
Disfluency Detection using a Noisy Channel
Model and Deep Neural Language Model

Paria Jamshid Lou

This thesis is submitted for the degree of Master of Research (MRes)

Department of Computing

Faculty of Science and Engineering

April 24, 2017

Declaration

I certify that the work in this thesis entitled “Disfluency Detection using a Noisy Channel Model
and Deep Neural Language Model” has not previously been submitted for a degree nor has it been
submitted as part of the requirements for a degree to any other university or institution other than
Macquarie University. I also certify that the thesis is an original piece of research and it has been
written by me. Any help and assistance that I have received in my research work and the preparation
of the thesis itself have been appropriately acknowledged. In addition, I certify that all information
sources and literature used are indicated in the thesis.

Signed: .

Date: .

i

Contents

Acknowledgements iv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Description . 2
1.3 Method . 3
1.4 Objectives . 4
1.5 Contributions . 4
1.6 Organization . 4

2 Literature Review 6
2.1 Psycholinguistics Studies on Speech Disfluencies 6
2.2 Automatic Speech Disfluency Detection . 8

2.2.1 Sequence Tagging Models . 9
2.2.2 Parsing-based Models . 11
2.2.3 Noisy Channel Models . 13

2.3 Language Modelling . 16
2.3.1 N-gram Language Models . 17
2.3.2 Parsing-based Language Models . 18
2.3.3 Recurrent Neural Network Language Models 20

2.4 Summary . 24

3 LSTM Noisy Channel Model 25
3.1 Description . 26
3.2 Channel Model . 26
3.3 Language Model . 27

3.3.1 LSTM . 28
3.4 Reranker . 29
3.5 Summary . 31

ii

CONTENTS iii

4 Experiments and Results 32
4.1 Corpora for Language Modelling . 32
4.2 LSTM Setting . 33
4.3 Evaluation Technique . 34
4.4 Model Performance . 35
4.5 Discussion . 37
4.6 Summary . 41

5 Summary and Conclusions 42

Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof. Mark Johnson for his continuous
support, patience, motivation and immense knowledge.

iv

Abstract

Although speech recognition technology has improved considerably in recent years, current systems
still output simply a sequence of words without any useful information about the location of disflu-
encies. On the other hand, such information is necessary for improving the readability of speech
transcripts. In fact, speech transcripts containing a lot of disfluencies are difficult to understand, so
removing disfluent words can make speech transcripts more readable. Moreover, many tasks includ-
ing dialogue systems input spontaneous speech. Such systems are usually trained on fluent, clean
corpora, so inputting disfluent data would decrease their performance.

This thesis aims at introducing a model for automatic disfluency detection in spontaneous speech
transcripts called LSTM Noisy Channel Model. The model uses a Noisy Channel Model (NCM) to
find “rough copies” that are likely to indicate disfluencies and generate n-best candidate disfluency
analyses. Then, the underlying fluent sentences of each candidate analysis are scored using a Long
Short-Term Memory (LSTM) language model. The LSTM language model scores, along with other
features, are used in a reranker to identify the most plausible analysis. We show that using LSTM
language model scores as features to rerank the analyses generated by an NCM improves the state-
of-the-art in disfluency detection.

v

Publication

• Paria Jamshid Lou and Mark Johnson. 2017. Disfluency Detection using a Noisy Channel
Model and a Deep Neural Language Model. To appear in ACL’17.

vi

List of Figures

1.1 Excerpt 1 shows a human-produced speech transcript with many disfluencies and
Excerpt 2 indicates the same speech transcript with disfluencies removed (Liu et al.,
2006) . 2

2.1 A parse tree including head information (adapted from Charniak (2001)) 19
2.2 An unrolled recurrent neural network . 20
2.3 The architecture of a long short-term memory neural network 21
2.4 The structure of an LSTM cell (Zhu et al., 2016) . 22

3.1 The block diagram of the LSTM noisy channel model 25
3.2 A disfluency structure with crossing dependencies between reparandum and repair . . 26

vii

List of Tables

3.1 The top 5 candidate disfluency analyses and corresponding noisy channel model
scores. E and indicate the preceding word is reparandum and fluent, respectively. . 27

3.2 The underlying fluent sentences of candidate analyses padded with a special symbol
at the end to reach the maximum length of 6 words. 28

3.3 Top 5 candidate disfluency analyses of the NCM along with forward and backward
LSTM LM scores. E and indicate the preceding word is reparandum and fluent,
respectively. 29

3.4 The 5 reranked candidate disfluency analyses. 31

4.1 Three different configurations of the model and their corresponding hyper-parameters 33
4.2 F-score on the dev set for the small, medium and large LSTM LMs. 34
4.3 Perplexity on the dev set for the small, medium and large LSTM LMs. 34
4.4 F-score and error rate on the dev set for the baseline model and LSTM-NCM. Signif-

icant results are indicated in bold (p-value< .05). 35
4.5 F-scores on the dev set for a variety of LSTM language models. Significant results

are indicated in bold (p-value< .05). 36
4.6 Expected error rates on the dev set for a variey of LSTM language models. Significant

results are indicated in bold (p-value< .05). 36
4.7 F-score for 4-gram, LSTM and combination of both language models. Significant

results are indicated in bold (p-value< .05). 36
4.8 Expected error rates for 4-gram, LSTM and combination of both language models.

Significant results are indicated in bold (p-value< .05). 37
4.9 Comparison of the LSTM-NCM to state-of-the-art methods on the dev set. *Models

have used richer inputs. 37

viii

List of Abbreviations

ASR Automatic Speech Recognition
CRF Conditional Random Field
LM Language Model
LSTM Long Short-Term Memory
MaxEnt Maximum Entropy
NCM Noisy Channel Model
NLP Natural Language Processing
POS Part Of Speech
RNN Recurrent Neural Network
TAG Tree Adjoining Grammar

ix

Chapter 1

Introduction

Automatic speech recognition (ASR) has made a remarkable improvement in recent years, benefiting
from availability of large training data and advances in deep learning (Mohamed et al., 2012; Hinton
et al., 2012; Chorowski et al., 2015; Mesnil et al., 2015). In spite of great progress in speech recog-
nition technology, current recognition systems are still far from the ideal goal of generating enriched
transcripts, where useful information such as the location of disfluencies is provided in addition to
a sequence of words. Disfluencies are an integral part of spontaneous speech, so the output of ASR
systems, no matter how perfect and error-less it is, will always contain speech disfluencies.

1.1 Motivation

Disfluency is a characteristic of spontaneous speech that is not present in written text. While disflu-
ency rate varies with the context, age and gender of speaker, Bortfeld et al. (2001) reported disflu-
encies once in every 17 words. Such frequency is high enough to reduce the readability of speech
transcripts. To illustrate the impact of disfluencies on the readability of ASR outputs, consider the
following excerpts of spontaneous speech transcripts. The first excerpt in Figure 1.1 shows a human-
produced speech transcript containing a number of disfluencies and the second excerpt presents the
same transcript with disfluencies removed (Liu et al., 2006). Although the first speech transcript
contains no recognition errors, it is difficult to understand mainly due to the presence of speech dis-
fluencies. However, removing disfluencies from the speech transcript makes it more readable and
easier to understand even in lack of punctuation and capitalization, as shown in the second excerpt.

Moreover, spoken language is becoming more important as computers become smaller. As an
input modality for human-computer interaction, spoken language can eliminate the need for using
traditional devices such as mouse and keyboard. However, disfluency as a characteristic of sponta-
neous speech can negatively influence human-computer interaction. Spontaneous speech input is also
necessary for many natural language processing tasks, including dialogue system, machine translation
and parsing. Since building, manually transcribing and annotating speech transcripts is prohibitively
expensive, these systems are usually trained on large fluent, clean corpora. The mismatch between the

1

CHAPTER 1. INTRODUCTION 2

training corpora and the actual use case decreases the performance of such systems. Cho et al. (2014)
showed that disfluencies in spoken language as input would have a negative impact on machine trans-
lation. Therefore, it is crucial to recognize and remove speech disfluencies in order to increase the
human readability of speech transcripts, improve human-computer interaction and increase the per-
formance of systems that input spontaneous speech.

Figure 1.1: Excerpt 1 shows a human-produced speech transcript with many disfluencies and Excerpt
2 indicates the same speech transcript with disfluencies removed (Liu et al., 2006)

1.2 Problem Description

Disfluencies are informally defined as interruptions in the normal flow of speech that occur in different
forms, including false starts, corrections, repetitions and filled pauses. According to Shriberg’s (1994)
definition, the basic pattern of speech disfluencies contains three parts: reparandum, interregnum and
repair. Example (1.1) illustrates a disfluent structure, where the reparandum to Boston is the part of
the utterance that is replaced, the interregnum uh, I mean is an optional part of a disfluent structure
that consists of a filled pause uh and a discourse marker I mean and the repair to Denver replaces the
reparandum. The fluent version of Example (1.1) is obtained by deleting reparandum and interregnum
words, as shown in Example (1.2).

I want a flight

reparandum︷ ︸︸ ︷
to Boston,

uh, I mean︸ ︷︷ ︸
interregnum

to Denver︸ ︷︷ ︸
repair

on Friday
(1.1)

I want a flight to Denver on Friday (1.2)

Given a disfluent utterance such as Example (1.1), an effective speech disfluency detection sys-
tem should be able to identify and remove disfluent words and output a clean version of utterance

CHAPTER 1. INTRODUCTION 3

such as Example (1.2). Although interregnum words are part of a disfluent structure and need to be
deleted, the automatic speech disfluency detection task mainly deals with identifying and removing
reparandum words. It is because filled pauses and discourse markers belong to a finite set of words
and phrases and they are trivial to detect (Johnson and Charniak, 2004). Therefore, the major task of
a disfluency detection system is to recognize and delete reparandum words from speech transcripts.

1.3 Method

So far, a wide range of approaches have been proposed to automate the detection and deletion of
speech disfluencies. One of the models which has been applied to the speech disfluency detection
task is noisy channel model (NCM) (Johnson and Charniak, 2004; Johnson et al., 2004; Zwarts et al.,
2010; Zwarts and Johnson, 2011). The main idea behind a noisy channel model of speech disfluency
is that repair is usually a “rough copy” of reparandum. In other words, the repair and reparandum
are often the same or very similar words in roughly the same order. For example, to Denver and to

Boston in Example (1.1) are both names of city, so they are semantically similar to each other. The
NCM uses the similarity between reparandum and repair as a good indicator of disfluency to match
the repair to the reparandum.

Although NCM is a strong model for disfluency detection, it is computationally complex to apply
an effective language model inside a noisy channel model. The reason is that the NCM uses dynamic
programming in order to make the computation tractable. The polynomial-time dynamic program-
ming parsing algorithms of channel model can be used to search for likely repairs if they are used with
simple language models such as bigram (Johnson and Charniak, 2004). The bigram language model
within the noisy channel model is too simple to capture complicated language structure. On the other
hand, many studies show that language modelling is particularly important for identifying disfluent
parts of utterance (Stolcke and Shriberg, 1996; Honal and Schultz, 2005; Zwarts and Johnson, 2011).
To alleviate this problem in NCM, some researchers use more effective LMs to rescore the NCM
disfluency analyses. Johnson and Charniak (2004) applied a syntactic parsing-based LM trained on
the fluent version of the Switchboard corpus to rescore the disfluency analyses. Zwarts and Johnson
(2011) trained external n-gram LMs on a variety of large speech and non-speech corpora. They used
the external LM scores as features into a reranker and improved the baseline NCM.

The idea of applying external language models in the reranking process of the NCM, as well as
the state-of-art performance of deep learning techniques in various applications including language
modelling (Mikolov et al., 2010; Jozefowicz et al., 2016) motivate us to investigate whether integra-
tion of a noisy channel model with a deep neural language modelling improves the state-of-the-art in
disfluency detection.

CHAPTER 1. INTRODUCTION 4

1.4 Objectives

This thesis aims at introducing a new model for detecting disfluencies in spontaneous speech tran-
scripts called the LSTM Noisy Channel Model. The model uses a noisy channel model to generate
n-best candidate disfluency analyses, and a long short-term memory (LSTM) language model to score
the fluent versions of the NCM analyses. The language model (LM) scores are used as features into
a maximum-entropy (MaxEnt) reranker to select the most plausible analysis. The main idea behind
using an LSTM LM is that an advanced language model trained on a large clean corpus can model
more global properties of sentences. Therefore, an effective language model is expected to assign a
high probability to a fluent sentence and a lower probability to a disfluent one.

