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Abstract

The research program described in this thesis analyzes the interaction of

the electromagnetic field with several classes of open cylindrical structures,

by using the semi-analytical Method of Regularization (MoR). The dielec-

tric cylinders considered in this thesis are partially shielded by conformal

perfectly electric conducting (PEC) strips, where significant coupling and

re-radiation of energy are created by the presence of apertures and sharp

edges. The problems studied include the scattering problem of a single

cylindrical lens reflector (CLR) illuminated by an obliquely incident plane

wave, the scattering problem of a finite array of CLR with different char-

acteristics when illuminated by a normal plane wave, the analysis of the

scattering from and penetration through a multi-layered CLR and a multi-

conductor cylinder, as well as the transmission line problem involving a

multi-conductor cable. Each of the problems studied is interesting from

both a theoretical point of view and as an idealization of scattering and

coupling mechanism in real devices of technological interest.

When the structures are of moderate or large electrical size, standard

numerical approaches to solving these mixed boundary valued problems

(MBVP) often encounter difficulties of convergence and accuracy of com-

puted solution. Therefore, the MoR — which transforms the ill-posed

nature of the standard formulation of the problem to a well-conditioned

second kind Fredholm matrix equation — is well-suited for the class of

problems considered here. Numerical algorithms based upon the solution

of the matrix equation, after truncation to a finite system of Ntr equa-

tions, converge with guaranteed and predictable accuracy, as Ntr → ∞.

Because the computed solutions to these problems are rigorously accurate

(in the sense of guaranteed convergence — theoretically and numerically),

they provide benchmark solutions to problems of significant complexity

against which solutions computed by more general purpose numerical

codes (which although of wider applicability have less firm theoretical

underpinnings) may be validated.
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Chapter 1

Introduction

1.1 Electromagnetic interaction with open cylin-

ders

Structures (in e.g., electrical devices and equipment) with apertures on the surface

or that are partially shielded by metals are often termed open structures. The scat-

tering from and penetration through the openings on the surface of these structures

are of great interest in engineering applications such as aperture antennas and mi-

crostrip transmission lines. In addition, the mass production of telecommunication

networks has led to the development of transmitting and receiving structures with

metals packed between layers of dielectrics. Dielectric loading has been widely used

as a convenient way to modify the scattering behavior of a structure. For exam-

ple, careful selection of the structure’s geometry and physical parameters (such as

its dimension, dielectric constants and aperture size) allows one to control and/or

reduce the structure’s radar cross section (RCS). At the same time, by using flexible

dielectric materials, nonplanar transmission lines and reflectors which wrap around a

cylinder can be easily constructed.

This thesis focuses on the interaction between electromagnetic fields and infinitely-

long, partially-shielded dielectric cylinders, as opposed to the conventional closed

cylinders (which are either full dielectric or PEC). In the literature, these open cylin-

ders are also frequently termed slotted cylinders when the angular size of the aperture

is less than π. Underground water pipes provide approximate examples of these ideal

cylinders, when their lengths are substantially greater than the other dimensions en-

countered (such as the diameter, screen thickness, and the wavelength of the incident

radiation). The presence of sharp edges in these open cylinders requires more careful

attention in all solution methods than that of a closed cylinder, due to the mixed
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boundary conditions (MBC) that apply.

The problems studied are classified by the scatterers involved, which include a

cylindrical lens reflector (CLR), a finite array of CLR with different characteristics,

a multi-layered CLR, a multi-conductor cylindrical scatterer and a multi-conductor

transmission line. The studies are carried out in the frequency domain and time

dependence ejωt is assumed. All these problems are solved using the semi-analytical

Method of Regularization (MoR) documented in Section 2.2 of [84]. The rigorous

solutions computed are not only of direct technological interest, they also provide

quantitative predictions for more general and complex structures that are more reli-

able than those obtained by purely numerical methods.

1.2 A brief survey of solution methods

There are essentially three main groups of computational methods to solve these

MBVP where an analytical solution method is intractable. They are the purely-

numerical methods, the high frequency methods and the semi-analytical methods.

Purely-numerical methods:

This group consists of the differential equation methods and the integral equation

methods. They are usually only feasible at low to intermediate frequencies. Short

introduction to and discussions of these methods are given in the following paragraphs.

In-depth introduction and review of these purely-numerical methods can be found in

classical literature such as [53, 57, 62, 86]. These methods are versatile methods for

handling complex scatterer and media but they suffer from some intrinsic weaknesses.

Many of them require large computational resources (both time and storage) that

may exhaust resources available, especially in the quasi-optical regime (λ� R)1. In

addition, it is often hard to establish the accuracy of the computed solution based

upon these methods.

The Finite Difference Methods (FDM), a popular example of the differential equa-

tion methods, was popularized by A. Thom in the 1920s [73]. The method is based

upon direct discretization of the differential equations encountered (Maxwell’s equa-

tions or equivalent) and approximating them by the equivalent finite differences. In

another words, it is derived using a truncated Taylor series expansion to approximate

the derivatives in the differential equations. The Finite Element Method (FEM)

1Here, λ is the wavelength, while R is a typical dimension of the scatterer.
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[11, 61] — another example of the differential equation methods — is relatively the

simplest method to implement for problems involving complex geometries and inho-

mogeneity. Its key ideas involve discretizing the solution region into a finite number

of elements and deriving the governing equations for a typical element. For the scat-

tering problem in regions of infinite extent (i.e., in the open domain), the Sommerfeld

radiation condition is normally approximated by some artificial boundary condition

on the exterior of the truncated domain. A survey of various treatments of this artifi-

cial boundary condition can be found in [78]. The equations are assembled and solved

using methods such as Gaussian elimination, or for large problems where this method

is too computationally demanding, iterative methods or band matrix methods can be

applied.

For the FDM, truncation error arises because some higher order terms in the

Taylor series expansion were neglected in deriving the finite difference schemes. One

way to tackle this is by increasing the number of terms in the series expansion of

derivatives. However, instability may result if the order of the finite difference is

higher than that of the original differential equation. Another way is by reducing

the mesh size, which results in an increase in the number of arithmetic operations

and thus, an increase in the roundoff error due to the finite storage capacity of the

computer. In other words, the accuracy of the FDM is limited [88], as the truncation

error is inversely proportional to the roundoff error. A similar limitation exists for

the FEM as it requires discretization of the domain. Additionally, any area of highly

concentrated energy (such as in the vicinity of edges) needs to be carefully analyzed

by using a sufficiently refined mesh.

Integral equation solution methods rely on the integral equation obtained from

Maxwell’s equations with an appropriately constructed Green’s function. An example

is the MoM which became widely popular since the work by Harrington [24]. The

conventional MoM converts the integral equation encountered — e.g., the electric

field integral equation (EFIE) — into an infinite system of linear algebraic equations

(ISLAE) by using some properly chosen weighting functions in the process of taking

moments, and using basis functions to represent the related surface current. The

ISLAE is subsequently truncated (by restriction to a finite basis and weighting set)

and solved numerically for the coefficients of the basis functions.

Although the methods avoid discretization of the entire domain by solving only

for the fields on the surface of the scatterer, instability may still arise when they rely

on numerical solving of a first kind Fredholm equation. We consider the EFIE of a
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slotted PEC cylinder as an example: it is a first kind Fredholm equation, of the form

Ax = b , (1.1)

where A is a compact operator on the Hilbert space `2. It is inherently weakly ill-

posed [43]. The solution of this equation, when solved with direct numerical methods,

is unreliable [27, 51]. Thus, the computational scheme for the conventional MoM is

not stable, especially for the nearly-resonant open cylinders. In addition, due to the

capacity limitation of computers, this method is less desirable for electrically large

scatterers.

High frequency methods:

The high frequency methods are based on the assumption that the electromagnetic

fields act like optical rays. They play an important part in developing solution for

problems in the quasi-optical regime (i.e., when the wavelength is much smaller than

the dimension of the structures). The Geometrical Optics (GO) and the Physical

Optics (PO) are two classical examples from this group.

The classical GO uses the ray concepts to approximate the propagation of electro-

magnetic fields, ignoring the wave effects. Its correction in [36, 37, 47] describes the

fields by the leading term of the Luneburg-Kline asymptotic series expansion. Con-

trasting to the GO, the PO is a wave optical approach. Under the PO, the scatterer

is replaced by a set of equivalent electric and magnetic surface currents on the sur-

face, where the surface currents are often approximated by the GO. Via the radiation

integral of the surface currents over the surface, the diffracted fields are subsequently

found.

The main weakness of this group is the neglect of the finiteness of wavelength. For

the open cylinders considered, this disregard may lead to the case where the fields

are trapped inside the structures and hence provide a poor estimate of true solution.

The GO method provides an approximation to the dominant part of the diffracted

field only along the direction of reflection (if that direction is not near the caustics2).

In addition, the GO fails near the sharp edges as well as in the shadow region, even

with the improvement by including additional terms of the Luneburg-Kline series. On

the other hand, although the PO ameliorates the problems encountered by the GO

near the caustics, it fails to model the dependence of the diffraction on polarization.

2A caustic refers to the cross-sectional area where all the rays pass.
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The PO is also inaccurate in bistatic scattering direction away from the direction of

reflection, when the GO is used to approximate the surface currents.

Semi-analytical methods:

It is these limitations of the purely-numerical methods and the high frequency

methods that motivate the development of the final group of solution methods — the

semi-analytical methods. The semi-analytical methods include the Tikhonov regu-

larization and the Method of Regularization (MoR) — which sometimes referred to

as the Analytical Regularization Method (ARM) or Method of Analytical Regular-

ization (MAR). Although using different means and steps, the key idea of all these

semi-analytical methods lies in converting the ill-posed, first kind equation of the

form (1.1) to a well-conditioned, second kind Fredholm equation of the form

(I +H) x = b , (1.2)

where I is the identity operator, and H is a compact operator in the Hilbert space

`2. The benefit of this second kind system is that it is well-conditioned and has a

numerically stable, converging computational scheme simply implemented by trun-

cating the infinite system to a finite one. By increasing the truncation number, any

desired accuracy of the computed solution can be reached.

The Tikhonov regularization [74, 75] was proposed to find a stable solution to

(1.1), by seeking the solution x that minimizes

||Ax− b||2 + α||Bx||2 , (1.3)

where α > 0 is called the regularization parameter and B is some suitably chosen

bounded operator (e.g., the identity operator). It is worth noting that the operator

(A∗A+ αB∗B) is a self-adjoint, bounded and invertible operator3. For any α > 0,

the regularized problem is well-posed. An explicit form of the solution is given by

x = (A∗A+ αB∗B)−1A∗b . (1.4)

It is clear that the approximated solution depend on the choice of α and B [74, 75].

In general, α is chosen to be as close to 0 as possible, so that the regularized problem

is consistent with the original problem, with a good condition number (that of A∗A+

αB∗B). In many cases, B is chosen as the identity operator and α as 1.

3Here, ∗ indicates complex conjugation.
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Even though the theoretical scheme of the MoR can be found in many functional

analysis textbooks [42], the practical implementation of the scheme is not straight-

forward. Many different treatments have been developed over the years to regularize

a set of ill-conditioned dual series or dual integral equations. The older publications

of these treatments include the definition-extension method [90] and the multiplying

factor method [55]. One popular example of the MoR is the dual series approach

based on the Riemann-Hilbert problem of complex analysis. It was first formally

documented by Shestopalov et al in [41, 66] and popularized in the western area by

Ziolkowski et al in [32, 96, 97, 98]. Since then, the method has been extended to the

study of various 3D and 2D structures, e.g., in [59]. In [79, 80], Tuchkin proposed a

method to transform the singular kernel of the original integral equation (e.g., EFIE)

to an infinite set of decoupled integral equations, which are eventually transformed to

a second kind system of equations by constructing a pair of two-sided regularizator.

The MoR has been successfully applied to solve many mixed boundary value scat-

tering and potential problems, such as those involving punctured/slotted spherical,

spheroidal and toroidal shells in [84, 85]. Detailed review and survey of some recent

work of the MoR can be found in [56, 59, 84].

These methods are uniformly valid for analysis in a broad frequency band, includ-

ing not only the Rayleigh regime (λ� R) and the resonance regime (λ ≈ R), but also

the quasi-optical regime (λ� R). They offer a way to obtain reliable solutions to the

benchmark problems of more complex problems and provide a means to check for the

validity of other numerical methods. Apart from the crucial advantages coming from

a second kind equation, these semi-analytical methods also have a similar advantage

to that of the boundary integral equation method; i.e., they avoid the discretization

of an infinite domain by expanding the fields as a series of special analytic solutions

of the governing equation and solving these coefficients in a linear system.

1.3 Outline of the thesis

This thesis structurally consists of seven parts and is organized in the following man-

ner:

The introductory Chapter 1 consists of an overall description for the electro-

magnetic problems under study, a short survey of solution methods for the MBVP

encountered, as well as a sketch of the thesis structure.

The aim of Chapter 2 is to allow us to establish the terminology and notations

that will be used in this thesis. The mathematical framework of electromagnetism
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is introduced, particularly when the structures under consideration are infinitely-

long cylinders. The expressions for some of the physical quantities of interest that

are subsequently employed in the numerical analysis (e.g., energy distribution, RCS,

normalized relative error and surface current densities) are also presented.

In Chapter 3, the MoR approach (documented in Section 2.2 of [84]) to transform

a set of ill-posed DSE involving the trigonometric functions to a well-conditioned

second kind equation is formulated for the sake of completeness of the thesis. In

addition, more thorough justifications of the steps of the regularization process are

presented.

We study the diffraction problem of an oblique incident plane wave impinging on

a cylindrical lens reflector (CLR) in Chapter 4. As opposed to the 2D normal incident

problems, the E- and H-polarizations in this 3D oblique incident problem are mixed

and exist simultaneously. The effect of incident angle on the scattering behavior is

studied numerically by considering the RCS and energy distribution.

Analysis and comparison of the performance of a CLR versus a cylindrical Luneb-

urg lens reflector (CLLR) is carried out in Chapter 5. The energy distribution of a

constant-K lens is studied for proper placement of the reflecting PEC cylindrical strip

of the CLR. Here, we use the term constant-K lens to refer to the homogeneous di-

electric cylinder with constant K (an alternative symbol for the relative permittivity,

εr). Special attention is paid to the RCS calculations when the incidence angle varies

from normal incidence to so-called grazing incidence. Because of similar underlying

physical principles, these studies are also useful for the 3D version of the spherical

lens reflector.

Chapter 6 focusses on the mutual interaction of the scattering from an array of

CLR under normal incidence. Suppose a finite number of parallel CLR of different

geometry and physical parameters (e.g., radius, PEC strip size, dielectric constant

and center of cylinder) are located in the near region of one another. Due to the close

proximity to one another, mutual interaction of these CLR under the a plane wave

incidence is significant, which therefore has to be taken into account in the problem

formulation. We consider the multi-body scattering problem of this finite array by a

TMz normally incident plane wave.

The oblique plane wave scattering problem of a braided cylindrical shield is con-

sidered in Chapter 7. The scatterer under consideration is a dielectric cylinder with

multiple conformal PEC strips attached. The PEC strips are placed periodically on

the surface of the inner dielectric cylinder and are taken to be the same width.

7



In Chapter 8, the MBVP associated with a shielded, inhomogeneous transmission

line is formulated in terms of a rigorous hybrid electromagnetic mode (HEM) rep-

resentation. We consider a shielded transmission line consisting of an inner coaxial

cylinder with multiple PEC strip lines, the structure of which bears great similarity

to that of the scatterer considered in Chapter 6. The resulting DSE are transformed,

via the application of the MoR in the spectral domain, to yield a characteristic equa-

tion for the dispersion properties of the transmission line. The cutoff frequency of

the HEM is computed by finding the zeros of the determinant of the block matrix

obtained from the MoR approach.

