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Abstract

The content of this thesis can be broadly summarised into two categories: first, I constructed
modified numerical algorithms based on tensor networks to simulate systems of anyons in
low dimensions, and second, I used those methods to study the topological phases the anyons
form when they braid around one another.

Anyons are point-like particles which are neither bosons nor fermions. All point-like
particles in our three dimensional world are either bosons or fermions and have an exchange
factor of+1 and−1 respectively, when a pair of those particles exchange positions. Anyons on
the other hand represent new possibilities that are capable of existing only in two dimensions,
and have non-trivial exchange factors, which can either be a complex number or even a
matrix acting on a space of degenerate states. These unusual particles have some surprising
properties. For example, states with anyonic excitations are known be resilient against local
perturbations, which simply means that, you may perturb their local environments, and
they would still retain their quantum properties—a property exclusive only to anyons. This
property has motivated scientists to sometimes call them topological charges. Anyons have
motivated many recent developments in science and technology. I mention two of them.
Firstly, just as bosons give rise to unique phases of matter such as Bose-Einstein condensates,
and fermions allow for degenerate Fermi gases, interacting anyons can form new phases of
matter, and it is still a subject of intense research, as we have as yet little understanding
of these new forms of matter. Secondly, the topological nature of anyons, i.e. their fault
tolerance, make them to be among the leading prospective candidate particles to realise a
quantum computer. This inspired a different field of research called topological quantum
computation. As important as anyons tend to be, in reality, collective systems of anyons are
very challenging to study analytically and numerically, due to the exponential growth of the
state space of such systems with the number of particles. It is in fact this exponential growth
that makes anyons to be usable for quantum computation.

In the past, common numerical techniques used to study quantum many body systems
included exact diagonalisation (ED) and Monte Carlo (MC) methods. Tensor network tech-
niques are a more modern approach which have lots of advantages. I will list only two of
them: 1) they are able to simulate very large system sizes and even infinite-sized systems
which are not possible with ED, and 2) they can treat systems of fermions and anyons which
are problematic for MC methods.

In the first phase of this thesis, I extended the anyonic tensor network algorithms, by
incorporating U(1) symmetry to give a modified ansatz Anyon×U(1) tensor networks, which
are capable of simulating anyonic systems at any rational filling fraction. By testing the ansatz
with the time evolving block decimation algorithm, I benchmarked these methods by using it
to confirm previously known results for simple models, including a one-dimensional chain
of itinerant and localised anyons, and a two-leg ladder where anyons hop between sites and
use available vacancies to exchange positions with other anyons. I performed test simulations
with four different particle types, namely, Fibonacci and Ising anyons, which are non-Abelian
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anyons, and spinless fermions and hardcore bosons, which can be treated as “simple types”
of anyons. I compared the results with known exact results obtained using other methods,
and got very good performances with relative error of around ε < 10−4 in the ground state
energy.

After being satisfied with the performance of the numerical algorithms, I then proceeded
to the second phase where I used the numerical methods to study some models of non-
Abelian anyons that naturally allows for exchange of anyons. I proposed a lattice model of
anyons, which I dubbed anyonic Hubbard model, which is a pair of coupled chains of anyons
(or simply called anyonic ladder). Each site of the ladder can either host a single anyonic
charge, or it can be empty. The anyons are able to move around, interact with one another,
and exchange positions with other anyons, where vacancies exist. Exchange of anyons is a
non-trivial process which may influence the formation of different kinds of new phases of
matter. I studied this model using the two prominent species of anyons: Fibonacci and Ising
anyons, and made a number of interesting discoveries about their phase diagrams. I identified
new phases of matter arising from the interaction of these anyons and their exchange “braid”
statistics.
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can be expressed in a block structure form, where the elements of Ñ are

Ñγ
αβ =

(
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1
Introduction

Particles in our three-dimensional (3D) world are classified into either bosons or fermions.
Fermions are the particles that form matter, while bosons are the force carriers and mediate
interactions between matter. Bosons were discovered by Bose and Einstein in 1924 [3, 4],
and they obey Bose-Einstein statistics, while fermions were discovered by Fermi and Dirac
in 1926 [5, 6], and they obey Fermi-Dirac statistics. Bosons and fermions are responsible for
some of themost interesting phenomena discovered in human history. For example, aBose gas
(i.e. a gas of bosonic particles) forms a Bose-Einstein condensate at very low temperatures,
which is a phenomenon where all the bosons occupy the same single quantum state, and form
a large macroscopic fluid which exhibits unusual behaviour such as superfluidity (i.e. flow
without resistance) andmacroscopic interference. Fermions on the other hand are responsible
for phenomena such as conductivity, magnetism, superconductivity, etc., without which
today’s technology would be impossible. These observed phenomena represent different
phases of matter which are described by Landau theory of phase transitions where we have
a definable local order parameter such as number and phase fluctuations, average particle
density, local magnetisation, and so on. The formation of different phases is dictated by
various competing terms between the particles of a system, including the interaction between
neighboring particles, hopping of particles from one site to another, geometric frustrations
of the particles, dimensionality and topology of the system, and particle statistics [7–9]. The
importance of these terms have since been known and appreciated. What was initially less
emphasized was the effect of topology on the physical system. Topology is the branch of pure
mathematics that studies the properties of a system that are preserved through deformations
of geometric objects, where deformations include any or all of, stretching and twisting, but
not tearing. For example, a circle, an ellipse, or any other non-self-intersecting closed line,
are all topologically equivalent. Arguably, the concept of topology first entered into physics
with the discovery of Aharonov-Bohm effect [10] by Aharonov and Bohm, where if a charge
q winds around a magnetic fluxΦ, the wavefunction picks up a phase factor of einqΦ, where n
is the number of times the charge winds around that flux. This phase factor does not depend
on the nature of the path, or the rate at which the charge traverses the path, but on the number
of circulation n. Topology was formally and rigorously introduced into physics with the
seminal work of Witten [11], which connected the field of topological quantum field theories
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with knot theory, conformal field theories, etc.
Bosons and fermions have an exchange symmetry. The wavefunction of a collection of

bosons or fermions acquires a phase factor of +1 or −1 respectively, when a pair of them are
exchanged. Theoretical curiosity into other possibilities in lower dimensions (particularly in
two-dimensions) revealed that there are other particles that break the dichotomy of classifi-
cation of particles into either bosons or fermions in three-dimensions [12]. These particles
have exotic exchange statistics, where if a pair of them are exchanged, their wavefunction can
acquire any arbitrary (complex) phase factor eiθ , or even a unitary matrix Û for a degenerate
ground space manifold. Because they could pick any phase factor when a pair is exchange,
they were named anyons [13], and in analogy with Aharonov-Bohm effect, this exchange
does not depend on the path or the rate of traversing the path, but on the number of circulation
(or winding number). Thus systems of anyons are topological. Anyons are divided into
two classes: Abelian anyons with a phase exchange factor, and non-Abelian anyons with a
matrix exchange factor. All these discoveries created many new different research directions
in physics and technology, including the discovery of new phases of matter, the possibil-
ity of building a fault-tolerant quantum computer using anyons [14], and the development
of aesthetically beautiful and conceptually powerful tools for modern theoretical physics.
Theoretical proposals of systems where anyons may be found include fractional quantum
Hall systems and two-dimensional spin liquids [15–28], one dimensional nanowires [29–32],
and ultra-cold atoms in optical lattices [33]. Experimentally, the recent evidence for Majo-
rana edge modes (i.e. Ising anyons) might be closing the gap between theory and practical
realisation of anyons [32, 34].

The study of phase transitions is an important problem in science. When the parameters
of a physical system change, there can be a transition from one phase into another. For
example, changing the external temperature and pressure of water can change it from ice to
liquid, or to gas. These phase transitions are understood in terms of breaking the symmetry
of the system, a concept put forward by Landau. Symmetries are described by group theory,
and phase transitions are determined using a local order parameter, for example, the average
particle density n, or magnetisation m. But it was soon found out that Landau symmetry
breaking was not enough, i.e. it was discovered that there are some phase transitions which
are characterised by non-local order such as degeneracy that depends on topology and rigid
transformation rules between ground state sectors [35]. The low-energy excitations of these
new phases of matter are anyons, and they have a rich structure of combination (fusion) and
exchange (braiding) statistics. This has motivated several studies on topologically-ordered
systems, i.e. systems which host anyons.

Many-body systems of anyons are generally intractable except for a small number of
exactly soluble systems, which in part, has hindered the theoretical progress made in under-
standing topological phases. Anyons are described by the powerful mathematical framework
of unitary braided tensor categories (UBTC), and each anyon model comes with its own
topological data such as F-matrix, R-matrix, topological spin, and so on. Numerically, they
are also hard to simulate, due to the exponential growth in the Hilbert space dimension with
the number of particles in the system. A pure quantum state |ψ〉 on a lattice L with L sites,
each having a d dimensional state space, is written generally as,

|ψ〉 =
∑

i1,...,iL

ci1...iL |i1 . . . iL〉 . (1.1)

where the sum contains dL number of coefficients ci1...iL , and hence, is exponentially large
in the system size L. Working directly in this representation is not feasible in numerical
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simulations, except for very small system sizes. Alternatively, one can use other approximate
schemes like Monte Carlo (MC) methods, but MC methods suffers from the “sign problem”
for fermions, and anyons [36]. Tensor networks offer a more robust alternative, being able
to represent the ground state and/or the low-energy subspace of a quantum system with low
entanglement. They can handle large system sizes, and possibly, infinite-size systems if
the system is translation invariant. They can also simulate all kinds of particles, including
frustrated magnets, fermions, Abelian and non-Abelian anyons. Examples of popular ten-
sor networks include matrix product states (MPS), projected entangled-pair states (PEPS),
multi-scale renormalisation ansatz (MERA). Examples of algorithms used in manipulating
the tensor networks are density matrix renormalisation group (DMRG), time-evolving block
decimation (TEBD), variational Monte Carlo methods, etc. These ansatz states and algo-
rithms are reviewed in [37, 38]. The use of tensor network to simulate anyons was pioneered
independently by Pfeifer et al. [39] and by König and Bilgin [40]. Their works opened the
pathway into using existing tensor network approaches to study systems of anyons, including
the more challenging non-Abelian anyons. After that, a few number of other anyonic tensor
network states and algorithms have been put forward, including anyonic MPS and anyonic
TEBD algorithm [41], Anyon×U(1) MPS [42], and anyonic DMRG algorithm [43].

1.1 Overview
In this thesis, I use anyonic tensor networks to study the physics of systems of anyons where
the particles braid around each other. These systems can be at any arbitrary filling fraction,
achieved either by fixing the global particle density, which is a U(1) symmetry in addition
to the anyonic symmetry of the tensor network, or alternatively by introducing a chemical
potential term into the Hamiltonian, thereby bypassing the need for U(1) symmetry, but while
still retaining the anyonic symmetry.

This thesis is arranged as follows:
In Chapter Two, I review the general concepts of the tensor network states and algorithms

mentioned above. I introduce the necessary diagrammatic conventions that I adopt throughout
this thesis. In particular, I give a quite extensive review of matrix product states (MPS) and
TEBD, which form the basis of the ansatz and algorithms I develop later in the thesis.

In Chapter Three, I review the algebraic theory of anyons, and recall the diagrammatic
notations which persist throughout this thesis. The diagrammatic formalism is conceptually
powerful and convenient for our purpose.

In Chapter Four I present my first original work, in which I show how U(1) symmetry in
terms of particle number can be combined with anyonic symmetry to construct a modified
ansatz: Anyonic×U(1) MPS, which is an ansatz that exploits both the anyonic (quantum)
symmetry of anyonic systems and a possible U(1) symmetry of the system. I show how
this MPS can be used to encode the ground state of an arbitrary anyonic system, including
systems in the thermodynamic limit.

In Chapter Five I present a practical implementation of anyonic-TEBD algorithm. Includ-
ing non-Abelian symmetries into tensor networks is a non-trivial task, and can be daunting
at first. As interacting non-Abelian anyons are challenging, so are the tensor networks that
encode them. This chapter may therefore benefit anyone wanting to simulate anyons using
tensor networks. In addition, in this chapter, I test our Anyonic×U(1) MPS with the anyonic
TEBD algorithm. I will apply it to a number of test models with known results. I later present
a few new original results.
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In Chapter Six I study a new model of itinerant and interacting non-Abelian anyons on
the ladder, which I dub the anyonic Hubbard model. Particles in these model have braiding
degrees of freedom, and also interact with a Heisenberg-like interaction. I present the ground
state phase diagrams of Fibonacci and Ising anyons, and show the influence of anyonic braid
statistics on the system. We find evidence of a braiding induced phase transition.

Chapter Seven is the first work on my PhD studies which focused on out of equilibrium
dynamics of a single quantum particle via the quantum walk formalism. This is in contrast
to the equilibrium dynamics of the previous chapters. In this work I derived the “probability
current” of a single walker, and study the steady state of the system. Using the anyonic MPS,
the methods developed in this chapter can be applied to study out-of-equilibrium dynamics
of a small number of anyons.

I end this thesis with a summary and outlook in Chapter Eight.
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Tensor Network States and Algorithms

2.1 Introduction
The study of quantum many-body systems is both exciting and challenging for many reasons.
On one hand, it is exciting because of the new surprising phenomenoma constantly being
discovered. Some of themost recent developments include, the discovery and characterisation
of new exotic phases of quantum matter and quantum phase transitions [44], the role of
entanglement in these phases, the possible realisation of a quantum computer [45], and many
more. On the other hand, theoretical progress in these research areas is hindered, generally
by a lack of analytical tools to study these systems. Except for a small number of exactly
solvable systems, solutions to most of the many-body systems, either rely on perturbation
theory or exact diagonalisation, which both give results that are far from ideal, and can even
be sometimes misleading. For instance, the method of perturbation theory only works at the
weakly interacting regime, not the strongly interacting regime—where most of the interesting
physics lies. The instance at which the method breaks down might not be exactly clear. On
the contrary, exact diagonalisation gives exact results for all interaction strengths, but can
only be applied to small system sizes. Therefore, apart from the quest of discovering new
exciting physical phenomena, there is also a search for new efficient numerical techniques to
probe many-body quantum systems in the thermodynamic limit.

One central problem of interest in modern theoretical condensed matter physics is to
understand the low-energy properties of quantum lattice systems. Let L be a lattice of L
sites, with a tensor product Hilbert spaceH = H ⊗L

site , whereHsite is a d-dimensional Hilbert
space at each site. A general quantum state defined on this lattice L is

|ψ〉 =
∑

i1,...,iL

ci1...iL |i1 . . . iL〉 , (2.1)

where ik ∈ {1, . . . , d} is the index label for the orthonormal basis vectors {|1〉 |2〉 . . . |d〉} of the
Hilbert spaceHk of each site k. The dimension of the tensor product spaceH is dL, which is
exponential in the system size L, and therefore implies that, we need an exponential number
of parameters ci1...iL to specify the state |ψ〉. An immediate consequence of this is that, large
quantum systems cannot be studied using exact diagonalisation (ED), as already mentioned.
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However, other conventional techniques likeMonte Carlo (MC)methods can handle large, but
finite systems. Both methods (i.e. ED and MC methods) depend on finite-size extrapolation
to get results, such as the ground state, in the thermodynamic limit. Another drawback is that,
MC methods suffers from the so-called sign problem [36] for certain problems, including
frustrated magnets, interacting fermions [46] and systems of anyons.

Tensor networks are relatively new approaches, which have been successful in studying
large system sizes, and even infinite-sized systems if translational invariance of the system is
exploited. They are a generalisation of a precursory successful method: the density matrix
renormalisation group (DMRG) [47–50], which is the most favourable method for simulating
one-dimensional quantum systems. A tensor network is a network of tensors which are either
connected—when the tensors share indices, or disjointed—when they do not share indices.
As it can be imagined, it will be possible to construct many such tensor networks. The
mathematical framework of these constructions culminates in what is widely referred to as
tensor network theory. The usefulness of tensor networks is that they can be used to encode
the amplitudes ci1...iL occurring in Eq. (2.1) efficiently, for states with a limited amount
of entanglement, i.e. states which obey the “area law” of entanglement entropy [51]. The
ground (or low-energy) state properties of the system can be computed using some known
tensor network algorithms.

Some examples of tensor network are: matrix product states [52–54]—which are ansatz
states for algorithms such as DMRG and time-evolving block decimation (TEBD) [55, 56]—,
tree tensor network [57–64], projected entangled-pair states (PEPS), which is a generalisation
of the MPS ansatz to two and higher dimensions [65–72].

The ansatz states and algorithms, either constructed or used in this thesis, to study systems
of anyons, are based on MPS and TEBD. I will, therefore, review the conventional MPS and
TEBD in this chapter.

My plan for the rest of this chapter is as follows: In Section 2.2, I review the notion
of tensors and their manipulations. I introduce the diagrammatic notations which are used
to conveniently represent tensors and their operations. In Section 2.3, I review the matrix
product states for finite systems, and its extension to infinite systems in Section 2.4. In
Section 2.5, I review the conventional time-evolving block decimation algorithm, which can
used in imaginary-time to compute the ground state of finite and infinite systems, and also in
real-time to compute the time evolution of any quantum state that has limited entanglement.

2.2 Tensors and their diagrammatic notations
In this section, I review the notion of the mathematical objects called tensors, and how they
are manipulated, and also introduce their conventional diagrammatic notation. My brief
review follows closely Section II of Ref. [73]. The reader should consult this paper for a more
detailed review.

In the context of this thesis, a tensor T is a multidimensional array of complex numbers
Ti1i2...in ∈ C, where these numbers are indexed by the labels i1, i2,..., and in. Note that
we make no distinction between covariant and contravariant indices of a tensor. Each ik
takes values from an index set, e.g. ik ∈ {1, 2, 3, . . . , d}, which can be concisely written as
ik ∈ [1 : d], where the ordering of the numbers is understood. For simplicity, the tensor
T can be assumed to be an object constructed over a tensor product space (Cd)⊗n, and ik
indexes the orthonormal basis of a d-dimensional vector space Cd for each site k, but this
need not always be so. The number of index labels on a tensor determines its order. Here, the



2.2 Tensors and their diagrammatic notations 7

c M T
c

...

(i) (ii) (iii) (iv)

i

i1 i2
i1

i2

i3

i1 i2
iL

Figure 2.1: Diagrammatic notation for tensors. Fig. (i) represents a vector c, with its label
“c” inscribed inside a circle, and has a single line emanating from the circle which enumerates
the orthonormal basis of the vector. As mentioned in the text, i takes values i ∈ {1, 2, . . . , d}.
Fig. (ii) represents a matrix M with its rows and columns (in matrix representation) denoted
by two lines labelled by i1 and i2. Fig. (iii) is an order-3 tensor T . Fig. (iv) represents
the tensor ci1i2...iL defining the state |ψ〉 in Eq. (2.1). We have not imposed any preferred
orientation of the legs, so the diagrams can be rotated at will, so long as legs are not crossed.

order of the tensor T is n, (or equivalently, that T is an order-n tensor). For example, when
n = 0, T is a scalar (or an order-0 tensor), when n = 1, T is a vector (or an order-1 tensor),
when n = 2, T is a matrix (or an order-2 tensor), and so on. When the order n of a tensor is
much smaller than the lattice size L, e.g. n = 1, 2, 3, . . . , i.e. n � L, then the tensor will be
referred to as a low-order tensor. It is convenient to have a graphical denotation for a tensor.
A tensor T with n indices will be denoted diagrammatically by a shape (e.g. a circle, square,
diamond, etc.) and its n indices by n number of lines (similarly called “legs") protruding
from it. Examples are shown in Fig. 2.1. These tensors can be operationally manipulated.
We consider some examples of the manipulations needed for the MPS, some among which
are: (i) multiplication of tensors (ii) factorisation of a tensor, (iii) permutation of the elements
of a tensor (iv) Reshaping of a tensor, to either reduce or increase its order, and finally the (v)
trace of a tensor. All these operations generalise operations performed on matrices.

The multiplication of two tensors S and T , for example is

Ripq =
∑
j,k

Si j kTpjqk , (2.2)

where the sum is over two (repeated) indices j and k of tensors S and T , and is formally
referred to as “contraction over indices j and k". When there is no shared index between the
tensors, the elements are multiplied directly as,

Ri j kprqs = Si j kTprqs, (2.3)

which is equivalent to the conventional notion of “tensor product” of the two tensors. The
order nR of the new tensor R can be computed from the relation nR = nS + nT − 2n(S,T ),
where nS (nT ) is the order of tensor S (T), and n(S,T ) is the number of shared indices between
tensors S and T . For example, in Eq. (2.2), nS = 3, nT = 4, and n(S,T ) = 2, therefore, nR = 3,
whereas n(S,T ) = 0 in Eq. (2.3), and hence, nR = 7. The multiplication of tensors generalises
the multiplication of two matrices (or vectors). Examples of different contractions are shown
in Fig.2.2.

The structure of a tensor T can be changed by two elementary single-tensor operations:
reshape and permutation of the indices of the tensor T . A tensor T can be permuted by
changing the positions of its elements, and swapping the positions of the index labels as,

(T ′)acb = Permute(Tabc), (2.4)

where T ′ is the new tensor obtained after permutation. Also, a tensor T can be reshaped by
“fusing" or “splitting" its indices. Fusion of the indices of a tensor T is,

(T ′)ad = Reshape(Tabc), (2.5)
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(i) (ii) (iii)

d

c M NP
=R TS

=

i
i j i jk

i

l

j

i

lj

k

m m

Figure 2.2: Some examples of the multiplication of two tensors. (i) The inner product of
vectors c and d, which gives a number. In components form 〈d |c〉 =

∑
i cid∗i . (ii) The

multiplication of two matrices M and N to give a new matrix P. In components form,
Pi j =

∑
k Mik Nk j . (iii) Tensor multiplication—a generalisation of matrix multiplication.

This represents the contraction of two tensors S and T to give a new tensor R. In components
form, Ri jlm =

∑
k Si j kTklm, which is a contraction over a single shared index k.

T ′
a

(i)

T ′ T=
a a

c

b c

b

(ii)

T=
a

c

b
d

Ta

(iii)

T ′ =a

c

b

d

Figure 2.3: Permuting and reshaping a tensor T to give a new tensor T ′. (i) Permuting the
indices b and c, represented by the crossing. (ii) Fusing the indices b and c of tensor T into
a new index d of tensor T ′. The “fattened” line of tensor T ′ diagrammatically represent the
fusion operation. (iii) Splitting the index d of tensor T into the indices b and c of tensor T ′,
diagrammatically represented by the 90o clockwise rotated “Y” shape.

where the “new” index d on tensor T ′ is obtained by mapping the pair of indices (b, c)
uniquely to d. Similarly, the index of a tensor T can be split into two indices as,

(T ′)abc = Reshape(Tad), (2.6)

where the indices (b, c) is obtained by mapping index d uniquely to the indices b and c. The
diagrammatic representation of the permutation, splitting and fusion of the indices of a tensor
are shown in Fig. 2.3

A matrix M can be decomposed into a product of two (or more) matrices in several
different ways. Some of the most popular (and useful) decompositions in tensor networks
are, singular value decompositions (SVD), QR-decompositions, eigenvalue decompositions,
among many others. For instance the SVD of a matrix M is,

Mi j =
∑

k

UikλkVk j, (2.7)

where the matrix U and V are unitary, i.e. U†U = UU† = I and V †V = VV † = I, and
the diagonal matrix λ contains the singular values of the matrix M , which are real positive
numbers, λk ∈ R+. On the other hand, the eigenvalue decomposition of a diagonalisable
square matrix M is,

Mi j =
∑

k

Dikλk (D−1)k j, (2.8)

where D is the invertible matrix of the eigenvectors of matrix M , D−1 is the inverse of D, and
λ is a diagonal matrix of real numbers, λk ∈ R. The decomposition of matrices generalise
to tensors. A higher order tensor T can be decomposed into any number of factors. First, the
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tensor is converted into a matrix by using a combination of reshape and permutation of the
indices of the tensor. The resulting matrix is decomposed into its matrix factors, and finally,
undo any reshape and permutation of the indices.

The trace Tr(T ) of a tensor T is obtained by summing over the repeated indices of the
tensor. For example, the new tensor T ′

(T ′)i j =
∑

k

Ti j kk, (2.9)

is obtained by summing over the repeated index k of tensor T . This is represented diagram-
matically as

TT ′ =

i i

j j

k .

(2.10)

This example can be generalised to tensors of arbitrary order.

2.3 Matrix Product States
Having reviewed the notion of tensors and their diagrammatic notations, we are now ready
to introduce the matrix product state (MPS), which is arguably the simplest tensor network
state for (non-critical) one-dimensional quantum systems. A pure state |ψ〉 generally written
as,

|ψ〉 =
∑

i1,...,iL

ci1...iL |i1 . . . iL〉 , (2.11)

has dL number of coefficients ci1...iL , which is exponentially large in the system size L.
Working directly in this representation is not feasible in numerical simulations, except for
very small system sizes.

The matrix product state ansatz provides an efficient parametrisation of the amplitudes
ci1...iL for quantum states with limited amount of entanglement. There are two different, but
equivalent, expressions for MPS. The first one is given in terms of matrices as,

ci1...iL = Tr
(
A[1]i1 A[2]i2 . . . A[L]iL

)
, (2.12)

where ik ∈ {1, . . . , d} indexes the orthonormal basis vector of the Hilbert spaceHk of site k,
and A[k]ik is a matrix for each local basis |ik〉. The MPS given is for systems with periodic
boundary condition (PBC). For an MPS with open boundary condition (OBC), A[1]i1 and
A[L]iL are row and column vectors respectively, and no trace is needed, as the multiplication
of all the matrices gives a number. ThisMPS can be conveniently represented in the graphical
notations introduced in Sec. 2.2 as

A[1] A[2] A[L]

...

i1 i2 iL

ci1,i2,...,iL = ,
A[3]

i3

A[4]

i4 (2.13)

where the labelled vertical lines are called physical legs and enumerates over the basis states
of the site Hilbert space, and the connecting lines are called bonds. The connection between
two matrices implies contraction (or matrix multiplication in this case). The MPS as given is
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called left canonical if the set of matrices A[k]ik on each site k satisfy the left-normalisation
condition

I =
∑
ik

(
A[k]ik

)†
A[k]ik . (2.14)

This is represented graphically as

,

A[k]

ik

A[k]†

=

(2.15)

where the left hand diagram represents the identity operator.
If the MPS is right canonical, rather than using the notation A, the matrices are often

denoted using the letter ‘B’ in the literature (e.g. see Ref. [74]). The set of matrices B[k]ik on
each site k satisfy the right-normalisation condition,

I =
∑
ik

B[k]ik
(
B[k]ik

)†
, (2.16)

which is also graphically represented as

.

B[k]

ik

B[k]†

=

(2.17)

The second frequently used definition of MPS, for OBC, is expressed in terms of order-3
and order-2 tensors as,

ci1...iL =
∑

α1,...,αL−1

(
Γ

[1]i1
α1 λ[1]

α1 Γ
[2]i2
α1α2λ

[2]
α2 . . . λ

[L−1]
αL−1 Γ

[L]iL
αL−1

)
, (2.18)

where Γ[k] is an order-3 tensor for each site k, except for the boundary where it becomes a
matrix, and λ[k] is a diagonal matrix containing the Schmidt coefficients of the state. I will
favour the use of this second expression throughout this thesis.

In the convenient graphical language, this MPS is represented as,

Γ[1]
λ[1] Γ[2]

λ[2] Γ[L]

λ[L−1]

...

i1 i2 iL

α1 α1 α2 α2 αL−1 αL−1ci1,i2,...,iL =
,

(2.19)

where, as before, the labelled vertical lines on the Γ-tensors are the physical legs, and the
connecting labelled lines between the Γ-tensors and the λ-matrices are the bonds. The label
ik enumerates the basis on each site k, while αk enumerates the Schmidt basis—described
below in Sec. 2.3.1—on each bond k. Let the dimension of the Hilbert space on each bond
k be χk , referred to as bond dimension. For simplicity, the bond dimension can be restricted
to a constant value, χ, on each bond. The number of parameters in the MPS representation
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is now therefore of order O(Ldχ2), which is linear in the system size L for a constant
bond dimension χ, and not exponential as in the representation in Eq. (2.11). In principle,
χ ≤ dL/2, so the number of parameters in the MPS can also be exponentially large1, but this
quantity depends on the amount of entanglement in the state—which may be regulated. A
state with logarithmic entanglement is one where the χ scales polynomially with the system
size L, i.e. χ = Poly(L) rather than scaling exponentially.

The MPS representation was given without any mathematical justification. I will now
give a short derivation of the MPS based on successive Schmidt decomposition [45] of the
lattice L into a bipartite system A and B.

2.3.1 Derivation of MPS
We start with the state |ψ〉 ∈ H in Eq. (2.11),

|ψ〉 =
∑

i1,...,iL

ci1...iL |i1 . . . iL〉 . (2.20)

The order-L tensor ci1...iL can be decomposed into a network of tensors of lower orders
using techniques from linear algebra, such as singular value decomposition (SVD) or QR
decomposition. Here, we will use SVD to achieve our desired decomposition as follows:
reshape the tensor ci1i2...iL into a matrix ci1(i2...iL ), where the indices i2, i3, . . . , iL are grouped
together. Decompose the matrix using SVD,

ci1...iL ≡ ci1(i2...iL ) =
∑
α1

Γ
[1]i1
α1 λ[1]

α1 V [1]
α1(i2...iL ) . (2.21)

Note that the diagonal matrix λ obtained from SVD is purely real with entries λα ≥ 0. We
recombine the λ[1] andV [1] and reshape the resulting tensor into c(α1i2)(i3...iL ), where the bond
index α1 and the physical index i2 are grouped together.

ci1...iL =
∑
α1

Γ
[1]i1
α1 c(α1i2)(i3...iL ) . (2.22)

Now decompose c(α1i2)(i3...iL ) using SVD as c(α1i2)(i3...iL ) =
∑
α2 U(α1i2)α2λ

[2]
α2 Vα2(i3...iL ). Sub-

stitute this back into Eq. (2.22) and restore back λ[1] from Eq. (2.21) into the equation by
letting U(α1i2)α2 =

∑
α1 λ

[1]
α1 Γ

[2]i2
α1α2 . This gives

ci1...iL =
∑
α1,α2

Γ
[1]i1
α1 λ[1]

α1 Γ
[2]i2
α1α2λ

[2]
α2 Vα2(i3...iL ) . (2.23)

Continue this iteration until the last site L to give the desired expression,

ci1...iL =
∑

α1,...,αL−1

(
Γ

[1]i1
α1 λ[1]

α1 Γ
[2]i2
α1α2λ

[2]
α2 . . . λ

[L−1]
αL−1 Γ

[L]iL
αL−1

)
, (2.24)

which is theMPS representation given inEq. (2.18) and graphically in Eq. (2.19). In summary,
at each iteration, we reshaped the tensor into a matrix and do a singular value decomposition.
The number of singular values at each iteration is then the minimum of either the rows or
columns of the matrix. When the lattice L of L sites divides into two equal halves with L/2

1The MPS representation is just an alternative parametrisation of the state |ψ〉 and has as many parameters
as the state |ψ〉 itself.
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sites, the resulting matrix will be d[L/2] × d[L/2]. Therefore, the number of singular values
(i.e. bond dimension) χ satisfies χ ≤ d[L/2]. Therefore, I have shown that the MPS is just
an alternative re-expression of the same state |ψ〉, and is in principle exponential in system
size L. The advantage of using the MPS representation (and indeed other TN states) rather
than the primitive representation in Eq. (2.20), is that the amount of entanglement χ can be
easily controlled in a numerical simulation, and allows us to approximately target the right
subspace of the huge Hilbert space. In order words, we approximate the target state with
fewer parameters.

We noted above that the two different representations for MPS are equivalent. Depending
on how we grouped adjacent Γ and λ tensors of Eq. 2.19 together, we can recover the
representation Eq. 2.13 or a similar representation with the B matrices depending on the
“direction” of the singular value decompositions. The decomposition which starts from the
left and proceeds rightward yields a left-canonical MPS, while a decomposition in the reverse
direction yields a right-canonical one. If we contract the tensors λ[i−1] and Γ[i] in Eq. 2.19
we get the A[i] set of matrices in Eq. 2.13, and hence the two representations are shown to be
equivalent.

