive linear optics, which captures the essence of BosonSampling, can be applied to
quantum metrology [85]. We go into this result in chapter 7. It was also shown almost si-
multaneously by Huh et al. that a modification of BosonSampling can be used for simulating
molecular vibronic spectra [86].

BosonSampling in this respect is similar to Feynman’s work in the 1980s which had hy-
pothesized that an ordinary quantum computer could be used to carry out certain physics
simulations without the exponential overhead required on a classical computer. This hypoth-
esis was not proven until much later in Lloyd’s work in 1996 [87, 88]. The Deutsch-Jozsa
algorithm of 1992 was the first exponential speedup advantage for a quantum computer but
it solved a problem that had no practical applications [89]. BosonSampling is similar to
the Deutsch-Jozsa algorithm in that it solves no interesting problem but is a first example
demonstration of passive linear optics doing something of interest from a computational
complexity perspective. It shows that passive linear optical interferometers have some sort
of hidden computational power. So the real question now is can BosonSampling be shown
to be good for more things besides the BosonSampling problem and the two BosonSampling
inspired applications above? This potential is what has captured the imagination of many
researchers in the field including my close collaborators and myself.

Gard, et al. independently reached the same conclusion as AA. They did this in the
context of simulating multi-photon coincidence counts at the output of a linear optical im-
plementation of a quantum random walk with multi-photon walkers [90]. In follow up work,
Gard et al. [91] argued using a physical instead of a computational complexity point of view
that the difficulty to simulate such interferometers arose from two necessary requirements:
(1) The photons interact at the beamsplitters via a Hong-Ou-Mandel effect that leads to an
exponentially large Hilbert space in the number-path degrees of freedom, which rules out a
brute force simulation; and (2) That the simulation of the interferometer is linked to com-
puting the permanent of a large matrix with complex entries, a problem known to be in the
complexity class #P-hard. It is believed that this complexity class is intractable for classical
computers as well as for universal quantum computers [92]. The first of these requirements
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is a necessary condition but is not sufficient to imply an intractable simulation. As a coun-
terexample, the Gottesman-Knill theorem gives examples of classically simulatable quantum
circuits where gates in the Clifford algebra generate exponentially large amounts of qubit en-
tanglement. In some problems it is known that shortcuts through exponential Hilbert space
exist. Intuitively, we expect that since BosonSampling is tied to solving matrix permanents
the computation is expected to not have a shortcut. In contrast, the equivalent sampling prob-
lem with fermions has an exponentially large Hilbert space but is known to be classically easy
to simulate since the problem relates to matrix determinants rather than permanents, which
are known to be in the complexity class P and classically simulatable [91] since a shortcut
through Hilbert space exists using Gaussian elimination.

An important point to note is that in almost all work on BosonSampling, the interferom-
eter is described as a passive linear optical device with non-interacting bosons. However,
we know that the Hong-Ou-Mandel effect followed by a projective measurement imparts an
effective nonlinearity and so there is effectively an interaction between the indistinguishable
bosons at each beamsplitter [8]. This exchange interaction between indistinguishable bosons
arises simply from the multi-particle wavefunction needing to be properly symmetrized. This
effect can give rise to quite noticeable effects. As an example, the bound state of the neu-
tral hydrogen molecule, which is the most common molecule in our Universe, arises from
a similar exchange interaction. It is therefore technically incorrect to describe these in-
terferometers as linear devices with non-interacting bosons. The exchange interaction is
just as real as tagging on an additional term in a Hamiltonian. If one adds post-selection
in BosonSampling-like schemes an effective Kerr-like nonlinearity is imparted between the
bosons [93], but BosonSampling itself remains linear as described by AA.

True BosonSampling certification may be done to distinguish it from uniform sampling or
random-state sampling [94–98]. Various sources of error including mode-mismatch, spectra
of the bosons, and spectral sensitivities of detectors of BosonSampling have been studied
[76, 83, 99]. This has led to a theory of interference with partially indistinguishable particles,
where any realistic imperfections in the source and detectors can be completely characterized
[100, 101]. Scalable implementations of BosonSampling in optical systems, ion traps, and
microwave cavities have been proposed [79, 102–105].

Another interesting observation is that there is evidence that BosonSampling may not be
efficiently distinguished from a classical device that efficiently produces samples from a suit-
able distribution. This interesting question leads to the possibility of a classical certification
of BosonSampling , which is still largely open [67, 106]. More specifically, BosonSampling
is not known to reside in the sampling-equivalent complexity class NP, i.e the class of prob-
lems that can be efficiently classically simulated. If that is indeed the case, this effectively
rules out verification algorithms that distinguish BosonSampling from any classical distribu-
tion with certainty.

In the next section we formally introduce BosonSampling.

3.3 The BosonSampling Formalism

We begin by reviewing the BosonSampling model using single photons. For an elementary
introduction to BosonSampling, see [107]. Unlike universal LOQC, which requires active el-
ements (specifically fast-feedforward), the BosonSampling model is strictly passive, requir-
ing only single-photon sources, passive linear optics (i.e beamsplitters and phase-shifters),
and photodetection. No quantum memory or feedforward is required.
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In section 3.3.1 we provide a very simplistic view of BosonSampling for the casual reader
while in section 3.3.2 we provide a detailed overview of the BosonSampling formalism look-
ing at the input state, the evolution, the output state, measurement, and discussing why it is
inefficient to classically simulate. In section 3.3.3 we look into what the permanent is repre-
senting physically, we compare the permanent versus the determinant, we visualize what the
unitary does physically, and looking at how the permanent arises in the first place. Finally,
in section 3.3.4 we discuss an error threshold such that BosonSampling remains classically
intractable to simulate.

3.3.1 Simplistic Model
BosonSampling can be thought of in a very simplistic way as illustrated in Fig. 3.1. Boson-
Sampling is comprised of three particular elements. First, there are m input modes where the
input state is inserted as shown on the left. The first n modes have single photon Fock states
|1〉 while the remaining m − n have vacuum states |0〉. Second there is the evolution of the
input state as shown as a box with the U , which is comprised of linear optical elements i.e.
beam-splitters and phase-shifters. Finally, there are the m output modes where the output
state is detected using photo-detectors. In the next section we go into this in more detail.

U

. . 
.

. . 
.

. . 
.

. . 
.

Figure 3.1: A simplistic view of the BosonSampling model. An input state is prepared, as
shown on the left, comprising a number of single-photon Fock states and vacuum states in
m total modes. The input state passes through a passive linear optics network U comprised
of beamsplitters and phase-shifters that transforms the input state. Finally the output pho-
ton number statistics P (s) are sampled via coincidence number-resolving photodetection as
shown on the right, where s is a particular configuration at the output.

3.3.2 Detailed Model
A full detailed model of BosonSampling is illustrated in Fig. 3.2. In this diagram the input
state is inserted into m modes at the top, evolves via the photon creation operaters of the
unitary evolution in the box from input modes i to output modes j, and is outputted at the
bottom where the photo statistics are taken. In this section we review this process in detail
discussing the input state, the evolution, the output state, measurement, and discussing the
inefficiency of simulating this classically.

Input State

First we prepare an m-mode input state |ψin〉, where the first n modes are prepared with the
single photon Fock state, and the remaining m− n modes are injected with the vacuum state
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Figure 3.2: A detailed BosonSampling model. n single photons are prepared in m optical
modes. These are evolved via a passive linear optics network Û which transforms the photon
creation operators. Finally the output statistics are sampled via coincidence photodetection.
The experiment is repeated many times, partially reconstructing the output distribution.

|0〉,

|ψin〉 = |11, . . . , 1n, 0n+1, . . . , 0m〉
= a†1 . . . a

†
n|01, . . . , 0m〉, (3.1)

where a†i is the photon creation operator on the ith mode. It is assumed that the number
of modes scales quadratically with the number of photons, m = Ω(n2). For a large n, AA
conjectured that the number of modes m = Ω(n2) sufficiently ensures that, to a high proba-
bility, no more than a single photon arrives per output mode. This is sometimes referred to
as the “bosonic birthday paradox” [108]. This implies that in this regime on/off (or ‘bucket’)
detectors will suffice, and photon-number resolution is not necessary, a further experimental
simplification compared to full-fledged LOQC. This does not imply that no two-photon or
higher-photon interference takes place since the output statistics and complexity arguments
rely on the fact that bosonic interference occurs. In fact, many-photon interference is taking
place, particularly during the beginning stages of the beamsplitter array.

A variation to this input state is when n photons are randomly inputed into the m modes.
This has become colloquially known as “scattershot BosonSampling.” This variation is ad-
vantageous in that the input state is easier to prepare. Lund et al. showed that the sampling
problem remains classically difficult in the case of ‘scattershot BosonSampling’ [102].

Evolution

Next we propagate this input state through a passive linear optics network, which implements
a unitary map on the photon creation operators,

Û â†i Û
† =

m∑
j=1

Ui,j â
†
j, (3.2)

where Û is an m × m unitary matrix characterizing the linear optics network given by the
Haar class. It was shown by Reck et al. [109] that any Û may be efficiently constructed
using O(m2) linear optics elements.
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Output State

The output state is a superposition of the different configurations of how the n photons could
have arrived at the m output modes. In a photon-number representation, the output state is a
superposition of every possible n-photon-number configuration of the form,

|ψout〉 = Û |ψin〉 =
∑
S

γs|n(s)
1 , . . . , n(s)

m 〉, (3.3)

where S is the set of all possible photon number configurations, s is a particular photon num-
ber configuration, n(s)

i is the number of photons in the ith mode associated with configuration
s, and γs ∈ C is the amplitude associated with configuration s. The total photon-number is
conserved, thus

∑
i n

(s)
i = n for all s, which is a way to account for any losses due to in-

efficiencies in the experiment by post-selecting on all n photons. Also, the probability of
measuring configuration S is given by Ps = |γs|2. Note that a large class of distributions
of photons at the output of a multi-mode interferometer with Gaussian inputs was investi-
gated by Kok and Braunstein [110], who gave an analytic form of the output state even with
post-selection.

Measurement

Finally, we perform number-resolved photodetection [111], which are described by projec-
tion operators Π̂(n) = |n〉〈n|, on the output distribution, obtaining a sample from the dis-
tribution Ps = |γs|2. Each time we obtain an m-fold coincidence measurement outcome
with a total of n photons. The experiment is repeated many times, building up statistics of
the output distribution yielding the so-called sampling problem, whereby the goal is to sam-
ple a statistical distribution using a finite number of measurements. This is in contrast to
well-known decision problems, such as Shor’s algorithm [37], which provide a well defined
answer to a well posed question. Because BosonSampling is a sampling problem, finding a
computational application is further complicated —if every time we run the device we ob-
tain a different outcome, how does the outcome answer a well-defined question, and how do
we map it to a problem of interest? This is one of the central challenges of BosonSampling
—what can we do with it?

Discussion of Inefficient Classical Simulation

The number of configurations |S| grows exponentially with the number of photons and
modes,

|S| =

(
n+m− 1

n

)
(3.4)

Thus, with an ‘efficient’ (i.e. polynomial) number of trials, we are unlikely to sample from
a given configuration more than once. This implies that we are unable to determine any
given Ps with more than binary accuracy. Thus, BosonSampling does not let us calculate
matrix permanents, as doing so would require determining amplitudes with a high level of
precision, which would require a super-exponentially large number of measurements. This
is evidence towards the hardness of simulating BosonSampling as the Hilbert space is super-
exponentially large. Much stronger evidence arose when Aaronson & Arkhipov showed that
this sampling problem likely cannot be efficiently simulated classically [67]. The intuitive
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explanation for this supposed classical hardness is that each of the amplitudes γS is propor-
tional to an n× n matrix permanentas shown by Scheel [112],

γS =
Per(Us)√
n

(s)
1 ! . . . n

(s)
m !

, (3.5)

where Us is an n× n sub-matrix of U that depends on the specific configuration s, and
Per(Us) is the permanent of Us. Permanents are believed to be classically hard to calculate,
residing in the complexity class #P-hard, the class of counting problems on polynomial-
time algorithms. The best known classical algorithm for calculating matrix permanents is by
Ryser [92], requiring O(2nn2) time steps. Because this requires exponential time to evaluate
and because γs is proportional to a permanent, sampling from the output distribution Ps is a
classically hard problem and thus so is BosonSampling.

Exact BosonSampling by a polynomial-time classical probabilistic algorithm would im-
ply a collapse of the polynomial hierarchy, while non-collapse of the polynomial hierarchy
is generally believed to be a reasonable conjecture [67]. Gard et al. gave an argument that
classical computers likely cannot efficiently simulate multimode linear-optical interferom-
eters with arbitrary Fock-state inputs [113]. AA [67] gave a full complexity proof for the
exact case where the device is noiseless. For the noisy case, a partial proof was provided
which requires two conjectures that are believed to be true.

Importantly, BosonSampling is not believed to be capable of efficiently simulating full
quantum computation. Nonetheless, it is a relatively simple scheme that is experimentally
viable with currently available technology that in the near future can sample bosonic statis-
tics that the worlds best classical super computer today cannot. It is as though nature can
easily do the simulation for us. Thus BosonSampling is an attractive post-classical quantum
computation scheme. It was shown by Rohde & Ralph that BosonSampling may implement
a computationally hard algorithm even in the presence of high levels of loss [77] and mode-
mismatch [76], although formal hardness proofs are still lacking.

3.3.3 What the Permanent Represents Physically
Permanent versus Determinant

Let us examine this relationship with the permanent more closely. The permanent of a matrix
U is given by

Per(U) =
∑
σ∈Sn

n∏
i=1

Ui,σ(i), (3.6)

where the sum is over all elements σ of the symmetric group Sn, or in other words it is the
sum over all permutations of the numbers ranging from one to n. It can be seen that this
form for the permanent is closely related to the more familiar determinant

Det(U) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

Ui,σ(i), (3.7)

where sgn(σ) is the signature of the permutation σ and is 1 if the signature has an even num-
ber of permutations and −1 if the signature has an odd number of permutations. The main
difference between the permanent and the determinant is that the determinant has alternating
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plus and minus signs along the entries while the permanent has all plus signs. With the de-
terminant a familiar trick called Gaussian elimination may be used to simplify the problem
into one that can be solved in polynomial time making it efficiently solvable using a classical
computer. There is no known trick for simplifying the permanent.

Convenient Visualization of the Unitary

Now let us look more closely at the unitary U . It has the following form in its matrix repre-
sentation

U =


U1,1 U1,2 · · · U1,m

U2,1 U2,2 · · · U2,m
...

... . . . ...
Um,1 Um,2 · · · Um,m

 . (3.8)

A conveinent way to visualize this matrix is to think of the rows of this matrix as the input
modes and the columns of this matrix as the output modes to the BosonSampling device.
Then a particular entry Ui,j is the probability amplitude a photon went into the ith mode and
exited the jth mode. Then the classical probability of this happening is |Ui,j|2.

Next we will take a look at the case of multiple photons and see how the permanent arises
for two and three photons.

How the Permanent Arises in BosonSampling

Let us first consider Fig. 3.3. Here the first two modes have single photons, with the remain-
ing modes in the vacuum state. Let us consider the case where one of the two input photons
arrive at output mode 2 while the other arrives at output mode 3. There are two ways in
which this could occur. Either the first photon arrives at mode 2 and the second at mode 3,
or vice versa. This implies that there are 2! = 2 ways in which the photons could reach the
outputs. We may write the amplitude as

γ{2,3} = U1,2U2,3︸ ︷︷ ︸
photons do not swap

+ U1,3U2,2︸ ︷︷ ︸
photons swap

= Per

[
U1,2 U2,2

U1,3 U2,3

]
, (3.9)

which is a 2× 2 matrix permanent.
As a slightly more complex example, consider the three photon case shown in Fig. 3.4.

We are considering the case where we begin with a single photon in each of the first three
modes and consider the outcome where a single photon arrives in each of the first three
output modes. Now we see that there are 3! = 6 ways in which the three photons could reach
the outputs. The associated amplitude is given by a 3× 3 matrix permanent,

γ{1,2,3} = U1,1U2,2U3,3 + U1,1U3,2U2,3

+ U2,1U1,2U3,3 + U2,1U3,2U1,3

+ U3,1U1,2U2,3 + U3,1U2,2U1,3

= Per

 U1,1 U2,1 U3,1

U1,2 U2,2 U3,2

U1,3 U2,3 U3,3

 . (3.10)
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Figure 3.3: Two-photon BosonSampling, where we wish to calculate the amplitude of mea-
suring a photon at each of the output modes 2 and 3. There are two ways in which this may
occur which yields a sum of two paths leading us to the matrix permanent.

Figure 3.4: Three photon BosonSampling, where we wish to calculate the amplitude of mea-
suring a single photon at each of the output modes 1, 2, and 3 where we begin with a single
photon in input modes 1, 2, and 3. There are now 3! = 6 possible ways for this to occur.

In general, with n photons, there will be n! ways in which the photons could reach
the outputs, assuming they all arrive at distinct outputs, and the associated amplitude will
relate to an n× n matrix permanent. If multiple photons arrive in the same output mode
then multiple copies of the corresponding column of U would be used to solve the matrix
permanent. In the case where multiple photons enter into the same mode then multiple
rows corresponding to the input row of U would be used to solve the matrix permanent.
Calculating matrix permanents, in general, is known to be #P-hard, even harder than NP-
complete, and the best known algorithm is by Ryser [92], requiring O(2nn2) runtime. Thus,
we can immediately see that if BosonSampling were to be classically simulated by exactly
calculating the matrix permanents, it would require exponential classical resources.

3.3.4 Errors in BosonSampling

In the original BosonSampling work AA provided a detailed analysis of the robustness of
their result in the presence of error. This is important because a physical system such as
BosonSampling is bound to have some kind of error with all of the subtleties involving creat-
ing single photons that all match perfectly, evolving them accurately with optical elements,
and detecting the distribution with imperfect photodetectors. With all of this to account for
one could never experimentally achieve the true distribution.
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In BosonSampling one may like to consider estimation of a distribution. The exact per-
manent of a binary matrix is known to be #P-hard but one can efficiently estimate the per-
manent of a matrix that has real, non-negative entries [114, 115]. Since BosonSampling has
complex-valued entries in the matrix it cannot be efficiently estimated [115]. In fact if this
complex case could be estimated then BosonSampling would be an anomaly occuring only
when trying to calculate the exact value of the permanent. This does not seem to be the case
however so estimating the output distribution of a BosonSampling machine is most likely
computationally hard.

There is a limit to how much error can be tolerated so that we do not deviate too far from
the desired distribution or require so many samples that the algorithm becomes inefficient.
One method to remove errant samples would be to post-select to remove statistics where
photon-loss occurred. However, if the post-selection probability scales as O(1/exp(n)),
then we would never be able to scale the BosonSampling problem to large n regimes.

What is an acceptable level of error? Let us apply an error threshold ε, where ε is the
maximum allowable variation distance from the exact solution assuming some clever statis-
tical distance metric of which many are appropriate. Then we would need a success probably
P where

P > 1/poly(n), (3.11)

to correctly and efficiently sample a BosonSampling device with arbitrarily large photon
number n. If we would like to scale ε smaller, then

P > 1/poly(n, 1/ε), (3.12)

[67]. This is an interesting point because it relates to the Extended Church-Turing Thesis
and cannot be experimentally verified for asymptotic n as discussed in the next section.

3.4 BosonSampling and the Extended Church-Turing The-
sis

Any model for quantum computation is subject to errors of some type including dephasing,
photon loss, and mode-mismatch among others. Here we consider a realistic generalised
error model for BosonSampling such that the desired single photon states are correct with
probability p and incorrect in some erroneous state with probability 1 − p [116]. This error
model may generally include incorrect photon number, such as loss or higher order excita-
tions, or mode-mismatch. We can then write our input state as

ρ̂in =

(
n⊗
i=1

[p|1〉〈1|+ (1− p)ρ̂(i)
error]

)
⊗ [|0〉〈0|]⊗m−n , (3.13)

where ρ̂(i)
error may be unique for each input mode i. This error model is independent such that

each state is independently subjected to an error channel. The fidelity of the single photon
states are given by our measure of p. It is a dial that may be tuned such that when p = 1,
the input state is perfect, and when p < 1, the state contains terms with error. We desire to
sample from the distribution of Eq. 3.1, whereby the input state is perfect. This occurs with
probability pn.

Now we let P be the probability that we have sampled from the correct distribution.
By following the complexity proof for errors in BosonSampling provided by AA where
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P > 1/poly(n), we thus find that for computational hardness our generalized error model
requires that pn > 1/poly(n). Clearly this bound can never be satisfied for any p < 1 in the
asymptotic limit of large n since we have an exponential dependance on the left side and a
polynomial dependance on the right side. Therefore BosonSampling will always fail in the
asymptotic limit with this error model.

Various authors [69, 94, 97, 104, 117] have claimed that large-scale demonstrations of
BosonSampling could provide elucidation on the validity of the Extended Church-Turing
(ECT) thesis — the statement that any physical system may be efficiently simulated on a
Turing machine. The ECT thesis though is an asymptotic statement about arbitrarily large
systems. We have shown that the required error bound for BosonSampling is never satisfied
for arbitrarily large systems, therefore BosonSampling cannot elucidate the validity of the
ECT thesis since asymptotically large BosonSampling devices fail under any realistic error
model.

There seem to be two obvious ways that our claim about the ECT thesis may be over-
come: (1) It may be shown that the error bound can be loosened to 1/exp(n), or (2) fault-
tolerance techniques for BosonSamplingmay be developed that allow arbitrarily large scaling
of BosonSampling. No such developments have been made; therefore, based on current un-
derstanding, BosonSampling will not illuminate whether the ECT thesis is correct or not.
However, BosonSamplingmay still yield an interesting post-classical computation since this
only requires a finite sized device that can out perform the best classical computers.

3.5 How to Build a BosonSampling Device

In this section we explain the basic components required to build a BosonSampling device.
This device consists of three basic components: (1) single-photon sources; (2) linear optical
networks; and, (3) photodetectors. Each of these present their own engineering challenges
and there are a range of technologies that could be employed for each of these components.
However, although BosonSampling is much easier to implement than full-scale LOQC, it
remains challenging to build a post-classical BosonSampling device. While challenging, a
realizable post-classical BosonSampling device is foreseeable in the near future.

3.5.1 Photon sources

The first engineering challenge is to prepare an input state of the form of Eq. 3.1. This state
may be generated using various photon source technologies. For a review of many of the
photon sources see Ref. [118]. Presently, the most commonly employed photon source tech-
nology is spontaneous parametric down-conversion (SPDC). The topic of Ch. 4 focuses on
BosonSamplingwith SPDC sources. Another viable source is quantum dots [119], which has
been used to successfully implement a four photon BosonSampling experiment in a temporal
architecture [74] proposed by Motes et al. [120].

3.5.2 Linear optics networks

After the input state has been prepared it is evolved via a linear optics network, Û . Û trans-
forms the input state as per Eq. 3.2 and may be completely characterized before the exper-
iment using coherent state inputs [109]. Û is composed of an array of discrete elements,
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namely, beamsplitters and phase-shifters. A beamsplitter with phase-shifters may be repre-
sented as a two-mode unitary of the form [121],

ÛBS(t) =

(
ei(α−

β
2
− γ

2
)cos

(
δ
2

)
−ei(α−β2 + γ

2
)sin

(
δ
2

)
ei(α+β

2
− γ

2
)sin

(
δ
2

)
ei(α+β

2
+ γ

2
)cos

(
δ
2

) )
, (3.14)

where 0 ≤ α ≤ 2π and 0 ≤ {β, γ, δ} ≤ π are arbitrary phases.
For a Û that implements a classically hard problem, one would need hundreds of discrete

optical elements. Constructing an arbitrary Û using the traditional linear optics approach
of setting and aligning each optical element would be extremely cumbersome. Thus, using
discrete optical elements is not a very promising route towards scalable BosonSampling.

One method to simplify the construction of the linear optics network is to use integrated
waveguides. Quantum interference was first demonstrated with this technology by Peruzzo et
al. [122]. This technology requires more frugal space requirements, is more optically stable,
and far easier to manufacture, allowing the entire linear optics network to be integrated onto
a small chip [123–125]. The main issue with integrated waveguides is achieving sufficiently
low loss rates inside of the waveguide and in the coupling of the waveguide to the photon
sources and photodetectors. Presently, the loss rates in these devices are extremely high
and thus post-selection upon n photons at the output occurs with very low probability. It
is foreseeable that photon sources and photodetectors will eventually be integrated into the
waveguide which would eliminate coupling loss rates, substantially improving scalability.

Another potential route to simplifying the linear optics network is to use time-bin encod-
ing in a loop architecture based on the work by Motes et al. [103]. The major advantage
of this architecture is that it only requires two delay loops, two on/off switches, and one
controllable beam splitter. This possibility eliminates the problem of aligning hundreds of
optical elements and has fixed experimental complexity, irrespective of the size of the Boson-
Sampling device. A major problem with this architecture however is that it remains difficult
to control a dynamic beamsplitter with high fidelity at a rate that is on the order of the
time-bin width τ . Nonetheless this architecture has since been successfully experimentally
implemented by He et al. [74] performing four photon BosonSampling, which is the largest
instance of BosonSampling to be performed to date. Furthermore they claim that they can
do more than 20 photon BosonSampling with further refinement of system efficiency. This
temporal architecture is described in detail in Chapter 5.

3.5.3 Photodetection

The final requirement in the BosonSampling device is sampling the output distribution as
shown in Eq. 3.3. With linear optics this is done using photodetectors. For a review on
various types of photodetection see Ref. [118, 126].

There are two general types of photodetectors —photon-number resolving detectors and
bucket detectors. The former counts the number of incident photons. These are much more
difficult to make and more expensive in general than bucket detectors. Bucket detectors, on
the other hand, simply trigger if any non-zero number of photons are incident on the detector.
As discussed earlier, in the limit of large BosonSampling devices, we are statistically guar-
anteed that we never measure more than one photon per mode, since the number of modes
scales as m = O(n2). Thus, bucket detectors are sufficient for large BosonSampling devices,
a significant experimental simplification compared to universal LOQC protocols.
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The predominant mechanism for experimentally realising single-photon counting is mak-
ing use of beam-splitter cascades [126], which uses much the same technology as Boson-
Sampling. More recently photodetector designs use superconductivity to measure photons.
Superconductivity is an extreme state where electrical current flows with zero resistance. It
occurs in conductive materials when a certain critical temperature is reached. This critical
temperature is far from occurring naturally on Earth and thus high-tech and expensive lab
equipment is required. For many materials this temperature is close to absolute zero.

While there are several variations of superconductive photodetectors, many follow the
same principles as the one shown in Fig. 3.5. The idea is that a superconductor is cooled to a
point just below its critical temperature. Current is then applied through the superconductor
which experiences zero resistance. If there is no resistance, then there is no voltage drop
across the superconductor and a conductance measurement reads infinity. Then the photon
or photons that are to be measured will hit the superconductor and be absorbed. Each pho-
ton that is absorbed by the superconductor imparts energy hν onto it, where h is Planck’s
constant and ν is the frequency of the photon. This heats the superconductor above its criti-
cal temperature. The conductance measurement will then change according to the absorbed
photon, thus informing the measurer that a photon was detected. This scheme may be able
to count several photons since the conductance will change proportionally to the number of
absorbed photons. However, if too many photons are absorbed all properties of supercon-
ductivity are lost and thus number-resolution is lost. For a more extensive introduction to
this topic, see chapter four of Ref. [20].

Superconductor

Photon

Conductance
measurement

Figure 3.5: Basic design for a superconducting photon detector. A current is passed through
a superconductor and the conductance is monitored. Photons impart energy on the super-
conductor that is just cooled to its critical temperature. This added photon energy causes a
measurable change in the conductance allowing for the detection of photons.

Photodetectors may be used to help overcome the problem of temporal mismatch. Such
detectors must have the ability to record the time at which the photon arrived. If we post-
select upon detecting all n output photons in the same time-window ∆t then we can assume
that their temporal distribution overlaps sufficiently well to yield a classically hard sampling
problem. This method however is not reliable for scalable BosonSampling. If the temporal
distributions are not sufficiently overlapping, then the probability of post-selecting all n pho-
tons in the same time-window decreases exponentially with n. However, if the sources are
producing nearly identical photons in the time domain then this method would be a practical
cross check.

As the distinguishability of photons varies the complexity of sampling the output dis-
tribution also varies. A theoretical framework was developed by Tillmann et al. [127] that
describes the transition probabilities of photons with arbitrary distinguishability through the
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linear optical network. The output distribution of BosonSampling with distinguishable pho-
tons is then given by matrix immanants, thus affecting the computational complexity of the
output distribution. They also test this experimentally by tuning the temporal mismatch of
their input photons. This BosonSampling experiment is unique in that it is the first to use
distinguishable photons at the input. A similar situation, of BosonSampling with photons of
arbitrary spectral structure, was considered by Rohde [99].

3.6 Applications Inspired by BosonSampling
For the first four years of BosonSampling there was no application for it. It was interesting
simply because the statistics at the output of the device could not be simulated efficiently
with a classical computer but the device itself could relatively easily be built where nature
can do the simulating for us. With a slight alteration to the protocol where we harness the
physics of the device as opposed to the computational complexity we found an application
inspired by BosonSampling, which is in quantum metrology [85]. This work was released
almost simultaneously with another research group where they presented a BosonSampling
inspired application in generating molecular vibronic spectra [86]. In Ch. 7 I present in
detail how we developed one of two world first applications inspired by BosonSampling.

3.7 Summary
In this chapter we have given an introduction to the rapidly evolving field of BosonSampling
— a scheme that has inspired many people in the quantum information processing commu-
nity in the last couple of years. It is intriguing because it can easily be realised in the lab as
compared to building a universal quantum computer and at the same time actually sample
from a distribution that no computer on Earth can efficiently simulate. It is the first known
device that can do such a thing.

We began this chapter by motivating BosonSampling and discussing some of its history
in section 3.2. We then went into detail discussing BosonSampling by first giving a very
simplistic model followed by a more detailed model and discussing why it is inefficient to
classically simulate, what the permanent represents physically, and errors in BosonSampling,
all in section 3.3. Next, in section 3.4, we went into the implications of BosonSampling to the
extended Church-Turing thesis and argued that BosonSampling can not be used to prove or
disprove this. In section 3.5 we discussed the technology required to build a BosonSampling
device including the photon sources, linear optical networks, and photodetection. Finally,
in section 3.6 we discussed two BosonSampling inspired applications, but focus on our own
metrology result.



Physics is like sex: sure, it may
give some practical results, but
that’s not why we do it.

Richard Feynman

4
Spontaneous Parametric Down-Conversion

Photon Sources for BosonSampling

4.1 Synopsis

BosonSampling has emerged as a promising avenue towards post-classical optical quantum
computation, and numerous elementary demonstrations have recently been performed. One
of the challenges for realising BosonSampling is the creation of single photons. Spontaneous
parametric down-conversion (SPDC) is the most common method for single-photon state
preparation and is employed in most optical quantum information processing experiments.

We motivate this work in detail in section 4.2. In section 4.3 we describe what sponta-
neous parametric down conversion is. We present a simple architecture for BosonSampling
based on multiplexed SPDC sources, as shown in section 4.4, and demonstrate in section 4.5
that the architecture is limited only by the post-selection detection efficiency assuming that
other errors, such as spectral impurity, dark counts, and interferometric instability are neg-
ligible. For any given number of input photons, there exists a minimum detector efficiency
that allows post selection. If this efficiency is achieved, photon-number errors in the SPDC
sources are sufficiently low as to guarantee correct BosonSampling much of the time. In this
scheme the required detector efficiency must increase exponentially in the photon number.
Thus, we show that idealised SPDC sources will not present a bottleneck for future Boson-
Sampling implementations. Rather, photodetection efficiency is the limiting factor and thus
future implementations may continue to employ SPDC sources.

4.2 Motivation

In this chapter we show that large scale BosonSampling can be implemented provided that
detection efficiencies, which must increase exponentially with photon number, are sufficient
to guarantee post-selection with high probability. Increasing input photon number will thus
yield a larger required detection efficiency.
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Spontaneous parametric down-conversion (SPDC) has become the main method for single-
photon state preparation, is widely used in optical quantum information processing, and was
employed in all of the recent experimental BosonSampling implementations. A pressing
question for future larger-scale implementations is scalability. Scalability in this context
refers to increasing the input photon number into the BosonSampling device provided that
the error in the single photon photo-detectors, which scales exponentially with input photon
number, is sufficiently low to ensure successful implementation of BosonSampling most of
the time. That is, what are the limitations and requirements on physical resources to imple-
ment a scalable device? In particular, will SPDC sources suffice, or will we have to transition
to other photon source technologies?

We consider a general architecture for the experimental implementation of BosonSam-
pling, where multiplexed SPDC sources are employed for state preparation. We show that
in such an architecture the device is limited only by the post-selection probability. In other
words, the architecture is scalable provided that detector efficiencies are sufficiently high to
enable post-selected computation. In this regime, the quality of current SPDC states is suf-
ficient to enable large-scale BosonSampling. Thus, it is photodetection, not SPDC sources,
that provide the bottleneck to larger-scale demonstrations.

4.3 Spontaneous Parametric Down-Conversion

Figure 4.1: Spontaneous parametric down-conversion (SPDC) source. A crystal with a sec-
ond order non-linearity, χ(2), is pumped with a classical coherent light source |α〉. The source
then probabilistically emits photon pairs into the signal and idler modes, including vacuum
|0〉|0〉 and higher order terms where multiple pairs are emitted. The idler mode is detected
revealing how many photons are present in the signal mode.

The SPDC source works by first pumping a non-linear crystal with a coherent state |α〉
as shown in Fig. 4.1. A coherent state is well approximated by a laser source. This evolution
is given by a Hamiltonian of the form

ĤSPDC = χâpumpâ
†
signalâ

†
idler + h.c., (4.1)

where χ is the interaction strength, which depends on the non-linear material and h.c. stands
for the hermitian conjugate of the first term (e.g. the hermitian conjugate of an operator Â
is Â†). With some probability one of the laser photons interacts with the crystal and emits
an entangled superposition of photons across two output modes, the signal and idler. The
output of an SPDC source is of the form [121],

|ΨSPDC〉 =
∞∑
n=0

λn|n〉s|n〉i, (4.2)
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where n is the number of photons, s represents the signal mode, and i represents the idler
mode. The photon-number distribution is given by

λn =
1

cosh(r)
(−1)neinθ (tanh(r))n , (4.3)

where r is the squeezing parameter and θ is the phase shift between the two modes.
For BosonSampling, we are interested in the |1〉s|1〉i term of this superposition since we

require single photons at the input of the first n modes. The signal photons are measured by
a photodetector and because of the correlation in photon-number, we know that a photon is
also present in the idler mode. The idler photons are then routed into one of the input ports
of the BosonSampling device using a multiplexer [32, 33, 126, 128].

