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ON PRICING OF COMMODITY FUTURES USING

TWO-FACTOR STATE-SPACE MODEL

PEILUN HE

ABSTRACT

We study a bivariate latent factor model for the pricing of commodity futures

prices. The two unobservable state variables representing the short and long term

factors are modelled as Ornstein-Uhlenbeck (OU) processes and are used for risk-

neutral pricing of futures contracts. The Kalman Filter (KF) method is being im-

plemented to estimate the short and long term factors jointly with unknown model

parameters. The model parameters are estimated in a form of the Maximum Like-

lihood Estimators (MLEs). The parameter identification problem arising within the

likelihood function in the KF has been addressed by introducing an additional con-

straint. In the two-dimensional OU model, the consistency and asymptotic variances

of conditional MLEs of model parameters are derived. The methodology has been

tested on simulated data and also applied to WTI Crude Oil NYMEX futures real

market data.
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Chapter 1

Introduction

1.1 Commodity Market

Commodities are usually traded in both spot and futures markets. In the old days,

buyers and sellers met on the market where the trade of the commodity and its de-

livery took place without delay. In the 18th and 19th centuries, some agricultural

products were traded in the form of forward agreements. The farmers sold agricul-

tural crops at the time of their planting, in order to finance their production process.

In 1848, the Chicago Board of Trade (CBOT) was formed, which is the first com-

modity trading exchange in the west. After a few years of growth, CBOT decided to

standardize the contracts. These contracts are believed to be the first futures-type

contracts, also known as ’to-arrive’ contracts. Nowadays, the transaction of com-

modities may be physical or financial, corresponding to trading in the spot or futures

market. However, these two types of transactions are highly correlated.

Both a forward and a futures contract is an agreement to purchase an asset at

a specified contract maturity date for a fixed price. However, these two types of

contracts are quite different. A forward contract is traded in the over-the-counter

market. The forward contract usually is traded between two financial institutions,

without intermediaries. In contrast, a futures contract is standardized and traded

in an exchange, which plays the role of intermediaries. There are other differences

between a forward contract and a futures contract. For example, a forward con-

tract settles at the end of the agreement, while the account for a futures contract is

maintained daily until its expiry.
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Forward contracts mainly are used for hedging. In the spot market, four major

risks are identified as follows, Geman (2009):

• Price risk, which corresponds to the change in the product price.

• Transportation risk, which represents the change in the shipping cost.

• Delivery risk.

• Credit risk, which is associated with the default of buyers or sellers.

A forward contract could provide a hedge against price risk. For example, if a cor-

poration knows they will have to pay to their clients in 6 months some amount in

a foreign currency, they will buy a 6-month forward contract to hedge against the

exchange rate risk. For a forward contract, the credit risk still exists, as one of the

participants may not honour their position. However, the credit risk is reduced to

almost zero for a futures contract. The clearing house, which guarantees the perfor-

mance of the participants, and the existence of margin account take away any credit

risk. To enter into a futures contract, all participants need to make an initial margin

payment, and the participants are required to add daily margin calls to keep a con-

tract ongoing, if the market value of a commodity decreases from the previous day.

Moreover, the delivery risk is also reduced in a futures contract, since the exchange

standardizes the quality, quantity, and variety of products. Considering the different

risks a forward contract and a futures contract take, the prices of these two types of

contracts are different, albeit close.

Commodity futures contracts are written on tradable commodities such as metals,

energy, livestock/meat and agricultural. In 1999, the Chicago Mercantile Exchange

(CME) started trading weather futures. Nowadays futures contracts include Renew-

able Energy Certificate Futures, Carbon Allowance Futures, and Greenhouse Gas

Initiative Futures. Figure 1·1 presents the three fundamental groups of commodities:

agricultrual, metals and energy. Because of the physical constraints, the commodities

markets show different characteristics comparing to the financial market. In financial
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Figure 1·1: Classification of Commodity Markets

markets, cash flow is transferred from one party to another at maturity and without

an exchange of underlying goods, while in commodity markets, the commodities are

actually delivered. Consequently, commodity prices usually have seasonal and mean-

reverting behaviours, and that is why some of the financial theories are not directly

applicable to commodity markets.

Energy products are most actively traded commodities in both over-the-counter

market and on exchanges. The energy products include crude oil, electricity and

natural gas. In the last chapter of this thesis, we use a crude oil historical prices data.

There are many grades of crude oil, distinguished by density and sulphur content. The

two popular grades are Brent Crude Oil and West Texas Intermediate (WTI) Crude

Oil, which is extracted from the North Sea and West Texas, respectively. Figure

1·2 gives a cross-sectional data of WTI Crude Oil Futures settle prices with different

maturities on 8th November 2019. The original data was obtained from the CME

Group. The major futures exchanges include the New York Mercantile Exchange
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Figure 1·2: WTI Crude Oil Futures Curve

(NYMEX), New York Board of Trade (NYBOT) and London International Financial

Futures Exchange (LIFFE).

1.2 Structure and Aim of the Thesis

From 2001 to 2008, the price of oil increased eight times. However, during the global

financial crisis (GFC) in 2008, the oil futures prices dropped dramatically. The de-

cline had taken commodity more than halfway back to the 2001 level. One reason for

the high-risk of commodity futures is leverage, which enables investors to purchase in-

vestments with only a small proportion of their real value. For a futures contract, this

proportion could be only 10%. The uncertainty of futures prices makes commodity

consumers and market players subjected to elevated long-term risks.

This work uses the Ornstein-Uhlenbeck (OU) two-factor model for modelling of

short and long equilibrium commodity spot price levels. A commodity spot price

St is modelled as the sum of two unobservable factors χt and ξt. Both processes χt

and ξt represent the mean-reverting processes. In the mean-reverting model, when

the commodity price is higher than the equilibrium price level, some new suppliers

will enter the market and create downward pressure on the prices. Conversely, when
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the price is lower than the equilibrium price level, some high-cost suppliers will exit

the market and put upward pressure on the prices. In the short term, due to these

movements, the price fluctuates temporarily, and it will eventually converge to its

equilibrium level over the long term.

Our motivation is driven by the fact that the parameter estimation problem in

the linear system using the Kalman Filter cannot be overlooked whilst the estimation

of the state variables remains the priority. In the different setup, the parameter

estimation problem for the bivariate OU process using Kalman Filter (KF) has been

studied by Favetto and Samson (2010) and Kutoyants (2019).

In Chapter 2, we derived the linear partially observable system specific for com-

modity futures prices developed in the two-factor model, which represents an exten-

sion of Schwartz and Smith’s (2000) model, in the risk-neutral setting. In Chapter

3, the details of the implementation of the KF algorithm designed for estimation of

the parameters of the two-dimensional partially observable linear system jointly with

the estimation of unobserved state variables χt and ξt were presented. Moreover, the

algorithm for obtaining the asymptotic variance of the estimates of parameters was

introduced. The results of the simulation study are presented in Chapter 4. The

parameter identification problem (PIP) arising within the likelihood function in the

KF is proved mathematically, which has been resolved numerically by introducing an

additional constraint. In Chapter 5, the modelling method has been applied to WTI

Cude Oil futures data.

The results were presented at the Research School on Statistics and Data Science

which was held from 24th to 26th of July in Melbourne. The paper on parameter

estimation in Schwartz and Smith’s model (2000) has been accepted for publication,

Binkowski et al. (2019).
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1.3 Literature Review

Over more than four decades the stochastic processes have been used in modelling

of commodity futures prices. In early studies, the researchers assumed that the com-

modity prices followed a geometric Brownian motion, Black (1976). However, Gibson

and Schwartz (1990) have introduced the mean-reverting processes for statistical mod-

elling in finance, also known as Ornstein-Uhlenbeck or Vasicek processes, Ornstein

and Uhlenbeck (1930), Vasicek (1977).

The previous studies included one and two-factor models. Sorensen (2002) used

the one-factor model for seasonality adjustment in agricultural commodity futures.

Carmona and Coulon (2014) applied the one-factor model to the electricity market.

However, the disadvantage of the one-factor model is that the futures returns are

correlated, which opposes the empirical evidence of Cortazar and Schwartz (2003).

Ames et al (2020) introduced the two-factor model with observable factors incorpo-

rated into model drift parameters to allow for analysis of the impact of macroeconomic

factors on the futures prices. In Cortazar et al. (2019), the authors improved the

performance of the Kalman Filter by deriving the commodity spot prices from futures

prices which have had incorporated an analyst’s forecasts of spot prices. In Cheng et

al. (2018) the Kalman Filter is used to study the effect of stochastic volatility and

interest rates on commodity spot prices using the market prices of long-dated futures

and options. Peters et al. (2013) applied the Kalman technique to calibration, jointly

with filtering, of partially unobservable processes using particle Markov chain Monte

Carlo approach. Guo (2017) proposed a multi-factor model for risk measurement and

modelling using the Monte Carlo method. Ewald et al. (2018) developed the ex-

tended Kalman Filter for estimation of the state variables in the two-factor Shwartz

(1997) model for the commodity spot price and its yield.
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1.4 Computing Environment

The codes for this work were developed in MATLAB R2019b. In the Amazon Web

Services (AWS) Australian Sydney computing center, the computations for simulation

study and applications to Crude Oil futures data were run in a c5.18xlarge instance (72

vCPUs) and c5.x24xlarge instance (96 vCPUs), respectively. The results presented

in Chapters 4 and 5 have taken the total computational time of approximately 1000

hours (42 days) on both AWS platforms.



Chapter 2

Two-Factor Model

We propose the two-factor model of pricing of commodity futures which represents an

extension of Schwartz and Smith (2000), where the spot price St is modelled as the

sum of two unobservable factors χt and ξt. In Schwartz and Smith (2000), only one

factor had a mean-reverting property. In this work, both χt and ξt are modelled as the

mean-reverting processes. We develop Kalman Filter for estimation of unobservable

factors χt and ξt as well as the model parameters.

In this chapter, we provide a brief description of our model. Firstly, we introduce

Ornstein-Uhlenbeck processes, which are used for modelling of the short and long term

state variables. Then we discuss the two-factor model, followed by a special case, the

risk-neutral setup is used for futures pricing. Further, we assume the interest rate

r = 0 throughout.

2.1 Ornstein-Uhlenbeck Processes

In this section, we introduce the Ornstein-Uhlenbeck process as the building blocks of

our modelling approach. These processes are often used in modelling of asset prices

and interest rates.

Definition 2.1 (Xt)t≥0 is said to be an Ornstein-Uhlenbeck (OU) process if

dXt = θ(µ−Xt)dt+ σdWt, (2.1)

where the parameters θ > 0, µ and σ > 0 are the mean reversion rate, the mean and

the volatility, respectively. And the process (Wt)t≥0 is a standard Brownian motion.
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Figure 2·1: Paths of Brownian Motion, W0 = 0

Remark 2.1 The solution of OU equation (2.1) is

Xt = X0e
−θt + µ

(
1− e−θt

)
+ σ

t∫
0

e−θ(t−s)dWs. (2.2)

Indeed (2.2) can be proved by using Ito’s lemma for the function f(x, t) = xeθt.

