
DEEP REINFORCEMENT LEARNING AS TEXT

GENERATOR IN IMAGE CAPTIONING

By

Farhad Amouzgar

A THESIS SUBMITTED TO MACQUARIE UNIVERSITY

MASTERS OF RESEARCH

DEPARTMENT OF COMPUTING

NOVEMBER 2019

mailto:farhad.amouzgar@hdr.mq.edu.au
http://www.mq.edu.au/


ii

c© Farhad Amouzgar, 2020.

Typeset in LATEX 2ε.

mailto:farhad.amouzgar@hdr.mq.edu.au




Dedication

To all my loved ones.

iv



Acknowledgements

I would like to thank my supervisors Dr. Amin Beheshti and A/Prof. Mark Dras for their support,

instruction and excellent supervision throughout my research. Without whom it would not be

possible to complete this work.

I am thankful to all the members of the Data Analytics Research Lab at Macquarie University

for their friendship and helpful comments. Also, I would like to thank the administrative and

technical staff of the Department of Computing for all their help during my research.

This thesis is dedicated to my wife, who has always been the source of strength, love and

patience, my mother and my sister for their lifelong love and support and the memory of my father

who taught me the power of curiosity and ignited the love of wisdom.

v



Abstract

Reinforcement learning (RL), as one of the oldest AI paradigms, has led to exciting results in

recent years. Even though the research frontiers in the field are game playing and robotics,

the natural language processing (NLP) community has also found many applications of RL as a

solution for optimizing non-differentiable metrics in deep learning, including in text generation,

image captioning and chatbots. However, current literature is mainly focused on the REINFORCE

algorithm and its derivatives. REINFORCE is a robust algorithm, but it dates back to the 1990s

and suffers from high variance compared to modern RL algorithms. To address this challenge, we

study and analyze the recent state-of-the-art in RL. Taking image captioning as our specific NLP

use case, we identify Proximal Policy Optimization (PPO) RL algorithms as suitable updates for

REINFORCE, and propose methods for optimizing non-differentiable captioning metrics based

on these. We experimentally evaluate them with respect to the REINFORCE-based standard and

find that, while the static clipping mechanism of PPO is the key aspect of state-of-the-art results in

game playing, it does not improve over REINFORCE in image captioning; rather, the actor-critic

aspect of the algorithms has a more significant impact on the convergence of the model.
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1
Introduction

The field of artificial intelligence (AI) began with high hopes about the capabilities of symbolic

representation and logical reasoning. When the initial ideas failed to deliver, it took a few decades

for the scientific community to realize that there are more novel routes to intelligent behavior.

These new methods, which were appropriated from established fields of study, such as statistics,

neuroscience, and biology, are classified as machine learning (ML). As Arthur Samuel put it, ML is

a field of science that tries to use statistical methods to develop systems that can operate without

being explicitly programmed [7]. Learning is this iterative process of autonomous programming.

ML is a vast field of study, and one of the most fruitful and active topics in computer science. It is

difficult to imagine a day without spam filters, search engines, map applications, voice recognition

programs, automatic translation systems, face detection services, handwriting detection systems

(OCRs), image captioning, ML-based controlling methods such as Autopilots and many more.

An example of image captioning (the task that automatically generates descriptions for photos)

1



2 INTRODUCTION

produced by the algorithm at the core of this thesis, is demonstrated in Figure 1.1.

FIGURE 1.1: Image Captioning. Caption: A man riding a wave on a surfboard in the ocean

There are many ways of characterizing ML algorithms, but one of the most informative methods

is considering the effects of the outside world on the emergence of intelligence. By using this

criterion, we can count at least three types of learning algorithms. The first is when learning

is achieved by processing a labelled set of data, which is known as supervised learning. The

second type is when the positive and negative feedbacks of the environment encourages and

obstructs specific actions. This environment-oriented algorithm is called reinforcement learning

(RL). Finally, when labels and feedbacks are unavailable, the data can be explored in the hope of

finding interesting patterns, which creates the third class, unsupervised learning [8, 9].

RL emerged from different disciplines, sometimes fundamentally different from AI, such as

psychology and optimal control [10]. In all of them, however, the primary goal is studying the

adaptability of systems or organisms in their environments. RL matured in the 1990s and early

2000, but with the rise of deep learning, deep reinforcement learning began to show impressive

results in robotics [3, 5] and video game playing [4, 6]. At first, combining deep neural networks

and RL was challenging, but in 2013 the Deep Q-Network (DQN) paper proposed novel ideas that

overcame the initial obstacles and achieved human-level performance in Atari games [4].

DQN’s achievements ignited a wave of new methods in deep RL. Most of them are re-appropriated

versions of older RL algorithms with ideas from deep learning. The DQN itself is a new version of

Q-learning, a key subtype of RL known as off-policy, optimized with a neural network. DDPG [5],

double DQN [11], dueling DQN [12] also originated in the Q-learning method [13].

In a parallel line of expansion, another subclass of RL referred to as on-policy policy gradient
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algorithms also began to flourish. A very foundational and robust method in this scope is REIN-

FORCE [14]. Ideas from REINFORCE and deep neural networks helped the research community

to develop highly advanced on-policy methods such as PPO [3], TRPO [15], and A3C [16].

1.1 Motivation

Image captioning as an automatic generation of description for images is a challenging task that

requires context comprehension and meaningful articulation. There were captioning techniques

before the deep learning era that could not provide original and human-level captions due to their

reliance on predefined templates [17] or object similarity in photos [18]. It has been recently shown,

however, that methods based on deep neural networks such as convolutional neural networks,

recurrent neural networks, and attention mechanisms can achieve outstanding performance in

image captioning [19–21]. There are a variety of deep captioning techniques, but almost all of

them utilize a convolutional neural network (CNN) network to detect the visual objects and a

following recurrent neural network (RNN) to verbalize the perceptions, as shown in Figure 1.2.

FIGURE 1.2: A deep learning architecture for image captioning

To facilitate the learning process, the NLP community invented several scoring metrics to assess

the quality of produced captions against the human-generated ones such as BLEU, CIDEr, ROUGE,

METEOR, and SPICE. One of the essential difficulties in training the network with these metrics is

their non-differentiability, which implies that the gradient cannot backpropagate and optimize the

model using them. The traditional approach to tackle this issue was the cross-entropy criterion in

optimization, but this leads to relatively poor results. An insight from Daumé III et al.(2009) [22]

was to use RL to get around the problem of non-differentiability. The principal candidate used for
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this purpose has generally been the REINFORCE [14] algorithm [2, 23, 24].

REINFORCE dates back to the 1990s and particularly suffers from high variance. This problem

is usually addressed by subtracting a baseline from the original REINFORCE. The way the baseline

was calculated, however, influences the performance of the baselined REINFORCE. One of the

state-of-the-art methods in image captioning that utilizes this technique is the Self-Critical Sequence

Training (SCST) [24], which informs its baseline by its output from the test interval.

Even though these advances have achieved impressive results, they are still built on top of

the REINFORCE. As mentioned, the rapid progress of RL in recent years provides a repository of

methods that can replace REINFORCE and its derivatives. For instance, the Trust Reign Policy

Optimization (TRPO) algorithm observed the poor performance of the policy gradient methods

(e.g., REINFORCE) in their inability to consider past policies. Hence, solving the problem by

adding more constraint to the update process. The Proximal Policy Optimization (PPO) recognizes

the same discrepancy but proposes a more straightforward solution, replacing the constraint

with a clipping mechanism. Some other solutions employ actor-critic approaches to enhance the

outcome’s performance.

1.2 Objective of the Study

In this research, we review and analyze the state-of-the-art in RL and image captioning to recognize

what might constitute feasible alternatives to REINFORCE. Then, we investigate selected RL

alternatives experimentally to understand the behavior of their various components. Finally,

we propose a new method for image captioning that incorporates selected RL alternatives. We

empirically evaluate our proposed method.



2
Background and Literature Review

Our research is built upon two lines of inquiry, image captioning, and deep reinforcement learning.

First, we lay out the historical advancements of deep neural networks and the way they revo-

lutionized other fields such as image captioning and reinforcement learning. Then, we explain

the state-of-the-art in image captioning, and deep reinforcement learning and the way modern

reinforcement learning algorithms might improve image captioning methods.

2.1 Artificial Neural Networks and Deep Learning

According to the connectionist model of mind, intelligence, behaviour, response, sensorimotor

functions, language and ultimately consciousness all emerged out of a densely connected network

of cells in the brain and other parts of the body. The computational view of neural networks

was first proposed by Warren McCulloch and Walter Pitts in 1943. In their seminal work, they

5
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demonstrated the capability of neural networks in computing logical and arithmetic expressions

[25]. Their work signified a pivotal point in artificial intelligence and founded the field of artificial

neural networks (ANNs).

After the introduction of neural networks as computational components, some discoveries

shaped the ANN discipline. The perceptron was introduced in the 1950s by Rosenblatt as a linear

classifier and the building block of neural networks. Perceptrons had limitations in function

approximation which was pointed out by Minsky and Papert in 1969 that led to some stagnation

in the field. Multi-layer perceptrons (MLP), however, later solved this weakness which was made

possible by Werbos’s backpropagation approach. Since the 1980s ANNs have been an active

area of research and since the first decade of the 2000s and after the discovery of solutions to

develop deep multilayer perceptrons, ANNs became one of the most successful methodologies in

developing intelligent systems. This success also led to the rebranding of the field from artificial

neural networks to deep learning [26].

As mentioned, the simplest type of neural network is a perceptron. As illustrated in Equation

2.1, a perceptron unit computes the weighted sum of its inputs x1 . . . xn, adding a bias term b, and

then applies an activation function f () such as Linear, Sigmoid, Hyperbolic tangent, ReLU, or ELU.