We also aim at investigating:

• The impact of LSTM LMs: We investigate the effects of using LSTM LMs for scoring the
underlying fluent sentences of candidate analyses on the performance of the NCM for detecting
disfluencies.

• The difference between LSTM LMs: We compare the performance of different LSTM LMs
including forward, backward and bidirectional to find which type of language model is more
effective in the disfluency detection task.

• The difference between LSTM and n-gram LMs: We compare the performance of LSTM lan-
guage models to high-order n-gram models when they are applied to the outputs of the NCM
to score the candidate disfluency analyses.

1.5 Contributions

There are three main contributions in this thesis. First, we investigate the use of an advanced language
modelling technique, called deep neural LM, to score the candidate disfluency analyses of the NCM.
We show that using these LM scores as features into a reranker helps the baseline NCM to select
the best disfluency analysis. Second, we explore the use of different forward and backward language
models and show that a backward language model is much stronger than a forward one for disfluency
detection. Third, we compare the performance of a conventional n-gram model with a deep neural
LM on the reranking process of the noisy channel model. We show that capturing longer contexts is
important for detecting disfluent parts of speech transcripts and deep neural language model contains
all the useful information the n-gram model does.

1.6 Organization

The remainder of this thesis is organized as follows. Chapter 2 gives a theoretical background on
speech disfluency phenomenon, reviews automatic detection methods and explains important lan-
guage modelling techniques. Chapter 3 demonstrates the theoretical framework of the baseline noisy

CHAPTER 1. INTRODUCTION 5

channel model and the proposed model for disfluency detection. Chapter 4 describes the corpora for
language modelling, hyper-parameters, model setting, experiments and model performance. Finally,
Chapter 5 makes a summary and draws conclusions.

Chapter 2

Literature Review

In this chapter, we review the published research literature on speech disfluency detection. Since
the goal of the thesis is to introduce a model for locating the disfluent parts of transcribed speech, we
mainly focus on the approaches that make use of lexical information rather than prosodic and acoustic
features. Although prosodic cues are beneficial for interruption point detection, the approaches using
only lexical features do almost as well as those with both prosodic and lexical features (Ostendorf and
Hahn, 2013; Zayats et al., 2014).

This chapter includes four main sections. Section 2.1 reviews some major psycholinguistic studies
describing the pattern and different types of disfluencies. The psycholinguistic evidence establishes
the theoretical framework for modelling and automating speech disfluency detection and provides
a standard annotation scheme for disfluency. Section 2.2 describes the task of automatic disfluency
detection and standard approaches to it, including sequence tagging, parsing-based and noisy channel

models. Since the noisy channel model forms the baseline system in this thesis, we explain it in
more detail. Moreover, the main contribution of the thesis is using deep neural LM probabilities
as features into a reranker for selecting the best analysis of the NCM. Therefore, in Section 2.3,
we review different language modelling techniques including n-gram, parsing-based and recurrent

neural network LMs. Finally, we summarize and conclude this chapter in Section 2.4.

2.1 Psycholinguistics Studies on Speech Disfluencies

Disfluencies had been traditionally viewed as “irregular” phenomena and given little attention until
about two decades ago. Shriberg’s (1994) study, however, changed this prevalent viewpoint towards
speech disfluencies and influenced the subsequent research trend in this area. Using speaker, acoustic
and sentence features, she showed that disfluencies had a regular trend in spontaneous speech. This
finding was particularly important for modelling and automating the task of disfluency detection. In
fact, she provided a basic pattern of speech disfluencies which established the standard theoretical
framework for data annotation and automatic detection task.

According to Shriberg (1994), the standard pattern for disfluency includes the reparandum (word

6

CHAPTER 2. LITERATURE REVIEW 7

or words that the speaker intends to be replaced or ignored), the interruption point (+) marking the
end of the reparandum, the associated repair and an optional interregnum after the interruption point
(e.g. filled pauses, discourse markers and so on) as shown below:

[reparandum + { interregnum } repair]

Example (2.1) illustrates a disfluency annotated sentence using Shriberg’s (1994) standard pattern.

I want a flight
[

to Boston +
{

uh I mean
}

to Denver
]

on Friday. (2.1)

Ignoring the interregnum, disfluencies can be categorized into three types: restart, repetition and
correction, based on whether the repair is empty, the same as the reparandum or different, respectively.
Repetitions are the most common type of disfluencies. Example (2.2) shows a repetition disfluency
in which the phrase I don’t is repeated twice. Example (2.3) illustrates a correction disfluency where
the reparandum good is replaced by the repair brilliant. Example (2.4) indicates a restart disfluency
where the speaker abandons a sentence and starts a new one saying Do you have Different types of
disfluencies demonstrate speaker variability; for example, some speakers are “deleters” while others
are “repeaters” (Shriberg, 1994).

[
I don’t + I don’t

]
want to go to work today. (2.2)

I think it is a
[

good +
{

well
}

brilliant
]

idea. (2.3)

[
I need to +

{
uh
}]

Do you have any time? (2.4)

While these are examples of simple disfluency, it is possible to have nested disfluencies where one
disfluent structure is entirely contained within another one. Examples (2.5) and (2.6), extracted from
Switchboard corpus, show complex disfluent structures, where there are multiple or nested disfluen-
cies. In Example (2.5), both inner and outer pairs of square brackets indicate correction disfluencies.
The outer set of square brackets in Example (2.6) refer to correction disfluency and the inner square
brackets demonstrate repetition type of disfluency.

[[
it’s just +

{
oh
}

I just
]

+ I
]

love it. (2.5)

[[
it + it

]
+ that’s

]
a possibility. (2.6)

In a disfluent structure, the reparandum is an important component to study because it usually
contains important information about the subsequent words in the utterance. Reparandum words are
not part of the fluent version of utterance, but they can convey contextual information to help listener
anticipate the repair (Lowder and Ferreira, 2016). For example, if speaker says “Turn right uh I

CHAPTER 2. LITERATURE REVIEW 8

mean ...”, the listener can guess the word left before hearing the repair using the word right. Lau and
Ferreira (2005) tested the effect of reparandum words on the processing of garden path1 sentences
which contained main verb/reduced relative ambiguity. They showed that the effect of reparandum
would remain even after it was replaced by repair and influence the interpretation of sentence. In
Examples (2.7) and (2.8), the repair selected is ambiguous because it can be interpreted either as
a main verb or as a reduced-relative verb. According to their experiment, listener understands (or
parses) Example (2.7) more easily because the reparandum chosen, unlike picked, is unambiguously
a reduced-relative verb. In fact, the passive structure activated by the reparandum i.e. chosen in
Example (2.7) lingers even after it is replaced by a new verb i.e. selected, so the parser uses this
information to resolve the ambiguity.

The boy
[

chosen +
{

uh
}

selected
]

for the role celebrated with his family. (2.7)

The boy
[

picked +
{

uh
}

selected
]

for the role celebrated with his family. (2.8)

2.2 Automatic Speech Disfluency Detection

The task of disfluency detection is sometimes called edit detection2. By automatic edit detection, we
usually mean identifying and deleting reparandum words. Since filled pauses and discourse markers
belong to a closed set of words, they are trivial to detect (Johnson and Charniak, 2004). Johnson et
al. (2004) noted that 4 words uh, um, eh and ah comprised 95% of the filled pauses in Switchboard
corpus, and 95% of the discourse markers was composed of 2 phrases you know and i mean and 6
words like, so, well, oh, actually and now. Thus, the challenge in the disfluency detection task is to
find and remove reparandum words because filled pauses and discourse markers can be detected using
a set of deterministic rules.

In the past two decades, different approaches have been proposed for automatic edit detection,
which can be categorized into three main groups: sequence tagging, parsing-based and noisy channel

models. The sequence tagging models label each word of an utterance as fluent or disfluent using
a variety of different techniques, including hidden Markov model (Liu et al., 2006; Schuler et al.,
2010), conditional random field (CRF) (Ostendorf and Hahn, 2013; Zayats et al., 2014) and recurrent
neural network (RNN) (Hough and Schlangen, 2015; Zayats et al., 2016). Although sequence tagging
models can be easily generalized to a wide range of domains, they require a specific state space for
disfluency detection, such as begin-inside-outside (BIO) style states that label words as being inside
or outside of a reparandum word sequence. This means that it is usually required to modify the

1Garden-path refers to grammatically correct sentences that are parsed by the listeners in such a way that their first
interpretation will be incorrect. For instance, the first three words in “The old man the boat” lead listeners to parse “The
old man” as a noun phrase. However, when they encounter another “the” following the supposed noun man, they are
forced to analyse the sentence again. The correct parse of the sentence is [S [NP The old] [VP [V man] [NP the boat]]].

2Edit is another name for reparandum.

CHAPTER 2. LITERATURE REVIEW 9

annotation scheme of the data for training sequence tagging models. The parsing-based approaches
refer to parsers that detect disfluencies and identify the syntactic structure of the sentence. Although
joint parsing and disfluency detection leads to the optimization of both models, training them requires
large annotated tree-banks that contain both disfluencies and syntactic structures. Noisy channel
models use the similarity between reparandum and repair as an indicator of disfluency. However,
applying an effective language model inside an NCM is computationally complex. In the following
subsections, we review previous work on automatic disfluency detection. Since we use an NCM as
our baseline model, we describe it in more detail.

2.2.1 Sequence Tagging Models

The task of assigning a single label to each word in a sequence is referred to as a sequence tagging
problem. The standard format of sequence tagging in disfluency detection includes 3 states to specify
the begin, inside and outside (BIO) of edit region. As shown in Example (2.9), BE, IE and O denote
beginning, inside and outside of edit region.

it is
[

my idea +
{

um
}

our idea
]

O O BE IE O O O
(2.9)

Some researchers (Georgila, 2009; Ostendorf and Hahn, 2013; Zayats et al., 2016) use a finer
grained set of labels by extending the standard 3-state space to specify the word proceeding the inter-
ruption point IP and a single word edit BE IP, as shown in Examples (2.10) and (2.11).

a flight
[

to Boston to +
{

uh
}

to Denver
]

O O BE IE IP O O O
(2.10)

I should talk to
[

him +
{

I mean
}

her
]

O O O O BE IP O O O
(2.11)

The standard BIO encoding as well as the extended 5-state model do not provide any information
about the type of disfluency. For extracting pattern matching lexical features, however, it is necessary
to have an explicit annotation of different disfluency types. Some work has been done to modify the
5-state annotation scheme to specify the type of disfluency. Ostendorf and Hahn (2013) proposed an
alternative annotation framework to explicitly model repetition disfluencies. Instead of using a nested
annotation scheme, they introduced a flat annotation for multiple repetitions in a row using a single
bracket. The advantage of the flattened structure was that it would clearly specify the connection
between each instance of the repetition. This was particularly useful for detecting long repetition
disfluencies such as stutter-like ones. They also extended the 5-state model to a 9-state one to model

CHAPTER 2. LITERATURE REVIEW 10

repetitions versus other disfluencies. For labelling each word in a sentence, they used a CRF model
with 140 feature types including word class features such as part-of-speech (POS) tags and n-gram
language models, as well as pattern match ones to capture repeated words and POS tags in a window
of words. They compared their model with the baseline 5-state CRF. Using the explicit modelling of
stutter-like repetition disfluencies, they improved the general disfluency detection task.

Zayats et al. (2014) augmented Ostendorf and Hahn’s (2013) explicit repetition model to detect
correction disfluencies, too. A 16-state model, called explicit correction model, was considered as an
expansion to the 9-state repetition space. They used Ostendorf and Hahn’s CRF model as the baseline
and apart from their feature sets, they studied the effect of new features including trigram language
models, pattern-match features and coarse grained POS tags. The pattern match features showed the
distance from the current word to the nearest word that matched one of the patterns in the baseline.
When there existed a match, the distance pattern match feature was an integer between 1 and l, and
when there was no match, it was l + 2, for a window of length l. Using the new features, especially
distance-based pattern match ones, they achieved large improvements in correction detection.