The mean-reverting property can be explained as follows, if we ignore the stochastic

movement in the Brownian motion part, then Xt converge to µ. In Figures 2.1 and

2.2 three different paths of Brownian Motion and Ornstein-Uhlenbeck processes are

displayed.

2.2 Spot Price Modelling

Here we provide the description of the two-factor model using the short and long

term state variables, Schwartz and Smith (2000). We model the logarithm of the

spot price, the price of an asset, using the additive model. Let the spot price of a

commodity at time t be St, then

log(St) = χt + ξt,
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Figure 2·2: Paths of Ornstein-Uhlenbeck process, X0 = −10, 10, 30
with θ=1, µ=5, σ=0.5

where χt is the short-term fluctuation in prices and ξt is the long-term equilibrium

price level. We assume that changes in χt are temporary, following an Ornstein-

Uhlenbeck process

dχt = −κχtdt+ σχdZ
χ
t , κ > 0. (2.3)

The changes in the equilibrium level of ξt are expected to persist and the process

itself is assumed to be mean-reverting

dξt = γ

(
µξ
γ
− ξt

)
dt+ σξdZ

ξ
t = (µξ − γξt)dt+ σξdZ

ξ
t , γ > 0. (2.4)

The processes (Zχ
t )t≥0 and (Zξ

t )t≥0 are correlated standard Brownian motions pro-

cesses with E
(
dZχ

t dZ
ξ
t

)
= ρχξdt. In (2.3) and (2.4), χt and ξt converge to 0 and

µξ
γ

respectively. In discrete time, given the initial values χ0 and ξ0, χt and ξt are jointly

normally distributed with mean

E[(χt, ξt)] =

(
e−κtχ0,

µξ
γ

(
1− e−γt

)
+ e−γtξ0

)
, t ≥ 0 (2.5)
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and covariance matrix

Cov[(χt, ξt)] =

 1−e−2κt

2κ
σ2
χ

1−e−(κ+γ)t

κ+γ
σχσξρχξ

1−e−(κ+γ)t

κ+γ
σχσξρχξ

1−e−2γt

2γ
σ2
ξ

 . (2.6)

Derivation of (2.5) and (2.6) are given in Appendix A. Therefore the logarithm of

spot price is normally distributed with mean

E[log(St)] = e−κtχ0 +
µξ
γ

(1− e−γt) + e−γtξ0

and variance

V ar[log(St)] =
1− e−2κt

2κ
σ2
χ +

1− e−2γt

2γ
σ2
ξ + 2

1− e−(κ+γ)t

κ+ γ
σχσξρχξ.

Hence St, the spot price, is log-normally distributed and

E(St) = exp

(
E[log(St)] +

1

2
V ar[log(St)]

)
,

or

log[E(St)] =e−κtχ0 +
µξ
γ

(1− e−γt) + e−γtξ0

+
1

2

(
1− e−2κt

2κ
σ2
χ +

1− e−2γt

2γ
σ2
ξ + 2

1− e−(κ+γ)t

κ+ γ
σχσξρχξ

)
, (2.7)

where µξ is the mean, σχ and σξ are the volatilities, γ and κ are the speed of mean-

reversion parameters of χ and ξ processes, respectively.

2.3 Risk-Neutral Approach to Spot Price Modelling

In this section, we introduce the two additional parameters in χ and ξ processes, one

parameter in each process, for adjustment to market risk prices. The approach stems

from the risk-neutral futures pricing theory developed by Black (1976). In the risk-

neutral framework, the commodity futures prices are supposed to be martingales.
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However, the spot price process utilised for pricing of the futures contracts is not

a tradable asset and, therefore, may not be a martingale. In this framework, the

commodity spot price is unobservable and the market is incomplete. Hence, in the

extended Schwartz-Smith’s model, we do not require the commodity spot price process

to be a martingale. These types of models have been used in Gibson and Schwartz

(1990), Schwartz and Smith (2000), Cortazar et al. (2019), Ames et al. (2020) and

Farkas et al. (2017).

We assume that risk premium adjustments are constants, i.e.

dχt = (−κχt − λχ)dt+ σχdZ
χ∗

t ,

dξt = (µξ − γξt − λξ)dt+ σξdZ
ξ∗

t ,

where λχ, λξ are risk-neutral mean corrections and Zχ∗

t and Zξ∗

t are correlated stan-

dard Brownian motions with E
(
dZχ∗

t dZξ∗

t

)
= ρχξdt, the correlation coefficient is ρχξ

the same as that of Zχ
t and Zξ

t . Under the risk-neutral process, χt and ξt are also

jointly normally distributed with mean

E∗[(χt, ξt)] =

(
e−κtχ0 −

λχ
κ

(1− e−κt), µξ − λξ
γ

(1− e−γt) + e−γtξ0

)
and covariance matrix

Cov∗[(χt, ξt)] = Cov[(χt, ξt)],

where E∗ and Cov∗ are the expectation and covariance with respect to the risk-neutral

measure. The logarithm of spot price is normally distributed with mean

E∗[log(St)] = e−κtχ0 −
λχ
κ

(1− e−κt) +
µξ − λξ

γ
(1− e−γt) + e−γtξ0

and variance

V ar∗[log(St)] = V ar[log(St)].
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The spot price is log-normally distributed with

log[E∗(St)] = E∗[log(St)] +
1

2
V ar∗[log(St)] = e−κtχ0 + e−γtξ0 + A(t), (2.8)

where

A(t) =− λχ
κ

(1− e−κt) +
µξ − λξ

γ
(1− e−γt)

+
1

2

(
1− e−2κt

2κ
σ2
χ +

1− e−2γt

2γ
σ2
ξ + 2

1− e−(κ+γ)t

κ+ γ
σχσξρχξ

)
. (2.9)

In (2.8) the parameters λχ and λξ appear according to the adjustment made in (2.7).

2.4 Risk-Neutral Approach to Pricing of Futures

For a futures contract, we are interested to know what is the price of such contract at

present. Let F0,T be the current market price of the futures contract with maturity T .

For elimination of arbitrage, colloquially known as a free-lunch situation, the futures

prices must be equal to the expected spot prices at the asset delivery time T . Hence,

under the risk-neutral approach from Section 2.2, we obtain (we assume the interest

rate is not stochastic)

log(F0,T ) = log[E∗(ST )] = e−κTχ0 + e−γT ξ0 + A(T ).

Then for modelling in discrete time, we have the following AR(1) dynamics for bi-

variate state variable xt

xt = c+Gxt−1 + wt, (2.10)

where

xt =

χt
ξt

 , c =

 −λχ
κ

(1− e−κ∆t)

µξ−λξ
γ

(1− e−γ∆t)

 , G =

 e−κ∆t 0

0 e−γ∆t

 ,
and wt is a column vector of uncorrelated normally distributed random variables with

E(wt) = 0 and Cov(wt) = W = Cov[(χ∆t, ξ∆t)]. ∆t is the time step between t − 1
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and t. The relationship between the state variables and the observed futures prices

is given by

yt = dt + F ′txt + vt, (2.11)

where

y′t = (log(FT1), log(FT2), · · · , log(FTn)) ,

d′t = (A(T1), A(T2), · · · , A(Tn)),

Ft =

e−κT1 , e−κT2 , . . . , e−κTn
e−γT1 , e−γT2 , . . . , e−γTn

 ,
and vt is a n × 1 vector of uncorrelated normally distributed random variables with

E(vt) = 0 and Cov(vt) = V . The variables Ti, i = 1, ..., n are the times to maturity,

which are the differences between the futures expiry times and current time t. We

assume that V is a diagonal matrix with non-zero diagonal entries s = (s2
1, s

2
2, . . . , s

2
n).

Here n is the number of the futures contracts. Let Ft be the history of information

generated by the futures contract up to time t. The log-likelihood function of y =

(y1, y2, . . . , ynT ) is

l(θ; y) =

nT∑
t=1

p(yt|Ft−1),

with the set of unknown parameters θ = (κ, γ, µξ, σχ, σξ, ρχξ, λχ, λξ, s), where p(yt|Ft−1)

is the probability density of yt conditioned on the information available up to t − 1

and nT is the number of time instances. We assume that the prediction errors

et = yt − E(yt|Ft−1) are multivariate normally distributed, then the log-likelihood

function is

l(θ; y) = −nnT log 2π

2
− 1

2

nT∑
t=1

[
log
[
det(Lt|t−1)

]
+ e′tL

−1
t|t−1et

]
, (2.12)

where Lt|t−1 = Cov(et|Ft−1). Given yt, the maximum likelihood estimates (MLE)

of unknown parameters θ can be estimated by maximising this log-likelihood func-

tion (2.12). Because of the complexity of the log-likelihood function, grid search is
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necessary in estimating of parameters.



Chapter 3

Filtering and Parameter Estimation

In this chapter, we provide numerical methods for Kalman’s algorithms, including

Kalman Filter and Kalman Smoother. Given the data y1, y2, · · · , yt1 , our main target

is to estimate the unobservable state vector xt2 = (χt2 , ξt2)
′. When t1 < t2, t1 = t2 or

t1 > t2, the problem is called the forecasting, filtering or smoothing problem, respec-

tively. Here we do not consider the forecasting problem scenario. The estimation of

state vector can be used for predicting the futures prices and their risk management.

Then, we introduce the method to obtain the asymptotic variances of the estimates

of the parameters, which is based on the product of the score vector. In the final sec-

tion, we introduce the generalised Cholesky decomposition for dealing with improper

empirical estimates of covariance matrices.

3.1 Kalman Filter

The Kalman filter is a recursive process to estimate state vector at time t based on

the information available up to t, Harvey (1990). In this section, we are using Kalman

Filter to estimate the unobservable vector of state variables xt = (χt, ξt)
′ jointly with

unknown parameters θ = (κ, γ, µξ, σχ, σξ, ρχξ, λχ, λξ, s) by observing yt. We recall the

equations (2.10) and (2.11) for xt and yt, respectively

xt = c+Gxt−1 + wt,

yt = dt + F ′txt + vt.
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We need an initial value to start the Kalman Filter. Binkowski, Shevchenko and

Kordzakhia (2009) used the initial expectation and covariance matrix

E(x0) = a0 =

 0

µξ
γ

 (3.1)

and

Cov(x0) = P0 =

 σ2
χ

2κ

σχσξρχξ
κ+γ

σχσξρχξ
κ+γ

σ2
ξ

2γ

 . (3.2)

Starting with a0 and P0, the recursive process is constructed. The algorithm of

the Kalman Filter is given below.

1. Start with a0 and P0 given in (3.1) and (3.2).

2. Given all information until time t−1, we predict the expectation of state vector

at|t−1 and covariance matrix Pt|t−1 at time t by

at|t−1 = Gat−1 + c

and

Pt|t−1 = GPt−1G
′ +W.