2.4 Infinite Matrix Product State
The MPS representation of the state of a finite quantum system can be extended to an
infinite-sized system at thermodynamic limit by exploiting the translational invariance of the
system. The infinite MPS (iMPS) [56] can be derived from the finite MPS by following a
very simple argument. Let us assume the boundary of the finite-MPS (shown in Eq. (2.19))
extends to infinity, such that there are no more boundary effects. We impose translational
invariance on the state |ψ〉 of the system. Translate the MPS |ψ〉 by one site to give the state
|ψ′〉, |ψ′〉 = T̂ |ψ〉, where T̂ is the translation operator. Translational invariance of the MPS
demands that the tensors,

Γ
[k] = Γ[k+1], λ[k] = λ[k+1], (2.25)

for all k ∈ Z. Therefore, a translation invariant MPS is made up of a set of two site-
independent tensors {Γ, λ} which are infinitely repeated to form the iMPS.

In general, the iMPS can be extended to represent the state of systems that are k-
sites periodic, by demanding translational invariance after k sites. A single block B
of the iMPS will, therefore, be made up of a set of k number of tensors, i.e. B =
{Γ[1], λ[1], Γ[2], λ[2], . . . , Γ[k], λ[k]}, arranged into a chain within the block, and the blocks
are infinitely repeated to form the iMPS. Invariance of the iMPS which is k sites periodic
implies that,

Γ
[l] = Γ[l+nk], λ[l] = λ[l+nk], (2.26)

where k is the period of the iMPS, and n ∈ Z is an integer. Optimisation of the iMPS involves
optimising only the tensors making up a single block. We shall use this idea later in Chapter 4
to construct Anyon×U(1) MPS ansatz for simulating infinite anyonic systems at fixed global
particle density.

2.5 Time-Evolving Block Decimation Algorithm
The time evolving block decimation algorithm (TEBD), developed by Vidal [55], is an
algorithm which can be both used to compute the time evolution of state |ψ(t)〉, written as
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an MPS, and also the ground state |GS〉 of a Hamiltonian Ĥ in imaginary-time. The TEBD
method is based on the time evolution of a quantum state.

Let Ĥ be the Hamiltonian of a system, with an eigenstate state |ψ0〉 (presumably an initial
state at time t = 0). The time evolution of this state is,

|ψ(t)〉 = Ĝ(t) |ψ0〉 , (2.27)

where Ĝ(t) = e−iĤt is the unitary evolution operator2 (i.e. the unitary gate) of a time-
independent Hamiltonian Ĥ . In general, the Hamiltonian could be time dependent, in which
case the unitary evolution is a path ordered integral of the exponential of H (t). For simplicity,
we will focus on time-independent Hamiltonians. Typically, most Hamiltonians of quantum
many-body systems are local, i.e. written as a sum of terms acting over a few nearest
neighbouring sites at a time. For the sake of simplicity, let the Hamiltonian Ĥ be,

Ĥ =
∑
k∈Z

ĥ[k,k+1], (2.28)

where h[k,k+1] is a nearest-neighbour local Hamiltonian on two sites. The term ĥ[k,k+1]

is used as a shorthand notation for ⊗i<k Ii ⊗ ĥ[k,k+1]⊗ j>k+1 I j . We have seen that, using
tensor network manipulations, the state |ψ〉 in an Hilbert space H can be rewritten as a
tensor network (e.g. as an MPS) of low-order tensors local to each physical site i . In
MPS representation, the unitary gate Ĝ(t) cannot be efficiently applied to the MPS; it also
needs to be decomposed into a network of local low-order tensors. The exponential of the
Hamiltonian does not directly factor into a product of exponentials of local Hamiltonians,
as the terms in the Hamiltonian are in general non-commuting. Using the Suzuki-Trotter
decomposition [75, 76], that decomposition can be achieved approximately.

TheSuzuki-Trotter decomposition approximates the exponential of a sumof non-commuting
operators into a product of exponentials of each operator. For any arbitrary non-commuting
operators Â and B̂,

e( Â+B̂)t ≈ (e Ât/neB̂t/n)n + O(1/n), (2.29)

for all t ∈ R. Let the δt = t/n in the above formula. The accuracy of this approximate
decomposition relies on the “smallness” of δt or “largeness” of the number of partitions n.

We can now apply the Suzuki-Trotter formula to decompose the unitary gate Ĝ(t),

Ĝ(t) = e−it Ĥ = e−it
∑

k ĥ[k,k+1]
, (2.30)

into a product of exponentials of local Hamiltonian terms. We will present the “even-odd”
decomposition in Ref. [77]. Let the Hamiltonian Ĥ =

∑
k∈Z ĥ[k,k+1] be rewritten as a sum

of terms on even and odd sites, Ĥ = Ĥe + Ĥo, where Ĥe =
∑

k∈Z ĥ[2k,2k+1] is the sum of
commuting terms on even sites, and Ĥo =

∑
k∈Z ĥ[2k−1,2k] is the sum of commuting terms on

odd sites. The unitary gate Ĝ(t), therefore decomposes as,

Ĝ(t) = (e−iδt Ĥee−iδt Ĥo )n + O(1/n). (2.31)

2In this thesis, I will always use Ĝ(t) to represent the evolution operator, which is referred to as the “unitary
gate” in quantum information theory, as opposed to the using Û (t) as in conventional quantum theory. This is
because, the ansatz states and algorithms used or constructed in this thesis are based on tensor networks, which
are methods coming from quantum information theory.
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Let Ĝe(δt) = e−iδt Ĥe and Ĝo(δt) = e−iδt Ĥo . Therefore, Ĝ(t) =
n∏

Ĝ(δt), where Ĝ(δt) =
Ĝe(δt)Ĝo(δt). The terms Ĝe(δt) and Ĝo(δt) decompose exactly into products as,

Ĝe(δt) =
∏
k∈Z

e−iδt ĥ[2k,2k+1]
, (2.32)

and
Ĝo(δt) =

∏
k∈Z

e−iδt ĥ[2k−1,2k]
, (2.33)

since the terms on disjoint sites always commute. The time-evolved state |ψ(t)〉 is therefore
computed from |ψt〉 = Ĝ(t) |ψ0〉, where one step of the update at time t is |ψt+δt〉 = Ĝ(δt) |ψt〉.
This can be represented graphically as,

ĝ12 ĝ34 ĝn−1,n

ĝ23 ĝ45

Γ[1] Γ[2] Γ[3] Γ[4] Γ[5] Γ[n]
λ[1] λ[2] λ[3] λ[4] λ[n−1]

Γ[1]′ Γ[2]′ Γ[3]′ Γ[4]′ Γ[5]′ Γ[n]′
λ[1]′ λ[2]′ λ[3]′ λ[4]′ λ[n−1]′

,

(2.34)
where ĝk,k+1 = e−it ĥ[k,k+1] is the unitary gate on either even or odd sites. The tensors {Γ[k], λ[k]}
are updated to {Γ[k]′, λ[k]′} for each site k. It can be seen that the contraction of this network
depends recursively on knowing how to contract the two sites MPS [56] explained in Fig. 2.4.

The TEBD algorithm can be used to compute the ground state |GS〉 of a Hamiltonian
Ĥ in imaginary-time by setting t = iτ, where i is the complex number. To see this, we
consider the “evolution” of a general quantum state in imaginary time τ. Let {|i〉} be the
set of eigenstates of a Hamiltonian Ĥ . We let |i = 0〉 be the ground state (GS) denoted by
|GS〉 and having a corresponding GS energy E0, and all other |i〉 are excited states with
the corresponding energies Ei, where Ei > E0. Since the Hamiltonian Ĥ is Hermitian, its
eigenvalues (i.e. energies) are real and its eigenstates are orthogonal, and therefore span the
Hilbert space. Below, we show that for long enough time, i.e. τ → ∞, an arbitrary initial
state |ψ〉 gets projected to the ground state |GS〉 of the Hamiltonian Ĥ , as long as that initial
state is non-orthogonal to the ground state, i.e. the ground state should have a support on the
initial state.

A general state |ψ〉 can be expanded in terms of the orthonormal basis states {|i〉} as,

|ψ〉 =
∑

i

ci |i〉 , (2.35)
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where the complex numbers ci are the amplitudes of the state, and can be represented as an
MPS, as already seen in Sections 2.3 and 2.4. As the imaginary-time gate Ĝ(τ) is not unitary,
the state has to be re-normalised after the gate acts on it. We apply the imaginary-time
projector Ĝ(τ) = e−τĤ to |ψ〉 as,

|ψ′〉 = Ĝ(τ) |ψ〉 = e−τĤ *
,

∑
i

ci |i〉+
-
, (2.36)

=
∑

i

cie−τEi |i〉 , (2.37)

= c0e−τE0


|0〉 +

∑
i,0

(
ci

c0

)
e−τ(Ei−E0) |i〉


, (2.38)

where the amplitude c0 of the ground state is not zero. In the limit τ → ∞,

|ψ′〉 → |0〉 , (2.39)

after normalisation, where we have assumed that the degeneracy of the ground state is 1. For
a higher degeneracy, the evolution will project onto one of the states in the ground space
manifold. The excited states decay exponentially for a gapped spectrum, where the energy
gap Ei − E0 > 0, for states above the ground state. The convergence to GS is determined
by the gap of the GS above the excited states. The evolution converges exponentially to the
ground state when the time τ > (Ei − E0). A system for which the gap of its spectrum goes
to zero in the thermodynamic limit is called critical, and is usually the hardest to simulate
with TEBD, though in most cases, it is still often possible to get a reliable approximation of
ground state properties, such as average energy density, entropy, etc.

2.6 Computing quantities from iMPS
In this section, I review how to compute some physical quantities of interest from the infinite
MPS.

2.6.1 Expectation value of an observable
We illustrate how to compute the expectation value of local operators and correlation func-
tions, using the example of two operators Ôi and Ô j , acting on two sites i and j. Let
Ô : H → H be an observable of states in the Hilbert space H , where for instance,
Ô = Ôi ⊗ Ii+1 ⊗ . . . ⊗ I j−1 ⊗ Ô j , though this can be generalised to other arbitrary operators.
The expectation value 〈ψ | Ô |ψ〉 can be computed from the iMPS, and is given diagrammati-
cally as,

Ôi Ôj

, (2.40)

where the tensor labels and index labels have been suppressed. This is a simple network
which can be contracted proceeding from left to right and top to bottom.
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Γ[k] Γ[k+1]

λ[k−1] λ[k] λ[k+1]

ĝk,k+1

Θ U V
λ[k]′

λ[k]′

(
λ[k−1]

)−1 (
λ[k+1]

)−1

λ[k−1] λ[k+1]
U V

λ[k]′λ[k−1] λ[k+1]Γ[k]′ Γ[k+1]′

(i) (ii) (iii)

(iv) (v)

Figure 2.4: Update of the two sites of the iMPS with the unitary gate ĝk,k+1 on sites k and
k + 1. (i) Contract the tensor network to give the order-4 tensor Θ in Fig. (ii). Reshape Θ into a
matrix and decompose using SVD into its matrix factorsUλ[k]′V . Reshape the matricesU and V

back into tensors as in Fig. (iii), which can be followed by an optional truncation of the bond
dimension, based on the number of Schmidt values to be kept. Restore the canonical form of
the tensor network by introducing identity matrices I = λ[k−1]

(
λ[k−1]

)−1 and I = (
λ[k+1]

)−1
λ[k+1] to the

left and right hand sides as shown in Fig.(iv). The shaded part are then contracted to produce
the updated Γ[k]′ and Γ[k+1]′ shown in Fig. (v). The index labels on the legs and bonds have
been suppressed for clarity.

One may wonder if this tensor network can be efficiently contracted, since in principle,
contraction of arbitrary tensors can become hard to achieve computationally. I now show
that this contraction is computational easy to achieve. To this end, let us define the following
tensors,

Ôi
Ôj

RL E=

,

=

,

=

,
(2.41)

where L is an order-one tensor from the left boundary, and has O( χ2) elements, R is an order-
one tensor from the right boundary, also with O( χ2) elements, and E is the transfer operator
on each site which has O( χ4) elements. The two close lines on the objects imply grouping
together of indices (or fusion). All these objects can be efficiently computed, requiring only a
small number of operations of order O(d). The contraction diagram Eq. 2.40 for correlation
function then becomes,

Li E E E E Rj . (2.42)

Let us consider the leftmost and rightmost objects as row and column vectors respectively,
each with χ2 elements. The object E as a matrix with χ2 × χ2. The diagram is then just a
sequence of vector-matrix multiplications. Proceeding from the left, and multiplying a vector
and the adjacent matrix pairwisely requires O( χ4) basic operations. The total cost of the
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whole contraction is therefore O(|i − j | χ4), which is polynomial in χ, and hence efficient.
For |i− j | � 1, one can compute the highest weight eigenvector and eigenvalue of the transfer
operator to compute correlation functions by taking the eigenvalue to the power |i − j |.

In fact, the cost of contracting the diagram Eq. 2.40 can be further reduced by a factor of
χ if, rather than forming transfer operators, we contract the tensors appearing in Eq. 2.40 in
a pairwise manner.

2.6.2 Entropy
The Von-Neumann entropy S of a state described by a density matrix ρ̂ is,

S = −Tr( ρ̂ log ρ̂). (2.43)

The density matrix ρ̂ can be written in diagonal form as,

ρ̂ =
∑

i

Pi |i〉 〈i | , (2.44)

where {Pi} are the eigenvalues of the density matrix, and {|i〉} are the corresponding eigen-
vectors of ρ̂. Then, the entropy S can be computed from,

S = −
∑

i

PilogPi . (2.45)

This quantity can be computed directly from the MPS representation Eq. (2.19). For an
MPS of pure state, which is a split into a bipartition with one subsystem consisting of the
sites to the left including site i and the other subsystem comprising the rest of the sites, the
entropy of either subsystem is

S = −
∑

i

λilogλi, (2.46)

where λi are the Schmidt coefficients of the reduced density matrix of any part of the bipartite
system. If this quantity is computed from the iMPS, the computed entropy S is the entropy
of entanglement of half infinite chain.



18 Tensor Network States and Algorithms



3
Theory of Anyons

3.1 Introduction
In this chapter, I briefly review the theory of anyons which sets the theoretical framework
that will be combined with tensor networks, reviewed in Chapter 2, to construct an anyonic
tensor network ansatz state and algorithm in Chapters 4 and 5.

As point-like particles, anyons exist in two-dimensional systems. An anyon model is
defined by specifying certain algebraic data, namely, a particle setA for the type of particles
in the theory, the fusion rules of those particles, braid matrix R, F-matrix F, and quantum
dimensions of each particle type.

The remaining discussion in this chapter is split as follows: in Section 3.2, I discuss
the concept of fusion algebra for a set of anyons. In Section 3.3, I discuss the idea of a
Hilbert space for anyonic systems in analogy to familiar concepts from the linear algebra
in (basic) quantum mechanics, and in Section 3.4, I introduce the powerful diagrammatic
representations frequently employed to describe states and operators of systems of anyons.
In Section 6.5, I end with a conclusion.

3.2 Fusion Algebra
An anyon model has a set A = {a, b, c, . . . , k} of finite number of charges with labels
a, b, c and so on. These charges are interchangeably called anyonic or topological charges,
particle types, charge labels, superselection sectors, or some other name. The set satisfies a
commutative and associative fusion algebra,

a × b =
∑

c

N c
ab c, (3.1)

where N c
ab is the multiplicity tensor that specifies the number of copies of charge c obtained

from fusing charges a and b. The associativity constraints at the level of fusion of charges
means,

a × b × c = (a × b) × c = a × (b × c) ≡ d, (3.2)
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which means the fusion of three anyons having charges a, b, c will give the same charge
outcome d irrespective of the order of fusion; starting from the left, we can fuse a and b first,
then fuse the outcomes with c to give d, or starting from the right, fuse charges b and c first,
then fuse the outcomes with a to give d. There is a trivial particle in the set A, referred to
as the vacuum charge I, that fuses trivially with other charges in the set,

I × a = a, (3.3)

for all a ∈ A. Also, for each a, there is a corresponding conjugate charge ā or “antiparticle,”
that fuses with a as,

a × ā = I + · · · , (3.4)

which means that, fusion of a charge and its conjugate can either annihilate to vacuum (I) or
produce a new charge “· · · ”. Anyons are broadly classified into two categories based on their
fusion rules: Abelian and non-Abelian. An anyon model is referred to as non-Abelian if for
some pairs of charges a and b,

∑
c N c

ab > 1, otherwise they are Abelian.
Each charge a ∈ A has a quantum dimension da, which is loosely the dimension of the

“Hilbert space” associated with each anyon type. The quantum dimension of the charges
similarly obey the relation,

dadb =
∑

c

N c
abdc. (3.5)

If this equation is re-written as,
∑

c (Na)c
bdc = dadb, as a set of linear equations for each of

charge b ∈ A. Then (Na)d = dad, where d is a vector of quantum dimensions of all the
charges. The largest eigenvalue obtained by solving the eigenvalue equation is the quantum
dimension da of charge a. The total quantum dimension is defined as D =

√∑
a d2

a.
In the rest of this chapter, I will restrict to only multiplicity free models with N c

ab = 0, 1,
which are some of the most important anyons models in experiment, including Majorana
fermions (or Ising anyons) and Fibonacci anyons.

3.3 Vector spaces: Bra-Ket notation
To a large extent, anyonmodels can be described in terms of the tools of conventional quantum
mechanics, and is hence amenable to the concepts of linear algebra, such as vector spaces,
basis vectors, and operators that act between these spaces.

When two anyonic particles having charges a and b combine, the composite object has
a total charge c from a set of possible outcomes determined by the fusion rules of the anyon
model. To each unique fusion process, where the charges a and b fuse to c, i.e. a × b → c,
there is assigned a fusion Hilbert space V c

ab whose dimension is dimV c
ab = N c

ab. A dual
process is where charges a and b split from charge c having a corresponding splitting space
V ab

c . The fusion space can be regarded as the dual of the splitting space,V c
ab =

(
V ab

c

)∗
(or vice

versa). I will refer to these space as the elementary vector spaces—since, as will be shown
below, they form the building blocks of “larger” vector spaces of more than two anyons.

Let |ab; c〉 be an orthonormal basis of the space V ab
c , and 〈ab; c| ∈ V c

ab as the conjugate
basis in the dual space. Inner product is defined on the vector space as

〈ab; c′| ab; c〉 = δcc′ . (3.6)

Since the charges are conserved, the splitting space V ab of two anyons with charges a and b
is V ab = ⊕cV ab

c , which is a direct sum of the vector spaces associated with each total charge
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outcome c. The identity operator on V ab is

I =
∑

c

|ab; c〉 〈ab; c | . (3.7)

Apart from fusion, another physically relevant operation is braiding. Two particles with
charges a and b can be exchanged in space, a process which is technically referred to as
braiding when exchange of particles applies to two dimensional systems. Exchange does not
change the total charge outcome c resulting from the fusion of the anyonic charges a and b.
Let the vector space of the swapped particles be V ba

c , which is isomorphic to V ab
c . Let R̂ be

the braid operator with the mapping

R̂ :
⊕

c

V ab
c →

⊕
c

V ba
c . (3.8)

If we choose orthonormal bases {|ab; c〉} and {|ba; c〉} for the spaces, then R̂ is a unitary
matrix which can be expressed as

R̂ =
∑

c

Rab
c |ba; c〉 〈ab; c| . (3.9)

These ideas can be extended to more than two anyons. Three particles with charges
a, b, c fusing to yield a total charge d has an associated vector space V abc

d . Since fusion is
associative, it means there is more than one way to decompose this vector space into products
of vector spaces of pair of charges. For the specific case of three anyons,

V abc
d �

⊕
e

V ab
e ⊗ V ec

d �
⊕

f

V a f
d ⊗ V bc

f . (3.10)

The corresponding bases with respect to the two alternative decompositions may be written
respectively as

|ab; e, ec; d〉 ≡ |ab; e〉 ⊗ |ec; d〉 , (3.11)
|a f ; d, bc; f 〉 ≡ |a f ; d〉 ⊗ |bc; f 〉 , (3.12)

which should be related by a unitary transformation

|ab; e, ec; d〉 =
∑

f

(
Fabc

d

) f

e
|a f ; d, bc; f 〉 , (3.13)

where the matrix Fabc
d is called the F-matrix.

We can generalise to a system of n anyons having charges a1, a2, . . . , an having total
charge c. If we assume that the charges are fusing in the “standard convention,” that is,
pairwise from the left to the right, the vector space V a1a2...an

c can be decomposed as

V a1a2...an
c �

⊕
b1,b2,...,bn−2

V a1a2
b1
⊗ V b1a3

b2
⊗ . . . ⊗ V bn−2an

c . (3.14)

It should be noted that the space V a1a2...an
c does not have a natural decomposition in terms of

tensor product of spaces associated with the subsystems, but rather in terms of direct sums
of vector spaces of the intermediate charges derived from successive fusion process. This
renders the vector space V a1a2...an

c to be nonlocal, and is therefore referred to as a topological
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Hilbert space. Let the basis of this space be |a1a2; b1, b1a3; b2, . . . , bn−2an; c〉, which, in line
with the decomposition of the vector space, can be written as a product of basis of pairs of
charges

|a1a2; b1, b1a3; b2, . . . , bn−2an; c〉 = |a1a2; b1〉 |b1a3; b2〉 . . . |bn−2an; c〉 , (3.15)

where there is an implied tensor product between adjacent ket vectors |•〉.
As it was previously done for the case of two anyons, we can also introduce the inner

product, and the identity operator on the space V a1...an
c of a system of n anyons. The inner

product is

〈a′1a′2; b′1, b
′
1a′3; b′2, . . . , b

′
n−2a′n; c′| a1a2; b1, b1a3; b2, . . . , bn−2an; c〉

= δa′1a1 . . . δa′nanδb′1b1 . . . δb′
n−2bn−2δc′c, (3.16)

and the identity operator is

I =
∑

b1,...,bn−2,c

|a1a2; b1, . . . , bn−2an; c〉 〈a1a2; b1, . . . , bn−2an; c | . (3.17)

As in conventional many-body quantum physics, we proceed to specify a quantum state
of a system of n anyons, and the operators that act on them. A quantum state of an anyonic
system can be written as

|ψ〉 =
∑

b1,...,bn−2

ψb1...bn−2 |a1a2; b1, b1a3; b2, . . . , bn−2an; I〉 , (3.18)

where I have assumed that the charges (a1, a2, . . . , an) have a single fixed value, and hence
does not appear in the sum in |ψ〉. Note that the total outcome charge c has been set to the
vacuum charge I, to correspond to a physically valid system where anyonic excitations are
created in pairs (i.e. particle and antiparticle ) from the vacuum. As is customary, we can
normalise the state |ψ〉 by,

1 =
∑

b1,...,bn−2

|ψb1...bn−2 |
2, (3.19)

since the basis are orthonormal. We can also construct an operator Q̂ that act on a subset
(or all) of the anyons in the system. The operator is constructed based on the physical
operation to be done on the anyons. For example, in a typical condensed matter physics
setting, a Hamiltonian Ĥ can be defined for how pairs of anyons in the system interact. A
local Hamiltonian is written as Ĥ =

∑
i

ˆh[i,i+1], where h[i,i+1] is the operator acting on a pair of
anyons on sites i and i+1 having charges ai and ai+1, respectively. We may then be interested
in studying properties of the ground state |GS〉 such like ground state energy, correlation
functions of some operators, and the amount of entanglement in the state.

To recapitulate, I have shown that physical andmathematical operations can be formulated
in the language of linear algebra as done in basic quantum mechanics using Dirac “bra-ket”
notation. Starting from below, I will adopt a different fashion, where I employ the use of
the already well established graphical notations, where anyonic charges, basis vectors, state
vectors, and operators are represented using diagrams. Operations performed on anyons then
correspond to certain manipulations of those diagrams. All these culminate in what is widely
referred to as graphical calculus.
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3.4 Graphical Calculus for anyons
It is convenient to employ diagrammatic representation [1, 78] for the basis elements of the
elementary vector spaces. Each anyon of charge a will be represented by an oriented line with
a label a, which is also equivalent to a line with an opposite orientation and the conjugate
charge ā,

,a

=

ā (3.20)

the upward orientation can be interpreted as the direction of increasing “time”. The splitting
and fusion basis will be represented, respectively, by a trivalent vertex as,

b

c

a

a b

c
|a, b; c〉 =

(
dc

dadb

)1/4
〈c; a, b| =

(
dc

dadb

)1/4
; ,

(3.21)

where the vertex normalisation factor
(

dc

dadb

)1/4
ensures that the diagrams are in diagrammatic

isotopy convention [1]. These diagrams can also be interpreted as representing the history
of the particles. Let me briefly state that working in the mentioned diagrammatic isotopy
convention, where the vertex in each diagram is normalised as prescribed above, is not strictly
necessary to describe states and operators of anyons. As I have shown above in Sec. 3.3, basis
states and operators of anyons can be formulated entirely in terms of bra-ket notation, which
reduces to basic vector and matrix computations. One could in fact associate those basis
vectors with diagrams (as will be shown in this section) but without any pre-factor, and then
proceed to build the vector and matrix representations of the basis of states and operators.
The need for vertex normalisation factor becomes important if we introduce diagrammatic
manipulations that associate a numerical weight to loops appearing in diagrams, and also
bends a charge line in a direction opposite to its original orientation. In order words,
diagrams are invariant with respect to any topological manipulation that distort and change
the orientation of charge lines. I adopt this normalisation convention since it proves useful
in tensor network manipulations where one may bend the “legs” of a tensor in order to bring
the tensor into a form that is convenient to use.

Inner product 〈c′; a, b| a, b; c〉 involves stacking the diagrams of the splitting and fusion
basis, from which we get the relation,

c′

a b

c

=
√

dadb

dc
cδc,c′

,

(3.22)

which diagrammatically encodes conservation of the anyonic charge. Some important de-
ductions from this relation are: (i) the “no tadpole” rule, which forbids diagrams such as
this:

c′

ba
,

(3.23)

where charges a and b are created from vacuum, but c′ in not the vacuum charge I. This
diagram by itself evaluates to zero, and if it occurs within any other diagram, it sets that
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diagram to zero. (ii) The diagrammatic representation of the quantum dimension da of
charge a is,

da =
a . (3.24)

The identity operator Iab over the vector space of two anyons a and b is,

Iab =
∑

c

|a, b; c〉 〈c; a, b| , (3.25)

which is represented diagrammatically as,

b

c

a

a b

,
√

dc

dadb

a b

=
∑

c

(3.26)

where the charge c of the fusion and splitting trees has been matched on the trunk for charge
conservation.

If V abc
d is the splitting space of three anyons labelled a, b, and c, with d as the total charge

outcome, then it has two natural isomorphic decompositions in terms of the splitting spaces
of pairs of particles as

V abc
d �

⊕
e

V ab
e ⊗ V ec

d �
⊕

f

V a f
d ⊗ V bc

f . (3.27)

The basis in these two isomorphic spaces are shown below in Eq. (3.28) (a) and (b) respec-
tively:

e

c

d

ba a c

f

d

b

(a) (b)

,

(3.28)

which are two isomorphic bases in the space V abc
d , and they are related by a unitary transfor-

mation, called “F-move,” which is given as:

a

e

c

d

b a c

f
=

∑

f

(
F a b c
d

)f
e

d

,

b

(3.29)

where the Fabc
d is the F-matrix that encodes the coefficients of the transformation. The F-

matrix implements associativity at the level of vector spaces, and has to satisfy the Pentagon
equation for a valid non-Abelian anyon model. [79] We shall only be concerned with unitary
theory in this thesis. An anyon model is said to be unitary if the F-matrix is unitary, i.e.
F†F = I.

There is an alternative F-move, which is also quite useful. This F-move involves two
incoming and two outgoing anyons, which can be referred to as “2-2” F-move, and represented
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e

a
b

c d

dc

f

∑

f

√
df

dcdd

=

dc

f

∑

f

√
df

dcdd

a
b

c
d

e

=

dc

f

∑

f

√
df

dcdd

a

b

c
g

e∑

g

[(
F c e b
f

)−1
]g
d

a b

dc

f=
∑

f

a b

dc

f
∑

f

(
F a b
c d

)f
e .

√
dedf

dadd

[(
F c e b
f

)−1
]a

d

=

Figure 3.1: Derivation of the “2-2” F-move. Starting from the left-hand side, insert the
identity operator Eq. (3.26) to the bottom of the diagram (i.e. Eq. (3.30)). Distort the
diagram, which is still topologically equivalent to the preceding diagram. Then apply the
inverse of the F-move Eq. (3.29). Finally, remove the loop using Eq. (3.22) to give the desired
diagrammatic form.

diagrammatically as,

e

a b a b

c d dc

f=
∑

f

(
F a b
c d

)f
e .

(3.30)
This particular F-move relates tunnelling of charges e between two sites to the combined
charge f of the two sites. The expression for the F-matrix

(
Fa b

c d

)
can be derived from

manipulations of this diagrammatic equation, by applying Eqs. 3.26, 3.29 and 3.22, as shown
in Fig. 3.1. The expression for

(
Fa b

c d

) f

e
can be read-off to be,

(
Fa b

c d

) f

e
=

√
ded f

dadd

[(
Fc e b

f

)d

a

]∗
, (3.31)

for unitary theories.
If the tunnelling charge e is right-directed in the “2-2” F-move as in,

e

a b a b

c d dc

f=
∑

f

(
F a b
c d

)f
e

,

(3.32)

the expression for
(
Fa b

c d

) f

e
can be similarly derived, and is given as,

(
Fa b

c d

) f

e
=

√
ded f

dcdb

(
Fa e d

f

)b

c
. (3.33)
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Wewill now use these two “2-2” F-move expressions to derive factors when vertically bending
a charge line.

One of the advantages of using diagrammatic representations is that we can perform (and
visualise) topological manipulations such as bending charge lines up, down, or sideways,
which correspond to certain transformations applied to the basis states of some anyons.
Some definitions are in order. A vertical bend is defined as a manipulation which reverses
the orientation of a charge line. [See Fig. (3.20) for an example of a directed charge line].
If in the case of an upward-going line, the manipulation reverses the orientation of the line
to become downward-going, thereby forming something like a “cap” shape, or vice versa,
i.e. an originally downward-going line becomes an upward-going line, thereby forming
something like a “cup” shape, then that manipulation will be called a “vertical bend,” which
is nontrivial as will be shown below. A “horizontal bend” is defined as a manipulation which,
irrespective of direction, bends a line sideways, and does not reverse the orientation of the
line. Horizontal bends of an anyon charge line is trivial, meaning the state does not acquire
any factor whatsoever. However, a vertical bend around the vertex of a splitting and fusion
diagram acquires a factor, which can be computed from the “2-2” F-move equations Eqs. 3.30
and 3.32, and given as,

b

a I

c b̄
b̄c

a
= .

√
dadb

dc

(
F a b b̄
a

)I

c

(3.34)

ā

a

I

c

=
√

dadb

dc

[(
F ā a b
b

)c
I
]∗b .

c

b

ā
(3.35)

In the first equation, the outgoing leg with charge b bends down to become an incoming leg
with the conjugate charge b̄. The same reasoning applies to the second equation. The bend
factors are the pre-factors in front of the diagrams. In addition, a “zig-zag” bend can be
straightened,

= a

a

āa
κ∗
a=

a
a κa

aā
; ,

(3.36)

where <a = da
(
Faāa

a

) I
I
is a phase factor. These equations show that bends introduce, at

worst, a phase factor when working in diagrammatic isotopy. The phase factor can be made
equal to 1 for non self-dual charges by a choice of gauge but for self-dual charges, this factor
is +1 or −1 and is known as the gauge invariant Frobenius-Schur indicator.