Lastly, in Chapter 9, the main conclusions and observations are drawn of the work

that is reported in this thesis. Related future considerations and development are also

summarized here.
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Chapter 2

Mathematical formulations

Some basic concepts and equations of electromagnetic theory used are briefly reviewed

in this chapter. Whilst the material is purely expository, it allows us to establish

terminology and notations that will be subsequently used. The series representations

for general field components and classical incident waves are formulated. Definitions

and expressions for some of the electrical and numerical quantities of interest are also

included.

2.1 Maxwell’s equations and the constitutive rela-

tions

The behavior of electromagnetic fields is governed by the Maxwell’s equations and

the medium dependent constitutive relations. The time domain1 Maxwell’s equations

in the differential form are

∇× E(r, t) = − ∂

∂t
B(r, t) , (2.1a)

∇× H(r, t) =
∂

∂t
D(r, t) + J(r, t) , (2.1b)

∇ · D(r, t) = ρ(r, t) , (2.1c)

∇ · B(r, t) = 0 , (2.1d)

where E and H are the electric and magnetic field intensities (in volt/meter and

ampere/meter, respectively), D and B are the electric and magnetic flux densities (in

coulomb/meter2 and weber/meter2, respectively), J is the electric current density

(in ampere/meter2), ρ is the volume charge density (in coulomb/meter3), and (r, t)

denotes an arbitrary point of position r and time t.

1The teletype fonts are used to represent the time varying (vector) functions.
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The fields are assumed to be finite, single-valued as well as continuous with con-

tinuous derivatives in both time and space excluding the scattering structure (par-

ticularly any edges of the scatterer). It may be noted that (2.1b) and (2.1c) may

be combined to give the continuity equation, which connects the current and charge

densities,

∇ · J(r, t) +
∂

∂t
ρ(r, t) = 0 . (2.2)

The constitutive relations supplementing the Maxwell’s equations describe the

macroscopic properties of the medium being considered. They give a relation between

the quantities {D, B, J} and {E, H}. For a linear, homogeneous and non-dispersive

medium,

D(r, t) = ε E(r, t) , (2.3a)

B(r, t) = µ H(r, t) , (2.3b)

J(r, t) = σ E(r, t) , (2.3c)

where the scalars ε, µ and σ are the permittivity, permeability and conductivity of

the medium (in farad/meter, henrie/meter and mho/meter, respectively).

In the frequency domain, the time variation for all fields can be represented by ejωt.

A time varying function can be reconstructed from its Fourier transform by explicitly

evaluating the integral (2.4a), which acts as the inverse Fourier transformation2.

F (r, t) =
1

2π

∫ ∞
−∞

F (r, ω) ejωtdω , (2.4a)

where ω is the sinusoidal frequency. The unknown F is the Fourier transform of F in

the frequency domain. It is defined by the direct transformation

F (r, ω) =

∫ ∞
−∞

F (r, t) e−jωtdt . (2.4b)

All the electromagnetic fields having sinusoidal time variation can be related to their

corresponding time-varying fields by

F (r, t) = Re
[
F (r, ω) ejωt

]
.

The time dependence ejωt common to all the time-harmonic field is omitted through-

out this thesis. It is worth noting that as any transient electromagnetic field is

2The conventional bold fonts in mathematical mode are used to represent the (vector) functions
in the frequency domain.

10



bounded in value, the Fourier transformation exists for all ω ∈ C, provided that

Im(ω) < 0 [52]. The Fourier transform at real values of ω are obtained by letting

Im(ω)→ 0.

The Maxwell’s equations in frequency domain read

∇× E(r, ω) = −jωµH(r, ω) , (2.5a)

∇×H(r, ω) = jωεE(r, ω) + J(r, ω) , (2.5b)

∇ ·D(r, ω) = ρ̂(r, ω) , (2.5c)

∇ ·B(r, ω) = 0 , (2.5d)

where ρ̂(r, ω) denotes the transform of the transient volume charge density ρ(r, t) in

the frequency domain.

2.2 Conditions for existence and uniqueness of so-

lution

Maxwell’s equations, which completely specify the electromagnetic fields over time

in a continuous medium, are common to every electromagnetic problem. To ensure

that the solution exists and is unique, a complete description of an electromagnetic

problem should also include information about the domain. These conditions include

the boundary conditions specified along the geometrical configuration of the problem,

the Sommerfeld radiation condition in the case when the medium extends to infinity,

and the Meixner finite energy condition in the case of scatterers with edges. A proof

of solution uniqueness upon the enforcement of these boundary conditions is given in

Chapter 9 of [33].

2.2.1 Boundary conditions

Consider a closed smooth surface Ω separating two different homogeneous media with

parameters (ε1, µ1, σ1) and (ε2, µ2, σ2). The fields in regions 1 and 2 are denoted by

(E1,H1) and (E2,H2), respectively. The boundary conditions at Ω can be derived

from the integral form of Maxwell’s equations as

n× (E2 − E1) = 0 , (2.6a)

n× (H2 −H1) = −JS , (2.6b)

n · (ε2E2 − ε1E1) = −ρS , (2.6c)

n · (µ2H2 − µ1H1) = 0 , (2.6d)
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where n is a (unit) normal vector pointing from medium 2 into medium 1, JS is the

electric surface current density on the boundary and ρS is the electric surface charge

density on the boundary.

(2.6a) and (2.6d) state that the tangential components of electric field and the

normal components of magnetic flux density are continuous at all points, including

points on Ω for which the physical quantities (ε, µ) may change discontinuously. At

the interface Ω, (2.6b) states that the discontinuity of the tangential components of

magnetic field equals the surface current density; while (2.6c) states that the normal

components of magnetic flux density exhibit a jump discontinuity of size ρS.

These four boundary conditions are not independent when solving for an electro-

magnetic problem. By enforcing that the fields satisfy the Maxwell’s equations as well

as the first two boundary conditions (2.6a) and (2.6b), it is automatically ensured

that the normal components of the corresponding flux densities satisfy the remaining

pair (2.6c) and (2.6d). Therefore, only (2.6a) and (2.6b) are needed [6].

When there is no current nor charge on the surface Ω (i.e., JS and ρS are absent),

the tangential components of the magnetic fields are continuous across Ω; i.e., (2.6b)

becomes

n×H1 = n×H2 . (2.7)

In most cases, transmission lines and scatterers are made from highly conducting

materials such as brass or copper and it is valid to assume that the conductors are

perfect (ideal with infinite conductivity). If the surface Ω enclosing the interior re-

gion 2 is a perfect electric conductor, the electric and magnetic fields vanish in the

impenetrable region 2, i.e., E2 = 0 = H2. The boundary conditions (2.6a) and (2.6b)

simplify to

n× E1 = 0 , (2.8a)

n×H1 = JS . (2.8b)

If there is an aperture in the perfectly electric conducting (PEC) surface Ω, mixed

boundary conditions (MBC) are required. We denote the aperture surface as Ω0, and

the remaining PEC portion as Ω1, where Ω = Ω0 ∪ Ω1, as depicted in Figure 2.1.

Besides the continuity conditions given by (2.6a) which applies over the total surface

Ω, the MBC on Ω are

n× E2 =

{
n× E1 , on Ω0

0 , on Ω1

(2.9a)
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Figure 2.1: Contour Ω comprising discontinuities and sharp edges.

n×H2 =

{
n×H1 , on Ω0

− JS , on Ω1

(2.9b)

As JS is due to the induced field that is yet to be determined, the second half of

(2.9b) defined over Ω1 is redundant.

2.2.2 Radiation condition

Due to the superposition principle, the electric and magnetic fields can be separated

with respect to their origin. Consider a general scattering problem involving a source

located somewhere in space, and illuminating a particular structure. In the absence

of the structure, this source produces the primary fields, the incident fields (Einc and

Hinc). The secondary fields induced in the presence of the structure are the referred to

as the transmitted fields (Etr and Htr) when inside the structure, and as the scattered

fields (Esc and Hsc) when outside the structure. The total fields (Etot and Htot) in

the exterior of the structure is the sum of the incident and scattered fields.

When the outer boundary of the domain recedes to infinity, physics demands

that the scattered field acts as an outgoing wave, and vanishes at infinity if the

electromagnetic contrast of the structure with respect to the background remains of

finite support. These can be summarized by the Sommerfeld radiation condition. For

the cylindrical structures considered in this thesis, the Sommerfeld radiation condition

is expressed in the polar coordinates (ρ, φ, z), where the z-axis is taken to be the

cylinder axis. Assuming that the structures are immersed in free space with wave

number k0, and located within a finite distance from the origin, the z-components of

13



the scattered fields are required to satisfy

|√ρU | < K , (2.10a)

lim
ρ→∞

√
ρ

(
∂

∂ρ
U + jk0U

)
= 0 . (2.10b)

In the above equations, U may denote either Esc
z or Hsc

z
3, while ρ is the radial distance

from the origin, and K is some constant. This is equivalent to enforcing a boundary

condition at infinity so that the only incoming waves come from the incident field.

2.2.3 Finite energy condition

For a closed scatterer, the implementation of the boundary conditions and the Som-

merfeld radiation condition is adequate to ensure a unique solution to the scattering

problem. However, when the structure considered has singular points (e.g., a slot-

ted PEC cylinder), the solutions are not always unique. In particular, it is found

that some of the field components become infinite. To guarantee the existence of a

unique solution, the order of singularity allowed is such that the energy stored in the

vicinity of the diffracting edge is finite. The Meixner finite energy condition [49, 50],

which states that the total electromagnetic energy contained in any finite volume V

is bounded, can be expressed mathematically as

1

2

∫∫∫
V

{
ε |E|2 + µ |H|2

}
dV <∞ . (2.11)

This condition provides the correct choice of the solution class for the field and its

expansion coefficients, when the field is expanded in cylindrical harmonics. It ensures

that the field in the volume V containing the edges displays a weaker singularity than

that of the real source.

2.3 Wave equations for configurations uniform in

z-direction

The cylindrical structures considered in this thesis are uniform in the z-direction. By

taking this geometrical property into consideration, the analysis can be made much

simpler by expressing all fields in terms of their longitudinal and transverse compo-

nents. This is done by first separating the longitudinal and transverse components

3In this thesis, the scalar functions are represented by the conventional slanted font in mathe-
matical mode.
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with respect to the z-axis as follows

E(r) = Et(r) + izEz(r) , (2.12)

H(r) = Ht(r) + izHz(r) , (2.13)

∇ = ∇t + iz
∂

∂z
, (2.14)

where iz is the unit vector in the z-direction, the subscript t indicates the component

transverse to the z-direction, the subscript z indicates the z-component, and ∇t is

the transverse gradient operator.

Substitution of above expressions into (2.5a) leads to(
∇t + iz

∂

∂z

)
× (Et + izEz) = −jωµ (Ht + izHz) . (2.15)

By using the identities ∇t · iz = 0, iz ·Et = iz ·Ht = 0 and (A.1), the operation “iz · ”
on (2.15) gives an expression for the longitudinal part of the magnetic field in (2.16).

On the other hand, by using (A.2), the transverse part is obtained in (2.17), by using

the operation “iz × iz×” on (2.15).

−jωµHz = iz · (∇t × Et) , (2.16)

−jωµHt = ∇t × (iz Ez) + iz ×
(
∂

∂z
Et

)
. (2.17)

Using the same arguments, the longitudinal and transverse parts of the electric

fields can be obtained from (2.5b) as

jωεEz = iz · (∇t ×Ht) , (2.18)

jωεEt = ∇t × (izHz) + iz ×
(
∂

∂z
Ht

)
. (2.19)

Therefore, the following two expressions of Et and Ht in terms of Ez and Hz are

derived from (2.16)–(2.19),(
∂2

∂z2
+ k2

)
Et = jωµ (iz ×∇tHz) +

∂

∂z
∇tEz , (2.20a)(

∂2

∂z2
+ k2

)
Ht = −jωε (iz ×∇tEz) +

∂

∂z
∇tHz , (2.20b)

where k = ω
√
εµ = 2π/λ (in radian/meter) is the wavenumber of the electromagnetic

field in the medium, with λ (in meter) being the wavelength of the field. This points

out that all components of electromagnetic fields can be readily calculated once the
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values of the scalar functions Ez andHz are known. The following section concentrates

on deriving the scalar wave equations for Ez and Hz.

In regions where µ is independent of x and y, the operation “∇t×” on (2.17), with

the aid of (A.4), gives

−jωµ (∇t ×Ht) = −∇2
t (iz Ez) + iz

∂

∂z
(∇t · Et) . (2.21)

In regions where µ is independent of x and y, taking the transverse divergence of

(2.19), and making use of (A.3) gives

jωε (∇t · Et) = − ∂

∂z
[iz · (∇t ×Ht)] , (2.22)

which when combined with (2.18) becomes

∇t · Et = − ∂

∂z
Ez . (2.23)

We obtain the scalar wave equation for Ez by substitution of (2.23) and (2.18) into

(2.21): (
∇2
t +

∂2

∂z2
+ k2

)
Ez = 0 . (2.24a)

With similar arguments and steps on (2.16), (2.17) and (2.19), the scalar wave equa-

tion can be obtained for Hz as(
∇2
t +

∂2

∂z2
+ k2

)
Hz = 0 . (2.24b)

2.4 General field expressions for circular cylinder

In this section, the method of separation of variables is employed to find a series

representation of the solution to the scalar wave equations given in (2.24). When

the structure involved is closed, an exact solution (Mie series) can be derived for

the problem, by exploiting the orthogonality of the kernel functions [9]. However,

separation of variables method has strict restrictions on the boundary conditions

defining the problem, making it not applicable to an open problem (which has MBC).

Nevertheless, it is this approach that MoR depends on in formulating the set of DSE.

With U denoting either of Ez and Hz, the scalar wave equations in (2.24) in polar

cylindrical coordinates (ρ, φ, z) read[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
+ k2

]
U(ρ, φ, z) = 0 . (2.25)
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The solutions of the form U(ρ, φ, z) = P (ρ)Q(φ)Z(z) are sought, using separation of

variables method. By substitution of this separable solution into (2.25), the Helmholtz

equation decouples into the following ordinary differential equations (ODE)

d2Z

dz2
+ k2

zZ = 0 , (2.26)

d2Q

dφ2
+ n2Q = 0 , (2.27)

ρ

P

d

dρ

(
ρ

dP

dρ

)
− n2 +

(
k2 − k2

z

)
ρ2 = 0 , (2.28)

where kz and n are separation constants. It is worth noting that kz is termed the

propagation constant in the z-direction (or the longitudinal wavenumber).

The ODE for variable z is harmonic, and its commonly-used solutions are ejkzz,

e−jkzz, sin(kzz) and cos(kzz). With respect to the time dependence ejωt, both sin(kzz)

and cos(kzz) represent standing waves. When kz is real-valued, ejkzz and e−jkzz

represent waves traveling in the negative- and positive-z direction, respectively. When

kz is purely-imaginary, e±jkzz represents evanescent waves, as z → ±∞. For complex

valued kz, e
jkzz and e−jkzz represent attenuated-traveling waves. To simplify the

notation, we assume that the source is located such that the waves are traveling only

in the negative-z direction, thus involving only ejkzz.

The ODE for variable φ is also harmonic. In addition, φ is an angle coordinate,

and only solutions in the full azimuthal domain −π ≤ φ ≤ π are considered. As the

electromagnetic fields are single-valued, the requirement of Q(−π) = Q(π) leads to n

taking on integer values only.