3. When a new observation yt is available, the prediction error et and covariance

matrix Lt|t−1 are calculated by

et = yt − dt − F ′tat|t−1

and

Lt|t−1 = F ′tPt|t−1Ft + V.

4. at and Pt are updated by

at = at|t−1 +Ktet
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and

Pt = (I −KtF
′
T )Pt|t−1,

where

Kt = Pt|t−1Ft(Lt|t−1)−1

is the Kalman gain matrix.

5. The log-likelihood function at time t is calculated by

lt = − log
(
det(Lt|t−1)

)
− e′tL−1

t|t−1et.

6. Repeat step 2 - 5 for next time point.

By completing the recursive process from t = 1 to nT , we can sum all lt up to get

the log-likelihood l, i.e. l =
∑nT

t=1 lt. Then we maximise l for obtaining the estimates

θ. The flowchart of Kalman Filter is given in Figure 3·1. In the extended Schwartz-

Smith model, the parameter estimation theory is yet to be established. Based on our

results from the simulation and empirical studies we demonstrated in our recently

published paper the consistency of the MLE estimators obtained through Kalman

technique, Binkowski et al. (2019).

3.2 Kalman Smoother

While the Kalman FIlter uses all past observations for estimation, the Kalman Smoother

uses the full (past and future) set of observations. That is, we are interested in the

estimations of state vector xt given all information up to time n (t = 1, 2, ..., n).

There are many types of smoothing, such as fixed-interval smoothing, fixed-point

smoothing and fixed-lag smoothing. In the fixed-interval smoothing, the full set of

observations n is fixed, and the smoothed point t varies. The fixed-point smoothing

supposes t remains fixed and n changes. With fixed-lag smoothing, both n and t

vary but the lag n− t remains fixed. De Jong (1989) provided different methods for
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Step 1
x0 ∼ N(a0, P0)

Step 2
at|t−1 = Gat−1 + c

Pt|t−1 = GPt−1G
′ +W

Step 3
et = yt − dt − F ′tat|t−1
Lt|t−1 = F ′tPt|t−1Ft + V

Step 4
Kt = Pt|t−1Ft(Lt|t−1)

−1

at = at|t−1 +Ktet

Pt = (I −KtF
′
t )Pt|t−1

yt

Figure 3·1: Flowchart of Kalman Filter

different types of smoothing. However, we only focus on fixed-interval smoothing in

this thesis.

The classic fixed-interval smoothing, also known as Rauch-Tung-Striebel (RTS)

smoother, was developed by Rauch, Tung and Striebel (1965). After applying the

Kalman Filter, the backwards smoother is given by

at−1|n = at−1|t−1 + Ct−1(xt|n − xt|t−1), (3.3)

and

Pt−1|n = Pt−1|t−1 + Ct−1(Pt|n − Pt|t−1)C ′t−1, (3.4)

where t = n, n− 1, ..., 1 and

Ct−1 = Pt−1|t−1G
′P−1
t|t−1. (3.5)

The initial conditions an|n and Pn|n are obtained via Kalman Filter.

However, in RTS smoother, inverse matrix P−1
t|t−1 is required. When the dimension

of the state variable xt is large, the matrix inversion causes a computational difficulty.
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Therefore, Bierman (1973) and De Jong (1989) provided another method, which is

called Modified Bryson-Frazier (MBF) smoother. The smoother is given by

at|n = at|t−1 + Pt|t−1rt−1, (3.6)

and

Pt|n = Pt|t−1 − Pt|t−1Rt−1Pt|t−1, (3.7)

where

rt−1 = FtL
−1
t|t−1et + (G−GKtFt)

′rt, (3.8)

and

Rt−1 = FtL
−1
t|t−1F

′
t + (G−GKtFt)

′Rt(G−GKtFt). (3.9)

The initial conditions are rn = 0 and Rn = 0. The RTS smoother will be used for

calculating the score vector in the next section.

3.3 Score Vector

In this section, the score vector is introduced. Let a column vector G denote the

first-order derivative of log-likelihood with respect to the set of unknown parameters

θ. The column vector G is also called gradient or score. Koopman and Shephard

(1992) and Durbin and Koopman (2002) introduced a method to calculate the score

for Gaussian state-space models by Kalman Smoother. The log-likelihood function is

given by

logL(y|θ) = log p(y|θ) = log p(x, y|θ)− log p(x|y, θ),
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where p(·) denote density function. By taking expectation with respect to the density

p(x|y, θ) and then differentiating with respect to θ, we have

G(θ) =
∂ logL(y|θ)

∂θ
= −1

2

∂

∂θ

n∑
t=1

{log |W |+ log |V |

+tr[{ωt|nω′t|n + V ar(ωt|n)}W−1]

+tr[{νt|nν ′t|n + V ar(νt|n)}V −1]
}
, (3.10)

where ωt|n and νt|n are smoothed estimates of wt and vt. tr(·) represents the trace

of a matrix and | · | represents the determinant of a matrix. Durbin and Koopman

(2002) provided formulas for ωt|n, νt|n, V ar(ωt|n) and var(νt|n) as

ωt|n = Wrt, (3.11)

νt|n = V L−1
t|t−1et − V K ′G′rt, (3.12)

V ar(ωt|n) = W −WRtW, (3.13)

and

V ar(νt|n) = V − V (L−1
t|t−1 +K ′G′RtGK)V, (3.14)

where rt and Rt are given from (3.8) and (3.9). The prove of (3.10) is given in

Appendix B.

3.4 Asymptotic Variance

In this section, the asymptotic variances of MLE estimators are established using the

score vector. In Section 2.4, the estimates of unknown parameters are obtained by

maximising the log-likelihood function

l(θ; y) = −nnT log 2π

2
− 1

2

nT∑
t=1

[
log
(
det(Lt|t−1)

)
+ e′tL

−1
t|t−1et

]
,
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where θ is a vector of the true parameters. Let θ̂n be the MLE estimate of θ. Ljung and

Caines (1979), Stoffer and Wall (1991) and Davis (2013) stated that under appropriate

conditions, given y, as n → ∞, (θ̂n − θ) → N(0, C) in distribution. The asymptotic

normal distribution has a zero mean vector 0 and variance-covariance matrix C. The

matrix C is commonly obtained by taking the inverse of Fisher information matrix

(FIM). The Cramer-Rao theorem states that the diagonal of the inverse of FIM gives

the lower bound of the variances of the unbiased parameter estimators. For MLEs,

the diagonal entries of the FIM’s inverse are equal to their variances. Let I be the

FIM, C is given by

C = I−1.

I is defined as the variance of the score vector:

I(θ) = V ar(G) = V ar

(
∂ logL(y|θ)

∂θ

)
. (3.15)

The general asymptotic properties of MLE can be found in Devore and Berk (2012).

Since L(y|θ) is a density function, we have∫
L(y|θ)dy = 1. (3.16)

Then we differentiate both sides of (3.16) with respect to θ. Using the fact

∂

∂θ
logL(y|θ) =

1

L(y|θ)
∂

∂θ
L(y|θ),

we have

∂

∂θ

∫
L(y|θ)dy =

∫
∂

∂θ
L(y|θ)dy

=

∫
L(y|θ) ∂

∂θ
logL(y|θ)dy

= E

(
∂

∂θ
logL(y|θ)

)
= 0. (3.17)
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Then from (3.16) and (3.17) we have

I(θ) = E(GG ′) = E

(
∂ logL(y|θ)

∂θ

∂ logL(y|θ)
∂θ′

)
. (3.18)

However, if we take the second-order derivative with respect to θi and θj in (3.16),

we have∫
∂2

∂θiθj
L(y|θ)dy =

∫
L(y|θ) ∂2

∂θiθj
logL(y|θ)dy +

∫
∂

∂θj
L(y|θ) ∂

∂θi
logL(y|θ)dy

=

∫
L(y|θ) ∂2

∂θiθj
logL(y|θ)dy +

∫
L(y|θ) ∂

∂θj
logL(y|θ) ∂

∂θi
logL(y|θ)dy

= E

(
∂2

∂θiθj
logL(y|θ)

)
+ E

(
∂

∂θi
logL(y|θ) ∂

∂θj
logL(y|θ)

)
= 0. (3.19)

Then we get

E

(
∂ logL(y|θ)

∂θ

∂ logL(y|θ)
∂θ′

)
= −E

(
∂2 logL(y|θ)

∂θ∂θ′

)
, (3.20)

which implies an alternative expression for I:

I(θ) = −E(H) = −E
(
∂2 logL(y|θ)

∂θ∂θ′

)
, (3.21)

where H is the second-order derivative of the log-likelihood function with respect

to vector θ. H is also called the Hessian matrix. Both (3.18) and (3.21) can be

used to calculate FIM. However, since the numerical calculations of the second-order

derivatives are more problematic, we report (3.18) throughout even though in some

applications we have had both formulae used and achieved a reasonable consistency.

The algorithm for obtaining the variances of the estimates of parameters is out-

lined below.

1. For a given data set y, get MLE estimates θ̂ for unknown parameters θ.

2. Let θ = θ̂. Generate a new data set ỹ from (2.10) and (2.11).
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3. For the data ỹ and parameters θ̂, obtain the score vector by (3.10) numerically.

That is, given an increment h, the score is G(θ+h)−G(θ)
h

.

4. Let Fi = GG ′ be the product of the score vector and its transpose.

5. Repeat step 2 - 4 M times, we get F1,F2, ...,FM . Get the expectation of these

Fi’s. to obtain the FIM I.

6. Take the inverse of I. This would be the variance-covariance matrix. Let’s

denote it C.

At step 2, we generate random values for wt and vt in (2.10) and (2.11), so that

we have different data ỹ in each iteration, and so Fi are different. This algorithm

will be used for obtaining the asymptotic variances of the estimates of parameters in

Chapter 4 and 5.

3.5 Generalised Cholesky Decomposition

In Section 3.4, we provided the algorithm for obtaining the asymptotic varaince-

covaraince matrix C. However, to make C a valid variance-covariance matrix, two

conditions must be satisfied:

1. The Fisher information matrix I is invertible.

2. The variance-covariance matrix C is a positive definite matrix.

The first condition ensures that C exists, while the second condition ensures all the

variances are positive. If the first condition is not satisfied, the inverse of FIM can

be obtained through Moore-Penrose pseudoinverse. In this section, we introduce the

generalised Cholesky decomposition (GCD) to deal with the problem of the fulfilment

of the second condition.

The GCD was firstly developed by Gill and Murray (1974), which is used to

address the indefiniteness of variance-covariance matrix. Given a symmetric and not
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necessarily positive definite matrix A, we calculate a Cholesky decomposition L and

D of A+ ∆, where

P (A+ ∆)P ′ = L′DL

with P a permutation matrix and ∆ which make A+ ∆ a positive definite matrix. If

A is positive definite, ∆ should be zero; if A is indefinite, the norm of ∆ should be

small.