Anyons on two siteswith charges a and b can be swapped, which is referred to as a braiding
of the anyons. This is a generalisation of permutation of particles in three-dimensions. Let
Rab : V ab → V ba be the braid operator, which is a unitary representation of the braid group.
This is represented diagrammatically as,

aRab =
b ,

a
R−1

ab =
b

R†
ab

= ,

(3.37)

where the braid operator Rab is an “over-crossing” for when anyon a and b are exchanged.
By convention Rab is taken for a counter-clockwise exchange in two dimensions. The R−1

ab
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is for the inverse process where anyon a goes around anyon b in a clockwise manner. The
diagram is referred to as an “under-crossing.” In terms of the splitting and fusion basis states,
the braid operator Rab is represented as,

b

c

a

b a

,
√

dc

dadb
Rab

c
=Rab

∑

c

(3.38)

where Rab
c is the braid factor when charges a and b fuse to c. The braid matrix has to satisfy

the hexagon equation, which ensures consistency of braiding with fusion of anyons.
With all the necessary ingredients introduced, we are now ready to specify how to

diagrammatically construct a pure state and operators of a many-body anyonic system. Let
V a1,a2,...,an
I be a topological Hilbert space of n anyons with charges a1, a2, . . . , an fusing into

an overall vacuum charge I. A pure state in this space is written as as superposition of valid
labelled diagrams as,

· · ·

a1 a2 an−1 an

b1

bn−2

a3

|ψ〉 =
∑

b1,...,bn−2
,

ψb1...bn−2

(
1

da1 ...dan

)1/4

(3.39)

where a1, a2, . . . , an are the labels of the anyonic charges on sites, with each taking a fixed
value, and b = (b1, . . . , bn−2) is a list of in-between fusion outcomes. The labelled diagram
with the vertex normalisation factor is taken as a whole to be orthonormal. If we demand
that the state |ψ〉 is normalised, then

∑
b |ψb |

2 = 1.
An operator Ô acting on an anyonic system, where Ô ∈ V a1,a2,...,an

a′1,a
′
2,...,a

′
m
, in general, takes m

anyons to n anyons. This is represented diagrammatically as,

,
Ô =

· · ·

· · ·

a1 a2 ana3

a′1 a′2 a′ma′3

c

b1 · · ·

b′1
· · ·

O
b1...bn−2 c
b′1...b

′
m−2

∑

b1,...,bn−2

b′1,...,b
′
m−2 c

(3.40)

where charge c on the root of the splitting and fusion tree has been matched on the trunk
so as to ensure charge conservation of the operator. The vertex normalisation factors of the
labelled diagram have been absorbed into the coefficients defining the operator. Succinctly,
this operator can be written as a direct sum Ô = ⊕cÔc of the operators Ôc acting in each
charge sector c.

3.5 Conclusion
In conclusion, the diagrammatic techniques used inmanipulating anyonic states and operators
provide powerful algorithms which can be combined with the techniques of tensor networks
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(that was reviewed in Chapter 2) to construct anyonic tensor networks ansatz states. I will
show this for the specific case of MPS in Chapter 4. This ansatz together with the TEBD (or
DMRG) algorithm can be used to simulate anyonic systems of both finite and infinite extent,
and at arbitrary filling fractions either by tuning a chemical potential term in the Hamiltonian
or exploiting the U(1) symmetry of the model.



4
Anyonic Matrix Product States with U(1)

Symmetry

4.1 Introduction
Anyons are point-like (quasi)particles which exist only in two-dimensional systems and
have richer exchange statistics than bosons or fermions. One of the main interests in
anyons is in their application to implementing fault-tolerant (topological) quantum com-
putation [14, 22, 80]. Anyons have also garnered a substantial theoretical interest since they
are proposed to exist in systems as diverse as fractional quantum Hall systems and two-
dimensional spin liquids [15–28], one dimensional nanowires [29–32], and ultra-cold atoms
in optical lattices [33]. Recent experiments showing evidence for Majorana edge modes
(i.e. Ising anyons) in nanowires [32] might bring us closer to working with anyons in the
laboratory, with far-reaching scientific and technological applications.

One dimensional chains of static SU(2)k anyonswith a local antiferromagneticHeisenberg-
like interaction have been studied extensively since, for example, they are critical and realize
all minimal models of conformal field theories (CFTs) [81]. It is also natural to ask whether
interesting states and phases appear in anyon models where the anyons are allowed to hop
on a lattice and braid around one another. Braiding pairs of anyons generally transforms
the anyonic state in a non-trivial way, in contrast with bosons and fermions which merely
pick up a factor of ±1. For anyons, braiding is a topological interaction, with the meaning
that the interaction is independent of the distance between the anyons and arises only from
the inherent anyonic statistics. In Refs. [82, 83] the authors report on some phases that
appear in lattice models of itinerant anyons, where the anyons—coupled by a Heisenberg
interaction—are located on the sites of a lattice, with vacancies which allow for anyons to
hop between sites but without braiding around one another. In Ref. [84] the authors study the
real time dynamics of a single anyon moving between the sites of a ladder lattice with static
anyons pinned to the plaquettes of the ladder, which serves as a model of coherent noise in
topological quantum memories, and uncovers a signature that distinguishes abelian anyons
from non-Abelian anyons based on their transport properties. Noise models for medium
sized topological memories based on real time stochastic dynamics of braiding Ising models
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anyons [85], Fibonacci anyons [86], and quantum double model anyons [87] have also been
studied. In this chapter, I construct an ansatz to simulate ground states of 1D and quasi-1D
models of itinerant anyons at fixed particle density, which may or may not involve braiding,
and possibly include aHeisenberg interaction. I benchmark the ansatz using different physical
models whose ground state energy and entanglement entropy are given in chapter 5.

Large anyonic systems, like generic quantum many-body systems, are hard to simulate
on a classical computer due to the exponential growth in the dimension of the state space
with the number of particles. Until recently, numerical studies of anyons have primarily used
exact diagonalization [2, 81, 82, 88–90] which limits analysis to small system sizes and relies
on finite-size scaling to extract properties in the thermodynamic limit. A more successful
approach uses tensor networks (TNs) which describes quantum many body states using a
network of low-order tensors which can be contracted together to compute relevant quantities
such as ground state energy, correlations, subsystem entropy, etc. One of the simplest
tensor networks is the matrix product state (MPS) which forms the basis of highly successful
algorithms, namely, the density matrix renormalization group (DMRG) [47, 48, 74] and
the time-evolving block decimation (TEBD) [77, 91, 92] to simulate the ground state and
dynamics of 1D and quasi-1D quantummany-body systems. Exploiting translation invariance
in TN states has allowed the study of systems directly at thermodynamic limit, circumventing
the limitation on size encountered in exact diagonalization [56].

Owing to their success for spin systems, tensor network algorithms have recently been
adapted to simulate quantummany-body systems of anyons [39, 40, 93]. In particular, anyonic
versions of the Matrix Product States (MPS), and of the TEBD and DMRG algorithms have
been proposed and tested with a high degree of accuracy for anyonic chains [41, 43]. Tensor
network algorithms are adapted to anyons by explicitly hardwiring the constraints implied
by the fusion rules of the anyon model into the tensor network ansatz. This provides two
important advantages. First, an anyonic TN representing a many-body anyonic state contains
fewer complex coefficients than a non-symmetric TN description of the same state that
does not explicitly encode the anyonic symmetry, thus providing for computational speedup.
Secondly, using an anyonic TN as an ansatz in numerical simulations guarantees that one
remains in the physically relevant sector of the Hilbert state, namely, one with the desired
total anyonic charge, and thus avoiding leakage into states that are not allowed by the physics
of the system, due to numerical errors.

In this chapter and the next, I describe how to simulate the ground state of a system of
itinerant anyons by means of the anyonic TEBD algorithm that additionally incorporates a
U(1) symmetry corresponding to conservation of particle number density. Our construction
of the combined Anyon × U(1) symmetric MPS is the first to allow for simulating these
systems with an arbitrary, specified rational particle number density (or filling fraction), and
gives direct access to Hilbert space sectors enumerated by anyonic charge and particle number
density. Our MPS ansatz also allows us to simulate bosons, fermions, and anyons using the
same algorithm, since bosons and fermions can be treated as simple types of anyons.

In this chapter, I develop the Anyon × U(1) symmetric MPS formalism. The Anyon
× U(1) symmetric MPS combines the recently proposed anyonic MPS [41, 43] with the
implementation of a U(1) symmetry in the MPS [73, 94], and as such our presentation
contains some review of both elements separately, which serves both as a reminder of
important concepts and also introduces useful terminologies that persist throughout the
thesis. The structure of this chapter is as follows: in Sec. 4.2 I review the basics of anyonic
tensors—which constitute objects making up any anyonic tensor network. In Sec. 4.3, I
review the anyonic MPS. In Sec. 4.4, I review the implementation of a U(1) symmetry in the
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Figure 4.1: (i) Splitting tree and (ii) fusion tree, defining the “ket’ and “bra” bases respectively
for a total number k of anyonic charges (a1, a2, . . . , ak ) on the leaves, and (b1, b2, . . . , bk−2)
as the fusion products on the links of the trees. The charge c on the trunk can, in principle,
take all possible charge values permissible by the anyon model. If however, the fusion tree
defines the basis of a pure quantum state, the charge c can only be the vacuum charge I.

MPS corresponding to conservation of particle number density, in particular, showing how
it can be achieved as an instance of the anyonic MPS and how an arbitrary filling fraction
is realized at the level of the ansatz. In Sec. 4.5 I construct the combined MPS ansatz that
incorporates both the anyonic symmetry and the U(1) symmetry. Then, I present test models
and benchmarking results in Chapter 5.

4.2 Basics of Anyonic Tensor Networks
Using tensor networks to simulate quantum systems involves choosing a network pattern of
connected tensors along with a choice of an algorithm that optimizes the representation of the
many body state [37]. In what follows, I review the basic objects common to most anyonic
tensor networks (TN), and then later use these objects to construct the anyonic MPS, and our
modified Anyonic-U(1) MPS ansatz.

4.2.1 Components of anyonic tensor networks
In this section, I use the theory of anyons that was briefly reviewed in Chapter 3, to construct
the components of an anyonic tensor network.

The basis of the Hilbert space of anyons is described by a labelled directed fusion tree
(see Fig.4.1) where the charge c on any incoming edge at a vertex is determined from the
charges a and b of the two outgoing edges around the same vertex, according to the fusion
rules of the anyon theory

a × b→
∑

c

N c
ab c, (4.1)

which implies that charges a and b are allowed to fuse to, possibly, several different charges
c.

The labeled fusion/splitting tree in Fig.4.1 contains many charge labels, and can be
extremely verbose when dealing with large anyonic systems. While explicit labelling of
fusion trees is possible in principle, it is not very practical for anyonic tensor network
simulations. A better alternative is to enumerate the labelled fusion trees having a particular
charge c at the trunk of the tree. To this end, let c be the total charge at the trunk of the
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Figure 4.2: (i) Anyonic state vector and (ii) its Hermitian conjugate.

fusion tree and introduce a new index µc that enumerates each unique labelled fusion tree in
increasing numerical order, µc = 1, 2, · · · , νc. Here µc is called the degeneracy index, and νc
is the degeneracy of the charge sector c. The term “degeneracy” in symmetric TN does not
refer to the “degeneracy of energy levels” as used in many-body physics, but to the number of
configuration states forming a basis in a particular symmetry sector. All the fusion trees are
therefore concisely labelled by the multi-index γ = (c, µc), with c as the total charge label
and µc as its degeneracy index.

The basic objects in any tensor network include vectors (or one-index tensors), matrices
(or two-index tensors), and more generally, n-index tensors. I now examine how the anyonic
equivalent of these objects are created. The (orthonormal) basis of these objects are indexed
by the greek index {γ = (c, µc)}, where c is the charge label of the sector, and µc = 1, 2, . . . , νc.

Anyonic state vector

An anyonic quantum state |Ψ〉 can be written as a weighted superposition of all labellings of
a fusion tree having a total vacuum charge I.1 More compactly, in the multi-index notation,
the quantum state can be written as

|Ψ〉 =
∑
γ

Ψ
γ |γ〉 , (4.2)

where γ = (I, µI) is an index enumerating all the valid fusion trees. If all the enumerated
fusion trees are associated with normalized anyonic diagrams, which is referred to as the
implicit normalization scheme, then the state amplitudes Ψγ can be arranged as a column
vector in the standard basis. Following the diagrammatic notations employed for anyonic
tensors in Ref. [39], I depict the anyonic quantum state by a filled circle with a central
leg enumerating all the multi-indexed bases, and an unlabeled tree structure, as shown in
Fig.4.2(i). It should be noted that if topological manipulations were to be performed on the
fusion tree, such as vertically bending a line opposite to its orientation, it is preferable to use
diagrammatic isotopy convention. In such a case, we adopt the prescription given in Ref. [1],
where the fusion diagrams are weighted with certain pre-factors of quantum dimensions
of the anyonic charges on the fusion tree. For the fusion basis shown in Fig.4.1, the pre-

factor would be
(

dc

da1 da2 ···dak

)1/4
. These normalization factors are then also absorbed into the

amplitudes defining the anyonic state vector. This is referred to as the explicit normalization

1A system of anyons which does not fuse to the total vacuum charge I can be considered to be within a larger
system with a nontrivial boundary charge that enforces a complete annihilation of the anyonic charges to the
vacuum charge.
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scheme. During topological manipulations, all the charges labelling a particular fusion tree
can be recovered from the fusion lookup tables and used in computing the necessary data
associated to that operation. I work exclusively in the explicit normalization scheme, where
each vertex is normalized according to diagrammatic isotopic convention. The differences
between working in implicit and explicit normalization scheme, collectively called mixed
normalization, are treated in the recent anyonic DMRG paper [43].

The Hermitian conjugate of the state |Ψ〉, written as

〈Ψ| =
∑
γ

Ψ
†
γ 〈γ | , (4.3)

is represented diagrammatically as in Fig.4.2(ii) where the unlabeled fusion tree is reflected
vertically and all its arrows are reversed. The coefficients of the vector are also complex-
conjugated.

Anyonic Matrix Operator

In conventional quantum theory, an operator Ô : V→ V′ is written in the bra-ket notation as,

Ô =
∑
j ′, j

O j ′, j | j′〉 〈 j | . (4.4)

where the indices j and j′ enumerates basis in V and V′. Example of such operators include
Hamiltonians, density matrices, projectors, etc.

In a similar vein, an anyonic operator acting on a set of anyonic charges with total charge
c does not change the total charge. The operator Ôc : Va1,a2,···ak

c → V
a′1,a

′
2,···a

′

k ′

c takes states
of anyons a1, a2, · · · , ak to states of anyons a′1, a

′
2, · · · , a

′
k ′ without changing the conserved

total charge c. As such, the operator Ô =
⊕

c Ôc can be constructed as a block-diagonal
matrix with each block indexed by the conserved anyonic charge c. Each block matrix Ôc is
constructed by enumerating (as in Fig.4.1) all the fusion tree bases fusing to that charge. As
such the charge-conserving matrix is indexed by the multi-index γ = (c, µc) for fusion trees
and γ′ = (c, µ′c) for splitting trees. The anyonic operator can therefore be written as

Ôc =
∑
γ′,γ

Ôγ′,γ |γ
′〉 〈γ | , (4.5)

where γ = (c, µc) and γ′ = (c, µ′c) implying charge conservation. The matrix elements will
depend on the particular physics of the system. The anyonic matrix operator is represented
diagrammatically by Fig. 4.3(i), where the multi-indices γ = (c, µc) and γ′ = (c, µ′c) enumer-
ate all the fusion and splitting trees. The vertex normalization factors of the fusion/splitting
trees are absorbed into the matrix operator.

Anyonic order-3 tensor

The anyonic matrix operator can be extended to an order-3 tensor where the tensor elements
are indexed by three multi-indices α, β and γ. An anyonic order-3 tensor Tα,β

γ may be
represented in the manner shown in Fig. 4.3(ii) where the leaves on each branch of the tree
are enumerated and assigned a multi-index notation α = (a, µa), β = (b, µb) and γ = (c, µc).
All the vertices on the leaves fulfill the fusion rules during enumeration of the basis, and the
implicit vertex contained within the grey circle also obeys the fusion rules of the anyonmodel.
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Figure 4.3: (i) The anyonic matrix operator Ô and (ii) the anyonic order-3 tensor T . The tree
is assumed to have been normalized according to diagrammatic isotopy convention.

The tensor Tα,β
γ is indexed by γ = (c, µc), α = (a, µa) and β = (b, µb), where the charge

triplet (a, b, c), obtained from each of the subtrees have to be compatible i.e. a × b→ c. The
explicit form of the tensor T is

T =
⊕
a,b,c

N c
ab

νa,νb,νc∑
µa,µb,µc=1

(
T a,b

c

) µa,µb
µc

|µaµb〉 〈µc | . (4.6)

The direct sum implies that tensor T is composed blockwise from tensors indexed by the
charges of the subtrees, with each block then being indexed by the degeneracy index of the
compatible fusion trees.

There are more objects that could be implemented to manipulate anyonic tensor net-
works [39, 40, 43], but as MPS is a trivalent tensor network, the objects introduced above are
sufficient to construct the matrix product state and the algorithms that act on it.

4.3 Anyonic Matrix Product States
Using the anyonic tensors reviewed above, the simplest tensor network for anyonic systems
can be constructed, namely the anyonic matrix product states (MPS). The anyonic MPS
constructed in Refs. [41] and [43], is a network which consists of order-3 (trivalent) tensors
and order-2 tensors—which encodes the Schmidt values of the state.

One convenient form of the conventional MPS ansatz is that given by Vidal [77], which
is an array of two-index and three-index tensors forming a linear network of tensors. For a
finite lattice with open boundary condition, the tensors on the boundary of the MPS (i.e. the
first and last sites) are two-index tensors while the “bulk” of the network consists both of
two-index tensors (Schmidt vectors) and three-index tensors for each of the other (n−2) sites.

Analogously, the MPS was adapted to anyons by Singh et. al. in Ref. [41], using the
basic anyonic tensors (two-index and three-index anyonic tensors) after the pattern of the
conventional MPS. Each three-index tensor is indexed by both the charge and the degeneracy
of the anyons making up each site. The charges on the trivalent vertex of the tensor are
compatible in accordance with the fusion rules of the anyon model. The Schmidt vectors,
which are two-index tensors, are charge-conserving diagonal matrices. The basis labelling
αi = (ai, µai ) for each site of the anyonic lattice is given by the set of charges ai and the
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degeneracies µai of each charge. The labels µai take fixed value of 1 if there is only one
configuration for each possible charge label at each site, e.g. if the possible physical states
are merely the presence or the absence of a charge.

Formally, for a latticeL of L siteswith anyonic chargesα1 = (a1, µa1 ), α2 = (a2, µa2 ), . . . , αL =

(aL, µaL ), the anyonic MPS encoding the ground state ΨGS is given diagrammatically as

· · ·
Γ[1]

α1 α2 αL

Γ[2]

Γ[L]

Γ[3]

β1

λ[1]

λ[2]

λ[L−1]

β2

βL−1

α3

(4.7)

where the multi-indices βi+1 = (bi+1, µbi+1 ) on the bonds are obtained by an iterative fusion
of the multi-indices βi = (bi, µbi ) and αi+1 = (ai+1, µai+1 ),

βi × αi+1 → βi+1, (4.8)

where, as before, the charge bi+1,

bi+1 =
∑

bi,ai+1

N bi+1
biai+1

(bi × ai+1), (4.9)

and the total degeneracy νbi+1 of the charge bi+1 is determined by

νbi+1 =
∑

bi,ai+1

N bi+1
biai+1

νbiνai+1 . (4.10)

It should be noted that this anyonic MPS has been drawn with site indices going upwards,
to make apparent the visual similarity with anyonic fusion tree diagrams, but it is essentially
the same ansatz as given in Ref. [41]. Due to the iterative fusion process down the tree of
the anyonic MPS, the dimensions of the tensors {Γ[i]} required to construct an arbitrary state
will vary, but in practice an upper bound is imposed on the bond dimension χ ahead of time.
The bound chosen usually depends on the amount of entanglement and correlations needed
to faithfully represent the state of the system (and on computational resources available). As
such, anyonic MPS provides a systematic way of handling anyonic systems, specifying both
the basis (i.e. the fusion tree) and encoding the amplitudes of the state in the tensors.

As a proof-of-principle example, this anyonic-MPS ansatz has been used to simulate,
together with the anyonic-TEBD algorithm, a chain of interacting non-Abelian anyons (e.g.
Fibonacci and Ising anyons) coupled by a Heisenberg interaction. The charge multi-index αi
on each site i of the leaves of the anyonic-MPS is set (in the case of Fibonacci anyons) to
αi = (τ, 1), where τ is the Fibonacci anyon charge, and the number 1 is the degeneracy of
the τ charge on site i (i.e. the number of different configurations on the site consistent with
a total charge of τ). The anyonic MPS is, however, a general ansatz capable of dealing with
systems with any quantum group symmetry, and hence, can be adapted to work with other
symmetries, Abelian or non-Abelian. For instance, by replacing the anyonic charges with
particle number charges, the anyonic-MPS can serve as a U(1)-MPS [73], which can be used
to simulate physical systems having a global particle number N on a finite lattice L.
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On an infinite lattice with translation invariance of the Hamiltonian, if the U(1) charge is
identified with particle number then the U(1)-MPS is primitively a zero-density ansatz [i.e.
one favouring a mean U(1) charge per site of 0], and cannot directly be used to simulate an
infinite lattice with a finite non-zero particle density. In the next section I show how to tune
the U(1)-MPS to simulate an infinite lattice system at non-zero density, and in Section 4.5 I
propose a modified ansatz, the Anyonic-U(1) MPS, that conserves both particle density and
anyonic charge symmetry, and which can be used to simulate anyonic systems (including
braiding of anyons) at a specified rational filling fraction.

4.4 U(1)-MPS and Particle Density Conservation
In the last section we alluded to the fact that the anyonic MPS can serve as a U(1)-MPS
by replacing the anyonic charge labels with the particle number charge labels. Specifically,
let us consider a lattice L of L sites, where each site can accommodate a finite number of
particles, n = 0, 1, 2, . . . , d − 1. The positive integers n can be regarded as the irreps of the
U (1) symmetry, which can intuitively be understood as: n = 0 is the absence of a particle,
n = 1 is the presence of one particle, n = 2 is the presence of two particles, and so on. The
total number of particles N on the lattice of L sites is N =

∑L
i=1 ni, with a particle density of

ν = N/L.
The Hilbert space of the lattice, VL =

⊗L
i=1V

(i), can be alternative written as, VL =⊕N
n=0Vn, a direct sum over subspaces with fixed numbers of particles n. Utilizing this al-

ternative structure a particle-number conserving Hamiltonian Ĥ can be directly diagonalized
in the Vn subspace, offering savings on the computational cost. The U(1)-MPS ansatz for
N particles on an L-site lattice can be derived from the anyonic MPS by fixing the particle
number N and degeneracy νN = 1 at the “right end” of the last tensor, and charge 0 (i.e.
zero) on the “left end” of the first tensor. The on-site multi-indices of the “bulk” (L − 2)
tensors carry αi = (ni, µi), where ni is the U(1) charge on site i, and µi enumerates the
degeneracy of that charge, for all i ∈ L. The MPS bonds also carry charge and degeneracy
indices, but unlike systems of anyons where degeneracy comes from the fusion rules of
the anyon model, degeneracy in U(1)-symmetric lattice models comes from the number of
combinatorial arrangements of the charges on the lattice.

Therefore, with a properly constructed ansatz and an optimization algorithm like TEBD
or DMRG [49], one can compute the ground state of a local U(1)-symmetric Hamiltonian
on a finite lattice. If this finite U(1)-MPS is naively extended to simulate an infinite lattice
model, the ansatz would correspond to a zero-density ansatz because of the finite size of the
bond dimension χ and the assumption that the U(1) charge labels exhibited on this bond are
finite. In the next subsections I give a heuristic proof of this statement, and I then propose
a technique which can be employed to tune the U(1)-MPS away from being a zero-density
ansatz, to any desired non-zero particle density.

4.4.1 Zero-density U(1)-MPS
Restricted to a finite bond dimension χ carrying finite U(1) charges, the U(1)-MPS with
integer charge labels on an infinite lattice is a zero-density MPS ansatz. Consider a section
of the infinite MPS in Fig.4.4 with the charge-degeneracy indices on physical sites

γa = (n1, µn1 ), γb = (n2, µn2 ), γc = (n3, µn3 ),
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Figure 4.4: An example of an infinite MPS with a block made up of three tensors Γ[a], Γ[b]

and Γ[c]. By translational invariance of the Hamiltonian, an infinite MPS corresponds to an
infinite repetition of the block and hence optimization to ground state is performed only on
the tensors within a single block.

and on the links

ψ1 = (m1, µm1 ), ψ2 = (m2, µm2 ), ψ3 = (m3, µm3 ),
ψ4 = (m4, µm4 ).

The on-site charges ni are set to take positive integer charges corresponding to particle
number (e.g. hardcore boson has ni∈ {0, 1}). The charges mi on the links take only a finite
number of charges with degeneracy index µmi = 1, 2, · · · , νmi . The charges and degeneracies
on the bond are constrained by the finite bond dimension χ and given as χ =

∑
mi
νmi , where

mi labels the charge on the link i. For any realistic computer simulation, the charge labels on
the MPS bonds are all finite. Assume we cut the infinite lattice into two partitions. There
exists a finite amount of charge k on the link of the left partition, corresponding to a finite
number of particles, and the density on the left half-chain is therefore ν = k/∞ → 0 and
therefore the infinite U(1) MPS is a zero-density ansatz. However it is possible to remedy this
and have a nonzero density U(1) MPS by shifting the on-site charges so that a U(1) charge of
zero corresponds to the desired filling fraction. I present this transformation below.

4.4.2 Non-zero density U(1)-MPS

By employing translation invariance, an infinite U(1)-symmetric MPS consists of a block
of repeated U(1)-symmetric tensors, albeit such an ansatz is zero-density and will yield a
ground state of an empty lattice as seen above. However, by transforming the on-site charges
of the MPS, we can make a U(1) charge of zero to correspond to the desired density.

For simplicity and without loss of generality we consider hardcore particles, with charge
labels n∈ {0, 1} on each site of the U(1)-MPS lattice. Let the desired density on the infinite
lattice be ν = p/q, which can be interpreted as having an average of p particles on every q
sites, with q > p. Using the additive (abelian) fusion rules of U(1) charges, a U(1)-MPS with
p particles corresponds to having p sites with charge n = 1 and the remaining q− p sites with
holes n = 0. In an infinitely increasing block, the number of particles p increases infinitely,
but by “subtracting off” the p number of particles, we can re-center the relevant subspace to
be labeled by the charge 0, which is retained in a practical simulation. Formally, by using the
transformation,

n′ = q
(
n −

p
q

)
= qn − p, p ≤ q, (4.11)
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Figure 4.5: Schematic representation of an infinite lattice with a) a typical half-filled config-
uration with one particle on every two sites, and b) a “shifted” version of a) but with average
of zero particle on every two sites.

the on-site charges transform as,

n = 0 → n′ = −p
n = 1 → n′ = q − p

where multiplication by q in Eq. (4.11) is purely for convenience and ensures that the n′

charges, like the n charges, are integer. In essence, before this transform, the desired filling
fraction in the MPS would correspond to having p occurrences of charge 1 and q − p holes
0, summing to a total charge of p. But after the transform, the desired filling corresponds to
having p occurrences of particles with charge q − p, and q − p holes with charge −p, which
sums to a total charge of zero. The charge distribution on any link on a U(1)-symmetric
infinite MPS is centered on the zero charge sector, which now corresponds to a particle
density of p/q. Thus it becomes possible to tune the U(1)-MPS to the desired filling fraction
without using tensors with more than three legs.2 An example of how this transform applies
to the half-filling is presented as an example below.

Example: Half-filled MPS ansatz for hardcore bosons

Consider a particular configuration of an infinite lattice at half filling, where there is on
average, one particle on every two sites as shown in Fig. 4.5(a). Each box represents a site
and the charge on the site is indicated inside the box. There is on average one particle for
every two sites, and assuming that this average density is maintained, this will correspond to
half filling on the infinite lattice. This is of course not the only way to achieve half filling,
but the example will suffice to illustrate how to achieve a half-filled U(1)-MPS.

With only nonnegative charges on each site, i.e. n∈ {0, 1}, the charges on the links
of the MPS—which are derived by fusion of all charges leading to that link—are also all
nonnegative. However the implementation requirement that the charge indices be finite (and
the finite size of the bond dimension) places an upper bound on the set of charges on the
links which are retained after truncation of the Hilbert space of the link. Hence the dominant
larger-N states in the infinite lattice are truncated. However, by using n′ = 2n− 1, the on-site

2Alternative approaches for identifying a U(1) charge of zero with the desired filling fraction, for example by
inserting ancillary indices which remove p U(1) charges every qth tensor, either add extra tensors to the network
or require tensors with more than three legs, both of which are undesireable as they increase the complexity of
the network.
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charges are re-defined as 0→ −1 and 1→ 1, to give the “shifted” configuration in Fig.4.5(b),
for which the dominant states now inhabit the zero particle sector. Nearby charge sectors
such as ±1 on the bonds represent small fluctuations in filling fraction relative to a baseline
of ν = 1/2. I emphasize that the complex amplitudes of the state are not changed, only that
their index is relabelled.

4.5 Anyon × U(1)-symmetric MPS

4.5.1 Composite charges and fusion rules
In the last Section, I reviewed the U(1)MPS and explained how to achieve an arbitrary rational
filling fraction on an infinite lattice. In this Section, I investigate how anyonic systems at
arbitrary filling fraction can be simulated using an ansatz that conserves both the anyonic
(quantum group) symmetry and the U(1) symmetry.

We first recognize that the two symmetry groups are described by particle spectra with
differing fusion rules. Similar to creating a new group from product of two groups, we
introduce the Cartesian product of the anyonic charge spectrum A = {a, b, c, · · · , d} and the
U(1) charge spectrum, which will be designated as U = {n,m, · · · , z} as a set of integer
charges, where n is an integer label in Z = {−∞, . . . , 0, . . . ,+∞}. The product of the two
particle spectra is defined as A × U = {(a, n) | a ∈ A, n ∈ U}, where the label (a, n) is
referred to as the composite charge, and we can write it concisely as ã = (a, n). When we
define a physical system and, hence also construct the MPS, the charges on physical sites and
on links of the MPS are taken from the set A ×U .

The “new” fusion rules for the composite charges are derived from the known fusion rules
of the individual charges. If two charges having the labels ã1 and ã2 are fused, we let the the
charge of the outcome charge be ã12, where ã1 × ã2 → ã12. Writing this out explicitly,

(a1, n1) × (a2, n2) = (a1 × a2, n1 × n2)

=
∑
a12

(
Na12

a1a2 a12, n1 + n2
)
, (4.12)

where as aforementioned n1 × n2 has a unique outcome (n1 + n2) with an additive fusion
rule, while the nonabelian anyons have, in general, more than one fusion outcome, and hence
the need for the summation

∑
a12 over all possible charge outcomes a12. The vacuum charge

of the composite charge spectrum A × U is (I, 0), where I is the anyonic vacuum charge
and 0 is the U(1) vacuum or the absence of any particle. In this thesis, I impose a hardcore
constraint on the systems I study to prevent a site from hosting more than one particle. In
other words, there is either a single nontrivial anyonic particle on a site or the site is vacant.
The presence of a single nontrivial anyonic charge is represented by (a, 1), where a , I and
the U(1) charge 1 imposes a hardcore constraint of a single charge on the site. The use of the
U(1) charge allows the counting of the anyonic charges fusing into a particular fusion channel
irrespective of the outcome anyonic charge. A simple example is shown in Fig.4.6.

The anyonic MPS ansatz and the U(1) symmetry discussed in previous Sections can be
used together to realize an Anyon × U(1)-symmetric MPS ansatz with the desired particle
density. The minor modification needed in the new ansatz involves using the composite
charges along with the composite fusion rules. To have an ansatz for a particular anyonic
filling fraction, the method of shifting the U(1) charges can be employed. This only amounts
to a shift in the U(1) charge labels, while the labels on the anyonic fusion space are not
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(τ, 1)

(I, 0)b

bc

(τ, 1)

b
(τ, 1)

(I, 2)
(τ, 2)

bc

(I, 0)

(I, 2)
(τ, 2)

b

(τ, 1)

(I, 3)
(τ, 3)
(τ, 3)

Figure 4.6: Fusion of composite charges situated on a manifold which supports either a single
nontrivial anyonic Fibonacci charge (τ, 1) or a vacuum charge (I, 0) at each point. We impose
a linear ordering where fusion proceeds from left to right. The set of charge outcomes is
{(I, 3), (τ, 3), (τ, 3)}. With the knowledge of the number of Fibonacci anyons on the manifold,
the U(1) charge ‘3’ indicates that there are 3 Fibonacci anyons fusing into both the I sector and
the τ sector. As there are two outcomes with label (τ, 3), we introduce a degeneracy index
µ(τ,3) = 1, 2 to enumerate these outcomes. This simple example illustrates how composite
charges fuse in symmetric tensor networks admitting both anyonic and U(1) symmetries. The
U(1) helps “record” the number of nontrivial charges fusing into a particular channel. For
instance, the outcome charge (I, 3)—“heavy vacuum” is not the same as (I, 0)—the ordinary
vacuum charge.

altered. The diagrammatic representation of tensors with the new symmetry group and the
MPS ansatz constructed using them are the same as given in Section 4.2 and will not be
reproduced again.