For propagating waves k2 6= k2
z , kρ is introduced to denote k2

ρ = k2 − k2
z . It is

worth noting that kρ is the propagation constant in the ρ-direction (or termed the

transverse wavenumber). The ODE for variable ρ is essentially Bessel’s equation of

order n and argument kρρ

(kρρ)2 d2P

d(kρρ)2
+ (kρρ)

dP

d(kρρ)
+
[
(kρρ)2 − n2

]
P = 0 . (2.29)

Any two of the Bessel function Jn(kρρ), Neumann function Yn(kρρ), the Hankel

functions of the first and second kind H
(1)
n (kρρ), H

(2)
n (kρρ) form a pair of linearly-

independent solutions to the equation. The characteristics of these functions are

documented in the Appendix B.2.1. From the definitions given in (B.10)–(B.13),

only Jn(kρρ) is bounded as ρ→ 0. Due to the boundedness of electromagnetic fields,

the radial function P (ρ) can contain only Jn(kρρ), when the origin is included in the

domain. On the other hand, from the asymptotic behaviors of the functions when
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ρ→∞ given in (B.18)–(B.21), H
(2)
n (kρρ) is the only function that represents outgo-

ing and vanishing waves, for the choice of time variation ejωt. In compliance with the

Sommerfeld radiation condition (2.10), P (ρ) contains only H
(2)
n (kρρ), if the domain

considered is unbounded.

As a result of the choice of solutions to each of the ODE, an elementary wave

function traveling in the negative z-direction, and satisfying (2.25) is

Ukz ,n,kρ = ejkzz

{
Jn(kρρ)

H(2)
n (kρρ)

}
ejnφ, for the

{
“interior”

“exterior”

}
problem (2.30)

for some fixed values of kz and n. Due to the superposition principle, the summation

of all the elementary wave functions gives a general solution to (2.25). Thus, the

z-component of a electric or magnetic field has the following expansion:

U(ρ, φ, z) = ejkzz
∞∑

n=−∞

[
anH

(2)
n (kρρ) + bnJn(kρρ)

]
ejnφ , (2.31)

where {an}∞n=−∞ and {bn}∞n=−∞ are unknown coefficients to be determined from

boundary conditions, with {an}∞n=−∞ ≡ 0 for domains including the origin, and

{bn}∞n=−∞ ≡ 0 for unbounded domains.

For the special case when k2 = k2
z , the Helmholtz equation (2.25) becomes the

Laplace equation encountered in the transverse electromagnetic mode (TEM) in trans-

mission line problem. The corresponding radial solutions for (2.28) are ρn and ρ−n,

for positive integer n. For n = 0, the radial solutions are simply 1 and ln ρ. Therefore,

a general solution to (2.25), when k2 = k2
z , has the expression

u(ρ, φ, kz) = ejkzz

{
a0 ln(ρ) + b0 +

∞∑
n=1

[
anρ

−n + bnρ
n
]

cosnφ

}
. (2.32)

Similarly, as electromagnetic fields are finite, and satisfy the Sommerfeld radiation

condition, a0 and {an}∞n=1 and a0 vanish for domains including the origin, while

b0, {bn}∞n=1 ≡ 0 for unbounded domains.

The expressions for all other field components can be obtained from (2.20a) and

(2.20b) upon setting ∂
∂z
≡ jkz as{

Eρ

Hρ

}
=

jω

k2
ρρ

∂

∂φ

{
−µHz

εEz

}
+
jkz
k2
ρ

∂

∂ρ

{
Ez

Hz

}
, (2.33a){

Eφ

Hφ

}
= −jω

k2
ρ

∂

∂ρ

{
−µHz

εEz

}
+
jkz
k2
ρρ

∂

∂φ

{
Ez

Hz

}
. (2.33b)
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2.5 Plane wave

A plane wave consists of the electric and magnetic fields of uniform phase over a set

of infinite parallel planes (called the equiphase surfaces) that are perpendicular to

the direction of propagation. For a uniform plane wave, the fields are of constant

amplitude over the equiphase surfaces. The electric and magnetic fields of a plane

wave are orthogonal to each other. For a linearly-polarized plane wave, the fields

always point to the same direction in space. The source of a plane wave is considered

to be at infinity to produce such planar equiphase surfaces. Plane waves are the type

of electromagnetic waves that predominate at each fixed observation point in the far

zone of an antenna.

Suppose a uniform plane wave propagates in the direction of a unit vector w, in

the free space with intrinsic impedance η0 =
√
µ0/ε0 ≈ 120π (ohm), and wavenumber

k0 = ω
√
ε0µ0 = 2π/λ. Here, ε0 ≈ π/36 × 10−9 (farad/meter), and µ0 = 4π × 10−7

(henry/meter) are the permittivity and permeability of vacuum, respectively; whereas

ω and λ are the frequency and wavelength of the radiation, respectively. It can be

expressed mathematically as

Epw = A0e
−jk0w·r v , (2.34a)

Hpw =
A0

η0

e−jk0w·r (w × v) , (2.34b)

where the constant A0 is the amplitude of the uniform plane wave, v is a unit vector

on the equiphase surfaces indicating the direction the electric field points to, and r =

(x, y, z) is the arbitrary position vector. As the equiphase surfaces are perpendicular

to the direction of propagation, v ·w = 0.

Consider a uniform plane wave which direction of propagation w is completely

defined by the polar angle θpw
z and the azimuthal angle θpw

x , as shown in Figure 2.2.

That is, w = (− cos θpw
x sin θpw

z ,− sin θpw
x sin θpw

z ,− cos θpw
z ) in Cartesian coordinates.

Here, the polar angle θpw
z is the angle the propagation direction w makes with the

z−axis, while the azimuthal angle θpw
x is the angle between incidence of the plane

wave in the xy-plane and the positive x-axis. The electric field of the plane wave may

be either parallel (TMz) or orthogonal (TEz) to the plane of incidence4.

TMz case (i.e., Hpw
z = 0) :

From the definition of magnetic field given in (2.34b), and the condition v ·w = 0,

we have vTM = (− cos θpw
x cos θpw

z ,− sin θpw
x cos θpw

z , sin θpw
z ). Due to the geometry

4The plane containing the direction of propagation w and the cylinder axis, the z-axis.
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Figure 2.2: Direction of propagation of a plane wave.

of the structure, it is desirable to express the plane wave in the polar cylindrical

coordinates, where x = ρ cosφ and y = ρ sinφ. From (2.34a), we get

Epw
z (ρ, φ, z) = A0 sin θpw

z ejk0z cos θpwz ejk0ρ sin θpwz cos(φ−θpwx ) , (2.35a)

= A0 sin θpw
z ejk0z cos θpwz

∞∑
n=−∞

jnJn(k0ρ sin θpw
z )ejn(φ−θpwx ) , (2.35b)

where the series expansions is obtained using (B.27).

The series expansion for other components of the TMz plane wave can be derived

from (2.34a) and (2.34b), with the help of (A.5), (B.16) and (B.15). Alternatively and

more straightforwardly, they can also be obtained using (2.33) with kz = k0 cos θpw
z

(and thus, kρ = k0 sin θpw
z ).

When the special case of normal incidence (i.e., θpw
z = π

2
) is considered, the

problem reduces to 2D as kz = 0. Only the components Epw
z , Hpw

ρ and Hpw
φ are

non-zero for this special case.

TEz case (i.e., Epw
z = 0):

In this case, we have vTE = (sin θpw
x ,− cos θpw

x , 0). Clearly, w × vTE = vTM and

w × vTM = −vTE. Consequently, ETE = −η0H
TM and HTE = 1

η0
ETM. Thus,

Hpw
z (ρ, φ, z) =

A0

η0

sin θpw
z ejk0z cos θpwz

∞∑
n=−∞

jnJn(k0ρ sin θpw
z )ejn(φ−θpwx ) . (2.36a)

Similarly, for normal incidence problem, only Hpw
z , Epw

ρ and Epw
φ are non-zero.
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2.6 Quantities of interest

2.6.1 Energy density

The energy density w (Joule/meter3) of an electromagnetic field is simply the sum of

the electric and magnetic energy densities

w :=
1

2

(
ε |E|2 + µ |H|2

)
. (2.37)

The integral expression in (2.11) gives the total electromagnetic energy contained in

any finite volume V .

2.6.2 Radiation pattern and radar cross section

The radiation pattern R(φ) is an alternative representation for the scattered field,

valid for observation point in the far zone where ρ → ∞. The large argument ap-

proximation for the Hankel function is given in (B.21) while the approximation for

its derivative can be deduced to be

H
′(2)
n (κρ) ≈− j

√
2

πκρ
e−j(κρ−

2n+1
4

π) , as ρ� R. (2.38)

From these approximations, magnitudes of the scattered fields in free space are ap-

proximately

Usc ≈ R(φ)
e−jk0ρ
√
ρ

, (2.39)

where U is either E or H.

Another important parameter in radar communication study is the radar cross

section (RCS) of a scattering structure, σ(φ). It is defined as the area intercepting

the amount of power that, when scattered isotropically, produces at the receiver

a density that is equal to the density scattered by the actual target [5]. For the

cylindrical structures considered, the mathematical expression for RCS is

σ = lim
ρ→∞

2πρ
|Usc|2

|Uinc|2
. (2.40)

The same value of RCS can be calculated for a scattering problem by using either

choice of E or H because of (2.33).

Without loss of generality, the incident field is assumed to have amplitude A0

of one throughout this thesis. The normalized RCS (against the dimension of the

scatterer πR), σ̂(φ), can be written in terms of the radiation pattern R(φ) as

σ̂(φ) =
2

R
|R(φ)|2 . (2.41)
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In particular, the backscattering RCS (σ̂b) (when φ = θpw
x +π) indicates the efficiency

of the structure in scattering the incident plane wave back to its source. The RCS

is depicted in decibel scale in most of the numerical investigations carried out; i.e.,

σ̂(dB) = 10 log10 σ̂.

2.6.3 Surface current densities

The surface current density measures the jump in the magnetic field across the contour

of the PEC strip. In general, the surface current density flows both parallel and

transverse to the cylinder axis on the strip, it can be written as

J = n× (H1 −H2) , (2.42)

where n is a unit normal vector pointing from medium 2 into medium 1. For the

special case of normal incidence, the surface current density has only the z-component

and depends only on the angular variable φ.

2.6.4 Relative error

For a numerical solution to be reliable and useful, it is important that the approx-

imated solution derived is indeed close to the exact solution (if exists), as well as

being stable. Suppose when the infinite system (derived upon the application of the

MoR) is truncated to Ntr equations. We denote the computed solution as
{
xNtr
n

}Ntr

n=1
.

The normalized relative error of the computed coefficients in maximum norm sense,

emax(Ntr), can be defined mathematically as

emax(Ntr) =
max

n≤Ntr

∣∣xNtr+1
n − xNtr

n

∣∣
max

n≤Ntr
|xNtr
n |

. (2.43)

The relative error of the RCS in `2-norm sense, eσ̂(Ntr), provides another useful

measure of the value of Ntr required for a desired accuracy of the physical quantities

computed. We denote the normalized RCS value computed based on the coefficients{
xNtr
n

}Ntr

n=1
as σ̂Ntr . The relative error of the RCS in `2-norm sense, eσ̂(Ntr), is defined

as

eσ̂(Ntr) =

∣∣σ̂Ntr+1 − σ̂Ntr
∣∣

|σ̂Ntr|
. (2.44)

22



2.6.5 Condition number

Another useful numerical quantity is the condition number, χ (A), associating with

the matrix operator A. In `2-norm, χ (A) is defined as the ratio of the maximal

to the minimal singular values of A. It gives an indication of the accuracy of the

results from matrix inversion and the linear equation solution. For our purpose,

the condition numbers for each considered problem are computed using the built-in

MATLAB function, cond, directly.

Suppose we have χ (A) = 10α for our final system of equations. As a general rule

of thumb, log10 [χ (A)] indicates the number of decimal places lost by computer due

to roundoff errors arising from the matrix inversion of A. In other words, with the

16 decimal digits of computer precision, the results computed will be accurate to at

most (16− α) decimal places of accuracy.
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Chapter 3

Method of Regularization

3.1 Introduction

Although there is a variety of regularization techniques for electromagnetic problems,

this thesis deals exclusively with the Abel integral transformation method. In partic-

ular, for the cylindrical problems considered, this thesis deals with the regularization

of the DSE involving trigonometric functions documented in Section 2.2 of the mono-

graph [84]. This type of DSE has also been previously reported in [69, 76, 77]. For the

sake of completeness of this thesis, the regularization process involved is presented in

this chapter. The final solutions are the same as those documented in [84], though

different notations are employed. In addition, more thorough justifications of the

steps are formulated, and a more compressed process is presented here. This method

has been applied to the study of the scattering problem of a slotted cylinder illumi-

nated by a normal incident plane wave in [85]. It is the aim of this thesis to extend

the application of this method to consider some of the more generalized problems in

subsequent chapters.

The first step of the regularization involves rewriting the DSE (derived from the

MBC) in terms of Jacobi polynomials. By rescaling and levelling the convergence

rate of them, the DSE are then transformed into a set of Abel integral equations. An

ISLAE is subsequently obtained by employing the corresponding inversion formulas.

Upon converting the original DSE into a Fredholm matrix equation of the second

kind (with the relevant matrix operator being a compact perturbation of the identity

operator), the equation is then solved by the truncation method and numerical matrix

inversion. The accuracy of the solution computed can be controlled by altering the

truncation number Ntr of the ISLAE. The most notable feature of this approach is

that the solution computed converges not only theoretically, but also numerically to

the exact solution of the ISLAE, as Ntr →∞.
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3.2 Dual series equations with kernels cosnφ

We consider the following DSE involving the cosine functions

ax0 + c+
∞∑
n=1

[xn (1− sn) + en] cosnφ = 0 (A) , φ ∈ (0, φ0), (3.1a)

bx0 + d+
∞∑
n=1

n [xn (1− tn) + fn] cosnφ = 0 (A) , φ ∈ (φ0, π), (3.1b)

where a, b, c and d and {en, fn, sn, tn}∞n=1 are assumed to be known, while {xn}∞n=0

is the unknown sequence to be determined. Here, φ0 is some fixed value in (0, π).

The notation (A) implies that each member of the DSE above is to be read as being

Abel-summable (see Appendix D.1.2) to the right hand value on its corresponding

interval; i.e.,

ax0 + c+ lim
|r|→1−

{
∞∑
n=1

[xn (1− sn) + en] rn cosnφ

}
= 0 , φ ∈ (0, φ0), (3.2a)

bx0 + d+ lim
|r|→1−

{
∞∑
n=1

n [xn (1− tn) + fn] rn cosnφ

}
= 0 , φ ∈ (φ0, π). (3.2b)

For the regularization process, it is assumed that {
√
nxn}

∞
n=0 belongs to the set

of square-summable Fourier coefficients `2; i.e.,
∞∑
n=1

n|xn|2 <∞ . (3.3)

The known sequences {
√
nen,
√
nfn}

∞
n=1 are also assumed to belong to the same class,

`2. In other words, {xn, en, fn}∞n=1 are assumed to satisfy the Fejér’s Tauberian con-

dition (D.4). Additionally, it is assumed that

lim
n→∞

sn = lim
n→∞

tn = 0 , (3.4)

which is why they are often termed the asymptotically small parameters. In the elec-

tromagnetic problems considered, these assumptions arise naturally from the Meixner

condition required for a structure with apertures, as well as the general properties of

fields in space excluding the scatterer.