This simple unit by itself can be used as a binary classifier or a simple predictor. By adding and

stacking these elements in the right structure, highly complex functions can be learned by the

neural network.

The mentioned activation functions transform the output of the neuron to a preferred non-

linear output in a way to fit a desired range or shape. For instance, the Sigmoid function, which

is inspired by the activation function used in biological neurons, is employed when a probability

type output is expected as it ranges between zero and one. Tanh doubles the Sigmoid output

range and is applied in many areas, including recurrent neural networks. ReLU and ELU are

more efficient and can potentially prevent the vanishing and exploding gradient problem in deep

networks [1, 26].

y = f (
n
∑

i

x i=1wi + b) (2.1)

In the rest of this section, we give brief overviews of three types of artificial neural networks that

are important in deep learning and specifically in the work in this thesis, namely Fully Connected
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Networks, Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNNs). More

detail is available from sources such as [1, 26].

2.1.1 Fully Connected Networks

A fully connected network or a dense network consists of layers of parallel neurons, and each

layer’s neurons are connected to all of the neurons in the adjacent layers. There is no connection

between neurons in one layer as it is illustrated in Figure 2.1. This structure, which resembles

some biological neural networks, can become deeper and broader in order to better approximate

complex functions. Intuitively the size of a network increases the learning time.

FIGURE 2.1: A Fully Connected Network [1]

Structure A fully connected network is categorized into three sections, the input layer which

feeds the network with data, the output layer that passes the calculated prediction to the outside

world, and hidden layers. Deeper networks have more hidden layers.

Training Neural networks operate in two modes, forward and backward. The forward mode

moves the data from the input layer to the output layer to generate the prediction. This prediction

is initially very inaccurate and to train the network, after computing the loss function (a function

of the difference between the actual output and the prediction) the network switches to backward

to optimize the network weights. The iterative process of prediction, computing the loss value,
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and then backpropagation and optimization is the essence of learning in neural networks [26]. In

a one-layer neural network, computing the error (or loss interchangeably) is straightforward as it

depends on the weights of neurons in that layer. In deeper networks, however, the forward pass

error depends on a complex combination of the weights in all the layers. The backpropagation

algorithm addressed and solved this issue using a dynamic programming approach. It goes back

in the network and based on the neuron’s weight finds the role of each neuron in the generated

error, and updates it accordingly [1].

2.1.2 Convolutional Neural Networks

Almost all artificial neural networks are biologically inspired; convolutional neural networks

(CNNs) are specifically inspired by the receptive field of the brain in mammals. CNNs are highly

capable of capturing spatial relations in grid structures such as images. This feature makes them a

good choice for pattern recognition and feature extraction from high dimensional datasets, e.g.,

photos and videos [1].

The concept of filter (kernel) tremendously reduces the complexity of CNNs compared to fully

connected networks, in terms of the number of parameters that need to be learned. A filter is a

sliding window that traverses the image or a layer of CNN and connects certain parts of them

(e.g., pixels, neurons) to the neurons in the next layer. The filter convolves those values with its

predefined parameters, hence the name convolution [1, 26].

Two other essential components of CNNs are pooling layers and ReLU activation function. ReLU

is a half linear function that returns max(0, input) and can have a positive effect on efficiency. By

using pooling layers (max-pooling for instance), a specific statistical value such as the maximum

value of a certain section of the CNN replaces its adjacent values, which acts as a regularizer or a

dimensionality reduction mechanism. The ReLU and similar activation functions also enhance the

performance by avoiding the vanishing and exploding effects of saturating activation functions

such as sigmoid and hyperbolic tangent [26].

One of the contributing factors in the rapid advancement of CNNs is the ImageNet competition

(ILSVRC) which led to many deep and complex architectures such as AlexNet, ZfNet, VGG,

GoogLeNet, and ResNet. Pre-trained CNNs are highly beneficial and are starting points for research

groups to apply transfer learning and save time and computational power. As shown in Figure 2.2,
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in the end, we typically connect the CNN to a fully connected or recurrent network for regular

machine learning activities such as classification, prediction, or generation [1].

FIGURE 2.2: A CNN as the feature extractor with its following dense network for classification [1]

2.1.3 Recurrent Neural Networks

As noted, dense networks are valid options to deal with high dimensional data. CNNs have

the same role, but they are most effective when the data is grid-like and spatially related. The

assumption in these networks is the independence of features and the absence of time. Thus, to

process, transform, or generate sequential datasets such as time-series, text, videos, and the like, a

different type of neural network is required. Units that are used to handle sequentiality are called

Recurrent Neural Networks (RNNs). There are different variations of RNNs. Currently popular

ones are Elman RNNs [27], Bi-directional RNNs [28], Gated Recurrent Units (GRU) [29], and

the Long-Short Term Memory (LSTM) [30]. LSTMs and the more recent GRUs can overcome the

common issue of the vanishing gradient problems. LSTMs are also explicitly utilized in this thesis

[1].

An RNN is structurally a multi-layer perceptron with a self-loop that allows the network to

be informed about the earlier data, passed through the network in previous iterations. In each

iteration, the RNN can potentially generate output and communicate a weight to the next iteration.

The weight is a way of considering the hidden representation of the RNN with its current input.

An abstract view of a typical RNN is depicted in Figure 2.3 [26, 30].

The hidden state of the network updates recursively using an activation function f (e.g.

Hyperbolic Tangent), using a formula like ht = f (ht−1,xt). The amalgamation of ht and Why will

generate the output yt in each step.
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FIGURE 2.3: A typical RNN [1]

2.2 Image Captioning

Image captioning is the practice of generating textual contents to describe a picture, its constituting

objects, and their interrelations. The interaction of language and image can be bi-directional;

in other words, what is said can be imagined (generated), and what is shown can be described.

Image captioning covers the latter as shown in Figure 1.1. Text-to-Image is another active field of

research in Generative Adversarial Networks (GANs)[31], and it is not usually discussed in image

captioning.

Image captioning has been one of the early challenges in artificial intelligence, image processing,

and natural language processing. It can be argued that it dates back to 1960s when Marvin Minsky

asked his student to make the first image captioning program by connecting a computer to a

camera [32, 33]. One of the reasons that make image captioning complex is its interdisciplinary

nature with different ways to approach the problem.

Historically, image captioning methods can be divided into three main categories which reflect

three different perspectives: template-style, retrieval-style, and end-to-end [32]. The template-

style algorithms provide templates for descriptors that will be filled by the features extracted from

the image [17]. One of the advantages of these methods is their predictability and consistency of

output. However, these methods are rigid due to their dependency on the pre-defined templates.

The second type, the retrieval-style, uses the extracted features and search for similar images [18].

Once similar ones are found, the corresponding captions are copied or will be used to generate

a relevant description. These methods are tightly coupled with the training datasets, which has
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its advantages and shortcomings. For instance, a large and comprehensive dataset would lead

to acceptable performance, whereas a small and unrelated one will generate poor captions. The

third class, as shown in Figure 2.4, uses a combination of CNNs (Sec 2.1.2) and RNNs (Sec 2.1.3)

in a sequential manner which resulted in promising outcomes, and is the focus of our study.

FIGURE 2.4: An end-to-end image captioning system

These methods rely on special ML techniques that matured since the dawn of deep learning

such as CNNs (Sec 2.1.2), RNNs (LSTMs, GRUs and Bi-directionals) (Sec 2.1.3), and deep neural

networks (Sec 2.1.1). The algorithms were supported by other tools and techniques such as

massive improvements in computational power and its availability, optimization methods, more

advanced methods of network initialization and regularization, transfer learning, better and more

accessible libraries for deep learning, and bigger datasets for learning algorithms.

2.2.1 End-to-End Systems

The key idea of end-to-end systems in image captioning is to utilize the best characteristics of

the two neural networks, namely CNNs and RNNs. The resulting architecture operates like an

encoder-decoder [20, 34]. CNNs are best to extract features from images, which is the encoding

phase. Many available solutions are built upon a prepared Residual Network (ResNet) [35] that

has been trained by ImageNet [36] beforehand. The extracted and abstract features are fed into

an RNN (LSTM or GRU) that in part encodes them into captions and generates the sequence of

words.

Other approaches have also explored in the context of the encoder-decoder structures such as

attention mechanisms [19, 37], and the application of reinforcement learning as a way of direct
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optimization based on NLP metrics [24, 38, 39]. The latter, which is the focus of our research,

will be discussed in more details in section 2.4.

2.2.2 Datasets

Many datasets can be considered when it comes to text and text generation. It is relatively easy

to collect social media comments, technical reports, scientific papers, books, and the like since

currently, the textual content is abundant. The challenge has been providing textual datasets that

also include and relate the text to other forms of data such as images, videos, and time series. To

address this issue in image captioning, many research groups and organizations have collected

and annotated image datasets using online crowdsourcing platforms [40], which have led to

benchmark repositories for image processing and captioning.

2.2.2.1 PASCAL VOC Project and Flicker Datasets

Visual Object Classes (VOC) challenge was a classification competition held between 2005 and

2012 [41], where researchers had to use their methods on a common dataset. The organizer was

Pattern Analysis, Statistical Modeling, and Computational Learning (PASCAL), hence, released

datasets were called PASCAL VOC. These datasets contained 6000 images collected from the

photo-sharing website, Flicker, and captioned by the crowdsourcing service, Amazon Mechanical

Turk [40].

In later challenges, the number of images increased to 8000 and 30000. Annotation mechanisms

and methods also advanced. Thus, two new image classification and captioning benchmark datasets

appeared called, Flicker8k and Flicker30k, respectively [42]. These datasets set the context for

the next important dataset, Microsoft COCO.