There are several problems associated with SPDC sources, which limit the scalability of
BosonSampling. The major problem is higher order photon-number terms. In the Boson-
Sampling model we only want the |1〉s|1〉i term, which is far from deterministic. The SPDC
source is going to emit the zero-photon term with highest probability and emit higher order
terms with exponentially decreasing probability. If the heralding photodetector does not have
unit efficiency, then the heralded mode may contain higher order photon-number terms.

Another problem is that photons from SPDC sources have uncertainty in their temporal
distribution. If a BosonSampling device is built using multiple SPDC sources it is difficult to
temporally align each of the n photons entering the device. This is called temporal mismatch.
The error term associated with this scales exponentially with n, yielding an error model
consistent with Eq. (3.13), which undermines operation in the asymptotic limit.

4.4 Spontaneous Parametric Down-Conversion Multiplex-
ing Architecture for BosonSampling

Given that SPDC is the most widely used and readily accessible source for single-photon
state preparation, we will present a simple architecture for BosonSampling based on SPDC
sources. In an ideal BosonSampling implementation one would employ deterministic pho-
ton sources that produce exactly one photon on demand. SPDC sources, on the other hand,
coherently prepare photon pairs in two modes with a correlated Poisson probability distribu-
tion. By measuring one of the modes and post-selecting upon detecting one photon in that
mode, a single photon is guaranteed to appear in the other mode. This method provides us
with a probabilistic, heralded single-photon source. It is critical that each photon is heralded
to ensure a pure set of Fock-state inputs. The photon number probability distribution is given
by [121],

P SPDC(s) = |λs|2 =
tanh2sr

cosh2r
, (4.4)

where s is the photon number (per mode). Thus, The SPDC source most often emits the vac-
uum state, and sometimes higher-order pairs with exponentially decreasing probability. For
small squeezing parameters the higher-order terms can be made small, yielding a heralded
source that produces single-photon pairs with high confidence that the heralded state has
only a single photon. To herald a single photon, we detect one arm of a single SPDC source
using an inefficient number-resolving photodetector. Such a detector can be characterised by
the conditional probability of detecting t photons given that s photons were present. For a
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simple inefficient detector this is given by,

PD(t|s) =

(
s

t

)
ηt(1− η)s−t, (4.5)

where η is the detection efficiency. Thus, in the presence of loss, the detector exhibits ambi-
guity in the measured photon number, sometimes detecting fewer photons than were present.
Dark counts, the other dominant source of imperfection in photodetection, are measurement
events from extraneous photons from the environment and could also be incorporated into
the model, but this effect can be made very small with time-gating.

We specifically consider heralded SPDC states, using just one mode of the SPDC for
the computation rather than both, to ensure that the state entering U closely approximates
Eq. (3.1). Without the heralding, the SPDC state is Gaussian, which is inconsistent with the
BosonSampling model and not known to implement a classically hard algorithm [106, 129].

Combining Eqs. (4.4) & (4.5) we obtain the probability of detecting t photons in the
heralding arm of a single SPDC source,

P SPDC
D (t) =

∑
i≥t

PD(t|i)P SPDC(i)

=
∑
i≥t

(
i

t

)
ηt(1− η)i−tP SPDC(i). (4.6)

Thus the probability of detecting a single photon in the heralding arm is simply,

P SPDC
D (1) =

∑
i≥1

i η(1− η)i−1P SPDC(i). (4.7)

We will operate N such heralded sources in parallel, where N � n and n is the number
of single photon Fock states required for BosonSampling. The probability that at least n of
the SPDC sources successfully herald is given by,

Pprep(n) =
∑
i≥n

(
N

i

)[
P SPDC

D (1)
]i [

1− P SPDC
D (1)

]N−i
.

(4.8)

In the limit of large N this asymptotes to unity,

lim
N→∞

Pprep(n) = 1. (4.9)

The asymptotic behaviour of Pprep is illustrated in Fig. 4.2. Clearly, with a sufficiently large
number of SPDC sources operating in parallel, we are guaranteed to successfully herald the
required n single photons.

Having successfully heralded at least n SPDC sources, we employ a dynamic multiplexer
[128] to route n of the heralded states to the first n modes of the BosonSampling interfer-
ometer U . We will assume the multiplexer is ideal in our analysis, although losses could
be absorbed into the detector efficiency. Experimental progress has been made recently in
developing active multiplexers [32, 33, 126]. These multiplexers rely on optical switches,
which are the topic of much experimental investigation [130, 131].
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Figure 4.2: Asymptotic behaviour of the state preparation success probability as a function
of the number of SPDC sources, N , and detector efficiency, η, in the case where we are
required to successfully herald n = 20 photons with a squeezing of r = 0.5. In the limit of
large N , Pprep approaches unity.

Following the unitary network, number-resolving photodetection is applied. Because the
photodetectors do not have unit efficiency we must post-select on events where all n photons
are detected. The post-selection probability scales as,

Ppost(n) = ηn. (4.10)

Thus, the required detection efficiency exponentially asymptotes to unity for large n. This
necessitates that future large-scale BosonSampling implementations will require extremely
high efficiency photodetectors.

The full architecture is illustrated in Fig. 4.3. Note that the multiplexer is critical to
the operation of the device for the original implementation of BosonSampling as presented
by AA. Without the multiplexer we still have high likelihood of sampling from at least an
n-photon input distribution; however, every time the device is run we are likely to sample
from a different permutation of the vacuum and single photon states at the input, making
it impossible to perform sampling on a consistent input. Thus, the multiplexing ensures
that the input state is consistently of the form of Eq. (3.1) if the photodetectors have perfect
efficiency. Results published after this work by Lund et al. [102] showed that the sampling
problem remains classically difficult in the case of ‘scattershot BosonSampling’, whereby n
photons can be input into any random configuration to the BosonSampling device as long as
where they went into the device is known, which is the case if you are using SPDC sources
and heralding. This means we can now further simplify our architecture by getting rid of
such a complicated multiplexer. The realistic case of inefficient photodetectors is presented
next.

4.5 Scalability of the Architecture
Having described a general architecture for BosonSampling based on SPDC sources, the
pressing question is its scalability. The obvious scaling issue arises from Eq. (4.10), whereby
the photodetection efficiency must be exponentially close to unity. Unless error correction
mechanisms are introduced, this scaling is inevitable and post-selection is the only avenue
to guarantee successful operation of the device. However, no error correction has been de-
scribed in the context of BosonSampling. Thus, we will focus on post-selected operation of
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Figure 4.3: Architecture for BosonSamplingwith SPDC sources. N sources operate in paral-
lel, each heralded by an inefficient single-photon number-resolving detection. It is assumed
that N � n, which guarantees that at least n photons will be heralded. The multiplexer dy-
namically routes the successfully heralded modes to the first n modes of the unitary network
U . Finally, photodetection is performed and the output is post-selected on the detection on
all n photons.

the device, and address the question as to whether the device acts correctly in that context.
In the described architecture, the dominant error source is incorrect heralding of the

SPDC states. In the limit of perfect detectors we are guaranteed to have prepared single-
photon states. However, inefficient detectors introduce ambiguity in the heralding, creating
a situation where higher-order photon number terms are perceived as single photon terms.
For example, if a single photon is lost via detection inefficiency, the two photon state will be
interpreted as a single photon state. This will corrupt the input state to the interferometer,
yielding an input state different than Eq. (3.1).

For a single detector, the probability that we have prepared the s-photon Fock state, given
that the detector has outcome t, is given by Bayes’ rule,

Pcorr(s|t) =
PD(t|s)P SPDC(s)

P SPDC
D (t)

=

(
s
t

)
(1− η)s−ttanh2sr∑

i≥t
(
i
t

)
(1− η)i−ttanh2ir

. (4.11)

We are interested in the case where we herald a single photon. Thus,

Pcorr(1|1) = [1− (1− η) tanh2r]2. (4.12)

Pcorr(1|1) can be interpreted as the conditional probability that we have prepared the correct
single photon state given that heralding was successful. For small pump powers (r ≈ 0)
the unconditional probability of detecting a single photon approaches zero, although the
conditional probability approaches unity since there are negligible higher photon-number
contributions.

The probability that a single photon is correctly heralded n times in parallel, thereby
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preparing the n copies of a single photon Fock state as per Eq. (4.10) is

Ppar(n) = [Pcorr(1|1)]n

= [1− (1− η) tanh2r]2n. (4.13)

We will require that, given n heralded SPDC states, upon post-selection we correctly de-
tect exactly n photons the majority of the time. We will arbitrarily require that Ppost(n) > ε,
where ε is the lower bound on the probability that n single photons are successfully de-
tected at the output of the BosonSampling device. This puts a lower bound on the required
photodetection efficiency of

η = n
√
ε. (4.14)

Next we will assume that all photodetectors in the architecture have the same efficiency.
Thus, we obtain that the probability of correctly preparing all n photons via post-selected
SPDC is,

Ppar(n) = [1 + ( n
√
ε− 1) tanh2r]2n. (4.15)

In the limit of large n (i.e. large instances of BosonSampling ), this asymptotes to,

lim
n→∞

Ppar(n) = ε2 tanh2r. (4.16)

For small r this approaches unity, and in the limit of large r to ε2. Thus, for ε = 1/2, in the
worst case scenario, we are sampling from the correct distribution in 1/4 of the trials. This
is shown in Fig. 4.4.

Figure 4.4: (Color online) Probability that we are sampling from the correct input distribu-
tion in the limit of large n, obtained from Eq. (4.16), plotted against the SPDC squeezing
parameter r and the lower bound on the probability that n single photons are successfully
detected at the output of the BosonSampling device ε.

Equation (4.16) specifies the asymptotic probability of sampling from the correct input
distribution, given that post-selection was successful. For small squeezing we sample from
the correct input distribution most of the time, due to the lower probability of higher-order
terms occurring. Thus, for experimentally realistic SPDC sources, provided that detector
efficiencies are sufficiently high to enable post-selection, we have a high likelihood of correct
BosonSampling and SPDC photon-number errors are negligible.

Conversely, we could require that Ppar > ε′ from Eq. (4.13), where ε′ is the lower bound
on the probability that a single photon is correctly heralded n times in parallel before entering
the multiplexer. Solving this for η yields,

η = 1 + (
2n
√
ε′ − 1) coth2r. (4.17)
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From Eq. (4.10) we obtain an expression for the post-selection probability under the condi-
tion that we require a certain fidelity on the SPDC heralding,

Ppost(n) = [1 + (
2n
√
ε′ − 1) coth2r]n. (4.18)

Figure 4.5: (Color online) The post-selection probability Ppost from Eq. (4.18) presented as
a function of the squeezing parameter r and n single photons being correctly heralded in
parallel before entering the multiplexer. Here we assume a fidelity of ε′ = 0.9.

Fig. 4.5 illustrates Ppost(n) as a function of the squeezing parameter r and the number of
successfully routed photons n. We observe that for large n, post-selection is highly likely to
succeed if the SPDC state preparation was successful to within error ε′ = 0.9. We observe
that in the limit of large n and experimentally realistic values of r ≈ 1/2, BosonSampling
using N � n SPDC sources is scalable.

4.6 Summary
We first explained why spontaneous parametric down conversion (SPDC) is of interests for
linear optical applications such as BosonSampling in section 4.2. Next, in section 4.3, we
explain spontaneous parametric down conversion. We presented a simple architecture for
BosonSampling via multiplexed SPDC sources in section 4.4. We demonstrated that the
SPDCs do not limit the scalability of the architecture. Rather, the single-photon detectors,
whose efficiencies must increase exponentially with input photon number, limit the scalabil-
ity. That is provided that detection efficiencies are sufficiently high to enable post-selected
operation (section 4.5), the SPDCs will produce Fock states of sufficient fidelity to imple-
ment correct BosonSampling with high probability. Conversely, if detection efficiencies are
sufficiently high to guarantee SPDC heralding with high fidelity, post-selection will succeed
with high probability.

Thus, SPDC sources are a viable photon source technology for future large-scale demon-
strations of BosonSampling. Additionally, existing SPDC sources will likely need signifi-
cant improvement to increase squeezing purity and mode-matching. While post-selection
guarantees correct operation of a BosonSampling device, the required detection efficiencies
scale unfavourably. Thus, future work should further address the question as to whether
lossy BosonSampling is computationally hard [77], as this could significantly reduce physi-
cal resource requirements. Other error models, such as mode-mismatch [76], should also be
investigated further.

The analysis presented could be applied to other post-selected linear optics protocols
employing SPDCs as heralded Fock state sources.



Life is extraordinary don’t let it
be ordinary!

Keenan Crisp

5
Scalable BosonSampling with Time-Bin

Encoding Using a Loop-Based Architecture

5.1 Synopsis

It was recently shown by Motes, Gilchrist, Dowling & Rohde [103] that a time-bin encoded
fiber-loop architecture can implement an arbitrary passive linear optics transformation and
can perform arbitrarily scalable BosonSampling. We being by motivating this work in sec-
tion 5.2. The architecture, as presented in section 5.3, has fixed experimental complexity,
irrespective of the size of the desired interferometer, whose scale is limited only by fiber and
switch loss rates. The architecture employs time-bin encoding, whereby the incident pho-
tons form a pulse train, which enters the loops. Dynamically controlled loop coupling ratios
allow the construction of the arbitrary linear optics interferometers required for BosonSam-
pling. The architecture employs only a single point of interference and may thus be easier
to stabilize than other approaches. The scheme has polynomial complexity and could be
realized using demonstrated present-day technologies. In section 5.4 we discuss a simpli-
fication to the architecture whereby we allow for each instance of the inner loop to have a
fixed beam-splitter ratio. In section 5.5 we discuss the advantages of our architecture over
other implementations.

The original work showed the case of an ideal scheme whereby the architecture has no
sources of error [103]. In any realistic implementation, however, physical errors are present,
which corrupt the output of the transformation. We later investigated the dominant sources
of error in this architecture [132] — loss and mode-mismatch — which are presented in
section 5.6 and 5.7 respectively and consider how it affects the BosonSampling protocol, a
key application for passive linear optics. For our loss analysis we consider two major com-
ponents that contribute to loss — fiber and switches — and calculate how this affects the
success probability and fidelity of the device. Interestingly, we find that errors due to loss are
not uniform (unique to time-bin encoding), which asymmetrically biases the implemented
unitary. Thus, loss necessarily limits the class of unitaries that may be implemented, and
therefore future implementations must prioritise minimising loss rates if arbitrary unitaries



46 Scalable BosonSampling with Time-Bin Encoding Using a Loop-Based Architecture

are to be implemented. Our formalism for mode-mismatch is generlized to account for vari-
ous phenomenon that may cause mode-mismatch, but we focus on two — errors in fiber-loop
lengths, and time-jitter of the photon source. These results provide a guideline for how well
future experimental implementations might perform in light of these error mechanisms. If
any experimentalist would like to implement this architecture I have code that can be recon-
figured to analyse more specific error models so feel free to contact me. In section 5.8 we
discuss some realistic parameters for losses and mode-mismatch that are currently the best
achieved experimentally.

5.2 Motivation

The remaining central challenge in BosonSampling is constructing linear optics networks Û .
It was shown by Reck et al. [109] that arbitrary networks of this form can be decomposed
into a sequence of O(n2) beamsplitters. In present-day experiments this type of decompo-
sition is implemented using waveguides or discrete optical elements, but using these spatial
techniques might require thousands of optical etchings in the waveguide or thousands of
discrete optical elements, which must all be simultaneously aligned, so constructing the re-
quired linear optical interferometer is challenging. Two demonstrated ways to overcome the
alignment problem are to use the time-bin encoded scheme by Motes, Gilchrist, Dowling
& Rohde (MGDR) [120] or time-dependent dispersion techniques as presented by Pant &
Englund [133]. Both methods do away with the hundreds or perhaps thousands of optical
elements, requiring only a single pulsed photon-source and a single time-resolved photo-
detector. An attractive feature of the former architecture is that there is only a single point of
interference, and may therefore be much easier to align than conventional approaches. Ad-
ditionally, the experimental complexity of these schemes are fixed, irrespective of the size
of the desired interferometer. Although the fiber-loop scheme was initially presented for
the purposes of BosonSampling, Rohde recently demonstrated that with minor modifications
the scheme can be made universal for quantum computing [134]. Here, however, we will
focus on the application of this scheme to BosonSampling, or purely passive linear optics
applications more generally.

MGDR originally showed that, using this fiber loop architecture, arbitrary linear optics
transformations can be implemented on a pulse-train of photons [103]. However, the original
work assumes that the architecture has no sources of error. When errors are present the
scheme no longer implements an arbitrary unitary transformation, but is constrained by the
error model. In followup work we analyse in detail various sources of error in the MGDR
protocol [132]. Specifically, we analyse the effects of lossy elements in the architecture
and the effects of mode-mismatch caused by imperfect fiber-loop lengths and time-jitter
in the source. These effects accommodate the main challenges facing future experimental
implementation BosonSampling.

5.3 Fiber-loop Architecture

In this architecture, shown in Fig. 5.1, a pulse-train of photonic modes consisting of, in
general, Fock states and vacuum, are each separated by time τ and sent into an embedded
fiber-loop. The ith time-bin corresponds to the ith mode in a conventional spatially-encoded
scheme.
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. . .

Figure 5.1: The complete fiber-loop architecture fed by a pulse-train of photonic modes,
each separated in time by τ . The squares represent optical switches. A single length τ inner
fiber-loop is embedded inside a length > mτ outer fiber-loop. The outer loop allows an
arbitrary number of inner loops to be applied consecutively. When m− 1 inner loops are
implemented this architecture realises an arbitrary unitary transformation on m modes given
that no loss is present.

This architecture assumes lossless components and perfect mode-matching at the central
beamsplitter. In any realistic implementation this will not be the case, which we consider
in sections 5.6 and 5.7. Next, to help better understand the architecture we break down the
architecture into its components by discussing what happens in a single inner loop and how
multiple iterations of the single loop can implement arbitrary unitary transformation and thus
BosonSampling.

5.3.1 Single Inner Loop

We begin by triggering a single photon source at time intervals τ (the source’s repetition
rate), which prepares a pulse train of n single photons across a length of fiber. The first
step in our architecture is to propagate the pulse train through a fiber loop with dynamically
controlled coupling ratios, as shown in Fig. 5.2(a). Each pulse takes time τ to traverse the
inner loop so that it will interfere with the next time-bin at the central beamsplitter. Between
each pulse a dynamically controlled beamsplitter, ÛBS(t) of the form,

ÛBS(t) =

(
u1,1(t) u1,2(t)
u2,1(t) u2,2(t)

)
, (5.1)

where ÛBS is an arbitrary, time-dependent SU(2) operation, is applied at time t, which splits
the incident field into a component entering the loop and a component exiting the loop. Here
ui,j is the amplitude of input mode i reaching output mode j. i = 1 (i = 2) represents the
mode entering from the source (inner loop), and j = 1 (j = 2) represents the mode exiting
the loop (entering the loop). When a mode enters the loop it progresses to the next time-bin.
The component entering the loop takes time τ to transverse the loop such that it coincides
with the subsequent pulse. In order for the first photon to interfere with every photon pulse it
will traverse this loop m times. The second photon will traverse the loop m− 1 times and so
on. The dynamics of photons propagating through the loop architecture may be ‘unravelled’
into an equivalent series of beamsplitters acting on spatial modes, as shown in Fig. 5.2(b).
This elementary network is the basic building block employed by our architecture.

The boundary conditions of the protocol are that the first time-bin is coupled completely
into the inner loop and the last time-bin coupled completely out of the inner loop (after it
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Figure 5.2: (a) A fiber loop fed by a pulse train of single photons, each separated in time
by τ . The box represents a dynamically controlled, variable reflectivity beamsplitter. The
switching time of the beamsplitter must be less than τ to allow each time-bin to be individ-
ually addressed. (b) Expansion of the fiber loop architecture into its equivalent beamsplitter
network.

traverses the inner loop once), such that the implemented unitary is bounded as an m×m
matrix, where m is the length of the pulse-train. This can be obtained with,

ÛBS (1) = ÛBS (m+ 1) =

(
0 1
1 0

)
, (5.2)

where UBS(i) is the unitary associated with the central beamsplitter at time i.
After the entire pulse-train exits the inner loop the unitary map V̂ is implemented,

Vi,j =


0 i > j + 1
u1,1(i) i = j + 1

u1,2(i)u2,1(j + 1)
∏j

k=i+1 u2,2(k) i < j + 1
, (5.3)

where i ∈ {1,m} and j ∈ {1,m} represent input and output modes respectively. We see
that the probability of finding a photon in the jth mode decays exponentially with j. In
quite special cases, such as the reflectivity going to zero in the beam-splitter, this probability
would not decay exponentially. When i > j + 1 the ith input mode does not have access to
the jth output mode so this matrix element is zero. When i = j + 1 the modes do not enter
the inner loop and travel strait through to the detector picking up a factor of γ2,1(i). When
i < j+ 1 the modes traverse the loop j− i+ 1 times. Note that we have employed a slightly
different, but equivalent, indexing convention to the original MGDR proposal.

Evidently, the network shown in Fig. 5.2(b) is not sufficient for universal linear optics
networks as it contains many zero elements. To make the scheme universal we must show
that the ingredients necessary to perform a full Reck et al. type decomposition are available
as we show in the next section.

5.3.2 Multiple Inner Loops
The inner loop alone cannot implement an arbitrary unitary transformation so additional
loops are required. The outer loop allows for an arbitrary number of applications of the inner
loop to be implemented. The net unitary Û after L consecutive inner loops becomes,

Û =
L∏
l=1

V̂ (l), (5.4)

where l denotes the lth iteration of the inner loop and V̂ is given by Eq. (5.3). The pulse-train
will traverse the inner loop L = m− 1 times and the outer loop m− 2 times for an arbitrary
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unitary transformation to be implemented. The outer loop must have round trip time > mτ
so that the pulse-train does not interfere with itself for a particular instance of the inner loop
V̂ (l). The pulse-train is coupled in and out of the outer loop via on/off switches. Once
the desired transformation is performed, the pulse-train exits both loops and is measured
via time-resolved photo-detection, where the time-resolution of the detector must be greater
than τ . The jth time-bin at the output corresponds to the jth spatial mode in the standard
BosonSampling model.
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Figure 5.3: The equivalent beam-splitter representation for the fiber loop architecture. (a)
A single loop is represented for n photons in the pulse train. Here the numbers represent
modes. (b) The equivalent beamsplitter network of three consecutive loops with three input
modes. Here the number represent time-bins.

To understand the equivalent beamsplitter representation of a single loop, consider Fig.
5.3(a). The pulse train enters the loop, where the numbers on the left represent the corre-
sponding time-bin. The first photon is deterministically coupled into the loop as depicted
by an open circle. After the first and second photons interact some of the amplitude may
escape the loop, which corresponds to the first output time-bin. The pulse train continues to
interact through the loop via beamsplitter operations, which are represented as closed circles.
After the nth photon transverses the loop any remaining amplitude deterministically leaves
the loop, which corresponds to the nth output time-bin.

Now consider Fig. 5.3(b), which depicts how three consecutive loops in series with three
input photons produce an equivalent beamsplitter network. The lengths of the black lines
represent time in units of τ . The three modes on the left represent the pulse train of photons
at the input of the device at the first round-trip. The first photon reaches the first beamsplitter
at τ = 1, the second photon reaches it at τ = 2, and so on. The photons travel through
the fiber loop network interacting arbitrarily, which yields an arbitrary Reck et al. style



50 Scalable BosonSampling with Time-Bin Encoding Using a Loop-Based Architecture

decomposition. Evidently, an n-mode unitary can be built using n modes and n − 1 loops.
In Figs. 5.4 & 5.5 we show an alternate proof based on an inductive argument.

1st loop 2nd loop
(a)

(b)

(c)

(d)

(e)

Figure 5.4: (a) Two consecutive fiber loops in series. (b) The equivalent beamsplitter expan-
sion for number of modes m = 3. By setting the beamsplitter ratios appropriately the two
loops can implement an arbitrary beamsplitter between any pair of modes. These show the
respective paths for implementing an arbitrary beamsplitter between modes one, two, and
three: (c) modes 1 and 2, (d) modes 1 and 3, (e) modes 2 and 3.

. . 
.

Figure 5.5: Generalizing the universality argument presented in Fig. 5.4 to arbitrary m.
We choose a permutation that the first of the desired modes be routed to the beamsplitter,
which interacts with mode n+ 1. Then the inverse permutation is applied, leaving us with a
network that implements an arbitrary beamsplitter operation between one of the first nmodes
and the (n+ 1)th mode. It follows inductively that an arbitrary beamplsitter operation can
be applied between any pair of modes for any m.

We have shown that a series of consecutive fiber loops can implement an arbitrary se-
quence of pairwise beamsplitter operations. Next, we recognize that each of these fiber loops
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requires exactly the same physical resources, only differing by the switch’s control sequence.
We need not physically build each of these identical loops. Rather, we will embed the loop
into a larger fiber loop of length > nτ , as shown in Fig. 5.1. The larger loop is controlled
by another two switches, which control the number of round trips in the larger loop. From
the result of Reck et al. we know that O(n2) optical elements are required to construct an
arbitrary n× n interferometer. Thus, the number of round trips of the outer loop is O(n2).

5.4 Fixing Beam-Splitter Ratios for Simplicity
An experimental simplification is when we do not require full dynamic control over the
beamsplitter ratio. Although this scenario is not universal, it may be possible to construct
useful classes of unitaries. We will consider the situation where the beamsplitter in each iter-
ation of the single loop can be toggled between two settings — completely reflective, or some
other arbitrary fixed ratio. The former is required to allow that the time-bins be restricted to
a finite time-window, whilst the latter implements the ‘useful’ beamsplitter operations. We
may have an arbitrary number of such loops in series, each with a potentially different fixed
beamsplitter ratio.

Intuitively, we expect that a ‘maximally mixing’ unitary (i.e. one with equal amplitudes
between every input to output pair) would implement a classically hard BosonSampling in-
stance, as it maximizes the combinatorics associated with calculating output amplitudes. If,
for example, a unitary is heavily biased towards certain output modes, or is sparse, the com-
binatorics are reduced. Specifically, we define a balanced unitary as, |U ′i,j|2 = 1/n ∀ i, j,
such that, up to phase, all amplitudes are equal.

In Fig. 5.6 we take the unitary implemented by a series of l fixed-ratio fiber loops, and
compare it with the balanced unitary Û ′. We characterize the uniformity of the obtained
unitary using the similarity metric,

S = max
ÛBS(t) ∀ t


(∑

i,j

√
|Ui,j|2 · |U ′i,j|2

)2

(∑
i,j |Ui,j|2

)
·
(∑

i,j |U ′i,j|2
)
 (5.5)

= max
ÛBS(t) ∀ t

 1

n3

(∑
i,j

|Ui,j|
)2
 ,

where we maximize S by performing a Monte-Carlo simulation over different beamsplitter
ratios, ÛBS. That is, S tells us how close Û is to uniform, with S = 1 being completely uni-
form up to phase. With a sufficient number of loops in series, we obtain very high similarities,
suggesting that the simplified architecture may implement hard instances of BosonSampling.

5.5 Discussion of Architecture
Because there is only a single point of interference, this architecture may be significantly
easier to stabilize and mode-match than conventional approaches, where O(n2) independent
beamsplitters must be simultaneously aligned and stabilized. At this point of interference, the
dominant source of error will be temporal mode-mismatch [135], which is caused by errors
in the lengths of the fiber loops, or time-jitter in the photon sources. Temporal mismatch
may be regarded as a displacement in the temporal wavepacket of the photons [136]. Let us
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Figure 5.6: The maximum similarity S between Û and the uniform unitary Û ′ after l loops
with n input photons. The beam-splitter ratio is fixed for each loop but independently, ran-
domly chosen for each loop. This demonstrates that near-uniform unitaries may be con-
structed with sufficient loops.

assume that at each round trip the photon exiting the inner loop is mismatched by time ∆.
Over short time scales this yields dephasing [137], and over longer time scales, ambiguity
as to which time-bin the photon resides in. The worst case is that a given photon undergoes
temporal mismatch of magnitude n∆. Time-bin ambiguity occurs when n∆ ≥ τ , which
yields the requirement that n < τ/∆. Over shorter timescales, temporal mode-mismatch is
equivalent to dephasing as mismatched photons yield which-path information. This leads to
the constraint that n∆� σ, where σ is the width of the photons’ wave packets. Thus, time-
jitter or temporal mode-mismatch must be kept small relative to the scale of the photons’
wavepackets. The current switching rates of state-of-the-art dynamically controlled switches
is on the order of GHz [138–141] and the temporal spacing of photons is on the order of
nanoseconds. Whilst these switches are fast enough, they require additional coupling that
involves high loss. This will encourage further development of these type of technologies
which is also required for LOQC architectures.

Integrated waveguides are gaining popularity in photonics as they are inherently very
stable. However, although interferometrically stable after the fabrication process, there are
nonetheless O(n2) points of interference, which must be carefully aligned. On the other
hand, the fiber-loop architecture has only a single point of interference that needs to be
aligned. Another advantage of our architecture is that only one photon source (such as a
quantum dot or SPDC source with high repetition rate) could be employed, whereas bulk-
optics or waveguide implementations would require an array of sources operating in parallel,
further reducing experimental overhead.

The experimental viability of loop-based photonic architectures was validated by recent
quantum walk [16] experiments by Schreiber et al. [50, 55], where quantum memories were
implemented via delay lines in free-space. It was also shown by Donohue et al. [142] that
transmitting time-bin encoded photons in optical fibers is a robust form of optical quantum
information given that the separation of time-bins is larger than the time resolution of the
detector.

In principle, the fiber loops could be replaced by any quantum memory or delay line
such as propagation in free-space, which would be significantly less lossy. In this case,
the dominant source of loss would be in the dynamic switches, which, using present-day
technology, have high loss rates.

The presented universal architecture is in principle arbitrarily scalable, provided the
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length of the larger loop is sufficiently high (> nτ ). However, in practice, fiber is lossy
with present-day technology. If we let ηinner be the net efficiency of the inner loop (i.e. the
probability that an incident photon will reach the output), and ηouter be the net efficiency of
the outer loop, then the worst case net efficiency of the device is, ηnet = (ηinner

nηouter)
O(n2),

which scales exponentially with n. Thus, to construct large interferometers using this ar-
chitecture will require exponentially low loss rates. This is also the case for conventional
spatially encoded implementations. However, it was shown by Rohde & Ralph [143] that
BosonSampling might remain a computationally hard problem even in the presence of high
loss rates. Other error models, such as dephasing or mode-mismatch [76], exhibit simi-
lar scaling characteristics. Our architecture has the same efficiency scaling as conventional
bulk-optics or waveguide implementations. If the worst-case photon efficiency (combining
state preparation, evolution and photodetection) is ζ , then with n photons the net efficiency
is lower bounded by ζn.

Next, we discuss the major sources of error that would challenge an experimental imple-
mentation of our architecture including an anaysis of loss and mode-mismatch.

5.6 Loss Errors
In an implementation of a passive linear optics network, whereby the loss between each
input/output pair of modes is uniform, loss simply amounts to a reduced success probability
upon post-selecting on detecting all photons. Loss in the unitary transformation is a problem
but there is evidence that even lossy systems or systems with mode-mismatch are still likely
hard to simulate given that the errors are sufficiently small [76, 77]. Recently, Aaronson
and Brod investigated the complexity of BosonSampling under photon losses [144]. In the
fiber-loop architecture, the different paths traverse the inner loop a different number of times
leading to non-uniform loss. This biases the unitary transformation resulting in a unitary
that is not the desired one, even after post-selecting upon measuring all photons. That is, the
effects of loss cannot be simply factored out of the unitary. In some architectures, asymmetric
losses may be compensated for by artificially adding losses that rebalance the circuit, at the
expense of overall success probability. In the fiber-loop architecture this turns out not to be
the case.

In Sec. 5.6.1 we introduce the metrics that we will use to analyse loss. In Sec. 5.6.2 we
determine the effect of loss due to the lossy switch and lossy fiber in the inner loop. Then in
Sec. 5.6.3 we analyse the net loss combining the inner loop losses with the outer loop losses.
We denote quantities here that have loss with a prime.

5.6.1 Loss Metrics
We consider two metrics: similarity and post-selection probability.

Similarity

An interesting question is how small does loss need to be such that a particular unitary trans-
formation is implemented with a particular error bar. The answer to this question is highly
dependent on which unitary we wish to implement — some unitaries will suffer more asym-
metric bias than others, depending on the switching sequence that is required to implement
them. Thus, the first question to ask is which unitary to consider. In the work of MGDR, a
so-called ‘uniform’ unitary was considered. This is a unitary where the amplitude (but not



54 Scalable BosonSampling with Time-Bin Encoding Using a Loop-Based Architecture

necessarily phases) of each element of the unitary are equal. That is, the magnitude of the
amplitude between each input/output pair of modes is the same. This class of unitaries was
considered as an example of ‘non-trivial’ matrices, which uniformly mix every input mode
with every output mode. However, it is still an open question as to exactly what classes
of unitaries yield hard sampling problems in the context of BosonSampling. We will here
consider the same setting. We will explore this by using the similarity metric, S ′, which
compares the implemented map with the uniform map,

S ′ = max
ÛBS(t) ∀ t


(∑m

i,j=1

√
|Ui,j|2 · |Wi,j|2

)2(∑m
i,j=1 |Ui,j|2

)
·
(∑m

i,j=1 |Wi,j|2
)


= max
ÛBS(t) ∀ t

 1

m2

(∑m
i,j=1 |Ui,j|

)2∑m
i,j=1 |Ui,j|2

 , (5.6)

whereWi,j is an m×m uniform unitary given by |Wi,j|2 = 1/m. S ′ is maximised by per-
forming a Monte-Carlo simulation over different beamsplitter ratios so as to find the optimal
switching sequence to make the map as uniform as possible. In this analysis we use S ′
instead of S to denote the similarity metric with loss present.

Post-selection Probability

Another interesting question is how the probability of post-selecting upon all n photons is
affected by loss, i.e the total success probability of the device. This is of especial impor-
tance experimentally, as it directly translates to count rates. The post-selection probability of
detecting all n photons at the output is,

PS =
m∏
i=1

(
m∑
j=1

|Ui,j|2
)ki

, (5.7)

where {k} is an integer string of length m that represents a known input configuration of
photons and ki is the number of photons in mode i. This equation is intuitively derived as
follows. For a single photon the probability of entering mode i and exiting mode j is |Ui,j|2.
Then the total probability that the ith photon exits the architecture is the sum of this over all
j possible output ports, i.e.