4.5.2 Manipulations of Anyon × U(1) tensors

Topological manipulations such as F-moves, R-moves, fusion, splitting, elimination of loops,
and vertical bends which apply to anyonic fusion trees can also be applied to anyonic tensors.
Below, I present how this works in the case of tensors withAnyon×U(1) symmetry. These are
the typical machineries needed to manipulate (and contract) tensors during the optimisation
of an anyonic MPS.

F-moves

The first topological manipulation required is that of changing the fusion order of the com-
posite charges represented by the fusion tree. Let the basis fusion tree where fusion of
charges proceeds from left to right be referred to as the standard basis. If instead a different
fusion ordering is chosen, such as fusion from right to left, the charge outcomes are still
the same, a fact guaranteed by the constraint of associativity. Formally, this associativity
constraint corresponds to the Pentagon Equations, as given in e.g. [1]. The corresponding
operation is the F-move, which transforms from one fusion basis to another one and is given
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diagrammatically as

=
∑

f̃

(
F ãb̃c̃
d̃

)f̃

ẽ

ã b̃ c̃

ẽ

d̃

ã b̃ c̃

f̃

d̃

,

(4.13)

where the coefficient
(
F ãb̃c̃

d̃

) f̃

ẽ
decomposes into its anyonic and U(1) counterparts as,

(
F ãb̃c̃

d̃

) f̃

ẽ
=

(
Fabc

d

) f

e

(
Fnanbnc

nd

)n f

ne
. (4.14)

The factor
(
Fabc

d

) f

e
is given by the F coefficients of the anyon model while the U(1) factor is

given by
(
Fnanbnc

nd

)n f

ne
= Nne

nanb Nnd
nenc Nn f

nbnc Nnd
nan f

which equals one if the charges are compatible
or zero otherwise. F-moves may also be applied to any other pair of contiguous vertices
appearing within a larger diagram.

It was noted in Ref. [95] that a symmetric tensor decomposes into a linear superposition
of the degeneracy tensor and its spin network for systems with nontrivial symmetries such
as SU(2). This result generalises to any quantum symmetries including anyonic symmetries.
Therefore any section of the anyonic MPS can be decomposed into its degeneracy tensor and
anyonic fusion network as

β γ

ǫ

Γ[b]

Γ[c]

α

δ

µb̃ µc̃

µẽ

Γ[b]

Γ[c]

µã

µd̃

b̃ c̃

ẽ

ã

d̃

= .

(4.15)

The F-move is then applied on the anyonic diagram and the resulting F-factors are absorbed
into the tensor resulting from contraction of the degeneracy tensor network. As shown, this
process is valid for any portion of the diagram where the F-move operation can be applied.

R-moves

Anyons have very rich particle exchange statistics which are neither bosonic nor fermionic.
The exchange factors are encoded in the R-matrix, which is a matrix representation of the
braid (or R-) move. The braid operation for composite anyonic charges is

= Rãb̃
c̃

,

ã b̃

c̃
c̃

ã b̃

(4.16)

where the factor Rãb̃
c̃ decomposes as

Rãb̃
c̃ = Rab

c Rnanb
nc , (4.17)
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and Rnanb
nc = 1 if na + nb = nc. The factors Rab

c are given by the specific anyon model.
The braid operation can be applied to a trivalent tensor to swap the two outgoing legs

around the vertex while leaving the incoming leg untouched, similar to the braid diagram
above. Algebraically, let R be the braid operator that acts on an anyonic tensor. Applied on
T βα
γ , we have

Tαβ
γ = R

(
T βα
γ

)
. (4.18)

Diagrammatically, this is represented as

α β

,

γ

T

γ

T

α β

(4.19)

where the crossing in the diagram represent the braiding operation. The detail of the braiding
process in shown in Fig. 4.7

β

γ

T ≡
α µb̃

µc̃

T

µã

c̃

b̃ ã
R µb̃

µc̃

T

µã

c̃

b̃ ã

µã

µc̃

T

µb̃

c̃

ã b̃
≡
α

γ

T
β

i) ii) iii)

Figure 4.7: To braid the indices of the anyonic tensor T βα
γ : i) Decompose the anyonic tensor

T βα
γ into its degeneracy tensor and fusion network parts. ii) Apply the braid operation R, by
applying the permutation operation (reviewed in Sec. 2.2) on the degeneracy tensor and the
braid operation on the splitting tree. iii) Recombine the degeneracy tensor and fusion part to
give the desired braided anyonic tensor Tαβ

γ .

Fusion tensor and loop factors

A trivalent tensor can be used to define a linear map from the tensor product of two
Hilbert spaces V(A) and V(B) (which can possibly be degenerate) to a new composite Hilbert
space V(C). Let {|0〉 , |1〉 , . . . , |dA − 1〉} be the set of basis for V(A) of dimension dA, and
{|0〉 , |1〉 , . . . , |dB − 1〉} as the set of basis forV(B) of dimension dB. SinceV(C) � V(A)⊗V(B),
the dimension of V(C) is dAdB. We can let the basis of V(C) be {|0〉 , |1〉 , . . . , |dAdB − 1〉}. A
linear map T : V(A) ⊗ V(B) → V(C) can be written as

T =
∑
a,b,c

T c
ab |c〉 〈a | ⊗ 〈b| , (4.20)

which sends product basis |a〉 ⊗ |b〉 ∈ V(A) ⊗ V(B) to basis |c〉 ∈ V(C) in a unique fashion.
Technically, T is a bijection which implements a one-to-one correspondence between {|a〉 ⊗
|b〉} and {|c〉}. If A = {0, 1, . . . , dA − 1} and B = {0, 1, . . . , dB − 1} are the sets of labels for
the basis vectors ofV(A) andV(B), we bijectively map the elements of the (Cartesian) product
set A × B = {(a, b) |a ∈ A, b ∈ B} to elements of the set C = {0, 1, . . . , dAdB − 1} using

(a, b) 7→ c = (adB + b), (4.21)
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a µa b µb c µc
0 1 0 1 0 1
0 1 1 1 1 1
1 1 0 1 1 2
1 1 1 1 0 2

Table 4.1: The mapping from tensor product state |a, µa〉 ⊗ |b, µb〉 to a new basis |c, µc〉

using the Z2 fusion rule. Degeneracy basis labels µx for each charge x ∈ {a, b, c} have been
included to count distinct fusion into a particular charge.

where c ∈ C. In terms of basis vectors, this map is |a〉⊗ |b〉 7→ |c = adB + b〉. The coefficient
T c

ab is 1 for a valid map (ab → c) and zero otherwise. As a simple example, let us consider
qubits, i.e. let V(A) = V(B) = {|0〉 , |1〉} with the basis labels as elements in Z2 = {0, 1}. The
map in Eq. (4.21) gives

(0, 0) 7→ 0, (0, 1) 7→ 1
(1, 0) 7→ 2, (1, 1) 7→ 3

}
, (4.22)

whence V(C) = {|0〉 , |1〉 , |2〉 , |3〉} indexed by the set of labels in Z4 = {0, 1, 2, 3}.
Now, assumewe add some structure to the map, then a and bwill be related via a specified

‘fusion rule’. The ordered pair (a, b) will now have a defined relationship (a, b) = a × b,
where the ‘×’ represents fusion. As a simple example, let us consider the Z2 fusion rule,
which is just the ordinary addition of integers modulo two: a × b = (a + b) mod 2. The
outcomes a × b→ c are

0 × a → a ∀a ∈ Z2 and 1 × 1→ 0. (4.23)

The outcome c = 1 resulting from the fusion 0 × 1 and 1 × 0 is degenerate, so also is c = 0,
which results from 0 × 0 and 1 × 1. The degenerate outcomes will now be indexed by an
additional label, namely, the degeneracy index µc associated with label c, in order to maintain
the uniqueness of the mapping. The linear map using the Z2 fusion rule is given in Table 4.1.
In essence, because fusion of (charge) labels can induce degeneracy of (charge) labels, we
therefore add a degeneracy index to each charge label.

Therefore, as previously discussed in Ref. [94], the linear map tensor for systems with
Abelian symmetry can be written in general as

T =
⊕
a,b,c

N c
ab

∑
µaµb µc

(
T c

ab

) µc
µaµb
|c, µc〉 〈a, µa | 〈b, µb | , (4.24)

where the tensor T is constructed as a block of tensors T c
ab, with each block identified by the

charge triple (a, b, c), and the element within each block is indexed by the degeneracy indices
(µa, µb, µc) associated with the charge triple (a, b, c) respectively.

We generalize this to anyonic systems admitting Anyon × U(1) symmetries as follows:
Let two sites of an anyonic system be described by a degenerate Hilbert space V(A) and V(B)

with their basis vectors labelled by {α = (ã, µã)} and {β = (b̃, µb̃)}. Let the anyonic fusion
product define a “fusion map” Ñγ

α,β from multi-indices α and β to a new multi-index γ. The
anyonic fusion map creates a new vertex, and we normalize it according to diagrammatic
isotopy convention. The fusion tensor is represented as in Fig.4.8(a). Unlike the case of
abelian symmetry, when working in the diagrammatic isotopy convention for non-Abelian
anyons, the coefficient of the fusion tensor for a valid fusion map α × β → γ is the vertex

normalization factor
(

dc̃

dãdb̃

)1/4
, and zero for an invalid map.
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Ñ
Ñ

Ñ †

= Iα β

γ

α β

γ

γ′ γ′

γ

ã b̃

c̃′

c̃

a) b)

c)

=
√

dãdb̃

dc̃
c̃δc̃,c̃′

Figure 4.8: a) The diagrammatic representation of the anyonic fusion tensor Ñ . This can
be expressed in a block structure form, where the elements of Ñ are Ñγ

αβ =
(
Ñ c̃

ãb̃

) µc̃
µãµb̃

=(
dc̃

dãdb̃

)1/4
for a valid map α × β → γ, and zero otherwise. b) The fusion tensor Ñγ

αβ and its

Hermitian conjugate Ñαβ
γ′ contracts to the identity operator defined on the new multi-index

γ. c) Loop factor as given in Ref. [1]. This factor has been accounted for in the contraction
diagram of b) to give the identity.

The anyonic fusion tensor Ñγ
αβ and its Hermitian conjugate, the splitting tensor Ñαβ

γ ,
are linear maps and fulfill the condition that Ñαβ

γ′ Ñγ
αβ = Iγγ′ (Einstein summation convention

assumed), which is an identity operator on the new (degenerate) space V(C) as shown in
Fig.4.8(b). The loop present in the contraction in Fig.4.8(b) is eliminated using the relation
in Fig.4.8(c). It should be noted that the vertex factor

√
dc̃

dãdb̃
in the definition of the fusion

tensor Ñ and splitting tensor Ñ† cancels with the loop factor
√

dãdb̃

dc̃
, and hence the identity

matrix operator in Fig.4.8(b) does not contain any factor of the quantum dimension. Also, it
should be noted that in Anyon×U(1) symmetry, the quantum dimension dã decomposes into
the product dã = dadna , where da is the quantum dimension of the anyonic charge a and dna
is the dimension of the U(1) charge, which always have a trivial value of one.

Vertical Bends

Bending a charge line horizontally is trivial, as timelike (i.e. horizontal) slices of the fusion
tree are invariant under topology-preserving deformations. However, vertically bending an
anyon charge line is non-trivial and involves reversing the orientation of the anyon worldline.
The details of how to resolve vertical bends in terms of F-moves were worked out in Chapter 3.
We do not repeat the derivations here but only mention the minor changes in the presence of
U(1) charges. Adapted to systems with Anyon × U(1) symmetry, the equation for the left and
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right bends respectively are

a, na b, nb

c, nc

b, nb

c, nc
ā,−na

=
(
F āab
b

)c
I

√
dadb

dc
,

(4.25)
a, na b, nb

c, nc

a, na

c, nc

=
(
F abb̄
a

)I

c

√
dadb

dc
,

b̄,−nb (4.26)

where in addition to the anyons satisfying their fusion rules, the U(1) charges around the
vertex have to satisfy the condition na + nb = nc. The dual of the anyonic charge a and the
U(1) charge n are denoted as ā and −n respectively, which are the new charge labels on the
bent legs. We have only shown the F-factors of the anyons in the equations above, as these
may be nontrivial, but the F-factors for U(1) charges are always trivial as long as the charges
satisfy the modular addition fusion rule.

The vertical bends can be applied to anyonic tensors to transform an order-three tensor
as,

γ

α β

ᾱ

β

γ

T T ′LB

(4.27)

γ

α β

β̄

α

γ

T
T ′

RB
,

where the first equation is the left bend (LB) and the second is the right bend (RB). The bend
factors in Eq. 4.25 and 4.26 have been absorbed into the transformed tensor T ′. In terms of
explicit symbolic expression, the left and right bends of order-three anyonic tensors are,

T ′(b̃,µb̃ )
(ã,µã)(c̃,µc̃ ) =

(
F ã∗ ãb̃

b̃

) c̃

I

√
dãdb̃

dc̃
T (ã,µã)(b̃,µb̃ )

(c̃,µc̃ ) , (4.28)

T ′(ã,µã)
(c̃,µc̃ )(b̃,µb̃ )

=
(
F ãb̃b̃∗

ã

) I
c̃

√
dãdb̃

dc̃
T (ã,µã)(b̃,µb̃ )

(c̃,µc̃ ) , (4.29)

where ã = (a, na) is the composite anyonic-and-U(1) charge. The conjugation of the com-
posite charge ã is now denoted as ã∗.

4.6 Conclusion
In conclusion, by constructing the appropriate tensor objects having Anyon ×U(1) symmetry
(e.g. two index and three index tensors, fusion tensors, etc.), one can construct a MPS tensor
network for anyonic systems admitting both anyonic and U(1) symmetry. This TN ansatz
can be variationally optimised to ground state by means of anyonic TN algorithms such as
anyonic TEBD algorithm [41] or anyonic DMRG [43].

Properties of the ground state such as ground state energy, entropic scaling and correlation
functions can be computed using approaches similar to those used for non-symmetric tensor
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networks, but nowmodified for anyonic systems using the anyonic tensor objects and concepts
introduced in this chapter and the preceding one. All the manipulations necessary to do
the calculations basically involve contraction of tensors, where the details of the contraction
comprises of F-moves, bending of charge lines, fusion and splitting of tensors, and elimination
of loops until the tensor network is fully contracted.

In the next chapter, I present a practical implementation of the time-evolving block
decimation (TEBD) algorithm for anyonic systems applied to symmetric MPS having either
or both of anyonic and U(1) symmetries. I benchmarked my implementation by using the
imaginary time evolution to compute the ground state of lattice models having both Abelian
and non-Abelian anyonic symmetries in the thermodynamic limit.



5
Implementation of Time Evolving Block

Decimation algorithm for anyonic systems

5.1 Introduction
The anyonic-TEBD algorithm was presented in Ref. [41]. However, my impression is that the
presentation might be a bit challenging for someone who is new to incorporating non-Abelian
symmetries into tensor networks. Therefore, my aim in this chapter is to provide an introduc-
tion to anyonic-TEBD algorithm, often offering some programming tips (and pseudocodes)
where necessary. Moreover, in this chapter in addition to previous chapters (most especially,
Chapters 3 and 4), I provide some refinements to the anyonic-TEBD algorithm which were
not mentioned in Ref. [41]. In particular, I will show that by using pairwise contraction of
tensors (or at most contraction of three tensors a time), the contraction cost can be reduced
below that in Ref. [41]—where the “whole network approach” was adopted. Also, the use of
vertex normalisation was not consistent in Ref. [41], which I now use consistently here.

The anyonic-TEBD tensor network is very similar to the conventional non-symmetric
TEBD, except that the tensors making up the network are symmetric tensors: these are
tensors that incorporate structure arising from the (quantum) symmetry group of the anyon
model of interest. They are usually sparse, and having a means to directly access the non-
zero elements is what offers the computational gain achieved with symmetric tensor network
simulations.

The TEBD algorithm, in general, is based on finding an efficient decomposition of both
the low-energy state |ψ〉 of a quantum system and the imaginary-time gate Ĝ(τ) = e−Ĥτ

of a local Hamiltonian Ĥ into a network of local low-order tensors. The MPS offers an
efficient decomposition for a one-dimensional non-critical quantum state—based on bipartite
Schmidt decomposition, while Trotter-Suzuki method offers an efficient decomposition for
the imaginary-time gate. These decompositions turn a one-dimensional quantum system
into a “two-dimensional gate array,” as shown in Fig. 5.1. The tensors in this diagram
are charge-conserving, respecting the quantum symmetry of the anyon model. Arrows are
used to indicate that charges on the legs and bonds of the TN could be non-self dual. In
our diagrammatic representation, we adopt the convention that diagrammatic objects (e.g.
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tensors, legs of tensors, etc.) are arranged from left-to-right and bottom-to-top of the page.
Adopting this convention, all the program functions (or routines) I suggest in this chapter can
be automated.

Similar to conventional TEBD, it can be seen from Fig. 5.1 that the contraction of
the (imaginary-time) gate at each time interval δτ can be reduced to a sequence of (local)
contractions over two sites, achieved by the exploiting the local structure of the tensor network.
Apart from other programming details which pertain to anyons, Fig. 5.2 is the only contraction
scheme needed to be implemented to contract the entire anyonic-TEBD tensor network.

To simulate any class of anyon model (e.g. Fibonacci, Ising, Zq series for q ∈ Z+, etc.),
the specific anyon data (e.g. fusion rules, quantum dimensions, braid-moves coefficients,
etc.) need to be built directly into the tensors making up the network. In order words, no one
single tensor network can simulate all anyon models, but each network is adapted to work for
a specific anyon model. The data are used to construct the tensors that make up the network,
and also the tensors which are used to manipulate the network. In the next section, I give an
exhaustive list of routines that can be used to perform the anyonic-TEBD algorithm.

The remaining parts of this chapter are structured as: In Section 5.2, I present a list of
routines that are sufficient to implement the anyonic-TEBD. In Section 5.3, I present the two-
site contraction of anyonic tensors. In Section 5.4, I review the convergence measure used to
check for convergence of the MPS in TEBD simulations. In Section 5.5, I present a list of test
models which I used to benchmark my anyonic-U(1) MPS ansatz and my implementation of
the anyonic-TEBD algorithm. Finally, I end the chapter with discussion and some concluding
remarks.

5.2 List of anyonic-TEBD accessory functions
In a practical implementation of anyonic-TEBD, the functions needed to be implemented can
be broadly divided into two different categories: (i) those that specify the anyon model data,
for example, the anyon model fusion rules, F-move and R-move matrix elements, and the
quantum dimensions d of the charges in each anyon model. A more complex anyonic tensor
network may need more data, but these suffice for MPS and TEBD simulations. (ii) Those
that are used to create and manipulate the anyonic tensors which make up the tensor network.

In my presentation, I first review the set of functions in the first category, using Fibonacci
or Ising anyons to give concrete example where necessary. Then I review the set of functions
in the second category. Let me remind the reader again that the aim of this chapter is on the
practical implementation of anyonic TEBD, and not on the mathematical framework which
were already presented in Chapters 2, 3, and 4. As such, I will assume that the reader is
already comfortable with ideas of tensor networks, non-Abelian anyons, and perhaps some
anyonic tensor networks formalism.

5.2.1 Anyon data routines
In this subsection, I give a list of routines that can be used to programme the anyonic data
which are necessary to manipulate an anyonic fusion network. For concreteness, I will make
examples using Ising and/or Fibonacci anyons. We recall that the set of charges in the Ising
anyon theory is AIsing = {0, 0.5, 1} (or in symbolic form {I, σ, ψ}), and that of Fibonacci
anyon is AFib = {0, 1} (or {I, τ}).

Specifying the data for any anyonmodel is straightforward, and can easily be programmed.
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ĝ12 ĝ34

ĝ23 ĝ45

Γ[1] Γ[2] Γ[3] Γ[4] Γ[5]

ĝ12 ĝ34

ĝ23 ĝ45

|ψ0〉

|ψδτ 〉

|ψ2δτ 〉

λ[1] λ[2] λ[3] λ[4]Initial state

Figure 5.1: The anyonic MPS and TEBD tensor network. The horizontal axis is the lattice
sites n, here n=5, and the vertical axis is the (imaginary) time. The initialMPS state is denoted
|ψ0〉. The (imaginary-time) gate Ĝ(τ) is decomposed into a sequence of ‘even” and “odd”
sites gate for a local Hamiltonian Ĥ defined on two sites. The optimisation of the MPS from
iteration to iteration is demarcated by dashed lines. In practice, one continues to perform
this iteration in (imaginary) time until a desired convergence is achieved. Some comments
are in order. First, I note that this network has been turned up-side-down as opposed to the
conventional diagrammatic scheme adopted for MPS and TEBD tensor networks. This is
done in order to have the leaves of the TN point upwards the page to make it similar to the
popular diagrammatic convention used in specifying fusion tree basis of a system of anyons.
Second, arrows have been used to indicate that anyonic charges can be non-self dual, whereas
these would not be necessary in ordinary tensor network (i.e. TN without symmetries). The
charge labels have been suppressed for clarity.

ĝi,i+1

Γ[i] Γ[i+1]λ[i−1] λ[i] λ[i+1]
Γ[i]′ Γ[i+1]′λ[i−1] λ[i]′ λ[i+1]

Figure 5.2: A two-site section of the network in Fig. 5.1. The network on the left is contracted
to update the tensors on the two sites as shown in the right figure.
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Some of the routines I give below depend recursively on others, and for the ease of referencing
of a particular routine within another, I introduce non-standard mnemonics for the routines.
Below is an example of how each routine will be stated subsequently:

Routine “routine name”—a short descriptive title for the routine: a longer description of
routine, and a possible implementation.

1. Routine “FuseAnyons”—fusion of anyonic charges: Given two anyonic charges a and
b, we can determine the set of possible charge outcomes c using the fusion rules of the
anyon model. For this, a table of the fusion rules (or outcomes) can be created at the
beginning of any simulation. Using Ising anyons as an example, its fusion rules are
given in the table:

XIsing =

x 0 0.5 1
0 0 0.5 1
0.5 0.5 [0 1] 1
1 1 0.5 0

, (5.1)

where “x” denotes fusion operation. This table can be saved using a data structure
that allows for multiple types like scalars and vectors—since fusion of anyons can
give more than one charge outcome which I conveniently group together as a vector of
charge outcomes. In a software like MATLAB, a cell data structure can be used. In
that case, the table may be saved as XIsing = \{0 , 0.5 , 1 ; 0.5 , [0 1] , 1 ; 1 , 0.5 , 0}. To
read the fusion outcome of charges a and b, you can use c = X (2a + 1, 2b + 1). So,
for instance, if a = 0.5 and b = 0.5, then c=X {2, 2}, which gives c = [0 1].

2. Routine “isCompatible”—check for the compatibility of charges around a vertex:
Anyonic tensors are arranged into blocks of degeneracy tensors which are indexed by
the charges of the anyon model. For example, each sector of an order-three anyonic
tensor is indexed by a triplet of charges, which either forms a fusion vertex (a, b, c), or
a splitting vertex (c, a, b), denoted respectively as:

a b

ca b

c
b)a)

.

(5.2)

To create these tensors, it becomes necessary to check for the “compatibility” of
these fusion and splitting vertices using the fusion rules of the anyon model. The
implementation of this routine recursively depends on Routine FuseAnyons. To
determine if charges (a, b, c) is a compatible fusion vertex, first fuse charges (a, b)
using Routine FuseAnyons to give an array of charges d, then check if any of the
charge outcomes in d corresponds with the charge c. If true, assign a truth value of
1, otherwise assign 0. The implementation for checking for a valid splitting vertex is
similar. This function and other functions proposed here can be automated if adopting
my diagrammatic convention which was earlier mentioned. So for instance, if the
function’s header is flag=isFusionVertex(a,b,c), this ordering of the arguments
of the function will mean that the program checks that charges a and b is “fusion-
compatible” with charge c, while a different function with another header such as
flag=isSplittingVertex(c,a,b) will check that charge c splits into charges a
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and b. Adopting this convention is not strictly necessary, unless that it allows one to
pass high-level commands without worrying about the details, and therefore further
enhances the automation of anyonic network algorithms.

3. Routine “BraidFactors”—R-move (braid) factors: The braiding of two charges a and
b having a direct fusion channel with charge c, acquires a complex phase factor Ra,b

c .
The implementation of this function depends on Routine isCompatible—which itself
depends on Routine FuseAnyons, as previously stated. In implementation, when a
call to the function is made by passing a triplet of charges (a, b, c), the function should
first check that the charges are fusion-compatible, then it returns the braid factor. The
braid factors are saved to disk for each anyon model.

4. Routine “FMoveFactors”—F-Matrix factors: F-move is used to change fusion basis
involving three anyonic charges (a, b, c) fusing into charge d, with intermediate charges
e ∈ {a × b} and f ∈ {b × c}. The F-move diagram is:

=
∑

f

(
F abc
d

)f
e

a b c

e

d

a b c

f

d

,

(5.3)

where the matrix elements are saved for each anyon model. As in the case of the
R-move braid factors, these F-move matrix elements are entered manually, and saved
to the computer’s disk, and retrieved when needed.

5. Routine “QDim”—Quantum dimension: The last of the anyon model data we will need
in anyonic TEBD is the quantum dimension d of the charges in the model. These
values are saved to disk.

The data of several different classes of anyons are tabulated in Chapter five of Ref. [1].

5.2.2 Anyonic tensor network routines
In this subsection I give a list and detailed explanation of the set of accessory functions which
are used to create the anyonic tensor objects which form the anyonic MPS tensor network,
and the tensors used to manipulate the network during the TEBD optimisation algorithm. As
the MPS with TEBD is a trivalent tensor network, the tensors comprising the network are at
most order-three.

Anyonic tensor elements are indexed by both charge a and degeneracy index µa. Let the
maximum degeneracy in each charge sector a be νa, therefore, µa = 1, 2, . . . , νa. In practice,
the tensors are arranged as blocks of degeneracy tensors, with each block indexed by the
charge a, and each element within a block by the degeneracy index µa.

The charge-degeneracy (greek) index α should be understood as an array of the charges
and their degeneracies that are supported on that tensor. Therefore, except where stated
otherwise, the free legs (and shared legs) of the tensors are indexed by the (greek) charge-
degeneracy indices (or simply referred to as indices for brevity). The summary of the plan
of my exposition in the following is, first, I will illustrate how to “fuse” charge-degeneracy
indices, which I later use to show how anyonic tensors are created and manipulated. I then
introduce some primitives used for contracting anyonic tensors.
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1. Routine “FuseIndices”—fuse charge-degeneracy indices: Let the charge-degeneracy
indices to be fused be α = [a, νa] and β = [b, νb], and their outcome be γ = [c, νc], i.e.
α × β → γ. The degeneracy of charge c is obtained from the relation

νc =
∑
a,b

νaνbδa×b,c, (5.4)

where δa×b,c checks that charges a and b is fusion-compatible with charge c, which can
be checked with Routine isCompatible. Note that δa×b,c = 1 if compatible, 0 if not.
The basic steps of a naive implementation of this routine are:

(a) Create an initial array of charge-degeneracy index γ = [c, νc], where the initial
degeneracy counts, νc, for each charge c is set to zero, νc = 0.

— Using a “for-loop” for each of steps (b), (c), and (d) —
(b) Select a new value of the charge c in the array γ
(c) Select a new value of the charge a in the array α
(d) Select a new value of the charge b in the array β

—————————–
(e) Determine if the selected charges (a, b, c) are fusion-compatible. If yes, proceed

to next step, otherwise return to either steps (d), (c), or (a), depending on the
number of charges remaining at each iteration.

(f) Get the degeneracy νa and νb of charges a and b, respectively. Increase the
degeneracy νc of charge c through νc = νc + (νa × νb).

(g) Return back to step (d) if there are still charges in the array β, otherwise go to
the next step.

(h) Return back to step (c) if there are still charges in the array α, otherwise go to the
next step.

(i) Finally, update the degeneracy count nc of charge c in the array γ, and proceed
to the next step.

(j) Return back to step (b) if there are still charges in the array γ, otherwise end
program.

2. Routine “AnyonicMatrix”—create anyonic matrices: An anyonic matrix (or two-
index tensor) has two index labels on the legs of the matrix. In order to create an
anyonic matrix, first determine the charge-degeneracy indices α and β on the two legs
of the matrix M , which may be obtained from the fusion of all the anyonic charges on
the leaves of the fusion and splitting trees of the diagram, as shown below:

M̂

β

α
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where, matrix M is charge-conserving and constrained to have non-zero elements only
when the charges a ∈ α and b ∈ β on its legs are equal. In implementation, iterate
through the set of charges in α and β, check for equality of charges a and b, if true,
select the sector’s degeneracy matrix and populate it with the correct matrix elements.
The matrix elements may either be computed—in the case where the matrix is a
representation of a certain operation performed on the anyons on sites, or the matrix
elements may be inserted “by hand” (e.g. zeros, ones, or random values), which can
be used to initialise the matrix.

3. Routine “Anyonic3Tensor”—create an order-three tensor: To satisfy anyonic fusion
rules unambiguously, we do not permit a tensor with more than three legs, with each
leg labelled by a charge-degeneracy index. Depending on whether the anyons form a
fusion or splitting vertex, we can have two types of anyonic order-three tensor T which
satisfy the anyonic fusion rules: (a) a tensor with two incoming legs indexed by α and
β and fusing into one outgoing leg indexed by γ, or (b) a tensor with one incoming leg
indexed by γ and splitting into two outgoing legs indexed by α and β, as shown below:

α β

γ
(a)

T

α β

γ

T

(b)

It is noted that if the elements of the tensor in (b) are complex-conjugated, the tensor T
in (b) can be considered a conjugate of the tensor in (a), and therefore, the distinction
between the two tensors might be unnecessary. However, the benefit of the distinction
comes from the automation of the creation of the tensors, as the ordering of the legs
and the direction of fusion or splitting, matters. The practical implementation of this
routine is similar to the steps given in Routine FuseIndices. As an example, the basic
steps needed to create the order-three tensor T in Eq. (3)(b) are:

— Using a “for-loop” for each of steps (a), (b), and (c) —

(a) Select a new value of the charge c in the array γ
(b) Select a new value of the charge a in the array α
(c) Select a new value of the charge b in β

—————————–
(d) Determine if the selected charges (c, a, b) forms a compatible splitting vertex. If

yes, proceed to next step, otherwise return to either steps (c), (b), or (a), depending
on the number of charges remaining at each iteration.

(e) Get the degeneracy nc, na, and nb of charges c, a, and b, respectively.
(f) Create the specific order-three tensor T a,b

c of size nc × na × nb. When working
in diagrammatic isotopy, we multiply the tensor T by the vertex normalisation
factor

(
dc

dadb

)1/4
.

(g) Save the tensor T a,b
c into its sector which is indexed by charge index a, b, and c.

(h) Return back to step (c) if there are still charges in the array β, otherwise go to the
next step.
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(i) Return back to step (b) if there are still charges in the array α, otherwise go to the
next step.

(j) Return back to step (a) if there are still charges in the array γ, otherwise end all
iterations.

(k) Return the created anynonic tensor T , and end the program.

The anyonic-MPS ansatz is constructed using an order-three tensor having a charge-
compatible splitting vertex, and an order-two charge-conserving tensor (or matrix)
having one ingoing and one outgoing leg.

4. Routine “FusionTensor”—create fusion and splitting tensors: These are special cases
of the anyonic three-index tensors. The fusion tensor, which I denote as Xγ

αβ, maps the
Hilbert spaces of two anyonic sites—whose basis states are indexed by α and β—to
a new coarse-grained site indexed by γ, while the splitting tensor, denoted as X† αβγ ,
which is the Hermitian conjugate of the fusion tensor, is used to split an Hilbert space
into two Hilbert spaces. The elements of Xγ

αβ and X† αβγ are 1s or 0s. The fusion
and splitting tensors are used to reshape anyonic tensors, for example, it can convert a
three-index tensor into a two-index tensor (or matrix) using a fusion tensor, and vice
versa. The fusion and splitting tensors are diagrammatically denoted as:

α β

γ
(a)

X

α β

γ

(b)

X†
,

where X represents the fusion map, and X† represents the splitting map. Wherever any
of these tensors appear in a network, their meaning and purpose should be understood.