2.2.2.2 Microsoft COCO

After the successes of deep learning in numerous fields of AI, specifically, computer vision, sequence

generation, and translation, image captioning became a focus of attention again. PASCAL and

older Flicker-based datasets defined a methodology for data gathering and annotation, but their

sizes were not enough for the demands of researchers. Thus, in 2014, a new dataset was gathered



2.2 IMAGE CAPTIONING 13

and introduced by Microsoft called Common Objects in Context or COCO [43].

In data gathering, like older datasets, Amazon Mechanical Turk was used. There are two

datasets, MS COCO c5 and c40. In c5 images have five reference captions. C40 has forty sentences

for 5000 randomly selected images. In COCO c5, there are 330,000 images with 80 object

categories, and 1.5 million object instances. Object superpixel stuff segmentation and object

segmentation are also considered in which the former simplifies segmentation by aggregating

similar pixels in larger entities (superpixels), and the latter groups the entire object in one frame

[44]. An evaluation server was also provided to compare the performance of different algorithms.

The evaluation itself is in terms of NLP metrics such as BLEU, CIDEr, ROUGE, and METEOR [45].

2.2.3 Metrics and The Automatic Evaluation of Text

In evaluating the quality of a text, and its relevance to a particular context such as an image,

text in another language or text summarization, human judgement is the benchmark. However,

there are obstacles in employing humans for these assessments that considering an alternative

would be highly beneficial. Four main problems are (1) the cost, (2) the speed (or lack of it) (3)

non-reusability (4) fallibility [46]. Human evaluation is more expensive and slower than most

computational techniques. It cannot be duplicated and multiplied and is subject to human error.

For all these reasons, six different text evaluation methods have been developed. Although they

usually do not surpass human assessment, their estimates are consistent with human judgment

[47]. The evaluation results can be used for various purposes. In our research, we consider them

as rewards for the learning algorithm.

Most metrics use a similarity function to compare generated text in translation and summa-

rization with the ground-truth sentences. BLUE [46], which is a precision score, examines texts

based on a paramerized mean over the length of the n-grams. The size of the n-gram makes a

different BLEU score as a result. METEOR and ROUGE utilize F-score and F-measures on n-grams,

respectively. CIDEr employs TF-IDF values as a comparison measure of the generated and the

target text. The most recent one, SPICE, is mainly aiming at assessing the text created in the

process of image captioning, considering semantic parsing in the method. In this study, NLP scores

are considered as an external reward system to the proposed methods [47].
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2.3 Reinforcement Learning

As mentioned in the introduction, ML can be categorized into three different classes, supervised

learning, unsupervised learning, and reinforcement learning (RL). RL emerged from psychology

and optimal control as an adaptive and learning mechanism in the process of interaction with the

environment. RL matured in the late 20th century, but when deep learning appeared in the late

2000’s [1], the era of deep reinforcement learning began with impressive and human-level results

in video games and robotics. One of the first notable results was the Deep Q-Network (DQN)

algorithm that overcame the incompatibility of RL and deep neural networks [4].

2.3.1 Terminology of Reinforcement Learning

Two of the key concepts in RL are state and action. A state can be represented to the agent in

various ways, and it depends on the problem that the agent is trying to solve. For instance, it

might be a matrix of values for Chess or the AlphaGo game, a collection of pixels for Atari games,

or a graph for a network navigation agent. Action is usually a set of predefined abilities given to

the agent beforehand. The goal of learning is to find the right sequence of steps that maximize the

total reward for the agent.

The reward signal r is also another fundamental notion in RL. The reward, which is usually

represented by real value, is formally defined as a three-argument function such that r : S×A×S→

R. It evaluates the quality of the action A, which changes one state to another [10]. Under normal

circumstances, negative values indicate a negative reward that discourages the agent from that

action, and positives values have the opposite effect. One of the known obstacles in training RL

agents is the delayed reward problem. This is usually addressed by introducing auxiliary concepts

such as value functions which act as a guiding signal before the arrival of the actual reward.

All these concepts can be formalized as classical sequential decision problems using the mathe-

matically idealized models called the Markov Decision Process (MDP) [10]. RL algorithms try to

solve MDPs by finding or approximating a policy. A policy, π, is a set of decision rules acquired by

the agent that helps it in making proper decisions. π can be formalized as a function that maps

states to actions in deterministic or action probabilities in stochastic environments; π : S→ P(A)
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[48].

An optimal policy is determined in at least two ways. The first method is maximizing a state-

action value (Qπ(s, a)) or state value function (Vπ(s)) which returns the quality of a state or

action-state under a particular policy. Secondly, the policy can also found by directly optimizing the

policy itself. The former algorithms are foundations of many RL methods, especially the temporal

difference (TD) methods and actor-critic approaches, and the latter forms the policy gradient class

of RL methods [10].

Q and V are defined recursively. The recursiveness shows the dependence of the two on the

discounted quality of the next states. They are mathematically expressed in Equation 2.2 and 2.3.

Q(st , at)← E[r + γQ(st+1, at+1)] (2.2)

V (st)← E[r + γV (st+1)] (2.3)

where s represents the state, at and at+1 are current and future actions, respectively. r is the

immediate reward obtained by the performed action, and γ is the discount factor for future values.

An essential distinction in RL is two different types of algorithms, on-policy and off-policy

methods. On-policy methods such as REINFORCE use the current information available to the

agent to update the policy, and that policy also employed to generate the agent’s actions. In

contrast, in off-policy algorithms like Q-learning and DQN not only past data is considered, but

also two separate policies may exist, the one that is being updated and the policy that is doing the

actions. In cases like that the two policies will merge after some iterations with delay [10].

Another important class of RL algorithms is actor-critics. The actor-critic paradigm emerged as

a result of combining policy gradient methods such as REINFORCE (Sec2.3.7) and value-based

methods like Q-learning (Sec2.3.2). Actor-critics often achieve higher performance since they

aggregate the advantage of both approaches. These methods can be complicated, but the general

idea is that the value-based method (the critic) returns some feedback about the performance of

the policy method (the actor) and hence helps it to converge faster [10].
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2.3.2 Q-learning

There are two fundamental methods in addressing the MDP-type problems, Dynamic Programming

(DP) and Monte-Carlo (MC) methods. DP is a robust algorithmic technique that is used to solve a

vast spectrum of problems. In RL, however, it is mainly used when the agent knows the model of

the environment. This class of algorithms is also known as model-based. MC, on the other hand, is

the opposite of DP, and it has no or minimal prior assumption on the way the environment behaves.

Hence, MC is called a model-free method. DP and MC have their strengths and weaknesses,

which motivated researchers to synthesize the two into a larger class of model-free methods called

Temporal Difference (TD) [10].

TD absorbs positive aspects of the two and forms a stronger approach. The central idea of the

TD method is utilizing the previous state to update the current one. This notion is mathematically

expressed using Q and V functions in Equation 2.4 and 2.5. Similar to Equation 2.2 and 2.3, s,

a, r, γ and V are the state, the action, the reward, the discount factor and the value function,

respectively. α represents the learning rate in TD algorithms. The TD update mechanism revolves

around computing the difference between the actual reward and the expectation of it, which can

work as a loss function for the agent’s success.

V (st)← V (st) +α(r + γV (st+1)− V (st)) (2.4)

Q(st , at)←Q(st , at) + (r + γQ(st+1, at+1)−Q(st , at)) (2.5)

Q-learning can be derived from Equation 2.5, as shown in Equation 2.6. In Q-learning, after

the random initialization of Q-values, the agent starts taking actions. The action is chosen by

a random process called ε-greedy. ε-greedy balances the exploration-exploitation to facilitate a

better learning outcome. This process continues until convergence [49].

Q(st , at)←Q(st , at) + (r + γmaxQ(st+1, at+1)−Q(st , at)) (2.6)
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2.3.3 DQN

As noted before, the Deep Q-Network as a combination of deep neural networks and Q-learning

was defined in the context of games [4], with its input being a sequence of images from a game.

The DQN paper proposed a five-layer neural network architecture. The input to the network is the

environment state, and its output is the set of Q-values for each action.

The first convolutional network interacts with the stream of images coming from the screen.

The convolutional networks are mostly in charge of detecting objects in the stream of images. To

enhance the capability of the algorithm, three convolutional networks have been added to the

implementation. The result is processed by two fully connected networks. The other end of the

network controls the agent actions.

After creating the Q network, the DQN algorithm selects an action using ε-greedy policy. Under

this policy, the chosen actions are either the best actions with the probability of 1 − ε which

maximize the Q-value (a← arg maxa′(Q(s, a′;θ ))), or they are random actions with probability of

ε. To avoid infinite exploration, ε will decay over time.

The actions, states and the rewards will be saved for more efficient learning. This process is

called experience replay. The space for saving the memory is called experience replay buffer which

stores all the agent’s experiences (actions, rewards, and states) for training the network.

The loss function calculates the difference between the target and predicted values, as in

Equation 2.7, which originates in the Q-learning update mechanism as laid out in Equation 2.6.

DQN optimizes the loss function with respect to the neural network parameters θ , using gradient

descent. These steps will be repeated until the convergence of an optimal sequence of actions.

The DQN pseudocode is in algorithm 2.

L(θ )← (r + γmax
a′

Q(s′, a′;θ )−Q(s, a;θ ))2 (2.7)

2.3.4 Enhanced DQNs

The DQN algorithm was relatively successful is demonstrating some degree of general intelligence,

especially in the context of Atari games. However, it suffers from specific issues such as overopti-

mism in estimating the Q value [11], its inability to use relevant memories from the past [50],
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and the narrowness and locality of Q values [12]. These problems led to three different variations

of the DQN algorithm, which addressed and solved them.

In order to solve the overestimation of the Q values problem, the double DQN algorithm has

emerged. The issue can be resolved by proposing two parallel separate Q networks, each learning

independently. This architecture resembles the actor-critic paradigm (Sec 2.3.6), as learning is

enhanced by utilizing two separate networks.