∑m
j=1 |Ui,j|2. Thus the probability of detecting all n photons at

the output beginning in a particular configuration {k} is the product of this probability over
all modes i where ki 6= 0, as per Eq. (5.7). This generalisation, by allowing arbitrary strings
{k}, allows for implementations such as randomised BosonSampling as described by Lund
et al. [102].

With losses present, Û is in general no longer unitary. Rather, it is a mapping of input-
to-output amplitudes, and will not be normalised. When there is no loss in the architecture
PS = 1, and with loss strictly PS < 1, dropping exponentially with the number of photons.
Implementing the required m− 1 loops will have exponentially worse loss than a single
loop.

5.6.2 Inner Loop Loss
We will model loss inside of the inner fiber-loop with a beamsplitter of reflectivity ηf and loss
in the switch as ηs as shown in Fig. 5.7. When ηf = ηs = 1 the device has perfect efficiency.
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. . .

Figure 5.7: A lossy inner fiber-loop fed by a pulse-train of photonic modes, each separated
in time by τ . We model the loss of the loop with a beamsplitter of reflectivity ηf and the loss
of the switch with an efficiency ηs. Each mode experiences different amounts of loss, i.e. the
first mode traverses the loop up to m times, the second up to m− 1 times, . . . , and the mth
mode at most once.

Before and after the inner loop the loss experienced by each mode in the fiber is negligible,
since it may be arbitrarily short. Taking these losses into account, the implemented map of
Eq. (5.3) becomes,

V ′i,j = ηs


0 i > j + 1
u1,1(i) i = j + 1
ηj−i+1u1,2(i)u2,1(j + 1)·∏j

k=i+1 u2,2(k) i < j + 1

, (5.8)

for a given loop, where η = ηfηs. Note that this mapping is no longer a unitary matrix when
ηf < 1 or ηs < 1. This uneven distribution of losses in the input-to-output mapping causes a
skew in the matrix which prevents it from implementing the desired unitary transformation,
even after post-selection.

5.6.3 Outer Loop Loss
In the full fiber-loop architecture L inner loops are implemented via L− 1 round-trips of
the outer loop, before being coupled out to the detector. This architecture can implement
an arbitrary unitary transformation when L = m− 1 if there are no errors present. The
outer loop and outer switches cause a uniform loss on the entire pulse-train, since every path
through the interferometer passes through these elements the same number of times. Hence,
these factor out of Û . The full lossy transformation that occurs is then,

Û ′ = ηf
m(L−1)ηs

2(L−1)

L∏
l=1

V̂ ′(l), (5.9)

where L = m − 1 if an arbitrary transformation is desired, and V̂ ′ is given by Eq. (5.8).
The ηfm(L−1) occurs because the pulse-train traverses an mτ length of fiber in the outer loop
L − 1 times (i.e ηf can be regarded as the efficiency per unit of fiber of length τ ), and the
ηs

2(L−1) occurs because the pulse-train passes through the two outer switches L− 1 times.
Fig. 5.8 shows the entire architecture with these loss errors. For an example of loop bias due
to loss see App. A.1. Extending from this loop bias example we generalize the loss matrix
denoted as L̂, which represents the accumulation of losses in the fiber-loop architecture, as a
function of the number of loops L for an arbitrarily sized m×m transformation,

Li,j(L) = ηLs η
L+j−i, (5.10)
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again where η = ηfηs. Now the lossy map Û ′ may be written as an element wise product of
the ideal unitary Û and the loss matrix L̂,

Û ′ = Û ◦ L̂. (5.11)

Elements of L̂ that have no losses in them due to input modes not reaching output modes
when L < m− 1 will be accounted for appropriately when L̂ is multiplied by Û by making
the cooresponding matrix element in Û ′ go to zero.

. . .

Figure 5.8: The full architecture which implements the lossy transformation Û ′. Each mode
experiences ηfm loss per outer loop since they each take time mτ to traverse the outer loop.
For an arbitrary unitary to be implemented in the ideal case the photons will traverse the
outer loop L − 1 times. This yields a net fiber loss from the outer loop of ηfm(L−1) that can
be factored out of Û ′, since it affects all paths equally. The net switch loss from the outer
two switches is ηs2(L−1) and can also be factored out of Û ′. The losses within the inner loop,
on the other hand, affect different paths differently, and in general cannot be factored out.

In Fig. 5.9(a) we show how the optimised similarity with the uniform distribution varies
with ηf and m for L = m− 1 inner loops, one photon in all m modes, and ηs = 1. With low
loss rates (ηf ≈ 1) the implemented unitary remains highly uniform. However, with several
loops the success probability of detecting all n photons at the output decays exponentially as
shown is Fig. 5.9(b). For these plots the randomly generated Û ′ that maximises S for each
ηf and m is used to calculate the corresponding PS.

Now we consider how S and PS are affected in Fig. 5.10 with both the fiber loss and
switch loss. We show this for the case of m = 3 and one photon per input mode, which is in
the regime of present-day demonstrations.

5.7 Mode-mismatching Errors
In any interferometric experiment it is inevitable that mode-mismatch will occur and is thus
an essential source of error that we will consider in this section. There are many factors that
may contribute to mode-mismatch in this architecture, such as incorrect fiber lengths, time-
jitter in the sources, beamsplitter misalignment, and dispersion of the wave-packets. In this
section we will focus on two major sources of mode-mismatch: incorrect fiber lengths and
source time-jitter. The former results in reduced Hong-Ou-Mandel visibility at the central
beamsplitter, owing to mismatched arrival times of photons. The latter effectively results in
randomisation of the preparation times of the photons.

We consider how mode-mismatch affects our protocol by calculating the fidelity, F , be-
tween the ideal output state |ψi〉 that one expects theoretically with no errors present, and the
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(a) (b)

Figure 5.9: (a) Similarity with noise S ′ versus mode/photon number m = n and loop ef-
ficiency ηf for m− 1 loops. The map remains similar to the uniform unitary for low loss
rates, implying that non-trivial unitary transformations may be implemented. m− 1 loops
are considered because this is the number of loops required to implement an arbitrary unitary
transformation in the lossless case. The wiggles are due to sampling noise. (b) Post-selection
probability PS versus mode/photon number m = n and loop efficiency ηf for m− 1 loops.
These two plots are related in that each point in PS was calculated from the switching se-
quence Û ′ corresponding to that which maximises S ′. In both (a) and (b) the data was
averaged over 1750 Monte-Carlo iterations and we let ηs = 1, i.e the switches are ideal but
the fibers are not.

(a) (b)

Figure 5.10: (a) Similarity with noise S ′, and (b) post-selection probability PS versus loop
efficiency ηf and switch efficiency ηs with m = 3 modes, one photon per input mode, and
m− 1 loops. These two plots are again related in that PS is calculated from the switching
sequence that maximises S ′. This data was averaged over 1750 iterations.

actual experimentally obtained output state |ψa〉. Imperfect fiber lengths and time-jitter both
cause temporal shifts in the centre of the wave-packet, which will affect the output by both
introducing uncertainty into the timing of the bins reaching the detector, and undermining
the Hong-Ou-Mandel visibility at the central beamsplitter. To calculate F then we need to
calculate the temporal overlap between |ψi〉 and |ψa〉. Therefore, we need to consider the
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temporal structure of the photons.
We will model the temporal structure of photons using the formalism of Rohde et al.

[136]. We only consider the inner loop in this analysis because there is no interference at any
point in the outer loop. We obtain lower and upper bounds on F by performing a Monte-
Carlo search over different randomly generated unitaries V . We could also instead consider
V ′ in this formalism to also jointly include losses. But we will treat losses separately from
mode-mismatch for simplicity.

5.7.1 Temporal Structure of Photons
The temporal structure of a photon can be represented using a mode operator,

Â†(t′,∆) =

∫ ∞
−∞

ψ(t′ −∆)â†(t′)dt′, (5.12)

where ψ(t−∆) is the temporal density function centered at time t, ∆ is a shift of the tem-
poral centre of the photon, and â†(t) is the time-dependent photon creation operator. This
operator Â†(t,∆) acts on the vacuum |0〉 to create a photon with normalised Gaussian spec-
tral density function,

ψ(t−∆) =
1√
ω
√
π
e−

(t−∆)2

2ω2 , (5.13)

where ω/
√

2 is the standard deviation. We assume that τ � ∆, in which case t denotes a
time-bin, and ∆ denotes a small mismatch within the respective time-bin, not large enough
to cause a photon to ‘jump’ from one time-bin to the next. Thus, both t and ∆ represent
shifts in the centre of the photon’s wavepacket, but the former is of the order of the time-bin
separation, while the latter is of much smaller order than the time-bin separation. The units
of τ , t, ∆, and ω are all units of time of which the magnitude depends on the properties of
the photon source used.

5.7.2 Formalism for Analysis of Mode-Mismatch
To analyse mode-mismatch we will consider three regions of the architecture we label as
A, B, and C as shown in Fig. 5.11. Region A corresponds to the modes that are input
into the architecture from the source, region B corresponds to pulses inside the inner loop,
and region C corresponds to pulses that exit the dynamic beamsplitter towards the detector.
We introduce mode operators associated with each of these distinct regions — Â†(t,∆),
B̂†(t,∆), and Ĉ†(t,∆) — each of the form of Eq. (5.12).

. . .

Figure 5.11: The three regions we consider in the mode-mismatch formalism. Region A
corresponds to the modes coming from the source, region B to the modes inside the inner
loop, and region C to the modes exiting the loop.
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Since every pulse begins in region A the input state is a tensor product of pure states of
the form,

|Ψin〉 =
m⊗
i=1

1√
ki!
Â†(ti,∆i)

ki|0〉i, (5.14)

where the tensor product is taken over all m modes, {k} is a known string representing the
input photon-number configuration, and ki is number of photons in the ith input mode.

Next, the input state is transformed by the dynamic beamsplitter, which takes the mode-
operators from region A into superpositions of regions B and C,

ÛBS(t)Â†(t,∆)Û †BS(t) → u1,2(t)B̂†(t+ 1,∆)

+ u1,1(t)Ĉ†(t,∆), (5.15)

and pulses from region B to superpositions of regions B and C,

ÛBS(t)B̂†(t,∆)Û †BS(t) → u2,2(t)B̂†(t+ 1,∆)

+ u2,1(t)Ĉ†(t,∆), (5.16)

where we have used Eq. (5.1) for the elements of the dynamic beamsplitter at time t. ÛBS(t)
only acts on photons arriving at the beamsplitter at time t±∆ since τ � ∆. When a photon
enters the loop t→ t+ 1 as it advances to the next time-bin and will interfere with the next
temporal mode. After this evolution, the entire pulse-train is coupled out of the loop such
that the entire output state is a superposition of all possible output configurations.

Now we model the state of the pulse train after t beam-splitters have been implemented,

|Ψ(t)〉 =

[
t∏

i′=1

ÛBS(i′)

]
· |Ψin〉

=

[
t∏

i′=1

ÛBS(i′)

]
·
[
m∏
i=1

1√
ki!
Â†(ti,∆i)

ki

]
·
[

t∏
i′=1

ÛBS(i′)

]†
|0〉⊗m (5.17)

where the integer values of t denote the distinct time-bins. We note that there are m +
1 total beam-splitters in a single implementation of the inner loop since there are m− 1
beamsplitters to interfere the modes and another two beamsplitters to account for the initial
and final boundary conditions of the MGDR protocol. Given how we modelled how the
mode operators are transformed by ÛBS(t) in Eqs. (5.15) and (5.16) the tth beam-splitter
acts on the mode operators only in modal position t. Since a pulse coming out of the inner
loop exits at beam-splitter t its modal position is m = t − 1 which accounts for there being
m+ 1 beam-splitters and m modes.

In general the final evaluated form of |Ψout〉 may be expressed as a superposition of all
possible output photon-number configurations S, and their associated temporal configura-
tions T (S),

|Ψout〉 =
∑
S

∑
T (S)

[
γS,T

n∏
i=1

Ĉ†
(
tSi ,∆T (Si)

) ]
|0〉⊗m, (5.18)

where γS,T is the probability amplitude associated with photon time-bin configuration S and
temporal shift configuration T (S), tSi denotes the time-bin of the ith photon, T (S) denotes
a configuration of temporal shifts associated with the configuration S, and ∆T (Si) is the tem-
poral shift of the ith photon associated with configurations S and T . This is the most general
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representation of a configuration of photons across time-bins with associated shifts. The
probability of measuring a particular configuration is |γS,T |2, and to evaluate these probabili-
ties we must fully characterise spectrum of time-bin and temporal shift configurations, S and
T . Finding analytic forms for these expressions is largely prohibitive, and we calculate the
γS,T via brute-force simulation of the evolution of the mode-operators through the network
as described earlier.

5.7.3 Fidelity Metric
We analyse the results of this section by calculating the fidelity F between the ideal output
state and the actual output state, given by,

F = |〈Ψi|Ψa〉|2, (5.19)

where |Ψi〉 is the ideal output state with no mode-mismatch (∆→ 0) and |Ψa〉 is the actual
output state obtained with mode-mismatch. |Ψa〉 reduces to |Ψi〉 in the limit of no errors
yielding F = 1. Calculating this overlap but letting |Ψi〉 have general temporal mode mis-
match until the end of the calculation we obtain,

F =

∣∣∣∣ 〈0|⊗m∑
S′

∑
T ′(S′)

[
γS′,T ′

m∏
i′=1

Ĉ
(
tS′
i′
,∆T ′(S′

i′ )

)]
︸ ︷︷ ︸

〈Ψi|

∑
S

∑
T (S)

[
γS,T

m∏
i=1

Ĉ†
(
tSi ,∆T (Si)

)]
|0〉⊗m

︸ ︷︷ ︸
|Ψa〉

∣∣∣∣2

=

∣∣∣∣∑
S′,S,

∑
T ′(S′),T (S)

[
γS′,T ′γS,T 〈0|⊗m

m∏
i′=1

Ĉ
(
tS′
i′
,∆T ′(S′

i′ )

) m∏
i=1

Ĉ†
(
tSi ,∆T (Si)

)
|0〉⊗m

]∣∣∣∣2.
(5.20)

To simplify this expression further we use the formalism of second quantisation [145], which
describes how the indistinguishability of particles in quantum mechanics undergo symmetri-
sation. Here we use the exchange symmetry of the bosonic Fock states, which accounts for
how each temporal photon annihilation operator Ĉ

(
tS′
i′
,∆T ′(S′

i′ )

)
overlaps with each tempo-

ral photon creation operator Ĉ†
(
tSi ,∆T (Si)

)
. Using bosonic exchange symmetry we sum over

all m! permutations of
⊗m

i′=1 Ĉ
(
tS′
i′
,∆S′

i′

)⊗m
i=1 Ĉ†

(
tSi ,∆Si

)
. Then Eq. (5.20) becomes,

F =

∣∣∣∣∣∑
S′,S

∑
T ′(S′),T (S)

[
γS′,T ′γS,T

∑
σ

[ m∏
i=1

〈0|Ĉ
(
tS′σi′

,∆T ′(S′σi′
)

)
Ĉ†
(
tSi ,∆T (Si)

)
|0〉
]]∣∣∣∣∣

2

,

(5.21)

where σ are the permutations over m elements.
Finally, to calculate F we must find the wave packet simplification for

〈0|Ĉ
(
tS′σi′

,∆T ′(S′σi′
)

)
Ĉ†
(
tSi ,∆T (Si)|0〉, (5.22)

which we perform in App. A.2. Using this result we obtain,

F =

∣∣∣∣∣∑
S′,S

∑
T ′(S′),T (S)

[
γS′,T ′γS,T

∑
σ

[ m∏
i=1

exp

(
−

(
∆T ′(S′σi′

) −∆T (Si)

)2

4ω2

)]]∣∣∣∣∣
2

. (5.23)
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Letting the ideal state |Ψi〉 have no temporal shifts, ∆→ 0, this reduces to,

F =

∣∣∣∣∣∑
S′,S

∑
T ′(S′),T (S)

γS′,T ′ · γS,T ·m! · exp

(
−
m∆2

T (Si)

4ω2

)∣∣∣∣∣
2

. (5.24)

This derivation assumes the width of all wave-packets remain the same, i.e the photons are
identical up to a temporal displacement. The width of the wave-packets may broaden due to
dispersion but under the relatively short lengths of fiber-loop required for small m the effect
of dispersion may be neglected; however, as a very crude approximation, this formalism
may be easily modified to include dispersion by creating an operator that broadens the wave-
packet width ω as a function of the length of the fiber the wave-packet has traversed.

Next we consider two types of mode-mismatch: non-ideal lengths of the inner loop, and
time-jitter at the input source.

5.7.4 Imperfect Inner Loop Length
Here we analyse errors in the MGDR fiber-loop architecture caused by a non-ideal length
of inner fiber-loop We let the length of the inner loop have some length τ + δ, where δ is
the error in the intended length τ and may be positive or negative. Thus every photon that
traverses the inner loop acquires a temporal shift of δ from its expected centre. We ignore
imperfect lengths of the outer loop because every mode will traverse the outer loop an equal
number of times creating a global temporal shift with no impact on interference at the central
beamsplitter.

The input state is given by Eq. (5.14) where ∆i = 0 ∀ i. This models an ideal input state
with no time-jitter or other errors in the source. To account for the unwanted time-delay δ
we introduce the time-delay operator T̂(δ),

T̂(δ)B̂†(t,∆)T̂†(δ) = B̂†(t,∆ + δ), (5.25)

which acts only in region B – the region inside the inner loop. This adds a small temporal
displacement, not enough to confuse time-bins. Thus it affects ∆ but not t. It has no effect
on the mode-operators Â and Ĉ. Using the boundary conditions shown in the MGDR pro-
tocol, the first photon is coupled completely into the loop so it picks up a time-delay of δ.
Afterwards the pulse-train interacts at the beamsplitter described in Eqs. (5.15) and (5.16),
where it is sent into a superposition of regions B and C. As the state evolves all amplitudes
entering the inner loop (region B) will acquire a time-shift of δ. After the last mode traverses
the inner loop the state is coupled completely out as per the MGDR protocol. The output
state is given by,

|Ψ〉out =

[
t∏

i′=1

T̂(δ)ÛBS(i′)

]
·
[
m∏
i=1

1√
ki!
Â†(ti,∆i)

ki

]
·
[

t∏
i′=1

T̂(δ)ÛBS(i′)

]†
|0〉⊗m,(5.26)

where we have inserted the time-delay operator appropriately in Eq. (5.17). Fig. 5.12a shows
how the fidelity F scales with m, n, and δ and Fig. 5.13b shows the worst- and best-case
fidelities, where we have searched over switching sequences.

5.7.5 Time-Jitter from Input Source
A major source of error in the time-bin architecture is time-jitter of the input source. Ideally
each mode will be separated by time τ but in reality non-ideal sources will randomly shift
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Figure 5.12: (a) The average fidelity F between the ideal state |Ψi〉 and the actual experi-
mental state |Ψa〉 versus the error in the intended length of the inner loop δ. (b) The worst
(bottom) and best (top) case fidelity F between the ideal state |Ψi〉 and the actual experimen-
tal state |Ψa〉 versus the error in the intended length of the inner loop δ and number of modes
m. In (a) and (b) there are m modes with one photon per mode and the data was obtained
over 250 implementations each with a unique randomly generated unitary.

modes from their desired centre of time ti in mode i. To model time-jitter we let the temporal
shift of input mode i be a Gaussian random variable εi drawn from the normal distribution,

Ni(εi) =
1

σ
√

2π
exp

(
−(ti − εi)2

2σ2

)
, (5.27)

centered in mode i at time ti and with a standard deviation of σ. The input state of Eq. (5.14)
becomes,

|ψin〉 =
m⊗
i=1

1√
ki!
Â†
(
ti, εi

)ki |0〉i. (5.28)

We assume that the shifts caused by time-jitter are much less than the time-bin separation
τ , such that the probability of time-bin confusion remains negligible, i.e. N (εi)� τ . Fig.
5.13a shows how the fidelity F scales with m, n, and σ. Fig. 5.13b shows the worst- and
best-case F , searching over many switching sequences.

5.8 Discussion of Using Realistic Devices
With the two types of errors we have considered, loss and mode-mismatch, the final wave-
function is affected in predictable ways. In the case of loss the unitary transformation imple-
mented on the initial input state becomes biased. This causes the corresponding probabilities
of obtaining particular output wavefunctions to also become biased. There are two quantities
to consider in our work when considering loss, the loss in the fiber ηf and the loss from the
switches ηs. Today the best known efficiencies for these are ηf = 0.99 [146] and ηs ≈ 0.8
[147]. With these efficiencies the post-selection probability PS is too small to implement
a BosonSampling experiment of interesting size as can be seen in Fig. 5.10. Current fiber
technology is efficient enough to implement our architecture but the switches are too lossy.
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Figure 5.13: (a) The fidelity F between the ideal state |Ψi〉 and the actual experimental state
|Ψa〉 with random time-jitter in the input source versus modes m and standard deviation σ
with no fiber length error δ = 0. (b) The worst (bottom) and best (top) case fidelity F
between the ideal state |Ψi〉 and the actual experimental state |Ψa〉 with time-jitter. In (a)
and (b) there is one photon per mode, the data was averaged over 250 implementations each
with a unique randomly generated unitary, and the time-jitter was drawn from the normal
distribution.

The second type of loss we have considered is mode-mismatch. Our model can account
for any error that can shift the temporal location of the wave packets of the photons. We
focused on two such errors: 1) an imperfect length of the inner loop and 2) time-jitter from
the input source. In all cases this causes the experimentally obtained output wavefunction
to differ from the theoretically desired output wavefunction. We used the Fidelity metric F
to characterize this difference. We suspect that the error in the length of the inner loop δ
can be made extremely small by carefully characterizing the length of the inner loop using
coherent states of light so this should not be a considerable issue. The second error source we
considered, time-jitter, however is a problem in any experiment that requires single photons.
Ideally the standard devitaion σ in Eq. (5.27) would approach zero such that there is no
time-jitter. Today some of the best experimentally obtained values for this σ/ω are found in
references [148–150]. In these works σ/ω ≥ 5. Comparing this value to Fig. 5.13 we see
that source jitter needs to improve by about an order of magnitude for a time-bin architecture
to be feasable.

It seems that in the near future a BosonSampling experiment with more modes and more
photons than has ever been implemented could be carried out using this architecture due to
the fast rate at which quantum technologies are being researched and developed; however, it
may be much longer before this architecture has sufficiently low errors that it could be used
to implement a BosonSampling experiment that is in the classically hard regime to simulate.

5.9 Summary

We have presented the original work of Motes, Gilchrist, Dowling & Rohde [103] which is
an arbitrarily scalable architecture for universal BosonSampling based on two nested fiber
loops as motivated in section 5.2. The complexity of the architecture (which is described
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in detail in section 5.3) is constant, independent of the size of the interferometer being im-
plemented. Scalability is limited only by fiber and switch transmission efficiencies as well
as source efficiencies. There is only one point of interference in the architecture, which
suggests that it may be significantly easier to stabilize than traditional approaches based on
waveguides or discrete elements. We also considered an experimental simplification in sec-
tion 5.4 where full dynamic control is not required and showed that, while not universal,
with sufficient loops the unitary approximates a maximally mixing unitary. While we have
specifically considered this architecture in the context of BosonSampling, the same scheme,
or variations on it, may lend themselves to other linear optics applications, such as interfer-
ometry, metrology, or full-fledged LOQC. In section 5.5 we discuss many of the advantages
of our architecture.

Following the work presented in [103] we analysed sources of error in the fiber loop
architecture. Specifically we have analysed loss and mode-mismatch in section 5.6 and 5.7
respectively. In the loss analysis we examined how lossy fibers and switches affect the op-
eration of the architecture in both the inner and outer loops. We found that loss causes an
asymmetric bias in the desired unitary, unique to a temporally implemented unitary trans-
formation. That is, even upon post-selection the operation of the device is erroneous. Ad-
ditionally, like all linear optical architectures, our scheme has exponential dependence on
loss, thereby reducing the post-selection success probability of detecting all n photons. In
the mode-mismatch analysis we analysed only the inner loop since no interference occurs
in the outer loop. We examined two types of mode-mismatch including an imperfect length
of fiber in the inner loop, and time-jitter of the photon source. This analysis provides a
guideline for future experimental implementations, to provide insight into how such a device
might realistically behave in the presence of loss and mode-mismatch, the two dominant
error mechanisms affecting this protocol. In section 5.8 we discuss our architecture using
todays lowest reported loss rates and amount of mode-mismatch.



What we think, we become.
Buddha

6
BosonSampling with Other Quantum States

of Light

6.1 Synopsis

It is known that the BosonSampling sampling problem likely cannot be efficiently classically
simulated. This raises the question as to whether or not other similar systems implement
a sampling problem that is also computationally hard. One such variation to consider is
what happens when other quantum states of light are used at the input to the BosonSampling
device other than single-photon Fock states. Are there other quantum states of light that are
also computational hard to simulate? We answer this in the affirmative.

In section 6.2 we provide further motivation for this question. We have investigated the
BosonSampling problem with three different quantum states of light other than single-photon
Fock states which are published [80, 81, 151] and presented in this chapter:

1. In section 6.3 we consider single-photon-added coherent states (SPACS). We show
that the associated BosonSampling problem with displaced single-photon Fock states
at the input and using a displaced photon-number detection scheme is in the same com-
plexity class as BosonSampling for all values of displacement. We then show that the
associated BosonSampling problem with SPACS and using a displaced photon-number
detection scheme has an interesting computational complexity transition. The transi-
tion is from computationally hard when the coherent amplitudes are sufficiently small
to computionally easy when the coherent amplitudes become large. The intuitive ex-
planation is that with small coherent amplitudes we are approximating single photons
while with large coherent amplitudes we are approximating a more classical state like
a laser beam.

2. In section 6.4 we show that the BosonSampling problem with photon-added or -subtracted
squeezed vacuum (PASSV) states are in the same complexity class as BosonSampling
when sampling at the output is performed via parity measurements. Here we found an
exact proof that works for an arbitrary amount of squeezing.
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3. In section 6.5 we present the BosonSampling problem with a very broad class of quan-
tum states of light — arbitrary superpositions of two or more coherent states — at the
input. We were not able to find a full complexity proof for the hardness of this problem
but have strong evidence that when this state is evolved via passive linear optics and
sampled with number-resolved photodetection it is likely classically hard to simulate
like BosonSampling.

6.2 Motivation
The linear optical community was surprised when they found out about the computational
complexity of BosonSampling. Simply having a linear optical system with Fock states as in-
put and sampling using a suitable detection strategy at the output is computationally complex.
This fact opened inquiry into the complexity of other linear optical systems. Understanding
these systems could shed light in the field of computational complexity increasing our un-
derstanding of complexity classes and computation in general which would help lead us to
a quantum computer. It may also help us understand more systems that can be simulated
through experiment but are not efficient to simulate on a classical computer.

A modification to consider is whether or not other states of light input to a linear optical
network using similar output detection strategies are also of similar computational complex-
ity as BosonSampling. It is known that passive linear optics may be efficiently simulated
with Gaussian inputs and non-adaptive Guassian measurements [11, 152]. However, the
more general question as to which quantum states of light may be efficiently simulated with
number-resolved measurements is an open question. Recent results include that the case of
sampling with Gaussian states in the photon number basis can be just as hard as Boson-
Sampling [102]. Sampling with thermal states can be simulated efficiently on a classical
computer [153]. It has also been shown in some special cases that sampling two-mode
squeezed vacuum states is likely hard to efficiently simulate classically [78, 102]. Other
quantum states of light considered were single-photon-added coherent states (SPACS) by
Seshadreesan et al. [81], photon-added or -subtracted squeezed vacuum (PASSV) states by
Olson et al. [151], and generalized cat states (i.e. arbitrary superpositions of coherent states)
by Rohde et al. [80]. These three states evolved using linear optics and using photon number
detection, have been analysed and are presented in this chapter in sections 6.3, 6.4, and 6.5
respectively. Although these input states are more difficult to prepare than the single-photon
Fock state, the analysis of their computational complexity allows us to demonstrate interest-
ing phenomenon. We provide clarity on the theory of classifying the sampling complexity of
various quantum states and we demonstrate that Fock states are not unique in their sampling
complexity as there are a plethora of other quantum states of light which yield sampling
problems with similar complexity to BosonSampling.

6.3 Single-Photon-Added Coherent State Sampling
In this section we look into the computational complexity of BosonSampling with, instead
of single-photon Fock states at the input, displaced single-photon Fock states (DSPFS) and
single-photon-added coherent states (SPACS). We do this with a displaced photon number
detection. The displacement operator can be written as

D̂(α) = exp
(
αâ† − α∗â

)
, (6.1)
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where α is a complex amplitude that indicates displacement in phase space, and â† (â) is the
mode photon creation (annihilation) operator. The DSPFS is the state D̂(α)â†|0〉, while the
SPACS is ∝ â†D̂(α)|0〉. In this section we show three things. Firstly we show in section
6.3.1 that sampling with DSPFS is in the same complexity class as AA BosonSampling for
any displacement α. In section 6.3.2 we show the modified BosonSampling protocol with
SPACS, which differ from DSPFS by the ordering of the operators. The results here are in-
teresting becuase the sampling problem with SPACS is just as hard as AA’s BosonSampling
when the input coherent amplitudes are sufficiently small but when the input coherent am-
plitudes become larger the problem transitions from hard to simulate classically to easy to
simulate classically. This interesting transition is discussed in section 6.3.3.

6.3.1 Sampling Displaced Single-Photon Fock states (DSPFS)
In this section we use DSPFS instead of single-photon Fock states as per Eq. (3.1) at the
input to the linear-optical interferometer. This input state has the form

|ψin〉DSPFS =

(
n∏
i=1

D̂i

(
α(i)
)
â†i

)
|01, . . . , 0m〉, (6.2)

where D̂i

(
α(i)
)

is the displacement operator of the ith mode, and α(i) is the complex coher-
ent amplitude for the displacement. The input states reaches the linear optical interferometer
Û where a unitary operation transforms the state into

|ψout〉DSPFS = Û

(
n∏
i=1

D̂i

(
α(i)
)
â†i

)
Û †Û |01, . . . , 0m〉,

= Û

(
n∏
i=1

D̂i

(
α(i)
))

Û †Û

(
n∏
k=1

â†k

)
Û †|01, . . . , 0m〉

=
n∏
i=1

(
ÛD̂i

(
α(i)
)
Û †
) n∏
k=1

(
Û â†kÛ

†
)
|01, . . . , 0m〉

=

(
m∏
j=1

D̂j

(
β(j)
))(∑

S

γS(b̂†1)s1(b̂†2)s2 . . . (b̂†m)sm

)
× |01, . . . , 0m〉, (6.3)

where β(j) =
∑

i Ui,jα
(i) is the new displacement amplitude in the jth mode, b̂†k is the

photon-creation operator of the kth mode, and sk is the number of photons in the kth mode,
associated with configuration S at the output such that

∑m
k=1 sk = n for each S. To derive

this expression we have used: Û †Û = I , Û |01, . . . , 0m〉 = |01, . . . , 0m〉, Eq. (3.2) and Eq.
(3.3). We have also invoked that a unitary on a tensor product of coherent states is another
tensor product of coherent states as shown in App. A.5. The result is a displaced version of
AA’s original BosonSampling output state.

Now the question is does this output state have computational complexity similar to that
of BosonSampling? The answer is yes. This is because the the new complex displacement
amplitudes β(j) can be efficiently computed for any unitary operator U . Also, a counter-
displacement with amplitudes −β(j) could simply be applied to the m output modes since
D(−α)D(α) = I , which is classically efficient and can be performed using unbalanced ho-
modyning [154, 155]. With this counter displacement we are left with exact BosonSampling
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“0”

Figure 6.1: A SPACS may be made by mixing a coherent state and a single photon state on a
highly reflective beamsplitter. When no photon is detected in the transmitted mode, a SPACS
is heralded in the transmitted mode.

and thus sampling DSPFS using a measurement scheme at the output that is comprised with
an inverse displacement followed by coincidence photon-number detection is in the same
complexity class as BosonSampling. This demonstrates that an entire class of quantum states
of light may be used to achieve a sampling problem of equal complexity to BosonSampling.

6.3.2 Sampling Single-Photon-Added Coherent States (SPACS)
SPACS differ from DSPFS in the ordering of the operators. Since the displacement oper-
ator of Eq. (6.1) does not commute with the photon creation operator â†, these states are
sufficiently different. A k-photon-added coherent state may be written as

|α, k〉 = Nkâ†
k |α〉, (6.4)

with normalization
Nk =

1√
k!Lk(−|α|2)

, (6.5)

whereLk is the Laguerre polynomial of order k. These states were first described by Agarwal
& Tara [156]. The state we are interested in this work is the SPACS whereby we consider
|α, 1〉 in Eq. (6.4).

A SPACS may be created by mixing a single photon (perhaps prepared with spontaneous
parametric down-conversion) with a coherent state on a highly reflective beam splitter as
shown in Fig. 6.1. When vacuum is detected in one the top output mode we know that the
single photon has been added to the coherent state in the other output port, and thus a SPACS
has been heralded [157–160].

The quantum-classical transition of SPACS have been studied since they allow for a
seamless interpolation between the highly nonclassical Fock state |1〉 (α → 0) and a highly
classical coherent state |α〉 (|α| � 1) [159]. The Wigner function of a SPACS can be
expressed as [156]

W (z) =
2(|2z − α|2 − 1)

π(1 + |α|2)
e−2|z−α|2 , (6.6)

where z = x + iy is the phase-space complex variable, and α the coherent amplitude in the
state. Fig. 6.2 shows the Wigner functions of a SPACS and a coherent state. The former at-
tains negative values at points close to the origin in phase space, which clearly demonstrates
the nonclassical nature of the state. Fig. 6.3 shows 2-d slices along position of the Wigner



6.3 Single-Photon-Added Coherent State Sampling 69

function of a SPACS taken at a fixed momentum of zero as a function of the coherent ampli-
tude |α|. It can be seen that the Wigner function loses its negativity as α increases and tends
towards being a Gaussian state.

Figure 6.2: Wigner function of a SPACS (left) and a coherent state (right), with amplitude
|α|2 = 0.01. The former is seen to take negative values close to the phase-space origin,
while that of the latter is strictly positive everywhere thus measuring W (0) would be able to
distinguish between a SPACS and a coherent state.

Figure 6.3: Two-dimensional slices along position of the Wigner function of a SPACS taken
at a fixed momentum of zero as a function of the coherent amplitude |α|. For increasing
values of |α| we see that the negativity of the Wigner function vanishes and that it becomes
Gaussian.