Applying a sequence tagging technique to label each word as being inside or outside edit region
sometimes results in invalid label sequences. For example, the model may output an illegal sequence
of labels such as *O IE IE IP, where disfluency is started with IE (i.e. inside edit region) tag instead
of BE (i.e. beginning of edit region). In order to avoid such inconsistencies between neighbouring
labels, Georgila (2009) presented a post-processing method based on Integer Linear Programming
(ILP) to incorporate local and global constraints. She trained different classifiers including hidden
Markov models to label the sequences of words. Each classifier would assign a probability to each of
5 tags. In order to select the best sequence, she used ILP technique. The aim of ILP is to optimize a
linear objective function subject to some constraints regarding the disfluency tags. For instance, in a
sequence of words, the last word is either BE-IP (i.e. single word edit), IP (i.e. word proceeding the
interruption point) or O (i.e. outside edit region) and it cannot be BE because then we would expect to
see an IP. She showed that by applying ILP at the test time, the performance of the classifiers would
improve.

Some recent studies have applied recurrent neural networks to disfluency detection. Hough and
Schlangen (2015) treated incremental disfluency detection as a word-by-word tagging task where the
system would output the predicted tag for the current word as it was going through the utterance
word-by-word. Although their model led to good incremental properties with low latency and good
output stability, they reported weak performance in comparison to other studies on disfluency detec-
tion due to the latency constraints. Moreover, they did not model the transition between tags which
was important for identifying multi-word disfluencies.

Word embeddings learned by an RNN have also been used as features in a CRF classifier. Cho
et al. (2013) introduced a CRF-based speech disfluency detection system developed on German to im-
prove spoken language translation performance. Apart from word embedding, they considered pattern
matching, 4-gram language models trained on words and POS tags and phrase-level information. The
phrase-level information was used to detect semantic similarity of words or phrases in a source sen-

CHAPTER 2. LITERATURE REVIEW 11

tence independently from their syntactic roles. For example, the German word jetzt (meaning now) is
annotated as a disfluency, followed by a word inzwischen (meaning meantime, now). Translating the
source sentence as it is generates the translation containing two identical tokens in a row in English.
They solved this problem by examining the meaning of the source words in a phrase table. They
improved BLEU score3 by 2 points using the CRF model. They showed that word embeddings and
phrase-level information are particularly useful for detecting semantically related disfluencies.

One recent paper has used recurrent neural networks as a sequence tagging model. Zayats et al.
(2016) introduced a bidirectional long short-term memory neural network as a classifier to detect rep-
etition and correction disfluencies. Apart from a 5-state model, they considered two extensions: a 8-
and a 17-state model to capture repetition and correction, respectively. In order to train their model,
they used word index, POS tags and disfluency-based features capturing partial words, distance be-
tween reparandum and repair words and type of interregnum as their input vectors. They also trained
word and POS embeddings within their model and initialized them using a backward-LSTM language
model trained on Switchboard corpus. Linear Integer Processing (Georgila, 2009) was also used as a
post-processing step to smooth bidirectional LSTM predictions. They reported state-of-the-art results
for both repetition and correction detection. The best result was reported for 8-state model plus ILP.

2.2.2 Parsing-based Models

In contrast to most papers which focus solely on either disfluency detection or parsing, a few attempts
have been made to jointly parse sentences with disfluencies. The parsing-based approaches refer to
parsers that detect disfluencies, as well as identifying the syntactic structure of the sentence. Rasooli
and Tetreault (2013) developed a joint dependency parsing and disfluency detection system based on
transition-based parsing models. In transition-based models, a tree is converted to a set of incremental
actions and the parser decides to commit an action depending on the current configuration of the
partial tree. It is possible to augment the set of actions to extend the functionality of the parser on
disfluency detection. They used a bottom-up strategy, called arc-eager algorithm for dependency
parsing. The standard arc-eager algorithm contains four actions to determine the head, pop out or
shift the words between stack and buffer. In order to make it suitable for the disfluency detection task,
they added three more actions. The new extended actions were responsible for locating and removing
from sentence the reparandums, discourse markers and filled pauses and deleting their dependencies.
They applied two classifiers to select the best action for the current configuration of sentence. The first
classifier was responsible for deciding between applying the main or the extended set of actions, and
the second classifier was used to predict the best parsing transition using arc-eager parsing algorithm.
In this method, before getting any right dependents, words would receive a head from their left side.
Due to similarity of reparandum and repair in most cases, the reparandum might first get a head but
then it would be removed when the parser faced the repair. Hence, the advantage of the model was

3BLEU score is always a number between 0 and 1. This value indicates how similar the candidate text is to the
reference texts, with values closer to 1 representing more similar texts.

CHAPTER 2. LITERATURE REVIEW 12

that it would use the similarity between the reparandum and repair, delete reparandum words from
sentence and clear their dependencies. Using the model, they achieved a very high accuracy for
parsing, but their model did not perform as well as the state-of-the-art in disfluency detection.

The arc-eager algorithm has a monotonic behaviour. It means when an action is performed, sub-
sequent actions should be consistent with it. In monotonic parsing, if a word becomes a dependent of
another word or obtains a dependent, other actions should not change those dependencies constructed
for that word in the action history. This monotonic behaviour is problematic for deleting disfluencies
because if an action builds a dependency relation, the other actions cannot modify that dependency
relation. As a solution, Honnibal and Johnson (2014) extended the arc-eager algorithm with a new
non-monotonic transition, called Edit, to incrementally parse sentences without knowing early that a
word was disfluent. The Edit transition marks the word i on top of the stack and its rightward de-
scendents as disfluent. The stack is then popped and its leftward children and all dependencies to and
from words marked disfluent are deleted. Using this model, they achieved state-of-the-art accuracy
for both speech parsing and disfluency detection.

So far, all mentioned papers were based on the unrealistic assumption that input texts were tran-
scribed by human annotators. In real-world applications, however, the input is usually the output of an
automatic speech recognition system, so it contains both disfluent words and recognition errors from
ASR system. Yoshikawa et al. (2016) proposed a parsing method to handle both disfluencies and ASR
errors using arc-eager algorithm. To do so, they added three new actions i.e. Edit, LeftArcError and
RightArcError to the original arc-eager algorithm. The Edit action was responsible for removing a
disfluent token when it was the first element of the stack. The Edit action, unlike the action introduced
by Honnibal and Johnson (2014), would remove disfluent tokens one-by-one, so the length of the ac-
tion sequence would be always 2n − 1 (n is the number of tokens in each sequence) and the parser
could use standard beam search without normalization. They applied LeftArcError and RightArcEr-

ror to deal with ASR error tokens while the original LeftArc and RightArc were to handle non-error
tokens. The advantage of using two different sets of action for error and non-error tokens was that
the weights could not be shared between them. Along with Honnibal and Johnson’s (2014) feature
set, they used additional features extracted from a word confusion network (WCN) generated by ASR
models to find the erroneous regions of the text. Word confusion networks (WCN) represent a special
case of general word lattices, with a more compact, regular structure. A confusion network contains a
sequence of slots, with each slot containing one or more word arcs. Selecting a path through the con-
fusion network therefore reduces to selecting which arc in each slot is being used. They hypothesized
that the WCN slots with more arcs tended to correspond to erroneous region. Hence, they calculated
mean and standard deviation of arc posteriors and the highest arc posterior in each WCN slot corre-
sponding to each word token. Since the error tokens had a relatively low frequency, the weights for
LeftArcError and RightArcError actions might update too infrequently. To avoid this problem, they
used backoff action feature to have an accurate generalization of weights. Using novel features suited
to ASR output texts as well as new actions, they improved the baseline for both disfluency detection
and parsing. The WCN feature increased disfluency detection accuracy.

CHAPTER 2. LITERATURE REVIEW 13

2.2.3 Noisy Channel Models

In the noisy channel model of speech disfluency, it is assumed that there is a well-formed source
utterance X to which some noise is added, generating a disfluent utterance Y as follows:

X = a flight to Denver

Y = a flight to Boston uh I mean to Denver

Given Y , the goal of the NCM is to find the most likely source sentence X̂ such that:

X̂ = argmax
X

P (X|Y) = argmax
X

P (Y |X)P (X) (2.1)

As shown above, Bayes rule is applied to decompose the probability P (X|Y) into two probabilities
P (Y |X) and P (X). We assume that X is a substring of Y , so the source sentence X is obtained
by deleting words from Y . For each sentence Y , there are only a finite number of potential source
sentences. However, with the increase in the length of Y , the number of possible source sentences X
grows exponentially, so it is not feasible to do exhaustive search.

According to Equation (2.1), the noisy channel model involves two components. A channel model

defines a conditional probability P (Y |X) of sentence Y which may contain disfluencies, given source
sentences. A language model defines a probability distribution P (X) over the source sentences X ,
which do not contain disfluencies. Using the channel model and language model probabilities, the
noisy channel model outputs n-best candidate disfluency analyses as follows:

1. a flight to Boston uh I mean to Denver

2. a flight to Boston uh I mean to Denver

3. a flight to Boston uh I mean to Denver

4. a flight to Boston uh I mean to Denver

5. a flight to Boston uh I mean to Denver
...

where the potential disfluent words in each analysis are indicated by strikethrough text. Another
example is shown below where there is a long-range repair in the sentence:

1. she said she ’ll never put her child in a in a in a in a in a preschool

2. she said she ’ll never put her child in a in a in a in a in a preschool

3. she said she ’ll never put her child in a in a in a in a in a preschool
...

Johnson and Charniak’s (2004) used a noisy channel model4 to identify and remove disfluent
words of speech transcripts. In order to estimate the language model P (X) component of NCM,

4Since the thesis uses this noisy channel model to generate n-best candidate disfluency analyses, we explain it in more
detail in Chapter 3.

CHAPTER 2. LITERATURE REVIEW 14

they used a bigram language model trained on Switchboard corpus. They defined the channel model
P (Y |X) over the aligned reparandum/repair strings. To estimate this distribution and obtain the
disfluent versions of the source sentence, they applied a Tree Adjoining Grammar (TAG) based trans-
ducer. TAG is a mildly context sensitive grammar which is responsible for matching words from
reparandum to repair. The main idea behind the NCM is that the reparandum and repair are closely
related to each other. The advantage of TAG over context-free grammars is that it is powerful enough
to capture the crossing dependencies between reparandum and repair. They trained the NCM on
Switchboard corpus. Switchboard is a disfluency annotated corpus which includes explicitly marked
repair strings for each speech disfluency. Therefore, it can be used for training a disfluency model.
Using the NCM probabilities derived from training data, they produced n-best candidates of the dis-
fluencies for each sentence in testing time. Then, in order to select the most probable candidate, they
calculated the probability of the fluent part of the sentence using a language model. They tried three
different language models to score the outputs of the NCM: bigram, trigram and parser-based lan-
guage model. They demonstrated that using a parser-based language model significantly improved
f-score in comparison with bigram and trigram. The results indicate that this probabilistic model is
successful for identifying long repairs where reparandum and repair are similar to each other.

Johnson et al. (2004) applied a maximum entropy reranker to the outputs of the baseline NCM (John-
son and Charniak, 2004) in order to select the most plausible disfluency analysis. The advantage of
using a maximum entropy reranker is that it allows for incorporation of a wide range of different fea-
tures. As features to their reranker, they used the log probabilities produced by TAG channel model,
parsing-based language model scores, as well as different variables indicating partial words, POS
tags, identical words and so on. They evaluated the performance of their model both on manually
transcribed speech and output of ASR. They showed that extending the baseline noisy channel model
with a MaxEnt reranker would improve the performance of disfluency detection. In the following
part, we describe Johnson et al.’s (2004) MaxEnt reranker5 in more detail.

In the MaxEnt reranker, it is assumed that there is a training data T which contains information
about n possibly disfluent sentences. For the ith sentence, T includes the sequence of words xi, a
set Yi of 25-best candidate disfluent analyses generated by the noisy channel model and the correct
“edited” labelling candidate y∗i ∈ Yi. There is a vector f = (f1, ..., fm) of feature functions, where
each fj maps a word sequence x and an “edit” labelling y for x to a real value fj(x, y). Abusing
notation somewhat, we write f(x, y) = (f1(x, y), ..., fm(x, y)). A vector w = (w1, ..., wm) of feature
weights defines a conditional probability distribution over a candidate set Y of “edited” labellings for
a string x as follows:

Pw(y|x, Y) =
exp(w · f(x, y))∑

y′∈Y exp(w · f(x, y′))
(2.2)

The feature weights w are estimated from the training data T by finding a feature weight vector ŵ
that optimizes a regularised objective function:

5This thesis applies this MaxEnt reranker to select the most plausible disfluency analysis of the NCM.