The matter can be simplified by keeping every part of the DQN algorithm, except that two

neural networks are initialized instead of one, and some modifications are made to the DQN

evaluations. Equation 2.8 shows the Double DQN update central update mechanism [11].

yDoubleDQN
i ← r + γQ(s, argmaxQ(s, a;θ−);θ ′) (2.8)

where, as before, r, s, a, γ, and Q represent the reward, the state, the action, the discount factor,

and the state-action value, respectively. The yi value represents the target of the double DQN

algorithm. θ− signifies the target network parameters, whereas θ
′
shows the current network.

The original DQN also did not incorporate any intelligence in its replay buffer sampling process:

sampling selection was based on the uniform distribution. There are certainly different methods of

prioritizing, but one of the most effective ones is to use the Temporal-difference (TD) error. This

process values the highest TD errors the most, which means that whenever the agent is surprised

by the environment, it assigns higher probabilities for more learning and memorizing. This method

also aligns with animal and human memory functions [50].

2.3.5 Deep Deterministic Policy Gradient (DDPG)

The DQN algorithm and its derivatives were performing well in certain situations, but they were

suffering from many shortcomings. The most important was their inability to tackle continuous

action environments. The main reason for this is the curse of dimensionality present in these

environments, which makes them slow even after discretization. Thus, the Deep Deterministic

Policy Gradient (DDPG) was proposed in 2016 [5], which was an enhanced version of the original

DPG paper [51]. DDPG is inherently model-free and actor-critic (Sec 2.3.1) [5].

DDPG borrowed the main algorithm from the DPG paper, but in architecture and learning
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mechanism, it is following the footsteps of the DQN algorithm, namely using experience replay and

the target network. The actor-critic nature of DDPG requires the initialization of two interacting

neural networks. In each iteration, the actor-network generates an action according to the current

policy and Ornstein-Uhlenbeck random process as its exploration noise. After performing the

chosen action, observing the new state and receiving the reward, the critic network tries to

minimize the loss function, which also influences the actor policy. The final step is to update the

target network using the τ hyperparameter, which controls the amount of update. Instead of the

delayed update method in DQN, DDPG instantly updates the target function using τ. The DDPG

pseudocode is available in algorithm 3.

2.3.6 Asynchronous Advantage Actor-Critic (A3C)

Asynchronous methods were proposed for various reasons, but the most important ones are their

ability to be distributed among different systems and devices and their lightweight architecture [6].

One of the biggest obstacles of offline learning algorithms such as DQN and DDPG is the memory

that they consume to keep their replay memory. This issue becomes even more problematic when

the complexity of the environment increases, and therefore, more and more space is required to

preserve experiences.

In algorithms such as Asynchronous Advantage Actor-Critic (A3C), the lack of memory is

balanced out by multiple parallel agents that learn and update the central policy in unison and

thus collectively creating an implicit replay memory. Also, in DQN the role of replay memory is

to decrease the correlation between current states. In asynchronous algorithms, several agents

interacting with the environment and aggregating the central network has the same effect. A3C

pseudocode details are in algorithm 4.

2.3.7 REINFORCE

Policy gradient (PG) methods, as a class of RL algorithms, try to learn the right policy by directly

updating the model parameters instead of using a concept such as value (V function) or action-

value functions (Q values and Q function) that assist the model in learning. Non-policy gradient

algorithms are known to be more expensive or impossible in particular settings such as continuous
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environments and infinite action spaces. PG methods, on the other hand, may need more data or

iteration of training to achieve an acceptable level of performance.

The simplest PG algorithms are the vanilla policy gradient method or the REINFORCE method.

REINFORCE is considered a Monte-Carlo method which tries to gather random returns from

possible trajectories and utilize them retrospectively in the learning process, as illustrated in

Equation 2.9. The update mechanism of REINFORCE is demonstrated in Equation 2.10.

G←
T
∑

i=t+1

γi−t−1ri (2.9)

θ ← θ +αγt G∇ lnπ(at |st ,θ ) (2.10)

In Equation 2.10, G is the discounted return; θ represents model parameters that are being

optimized; α is the update step which controls the learning rate; a and s are the taken action and

the state, respectively; and π is the agent’s policy that takes the state and network parameters and

generates actions.

One of the issues of the vanilla REINFORCE is its high variance which diminishes its performance.

The performance can be improved by subtracting the policy π from a static or dynamic baseline

value b. This technique called baselining achieves better results [10, 14] and is used extensively

in different areas such as the image captioning methods [2, 24]. REINFORCE is the foundation of

later PG algorithms such as Trust Region Policy Optimization [15] and Proximal Policy Optimization

[3].

2.3.8 Trust-Region Policy Optimization (TRPO)

Trust Region Policy Optimization (TRPO) is another policy gradient algorithm. As mentioned, the

vanilla PG algorithms are in danger of policy divergence (Sec 2.3.7). A baselined PG can achieve

better performance, but the other issue is that the old policy does not inform the step size of the

algorithm, and thus, it might fail in finding the optimal policy. The solution is to add trust-region

constraints to the optimization problem. The trust-region constraint will guarantee against the

danger of moving too far. TRPO is the result of all these considerations. TRPO can be reduced to

utilizing conjugate gradient optimization algorithm in solving the constraint optimization problem
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in Equation 2.11 [15].

maximize [Lθold
(θ )]

subject to Dmax
K L (θold ,θ )< δ

(2.11)

where L is the loss function similar to REINFORCE; θ is the network parameters; D is the Kull-

back–Leibler (KL) divergence that measures the distance between the two policies; and δ is

the hyperparameter that controls the trust-region or the distance between the two consecutive

policies.

2.3.9 Proximal Policy Optimization (PPO)

TRPO introduced a robust solution for stabilizing policy gradient RL algorithms. TRPO stability

stems from its optimization part. This is especially important in reinforcement learning because

of the influence of an agent’s actions on its later observations. However, TRPO is suffering from

complexity in implementation and slow execution. The delayed convergence is attributed to two

factors, the constraint in the optimization and the optimization algorithm (conjugate gradient).

These two factors are both computationally complex.

Proximal Policy Optimization (PPO) emerged as the successor of TRPO, inheriting the main idea,

but with a much simpler way of dealing with the trust region problem using only the first-order

optimization. PPO’s decoupled architecture makes it suitable for scalability and parallelism, which

enhances its success in distributed and multi-agent environments. The method in PPO is to replace

the complex TRPO loss function with a clipped one. The trust region constraint is embedded in

the minimization step of the loss function formula, as shown in Equation 2.12. The actual PPO

method has two more components, the value function update, shown in Equation 2.13, and the

entropy. The full method is shown in Equation 2.14. PPO outperformed most deep RL algorithms

in continuous spaces [3].

LC LI P(θ )← E
�

min(r(θ )Â, cl ip(r(θ ), 1− ε, 1+ ε)Â
�

,

r(θ )←
πθ
πθold

(2.12)
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LV F(θ )← (Vθ (s)− V tar g)2 (2.13)

LPPO(θ )← E[LC LI P(θ )− c1 LV F(θ ) + c2S[πθ (s)]] (2.14)

where π and πold are the current policy and the old policy, respectively. r(θ ) is the ratio of the two

policies, and it has been introduced for readability purposes. Â represents the advantage function

which is calculated after the Monte-Carlo rollout and evaluates the quality of the taken action. ε

is the clipping value, set to a number between 0 and 1, and controls the policy update. LV F(θ ) is

the regression-like update of the value function used in the PPO loss function, which updates the

value function prediction. They all combined in Equation 2.14. The S[πθ (s)] terms quantifies the

entropy from the policy to ensure enough exploration by the algorithm.

2.4 RL Approaches in Text Generation and Captioning

Daumé III et al. [22] proposed the first work that pointed out how to effectively use reinforcement

learning to solve complex structured classification problems, introducing a ‘meta-algorithm’ called

SEARN. Its main idea was to combine search and learning to reduce initial assumptions about

the structure of the final model. What SEARN was proposing was to expose the model to its

predictions, and thus producing a more informed series of actions afterward. It achieved state-

of-the-art performance in text summarization at the time of its publication [2, 22]. The MIXER

algorithm [2] picked up this idea and appropriated it from text summarization to text generation.

Instead of cross-entropy, they used the REINFORCE algorithm [14] in their method. Their technique

addressed the differentiation problem and the exposure bias that most metric-based approaches

were trying to overcome.

The first issue arises when a non-differentiable function (for instance, all the NLP metrics

discussed in Sec 2.2.3) used to assess the performance and the optimization algorithm alone

cannot determine the gradient and hence carry out the backpropagation. Exposure bias occurs

when the error aggregates as a result of the model never having been exposed to its outcome.

These two were the main reasons that held back metric feedback systems in sequence generation

and its derivatives such as image captioning [2].
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In this context, the REINFORCE as a policy gradient RL algorithm behaves like an agent. The

agent parameters determine the agent policy which chooses the right action or words during the

word generation. The state is a combination of predicted words and a context vector representing

an environment such as an image. As mentioned before, the reward is coming from an NLP metric

or possibly another model that absorbed evaluative capabilities of metrics. Thus, all the elements

of a Markov Decision Process (Sec 2.3.1) are present — namely, (S, A, Pa, Ra)— and the problem

can be tackled with RL techniques [10]. The MIXER loss function is the negative of expected

reward, as shown in equation 2.15 [2] where w1..T represents the generated words, and r is the

reward assigned to it. p is the probability of the next produced word that corresponds to the

notion of policy (π) in reinforcement learning when generating a word is interpreted as taking

action.