Implementing the routines that create these tensors is similar to the implementation
of the creation of three-index tensors above, except for a minor difference. After
selecting a compatible fusion (a, b, c) or splitting vertex, proceeding from steps (e) of
the basic steps above, get their degeneracy νa, νb, and νc of charges a, b and c. Map
the degeneracy indices µa = [1 : νa] and µb = [1 : νb] to “new” unique values of
degeneracy index µc of charge c by setting the element to 1 (and multiply by

(
dc

dadb

)1/4

when working in diagrammatic isotopy), otherwise all other values are set to 0. The
values of µc are indexed starting from 1 to νc, where νc =

∑
a,b νaνbδa×b,c.

5. Routine “ContractTensor”—contraction of tensors: Two tensors are contracted
when they have shared indices. In the first instance, we will consider the contrac-
tion of two tensors that does not involve any loop, then we later consider contractions
of tensors that involve loops. Some examples of different possible contractions that
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does not involve any loop are:

α

γ

M1

M2

β

γ

M1

ǫ

α β

M2

ǫ

M2

γ

α β

M1

(a) (b) (c) γ

α

β̄

M1

(d)

M2

ǫ

(5.5)

It should be noted that the contraction between two order-three tensors along a single
shared leg is not permitted, as the resulting tensor will be order-4 (i.e. having four
legs) which does not have a unique fusion tree decomposition. I now provide a short
description of how to implement these contractions using Eq. (5.5)(b). First, recognise
that the contraction of tensors M1 and M2 will yield a order-3 tensor, say named T12,
with indices γ, α, and β. Create an initial “placeholder” tensor for T12 using Routine
Anyonic3Tensor, populated with zeros. Then, start by iterating over the free indices
(γ, α, β) and shared index ε . Get their charges c ∈ γ, a ∈ α, b ∈ β, and e ∈ ε . Perform
the following checks: (i) that charges c and e of tensor M1 are conserved, i.e. c = e,
(ii) that charges (e, a, b) of tensor M2 forms a compatible splitting vertex, and (iii)
that charges (c, a, b) of the new tensor T12 forms a compatible splitting vertex. After
all these checks, select the appropriate degeneracy tensors to be contracted. Contract
them, and save the resulting tensor into the appropriate sector in T12. Repeat this
procedure until all compatible sectors have been identified.

6. Routine “VerticalBends”—vertical bends of an anyonic tensor leg: During the
manipulation of anyonic tensors, it might prove convenient to bend the leg of an
anyonic tensor vertically up or down, and later undo the bend. For instance, bends may
be used to change the orientation (or structure) of a tensor in order to put the network
into a form suitable for contraction. Mathematically, bends correspond to “raising” or
“lowering” the indices of a tensor. A vertical bend only introduces a factor into the
tensor. This factor is computed from the splitting and fusion vertices, which are given
as:

a b

c c

b
=

(
F āab
b

)c
I

√
dadb

dc

ā

(i)

a b

c c

a
=

(
F abb̄
a

)I

c

√
dadb

dc

b̄

(ii)

ā b

cc

b
= (F āac

c )
b
I

√
dadc

db

a

(iii)

a b̄

cb

a
=

(
F cbb̄
c

)I ∗

a

√
dcdb

da

c

(iv)

,

where in (i), the outgoing leg with charge a is bent down to become incoming, in (ii)
the outgoing leg with charge b bends down, in (iii) the incoming leg with charge a
bends up to be outgoing, and in (iv) the incoming leg with charge b bends up. In all, the
charge of the bent leg is conjugated after the bend. It should be noted that these bend



56 Implementation of Time Evolving Block Decimation algorithm for anyonic systems

factors are only valid for unitary anyon models. Therefore, to bend any leg of a tensor
T , create a charge-conserving order-2 tensor which has the (appropriate) bend factors
as its elements. Then, contract the “bending” tensor with the tensor T . Examples are
shown in the diagrammatic equations below:

γ

α
β

T

ᾱ

α

β

T

ᾱ γ

v

(a)

(b)

ᾱ

β

T ′

γ

γ

β

T ′

ᾱ

v
, (5.6)

where in (a), the outgoing indices α is bent down using the tensor Λ to give the new
tensor T ′, while in (b), the incoming leg α is bent up using the tensor v. Similarly, the
right leg can be bend up or down. The shaded part are to be contracted. Previously,
I mentioned that bends can be used to change the structure of an anyonic tensor, for
instance, to put it into a suitable form. As a concrete example, Eq. (5.5)(d) can be
converted into Eq. (5.5)(c), by bending the right outgoing leg having the greek index
β̄.

7. Routine “RemoveLoop”—contraction of tensors with a loop: The contraction of two
order-three tensors along two shared legs involves a loop as below:

ǫ

β

M2

.

α

M1

δ

Similar to the contraction above in Routine ContractTensor, first recognise that this
contraction will yield a two-index tensor, say named M12, with indices α and β on the
bottom and top leg, respectively. The indices ε and δ on the shared legs have been
matched, i.e. we have implicitly assumed that the charge-degeneracy indices on the
left and right legs of the tensors M1 and M2 are the same. To contract this network,
iterate through all the charges, check for compatibility of splitting and fusion vertices
on tensors M1 and M2 respectively, and also the conservation of charges in the resulting
two-index tensor M12. Then contract the degeneracy tensors and multiply the resulting
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tensor by the appropriate loop factor
√

dadb

dc
. Save the resulting degeneracy tensor into

the appropriate sector of M12.

8. Routine “StarBubble”—“Star-bubble” relation for anyonic tensors: After considering
the contraction of two order-three tensors with two shared indices (i.e with a loop),
we now consider the contraction of three order-three anyonic tensors with three shared
indices. An example is shown below:

ǫ

β

T3

.

T1

δ
T2

α
ρ

S

γ

α β

γ (5.7)

This diagrammatic equation has three shared indices ε , δ, ρ and three free indices
α, β, and γ. The contraction of the network on the left yields tensor S on the right,
having the free indices α, β, and γ. The implementation of this contraction is similar
to previous ones but with a minor difference coming from the loop factor associated
with the tensor network. The summary of its implementation is: iterate through all
the charges c ∈ γ, a ∈ α, b ∈ β, determine if the triplet (c, a, b) forms a compatible
splitting vertex of the new tensor S. If true, iterate through the remaining charges e ∈ ε ,
p ∈ ρ and d ∈ δ, check for valid fusion and splitting vertices on all the nodes of the
tensor network. If all these conditions are satisfied, contract their degeneracy tensors
and multiply by the loop factor—which is given below. Save the resulting degeneracy
tensor into the appropriate sector of tensor S. Repeat this process until all the charges
have been iterated through.
Meanwhile, the loop factor mentioned above is computed from the anyon fusion net-
work of the tensor network on the left of Eq. (5.7) as:

a

e

c

d

p

b

a

c

p

f

∑

f

(
F a p d
c

)f
e

(
F a p d
c

)b
e

√
dp dd

dbd

b

a

c

b
.

(5.8)
The loop factor used to multiply the degeneracy tensors of the tensor S is factor =(
Fapd

c

)b

e

√
dp dd

db
. The factor

√
dp dd

db
involving the quantum dimensions normalises the

vertex of tensor S if adopting the diagrammatic isotopy convention, otherwise no factor
should be associated with the contraction of anyons loops apart from the coefficient of
the F-move.
The implementation of the star-bubble relation for anyonic tensors will prove versatile
in anyonic TEBD algorithm, since it can be reused to contract other variants of the
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“star-bubble” network. If the network to be contracted differs from the above, it can
be diagrammatically adjusted to look similar to the one above, and can therefore be
contracted using the same routine. If however the contraction network already looks
structurally similar to the one above, but has a different orientation of the arrows,
the arrows should be reversed, and the charge conjugated. Then, proceed with the
contraction as supposed.

9. Routine “SVD”—singular value decomposition (SVD) and truncation: SVD is used to
decompose a matrix M into its factors as M = UλV †, where U and V are unitary,
U†U = UU† = I, and λ is a diagonal matrix of singular (or Schmidt) values λi, which
are non-negative real numbers. In a software like MATLAB, the singular values come
ordered in decreasing order.
An anyonicmatrix M is charge-conserving, which implies that its elements are arranged
into diagonal blocks of degeneracy matrix, M =

⊕
a

Ma, where Ma is a degeneracy

matrix in charge sector a. The anyonic SVD is represented diagrammatically as:

M̂
α β

U
α γ

λ
γ

V
β

SVD .
(5.9)

In practical implementation, the anyonic SVD is performed block-wise: iterate through
the charges a ∈ α and b ∈ β, check for conservation (i.e. equality) of charges a and b.
If true, select its degeneracy matrix Ma, decompose it into its subfactors Ua, λa, and
Va. Save all those factors also in blocks like the original matrix M . It should be noted
in Eq. (5.9) that, though I have used different charge-degeneracy labels on the bonds
of the subfactors U, λ and V , the charges a ∈ α, c ∈ γ, and b ∈ β must be conserved,
i.e. all equal, albeit their degeneracies may differ.
Truncation: In a practical simulation on a computer with modest resources, the Hilbert
space on the bonds on the MPS needs to be truncated after SVD. I will represent the
truncation diagrammatically as,

γ V †
β

Truncate

γ
λ

α
U

γ′ V †
γ′ λU

α β ,
(5.10)

where the “slash” represent a cut-down on the Hilbert space on the bonds connecting
matrices U, λ, and V . The basis of the reduced space on the bonds is now denoted by
γ′. The need for a truncation is determined by two control values, namely, the desired
precision ε which controls the smallest value of the Schmidt values to be kept, and the
bond dimension χ which controls the maximum number of states kept on the bonds of
the MPS. The truncation should be performed with respect to any of the two control
values, or both of them.
Truncation in non-symmetric MPS is simple. The Schmidt values of λ are ordered in
decreasing order as λ1 > λ2 > . . . > λk−1 > λk . If k > χ, truncate all values λi for
i > χ, i.e. keep only {λi | 1 ≤ i ≤ χ}. In addition, also truncate those values λi of
the diagonal matrix λ that are less than the precision ε , if there are. Also, truncate the
corresponding basis in matrices U and V .
For truncation in anyonic MPS, it should be realised that the matrices U, λ, and V
are arranged in blocks of degneracy matrices, and the singular values are not a priori
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ordered. Moreover, the different charge sectors of the Schmidt matrix are weighted
by the vertex normalisation factor when working in diagrammatic isotopy formalism.
To realise this, note that the bipartite Schmidt decomposition of an anyonic state |ψ〉
is [41]

|ψ[A:B]〉 =
⊕

a

χa∑
µa

(λa)µa |φa,µa〉 ⊗ |φā,µa〉
a ā , (5.11)

where a is the charge label of each sector, µa is the degeneracy index of charge
sector a, and χa is the maximum number of states in that sector. When working in
diagrammatic isotopy, the vertex normalisation factor 1/

√
da of each charge sector a

has been absorbed into the Schmidt values (λa)µa . Therefore, to order the singular
values accurately, multiply each sector—indexed by charge a, by

√
da, then order the

spectrum in descending order, and proceed with the truncation as in the non-symmetric
case.

5.3 Anyonic two-site contraction
In the Introduction 5.1 of this chapter, we alluded to the fact that the entire anyonicMPS-TEBD
tensor network can be contracted once we know how to perform the two-site contraction (see
Fig. 5.2). The sequence of steps needed to perform the two-site contraction using the routines
given in Section 5.2 are shown in Fig. 5.3. Any shaded part of the network is to be contracted.
I explain these steps here: (i) Absorb λ1 into T1, possibly bending leg labelled 1 down
before contraction. Also, absorb tensors λ2 and λ3 into tensor T2 as shown in the diagram,
applying bends where necessary. (ii) The contractions in (i) give the resulting network of
two order-three tensors T1 and T2. (iii) Apply the fusion map X1 to the two physical legs of
the tensors T1 and T2 in (ii). Apply the two-site gate ĝ, and also a splitting map X†1 to restore
the two initially contracted legs of T1 and T2. Contract the shaded part of this diagram using
the Routine “star-bubble” relation to give the tensor S. (iv) Contract the obtained tensor S
with the gate ĝ to give a new tensor—which I again named S for simplicity, resulting in (v).
(vi) Fuse legs 1′ of X†1 and 3 of S using the fusion map X2. Let the splitting map used to split
the legs later be X†2 , which is shown adjacent to the shaded region, and separated by a dashed
line (to signify that it is not part of this contraction but to be used later). (vii) The bent leg
is straightened. (viii) Reverse the arrow on bond 1′, and conjugate its charge. Contract the
network using the “star-bubble” routine which yields the tensor S in (ix). (x) Now “fuse” legs
2′ and 8 using the splitting map X†3 . The fusion map X3 used to “split” the fused leg (8, 2′)
is shown beyond the dashed line. Contract this network of two tensors which form a closed
loop to give a matrix T in (xi). (xii) Decompose the tensor T into its factors U, λ, and V
using the SVD routine. (xiii) Then, apply the splitting map X†2 [shown in (vi)], and the fusion
map X3 [shown in (x)]. Contract the shaded part to give the resulting network (xiv). Finally,
restore the canonical form of the MPS by introducing the identity matrices I = λ1λ

−1
1 and

I = λ−1
3 λ3 on the left and right hand side respectively as shown in the diagram. (xv) Contract

the shaded part of the network to give the updated tensors T ′1 and T ′2. The two-site update
is done and we get the resulting two-site network in (xvi) consisting of the updated tensors
T ′1, λ

′

2, and T ′2, and the non-updated tensors λ1 and λ3 restoring the original structure of the
MPS network.

The two-site contraction scheme is used iteratively to perform the TEBD for both finite
and infinite anyonic-MPS. After every iteration, the MPS is checked for convergence. The
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Figure 5.3: Graphical illustration of the anyonic two-site contractions. The explanation of
the sequence of contractions is given in the text. The legs and bonds of the tensor network
have been labelled by means of integers for the ease of identifying the legs of the tensors
being manipulated.
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iteration stops when the MPS has converged to the desired precision, in the case where we
wish to compute the ground state.

5.4 Measure of convergence of simulation
We now consider how to check for the convergence of the MPS in the TEBD algorithm. The
convergence measure I use is the temporal deviation of the state |ψ〉 from iteration τ to τ + 1.
Let ξ = ‖|ψτ+1〉 − |ψτ〉‖ be the norm of the deviation of the state |ψ〉 from one iteration to
the next. If the Schmidt decomposition of the system into two subsystems is,

|ψ〉 =
∑

i

λi |φ
(A)
i 〉 ⊗ |φ

(B)
i 〉 , (5.12)

where |φ(x)
i 〉 is an orthonormal basis of both partitions (x ≡ A or B). Then,

ξ =
 |ψτ+1〉 − |ψτ〉

, (5.13)

=



∑
i

(
λi (τ + 1) − λi (τ)

)
|φ(A)

i 〉 |φ
(B)
i 〉


, (5.14)

=

√∑
i

(
λi (τ + 1) − λi (τ)

)2
, (5.15)

where I made the assumption that the Schmidt bases no longer change with iteration. (This
can be regarded as a reasonable assumption in the long time limit).

For anyonic systems, let i ≡ (a, µa) be the basis index, where a is the anyonic charge
index and µa is the degeneracy index. The expression of temporal deviation for anyonic
systems becomes,

ξ2 =
∑

a

da

∑
µa

(
λa,µa (τ + 1) − λa,µa (τ)

)2
, (5.16)

where da is the quantum dimension of charge a attributed to the loop factor resulting from
the inner product.

The quantity ξ can be easily computed from the Schmidt coefficients of the MPS. We
make a cut along any bond of the MPS (see the MPS diagram in Section 4.3 of Chapter 4)
to separate the network into parts: a left subnetwork, a central bond (Schmidt) matrix, and a
right subnetwork. We then compute the temporal deviation from the entries of the Schmidt
matrix. To determine the accuracy of our simulation, we check to see if ξ is less than the
precision required for a good approximation to the ground state. If true, we halt the simulation
and proceed to compute properties of the ground state, otherwise we continue the simulation
until convergence, or perhaps halt it if not converging.

5.5 Test models and results
We provide some examples to demonstrate that our Anyon×U(1)-symmetric MPS ansatz
along with the anyonic-TEBD algorithm may be used to simulate systems of itinerant (non-
Abelian) anyons at any rational filling fraction. These examples also help to illustrate instances
where more than one symmetry is exploited in a tensor network, with one of these symmetries
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being anyonic. The anyonic lattice models we consider are itinerant and interacting hardcore
particles on a one-dimensional chain and a two-leg ladder, with the types of particles being
either bosons, fermions, or Fibonacci anyons.

In one dimension, all models of free itinerant particles (e.g. bosons, fermions, and anyons)
with hardcore constraint have the same ground state properties, since they do not experience
their own particle statistics; because they are not able to exchange positions. However,
in higher dimensions (e.g. two-leg ladder or two dimensions), there are several paths by
which particles may exchange positions. Therefore, beyond 1D, ground state properties of
hardcore bosons, spinless fermions and hardcore anyons should reflect the influence of their
exchange statistics. We test our method using itinerant Fibonacci anyons on a chain (the
Golden Chain [88]) and itinerant-and-braiding (henceforth, simply “braiding”) Fibonacci
anyons on a two-leg ladder (or the Golden ladder), and show how the ground state energies
differ from those of hardcore bosons and spinless fermions. We also present results of the
entanglement entropies (EE) in the ground state of the Golden Ladder model—the model is
a system of Fibonacci anyons on a pair of coupled chains, where particles interact by means
of ferromagnetic (FM) or antiferromagnetic (AFM) Heisenberg interactions. We compute
how entangled a block of sites is with the rest of the system using the Von-Neumann formula
for EE. In our computation of the EE for Fibonacci anyons on both the chain and ladder
system, we have ensured consistency of the ordering of the anyons on the systems with their
ordering on the fusion tree according to the prescription given for how to compute measures
of entanglement in systems of particles with non-Abelian statistics as in Ref. [96]. From
the block scaling of the EE, we extract the central charges of the conformal field theories
associated with the infra-red limits of these models. Analytical solutions for these models
are generally not known, but we establish the validity of our method by using it to compute
known results for spinless fermions and hardcore bosons, and also by comparing results for
selected anyonic systems with those obtained using anyonic DMRG [43]. In general, our
results are found to be accurate to 4 or 5 decimal places for the ground state energy.

5.5.1 Itinerant hardcore particles on a one-dimensional chain
I give some diagnostic test results for hopping and interacting anyons on a chain using an
anyonic t-J Hamiltonian which is analogous to the t-J model for electrons. To make the
analogy more apparent, I briefly review the electronic t-J model.

Electronic t-J Model

The electronic t-J model is a popular model which has been widely used to study some of the
cooperative phenomena occurring in electronic systems. The model is defined on a lattice
L of itinerant and interacting electrons. On a lattice with hardcore constraint, each site
can either be empty or host a single electron which can be a “spin up” or a “spin down.”
The Hilbert space of each site has a set of basis {|0〉 , |↑〉 , |↓〉} for “empty,” “spin-up,” and
“spin-down” state respectively. The total Hilbert space of the system is V =

(
C3

)⊗L
, where

L is the number of sites on lattice L.
The electronic t-J Hamiltonian consists of two competing terms: a term corresponding to

the kinetic energy of the electrons, and an interaction between their spin degrees of freedom.
The t-J Hamiltonian is

Ĥ = −t
∑
〈i j〉

ĉ†i ĉ j + J
∑
〈i j〉

Ŝi · Ŝj, (5.17)
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where the first term is the kinetic energy with hopping strength t and ĉ†i (ĉi) is the creation
(annihilation) operator which satisfies fermionic anticommutation relations. The second term
is the Heisenberg spin-spin interaction which can be rewritten in terms of projector of nearest
spins to the singlet state using the fact that

Ŝi · Ŝj =
1
2

[
(Ŝi + Ŝj )2 − Ŝ2

i − Ŝ2
j

]
. (5.18)

The addition of two spin-1/2 charges is given by the rule,

1
2
⊗

1
2
= 0 ⊕ 1. (5.19)

Let Ŝ = Ŝi + Ŝj and choose units such that ~ = 1. Then the relation

Ŝ2 |s,m〉 = s(s + 1) |s,m〉 , (5.20)

means Ŝ2 has two eigenvalues, 0 (when s = 0) and 2 (when s = 1). Therefore Ŝ2 can be
written in terms of projectors to the singlet and triplet subspaces as (Ŝi + Ŝj )2 = 0π̂(0)

i j +2π̂(1)
i j ,

where π̂(0) and π̂(1) are the projectors to singlet and triplet subspaces. Therefore,

Ŝi · Ŝj = −π̂
(0)
i j +

1
4
, (5.21)

where the identity, I = π̂(0)+π̂(1) has been used in the last step. Therefore, the t-J Hamiltonian
simplifies to

Ĥ = −t
∑
〈i j〉

ĉ†i ĉ j − J
∑
〈i j〉

π0
i j + const. (5.22)

For J > 0 the Hamiltonian favours neigbouring spins forming singlets (antiferromagnetic),
and for J < 0 it favours triplet formation (ferromagnetic). I adapt the electronic t-J model to
anyons.

Anyonic t-J Hamiltonian on a chain

Patterned after the form of the electronic t-J Hamiltonian, its anyonic analogue consists of
a hopping term and an anyon-anyon interaction term. The hopping term moves an anyon
from an occupied site to a vacant site, while the interaction term is Heisenberg-like in nature,
favouring the projection of two anyons into a particular fusion channel. The Hamiltonian is
a sum of local terms Ĥ =

∑
i

H [i,i+1], and is expressed diagrammatically as,

Ĥ [i,i+1] =
∑

ai,ai+1,
a′
i,a

′
i+1,c

H(ai, ai+1, a
′
i, a

′
i+1, c)

ai ai+1

a′i a′i+1

c ,

(5.23)

where the values of the function H (ai, ai+1, a′i, a
′
i+1, c) are determined by the physics of the

model being constructed. Similar to how we represent anyonic operators as matrices, the
Hamiltonian is represented in matrix form with basis chosen from the fusion space of the
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Figure 5.4: Ground state energy (E) of itinerant hard-core Fibonacci anyons on an infinite
chain at different filling fractions (ν). The datapoints come from numerical simulations,
while the smooth curve is the plot of the ground state energy for an equivalent system of
spinless fermions (or hardcore boson) at the thermodynamic limit.

participating anyons. The conservation of charge c implies that the Hamiltonian has a block
structure as Ĥ [i,i+1] =

⊕
c Ĥ [i,i+1]

c .
To give a systematic and concrete treatment of both terms of the Hamiltonian, I give an

explicit construction for Fibonacci anyons. In what follows, to start, I discuss the case when
the interaction strength J = 0, i.e. when particles are free to hop. Afterwards, i discuss the
case when particles interact with J , 0.

Hopping term: The hopping of a Fibonacci anyon in 1D means the neigbouring site
has to be vacant—corresponding to the vacuum charge I. The kinetic operator can thus be
represented as

Ĥ
[i,i+1]
hop =

τ I

τ

τI τ I

τ

τI

−t (−t)+ ,

(5.24)

being analogous to the fermionic term (ĉ†iσ ĉi+1,σ+h.c) that translate a fermion between sites i
and i+1. Since the anyonic hopping term requires that there is a vacant sitewith vacuumcharge
I, this implies that the hopping term is nonzero only when (ai = I, ai+1 = τ, a′i = τ, a

′
i+1 = I)

and when (ai = τ, ai+1 = I, a′i = I, a
′
i+1 = τ). For dynamics in one dimension with

hardcore constraints, the underlying exchange statistics of the particle do not affect the
ground state properties (though the degeneracy of the ground states may differ for different
particle species). Therefore, free itinerant hardcore Fibonacci anyons, spinless fermions and
hardcore bosons all have the same ground state energies at any rational filling on the 1D
lattice.

We use ourAnyon×U(1) symmetric TEBDalgorithm to compute the ground state energies
of itinerant Fibonacci anyons, spinless fermions and hardcore bosons on a 1D lattice. We



5.5 Test models and results 65

obtained the same ground state energies for all three cases up to 4 or 5 decimal places. This
owes to the fact that particles are not allowed to exchange positions on the lattice, and thus
particle statistics do not affect the ground state properties.

In the absence of any interaction, the Hamiltonian reduces to the well known tight-
binding Hamiltonian for a system of electrons. The model has an exact analytical expression
for ground state. I recall this solution for spinless fermions, which is equally valid for hardcore
boson (HCB) and hardcore anyons in 1D. When J = 0 in Eq. (5.17), the Hamiltonian

Ĥ = −t
L∑

j=1
ĉ†j ĉ j+1 + h.c., (5.25)

describes free itinerant spinless fermions on a one dimensional lattice. This Hamiltonian
can be diagonalised using Fourier transform from real to reciprocal space. We expand the
fermion operators on each site as

ĉ j =
1
√

L

∑
k

ĉk eik j, (5.26)

where k is the quasimomentum. The lattice is embedded on a ring with periodic boundary
condition, and therefore,

ĉL+1 = ĉ1,

from which the allowed values of the momentum are determined to be,

k =
2πm

L
,

where m = 0, 1, . . . , L − 1. Therefore,

Ĥ = −2t
∑

k

ĉ†k ĉk cos(k). (5.27)

Since particles are spinless fermions, or can be treated as hardcore bosons, each quasimomen-
tum state can only accommodate a single particle. Integrating this equation in the continuum
up to the Fermi level gives the ground state energy E,

E = −2tL
sin(πN/L)

π
. (5.28)

Define ν = N/L as the particle density. The mean energy per site is,

ε = E/L = −2t
sin(πν)

π
. (5.29)

In Fig.5.4, I plot the numerical values of the energy of the ground state of itinerant
Fibonacci anyons (derived from my simulations) against the values computed using the
analytical formula of an equivalent system of spinless fermions given by Eq. (5.29). Note
that the numerical ground state energy of spinless fermions and hardcore bosons are similar
to that of Fibonacci anyons, and are not reproduced.

Heisenberg interaction term: Next, we include an anyonic Heisenberg interaction term
in addition to the hopping term. The anyonic Heisenberg interaction is constructed in analogy
to the Heisenberg spin-spin interaction. For 100% filling this model was first proposed and
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studied by Feiguin et al. [88], and is known as the Golden Chain. The anyonic Heisenberg
interaction takes the form

Ĥ
[i,i+1]
int =

τ τ

I

ττ τ τ

τ

ττ

−JI Jτ− ,

(5.30)

where JI > Jτ corresponds to an antiferromagnetic interaction favouring fusion of the two
Fibonacci anyons to the vacuum charge I, and JI < Jτ corresponds to a ferromagnetic
interaction favouring projection to the Fibonacci charge τ.

When a Heisenberg interaction is introduced into a system of itinerant Fibonacci anyons,
the extensive degeneracy of the free anyon system is lifted. TheHilbert space of the interacting
itinerant anyon system admits the decomposition

H = Hconfig ⊗ Hfusion (5.31)

whereHconfig is the space of particle configurations, andHfusion is the space of valid labellings
of the fusion tree. The Hamiltonian admits an equivalent decomposition, and the Hamiltonian
for a system of free particles acting onHconfig is associated with a central charge of 1. When a
Heisenberg-type interaction is added, this acts onHfusion, lifting the degeneracy of the states in
this subspace. For a critical interaction, the total central charge is additive, andmay be written
as 1 + c, where 1 is the contribution from the itinerant anyon model acting on Hconfig and c
is the contribution from the interactions on the fusion portion of the Hilbert space [82]. This
is alluded to as spin charge separation in anyonic systems. From our numerical simulations,
when JI > Jτ (antiferromagnetic), we obtained c = 0.708 and when JI < Jτ (ferromagnetic),
we obtained c = 0.84, making total central charges of 1.708 and 1.84 respectively. These are
very close to the expected central charges of 1 + 7/10 for antiferromagnetic interaction and
1 + 4/5 for ferromagnetic interaction for 1D systems exhibiting spin-charge separation.

5.5.2 Anyonic t-J model on ladder

Nonabelian anyons have nontrivial braid factors, making their simulation difficult. For such
systems, numerical approaches based on Monte Carlo schemes are plagued by a form of the
sign problem. I offer numerical evidence that anyonic tensor networks (such as the anyonic
MPS) are able to simulate anyonic systems on geometries beyond one dimension, in situations
where the anyons experience braiding. To model how braiding statistics affect the ground
state of anyons, I introduce the anyonic t-J model on the ladder, as a generalisation of the
model already considered on a chain. Each site on the ladder supports only two types of
charges, namely, either a vacuum charge I or a single Fibonacci anyon τ. Unlike in one
dimension, anyons on the ladder can exchange positions and consequently braid.

To model the braiding of anyons on the ladder in a consistent manner, we impose a
linear ordering to the anyons by attaching ficticious “strings” to the anyons and oriented
them leftward of their on-site position (see Fig. 5.5). When an anyon hops from one site to
another on either the top or bottom chain of the ladder, it braids with any adjacent anyonic
charge along its trajectory, with the strings acting as a convenient mnemonic to visualise the
orientation of the braid.
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Figure 5.5: A ladder of itinerant anyons. Ficticious strings are attached to each nontrivial
charge to indicate that they can participate in nontrivial braids as they exchange positions with
neigbouring anyons. For example, the nontrivial anyonic charge ai braids with the nontrivial
anyonic charge bi−1 as it hops horizontally to a new site with ai−1 = 0. The labels Jv and
Jh represent the amplitudes for projecting the corresponding circled pairs into the vacuum
sector.

With reference to Fig.5.5, the anyonic t-J Hamiltonian can be written as

Ĥ = −th

N−1∑
i=1

(
b̂ai→ai+1=I + b̂bi→bi+1=I + h·c

)
− Jh

(
Π̂
I
ai,ai+1 + Π̂

I
bi,bi+1

)
−

tv
2

N∑
i=1

(
b̂ai→bi=I + b̂ai+1→bi+1=I + h·c

)
−

Jv
2

(
Π̂
I
ai,bi + Π̂

I
ai+1,bi+1

)
, (5.32)

where (th, tv) and (Jh, Jv) are the hopping and interaction amplitudes for anyons on the legs
and rungs of the ladder. The vacuum charge is denoted by I. The operator b̂x→y=I moves
a nontrivial charge x into a new site having trivial vacuum charge y = I while it braids the
charge x with any other charge along its path. The projector Π̂Ix,y projects the nontrivial
anyonic charges x and y into a vacuum charge I. The anyonic interaction is antiferromagnetic
when J > 0 but becomes ferromagnetic when J < 0. The Hamiltonian along the rung has
been symmetrized with half a contribution from each of the rungs i and i + 1.

Below, I show an explicit derivation of the Hamiltonian terms which can be arranged
as a charge-conserving matrix operator. The local Hamiltonian ĥ is derived on a plaquette
whose vertices are labeled (a, b, c, d) for brevity as shown in Fig.5.6. The local Hamiltonian
is written as

ĥ = −th
(
b̂a→c=I + b̂b→d=I + h·c

)
− Jh

(
Π̂
I
a,c + Π̂

I
b,d

)
−

tv
2

(
b̂a→b=I + b̂c→d=I + h·c

)
−

Jv
2

(
Π̂
I
a,b + Π̂

I
c,d

)
. (5.33)

Depending on the imposed fusion order, some of the operators will be diagonal in the
fusion basis. The two most convenient fusion order are shown in Fig.5.6. Let the first basis
be denoted as |I〉 = |(ab; α)(cd; β)(αβ; γ)〉 with the fusion order ((a, b)(c, d)) where the
anyons (a, b) and (c, d) are first fused independently, then fuse their outcomes, and let the
second basis be |II〉 = |(ac; κ)(bd; λ)(κλ; γ)〉with fusion order ((a, c)(b, d)). Using a series
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Figure 5.6: The two convenient fusion orderings along with their respective fusion trees
shown underneath. The first fusion order couples charges (a, b) and (c, d) while the second
couples charges (a, c) and (b, d).

of F-moves and R-moves, the first basis transforms into the second basis as

∑
κ,λ Qκ,λ

α,β
=

a c b d

κ λ

γ

,

a b c d

α β

γ (5.34)

where the tensor Qκλ
α β is given by,

Qκλ
α β =

∑
η,θ

[(
Fαcd
γ

)−1]η
β

(
Fabc
γ

)θ
α

Rbc
θ

[(
Facb
γ

)−1] κ
θ

(
F κbd
γ

)λ
η
. (5.35)

Its derivation and the rest of the derivation of the Hamiltonian ĥ are shown as an illustrative
example in the next section.