The SPACS-based input that we consider to a linear-optical sampling device can be writ-
ten as

|ψin〉SPACS = N
n∏
i=1

â†iD̂i

(
α(i)
)
|01, . . . , 0m〉, (6.7)

with

N =
n∏
j=1

1√
1 + |α(j)|2

, (6.8)

where α(i) represents the complex coherent amplitude in the ith mode and N is the overall
normalization factor. In words this is saying that the input to the first nmodes are SPACS and
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the remaining m− n modes are in the vacuum state. A unitary operation Û then transforms
the state as

|ψout〉SPACS = Û |ψin〉SPACS

= N Û
(

n∏
i=1

â†iD̂i

(
α(i)
))

Û †Û |01, . . . , 0m〉. (6.9)

This state can also be written as

|ψout〉SPACS = N Û
{

n∏
i=1

(
D̂i

(
α(i)
)
â†i + α(i)∗D̂i

(
α(i)
))}

Û †

× |01, . . . , 0m〉, (6.10)

where we have used the commutation relation between the displacement operator and the
photon-creation operator [

a†, D̂(α)
]

= α∗D̂(α). (6.11)

We can further simplify the state

|ψout〉SPACS = N Û
n∏

i′=1

D̂i′

(
α(i′)

)
Û †Û

n∏
i=1

(
â†i + α(i)∗

)
Û †

× |01, . . . , 0m〉,

= N
n∏

i′=1

(
ÛD̂i′

(
α(i′)

)
Û †
) n∏
i=1

(
Û â†i Û

† + α(i)∗
)

× |01, . . . , 0m〉

= N
m∏
j=1

D̂j

(
β(j)
) n∏
i=1

(
Û â†i Û

† + α(i)∗
)
|01, . . . , 0m〉, (6.12)

where β(j) =
∑

i′ Ui′,jα
(i′) is the new displacement amplitude in the jth mode. As in the

case of DSPFS sampling from subsection 6.3.1, we can now apply a counter-displacement
operation of amplitude

∏m
j=1 D̂j

(
−β(j)

)
, which is efficiently computed, so that the output

state reduces to

|ψout〉SPACS = N
n∏
i=1

(
Û â†i Û

† + α(i)∗
)
|01, . . . , 0m〉. (6.13)

We will now denote the state
∏n

i=1

(
Û â†i Û

†
)
|01, . . . , 0m〉, which corresponds to AA-

type BosonSampling as |AA〉. Further, for simplicity, we choose all the input coherent am-
plitudes to be equal to α. Then, the output state in Eq. (6.13) can be written as

|ψout〉SPACS = N ′
(
n−1∑
i=0

α∗n−i
(
ÛÂ(i)Û †

)
|01, . . . , 0m〉+ |AA〉

)
, (6.14)

where Â(i) is defined for i ∈ {0, 1, · · · , n} as

Â(i) ≡
{

1
i!(n−i)!

∑
σ∈Sn

∏i
k=1 â

†
σ(k), if i ≥ 1

Î, if i = 0,
(6.15)
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with Sn being the symmetric group of degree n, Î being the identity operator, and N ′ =
1/(
√

1 + |α|2)n. Now we are left with performing photon number detection at the output.
Detection events consisting of detecting all photons n at the output correspond to sampling
of the |AA〉 term from the superposition. The probability of detecting a total of i photons at
the output can be written as

Pi = N ′2
(
n

i

)(
|α|2
)n−i

, (6.16)

since there are
(
n
i

)
terms in Â(i), each with a weight of N ′2 (|α|2)

n−i.

6.3.3 The Quantum-Classical Divide and Computational-Complexity
Transitions

Now we would like to analyse the computational complexity of this scheme. We know that
the |AA〉 term in Eq. (6.14) is computationally complex to sample from and is obtained when
detecting n photons at the output. To show computational hardness we ask how should |α|
scale in terms of n (i.e. the total number of SPACS in the input) so that the probability of de-
tecting n photons at the output may be obtained in a polynomial number of measurements. In
other words the post-selection probability of the interferometer scales inverse polynomially
in n since this scaling would guarantee that a polynomial number of measurements would
obtain samples from the desired |AA〉 term at the output.

To show this we will let poly(n) = nk, where k ∈ Z+ (the set of positive integers).
Using the state of a SPACS from Eq. (6.7) and solving for |α| that satisfies the above scaling
requirement in the limit of a large n, we have

1

(1 + |α|2)n
≥ 1

poly(n)

⇒ 1 + |α|2 ≤ (poly(n))1/n

≤ 1 + ε(n), (6.17)

where the third inequality is due to the fact that for all k ∈ Z+,

lim
n→∞

(nk)1/n = lim
n→∞

e
k
n

logn

= lim
n→∞

e
k
n = e0+

= 1 + ε(n). (6.18)

From Eq. (6.17), we have
|α|2 ≤ ε(n), (6.19)

and the large-n expansion

e
k
n

logn = 1 +
k

n
log n+O(

1

n2
), (6.20)

tells us that ε(n) ≥ (k/n) log n. The chain of inequalities

ε(n) ≥ k log n

n
≥ 1

n
(6.21)
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implies |α|2 ≤ 1/n is a sufficient condition on |α| to ensure that the post-selection probability
of the |AA〉 term scales inverse polynomially in n. For |α|2 = 1/n, in the limit of large n,
the probability of the term |AA〉 being detected at the output is

Pn = lim
n→∞

1

(1 + 1
n
)n

=
1

e
≈ 36%. (6.22)

Further, the probability Pn converges to one when |α|2 = 1/n2. In other words the
sampling problem with SPACS inputs reduces to AA BosonSampling without the need for
post selection. This result is consistent with AA’s original result that BosonSampling is robust
against small amounts of noise [67].

Another way analyse the computational complexity is by asking how should |α| scale so
that the photon number sampling almost always yields the m-mode vacuum? For |α|2 = n2,
we find that the probability of the m-mode vacuum term being detected at the output is

P0 = lim
n→∞

(n2)
n

(1 + n2)n

= lim
n→∞

1

(1 + 1
n2 )n

= 1. (6.23)

This shows that the sampling problem with SPACS inputs becomes classically easy when
|α|2 scales as n2, or larger because it always results in the detection of the m-mode vacuum
at the output.

W found that that the computational complexity of sampling the SPACS goes from being
just as hard as AA’s BosonSampling for coherent amplitudes when

|α|2 ≤ 1/n, (6.24)

to being classically simulatable when

|α|2 ≥ n2, (6.25)

where n is the total number of SPACS inputs. There is an intermediate regime between
1/n and n2 where we were not able to prove the computational complexity and so regime
is left open as in interesting phenomena to investigate. Interestingly, this problem becomes
classically easy to simulate when the number of photons at the output exceeds the fluctuation
of photon number in the coherent states.

6.4 Photon-Added or -Subtracted Squeezed Vacuum State
Sampling

In this section we demonstrate that the BosonSampling problem using photon-added or -
subtracted squeezed vacuum (PASSV) states at the input and parity measurements at the
output is of equal computational complexity to Fock state BosonSampling for an arbitrary
amount of squeezing. To do this we prove that this problem implements the same logical
problem as BosonSampling whereby the output statistics of the device is given by the same
matrix permanent sampling problem. This is advantageous because we avoid doing the full
complexity proof as done by AA, which was about one hundred pages long, yet we can
still use their results. To do this we are careful to show that this problem is equivalent to
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the BosonSampling problem. Also, since we are able to show an exact mapping to Boson-
Sampling, then the error threshold for approximate BosonSampling holds. For consistency
and simplicity, we consider in this analysis for the case of photon-added squeezed vacuum
(PASV) states throughout this work and show that the subtracted (PSSV) case arbitrarily
follows.

In section 6.4.1 we discuss the PASSV input state and describe a non-deterministic
method for preparing this input state. In section 6.4.2 we discuss the evolution of this state,
which is similar to the evolution that is used in standard BosonSampling except that we
choose a Haar-random unitary with all real elements. In section 6.4.3 the output state is
calculated and in section 6.4.4 describe how parity measurement is used to obtain the same
computationally complex output statistics as BosonSampling. Next we mention some com-
plexity concerns in section 6.4.5 and wrap this section up with some discussion about this
work in 6.4.6.

6.4.1 Input

PASV states may be prepared by mixing a SV state (obtained from a degenerate paramet-
ric down-converter) with a single-photon state on a low reflectivity beamsplitter and post-
selecting upon detecting the vacuum state in one of the output modes. The preparation
scheme is shown in Fig. 6.4. When the post-selection is successful the PASV state is her-
alded in the other output mode. This scheme is non-deterministic, as are most quantum
optical shemes, but may be performed in advance to the sampling protocol. PSSV states
may be prepared similarly by sending in a squeezed state and a vacuum state to the inputs
and post-selecting on one photon in one of the modes.

Figure 6.4: Preparation of a PASV state. A SV state is mixed with a single-photon state
on a low reflectivity beamsplitter. The top output mode is detected. Upon successful post-
selection of the vacuum state the PASV state is prepared in the right output mode. The
process is highly non-deterministic but can be performed before the sampling protocol.

For PASV BosonSampling we prepare the first n modes with PASV states and the re-
maining m− n modes with squeezed vacuum (SV) states. We let each mode have the same
amount of squeezing given by the squeezing parameter ξ, which is of arbitrary value. The
input state is

|ψ〉SV
in = â†1Ŝ1(ξ) . . . â†nŜn(ξ)Ŝn+1(ξ) . . . Ŝm(ξ)|01, . . . , 0m〉

= â†1 . . . â
†
n|ξ1, . . . , ξm〉, (6.26)
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where we have abbreviated Ŝi(ξ)|0i〉 = |ξi〉 and again the subscript indicates mode number.
The input state in Eq. (6.26) is not normalized but can be normalized with the stateN|ψ〉SV

in ,
where

N =
[√

1 + sinh2(ξ)
]−n

. (6.27)

This normalization does not affect our result so we leave it out for simplicity. The squeezing
operator is

Ŝ(ξ) = exp

[
1

2
(ξ∗â2 − ξâ†2)

]
, (6.28)

where â† and â are the photon creation and annihilation operators respectively. In the Fock
basis, if ξ = reiθ, then Ŝ(ξ)|0〉 = |ξ〉 may be expressed as [121]

|ξ〉 =
1√

cosh(r)

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ tanhm(r)|2m〉. (6.29)

It can be seen that the SV state contains only even photon-number terms. When a creation
or annihilation operator acts on a PASSV state then the resulting state contains only odd
photon-number terms. In the limit of zero squeezing the SV state approaches the vacuum
state

lim
ξ→0
|ξ〉 = |0〉, (6.30)

and the PASV state approaches the single-photon state

lim
ξ→0

â†|ξ〉 = |1〉. (6.31)

Thus, we see that in the limit of vanishing squeezing, PASV BosonSampling reduces to ideal
Fock state BosonSampling.

6.4.2 Evolution
The input state is fed into a passive linear optics interferometer consisting of beamsplitters
and phaseshifters, like in the original BosonSampling protocol, which transforms the creation
operators according to a linear map

Û â†i Û
† →

∑
j

Ui,j â
†
j, (6.32)

where Û is an m × m matrix. For PASSV BosonSampling we consider an interferometer
consisting of real beamsplitters that implements an orthogonal matrix, which is also chosen
to be Haar-random. So the difference is that for Fock state BosonSampling ÛAA ∈ SU(m),
whereas for PASSV BosonSampling ÛSV ∈ SO(m). Reck et al. showed that any m×m
unitary or orthogonal matrix can be implemented with at most O(m2) optical elements and
that there is an efficient algorithm for finding the decomposition [109].

The complexity of choosing an orthogonal matrix instead of a unitary one is a concern be-
cause there is the possibility of choosing a subset of matrices from SU(m), whose permanent
is efficiently simulatable by a classical computer. If we were to sample from an efficiently
simulatable distribution, then the result would not be interesting since the whole interesting
aspect of BosonSampling is that it simulates a classically intractable system. Later we prove
that the associated complexities are equivalent and so the problem remains interesting.
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Fock state boson-sampling

PASSV state boson-sampling

Number-resolved or
on/off  photodetection

Parity measurement

Fock state boson-sampling

PASSV state boson-sampling

Number-resolved or
on/off  photodetection

Parity measurement

Figure 6.5: (Left) The original Fock state model of BosonSampling whereby we feed an
m-mode linear optical interferometer with n-single photons and m− n vacuum states and
sample via coincidence number-resolved photodetection. (Right) PASSV BosonSampling
whereby we prepare n PASV states instead of single photons and m− n SV states instead
of vacuum states and sample via coincidence parity measurement.

6.4.3 Output
The output state for the original Fock state model of BosonSampling after passing through
the interferometer can be expressed as

|ψ〉AA
out = ÛAA|ψ〉AA

in

= ÛAA

[
â†1 . . . â

†
n|01, . . . , 0m〉

]
=

[
ÛAA(â†1 . . . â

†
n)Û †AA

]
ÛAA|01, . . . , 0m〉

=
[
ÛAA(â†1 . . . â

†
n)Û †AA

]
|01, . . . , 0m〉, (6.33)

where the last equality holds because UAA|0〉 = |0〉 (i.e. UAA represents passive optical
elements which cannot generate new photons).

With PASSV BosonSampling we can use the same technique as in Eq. (6.33)

|ψ〉SV
out = ÛSV|ψ〉SV

in

=
[
ÛSV(â†1 . . . â

†
n)Û †SV

]
ÛSV|ξ1, . . . , ξm〉. (6.34)

It was shown by Jiang et al. [78] that a pure product state input to a linear optical network is
entangled at the output unless the input is either a tensor product of coherent states or a tensor
product of squeezed states (with the same squeezing) provided that the network does not mix
the squeezed and anti-squeezed quadratures. Not mixing the quadratures can be achieved by
using a network comprised of real beamsplitters. This condition is satisfied since we are
using ÛSV ∈ SO(m) and so the output state becomes

|ψ〉SV
out =

[
ÛSV(â†1 . . . â

†
n)Û †SV

]
|ξ1, . . . , ξm〉. (6.35)

The leading operator corresponds to a configuration of n creation operators as in Eq. (6.33).
The output can therefore be represented in a form like BosonSampling where we distinguish
all of the possible output distributions

|ψ〉SV
out =

∑
S

γ′S

[
(â†1)S1 . . . (â†m)Sm

]
|ξ1, . . . , ξm〉, (6.36)



76 BosonSampling with Other Quantum States of Light

where,

γ′S =
γS√

S1! . . . Sm!
=

Per(US)√
S1! . . . Sm!

. (6.37)

In the binary regime γ′S = γS . For PSSV states the output is of the same form. This can
be seen by replacing â†i with âi, but γS now relates to Û †SV instead of ÛSV , which is also
Haar-random. We exclude the case of the PSSV states when ξ = 0 since â|0〉 = 0.

We know that from Eq. (6.29) that squeezed states represented in the Fock basis have
only even photon-number terms and so for a particular configuration S where mode i does
not have a creation/annihilation operator acting on it, mode i is a superposition of only even
photon number states, whereas if mode i has a creation/annihilation operator applied it con-
tains only odd photon-number terms.

6.4.4 Measurement
The last step in BosonSampling is to measure the output distribution. For PASSV Boson-
Sampling we perform a parity measurement that distinguishes between odd and even photon
number. These measurements may be characterised by the measurement operators

Π̂+ = |0〉〈0|+ |2〉〈2|+ |4〉〈4|+ . . . (6.38)
Π̂− = |1〉〈1|+ |3〉〈3|+ |5〉〈5|+ . . . .

A photon-number-resolving detector could easily implement this measurement scheme. Im-
portantly this measurement scheme implies that measuring an even photon-number at output
mode i means that there was no creation/annihilation operator associated with that mode,
whereas measuring an odd photon-number implies that there was. This measurement per-
fectly recovers the configuration S since we are sampling the same creation/annihilation
operators as in BosonSampling. An interesting observation is that the squeezing parameter ξ
has no effect on the parity of the state and so the sampling statistics are independent of the
squeezing. In other words an arbitrary amount of squeezing can be done and a computation-
ally complex sampling problem is still implemented.

6.4.5 Complexity Concerns
We have shown that the PASSV model samples permanents of submatrices in the same way
as Fock state sampling. The only barrier to completing our proof is that BosonSampling and
PASSV sampling is in the same complexity class is to show whether choosing an orthogonal
matrix has any implications for the complexity of PASSV sampling.

The first thing to consider is whether or not a Haar-random matrix in SO(m) might
have an efficiently computable exact or approximate permanent, where SO(m) is the m-
dimensional rotation group. It is known that the exact permanent case is #P-hard even for
binary entries of the matrix, Ui,j ∈ {0, 1} [114]. If the matrix has entries consisting of only
non-negative real numbers then there is also a known algorithm for efficiently approximating
a permanent. Also, in the same work it was shown that for a matrix with a single negative
entry that an efficient approximation algorithm would allow one to compute an exact {0, 1}-
permanent efficiently [115]. Although computing a difficult permanent is a necessary but not
sufficient condition for computational hardness since SO(m) is considered to be universal
for linear optics [161], there is no such complexity condition between unitary and orthogonal
matrices.



6.4 Photon-Added or -Subtracted Squeezed Vacuum State Sampling 77

More concretely, it is known that SU(m) ⊂ SO(2m), where SU(m) is the Lie group
of m×m unitary matrices [162]. This statement means that for a 2m-mode interferometer,
the set of all orthogonal transformations includes all unitary m-mode transformations as a
subgroup. This means that the complexity of sampling the output of a BosonSampling device
implementing an arbitrary matrix from SO(2m) is at least as hard as sampling matrices from
SU(m) with only a linear increase of mode number. The same complexity extends to an
odd number of modes since SO(2m) ⊂ SO(2m + 1). This also implies that Fock state
BosonSampling itself remains hard under orthogonal transformations.

Now it is clear that PASSV BosonSampling is in the same complexity class as Fock state
AA BosonSampling. If we let A be some complexity class containing Fock state Boson-
Sampling, then we have shown that A also contains PASSV BosonSampling. The output of
PASSV BosonSampling is completely independent of the squeezing parameter ξ and so we
may assume without loss of generality that ξ = 0. In this limit |ξi〉 = |0i〉 and thus this
case of PASSV BosonSampling reduces to an instance of Fock state BosonSampling since
SO(m) ⊂ SU(m). Now suppose B is some complexity class containing PASSV Boson-
Sampling. Again choosing ξ = 0, the inclusion SU(m) ⊂ SO(2m) similarly implies that B
also contains Fock state BosonSampling.

6.4.6 Discussion of PASSV Sampling

This PASSV result can be thought of in terms of letting the ket in Eq. (6.33) act as a ‘back-
ground’ signal which is invariant during the evolution of ÛSV . Since the leading operator in
Eq. (6.35) takes the same form as Eq. (6.33), we would like the ket to also be independent
of the choice of ÛSV under some measurement, while still being distinguishable from a state
which has an added or subtracted photon. The technique used in this work may be able to
be used to characterize other states which implement a logically equivalent classically in-
tractable sampling problem. A goal of ours is to prove an even more experimentally friendly
set of states and measurements that implements the same computationally complex sampling
problem.

PASSV BosonSampling is harder to implement than ordinary BosonSampling, which is
already quite challenging. One particularly strong criticism of PASSV BosonSampling is
that it may require the use of photon-number resolving detectors to implement parity mea-
surements instead of bucket detectors. Whilst this is true, one only needs to distinguish the
parity of the even and odd photon-number Fock states and not the value of the Fock state.

For any given ξ and error rate the maximum number of necessarily distinguishable Fock
states may be reduced. PASSV BosonSampling may be regarded as a generalization of Fock
state BosonSampling, since in the limit of small squeezing (ξ → 0), the SV reduces to a
vacuum state and an on/off detector suffices. Additional experimental hurdles arise because
squeezed states become more susceptible to noise. We do not address experimental errors
such as this in our work. Our goal is to theoretically demonstrate the non-uniqueness of
Fock states for computationally hard sampling problems and develop new techniques for
understanding the computational complexity of other sampling problems.

In this work we have shown that orthogonal matrices are sufficiently hard for PASSV
sampling. A natural question is whether or not choosing another matrix, such as a unitary
matrix, could change the complexity of the PASSV sampling problem. This question is not
so easily solved since Eq. (6.35) no longer holds. Intuitively we expect that the problem
would not become easier. In the limit of zero squeezing, we know there is no special compu-
tational complexity transition since PASSV sampling reduces to Fock state sampling. If such
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a complexity transition did exist, such as in SPACS sampling of section 6.3, then we would
expect a complexity phase transition at ξ = 0. The same sampling probabilities however may
be constructed with a different measurement scheme but this remains an open question.

6.5 Generalized Cat State Sampling
In this section we consider a BosonSampling device where the input states are arbitrary su-
perpositions of coherent states. This constitutes a broad class of continuous-variable optical
states. In this work we focus on analysing cat sampling in three separate limits:

1. First, in section 6.5.1 we review the coherent state, analyse even and odd cat states,
and show that their Taylor expansions reduce to the vacuum and single-photon Fock
state respectively as α → 0. Thus, in the zero amplitude limit, cat sampling exactly
reduces to BosonSampling and therefore yields a computationally hard problem.

2. Second, in section 6.5.2 we analyse small, but non-zero amplitude odd cat states. This
is equivalent to Fock state sampling with some components that are treated as an er-
ror. This error is related to the AA proof for approximate BosonSampling, where it
is required that the error rate satisfies a 1/poly(n) bound. Thus small, but non-zero,
amplitude odd cat states are also computationally hard.

3. Third, in section 6.5.3 we analyse general cat states which are arbitrary superpositions
of two or more coherent states. We demonstrate that the output state is a highly entan-
gled superposition of an exponential number of multi-mode coherent states [163–167],
where the amplitude of each term is related to a permanent-like combinatoric problem,
which would require exponential resources to compute via a brute-force approach.
This provides strong evidence that such generalized optical sampling problems might
be implementing classically hard problems. Determining a complete characterization
of the computational complexity of such problems is a notoriously difficult open prob-
lem, but based on the evidence we present here, it likely resides in a classically hard
class comparable to ideal BosonSampling.

Next, in section 6.5.4 we present a complexity theoretic argument for the hardness of cat
state sampling to further support our evidence. We show that unless the polynomial hierarchy
collapses to the third level there must not exist an efficient randomized classical algorithm
which can produce an output distribution approximating that of an arbitrary interferometer
with multiplicative error of

√
2 or less.

While such states may be more challenging to prepare than Fock states, addressing this
question sheds light on what makes a quantum optical system classically hard to simulate,
and may provide motivation for developing technologies for preparing quantum states of
light beyond Fock states. We end this work with section 6.5.5 by discussing the prospects
for experimentally preparing general cat states.

6.5.1 Zero Amplitude Cat analysis
Cat state is a generic term for an arbitrary superposition of macroscopic states and may
be used for quantum information processing [168]. In quantum optics, this is generally
understood to mean a superposition of two coherent states, potentially with large amplitudes.
This is the definition we will use in this work.
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Firstly, a coherent state is state of the quantum harmonic oscillator [121] that most closely
resembles a state of a classical harmonic oscillator. It may be defined in the Fock basis as,

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉, (6.39)

where α = |α|eiθ is a complex number, |α| represents the amplitude of the state, and θ
represents the phase of the state.

Two illustrative examples of superpositions of these coherent states are the even (+) and
odd (−) cat states, so-called because they contain only even or odd photon-number terms
respectively,

|cat±〉 =
(|α〉 ± | − α〉)√

2(1± e−2|α|2)
. (6.40)

The odd cat state has the property that all of the even photon number terms vanish. In the
limit of α→ 0 its amplitude identically approaches the single-photon state as shown here,

lim
α→0
|cat−〉 = lim

α→0

√
2e
−|α|2

2√
1− e−2|α|2

(
α|1〉+

α3|3〉√
3!

+ . . .

)
≈ |1〉+O(α2)|3〉
→ |1〉. (6.41)

In the limit as α→ 0 we ignore all higher order α terms.
Furthermore, the vacuum state is given by a trivial cat state containing only a single term

in the superposition with a respective amplitude of α = 0. Alternately, the vacuum state can
be regarded as the zero amplitude limit of the even cat state,

lim
α→0
|cat+〉 = lim

α→0

√
2e
−|α|2

2√
1 + e−2|α|2

(
α|0〉+

α2|2〉√
2!

+ . . .

)
≈ |0〉+O(α2)|2〉
→ |0〉. (6.42)

Thus, it is immediately clear that in the α→ 0 amplitude limit, cat state sampling reduces
to ideal BosonSampling, using an appropriate configuration of odd and even cat states, which
is a provably hard problem. We use the term ‘provably hard’ to mean computationally hard,
assuming that ideal and approximate BosonSampling are computationally hard. Specifically,
to implement exact BosonSampling with cat states, we choose our input state to be,

|ψin〉 = lim
α→0

(|cat−〉1 . . . |cat−〉n|cat+〉n+1 . . . |cat+〉m)

= |11, . . . , 1n, 0n+1, . . . , 0m〉, (6.43)

which is exactly the form of Eq. (3.1). This example is trivial but the point is to show a simple
example of cat states leading to a computationally hard problem in a particular limit, which
raises the question as to whether it remains hard as we transition out of that limit. In App. A.3
we present an example of this reduction in the case of Hong-Ou-Mandel interference to
explicitly demonstrate that small amplitude cats behave as single photons. This demonstrates
that in certain regimes, cat state sampling reproduces single-photon statistics.
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6.5.2 Small Amplitude Cat Analysis
Having established that cat sampling reduces to BosonSampling in the zero amplitude limit,
the obvious next question is ‘what if the amplitude is small but non-zero?’. It was shown
by AA that BosonSampling, when corrupted by erroneous samples, remains computationally
hard provided that the error rate scales as 1/poly(n). If we consider a small, but non-zero,
amplitude odd cat state, we can treat the non-single-photon terms, which scale as a function
of α, as erroneous terms. The error that these erroneous terms induce must be kept below
the 1/poly(n) bound. Specifically,

|cat−〉 = γ1(α)|1〉︸ ︷︷ ︸
single photon

+ γ3(α)|3〉+ . . .︸ ︷︷ ︸
error terms

, (6.44)

where γi(α) defines the odd photon-number distribution and follows from Eq. (6.58). The
left underbraced component represents the desired single-photon term and the right under-
braced component represents the remaining photon-number terms, which are treated as er-
rors.

In App. A.4 we show that the bound on the amplitude of the cat states for a provably hard
sampling problem to take place is,

α2ncschn(α2) > 1/poly(n), (6.45)

where we input odd cat states in every mode requiring a |1〉 and vacuum in the remaining
modes. Although this function is exponential in n the probability of successfully sampling
from the correct distribution will satisfy this bound for sufficiently small values of n and
α. The value of n may still be large enough however to implement a post-classical Boson-
Sampling device. Thus, it follows that for non-zero, but sufficiently small α, cat sampling
remains computationally hard.

We have established that cat state BosonSampling is a provably computationally hard
problem in two regimes: (1) in the α → 0 amplitude limit, in which case we reproduce
ideal BosonSampling, and (2) for non-zero but sufficiently small amplitudes, in which case
the non-single-photon-number terms may be regarded as errors, which remains a computa-
tionally hard problem, subject to the bound given in Eq. (6.45). Having established this, the
remainder of this work is dedicated to the completely general case where the terms in the cat
states may have arbitrary amplitude, potentially at a macroscopic scale.

6.5.3 Arbitrary Amplitude Cat Analysis
In this section we will consider generalized cat state sampling which are arbitrary superpo-
sitions of an arbitrary number of coherent states of the form

|cat〉 =
t∑

j=1

λj|αj〉. (6.46)

We let the input state to our more generalized BosonSampling model comprise m arbi-
trary superpositions of t coherent states

|ψin〉 =
m⊗
i=1

t∑
j=1

λ
(i)
j |α(i)

j 〉, (6.47)
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where |α(i)
j 〉 is the coherent state of amplitude α ∈ C of the jth superposition term in the ith

mode, and λ(i)
j ∈ C is the amplitude of the jth term of the superposition in the ith mode1. In

line with traditional BosonSampling, we can choose a number of the modes to be the vacuum.
This is achieved by setting λ(i)

1 = 1 and α(i)
1 = 0.

Expanding this expression yields a superposition of multi-mode coherent states of the
form

|ψin〉 =
t∑

~t=1

λ
(1)
t1 . . . λ

(m)
tm |α

(1)
t1 , . . . , α

(m)
tm 〉, (6.48)

where ~t is shorthand for {t1, ..., tm}. We propagate this state through the passive linear
optics network Û as illustrated in Fig. 6.6. Such a unitary network has the property that a
multi-mode coherent state is mapped to another multi-mode coherent state,

Û |α(1), . . . , α(m)〉 → |β(1), . . . , β(m)〉, (6.49)

where the relationship between the input and output amplitudes is given by

β(j) =
m∑
k=1

Uj,kα
(k), (6.50)

as shown in App. A.5. Û acts on each term in the superposition of Eq. (6.48) independently
yielding an output state of the form,

|ψout〉 = Û |ψin〉

=
t∑

~t=1

λ
(1)
t1 . . . λ

(m)
tm |β

(1)
~t
, . . . , β

(m)
~t
〉. (6.51)

The number of terms in the output superposition is tm, scaling exponentially with the number
of modes given that t > 1.

Our goal is to sample this distribution using number-resolved photodetectors, which are
described by the measurement projectors,

Π̂i(n) = |n〉i〈n|i, (6.52)

where n is the photon-number measurement outcome on the ith mode. Multi-mode mea-
surements are described by the projectors,

Π̂(S) = Π̂1(S1)⊗ · · · ⊗ Π̂m(Sm), (6.53)

where S = {S1, . . . , Sm} is the multi-mode measurement signature, with Si photons mea-
sured in the ith mode. The sample probabilities are given by,

PS = 〈ψout|Π̂(S)|ψout〉. (6.54)

In the case of continuous-variable states, the number of measurement signatures, |S|, is
unbounded as the photon-number is undefined, unlike Fock states where the total photon-
number is conserved.

Now we argue, without presenting a rigorous complexity argument, that this sampling
problem is likely computationally hard if three criteria are satisfied:

1Continuous superpositions are a simple generalization of our formalism, and with this generalization arbi-
trary states could be expressed as continuous superpositions of coherent states.
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Figure 6.6: The model for generalized BosonSampling with generalized cat states. The input
state to each mode is a tensor product of an arbitrary superposition of coherent states with
a unique superposition in each mode. Some of these may be set to the vacuum. Following
the application of a linear optics network, the distribution is sampled via number-resolved
photo-detection.

1. There must be an exponential number of terms in the output distribution to rule out
brute-force simulation.

2. The terms in the superposition are entangled so that the distribution cannot be trivially
obtained by sampling each mode independently.

3. To ensure that the individual output amplitudes are not easy to simulate the output
distribution must be related to a computationally hard problem.

These criteria are general properties that classically hard problems are known to ex-
hibit, but there is no proof that these criteria are sufficient to establish whether a problem is
classically hard. For example, ideal BosonSampling is known to be computationally hard,
satisfying all 3 criteria but fermionic-sampling is known to be classically efficient since it
violates criteria (3) because its output amplitudes relate to matrix determinants rather than
permanents, which reside in the computational complexity class P.

Criteria (1) is achieved due to our choice of input state — there are tm terms in the output
distribution. It is easily seen that criteria (2) holds in general. As a simple example, consider
the input state,

|ψin〉 = N 2(|α〉+ | − α〉)⊗ (|α〉+ | − α〉) = |cat+, cat+〉, (6.55)

a tensor product of two even cat states. Passing this separable two-mode state through a
50/50 beamsplitter gives rise to the output state,

|ψout〉 = Ĥ|ψin〉 = |cat′, 0〉+ |0, cat′〉, (6.56)

where |cat′〉 = N 2
+(|
√

2α〉+ | −
√

2α〉) is a cat state. This is a path-entangled superposi-
tion of a cat state across two modes. Thus, while Eq. (6.49) demonstrates that a unitary
network maps a tensor product of coherent states to a tensor product of coherent states,
such a network will generate path-entanglement when the input state is a tensor product
of superpositions of coherent states. Note the structural similarity between cat state inter-
ference and two-photon Hong-Ou-Mandel (HOM) [28] type interference. In the case of
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HOM interference we have Ĥ|1, 1〉 = (|2, 0〉+ |0, 2〉)/
√

2, whereas for cat states we have
Ĥ|cat, cat〉 = |cat′, 0〉+ |0, cat′〉.

It was recently and independently reported by Jiang et al. [78] that linear optics net-
works fed with nonclassical pure states of light almost always generates modal entanglement,
consistent with our observation here. This ensures that the output state to our generalized
BosonSampling device is highly entangled, thus satisfying criteria (2). However, Jiang et al.
present no discussion about our hardness criteria (3); they do not connect their states to a
computationally hard problem. Thus their work provides a necessary but not sufficient proof
of computational hardness. It is important, as in our work here, to examine such non-classical
input states individually and make the case for the importance of criteria (3). For example it
is well known from the Gottesman-Knill theorem that some systems with exponentially large
Hilbert spaces that satisfy our criteria (1) and (2) can nevertheless be efficiently simulated.
An example is the circuit model for quantum computation that deploys only gates from the
Clifford algebra.

Finally let us consider criteria (3). Let the expansion for a coherent state be,

|α〉 =
∞∑
n=0

fn(α)|n〉, (6.57)

in the photon-number basis, where,

fn(α) = e−
|α|2

2
αn√
n!
, (6.58)

is the amplitude of the n-photon term. Then,

〈n|α〉 = fn(α). (6.59)

Thus, acting the measurement projector for configuration S, Eq. (6.53), on the output state,
Eq. (6.51), we obtain,

Π̂(S)|ψout〉 = γS|S1, S2, . . . , Sm〉, (6.60)

where,

γS =
t∑

~t=1

(
m∏
j=1

λ
(j)
tj fSj

(
m∑
k=1

Uj,kα
(k)
tj

))
, (6.61)

and the sampling probability takes the form PS = |γS|2. We can group the terms under the
product and label them A

(S)

j,~t
. Then the amplitudes are given by,

γS =
t∑

~t=1

m∏
j=1

A
(S)

j,~t
, (6.62)

which has the same analytic structure as the permanent when t = m but sums over additional
terms that are not present in the permanent. Evaluating this combinatoric problem requires
exponential resources using brute-force. Via brute force, evaluating this expression requires
summing tm terms. Given that Eq. (6.62) has the same analytic form as the matrix perma-
nent, which is known to be classically hard, this implies a striking similarity between cat
state sampling and Fock state sampling, with the constraint that A is of a form whose perma-
nent is not trivial. In fact, in the α → 0 limit, evaluating this combinatoric expression must
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be as hard as calculating an n × n matrix permanent, since we know that in this limit the
problem reduces to ideal BosonSampling. In the original proof by Aaronson & Arkhipov,
it is required that U is Haar-random. It is an open question as to whether A can be made
Haar-random in the presented generalized BosonSampling model.