L(θ )←−
∑

w1..T

pθ (w1..T )r(w1..T ) (2.15)

Mixed Incremental Cross-Entropy Reinforce (MIXER) method introduced the idea of incremen-

tal learning and a mixed loss function, which together can handle large action spaces. Rather

than a random initialization, MIXER starts with a cross-entropy pre-training which reduces the

perplexity factor of the algorithm. MIXER also uses the annealing schedule method to stabilize the

generated output. It used two types of RNNs, LSTMs and standard Elman RNNs. In both cases,

the usual recurrent processing takes place, and the algorithm learns to maximize the distribution

over the next word given the currently generated ones, as in Equations 2.16 and 2.17 [2]. φ is

the RNN function that processes a word and the output of the previous one.

ht+1← φθ (w,ht , ct) (2.16)

wt+1 ∼ pθ (w|wt ,ht+1) = p(w|wt ,φθ (wt ,ht , ct)) (2.17)

where w is the network’s weights, ht is the hidden state of the RNN, and ct is an optional context

vector. φ represents the hyperbolic tangent activation function which transforms the output. p is

the probability of the next word in the sequence, and it is very close to the concept of policy in RL.
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The architecture of MIXER was similar to earlier encoder-decoder methods and set the archi-

tecture that all the descendant methods followed. Figure 2.5 illustrates its schema.

FIGURE 2.5: The MIXER Architecture [2]

2.4.1 Self-Critical Sequence Training

The Self-Critical Sequence Training (SCST) method emerged after the initial developments in

end-to-end approaches such as Teacher-Forcing and Professor-Forcing. These initial methods were

mainly utilizing the cross-entropy as the cost function, which led to exposure bias. SCST follows

the REINFORCE-style algorithms in image captioning, such as MIXER. The rationale is the same

as before, to overcome the exposure bias and the differentiation problem. The difference with

previous methods is the moving baseline in REINFORCE that controls the variance of the process.

SCST uses its test-time output to normalize the rewards it receives during the training time [24].

The SCST training reward is coming from the CIDEr score.

Two types of captioning models can be used in the image captioning context, the FC model

and the Attention models. The FC model is static and merely encodes the image using a CNN. The

CNN could be trained beforehand like a VGG or ResNet. The extracted features will be embedded

through a dense layer. The vocabulary that is expressed with one-hot encoding is also embedded

using a similar linear layer. These inputs will be given to an LSTM layer for the final caption

generation. The output is a distribution over the next word after the final softmax layer. The

loss function for backpropagation is the SCST algorithm. The attention method follows the same

mechanism. The only difference is the dynamic re-weighting of the CNN features to concentrate

on a different section of the image every step [24].

After each iteration of caption generation for one instance or a batch of them, we update our

network using the loss function. As mentioned, cross-entropy is the traditional method for this
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purpose, and it is still used as a pre-training step, but after the initial stages, we apply a modified

version of a baselined REINFORCE algorithm, as shown in Equation 2.18. The reward in this

equation is calculated by subtracting the reward received by the current model from the training

reward, which has normalizing effects, as shown in Equation 2.19.

L(θ )←− Ews pθ [r(w
s) log pθ (w

s))] (2.18)

R← r(wr)− r(ŵ) (2.19)

SCST significantly outperformed its predecessor algorithm, the MIXER method, and set the

ground for subsequent advancements. [38] used the same mechanism with an enhanced reward,

and [52] combined it with an adversarial architecture. Although other methods were proposed

since then, SCST remains the core the state-of-the-art. This SCST architecture is thus the one we

use to explore the application of other RL methods.

2.5 Conclusion

In this chapter, we reviewed the challenging problem of image captioning. We explained deep

neural networks and their novel solutions for the captioning problem [20, 24, 32]. RL, as a

separate paradigm of machine learning, was also utilized in some parts of image captioning

[2, 24]. REINFORCE [14] or its other varieties were the methods used in the literature. Although

REINFORCE has been a successful method, recent advancements such as PPO [3] augment it with

better converging mechanisms. Modern RL methods showed their strengths in robotics and video

games [3, 4, 15, 53], so it is justified to move from REINFORCE towards one of these more modern

methods. The review of this chapter shows that the PPO approach is both structurally similar to

REINFORCE, as a policy gradient method, and one that produces state-of-the-art results in games

applications, and so is a suitable candidate. SCST [24] is one of the state-of-the-art methods that

set the context for more recent image captioning techniques such as [38, 52] and they all apply

REINFORCE in their training phase. Our proposed method is therefore built on SCST and PPO but

the RL aspect derives from our chosen model.



3
OpenAI Gym Experiments

In this chapter, we begin our experiments with reinforcement learning algorithms, focussing on

REINFORCE and PPO as motivated by the previous chapter, to identify success factors in them and

investigate the way they operate. More specifically, we would like to study the inner functions

of PPO to facilitate the process of its incorporation in image captioning. These experiments are

conducted in the context of one of the OpenAI Gym’s environments. The chosen environment, the

LunarLander, is among the games that are closer to image captioning in terms of discrete actions

and vectorized state space.

The outstanding achievement of the PPO algorithm is shown in different areas such as robotics

and video games, as benchmarked by [3] (graphs of performance reproduced in Appendix B). To

test the performance of the Proximal Policy Optimization (PPO) algorithm, the effects of its three-

term loss components, and its performance in a combined form with the REINFORCE algorithm

(Equation 3.1) [14], we proposed and tested three separate methods.

26
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3.1 Introduction

Reinforcement learning, as a branch of machine learning, has lots of shared properties with other

topics, more specifically, with supervised learning. However, according to its definition as an

interactive agent within an environment, makes its assessment complicated. RL algorithms can

be directly applied to mechanical or physical systems such as a robot or drone as a controlling

mechanism. This process, however, is subject to many problems such as high time-consumption,

high cost and non-repeatability. These issues are more critical when we try to compare the

performance of one algorithm against others. Thus, the RL community standardly uses common

simulated environments to evaluate algorithms.

3.2 The Experimental Environment: The Lunar Lander V2

In recent years, there have been several proposed benchmark environments for reinforcement

learning algorithms such as Arcade Learning Environment (ALE) [54] and RLLib benchmark [55].

OpenAI Gym combines these older environments and more in a unified and intuitive interface that

reflects the MDP structure of RL problems. In other words, every environment, regardless of its

underlying design, starts from an arbitrary zero state, takes the agent’s action, and goes to the

next state while generating the relevant reward. This process continues until the environment

reaches the final state.

There are five general classes of environments in OpenAI Gym, namely, the classic control and

toy texts, algorithmic, Atari, board games, and robotics. In our experiments, for reasons of similarity

to text generation problems, we focused on one of the 2D robotic controlling environments, the

Lunar Lander.

The Lunar Lander environment, as depicted in Figure 3.1, is an example of a classic controlling

problem which is built on top of the Box2D physics engine [56]. The agent role is to guide the

engines to land at the landing pad with zero speed. The landing pad is always at zero coordinates,

and the right landing earns a reward of between 100 to 140 for the agent [57].

The episode finishes after crashing or receiving -100 or 100 points. There are also smaller
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FIGURE 3.1: The LunarLander-v2 Environment

negative and positive rewards encouraging the agent for better and more efficient performance

such as ten extra points for contacting each leg to the landing pad, and -0.3 for firing the main

engine. The action space is discrete and consists of four actions: doing nothing, utilizing the left

engine, utilizing the right engine, and firing the main engine [57].

3.3 Experimental Setup and Results

As mentioned, the PPO algorithm has a three-term loss function [3] inspired by the Trust Region

algorithm [15] and the Policy Gradient method. Each component has a specific role in the

optimization process with different impact, which we will investigate in this experiment. Restating

them from Chapter 2, they are the clipped policy gradient (Equation 3.2), the value function

update (Equation 3.3), and the entropy term.

The core component of PPO method is the clipped loss function (LC LI P(θ), Equation 3.2).

The value function (LV F(θ), Equation 3.3) and the third part of the main PPO loss function

(Equation 3.4), the entropy, are secondary. The reason is that the first term embodies the policy

gradient section of the method, making the core decisions. Thus, it is plausible to think about

other alternatives of PPO with lesser complexity, removing the second, third or both to examine
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the role of each in the final output.

LREIN FORC E(θ )←
∑

logπθ (at |st)Gt (3.1)

LC LI P(θ )← Êt

�

min(rt(θ )Ât , clip(rt(θ ), 1− ε, 1+ ε)Ât

�

,

rt(θ )←
πθ
πθold

(3.2)

LV F(θ )← (Vθ (st)− V tar g
t )2 (3.3)

LPPO(θ )← E[LC LI P(θ )− c1 LV F(θ ) + c2S[πθ (s)]] (3.4)

Our experiments here differ from those of [3] in that we aim to identify the relative importance

of the three components of PPO, and discover whether PPO and REINFORCE can be usefully

combined. The combination of PPO and REINFORCE is a feasible solution due to their high bias

and variance, respectively. The combined method may cancel each components’ shortcomings and

make a stronger solution.

3.3.1 Full PPO and the REINFORCE Algorithm

This method considers the REINFORCE algorithm and the whole PPO algorithm in an interpolated

manner, as shown in Equation 3.5.

LPPO(θ )← λppoE[LC LI P(θ )− c1 LV F(θ ) + c2S[πθ (st)]] +λREIN FORC E E[LREIN FORC E(θ )] (3.5)

3.3.2 PPO with the Clipped and Value Function and REINFORCE

The method, represented by Equation 3.6, is similar to Equation 3.5 but with the elimination of

the entropy part, which is in charge of introducing exploration to the equation; it thus allows an

analysis of the importance of using entropy in the PPO method.

LPPO(θ )← λppoE[LC LI P(θ )− c1 LV F(θ )] +λREIN FORC E E[LREIN FORC E(θ )] (3.6)
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3.3.3 Clipped-only PPO and REINFORCE

Finally, the third variety is the clipped PPO surrogate objective of Equation 3.2 and its combination

with the REINFORCE algorithm 3.7; the clipped PPO surrogate is the component of the full PPO

that is structurally most similar to the REINFORCE objective. This method is thus merely mixing

two types of REINFORCE methods with high and low variance.