5.5.3 Derivation of the anyonic t-J Hamiltonian on a ladder

Before giving an explicit derivation of the Hamiltonian ĥ on a plaquette, I show how the two
bases in Fig. 5.6 transform to one another.
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Fusion Tree Basis Transformation

The transformation between the two chosen bases of Fig.5.6 are obtained as follows:

=

a b c d

α β

γ

b dca

θ
η

γ

(
F abc
η

)θ
α=

∑
η,θ

[(
Fαcd
γ

)−1
]η
β

Rbc
θ

[(
F acb
η

)−1
]κ
θ

(
F abc
η

)θ
α

=
∑

η,θ,κ

[(
Fαcd
γ

)−1
]η
β

Rbc
θ

b dca

κ
η

γ

(
Fκbd
γ

)λ
η

[(
F acb
η

)−1
]κ
θ

(
F abc
η

)θ
α

∑
η,θ
κ,λ

[(
Fαcd
γ

)−1
]η
β

Rbc
θ=

a c b d

κ λ

γ

,

.

,

∑
η

[(
Fαcd
γ

)−1
]η
β

c dba

α
η

γ

(5.36)
The above equation can be written more succinctly as

∑
κ,λ Qκ,λ

α,β
=

a c b d

κ λ

γ

,

a b c d

α β

γ (5.37)

where the tensor Qκλ
α β is defined according to

Qκλ
α β =

∑
η,θ
κ,λ

[(
Fαcd
γ

)−1]η
β

(
Fabc
η

)θ
α

Rbc
θ

[(
Facb
η

)−1] κ
θ

(
F κbd
γ

)λ
η
, (5.38)

which is the relation in Eq. (5.35). Using Dirac bra-ket notation, Eq. (5.36) can alternatively
be written as

|(ab; α)(cd; β)(αβ; γ)〉 =
∑
κ,λ

Qκλ
α β |(ac; κ)(bd; λ)(κλ; γ)〉 . (5.39)

Anyonic t-J Hamiltonian on a plaquette

The anyonic local Hamiltonian ĥ on a plaquette is given by

ĥ = −th
(
b̂a→c=I + b̂b→d=I + h·c

)
− Jh

(
Π̂
I
a,c + Π̂

I
b,d

)
−

tv
2

(
b̂a→b=I + b̂c→d=I + h·c

)
−

Jv
2

(
Π̂
I
a,b + Π̂

I
c,d

)
. (5.40)

Whereas charge label a may take any value from the particle spectrum, the nontrivial anyonic
charge will be denoted by a0. For example, in the Fibonacci anyon theory, a0 = τ. The
derivation is quite general and can be used with any other anyon model. Note that numerical
factors such as vertex normalization factors and loop factors are not accounted for here. We
account for them during the implementation of the anyonic TEBD algorithm.

We proceed by first deriving all the kinetic energy terms and then derive all the interaction
terms similarly. All the operators in the Hamiltonian are applied to the fusion tree on the left
hand of Eq. (5.36) which is represented in Dirac notation in Eq. (5.39).
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Kinetic terms: The terms contributing to the kinetic energy are the braid operators whose
matrix elements are derived below.

(i) The matrix element of the braid operator b̂a→b=I is given by

〈b̂a→b=I〉 = δa,a0δb,I, δa′,bδb′,aδc′,cδd ′,dδα′,αδβ′, β, (5.41)

where we have used, for the sake of conciseness, the notation 〈b̂a→b=I〉 as a shorthand for

〈(a′b′; α′)(c′d′; β′)(α′β′; γ) |b̂a→b=I |(ab; α)(cd; β)(αβ; γ)〉. (5.42)

(ii) The matrix element of the braid operator b̂c→d=I is given by

〈b̂c→d=I〉 = δc,c0δd,I, δa′,aδb′,bδc′,dδd ′,cδα′,αδβ′, β . (5.43)

(iii) The matrix element of the operator b̂a→c=I involves braiding of anyonic charge a with
b. The charge c has to be vacuum for the process to have a nonzero amplitude. Its action on
the basis |(ab; α)(cd; β)(αβ; γ)〉 is given by

b̂a→c=I |(ab; α)(cd; β)(αβ; γ)〉
=

∑
κ,λ Qκλ

α β b̂a→c=I |(ac; κ)(bd; λ)(κλ; γ)〉 ,
=

∑
κ,λ Qκλ

α βδa,a0δc,I |(ca; κ)(bd; λ)(κλ; γ)〉 .

The matrix element 〈b̂a→c=I〉 is

〈b̂a→c=I〉 =
∑
κ′,λ ′

κ,λ
〈(a′c′; κ′)(b′d′; λ′)(κ′λ′; γ) |Q∗κ

′λ ′

α′ β′ Qκλ
α β

×δa,a0δc,I |(ca; κ)(bd; λ)(κλ; γ)〉 ,
(5.44)

which simplifies to

〈b̂a→c=I〉 =
∑
κ,λ

Qκλ
α β (Q†)α

′ β′

κλ δa,a0δc,Iδa′,cδc′,aδb′,bδd ′,d . (5.45)

(iv) The matrix element 〈b̂b→d=I〉 is similarly given by

〈b̂b→d=I〉 =
∑
κ,λ

Qκλ
α β (Q†)α

′ β′

κλ δb,b0δd,Iδa′,aδc′,cδb′,dδd ′,b. (5.46)

Interaction terms: The interaction terms consist of projectors whose matrix elements are
derived similarly to the kinetic terms. The projection favours fusion of nontrivial anyons to
the vacuum charge.

i) The action of the projector Π̂Iab on the fusion basis is given as

Π̂
I
ab |(ab; α)(cd; β)(αβ; γ)〉 = Παab |(ab; α)(cd; β)(αβ; γ)〉 (5.47)

where the element Παab = 1 if α = I (vacuum) and a = a0, b = b0 (i.e. nontrivial charges).
The matrix element of the projector Π̂Iab is thus

〈Π̂α=Iab 〉 = δa′,a0δb′,b0δa′,aδb′,bδα′,αδα,Iδc′,cδd ′,dδβ, β′ . (5.48)

(ii) The matrix element Π̂Icd of the projector is similarly given as

〈Π̂
β=I
cd 〉 = δa′,aδb′,bδα′,αδc,c0δd,d0δβ,0δc′,cδd ′,dδβ, β′ . (5.49)
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(iii) The action of the projector Π̂Iac is

Π̂Iac |(ab; α)(cd; β)(αβ; γ)〉
=

∑
κ,λ

Qκλ
α βΠ

κ
ac |(ac; κ)(bd; λ)(κλ; γ)〉

=
∑
κ,λ Qκλ

α βδa,a0δc,c0δκ,I |(ac; κ)(bd; λ)(κλ; γ)〉 .

The matrix element 〈Π̂Iac〉 is

〈Π̂Iac〉 =
∑
κ,λ

Qκλ
α β (Q†)α

′ β′

κλ δκ,Iδa,a0δc,c0δa′,aδc′,cδb′,bδd ′,d . (5.50)

(iv) The matrix element 〈Π̂Ibd〉 is similarly given by

〈Π̂Ibd〉 =
∑
κ,λ

Qκλ
α β (Q†)α

′ β′

κλ δb,b0δd,d0δλ,Iδa′,aδb′,bδc′,cδd ′,d . (5.51)

5.5.4 Results of the anyonic t-J model on ladder
We exploit the anyonic and U(1) symmetries of the model both in the MPS ansatz and in
the Hamiltonian Ĥ , and use the TEBD algorithm to compute the ground state energies of
itinerant Fibonacci anyons on the ladder at different filling fractions. Since the MPS has a
one-dimensional structure, we map the ladder to a chain by fusing the anyonic charges on
each rung to make a new single site. The vertical and the horizontal hopping rates are set
equal to one, th = 1 and tv = 1 while the vertical and horizontal Heisenberg interactions Jv
and Jh are set to zero.

There are no known analytical results for the ground state of itinerant Fibonacci anyons on
a ladder, but we test the validity of our method against the ground state energies of itinerant
hardcore bosons and spinless fermions on the ladder shown in Fig. 5.7. The phase diagram
of this model for unit filling fraction was studied in Ref. [2].

It can be seen from the figure that incorporating the capacity for anyons to braid around one
another results in an increase in the ground state energy per particle. This fact is reminiscent
of the property that a system of identical fermions have a higher energy than bosons due to
Pauli exclusion principle in real space. This also implies that there might exist a Pauli-like
exclusion principle for anyons too, at least in some regimes [97]. We also see from the figure
that while the bosons and fermions have a paricle-hole symmetry which is reflected in the
symmetric ground state energy around half-filling ν = 1

2 , the system of Fibonacci anyons
on the ladder does not display this symmetry. One of the consequences of particle-hole
symmetry is that the ground state energies E at filling fractions ν and 1 − ν should be equal.
While this is known for fermions and bosons, and reproduced by our numerical results as
shown in Table.5.1, we see from our numerical results that this no longer holds for some
non-abelian anyon model such as Fibonacci anyons, though in this instance the breakdown
of particle-hole duality is weak in the sense that it has only a very small impact on ground
state energies. Interference of braiding particles raises the ground state energies, and thus
the higher filling fractions ν> 1/2, e.g. ν = 5/8, have slightly higher energies than the 1 − ν
states, e.g. ν = 3/8.

The origin of the breakdown in the particle-hole duality is in the difference of the fusion
degrees of freedom of the particle types. For systems of bosons or fermions, the fusion
space is one-dimensional, independent of the number of particles. While for non-Abelian
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Figure 5.7: The ground state energies of hardcore bosons (HCB), spinless fermions and
itinerant Fibonacci anyons (HCFib) on a two-leg ladder when only hopping is turned on. The
line is a guide to the eye.

anyon models, such as the Fibonacci anyons, the fusion space grows exponentially with the
number of anyons and hence is not symmetric under particle hole exchange. Braiding acts
non-trivially on the fusion degrees of freedom and changes the ground state energy in way
that is not particle hole symmetric. In contrast, if particles are confined to one dimension then
braiding cannot take place, and in the absence of other interactions such as Heisenberg-like
interactions, the expanded Hilbert space has no effect on ground state energies. Thus the
ground state energies for Fibonacci anyons on the ladder do not exhibit particle/hole duality,
as braiding is possible (Fig. 5.7 and Table 5.1), whereas in 1D, the ground state energy is
symmetric and independent of particle statistics (Fig. 5.4).

5.5.5 Phase diagram of the Golden Ladder
We further test our ansatz by studying the entanglement structures of ground states of inter-
acting Fibonacci anyons on the ladder at unit filling. This model has been studied in Ref. [2],
and we verify our ansatz by reproducing known phases of the model at specific values of the
tunable parameters. At unit filling, there is a single localized Fibonacci anyon per site of the
ladder and therefore hopping rates are everywhere zero. This is a quasi-1D generalisation of
the Golden Chain [88], which might be called the Golden Ladder. The relative interaction
strengths of the legs and rungs of the ladder, including both antiferromagnetic and ferromag-
netic couplings may be parametrized on a circle (see Fig. 5.8, where the ferromagnetic or
antiferromagnetic nature of the interactions in each sector is indicated).

We evolve this model to ground state using TEBD, and compute the scaling of the block
entanglement entropy from von Neumann’s relation,

S(r) = −Tr( ρ̂r log ρ̂r ), (5.52)

where ρ̂r is in general the reduced density matrix of a block of r sites, here r rungs.
From conformal field theory, the scaling of entanglement entropy on a system with an open
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ν EHCB EHCFib ESF
0 0 0 0

1/8 -0.71162 -0.70397 -0.70015
2/8 -1.26597 -1.19102 -1.13658
3/8 -1.61707 -1.44620 -1.35273
4/8 -1.74300 -1.52085 -1.43534
5/8 -1.61707 -1.41803 -1.35271
6/8 -1.26597 -1.15486 -1.13660
7/8 -0.71162 -0.68857 -0.70015
1 0 0 0

Table 5.1: The values of the ground state energy E at various filling fractions ν corresponding
to figure Fig. 5.7. The subscripts in E(•) are “HCB” for hardcore bosons, “HCFib” for hardcore
Fibonacci anyons, and “SF” for spinless fermions. The values are given to five decimal places.
The ground state energies of bosons and fermions are symmetric around half-filling, but not
so for Fibonacci anyons.

boundary [98] is
S(r) =

c
3

log r, (5.53)

where c is the central charge of the system at criticality. This relation means that, for
a critical model, the entanglement block scaling—computed from the MPS ground state
representation—should display a logarithmic relation with the block size. The central charge
c can then be extracted from the relationship

c = 3
S(r2) − S(r1)
log r2 − log r1

. (5.54)

The block entanglement entropy for various parameter regimes are shown in Fig. 5.9, and
their central charges are indicated in Fig. 5.10. As seen in Fig. 5.9 the finite bond dimension
of the MPS causes entanglement to artificially plateau over larger distances r = |r2 − r1 |, but
calculation of c using Eq. (5.54) may be performed for any separation r prior to this plateau,
where an appropriate linear correlation is obtained between S(r2) − S(r1) and log r2 − log r1.

One can interpret this Fig. 5.10 by considering how the physics of the interacting Fibonacci
anyon changes as the parameterization angle θ is varied. When θ = 0, there are no couplings
along the rungs andwe have 2 chains of Fibonacci anyons with antiferromagnetic interactions.
The system in this parameter regime is gapless and has a central charge which is twice that
of a single chain, i.e. 2 × 7/10. Even though the MPS most naturally yields exponentially
decaying correlators, we are nevertheless able to extract an approximate value for the central
charge c = 1.405 from the linear part of the curve. When θ = π/4 and θ = 3π/4, the vertical
couplings are antiferromagnetic favouring pairs of Fibonacci anyon fusing into the vacuum
charge. This phase is gapped with central charge c = 0. When θ = π/2, the Hamiltonian
favours fusion of pair of τ charges on each rung to the vacuum charge, and is hence a product
state which is unique and gapped. The phase is not critical and has a central charge c = 0. At
the θ = π point, the horizontal coupling Jh = −1 is ferromagnetic, while the vertical coupling
Jv is zero, and the ladder reduces to two copies of a ferromagnetic Golden Chain. From
our numerical simulation, we computed a central charge of c = 1.629 which is close to the
expected theoretical value of c = 2 × 4/5. At the point θ = 5π/4, the horizontal and vertical
couplings are ferromagnetic. Fusion of the τ charges on the rungs and legs favours projection
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θ
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Jv

AFM - FM

AFM - AFMFM - AFM

FM - FM

Figure 5.8: The horizontal and vertical interaction strengths (Jh, Jv) on the legs and rungs
of the ladder are parameterized by (cos θ, sin θ) along the legs and rungs respectively. The
labels within each quadrant indicate the nature of the interaction, whether antiferromagnetic
or ferromagnetic.

θ csim cTheo.
0 1.405 2 × 7/10

π/4 0 0
π/2 0 0

3π/4 0 0
π 1.629 2 × 4/5

5π/4 0.801 4/5
3π/2 0 0
7π/4 0.704 7/10

Table 5.2: The table shows the obtained central charges cSim. from our numerical simulations,
compared against their theoretical values cTheo. known from conformal field theory, at the
interaction strengths parameterized by θ according to Fig. 5.8. The values correspond to the
points shown in Fig. 5.10. Where a model is not critical, and hence not described by CFT,
we have substituted their central charge c with zero.

to the τ channel (triplet state). This can easily be pictured by considering a linearized or
snaked version of the ladder. Nearest neighbour τ charges on the rung becomes nearest
neighbour on the chain and nearest neighbours on the legs becomes either nearest or next-to-
nearest neighbour on the chain [89]. Heuristically, fusion to the τ fusion channel makes the
ladder effectively like a single Fibonacci chain and therefore has the same central charge as a
single chain. We obtain a central charge of c = 0.801 which is close to the expected c = 4/5.
When θ = 3π

2 , the vertical coupling Jv = −1 is ferromagnetic while the horizontal coupling is
zero. This favours projection of neighbouring τ charges on the rungs into the τ channel. The
ladder reduces to a chain of decoupled τ charges which has an exponentially large degeneracy
in intermediate fusion degrees of freedom. Hence a generic ground state at this point obeys a
volume law rather than area law. This system is gapped and not described by conformal field
theory. The parameter point θ = 7π/4 correspond to horizontal antiferromagnetic coupling
on the leg and vertical ferromagnetic coupling which is effectively an antiferromagnetic
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c = 2× cAFM Chain

gapped
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Figure 5.10: The central charge of the underlying CFT extracted from the scaling of the
entanglement entropy of Fig. 5.9 are shown at the paremeter points we considered. When
vertical coupling is set to zero and Jh range from −1 to +1, we obtain central charge
which doubles that of single critical FM or AFM chains which lies on the equator. The
theoretical values of cAFM Chain and cFM Chain are cAFM Chain = 7/10 and cFM Chain = 4/5.
Phase boundaries for this model may be found in Fig. 11(a) of Ref. [2]. A summary of the
central charges of this model is given in Table 5.2.
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interacting chain. The obtained central charge is c = 0.704, being close to the expected value
of c = 7/10. Our findings are in agreement with known results showing that the entire upper
semicircle is gapped while the lower semicircle is gapless with the exception of the indicated
point at θ = 3π/2. Table 5.2 compares the extracted central charges with their expected
theoretical values.

5.6 Conclusion
In this chapter we showed how the anyonic tensor network formalism of Refs. [39, 41, 43] may
be applied in the context of particles admitting multiple charge labels, specifically an anyonic
charge and a U(1) charge, here corresponding to particle number. We constructed test models
involving both hopping and interaction terms, with this construction being explicitly elabo-
rated in Section 5.5.3. Application of the anyonic infinite TEBD algorithm [41] permitted
calculation of the ground states of these systems, their entanglement entropies, and central
charges. In doing so, we successfully reproduced elements of the phase diagrams for those
systems which have previously been obtained using exact diagonalisation [2, 81, 82, 88, 89].

This chapter consequently demonstrates the feasibility of applying anyonic TEBD to sys-
tems of particles admitting both anyonic and U(1) conserved charges. The method presented
here can be used to probe new regimes of the physics of anyons such as equilibrium phases of
quasi-1D systems of braiding anyons at arbitrary density as well as non-equilibrium dynamics
of anyons in two dimensional systems at low density.



6
Phase transitions in braided non-Abelian

anyonic system

6.1 Introduction
As described in Chapter 5, the formation of different possible phases in a collective system of
particles are dictated by various competing terms in the Hamiltonian of the system, including
the local interaction between particles, hopping of particles between sites, the dimensionality
and topology of the system, geometric frustrations, and particle statistics. For a review of
these concepts, see these Refs. [7–9].

While a lot of work have been done on interacting and itinerant anyons on one dimensional
lattice chains [2, 81, 82, 88, 89] where the particles are restrained from braiding if hardcore
constraint is imposed, not much have been done on higher dimensional systems where
particles have braiding degrees of freedom. Of a particular interest would be to know how
braid statistics affect the ground state properties of a collective of anyons. The wave function
of a many-body system of non-Abelian anyons can acquire nontrivial phase factors when the
anyons braid. Braiding is a topological interaction which may induce a phase transition. In
Ref. [99], the authors studied “finite-legged” ladders of Fibonacci anyons, where the anyons
can interact and braid with one another. In Ref. [100], we developed an Anyon×U(1) MPS
ansatz, and used it to study a specific case of braided Fibonacci anyons on a two-leg ladder.
Among other results, we numerically showed that particle-hole duality breaks down for non-
Abelian anyons as would be expected. In Ref. [97], the author studied a ladder of Z3 anyons,
and found phases with normal and superfluid behaviours. In all these works, braid statistics
is shown to affect, and perhaps even induce the phases formed.

In this Chapter, we study a model of anyons on a two-legged ladder system. A two-
leg ladder is a minimal geometry that allows for particle exchanges, and therefore provides
intuition into the properties of infinite two dimensional systems of anyons. Each site of the
ladder can either be empty or has a single non-trivial anyon. The anyons are allowed to interact
and braid around each other. In analogy with fermionic and bosonic Hubbard model, we dub
this anyonic Hubbard model on a ladder. In the numerical results presented, we affirmatively
establish that phases of anyonic systems depend nontrivially on the braid statistics. In
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Figure 6.1: A two-leg ladder of interacting and itinerant non-Abelian anyons. An empty site
is equivalent to a vacuum charge. When a site is occupied with a charge a, the charge can
be either a Fibonacci anyon τ or an Ising anyon σ. (The fermion ψ in AIsing will not be
physically supported on sites).

other words, different anyon species under the same model microscopic Hamiltonian will
have different phase diagrams in the presence of braiding operation. This conjecture is
reinforced by a doing a comparative analyses using Fibonacci and Ising anyons—which are
two prominent anyon species with different braid statistics.

The rest of this Chapter are organised as follows: In Section 6.2, we introduce and
describe our model. In Section 6.3, we present the phase diagrams of the model, and in
Section 6.4, we present the numerical results of the order parameters for the phases. We end
with a conclusion in Section 6.5.

6.2 Anyonic Hubbard model on a ladder

6.2.1 Model and its Hilbert space
The system we study is a two-leg ladder of interacting and braiding non-Abelian anyons. The
ladder has a finite vertical width of two and an infinite horizontal dimension. See Fig. 6.1.
There is an imposed “hardcore” constraint on each site to penalise the occupation of more
than one particle. The specific particles supported are chosen from the Fibonacci and Ising
anyons particle spectrum: AFib = {I, τ}, and AIsing = {I, σ, ψ}, where I represent vacuum
charge (or empty site), τ is one Fibonacci anyon, σ is one Ising anyon, and ψ is a fermion
obtained when two Ising anyons fuse. All the particles except the fermion ψ are allowed on
site. The fusion algebra and other anyonic data of these particles are recalled in Appendix A.
We study the model with each anyons species independently, and not an eclectic mix of both
Ising and Fibonacci anyons.

We use a number of conventions to write the charges of the system: the particles on
each site may be enumerated explicitly in terms of the charge a of the anyon, or if we use an
additional U(1) symmetry [i.e. particle (number) density conservation] present in the system,
the particles can be enumerated in terms of the composite charge label c = (a, n), where a is
the anyonic charge and n is the number charge associated to the anyon charge, which can also
be re-written in subscript style as an. We associate a number n = 0 to the vacuum charge
and n = 1 to one Fibonacci or Ising anyon. Table 6.1 summarises our charge enumeration
convention.

As the ladder has a finite vertical width, it might sometimes prove convenient to view it
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Fibonacci anyons Ising anyons

a =



I ≡ (I, 0) ≡ I0
τ ≡ (τ, 1) ≡ τ1

a =



I ≡ (I, 0) = I0
σ ≡ (σ, 1) ≡ σ1

Table 6.1: Table shows onsite charges and our different enumeration convention. The vacuum
charge is written as I ≡ (I, 0) ≡ I0. One Fibonacci and Ising anyon is written as τ ≡ (τ, 1) ≡ τ1
and σ ≡ (σ, 1) ≡ σ1.

Fibonacci anyons Ising anyons
(I, 0) × (I, 0) = (I, 0) ≡ I0 (I, 0) × (I, 0) = (I, 0) ≡ I0

(I, 0) × (τ, 1) = (τ, 1) ≡ τ1 (I, 0) × (σ, 1) = (σ, 1) ≡ σ1
(τ, 1) × (I, 0) = (τ, 1) ≡ τ1 (σ, 1) × (I, 0) = (σ, 1) ≡ σ1

(τ, 1) × (τ, 1) =



(I, 2) ≡ I2
(τ, 2) ≡ τ2

(σ, 1) × (σ, 1) =



(I, 2) ≡ I2
(ψ, 2) ≡ ψ2

Table 6.2: Table shows the combined total charges on the rungs, derived from fusing the
onsite charges of the two sites on the rung. In the fusion (a1, n1)×(a2, n2), the left ordered pair
represent the charge on the top site and the right one represent the charge on the bottom site
of the rung. Fusion of the anyonic charges follow the fusion rules of the specific anyon model
(see Appendix A), and the number charges fuse using ordinary addition. As in Table 6.1,
the subscript n in an is the number of non-trivial charges (e.g. τ or σ) fusing into the anyon
charge a.

as a one dimensional system by coarse-graining the rungs to a single site, thereby collapsing
the ladder into a chain. The charges on each sites of the chain would be the fusion outcomes
of the charges on the rungs of the original ladder. Table 6.2 lists the combined charges on the
rungs. In addition, we represent the anyonic charges on sites and their fusion outcomes on
the rungs using a set of diagrammatic representations shown in Fig. 6.2.

The Hilbert space of our model admits both anyonic (quantum) symmetry and U(1)
symmetry. The U(1) symmetry is defined in terms of conserved global particle density. At
any fixed global particle number N , particles can have different spatial configurations, which
are specified by a configuration set IN . As the particles are non-Abelian anyons, they also
have a fusion space when N > 0. The Hilbert space structure is therefore a direct sum,⊕

i∈IN

V(N )
i , (6.1)

where i is the index of the spatial configurations of the particles and V(N )
i is the anyonic

fusion space of that spatial configuration. For all possible particle numbers N of the system,
the total Hilbert space is therefore,

V =
∞⊕

N=0

⊕
i∈IN

V(N )
i . (6.2)

6.2.2 Hamiltonian
We construct an anyonic Hubbard-like Hamiltonian Ĥ for the dynamics of particles on the
ladder (see Fig. 6.1), which consists of a kinetic and a chemical potential term, jointly
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(a)

(I, 0) (a, 1)

(b)

(a, 1) (a, 1)

(b, 1)

Figure 6.2: Diagrammatic representations of anyonic charges. Sub-figure (a) shows two types
of lines representing the two types of charges permitted on each site: a vacuum charge (I, 0)
and a non-trivial charge (a, 1), where a = τ or σ. Sub-figure (b) shows the charge fusion
outcomes on each rung, where the lines carry the same meaning as in (a). The charge label
b in the last vertex diagram can be b = I if a is either a τ or σ—as both can annihilate to
vacuum, or b = τ if a = τ, or b = ψ if a = σ—all based on the fusion rules of the specific
anyon model. Note that as Fibonacci and Ising anyons are self dual charges, lines would not
need arrowheads, but in the presence of a U(1) number charge—which is not self-dual, the
lines would need arrowheads.

represented by Ĥt-µ, and an interaction term ĤJ,

Ĥ = Ĥt-µ + ĤJ. (6.3)

As with fermions and bosons, the kinetic term accounts for the hopping of particles between
sites, but now in addition for being anyons, it also braids them when they hop passed one
another. The chemical potential term tunes the rational filling of the ladder. The interaction
term acts locally between nearest-neighbouring anyons. The fusion outcome of two Fibonacci
anyons is τ × τ → I + τ, and that of two Ising anyons is σ × σ → I + ψ. The interaction
term is an Heisenberg-type one, which favours projection of either two τ particles or two
σ particles to the vacuum. If the projection to vacuum charge sector is assigned the lowest
energy, it is termed “antiferromagnetic” otherwise it is termed “ferromagnetic.” Note that
for the case of Fibonacci anyons, ferrromagnetic interactions favour fusing to a non-Abelian
charge, whereas for Ising anyons, both interactions fuse to a an Abelian charge.

To capture the physics of braiding, it is necessary to map the sites of the two dimensional
ladder to a canonical ordering in one dimension which can then be used to order charges on
the leaves of a fusion diagram. Using Fig. 6.3 as a reference, the ladder should be viewed
from bottom to top, where the particles on the top leg of the ladder are assumed to be “behind”
those on the bottom leg, and we adopt a zig-zag linear ordering of the sites, which minimizes
the interaction length the most. The anyons are fused in the “standard” convention: from left
to right.

We derive below the terms of theHamiltonianwith respect to this orientation and ordering.

Kinetic and chemical potential term

Wederive the contributions to the kinetic energy and chemical potential term using Fig. 6.3(i).
The kinetic term of the Hamiltonian receives contributions from a possible combination of
the following three scenarios: (1) the hopping of a non-trivial charge between sites 2i − 1
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Figure 6.3: (i) Orientation of ladder: The ladder is viewed at an angled position from the
bottom to top. Particles on the top leg are regarded to be “behind” those on the bottom leg.
(ii) Linear ordering: The ladder is projected to one dimension; the ladder is “stretched out"
into a chain. (iii) Fusion ordering: The particles on the sites of the ladder are fused in the
standard way—from left to right. The charge label of site i is denoted as ai (which can be
a vacuum charge or a non-trivial charge). The intermediate fusion outcomes on the links of
the fusion tree have been suppressed for clarity.
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and 2i + 1 on the top leg, while passing behind site 2i on the bottom leg, and braiding with
any non-trivial charge there, otherwise, the passage does not introduce any braid factor into
the state of the system. (2) Similarly, the hopping of a non-trivial charge between sites 2i
and 2i + 2 on the bottom leg, while passing in front of site 2i + 1 on the top leg, and also
braiding with any non-trivial charge there, otherwise that passage also does not introduce
any braid factor into the state of the system. (3) And lastly, the hopping of a charge between
sites 2i − 1 and 2i on the rung, which does not introduce any braid factor—as they are nearest
neighbouring sites based on our choice of linear ordering. Note that, because of the hardcore
constraint, there needs to be a vacant site for hopping to take place. The chemical potential
is the energy needed to add or remove particles from the sites of the ladder.

In the convenient diagrammatic formalism similar to those used in Refs. [1, 101], the
kinetic and chemical potential term, Ĥt-µ, is,

2i-1

c

2i+1 2i 2i+1 2i+2

+ h.c.+Ĥt-µ = −t‖

2i-1 2i

t⊥

∑

i

+ h.c. ,− µ

i

2i

c

∑

c=I,a

−

(6.4)
where t‖ is the horizontal hopping strength on the legs, t⊥ is the transverse hopping strength on
the rungs, and µ is the chemical potential. The term “h.c.” denotes the Hermitian conjugate
of all the diagrammatic terms preceding it. In our diagrammatic expression, a solid black
line represents a non-trivial charge a, which can be τ or σ depending on the model, while a
grey line represents either the trivial vacuum charge I or a nontrivial charge a.

Note that, when c = I, hopping does not introduce any braid factor, but when c = a, the
hopping term acquires a braid factor Raa for “under-crossing,” and (Raa)† for “over-crossing.”
The matrix representation of these braid factors, for both Fibonacci and Ising anyons, are
given in Appendix A.

Heisenberg interaction term

The interaction term is a sum of Heisenberg-like couplings applied to anyons. For two non-
trivial anyonic charges with label a, and fusion outcomes a×a → I+· · · , an antiferromagnetic
coupling energetically favours projection of the two charges a into the vacuum channel I,
while ferromagnetic coupling favours the other charge sectors.

With reference to Fig. 6.3(i), we project the non-trivial charges a on sites (2i−1, 2i+1) on
the top leg and sites (2i, 2i + 2) on the bottom leg to the vacuum charge I with an interaction
strength J‖ , and also project the charges a on sites (2i − 1, 2i) on the rung to the vacuum
charge I with an interaction strength J⊥.
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Diagramatically, the interaction Hamiltonian is,

ĤJ = +−J‖ J⊥ ,

2i-1 2i 2i+1 2i 2i+1 2i+2 2i-1 2i

−
∑

i

∑

c=I,a
cc

(6.5)
where the dotted line represents the vacuum charge I. For this work we focus on the fully
antiferromagnetic interaction regime, i.e. J‖, J⊥ > 0.

6.3 Results
In this section we present the main results explaining the various phases present in ground
states of braided non-Abelian anyons on the ladder. We performed numerical simulations for
both Fibonacci and Ising anyons using three different types of anyonic tensor networks al-
gorithms: anyonic×U(1)-MPS [100], anyonic TEBD [41], and anyonic-DMRG [43]. Except
where otherwise indicated, the results presented in this work are based on numerical simu-
lations with a bond dimension of χ = 200. For clarity, a detailed presentation of numerical
results used to identify the phases is deferred to Sec. 6.4.