In the trivial case of t = 1 this expression simplifies to,

γS =
m∏
j=1

fSj

(
m∑
k=1

Uj,kα
(k)
1

)
, (6.63)

which evaluates in polynomial time. In this case the input state is simply a tensor product of
coherent states, and the runtime is consistent with the known result that simulating coherent
states is trivial as the tensor product structure allows sampling to proceed by independently
sampling each mode, each of which is an efficient sampling problem. However, when t > 1
the complexity of directly arithmetically evaluating Eq. (6.61) grows exponentially.

6.5.4 A Computational Complexity Argument
We found that unless the polynomial hierarchy collapses to the third level (i.e. P#P =
BPPNP [67]) there must not exist an efficient randomized classical algorithm which can
approximate generalized cat state sampling with a multiplicative error of

√
2 or less. The

existence of this algorithm would imply the collapse of computational complexity classes
believed to be distinct. The polynomial hierarchy PH is composed of an infinite num-
ber of levels k, which are themselves composed of complexity classes ΣkP = NPΣk−1P,
∆kP = PΣk−1P, and ΠkP = coNPΣk−1P, where Σ0P = ∆0P = Π0P = P.

Bremner, Jozsa & Shepherd [169] developed a method for showing the intractability
of classical simulation of certain circuits composed of commuting gates that we use. This
technique has since been used in other work [170, 171]. Post-selection is important in the
method as the computational cost for certain computation is used only if that computation
results in a particular post-selection measurement.

We provide informal definitions used in our proof of two computational complexity
classes based on post-selection also used in [170]. For formal definitions please see [169].
These classes are defined in terms of either classical or quantum circuits with output and
post-selection registers Ox and Px respectively. A language L is in the class PostBPP if
and only if there exists a uniform family of classical circuits and a 0 < δ < 1/2 such that:

1. if x ∈ L then Prob(Ox = 1|Px = 0 . . . 0) ≥ 1
2

+ δ,

2. if x /∈ L then Prob(Ox = 1|Px = 0 . . . 0) ≤ 1
2
− δ.

Similarly, a language L is in the class PostBQP if the above criteria is satisfied for a uniform
family of quantum circuits. We define a third complexity class PostCAT to understand post-
selection applied to the interferometry experiments. We let a language L be in PostCAT
if a uniform family of n-port linear interferometers acting on cat state inputs satisfying the
preceding criteria exist.

It is known that PostBPP corresponds to BPPpath, which is contained within ∆3P
[172]. It was shown by Aaronson that PostBQP = PP [173]. This is surprising, since
PH ⊆ PPP, implying a difference between the power of post-selected classical and quan-
tum computation unless PPP = PH = ∆3P. Following from the definitions of PostBPP
and PostBQP given above, this strengthens the argument that an efficient classical random-
ized algorithm cannot produce the output of any quantum circuit. This is because it would



6.5 Generalized Cat State Sampling 85

yield PostBQP = PostBPP and collapse the polynomial hierarchy, which is believed to
be highly unlikely. More specifically: The existence of a polynomial time randomized clas-
sical algorithm which approximates the output distribution to an arbitrary quantum circuit to
within multiplicative error of

√
2 would yield PH = ∆3P [169, 170].

To finish the proof we need to show that PostBQP ⊆ PostCAT, from which it would
follow that the existence of an efficient randomized classical algorithm which can approxi-
mate the output distribution of an arbitrary linear interferometer applied to cat state inputs
to within a multiplicative error of

√
2 would imply that PostCAT ⊆ PostBPP and hence

PH = ∆3P. It has already been shown that PostBQP ⊆ PostCAT in the work of Ralph
et al. [174]. They proved that arbitrary quantum circuits could be probabilistically imple-
mented exactly on qubits encoded as a superposition of even and odd parity cat states and
there is always some probability of obtaining a measurement result which correctly imple-
ments the desired gate with unit fidelity. This means that by post-selecting on these out-
comes, the system can be made to implement an arbitrary quantum circuit. Now because
post-selection could be applied to the output of the circuit and remaining in PostCAT, it
means that any computation in PostBQP is also in PostCAT. Therefore, unless PH = ∆3P
there does not exist an efficient randomized classical algorithm which can produce an output
distribution approximating that of an arbitrary interferometer with multiplicative error of

√
2

or less.

6.5.5 Preparing Cat States

Finally, we will discuss the prospects for experimentally preparing cat states of the form used
in our derivation. There exists a significant number of schemes for generating a finite number
of superpositions of coherent states all of which are extremely difficult to scale to higher
order cat states. For example, superpositions of coherent states with equal amplitudes but
different phases can be produced with quantum nondemolition (QND) measurements [175]
via the interaction of a strong Kerr nonlinearity [121, 176]. Another approach is to use strong
Kerr nonlinearities together with coupled Mach-Zehnder interferometers [121] but this is
impractical as outside the cavity a strong Kerr would require a coherent Electromagnetically
Induced Transparency [177, 178] effect in an atomic gas cloud and even there in practice the
nonlinearities are too weak for our purposes.

In a similar way that measurements of photon number can produce discrete coherent
state superpositions in phase. Measurements of the phase can produce discrete coherent
state superpositions in amplitude. This can be understood via the number-phase uncertainty
relation. Any improved knowledge of the phase of a state induces kicks in the number and
vice versa. In this way, by combining such different measurements, one can produce discrete
superpositions in both phase and amplitude, which approaches the arbitrary superpositions
of coherent states we require. Exactly such a scheme was proposed by Jeong et al. in 2005
[179, 180]. By combining both types of detection schemes, even with detectors of non-unit
efficiency, they show that a large number of propagating superpositions of coherent states
may be produced. These states then could be used in proof-of-principle experiments for our
protocol outlined here.
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6.6 Summary
An open question is ‘what classes of quantum states of light yield hard sampling problems
using linear optics?’ In this chapter we have studied this question in detail. We began by mo-
tivating this problem in section 6.2. Specifically, we studied single-photon-added coherent
states (SPACS) in section 6.3, photon-added or -subtracted squeezed vacuum (PASSV) states
in section 6.4, and generalized superpositions of coherent states called cat states in section
6.5. Below we present a summary of the conclusions we were able to draw from sampling
these three states:

• SPACS: We first showed that displaced single-photon Fock state sampling remains
hard to efficiently simulate for all values of the displacement with a coincidence pho-
ton number detection. We then considered a more interesting problem using SPACS
sampling and found that this problem transitions from computationally hard to simu-
late too computationally easy as the amplitude of the coherent states increases from
near zero into the limit of large coherent amplitudes.

• PASSV: We have shown a direct mapping between Fock state BosonSampling and
PASSV BosonSampling and that it operates in all squeezing parameter regimes. In
other words there are no bounds on the amount of squeezing and no approximations
need to be made. This is unique as compared to the case of SPACS sampling. In this
protocol we use a Haar random matrix with all real elements for the evolution which
is different than the original BosonSampling protocol where the Haar random matrix
has complex values as well. This was so the squeezed and anti-squeezed quadratures
of the squeezed vacuum do not mix with each other.

• Generalized Cat State Sampling: We have presented evidence that a linear optics net-
work, fed with arbitrary superpositions of coherent states, and sampled via number-
resolved photodetection, is likely to be a classically hard problem. Our argument
relies on three realistic criteria for computational hardness of a sampling problem of
which these satisfy. We led the reader into the more difficult generalized case by first
analysing what happens in the zero amplitude case and then the small amplitude limit
case. Also, because coherent states form an over-complete basis, any pure optical state
can be expressed in terms of coherent states, suggesting that most quantum states of
light may yield hard sampling problems.

These results demonstrate that there are a large class of non-Fock states that have associ-
ated sampling problems of equal computational complexity to BosonSampling which means
that there is nothing unique about the computational complexity of single-photon Fock state
BosonSampling. In fact, it seems that there is a plethora of other quantum states of light
that exhibit similar sampling computational complexity. These results support a conjecture
presented in [113] that computational complexity relates to the negativity of the Wigner func-
tion as all of these analysed states have negative Wigner functions. This work helps us to
understand what constitutes a computationally hard sampling problem and what it is about
quantum states that are computationally complex to sample from. The states presented here
are more experimentally challenging to create than single-photon Fock states. This work will
further motivate the need to develop quantum state sources than can produce states other than
Fock states.
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BosonSampling inspired Linear Optical
Quantum Metrology — An Application

7.1 Synopsis

It is known that quantum number-path entanglement is a resource for super-sensitive quan-
tum metrology as it allows for sub-shotnoise or even Heisenberg-limited sensitivity. All
known methods for generating such number-path entanglement are extremely challenging
because it requires either very strong nonlinearities, or nondeterministic preparation schemes
with feed-forward, which are difficult to implement. We know from studying quantum ran-
dom walks with multi-photon walkers as well as BosonSampling that passive linear optical
devices generate a superexponentially large amount of number-path entanglement.

In this work we show a method to use this resource of entanglement for quantum metrol-
ogy, which is motivated in section 7.2. We show in section 7.3 that a simple, passive, linear-
optical interferometer — fed with only uncorrelated, single-photon inputs, coupled with sim-
ple, single-mode, disjoint photodetection — is capable of beating the shotnoise limit. It is
important to note that this protocol is an alteration to the original BosonSampling protcol as
presented by AA and so it is an application inspired by BosonSampling and not exactly an
aplication of BosonSampling. Nonetheless, our result allows for practical quantum metrol-
ogy with readily available technology. Due to the uniqueness of our architecture we use a
new resource counting method that we coined ordinal resource counting (ORC) as discussed
in section 7.4.1

7.2 Motivation

Quantum number-path entanglement is a resource for super-sensitive quantum metrology, as
shown by Yurke & Yuen, allowing for sensors that beat the shotnoise limit [182, 183]. These

1It is worth noting that this metrology work has three Lord of the Rings [181] references in it. See if you
can find them.
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sensors have applications in super-sensitive gyroscopy [184], gravimetry [185], optical co-
herence tomography [186], ellipsometry [187], magnetometry [188], protein concentration
measurements [189], and microscopy [190, 191]. This line of work culminated in the analy-
sis of the bosonic NOON state ((|N, 0〉+ |0, N〉)/

√
2, where N is the total number of pho-

tons). This was shown to be optimal for local phase estimation with a fixed, finite number
of photons, and in fact allows one to hit the Heisenberg limit and the Quantum Cramér-Rao
Bound [192–195].

The NOON state is used in a two-mode interferometer where all N particles are in a
superposition of being in the first mode (with zero in the second mode) or in the second
mode (with zero in the first mode). This state is known to be optimal as it reaches the
Heisenberg limit but its generation is known to be quite difficult. There are two main methods
for preparing NOON states: the first is to deploy very strong optical nonlinearities [196, 197],
and the second is to prepare them using measurement and feed-forward [198–200]. These
are similar requirements to building a universal optical quantum computer and thus NOON-
states are just as difficult to build [201]. In addition to being complicated to prepare the
detection scheme is quite challenging as parity measurements at each output port also likely
need to be performed [202].

Recently two independent lines of research, the study of quantum random walks with
multi-photon walkers in passive linear-optical interferometers [90, 91, 203], as well as the
computational complexity analysis of the sampling problem using such devices [67, 107],
has led to a startling conclusion — passive, multi-mode, linear-optical interferometers, fed
with only uncorrelated single photons in each mode, produce quantum mechanical states
with path-number entanglement that grows superexponentially fast in the two resources of
mode and photon-number. For another practical application inspired by BosonSampling see
[86]. It is remarkable is that such a large degree of number-path entanglement is generated
without the use of strong optical nonlinearities or with complicated measurement and feed-
forward schemes. It is generated using the evolution of the single photons in a passive
linear optical device. It is commonly misunderstood that such passive devices have ‘non-
interacting’ photons in them. There is however a type of photon-photon interaction due to the
demand of bosonic state symmetrization from multiple applications of the Hong-Ou-Mandel
effect [91], which yields a superexponentially large amount of number-path entanglement. It
is known that the evolution of single photons in a linear optical device, followed by projective
measurements, can give rise to ‘effective’ strong optical nonlinearities. We conjecture that
there is a hidden Kerr-like nonlinearity in these interferometers [93]. Like BosonSampling
[67], and unlike universal quantum computing schemes such as that by Knill, Laflamme, and
Milburn [8], this protocol is deterministic and does not require any ancillary photons.

The advantage of our BosonSampling inspired method for quantum metrology is that
generating and detecting single photons is quite standardized and relatively straightforward
to implement in the lab [68–70, 73, 79, 95, 204]. The linear optical community is moving
towards single photons, linear interferometers, and single-photon detectors all on a single,
integrated, photonic chip, which allows for the scalability of linear optical devices to large
numbers of modes and photons. This implies that scalable quantum metrology using our
technique is feasible in the near future. We now show a method for using passive linear
optics for quantum metrology.
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7.3 Metrological Device
The phase-sensitivity, ∆ϕ, of a metrology device can be defined in terms of the standard
error propagation formula as,

∆ϕ =

√
〈Ô2〉 − 〈Ô〉2∣∣∣∂〈Ô〉∂ϕ

∣∣∣ , (7.1)

where 〈Ô〉 is the expectation of the observable being measured and ϕ is the unknown phase
we seek to estimate.

The photons evolve through a unitary network according to Ua†iU
† =

∑
j Uija

†
j . In our

protocol, we construct the n-mode interferometer Û to be,

Û = V̂ · Φ̂ · Θ̂ · V̂ †, (7.2)

which we call the quantum fourier transform interferometer (QuFTI) because V̂ is the n-
mode quantum Fourier transform matrix, with matrix elements given by,

V
(n)
j,k =

1√
n

exp

[−2ijkπ

n

]
. (7.3)

Φ̂ and Θ̂ are both diagonal matrices with linearly increasing phases along the diagonal rep-
resented by,

Φj,k = δj,k exp
[
i(j − 1)ϕ

]
Θj,k = δj,k exp

[
i(j − 1)θ

]
, (7.4)

where ϕ is the unknown phase one would like to measure and θ is the control phase. Θ̂ is
introduced as a reference, which can calibrate the device by tuning θ appropriately. To see
this tuning we combine Φ̂ and Θ̂ into a single diagonal matrix with a gradient given by,

Φj,k ·Θj,k = δj,k exp

[
i(j − 1)(ϕ+ θ)

]
. (7.5)

The control phase θ can shift this gradient to the optimal measurement regime, which can
be found by minimizing ∆ϕ with respect to n and ϕ. Since this is a shift according to a
known phase, we can for simplicity assume (and without loss of generality) that ϕ is in the
optimal regime for measurements and θ = 0. Thus, Θ̂ = Î and is left out of our analysis for
simplicity.

In order to understand how such a linearly increasing array of unknown phase shifts may
be arranged in a practical device, it is useful to consider a specific example. Let us suppose
that we are to use the QuFTI as an optical magnetometer. We consider an interferomet-
ric magnetometer of the type discussed in [205] where each of the sensing modes of the
QuFTI contains a gas cell of Rubidium prepared in a state of electromagnetically induced
transparency whereby a photon passing through the cell at the point of zero absorption in
the electromagnetically induced transparency spectrum acquires a phase shift that is propor-
tional to the product of an applied uniform (but unknown) magnetic field and the length of
the cell. We assume that the field is uniform across the QuFTI, as would be the case if the
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entire interferometer was constructed on an all optical chip and the field gradient across the
chip were negligible. Since we are carrying out local phase measurements (not global) we
are not interested in the magnitude of the magnetic field but wish to know if the field changes
and if so by how much. (Often we are interested in if the field is oscillating and with what
frequency.) Neglecting other sources of noise then in an ordinary Mach-Zehnder interfer-
ometer this limit would be set by the photon shotnoise limit. To construct a QuFTI with the
linear cascade of phase shifters, as shown in Fig. 7.1, we simply increase the length of the
cell by integer amounts in each mode. The first cell has length L, the second length 2L, and
so forth. This will then give us the linearly increasing configuration of unknown phase shifts
required for the QuFTI to beat the SNL.

One might question why one would employ a phase gradient rather than just a single
phase. Investigation into using a single phase in Φ̂ indicates that this yields no benefit. We
conjecture that this is because the number of paths interrogating a phase in a single mode is
not superexponential as is the case when a phase gradient is employed.

The interferometer may always be constructed efficiently following the protocol of Reck
et al. [109], who showed that an n× n linear optics interferometer may be constructed
from O(n2) linear optical elements (beamsplitters and phase-shifters), and the algorithm for
determining the circuit has runtime polynomial in n. Thus, an experimental implementation
of our protocol may always be efficiently realized.

The input state to the device is |1〉⊗n, i.e. single photons inputed in each mode. If ϕ = 0
then Φ̂ = Î and thus Û = V̂ · Î · V̂ † = Î . In this instance, the output state is exactly equal to
the input state, |1〉⊗n. Thus, if we define P as the coincidence probability of measuring one
photon in each mode at the output, then P = 1 when ϕ = 0. When ϕ 6= 0, in general P < 1.
Thus, intuitively, we anticipate that P (ϕ) will act as a witness for ϕ.

In the protocol, assuming a lossless device, no measurement events are discarded. Upon
repeating the protocol many times, let x be the number of measurement outcomes with ex-
actly one photon per mode, and y be the number of measurement outcomes without exactly
one photon per mode. Then P is calculated as P = x/(x + y). Thus, all measurement
outcomes contribute to the signal and none are discarded. Note that, due to preservation of
photon-number and the fact that we are considering the anti-bunched outcome, P (ϕ) may
be experimentally determined using non-number-resolving detectors if the device is lossless.
If the device is assumed to be lossy, then number-resolving detectors would be necessary to
distinguish between an error outcome and one in which more than one photon exits the same
mode. The circuit for the architecture is shown in Fig. 7.1.

The state at the output to the device is a highly path-entangled superposition of
(

2n−1
n

)
terms, which grows superexponentially with n. This corresponds to the number of ways
to add n non-negative integers whose sum is n, or equivalently, the number of ways to put
n indistinguishable balls into n distinguishable boxes. We conjecture that this superexpo-
nential path-entanglement yields improved phase-sensitivity as the paths query the phases a
superexponential number of times.

The observable being measured is the projection onto the state with exactly one pho-
ton per output mode, Ô = (|1〉〈1|)⊗n. Thus, 〈Ô〉 = 〈Ô2〉 = P . And, the phase-sensitivity
estimator reduces to,

∆ϕ =

√
P − P 2∣∣∣∂P∂ϕ ∣∣∣ . (7.6)
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Figure 7.1: Architecture of the quantum Fourier transform interferometer (QuFTI) for
metrology using single-photon states. The input state comprises n single photons, |1〉⊗n.
The state evolves via the passive linear optics unitary Û = V̂ · Φ̂ · Θ̂ · V̂ †, where V̂ is the
quantum Fourier transform, Φ̂ is an unknown, linear phase gradient, and Θ̂ is a reference
phase gradient used for calibration. At the output we perform a coincidence photodetection
projecting on exactly one photon per output mode, measuring the observable Ô = (|1〉〈1|)⊗n,
which, over many measurements, yields the probability distribution P (ϕ) that acts as a wit-
ness for the unknown phase ϕ.

Following the result of [112], P is related to the permanent of Û as,

P =
∣∣Per(U)

∣∣2. (7.7)

Here the permanent of the full n× n matrix is computed, since exactly one photon is going
into and out of every mode. This is unlike the BosonSampling protocol [67] where perma-
nents of sub-matrices are computed.

We will now examine the structure of this permanent. The matrix form for the n-mode
unitary Û (n) is given by,

U
(n)
j,k =

1− einϕ

n
(
e

2iπ(j−k)
n − eiϕ

) , (7.8)

as derived in App. A.6. Taking the permanent of this matrix is challenging as calculating
permanents are in general #P-hard. However, based on calculating Per(Û (n)) for small n,
we observe the empirical pattern,

Per(Û (n)) =
1

nn−1

n−1∏
j=1

[
jeinϕ + n− j

]
, (7.9)

as conjectured in App. A.7. This analytic pattern we observe is not a proof of the permanent,
but an empirical pattern — a conjecture — that has been verified by brute force to be correct
up to n = 25. Although we do not have a proof beyond that point, n = 25 is well beyond
what will be experimentally viable in the near future, and thus the pattern we observe is
sufficient for experimentally enabling super-sensitive metrology with technology available
in the foreseeable future.
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Following as a corollary to the previous conjecture, the coincidence probability of mea-
suring one photon in each mode is,

P =
∣∣∣Per(Û (n))

∣∣∣2
=

1

n2n−2

n−1∏
j=1

[
an(j)cos(nϕ) + bn(j)

]
, (7.10)

as shown in App. A.8, where

an(j) = 2j(n− j),
bn(j) = n2 − 2jn+ 2j2. (7.11)

The dependence of P on n and ϕ is shown in Fig. 7.2.

Figure 7.2: Coincidence photodetection probability P against the unknown phase ϕ and the
number of photons and modes n. As n increases, the dependence of P on ϕ increases,
resulting in improved phase-sensitivity.

It then follows that,∣∣∣∣∂P∂ϕ
∣∣∣∣ = nP

∣∣sin(nϕ)
∣∣ n−1∑
j=1

∣∣∣∣ an(j)

an(j)cos(nϕ) + bn(j)

∣∣∣∣ , (7.12)

as shown in App. A.9.
Finally, we wish to establish the scaling of ∆ϕ. With a smallϕ approximation (sin(ϕ) ≈ ϕ,

cos(ϕ) ≈ 1− 1
2
ϕ2) we find,

∆ϕ =

√
3

2n(n+ 1)(n− 1)
(7.13)

=
1

2
√(

n+1
3

) ,
as shown in App. A.10. Thus, the phase sensitivity scales as ∆ϕ = O(1/n3/2) as shown in
Fig. 7.3.
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Figure 7.3: Phase-sensitivity ∆ϕ against the number of photons n (red circles). The shot-
noise limit of 1/

√
N (black squares) and Heisenberg limit of 1/N (orange triangles) are

shown for comparison. The QuFTI exhibits phase-sensitivity significantly better than the
shotnoise limit, and only slightly worse than the Heisenberg limit.

7.4 Ordinal Resource Counting (ORC)

We would like to compare the performance of our QuFTI to an equivalent multimode in-
terferometer baseline for which we will construct the shotnoise limit (SNL) and Heisen-
berg limit (HL). This is a subtle comparison, due to the linearly increasing unknown phase-
shifts, {0, ϕ, . . . , (n− 1)ϕ}, that the QuFTI requires to operate. The mathematical relation
is shown in Fig. 7.3, where we have converted the number of resources, N , to the number
of photons, n. There is disagreement on how such resources should be counted. This is the
method, which we call Ordinal Resource Counting (ORC), that we feel most fairly counts
our resources. A more detailed supporting discussion can be found in App. A.11.

While computing the sensitivity using the standard error propagation formula of Eq. (7.1)
provides clear evidence that our scheme does indeed beat the SNL, it would be instructive to
carry out a calculation of the quantum Fisher information and thereby provide the quantum
Cramér-Rao bound, which would be a true measure of the best performance of this scheme
possible, according to the laws of quantum theory. However, due to the need to compute
the permanent of large matrices with complex entries, this calculation currently remains in-
tractable. We are continuing to investigate such a computation for a future work. In general,
analytic solutions to matrix permanents are not possible. In this instance, the analytic result
is facilitated by the specific structure of the QuFTI unitary. Other phase gradients may yield
analytic results, but we leave this for future work as well.

7.5 Efficiency

We consider how in the presence of inefficient photon sources and photo-detectors the suc-
cess probability of the protocol will drop exponentially with the number of photons. Specif-
ically, if ηs and ηd are the source and detection efficiencies respectively, the success proba-
bility of the protocol is η = (ηsηd)

n. Current cutting edge transition edge detectors operate
at 98% efficiency, with negligible dark count [206]. SPDC sources are the standard photon-
source technology but they are non-deterministic. However, there are techniques that can
greatly improve the heralding efficiency up to 42% at 2.1 MHz [207]. Also, other source
technologies, such as quantum dot sources are becoming viable with efficiencies also up
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to 42% [208]. For n = 10, which is already well beyond current experiments, this yields
η = (0.98 ∗ 0.42)10 ≈ 0.00014, which is about 300 successful experimental runs per second
when operating with 2.1 MHz sources.

In App. A.12 we analyse dephasing, which is a source of decoherence, and find that the
QuFTI protocol is far more robust against dephasing than the NOON state is.

7.6 Summary
We began this chapter with section 7.2 by discussing some of the history of quantum metrol-
ogy and why we need more simplistic implementations for quantum metrology. Then, in
section 7.3, we showed that a passive linear optics network fed with single-photon Fock
states may implement quantum metrology with phase-sensitivity that beats the shotnoise
limit. This scheme was inspired by BosonSampling. Unlike other schemes that employ exotic
states such as NOON states which are notoriously difficult to prepare, single-photon states
may be readily prepared in the laboratory using present-day technology. This new approach
to metrology via easy-to-prepare single-photon states and disjoint photodetection provides
a road towards improved quantum metrology with frugal physical resources. Importantly
we use a new resource counting technique called ordinal resource counting as discussed in
section 7.4. There remains several open questions to be answered which are the subject of
a soon to be published followup manuscript [209]. Particularly, we will compare and con-
trast different interferometric schemes, discuss resource counting, calculate exact quantum
Cramér-Rao bounds, and study details of experimental errors.



The creative principle resides in
mathematics. In a certain sense,
therefore, I hold it true that pure
thought can grasp reality, as the
ancients dreamed.

Albert Einstein

8
#P-hardness of Certain Multidimensional

Integrals

8.1 Synopsis
Here we show that multi-dimensional integrals of a certain form can be classified as #P-
hard like in BosonSampling. In BosonSampling the output statistics are given by matrix
permanents. We map the BosonSampling output statistics to an integral formalism using
using quantum optical characteristic functions, which represent the state of the system in
phase-space. The output statistics in the integral formalism mapping is equivalent to matrix
permanents yielding a structure of integrals that can in general be categorised as #P-hard.
This yields new insight into the computational complexity of solving certain classes of mul-
tidimensional integrals. Our work provides a new approach for using methods from quantum
physics to prove statements in computer science.

In section 8.2 we motivate this work and present the main result of this work. In section
8.3 we show a detailed proof and in section 8.4 we show an example using permutation
matrices, which yield the expected result of unity.

8.2 Motivation
The BosonSampling work by Aaronson & Arkhipov [67] has led to much interest in the
physics community because it is a simple approach to implementing a computationally hard
problem. By mapping the BosonSampling problem to an integral formalism we can obtain
new insights into integrals of a certain form. We do this by using quantum optical char-
acteristic functions to represent the output state of BosonSampling as a multi-dimensional
integral. This integral formalism directly maps to matrix permanents which are known to
be #P-hard in general. Thus we have shown a class of integrals that are also #P-hard. Our
work shows broad applications for utilizing quantum optics tools, in particular, and quan-
tum physics paradigms, in general, to pose and to answer questions about the computational
complexity of certain mathematical problems.
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We show that integrals of the following form are #P-hard in general:

P =

(
2

π

)m ∫
· · ·
∫
e−2|~α|2

n∏
j=1

4

∣∣∣∣∣
m∑
k=1

αkUk,j

∣∣∣∣∣
2

− 1

 n∏
j=1

(
|αj|2 −

1

2

)
d2~α. (8.1)

This construction may be used as a new tool for examining open problems regarding the
complexity of BosonSampling like problems. As examples of this formalism we show that
the identity and permutation matrices are trivial to solve. Recently Rahimi-Keshari et al.
[210] showed the conditions necessary for the efficient classical simulation of quantum-
optics experiments given particular input states in a quantum process with measurements at
the output, which is relevant to this work because they use similar techniques.

8.3 Proof
To prove this we model the output photostatistics of a BosonSampling system with charac-
teristic functions [121]. This represents the state in phase-space and allows other represen-
tations (e.g. Wigner function) to be calculated. This formalism is identical but expresses the
problem in terms of multidimensional integrals. The integral equations that arise then must
also be #P-hard.

We begin with an m-mode separable input state of the form

ρ̂ = ρ̂1 ⊗ . . .⊗ ρ̂m. (8.2)

The single-mode characteristic W function [121] is defined as

χW (α) = tr[ρ̂ · D̂(λ)], (8.3)

where D̂(α) is the displacement operator, given by

D̂(α) = exp(λâ† − λ∗â), (8.4)

and α is an arbitrary complex number representing the amplitude of the displacement in
phase-space. This generalizes to the multi-mode case as

χW (λ1, . . . , λm) = tr[ρ̂ · D̂1(λ) . . . D̂m(λm)], (8.5)

where D̂j(αj) is the displacement operator on the jth mode. Then, the characteristic function
for the state evolved via linear optics is

χUW (λ1, . . . , λm) = tr[Û ρ̂Û † · D̂1(λ1) . . . D̂m(λm)]

= tr[ρ̂ · Û †D̂1(λ1) . . . D̂m(λm)Û ]

= tr[ρ̂ · D̂1(µ1) . . . D̂m(µm)], (8.6)

where

µj =
m∑
k=1

λkUj,k, (8.7)
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as shown in App. A.13. When the input state ρ̂ is separable, as per Eq. (8.2), with
ρ̂ = (|1〉〈1|)⊗n ⊗ (|0〉〈0|)⊗(m−n) so there are n single photons in the first nmodes, the multi-
mode characteristic χ function reduces to

χUW (λ1, . . . , λm) = tr[ρ̂1 · D̂1(µ1)] . . . tr[ρ̂m · D̂m(µm)]

=
n∏
j=1

〈1|D̂(µj)|1〉
m∏

j=n+1

〈0|D̂(µj)|0〉

=
n∏
j=1

e−
1
2
|µj |2

(
1− |µj|2

) m∏
j=n+1

e−
1
2
|µj |2

=
m∏
j=1

e−
1
2
|µj |2

n∏
j=1

(
1− |µj|2

)
= e−

1
2

∑m
j=1 |µj |2

n∏
j=1

(
1− |µj|2

)
= e−

1
2
E(~λ)

n∏
j=1

(
1− |µj|2

)
, (8.8)

We have used the identity shown in App. A.14. Here

E(~λ) =
m∑
j=1

|µj|2 =
m∑
j=1

|λj|2 (8.9)

is the total energy of the system with amplitudes ~λ (or equivalently ~µ due to energy conser-
vation).

At this stage the characteristic W function, χUW , can always be efficiently calculated with
any separable input state, since it is factorizable and there is no exponential growth in the
number of terms. The complexity arises when we wish to determine properties of the state,
such as reconstructing the Wigner function or determining individual amplitudes within the
state.

Next we consider the Wigner function, which may be computed as a type of Fourier
transform of χW [121],

W (α) =
1

π2

∫
eλ
∗α−λα∗χW (λ)d2λ, (8.10)

in the single-mode case, which again logically generalizes to the multi-mode case as

W (~α) =
1

π2m

∫
· · ·
∫
e
~λ∗·~α−~λ·~α∗χW (~λ)d2~λ, (8.11)

where all our integrals implicitly run over the range {−∞,∞}.
Let us denote

βj =
m∑
k=1

αkUj,k, (8.12)
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We can then evaluate the Wigner function as, for the n-photon input,

W (~α) =
1

π2m

∫
· · ·
∫
e
~λ∗·~α−~λ·~α∗e−

1
2
E(~λ)

n∏
j=1

(
1− |µj|2

)
d2~λ

=
1

π2m

∫
· · ·
∫
e~µ
∗·~β−~µ·~β∗

m∏
j=1

exp

(
−1

2
|µj|2

) n∏
j=1

(1− |µj|2)d2~µ

=

(
2

π

)m
e−2|~β|2

n∏
j=1

(4|βj|2 − 1)

=

(
2

π

)m
e−2|~α|2

n∏
j=1

4

∣∣∣∣∣
m∑
k=1

αkUk,j

∣∣∣∣∣
2

− 1

 . (8.13)

We have focused on the case where the input state is ρ̂ = (|1〉〈1|)⊗n ⊗ (|0〉〈0|)⊗(m−n). Now
we consider a particular output amplitude where a single photon is measured in the first
n output modes. This is determined by calculating the expectation value of the projector
Π̂ = (|1〉〈1|)⊗n ⊗ (|0〉〈0|)⊗(m−n), which is equal to the expectation value of the n-dimensional
number operator, 〈n̂1 . . . n̂n〉, where n̂j = â†j âj . In the usual permanent-based approach, this
amplitude corresponds to the permanent of a n× n submatrix of U .

Now we will consider a phase-space approach. For a single-mode state, the expectation
value of the number operator may be obtained from the Wigner function as [121],

〈n̂〉 =

∫
W (α)

(
|α|2 − 1

2

)
d2α, (8.14)

where the |α|2 − 1
2

term is obtained by expressing n̂ in symmetrically ordered form, 1
2
(â†â+ ââ† − 1),

and making the substitution â† → α∗, â→ α.
In the multimode case this generalizes to

P = 〈n̂1 . . . n̂n〉

=

∫
· · ·
∫
W (~α)

n∏
j=1

(
|αj|2 −

1

2

)
d2~α

=

(
2

π

)m ∫
· · ·
∫
e−2|~α|2

n∏
j=1

4

∣∣∣∣∣
m∑
k=1

αkUk,j

∣∣∣∣∣
2

− 1

 n∏
j=1

(
|αj|2 −

1

2

)
d2~α,

(8.15)

whereP is the probability of a single-photon output in each of the first n input modes (|1〉⊗n).
To further simplify this expression, we use the identity∫

e−2|α|2
(
|α|2 − 1

2

)
d2α = 0. (8.16)

This is true for all components of the vector ~α. This leads us to simplify Eq. (8.15) as such.
We expand out the first product in the last line to give a polynomial in αk and α∗k. We then
eliminate terms by multipling

∏n
j=1

(
|αj|2 − 1

2

)
.

We note that if the terms contain αk and α∗k with a total odd power, then the function is
odd, and so the integral must yield zero. Also, for any k with 1 ≤ k ≤ n the term does not
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contain αk or α∗k and so the integral for that term must yield zero due to the identity in Eq.
(8.16). Using these two properties, we can see that the remaining terms must contain each
αk or α∗k a nonzero even number of times for each 1 ≤ k ≤ n. Since the first product in Eq.
(8.15) goes to n, the maximum total power of αk or α∗k in any term is 2n and so they must
appear exactly twice.