LPPO(θ )← λppoE[LC LI P(θ )] +λREIN FORC E E[LREIN FORC E(θ )] (3.7)

3.4 Experiments

We tested five values of lambda for each proposed method as illustrated in Table 3.1. Then, we

plotted them and compared the results. The RL community usually assesses the experiments in

terms of two criteria, the reward gained and the speed of learning. Both are captured in these

diagrams. By convention, the y-axis represents the reward gained by the RL agent and the x-axis

is the epoch number. In these experiments, every integer point on the x-axis outlined the average

rewards earned in every 50 consecutive episodes to enhance the readability of our results.
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λs

Algorithm
PPO-clipped+REINF. ISO PPO-Value+REINF. PPO-Full+REINF.

λppo,λREIN FORC E (0,1) (0,1) (0,1)

λppo,λREIN FORC E (0.25,0.75) (0.25,0.75) (0.25,0.75)

λppo,λREIN FORC E (0.5,0.5) (0.5,0.5) (0.5,0.5)

λppo,λREIN FORC E (0.75,0.25) (0.75,0.25) (0.75,0.25)

λppo,λREIN FORC E (1,0) (1,0) (1,0)

Charts 3.2 3.3 3.4

TABLE 3.1: The LunarLander experiment proportion of Loss Functions

FIGURE 3.2: PPO-Clipped+REINFORCE Method (Equation 3.7)
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FIGURE 3.3: PPO-Value+REINFORCE Method (Equation 3.6)

FIGURE 3.4: PPO-Full+REINFORCE Method (Equation 3.5)
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3.5 Discussion and Conclusion

Looking at Figures 3.2 to 3.4, REINFORCE alone successfully trained the agent but with significantly

lower performance than PPO or other varieties of the interpolated PPO and REINFORCE (except the

50 PPO-Clipped + 50 REINFORCE version). When we compare the full PPO algorithm (Figure 3.4),

PPO first and second term (PPO-Clipped Value) (Figure 3.3), and PPO first term only (PPO-Clipped)

(Figure 3.2), we observe that all are successful in training agent with no different significant rate.

This fact indicates that the clipped policy gradient mechanism in PPO, as illustrated in Equation

3.2, is the main factor in the learning process, and it can be possible to be used alone when the

environment has similar properties like the LunarLander such as discrete action space.

The interpolated version, however, had a slightly better performance in some cases than the

PPO-only version, especially when it comes to the Clipped-only method (Figure 3.2). These classes

of algorithms can become effective when we run such algorithms for a longer time or when the

bias-variance trade-off is destabilizing the PPO-only due to its high bias.

Our experiments show that the main component of the Proximal Policy algorithm is the first

term. The rest improves and smoothes the outcome, especially in continuous environments [3],

which are not the subject of this study. Hence, for simplicity purposes, our proposed methods will

benefit from the clipped ratio idea of the PPO algorithm.

Given that most of PPO varieties outperformed the vanilla REINFORCE algorithm, we are

expecting to see the same pattern in other places that the REINFORCE algorithm has been used,

such as the text generation task in image captioning. In the next chapter, we propose our method

based on our findings in these initial experiments.



4
Proposed Method for Image Captioning

PPO has outperformed other state-of-the-art algorithms as it was shown in Appendix B. PPO is also

significantly better than the REINFORCE family of algorithms in the game and physical controlling

context, as we demonstrated in Chapter 3. We learned that PPO first-term clipping mechanism is

the essential component of the method, and that is directly inter-substitutable with PPO. Chapter

3 also uncovered the possibility of combining the PPO or one of its varieties and REINFORCE to

achieve better performance.

In this chapter, we lay out some augmentations on top of the state-of-the-art reinforcement

learning algorithms used in image captioning and sequence generation. The proposed additions,

in an autoencoder context, are network agnostic, and thus, in theory, are compatible with any

existing or future neural networks used for this task. To do this, we analyze the main characteristics

of current methods in image captioning and reinforcement learning and draw on the strengths of

modern algorithms from the deep reinforcement learning community.

34
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4.1 Introduction

There are two main issues in older methods such as cross-entropy that made researchers apply

reinforcement learning instead, namely, exposure bias and the differentiation problem. The

first methods, such as MIXER, were using an autoencoder network architecture and a simple

reinforcement learning method such as REINFORCE. Even though REINFORCE addressed the

aforementioned problems, it still suffered from high variance, which can lead to slow convergence,

as explained in Section 2.3.7. Thus, the REINFORCE with a baseline was proposed, which has the

same expectation, but with a smaller variance.

The REINFORCE with baseline itself can also become unstable as the context of the text or

image is not considered in calculating the baseline. To correct this, the Self-Critical Sequence

Training (SCST) proposed the utilization of its output signal as the normalizing factor of its rewards.

As a result, SCST pushed up samples that surpass its current performance, and the negative ones

will be suppressed. This architecture is comparable to the actor-critic methods in reinforcement

learning since the reward estimation influences the policy network too. Our approach to modifying

the SCST algorithm keeps this dynamic baseline and changes the core reward component to reflect

the improvements of PPO over REINFORCE.

4.2 Proposed Algorithm

In machine learning, the goal is to minimize the loss function, which, in image captioning, used to

be the cross-entropy method shown in Equation 4.1. This method tried to maximize the likelihood

of the next word.

L(θ )←−
T
∑

t=1

log(pθ (wt |w1:t−1)) (4.1)

As mentioned, the loss function can be replaced by the requirement to minimize the collected

negative reward by a reinforcement learning method as predicated in Equation 4.2. The reward

signal is coming from an NLP metric such as CIDEr or BLEU score.

L(θ )←− Ewsspθ (r(w
s)) (4.2)
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where ws = (ws
1, . . . , ws

T ) and ws
t are the sequences of words and word sampled from the model at

the time step t, respectively. r(ws) is the reward given to that sequence. The goal is to minimize

the loss function, L(θ ) in order to maximize the earned rewards.

In Policy Gradient approaches with REINFORCE (Sec 2.3.7) such as MIXER, REINFORCE solves

the non-differentiation reward problem via its computation formula. As shown in Equation 4.3,

the gradient bypasses the reward signal [2].

∇L(θ )←− Ewsspθ (r(w
s)∇θ log pθ (w)) (4.3)

As mentioned in Section 2.3.7, the high variability of this equation can be addressed by the

introduction of a baseline (Equation 4.4). Since the baseline is not a function of θ , it will disappear

in the calculation of the gradient and only reduces the variance [14].

∇L(θ )←− Ewsspθ [(r(w
s)− b)∇θ log pθ (w)] (4.4)

The SCST method added an informed baseline to the formula from its output, as shown in 4.5.

The new baseline represents the expectation of the network of the future reward. This change will

help the algorithm to converge faster [24].

∇L(θ )←− Ewsspθ [(r(w
s)− r(w))∇θ log pθ (w)] (4.5)

Equation 4.5 can be approximated by Equation 4.6 using the chain rule where st is representing

the input to the softmax layer. Equation 4.6 is at the core of the self-critical algorithm [24]. It

consists of two main components, the base-lined reward (r(ws)− r(w)) and the policy (pθ ) that is

represented by the neural network.

∂ L(θ )
∂ st

← (r(ws)− r(w))(pθ (wt |ht)− 1ws
t
) (4.6)

On the other hand, Proximal Policy Optimization [3] does the learning by introducing three

component functions as its loss, and it uses the advantage function in the process. The first

component is the policy gradient section with a clipping mechanism. The second part is the value
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function cost function, and the third is a guarantee for entropy and enough exploration.

LPPO
t (θ )← Et[L

CLIP
t (θ )− c1 LV F

t + c2S[πθ ](st)] (4.7)

In our method, the focus is on the first surrogate function, the LCLIP as shown in Equation 4.8.

LCLIP
t (θ )← Et[min(rt(θ )Ât), clip(rt(θ ), 1− ε, 1+ ε)Ât)]

such that rt(θ ) =
πθ (at |st)
πθold

(at |st)

(4.8)

The clipping, which is a replacement for the constraint in the TRPO algorithm [15] has to

control the policy based on its old value to remain in the 1-ε and 1+ε interval while keeping it

computationally simple [3].

As explained, the self-critical method has two components, the baselined reward, and the

policy gradient. The base-lined reward acts as the feedback signal for the policy network. The

advantage function takes on the role of a controlling mechanism in Proximal Policy Optimization.

They both implement two versions of the Monte-Carlo rollouts. Hence, in order to enhance the

efficiency of the self-critical method, we propose the clipped self-critical algorithm (CLP-SC), as

demonstrated in 4.9.

LC LP−SC
t (θ )←− Et[min(rt(θ )∆R̂t), clip(rt(θ ), 1− ε, 1+ ε)∆R̂t)]

such that rt(θ ) =
πθ (at |st)
πθold

(at |st)
,

∆R̂t = r(ws)− r(w),

0< ε < 1

(4.9)

Based on the validation of the central role of Lcl ip in our initial experiments in chapter 3, we

take this as the basis of our fundamental method, training the SCST system using this for the loss

function.

We also consider two alternatives, given the observation in chapter 3 that REINFORCE and

PPO can be combined. Specifically, we consider using CLP-SC as pre-training for the SCST, and

interpolating CLP-SC and SCST. We describe these below.
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4.2.1 Variant #1: Pre-training with Clipped-Self Critical Algorithm

Our first alternative is treating the clipped self-critical (CLP-SC) as a pre-training step after the

initial pre-training with the cross-entropy. This variation of CLP-SC is expressed in algorithm 1.