From these assumptions, we can see that the general terms of series in (3.1a)

and (3.1b) decay at rates O
(
n−3/2

)
and O

(
n−1/2

)
, respectively, as n → ∞. In the

key step of the regularization process, the slower converging series equation (3.1b)

is subjected to an integration operation to equilibrate the rates of convergence of

the DSE. These assumptions provide sufficient conditions for the justification for the

termwise integration operations, as shown in the next subsection.
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3.2.1 Justification of term-by-term integration

Although its convergence is not assumed, this series in (3.1a) is convergent as its

terms satisfy (D.4). In fact, the series can be shown by the Weierstrass M Test to be

absolutely (and hence, uniformly) convergent for all real-valued φ. Therefore, (3.1a)

can be integrated termwise over any interval (0, φ′), for some φ′ ∈ (0, π). In addition,

the notation (A) is omitted for (3.1a) from here onwards.

However, the slower converging series in (3.1b) are not uniformly convergent for

the interval (φ0, π), if convergent at all. While uniformity of convergence is a sufficient

condition for term-by-term integrability, it is not a necessary condition.

For brevity, we denote the Abel mean of the series in (3.1b) as

λ(φ, r) :=
∞∑
n=1

n [xn (1− tn) + fn] rn cosnφ . (3.5)

Clearly, λ(φ, r) is absolutely convergent as long as |r| < 1, for all φ ∈ (0, π). Therefore,

for |r| < 1, λ(φ, r) is integrable term-by-term over the interval (φ′, π), for some

φ′ ∈ (φ0, π), to give∫ π

φ′
λ(φ, r)dφ = −

∞∑
n=1

[xn (1− tn) + fn] rn sinnφ′ . (3.6)

We introduce the following sequence from λ(φ, r):

λk(φ) :=λ
(
φ, 1− 1

k

)
=
∞∑
n=1

n [xn (1− tn) + fn]
(
1− 1

k

)n
cosnφ , (3.7)

for k = 1, 2, . . . From (3.2b), we know

lim
|r|→1−

λ(φ, r) = −(bx0 + d) , for φ ∈ (φ0, π). (3.8)

Hence, from the definition of {λk}∞k=1 give in (3.7),

lim
k→∞

λk(φ) = −(bx0 + d) , for φ ∈ (φ0, π). (3.9)

In addition, as λ(φ, r) is piecewise continuous for |r| < 1, each λk(φ) for k = 1, 2, . . .

is integrable over the interval (φ′, π), for some φ′ ∈ (φ0, π). Moreover, |λk(φ)| ≤ C,

for all k = 1, 2, . . ., on (φ′, π) for some φ′ ∈ (φ0, π), where C is some positive constant.

Accordingly,

lim
k→∞

∫ π

φ′
λk(φ) dφ =

∫ π

φ′
lim
k→∞

λk(φ) dφ =

∫ π

φ′
−(bx0 + d) dφ , (3.10)

by Arzelà’s Dominated Convergence Theorem, and the term-by-term integration of

(3.1b) is justified.
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3.2.2 Levelling of the rates of convergence

To ensure both members of the DSE will involve the same kernel after the transfor-

mation, the DSE in (3.1) are first rewritten in terms of the Jacobi polynomials using

(B.35b),

ax0 + c+
∞∑
n=1

[xn (1− sn) + en]

√
πn!

Γ
(
n+ 1

2

)P (
−1

2
,−1

2

)
n (ψ) = 0 , ψ ∈ (ψ0, 1),

(3.11a)

bx0 + d+
∞∑
n=1

n [xn (1− tn) + fn]

√
πn!

Γ
(
n+ 1

2

)P (
−1

2
,−1

2

)
n (ψ) = 0 (A), ψ ∈ (−1, ψ0),

(3.11b)

by means of new variables ψ := cosφ and ψ0 := cosφ0.

An additional step of transforming the parameter values α and β in P
(α,β)
n (ψ)

occurring in (3.11) is required before the equilibration of the convergence rates of the

DSE. This is to ensure the condition α, β > −1 is satisfied after the equilibration. It

is accomplished by multiplying (3.11a) and (3.11b) by (1 − ψ)−1/2(1 + ψ)−1/2, then

integrating over (ψ, 1) and (−1, ψ), respectively. The term-by-term integration has

been justified in the previous subsection, as the DSE in (3.11) in terms of P

(
−1

2
,−1

2

)
n (ψ)

are essentially those in (3.1) with kernels cosnφ. We obtain the following from the

integration with the aid of (B.37) with α = β = −1/2:

(ax0 + c)
(
π
2
− sin−1 ψ

)
+

√
π

2
(1− ψ)

1
2 (1 + ψ)

1
2

×
∞∑
n=1

[xn (1− sn) + en]
(n− 1)!

Γ
(
n+ 1

2

)P (
1
2
,
1
2

)
n−1 (ψ) = 0 , ψ ∈ (ψ0, 1), (3.12a)

(bx0 + d)
(
π
2

+ sin−1 ψ
)
−
√
π

2
(1− ψ)

1
2 (1 + ψ)

1
2

×
∞∑
n=1

[xn (1− tn) + fn]
n!

Γ
(
n+ 1

2

)P (
1
2
,
1
2

)
n−1 (ψ) = 0 , ψ ∈ (−1, ψ0). (3.12b)

The convergence rates of the series terms in (3.12a) and (3.12b) are O
(
n−5/2

)
and O

(
n−3/2

)
, respectively, as P

(α,β)
n = O

(
n−1/2

)
as given in (B.34). Both series

are now uniformly convergent in their corresponding intervals. In order to level the

convergence rates, the slower converging (3.12b) is integrated over (−1, ψ) for ψ ∈
(−1, ψ0), with weight function (1 + ψ)−1/2. With the aid of integration by parts and

28



(B.36b) with η = 0, the integration gives

(bx0 + d)
[
4
√

1 + ψ − 2
√

1− ψ
(
π
2

+ sin−1 ψ
)]

−
√
π

2
(1 + ψ)

3
2

∞∑
n=1

[xn (1− tn) + fn]
n!

Γ
(
n+ 3

2

)P (
−1

2
,
3
2

)
n−1 (ψ) = 0 , (3.13)

for all ψ ∈ (−1, ψ0). Both series in (3.12a) and (3.13) now have the same convergence

rate O
(
n−5/2

)
, but different kernels.

3.2.3 Abel integral transformation

The next step involved in the regularization process is reformulating (3.12a) and

(3.13) as Abel integral equations. For (3.13), this is done by using (B.36b) when

η = 1/2. We obtain∫ ψ

−1

S(t)√
ψ − t

dt = 4 (bx0 + d)
[
2
√

1 + ψ −
√

1− ψ
(
π
2

+ sin−1 ψ
)]
, (3.14)

for all ψ ∈ (−1, ψ0), where S(t) is defined as

S(t) :=(1 + t)
∞∑
n=1

[xn (1− tn) + fn]P
(0,1)
n−1 (t) . (3.15)

The interchange of the order of summation and integration is justified because of the

weighted mean square convergence of the series in (3.13). The equation (3.14) is of

the form of (C.1). Using the inversion formula (C.7), it can be derived that, for all

t ∈ (−1, ψ0)

S(t) =
4

π
(bx0 + d)

d

dt

∫ t

−1

2
√

1 + ψ −
√

1− ψ
(
π
2

+ sin−1 ψ
)

√
t− ψ

dψ , (3.16a)

=
4

π
(bx0 + d)

d

dt

∫ t

−1

√
t− ψ
1− ψ

(
π
2

+ sin−1 ψ
)

dψ , (3.16b)

=
2

π
(bx0 + d)

∫ t

−1

π
2

+ sin−1 ψ
√
t− ψ

√
1− ψ

dψ , (3.16c)

= −2 (bx0 + d) ln

(
1− t

2

)
. (3.16d)

It is noted that integration by parts was used to evaluate the integral in (3.16a). Since

the integrand in the right hand side of (3.16b) is continuous everywhere in (−1, t] as

t < 1, the integral can be evaluated making use of the fundamental theorem of
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integral calculus and chain rule. The resulting integral in (3.16c) is solved by change

of variable (ψ = − cos θ, t = − cos β) and the Dirichlet-Mehler formula [21, 69]∫ β

0

θ sin θ
2√

cos θ − cos β
dθ = −

√
2π ln

(
cos

β

2

)
. (3.17)

Similarly, (3.12a) defined over (ψ0, 1) can be transformed using (B.36a) when

η = 1/2 to ∫ 1

ψ

T (t)√
t− ψ

dt = −2 (ax0 + c)
π
2
− sin−1 ψ
√

1 + ψ
, (3.18)

for all ψ ∈ (ψ0, 1), where T (t) is defined as:

T (t) :=
∞∑
n=1

[xn (1− sn) + en]P
(0,1)
n−1 (t) . (3.19)

Repeating parallel operations used in the derivation of (3.16d) with the aid of (C.8)

and (3.17), we obtain a series equation of {xn}∞n=0 in terms of the same kernels,

P
(0,1)
n−1 (t), as that in (3.16d):

T (t) = −2 (ax0 + c) (1 + t)−1 , t ∈ (ψ0, 1). (3.20)

We convert the kernels to the normalized form, P̂
(0,1)
n−1 (t), defined in (B.31), and

introduce following normalized coefficients for brevity:{
x̂n, ên, f̂n

}
:=
√
n {xn, en, fn} , (3.21)

for n = 1, 2, . . . It is worth noting that these new coefficients lie in `2. Combining

(3.16d) and (3.20), we obtain a series equation defined over the entire interval:

− 1 + ψ√
2

∞∑
n=1

x̂n
P̂

(0,1)
n−1 (ψ)

n
(3.22)

=


(ax0 + c)− 1 + ψ√

2

∞∑
n=1

(x̂nsn − ên)
P̂

(0,1)
n−1 (ψ)

n
, ψ ∈ (ψ0, 1),

(bx0 + d) ln

(
1− ψ

2

)
− 1 + ψ√

2

∞∑
n=1

(
x̂ntn − f̂n

) P̂ (0,1)
n−1 (ψ)

n
, ψ ∈ (−1, ψ0).

3.2.4 Conversion to an ISLAE

The last step of regularization process involves converting (3.22) into an ISLAE, which

can be solved numerically by truncation method and matrix inversion. This process
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is achieved by exploiting the orthonormality and completeness of
{
P̂

(0,1)
n (ψ)

}∞
n=1

on

(−1, 1) as given in (B.32). The following integrals which occur in the conversion are

evaluated using integration by parts, (B.38) and (B.39),∫ 1

ψ0

P̂
(0,1)
m−1(t) dt = (1− ψ0)

P̂
(1,0)
m−1(ψ0)

m
, (3.23)∫ ψ0

−1

ln

(
1− t

2

)
P̂

(0,1)
m−1(t) dt = −(1− ψ0) ln

(
1− ψ0

2

)
P̂

(1,0)
m−1(ψ0)

m

− (1 + ψ0)
P̂

(0,1)
m−1(ψ0)

m2
. (3.24)

It is worth noting that every series in (3.22) is Fourier-Jacobi and uniformly con-

vergent. By exploiting the completeness and orthonormality of the kernels, the infinite

system below is obtained from (3.22), for m = 1, 2, . . .

x̂m (1− tm)

=
√

2 (bx0 + d)

[
(1− ψ0) ln

(
1− ψ0

2

)
P̂

(1,0)
m−1(ψ0) + (1 + ψ0)

P̂
(0,1)
m−1(ψ0)

m

]
−
√

2 (ax0 + c)
[
(1− ψ0) P̂

(1,0)
m−1(ψ0)

]
− f̂m

+
∞∑
n=1

[
x̂n (sn − tn) + f̂n − ên

] m
n
Q̂

(0,1)
m−1,n−1(ψ0) . (3.25)

The function Q̂
(0,1)
nm (ψ0) (see Appendix B.4.2) denotes the incomplete scalar product

of the normalized Jacobi polynomials encountered; i.e.,

Q̂(0,1)
nm (ψ0) :=

∫ 1

ψ0

(1 + t)P̂ (0,1)
n (t) P̂ (0,1)

m (t) dt . (3.26)

The solution of {x̂n}∞n=1 is square summable, regardless of the value of the unknown

x0. However, x0 must be chosen to ensure that it also lies in `2. Since the series

on the left side of (3.22) is uniformly convergent (as {x̂n}∞n=1 ∈ `2), the right side

must be continuous everywhere on (−1, 1), including at the point ψ = ψ0. It is

worth noting that both sub-functions on the right side of (3.22) are continuous on

their corresponding intervals (ψ0, 1) and (−1, ψ0), due to the assumptions made on

{en, fn, sn, tn, xn}∞n=1. For the continuity at ψ = ψ0, the sub-functions on the right

side of (3.22) are equated to give an equation for x0

x0 =
c− d ln

(
1−ψ0

2

)
b ln
(

1−ψ0

2

)
− a

+
1 + ψ0√

2
[
b ln
(

1−ψ0

2

)
− a
] ∞∑
n=1

[
x̂n (tn − sn) + ên − f̂n

] P̂ (0,1)
n−1 (ψ0)

n
, (3.27)
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provided
[
b ln
(

1−ψ0

2

)
− a
]
6= 0. Subsequently, the value of x0 can be calculated once

the values of {x̂n}∞n=1 are known. Therefore, by substitution of (3.27) into (3.25), and

by exploiting (B.47a) when α = 1 and β = 0, an ISLAE involving only {xn}∞n=1 is

obtained

x̂m (1− tm) +
∞∑
n=1

x̂n (tn − sn) R̂m−1,n−1(ψ0)

=
√

2(1 + ψ0)
bc− ad

b ln
(

1−ψ0

2

)
− a

P̂
(0,1)
m−1(ψ0)

m

− f̂m +
∞∑
n=1

[
f̂n − ên

]
R̂m−1,n−1(ψ0), (3.28)

for m = 1, 2, 3, . . ., where the following notation is used for brevity

R̂m−1,n−1(ψ0) :=Q̂
(1,0)
m−1,n−1(ψ0)− b(1 + ψ0)2

b ln
(

1−ψ0

2

)
− a

P̂
(0,1)
m−1(ψ0)

m

P̂
(0,1)
n−1 (ψ0)

n
. (3.29)

When
[
b ln
(

1−ψ0

2

)
− a
]

= 0, the continuity at t = ψ0 gives rise to an additional

series equation involving only {x̂n}∞n=1,

c− d ln

(
1− ψ0

2

)
+

1 + ψ0√
2

∞∑
n=1

[
x̂n (tn − sn) + ên − f̂n

] P̂ (0,1)
n−1 (ψ0)

n
= 0 . (3.30)

The original ISLAE in (3.25) can be reduced to the following by using (3.30), and

(B.47a) when α = 1 and β = 0,

−
√

2b(1 + ψ0)
P̂

(0,1)
m−1(ψ0)

m
x0 + x̂m (1− tm) +

∞∑
n=1

x̂n (tn − sn) Q̂
(1,0)
m−1,n−1(ψ0)

=
√

2d(1 + ψ0)
P̂

(0,1)
m−1(ψ0)

m
− f̂m +

∞∑
n=1

[
f̂n − ên

]
Q̂

(1,0)
m−1,n−1(ψ0) , (3.31)

for m = 1, 2, . . . The additional series equation (3.30) and the above ISLAE are to be

solved simultaneously for the values of x0 and {x̂n}∞n=1.

3.2.5 ISLAE in matrix operator form

The ISLAE in (3.28) can be written in matrix operator form as1

(I +H) x = b , (3.32)

1The Calligraphic fonts are used to represent the matrix operators.
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where I denotes the identity operator on the Hilbert space `2, the column vector

b represents the right side of (3.28), x is the column vector containing the solution

{x̂n}∞n=1, and H is defined as

H :=R (T − S)− T . (3.33)

Here, R :=
{
R̂n−1,m−1(ψ0)

}∞
n,m=1

denotes the matrix operator of function defined in

(3.29), whereas S :=diag ({sn}∞n=1) and T :=diag ({tn}∞n=1). It is worth noting that

the column vectors x and b are square-summable.