With these properties all of the terms in the first product of the sum in Eq. (8.15) for
m > n must yield zero. This means that the sum can be truncated to n. The expression then
takes the form

P =

(
2

π

)m ∫
· · ·
∫
e−2|~α|2

4

∣∣∣∣∣
n∑
k=1

αkUk,j

∣∣∣∣∣
2

− 1

 n∏
j=1

(
|αj|2 −

1

2

)
d2~α. (8.17)

It is now clear that P only depends on the n× n submatrix of U as expected because our
knowledge from BosonSampling tells us that the probability is given from the permanent of
this submatrix. Also, the−1 in the first product of Eq. (8.15) only yields terms that integrate
to zero. We can then further simplify P to

P = 4n
(

2

π

)m ∫
· · ·
∫
e−2|~α|2

n∏
j=1

∣∣∣∣∣
n∑
k=1

αkUk,j

∣∣∣∣∣
2 n∏
j=1

(
|αj|2 −

1

2

)
d2~α. (8.18)

Next, using the identity ∫
e−2|α|2d2α =

π

2
, (8.19)

and integrating over all αk for k > n gives

P =

(
8

π

)n ∫
· · ·
∫
e−2

∑n
j=1 |αj |2

n∏
j=1

∣∣∣∣∣
n∑
k=1

αkUk,j

∣∣∣∣∣
2 n∏
j=1

(
|αj|2 −

1

2

)
d2~α. (8.20)

We can simplify further by expanding the first product. It is easy to check that∫
e−2|α|2α2

(
|α|2 − 1

2

)
d2α = 0, (8.21)

and similarly for (α∗)2. That means that any terms with α2
k or (α∗k)

2 will integrate to zero.
The terms that do not integrate to zero are those with the product |α1|2|α2|2 . . . |αn|2. We can
also check that ∫

e−2|α|2|α|2
(
|α|2 − 1

2

)
d2α =

π

8
, (8.22)

and therefore(
8

π

)n ∫
· · ·
∫
e−2

∑n
j=1 |αj |2

n∏
j=1

|αj|2
n∏
j=1

(
|αj|2 −

1

2

)
d2α1 . . . d

2αn = 1. (8.23)

Therefore, the value of P corresponds to the coefficient of |α1|2|α2|2 . . . |αn|2 in the product∏n
j=1 |

∑n
k=1 Uk,jαk|

2. It is convenient to express this as

n∏
j=1

∣∣∣∣∣
n∑
k=1

Uk,jαk

∣∣∣∣∣
2

=

(
n∏
j=1

n∑
k=1

Uk,jαk

)(
n∏
j=1

n∑
k=1

U∗k,jα
∗
k

)
. (8.24)
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We can find the coefficient of |α1|2|α2|2 . . . |αn|2 by using the MacMahon Master theorem on
both expressions in brackets on the right-hand side [211]. The coefficient of α1α2 . . . αn in
the first brackets is perm(Un×n), where Un×n denotes the n× n submatrix of U . Similarly,
the coefficient of α∗1α

∗
2 . . . α

∗
n in the second brackets is perm((Un×n)∗). The coefficient of

|α1|2|α2|2 . . . |αn|2 in the product
∏n

j=1 |
∑n

k=1 Uk,jαk|
2 is then |perm(Un×n)|2 and so that

means that we can evaluate P as P = |perm(Un×n)|2.
We have found several forms of the integral for the probability. As expected this integral

can be evaluated to the square of the permanent. Any of these forms of the integral will
suffice but for simplicity we will focus on Eq. (8.15). This equation gives an equivalence of
two different forms, that is a matrix permanent and a multidimensional integral, for a partic-
ular output amplitude of a linear optics network. It follows that since matrix permanents are
known to be #P-hard in general then integrals of this form are also #P-hard in general.

The integral formalism may be approximated with Monte Carlo sampling. Since the
quantity being sampled takes positive and negative values it is difficult to accurately approx-
imate. Nevertheless, there may be some examples where Monte Carlo sampling is more
efficient in the integral formalism than for the permanent formalism but we have not found
an example.

8.4 Permutation Matrix Example

It is known that certain examples of matrix permanents can be calculated efficiently due to
certain symmetries or sparsities in the matrix. One example is permutation matrices σ ∈ Sm,
where Sm are elements of the symmetric group. We show that example using our integral
formalism is as expected using matrix permanents.

When U = σ, we have the property

m∑
k=1

αkU
∗
j,k = ασj , (8.25)

and we see that P is separable across ~α. In this case, the n-dimensional integral from Eq.
(8.15) also becomes separable, forming an n-dimensional product of integrals,

P =

(
2

π

)m ∫
· · ·
∫
e−2|~α|2

n∏
k=1

(
4 |ασk |2 − 1

) n∏
j=1

(
|αj|2 −

1

2

)
d2~α

=

(
2

π

)m{ n∏
j=1

∫
e−2|αj |2

(
4 |αj|2 − 1

)(
|αj|2 −

1

2

)
d2αj

}{
m∏

j=n+1

∫
e−2|αj |2d2αj

}

=

(
2

π

)m (π
2

)n (π
2

)m−n
= 1, (8.26)

where the integrals can easily be shown. Given the separable structure this is clearly compu-
tationally efficient to evaluate. Thus, we have confirmed that Per(σ) = 1 for all σ and m, as
expected.
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8.5 Summary
We have shown that a particular class of integrals is #P-hard in general. This is motivated
in section 8.2. We did this by representing the known state of the output amplitudes of a
BosonSampling device to a integral formalism as shown in section 8.3. We have shown
that by employing two alternate but equivalent approaches to expressing the output am-
plitudes of linear optics networks fed with single-photon inputs, we are able to provide a
quantum optical equivalence between matrix permanents and a particular class of multidi-
mensional integrals. This implies that this class of integrals is #P-hard in the worst case. The
equivalence provides two important insights with broad impact. Firstly, it demonstrates the
#P-hardness of these multi-dimensional integrals. Secondly, by expressing the permanent in
integral form, existing knowledge of the structure of integrals provides further insight into
the computational complexity of permanents. Finally, we have shown that tools from quan-
tum optics can be used to prove results in computational complexity theory. In addition we
showed in section 8.4 that this integral-based formalism is consistent with our understanding
of permutation matrices.
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Any sufficiently advanced tech-
nology is indistinguishable from
magic.

Arthur C. Clark

9
Preparation Strategies of Large Fock States

from Single Photons

9.1 Synopsis
The photonic Fock state plays an important role in quantum technologies such as quantum
information processing and quantum metrology. While single-photon Fock states are rela-
tively easy to create and the single-photon source technology is standard in labs, it remains
challenging to create large-photon Fock states. In this work we show how to efficiently pre-
pare large-photon Fock states using specific strategies that require single-photon sources,
beamsplitters, number-resolved photo-detectors, fast-feedforward, and an optical quantum
memory.

In section 9.2 we motivate this work explaining why it is important. In section 9.3 we
show the most obvious way to prepare large-photon Fock states using spontaneous paramet-
ric down conversion (SPDC) sources and see that it is inefficient. In section 9.4 we show
a method inspired by BosonSampling that uses post-selected linear optics and find that it is
also inefficient. In section 9.5 we describe and derive the formalism for our bootstrapped
approach that leads us to efficient large-photon Fock state preparation. In section 9.6 we
describe how we fuse stored Fock states so that we can grow them into larger Fock states,
we give some analytic approximations to some fusion strategies, we discuss more complex
fusion strategies, and we discuss a hybrid scheme. In section 9.7 we discuss how to reduce
the photon Fock state in case the state is made too large. In section 9.8 we summarise the
results of this work and numerically simulate the different Fock state preparation algorithms.

9.2 Motivation
Fock states are an essential resource for many quantum technologies [1, 20] including quan-
tum communication, quantum cryptography, quantum metrology [182–184, 196, 197], in-
terferometric protocols [212], and quantum information processing [8]. There have been
a lot of advances made in single-photon source technology but technologies that prepare
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large photon-number Fock states efficiently do not exist. Naïve approaches for generating
large photon-number Fock states may be made from single-photon Fock states using non-
deterministic linear optics or by heralded spontaneous parametric down-conversion (SPDC).
Both of these methods are inefficient because the success probability is exponentially low as
we show in section 9.3 and 9.4 respectively.

It is known that quantum enhanced metrology is optimal (i.e. it reaches the Heisenberg
limit of phase sensitivity) when NOON states are used [195]. Creating NOON states with
large photon number can be as hard as building a universal optical quantum computer, as
it requires many of the same technologies, such as a quantum memory, and feedforward.
Nonetheless, one needs Fock states with large photon number to first generate NOON states
with large photon number for quantum enhanced metrology [197]. Thus, efficient schemes
for generating Fock states with large photon number, as presented in this work, are an im-
portant stepping stone for realizing optimal quantum enhanced metrology.

In this work we show an iterative protocol for building up large photon-number Fock
states from readily available single photons. We show that our technique exponentially im-
proves scalability compared to naïve methods giving efficient methods for preparing large
photon-number Fock states. The requirements for implementing our protocol are mostly the
same as for universal linear optical quantum computing (LOQC) [8], which further motivates
building LOQC related technologies.

9.3 Spontaneous Parametric Down-Conversion with Post-
Selection

A very trivial approach to preparing large photon-number Fock states is to use SPDC sources
with post-selection. For a review of SPDC sources see section 4.3. We know that the photon
number between the signal and idler modes is correlated so we can prepare an arbitrarily
large n photon-number Fock state by increasing the pump power. Experimentally demon-
stration of this approach has been done for small Fock states up to three photons [213].

To prepare large photon-number Fock states from SPDC sources with at least d photons
we add all possible probabilities as shown in Eq. (4.3). The probability is then given by

Pprep(d) =
∞∑
n=d

|λn|2 =

(
n̄

n̄+ 1

)d
. (9.1)

We see that this decreases exponentially with d. This means that to obtain a desired Fock
state one would have to wait a time that depends exponentially with d. In addition currently
available mean photon numbers are n̄� 1 [214], which means that this is unviable for large
d. In Fig. 9.1 we show this preparation probability as a function of d and n̄.

9.4 Single-Shot Post-Selected Linear Optics

One method to prepare a large photon Fock state would be to use a multimode linear optical
interferometer as illustrated in Fig. 9.2. In this method single photons are input into every
input mode where the number of input modes is equivalent to the photon-number Fock state
desired. These photons evolve through a linear optical interferometer and then at the output
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Figure 9.1: The probability of preparing at least d photons in the first mode of an SPDC
source with mean photon number n̄, by post-selecting upon measuring at least d photons in
the other mode.

all modes except one are post-selected upon to have the vacuum state. The remaining non-
measured mode would then obtain the desired photon Fock state since photon number is
conserved.

Figure 9.2: Single-shot preparation on an n-photon Fock state from n single photons. A
photon is incident upon each input mode, and we post-select upon detecting vacuum in all
but one of the output modes, where all n photons must have exited the remaining output
mode.

Now we want to determine the efficiency of doing this. First we consider an n-mode
interferometer with a single photon at each input mode. The input state is

|ψin〉 = |1〉⊗n = â†1 . . . â
†
n|0〉⊗n =

[
n∏
i=1

â†i

]
|0〉⊗n. (9.2)

The state then evolves through a linear optical network

|ψout〉 = Û |ψin〉

=

[
n∏
i=1

n∑
j=1

Ui,j â
†
j

]
|0〉⊗n. (9.3)

Now we post-select upon all photons exiting the first mode

|ψproj〉 =

[
n∏
i=1

Ui,1â
†
1

]
|0〉⊗n

=
√
n!

[
n∏
i=1

Ui,1

]
|n〉|0〉⊗n−1, (9.4)
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where the probability of this event occurring is

Pbunch = n!

∣∣∣∣∣
n∏
i=1

Ui,1

∣∣∣∣∣
2

. (9.5)

It turns out that a balanced interferometer maximizes Pbunch due to the triangle inequality. A
balanced interferometer has weightings

|Ui,1| =
1√
n
∀ i. (9.6)

For these weightings Pbunch becomes

Pbunch = n!

∣∣∣∣∣
n∏
i=1

1√
n

∣∣∣∣∣
2

=
n!

nn
∼
√
n

en
, (9.7)

which was obtained using Stirling’s approximation.
The probability of preparing an n-photon Fock state using this method decreases expo-

nentially with n and thus implementation is limited. As an example let us consider two-
photon Hong-Ou-Mandel (HOM) [28] interference. In this instance n = 2, and

Pbunch =
2!

22
=

1

2
, (9.8)

as expected, since the output state of a HOM interferometer is |ψout〉 = (|2, 0〉 − |0, 2〉)/
√

2.

9.5 Bootstrapped Preparation with Post-Selected Linear Op-
tics

Figure 9.3: The Fock state fusion operation. Two Fock states with m and n photons are
mixed on a beamsplitter of reflectivity η. Upon detecting s photons in the first output mode,
an m+ n− s photon state is prepared in the other mode.

We have devised a method to improve the inefficient scaling of previous methods. We call
this a bootstrapped approach where we iteratively fuse two Fock states with photon numbers
m and n attempting to create a larger Fock state. The fusion is done with a beamsplitter
with some reflectivity η and one of the output modes is post-selected upon. At the other
output mode a Fock state with known photon number is created and is a usable resource.
Specifically, when s photons are detected we have prepared a new state of size m+ n− s.
This bootstrapped method is shown in Fig. 9.3. This is the basis of how our efficient large
photon-number Fock state generation protocol works. We expand on this in the next section
describing specific fusion strategies or algorithms for improving efficiency further. Now we
describe this protocol in detail.
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The input state to the fusion operation is

|ψin〉 = |m,n〉
=

1√
m!n!

(â†)m(b̂†)n|0, 0〉, (9.9)

which is incident upon a beamsplitter of reflectivity η, given by a biased beamsplitter unitary

UBS =

(
η

√
1− η2√

1− η2 −η

)
, (9.10)

where local phases are irrelevant. Then the output state is

|ψout〉 = ÛBS|ψin〉

=
1√
m!n!

(
ηâ† +

(
1− η2

)1/2
b̂†
)m ((

1− η2
)1/2

â† − ηb̂†
)n
|0, 0〉

=
1√
m!n!

m∑
j=0

(
m

j

)
ηj
(
1− η2

)(m−j)/2
(â†)j(b̂†)m−j

×
n∑
k=0

(
n

k

)(
1− η2

)k/2
ηn−k(−1)n−k(â†)k(b̂†)n−k|0, 0〉

=
1√
m!n!

m∑
j=0

n∑
k=0

(
m

j

)(
n

k

)
ηn+j−k (1− η2

)(m+k−j)/2

× (−1)n−k(â†)j+k(b̂†)m+n−j−k|0, 0〉

=
1√
m!n!

m∑
j=0

n∑
k=0

(
m

j

)(
n

k

)
ηn+j−k (1− η2

)(m+k−j)/2

× (−1)n−k
√

(j + k)!(m+ n− j − k)!|j + k,m+ n− j − k〉. (9.11)

We are interested in the case where s photons are measured in the first mode, thereby pro-
ducing an s-photon-subtracted state in the second mode. Thus, we let s = j + k, and the
unnormalized post-selected state reduces to

|ψps〉 =

√
s!(m+ n− s)!

m!n!

s∑
j=0

(
m

j

)(
n

s− j

)
ηn+2j−s (1− η2

)(m+s−2j)/2

× (−1)n−s+j|s,m+ n− s〉.
(9.12)

The probability of detecting s photons is, therefore,

Psub(s|m,n) = η2(n−s) (1− η2
)m+s s!(m+ n− s)!

m!n!

∣∣∣∣∣
s∑
j=0

(
m

j

)(
n

s− j

)[
η2

η2 − 1

]j∣∣∣∣∣
2

.

(9.13)

The state will have grown if the s-photon-subtracted state is larger than both m and n so
we require s < m+ n−max(m,n). The probability of preparing a state at least as large as
both the input Fock states is

Pgrow(m,n) =

m+n−max(m,n)−1∑
s=0

Psub(s|m,n). (9.14)
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In the case of a protocol where we will not recycle resource states we only keep the s = 0
outcome.

For given configurations of input Fock states m and n we would like to maximize this
probability so that state growth is maximized, so we optimize η to maximize Pgrow and
obtain,

Popt(m,n) = maxη[Pgrow(m,n)],

ηopt(m,n) = argmaxη[Pgrow(m,n)]. (9.15)

In Fig. 9.4 we show the optimized beamsplitter reflectivities and growth probabilities for
1 ≤ m ≤ 10 and 1 ≤ n ≤ 10 for the both cases where we accept all possible outcomes and
only the s = 0 outcome.

9.6 Fusion

We can see from Fig. 9.4 that when using recycling the growth probability is maximized
when fusing Fock states of equal photon number, m = n and so we are led to believe that the
best strategy is to always fuse states of equal size. This is called the balanced strategy. This
is similar to cluster states [12, 13] since Rohde & Barrett showed that a balanced strategy is
optimal [215]. This balanced fusion strategy can be simplified because the only probabilities
of interest are Psub(s|m,m) with an optimized growth probability of Popt(m,m) = 1/2 ∀m.
This is very favorable when attempting to create large photon-number Fock states. When no
recycling is used the growth probability is maximized when fusing a given Fock state with
a single-photon state (i.e. m = 1 or n = 1). Rohde & Barrett call this the modesty strategy
since we are attempting to fuse only single-photon Fock states. This strategy however de-
creases exponentially with the number of fusion operations since each time we require that
s = 0. We can overcome this inefficiency by employing ideas of recycling from cluster state
protocols [34, 215, 216], where we reuse any s outcome as a resource to progressively build
up a large-photon Fock state.

9.6.1 Generalized Fusion Protocol

In our fusion protocol we assume that we have an unlimited resource of single-photon states.
We also have quantum memories that store Fock states of varying photon numbers. We let
cn(t) be the number of n-photon states that we have in the respective memory after the tth

fusion operation. Because we assume that we have an unlimited supply of single-photon
states, we let c1(0) =∞. All other buckets are initially empty, ci>1(0) = 0.

The next part of fusion is to retrieve two Fock states from the memory that depends
on a specific fusion strategy, which we let be m and n, and send them through the fusion as
depicted in Fig. 9.3. With probability Psub(s|m,n) the (m+ n− s)-photon state is prepared.
The corresponding memories are then updated according to

cm → cm − 1,

cn → cn − 1,

cm+n−s →
{
cm+n−s + 1 with recycling;
cm+n−s + δs,0 without recycling.

(9.16)
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Figure 9.4: (a) The optimal beamsplitter reflectivity (ηopt) for maximizing growth probabil-
ity when fusing two Fock states of photon number m and n, accepting all outcomes s. (b)
The associated growth probability (Popt) for the fusion operation. (c) The optimal beam-
splitter reflectivity for maximizing only the probability of the s = 0 outcome, i.e. for the
non-recycled protocol. (d) The associated success probability. Evidently the fusion op-
eration with recycling has higher success probability than without recycling, since we are
accepting all events s as opposed to only the s = 0 cases.

A state from each of the m- and n-photon memory has been removed while the new state
is added to the m+ n− s photon memory. With fusion then a random walk of populations
between the memories occurs.

Now suppose that we would like to achieve a photon Fock state with photon number of
at least d. Then the memories we are interested in are

c≥d =
∞∑
j=d

cj. (9.17)

The rate at which these states are prepared, per fusion operation, is then

r(d) = lim
t→∞

c≥d(t)

t
, (9.18)

where t is the number of fusion operations. We establish the steady state flow dynamics of
states by considering the t→∞.

9.6.2 Analytic Approximations
For some simplified schemes, we can establish analytic results that show that the rate is
improved exponentially over the single-shot case discussed in Sec. 9.4. First we consider a
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non-recycled scheme, where we attempt to construct a Fock state with d photons, where d
is a power of 2. For values of d that are not a power of 2, we can simply construct a Fock
state with a number that is the next largest power of 2. The rate will be unchanged, and the
scaling will not be significantly affected.

As this is a non-recycled scheme we only retain successes. We therefore fuse single-
photon states until we obtain 2-photon states, fuse 2-photon states until we obtain 4-photon
states, and so forth, which is why we consider powers of two. As was found above (see Fig.
9.4), the success probability is maximized for 50/50 beam splitters when using equal photon
numbers, so we use 50/50 beam splitters. To estimate the rate, we will estimate the average
number of single-photon states needed to produce one d-photon state. Then the preparation
rate of d-photon Fock states per fusion operation will have scaling equal to the inverse of
this number. That is because there can be no more than a factor of 2 between the number of
single-photon states used and the number of fusion operations.

To show that result, consider first the ideal case where every fusion operation is success-
ful. Then for d single-photon states, there would be d/2 fusion operations, and d/4 fusion
operations on the 2-photon states, and so forth. Adding them together for d a power of two
gives a total number of fusion operations equal to d − 1, or one less than the number of
single-photon states. As the success rate is reduced, the number of fusion operations can
only be reduced for a given number of single photons. Hence the number of fusion opera-
tions cannot be any larger than the number of single photons. For this scheme we perform
fusion operations on all pairs of single photons, so the number of fusion operations must be
at least half the number of single-photon states.

Now we estimate the average number of single-photon states required to produce one
d-photon state. The expected number of attempts to fuse two d/2-photon states to pro-
duce the d-photon state will be 1/Psub(0|d/2, d/2). This corresponds to an expected num-
ber of d/2-photon states of 2/Psub(0|d/2, d/2), as there are two in each attempt. Then,
the expected number of d/4-photon states required to produce each d/2-photon state is
2/Psub(0|d/4, d/4). As a result, the expected number of d/4-photon states required to pro-
duce one d-photon state is 4/[Psub(0|d/2, d/2)Psub(0|d/4, d/4)]. Continuing this reasoning,
the expected number of single photons required to produce one d-photon state is

log2 d∏
j=1

2log2 d

Psub(0|d/2j, d/2j) . (9.19)

To estimate this expected number of photons, we can use

Psub(0|n, n) = 2−2n (2n)!

(n!)2
∼ 1√

πn
, (9.20)

where the approximation is via Stirling’s formula. Using this approximation with Eq. (9.19)
gives the expected number of single-photon states scaling as

2log2 d

log2 d∏
j=1

√
πd/2j = d(πd)(log2 d)/22− log2 d(log2 d+1)/4)

= d3/4+(log2 π)/2+(log2 d)/4. (9.21)

Testing this expression numerically, we find that the expected number of single photons is
about 1.2777 times this value.
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As discussed above, the preparation rate of d-photon Fock states per fusion operation
will scale as the inverse of this expression, and is therefore

r(d) ∝ 1

d3/4+(log2 π)/2d(log2 d)/4
. (9.22)

There is an exponential improvement over the case with just a single interferometer and
single-shot preparation. The scaling is not exponential in d, but it is also not polynomial in
d, because the power is logarithmic in d.

For a further improvement, we can add limited recycling. Rather than just requiring zero
photons to be lost at each stage, we require that the number of photons lost is no more than
n/2 when fusing two n-photon states so that the probability of success is given by

P =

Floor(n/2)∑
s=0

Psub(s|n, n), (9.23)

with η = 1/
√

2. Then we find numerically that the probability of success approaches ∼ 1/3
in the limit n → ∞ as can be seen in Fig. 9.5. An analytic solution for this result currently
eludes us so we have provided numerical evidence. It is smaller for smaller values of n,
but because we are calculating the scaling for large d we will take the probability of success
to be 1/3. Without loss of generality we can require that on success the photon number is
d3n/2e. If the photon number is larger than that, we can reduce the photon number with
the state reduction scheme described in Sec. 9.7. Now, in order to obtain photon number d,
we need a number of levels scaling as log3/2 d, rather than log2 d. However, the multiplying
factor for the number of repetitions at each stage is smaller.
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Figure 9.5: The probability of an improved recycling scheme with η = 1/
√

2, where we
require that the number of photons lost is no more than n/2 when fusing two n-photon
states. We see that this probability approaches ∼ 1/3 as n→∞.

Therefore, the number of single photons required to obtain a single d-photon Fock state
scales as

6log3/2 d = dlog3/2 6 = d4.419.... (9.24)

Testing this expression numerically, the number of single photons required is about 47 times
less. The corresponding rate for this scheme then scales as

r(d) ∝ d−4.419.... (9.25)

This scaling is again an exponential improvement, and is now strictly polynomial.
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9.6.3 Fusion Strategies
An analytic bound for more advanced recycling strategies is nontrivial and we instead simu-
late these protocols as classical Markov processes between the buckets, with transition prob-
abilities given by the parameters Psub(s|m,n), and transition rules from Eq. (9.16).

We see that Fig. 9.4 intuitively hints that the balanced strategy may be optimal we con-
sider several other strategies as a comparison to provide further insight into the importance
of fusion strategy. We will consider four recycling strategies in total:

• Balanced: Fuse the largest two available states of equal size, m = n. This strategy
is based on the observation of Fig. 9.4 that fusing states of equal size maximizes the
growth probability, Pgrow.

• Modesty: Always attempt to grow our state by a single photon, by fusing the state m
with a single-photon state, n = 1.

• Random: Randomly choose any two available states, irrespective of their relative sizes.

• Frugal: Same as balanced, except that it does not attempt to fuse two equally sized
states ifm = n > bd′/2c, where d′ ≥ d. For states of size n > d′/2, it instead attempts
to fuse available states such that d ≤ m+ n ≤ d′. This is because larger number states
are costly to prepare, so it is wasteful to fuse two states with a total photon number
well in excess of the target d.

The optimization technique for the frugal strategy is different than for the other strategies,
which use Pgrow. If the total input photon number m+ n ≥ d, then for each configuration of
input Fock states m and n, we optimize η to maximize the probability of getting at least d
photons. Specifically, we maximize

m+n−d∑
s=0

P (s|m,n). (9.26)

If m+ n < d, then for each configuration of input Fock states m and n, we optimize
η to maximize the probability of increasing the maximum photon number with increasing
weightings for growing the photon number larger. Specifically, we maximize

m+n−max(m,n)∑
s=0

[m+ n− s−max(m,n)]P (s|m,n).

(9.27)

9.6.4 Hybrid Schemes
We have considered the scenario where single-photon states are freely available. This is an
appropriate choice as single-photon sources are becoming mainstream. Improved photon-
source technologies, such as quantum dot sources, may have the ability to prepare small-
photon-number Fock states higher than |1〉 on demand. A simple modification then to our
protocol is to begin with a resource of infinitely available resource states that are larger than
one and we find that this further improves preparation rates.

Our framework can account for this by letting cx =∞ rather than c1 =∞, where x is
the photon number that can be prepared on demand. The rest of the protocol then proceeds
as usual using a given fusion strategy.
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9.7 State Reduction

In our analysis so far we calculate the rate of preparing at least d photons but for some
applications we may want exactly d photons. For this we may need to then reduce the
photon number of a Fock state if we were to prepare one too large. Luckily, this may also
be done with post-selected linear optics by inputting the Fock state on a low-reflectivity
beamsplitter with vacuum at the other input (n = 0, η � 1). Most of the time no photons
will be detected in the reflected mode since the beamsplitter reflectivity is low. With low
probability a single photon will be detected and with even lower probability more than one
photon will be detected. When photons are detected we have reduced the photon number by
the number of photons we detected. We can do this repeatedly until we obtain the desired
Fock state with photon number d. This protocol is efficient since it requiresO(s) beamsplitter
operations on average when attempting to subtract s photons. Also, this is experimentally
easier to implement than state growth since the vacuum state is used in one of the modes
meaning that there are no mode-matching requirements.

9.8 Results

First we show the rate of d-photon state preparation, r(d), for both the recycled and non-
recycled bootstrapped protocols (Sec. 9.5), the single-shot protocol (Sec. 9.4), and heralded
SPDC (Sec. 9.3) in Fig. 9.6. For the bootstrapped protocols we implemented the balanced
fusion strategy and let the resource requirements be the number of beamsplitter operations.
For the single-shot protocol, Eq. (9.7), the number of trials of the entire interferometer is the
resource that we consider and we convert this to the number of implemented beamsplitters by
realising that the interferometer shown in Fig. 9.2 can be built from d beamsplitters in a linear
array such that the photons are progressively routed to the top mode. And so the measured
number of beamsplitter operations is given by Eq. (9.7) but with an additional factor of 1/d,
yielding r(d) = d!/dd+1. For heralded SPDC we cannot convert the resource requirements
because the SPDC protocol does not use beamsplitters or single photons as a resource. We
decided to use as a resource the number of repetitions of the SPDC source. So that the SPDC
case has the same 20-photon preparation rate as the balanced bootstrapped protocol with
recycling, we chose the mean photon-number to be n̄ ≈ 1.7. This is a threshold by which the
SPDC is more efficient than the recycled bootstrapped protocol. Below it is less efficient. A
mean photon number of n̄ ≈ 1.7 is well beyond the capabilities of typical experiments today.
This plot clearly shows that all cases, other than the balanced recycled protocol, the rate of
state preparation decreases exponentially with d. Also, recycling improves the preparation
rate as can be seen in the example for 20-photon state preparation where the preparation rate
improves by a factor of ≈ 105 over the single-shot protocol.

Now in Fig. 9.7 we show the recycled protocol for some of the fusion strategies from Sec.
9.6.3. We show a log log plot and find that the preparation rate exhibits polynomial scaling
against d for the frugal and balanced recycled strategies and exponential scaling for the the
random and modesty recycled strategies. This means that the frugal and balanced recycled
protocols exhibit an exponential efficiency improvement. The scaling for the Frugal and
Balanced strategies is∼ 1/d2.8 and∼ 1/d3.7 respectively, which is a significant improvement
to the doubling approach that led to the rate in Eq. (9.25).

In Fig. 9.8, we show the hybrid schemes as discussed in section 9.6.4. Here we show the
recycled frugal fusion strategy since this exhibits the best scaling.
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Figure 9.6: Rate of preparation r of Fock states with at least d photons, for the recycled and
non-recycled bootstrapped protocols (using the balanced strategy), the single-shot protocol,
and the heralded SPDC protocol. In the cases of the two bootstrapped protocols and the
SPDC protocol, we observe a strict exponential decrease in the preparation rate against the
number of photons. It is evident that state recycling yields a far more favorable scaling than
the non-recycled or single-shot protocols. For heralded SPDC, the exponential exhibits a
dependence on the mean photon number (n̄) of the source, which reflects the SPDC pump-
power. Here we have chosen n̄ such that the SPDC and recycled bootstrapped balanced
protocols have the same 20-photon preparation rate, providing a baseline for the regime of
SPDC operation such that it matches the preparation rate of the recycled protocol.
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Figure 9.7: Comparison of the strategies when employing state recycling, showing the strate-
gies frugal, balanced, random, and modesty. The linear curves in the log-log plot are indica-
tive of polynomial scaling of the preparation rate against the desired number of photons
when employing the frugal and balanced strategies, whereas the random and modesty strate-
gies exhibit exponential scaling.
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Figure 9.8: Preparation rates for at least d photons for hybrid schemes, where we begin with
resource states of different photon numbers x (i.e. cx =∞), and employ the frugal fusion
strategy. Evidently, as we begin with larger starting resource states, the efficiency of the
scheme improves, since now the steps that would ordinarily be required to prepare these
resource states from single-photon states are mitigated.

9.9 Summary
We have devised a protocol based on the idea of cluster states for efficiently preparing large
photon-number Fock states as motivated in section 9.2. We began by describing some ob-
vious ways to inefficiently prepare large photon-number Fock states in section 9.3 and sec-
tion 9.4. Then in section 9.5 we explain the basic formalism for our efficient approach.
This protocol is non-deterministic, assumes that a resource of single-photon states is readily
available, requires quantum memory, requires fast-feedforward, and uses linear optics with
post-selection. Large photon-number Fock states are generated by iteratively fusing together
smaller Fock states into larger ones that undergo a random walk in the quantum memory and
shown in section 9.6. The quantum memory allows for us to use state recycling where we
can use all post-selected events as a resource. We found that our method was able to expo-
nentially improve the state preparation rate by orders of magnitude compared to other naïve
brute-force and single-shot methods. In section 9.7 we discuss how to reduce the photon
number of a Fock state in case the resource state obtained is larger than desired. In section
9.8 we show the results of this work and plot the various strategies showing the exponen-
tial improvement in scaling for certain fusion strategies. The requirements of this protocol
like quantum memory and fast-feedforward are extremely challenging and are essentially the
same requirements as LOQC. When LOQC is available so will the efficient preparation of
large photon-number Fock states. Thus, the technology for generating these states will also
help lead to realising LOQC.
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Son: Dad, why is cannabis ille-
gal?
Dad: Well, son, legalizing the
cannabis plant could free us
from oil dependence, stop de-
forestation, become a saf alter-
native to many pharmaceuticals,
and would cause prisons to shut
down.
Now do you understand?

Anonymous 10
Preparing Continuous Variable Optical

States for Quantum Error Correction by
Coupling Atomic Ensembles to Squeezed

States of Light

10.1 Synopsis

In 2001 Gottesman, Kitaev, and Preskill (GKP) showed theoretically how to encode infor-
mation fault-tolerantly on a continuous variable system using linear optical techniques; how-
ever, GKP did not show how to physically prepare these continuous variable states. In this
work we present a non-deterministic scheme for generating optical continuous variable states
by coupling an atomic ensemble with a squeezed state of light. The coupling creates a comb
of Gaussian squeezed states of light in one channel. Upon particular measurement events of
angular momentum in the other channel a desired resource state for encoding logical infor-
mation is prepared.

This work is first motivated in Sec. 10.2. We then show how to prepare the resource
state in Sec. 10.3. Once we have the resource state we may encode logical states onto
certain outcomes of the resource state as discussed in Sec. 10.4. In Sec. 10.4.1 we discuss
the relationship between the total angular momentum required of the atomic ensemble for
a given amount of squeezing in the squeezed state of light to prepare a resource state that
is sufficient for resolving encoded states. In Sec. 10.4.2 we discuss the success probability
of post-selecting upon a measurement that yields a useful resource state. Specifically, for a
given total angular momentum J of the atomic ensemble there are 2J+1 possible outcomes.
We find that the events that yield desirable resource states for encoding logical information
also have the highest probability of being measured, which is a significant advantage of this
scheme over others. In Sec. 10.5 we propose a physical implementation based on the Faraday
interaction between an atomic ensemble and a squeezed optical field.
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10.2 Motivation
Realising a quantum computer is laden with many difficult problems to overcome. Whatever
architecture may be used for this realisation will require quantum error correction because
the quantum state that is processed within the quantum computer is extremely susceptible to
being destroyed by its environment and so it is a requirement that the state of the quantum
system within the quantum computer remains coherent in the presence of such environmen-
tal noise. One way to overcome this noise is to encode logical information on either discrete
or continuous variable (CV) systems. In general these systems use an ensemble of quantum
particles to encode a logical state. There have been several proposals for encoding informa-
tion in a larger system that is resilient against various types of errors such as the now famous
toric code [217] among others [218, 219].

A promising CV proposal by Gottesman, Kitaev, and Preskill (GKP) in 2001 [220]
showed how to encode logical states in an infinite-dimensional Hilbert space such that in
the ideal encodings a universal set of fault-tolerant quantum gates can be implemented with
linear optical operations, squeezing, homodyne detection, and photon counting. They de-
scribed how a comb of delta functions can perfectly encode logical states; however, these
delta functions are unphysical as they would require infinite energy, so they approximated
the delta functions with Gaussians, which can encode the logical states with an associated
error probability. These Gaussians approach the ideal delta functions as squeezing goes to in-
finity or equivalently their variance tends to zero. It remained unknown weather or not these
error prone continuous variable encodings could enable fault-tolerant measurement-based
quantum computation until Menicucci showed in 2014 that they can [221].