Algorithm 1: Pre-training with Clipped-Self Critical Algorithm
Pre-training

Pre-train with the cross-entropy method

Determine the pre-training epoch PE

for all the epochs do

if epochs < PE then

L(θ )←−Et[min(rt(θ )∆R̂t), clip(rt(θ ), 1− ε, 1+ ε)∆R̂t)]

else
L(θ )←−Ewsspθ [(r(w

s)− b) log pθ (w)]

end

Optimize πθnew
← πθ +∇L(θ )

end

4.2.2 Variant #2: The Interpolated Clipped-SC with SCST

The final solution that we are going to investigate is the combination of the SCST method and our

clipped one. This method is motivated by the experiments we described in Chapter 3.

In the interpolated version shown in Equation 4.10, we give λ coefficients to each loss function,

and we test different values for these coefficients.

L Interpolated(θ )← λC LP−SC E[LC LP−SC(θ )] +λSCST E[LSCST (θ )] (4.10)

Our intuition that led to the interpolated method comes back to the fact that the REINFORCE

algorithms and its derivatives have the high variance problem. The variance reduces when a static

or dynamic baseline is used. These solutions, however, are limited in performance and applying a

trust-region style method such as clipped policy used in PPO is a more robust way of fixing it.



5
Experimental Results for Image Captioning

The core of this chapter are the experiments evaluating the fundamental method and its variants

as proposed in Chapter 4. As a precursor to that, we first explore the choice of reward to optimize.

5.1 Sources of Reward

The Self-Critical Sequence Training (SCST) paper advised the use of CIDEr score as the source of

reward since CIDEr resulted in the best model. The MIXER algorithm, on the other hand, proposed

BLEU and ROUGE-2 for its feedback system. To best of our knowledge, a synthesis reward system

is still unexplored. Thus, to discover the role of each NLP score in the reward given to the SCST

method, we arrange the following experiments.

We trained the SCST algorithm using the FC model (Sec 2.4.1) for 60 epochs, and plot the

evaluations rendered by all six NLP metrics. As mentioned in Section 2.4.1, FC model is a static

39
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end-to-end network consists of a pre-trained CNN for feature extraction from images and an LSTM

to generate words. The first 30 epochs were pre-training phase using the cross-entropy algorithm

[24]. Then, we trained our network using CIDEr and evaluate them with all the NLP metrics. We

use as a baseline a widely used PyTorch implementation of the self-critical sequence training1

[38]. The hyperparameter settings and other details of our experiments are given in Appendix

D.2 The results are illustrated in Figure 5.1 to Figure 5.8. The sudden change of trend in the

60th assessment (the equivalent of epoch 30, there are two assessments in every epoch) in these

diagrams is an indication of switching from cross-entropy to SCST algorithm.

As it is shown in Figure 5.1 to Figure 5.8, BLEU-1 and CIDEr distinguished and valued SCST

more than other metrics, and are more likely to provide these class of algorithms with proper

rewards. Thus, we tested a linear composite reward consisting of CIDEr and BLEU-1. Although

our experiments were not exhaustive, the four different coefficients of BLEU and CIDEr revealed

some patterns of optimality, as shown in Figures 5.10, 5.12, 5.14 and 5.16.

It appears from the diagrams that a mixture of one unit CIDEr and 0.5 of BLEU score provides

us with the highest score across all the metrics. As these are very expensive to train, we have not

carried out repeated training to assess statistical significance, but we note that the pattern is quite

consistent. We therefore use this for our RL-based image captioning algorithms. Following the

SCST convention [24], the y-axis represents the NLP score (reward) gained by the method and

the x-axis is the iteration number. In these experiments, every integer point on the x-axis outlined

the reward earned every 6000 iterations to enhance the readability of our results.

1https://github.com/ruotianluo/self-critical.pytorch
2For clipping, we used the best ε from [3], but note that the performance was not strongly dependent on the value

of ε.

https://github.com/ruotianluo/self-critical.pytorch
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FIGURE 5.1: Evaluated by BLEU 1 FIGURE 5.2: Evaluated by BLEU 2

FIGURE 5.3: Evaluated by BLEU 3 FIGURE 5.4: Evaluated by BLEU 4

FIGURE 5.5: Evaluated by CIDEr FIGURE 5.6: Evaluated by METEOR

FIGURE 5.7: Evaluated by ROUGE-L FIGURE 5.8: Evaluated by SPICE
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FIGURE 5.9: Evaluated by BLEU 1
(Trained for 10 Epochs)

FIGURE 5.10: Evaluated by BLEU 2
(Trained for 10 Epochs)

FIGURE 5.11: Evaluated by BLEU 3
(Trained for 10 Epochs)

FIGURE 5.12: Evaluated by BLEU 4
(Trained for 10 Epochs)

FIGURE 5.13: Evaluated by CIDEr
(Trained for 10 Epochs)

FIGURE 5.14: Evaluated by METEOR
(Trained for 10 Epochs)

FIGURE 5.15: Evaluated by ROUGE-L
(Trained for 10 Epochs)

FIGURE 5.16: Evaluated by SPICE
(Trained for 10 Epochs)
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5.2 Clipped SCST

As explained in Equation 4.8, we proposed the Clipped-SC method, which uses the clipping

mechanism of the proximal policy optimization to augment the vanilla policy gradient methods

such as REINFORCE. We applied this method to the same experimental setting that is described in

Appendix D. The result is shown in Figure 5.17.

FIGURE 5.17: Clipped-SC vs. SCST (Trained for 10 epochs)

The figure shows a slightly higher reward (1.0 CIDEr + 0.5 BLEU) right at the beginning,

but in later iterations, it dropped to a scale below the pre-training phase. One possibility for the

Clipped-SC method’s poor performance could be that the clipping mechanism introduces a high

bias: the success of PPO hinged on bringing more bias to policy gradient methods [3]. While this

was clearly useful in the lunar lander experiments of chapter 3, and in the paper that defined PPO

and benchmarked it on many problems [3] (see also Appendix B), it may not be applicable here;

further, [58] note that bias can have more destructive effects on the convergence of algorithms

than the variance. The other factor the may have caused the discrepancy between the Lunar

Lander environment, and the image captioning task is the differences in their state space size,

which needs more investigation.

We also applied our proposed pre-training algorithm with Clipped-SC and SCST. We dedicated

the first 6000 iterations to our Clipped method, and the rest is trained with the vanilla SCST.

The result is shown in Figure 5.18. Although initially there was a better performance as we also
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observed in our Clipped-SC, it did not lead to a significant improvement.

FIGURE 5.18: Pretraining Clipped-SC for 6000 iterations (half epoch)+SCST (Trained for 9.5 epochs) vs.
SCST (Trained for 10 epochs)

To investigate this, we carry out experiments with the interpolated algorithm described by

Equation 4.10 with the idea that there might be a productive balance between the higher variance

of the original SCST and the higher bias of the Clipped-SC approach.

5.3 Interpolated Method

To test the effectiveness of the interpolated method, we examined four possibilities. The λs have

this relation, λcl ipped−sc+λSCST = 1. In these experiments to observe the trend, we only trained our

models for ten epochs. Figure 5.19 shows different possibilities and their output performances.

Our initial observation shows that there was no significant improvement in utilizing the

interpolated algorithm. The method with the largest clipped component (λcl ipped_sc = 0.75)

performed dramatically worse than the others, while those with lower proportions performed

similarly to the SCST method. The λSCST = 0.75 and λcl ipped_sc = 0.25 combination shows slightly

better performance compared to the original SCST, as shown in Figure 5.20.

To investigate this further, we arranged another experiment for 30 epochs comparing the SCST

and the interpolated method with mentioned coefficients. The result is illustrated in Figure 5.21.
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FIGURE 5.19: Interpolated algorithm with different coefficients (Trained for 10 epochs)

FIGURE 5.20: Interpolated algorithm; SCST vs. 0.25 Clipped-sc + 0.75 SCST (Trained for 10 epochs)

The final experiment showed no noticeable improvement using the interpolated self-critical

algorithm with a clipping component. At this point, we considered two possibilities for this

discrepancy with our positive results in the OpenAI environments. The first is that the vanilla

self-critical method’s incorporation of a dynamic baseline — which represents the expectation of

the network of the future reward — in some way makes the variance reduction of an approach

like PPO unnecessary. Secondly, the nature of image captioning may be different to the extent that

it changes the dynamics of algorithms.

We took the first idea and arranged our next experiment, replacing the clipping term in the

interpolated method with a constant in one execution and a random number in another one, as
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FIGURE 5.21: Interpolated algorithm; SCST vs. 0.25 Clipped-sc + 0.75 SCST (Trained for 20 epochs)

shown in Equation 5.1, where C is representing the constant or random value.

L Interpolated(θ )← λC LP−SC C +λSCST E[LSCST (θ )] (5.1)

The constant was one, and the random number was chosen from a normal distribution with µ = 0,

σ = 1. The result is shown in Figure 5.22.

FIGURE 5.22: SCST vs. Constant and Random interpolated (Trained for 10 epochs)

These results show that interpolating noise and random constant values to the self-critical

method in fact has similar effects to interpolating the PPO-style clipped component, and possibly

better. While the sizes of improvements are small, the interpolated lines are fairly consistently above
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the SCST baseline. The introduction of systematic noise may thus warrant further investigation.

Overall, however, it seems the self-critical mechanism may be the primary factor in the improvement

of the SCST method; and REINFORCE and our clipping method have a less significant role in

producing the result. We keep exploring our second hypothesis as our future work.



6
Conclusion and Future Work

The differentiation problem has been one of the obstacles in training text generation models.

Modern image captioning methods have been applying reinforcement learning algorithms to

address this issue. Most of the proposed state-of-the-art algorithms were focused on earlier

methods such as REINFORCE. In this thesis, we reviewed modern deep reinforcement learning

methods and examined some possible improvements for the image captioning problem.