Schnabel and Eskow (1990) provided an updated algorithm, which gives a con-

siderably smaller norm of ∆ than Gill and Murray’s algorithm. Cheng and Higham

(1998) suggested a new algorithm of GCD. Their algorithm is based on a symmet-

ric indefinite factorization obtained by a so-called bounded Bunch-Kaufman (BBK)

pivoting strategy, Ashcraft, Grimes and Lewis (1998). Cheng and Higham (1998)

showed that this algorithm is effective and competitive with Gill and Murray’s algo-

rithm and Schnabel and Eskow’s algorithm. We use Cheng and Higham’s algorithm

for computing of the asymptotic variances.

Given a symmetric matrix A ∈ Rn×n, Cheng and Higham (1998) defined the

distance from A to its generalised Cholesky decomposition A+ ∆ as

µ(A, δ) = min {||∆|| : λmin(A+ ∆) ≥ δ},

where λmin is the minimum eigenvalue and δ ≥ 0. The distances in the 2-norm and

Frobenius norms are

µ2(A, δ) = max {0, δ − λmin(A)}

and

µF (A, δ) =

(∑
λi<δ

(δ − λi)2

)1/2

,

where λi are the eigenvalues of A.

In Cheng and Higham (1998), the tolerance is δ =
√
u||A||∞, where u is the value

eps in Matlab representing the floating-point relative accuracy. The perturbations ∆
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are measured using the ratio

r2 =
||∆||2
|λmin(A)|

and

rF =
||∆||F
µF (A, δ)

.

Cheng and Higham’s algorithm reinforce r2 and rF to be close to 1.

Example: WTI Crude Oil data

Let A be a 10× 10 matrix,

A =


10056 −663858 −22348 3415 −6870 −255 50 22348 389 42957
−663858 1.99e+09 6.82e+07 −3.79e+06 1.90e+07 6724 −152883 −6.82e+07 −65242 1025727
−22348 6.82e+07 2.34e+06 −130354 653589 170 −5258 −2.34e+06 −2219 39155

3415 −3.79e+06 −130354 37878 −37217 −207 293 130354 1247 420546
−6870 19008886 653589 −37217 206522 −222 −1467 −653589 −489 95574
−255 6724 170 −207 −222 873 −0.3817 −170 −151 −67503

50 −152883 −5258 293 −1467 −0.3817 12 5258 5 −88
22348 −68174896 −2342830 130354 −653589 −170 5258 2342830 2219 −39155
389 −65242 −2219 1247 −489 −151 5 2219 6145697 379195

42957 1025727 39155 420546 95574 −67503 −88 −39155 379195 5.74e+09

 .

A is the FIM calculated using WTI Crude Oil futures prices from 2001 to 2005, the

corresponding parameter estimates have been reported in Section 5.1. The determi-

nant of A is 0, hence, the matrix is not positive definite.

Table 3.1: Measure of ∆ for FIM

GCD Method 1 Method 2

r2 1 1 2
rF 1 1 2

The ratios r2 and rF from GCD are calculated and compared with the values

from two other methods, which represent the replacement of negative eigenvalues

with a small positive value (e.g. 10−3), Method 1, and, according to Method 2, the

negative eigenvalue is replaced by its absolute value. The ratios r2 and rF are given

in Table 3.1. Evidently, GCD is competitive with Method 1 which is commonly used

in practice for “repairing” of indefinite covariance matrices.
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Simulation Study

In this chapter, the simulation study is performed for testing our KF algorithm for

parameter estimation in the two-factor model. The convergence of the estimates of

the model parameters is also studied. The parameter identification problem arising

within the likelihood function has been explored.

4.1 Results

In this section, we present the results of the simulation study conducted for validating

the use of Kalman Filter for estimation of the state vector xt jointly with the model

parameters θ. The constraint κ ≥ γ has been introduced to address the parameter

identification problem arising in estimation of the x vector using ML method. The

simulation study has been programmed as follows.

1. Set θ0 = (κ, γ, µ, σχ, σξ, ρ, s) as the vector of true values.

2. Simulate xt and yt using the true values of parameters set in θ0.

3. Set the intervals for searching for unknown parameters. Locate the grid over

the Cartesian product of these intervals.

4. Do grid-search for finding the best initial vector θinit.

5. Maximise the log-likelihood function l(θ; y) using the best initial vector θinit.

6. Obtain the estimates of the model parameters θ̂ and their standard errors.



28

The grid search for the best initial set of the parameters’ values allowed overcoming

the problem of sensitivity to the initial values. Further, for simplicity we assume

λχ = λξ = 0 and s2
1 = s2

2 = ... = s2
n = s2

v. The vector yt is 13-dimensional, i.e.

there are 13 simulated futures contracts. The model parameter estimates and the

corresponding standard errors obtained by using the above procedure are presented

in Table 4.1. The true values of parameters are given in the last row of Table 4.1.

Table 4.1: θ̂ for different sample size with SE; NLL stands for −l(θ; y)

n κ γ µ σχ σξ ρ sv NLL

500 1.2568 0.0120 -0.0506 0.7830 0.2568 -0.9381 0.0299 -13129
(0.0199) (0.0342) (0.0425) (0.0480) (0.0196) (0.0164) (0.0003)

1000 1.2407 0.0100 -0.0121 0.6243 0.1446 -0.8895 0.0300 -26283
(0.0127) (0.0282) (0.0330) (0.0295) (0.0097) (0.0239) (0.0002)

2000 1.5627 1.0068 -2.0290 0.4587 0.3762 -0.4127 0.0297 -52830
(0.0468) (0.0260) (0.0512) (0.0260) (0.0188) (0.0540) (0.0001)

4000 1.4555 1.0092 -2.0229 0.5448 0.4224 -0.6837 0.0300 -105576
(0.0308) (0.0193) (0.0381) (0.0205) (0.0104) (0.0292) (0.0001)

6000 1.4252 0.9773 -1.9609 0.5276 0.3738 -0.6719 0.0300 -158484
(0.0263) (0.0166) (0.0330) (0.0181) (0.0073) (0.0295) (0.0001)

8000 1.4741 1.0004 -2.0074 0.5029 0.3633 -0.6503 0.0300 -211259
(0.0231) (0.0150) (0.0299) (0.0142) (0.0068) (0.0252) (7.3e-05)

10000 1.4630 0.9721 -1.9500 0.5080 0.3529 -0.6718 0.0300 -264100
(0.0202) (0.0127) (0.0253) (0.0128) (0.0052) (0.0225) (6.5e-05)

16000 1.4917 0.9791 -1.9631 0.4974 0.3248 -0.6573 0.0301 -422708
(0.0162) (0.0101) (0.0201) (0.0101) (0.0039) (0.0202) (5.0e-05)

θ0 1.5 1 -2 0.5 0.3 -0.7 0.03

As the sample size increses from 500 to 16000, all estimates of parameters converge

to their true values. When the sample size is large, all estimates were significant,

except σξ. However, as the sample size increases, the difference between the true value

of σξ and the width of the 95% confidence interval of the estimates of σξ decreases. It

is reasonable to conclude that if the sample size increases continuously, the estimates

of σξ will finally be significant.

For some sample sizes n from the range (500, 16000), the best initial values found

according to Step 5, are given in Table 4.2. These initial values were used for obtaining
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the corresponding optimal model parameter estimates in Table 4.1.

Table 4.2: Best initial values for θ̂

n κ γ µ σχ σξ ρ s

500 2.2525 0.7575 -0.5000 1.5025 1.0050 0.5000 0.5000
1000 1.5050 0.7575 -0.5000 0.50750 1.0050 0.5000 0.5000
2000 1.5050 0.7575 -2.7500 0.5075 1.5025 0 0.500
4000 1.5050 0.7575 1.7500 1.5025 1.5025 0 0.5000
6000 2.2525 1.5050 -2.7500 1.5025 1.5025 0.5000 0.7500
8000 2.2525 0.7575 -0.5000 1.0050 1.0050 -0.5000 0.7500
10000 1.5050 1.5050 1.7500 1.5025 1.5025 0.5000 0.7500
16000 0.7575 2.2525 -2.7500 0.5075 0.5075 0 0.2500

The convergence of the parameter estimates can be seen in Figure 4·1, where the

estimation errors θ̂i − θ0,i, i = 1, 2, ..., 7 are plotted versus the sample size n, with θ0

be the vector of true parameter values.

The paths of the estimated state variables χ̂t and ξ̂t obtained through Kalman

Filter along with the simulated trajectories χt and ξt are presented in Figure 4·2 and

4·3.

The plots of the paths of the estimated log Ŝt = χ̂t + ξ̂t and simulated spot prices

logSt = χt + ξt are presented in Figure 4·4.
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Figure 4·1: θ0 estimation error plots componentwise versus sample
size n
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Figure 4·2: Estimated (n = 16000) χ̂t and simulated χt (data points:
10001− 11000)

Figure 4·3: Estimated (n = 16000) ξ̂t and simulated ξt (data points:
10001− 11000)
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Figure 4·4: Estimated (n = 16000) log Ŝt and simulated logSt (data
points: 10001− 11000)

4.2 Parameter Identification Problem

In the process of obtaining the MLE estimates, the parameters may be identified

incorrectly due to what is known as the Parameter Identification Problem (PIP). In

this section, we will discuss the presence of this problem in our model and then we

suggest a reasonable numerical resolution.

To obtain the MLE estimates of parameters, the log-likelihood function

l(θ; y) = −nnT log 2π

2
− 1

2

nT∑
t=1

[
log
(
det(Lt|t−1)

)
+ e′tL

−1
t|t−1et

]
is maximised. However, it is possible that the log-likelihood function has the same

value at two different vectors of estimates θ̂1 and θ̂2, which gives

l(θ̂1; y) = l(θ̂2; y). (4.1)
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In Section 2.2, both the short-term factor χ and the long-term factor ξ are modelled

as Ornstein-Uhlenbeck processes with different means,

dχt = −κχtdt+ σχdZ
χ
t

and

dξt = (µξ − γξt)dt+ σξdZ
ξ
t .

Let θ̂1 = {κ, γ, µξ, σχ, σξ, ρ, s} and θ̂2 = {γ, κ, µ̃ξ, σξ, σχ, ρ, s}. That is, we swap the

parameters for χ and ξ. Since ρ represents the correlation coefficient of dZχ
t and dZξ

t ,

it is invariant to swapping. s is also invariant to swapping. µξ is changed to another

value µ̃ξ. It can be shown numerically and analytically that if we swap parameters

this way, the MLE estimates µ̃ξ would be

µ̃ξ =
κ

γ
µξ, (4.2)

and then (4.1) satisfied.

For numerical evidence, the algorithm is given below.

1. Generate random values for θ̂1 = {κ, γ, µξ, σχ, σξ, ρ, s}. In this step, any reason-

able distributions can be considered. However, due to the continuity property

and, the fact, most parameters are bounded (e.g. the absolute value of correla-

tion coefficient ρ must less than 1), the uniform distribution is assumed for all

parameters.