As sn, tn → 0 when n→∞, the diagonal matrix operators S and T are compact

in `2. The linear matrix operator R is bounded as it is a superposition of two linear

bounded operators. In fact, because of the property of Q̂
(1,0)
m−1,n−1(ψ0) given in (B.46),

the first part of R in (3.29) is idempotent and hence, a projection operator having

norm at most 1. The second part of R in (3.29) can be shown to be Hilbert-Schmidt

and bounded, by using (B.34). As a product of a bounded operator and compact

operator is compact, R (T − S) is compact. Consequently, the matrix operator H is

compact because the sum of compact operators is also compact. As I in the infinite-

dimensional `2 is a Fredholm operator with index zero and H is compact, the matrix

operator (I +H) is Fredholm with index zero2.

As a result, (I +H) satisfies the Fredholm alternative theorem. If the solution is

unique, the Fredholm alternative theorem implies the solution existence and stability.

For the electromagnetic MBVP considered, one can prove the uniqueness of solution

by using the standard technique in [12]. The infinite system in (3.28) is truncated

to a finite system of Ntr equations and solved numerically. The computed solution

of this finite system (xNtr) converges to the true solution of the infinite system (x∞),

as Ntr → ∞. The condition number of the truncated system is uniformly bounded

(i.e., χNtr ≤ C, for some positive constant C) and converges to that of the infinite

system (i.e., χNtr → χ∞). Therefore, the numerical process of solving these truncated

system is stable for arbitrarily large Ntr. The solution of the MBVP can be computed

numerically with any predetermined accuracy, limited only by the computer’s digital

precision [2, 4, 34].

2The background definitions and theorems from functional analysis are omitted. We refer to
[2, 15, 30, 34].
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3.2.6 Companion pair of DSE

Consider a companion pair to the DSE given in (3.1), where the subintervals on which

(3.1a) and (3.1b) are defined are interchanged:

ax0 + c+
∞∑
n=1

[xn (1− sn) + en] cosnφ = 0 (A) , φ ∈ (φ0, π), (3.34a)

bx0 + d+
∞∑
n=1

n [xn (1− tn) + fn] cosnφ = 0 (A) , φ ∈ (0, φ0). (3.34b)

Same assumptions as those for the previous pair of DSE are made on the coefficients

x0 and {xn, en, fn, sn, tn}∞n=1.

This pair of DSE can be regularized and transformed to a second kind ISLAE,

by following the same process used for the pair in (3.1). Alternatively, the final form

of system can be obtained from (3.28) by means of new variables φ′ :=π − φ and

φ′0 :=π − φ0. The DSE in (3.35) can be rewritten as

ax0 + c+
∞∑
n=1

(−1)n [xn (1− sn) + en] cosnφ′ = 0 (A) , φ′ ∈ (0, φ′0), (3.35a)

bx0 + d+
∞∑
n=1

(−1)nn [xn (1− tn) + fn] cosnφ′ = 0 (A) , φ′ ∈ (φ′0, π). (3.35b)

By putting xn 7→ (−1)nxn, en 7→ (−1)nen, fn 7→ (−1)nfn, ψ0 7→ cosφ′0 = − cosφ0 =

ψ0 in (3.28) with the rest remaining unchanged, we obtain

(−1)m x̂m (1− tm) +
∞∑
n=1

(−1)n x̂n (tn − sn) R̂m−1,n−1(−ψ0)

=
√

2(1 + ψ0)
bc− ad

b ln
(

1−ψ0

2

)
− a

P̂
(0,1)
m−1(−ψ0)

m

− (−1)m f̂m +
∞∑
n=1

(−1)n
[
f̂n − ên

]
R̂m−1,n−1(−ψ0) , (3.36)

provided
[
b ln
(

1−ψ0

2

)
− a
]
6= 0. An alternative form of the above can be obtained by

making use of the identities (B.33) and (B.45),

x̂m (1− sm)−
∞∑
n=1

x̂n (tn − sn) Ŝm−1,n−1(ψ0)

= −
√

2(1− ψ0)
bc− ad

b ln
(

1+ψ0

2

)
− a

P̂
(1,0)
m−1(ψ0)

m

− êm −
∞∑
n=1

[
f̂n − ên

]
Ŝm−1,n−1(ψ0), (3.37)
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for m = 1, 2, 3, . . ., where we define:

Ŝm−1,n−1(ψ0) :=Q̂
(0,1)
m−1,n−1(ψ0) +

b(1− ψ0)2

b ln
(

1+ψ0

2

)
− a

P̂
(1,0)
m−1(ψ0)

m

P̂
(1,0)
n−1 (ψ0)

n
. (3.38)

Similarly, the expression for x0 can be obtained from (3.27) and (B.33) as

x0 =
c− d ln

(
1+ψ0

2

)
b ln
(

1+ψ0

2

)
− a

− 1− ψ0√
2
[
b ln
(

1+ψ0

2

)
− a
] ∞∑
n=1

[
x̂n (tn − sn) + ên − f̂n

] P̂ (1,0)
n−1 (ψ0)

n
. (3.39)

The infinite system when
[
b ln
(

1−ψ0

2

)
− a
]

= 0, can be obtained directly from (3.30)

and (3.31), by substitution of φ′ and φ′0.

3.3 Dual series equations with kernels sinnφ

We consider the following DSE involving the sine functions

∞∑
n=1

[yn (1− sn) + gn] sinnφ = 0 (A) , φ ∈ (0, φ0), (3.40a)

∞∑
n=1

n [yn (1− tn) + hn] sinnφ = 0 (A) , φ ∈ (φ0, π), (3.40b)

where the coefficients {gn, hn, sn, tn}∞n=1 are assumed to be known, and {yn}∞n=1 is

the unknown sequence to be determined. As with the case where the DSE involving

cosnφ, {yn, gn, hn}∞n=1 are assumed to satisfy the Fejér’s Tauberian condition (D.4);

whereas {sn, tn}∞n=1 tend to zero, when n→∞. Term-by-term integration of (3.40a)

and (3.40b) can be justified following the same arguments given in the previous section

for the DSE involving cosnφ.

3.3.1 Leveling of the rates of convergences

The conversion of the weakly ill-posed DSE in (3.40) follows parallel operations as

those in previous section, except that the transformation of the values of α and β of

P
(α,β)
n (ψ) is not required. The justification of each of the mathematical operations is

similar to those given in previous section, and hence omitted.
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By using (B.35a), we rewrite the DSE in (3.40) as

∞∑
n=1

[yn (1− sn) + gn]
n!

Γ
(
n+ 1

2

)P (
1
2
,
1
2

)
n−1 (ψ) = 0 , ψ ∈ (ψ0, 1), (3.41a)

∞∑
n=1

n [yn (1− tn) + hn]
n!

Γ
(
n+ 1

2

)P (
1
2
,
1
2

)
n−1 (ψ) = 0 (A) , ψ ∈ (−1, ψ0). (3.41b)

To equilibrate the convergence rates, we integrate (3.41b) over (−1, ψ) with weight

function (1 + ψ)1/2, for some ψ ∈ (−1, ψ0). By using (B.36a) when η = 0, we get:

(1 + ψ)
3
2

∞∑
n=1

n [yn (1− tn) + hn]
n!

Γ
(
n+ 3

2

)P (
−1

2
,
3
2

)
n−1 (ψ) = 0 , ψ ∈ (−1, ψ0). (3.42)

3.3.2 Abel integral transformation

Abel integral transformation is carried out on (3.42), by using (B.36a) when η = 1/2,

and the homogeneous form of (C.1). We obtain

∞∑
n=1

n [yn (1− tn) + hn]P
(0,1)
n−1 (t) = 0 , t ∈ (−1, ψ0). (3.43)

Using (B.36a) when η = 1/2, and the homogeneous form of (C.8), Abel transforma-

tion of (3.41a) gives

∞∑
n=1

n [yn (1− sn) + gn]P
(0,1)
n−1 (t) = 0 , t ∈ (ψ0, 1). (3.44)

Combining (3.43) and (3.44), we get a series equation defined over (−1, 1):

∞∑
n=1

ŷnP̂
(0,1)
n−1 (ψ) =



∞∑
n=1

(ŷnsn − ĝn) P̂
(0,1)
n−1 (ψ) , ψ ∈ (ψ0, 1),

∞∑
n=1

(
ŷntn − ĥn

)
P̂

(0,1)
n−1 (ψ) , ψ ∈ (−1, ψ0),

(3.45)

where the following normalized coefficients have been introduced for n = 1, 2, 3, . . .{
ŷn, ĝn, ĥn

}
:=
√
n {yn, gn, hn} . (3.46)

3.3.3 Conversion to an ISLAE

By making use of the properties of orthonormality and completeness of the set{
P̂

(0,1)
n (ψ)

}∞
n=1

on (−1, 1), (3.45) is converted to the following ISLAE where m =
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1, 2, 3, . . .

ŷm (1− tm) +
∞∑
n=1

ŷn (tn − sn) Q̂
(0,1)
m−1,n−1(ψ0)

= −ĥm +
∞∑
n=1

(
ĥn − ĝn

)
Q̂

(0,1)
m−1,n−1(ψ0) . (3.47)

3.3.4 ISLAE in matrix operator form

It is evident that (3.47) is a Fredholm equation of the second-kind, and can be written

in the following matrix operator form

(I +H′) y = b′ , (3.48)

where the column vector b′ represents the right side of (3.47), y is the column vector

containing the solution {ŷ}∞n=1, and H′ is defined as

H′ :=Q (T − S)− T . (3.49)

The operators I, S and T are as defined in the previous section for the DSE involving

cosnφ. The matrix operator Q :=
{
Q̂

(0,1)
m−1,n−1(ψ0)

}∞
n,m=1

is idempotent because of

(B.46). Hence, Q is linear bounded operator having norm atmost 1, and H′ is a

compact operator. Therefore, (I +H′) is a Fredholm operator with index zero, and

(3.47) offers a stable computation scheme to solve the originally ill-posed DSE in

(3.40).

3.3.5 Companion pair of DSE

The companion pair to the DSE given in (3.40) is

∞∑
n=1

[yn (1− sn) + gn] sinnφ = 0 (A) , φ ∈ (φ0, π), (3.50a)

∞∑
n=1

n [yn (1− tn) + hn] sinnφ = 0 (A) , φ ∈ (0, φ0). (3.50b)

This pair of DSE can be regularized and transformed to the following second kind

ISLAE, where m = 1, 2, 3, . . .

ŷm (1− sm)−
∞∑
n=1

ŷn (tn − sn) Q̂
(1,0)
m−1,n−1(ψ0)

= −ĝm −
∞∑
n=1

(
ĥn − ĝn

)
Q̂

(1,0)
m−1,n−1(ψ0) . (3.51)
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Chapter 4

Scattering from a CLR under
oblique incidence

4.1 Introduction

In this chapter, the scattering of an oblique incident plane wave on a dielectric cylinder

with a conformal PEC strip1 (as depicted in Figure 4.1) is considered. Assuming

that it is aligned parallel to the z-axis, the structure has constant cross-section with

respect to z. The terminology cylindrical lens reflector (CLR) is used to refer to this

partially-shielded dielectric cylinder.

The scattering problem of an axially-slotted PEC cylinder is one of the simplest

and most investigated geometries in the area of scattering and radiation. A very large

number of papers have been written on the determination of the near-field quantities

due to normal plane wave incidence. For example, Senior [65] and Beren [7] used the

integral equation approach to determine the field around an axially slotted cylinder,

the rigorous regularization method was used to solved the same problem first by

Shestopalov et al in [41], then by Ziolkowski et al in [32, 97], Harrington treated the

field penetration inside a conducting circular cylinder through a narrow slot in using

method of moments [17], etc.

Most of these studies are for incidence at normal incidence with respect to the

cylinder axis (i.e., the z-axis). In this special case, the vector boundary value prob-

lem can be studied in terms of two separate scalar boundary value problems. They

are the E-polarization (the TMz case) and the H-polarization (the TEz case). For

normal incidence case, the E- and H-polarized waves are separate, and are solved

1Alternatively, when the strip subtends an angle greater than π (i.e., the slit is small), the
structure is often referred to as a slotted cylinder with dielectric loading.
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Figure 4.1: The infinitely-long CLR and the oblique incident plane wave.

Figure 4.2: Cross-sectional view of the CLR.
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independently. The secondary (reflected or transmitted) fields for a general incident

wave polarization are simply a vector sum from each one of these two polarizations.

However, when the incident wave is at an oblique angle (angle other than perpen-

dicular) to the z-axis, the two polarizations are mixed and exist simultaneously. The

oblique scattering problem has important practical applications in various areas such

as diffraction grating analysis. The problem also forms a fundamental building block

in the analysis of the fields induced by a finite source, which may be decomposed

into a spectrum of oblique incident plane waves. In spite of the fact that for many

real-world applications the excitation is not normal to the cylinder, results for this

general case of oblique incidence are rather sparse. Surprisingly, despite the simplicity

of the scatterer considered, the oblique scattering problem of a slotted cylinder has

only been considered in [94], to the best of our knowledge. However, [94] neglected

the crossed polarization in its conformal mapping formulation.

In order to provide an accurate and constructive assessment, as well as under-

standing of the scattering properties of the CLR, the 3D oblique incident problem

is considered in this chapter. The detailed derivation for the pure TMz excitation is

first formulated, and the extension to the pure TEz case is outlined. The formalism

can be readily adapted to the problem with incident wave coming from an infinitely

thin straight wire of infinite length running parallel to the z-axis and carrying a

current I0e
−jkzz, which represents a wave with axial wavenumber kz propagating in

the positive z-direction. A single-layered dielectric substrate is assumed in the prob-

lem formulation for simplicity, although the approach is applicable to the problem

involving a multi-layered and/or overlaid structure.

Section 4.2 is devoted to give a full description of the problem, and to establish the

notations used. In Section 4.3–4.4, the MBVP is transformed into two independent

2-by-2 block matrix equations of the second kind by using the MoR approach. The

result is extended to the case involving a pure TEz incident plane wave in Section

4.5. Series representations of the energy distribution, RCS and surface current are

derived in Section 4.6.3, where an approach to improve the convergence rate of the

series terms is also proposed in Section 4.7.

The numerical investigation for this chapter is documented in Section 4.8. It

first deals with the numerical verification of the problem formulation and numerical

algorithm through internal as well as external tests. Internal tests based on the

calculations of the near fields to verify the MBC on the contour (to within the roundoff

errors) are applied. In addition, comparisons with the results from the literature

(for the normal incident problem) have been carried out as an external test. The
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agreement in all cases is excellent. The second part of the numerical investigation

focuses on the stability and convergence of the algorithm. Specific information about

the dependence of the truncation number Ntr (for a chosen degree of accuracy) on

the radius of the CLR and the dielectric loading is obtained through convergence

checks of the unknown coefficients and the RCS. Numerical results also show that the

condition numbers of the matrices are bounded, as Ntr increases. In the final part of

the numerical investigation, the effects of the oblique incident angle on the RCS and

internal energy are plotted.

4.2 Geometrical description of the problem

Consider an infinitely long CLR of radius R, with cylindrical lens made of dielectric

material of relative permittivity and permeability (εr, µr)
2. The conformal PEC strip

on the surface of the CLR is assumed to be infinitely thin, and has an angular width

of 2θPEC. Without loss of generality, we suppose that the CLR is embedded in

free space, and is aligned parallel to the z-axis, and the PEC strip is located at

ΩPEC =
{

(ρ, φ) : ρ = R and |φ| < θPEC
}

. We use the term “aperture” to refer to the

interface on the cylindrical lens that is not shielded by the PEC strip; i.e., Ωaper ={
(ρ, φ) : ρ = R and |φ| > θPEC

}
.