CHAPTER 2. LITERATURE REVIEW 15

ŵ = argmin
w
LT (w) + α

m∑
j=1

w2
j (2.3)

In Equation (2.3), α is the regulariser weight and LT is a loss function.
Zwarts and Johnson (2011) investigated the use of two different loss functions in Johnson et

al.’s (2004) MaxEnt reranker. They showed that optimising f-score rather than log loss improves
disfluency detection performance. According to Zwarts and Johnson (2011), using an asymmetric loss
function such as approximate expected f-score, shown in Equation (2.4), improves the performance
better than a symmetric loss function such as log loss. It is because of the skewness of the data in
which “edited” words are very infrequent. In such case, a symmetric loss function equally weights
each mistake, while an effective loss function is expected to weight “edited” words more highly. In
Equation (2.4), g is the number of “edited” words in the gold test data, Ew[e] is the expected number
of “edited” words proposed by the system and Ew[c] is the expected number of correct “edited” words
generated by the system.

FLossT (w) = 1− 2Ew[c]

g + Ew[e]
(2.4)

This approximation, inspired by the evaluation metric f-score, and its derivatives with respect to w
are easy to calculate. For example, the expected number of correct edited words is:

Ew[c] =
n∑
i=1

Ew[cy∗i |Yi] (2.5)

Ew[cy∗i |Yi] =
∑
y∈Yi

cy∗i (y)Pw(y|xi, Yi) (2.6)

and cy∗(y) is the number of correct “edited” labels in y given the gold labelling y∗. The derivatives of
FLoss are:

∂FLossT
∂wj

(w) =
1

g + Ew[e]

(
FLossT (w)

∂Ew[e]

∂wj
− 2

∂Ew[c]

∂wj

)
(2.7)

where:

∂Ew[c]

∂wj
=

n∑
i=1

∂Ew[cy∗i |xi, Yi]
∂wj

(2.8)

and

∂Ew[cy∗|x, Y]

∂wj
= Ew[fjcy∗ |x, Y]− Ew[fj|x, Y]Ew[c

∗
y|x, Y] (2.9)

∂E[e]/∂wj is obtained by a similar formula.
Apart from applying the approximate expected f-score loss function in n-best reranking, Zwarts

CHAPTER 2. LITERATURE REVIEW 16

and Johnson (2011) showed that using external language model scores as features into the MaxEnt
reranker improved the baseline noisy channel model (Johnson and Charniak, 2004). The NCM uses
a simple bigram LM and it is computationally complex to use more effective LMs inside the NCM.
Thus, as a solution, they applied higher order n-gram models, particularly 4-gram, on the outputs
of the NCM to rescore the candidate disfluency analyses. The additional 4-gram language models
were trained on large speech and non-speech corpora including Switchboard, Web IT 5-gram, Giga-
word and Fisher. In addition to external language model scores, they used boolean indicator features
capturing identical words in their reranker6. Their work showed that training a language model on
large corpora would improve the baseline noisy channel model system. They also showed that using a
language model trained on large non-speech corpus would improve the reranking process better than
the one trained on a modest-size speech data.

2.3 Language Modelling

Since the proposed model of speech disfluency applies a deep neural network LM on the outputs of
the NCM, we provide a background on different language modelling techniques in this section.

Language modelling techniques were originally developed for the problem of speech recogni-
tion, but they still play a major role not only in modern ASR systems (Mikolov et al., 2010; Arisoy
et al., 2012) but also in a wide variety of natural language processing (NLP) applications such as
machine translation (Schwenk et al., 2012), text summarization (Rush et al., 2015) and disfluency
detection (Zwarts and Johnson, 2011). A language model is responsible for assigning a probability
to sequences of words; therefore, it is useful for identifying words in noisy, ambiguous inputs. Such
a model, for instance, can predict that the sequence “I have an amount in my mind” is more likely to
appear in a fluent sentence than is the sequence “I I have a an amount in my mind”. This section gives
a review to three techniques of language modelling including n-gram, parsing-based and recurrent

neural networks, but before that we need to give a formal definition of language model.
A language model is formally defined as follows. If V is the vocabulary of the language, a sentence

in the language is a sequence of words x1x2...xn, where n > 1, we have xi ∈ V for i ∈ {1, ..., n}.
We define V ? to be the set of all sentences with the vocabulary V . A language model consists of a set
V ? and a function P (x1, x2, ..., xn) such that:

• For any (x1...xn) ∈ V ?, P (x1, x2, ..., xn) > 0

• Moreover,
∑

(x1...xn)∈V ?

P (x1, x2, ..., xn) = 1

The function P is a probability distribution over the sentences in V ?. It can be estimated by
different techniques including n-gram, parsing-based and recurrent neural networks.

6These features are explained in detail in Section 3.4.

CHAPTER 2. LITERATURE REVIEW 17

2.3.1 N-gram Language Models

A probabilistic language model estimates either the probability of a word x given a history h or the
probability of an entire word sequence X . In order to estimate the probability of a word sequence
x1...xn, we may use the chain rule of probability to decompose p(x1, ..., xn) as follows:

P (x1, ..., xn) = P (x1)P (x2|x1)P (x3|x21), ..., P (xn|xn−11)

=
n∏
k=1

P (xk|xk−11)
(2.10)

where P (xn|xn−11) is the conditional probability of word xn given the preceding sequence x1, ..., xn−1.
In theory, the joint probability of an entire sequence of words is estimated by multiplying together

a number of conditional probabilities as shown in Equation (2.10). In practice, however, we cannot
compute the exact probability P (xn|xn−11) due to data sparsity. In fact, it is not possible to directly
estimate the probability by counting the number of times every word occurs following every long
sequence of previous words, even if we use a very large corpus. The reason is that language is
creative and there is always the possibility of seeing new contexts.

The intuition of the n-gram model is that instead of calculating the probability of a word given
its entire history, we can consider just the last several words to approximate the history (Jurafsky
and Martin, 2000). For instance, a bigram model looks one word into the past. We can generalize
the bigram, to the trigram (which considers two words in the past) and thus to the n-gram which
looks n − 1 words into the past. The assumption that the probability of a word depends only on last
preceding words is called a Markov assumption. The intuition of the Markov assumption is that we
can predict the probability of future strings without looking too far in the past.

We can estimate the n-gram probabilities by applying a maximum likelihood estimation (MLE)
to get counts from a corpus and normalize the counts so that they lie between 0 and 1 as follows:

P (xn|xn−1n−N+1) =
C(xn−1n−N+1xn)

C(xn−1n−N+1)
(2.11)

A 4-gram probability for sentence “Put the fruit tray on the table” can be computed using Equa-
tion (2.11) as follows:

P (table|tray on the) = C(tray on the table)

C(on the table)
(2.12)

Instead of computing the probability P(table|put the fruit tray on the), the 4-gram model approximates
it with the probability P(table|tray on the) using the Markov assumption.

We obtain the n-gram counts from a training data; however, any corpus is limited and it is always
possible to have unseen word sequences in test time. In this case, MLE assigns zero probabilities to
perfectly acceptable word sequences which have not been observed in the training data. To overcome
this problem, we can discount the counts for frequent n-grams and distribute some probability mass
to the unseen n-grams. The idea of reassigning some probability mass to unseen events is called

CHAPTER 2. LITERATURE REVIEW 18

smoothing or discounting.
One of the most commonly used and best performing n-gram smoothing methods is Kneser-Ney

smoothing (Kneser and Ney, 1995) which evolved from absolute discounting. The idea of absolute
discounting is to subtract a constant value d from all non-zero n-gram counts and redistribute it
proportionally based on the observed data. The intuition of absolute discounting is that subtracting
a small discount d from the very high counts will not affect them much. It will mainly modify the
low count n-grams, for which we do not have reliable estimation anyway. The absolute discounting
probability of a bigram, for instance, is estimated by subtracting a constant value from the bigram
count and interpolating it with a weighted unigram probability. The problem of unigram model is that
it does not distinguish words that are very frequent but only occur in a restricted set of contexts (e.g.
Angeles which almost only occurs after Los) from words which are less frequent but have a much
wider distribution (e.g. glasses). Angeles is more common since Los Angeles is a very frequent word,
so a unigram model in the absolute discounting assigns Angeles a higher probability than glasses.

The Kneser-Ney smoothing uses the concept of absolute discounting interpolation to incorporate
information from higher and lower order n-gram language models, but it uses a more complicated
way of handling the lower-order unigram distribution. This technique estimates the probability of
seeing the word x as a novel continuation in a new unseen context. In other words, it considers the
number of bigram types the word x completes, rather than estimating its unigram probability which
indicates how likely the word x is. In fact, the Kneser-Ney smoothing is based on the hypothesis that
words which have appeared in more contexts in the past are more likely to appear in new contexts, too.
As a result, the frequent word Angeles occurring in only one context Los will have a low probability.
Further details of the Kneser-Ney smoothing can be found in Kneser and Ney (1995) and Jurafsky
and Martin (2000).

2.3.2 Parsing-based Language Models

The intuition of parsing-based language models is to use the syntactic structure of the sentence to es-
timate its probability. In fact, we can think of a statistical parser as a generative model of language. A
parser aims at finding a parse tree π for a sequence of words (or sentence) s. We can compute P (π, s)
by defining a language model that assigns a probability to all possible sentences in the language by
computing the sum in Equation (2.13).

P (s) =
∑
π

P (π, s) (2.13)

where P (π, s) is zero if π 6= s7.
So far, different parsing as well as language modelling techniques have been used to develop

parsing-based language models. However, we describe Charniak’s (2001) model because it has
been used in the literature to score the analyses of the noisy channel model (Johnson and Char-

7π 6= s occurs when π is an incorrect parse tree of sentence s.

CHAPTER 2. LITERATURE REVIEW 19

niak, 2004). Charniak (2001) proposed a language model using lexicalized probabilistic context-free
grammar (PCFG) models. The parsing model called immediate-head parser conditioned all events of
the immediate descendants of a constituent c on the lexical head of c. Consider the parse tree of the
sentence “put the fruit tray on the table” as shown in Figure 2.1. The probability that the vp expands
to v np pp is conditioned on the head of the vp i.e. put, as it is the case for sub-heads under the vp i.e.
tray as the head of np and on as the head of pp.

The parser assigns a probability to the parse π using a top-down process of considering each
constituent c in π. For each c, the pre-terminal of c, its tag i.e. t(c) and the lexical head of c i.e. h(c)
is determined. Then, the expansion of c into further constituents e(c) is considered. The probability
of a parse is computed as follows:

p(π) =
∏
c∈π

p(t(c)|l(c), H(c))

.p(h(c)|t(c), l(c), H(c))

.p(e(c)|l(c), t(c), h(c), H(c))

(2.14)

where l(c) is the label of c (e.g. np, vp and so on) and H(c) includes the label m(c), head i(c) and
head-part-of-speech u(c) for the parents of c. When it gets clear for the model to which constituent it
refers, the c is removed such that:

p(π) =
∏
c∈π

p(t|l,m, u, i)

.p(h|t, l,m, u, i)

.p(e|l, t, h,m, u)

(2.15)

As shown in Equation (2.15), only p(h|t, l,m, u, i) which is the distribution for the head of c considers
two lexical items i and h. The other conditional distributions are conditioned on one lexical item,
either i or h.

Figure 2.1: A parse tree including head information (adapted from Charniak (2001))

In training time, the PCFG probability distributions are estimated from a tree-bank. The PCFG

CHAPTER 2. LITERATURE REVIEW 20

model defines a tight probability distribution over strings so that the distributions would sum to one,
making the proper for LMs. More detail of the parsing-based LM can be found in Charniak (2001)
and Johnson et al. (2004).

2.3.3 Recurrent Neural Network Language Models

According to the chain rule explained in Section 2.3.1, in order to estimate the probability of an entire
sequence, we have to condition the probability of each word on all previous words. In practice, many
models including n-grams cannot represent such long dependencies; therefore, they are limited to
considering only a few of the preceding words. However, looking at longer contexts is usually crucial
for predicting the next word. Consider this sentence as an example, “I was born in Germany about
fifty years ago and I speak fluent German”. Looking at the recent context, a classic LM can guess that
the last word of the sequence is the name of a language but in order to predict what language exactly,
it requires to see further back for the context of Germany. In such cases where the gap between the
related context and our desire point is large, learning to connect the information is a challenge for
traditional LMs which are based on Markov assumption.