2. Simulate data with respect to θ̂ with sample size n.

3. Swap parameters as discussed above. We get θ̂2 = {γ, κ, κ
γ
µξ, σξ, σχ, ρ, s}.

4. Calculate log-likelihood for θ̂1 and θ̂2 respectively.

5. Repeat step 1− 3 m times.
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6. Calculate the sum of squares of the difference of l(θ̂1) and l(θ̂2), where l is the

log-likelihood function.

We used the sample size n = 2000 and the number of iterations m = 1000, which

gives the sum of squares 6.8 × 10−15. Table 4.3 displays the results of the first 10

iterations. It is clear that the log-likelihoods with respect to θ̂1 and θ̂2 are identical.

Table 4.3: First 10 iterations of numerical illustration of PIP

κ γ µξ σχ σξ ρ s l(θ̂1) l(θ̂2)

2.79 0.95 -3.34 0.41 1.14 0.19 0.96 90471.60 90471.60
1.69 0.64 -2.23 1.24 1.87 -0.34 0.86 83064.45 83064.45
1.35 2.62 -2.72 1.13 1.40 -0.59 0.65 64519.77 64519.77
1.62 0.25 1.39 1.99 0.62 -0.64 0.51 50036.07 50036.07
0.59 2.21 2.83 1.19 0.77 0.54 0.47 44343.66 44343.66
2.22 2.49 -3.43 0.04 1.11 0.17 0.10 -52740.50 -52740.50
1.08 2.68 -3.59 0.83 0.30 -0.04 0.69 68948.71 68948.71
2.83 2.49 2.46 0.77 0.55 -0.50 0.86 82940.70 82940.70
2.42 0.67 1.26 1.53 0.68 -0.54 0.13 -38563.71 -38563.71
0.88 1.62 -3.28 1.58 0.52 0.87 0.21 -5601.71 -5601.71

The analytical proof is provided below. The log-likelihood (2.12) is a function of

prediction error et and covariance matrix Lt|t−1, so if et and Lt|t−1 under θ̂1 and θ̂2

are identical, the log-likelihood l(θ̂1) and l(θ̂2) would be identical.

By Mathematical induction, it can be proved that when we swap κ and γ, and

σχ and σξ, µ̃ξ is equal to κ
γ
µξ. And then, it can be proved that et and Lt|t−1 would

be identical under θ̂1 and θ̂2. The detailed proof is available in appendix C. To deal

with this problem, a constraint κ ≥ γ is introduced.



Chapter 5

Application: Crude Oil Futures Data

In this section, the Kalman Filter and Smoother are implemented using real data.

The in-sample and out-of-sample forecasting performances are also discussed.

We use historical data of prices of WTI Crude Oil NYMEX futures from 02/01/1996

to 30/09/2019. It includes 20 contracts with maturities 1 month to 20 months re-

spectively. The parameters are estimated based on the first 13 contracts and the last

7 contracts are used to study the model out-of-sample forecasting performance. The

data set was provided by DataScope.

In Section 5.1, the parameter estimations of Crude Oil futures data are reported.

Considering the effect of the global financial crisis (GFC), a moving window with

4 years period and 1 year shift is used. This moving window will provide a view

of the changes of parameters in different periods. The in-sample and out-of-sample

performances are analysed using the root mean square error (RMSE) in Section 5.2.

In Section 5.3, the model performance on raw data is compared with the model

performance on interpolated data. The interpolation is a commonly used technique

in time series analysis.

5.1 Parameter Estimation

In this section, a moving window over 4 years period with 1-year shift period is used

in an observational study of the dynamics of the parameter estimations. This design

is efficient for assessment of the effect on the model parameters of some global events,

such as the GFC.
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Table 5.2: Estimated parameters in different time periods

Period s1 s2 NLL

2015-2019 0.0132 0.0027 -53082
(3.15E-04) (1.38E-05)

2014-2018 0.0133 0.0029 -52450
(3.20E-04) (1.50E-05)

2013-2017 0.0138 0.0030 -52119
(9.82E-05) (1.61E-05)

2012-2016 0.0105 0.0024 -54807
(2.36E-04) (1.11E-05)

2011-2015 0.0091 0.0023 -55552
(2.03E-04) (1.73E-05)

2010-2014 0.0100 0.0023 -55428
(2.24E-04) (1.11E-05)

2009-2013 0.0179 0.0028 -52505
(4.06E-04) (1.49E-05)

2008-2012 0.0226 0.0030 -51018
(5.20E-04) (1.72E-05)

2007-2011 0.0236 0.0030 -51034
(4.87E-05) (1.67E-05)

2006-2010 0.0238 0.0032 -50170
(2.39E-05) (1.92E-05)

2005-2009 0.0181 0.0032 -50717
(5.30E-05) (1.80E-05)

2004-2008 0.0149 0.0028 -51944
(3.40E-04) (1.60E-05)

2003-2007 0.0167 0.0029 -51578
(3.80E-04) (1.60E-05)

2002-2006 0.0189 0.0032 -50662
(3.50E-05) (1.90E-05)

2001-2005 0.0209 0.0037 -48562
(5.20E-05) (2.20E-05)

2000-2004 0.0206 0.0037 -48518
(4.63E-04) (2.24E-05)

1999-2003 0.0206 0.0033 -49585
(4.58E-04) (1.93E-05)
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The parameter estimates and the corresponding standard errors are given in Table

5.1 and 5.2, along with the negative log-likelihood function values. For Crude Oil

Futures data, we assume that the covariance matrix V of error term in yt is diagonal,

and has the form

V =


s2

1

s2
2

. . .

s2
2

 .

That is, the variance of the error term for the first contract is s2
1 and s2

2 for other

contracts.

The estimates of κ are stable on the interval [1, 1.6], except the periods from 2008-

2012 to 2011-2015. In these periods, κ̂ changes from about 0.6 to 2.9. Comparing to

κ̂, the range of γ̂ is larger, from only 0.003 to about 0.5. This illustrates that the speed

of mean-reverting for short factor is more stable than the speed of mean-reverting for

long factor. The estimates of σχ and σξ are very close and fluctuate at about 0.3,

except the period 2011-2015, in which the estimates are close to 3. In 1999-2003,

2010-2014 and 2011-2015, the estimates of ρ are negative whilst otherwise positive,

which illustrates the short and long term factors are usually positively correlated.

The estimates of s1 and s2 are stable over all periods. However, the estimates of µξ,

λχ and λξ are sensitive to varying time periods. This observational study conformed

with our expectations. The model was designed in the risk-neutral framework

dχt = (−κχt − λχ)dt+ σχdZ
χ∗

t ,

dξt = (µξ − γξt − λξ)dt+ σξdZ
ξ∗

t ,

where the risk premiums λχ and λξ were the adjustment scalars for the mean levels

of short-term and long-term factors. Hence, it was expected to experience difficulties

in the estimation of λ’s separately from µ.
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5.2 In-Sample and Out-Of-Sample Performances

In Section 5.1, the parameters are estimated by maximising the log-likelihood func-

tion. In this section, the in-sample and out-of-sample performances are analysed

using the RMSE criterion.

Figure 5·1: WTI Crude Oil futures prices of the first available contract

Figure 5·1 shows the WTI Crude Oil futures prices from 1996 to 2019. It is obvious

that the prices dropped dramatically during the Global Financial Crisis in 2008, so the

stationarity of the time series may not be satisfied during this period. To study the

in-sample and the out-of-sample forecasting performance, the three separate periods

are selected, 01/01/2001 - 01/01/2005, 01/01/2005 - 01/01/2009, and 01/01/2014 -

01/01/2018 in Figure 5·1.

The root mean square error (RMSE) would be a criteria for studying the perfor-

mance. The algorithm for obtaining RMSE are given below:

1. Given the data set in some specified time period, the parameters are estimated.

2. Obtain the estimates of state variable xt trough Klaman FIlter or Kalman

Smoother.



40

3. Obtain the estimates of the logarithms of futures prices yt by

ŷt = dt + F ′t x̂t.

dt and Ft are given in Section 2.4. x̂t is the estimate of xt by Kalman Filter or

Kalman Smoother.

4. Calculate RMSE of yt − ŷt.

Table 5.3: RMSE with data in three different time periods and dif-
ferent estimation methods

Period 2001-2005 2005-2009 2014-2018

Estimation Filter Smoother Filter Smoother Filter Smoother

In-Sample
C6 0.003786 0.003790 0.003361 0.003362 0.003044 0.003042
C12 0.002753 0.002768 0.002578 0.002597 0.002146 0.002144

Out-of-Sample

C14 0.005960 0.005953 0.005667 0.005663 0.005231 0.005211
C15 0.007894 0.007885 0.007462 0.007449 0.007208 0.007182
C16 0.009770 0.009761 0.009418 0.009398 0.009451 0.009420
C17 0.011798 0.011785 0.011508 0.011483 0.011905 0.011870
C18 0.013883 0.013870 0.013658 0.013628 0.014498 0.014462
C19 0.016108 0.016096 0.015913 0.015877 0.017270 0.017233

Table 5.3 gives the RMSE of data in different time periods. The in-sample fore-

casting performance is evaluated on the 6th (C6) and 12th (C12) contracts, while the

out-of-sample performance is evaluated on the 14th (C14), 15th (C15), 16th (C16),

17th (C17), 18th (C18) and 19th (C19) contracts. The RMSE’s are consistent and

reasonable in three periods, even for the period from 2005 to 2009, where the futures

prices decreased dramatically due to the GFC. In summary, the forecasting perfor-

mances of different estimation methods have been studied. In each specified time

period, the RMSE calculated through Kalman Filter is smaller for short maturity

contracts, which provides evidence that the Kalman Filter performs better in estima-

tions of futures prices for short maturity contracts, while Kalman Smoother is better

for longer maturity contracts.
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Figure 5·2: Cross-sectional data of logarithm of futures prices and
estimates on 4 different days

Figure 5·2 gives the cross-sectional data about the logarithm of futures prices

and estimated the logarithm of prices from Kalman Filter and Kalman Smoother

on 4 different days with distinct patterns of futures curves, 10/10/2006, 05/09/2007,

14/11/2005 and 20/09/2005. The horizontal axis represents the number of contracts

from 1 to 20 and the vertical axis is the logarithm of prices. On these 4 days, the

tendencies are different. However, both Kalman Filter and Kalman Smoother gave

reasonable estimates.

Figure 5·3 shows the logarithm of the futures prices of the first available con-

tract and the estimated logarithm of prices from Kalman Filter and Smoother from

01/01//2005 to 01/01/2009. Both Kalman Filter and Kalman Smoother gave good

estimates for this period.