Suppose the CLR is illuminated by a purely TMz oblique incident plane wave

(i.e., H inc
z ≡ 0), with vacuum wavenumber k0 = ω

√
ε0µ0. The plane wave propagates

in the direction which makes a polar angle θpw
z with the z-axis, and an azimuthal

angle θpw
x in the xy-plane with the positive x-axis. The geometrical description of

the CLR, and the propagation direction of the oblique incident plane wave is given

in Figure 4.1. The time dependence ejωt is assumed and suppressed.

4.3 Derivation of the four sets of DSE

The series expansions for the field components have been derived in Section 2.4, by

replacing kz with k0 cos θpw
z . Due to phase matching, all of the primary and secondary

fields exhibit the same phase dependence on z through the factor ejk0z cos θpwz (which

is suppressed throughout this chapter). For oblique incidence (when kz 6= 0), even

a pure TMz or TEz plane wave will give rise to a mixed-polarized field, due to the

dependence of Eφ and Hφ on both Ez and Hz as seen in (2.33). As a result, four sets

2Under the assumption that the permittivity is independent of frequency, for any material, εr ≥ 1;
whereas µr is essentially 1 for most materials, except for nonlinear ferromagnetic material.
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of connected DSE are derived from the MBC, instead of two independent sets of DSE

for the normal incidence problem.

4.3.1 Series representations for the field components

The complete scattering domain is divided into two regions by the contour of the

CLR; i.e., region 0 which denotes the exterior with ρ > R (free space), and region 1

which denotes the interior with ρ < R (the dielectric lens).

In region 0, the transverse wavenumber kρ =
√
k2

0 − k2
z = k0 sin θpw

z . It is denoted

as κ0 to avoid confusion with the vacuum wavenumber k0. From Section 2.5, the field

components of the TMz incident plane wave have the following series representations:

Einc
z =

∞∑
n=−∞

cn(κ0ρ)ejnφ , (4.1a)

H inc
z = 0 , (4.1b)

Einc
φ = −k0 cos θpw

z

κ2
0ρ

∞∑
n=−∞

ncn(κ0ρ)ejnφ , (4.1c)

H inc
φ = − jk0

η0κ0

∞∑
n=−∞

c′n(κ0ρ)ejnφ , (4.1d)

Einc
ρ =

jk0 cos θpw
z

κ0

∞∑
n=−∞

c′n(κ0ρ)ejnφ , (4.1e)

H inc
ρ = − k0

η0κ2
0ρ

∞∑
n=−∞

ncn(κ0ρ)ejnφ , (4.1f)

where the following parameters have been introduced for brevity,

cn(κ0ρ) :=A0 sin θpw
z jnJn(κ0ρ)e−jnθ

pw
x , (4.2a)

c′n(κ0ρ) :=A0 sin θpw
z jnJ ′n(κ0ρ)e−jnθ

pw
x . (4.2b)

The presence of the CLR causes a scattered field in the region 0. We represent

the z-components of the fields by:{
Esc
z

Hsc
z

}
:=

∞∑
n=−∞

{
a(0)
n

b(0)
n

}
H

(2)
n (κ0ρ)

H
(2)
n (κ0R)

ejnφ , (4.3)

where
{
a

(0)
n , b

(0)
n

}
n∈Z

are unknowns to be determined. By normalizing the coefficients

in (4.3) with respect H
(2)
n (κ0R), the overflow problems encountered when computing

large order Hankel function are improved [14]. In fact, after the normalization, it
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follows from the Meixner condition that
{
a

(0)
n , b

(0)
n

}
n∈Z

satisfy the Fejér’s Tauberian

condition (D.4) (shown in next subsection). It is worth noting that, the scattered

field components represented by (4.3) automatically satisfy the Sommerfeld radiation

condition.

In region 1, we denote the transverse wavenumber as κ1 =
√
k2

1 − k2
0 cos2 θpw

z .

Here, k1 = k0
√
εrµr is the wavenumber in the dielectric lens. In terms of the unknowns{

a
(1)
n , b

(1)
n

}
n∈Z

, we write the z-components of the transmitted fields as

{
Etr
z

Htr
z

}
:=

∞∑
n=−∞

{
a(1)
n

b(1)
n

}
Jn(κ1ρ)H

′(2)
n (κ1R)ejnφ . (4.4)

We have chosen this normalization instead of one in the same form as (4.3) to avoid the

division by Jn(κ1R), which could vanish for a finite number of ω, when the argument

κ1R coincides with one of the zeros for Jn(x). This normalization also ensures that{
a

(1)
n , b

(1)
n

}
n∈Z

satisfy the Fejér’s Tauberian condition, for the Meixner condition to be

satisfied. It is worth noting that these series representations satisfy the boundedness

of fields at the origin.

Due to (2.33), the transverse components can be expressed in terms of the trans-

verse derivatives of Ez and Hz. Therefore, all the transverse components can be

expressed in terms of
{
a

(i)
n , b

(i)
n

}
n∈Z

(i = 0, 1) as:

Esc
φ = −k0

κ0

∞∑
n=−∞

{
cos θpw

z

κ0ρ
na(0)

n

H
(2)
n (κ0ρ)

H
(2)
n (κ0R)

+
η0

j
b(0)
n

H
′(2)
n (κ0ρ)

H
(2)
n (κ0R)

}
ejnφ , (4.5a)

Hsc
φ = −k0

κ0

∞∑
n=−∞

{
j

η0

a(0)
n

H
′(2)
n (κ0ρ)

H
(2)
n (κ0R)

+
cos θpw

z

κ0ρ
nb(0)

n

H
(2)
n (κ0ρ)

H
(2)
n (κ0R)

}
ejnφ , (4.5b)

Etr
φ = −k0

κ1

∞∑
n=−∞

{
cos θpw

z

κ1ρ
na(1)

n Jn(κ1ρ)H
′(2)
n (κ1R)

+
η0µr
j
b(1)
n J ′n(κ1ρ)H

′(2)
n (κ1R)

}
ejnφ , (4.5c)

Htr
φ = −k0

κ1

∞∑
n=−∞

{
jεr
η0

a(1)
n J ′n(κ1ρ)H

′(2)
n (κ1R)

+
cos θpw

z

κ1ρ
nb(1)

n Jn(κ1ρ)H
′(2)
n (κ1R)

}
ejnφ , (4.5d)
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

Esc
ρ =

k0

κ0

∞∑
n=−∞

{
j cos θpw

z a(0)
n

H
′(2)
n (κ0ρ)

H
(2)
n (κ0R)

+
η0

κ0ρ
nb(0)

n

H
(2)
n (κ0ρ)

H
(2)
n (κ0R)

}
ejnφ , (4.6a)

Hsc
ρ = −k0

κ0

∞∑
n=−∞

{
1

η0κ0ρ
na(0)

n

H
(2)
n (κ0ρ)

H
(2)
n (κ0R)

− j cos θpw
z b(0)

n

H
′(2)
n (κ0ρ)

H
(2)
n (κ0R)

}
ejnφ , (4.6b)

Etr
ρ =

k0

κ1

∞∑
n=−∞

{
j cos θpw

z a(1)
n J ′n(κ1ρ)H

′(2)
n (κ1R)

+
η0µr
κ1ρ

nb(1)
n Jn(κ1ρ)H

′(2)
n (κ1R)

}
ejnφ , (4.6c)

Htr
ρ = −k0

κ1

∞∑
n=−∞

{
εr

η0κ1ρ
na(1)

n Jn(κ1ρ)H
′(2)
n (κ1R)

− j cos θpw
z b(1)

n J ′n(κ1ρ)H
′(2)
n (κ1R)

}
ejnφ , (4.6d)

where the prime on the Bessel and Hankel functions denotes differentiation with

respect to the argument κiρ (i = 0, 1).

As all electromagnetic fields are finite, single-valued as well as continuous with

continuous derivatives everywhere in space, excluding the contour of the scatterer, the

representations given in (4.3)–(4.6) need to be bounded, convergent and continuous,

as long as ρ > R (for the scattered field) or ρ < R (for the transmitted field). These

series can be shown to satisfy these properties by using the ratio test, and considering

the solution class established in next subsection for the coefficients
{
a

(i)
n , b

(i)
n

}
n∈Z

(i = 0, 1).

4.3.2 Solution class of the unknown coefficients

The electromagnetic energy contained per unit length of the CLR is

W =
1

2

∫ 1

0

∣∣∣ejk0z cos θpwz

∣∣∣2 dz ×
∫ R

0

∫ π

−π

{
ε0εr

(∣∣Etr
ρ

∣∣2 +
∣∣Etr

φ

∣∣2 +
∣∣Etr

z

∣∣2)
+µ0µr

(∣∣Htr
ρ

∣∣2 +
∣∣Htr

φ

∣∣2 +
∣∣Htr

z

∣∣2)} dφ ρ dρ . (4.7)

The original triple integral in (2.11) can be evaluated as this iterated integral accord-

ing to Tonelli’s theorem, as the integrands are all nonnegative. It is worth noting that

not all integrands are bounded in the region of integration; e.g., Hφ

(
R,±θPEC

)
. A

series expression for W can be obtained by substitution of the representations given

45



in (4.3)–(4.6) into (4.7). The double summations encountered can be reduced by

making use of the orthogonality of the exponential function:∫ π

−π
ej(n−m)φdφ =

{
0, if n 6= m,

2π, if n = m.
(4.8)

The series expression for W can be simplified to

W =π
∞∑

n=−∞

{(
ε0εr

∣∣a(1)
n

∣∣2 + µ0µr
∣∣b(1)
n

∣∣2)Φn +
(
b

(1)

n a(1)
n − b(1)

n a(1)
n

)
Γn

}
, (4.9)

where the following quantities are introduced for a neater expression,

Φn :=

∫ R

0

{
J2
n(κ1ρ) +

k2
0 cos2 θpw

z + k2
1

κ2
1

[
J ′n

2(κ1ρ) +
n2

κ2
1ρ

2
J2
n(κ1ρ)

]}
ρ dρ

×
∣∣∣H ′(2)

n (κ1R)
∣∣∣2 , (4.10a)

Γn :=
4jk2

1 cos θpw
z

κ3
1

√
ε0µ0

∫ R

0

nJn(κ1ρ)J ′n(κ1ρ) dρ×
∣∣∣H ′(2)

n (κ1R)
∣∣∣2 . (4.10b)

The integrals in (4.10a)–(4.10b) are evaluated by a change of variable, z = κ1ρ.

By using integration by parts and the Bessel equation (B.7), we derive∫
zJ2

n(z)dz = 1
2

{
z2J ′n

2(z) +
(
z2 − n2

)
J2
n(z)

}
, (4.11)∫

zJ ′n
2(z)dz = zJn(z)J ′n(z) +

∫
zJ2

n(z)dz −
∫
n2

z
J2
n(z)dz , (4.12)∫

Jn(z)J ′n(z) dz = 1
2
J2
n(z) . (4.13)

Substitution of these into (4.10a)–(4.10b) leads to

Φn =
∣∣∣H ′(2)

n (κ1R)
∣∣∣2 ×{k2

1R
2

κ2
1

[
J ′n

2(κ1R) +

(
1− n2

κ2
1R

2

)
J2
n(κ1R)

]
+

(k2
z + k2

1)R

κ3
1

J ′n(κ1R)Jn(κ1R)

}
, (4.14a)

Γn =
2jk2

1 cos θpw
z

κ4
1

√
ε0µ0 nJ

2
n(κ1R)

∣∣∣H ′(2)
n (κ1R)

∣∣∣2 . (4.14b)

For the series in (4.9) to be bounded, as required by the Meixner finite energy

condition stated in (2.11), the behaviors of Φn and Γn when n → ∞ need to be
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inspected. According to the characteristics of the Bessel and Hankel functions given

in (B.22)–(B.25), we have for large order n:

Jn(z)H
′(2)
n (z) =− j

πz

{
1 +O

( z
n

)2
}
, (4.15a)

J ′n(z)H
′(2)
n (z) =− j|n|

πz2

{
1 +O

( z
n

)2
}
. (4.15b)

Therefore, for large order n, the magnitudes of Φn and Γn are approximately C|n|
×
{

1 +O (κ1R/n)2}, for some constant C. As a result, the unknowns coefficients{
a

(1)
n , b

(1)
n

}
n∈Z

are required to satisfy the following conditions

∞∑
n=−∞

|n|
∣∣a(1)
n

∣∣2 <∞ and
∞∑

n=−∞

|n|
∣∣b(1)
n

∣∣2 <∞ . (4.16)

Due to the continuity condition, it is clear that the remaining pair of unknowns{
a

(0)
n , b

(0)
n

}
n∈Z

(which are the coefficients for the scattered field in region 0) belong to

the same solution class, as follows from (4.19) and (4.20).

4.3.3 Enforcing the MBC

The solution of the unknowns
{
a

(i)
n , b

(i)
n

}
n∈Z

(i = 0, 1) can be obtained by applying the

continuity condition and MBC on the contour of the CLR. The tangential components

of the total electric field are continuous across the contour of the CLR as according

to (2.6a). Thus,

lim
ρ→R+

(
Esc
z + Einc

z

)
= lim

ρ→R−
Etr
z , (4.17)

lim
ρ→R+

(
Esc
φ + Einc

φ

)
= lim

ρ→R−
Etr
φ . (4.18)

for all φ ∈ (−π, π). As these components are matched over the entire contour of the

CLR, the coefficients may be equated termwise,

a(0)
n =a(1)

n Jn(κ1R)H
′(2)
n (κ1R)− cn(κ0R) , (4.19)

b(0)
n =

j cos θpw
z

η0κ0R

(
κ2

0

κ2
1

− 1

)
na(1)

n Jn(κ1R)H
′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

+ µr
κ0

κ1

b(1)
n J ′n(κ1R)H

′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

. (4.20)

Therefore, only
{
a

(1)
n , b

(1)
n

}
n∈Z

are left to be determined from the MBC.
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According to (2.9a), the tangential components of the total electric field vanish

on the PEC strip, ΩPEC; i.e.,

lim
ρ→R+

(
Esc
z + Einc

z

)
= 0 = lim

ρ→R−
Etr
z , (4.21)

lim
ρ→R+

(
Esc
φ + Einc

φ

)
= 0 = lim

ρ→R−
Etr
φ . (4.22)

Imposing these two conditions leads to the following series equations

∞∑
n=−∞

a(1)
n one

jnφ = 0 (A) , (4.23)

∞∑
n=−∞

{
a(1)
n pn + b(1)

n qn
}
ejnφ = 0 (A) , (4.24)

for φ ∈ (−θPEC, θPEC), where we introduce

on :=Jn(κ1R)H
′(2)
n (κ1R) , (4.25)

pn :=
j cos θpw

z

η0µrκ1R
nJn(κ1R)H

′(2)
n (κ1R) , (4.26)

qn :=J ′n(κ1R)H
′(2)
n (κ1R) . (4.27)

On the other hand, according to (2.9b), the tangential components of the total

magnetic field are continuous across the aperture (where the PEC strip is absent),

Ωaper. Therefore, we have

lim
ρ→R+

(
Hsc
z +H inc

z

)
= lim

ρ→R−
Htr
z , (4.28)

lim
ρ→R+

(
Hsc
φ +H inc

φ

)
= lim

ρ→R−
Htr
φ , (4.29)

for φ ∈ (θPEC, π) ∪ [−π,−θPEC), which result in:

∞∑
n=−∞

{
a(1)
n rn + b(1)

n sn
}
ejnφ = 0 (A) , (4.30)

∞∑
n=−∞

{
a(1)
n tn + b(1)

n un + zn
}
ejnφ = 0 (A) . (4.31)

In the above series equations, the following coefficients have been introduced:

rn :=
j cos θpw

z

η0κ0R

(
1− κ2

0

κ2
1

)
nJn(κ1R)H

′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

, (4.32)

sn :=Jn(κ1R)H
′(2)
n (κ1R)− µr

κ0

κ1

J ′n(κ1R)H
′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

, (4.33)
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tn :=εrκ0J
′
n(κ1R)H

′(2)
n (κ1R)− κ1Jn(κ1R)H

′(2)
n (κ1R)

H
′(2)
n (κ0R)

H
(2)
n (κ0R)

+ n2 cos2 θpw
z κ1

κ2
0R

2

(
1− κ2

0

κ2
1

)
Jn(κ1R)H

′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

, (4.34)

un :=n
η0κ0 cos θpw

z

jκ1R

[
Jn(κ1R)H

′(2)
n (κ1R)

−µr
κ1

κ0

J ′n(κ1R)H
′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

]
, (4.35)

zn :=κ1

[
cn(κ0R)

H
′(2)
n (κ0R)

H
(2)
n (κ0R)

− c′n(κ0R)

]
. (4.36)

From (B.14) and (B.16), we can see that for n = 1, 2, . . ., if we have hn ≡
{on, qn, sn, tn}, then hn = h−n; whereas when hn ≡ {pn, rn, un}, we have hn = −h−n.