Recurrent neural networks (Rumelhart et al., 1986) based language models apply the chain rule
to model joint probabilities over word sequences, where the context of all previous words is encoded
with a long short-term memory neural network (Hochreiter and Schmidhuber, 1997). RNNs have a
chain-like nature which allows information to travel in both directions. In fact, in these models, the
computations which are derived from earlier input are fed back into the network and make a loop-like
structure. The loop provides RNNs with a memory by which they can theoretically capture informa-
tion in arbitrarily long sequences. In order to understand the architecture of RNNs, we can think of
them as multiple copies of the same network, each passing information to a successor. Consider the
following diagram which illustrates an RNN being unfolded into a full network.

Figure 2.2: An unrolled recurrent neural network

In the above diagram, a number of hidden units take some input xt and outputs a value ht. For the
language modelling task, the input to the RNN is a sequence of words and the output is a probability

CHAPTER 2. LITERATURE REVIEW 21

distribution over the next word. Although RNNs are theoretically capable of handling long depen-
dencies, in practice they cannot learn to do so. It is because the gradient of a long sequence tends to
be exponentially smaller in comparison with that of a short sequence. As a result, gradients which are
propagated over many steps will either vanish or explode for long sequential data (Goodfellow et al.,
2016).

Long short-term memory networks are particular type of RNN which are able to learn long de-
pendencies. The main idea behind LSTMs is to create paths through time so that their derivatives
neither vanish nor explode. Thus, LSTMs can be seen as a gated RNN which have a fundamentally
similar architecture to recurrent networks but apply a different function for computing hidden states.
LSTMs have internal self-loop cell states ct that are connected to each other and replace the hidden
units of ordinary recurrent networks. Each cell has the same inputs and outputs similar to standard
recurrent network, but has more parameters. Within each cell state, there are several gates which are
responsible for removing or adding information to the cell state. In the following part, we look at the
architecture of LSTM and structure of cell state in more detail.

As shown in Figure 2.3, an LSTM is composed of an input, hidden and output layer, where it takes
the word x at time t, does some computation in cell states ct and predicts the next word ht. Instead
of inputting words as unique, discrete ids, LSTMs can input distributed representation of words by
constructing word embedding. The idea of word embedding (Mikolov et al., 2013) is to represent
words in a dense vector so that each word of the vocabulary is mapped into a vector of real numbers.
In this technique, words are represented in a continuous vector space where semantically similar
words are mapped to nearby points. Such dense representation of words can avoid data sparsity
which is a common problem in count-based LM techniques such as higher-order n-gram models. The
output layer of the model usually applies a softmax function to represent a probability distribution
over n different possible outcomes.

Figure 2.3: The architecture of a long short-term memory neural network

CHAPTER 2. LITERATURE REVIEW 22

The structure of cell state ct is shown in Figure 2.4. The cell state is the core component of
an LSTM which consists of four neural network layers that are composed out of a sigmoid neural
network layer σ and a pointwise multiplication operation

⊗
. The layers within a cell state construct a

gating mechanism in the LSTM model. The computations conducted inside the cell state is discussed
step-by-step in the following part.

Figure 2.4: The structure of an LSTM cell (Zhu et al., 2016)

Upon receiving an input xt, the LSTM decides what information should be removed from the cell
state using a forget gate. The forget gate layer looks at the output of the previous cell state ht−1 and
current input xt and outputs either 0 (means to discard) or 1 (means to keep) for each number in the
cell state ct−1. The computation of this step is given in Equation (2.16), where W and b are weight
and bias matrices and ft is the forget gate.

ft = σ(Wfht−1 +Wfxt + bf) (2.16)

In the next step, the model decides which values to update and which information to store. The
information is updated by a sigmoid layer called an input gate layer. Then, a tanh layer makes a
vector of new candidate values ct which can be added to the state. Next, these two steps are combined
to create an update to the state.

it = σ(Wiht−1 +Wixt + bi) (2.17)

c̃t = tanh(Wcht−1 +Wcxt + bc) (2.18)

Now, the LSTM updates the old cell state ct−1 into the new cell state ct. According to Equa-
tion (2.19), it first multiplies the old state ct−1 by ft to forget what it decided to forget earlier. Then,
it adds it ∗ c̃t which is the multiplication of new candidate state values by the scale of how much we
decided to update each state value.

CHAPTER 2. LITERATURE REVIEW 23

ct = ft ∗ ct−1 + it ∗ c̃t (2.19)

In the final step, the model uses an output gate layer to determine what to output. First, a sigmoid
layer decides what parts of the cell state to output. Next, the cell state is putted through tanh and
multiplied by the output of the sigmoid gate so that the model only outputs the parts it decided to.

ot = σ(Woht−1 +Woxt + bo) (2.20)

ht = ot ∗ tanh(ct) (2.21)

Training LSTM neural networks is an optimization problem where we aim at minimizing a loss
function. The loss function lt is used to compare the predictions of the network ht with the target
answers ĥt in order to know how far the model is from the target output. A training method such as
back-propagation algorithm (Rumelhart et al., 1986) feeds back the error values through the network
until each cell state gets an associated error value that demonstrates its contribution to the original
output. The goal of the training algorithm is to minimize the loss L over an entire word sequence of
length T :

L =
T∑
t=1

lt (2.22)

where L represents the cumulative loss from step t onwards. The back-propagation algorithm reduces
the error value until the model learns the training data. The training starts with random weights and
the goal is to adjust them in such a way that the error is minimized. To do so, the algorithm computes
the gradient of the loss function with respect to the weights and uses it to correct the initial weights:

dL

dw
=

T∑
t=1

M∑
i=1

dLt
dhit

dhit
dw

(2.23)

where hit is the scalar corresponding to the output of ith cell state and M is the total number of cell
states. The gradient is fed to an optimization method such as stochastic gradient descent, shown
in Equation (2.24), to update the weights in an attempt to minimize the loss function. The weights
of each connection are modified so that the value of the loss function can decrease by some small
amount. This process is repeated for adequately large number of training epochs until the network
converges to some state where the error is small.

4w = −αdL
dw

(2.24)

where α is the learning rate, a positive scalar determining the size of the step. To update the current
weight w:

w? = w −4w (2.25)

CHAPTER 2. LITERATURE REVIEW 24

where w? is the updated weight.
In order to prevent the model from overfitting, a regularization technique such as dropout (Srivas-

tava et al., 2014) is applied. The idea of dropout is to temporarily drop some random units and their
incoming and outcoming connections from the neural network during training so that they are not
co-adapted too much. As a result, the model becomes less sensitive to specific weights of the units
and can generalize better.

2.4 Summary

In this chapter, we have described speech disfluency from theoretical and computational points of
view. According to psycholinguistic studies, speech disfluency has a “regular” trend in spontaneous
speech, so it is possible to model and automate the task of speech disfluency detection. The ap-
proaches to disfluency detection fall into three main categories: sequence tagging, parsing-based and
noisy channel models. Noisy channel models are one of the strong methods which have been applied
to disfluency detection task. The intuition of the NCMs is that there is a similarity between reparan-
dum and repair, which seems a good indicator of disfluency. However, the NCMs suffer from lack
of an effective language model to capture the complex structure of language. On the other hand, lan-
guage modelling can help identifying disfluency. We have reviewed three important language models
including Kneser-Ney smoothed 4-gram, parsing-based and long short term memory neural network.
The traditional LMs, such as n-gram, are based on Markov assumption, so they condition the prob-
ability of the next word only on a few preceding words. In other words, they use a short context of
words to predict the next words; therefore, n-gram models are not adequately effective for captur-
ing long dependencies between words. Parsing-based LMs which use parse trees of a sentence to
estimate its probability are very specific for language domain. LSTM LMs use a gating mechanism
to guarantee proper propagation of information through many steps. LSTMs are the state-of-the-art
language modelling technique which enable training long dependencies between words. Capturing
long dependencies can be useful for the disfluency detection task.

Chapter 3

LSTM Noisy Channel Model

In this chapter, we introduce a new model for detecting disfluencies in spontaneous speech transcripts,
called LSTM Noisy Channel Model. The proposed model takes three steps to detect disfluencies as
follows:

Figure 3.1: The block diagram of the LSTM noisy channel model

As shown in Figure 3.1, the first step is generating candidate disfluency analyses. We use the
noisy channel model introduced by Johnson and Charniak (2004) to find 25-best candidate disfluency
analyses for each sentence. Step 2 is the contribution of this thesis, where we use a long short-term
memory neural network language model to score the underlying fluent versions of each disfluency
analysis generated by the NCM in step 1. The LSTM LM probabilities along with other features are
used in the MaxEnt reranker introduced by Johnson et al. (2004) to select the most plausible analysis.
In the following sections, we describe the proposed LSTM-NCM and its components in details.

25

CHAPTER 3. LSTM NOISY CHANNEL MODEL 26

3.1 Description

We use a noisy channel model (Johnson and Charniak, 2004) to find “rough copies” that are likely to
indicate disfluencies. The intuition behind the NCM of disfluency is that reparandum and repair words
are closely related to each other. In other words, the repair and reparandum words are usually the same
or very similar words in roughly the same order. According to Johnson and Charniak (2004), more
than three-fifth of disfluent structures in Switchboard corpus contain identical words in reparandum
and repair. Thus, the similarity between reparandum and repair words can be strong evidence of
disfluency.

The noisy channel model uses Tree Adjoining Grammars to provide a systematic way of formal-
ising the channel model. The polynomial-time dynamic programming parsing algorithms of TAG
can be used to search for likely repairs when they are used with simple language models such as a
bigram LM. Using the TAG channel model and bigram language model, the NCM produces 25-best
initial analyses about the locations of disfluencies for each sentence. In fact, the NCM estimates the
probability of each sentence-level analysis using the product of TAG channel model and a bigram
LM, and proposes the analyses with highest probability according to this product model. The fluent
version of each disfluency analysis is scored by an LSTM language model. Then, a Maxent classifier
reranks the analyses and selects the highest scoring one using different features including LSTM LM
probabilities. In the following sections, we look at the components of the NCM i.e. channel model
and language model and also describe the LSTM LM and MaxEnt reranker in detail.

3.2 Channel Model

A channel model P (Y |X) estimates the probability of sentence Y being a disfluent version of sen-
tenceX by mapping words of source sentenceX into those of sentence Y . Due to the relation between
reparandum and repair words, disfluent sentences may contain an unbounded number of crossed de-
pendencies, as shown in Figure 3.2. Capturing such dependencies is outside of the expressive power
of context-free or finite-state grammars.

X = but their system was great

Y = but their but their system was was great

Figure 3.2: A disfluency structure with crossing dependencies between reparandum and repair

Tree Adjoining Grammars (Johnson and Charniak, 2004) are more expressive formalism and
mildly context-sensitive grammars that systematically formalize the channel model. The TAG chan-

CHAPTER 3. LSTM NOISY CHANNEL MODEL 27

nel model encodes the crossed dependencies of speech disfluency, rather than reflecting the syntactic
structure of the sentence. The TAG transducer is effectively a simple first-order Markov model which
generates each word in the reparandum conditioned on the preceding word in the reparandum and the
corresponding word in the repair. The TAG channel model is responsible for capturing the “rough
copy” relationship between repair and reparandum words by generating possible alignments between
them. For instance, Z is a possible mapping between words of sentence Y and words of source
sentence X . The string Z is a sequence of pairs where the first component of each pair is an ele-
ment of the string Y , and the second component is the corresponding element of the string X . More
information about the TAG channel model can be found in Johnson and Charniak (2004).

Z = but:∅ their:∅ but:but their:their system:system was:∅ was:was great:great

3.3 Language Model

The language model of the NCM is responsible for evaluating the fluency of the sentence with disflu-
ency removed. An effective LM is expected to assign a very high probability to a fluent sentence X
(e.g. but their system was great) and a lower probability to a sentence Y which still contains disflu-
ency (e.g. but their but their system was was great). However, using a strong LM within the NCM is
computationally complex because the NCM uses dynamic programming in order to make the compu-
tation tractable. In fact, the TAG dynamic programming algorithms can be used to effectively search
for repairs if the intersection (in language terms) of the TAG channel model and the language model
itself can be describable by a TAG (Johnson and Charniak, 2004). Thus, to guarantee this, a finite
state language model such as bigram is used within the noisy channel model. Using the TAG chan-
nel model together with a bigram language model, the NCM generates 25-best candidate analyses as
follows:

candidate disfluency analysis
1 but E their E but their E system was E was great

1.25e− 09, 165788, 3, 6.65e− 10, 3.47e− 07, 0.52, 3.29e− 19
2 but E their E but their system was E was great

0.0002, 3.44e+ 06, 2, 0.0001, 3.47e− 07, 0.66, 6.75e− 16
3 but their E but their system was E was great

8.32e− 06, 106960, 2, 5.69e− 06, 6.58e− 06, 0.68, 1.28e− 14
4 but E their E but their system was was great

0.019, 66934.2, 1, 0.014, 2.57e− 05, 0.76, 3.73e− 11
5 but E their E but their system was E was E great

8.11e− 10, 38926.8, 3, 5.07e− 10, 1.50e− 09, 0.62, 3.91e− 21

Table 3.1: The top 5 candidate disfluency analyses and corresponding noisy channel model scores. E
and indicate the preceding word is reparandum and fluent, respectively.