42

Figure 5·3: Logarithm of futures prices and estimates of the first
available contract from 2005 to 2009

5.3 Data Interpolation

Interpolation is commonly used in time series analysis to create a new data point

within the discrete known data points. Given the futures prices y1 and y2 with two

distinct maturities t1 and t2 (t1 ≤ t2) on a specified date, the linear interpolation ỹ

with maturity t̃ gives

ỹ = y1 +
t̃− t1
t2 − t1

(y2 − y1), (5.1)

where t1 ≤ t̃ ≤ t2. In this section, the raw data is interpolated so that the maturities

of each contract over the whole period are fixed, i.e. the maturity of the first contract

on each trading day is ”one month” (i.e. 21 days), the maturity of the second contract

on each trading day is ”two months” (i.e. 42 days), etc.

The RMSE’s of interpolated data are given in Table 5.4. For interpolated data,

the conclusions are similar to the conclusions made in reference of raw data. The

RMSE’s are consistent across the three periods. The Kalman Filter gives the best

RMSE for short maturity contracts, and Kalman Smoother is better for long-maturity

contracts. Moreover, the RMSE’s in Table 5.4 are larger than the RMSE’s in Table



43

Table 5.4: RMSE with interpolated data in three different time peri-
ods and different estimation methods

Period 2001-2005 2005-2009 2014-2018

Estimation Filter Smoother Filter Smoother Filter Smoother

In-Sample
C6 0.003037 0.003040 0.002604 0.002604 0.002351 0.002349
C12 0.003575 0.003587 0.003196 0.003201 0.002889 0.002877

Out-of-Sample

C14 0.007065 0.007068 0.006243 0.006232 0.006322 0.006299
C15 0.008869 0.008871 0.008031 0.008014 0.008453 0.008426
C16 0.010700 0.010700 0.009975 0.009952 0.010860 0.010828
C17 0.012634 0.012635 0.012015 0.011988 0.013440 0.013407
C18 0.014722 0.014724 0.014162 0.014130 0.016192 0.016158
C19 0.016955 0.016958 0.016424 0.016388 0.019157 0.019122

5.3, except for the 6th contract (C6). Hence, the interpolation of the data can be

recommended for modelling of futures prices with shorter maturities.



Chapter 6

Conclusion

We have developed the two-factor model which can be used for the pricing of energy

commodity futures. The Kalman Filter has been implemented to estimate the hidden

factors jointly with unknown model parameters. The asymptotic variances of the

estimates of the model parameters were calculated using the score vector.

The simulation study has been carried out to test the sensitivity to the initial

values and consistency of the estimation procedure. Through the simulation study,

we illustrated the robustness of the grid-search and consistency of the estimates of

the parameters and the estimates of the state variables χt and ξt. The parameter

identification problem established in this model has been resolved numerically by

introducing an additional constraint.

The model has been applied to WTI Crude Oil futures historical prices from 1999

to 2019. A moving window was used for monitoring the change of parameters over

time. Most of the parameters were stable over time except µξ, λχ and λξ. These three

parameters appeared difficult to estimate. The asymptotic variances of the estimates

were obtained using an empirical analog of the Fisher Information matrix and when

it returned indefinite, the matrix was ”repaired” using the generalised Cholesky de-

composition. The model in-sample and out-of-sample forecasting performances were

evaluated using the RMSE criterion. Moreover, Kalman Filter gives a better estimate

of state vector xt for shorter maturity contracts, while Kalman Smoother performs

better for contracts with longer maturities.

The topics for further research are as follows:
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1. The two-factor model can be extended to a multi-factor model, which would

include seasonal effects and stochastic interest rate.

2. Further, we aim to compare the findings of this work with the results which will

be obtained through implementation of the Particle Filter for the two-factor

model.
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Appendix A

Derivation of Characteristics of Bivariate
OU Process

In Section 2.1, we define a bivariate Ornstein-Uhlenbeck process as

dχt = −κχtdt+ σχdZ
χ
t (A.1)

and

dξt = (µξ − γξt)dt+ σξdZ
ξ
t , (A.2)

where Zχ
t , Z

ξ
t are correlated standard Brownian motions with E(dZχ

t dZ
ξ
t ) = ρdt. Here

we provide a somewhat more detailed derivation of (2.5) and (2.6). We will show that

(2.5) and (2.6) can be obtained based on the limits of the discretised variants of (A.1)

and (A.2) instead of directly using their exact solutions.

Firstly, from (A.1),

∆χt = −κχt∆t+ σχ
√

∆tεχ.

Therefore,

χt+1 = (1− κ∆t)χt + σχ
√

∆tεχ. (A.3)

Similarly, from (A.2), we get

ξt+1 = (1− γ∆t)ξt + µξ∆t+ σξ
√

∆tεξ, (A.4)
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where εχ, εξ ∼ N(0, 1). Let Corr(εχ, εξ) = ρ and w =

[
σχ
√

∆tεχ
σξ
√

∆tεξ

]
, then

V ar(w) =

[
σ2
χ∆t ρσχσξ∆t

ρσχσξ∆t σ2
ξ∆t

]
= W.

Let Xt =

[
χt
ξt

]
, c =

[
0

µξ∆t

]
and G =

[
1− κ∆t 0

0 1− γ∆t

]
. Then from (A.3) and

(A.4) we get

Xt+1 = c+GXt + wt+1.

Let φ = 1− κ∆t, ψ = 1− γ∆t. Then

E(Xt) =

[
(1− κ∆t)χt−1

(1− γ∆t)ξt−1 + µξ∆t

]
=

[
(1− κ∆t)nχ0

(1− γ∆t)nξ0 + (1− γ∆t)n−1µξ∆t+ · · ·+ (1− γ∆t)0µξ∆t

]
=

[
φnχ0

ψnξ0 + µξ∆t
1−(1−γ∆t)n

γ∆t

]
=

[
φnχ0

ψnξ0 +
µξ
γ

(1− ψn)

]
, (A.5)

and

V ar(Xt) = GV ar(Xt−1)G′+W = GnV ar(X0)(G′)n+Gn−1W (G′)n−1+· · ·+G0W (G′)0.

If we assume V ar(X0) = 0, we can get

V ar(Xt) = Gn−1W (G′)n−1 + · · ·+G0W (G′)0

=

[
σ2
χ∆t

∑n−1
i=0 φ

2i ρσχσξ∆t
∑n−1

i=0 (φψ)i

ρσχσξ∆t
∑n−1

i=0 (φψ)i σ2
ξ∆t

∑n−1
i=0 ψ

2i

]
=

[
σ2
χ∆t1−φ2n

1−φ2 ρσχσξ∆t
1−(φψ)n

1−φψ
ρσχσξ∆t

1−(φψ)n

1−φψ σ2
ξ∆t

1−ψ2n

1−ψ2

]
. (A.6)

When n→∞, ∆t = t/n→ 0, ∆t2 = 0, then

φn = (1− κt

n
)n → e−κt,
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ψn = (1− γt

n
)n → e−γt,

(φψ)n = (1− (κ+ γ)t/n)n → e−(κ+γ)t,

1− φ2 = 2κ∆t, 1− ψ2 = 2γ∆t, 1− φψ = (κ+ γ)∆t.

From (A.5) and (A.6), we have

E(Xt) =

[
e−κtχ0

e−γtξ0 +
µξ
γ

(1− e−γt)

]
and

V ar(Xt) =

[
σ2
χ

2κ
(1− e−2κt)

ρσχσξ
κ+γ

(1− e−(κ+γ)t)
ρσχσξ
κ+γ

(1− e−(κ+γ)t)
σ2
ξ

2γ
(1− e−2γt)

]
.



Appendix B

Gradient of Log Likelihood

The state space model is given by the equations

xt = Gxt−1 + c+ wt, (B.1)

and

yt = F ′txt + dt + vt. (B.2)

Let p(x, y|θ) be the joint density of x and y, p(x|y, θ) be the conditional density of x

given y, and p(y|θ) be the marginal density of y, where θ is the vector of all unknown

parameters. We have

p(y|θ) =
p(x, y|θ)
p(x|y, θ) .

Then we have

log p(y|θ) = log p(x, y|θ)− log p(x|y, θ). (B.3)

Let Ẽ denote the expectation with respect to the density p(x|y, θ). Since the left

hand side of equation (B.3) is independent on x, we have

log p(y|θ) = Ẽ [log p(x, y|θ)]− Ẽ [log p(x|y, θ)] .

We differentiate both sides with respect to θ. Since

Ẽ

[
∂ log p(x|y, θ)

∂θ

]
=

∫
1

p(x|y, θ)
∂p(x|y, θ)

∂θ
p(x|y, θ)dx =

∂

∂θ

∫
p(x|y, θ)dx = 0,



53

we have

∂ log p(y|θ)
∂θ

= Ẽ

[
∂ log p(x, y|θ)

∂θ

]
. (B.4)

Since xt ∼ N(ωt,W ) and yt|xt ∼ N(νt, V ), where ωt and νt are estimates of wt

and vt, and p(x, y|θ) = p(x|θ)p(y|x, θ), we have

log p(x, y|θ) = log p(x|θ) + log p(y|x, θ)

= constant− 1

2

n∑
t=1

(
log |W |+ log |V |+ ω′tW

−1ωt + ν ′tV
−1νt

)
. (B.5)

W and V are independent on x, so

Ẽ

[
∂ log p(x, y|θ)

∂θ

]
= −1

2

∂

∂θ

n∑
t=1

[
log |W |+ log |V |+ Ẽ(ω′tW

−1ωt) + Ẽ(ν ′tV
−1νt)

]
.

(B.6)

Let W
(−1)
ij and V

(−1)
ij denote the elements at ith row and jth column of W−1 and

V −1. Assuming ωt and νt are n and m dimensional vectors respectively. Then

Ẽ(ω′tW
−1ωt) =

n∑
i=1

n∑
j=1

Ẽ(ω
(i)
t W

(−1)
ij ω

(j)
t ) =

n∑
i=1

n∑
j=1

Ẽ(ω
(i)
t ω

(j)
t )W

(−1)
ij , (B.7)

and

Ẽ(ν ′tV
−1νt) =

m∑
i=1

m∑
j=1

Ẽ(ν
(i)
t V

(−1)
ij ν

(j)
t ) =

m∑
i=1

m∑
j=1

Ẽ(ν
(i)
t ν

(j)
t )V

(−1)
ij , (B.8)

where ω
(i)
t and ν

(i)
t are ith elements of ωt and νt.