GKP did not propose how to actually make these states and just presented them as a
model for encoding. Since then proposals have been made to generate these GKP states
optically [222] and by a variety of other methods [223–227], but none are particularly easy
to implement. In this work we propose a new way of generating optical GKP states by
coupling an atomic ensemble to a squeezed state of light.

10.3 Preparing the Resource State

a b c d

Figure 10.1: The circuit model that creates the resource state |ψxd〉O. |J,mx = J〉A is the
orbital angular momentum eigenstate with total angular momentum J prepared in the x-
basis and |0〉O is the vacuum state of light which is squeezed via the standard squeezing
operator Ŝ(ξ). A controlled position shift operator D̂c(g) couples the atomic ensemble and
the squeezed state of light in the z-basis. At the bottom output channel a resource state |ψxd〉O
is obtained based on post selecting particular measurements of angular momentum x in the
top channel.

In this section we show how the optical resource state is conditionally prepared using
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a controlled interaction with an angular momentum. Where appropriate, the state of the
angular momentum and of the optical field will be labelled with A and O, respectively. The
calculations follow the progress of the joint state through the circuit in Fig. 10.1, which
begins with an unentangled spin-optical state |ψa〉AO = |J,mx = J〉A|0〉O at (a) and ends
with a conditional optical state prepared upon a measurement of the spin at (d). A succinct
derivation of the protocol for more general initial angular momentum and optical states is
given in Appendix A.15.

Initially the atomic ensemble with total collective angular momentum J is prepared in a
spin-polarized state along the x-axis which we will denote as |J,mx = J〉A. Expressed in
terms of eigenstates along the z-axis, |J,m〉A, the initial spin state is

|J,mx=J〉A =
J∑

m=−J

d
(J)
m,J(π/2)|J,m〉A, (10.1)

where the coefficients, d(J)
m,m′(β) ≡ 〈m|R̂y(β)|m′〉, are the matrix elements of the operator

R̂y(β) = exp(−iβĴy) that rotates the state around the y-axis by an angle β. For our purposes
J is fixed and β = π/2; henceforth, we drop unnecessary notation and define

dm,m′ ≡ d
(J)
m,m′(π/2) =

1

2J

J+m′∑
k=0

(−1)k−m
′+m

√
(J +m′)!(J −m′)!(J +m)!(J −m)!

(J +m′ − k)!k!(J − k −m)!(k −m′ +m)!
,

(10.2)
where we have used the explicit form for d(J)

m,m′(β) that appears, e.g., in Sakurai [228] Sec.
3.8.

When m′ = ±J only a single term in the summation in Eq. (10.2) has non-negative
factorials in the denominator, and the matrix element simplifies to

dm,±J =
(±1)J+m

2J

(
2J

J −m

)1/2

. (10.3)

Specifically, the factorials in the denominator are non-negative only when k = J − m for
m′ = +J ; and for k = 0 for m′ = −J . The values of m′ = ±J are significant as these yield
desirable resource states, as we will see in Sec. 10.4.

The initial optical state is the bosonic vacuum |0〉with creation and annihilation operators
â and â† obeying the usual commutation relations [â, â†] = 1. The squeezing operator [20]

Ŝ(ξ) = e
1
2

(ξ∗â2−ξâ†2) (10.4)

acts on this initial state to produce a squeezed vacuum,

Ŝ(ξ)|0〉O = |ξ〉O. (10.5)

Hence the joint state at (b) in Fig. 10.1 is

|ψb〉AO =
J∑

m=−J

dm,J |J,m〉A|ξ〉O. (10.6)

The angular momentum and optical field are entangled with a controlled interaction that
applies a displacement to the field proportional to the angular momentum in the z-direction
given by

D̂c(g) = e−igp̂Ĵz , (10.7)
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Figure 10.2: Position- and momentum-space wavefunctions, Eqs. (10.13), for the unnor-
malised conditional optical state, |ψxd〉O, given total angular momentum J = 3 (a,b) and
J = 7/2 (c,d), for each of the 2J + 1 measurement outcomes, x. When x = ±J or x = 0
is measured the resulting state may be used to encode a logical state. In this work we focus
on analyzing the x = ±J outcomes. The colors red, blue, purple, and green indicate relative
phases of 0, π, i, and −i respectively. Note g = 1 and σq = 0.1 in these plots so that the
peaks have sufficient spread to show the features.

where p̂ = −i(â− â†)/
√

2 is the momentum-quadrature operator. The key feature is that the
controlled displacement has the following effect:

|J,m〉A|ξ〉O → |J,m〉A
∣∣∣gm√

2
, ξ
〉
O
, (10.8)

where |α, ξ〉O is a displaced squeezed state [20]. The scaling of the displacement has been
chosen to match the work of GKP [220] for the encoded logical states. After the controlled
displacement given by Eq. (10.7), the joint state at (c) in Fig. 10.1 is

|ψc〉AO =
J∑

m=−J

dm,J |J,m〉A
∣∣∣gm√

2
, ξ
〉
O
. (10.9)

Finally, the angular momentum is projectively measured along the x-direction as shown
in (d) in Fig. 10.1. We express |ψc〉AO in the basis of x-eigenstates,

|ψc〉AO =
J∑

m,m′=−J

dm,Jdm,m′ |J,mx = m′〉A
∣∣∣gm√

2
, ξ
〉
O
. (10.10)

where we used the fact that the matrix elements in Eq. (10.2) satisfy 〈J,m′|R̂y(−π/2)|J,m〉 =
dm,m′ . Then, measurement trivially collapses the m′ summation in Eq. (10.10) to a single
term. That is, given measurement outcome x, the optical state is projected to

|ψxd〉O =
1√
P(x)

J∑
m=−J

dm,Jdm,x

∣∣∣gm√
2
, ξ
〉
O
. (10.11)
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The state is normalized by the probability of obtaining x,

P(x) =
∑
m,m′

dm,Jdm,xdm′,Jdm′,xe
− 1

4
g2e2ξ(m−m′)2

, (10.12)

as shown in Appendix A.16, noting that the squeezing parameter ξ is taken to be real.
The conditional optical state can be written as a wavefunction in the position and mo-

mentum quadratures, q̂ = (â+ â†)/
√

2 and p̂ = −i(â− â†)/
√

2 respectively,

ψd(q|x) = 〈q|ψxd〉O =
eξ/2

P(x)1/2π1/4

J∑
m=−J

dm,Jdm,x exp

(
−(q − gm)2

2e−2ξ

)
,

ψd(p|x) = 〈p|ψxd〉O =
e−ξ/2

P(x)1/2π1/4

J∑
m=−J

dm,Jdm,x exp

(
−igmp− p2

2e2ξ

)
.(10.13)

For spins of size J = 3 and J = 7/2, the position- and momentum-space wavefunctions
are plotted in Fig 10.2. Each measurement outcome x prepares a conditional position-space
wavefunction, Eq. (10.13), composed of a superposition of displaced squeezed states sep-
arated by mg (for integer m) with amplitudes governed by the product of matrix elements,
dm,Jdm,x.

10.4 Encoding
Logical information is encoded into the continuous variable degrees of freedom of the optical
states using the scheme proposed by GKP. We seek maximally distinguishable encoded states
with logical operations corresponding to translations in position and momentum. Of the
conditional optical states after the angular momentum measurement, those corresponding to
x = ±J or x = 0 are suitable for GKP encoding. However, the state produced by x = 0 has
a much smaller probability than x = ±J (see Sec. 10.4.2), is not available for half-integer J ,
and cannot be used together with the states generated by the other outcomes. Consequently,
we concentrate exclusively on the resource states generated by the outcomes x = ±J . The
outcomes x = ±J respectively generate the logical states |+〉 = (|0〉 + |1〉)/

√
2 and |−〉 =

(|0〉 − |1〉)/
√

2. The corresponding wavefunctions, which appear in the far right and far left
panels of Fig. 10.2, follow from Eqs. (10.13),

ψd(q| ± J) =
eξ/2

P(±J)1/2π1/44J

J∑
m=−J

(
2J

J −m

)
(±1)J+m exp

(
−(q − gm)2

2e−2ξ

)
, (10.14a)

ψd(p| ± J) =
e−ξ/2

P(±J)1/2π1/4
exp

(
− p2

2e2ξ

){
cos2J(gp/2)

eiJπ sin2J(gp/2)

}
. (10.14b)

where we have used the dm,±J matrix elements in Eq. (10.3). The position-space wavefunc-
tion, ψ(q| ± J), can be described as a product of a comb of Gaussians each with variance

σ2
q = e−2ξ, (10.15)

separated by g; and an envelope arising from the binomial distribution that appears in Eq.
(10.14a), namely

σ2
q,env = g2J/2. (10.16)
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Figure 10.3: Amplitudes of the logical |−〉 state in the q-representation and the logical |1〉
state in the p-representation for J = 10, 20, 21/2 and 41/2. For integer J , the logical |0〉 and
|1〉 states can be read as the components above and below the line for 〈q|−〉, similarly for |+〉
and |−〉 in 〈p|1〉 plots. The half-integer J values are displaced in the q-representation so that
they are centred at the origin. For half-integer J the |−〉 component of 〈p|1〉 is complex and
has been rotated to the real plane for the figures. Parameters were chosen for a symmetric
encoding; g =

√
π and squeezing ξ given by Eq. (10.19).

Similarly, the momentum-space wavefunction, ψ(p| ± J), can be described as a product of a
Gaussian envelope with variance

σ2
p,env = e2ξ, (10.17)

and a comb of approximately Gaussian peaks generated by cos2J(gp/2), hence separated by
2π/g. The variance of the individual peaks is given by

σ2
p =

2(J2ζ(2, J)− 1)

g2J2

≈ 1/σ2
q,env +O(1/J2), (10.18)

where ζ(s, a) is the Hurwitz zeta function, as shown in Appendix A.17.
In the q-quadrature, the peaks in the logical |0〉 and |1〉 states are interleaved such that

the spacing between peaks of one state and the other is a minimum of g. With this encoding
q-shifts smaller than g/2 can be corrected, and Pauli-X errors correspond to interchanging
|0〉 and |1〉. These relationships are most clearly seen in the left-most panels of Fig. 10.2(a,c)
for the logical state |−〉. In the q-quadrature the peak locations are the same for the |+〉 and
|−〉 logical states, so a q-measurement is unable to distinguish them. In the p-quadrature,
however, the |+〉 and |−〉 states are distinguishable while the |0〉 and |1〉 that are not. In
this quadrature the minimum separation between peaks of |+〉 and of |−〉 is π/g, so p-
shifts smaller than π/(2g) can be corrected, and Pauli-Z errors correspond to interchanging
|+〉 and |−〉. Depending on the error model for a particular physical implementation, the
interaction strength in the controlled displacement [Eq. (10.7)], can be modified to produce
encodings more robust to errors in one quadrature than the other.

10.4.1 Symmetric encoding
A specific encoding, laid out in the original GKP paper [220], assumes that q- and p-
quadrature errors are comparable in size. This symmetric encoding is a resource for fault-
tolerant quantum computing using continuous-variable cluster states. For the ideal (infinite
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squeezing) code, the size of a correctable shift error in the q-representation is half the min-
imum separation between a peak in the logical |0〉 state and a peak in the logical |1〉 state
and similarly for |+〉 and |−〉 in the p-representation. Equating the two yields g =

√
π in the

code states, Eqs. (10.14).
The prepared logical states are finite-squeezing approximations to the ideal GKP states.

Thus, irrespective of shift errors, there is an embedded probability of mistaking |0〉 and |1〉, or
|+〉 and |−〉, due to finite overlap of neighboring Gaussians peaks. To balance the embedded
errors, the symmetric encoding is completed by equating the peak variances in the q- and p-
quadratures as follows. For input squeezing ξ, the peak variance in q is given by Eq. (10.15)
and in p follows from Eq. (10.18) using g =

√
π. For fixed ξ and g, the size of the angular

momentum J determines the peak variance in p. Setting σ2
q = σ2

p gives

J(ξ) = 2
π
e2ξ, (10.19)

which carries the additional effect of symmetrizing the envelopes, σ2
q,env = σ2

p,env = πJ/2.
Table 10.1 gives the required J for various values of squeezing (in dB). A symmetric encod-
ing prepared with a total angular momentum J ≈ 127 with s ≈ 20 dB of squeezing is suf-
ficient for fault-tolerant measurement-based quantum computing with continuous-variable
cluster states [221]. Examples of symmetric resource states prepared by the conditional pro-
cedure presented here are shown in Fig. 10.3 along with the corresponding logical states.

s (dB) 0 2 4 6 8 10 12 14 16 18 20
J 1 2 3 5 8 13 20 32 51 80 127

Table 10.1: Total angular momentum J required to achieve a symmetric encoding for a given
amount of squeezing. The squeezing expressed in dB, s = −10 log10

(
e−2ξ

1/2

)
, and J has been

rounded to the nearest integer.

10.4.2 Success Probability
The probabilities of obtaining the resource states for symmetric encoding follow from Eq.
(10.12). Given total angular momentum J = 50, which arises from Eq. (10.19), the proba-
bilities for all spin measurement outcomes are shown in Fig. 10.4. A significant advantage
of the protocol proposed here is the relatively large success probabilities.

The outcomes we care most about (i.e. x = ±J) are also the most probable ones to
measure. This significantly boosts the success probability of obtaining a resource state that
is usable for encoding logical states onto and is thus an advantage in our scheme.

P(±J) =
1

16J

∑
m,m′

(
2J

J −m

)(
2J

J −m′
)
e−

π2

8
J(m−m′)2

. (10.20)

Since both resource states are compatible with the same encoding, and the probabilities are
equal, the total success probability is Ps = 2P(+J).

As shown in Appendix A.16, in the limit that the squeezing ξ and associated J are large,
the embedded error vanishes and the probabilities become,

P(x) =
∑
m

(dm,Jdm,x)
2 , (10.21)
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Figure 10.4: The probability P(x) of measuring a particular angular momentum x which
corresponds to a particular resource state. The measurements of x = ±J are the most prob-
able and are indeed the measurements the yield useful resource states which is an advantage
of using this scheme.

Now the success probability of obtaining the desired resource state Ps is given by

Ps ≈
√

2

πJ
, (10.22)

which is shown in App. A.16 and the approximation holds for large J . Taking for instance
J = 127, which corresponds to a squeezing of 20 dB as shown in table 10.1, we find Ps ≈
7%. This is a highly favourable success probability for such a large value of total angular
momentum J . Fig. 10.5 shows how the probability of successfully post-selecting on a
desired resource state scales with J . Whereas the success probability of the iterated scheme
scales exponentially poorly in the number of steps N (equivalent to an angular momentum
N/2 here), the probability here falls off only as

√
J . The reason comes from the nature of

the measurements. Here, the measurement is collective and the outcomes arise solely from
the highest irreducible representation of angular momentum for N = 2J spins, where the
J = 1

2
spins are measured individually, yielding outcomes spread over the full 2N Hilbert

space, the vast majority of them fail to produce the desired resource states.
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Figure 10.5: The probability Ps of successfully obtaining a resource state that is useful to
encode a logical state on in the large J limit of Eq. (10.22).



10.5 Physical Implementation 125

10.5 Physical Implementation

In this section we show three important aspects for experimental implementation: (1) We
present a method for experimental implementation using a Faraday-based quantum non-
demolition (QND) interaction. (2) We show a method for measuring the angular momentum
x in the top channel of Fig. 10.3.

Faraday-based QND interaction

To implement the protocol, we couple the squeezed field to the collective spin formed by an
ensemble of polarizable neutral atoms. ConsiderN such atoms, each with effective spin ĵz =
1
2

(
|↑〉〈↑|−|↓〉〈↓|

)
defined on metastable ground states {↑, ↓}. The atoms couple to a common

mode of light possessing two orthogonal linear polarizations, horizontal (H) and vertical
(V ), with respective annihilation operators âH and âV . For an off-resonant field the atoms
and light become entangled via the dispersive Faraday interaction, Û = e−iχŜ3Ĵz , which
describes a coupling of the collective atomic spin, Ĵz =

∑N
n=1 ĵ

(n)
z , to the 3-component of

the field’s Stokes vector [229],

Ŝ3 = 1
2i

(
â†H âV − â†V âH

)
. (10.23)

The Faraday interaction generates a rotation of the Stokes vector around the 3-axis propor-
tional to the atomic spin projection along Ĵz with a strength characterized by the dimension-
less, single-photon rotation angle χ.

The controlled displacement required for the GKP resource-state protocol arises by prepar-
ing the H-mode of light in a coherent state with NL photons. Making the linearization
âH →

√
NL, the Stokes operator in Eq. (10.23) becomes Ŝ3 ≈

√
NL/2p̂, where p̂ =

−i(âV − â†V )/
√

2 is the momentum quadrature of the V -polarized mode. This linearized
Faraday interaction generates the requisite controlled translations of V -mode photons, Eq.
(10.7), with effective coupling strength,

g =
√
NL/2χ. (10.24)

Projective spin measurement

Once the optical field and atoms have become entangled, the collective spin state is projec-
tively measured. A single atomic spin may be measured by driving a cycling transition and
detecting the resulting fluorescence [230]. Concatenating with unitary transformations, a
projective measurement can be realized. However, since our resource-state protocol benefits
from spins larger than can be achieved using a single atom, we focus instead on a quantum
nondemolition (QND) measurement of the collective spin of many atoms. The collective
spin is coupled via the same Faraday interaction to a second field that serves as a meter.
The meter experiences a spin-dependent polarization rotation that is measured via homo-
dyne polarimetry. When the spin-meter coupling is strong, relative rotations from different
projective m-values become distinguishable over the meter’s shot noise, and the collective
spin measurement is projective. This is indeed the same strong-coupling requirement for
the GKP-state peaks to be sufficiently separated. It become more challenging to distinguish
angular momentums from each other as the total angular momentum increases (e.g. J = 126
versus J = 127 as opposed to J = 1 versus J = 2).
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To implement the measurement, the collective spin is first rotated into the x-basis with
a π/2-pulse. The meter is initialized with NL photons in the H-mode and squeezed vac-
uum in the quantum mechanical V -mode, |ξ〉M . Polarimetry in the diagonal polarization
basis implements an effective homodyne measurement of the position quadrature for V -
mode photons, with the H-mode serving as the local oscillator [231]. The degree to which
the measurement is projective is determined by the distinguishability of the meter states,
|gm√

2
, ξ〉M = e−igmp̂|ξ〉M , given by Eq. (A.64),

∣∣∣∣〈gm√
2
, ξ

∣∣∣∣gm′√2
, ξ

〉∣∣∣∣2 = exp
[
− (g/2σq)

2(m−m′)2
]
. (10.25)

In the limit that (m − m′)2 � 4σ2
q/g

2, the meter states become orthogonal. Thus, dis-
tinguishing neighboring eigenstates of Ĵz requires 8σ2

q/NLχ
2 � 1, with limits set by the

characteristic coupling strength χ and the squeezed shot noise in the polarimeter. Note that
in contrast to the GKP encoding as discussed in Sec. 10.4, the spin-meter coupling is not
constrained by a specific value of g for a given σ2

q , since the goal is only to produce distin-
guishable meter states.

Practical limitations on NL in both the GKP mode and the meter arise for two related
reasons. First, the Faraday interaction is a valid description of the light-matter coupling when
the quantum emitters remain far below saturation. Second, increased NL precipitates more
spontaneous photon scattering that spoils the QND interaction and measurement. Indeed,
this has restricted QND spin squeezing in free space to the Gaussian regime, far from a
projective measurement. The requirement to overcome the effects of decoherence is that
the coupling to the collective optical mode is large relative to all other modes. This can be
characterized by the optical density per atom, η ≡ σ0/Am, the ratio of the resonant atomic
scattering cross section σ0 to the transverse mode areaAm. While typical optical densities per
atom in free space, η ∼ 10−5, are far too weak for our purposes [231], those in engineered
photonic environments, such as photonic crystal waveguides, can be much larger; η ∼ 1.
Future improvements are expected by operating near a band edge where “slow light" can
enhance the interaction by nearly two orders of magnitude [232].

A detailed study of optical pumping for atoms very near and strongly coupled to a waveg-
uide is beyond the scope of our work; nevertheless, an estimate of the required coupling can
be found from a free-space model for alkali atoms. Here, the Faraday rotation angle per
photon per unit angular momentum given above is χ = ηΓ/2∆, for detuning ∆ and spon-
taneous emission rate Γ [229]. To realize the coupling strength in Eq. (10.24) required for
qp-symmetric codewords and an approximately projective measurement while limiting the
number of free-space scattered photons, we find that for NL = 104 and ∆ = 1000Γ the
required optical density per atom is η ∼ 25, within the reach of near-term technology. It may
be possible to augment the atom-light coupling with an optical cavity [233] and to suppress
the deleterious effects of optical pumping by judiciously selecting the effective spin within
each atom [234]. Alternative fruitful avenues have opened in other physical architectures,
where demonstrated strong coupling of “artificial atoms" to photonic environments could
provide the necessary interaction strength [235, 236]. In such systems, Purcell enhancement
of the total coupling rate has the potential to reduce the collective spin’s susceptibility to
other sources of noise.
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10.6 Summary
In this work we show how to create a state that may be used for quantum error correction in
quantum information processing. Quantum error correction is a critical component of realis-
ing any quantum computer. Specifically, we show a non-deterministic scheme for generating
optical continuous variable states by coupling an atomic ensemble with a squeezed state of
light, which can be used to encode and correct quantum information. This work is further
motivated in Sec. 10.2. The coupling creates a comb of Gaussian squeezed states of light,
which upon particular measurement events of angular momentum, a desired resource state
for encoding logical information is prepared. The details of preparing the resource state are
presented in Sec. 10.3 and how to encode information on these states is discussed in Sec.
10.4. In Sec. 10.4.1 bounds between the total angular momentum required of the atomic en-
semble for a given amount of squeezing in the squeezed state of light to sufficiently prepare
a useable resource state is derived. In Sec. 10.4.2 the success probability of our scheme to
yield desirable resource states for encoding logical information is shown. We find that the
desired post-selection events also have the highest probability of occuring, which is a signif-
icant advantage of this scheme over others. Finally, we propose a physical implementation
for realising our protocol based on the Faraday interaction in Sec. 10.5.



128
Preparing Continuous Variable Optical States for Quantum Error Correction by Coupling

Atomic Ensembles to Squeezed States of Light



You can tell more about a per-
son by what they say about oth-
ers than you can by what others
say about them.

Leo Aikman

11
Summary

In this thesis we developed research areas that will lead to novel quantum technologies such
as a universal quantum computer. Such technologies promise significant breakthroughs
in digital security, our ability to measure various phenomena in nature, condensed-matter
physics, high-energy physics, atomic physics, quantum chemistry, cosmology, and medicine
among others. Although the technologies required to build a universal quantum computer
remain daunting, these breakthroughs are motivation enough for much of the world to focus
resources into funding these futuristic technologies.

To summarize this thesis we begin by introducing a specific type of quantum computing
called linear optical quantum computing in Ch. 1. We then looked at quantum random walks
in Ch. 2, which are used in various quantum algorithms, and found that quantum walkers
retain quantum advantages over classical walkers even in the presence of lattice congestion
and dephasing. In Ch. 3 we introduce BosonSampling, which is a very simplified model
of a linear optical quantum computer that simulates the interference of bosons and which
contains many of the core technologies required to build a linear optical quantum computer.
BosonSampling is the topic of most of this thesis including this introduction and chapters 4,
5, 6, 7, and 8. In Ch. 4 we found that BosonSampling using the most readily available pho-
ton source, called a spontaneous parametric down conversion source, may be successfully
implemented with a multiplexed device that can reroute photons. In Ch. 5 we invent how to
implement BosonSampling in a temporal implementation instead of spatial one and show that
the temporal architecture simplifies the number of optical elements required from thousands
or millions to just three. In addition we give a detailed error analysis of this new architec-
ture. This was done in theory but has since been successfully experimentally demonstrated
implementing the worlds largest ever BosonSampling experiment. In Ch. 6 we show that the
original protocol for BosonSampling is not unique and that there is a large class of quantum
states of light that may be used to implement a computationally hard to simulate instance
of BosonSampling. In Ch. 7 we show another key discovery we made where we invented a
world’s first application inspired by BosonSampling in the field of quantum metrology. This
is one of only two BosonSampling inspired applications that currently exist. In Ch. 8 we use
a quantum optics approach to map the BosonSampling formalism into a multidimensional
integral formalism using characteristic functions showing that they are equivalent and thus



130 Summary

finding multidimensional integrals of a certain form that are also computationally complex.
Finally, we switched away from BosonSampling and focused on creating certain quantum
states of light that are useful for quantum computing. In Ch. 9 we give a protocol that
can efficiently generate large-photon Fock states, which are a critical quantum state used in
quantum information processing, and in Ch. 10 we show how to create a continuous vari-
able optical state by coupling light to atoms that can be used to encode and correct quantum
information in a quantum computer.
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[150] R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger.
Experimental interference of independent photons. Physical review letters 96(24),
240502 (2006).

[151] J. P. Olson, K. P. Seshadreesan, K. R. Motes, P. P. Rohde, and J. P. Dowling. Sampling
arbitrary photon-added or photon-subtracted squeezed states is in the same complex-
ity class as boson sampling. Physical Review A 91(2), 022317 (2015).

[152] S. D. Bartlett, E. Diamanti, B. C. Sanders, and Y. Yamamoto. Photon counting
schemes and performance of non-deterministic nonlinear gates in linear optics. Pro-
ceedings of Free-Space Laser Communication and Laser Imaging II 4821 (2002).

[153] S. Rahimi-Keshari, A. P. Lund, and T. C. Ralph. What can quantum optics say about
computational complexity theory? Phys. Rev. Lett. 114, 060501 (2015).

[154] K. Banaszek and K. Wódkiewicz. Testing quantum nonlocality in phase space. Phys.
Rev. Lett. 82, 2009 (1999).

[155] C. F. Wildfeuer, A. P. Lund, and J. P. Dowling. Strong violations of bell-type inequal-
ities for path-entangled number states. Phys. Rev. A 76, 052101 (2007).

[156] G. S. Agarwal and K. Tara. Nonclassical properties of states generated by the excita-
tions on a coherent state. Phys. Rev. A 43, 492 (1991).

[157] M. Dakna, L. Knoll, and D.-G. Welsch. Photon-added state preparation via condi-
tional measurement on a beam splitter. Opt. Comm. 145(1), 309 (1998).

[158] M. Dakna, L. Knoll, and D.-G. Welsch. Quantum state engineering using conditional
measurement on a beam splitter. Eur. Phys. J. D 3(3), 295 (1998).

[159] A. Zavatta, S. Viciani, and M. Bellini. Quantum-to-classical transition with single-
photon-added coherent states of light. Science 306(5696), 660 (2004).

[160] A. Zavatta, S. Viciani, and M. Bellini. Single-photon excitation of a coherent state:
Catching the elementary step of stimulated light emission. Phys. Rev. A 72, 023820
(2005).

[161] A. Bouland and S. Aaronson. Generation of universal linear optics by any beam
splitter. Phys. Rev. A 89, 062316 (2014).

[162] H. M. Georgi. Lie algebras in particle physics (Perseus, 1999).
[163] B. C. Sanders. Erratum: Entangled coherent states. Phys. Rev. A 46, 2966 (1992).
[164] C. C. Gerry. Generation of schrödinger cats and entangled coherent states in the

motion of a trapped ion by a dispersive interaction. Phys. Rev. A 55, 2478 (1997).
[165] C. C. Gerry, A. Benmoussa, and R. Campos. Nonlinear interferometer as a resource



140 References

for maximally entangled photonic states: application to interferometry. Physical Re-
view A 66(1), 013804 (2002).

[166] C. C. Gerry and R. Grobe. Nonlocal entanglement of coherent states, complementar-
ity, and quantum erasure. Physical Review A 75(3), 034303 (2007).

[167] C. C. Gerry, J. Mimih, and A. Benmoussa. Maximally entangled coherent states and
strong violations of bell-type inequalities. Physical Review A 80(2), 022111 (2009).

[168] A. Gilchrist, K. Nemoto, W. J. Munro, T. Ralph, S. Glancy, S. L. Braunstein, and
G. Milburn. Schrödinger cats and their power for quantum information processing.
Journal of Optics B: Quantum and Semiclassical Optics 6(8), S828 (2004).

[169] M. J. Bremner, R. Jozsa, and D. J. Shepherd. Classical simulation of commuting
quantum computations implies collapse of the polynomial hierarchy. Proc. Royal
Soc. A: Math., Phys. and Eng. Sci. 467, 459 (2011).

[170] T. Morimae, K. Fujii, and J. F. Fitzsimons. Hardness of classically simulating the
one-clean-qubit model. Phys. Rev. Lett. 112, 130502 (2014).

[171] K. Fujii, H. Kobayashi, T. Morimae, H. Nishimura, S. Tamate, and S. Tani. Impossi-
bility of classically simulating one-clean-qubit computation. arXiv:1409.6777 (2014).

[172] Y. Han, L. A. Hemaspaandra, and T. Thierauf. Threshold computation and crypto-
graphic security. SIAM Journal on Computing 26, 59 (1997).

[173] S. Aaronson. Quantum computing, postselection, and probabilistic polynomial-time.
Proc. Royal Soc. A: Math., Phys. and Eng. Sci. 461, 3473 (2005).

[174] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy. Quantum
computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).

[175] P. Alsing, G. J. Milburn, and D. F. Walls. Quantum nondemolition measurements in
optical cavities. Phys. Rev. A 37, 2970 (1988).

[176] S. Haroche. Exploring the quantum: atoms, cavities and photons (Oxford Press,
2006).

[177] S. E. Harris. Electromagnetically induced transparency. Physics Today 50(7), 36
(2008).

[178] S. E. Harris, J. E. Field, and A. Imamoğlu. Nonlinear optical processes using electro-
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A
Appendix

A.1 Intuitive Example of Loop Bias due to Loss

For Sec. 5.6.3 an example of how Û becomes biased is explained here. Let us consider two
examples of a two-mode pulse-train — a single inner loop and two inner loops.

A.1.1 One Loop
The first mode can can exit the first output mode by traversing the inner loop once. Here it
picks up loss due to the middle switch twice ηs2, and loss due to the inner loop fiber once ηf ,
obtaining a net loss of ηs2ηf . The first mode can exit the second output mode by traversing
the inner loop twice. In this case it obtains a net loss of ηs3ηf

2. A similar analysis can be
performed for the other combinations. Then, we can write the loss amplitudes corresponding
to the input (rows) and output (columns) modes in matrix form as,

L̂ =

(
ηs

2ηf ηs
3ηf

2

ηs ηs
2ηf

)
= ηs

(
η η2

1 η

)
, (A.1)

where η = ηsηf and observe the bias accumulating in this input to output map. The net
input-to-output mapping of amplitudes is given by taking the element-wise product of this
loss matrix with the ideal unitary, L̂ ◦ Û , thereby leaving us with a biased map.

A.1.2 Two Loops
A similar analysis as above but following the paths for two consecutive applications of the
inner loop (i.e one traversal of the outer loop), we find the input-to-output loss matrix to be,

L̂ =

(
ηs

4ηf
2 ηs

5ηf
3

ηs
3ηf ηs

4ηf
2

)
= ηs

2η

(
η η2

1 η

)
. (A.2)

where we have ignored the losses due to the outer loop as it yields an overall normalisation
factor that does not bias Û . As we can see, for each iteration of the inner loop Û accumulates
more loss, with a decreasing overall success probability, but the amount of skew in the matrix
remains the same.
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A.2 Wave-packet Simplifications

For Sec. 5.7.3 we derive the overlap of two photons with temporal creation operator Â†(t,∆)
as per Eq. (5.12) and temporal density function ψ(t,∆). For the purpose of this work we
assume that the temporal spacing τ between each mode is much larger than the width of
the wave packet ω such that the overlap of our temporal photons in different time-bins is
negligible,

〈0|Â(t,∆)Â†(t′,∆′)|0〉 = 0, (A.3)

for t 6= t′.
For photons in the same time-bin and allowing for arbitrary temporal-shifts, the overlap

is,

〈0|Â(t,∆′)Â†(t,∆)|0〉

=

(
〈0|
∫ ∞
−∞

ψ∗(x′ − t−∆′)â(x′)dx′
)

×
(∫ ∞

−∞
ψ(x− t−∆)â†(x)dx|0〉

)
=

∫ ∞
−∞

∫ ∞
−∞

ψ∗(x′ − t−∆′)ψ(x− t−∆)

× 〈0|â(x′)â†(x)|0〉︸ ︷︷ ︸
δx′,x

dx′dx

=

∫ ∞
−∞

ψ∗(x−∆′)ψ(x−∆)dx

= e−
(∆′−∆)2

4ω2 . (A.4)

For ideal states where ∆′ = ∆ = 0, we notice that F = 1, as expected when there is no
mode-mismatch. We use these results for simplifying Eq. (5.23) in our analysis of mode-
mismatch.

A.3 Reproducing Hong-Ou-Mandel Interference Using Small
Amplitude Odd Cat States

As for Sec. 6.5.1 we begin with our generalized cat state result from Eq. (6.61).

γs =
t∑

~t=1

(
m∏
j=1

λ
(j)
tj fSj(β

(j)
~t

)

)
, (A.5)

and input the odd cat state which has the form

|cat−〉 =
|α〉 − | − α〉√

2(1− exp[−2α2])
. (A.6)

When considering the specific example of |cat−〉 the λ(j)
tj of Eq. (A.5) goes to (−1)tj .

Eq. (A.5) then becomes,

γs =
t∑

~t=1

(
m∏
j=1

(−1)tj
fSj(β

(j)
~t

)√
2(1− exp[−2α2])

)
. (A.7)
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Since the β(j)
~t

’s in Eq. (A.7) depend on α, we substitute the argument of fSj using Eq. (6.58),

γs =
1(√

2(1− exp[−2α2])
)m (A.8)

×
t∑

~t=1

(
m∏
j=1

(−1)tjexp

[
−
|β(j)
~t
|2

2

]
(β

(j)
~t

)Sj√
Sj!

)
(A.9)

Next we take a first order approximation. Since α is small, the exponential in the numerator
goes to one while the exponential in the denominator goes to exp(x) ≈ 1 + x because
otherwise this would diverge. This yields,

γs ≈
1(√

2(1− (1− 2α2)
)m t∑

~t=1

(
m∏
j=1

(−1)tj (1)
(β

(j)
~t

)Sj√
Sj!