CHAPTER 3. LSTM NOISY CHANNEL MODEL 28

The bigram LM, trained on the fluent version of training data, is too simple to capture complex
language structure. On the other hand, it seems helpful to use an LM that is sensitive to more global
properties of the sentence. That’s why we use the state-of-the-art recurrent neural network language
modelling to rescore the initial disfluency analyses generated by the NCM.

3.3.1 LSTM

We use long short-term memory neural networks for training LMs. LSTMs, described in Sec-
tion 2.3.3, are particular type of recurrent neural networks achieving state-of-the-art performance
in many tasks including language modelling (Mikolov et al., 2010; Jozefowicz et al., 2016). The core
of the LSTM model consists of a cell state which includes gates to weigh input and history impact
at a particular time. The gating mechanism of LSTM allows the model to determine the relative
significance of input and history and alleviate the vanishing gradient problem. Therefore, LSTM is
able to learn long dependencies between words, which can be beneficial for the disfluency detec-
tion task. LSTM also allows for adopting a distributed representation of words by constructing word
embedding.

We train two types of LSTM language models including forward and backward. Using backward
LMs can be useful for detecting disfluencies. Backward LMs input sentences in reverse order, so
they can probably capture the unexpected word sequence following the interruption point which is
an important indicator of disfluency. The task of the LSTM LMs is to score the underlying fluent
sentences of candidate disfluency analyses produced by the noisy channel model. When scoring
the sentences, we will have sentences of different lengths on input. We need to handle sentences
of variable lengths by padding each sentence with a special <PAD> symbol to reach a pre-defined
length. This way, all sentences in the mini-batch will have the same length. Since we do not want
the model to consider the padded symbols in loss function, we mask out the padded words given the
actual length of each sentence. For example, consider the underlying fluent sentences of candidate
analyses illustrated in Table 3.1. If the pre-defined maximum length is 6, we will add the <PAD>
symbol at the end of each sentence with fewer words, so that all sentences will have equal number of
words, as shown in Table 3.2.

padded sentences
1 but system was great <PAD> <PAD>
2 but their system was great <PAD>
3 but but their system was great
4 but their system was was great
5 but their system great <PAD> <PAD>

Table 3.2: The underlying fluent sentences of candidate analyses padded with a special symbol at the
end to reach the maximum length of 6 words.

CHAPTER 3. LSTM NOISY CHANNEL MODEL 29

The forward LSTM LM feeds the padded sentences as shown above. For the backward model,
the input sentences include the fluent words in reverse order plus some <PAD> symbols at the end1.
Inputting the padded sentences, each forward and backward LSTM language model assigns a prob-
ability to each sentence. The top 5 disfluency analyses of the NCM and corresponding forward and
backward LSTM LM scores given to the fluent words (i.e. words preceding “ ”) are illustrated in
Table 3.3.

candidate forward backward
1 but E their E but their E system was E was great 9.56e− 10 9.63e− 16

2 but E their E but their system was E was great 2.23e− 10 6.12e− 15

3 but their E but their system was E was great 2.23e− 10 6.12e− 15

4 but E their E but their system was was great 1.19e− 13 8.27e− 18

5 but E their E but their system was E was E great 6.77e− 13 7.68e− 14

Table 3.3: Top 5 candidate disfluency analyses of the NCM along with forward and backward LSTM
LM scores. E and indicate the preceding word is reparandum and fluent, respectively.

Using the noisy channel model scores, LSTM LM probabilities and other features into the MaxEnt
reranker, the second disfluency analysis in Table 3.3 which is the correct answer is selected from the
list of candidates proposed by the noisy channel model. As it will be discussed in the next chapter,
adding LSTM LM scores will help detecting the correct disfluency analysis comparing to the baseline
model.

3.4 Reranker

In order to rerank the 25-best analyses of the NCM and select the most plausible one, we apply the
MaxEnt reranker proposed by Johnson et al. (2004). The MaxEnt reranker allows for incorporating
a wide range of features, including local features such as those derived from the NCM and global
features such as external language model scores. As features into the reranker, we use the feature set
introduced by Zwarts and Johnson (2011), but instead of n-gram scores, we use the LSTM language
model probabilities. The features used by Zwarts and Johnson (2011) are so good that the reranker
without any external language model is already a state-of-the-art system, providing a very strong
baseline for our work.

Two types of features including model-based and surface pattern features are used in the reranker.
The model-based features are the log probabilities produced by the noisy channel model and the
LSTM language model as follows:

• LMP: Forward and backward LSTM language model scores indicating the probabilities of the
underlying fluent sentences,

1For example, the first input sentence of Table 3.2 for the backward LM will be great was system but<PAD><PAD>.

CHAPTER 3. LSTM NOISY CHANNEL MODEL 30

• NCLogP: The log probability of the entire noisy channel model,

• NCTransOdd: The channel model probability,

• LogFom: Sum of the log LM probability and the log TAG channel model probability.

The surface pattern features are boolean indicators which capture identical words, immediate area
around an n-gram and location of disfluency as follows:

• CopyFlags X Y: If there is an exact copy in the input text of length X (1 ≤ X ≤ 3) and the
gap between the copies is Y (0 ≤ Y ≤ 3),

• WordsFlags L n R: Number of flags to the left (L) and to the right (R) of a trigram area (0 ≤
L,R ≤ 1),

• SentenceEdgeFlags B L: It captures the location and length of disfluency. The boolean B

presents sentence initial or sentence final disfluency and L (1 ≤ L ≤ 3) records the length
of the flags.

We give the following analysis as an example (Zwarts and Johnson, 2011):

but E but that does not work

The language model features are the probability calculated over the fluent part. NCLogP, Log- Fom
and NCTransOdd are present with their associated value. The following binary flags are present:

CopyFlags 1 0 (E)
WordsFlags:0:1:0 (but E)
WordsFlags:0:1:0 (but)
WordsFlags:1:1:0 (E but)
WordsFlags:1:1:0 (that)
WordsFlags:0:2:0 (but E but) etc.
SentenceEdgeFlags:0:1 (E)
SentenceEdgeFlags:0:2 (E)
SentenceEdgeFlags:0:3 (E)

The reranking result for Table 3.4 is shown in the following table. It should be mentioned that if
the correct analysis does not appear in the 25-best candidates produced by the noisy channel model,
the reranker chooses the candidate closest to the correct analysis.

CHAPTER 3. LSTM NOISY CHANNEL MODEL 31

candidate
2 but E their E but their system was E was great
1 but E their E but their E system was E was great
4 but E their E but their system was was great
3 but their E but their system was E was great
5 but E their E but their system was E was E great

Table 3.4: The 5 reranked candidate disfluency analyses.

3.5 Summary

In this chapter, we describe the framework of a new model for detecting disfluencies from spon-
taneous speech transcripts. The proposed model uses a noisy channel model to find an alignment
between reparandum and repair words. The TAG channel model together with the bigram language
model generates 25-best candidate disfluency analyses. Then, different long short-term memory neu-
ral network language models are applied to rescore the fluent parts of each analysis of the noisy
channel model. The LSTM language model probabilities, NCM scores and surface pattern features
are used into a MaxEnt reranker to select the most plausible disfluency analysis.

Chapter 4

Experiments and Results

In this chapter, we present the experiments and results of applying the proposed model for disfluency
detection. We also describe the corpora used for training LSTM language models, hyper-parameters,
setting of the LSTM LM and evaluation metrics used to compare the LSTM-NCM model with the
baseline and previous disfluency detection models.

4.1 Corpora for Language Modelling

The forward and backward LSTM language models are trained on Fisher (Cieri et al., 2004) and
Switchboard (Godfrey and Holliman, 1993) corpora. Fisher consists of 2.2×107 tokens of transcribed
text, but disfluencies are not annotated in it. Switchboard is the largest available corpus (1.2 × 106

tokens) in which disfluencies are annotated according to Shriberg’s (1994) scheme. The bigram LM
of the NCM is already trained on the fluent version of Switchboard corpus, but we also aim to use
LSTM LMs for reranking. The language model part of the noisy channel model already uses a
bigram language model based on Switchboard, but in the reranker we would like to also use LSTM
LMs for reranking. Direct use of Switchboard for training LSTM LMs is slightly problematic. The
reason is that if the training data of Switchboard is used both for predicting language fluency and
optimizing the loss function, the reranker will overestimate the weight related to the LM features
extracted from Switchboard. This is because the fluent sentence itself is part of the language model
training data (Zwarts and Johnson, 2011). We can solve this problem by applying a k-fold cross-
validation technique (k = 20) to train the LSTM language models when using this corpus. Applying
the k-fold cross validation technique, we divide the Switchboard training data into 20 folds. Each
time, we use the other 19 folds to train our LSTM language model and apply the trained LSTM LM
to generate scores that will be used for training the reranker on the sentences of the one remaining
fold. Using this technique, we have to build 20 different LSTM LMs on Switchboard.

We also train Kneser-ney smoothed 4-gram language models to compare their performance with
that of LSTM LMs in Section 4.4. Totally, we train two n-gram models, one on Switchboard and one
on Fisher, and four LSTM LMs (2 corpora × 2 models of forward and backward).

32

CHAPTER 4. EXPERIMENTS AND RESULTS 33

We follow Charniak and Johnson (2001) in splitting Switchboard corpus into training, develop-
ment and test set. The training data consists of all sw[23]∗.dps files, development training consists of
all sw4[5-9]∗.dps files and test data consists of all sw4[0-1]∗.dps files. Following Johnson and Char-
niak (2004), we remove all partial words and punctuations from the Switchboard and Fisher training
data. Although partial words are very strong indicators of disfluency, standard speech recognizers
never produce them in their outputs, so this makes our evaluation both harder and more realistic. We
consider a vocabulary size of 10000 words which are extracted from Switchboard training data. The
words that are out of vocabulary are marked with a special <UNK> token in Switchboard and Fisher
corpora.

4.2 LSTM Setting

We consider three configurations of the model that we call small, medium and large for training
forward and backward LSTM language models. The details of the model configurations are given
in Table 4.1. The configurations are different in terms of size of the LSTMs and the set of hyper-
parameters used for training.

config.→ small medium large
hyper-parameters ↓
number of layers 2 2 2
number of hidden units 200 650 1500
initial learning rate 1 1 1
number of epochs trained with initial learning rate 4 6 14
learning rate decay for each epoch after max. epoch 0.5 0.8 1/1.15
total number of epochs 13 39 55
initial scale of the weights 0.1 0.05 0.04
probability of keeping weights in the dropout layer 0.5 0.8 0.35
max. permissible norm of the gradient 5 5 10
embedding size 200 650 1500

Table 4.1: Three different configurations of the model and their corresponding hyper-parameters

The model has two LSTM layers and is trained using truncated backpropagation through time
algorithm with mini-batch size 20. For training the LSTM LMs on the cleaned-up Switchboard text,
we pad each sentence to the maximum length of sentences in the corpus which is 109 words. For
training our model on Fisher, however, we limit the maximum length of sentences due to the high
computational complexity of longer histories in the LSTM. In our experiments, padding sentences
upto maximum 50 words leads to good results on Fisher. All parameters including word embedding
have random initialization. We use TensorFlow (Abadi et al., 2015) to write the LSTM codes.