1. Calculation of Ẽ(ω′tW
−1ωt)

Let ci be the ith element of vector c, and Gi be the ith row of G. At time t, we

have

Ẽ(ω
(i)
t ω

(j)
t ) = Ẽ

[
(x

(i)
t − ci −Gixt−1)(x

(j)
t − cj −Gjxt−1)

]
= Ẽ

[
(x

(i)
t − ci)(x(j)

t − cj)−Gixt−1(x
(j)
t − cj)−Gjxt−1(x

(i)
t − ci) + (Gixt−1)(Gjxt−1)

]
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=
∫

(x
(i)
t − ci)(x(j)

t − cj)p(x|y, θ)−Gixt−1(x
(j)
t − cj)p(x|y, θ)

−Gjxt−1(x
(i)
t − ci)p(x|y, θ) + (Gixt−1)(Gjxt−1)p(x|y, θ)dx

= E
[
(x

(i)
t − ci)(x(j)

t − cj)|y
]
− E

[
Gixt−1(x

(j)
t − cj)|y

]
−E

[
Gjxt−1(x

(i)
t − ci)|y

]
+ E [(Gixt−1)(Gjxt−1)|y]

= (x
(i)
t|n − ci)(x

(j)
t|n − cj) + Cov

(
x

(i)
t|n − ci, x

(j)
t|n − cj

)
−Gixt−1|n

(
x

(j)
t|n − cj

)
− Cov

(
Gixt−1|n, x

(j)
t|n − cj

)
−Gjxt−1|n

(
x

(i)
t|n − ci

)
− Cov

(
Gjxt−1|n, x

(i)
t|n − ci

)
+(Gixt−1|n)(Gjxt−1|n) + Cov

(
Gixt−1|n, Gjxt−1|n

)
.

The sum of all covariances is equal to Cov
(
x

(i)
t|n −Gixt−1|n, x

(j)
t|n −Gjxt−1|n

)
, which

is Cov
(
ω

(i)
t|n, ω

(j)
t|n

)
, and the sum of all other terms is equal to

(
x

(i)
t|n −Gixt−|n

)(
x

(j)
t|n −Gjxt−1|n

)
,

which is ω
(i)
t|nω

(j)
t|n. So we have

Ẽ
(
ω

(i)
t ω

(j)
t

)
= ω

(i)
t|nω

(j)
t|n + Cov

(
ω

(i)
t|n, ω

(j)
t|n

)
. (B.9)

By substituting (B.9) in (B.7), we get

Ẽ
(
ω′tW

−1ωt
)

=
n∑
i=1

n∑
j=1

[
ω

(i)
t|nω

(j)
t|n + Cov

(
ω

(i)
t|n, ω

(j)
t|n

)]
W

(−1)
ij

= tr
[
{ωt|nω′t|n + V ar(ωt|n)}W−1

]
. (B.10)

2. Calculation of Ẽ(ν ′tV
−1νt)

At time t, let d
(i)
t be the ith element of vector d, and F

(i)
t be the ith column of Ft.

Since yt is independent on xt, we have

Ẽ
(
ν

(i)
t ν

(j)
t

)
= Ẽ

[
(y

(i)
t − d(i)

t − F (i)′

t xt)(y
(j)
t − d(j)

t − F (j)′

t xt)
]
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= Ẽ
[
(y

(i)
t − d(i)

t )(y
(j)
t − d(j)

t )− F (i)′

t xt(y
(j)
t − d(j)

t )− F (j)′

t xt(y
(i)
t − d(i)

t ) + (F
(i)′

t xt)(F
(j)′

t xt)
]

=
∫

(y
(i)
t − d(i)

t )(y
(j)
t − d(j)

t )p(x|y, θ)− F (i)′

t xt(y
(j)
t − d(j)

t )p(x|y, θ)

−F (j)′

t xt(y
(i)
t − d(i)

t )p(x|y, θ) + (F
(i)′

t xt)(F
(j)′

t xt)p(x|y, θ)dx

=
(
y

(i)
t − d(i)

t

)(
y

(j)
t − d(j)

t

)
− F (i)′

t E[xt|y]
(
y

(j)
t − d(j)

t

)
−F (j)′

t E[xt|y]
(
x

(i)
t − d(i)

t

)
+ E

[
(F

(i)′

t xt)(F
(j)′

t xt)|y
]

= (y
(i)
t − d(i)

t )(y
(j)
t − d(j)

t )− F (i)′

t xt|n(y
(j)
t − d(j)

t )− F (j)′

t xt|n(x
(i)
t − d(i)

t )

+
(
F

(i)′

t xt|n

)(
F

(j)′

t xt|n

)
+ Cov

(
F

(i)′

t xt|n, F
(j)′

t xt|n

)
= ν

(i)
t|nν

(j)
t|n + Cov

(
y

(i)
t − d(i)

t − ν(i)
t|n, y

(j)
t − d(j)

t − ν(j)
t|n

)
Since y

(i)
t − d(i)

t − ν(i)
t|n is constant, we have

Ẽ
(
ν

(i)
t ν

(j)
t

)
= ν

(i)
t|nν

(j)
t|n + Cov

(
ν

(i)
t|n, ν

(j)
t|n

)
. (B.11)

By substituting (B.11) in (B.8), we get

Ẽ
(
ν ′tV

−1νt
)

=
n∑
i=1

n∑
j=1

[
ν

(i)
t|nν

(j)
t|n + Cov(ν

(i)
t|n, ν

(j)
t|n)
]
W

(−1)
ij

= tr
[
{νt|nν ′t|n + V ar(νt|n)}V −1

]
. (B.12)

From (B.4), (B.6), (B.10) and (B.12), we finally get

∂ logL(y|θ)
∂θ

= −1

2

∂

∂θ

n∑
t=1

{log |W |+ log |V |

+ tr[{ωt|nω′t|n + V ar(ωt|n)}W−1]

+ tr[{νt|nν ′t|n + V ar(νt|n)}V −1]}. (B.13)



Appendix C

Proof of Parameter Identification Problem

In this appendix, we will show that the log-likelihood does not change when we swap

the parameters (κ, γ, µξ, σχ, σξ, ρ, s) to (γ, κ, µ̃ξ, σξ, σχ, ρ, s), where µ̃ξ = κ
γ
µξ. For

simplification, we assume one-dimensional observable variable yt.

From equation (2.12), log-likelihood l is a function of prediction error et and

covariance matrix Lt|t−1. If et and Lt|t−1 do not change after swapping the parameters,

then l does not change.

Mathematical induction will be used to prove the identification problem. Firstly,

we will show that the estimates of state vector at|t−1 and the corresponding covariance

matrix Pt|t−1 have the structure

at|t−1 =

[
α1

µξ
γ

+ α2

]
(C.1)

and

Pt|t−1 =

[
W1 −Q11 W2 −Q12

W2 −Q21 W3 −Q22

]
, (C.2)

where W1 =
σ2
χ

2κ
, W2 =

ρχξσχσξ
κ+γ

and W3 =
σ2
ξ

2γ
. Let’s denote α =

[
α1

α2

]
. The following

properties are satisfied:

P1 α1 and α2 are linear combinations of e1, e2, · · · , et−1, and all the coefficients are

independent to µξ.

P2 F ′tα = e−κTα1 + e−γTα2 does not change after swapping the parameters, where

T is the maturity time.
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P3 Q12 = Q21 so that Pt|t−1 is a symmetric matrix.

P4 After swapping the parameters, the diagonal entries of Pt|t−1 swap and the off-

diagonal entries do not change. That is, Q̃11 = Q22, Q̃22 = Q11 and Q̃12 =

Q̃21 = Q12, where Q̃11, Q̃22 and Q̃12 are values after swapping the parameters.

The prediction error et and covariance matrix Lt|t−1 are calculated by

et = yt − dt − F ′tat|t−1

and

Lt|t−1 = F ′tPt|t−1Ft + V.

Under properties P1 - P4, we can prove that et has a structure

et = yt −
µξ
γ
−B(Tt)− Et, (C.3)

where

B(Tt) =
1

2

(
(1− e−2κTt)

σ2
χ

2κ
+ (1− e−2γTt)

σ2
ξ

2γ
+ 2(1− e−(κ+γ)Tt)

ρχξσχσξ
κ+ γ

)
. (C.4)

Et is a linear combination of e1, e2, · · · , et−1 satisfies:

P5 All coefficients of Et are independent to µξ.

P6 Et does not change after swapping the parameters.

1. t=1

Firstly, we start from the simplest model with one data point y1. Let the vector

of unknown parameters be θ = (κ, γ, µξ, σχ, σξ, ρχξ, s) and the state vector be xt =

(χt, ξt)
′, where

dχt = −κχtdt+ σχdZ
χ
t
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and

dξt = (µξ − γξt)dt+ σξdZ
ξ
t .

The initial expectation and covariance matrix are

E(x0) = a0 =

[
0
µξ
γ

]
and

Cov(x0) = P0 =

[
σ2
χ

2κ

σχσξρχξ
κ+γ

σχσξρχξ
κ+γ

σ2
ξ

2γ

]
.

Given a0 and P0, we predict the expectation of the state vector xt as

a1|0 = c+G′a0 =

[
0
µξ
γ

]
and covariance matrix

P1|0 = GP0G
′ +W =

[
σ2
χ

2κ

σχσξρχξ
κ+γ

σχσξρχξ
κ+γ

σ2
ξ

2γ

]
=

[
W1 W2

W2 W3

]
.

Obviously, a1|0 and P1|0 have a structure (C.1) and (C.2), where α1 = α2 = 0 and

Q11 = Q12 = Q21 = Q22 = 0, and properties P1 - P4 are satisfied.

When a new data point y1 becomes available, we calculate the prediction error

e1 = y1 − d1 − F ′1a1|0 = y1 −
µξ
γ
−B(T1)

and covariance matrix

L1|0 = F ′1P1|0F1 + V = e−2κT1
σ2
χ

2κ
+ e−2γT1

σ2
ξ

2γ
+ 2e−(κ+γ)T1

ρχξσχσξ
κ+ γ

+ s,

where B(T1) is given by (C.4). Then E1 = 0 satisties properties P5 and P6.

To obtain the Maximum Likelihood Estimates of µξ, we derive the log-likelihood
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function (2.12) with respect to µξ

∂l1
∂µξ

= −L−1
1|0e1

∂e1

∂µξ
=
L−1

1|0

γ

(
y1 −

µξ
γ
−B(T1)

)
= 0.

Then we have

µξ
γ

= yt −B(T1) (C.5)

where B(T1) is given in (C.4).

Now we swap the parameters κ and γ, and σχ and σξ. Let’s denote a new vector

θ̃ = (κ̃, γ̃, µ̃ξ, σ̃χ, σ̃ξ, ρχξ, s). Then we have κ̃ = γ, γ̃ = κ, σ̃χ = σξ and σ̃ξ = σχ. From

(C.5), we have

µ̃ξ
γ̃

= yt −B(T1),

because yt and B(T1) do not change after swapping of the parameters. Since γ̃ = κ,

we have

µ̃ξ
γ̃

=
µ̃ξ
κ
.