The Hamiltonian defined in Eq. (6.4) and 6.5 has several parameters: hopping t⊥ of
particles on the rungs (or simply “rung hopping”), hopping on legs t‖ (or “leg hopping”), a
chemical potential term µ that controls the filling of the ladder, an (Heisenberg) interaction
on rungs J⊥ (or “rung interaction”), and interaction on the legs J‖ (or “leg interaction”),
and therefore, the parameter space is very large. To recapitulate, we are mainly interested in
studying the effect of braid statistics on the ground states of anyonic systems, and therefore the
leg hopping t‖ and the chemical potential µ are the two parameters that we make tunable. In
order to maintain a ladder model, we set t⊥ = 1—i.e. we do not consider an instance of having
two copies of a single chain (when t⊥ = 0). The ground space of free non-Abelian anyons
is exponentially degenerate in the number of anyons in the system, which become lifted in
the presence of inter-particle interaction. Henceforth, we set the interaction strengths equal
J‖ = J⊥ ≡ J = 1. Furthermore, at any non-zero filling of the ladder, and at any non-zero
value of t‖ , the anyons braid with strength ∼ (t‖Raa) which also acts as an interaction on the
fusion degrees of freedom.

6.3.1 Order parameters
The relevant phases in our system are identified using both local order parameters and non-
local entropic calculations. Average particle density per rung, ν = 〈n̂〉, and pair correlation
function, C(r), are the calculated local order parameters, while the block scaling of the
entanglement entropy (EE), S(r), is non-local as it is computed from the reduced density
matrix of many blocks of varying size.

The pair correlation function C(r) is the expectation value of a pair particle propagator,
Ĉ(r). We define the anyonic pair particle propagator as an operator that fuses a pair of
particles into a particular charge outcome at rung i and splits off at a distant rung j, as defined
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in the diagram below:

ĈI(r) = ,

a a

a a

a a

a a

(i)

(ii)

Ĉb(r) =
b

,

(6.6)

where a = τ or σ. In (i), two anyons of charge a fuse into the vacuum charge I for both
anyon models, and in (ii), the two charges a can also fuse into a non-vacuum charge b, where
b = τ for Fibonacci anyons and b = ψ for Ising anyons.

Some insight into the expected behaviour of this correlation function C(r) for anyons
can be gleaned from the behaviour of the pair correlation function for spinless fermions on a
ladder as investigated in Ref. [102]. In the infinite ladder limit, the correlation of the (quasi)
ordered superfluid phase decays polynomially as,

C(r) ∼ r−
1
K , (6.7)

where r is the inter-particle separation, and K is the Luttinger parameter. In the (quasi)
disordered (non-superfluid) phase, C(r) decays exponentially,

C(r) ∼ e−r/ξ, (6.8)

where ξ is the correlation length.
With regards to the nonlocal order parameter, we compute the von Neumann EE,

S(l) = −Tr
(
ρ̂l log ρ̂l

)
. (6.9)

where ρ̂l is the reduced density matrix of a contiguous block of l sites on the lattice. This
quantifies how entangled the block is with the rest of the lattice. We coarse-grain rungs on the
ladder to sites of a 1-D chain in order to compute this quantity. For critical systems with open
boundaries and in the thermodynamic limit, the entanglement entropy has a simple relation
from conformal field theory (CFT) [98, 103, 104],

S(l) =
c
3

log l, (6.10)

where c is the central charge of the CFT.

6.3.2 Phase diagrams
The phase diagrams for the ground states of the model Hamiltonian Ĥ for both Fibonacci and
Ising anyons are presented in Fig. 6.4 (planar view) and Fig. 6.5 (three-dimensional view). As
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Figure 6.4: Phase diagrams for ground states of interacting and braiding (a) Fibonacci and
(b) Ising anyons on a ladder. The horizontal axis is the leg hopping ratio t‖/t⊥, the vertical
axis is the chemical potential µ/t⊥, and the plotted quantity is the filling fraction ν = 〈n̂〉.
Six distinct phases are apparent for Fibonacci anyons and four for Ising anyons. The phases
are described according to: the nature of filling and filling fraction (in round brackets), the
central charge for the gapless phases, and the types of mobile excitations of the Luttinger
liquid. The abbreviations are: ZF—zero filling (ν = 0), 1

2F—half filling (ν = 1/2), FF—fully
filled (ν = 1), LF—low filling (0 < ν < 1

4 ), IF—intermediate filling (1
4 < ν < 3

4 ), HF—high
filling (3

4 < ν < 1), ∆—gapped, c—central charge, GC—Golden chain, IC—Ising chain,
LLτ1—Luttinger liquid of hopping τ1 charges, LLσ1—Luttinger liquid of hoppingσ1 charges,
and LLI3—Luttinger liquid of hopping “neutral Fibonacci triplets”.

mentioned above the only varying parameters in our simulations are the chemical potential
µ which populates the ladder with particles and the horizontal hopping t‖ which braids the
particles. As the microscopic Hamiltonians for both anyon models are the same, we attribute
the differences in the phase diagrams to the differing fusion outcomes and braid statistics of
the anyon models as described below.

While the phase diagrams are very different at high leg hopping ratio t‖/t⊥, they look
similar at low ratios. Hence, we divide the explanation of the phase diagrams into two
subsections: one for low leg hopping ratio and the other for high hopping ratio.

Low hopping ratio

At low leg hopping ratio (0 ≤ t‖/t⊥ . 0.5) the two phase diagrams in Fig. 6.4 are similar,
and share a common description. Briefly stated, as the chemical potential µ/t⊥ varies at low
t‖/t⊥, there is a first order phase transition from a phase with zero filling to a phase which is
half-filled, and finally to a phase where the ladder is fully filled. These transitions are sharply
revealed by jumps in the filling fraction as a function of the chemical potential as shown in
Fig. 6.5.

The explanation for this behaviour is as follows. The chemical potential term is the energy
required to add or remove particles from the system. At very low values of µ, the system
has negligible number of particles, and averages to zero particle density which explains the
appearance of the “deep blue” region on the bottom left in both phase diagrams (with the
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Figure 6.5: Three-dimensional versions of Fig. 6.4. The vertical axis is the filling fraction—
which was collapsed in Fig. 6.4. First order phase transitions can be seen as the chemical
potential µ/t⊥ varies at low leg hopping ratio t‖/t⊥. Second order phase transitions are also
evident at higher leg hopping t‖/t⊥ values for varying values of the chemical potential µ/t⊥.

abbreviation ZF—for zero filling). This phase is trivially gapped (∆) with the dominant
occupation being the trivial vacuum charge I0 on all sites of the ladder.

As the chemical potential increases, we observe a first order phase transition from the
zero-filling phase into a phase where the ladder is half-filled (1

2F) and has an average particle
density of ν = 1/2 per rung (i.e. one particle per rung). We note that, there is no phase
transition into an ε-filling phase, where ε is a small number. On each local rung, the
chemical potential term is −µn̂i, where 〈n̂i〉 = {0, 1, 2}, i.e. particles are added locally in
discrete amounts, from no particle to a maximum of two on every rung. In the case of single
particle occupancy per rung, due to the non-zero value of t⊥ = 1, the particle will be in a
superposition |+〉i = 1√

2
( |1, a〉 + |2, a〉) of the top and bottom site of the rung, where “1” and

“2” represent the top and bottom site respectively, and a = τ or σ.
At t‖/t⊥ = 0, when particles do not hop across horizontally on legs, the configuration on

the ladder acts effectively like a single chain of interacting anyons. It has been shown that
an antiferromagnetic interacting anyon chain is critical and described by CFT, with known
central charges c = 0.7 for Fibonacci anyons (known as the Golden chain) [88], and c = 0.5
for the Ising anyon chain (equivalent to the Ising model CFT). In the phase diagram Fig. 6.4,
we found the half-filled phase to be critical and computed the central charges of their CFT to
be, cFib = 0.7029 for Fibonacci anyons, and cIsing = 0.499 for Ising anyons, which are very
close to their theoretical values.

As the leg hopping ratio increases, particles use available vacancies to braid past one
another. From our simulations, we found that the particles still arrange into an effective
chain-like configurations with a central charge near their theoretical values. This may be
explained by the fact that when non-Abelian anyons move past each other they experience
braiding, which in the confined geometry of a ladder mimics a local interaction, and like
the Heisenberg interaction, depends on the local fusion outcomes (see Refs. [105, 106] for
more details). Thus for small enough hopping ratio, the anyons still behave as a single
antiferromagnetically interacting chain.
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Increasing the leg hopping t‖/t⊥ beyond a critical ratio tc, we find evidence for a second-
order phase transition into another phase. This critical ratio differs for Fibonacci and Ising
anyons, and even more, the physics of the phases differ as explained below.

As the chemical potential increases further, at low hopping ratio t‖/t⊥, there is another
first-order phase transition from the half-filled phase into a phase where the ladder is fully
filled (FF). It has been shown in previous works ( Refs. [2, 42]) that two-leg ladder with
Fibonacci or Ising anyons is gapped. This can be simply understood: there is a strong
vertical AFMHeisenberg interaction J⊥ = 1 that favours fusing pair of charges on every rung
into the vacuum charge, which is a product state under renormalisation. We give another
qualitative reason for the gapped ground state behaviour at higher values of the chemical
potential. At µ/t⊥ = 0, for example there remains only two competing interactions in the
Hamiltonian, namely hopping and interaction strengths on the rungs and legs of the ladder,
where t⊥ = J = 1, and t‖ < tc < 1. The energy for one free particle to hop on a rung is t⊥ = 1,
which is the same as the interaction energy (J = 1) for two particles on a rung. However,
since J > t‖ , it is energetically favourable to place two neighbouring particles on the legs of
the ladder rather than placing one per rung with a vacant site that allows for hopping, and
therefore the ground state of the ladder becomes fully filled.

High hopping ratio

When the leg hopping ratio t‖/t⊥ increases further than a certain critical value tc, there is
a second-order phase transition into another phase, as shown in Figs. 6.4 and 6.5. From
the calculations of the pair correlation function using Eq. (6.6) (i), we found these phases
to be superfluid-like forming anyonic Luttinger liquid. In addition, from the calculations
of the block scaling of the entanglement entropy using Eq. (6.9), we found that the anyons
in these phases “fractionalize” into interacting anyonic degrees of freedom and itinerant
hardcore particles. In other words, the interaction and kinetic terms in the Hamiltonian
decouple into two “weakly” non-commuting terms, and as such can be treated separately.
The same effect has been shown in Refs. [82, 83] to happen in a one-dimensional chain of
interacting and itinerant non-Abelian anyons. The interacting and itinerant anyons separate
into distinct interacting and itinerant parts analogous to spin charge separation in a chain of
spinful electrons. The CFT has a central charge of 1 + c, where c is the central charge of
(Heisenberg) interacting anyons and the number 1 is the central charge of itinerant bosons.

From our results, we found distinct behaviour between Fibonacci and Ising anyons:
Ising anyons—The filling fraction (0 < ν < 1) varies continuously between 0 and 1,

which means there is no phase transition as the chemical potential varies at high leg hopping
ratio t‖/t⊥. We refer to this phase as the “Intermediate Filling” (IF) phase. The ground state
is superfluid. The Ising anyons ladder behave effectively like a chain, having a central charge
of 1 + c, where we computed c ' 0.499 for the interacting anyons, which is very close to the
theoretical value of the Ising CFT central charge ctheo = 0.5, and the number 1 is the central
charge of the hopping hardcore σ1 charge, which is the only mobile particle in this phase.

Fibonacci anyons—The phase diagram of Fibonacci anyons at high leg hopping ratio is
more elaborate. There are three distinct superfluid and spin-charge separation phases.

At low chemical potential, the ladder is sparsely filled with particles and has a “low
filling” (LF) fraction, 0 < ν < 1/4 per rung, meaning there is an average of one τ1 charge per
every four sites of a plaquette. The central charge of the CFT of this phase was computed to
be c ' 1.762. The nearest theoretical value to our value is ctheo = 1.7 ≡ (0.7+1) according to
the phenomenology of spin-charge separation. The Fibonacci anyon ladder therefore behaves
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Figure 6.6: Illustration of the hopping of a neutral Fibonacci triplet I3. Let a filled dot
represent a single Fibonacci τ charge, a vacant site as a vacuum charge I, and an ellipse round
a group of three τ’s fusing into a total vacuum charge as a neutral Fibonacci triplet I3. When
a single τ hops out of the triplet into a vacant site, due to the high density packing, another
triplet can be formed, as shown. Thus, it appear as if the triplet hops on the ladder and a hole
hopped in the reverse direction.

like a one dimensional chain in this regime.
As the chemical potential µ/t⊥ increases, more particles are added to the ladder. We found

a phase transition into another phase, where the filling fraction is bounded as 1
4 < ν < 3

4 ,
which we call the “intermediate filling” (IF) phase. Increasing µ/t⊥ further, there is another
phase transition into another phase where the filling fraction is 3

4 < ν < 1. We dub this
phase as the “high filling” (HF) phase. Apart from their filling fraction, these two phases
share a number of same properties including, they are critical and described by CFT, they
are superfluid, and exhibit spin-charge separation—described by Luttinger liquid theory. We
computed the central charge of the CFT of the IF phase to be c ' 2.743, and of the HF phase
to be c ' 2.8574. These two values are in the vicinity of the theoretical value of ctheo = 2.7,
though the offset of these numerical values can be attributed to themuch entanglement created
from braiding and the finite value of the bond dimension of our MPS simulations. Similar
to the LF phase, this central charge value can also be explained using the phenomenology of
anyonic spin-charge separation. The Heisenberg interaction term contributes a central charge
value of c = 0.7, where the ladder behaves effectively like the Golden chain (GC) [88]. We
attribute the remaining value of c = 2.0 to the kinetic energy term, which comes from the two
types of distinct particle types with mobile degrees of freedom on the ladder. Though, τ1 is
the only particle type with mobile degree of freedom in our Hamiltonian, giving a Luttinger
liquid (labelled LLτ1) and accounts for a central charge value of c = 1.0, we conjecture that,
due to the ladder geometry, particles can group into “neutral Fibonacci triplets” I3 which
have mobile degree of freedom, forming another Luttinger liquid LLI3 with a central charge
of c = 1.0. Three Fibonacci anyons have three fusion channels, which includes an I3, where
the three τ charges can fuse into the vacuum charge I3—the subscript 3 is the number of τ
charges. Due to a high packing density of the τ1 on the ladder, the neutral triplet I3 can hop
when a single τ1 hops as illustrated in Fig. 6.6. The neutral triplet can move freely on the
ladder and fusion tree and hence is different from the hopping of a single τ1 anyon.

Summing all the central charges together explains why the IF and HF phases have a
central charge value of c ∼ 2.7. We labelled these two phases as “GC+ LLτ1 + LLI3” for one
Golden chain and Luttinger liquid of two different mobile excitations.

6.4 Numerical results
In this section we present the results of the calculations of the central charges and the
superfluid correlation functions within the critical phases of the phase diagrams Fig. 6.4.
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Figure 6.7: Block scaling of the entanglement entropy for Ising anyons on the ladder at half
filling (ν = 1/2) when (a) the longitudinal hopping t‖/t⊥ = [0, 1] with increments of 0.25,
and (b) t‖/t⊥ = [1, 2] with increments of 0.25.

The central charges are computed from the block scaling of the entanglement entropy S(r)
in Eqs. 6.9 and 6.10.

6.4.1 Scaling of the entanglement entropy
There are four distinct critical phases in the Fibonacci anyons phase diagram and two in the
Ising anyons phase diagram. We first present the entanglement entropy plots of the Ising
anyons, then followed by plots for Fibonacci anyons.

Ising anyons

At low values of t‖/t⊥ and for µ/t⊥ between −1.5 and −1, the filling fraction is ν = 0.5 per
rung. We therefore use an Anyon×U(1)-MPS ansatz [42], where we set the filling fraction to
ν = 1

2 to stay exactly in the half-filling sector.
The plots of S(r) for the leg hopping ratio t‖/t⊥ = [0 : 0.25 : 1] and t‖/t⊥ = [1 : 0.25 : 2]

are shown in Fig. 6.7(a) and (b), respectively. The expected linear scaling of the S(r) in
logarithmic scale (from Eq. (6.10)) can be seen in the plots of t‖/t⊥ = {0, 0.25, 0.5}, but
this linear scaling is not sharply evident for values of t‖/t⊥ ≥ 0.75 due to the entanglement
created from braiding of the anyons and the finite bond dimension of the MPS. In such cases,
a finite entanglement analysis [107, 108] (or known as finite-χ scaling) can be employed
to fit a straight line to the entanglement entropy scaling. In the infinite limit of χ, the
scaling of the entanglement entropy would be linear, and has a central charge closer to the
supposed theoretical value. For example Fig. 6.8 shows the finite-χ scaling of the EE, S(r),
at t‖/t⊥ = 1. The linearity of the EE, S(r), improves as the bond dimension χ increases.

The central charge can be computed from the slope of S(r),

c = 3 ×
S(r2) − S(r1)
log r2 − log r1

, (6.11)

where r1 and r2 are two points on the line. Some of the central charges computed for Ising
anyons are shown in Table 6.3. It can be seen that at low values of t‖/t⊥, particles are weakly
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Figure 6.8: Finite entanglement analysis of block scaling of EE for Ising anyons at the filling
fraction ν = 1/2 and at t‖/t⊥ = 1. The “bond dimension,” χ in the legend controls the
amount of entanglement allowable in the ground state. The computed central charge at these
parameters is cnum. = 1.499.

t‖/t⊥ 0 0.25 0.5 1 2
cnum. 0.505 0.499 0.502 1.499 1.534

Table 6.3: Numerical values of the central charges for Ising anyons extracted from the linear
scaling of the entanglement entropy S(r) at half filling.

delocalised and the ladder is an effective interacting Ising anyon chain. The central charge of
the CFT is c ∼ 0.5. At high hopping ratio t‖/t⊥, for example at t‖/t⊥ = 1, there is spin-charge
separation, and the central charge is c ∼ 1.5, as previously explained.

To confirm that there is no other phase transition as the chemical potential µ/t⊥ varies at
high leg hopping ratio t‖/t⊥, we computed the central charges at two other points in the phase
diagram: (µ/t⊥, t‖/t⊥) = {(−2.0, 1.1), (0, 1.2)}. The plots of the EE for these parameters and
their central charges are given in Fig. 6.9. Therefore, there is just a single Luttinger liquid
and a single interacting anyon chain in the Ising anyons spin-charge separated phase.

Fibonacci anyons

Like in the Ising anyons, at low values of t‖/t⊥ and for µ/t⊥ between −1.5 and −1, the filling
fraction is ν = 0.5 per rung, i.e. there is an average of one particle per rung. The ground
state of this phase is critical and described by CFT with a central charge of c = 0.7 for AFM
Heisenberg interaction. We therefore constrained the ground state ansatz to the half-filled
sector using Anyon×U(1) MPS, and vary t‖/t⊥ ∈ [0 : 0.25 : 2]. The plots of the scaling of
the EE are shown in Fig. 6.10 (a) and (b). Some values of the central charges extracted from
the block EE scaling (where finite-χ was done if necessary) are presented in Table. 6.4.

We computed the central charges of the three gapless (spin-charge separated) phases: at
(µ/t⊥, t‖/t⊥) = (−1.5, 0.75) in the “low filling” (LF) phase, the block scaling of the EE and
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Figure 6.9: Finite-χ scaling of the block entanglement entropy when (a) (µ/t⊥, t‖/t⊥) =
(−2, 1.1), and (b) (µ/t⊥, t‖/t⊥) = (0, 1.2) [in the Ising phase diagrams Fig. 6.4(b)]. The
central charge computed from the linear fit in (a) is c = 1.542, and the central charge from the
linear fit in (b) is c = 1.501, which are both near the theoretical value of the central charge
c = 1.5 for a spin-charge separation phase.
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Figure 6.10: Block scaling of the entanglement entropy S(r) with block size r of Fibonacci
anyons at half filling (ν = 0.5) for (a) t‖/t⊥ = [0, 1] with increments of 0.25, and (b) for
t‖/t⊥ = [1, 2] with increments of 0.25. The entropy quickly saturates at high values of t‖/t⊥
due to entanglement from braiding.

t‖/t⊥ 0 0.25 0.5 1 2
cnum. 0.754 0.703 0.701 2.819 2.921

Table 6.4: Numerical values of the central charge of Fibonacci anyons at half filling.
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Figure 6.11: The block of the EE of Fibonacci anyons at (µ/t⊥, t‖/t⊥) = (−1.5, 0.75) in the
“low filling” phase. The central charge extracted from the linear fit is c ' 1.762, which is in
close range of ctheo = 1.7 ≡ (0.7 + 1) as explained in the text.

the central charge are given in Fig. 6.11; at (µ/t⊥, t‖/t⊥) = (0, 1.25) in the “high filling”
(HF) phase, the block scaling of the EE and the central charge are given in Fig. 6.12 (a); and
finally, at (µ/t⊥, t‖/t⊥) = (−1, 1.5) in the “intermediate filling” (IF) phase, the block scaling
of the EE and the central charge are given in Fig. 6.12 (b).

6.4.2 Scaling of superfluid correlation function

We computed the scaling of the pair particle propagator defined in Eq. (6.6)(i) for Ising and
Fibonacci anyons only at half-filling as the leg hopping ratio t‖/t⊥ varies from 0 to 2 in
steps of 0.25. This calculation will reinforce the conclusion that the phases at high t‖/t⊥ are
superfluid, i.e. quasi-ordered. Fig. 6.13 shows the plots of superfluid correlation for Ising
and Fibonacci anyons. It can be deduced that, at half filling, the phase transition for Ising
anyons occurs at tc = (t‖/t⊥)c ∼ 1, while for tc ∈ [0.5, 0.75] for Fibonacci anyons. A better
value of tc for Fibonacci anyons is obtained from the Fig. 6.14 which is a plot of the superfluid
correlation for values of t‖/t⊥ = {0.5, 0.75}. At half filling, the critical ratio for Fibonacci
anyons is tc ∼ 0.62.

The Luttinger parameter can be obtained from a fit to the plot of the superfluid correlation.
Though the value of Luttinger parameter K for non-Abelian anyons is not known, we got the
following numbers for points within the superfluid phase: for Ising anyons at t‖/t⊥ = 1, we
obtained KIsing ' 0.954, and for Fibonacci anyons at t‖/t⊥ = 0.75, we obtained KFib ' 1.014
(see Fig. 6.15).

In summary, at half filling there is a phase transition from a phase where the anyons form
effective interacting chain to a different phase, which is superfluid and the anyons fractionalise
into interacting and itinerant part. The critical points for both anyon models are different,
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Figure 6.12: The block scaling of the EE of Fibonacci anyons at (µ/t⊥, t‖/t⊥) = (0, 1.25)—
the “high filling” phase and at (µ/t⊥, t‖/t⊥) = (−1, 1.5)—the “intermediate filling” phase,
respectively. The central charges from the linear fits are: (a) c ' 2.743 and (b) c ' 2.846.
Both values are close to theoretical value of ctheo = 2.7 ≡ (0.7+1+1) which is the aggregate
sum of the central charges for one AFMGolden chain and one Luttinger liquid of two distinct
particle types as explained in the text. The offset in the values of the central charges can be
attributed to the small bond dimension of the MPS and much braid-induced entanglement in
the ground state at high filling fraction.

which we attribute to differing braid statistics since the microscopic Hamiltonian of both
models is the same.

6.5 Conclusion
In thiswork, we have investigated the role of two different braid statistics—Ising and Fibonacci
anyons—using an anyonic Hubbard model on a two-leg ladder. We found disparate phase
diagrams for the two anyon models, where their differences arise from their braid and fusion
statistics. (The braid statistics is intimately related to the fusion statistics). We found that
braiding has a “localising” effect, and at half-filling and low longitudinal hopping ratio,
the ladder form an effect interacting chain, which is gapless and critical like the truly one-
dimensional interacting chain model. At high hopping ratio, there is a phase transition to
an anyonic superfluid phase which exhibit spin-charge separation. While the Ising anyon
ladder showed properties like the one dimensional chain, the Fibonacci anyon ladder showed
a behaviour unlike its 1-D chain equivalent, even showing support for the formation of a new
composite particle—the neutral Fibonacci triplet I3.

There are many important questions yet to be answered, such as how the physics change
as the dimensionality of the system is increased from two-leg to W -leg ladder, and ultimately
reaching the limit W → ∞, i.e. infinite two-dimensional limit. Does fractionalisation still
survives at these higher dimensions? and what types of mobile excitations are possible in the
ground state? Is there a general theory for any anyon model?
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Figure 6.13: Superfluid correlation function for (a) Ising anyons and (b) Fibonacci anyons
at half filling (ν = 1/2) for horizontal hopping ratio t‖/t⊥ = [0, 2] with increments of 0.25.
The critical point for Ising anyons is around

(
t‖/t⊥

)
c ' 1, while for Fibonacci anyons, it is(

t‖/t⊥
)

c ∈ [0.5, 0.75].
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Figure 6.15: Plots of the correlation function within the superfluid phase at half filling and
a linear fit to determine the Luttinger parameter K . Plots are in log-log scale. (a) For Ising
anyons at t‖/t⊥ = 1, the Luttinger parameter obtained is KIsing ' 0.954, and (b) for Fibonacci
anyons at t‖/t⊥ = 0.75, the Luttinger parameter is KFib ' 1.014.
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7
Single Particle Dynamics using Quantum

Walks

7.1 Introduction
Discrete quantum systems can be used to study novel quantum phenomena such as quantum
walks (QW). Quantumwalks have received much attention over the past two decades, initially
motivated as being the quantum analogue of the well known classical random walk (RW).
Initial interest in QWs focused on the behaviour of the spatial evolution of the walks. In the
classical case the spatial probability distribution of the walker after a time τ is Gaussian with
a width σ(τ) ∼ τ1/2 while the typical coined quantum walk has a bimodal spatial distribution
with a width that scales linearly with time σ(τ) ∼ τ [109–111].

Beyond fundamental interest, researchers have also shown that quantum walks can be
the basis for constructing quantum algorithms, such as, graph searching [112–114], graph
isomorphism testing [115, 116], and towards full blown quantum computing [117], which
in part, is due to the presence of quantum entanglement in quantum walks [117, 118].
A number of interesting physical implementations of quantum walks have been proposed
including trapped ions [119], Bose-Einstein condensates [120], linear optics [121], neutral
atoms in optical lattices [122] and circuit quantum electrodynamics [123] and a number
of experimental demonstrations including Nuclear Magnetic Resonance (NMR) [124] and
photonic system [125]. Finally, an emerging direction of study for quantum walks is their use
in quantum simulation, for example, the simulation of bosonic or fermionic quantum walks
using integrated photonics [126].

In this work we look at the possibility of using a biased 1D quantum walk as an element
within a larger quantum device to route quantum information either in one direction or
another by appropriately biasing the quantum walk. By considering the entire quantum walk
as a single “lumped element” whose routing action depends on the coin bias (see Fig 7.1),
we investigate this idea further and find that we must generalize the concept of a quantum
probability current density which is typically defined for a continuous time & space setup,
to the case of a coined quantum walk with discrete time & space. Although there are many
ways to perform such a generalization, we argue that to be physically relevant the generalized
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Figure 7.1: Using the “lumped element” biased quantum walk as a router. We examine
whether one can control the routing of an initial quantum state injected at the middle of a
quantum walk to either end of the lumped element. We consider a 1D biased quantum walk
with a large number of lattice sites as a “lumped element”, which can be used to redirect
quantum probability to either end and into attached quantum wires (not described here). The
bias parameters (θ, δ) parametrize the type of coin used in the quantum walk.

discrete probability current density must satisfy a discretized continuity equation which
essentially encodes the microscopic detailed balance of the probability density with time.
We show that the “lumped element” current , obtained by summing over the entire quantum
walk lattice, reaches a steady state and for specific initial states we derive an analytic form
for this steady state current. We show that by altering a phase factor within the biased coin
we can engineer the magnitude and the direction(routing) of the steady state current. The
control phase and steady state total current exhibits a sinusoidal current-phase relationship
indicating some similarity to the behaviour of a Josephson junctions. Finally we illustrate
that conservative 1D Hamiltonian systems can also exhibit steady state dynamics similar to
the lumped element quantum walk router.

As mentioned above, central to our study is the existence of a probability current density
which satisfies an appropriately physical continuity relation. We note that although quantum
walks have received much attention and that their evolution can be studied analytically
we are aware of only two previous studies that make use of a QW probability current
density [127, 128]. Moreover in both cases, neither of their proposed currents satisfies
a continuity equation and thus are physically of little relevance. Below we will derive a
form for the local probability current density which manifestly satisfies the local discrete
continuity equation for probability. We derive an analytical expression for the total current
when summed over the spatial lattice of the QW - this corresponds to the current through
the entire lumped element of the QW router - and we show that this total current reaches a
steady state whose value can be controlled by considering a two-parameter family of SU (2)
biased coined QWs. We find that the total stationary current is an oscillatory function of
this one parameter and we discuss the similarity in behaviour to the current-phase relation
of Josephson junctions. We then show that one can find a more symmetric expression for
the local probability current density through a central difference approach to the continuity
equation and finally we explore what types of continuous conservative dynamical systems
possess similar stationary currents.
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7.2 Discrete-time coined quantum walk
We quickly review the model of the typical coined quantum walk. For a detailed overview
of quantum walks, see Ref. [110]. In this model, a particle with an internal chirality (or
two-state coin) resides on a discrete 1D lattice and is displaced conditioned on the state of the
quantum coin, where the latter periodically experiences an operation similar to coin tossing
in a classical randomwalk. Let the position eigenkets of the particle at position n be |n〉 ∈ Hp
and with an internal chirality state |c〉 ∈ Hc, where Hp and Hc are the position and coin
Hilbert space respectively. Hp = {|n〉 : n ∈ Z},Hc = {|↑〉 , |↓〉}, |↑〉 and |↓〉 are the coin states
that specifies the direction of motion. The combined Hilbert space H = Hc ⊗ Hp and the
coin flip operation is performed via a unitary coin operator, Ĉ, which operates only on the
coin Hilbert space. The most general form of this operator is

Ĉ(ξ, θ, η) =
(

eiξ cos θ eiη sin θ
e−iη sin θ −e−iξ cos θ

)
, (7.1)

which is a three parameter unitary operator. The unitary conditional translation (or step)
operator Ŝ is,

Ŝ = |↑〉 〈↑| ⊗ |n + 1〉 〈n| + |↓〉 〈↓| ⊗ |n − 1〉 〈n| , (7.2)

which implies that, if the particle is at position n with an internal coin state |↑〉, Ŝ shifts the
particle to position n+ 1, while if its chirality state is |↓〉, Ŝ shifts it to to position n− 1. If we
put θ = π

4 , ξ = η = 0, we realize the Hadamard coin that has been used extensively to study
quantum walks [109, 129].

In our study of the transport properties of the quantum walk we use the two-parameter
unitary coin operator Ĉ(θ, δ)

Ĉ(θ, δ) =
(

cos θ eiδ sin θ
e−iδ sin θ − cos θ

)
, (7.3)

which we find sufficient to study the properties of quantum transport in our model namely: the
spread of the quantum walk through θ and also any bias of the walk in the "lumped element"
through δ. Moreover, we later show that any other phase factor in a three-parameter coin
appear only in combination with the phase factors of the initial coin state of the walker, a fact
that has been noted too by previous authors [130]. Hence, we mainly use a two-parameter
coin operator.

We represent the state of the quantum particle at any time t by a state vector

|ψ(t)〉 =
∞∑

n=−∞

(
αn,t
βn,t

)
⊗ |n〉

=

∞∑
n=−∞

αn,t |↑, n〉 + βn,t |↓, n〉 , (7.4)

where αn,t and βn,t are the amplitudes associated with walker which has a given chirality. We

have chosen the representation |↑〉 =
(

1
0

)
and |↓〉 =

(
0
1

)
. The update rule for our quantum

walk is given by
|ψ(t + 1)〉 = Ŝ(Ĉ ⊗ I) |ψ(t)〉 , (7.5)
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from which we obtain the (recurrence) relations satisfied by the amplitudes αn,t and βn,t ,

αn,t = cos θ αn−1,t−1 + eiδ sin θ βn−1,t−1,

βn,t = e−iδ sin θ αn+1,t−1 − cos θ βn+1,t−1. (7.6)

These are the basic recurrence relations defining the evolution of the quantumwalk on the
1D latticewhichwewill use to derive the probability current density. Denoting the probability
ρ(n, t) for the particle to be found at position n at time t as, ρ(n, t) = |αn,t |

2 + | βn,t |
2, we have

the conservation of probability with time, i.e.
∑n=∞

n=−∞ ρ(n, t) = 1, ∀t.