Training one epoch of the small model on Switchboard corpus takes 20 minutes, while it takes 0.5
and 1.5 hours to train one epoch of the medium and large models. The small model on Fisher needs

CHAPTER 4. EXPERIMENTS AND RESULTS 34

1.5 hours per epoch, whereas the medium and large models take about 3 and 8.5 hours to train one
epoch using one GPU and one CPU. We select the best LSTM LM using the three configurations of
the model. The results including f-score and perplexity on the development set are presented for the
small, medium and large LSTM LMs in Tables 4.2 and 4.3.

f-score small medium large
Switchboard 86.1 86.4 85.9
Fisher 86.2 85.6 85.2

Table 4.2: F-score on the dev set for the small, medium and large LSTM LMs.

perplexity small medium large
Switchboard 53.4 49.9 58.1
Fisher 100.5 122.4 135

Table 4.3: Perplexity on the dev set for the small, medium and large LSTM LMs.

As illustrated above, the small configuration of the model results in the best performance for
Fisher. The medium model, however, slightly improves f-score (0.3%) for Switchboard corpus, com-
paring to the small and large models but at the expense of increase in model’s computational com-
plexity. Due to the high computational cost of medium and large models and decent performance
of the small model in terms of f-score and perplexity, we use the LSTM LM trained by the small
configuration to report all the subsequent results in Section 4.4.

4.3 Evaluation Technique

The easiest way to evaluate a disfluency detection system is to calculate the accuracy of labels i.e. the
fraction of words labelled correctly. However, since only 6% of words are disfluent in Switchboard
corpus, a system that labels all words as “not edited” achieves an accuracy of 94%. Thus, accuracy is
not a good measure of system performance.

To evaluate our system, we use two metrics f-score and error rate. Johnson et al. (2004) used the
f-score of labelling reparanda or “edited” words, while Fiscus et al. (2004) defined an “error rate”
measure, which was the number of words falsely labelled divided by the number of reparanda words.
The f-score, unlike accuracy, focuses more on detecting “edited” words, as shown in Equation (4.1).
In Equation (4.1), g is the number of “edited” words in the gold test data, e is the number of “edited”
words generated by the system and c is the number of correct “edited” words proposed by the system.

fscore =
2c

g + e
(4.1)

According to the above equation, a system which correctly labels every word obtains an f-score
of 1 and a system which assigns “not edited” labels to every word achieves zero f-score.

CHAPTER 4. EXPERIMENTS AND RESULTS 35

4.4 Model Performance

We assess the proposed model for disfluency detection with all MaxEnt features described in Section
3.4 against the baseline model. The noisy channel model with exactly the same reranker features
except the LSTM LMs forms the baseline model. We conduct four experiments to evaluate our model
and use bootstrap significance test (Berg-Kirkpatrick et al., 2012) with p-value < .05 to report the
results as follows.

a. LSTM-NCM vs. Baseline

We investigate the effect of using all LSTM language model scores (i.e. four LSTM LMs described
in Section 4.1) as features in the MaxEnt reranker to select the best NCM analysis. As shown in
Table 4.4, using LSTM language models to score the underlying fluent sentences of the analyses
produced by the NCM improves the baseline results. The experiment on Switchboard and Fisher
corpora demonstrates that the LSTM LMs provide information about the global fluency of an analysis
that the local features of the reranker do not capture.

metric baseline LSTM LMs
f-score 85.3 86.8
error rate 27.0 24.3

Table 4.4: F-score and error rate on the dev set for the baseline model and LSTM-NCM. Significant
results are indicated in bold (p-value< .05).

b. Different LSTM LMs

We explore the effect of using different LSTM language models including forward, backward and
bidirectional on the disfluency detection task. As shown in Tables 4.5 and 4.6, the backward language
models have better performance in comparison with the forward ones for both Switchboard and Fisher
corpora. It seems when sentences are fed in reverse order, the model can more easily detect the
unexpected word order associated with the reparandum to detect disfluencies. For Switchboard, the
best result is achieved for the bidirectional language model, but for Fisher the highest f-score and
lowest error rate are reported for the backward model. Using both Switchboard and Fisher forward
language models results in better performance in comparison with either of them. It means that each
forward LM contains new information that when they are used together they improve the model.
On the other hand, both backward LMs decrease the f-score in comparison with either of them. It
illustrates that both backward models share some information that together they do not add new
information to the model. The best performing model is the one which uses all LSTM language
models features.

Comparing the results of two corpora, we realize that the LSTM LM built on the fluent version of
Switchboard corpus results in the greatest improvement. Both Switchboard and Fisher are transcribed
text, but Switchboard is in the same domain as the test data and it is disfluency annotated. Either or

CHAPTER 4. EXPERIMENTS AND RESULTS 36

both of these might be the reason why Switchboard seems to be better in comparison with Fisher
which is a larger corpus and might be expected to make a better language model.

baseline 85.3
corpus forward backward both
Switchboard 86.1 86.6 86.8
Fisher 86.2 86.5 86.3
Both 86.4 86.3 86.8

Table 4.5: F-scores on the dev set for a variety of LSTM language models. Significant results are
indicated in bold (p-value< .05).

baseline 27.0
corpus forward backward both
Switchboard 25.5 24.8 24.3
Fisher 25.6 25.0 25.3
Both 25.1 25.3 24.3

Table 4.6: Expected error rates on the dev set for a variey of LSTM language models. Significant
results are indicated in bold (p-value< .05).

c. LSTM vs. N-gram LMs

We compare the performance of Kneser-Ney smoothed 4-gram language models with the LSTM
corresponding on the reranking process of the noisy channel model. We estimate the 4-gram models
and assign probabilities to the fluent parts of disfluency analyses using the SRILM toolkit (Stolcke,
2002). As Tables 4.7 and 4.8 show including scores from a conventional 4-gram language model
does not improve the model’s ability to find disfluencies, suggesting that the n-gram model adds no
new information to the reranker and LSTM model contains all the useful information that the 4-gram
model does. Moreover, the results show that the ability of LSTM for capturing longer contexts is
useful for detecting the disfluent parts of speech transcripts.

baseline 85.3
corpus 4-gram LSTM both
Switchboard 85.9 86.8 86.8
Fisher 85.9 86.3 86.3
Both 85.7 86.8 86.8

Table 4.7: F-score for 4-gram, LSTM and combination of both language models. Significant results
are indicated in bold (p-value< .05).

CHAPTER 4. EXPERIMENTS AND RESULTS 37

baseline 27.0
corpus 4-gram LSTM both
Switchboard 25.9 24.3 24.4
Fisher 26.1 25.3 25.7
Both 26.5 24.3 24.4

Table 4.8: Expected error rates for 4-gram, LSTM and combination of both language models. Signif-
icant results are indicated in bold (p-value< .05).

d. LSTM-NCM vs. Other Disfluency Models

We compare our best model on the development set to the state-of-the-art methods in the literature.
According to Table 4.9, the LSTM-NCM outperforms the results of prior work, achieving a state-of-
the-art performance of 86.8. It also has better performance in comparison with Ferguson et al. (2015)
and Zayat et al.’s (2016) models, even though they use richer input that includes prosodic features or
partial words.

Model f-score
Yoshikawa et al. (2016) 62.5
Johnson and Charniak (2004) 79.7
Johnson et al. (2004) 81.0
Rasooli and Tetreault (2013) 81.4
Qian and Liu (2013) 82.1
Honnibal and Johnson (2014) 84.1
Ferguson et al. (2015) * 85.4
Zwarts and Johnson (2011) 85.7
Zayats et al. (2016) * 85.9
LSTM-NCM 86.8

Table 4.9: Comparison of the LSTM-NCM to state-of-the-art methods on the dev set. *Models have
used richer inputs.

4.5 Discussion

In this section, we discuss the types of disfluent structures that the LSTM-NCM can capture and those
which are difficult for the model to detect. In general, the LSTM-NCM model can recognize repeti-
tion and correction disfluencies but it has a poor performance in detecting restarts. Giving examples
from the development data, we characterize the disfluencies that the LSTM-NCM model captures
and the ones that it does not. In the following examples, GOLD, LSTM-NCM and N-gram refer to
the correct disfluency analysis, the one predicted by the LSTM-NCM and n-gram prediction, respec-
tively. In cases where no LSTM-NCM prediction is given, it means that the LSTM-NCM prediction is

CHAPTER 4. EXPERIMENTS AND RESULTS 38

same as the gold analysis. The symbolsE and indicate the preceding word is reparandum and fluent.

Type A.1: Repetition

As shown below, the LSTM-NCM is able to capture repetition disfluencies, even if they are long or
have stutter-like style.

GOLD 1: so from E from that standpoint it E ’s E pretty E small E it ’s pretty small

GOLD 2: i mean you E did E n’t E have E uh you did n’t have video games

GOLD 3: she said she ’ll never put her child in E a E in E a E in E a E in E a E in a
preschool

Type A.2: Correction

Another type of disfluency that the LSTM-NCM can identify is correction, which is more difficult to
detect, comparing to repetition.

GOLD 1: but uh when E i E was E when my kids were young i was teaching at
a university

GOLD 2: but we E ’re E shopping E around E as E far E as E well i ’m shopping around
as far as trying to E get E uh that ’s why i ’m doing this to get some extra

money and uh getting pledge sheets for the boy scouts

GOLD 3: and E and i E was E n’t E i did n’t mean that

Type A.3: Complex

The LSTM-NCM can also detect complex, nested disfluencies, where one disfluent structure is em-
bedded in another one.

GOLD 1: but really i E ’m E i E happy E i E i E well i ’m curious how other people
live

GOLD 2: we E do E n’t E we E we were n’t sure how to do that

GOLD 3: so E so that ’s i think one of the reasons i do n’t need to budget
is that i E do E n’t E have E i E do E n’t E i do n’t have to hold myself back from

buying that expensive thing

CHAPTER 4. EXPERIMENTS AND RESULTS 39

The following examples show the disfluent structures that the LSTM-NCM could not capture.

Type B.1: Restart

According to the following examples, the LSTM-NCM usually fails at detecting restart disfluencies.
The reason is that our proposed model is based on the NCM intuition that there is a similarity between
repair and reparandum. This intuition, however, cannot be used for restarts where the repair is null
and speaker abandons one sentence to start another one.

GOLD 1: so we E ’re E uh our discussion ’s about uh the care of the elderly

LSTM-NCM 1: so we ’re uh our discussion ’s about uh the care of the elderly

GOLD 2: i E i E think E sometimes E you know i ’ve noticed uh people E asking E for
E uh some of the patients asking for things uh just repetitively and E but things
that are not reasonable

LSTM-NCM 2: i E i think sometimes you know i ’ve noticed uh people E asking E
for E uh I some of the patients asking for things uh just repetitively and but things

that are not reasonable

GOLD 3: uh but i E uh E i E ’ve E heard E i do n’t know this for a fact but i
’ve heard that a lot of families really do n’t spend a great deal of time together

LSTM-NCM 3: uh but i E uh I i ’ve heard i do n’t know this for a fact but i
’ve heard that a lot of families really do n’t spend a great deal of time together

We also discuss the types of disfluencies captured by LSTM-based model, but not by the n-gram
one. In general, the LSTM-based model outperforms the n-gram model in finding the disfluent struc-
tures which are embedded in long contexts. The n-gram based model, on the other hand, can only
capture simple repetition disfluencies where reparandum and repair consist of few words and the gap
between reparandum and repair is small. In the following part, we show several examples selected
from the development data in order to categorize the types of disfluencies that the LSTM model cap-
ture, but not the n-gram.

Type C.1: Correction

One type of disfluency that the LSTM model can capture but the n-gram model cannot is correction
disfluencies. It seems that when the correction disfluent structure includes unequal number of words

CHAPTER 4. EXPERIMENTS AND RESULTS 40

in reparandum and repair (i.e. non-parallel reparandum and repair), the LSTM model excels the cor-
responding n-gram.

GOLD 1: and they E ’ve E most of them have been pretty good

N -gram 1: and they ’ve most of them have been pretty good

GOLD 2: well five E are E i mean four of them are grown

N -gram 2: well five are E i mean four of them are grown

Type C.2: Complex

The LSTM model can detect complex, nested disfluencies, particularly if it contains a stutter-like
repetition. As the examples demonstrate, the n-gram model simply detect the first reparandum words
but not the second ones.

GOLD 1: we E we could n’t survive in E a E in E a E juror E in a trial system without
a jury

N -gram 1: we E we could n’t survive in E a E in a juror in a trial system without
a jury

GOLD 2: so you E ’re E you E ’re E down E you ’re downtown

N -gram 2: so you E ’re E you ’re down you ’re downtown

Type C.3: Fluent Repetition

According to the following examples, when there are two identical fluent words in a small window
of context, the n-gram model incorrectly detect them as disfluency.