Then from (C.5) we have

µ̃ξ =
κ

γ
µξ (C.6)

After swapping of the parameters, the prediction error and covariance matrix

would be

ẽ1 = yt −
µ̃ξ
γ̃
−B(T1) = yt −

µξ
γ
−B(T1) = e1

and

L̃1|0 = L1|0,

hence the log-likelihood did not change after swapping of the parameters.
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2. t = 2

Then we move on to the model with two data points. Given a1|0 and P1|0, we

calculate the Kalman gain matrix

K1 = P1|0F1L
−1
1|0 =

[
(W1e

−κT1 +W2e
−γT1)L−1

1|0
(W2e

−κT1 +W3e
−γT1)L−1

1|0

]
=

[
K

(1)
1

K
(1)
2

]
.

Let’s denote K
(1)
1 and K

(1)
2 as the first and second elements of vector K1. Obviously

K
(1)
1 and K

(1)
2 are independent with µξ, and K̃

(1)
1 = K

(1)
2 and K̃

(1)
2 = K

(1)
1 . The

updating equations are

a1 = a1|0 +K1e1 =

[
K

(1)
1 e1

µξ
γ

+K
(1)
2 e1

]

and

P1 = (I −K1F
′
1)P1|0

=

[
W1 −W1K

(1)
1 e−κT1 −W2K

(1)
1 e−γT1 W2 −W2K

(1)
1 e−κT1 −W3K

(1)
1 e−γT1

W2 −W1K
(1)
2 e−κT1 −W2K

(1)
2 e−γT1 W3 −W2K

(1)
2 e−κT1 −W3K

(1)
2 e−γT1

]

=

[
W1 − P (1)

11 W2 − P (1)
12

W2 − P (1)
21 W3 − P (1)

22

]
,

where P
(1)
12 = P

(1)
21 . Then we predict the expectation of state vector at time t = 2 as

a2|1 = c+Ga1 =

[
K

(1)
1 e−κ∆te1

µξ
γ

+K
(1)
2 e−γ∆te1

]

and the covariance matrix

P2|1 = GP1G
′ +W =

[
W1 − P (1)

11 e
−2κ∆t W2 − P (1)

12 e
−(κ+γ)∆t

W2 − P (1)
21 e

−(κ+γ)∆t W3 − P (1)
22 e

−2γ∆t

]
.

So at time t = 2, we have α1 = K
(1)
1 e−κ∆te1, α2 = K

(1)
2 e−γ∆te1, Q11 = P

(1)
11 e

−2κ∆t,

Q12 = P
(1)
12 e

−(κ+γ)∆t, Q21 = P
(1)
21 e

−(κ+γ)∆t and Q22 = P
(1)
22 e

−2γ∆t. We can show that

properties P1 - P4 are satisfied:
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P1 Obviously α1 and α2 are linear combinations of e1. K
(1)
1 and K

(1)
2 are indepen-

dent with µξ, so the coefficients are independent with µξ.

P2 In Appendix C.1, we have shown that e1 does not change after swapping the pa-

rameters. Moreover, K̃
(1)
1 = K

(1)
2 and K̃

(1)
2 = K

(1)
1 , so F ′2α = K

(1)
1 e−κ(∆t+T2)e1 +

K
(1)
2 e−γ(∆t+T2)e1 does not change.

P3 P
(1)
12 = P

(1)
21 , so Q12 = Q21.

P4 P
(1)
12 and P

(1)
21 do not change, so Q12 and Q21 do not change. P̃

(1)
11 = P

(1)
22 and

P̃
(1)
22 = P

(1)
11 , so Q̃11 = Q22 and Q̃22 = Q11.

We calculate the prediction error and covariance matrix at time t = 2 as

e2 = y2 − d2 − F ′2a2|1 = y2 −
µξ
γ
−B(T2)− (e−κT2α1 + e−γT2α2)

and

L2|1 = F ′2P2|1F2 + V.

It is clearly that e2 has a sturcture (C.3) where E2 =
(
e−κT2α1 + e−γT2α2

)
is a linear

combination of e1. Since e−κT2α1 + e−γT2α2 = F ′2α does not change after swapping

the parameters, E2 does not change. Properties P5 and P6 are satisfied.

Now we derive the log-likelihood function (2.12) with respect to µξ

∂l2
∂µξ

=
L−1

1|0

γ

(
y1 −

µξ
γ
−B(T1)

)
+
L−1

2|1(1− E2/e1)

γ

[
y2 −

µξ
γ
−B(T2)− E2

]
= 0

Then we get

µξ
γ

=
L−1

1|0(y1 −B(T1)) + L−1
2|1(1− E2/e1) [y2 −B(T2)− (E2/e1)(y1 −B(T1))]

L−1
1|0 + L−1

2|1(1− E2/e1)2
(C.7)

The right-hand side of (C.7) does not change after swapping the parameters, so we
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get

µ̃ξ =
κ

γ
µξ. (C.8)

Given (C.8) and properties P2 and P6, e2 does not change after swapping the

parameters. Given properties P3 and P4, the diagonal elements of P2|1 is swapped

and vector F2 is also swapped, so L2|1 does not change. The log-likelihood at time

t = 2 does not change.

3. t=n+1

We assume

an|n−1 =

[
α

(n)
1

µξ
γ

+ α
(n)
2

]
(C.9)

and

Pn|n−1 =

[
W1 −Q(n)

11 W2 −Q(n)
12

W2 −Q(n)
21 W3 −Q(n)

22

]
(C.10)

have structure (C.1) and (C.2) respectively, where properties P1 - P4 are satisfied.

The prediction error

en = yn −
µξ
γ
−B(Tn)− En (C.11)

has structure (C.3) where properties P5 and P6 are satisfied. en and L−1
n|n−1 do not

change after swapping the parameters. We derive the log-likelihood function (2.12)

with respect to µξ, then we get

µξ
γ

= βn, (C.12)

where βn is a function independent from µξ and remains invariant after switching the

parameters.
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We calculate the Kalman gain matrix as

Kn = Pn|n−1FnL
−1
n|n−1

=

[
(W1e

−κTn −Q(n)
11 e

−κTn +W2e
−γTn −Q(n)

12 e
−γTn)L−1

n|n−1

(W2e
−κTn −Q(n)

21 e
−κTn +W3e

−γTn −Q(n)
22 e

−γTn)L−1
n|n−1

]

=

[
K

(n)
1

K
(n)
2

]
.

The updating equations are

an = an|n−1 +Knen =

[
α

(n)
1 +K

(n)
1 en

µξ
γ

+ α
(n)
2 +K

(n)
2 en

]

and

Pn = (I −KnF
′
n)Pn|n−1 =

[
W1 − P (n)

11 W2 − P (n)
12

W2 − P (n)
21 W3 − P (n)

22

]
,

where

P
(n)
11 = Q

(n)
11 +W1K

(n)
1 e−κTn −Q(n)

11 K
(n)
1 e−κTn +W2K

(n)
1 e−γTn −Q(n)

21 K
(n)
1 e−γTn ,

P
(n)
12 = Q

(n)
12 +W2K

(n)
1 e−κTn −Q(n)

12 K
(n)
1 e−κTn +W3K

(n)
1 e−γTn −Q(n)

22 K
(n)
1 e−γTn ,

P
(n)
21 = Q

(n)
21 +W2K

(n)
2 e−γTn −Q(n)

21 K
(n)
2 e−γTn +W1K

(n)
2 e−κTn −Q(n)

11 K
(n)
2 e−κTn ,

P
(n)
22 = Q

(n)
22 +W3K

(n)
2 e−γTn −Q(n)

22 K
(n)
2 e−γTn +W2K

(n)
2 e−κTn −Q(n)

12 K
(n)
2 e−κTn

and P
(n)
12 = P

(n)
21 . We predict the expactation of state vector at time t = n+ 1 as

an+1|n = c+Gan =

[
α

(n)
1 e−κ∆t +K

(n)
1 e−κ∆ten

µξ
γ

+ α
(n)
2 e−γ∆t +K

(n)
2 e−γ∆ten

]

and covariance matrix

Pn+1|n = GPnG
′ +W =

[
W1 − P (n)

11 e
−2κ∆t W2 − P (n)

12 e
−(κ+γ)∆t

W2 − P (n)
21 e

−(κ+γ)∆t W3 − P (n)
22 e

−2γ∆t

]
.

So at time t = n + 1, we have α1 = α
(n)
1 e−κ∆t + K

(n)
1 e−κ∆ten, α2 = α

(n)
2 e−γ∆t +
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K
(n)
2 e−γ∆ten, Q11 = P

(n)
11 e

−2κ∆t, Q12 = P
(n)
12 e

−(κ+γ)∆t, Q21 = P
(n)
21 e

−(κ+γ)∆t and Q22 =

P
(n)
22 e

−2γ∆t, where properties P1 - P4 are satisfied:

P1 α
(n)
1 and α

(n)
2 are linear combinations of e1, e2, · · · , en−1 and all coefficients are

independent to µξ, so α1 and α2 are linear combinations of e1, e2, · · · , en and all

coefficients are independent to µξ.

P2 F ′nα
(n) and en do not change after swapping the parameters, and K̃

(n)
1 = K

(n)
2

and K̃
(n)
2 = K

(n)
1 , so F ′n+1α = α

(n)
1 e−κ(∆t+Tn+1)+α

(n)
2 e−γ(∆t+Tn+1)+K

(n)
1 e−κ(∆t+Tn+1)en+

K
(n)
2 e−γ(∆t+Tn+1)en does not change.

P3 P
(n)
12 = P

(n)
21 , so Q12 = Q21.

P4 P
(n)
12 and P

(n)
21 do not change, so Q12 and Q21 do not change. P̃

(n)
11 = P

(n)
22 and

P̃
(n)
22 = P

(n)
11 , so Q̃11 = Q22 and Q̃22 = Q11.

Then we calculate the prediction error and covariance matrix as

en+1 = yn+1 − dn+1 − F ′n+1an+1|n = yn+1 −
µξ
γ
−B(Tn+1)− F ′n+1α

and

Ln+1|n = F ′n+1Pn+1|nFn+1|n + V.

So et+1 has a structure (C.3) where En+1 = F ′n+1α. Then En+1 is a linear combination

of e1, e2, · · · , en where properties P5 and P6 are satisfied.

We derive the log-likelihood function (2.12) with respect to µξ

∂ln+1

∂µξ
=
∂ln
∂µξ

+ L−1
n+1|nen+1

∂en+1

∂µξ
= 0. (C.13)

From (C.12) we have

µξ
γ

+ L−1
n+1|nen+1

∂en+1

∂µξ
= βn.
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En+1 is a linear combination of e1, e2, · · · , en and all of these ei’s are linear with

respect to µξ. Hence ∂en+1

∂µξ
in (C.13) is independent from µξ. Then en+1 will be a

linear function of µξ. We obtain

µξ
γ

= βn+1, (C.14)

where βn+1 is the expression similar to (C.7). It must be noted that βn+1 does not

depend on µξ and remains invariant to switching of parameters. So we have

µ̃ξ =
κ

γ
µξ. (C.15)

Given (C.15) and all properties P1 - P6, we have en+1 and L−1
n+1|n does not change

after swapping the parameters, so that the log-likelihood does not change at time

t = n+ 1.