7.3 Probability current density of the coined quantumwalk
Some authors have previously found an expression for the probability current density for the
QW of the form [127, 128]

j (n, t) = |αn,t |
2 − | βn,t |

2 . (7.7)
which however does not satisfy the continuity relation, and hence is not suitable for our
purpose. We now outline how to derive an expression for the current density in our quantum
walk from the recurrence relations (7.6) starting from the continuity equation. The continuity
equation (in its continuous form), can be written as ∂x j = −∂t ρ, and implies that the net
flow of probability ∂x j, into/out from a region is equal to the rate of change of the overall
probability, −∂t ρ, in that region. We consider the discrete version of the continuity equation
to be

− Mt ρ(n, t) =Mn j (n, t) (7.8)
where Mn,t is a forward difference operator in space and time given as Mt ρ(n, t) ≡ ρ(n, t +
1) − ρ(n, t), and Mn j (n, t) ≡ j (n + 1, t) − j (n, t).

The left-hand-side of (7.8) can be computed easily if we consider that the local probability
ρ(n, t) = |αn,t |

2 + | βn,t |
2 and then use the recurrence equations (7.6) to get ρ(n, t + 1),

− Mt ρ(n, t) = |αn,t |
2 + | βn,t |

2 − cos2 θ |αn−1,t |
2

sin2 θ | βn−1,t |
2 − sin2 θ |αn+1,t |

2 + cos2 θ | βn+1,t |
2

+ sin 2θ Re
{
eiδ

(
α∗n+1,t βn+1,t − α

∗
n−1,t βn−1,t

)}
. (7.9)

This equation can be arranged in a more suggestive form as

− Mt ρ(n, t) =
(
cos2 θ |αn,t |

2 − sin2 θ |αn+1,t |
2
)

−
(
cos2 θ |αn−1,t |

2 − sin2 θ |αn,t |
2
)

+
(
sin2 θ | βn,t |

2 − cos2 θ | βn+1,t |
2
)

−
(
sin2 θ | βn−1,t |

2 − cos2 θ | βn,t |
2
)

+ sin 2θ Re
[
eiδ

(
α∗n+1,t βn+1,t + α

∗
n,t βn,t

)]

− sin 2θ Re
[
eiδ

(
α∗n,t βn,t + α

∗
n−1,t βn−1,t

)]
, (7.10)

and from this the following expression for the probability current density can be read off,

j (n, t) = cos2 θ
(
|αn−1,t |

2 − | βn,t |
2
)

− sin2 θ
(
|αn,t |

2 − | βn−1,t |
2
)

+ sin 2θ Re
[
eiδ

(
α∗n−1,t βn−1,t + α

∗
n,t βn,t

)]
(7.11)
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Figure 7.2: For a QW which is initialised to yield a spatially symmetric walk, where
(αn,0, βn,0) = 1√

2
(1, i)δn,0, i.e. the walker is initially located at the origin, and using θ =

π/4, δ = 0 (a Hadamard coin); we plot (up) the probability for the walker to be found at
spatial location n at time t, i.e ρ(n, t); (down) the probability current density j (n, t). We see
that although the probability evolves in a spatially symmetric fashion the forward-difference
defined probability current density breaks this symmetry.

It is interesting to note that the current density j (n, t) in (7.11), is more involved than had been
initially supposed (7.7). Interestingly we find a dependence on the interferences between αn,t
and βn,t but since the amplitudes αn,t and βn,t oscillates forever, j (n, t) does not achieve a
steady state. In the next section we instead consider the total cumulative current over the
entire 1D lattice and find that this indeed does achieve a steady state. As an illustration
we show in Fig 7.2 the probability current density for the Hadamard QW (δ = 0), as a
function of time for a localized symmetric initial coin state (αn,0, βn,0) = 1√

2
(1, i)δn,0. We

observe that the probability current density as defined using the forward differences has
some peculiarities, i.e. although the probability distribution for the evolving QW is spatially
symmetric about the origin the introduction of the forward difference has introduced an
apparent symmetry breaking into the associated probability current density. Despite this, the
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forward difference probability current density still satisfies the associated continuity equation
(7.8). This apparent asymmetry will be remedied later on when we describe how to use a
central difference form of (7.8).

7.4 Steady state current
We now examine the asymptotic behaviour of the “total” current on the entire 1D lattice. Let
the total cummulative current J (t) be defined as

J (t) =
∞∑

n=−∞

j (n, t) (7.12)

By using the dynamical recurrence equations we can derive a very compact analytical expres-
sion for the steady state value of this current e.g. J∞ ≡ limt→+∞ J (t). We also investigate
the steady state value J∞ by numerical simulation using (7.6) and find perfect agreement
with our analytic formula. We now define some useful quantities, the global probability
amplitudes and global interference terms as, ρ+(t) ≡

∑∞
n=−∞ |αn,t |

2, ρ−(t) ≡
∑∞

n=−∞ | βn,t |
2,

and Q(t) ≡
∑∞

n=−∞ α
∗
n,t βn,t . From (7.6), we can find

|αn,t+1 |
2 = cos2 θ |αn−1,t |

2 + sin2 θ | βn−1,t |
2

+ sin 2θ Re
(
eiδα∗n−1,t βn−1,t

)
,

| βn,t+1 |
2 = sin2 θ |αn+1,t |

2 + cos2 θ | βn+1,t |
2

− sin 2θ Re
(
eiδα∗n+1,t βn+1,t

)
, (7.13)

and summing over space in (7.13) gives,

ρ+(t + 1) = cos2 θ ρ+(t) + sin2 θ ρ−(t) + sin 2θ Re
(
eiδQ(t)

)
,

ρ−(t + 1) = sin2 θ ρ+(t) + cos2 θ ρ−(t) − sin 2θ Re
(
eiδQ(t)

)
. (7.14)

In the long-time limit, we define the following ρ+(t → ∞) = Ω+, ρ−(t → ∞) = Ω−,
Q(t → ∞) = Q0, and J (t → ∞) = J∞.

In this limit (7.14), in matrix form becomes,(
1 −1
−1 1

) (
Ω+

Ω−

)
= 2 cot θ Re

(
eiδQ0

) (
1
−1

)
(7.15)

which, with Ω+ +Ω− = 1, has the solution,(
Ω+

Ω−

)
=

1
2

(
1 + 2 cot θ Re(eiδQ0)
1 − 2 cot θ Re(eiδQ0)

)
. (7.16)

This remarkable result has previously been derived by Romanelli [131]. The steady state
current J∞ then easily proceeds from (7.11), (7.12) and (7.16) as

J∞ = 2 cot θ Re
(
eiδQ0

)
. (7.17)

The above equation clearly indicates that the total current in our quantum walk depends on a
number of factors including a) the interferences through Q0 which ultimately depends on the
initial state |ψ(t = 0)〉 and on b) the bias parameter δ.
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Figure 7.3: Global interference term Q(t) for a symmetric localized initial coin state
(αn,0, βn,0) = 1√

2
(1, i)δn,0 and with coin paramters θ = π/4, δ = 5π/12, smoothed in

time using a moving window average of width 10. The solid line is the numerical result while
the dashed line is the asymptotic value Q0.

The global interference term Q0 can be computed using a Fourier series method and this
same method has been quite successful in analyzing the asymptotics of quantum walks [109,
132, 133]. Using this method and assuming a sharply localized initial state |ψ(t = 0)〉 at
n = 0 as

|ψ(t = 0)〉 =
(

cos φ
2

eiγ sin φ
2

)
⊗ |n = 0〉 (7.18)

where φ ∈ [0, π] and γ ∈ [0, 2π], with some effort (see Appendix B), one can derive Q0 to
be,

Q0 =
(1 − sin θ)e−iδ tan θ

2
[
cos φ + sin φ

(
e−i(δ+γ) tan θ

+i sin(δ + γ)
cos θ

1 − sin θ

)]
. (7.19)

Through numerical simulation one can observe the asymptotic approach of Q(t) to Q0
(see Fig(7.3)), in the long time limit.

From this we can express the steady state total current J∞, for the particular case of the
initial state (7.18), as

J∞ = (1 − sin θ)
[
cos φ + sin φ cos(δ + γ) tan θ

]
, (7.20)

which depends not only on the initial state through φ, γ, but also on the nature of the dynamics
through θ and δ as shown in Fig 7.4. The term cos(δ + γ) indicates that J∞ can be controlled
in an identical fashion either by the coin bias factor δ or the phase of the initial state. One
has the freedom to adjust J∞ dynamically irrespective of the initial state.

Finally it is curious to note that the sinusoidal dependence of the current on the phase
δ (or γ), is very reminiscent of the sinusoidal current-phase relationship (CPR), found in
Josephson junctions [134]. The highly nonlinear dependence of the Josephson current on
the phase difference across the junction has led to numerous quantum devices, the most
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Figure 7.4: Total “steady” current J∞ against δ for various coin values θ for a symmetric
localized initial coin state (αn,0, βn,0) = 1√

2
(1, i)δn,0. The points are the results of numerical

simulation using (7.11) while the lines are the analytical result (7.20). We note that J∞(−δ) =
−J∞(δ), i.e. J∞(δ) is an odd function of δ.

prominent being the Superconducting Quantum Interfence Device (SQUID). Indeed, based
on the Josephson CPR the total current in a SQUID varies sinusoidally with the magnitude
of the trapped flux.

7.5 Symmetric probability current density
Above we derived a probability current density according to a forward difference approx-
imation to the continuity equation (7.8), and we noted that this lack of symmetry in this
discretization led to peculiar asymmetric behaviours in the associated probability current
density. We now show how this can be remedied by choosing a central difference version of
the continuity equation, where we now choose

− MC
t ρ(n, t) =MC

n jC (n, t) (7.21)

where MC
n,t are the central difference operators in space and time given as MC

t ρ(n, t) ≡
(ρ(n, t + 1) − ρ(n, t − 1))/2, and MC

n j (n, t) ≡ ( jC (n+ 1, t) − jC (n− 1, t))/2. We will find that

jC (n, t) = cos2 θ
(��αn,t ��2 − ��βn,t ��2

)
+ sin 2θ Re

[
eiδα∗n,t βn,t

]
. (7.22)

To show this we use the recurrence relations (7.6), to express ρ(n, t + 1) in terms of the
amplitudes αk,t and βl,t , at time step t. We then note that these same recurrence relations can
be recast in the matrix format(

αn+1,t
βn−1,t

)
=

(
cos θ eiδ sin θ

e−iδ sin θ − cos θ

) (
αn,t−1
βn,t−1

)
. (7.23)

and as the transformationmatrix in (7.23), is unitarywe straight away can re-express ρ(n, t−1)
in terms of quantites at time t,

ρ(n, t − 1) = ��αn,t−1��2 + ��βn,t−1��2 = ��αn+1,t ��2 + ��βn−1,t ��2 . (7.24)
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With (7.24), one can write ρ(n, t + 1) − ρ(n, t − 1) involving quantities expressed only at time
step t, to be

4t ρ = ρ(n, t + 1) − ρ(n, t − 1)

4t ρ = cos2 θ |αn−1,t |
2 + (sin2 θ − 1) | βn−1,t |

2

+ sin 2θ Re[eiδα∗n−1,t βn−1,t]
+ (sin2 θ − 1) |αn+1,t |

2 + cos2 θ | βn+1,t |
2

− sin 2θ Re
[
eiδα∗n+1,t βn+1,t

]

= cos2 θ
(
|αn−1,t |

2 − |αn+1,t |
2
)
+ cos2 θ

(
| βn+1,t |

2

−| βn−1,t |
2
)
+ sin 2θ Re

[
eiδ

(
α∗n−1,t βn−1,t − α

∗
n+1,t βn+1,t

)]

= cos2 θ |αn−1,t |
2 − cos2 θ | βn−1,t |

2

+ sin 2θ Re
[
eiδα∗n−1,t βn−1,t

]

−
[
cos2 θ |αn+1,t |

2 − cos2 θ | βn+1,t |
2

+ sin 2θ Re
[
eiδα∗n+1,t βn+1,t

] ]
. (7.25)

Nowusing the central difference form for the continuity equation as ρ(n, t+1)−ρ(n, t−1) =
−

(
jC (n + 1, t) − jC (n − 1, t)

)
, by inspection we obtain the central difference probability

current density (7.22).
In Fig. 7.5 we plot out the behaviour of jC (n, t), for the same symmetric initial state as in

Fig 7.2, and now we observe that the spatial symmetry of the QW’s evolution is maintained
by jC . We also can define the total symmetric probability current JC (t) ≡

∑∞
n=−∞ jC (n, t),

and we find that JC (t), reaches a steady-state value which is identical to that found in the
forward difference case.

7.6 Do we expect the total probability current to have a
steady-state?

We have seen that for the coined QW the total current attains a steady state. We now ask the
question whether this is typical or not? In classical mechanics, we associate a steady state
current or momentum with terminal velocity, i.e acceleration in a dissipative medium. Our
biased-coined QW is completely unitary and thus one may pose the question: in a purely
Hamiltonian system (classical or quantum), what type of dynamics will result in steady state
momenta or probability current? We show that such conservative dynamics are possible and
may yield a continuous space-time analogue of our biased/directed quantum walk.

Looking now within classical mechanics, a steady-state current typically corresponds to
a terminal velocity or momentum. Considering a massive particle moving in one dimension,
and assuming that it’s momentum attains a terminal value of p f as t → ∞, and that we have
no interest in the detailed dynamics before steady-state, we can phenomenologically model
the long-time dynamics as,

ṗ = λ(p f − p) (7.26)
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Figure 7.5: For a QW which is initialised in an identical fashion to Fig. 7.2, we plot (up) the
probability density ρ(n, t); (down) the symmetric probability current density jC (n, t). We
see that now the current density is symmetric in space.

where p f is the terminal momentum, i.e at t = ∞, p∞ = p f and λ > 0. Now taking the
classical Hamiltonian to be

H =
p2

2m
+ λW (x, p) (7.27)

where W (x, p) depends on both x and p, using Hamilton’s equations of motion, ẋ = ∂H
∂p ,

ṗ = − ∂H
∂x , we can construct a sample H as

H =
p2

2m
− λx(p f − p) . (7.28)

from which the equation of motion are: ẋ = p
m + λx, ṗ = λ(p f − p). The solution to this

dynamics is:

p(t) = p f (1 − e−λt ) , x(t) =
p f eλt

2mλ
(1 − e−λt )2 , (7.29)

with the initial conditions: p(0) = 0, x(0) = 0. With this sample Hamiltonian the particle
reaches a steady state momentum p f as it travels to x → sgn(p f ) ×∞.
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The quantization of this sample classical Hamiltonian turns out to be somewhat ambigu-
ous. If we shift p by p f , i.e p→ p f + p, the classical Hamiltonian becomes,

H =
(p + p f )2

2m
+ λxp (7.30)

To quantize this equation, we can let p→ p̂, and x̂ p̂→ 1
2 ( x̂ p̂ + p̂x̂) to have the Hamiltonian

hermitian. However there are many ways of promoting the classical quantity xp to an
hermitian operator and many issues relating to these difficulties have been addressed before
in the literature under the so-called “H = xp model” ([135, 136]).

7.7 Conclusion
Both the theory pertaining to, and the experimental implementation of, quantum walks con-
tinues to attract widespread interest. Despite this little research has been done to understand
their transport properties. In this work we derived expressions for the probability current
density based on a discretisation of the probability continuity equation. For the specific
case of an initial localised state we were able to derive an analytical expression for the total
spatial current and showed that it reached a steady state. Curiously this steady state total
current satisfied a type of sinusoidal current phase relationship akin to the current behaviour
in Josephson junctions. With some effort we were able to derive an expression for the cur-
rent density when we used central difference approximations and found that this symmetric
probability current density behaved more intuitively. Finally we asked the question whether
one can find conservative classical/quantum continuous systems whose dynamics leads to
steady-state currents/momenta and found a wide class of such Hamiltonians.
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8
Summary and Outlook

In this thesis, I have studied what can be broadly categorised as topological phases of matter
using anyonic tensor network techniques. In particular, I have studied how to use anyonic
tensor network algorithms to simulate the physics of braided non-Abelian anyons, using
two prominent species of anyons: Fibonacci and Ising anyons, and I investigated how braid
statistics affect the ground state of a system of anyons, whose dynamics naturally allow for
braiding. I gave the construction of an Anyonic×U(1)-MPS, which is an ansatz that can be
used to encode the state of an anyonic system at any rational filling fraction. Then I studied a
particular class of an anyonic Hubbard model on a ladder, where braid statistics can influence
the phases. I found that different anyon models have different critical points, even when the
microscopic Hamiltonians are similar, thereby indicating that the observed differences come
from braiding. Therefore, it can be said the results in this thesis have pushed forward the
boundaries of the physics of anyonic systems, anyonic tensor networks, topological phases,
and the study of the influence of braid statistics in the formation of new phases of matter.
These results also serve as indication of more exciting new physics yet to be discovered.

There are a number of different problems where the methods and results in this thesis
could become useful. The anyonic tensor network algorithms presented here can be used to
perform many further investigations into the equilibrium physics of anyons, such as quasi-1D
models with other species of anyons, different lattice configurations, and so forth. In addition,
the same ansatz in conjunction with the time-evolving block-decimation (TEBD) algorithm
can be used to study non-equilibrium physics, such as the time evolution of an anyonic state.
From elementary quantum mechanics we have a good understanding of how fermionic and
bosonic statistics affect the state of a physical system in the presence of other degrees of
freedom, e.g. position degrees of freedom. Bosons prefer to “stay closer together”, while
fermions prefer to “stay apart”. But what do anyons do? The exchange statistics of Abelian
anyons interpolate between those of fermions and bosons, and hence the expected influence
of anyonic statistics might in some way be expected to likewise interpolate between the
extreme ends of fermions and bosons. This kind of physics can be studied using anyonic-
TEBD, though with caution, because tensor network techniques are classical algorithms, and
braiding, during time evolution, can generate a large amount of entanglement. This may
render tensor networks not useful, but certain regimes and limits can still be studied.
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One area of interest in quantum information science is determining the error thresholds in
topological quantummemories. The fusion space of anyons is non-local. States of anyons can
be used as memories, which should naturally have a high tolerance to certain types of error, as
information is encoded acrossmany anyons; the information is carried collectively, rather than
by individual anyons. It is however possible that unwanted anyon pair may be created from
vacuum and which braid with the logical anyons, thereby destroying the logical information
encoded into the system. In principle, these errors can be corrected if we can locate the
erroneous anyons, undo the unintentional braids, fuse those anyons back into the vacuum.
Studies of this kind are known as topological quantum error correction. Our methods can be
used to simulate error models, to determine the efficiency of the error-correction protocols
on, for example, a finite two-dimensional lattice of anyons [85–87].

As topological phases of matter is still currently a hot topic, there are still more questions
that are yet to be answered beyond what I have done in my thesis. Topological phases are
phases which have a topological order that may be largely “hidden” from being detected by
local order parameters. In my thesis, I have used the scaling of the entanglement entropy and
scaling of superfluid correlators as order parameters. In addition to these order parameters,
the use of fidelity has also been proposed as a measure of phase transition [137]. Some others
have proposed studying topological phase transitions through Bose condensations [138] and
through the use of topological S-matrix [139] as an order parameter. One of my future goals
is to try out these methods using the formalism introduced and exploited in this thesis.

In addition, the field of tensor networks (TN) is still actively evolving. More so, anyonic
tensor networks represent a particular class of TN, and will therefore evolve as well. In
addition, I have recently become aware that the geometric approach to topological quantum
field theories bears much resemblance to tensor networks.1 Some of these connections have
also been explored here [140]. Anyons are topological charges which can also be thought of
as punctures in TQFT, and hence the geometric approach of TQFT may be related to anyonic
tensor networks in some ways. I am excited at the prospect of further exploring the intimate
connections between these two fields.

Finally, the theoretical and mathematical appeal of anyons makes them really exciting
to study. Even more, the technological possibility of using anyons to do something useful,
like ushering in the next phase of (quantum) computing, makes them precious gems. It is an
exciting time to be working on anyons!

1I learnt this from Robert Dijkgraaf lectures on TQFT at the 2015 Prospects in Theoretical Physics (PiTP)
school at the Institute of Advanced Study, Princeton.



A
Data of some anyon models

The data for the anyon models I studied in this thesis are given here.
An anyon model is minimally specified by the following data: a set of charges A, the

fusion rules of the charges, the braid matrix R, and the F-tensor F. All other topological
quantities can be derived from these data.

Some of the anyon models I used or studied in this thesis include: Fibonacci and Ising
anyons—which are two prominent examples of non-Abelian anyons, Z2 (spinless) fermions,
and Z∞ bosons—which can be considered as examples of Abelian anyons in a general sense.
Although in the case of bosons, we impose an additional hardcore constraint to limit the
charges permitted on physical sites to either 0 (for no charge) or 1 (for a single boson).

A.1 Fibonacci anyon data
The Fibonacci anyon model consists of two charges: vacuum (I) and Fibonacci anyon (τ),
henceA = {I, τ}. The charges have quantum dimensions: dI = 1 and dτ = 1+

√
5

2 . The fusion
rules obeyed by the charges are

I × I = I, I × τ = τ × I = τ, τ × τ = I + τ. (A.1)

The fusion tensor N has components N c
ab = 0 when a × b 9 c for all a, b, c ∈ A. The

nonzero components are given by

N III = N τ
τI = N τ

Iτ = N Iττ = N τ
ττ = 1. (A.2)

The R-matrix has nonzero components

Rττ
I = e−4πi/5, Rττ

τ = e3πi/5, RIττ = RτI
τ = RIII = 1, (A.3)

for compatible charges, and zero otherwise. The nontrivial F-move coefficients are

(
Fτττ
τ

) f
e =

*
,
φ−1 φ−

1
2

φ−
1
2 −φ−1

+
-
, (A.4)
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where φ = 1+
√

5
2 , and e, f ∈ {I, τ}. The remaining F-move coefficients are given by(

Fabc
d

) f

e
= N e

abN f
bc N d

ec N d
a f , (A.5)

which is equal one for compatible charges.

A.2 Ising anyon data
The Ising anyon model consists of three charges: vacuum (I), Ising anyon (σ), and a fermion
(ψ), hence A = {I, σ, ψ}. The charges have the following quantum dimensions: dI = 1,
dσ =

√
2, and dψ = 1. The fusion rules obeyed by these charges are

I × a = a, σ × σ = I + ψ, σ × ψ = σ, ψ × ψ = I, (A.6)

where a ∈ A. The fusion tensor N has components N c
ab = 1 when a × b → c for all

a, b, c ∈ A, otherwise N c
ab = 0.

The R-matrix has these nontrivial braid factors:

Rσσ
I = e−iπ/8, Rσσ

ψ = ei3π/8, Rσψ
σ = Rψσσ = e−iπ/2, RψψI = −1, (A.7)

and these trivial braid factors:

RIII = RIσσ = RσI
σ = RIψψ = RψIψ = 1, (A.8)

for compatible charges, and zero otherwise. The nontrivial F-move coefficients are

(
Fσσσ
σ

) f
e =

*
,

1√
2

1√
2

1√
2
− 1√

2

+
-
, (A.9)

where e, f ∈ {I, ψ}, and (
Fσψσ
ψ

)σ
σ
=

(
Fψσψ
σ

)σ
σ
= −1. (A.10)

The remaining F-move coefficients are given by(
Fabc

d

) f

e
= N e

abN f
bc N d

ec N d
a f , (A.11)

which equals one for compatible charges.

A.3 Fermions and Bosons Data
Fermions and bosons can generally be studied within the framework of anyons, and conse-
quently using anyonic tensor networks such as the anyonic MPS.

As in the case of Fibonacci and Ising anyons, we give the (almost trivial) data for these
particle types.

The particle spectrum for bosons is the Z∞ = {0, 1, 2, . . . ,∞}, i.e. the set of positive
integers, and the particle set for (spinless) fermions is Z2 = {0, 1}. As mentioned above,
it should be noted that when we impose an hardcore constraint on bosons, the particle set
reduces to ZHCB = {0, 1}, albeit the charges on the bonds of the MPS can still, in principle,
grow to infinity.
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The fusion rule for bosons is ordinary addition of integers, i.e.,

a × b→ c ≡ a + b, (A.12)

where a, b ∈ Z∞, and the fusion rule for fermions is addition modulo 2, and therefore the
fusion rules modifies to

a × b→ c ≡ (a + b) mod 2, (A.13)

for a, b ∈ Z2. As a simple example of the distinction between the fusion rules of fermions
and bosons, 1 × 1 = 2 if the charges are considered as bosons, but 1 × 1 = 0 if the charges
are regarded as fermions.

As it is known from elementary quantum mechanics, the wave function of fermions and
bosons acquire a phase factor of either −1 and +1 respectively, when a pair of those particles
are exchanged. These exchange factors are the permutation factors of bosons and fermions,
which written in the language of anyons are given by:

R00
0 = R10

1 = R01
1 = 1, R11

0 = −1, (A.14)

for fermions, while for bosons
Rab

c = 1, (A.15)

for all valid charges a, b, and c in Z∞. These exchange factors are considered trivial when
compared to the exotic exchange (or braid) factors of non-Abelian anyons.

The F-matrix for both particle types is given as(
Fabc

d

) f

e
= N e

abN f
bc N d

ec N d
a f , (A.16)

for all charges satisfying the fusion rules of the two particle types.
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B
Derivation of the global interference term

Q0

We show here the derivation of the global interference term Q0 which we defined as Q0 =
limt→∞

∑∞
n=−∞ α

∗
n,t βn,t in real space. We will derive the expression for Q0 directly in Fourier

space as it is more convenient and has been reportedly successful in analyzing the properties
of quantum walks.

Let the amplitudes αn,t and βn,t be grouped together as ψn(t) written as a column vector,

ψn(t) =
(
αn,t
βn,t

)
= αn,t |0〉 + βn,t |1〉 . (B.1)

where vectors |0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
are introduced for notational convenience in the

derivation of Q0. Note that the vectors |0〉 and |1〉 are not necessarily related to the coin states
{|↑〉 , |↓〉}.

Let the Fourier transform of ψn(t) be ψ̃k (t) given as

ψ̃k (t) =
∞∑

n=−∞

ψn(t)eikn (B.2)

with k ∈ [−π, π]. The recurrence relation Eq.7.6 in Fourier space becomes(
α̃k (t)
β̃k (t)

)
=

(
eik cos θ ei(k+δ) sin θ

e−i(k+δ) sin θ −e−ik cos θ

) (
α̃k (t − 1)
β̃k (t − 1)

)
, (B.3)

i.e.
ψ̃k (t) = Ûk ψ̃k (t − 1), (B.4)

iterating the “Markovian” equation recursively gives,

ψ̃k (t) = Û t
k ψ̃k (t = 0), (B.5)

where ψ̃k (0) is the Fourier transform of the localized initial state ψn(0). We assume here
that our initial state ψn(0) is localized at the origin of our lattice and is given as ψn(0) =
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(
cos φ

2
eiγ sin φ

2

)
δn,0 as in Eq.(7.18), situated on a Bloch sphere, with φ ∈ [0, π] and γ ∈ [0, 2π].

Its Fourier transform is ψ̃k (0) =
(

cos φ
2

eiγ sin φ
2

)
.

The Fourier transform of Q0 becomes

Q0 = lim
t→∞

∫ π

−π

dk
2π
α̃∗k (t) β̃k (t). (B.6)

AsU is unitary, it can be diagonalized with complex eigenvalues and eigenvectors and written
in spectral representaion as,

Uk = (λ1
k ) |φ1(k)〉 〈φ1(k) | + (λ2

k ) |φ2(k)〉 〈φ2(k) | (B.7)

from which the expression for U t
k follows as

U t
k = (λ1

k )t |φ1(k)〉 〈φ1(k) | + (λ2
k )t |φ2(k)〉 〈φ2(k) | , (B.8)

where λ1
k = eiωk and λ2

k = −e−iωk are the eigenvalues with their respective eigenvectors
|φ1(k)〉 and |φ2(k)〉 as

|φ1(k)〉 = N (k)
(

ei(k+δ) sin θ
eiωk − e−ik cos θ

)
|φ2(k)〉 = N (π − k)

(
ei(k+δ) sin θ

−e−iωk − eik cos θ

)
, (B.9)

where ωk is determined from sinωk = cos θ sin k. N (k) given as

N (k) =
1

√
2 − 2 cos θ cos(ωk − k)

, (B.10)

is a normalization factor that ensures the orthonormality of the eigenvectors |φ1(k)〉 and
|φ2(k)〉.

From Eq.(B.5), we have,

|ψ̃k (t)〉 = α̃k (t) |0〉 + β̃k (t) |1〉 = cos
φ

2
Û t

k |0〉 + eiγ sin
φ

2
Û t

k |1〉 , (B.11)

from which we could easily identify the amplitudes α̃k (t) and β̃k (t) to be given as

α̃k (t) = cos
φ

2
〈0|U t

k |0〉 + eiγ sin
φ

2
〈0| Û t

k |1〉 ,

β̃k (t) = cos
φ

2
〈1|U t

k |0〉 + eiγ sin
φ

2
〈1| Û t

k |1〉 , (B.12)

where α̃k (t) = 〈0 |ψ̃k (t)〉 and β̃k (t) = 〈1 |ψ̃k (t)〉.
With the expression we have for U t

k , we could compute the expressions for α̃k (t) and
β̃k (t) as

α̃k (t) = cos
φ

2
ak (t) + eiγ sin

φ

2
bk (t),

β̃k (t) = cos
φ

2
ck (t) + eiγ sin

φ

2
dk (t), (B.13)
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where ak (t), bk (t), ck (t) and dk (t) are certain oscillatory functions which we list below,

ak (t) = eiωk t sin2 θN2(k) + (−1)te−iωk t sin2 θN2(π − k)

bk (t) = eiωk tei(k+d) (e−iωk − e−ik cos θ) sin θ N2(k)

− (−1)te−iωk tei(k+d) (eiωk

+ e−ik cos θ) sin θ N2(π − k),

ck (t) = eiωk te−i(k+d) (eiωk − eik cos θ) sin θ N2(k)

− (−1)te−iωk te−i(k+d) (e−iωk

+ eik cos θ) sin θ N2(π − k),

dk (t) = eiωk t (1 − 2 cos θ cos(ωk − k) + cos2 θ) N2(k)

+ (−1)te−iωk t (1 + 2 cos θ cos(ωk + k)

+ cos2 θ) N2(π − k).

With all the above equations, we can evaluate Q0 from (B.6 as

Q0 = cos2(
γ

2
)E0 + sin2(

γ

2
)F0 +

eiϕ sin γ
2

G0 +
e−iϕ sin γ

2
H0 (B.14)

where
E0 = lim

t→∞

∫ π

−π

dk
2π

a∗k (t)ck (t) ,

F0 = lim
t→∞

∫ π

−π

dk
2π

b∗k (t)dk (t) ,

G0 = lim
t→∞

∫ π

−π

dk
2π

a∗k (t)dk (t) ,

H0 = lim
∫ π

−π

dk
2π

b∗k (t)ck (t) .

The asymptotics of the integrals above are easy to calculate but lengthy. Using, Stationary
Phase Approximation(SPA), integral of the form

∫
f (k)eiϕ(k)t dk vanishes as t−

1
2 for a non-

vanishing ϕ′′(k) as shown in ([109]) and hence every time-dependent part of the integrals
E0, F0, G0 and H0 gives negligible contribution and we can drop them in the the evaluation
of the integrals to obtain,

E0 =
e−iδ tan θ

2
(1 − sin θ) (B.15)

F0 = −
e−iδ tan θ

2
(1 − sin θ) (B.16)

G0 =
sin θ

2
(B.17)

H0 = e−2iδ
(
(1 − sin θ) tan2 θ −

sin θ
2

)
(B.18)
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Hence, Q0 is given as,

Q0 =
(1 − sin θ)e−iδ tan θ

2
[
cos φ + sin φ

(
e−i(δ+γ) tan θ

+ i sin(δ + γ)
cos θ

1 − sin θ

)]
(B.19)

This result can also be checked if we compare it with numerical results of Q(t) in the long
time limit as shown in Fig.(7.3).
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