)

=
1

(2α)m
√
S1!S2! . . . Sm!

t∑
~t=1

(
m∏
j=1

(−1)tj(β
(j)
~t

)Sj

)

=
1

(2α)m
√
S1!S2! . . . Sm!

t∑
~t=1

(−1)σ(~t)

m∏
j=1

(β
(j)
~t

)Sj . (A.10)

In the limit of small αwe know that the odd cat state reduces to a single photon Fock state.
Here we consider the case of a cat state being inputted into the first two modes and let the
unitary be the Hadamard gate. In small α this corresponds to inputting a single photon Fock
state into the first two modes and interfering them in a single 50/50 beamsplitter. Therefore,
the corresponding bunching in the output modes would to be expected. In this section we
show that our expression of Eq. (A.10) does show the expected bunching.

We begin by putting an odd cat state |cat−〉 with t = 2 terms into the first m = 2 modes.
Then Eq. (A.10) becomes,

γs ≈
1

(2α)2
√
S1!S2!

2∑
t1,t2=1

(−1)σ(~t)

2∏
j=1

(β
(j)
t1,t2)Sj

=
1

(2α)2
√
S1!S2!

2∑
t1,t2=1

(−1)σ(t1+t2)(β
(1)
t1,t2)S1(β

(2)
t1,t2)S2

=
1

(2α)2
√
S1!S2!

[
(β

(1)
1,1)S1(β

(2)
1,1)S2 − (β

(1)
1,2)S1(β

(2)
1,2)S2

− (β
(1)
2,1)S1(β

(2)
2,1)S2 + (β

(1)
2,2)S1(β

(2)
2,2)S2

]
(A.11)

Now to calculate the β(j)
~t

’s for this case we first take the tensor product between the first
two modes. Ignoring the normalization factor this yields,

|cat_〉 = (|α〉 − | − α〉)⊗ (|α〉 − | − α〉)
= |α, α〉 − |α,−α〉 − | − α, α〉+ | − α,−α〉.

(A.12)

Next we pass them through a 50/50 beamsplitter,

U |cat_〉 = |
√

2α, 0〉 − |0,
√

2α〉 − |0,−
√

2α〉+ | −
√

2α, 0〉. (A.13)
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Now we read off the β(j)
~t

’s to be

β
(1)
1,1 = β

(2)
1,2 =

√
2α

β
(1)
2,2 = β

(2)
2,1 = −

√
2α

β
(1)
1,2 = β

(1)
2,1 = β

(2)
1,1 = β

(2)
2,2 = 0. (A.14)

Now Eq. (A.11) becomes,

γs =
1

(2α)2
√
S1!S2!

[
(
√

2α)S1(0)S2 − (0)S1(
√

2α)S2

− (0)S1(−
√

2α)S2 + (−
√

2α)S1(0)S2

]
. (A.15)

Because we are dealing in the limit of small α, a non-zero number arbitrarily close to
zero raised to a zero power is one, so the terms 0Sj = δSj ,0. Now Eq. (A.15) becomes,

γs =
1

(2α)2
√
S1!S2!

[
(
√

2α)S1δS2,0 − (
√

2α)S2δS1,0

− (−
√

2α)S2δS1,0 + (−
√

2α)S1δS2,0

]
. (A.16)

For this example we know that there are three possible signature outcomes. We expect
that the configuration S1 = S2 = 1 is not possible due to HOM photon bunching and thus in
this case γs = 0. For configurations S1 = 0 and S2 = 2 or S1 = 2 and S2 = 0 we would
expect a non-zero configuration amplitude of γs = 1/2 in each case. Next, we will show that
this is indeed the case.

A.3.1 Configuration S1 = S2 = 1

With configuration S1 = S2 = 1 Eq. (A.16) becomes,

γs ≈
1

4α2

[
(
√

2α)δ1,0 − (
√

2α)δ1,0

− (−
√

2α)δ1,0 + (−
√

2α)δ1,0

]
= 0, (A.17)

which vanishes as expected.

A.3.2 Configuration S1 = 0 and S2 = 2

With configuration S1 = 0 and S2 = 2 Eq. (A.16) becomes,

γs =
1

(2α)2
√

0!2!

[
(
√

2α)0δ2,0 − (
√

2α)2δ0,0

− (−
√

2α)2δ0,0 + (−
√

2α)0δ2,0

]
=

1

4α2
√

2

[
−2α2 − 2α2

]
= − 1√

2
, (A.18)

and the corresponding classical probability is 1/2 as expected.
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A.3.3 Configuration S1 = 2 and S2 = 0

With configuration S1 = 2 and S2 = 0 Eq. (A.16) becomes,

γs =
1

(2α)2
√

2!0!

[
(
√

2α)2δ0,0 − (
√

2α)0δ2,0

− (−
√

2α)0δ2,0 + (−
√

2α)2δ0,0

]
=

1

4α2
√

2

[
2α2 + 2α2

]
=

1√
2
, (A.19)

again with classical probability 1/2 as expected.

Thus, our result generalizes to the expected results for passing a single photon Fock state
inputted in modes one and two through a Hadamard gate. This shows that our cat state
generalization works for the odd cat state in the limit of small α, which is equivalent to
Aaronson & Arkhipov’s BosonSampling.

A.4 Non-Zero Amplitude Odd Cat States as an Error Model

As for Sec. 6.5.2 according to the error bound derived by Aaronson & Arkhipov, the prob-
ability of sampling from the correct distribution must not exceed the bound of 1/poly(n) in
order for it to implement classically hard BosonSampling. The correct input distribution is
|1, . . . , 1, 0, . . . , 0〉 and the probability of successfully sampling from it depends on the odd
cat states since we input odd cat states in every mode requiring a |1〉 and vacuum in the re-
maining modes. Thus, the single-photon component of the odd cat state must be successfully
sampled n times.

Consider the odd cat state from Eq. (A.6). The amplitude of the single photon term of an
odd cat state is given by,

γ1 =
f1(α)− f1(−α)√

2(1− e−2|α|2)
, (A.20)

where fn(α) is defined in Eq. (6.58). In order to get the classical probability we calculate
γ2

1 . The amplitude of the n = 1 coherent state photon term is then,

f1(α) = αe−
|α|2

2 , (A.21)
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thus, the probability of having sampled from the correct term is,

P = γ1
2n

=

(
αe
−|α|2

2 − (−α)e
−|α|2

2√
2(1− e−2|α|2)

)2n

=

(
2αe

−|α|2
2√

2(1− e−2|α|2)

)2n

=

(
4α2e−|α|

2

2(1− e−2|α|2)

)n

=

(
2α2

e|α|2(1− e−2|α|2)

)n
=

(
2α2

e|α|2 − e−|α|2
)n

=
(
α2csch(|α|2)

)n
= α2ncschn(|α|2), (A.22)

where the hyperbolic trigonometric identity csch(x) = 2/(ex − e−x) was used. Following
AA’s given bound this requires that,

α2ncschn(|α|2) > 1/poly(n), (A.23)

in order for the sampling problem to be in a regime which is provably computationally hard.

A.5 Propagating Multi-Mode Coherent States Through Pas-
sive Linear Optics Networks

As for Sec. 6.5.3 the unitary map describing a passive linear optics network is given by,

Û : â†i →
m∑
j=1

Ui,j â
†
j, (A.24)

and taking the Hermitian conjugate yields,

Û : âi →
m∑
j=1

U∗i,j âj. (A.25)

A coherent state can be expressed in terms of a displacement operator acting on the vacuum
state,

|α(i)〉i = D̂i(α
(i))|0〉i, (A.26)

where the displacement operator may be expressed in terms of creation and annihilation
operators as,

D̂i(α
(i)) = exp(α(i)â†i − α(i)∗âi). (A.27)
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Applying the unitary map Eqs. (A.24) and (A.25), we obtain,

ÛD̂i(αi) = exp

(
α(i)

m∑
j=1

Ui,j â
†
j − α(i)∗

m∑
j=1

U∗i,j âj

)
. (A.28)

Let,

Û |α(1), . . . , α(m)〉 = |β(1), . . . , β(m)〉. (A.29)

Then,

Û |α(1), . . . , α(m)〉 = ÛD̂1(α(1)) . . . D̂m(α(m))|01, . . . , 0m〉. (A.30)

For each term,

ÛD̂i(α
(i)) =

m∏
j=1

exp
(
α(i)Ui,j â

†
j − α(i)∗U∗i,j âj

)
=

m∏
j=1

D̂j(Ui,jα
(i)). (A.31)

Thus,

Û

m∏
i=1

|α(i)〉i = Û

m∏
i=1

D̂(α(i))|0〉i

=
m∏
i=1

m∏
j=1

D̂j(Ui,jα
(i))|0〉

=
m⊗
j=1

∣∣∣∣∣
m∑
i=1

Ui,jα
(i)

〉
j

=
m⊗
j=1

|β(j)〉j. (A.32)

And,

β(j) =
m∑
i=1

Ui,jα
(i), (A.33)

as per Eq. (6.50).
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A.6 Proof of U (n)
j,k

For this derivation in Sec. 7.3 we begin from Eq. (7.2) and setting Θ̂ = Î ,

U
(n)
j,k = (V̂ Φ̂V̂ †)j,k

=
n∑

l,m=1

Vj,lΦl,mV
†
m,k

=
n∑

l,m=1

e−2ijlπ/n

√
n︸ ︷︷ ︸

Vj,l

δl,me
i(l−1)ϕ︸ ︷︷ ︸

Φl,m

e2imkπ/n

√
n︸ ︷︷ ︸

V †m,k

=
1

n

n∑
l=1

e
−2ijlπ
n ei(l−1)ϕe

2ilkπ
n

=
1

n

n∑
l=1

e
2il(k−j)π

n
+i(l−1)ϕ

= e
2i(k−j)π

n
1

n

n−1∑
l=0

(e
2i(k−j)π

n
+iϕ)l.

From the geometric series, it follows,

U
(n)
j,k =

1

n(e
2i(j−k)π

n )

1− einϕ(
1− e 2i(k−j)π

n
+iϕ
) ,

=
1− einϕ

n
(
e

2iπ(j−k)
n − eiϕ

) (A.34)

which is what we set out to prove. which is Eq. (7.8) that we set out to prove, where the last
line follows from the geometric series.

A.7 Conjecture for the Analytic Form of Per(Û (n))

For this derivation in Sec. 7.3 our goal is to find the analytic form for Per(Û (n)) where U (n)
j,k

is as in Eq. (A.34). We can perform a brute force calculation to obtain the analytic form for
small n. Doing so up to n = 6 is presented in the following table. One can see the pattern

n Per(Û (n))
1 1
2 eiφ cos(φ)
3 1

9

(
2 + e3iφ

) (
1 + 2e3iφ

)
4 1

32

(
1 + e4iφ

) (
3 + e4iφ

) (
1 + 3e4iφ

)
5 1

625

(
4 + e5iφ

) (
3 + 2e5iφ

) (
2 + 3e5iφ

) (
1 + 4e5iφ

)
6 1

648

(
1 + e6iφ

) (
2 + e6iφ

) (
5 + e6iφ

) (
1 + 2e6iφ

) (
1 + 5e6iφ

)
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that emerges is of the following form:

Per(Û (n)) =
1

nn−1

n−1∏
j=1

[
jeinϕ + n− j

]
, (A.35)

which is Eq. (7.9) that we set out to show. This equation has been verified analytically up to
n = 16 and up to n = 25 numerically..

A.8 Calculation of P
For this derivation in Sec. 7.3, assuming our conjecture in Eq. (7.9) holds, we can compute
the coincidence probability of measuring one photon in each mode at the output,

P =
∣∣Perm(U (n))

∣∣2
=

∣∣∣∣∣ 1

nn−1

n−1∏
j=1

(
jeinϕ + n− j

)∣∣∣∣∣
2

=
1

n2n−2

n−1∏
j=1

∣∣∣ (jeinϕ + n− j
) ∣∣∣2

=
1

n2n−2

n−1∏
j=1

∣∣∣jcos(nϕ) + ijsin(nϕ) + n− j
∣∣∣2

=
1

n2n−2

n−1∏
j=1

∣∣∣ jcos(nϕ) + (n− j)︸ ︷︷ ︸
Re

+i jsin(nϕ)︸ ︷︷ ︸
Im

∣∣∣2.
(A.36)

Invoking the property that |z|2 = Re(z)2 + Im(z)2, where z ∈ C,

P =
1

n2n−2

n−1∏
j=1

[(
jcos(nϕ) + (n− j)

)2
+ j2sin2(nϕ)

]
=

1

n2n−2

n−1∏
j=1

[
j2cos2(nϕ) + j2sin2(nϕ)︸ ︷︷ ︸

=j2

+ 2j(n− j)cos(nϕ) + (n− j)2
]

=
1

n2n−2

n−1∏
j=1

[
j2 + 2j(n− j)cos(nϕ) + (n− j)2

]
=

1

n2n−2

n−1∏
j=1

[
2j(n− j)︸ ︷︷ ︸

an(j)

cos(nϕ) + n2 − 2jn+ 2j2︸ ︷︷ ︸
bn(j)

]

=
1

n2n−2

n−1∏
j=1

[
an(j)cos(nϕ) + bn(j)

]
,

(A.37)

which is Eq. (7.10) that we set out to show.
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A.9 Calculation of
∣∣∣∂P∂ϕ ∣∣∣

For this derivation in Sec. 7.3 we begin with Eq. (A.37), exploiting the logarithm product
rule,

ln(P ) = ln

(
1

n2n−2

)
︸ ︷︷ ︸

C

+ln

(
n−1∏
j=1

[
an(j)cos(nϕ) + bn(j)

])

= C +
n−1∑
j=1

ln
[
an(j)cos(nϕ) + bn(j)

]
, (A.38)

where C is a constant. Now the derivative becomes,

1

P

∂P

∂ϕ
= −

n−1∑
j=1

nan(j)sin(nϕ)

an(j)cos(nϕ) + bn(j)

∂P

∂ϕ
= −nP sin(nϕ)

n−1∑
j=1

an(j)

an(j)cos(nϕ) + bn(j)
.

(A.39)

Thus, ∣∣∣∣∂P∂ϕ
∣∣∣∣ = nP

∣∣sin(nϕ)
∣∣ n−1∑
j=1

∣∣∣∣ an(j)

an(j)cos(nϕ) + bn(j)

∣∣∣∣ , (A.40)

which is Eq. (7.12) that we set out to show.

A.10 Calculation of ∆ϕ in the Small Angle Approximation
For this derivation in Sec. 7.3 we wish to compute ∆ϕ in the limit that nϕ � 1. Then P in
the small angle regime of Eq. (7.10) becomes,

P ≈ 1

n2n−2

n−1∏
j=1

[
an(j)

(
1− 1

2
(nϕ)2

)
+ bn(j)

]

=
1

n2n−2

n−1∏
j=1

[
n2 − (nj + j2)n2ϕ2

]

=
n−1∏
j=1

[
1− (nj + j2)ϕ2

]
, (A.41)

where cos(nϕ) is expanded to the first nonconstant term in its Taylor series. This product
has the form of a binomial expansion. Dropping terms above order ϕ2, P reduces to,

P ≈ 1− ϕ2

n−1∑
j=1

[
nj + j2

]
= 1− ϕ2

[1

6
(n− 1)n(n+ 1)

]
= 1− k(n)ϕ2, (A.42)
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where k(n) = 1
6
n(n− 1)(n + 1) ≥ 0 ∀ n ≥ 1. From Eq. (A.42) we can easily compute P 2

and
∣∣∂P
∂ϕ

∣∣ to be,

P 2 ≈ 1− 2k(n)ϕ2 (A.43)∣∣∣∣∂P∂ϕ
∣∣∣∣ = 2k(n)|ϕ|, (A.44)

where we have again dropped terms above order ϕ2. Using Eq. (7.6) the phase sensitivity
∆ϕ in the small angle regime is,

∆ϕ =

√
P − P 2∣∣∣∂P∂ϕ ∣∣∣

=

√(
1− k(n)ϕ2

)
−
(

1− 2k(n)ϕ2
)

2k(n)|ϕ|

=

√
k(n)ϕ2

2k(n)|ϕ|
=

1

2
√
k(n)

=

√
3

2(n− 1)n(n+ 1)
, (A.45)

which is Eq. (7.13) that we set out to show.

A.11 Discussion of Ordinal Resource Counting (ORC)
For Sec. 7.4 we would like to compare the performance of our QuFTI to an equivalent mul-
timode interferometer baseline for which we will construct the shotnoise limit (SNL) and
Heisenberg limit (HL). This is a subtle comparison, due to the linearly increasing unknown
phase-shifts, {0, ϕ, . . . , (n− 1)ϕ}, that the QuFTI requires to operate. There is a long and
muddled history of increasing the interrogation time (or here length) of the probe particles
with the unknown phase-shift followed by an incorrect reckoning of the true resources. Here
we shall use a protocol we call Ordinal Resource Counting (ORC) whereby all resources,
such as number of ‘calls’ to the phase-shifter ϕ, are converted to the ‘currency’ of the re-
source that is most precious to us, namely photon-number. We do this as follows.

First we must construct a multimode interferometer with n photon inputs that provides
the baseline if the photons remain uncorrelated and the number-path entanglement remains
minimal. Such a comparator is shown in Fig. A.1, and consists of n, two-mode Mach-
Zehnder Interferometers (MZI) in a vertical cascade, fed with single-photon inputs, with the
same linearly increasing unknown phase-shift sequence as the QuFTI. Since the MZIs are
disconnected, the number-path entanglement remains constant and minimal, and of the form
(|1, 0〉+ |0, 1〉)/

√
2 inside each MZI.

Now to convert the linearly increasing interrogation lengths of the unknown phase-shifts,
we note that a single photon interrogating a phase-shift of say 2ϕ is equivalent to a single
photon interrogating a single phase-shift ϕ twice, which is in turn equivalent to two uncor-
related photons entering the same port of the MZI containing a single phase-shift of ϕ. In
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Figure A.1: n instances of two-mode Mach-Zehnder interferometers, with a linearly increas-
ing phase gradient. This system has the same configuration of phases as the QuFTI, but the
photons are not allowed to interfere, and thus has minimal number-path entanglement.

this way we may convert ‘number of interrogations of the phase-shifter’ into the currency of
‘number of photons’ to carry out a fair reckoning of the resources. Following this logic we
are led to Fig. A.2 showing a cascade of MZIs where the linearly increasing phase-shifters
are replaced with a single phase-shifter of ϕ and the single photons at the MZI inputs are
replaced with a linearly increasing number of photons. Then the ‘number of interrogations
of the phase-shifter’ becomes n(n− 1)/2, but there is an additional photon that is part of the
QuFTI resources so our total number of resources becomes,

N ≡ 1 +
n(n− 1)

2
. (A.46)

Next we note that this cascade of n MZIs in Fig. A.2 may be replaced with a single MZI,
shown in Fig. A.3, where the input is now an ordinal grouped ranking of the uncorrelated
photons following the same pattern as in Fig. A.2. Hence in the configuration in Fig. A.3 we
have a single MZI with vacuum entering the lower port, a stream of N uncorrelated photons
entering the upper port, and a single phase-shifter ϕ between the beamsplitters. It is well-
known that for this configuration the sensitivity of this system scales as the SNL [184, 237],
namely,

∆ϕSNL =
1√
N

=
1√

1 + n(n−1)
2

. (A.47)

This then provides us a fair reckoning of the SNL to be used gauging the performance of the
QuFTI.

Finally, if instead we were to maximally path-number entangle these resources into a
NOON state of the form (|N, 0〉+ |0, N〉)/

√
2 (just to the right of the first beam splitter but
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Figure A.2: Noting that a single photon interrogating a phase-shift of nϕ is equivalent to
n independent interrogations of ϕ, Fig. A.1 can be represented in terms of the resource of
photons as shown here. Here |1〉⊗j means that j independent (i.e distinguishable) photons
have been prepared.

Figure A.3: Grouping all the independent interferometers in Fig. A.2 together and including
the extra photon from the QuFTI model, we obtain a single MZI with 1 + n(n− 1)/2 inde-
pendent photons as input. This configuration achieves the shotnoise limit, and thus provides
a benchmark for comparing our QuFTI protocol against the shotnoise and Heisenberg limits,
with photons as the resource being counted.

before the phase-shifter) the sensitivity then becomes Heisenberg limited,

∆ϕHL =
1

N
=

1

1 + n(n−1)
2

, (A.48)

which is a sensitivity known to saturate the Quantum Cramér-Rao Bound (CRB) for sen-
sitivity in local phase estimation with N photons [193, 194]. As the CRB is the best one
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Figure A.4: Dephasing for ϕ = 0.01. The shaded region represents the phase sensitivity for
the QuFTI where 0 ≤ χ ≤ 0.01.

may do, according to the laws of quantum mechanics, then in this case the HL is optimal.
As discussed, the performance of the QuFTI falls between the SNL and the HL, but with
the feature of not having to do anything resource intensive such as preparing a high-NOON
state.

Thus the SNL and the HL, computed via this Ordinal Resource Counting method, pro-
vides the fairest comparison of sensitivity performance of the QuFTI with such ambiguities
such as how to handle ‘number of calls to the phase-shifter’ removed by replacing such a
notion with ‘number of photons’ inputted into the interferometer.

A.12 Dephasing

As for Sec. 7.5 a form of decoherence to consider is dephasing. Dephasing in our work
may be modelled with the result of Bardhan et al. [238], whereby dephasing occurs on each
mode separately. When considering our example of a magnetometer, dephasing would occur
in the magnetic field cells where atomic fluctuations may occur that differ between cells. In
the rest of the interferometer, dephasing can be made very close to zero, particularly on an
all optical chip.
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Figure A.5: The effect of dephasing on the NOON state and QuFTI where ϕ = 0.01, χ =
0.005. The NOON state is plotted with respect to N for fair resource counting.
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To model dephasing we investigate a random phase shift ∆χ added to each mode sepa-
rately. ∆χ is a Gaussian random variable of zero mean but nonzero second order moment.
The phase shift in the jth mode then becomes,

e±ijϕ → e±ij(ϕ+∆χ)

= e±ijϕe±ij∆χ

= e±ijϕ
(

1± ij∆χ− 1

2
j∆χ2 ± . . .

)
. (A.49)

Using 〈∆χ〉 = 0, 〈∆χ2〉 6= 0, and that ∆χ� φ we simplify this to be,

e±ijϕ → e±ijϕ
(

1− 1

2
j∆χ2 ± . . .

)
≈ e±ijϕe−

1
2
j2∆χ2

. (A.50)

The signal P in Eq. 10 from our work then changes in the presence of dephasing. The
dependence that P has on the unknown phase ϕ does not depend on the mode number j.
Then the term that depends on ϕ becomes,

cos(nφ) =
1

2

(
einϕ + e−inϕ

)
→ 1

2

(
einφ + e−inφ

)
e−

1
2
n2∆χ2

= cos(nφ)e−
1
2
n2∆χ2

(A.51)

Using this substitution P becomes,

P =
∣∣∣Per(Û (n))

∣∣∣2
=

1

n2n−2

n−1∏
j=1

[
an(j)cos(nφ)e−

1
2
n2∆χ2

+ bn(j)
]
. (A.52)

The factor e−
1
2
n2∆χ2

can be absorbed into an(j) so that the derivation of |∂P
∂φ
| in Eq. (7.12) is

identical. Using this result we numerically plot the phase sensitivity with dephasing in Fig.
A.4.

In order to meaningfully analyze the dephased sensitivity, we would like to compare with
other well known metrological schemes. In Fig. A.5, we compare the QuFTI to the NOON
state (with N input photons for a fair resource comparison) and see that the QuFTI is far
more robust against dephasing.

A.13 Evolution of Displacement Operators Through a Lin-
ear Optics Network

In Sec. 8.3 we use the following identity. A linear optics network maps a product of dis-
placement operators over m modes, with amplitudes λj , to another product of displacement
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operators with amplitudes given by µj =
∑m

k=1 Uj,kλk.

Û

(
m∏
j=1

D̂(λj)

)
Û † = exp

(
m∑
j=1

Û(λj â
†
j − λ∗j âj)Û †

)

= exp

(
m∑
j=1

m∑
k=1

λjUj,kâ
†
k − λ∗jU∗j,kâk

)

=
m∏
j=1

exp

(
m∑
k=1

λjUj,kâ
†
k − λ∗jU∗j,kâk

)

=
m∏
j=1

D̂(µj), (A.53)

where

µj =
m∑
k=1

λkUj,k, (A.54)

which is Eq. (8.7) that we set out to prove.

A.14 Overlap of the Displacement Operator with the Single-
Photon State

In Sec. 8.3 we also use the following identity. The overlap between the single-photon state
with the displacement operator 〈1|D̂(λ)|1〉 is given by e−

1
2
|λ|2(1− |λ|2).

〈1|D̂(λ)|1〉 = 〈0|âD̂(λ)â†|0〉
= 〈0|â(â† − λ∗)D̂(λ)|0〉
= 〈0|ââ†D̂(λ)|0〉 − 〈0|λ∗âD̂(λ)|0〉
= 〈0|λ〉 − λ∗〈1|λ〉
= e−

1
2
|λ|2 − |λ|2e− 1

2
|λ|2

= e−
1
2
|λ|2(1− |λ|2), (A.55)

which is the identity that we used to obtain Eq. (8.8). We have used the commutation relation
between the displacement operator and the photon-creation operator [121],

[â†, D̂(λ)] = λ∗D̂(λ), (A.56)

as well as the coherent state represented in the Fock basis

|λ〉 = e−
|λ|2

2

∞∑
n=0

λn√
n!
|n〉, (A.57)

to read off the overlaps between the Fock states and the coherent state |λ〉.
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A.15 Kraus Operator Formalism
For Sec. 10.3 we note that the theory of generalized quantum measurements provides a
convenient formalism to describe the state-preparation protocol described above. The condi-
tional optical state is expressed using a set of Kraus operators corresponding to measurement
outcomes on the spin.

We begin with an unentangled state between a spin of total angular momentum J and
an optical field, |ψb〉 = |φ〉A ⊗ |ψ〉O, where the spin and field states are arbitrary. For
measurement outcome x the normalized, conditional field state is given by

|ψxd〉O =
Âx|ψ〉O√
P(x)

, (A.58)

where Âx is the Kraus operator andP(x) is the probability of outcome x. Expressing the spin
state in the z-basis, |φ〉A =

∑
m cm|m〉, the Kraus operator associated with the controlled-

displacement interaction in Eq. (10.7) is

Âx ≡ 〈x|D̂c(g)|φ〉A =
J∑

m=−J

cmdm,x e
−igmp̂. (A.59)

This describes the conditional operation that implements a set of displacements on the field
proportional to the initial spin distribution, cm, and the measurement outcome x. The proba-
bility of measurement outcome x is obtained by tracing over the initial field state,

P(x) = Tr
[
Â†xÂx|ψ〉〈ψ|

]
=

J∑
m,m′=−J

cmc
∗
m′dm,xdm′,x〈ψ|e−ig(m−m

′)p̂|ψ〉. (A.60)

For a more general input state of light, ρ̂O, which may be mixed due to errors in the
squeezing procedure and losses, the conditional field state is given by

ρ̂xd =
Âxρ̂OÂ

†
x

P(x)
(A.61)

with probability P(x) = Tr[Â†xÂxρ̂O].

A.16 Measurement Probability
In Sec. 10.3 we consider the case of a position-squeezed input field, Eq. (10.5), and an
initial spin-coherent state corresponding to cm = dm,J in Eq. (A.59). The Kraus operator
description, Eq. (A.58), then gives the conditional field state, Eq. (10.11). The probability
of outcome x follows directly from Eq. (A.60),

P(x) =
∑
m,m′

dm,Jdm,xdm′,Jdm′,x〈gm√2
, ξ|gm′√

2
, ξ〉. (A.62)

To evaluate the expression, we note that for real α and ξ a displaced squeezed state can be
written as

|α, ξ〉 = D̂(α)Ŝ(ξ)|0〉 = Ŝ(ξ)D̂
(
αeξ
)
|0〉. (A.63)
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Then, the overlap between states of different displacements is calculated simply,

〈α, ξ|β, ξ〉 = exp
[
−1

2
e2ξ(α− β)2

]
, (A.64)

and the probability becomes

P(x) =
∑
m,m′

dm,Jdm,xdm′,Jdm′,xe
− 1

4
g2e2ξ(m−m′)2

. (A.65)

The resource states for encoding arise for outcomes x = ±J , which occur with probabilities

P(±J) =
1

16J

∑
m,m′

(
2J

J −m

)(
2J

J −m′
)
e−

1
4
g2e2ξ(m−m′)2

. (A.66)

In the limit of large g2e2ξ, only the m = m′ term contributes significantly in the above
expressions, and the probability is approximately

P(x) ≈
∑
m

(dm,Jdm,x)
2 . (A.67)

In the same limit, the probability x = ±J simplifies to

P(±J) ≈ 1

16J

J∑
m=−J

(
2J

J −m

)2

=
1

16J

2J∑
k=0

(
2J

k

)2

=
1

16J

(
4J

2J

)
, (A.68)

where the last step uses
∑m

k=0

(
m
k

)2
=
(

2m
m

)
. For large J , Taylor expanding P(±J) to first

order in 1/J yields

P(±J) ≈
√

1

2πJ
. (A.69)

Both +J and −J yield a useful resource state, so the total resource preparation probability
is

Ps = 2P(±J) ≈
√

2

πJ
. (A.70)

A.17 Variance of Peaks in Momentum Representation
For section 10.4 we note that the momentum representation of the resource states, Eq.
(10.14b), is a Gaussian envelope multiplying a comb generated by cos2J(pg/2). We want
to approximate each peak in the comb by a Gaussian by matching the peak’s variance. Treat-
ing a single peak as a probability distribution we have

P (p) =
gΓ(J + 1)

2
√
πΓ(J + 1/2)

cos2J(pg/2) (A.71)

where the prefactors ensure the normalisation∫ π/g

−π/g
P (p)dp = 1. (A.72)
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The variance is then calculated in the usual way

σ2
p = 〈p2〉 − 〈p〉2 =

∫ π/g

−π/g
P (p)p2dp. (A.73)

Performing the integral we find

σ2
p =

2(J2ζ(2, J)− 1)

g2J2
, (A.74)

where ζ(s, J) is the Hurwitz zeta function

ζ(s, J) =
∞∑
k=0

1

(k + J)s
. (A.75)

For large J , ζ(2, J) ≈ 1
J

+ 1
2J2 +O( 1

J3 ) (see for example [239]), hence

σ2
p ≈

2

g2J
+O(1/J2) = 1/σ2

q,env +O(1/J2). (A.76)
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mode experiences ηfm loss per outer loop since they each take time mτ to
traverse the outer loop. For an arbitrary unitary to be implemented in the
ideal case the photons will traverse the outer loop L − 1 times. This yields
a net fiber loss from the outer loop of ηfm(L−1) that can be factored out of
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from the switching sequence Û ′ corresponding to that which maximises S ′.
In both (a) and (b) the data was averaged over 1750 Monte-Carlo iterations
and we let ηs = 1, i.e the switches are ideal but the fibers are not. . . . . . . 57

5.10 (a) Similarity with noise S ′, and (b) post-selection probability PS versus
loop efficiency ηf and switch efficiency ηs with m = 3 modes, one photon
per input mode, and m− 1 loops. These two plots are again related in that
PS is calculated from the switching sequence that maximises S ′. This data
was averaged over 1750 iterations. . . . . . . . . . . . . . . . . . . . . . . 57



List of Figures 171

5.11 The three regions we consider in the mode-mismatch formalism. Region A
corresponds to the modes coming from the source, region B to the modes
inside the inner loop, and region C to the modes exiting the loop. . . . . . . 58

5.12 (a) The average fidelity F between the ideal state |Ψi〉 and the actual exper-
imental state |Ψa〉 versus the error in the intended length of the inner loop
δ. (b) The worst (bottom) and best (top) case fidelity F between the ideal
state |Ψi〉 and the actual experimental state |Ψa〉 versus the error in the in-
tended length of the inner loop δ and number of modes m. In (a) and (b)
there are m modes with one photon per mode and the data was obtained over
250 implementations each with a unique randomly generated unitary. . . . . 62

5.13 (a) The fidelity F between the ideal state |Ψi〉 and the actual experimental
state |Ψa〉 with random time-jitter in the input source versus modes m and
standard deviation σ with no fiber length error δ = 0. (b) The worst (bottom)
and best (top) case fidelity F between the ideal state |Ψi〉 and the actual
experimental state |Ψa〉with time-jitter. In (a) and (b) there is one photon per
mode, the data was averaged over 250 implementations each with a unique
randomly generated unitary, and the time-jitter was drawn from the normal
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 A SPACS may be made by mixing a coherent state and a single photon state
on a highly reflective beamsplitter. When no photon is detected in the trans-
mitted mode, a SPACS is heralded in the transmitted mode. . . . . . . . . . 68

6.2 Wigner function of a SPACS (left) and a coherent state (right), with ampli-
tude |α|2 = 0.01. The former is seen to take negative values close to the
phase-space origin, while that of the latter is strictly positive everywhere
thus measuring W (0) would be able to distinguish between a SPACS and a
coherent state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3 Two-dimensional slices along position of the Wigner function of a SPACS
taken at a fixed momentum of zero as a function of the coherent amplitude
|α|. For increasing values of |α| we see that the negativity of the Wigner
function vanishes and that it becomes Gaussian. . . . . . . . . . . . . . . . 69

6.4 Preparation of a PASV state. A SV state is mixed with a single-photon state
on a low reflectivity beamsplitter. The top output mode is detected. Upon
successful post-selection of the vacuum state the PASV state is prepared in
the right output mode. The process is highly non-deterministic but can be
performed before the sampling protocol. . . . . . . . . . . . . . . . . . . . 73

6.5 (Left) The original Fock state model of BosonSampling whereby we feed
an m-mode linear optical interferometer with n-single photons and m− n
vacuum states and sample via coincidence number-resolved photodetection.
(Right) PASSV BosonSampling whereby we prepare n PASV states instead
of single photons and m− n SV states instead of vacuum states and sample
via coincidence parity measurement. . . . . . . . . . . . . . . . . . . . . . 75

6.6 The model for generalized BosonSampling with generalized cat states. The
input state to each mode is a tensor product of an arbitrary superposition of
coherent states with a unique superposition in each mode. Some of these may
be set to the vacuum. Following the application of a linear optics network,
the distribution is sampled via number-resolved photo-detection. . . . . . . 82



172 List of Figures

7.1 Architecture of the quantum Fourier transform interferometer (QuFTI) for
metrology using single-photon states. The input state comprises n single
photons, |1〉⊗n. The state evolves via the passive linear optics unitary Û = V̂ · Φ̂ · Θ̂ · V̂ †,
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