After reviewing the literature, it became apparent to us that the trust-region family of algorithms

have achieved higher performance due to their controlled updates. We started our experiments with

a physics simulation environment, the LunarLander which was used to test different possibilities

of the vanilla REINFORCE and Proximal Policy Optimization. After observing the result of this

phase, we formed decided on our approach to applying it to image captioning.

Our proposed methods were built on the self-critical sequence training algorithm that influenced

later works in image captioning; and on PPO from the RL community, which can be considered a

48
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descendant of the REINFORCE algorithm. Our approach comes in three configurations, the clipped

self-critical (Clipped-SC), the pre-training with Clipped-SC, and the interpolated of clipped-SC

and SCST.

After experimenting with our methods in the context of image captioning, the first two configu-

rations did not achieve the observed positive results in the physics environment. The interpolated

method, as our third learning algorithm, was tested with different coefficients. Although in the

beginning, one of the modes of coefficients reached a slightly better reward than SCST, it did not

sustain the initial growth and converged with the same rate as the original SCST.

These observations led us to hypothesize two possible reasons that might explain this discrep-

ancy. The first one was that the self-critical mechanism is so dominant that it overwhelms the

Clipped-SC and hence makes the method ineffective. The second possibility was other inherent

differences in the nature of the two problems. The first hypothesis was tested by replacing the

Clipped-SC with constant and random numbers. Our experimental results show that not only this

amount of noise did not change the growth, but also it very slightly improved the outcome.

The bias-variance dichotomy can shed some light on this counterintuitive result. One of the

reasons SCST was successful was its higher bias compared to the vanilla REINFORCE. Our Clipped-

SC was introducing more bias which perhaps did not help an already saturated algorithm. The

self-critical aspect of the SCST, which led to this high bias, did not allow the method or the noise

to change the trend of growth.

6.1 Future Work

Although PPO would seem to be most obvious alternative to REINFORCE, there is a large repository

of other techniques in the RL literature that can be explored and tested to achieve better perfor-

mance in text generation. We would also like to investigate the differences between reinforcement

learning in text generation context and the control problems such as simulated environments.

Network architectures may be one of the determining factors in the success or failure of RL

approaches.

In terms of continuing with PPO to understand its poor performance, and what it means for

the use of RL in text-related tasks, a specific area of investigation is the effects of static clipping
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on learning and its possible incompatibility with image captioning. The clipping ε can be more

adaptive based on the learning progress: for instance, it may begin with a large ε resulting in little

constraint and REINFORCE-like behaviour, and then increasing the constraint.A similar adaptive

idea has been explored in the video games environment and succeeded in the development of

PPO-λ [59], Trust Region-based PPO with Rollback (TR-PPO-RB) [60], and an evolutionary variant

called PPO-CMA [61]. These methods can be appropriated for the image captioning task. We also

leave the influences of network architecture as future work.

The other observation was the differences in sizes of the state space between the game envi-

ronments such as Lunar Lander, and the image captioning may have caused the discrepancy. This

hypothesis needs to be tested by developing and employing larger discrete state and action space

games to see the effects of size on the algorithm performance.



A
State-of-the-art Deep RL Algorithms
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Algorithm 2: Deep Q-learning algorithm [4]

Initialization;

Initialize replay memory;

Initialize target function Q̂;

Initialize Q with arbitrarily values;

for all the episodes do
Initialize states, s and preprocess them φ1 = φ(s1)

Choose action a such that a ∈ s using policy (i.e. ε-greedy);

while state s is not terminal do

Select action a, either random with ε probability or ar gmaxaQ(φ(st), a : θ );

Run action a and record reward,r, and the new state s’;

Update s and a: s← s′; a← a′ and preprocess the new state φt+1 = φ(st+1);

Save (φt , at , rt ,φt+1) in the experience replay;

Sample random mini-batches of experience replay;

if episode terminates in the next step then
Q i = r j

else

Q i = r j + γmaxa′Q̂(φ j+1, a′;θ )

end

Choose a’ from s’ using policy Q;

Do a gradient descent step on (yi −Q(φ j+1, a′;θ ))2

Every C steps reset Q̂; Q̂ =Q ;

end

end
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Algorithm 3: Deep Deterministic Policy Gradient algorithm (DDPG) [5]
Initialization

Randomly Initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with θs as its weight

Initialize target network Q’ and µ
′
with weight θQ

′

← θQ, θµ
′

← θµ

Initialize replay buffer R

for all the episodes do
Initialize a random process N for action exploration

Receive initial observation state s1

while state s is not terminal do
Select action at = µ(st |θµ) + Nt based on current policy and exploration noise

Run action a and record reward,rt , and the new state st+1

Store transition (st , at , rt , st+1) in R

Sample random mini-batches of experience replay

Set yi ← ri + γQ′(si+1,µ′(si+1|θµ
′
)|θQ

′

))

Update Critic by minimizing the loss: L = 1
N

∑

i (yi −Q(si, ai|θQ))2

Update the critic policy using sampled policy gradient:

∇θµJ ←
1
N

∑

∇aQ(s, a|θQ)|s=si ,a=µ(si)∇θµµ(s|θ
µ)|si

Update the target networks using τ:

θQ′ ← τθQ + (1−τ)θQ
′

θµ
′ ← τµQ + (1−τ)µQ

′

end

end
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Algorithm 4: Asynchronous Advantage Actor-Critic (A3C) [6]
Initialization

Initialize thread step counter ← 1

while T < Tmax do
Reset gradients: dθ ← 0 and dθ ← 0

Synchronize thread-specific parameters θ ′ = θ and θ
′

v = θv

while state st is not terminal and t − tstar t < tmax do
Do action at based on π(at |st;θ

′)

Get the reward rt and the new state st+1

t ← t + 1

T ← T + 1
end

for t − 1≤ i ≤ tstar t do
R← ri + γR

Aggregate Gradients: dθ ← dθ +∇θ ′logπ(ai|si;θ
′)(R− V (si;θ

′

v))

dθv ← dθv +
∂ (R−V (si ;θ

′
v ))

2

∂ θ ′v

end

Asynchronous update of θ and θ
′

end



B
PPO Performance in Different Contexts

The performance is shown in two different contexts, the Atari video games and MuJoCo physics

simulation environment. MuJoCo1 is seen as a simulated robotic benchmark for RL algorithms.

1http://www.mujoco.org
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FIGURE B.1: A comparison of PPO and other state-of-the-art methods in the Atari context [3]
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FIGURE B.2: A comparison of PPO and other state-of-the-art methods in the MuJoCo context [3]



C
The Lunar Lander Experimental Setting

The LunarLander implementation source code can be accessed via the link below:

https://github.com/FredAmouzgar/OpenAIGymExperiments.

The configurations are listed in the table below.
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Hyperparameter Value

Learning Rate 2× 10−3

Optimizer Adam

Optimizer’s βs 0.9 - 0.99

γ (Discount Factor) 0.99

ε for clipping 0.2

Number of Actions† 4

Number of Layers 3 Dense Layers

Hidden Layer Size 64 Neurons

Output Layer Size Number of Actions†



D
SCST and Clipped-SC Experimental Setting

The Clipped-SC and SCST implementation source code can be accessed via the link below:

https://github.com/FredAmouzgar/ImageCaptioningExperiments.
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Hyperparameter Value

Learning Rate 5× 10−5

Optimizer Adam

Caption Model FC

RNN size 512

Optimizer’s βs 0.9 - 0.999

ε for clipping (for Clipped-SC) 0.2

Dropout probability 0.5

Mini batch size 10

Record Every 6000 iterations



List of Symbols

The symbols are explained in the sequence they appeared in the text.

RL Reinforcement Learning

NLP Natural Language Processing

PPO Proximal Policy Optimization

DDPG Deep Deterministic Policy Gradient

A3C Asynchronous Advantage Actor-Critic

AI Artificial Intelligence

ML Machine Learning

OCR Optical Character Recognition

DQN Deep Q-Network

TRPO Trust-Region Policy Optimization

ANN Artificial Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

BLEU Bilingual Evaluation Understudy
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ROUGE Recall-Oriented Understudy

METEOR Metric for Evaluation of Translation with Explicit ORdering

CIDEr Consensus-based Image Description Evaluation

SPICE Semantic Propositional Image Caption Evaluation

SCST Self-Critical Sequence Training

MIXER Mixed Incremental Cross-Entropy REINFORCE

MLP Multi-Layer Perceptron

ReLU Rectified Linear Unit activation function

ELU Exponential Linear Unit activation function

Tanh Hyperbolic Tangent activation function

wi The weight vector of an ANN

x i The input to an ANN

b The bias value added to a perceptron

f () The activation function performed on an ANN

ht The hidden state of a recurrent neural network

a An action available to a reinforcement learning agent

A The set of actions available to the agent (action-space)

s One state of the environment

S The set of states that represent the world to the agent

r/Ra Reward given for an action

Pa Transition probability of an action
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γ Dicount factor

yt The output of an RNN

GAN Generative Adversarial Networks

VOC Visual Object Classes

PASCAL Pattern Analysis, Statistical Modeling, and Computational Learning

MS COCO Microsoft Common Objects in Context dataset

Q(s, a) State-action value function

V (s) State value function

TD Temporal Difference

π Agent’s policy

DP Dynamic Programming

MC Monte-Carlo

ε The ε-greedy policy

α Learning step size

θ Model/Network parameters

L(θ ) Loss function based on θ

G Return value from the Monte-Carlo rollout

KL Kullback–Leibler divergence

δ Trust-region constraint

r(θ ) Ratio between the new and old policy

Â Advantage function
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cl ip() The clipping function

ALE Arcade Learning Environment
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