In addition, by using the Wronskian identity given in (B.17), {zn}n∈Z (which collects

all the information about the incident field) can be simplified to

zn = −2A0κ1 sin θpw
z jn+1e−jnθ

pw
x

πκ0RH
(2)
n (κ0R)

. (4.37)

Due to the symmetry of the intervals (−θPEC, θPEC) and (−π,−θPEC)∪ (θPEC, π),

the four series equations (4.23), (4.24), (4.30) and (4.31) remain valid when φ is

replaced by −φ. These equations defined over (−π, π) are thus equivalent to the

following four sets of DSE defined over (0, π) in terms of the trigonometric functions,
a

(1)
0 o0 +

∞∑
n=1

x(1)
n on cosnφ = 0 (A), φ ∈ (0, θPEC), (4.38a)

a
(1)
0 t0 + z0 +

∞∑
n=1

[
x(1)
n tn + y(2)

n un + nz(1)
n

]
cosnφ = 0 (A), φ ∈ (θPEC, π), (4.38b)



∞∑
n=1

[
x(1)
n pn + y(2)

n qn
]

sinnφ = 0 (A), φ ∈ (0, θPEC), (4.39a)

∞∑
n=1

[
x(1)
n rn + y(2)

n sn
]

sinnφ = 0 (A), φ ∈ (θPEC, π), (4.39b)


b

(1)
0 q0 +

∞∑
n=1

[
y(1)
n pn + x(2)

n qn
]

cosnφ = 0 (A), φ ∈ (0, θPEC), (4.40a)

b
(1)
0 s0 +

∞∑
n=1

[
y(1)
n rn + x(2)

n sn
]

cosnφ = 0 (A), φ ∈ (θPEC, π), (4.40b)
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

∞∑
n=1

y(1)
n on sinnφ = 0 (A), φ ∈ (0, θPEC), (4.41a)

∞∑
n=1

[
y(1)
n tn + x(2)

n un + nz(2)
n

]
sinnφ = 0 (A), φ ∈ (θPEC, π), (4.41b)

where the following notations are used:

x(1)
n :=a(1)

n + a
(1)
−n , x(2)

n :=b(1)
n + b

(1)
−n , (4.42a)

y(1)
n :=a(1)

n − a
(1)
−n , y(2)

n :=b(1)
n − b

(1)
−n , (4.42b)

z(1)
n :=

zn + z−n
n

, z(2)
n :=

zn − z−n
n

, (4.42c)

for n = 1, 2, 3, . . . It can be easily seen that the new coefficients
{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 0, 1) belong to the same solution class as
{
a

(1)
n , b

(1)
n

}
n∈Z

and thus, also satisfy

the Fejér’s Tauberian condition (D.4).

For the normal incidence problem, {pn, rn, un}∞n=1 ≡ 0, and the four sets of DSE

decouple. The formulation above reduces to the E-polarization formulation (or the

H-polarization formulation if the TEz incidence is considered) by merely enforcing

Hz ≡ 0 (or Ez ≡ 0). In other words, the second and third sets (4.39) and (4.40)

are redundant for the TMz normal incidence problem, as solving these homogeneous

DSE leads to the trivial solutions; i.e.,
{
x

(2)
n , y

(2)
n

}∞
n=1
≡ 0.

For the oblique incident problem, both sets of the DSE (4.38) and (4.39) involve{
x

(1)
n , y

(2)
n

}∞
n=−∞

. As a result, these two sets of DSE are coupled, and need to be

solved simultaneously. Similarly, the remaining two sets of DSE (4.40) and (4.41) are

coupled, as they both involve
{
x

(2)
n , y

(1)
n

}∞
n=−∞

.

4.4 Regularization process

Each of the four sets of DSE derived in Subsection 4.3.3 is regularized to an ISLAE

using MoR, by first introducing the asymptotically small parameters to extract the

singular parts of the series equations. As two pairs of coupled DSE — the first pair:

(4.38), (4.39) and the second pair: (4.40), (4.41) — are involved, each pair of the

coupled ISLAE can be written in the form of a 2-by-2 block matrix equation. Each of

the block matrix operators encountered will be shown to be a compact perturbation

of the identity operator in `2.
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4.4.1 Introducing the asymptotically small parameters

The first step of the regularization process lies in the identification of suitable asymp-

totically small parameters, so that the singular part of each of the series equations

can be extracted. By using the asymptotic formulas given in Appendix B.2.1, we

deduce that, when n→ +∞,

on = − j

πκ1R

{
1 +O

(
κ2

1R
2

n2

)}
, (4.43a)

pn =
n cos θpw

z

πκ2
1R

2µrη0

{
1 +O

(
κ2

1R
2

n2

)}
, (4.43b)

qn = − jn

πκ2
1R

2

{
1 +O

(
κ2

1R
2

n2

)}
, (4.43c)

rn = − cos θpw
z

πκ1Rη0

(
1− κ2

0

κ2
1

){
1 +O

(
κ2

1R
2

n2

)}
, (4.43d)

sn = − j

πκ1R

(
1 + µr

κ2
0

κ2
1

){
1 +O

(
κ2

1R
2

n2

)}
, (4.43e)

tn = − jnζ

πκ0R2

{
1 +O

(
κ2

1R
2

n2

)}
. (4.43f)

un = −n cos θpw
z η0κ0(1 + µr)

πκ2
1R

2

{
1 +O

(
κ2

1R
2

n2

)}
. (4.43g)

In (4.43f), we have introduced the constant ζ for brevity:

ζ =1 + εr
κ2

0

κ2
1

− cos2 θpw
z

(
1− κ2

0

κ2
1

)
. (4.44)

It is worth noting that, ζ 6= 0, and ζ ≥ (1 + εr) (κ2
0/κ

2
1), for all values of θpw

z .

Considering above observation, asymptotically small parameters of magnitude

O (n−2) when n → +∞ can be introduced. These parameters are denoted with a

tilde above their corresponding counterparts. For n = 1, 2, 3, . . ., we define

õn :=1− (jπκ1R) on , (4.45a)

p̃n :=1−
(
µrη0πκ

2
1R

2

cos θpw
z n

)
pn = 1− (jπκ1R) on = õn , (4.45b)

q̃n :=1−
(
jπκ2

1R
2

n

)
qn , (4.45c)

r̃n :=1 +

(
η0πκ

3
1R

cos θpw
z (κ2

1 − κ2
0)

)
rn = 1 +

(
jπκ1n

κ0

)
H

(2)
n (κ0R)

H
′(2)
n (κ0R)

on , (4.45d)

s̃n :=1−
(

jπκ3
1R

κ2
1 + µrκ2

0

)
sn , (4.45e)
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t̃n :=1−
(
jπκ0R

2

ζn

)
tn , (4.45f)

ũn :=1 +
πκ2

1R
2

(1 + µr) cos θpw
z η0κ0n

un ,

= 1 +
πκ1R

j(1 + µr)

[
on − µr

κ1

κ0

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

qn

]
. (4.45g)

The behaviors of these parameters for three different values of wavenumber (k0 =

20, 50 and 100) are shown in Figure 4.1, where R = 1, (εr, µr) = (2.1, 1) (PTFE),

and θpw
z = π

3
. The plots for the parameter {õn}∞n=1 are omitted, as õn = p̃n, for all

n. The top sub-figures for each parameter are plotted on logarithmic scale for both

axes. By comparison with the function f(n) = n−2 (or f(n) = n−3 for {p̃n}∞n=1)

displayed as the green dot-dashed line, it is clear that all of the parameters are of

order at least O (n−2) for large n. For a closer examination of the decay rates of these

parameters, the bottom sub-figures are plotted on logarithmic scale for the vertical

axis only. Evidently, all the parameters decay rapidly once n > κ1R. Therefore, it is

only sensible to chose a truncation number Ntr that is somewhat greater than κ1R in

the final step of matrix truncation.

By substitution of these asymptotically small parameters into (4.38)–(4.41), the

four pairs of DSE can be rewritten with the singular parts isolated as:

a
(1)
0 õ0 +

∞∑
n=1

x(1)
n (1− õn) cosnφ = 0 (A), φ ∈ (0, θPEC), (4.46a)

a
(1)
0 t̃0 + z̃0 +

∞∑
n=1

n
[
x(1)
n

(
1− t̃n

)
+y(2)

n (1− ũn) ς + z̃(1)
n

]
cosnφ = 0 (A), φ ∈ (θPEC, π), (4.46b)



∞∑
n=1

n
[
x(1)
n (1− p̃n) τ + y(2)

n (1− q̃n)
]

sinnφ = 0 (A), φ ∈ (0, θPEC), (4.47a)

∞∑
n=1

[
x(1)
n (1− r̃n) υ + y(2)

n (1− s̃n)
]

sinnφ = 0 (A), φ ∈ (θPEC, π), (4.47b)


b

(1)
0 q̃0 +

∞∑
n=1

n
[
y(1)
n (1− p̃n) τ + x(2)

n (1− q̃n)
]

cosnφ = 0 (A), φ ∈ (0, θPEC), (4.48a)

b
(1)
0 s̃0 +

∞∑
n=1

[
y(1)
n (1− r̃n) υ + x(2)

n (1− s̃n)
]

cosnφ = 0 (A), φ ∈(θPEC, π), (4.48b)
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(a) pn

(b) qn
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(c) rn

(d) sn
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(e) tn

(f) un

Figure 4.1: The magnitude of the asymptotically small parameters as n increases,
at different values of k0: k0 = 20 (black dashed), k0 = 50 (red solid), k0 = 100
(blue dotted), f(n) = n−2 or f(n) = n−3 (green dot-dashed). [εr = 2.1, µr = 1, R =
1, θpw

z = π
3
]
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

∞∑
n=1

y(1)
n (1− õn) sinnφ = 0 (A), φ ∈ (0, θPEC), (4.49a)

∞∑
n=1

n
[
y(1)
n

(
1− t̃n

)
+ x(2)

n (1− ũn) ς + z̃(2)
n

]
sinnφ = 0 (A), φ ∈ (θPEC, π), (4.49b)

where the following parameters have been introduced:

ς :=
η0 cos θpw

z (1 + µr)κ
2
0

jζκ2
1

, τ :=
j cos θpw

z

η0µr
, υ :=

(κ2
1 − κ2

0) cos θpw
z

jη0 (κ2
1 + µrκ2

0)
, (4.50a)

õ0 :=jπκ1Ro0 , q̃0 :=jπκ2
1R

2 q0 , s̃0 :=
jπκ3

1R

κ2
1 + µrκ2

0

s0 , (4.50b)

t̃0 :=
jπκ0R

2

ζ
t0 , z̃0 :=

jπκ0R
2

ζ
z0 , z̃(1,2)

n :=
jπκ0R

2

ζ
z(1,2)
n . (4.50c)

4.4.2 Conversion to ISLAE

Each of the four sets of DSE given in (4.46)–(4.49) can be regularized to a second

kind ISLAE following the steps described in Chapter 3. The four sets form two

independent pairs of interconnected DSE; i.e., the first pair: (4.46), (4.47) and the

second pair: (4.48), (4.49). In the following, each of these two pairs are reformulated

as a 2-by-2 block matrix equation, which is subsequently shown to be a second kind

Fredholm equation.

The first pair of coupled DSE (4.46) and (4.47) We start by considering the

first pair, (4.46) and (4.47), from which the unknowns a
(1)
0 and

{
x

(1)
n , y

(2)
n

}∞
n=1

are to

be determined. For the DSE given in (4.46), we make the following replacement in

(3.27): a 7→ õ0, b 7→ t̃0, c 7→ 0, d 7→ z̃0, x0 7→ x
(1)
0 , xn 7→ x

(1)
n , sn 7→ õn, tn 7→ t̃n,

en 7→ 0, fn 7→ y
(2)
n (1− ũn) ς + z̃

(1)
n , x0 7→ a

(1)
0 , xn 7→ x

(1)
n , and ψ0 7→ cos θPEC = ψPEC.

The notation ψPEC = cos θPEC has been introduced for brevity. An equation for a
(1)
0

in terms of
{
x

(1)
n , y

(2)
n

}∞
n=1

is obtained from (3.27) as

a
(1)
0 =

−z̃0 ln
(

1−ψPEC

2

)
t̃0 ln

(
1−ψPEC

2

)
− õ0

+
1 + ψPEC√

2
[
t̃0 ln

(
1−ψPEC

2

)
− õ0

]
×
∞∑
n=1

√
n
[
x(1)
n

(
t̃n − õn

)
− y(2)

n (1− ũn) ς − z̃(1)
n

] P̂ (0,1)
n−1 (ψPEC)

n
. (4.51)
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An ISLAE in terms of
{
x

(1)
n , y

(2)
n

}∞
n=1

can be derived from (3.28) as

√
m
[
x(1)
m

(
1− t̃m

)
+ y(2)

m (1− ũm) ς
]

+
∞∑
n=1

√
n
[
x(1)
n

(
t̃n − õn

)
− y(2)

n (1− ũn) ς
]
R̂m−1,n−1(ψPEC) (4.52)

= −
√

2(1 + ψPEC) õ0 z̃0

t̃0 ln
(

1−ψPEC

2

)
− õ0

P̂
(0,1)
m−1(ψPEC)

m
−
√
mz̃(1)

m +
∞∑
n=1

√
nz̃(1)

n R̂m−1,n−1(ψPEC) ,

for m = 1, 2, 3, . . ., where

R̂m−1,n−1(ψPEC) :=Q̂
(1,0)
m−1,n−1(ψPEC)− t̃0(1 + ψPEC)2

t̃0 ln
(

1−ψPEC

2

)
− õ0

P̂
(0,1)
m−1(ψPEC)

m

P̂
(0,1)
n−1 (ψPEC)

n
.