GOLD 1: and you E probably E if it were you you probably would n’t want
someone choosing a place for you to live based on lowest price

N -gram 1: and you E probably E if it were you E you probably would n’t want
someone choosing a place for you to live based on lowest price

GOLD 2: because uh anytime the government uh is the government against the
individual you E need E you need the protection of ordinary citizens

CHAPTER 4. EXPERIMENTS AND RESULTS 41

N -gram 2: because uh anytime the E government E uh is the government against the
individual you E need E you need the protection of ordinary citizens

4.6 Summary

In this chapter, we assess the proposed LSTM noisy channel model on the task on disfluency detec-
tion. According to the experiments on the Switchboard and Fisher corpora, using the LSTM language
models to score the underlying fluent sentences improves the model’s ability to detect and remove
disfluencies. In fact, the LSTM LM captures information about the global fluency of an analysis that
the local features cannot provide. Moreover, using n-gram language model scores along with LSTM
scores does not improve the results, indicating that the LSTM model captures all the plausible infor-
mation that the n-gram model does. As experimental results show the proposed model outperforms
the state-of-art reported in the literature, including models that exploit richer information from the
input. We also discuss different types of disfluencies that the LSTM-NCM can capture and the ones it
cannot. Furthermore, we analyse the types of disfluencies captured by LSTM-based model, but not by
the n-gram one. The detailed analysis of the model shows that the capability of LSTM for capturing
longer context is important for detecting disfluencies.

Chapter 5

Summary and Conclusions

In this thesis, we present a new model for disfluency detection from spontaneous speech transcripts.
The model uses the baseline noisy channel model to produce 25-best candidate disfluency analyses
for each sentence. Then, the underlying fluent sentences of each analysis is scored by a long short-
term memory neural network language model. The LSTM language model scores along with noisy
channel model probabilities and surface pattern features are used in a MaxEnt reranker to select
the most plausible analysis. We show that using an advanced language model technique such as
LSTM to rescore the outputs of the noisy channel model improves the model’s ability to detect restart
and repair disfluencies. The model outperforms other models reported in the literature, including
models that exploit richer information from the input. According to the experimental results, the
LSTM LM provides information about the global fluency of an analysis that the local features of the
reranker do not capture. Moreover, we demonstrate that the backward LMs have better performance
in comparison with the forward ones. It seems when sentences are fed in reverse order, the model can
more easily detect the unexpected word order associated with the reparandum to detect disfluencies.
In other words, that the disfluency is observed “after” the fluent repair in a backward language model
is helpful for recognizing disfluencies. We also compare the performance of a Kneyser-ney smoothed
4-gram language model with the LSTM one on the reranking process of the noisy channel model. We
show that capturing longer contexts is important for detecting disfluent parts of speech transcripts and
deep neural language model contains all the useful information the 4-gram model does.

We make an error analysis on the proposed disfluency detection model. Although the model is
strong enough to detect complex, nested repetition and correction disfluencies, it has a relatively poor
performance for capturing restarts. The reason is that our proposed model is based on the NCM
intuition that there is a similarity between repair and reparandum. This intuition, however, cannot be
used for restarts where the repair is null and speaker abandons one sentence to start another one.

As future work, we intend to apply more complex LSTM language models such as sequence-
to-sequence on the reranking process of the noisy channel model. We also intend to investigate the
effect of integrating LSTM language models into other kinds of disfluency detection models, such as
sequence labelling and parsing-based models.

42

Bibliography

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-scale machine learning
on heterogeneous systems. Software available from tensorflow.org.

Ebru Arisoy, Tara N. Sainath, Brian Kingsbury, and Bhuvana Ramabhadran. 2012. Deep neural
network language models. In Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever
Really Replace the N-gram Model? On the Future of Language Modeling for HLT . Association for
Computational Linguistics, Stroudsburg, PA, USA, WLM ’12, pages 20–28.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. 2012. An empirical investigation of statis-
tical significance in nlp. In Proceedings of the Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning. Association for Computa-
tional Linguistics, Stroudsburg, USA, EMNLP-CoNLL ’12, pages 995–1005.

Heather Bortfeld, Silvia Leon, Jonathan Bloom, Michael Schober, and Susan Brennan. 2001. Dis-
fluency rates in conversation: Effects of age, relationship, topic, role, and gender. Language and
Speech 44(2):123–147.

Eugene Charniak. 2001. Immediate-head parsing for language models. In Proceedings of the 39th
Annual Meeting on Association for Computational Linguistics. Association for Computational Lin-
guistics, Stroudsburg, PA, USA, ACL ’01, pages 124–131.

Eugene Charniak and Mark Johnson. 2001. Edit detection and parsing for transcribed speech. In Pro-
ceedings of the 2nd Meeting of the North American Chapter of the Association for Computational
Linguistics on Language Technologies. Stroudsburg, USA, NAACL’01, pages 118–126.

Eunah Cho, Thanh-Le Ha, and Alex Waibel. 2013. CRF-based disfluency detection using semantic
features for german to English spoken language translation.

Eunah Cho, Jan Niehues, and Alexander Waibel. 2014. Tight integration of speech disfluency removal
into smt. In EACL.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, KyungHyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. CoRR abs/1506.07503.

Christopher Cieri, David Miller, and Kevin Walker. 2004. Fisher English training speech part 1
transcripts LDC2004T19. Published by: Linguistic Data Consortium, Philadelphia, USA.

43

BIBLIOGRAPHY 44

James Ferguson, Greg Durrett, and Dan Klein. 2015. Disfluency detection with a semi-Markov model
and prosodic features. In Proceedings of the Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies. Denver, USA, NAACL’15,
pages 257–262.

Jonathan Fiscus, John Garofolo, Audrey Le, Alvin Martin, David Pallet, Mark Przybocki, and Greg
Sanders. 2004. Results of the fall 2004 STT and MDE evaluation. In Proceedings of Rich Tran-
scription Fall Workshop.

Kallirro Georgila. 2009. Using integer linear programming for detecting speech disfluencies. pages
109–112.

John Godfrey and Edward Holliman. 1993. Switchboard-1 release 2 LDC97S62. Published by:
Linguistic Data Consortium, Philadelphia, USA.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.
Http://www.deeplearningbook.org.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kingsbury. 2012. Deep neural
networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine 29(6):82–
97.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long short-term memory. Neural Computation
9(8):1735–1780.

Matthias Honal and Tanja Schultz. 2005. Automatic disfluency removal on recognized spontaneous
speech - rapid adaptation to speaker dependent disfluencies.

Matthew Honnibal and Mark Johnson. 2014. Joint incremental disfluency detection and dependency
parsing. Transactions of the Association for Computational Linguistics 2(1):131–142.

Julian Hough and David Schlangen. 2015. Recurrent neural networks for incremental disfluency de-
tection. In Proceedings of the 16th Annual Conference of the International Speech Communication
Association (INTERSPEECH). Dresden, Germany, pages 845–853.

Mark Johnson and Eugene Charniak. 2004. A TAG-based noisy channel model of speech repairs. In
Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Barcelona,
Spain, ACL’04, pages 33–39.

Mark Johnson, Eugene Charniak, and Matthew Lease. 2004. An improved model for recognizing
disfluencies in conversational speech. In Proceedings of Rich Transcription Workshop.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. CoRR abs/1602.02410.

Daniel Jurafsky and James Martin. 2000. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition.

Reinhard Kneser and Hermann Ney. 1995. Improved backing-off for m-gram language modeling. In
In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing.
volume 1, pages 181–184.

BIBLIOGRAPHY 45

Ellen Lau and Fernanda Ferreira. 2005. Lingering effects of disfluent material on comprehension of
garden path sentences. Language and Cognitive Processes 20(5):633–666.

Yang Liu, Elizabeth Shriberg, Andreas Stolckeand, Dustin Hillard, Mari Ostendorf, and Mary Harper.
2006. Enriching speech recognition with automatic detection of sentence boundaries and disfluen-
cies. IEEE/ACM Transactions on Audio, Speech, and Language Processing 14(5):1526–1540.

Matthew Lowder and Fernanda Ferreira. 2016. Prediction in the processing of repair disfluencies.
Language, Cognition and Neuroscience 31(1):73–79.

Gregoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Gokhan Tur, Dong Yu, and Geoffrey Zweig. 2015. Using recurrent neural
networks for slot filling in spoken language understanding. Trans. Audio, Speech and Lang. Proc.
23(3):530–539.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and Sanjeev Khudanpur. 2010. Re-
current neural network based language model. In Proceedings of the 11th Annual Conference of
the International Speech Communication Association (INTERSPEECH). Makuhari, Japan, pages
1045–1048.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their compositionality. In Proceedings of the 27th Annual Con-
ference on Neural Information Processing Systems (NIPS). Curran Associates Inc., pages 3111–
3119.

Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton. 2012. Acoustic modeling using deep
belief networks. Transactions on Audio, Speech, and Language Processing 20(1):14–22.

Mari Ostendorf and Sangyun Hahn. 2013. A sequential repetition model for improved disfluency de-
tection. In Proceedings of the 14th Annual Conference of the International Speech Communication
Association (INTERSPEECH). Lyon, France, pages 2624–2628.

Xian Qian and Yang Liu. 2013. Disfluency detection using multi-step stacked learning. In Pro-
ceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. Atlanta, USA, NAACL’13, pages 820–825.

Mohammad Sadegh Rasooli and Joel Tetreault. 2013. Joint parsing and disfluency detection in linear
time. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics, Seattle, USA, pages 124–129.

David Rumelhart, James McClelland, and PDP Research Group. 1986. Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, volume 1. MIT Press.

Alexander Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention model for abstractive
sentence summarization. CoRR abs/1509.00685.

William Schuler, Samir AbdelRahman, Tim Miller, and Lane Schwartz. 2010. Broad-coverage pars-
ing using human-like memory constraints. Computational Linguistics 36(1):1–30.

Holger Schwenk, Anthony Rousseau, and Mohammed Attik. 2012. Large, pruned or continuous
space language models on a gpu for statistical machine translation. In Proceedings of the NAACL-
HLT 2012 Workshop: Will We Ever Really Replace the N-gram Model? On the Future of Language

BIBLIOGRAPHY 46

Modeling for HLT . Association for Computational Linguistics, Stroudsburg, PA, USA, WLM ’12,
pages 11–19.

Elizabeth Shriberg. 1994. Preliminaries to a theory of speech disfluencies. Ph.D. thesis, University
of California, Berkeley, USA.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks from overfitting. Machine Learning Research
15:1929–1958.

Andreas Stolcke. 2002. SRILM: An extensible language modeling toolkit. In Proceedings of Inter-
national Conference on Spoken Language Processing. Association for Computational Linguistics,
Denver, Colorado, USA, volume 2, pages 901–904.

Andreas Stolcke and Elizabeth Shriberg. 1996. Statistical language modeling for speech disfluencies.

Masashi Yoshikawa, Hiroyuki Shindo, and Yuji Matsumoto. 2016. Joint transition-based dependency
parsing and disfluency detection for automatic speech recognition texts. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP). pages 1036–1041.

Victoria Zayats, Mari Ostendorf, and Hannaneh Hajishirzi. 2014. Multi-domain disfluency and repair
detection. In Proceedings of the 15th Annual Conference of the International Speech Communica-
tion Association (INTERSPEECH). Singapore, pages 2907–2911.

Victoria Zayats, Mari Ostendorf, and Hannaneh Hajishirzi. 2016. Disfluency detection using a bidi-
rectional LSTM. In Proceedings of the 16th Annual Conference of the International Speech Com-
munication Association (INTERSPEECH). San Francisco, USA, pages 2523–2527.

Wentao Zhu, Cuiling Lan, Junliang Xing, Wenjun Zeng, Yanghao Li, Li Shen, and Xiaohui Xie. 2016.
Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM
networks. CoRR abs/1603.07772.

Simon Zwarts and Mark Johnson. 2011. The impact of language models and loss functions on repair
disfluency detection. In Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies. Association for Computational Linguistics,
Portland, USA, volume 1 of HLT’11, pages 703–711.

Simon Zwarts, Mark Johnson, and Robert Dale. 2010. Detecting speech repairs incrementally using
a noisy channel approach. In Proceedings of the 23rd International Conference on Computa-
tional Linguistics. Association for Computational Linguistics, Stroudsburg, PA, USA, COLING
’10, pages 1371–1378.