(4.53)

For the second set of DSE, (4.47a) defined over (0, θPEC) is slower converging

than (4.47b) defined over (θPEC, π). Thus, the DSE (4.47) has the same form as

that of the companion set given in (3.50). By making the following replacements in

(3.51): sn 7→ s̃n, tn 7→ q̃n, gn 7→ x
(1)
n (1− r̃n) υ, hn 7→ x

(1)
n (1− p̃n) τ , yn 7→ y

(2)
n , and

ψ0 7→ ψPEC, we get another ISLAE involving
{
x

(1)
n , y

(2)
n

}∞
n=1

:

√
m
[
x(1)
m (1− r̃m) υ + y(2)

m (1− s̃m)
]

(4.54)

+
∞∑
n=1

√
n
{
x(1)
n [(1− p̃n) τ − (1− r̃n) υ] + y(2)

n (s̃n − q̃n)
}
Q̂

(1,0)
m−1,n−1(ψPEC) = 0 ,

for m = 1, 2, 3, . . .

Writing (4.52) and (4.54) in matrix operator form gives

[F1 − C1]

(
x1

y2

)
=

(
z1

0

)
, (4.55)

where the block matrix operators below have been introduced to facilitate following

discussion about the advantages of this final form of system:

F1 :=

(
I 0
0 I

)
+

(
0 ς (I −H1)

υ (I −H1) + τH1 0

)
, (4.56)

C1 :=

(
T − (H1 −H2) (T − O) ς (I −H1 +H2)U − ςH2

υ (I −H1)R+ τH1P (I −H1)S +H1Q

)
. (4.57)

Here, I denotes the identity operator, O, P , Q, R, S, T and U denotes the diag-

onal operators formed from
{
õn, p̃n, q̃n, r̃n, s̃n, t̃n, ũn

}∞
n=1

. In addition, the following
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operators are introduced for brevity,

[H1]n,m :=Q̂
(1,0)
m−1,n−1(ψPEC) , (4.58)

[H2]n,m :=
t̃0(1 + ψPEC)2

t̃0 ln
(

1−ψPEC

2

)
− õ0

P̂
(0,1)
m−1(ψPEC)

m

P̂
(0,1)
n−1 (ψPEC)

n
, (4.59)

for n,m = 1, 2, . . . The column vectors x1 and y2 denote the scaled unknowns{√
nx

(1)
n ,
√
ny

(2)
n

}∞
n=1

, respectively, while the right hand vector z1 denote the infinite

sequence on the right side of (4.52)

[z1]n :=−
√

2(1 + ψPEC) õ0 z̃0

t̃0 ln
(

1−ψPEC

2

)
− õ0

P̂
(0,1)
m−1(ψPEC)

m

−
√
mz̃(1)

m +
∞∑
n=1

√
nz̃(1)

n R̂m−1,n−1(ψPEC) . (4.60)

Recalling the observations made in Subsection 3.2.5, all the diagonal matrices

formed from the asymptotically small parameters (i.e., O, P , Q, R, S, T and U) are

compact in the Hilbert space, `2. At the same time, from its definition in (4.59), H2

is clearly symmetric, and satisfies the following because of (B.34):∑
n

∑
m

∣∣∣[H2]n,m

∣∣∣2 <∞ . (4.61)

Hence, H2 is also a compact operator. On the other hand, the matrix operator H1,

with entries in terms of the incomplete scalar product Q̂
(1,0)
m,n (ψPEC), is a projection op-

erator having norm at most 1. It is symmetric, bounded, idempotent, and dependent

only on θPEC.

From these properties of the sub-matrices, it can be readily deduced that the

block matrix operator C1 is a compact operator. Although F1 takes more compli-

cated form that those encountered in Chapter 3, and cannot be readily deduced as

a Fredholm operator, (4.55) can be shown to be similar to those matrix operator

equations discussed in Chapter 3 as follows.

From the idempotent properties of H1; i.e., H1 (I −H1) = (I −H1)H1 = 0, and

H2
1 = H1, the following bounded matrix operator can be easily checked to be the

inverse operator of F1:

F−1
1 =

(
ξI + (1− ξ)H1 ςξ (H1 − I)

υξ (H1 − I)− τH1 ξI + (1− ξ)H1

)
, (4.62)
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where the notation ξ = (1− ςυ)−1 is introduced. It can be readily checked that ξ ≥ 1

for εr, µr ≥ 1, and it is independent of ω. Left multiplication of F−1
1 on both sides of

(4.55) leads to

[
I − F−1

1 C1

](x1

y2

)
= F−1

1

(
z1

0

)
, (4.63)

which enjoys the same advantages as those discussed in Chapter 3, because F−1
1 C1 is

a compact operator and (4.63) is second kind Fredholm. Suppose truncation number

Ntr is used to truncate each of the infinite systems (4.52) and (4.54). The 2Ntr-by-

2Ntr block matrix (F1 − C1) is solved numerically by MATLAB; i.e., by a standard

process of Gaussian elimination for the results obtained in the thesis. As (F1 − C1) is

a complex perturbation of the identity, and there are no modes for the range of axial

wavenumbers under consideration, iterative methods also provide an attractive alter-

native to solving this linear system. By increasing Ntr, the solutions
{
x

(1)
n , y

(2)
n

}Ntr

n=1
computed with the truncated systems converge to the exact solution.

The second pair of coupled SE (4.48) and (4.49) Similarly, we now convert the

second pair, (4.49)–(4.48), to two coupled infinite systems. To regularize (4.48), we

make the following replacements to (3.39) and (3.37): a 7→ s̃0, b 7→ q̃0, c 7→ 0, d 7→ 0,

sn 7→ s̃n, tn 7→ q̃n, en 7→ y
(1)
n (1− r̃n) υ, fn 7→ y

(1)
n (1− p̃n) τ , x0 7→ b

(1)
0 , xn 7→ x

(2)
n , and

ψ0 7→ ψPEC. We get

b
(1)
0 =− 1− ψPEC√

2
[
q̃0 ln

(
1+ψPEC

2

)
− s̃0

] (4.64)

×
∞∑
n=1

√
n
{
x(2)
n (q̃n − s̃n) + y(1)

n [(1− r̃n) υ − (1− p̃n) τ ]
} P̂ (1,0)

n−1 (ψPEC)

n
,

and the first ISLAE involving the unknowns
{
x

(2)
n , y

(1)
n

}∞
n=1

√
m
[
x(2)
m (1− s̃m) + y(1)

m (1− r̃m) υ
]

(4.65)

+
∞∑
n=1

√
n
{
x(2)
n (s̃n − q̃n) + y(1)

n [(1− p̃n) τ − (1− r̃n) υ]
}
Ŝm−1,n−1(ψPEC) = 0 ,

for m = 1, 2, 3, . . ., where

Ŝm−1,n−1(ψPEC) :=Q̂
(0,1)
m−1,n−1(ψPEC) +

q̃0 (1− ψPEC)2

q̃0 ln
(

1+ψPEC

2

)
− s̃0

P̂
(1,0)
m−1(ψPEC)

m

P̂
(1,0)
n−1 (ψPEC)

n
.

(4.66)
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The second set of DSE (4.49) has the same form as that in (3.40). By making

these replacements in (3.47): sn 7→ õn, tn 7→ t̃n, gn 7→ 0, hn 7→ x
(2)
n (1− ũn) ς + z̃

(2)
n ,

yn 7→ y
(1)
n , and ψ0 7→ ψPEC, we get another ISLAE involving

{
x

(2)
n , y

(1)
n

}∞
n=1

:

√
m
[
y(1)
m

(
1− t̃m

)
+ x(2)

m (1− ũm) ς
]

+
∞∑
n=1

√
n
{
y(1)
n

(
t̃n − õn

)
− x(2)

n (1− ũn) ς
}
Q̂

(0,1)
m−1,n−1(ψPEC) (4.67)

= −
√
mz̃(2)

m +
∞∑
n=1

√
nz̃(2)

n Q̂
(0,1)
m−1,n−1(ψPEC) .

for m = 1, 2, . . .

In similar manner, we combine the two coupled ISLAE in (4.65), (4.67), and write

them in the following matrix operator form,

[F2 − C2]

(
x2

y1

)
=

(
0
z2

)
, (4.68)

where the block matrix operators are defined

F2 :=

(
I 0
0 I

)
+

(
0 υ (I −H3) + τH3

ς (I −H3) 0

)
, (4.69)

C2 :=

 S υR+ (υ − τ)H4

+ (H3 +H4) (Q− S) + (H3 +H4) (τP − υR)

ς (I −H3)U (I −H3) T

 . (4.70)

The following sub matrices are introduced

[H3]n,m :=Q̂
(0,1)
m−1,n−1(ψPEC) , (4.71)

[H4]n,m :=
q̃0 (1− ψPEC)2

q̃0 ln
(

1+ψPEC

2

)
− s̃0

P̂
(1,0)
m−1(ψPEC)

m

P̂
(1,0)
n−1 (ψPEC)

n
, (4.72)

for n,m = 1, 2, . . . The vectors x2 and y1 denotes
{√

nx
(2)
n ,
√
ny

(1)
n

}∞
n=1

, respectively,

and z2 denotes the right side of (4.67):

[z2]n :=−
√
mz̃(2)

m +
∞∑
n=1

√
nz̃(2)

n Q̂
(0,1)
m−1,n−1(ψPEC) . (4.73)

Following the same arguments for the previous pair, it can be shown that (4.68)

is a Fredholm equation of the second kind, where the inverse operator of F2 has been

found to take the form

F−1
2 =

(
ξI + (1− ξ)H3 υξ (H3 − I)− τH3

ςξ (H3 − I) ξI + (1− ξ)H3

)
. (4.74)
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As with the ISLAE given in (4.63), this infinite system is solved numerically using

MATLAB, by a standard process of Gaussian elimination. The solutions
{
x

(2)
n , y

(1)
n

}Ntr

n=1
computed with the truncated systems converge to the exact solution, for increasing

Ntr.

4.5 Extension to the TEz incident plane wave prob-

lem

In this section, the same CLR is considered, with the only distinction being the

oblique incident plane wave is TEz. Adapting the same series representations for the

secondary fields, the formulation and regularization process in solving for the TEz

incident problem are of great similarity as those for the TMz incident problem. As

a result, the detailed working for the problem is omitted here, with only the main

differences outlined. In the following, unless otherwise stated, the parameters are as

defined for the TMz case.

From Section 2.5, the field components for the TEz plane wave can be represented

as the following series

Einc
z = 0 , (4.75a)

H inc
z =

1

η0

∞∑
n=−∞

cn(κ0ρ)ejnφ , (4.75b)

Einc
φ =

jk0

κ0

∞∑
n=−∞

c′n(κ0ρ)ejnφ , (4.75c)

H inc
φ = −k0 cos θpw

z

η0κ2
0ρ

∞∑
n=−∞

ncn(κ0ρ)ejnφ , (4.75d)

Einc
ρ =

k0

κ2
0ρ

∞∑
n=−∞

ncn(κ0ρ)ejnφ , (4.75e)

H inc
ρ =

jk0 cos θpw
z

η0κ0

∞∑
n=−∞

c′n(κ0ρ)ejnφ . (4.75f)

Upon the enforcement of the continuity condition on the transverse-components
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of the total electric field on the entire contour of the CLR, it can be shown that

a(0)
n =a(1)

n Jn(κ1R)H
′(2)
n (κ1R) , (4.76)

b(0)
n =

j cos θpw
z

η0κ0R

(
κ2

0

κ2
1

− 1

)
na(1)

n Jn(κ1R)H
′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

+ µr
κ0

κ1

b(1)
n J ′n(κ1R)H

′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

− 1

η0

c′n
H

(2)
n (κ0R)

H
′(2)
n (κ0R)

, (4.77)

for all n ∈ Z. The MBC on the contour of the CLR give

∞∑
n=−∞

a(1)
n one

jnφ = 0 (A) , on ΩPEC, (4.78)

∞∑
n=−∞

{
a(1)
n pn + b(1)

n qn
}
ejnφ = 0 (A) , on ΩPEC, (4.79)

∞∑
n=−∞

{
a(1)
n rn + b(1)

n sn + vn
}
ejnφ = 0 (A) , on Ωaper, (4.80)

∞∑
n=−∞

{
a(1)
n tn + b(1)

n un + wn
}
ejnφ = 0 (A) , on Ωaper. (4.81)

The two new parameters introduced in the above series equations are defined as:

vn :=
1

η0

[
c′n(κ0R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

− cn(κ0R)

]
, (4.82)

wn :=
nκ1 cos θpw

z

jκ0R

[
c′n(κ0R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

− cn(κ0R)

]
=
η0κ1 cos θpw

z

jκ0R
nvn . (4.83)

The series equations above are regularized following the same arguments and

steps as those in the TMz problem. As the same structure is considered, the matrix

operators in the final form of infinite systems obtained for the TEz problem are exactly

the same as those for the TMz problem. The difference lies in the right hand vectors,

which collect all the contribution from the incident wave. In matrix operator form,

the first and second infinite systems can be written as

[F1 − C1]

(
x1

y2

)
=
(

z1

z2

)
, (4.84)

[F2 − C2]

(
x2

y1

)
=
(

z3

z4

)
, (4.85)
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where the right hand vectors are composed of

[z1]n :=−
√
mw̃(+)

m +
∞∑
n=1

√
nw̃(+)

n R̂m−1,n−1(ψPEC) , (4.86a)

[z2]n :=−
√
mṽ(−)

m +
∞∑
n=1

√
nṽ(−)

n Q̂
(1,0)
m−1,n−1(ψPEC) , (4.86b)

[z3]n :=−
√

2(1− ψPEC) q̃0 ṽ0

q̃0 ln
(

1+ψPEC

2

)
− s̃0

P̂
(1,0)
m−1(ψPEC)

m

−
√
mṽ(+)

m +
∞∑
n=1

√
nṽ(+)

n Ŝm−1,n−1(ψPEC) , (4.86c)

[z4]n :=−
√
mw̃(−)

m +
∞∑
n=1

√
nw̃(−)

n Q̂
(0,1)
m−1,n−1(ψPEC) , (4.86d)

for n = 1, 2, . . . A few new notations have been adopted in the expressions above:{
ṽ0, ṽ

(+)
n , ṽ(−)

n

}
:=

jπκ3
1R

κ2
1 + µrκ2

0

{v0, (vn + v−n) , (vn − v−n)} , (4.87)

{
w̃(+)
n , w̃(−)

n

}
:=
jπκ0R

2

ζ

{
wn + w−n

n
,
wn − w−n

n

}
, (4.88)

where n = 1, 2, . . . The rest of the parameters are as defined previously for the TMz in-

cidence problem. The two series expressions similar to (4.51) and (4.90) for unknowns

x
(1)
0 and x

(2)
0 are also obtained:

a
(1)
0 =

1 + ψPEC√
2
[
t̃0 ln

(
1−ψPEC

2

)
− õ0

] (4.89)

×
∞∑
n=1

√
n
[
x(1)
n

(
t̃n − õn

)
− y(2)

n (1− ũn) ς − w̃(+)
n

] P̂ (0,1)
n−1 (ψPEC)

n
,

b
(1)
0 =

ṽ0

q̃0 ln
(

1+ψPEC

2

)
− s̃0

− 1− ψPEC√
2
[
q̃0 ln

(
1+ψPEC

2

)
− s̃0

] (4.90)

×
∞∑
n=1

√
n
{
x(2)
n (q̃n − s̃n) + y(1)

n [(1− r̃n) υ − (1− p̃n) τ ] + ṽ(+)
n

} P̂ (1,0)
n−1 (ψPEC)

n
.

4.6 Series representations of physical quantities

4.6.1 Energy

The series representation for the energy accumulated inside a unit length CLR (W )

has been derived in Subsection 4.3.2. In order to represent W in terms of a
(1)
0 , b

(1)
0 ,
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and
{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 1, 2), we substitute (4.42a)–(4.42b) into (4.9). As Φ−n = Φn,

and Γ−n = −Γn for n = 1, 2, . . ., (4.9) can be simplified to

W =π

(
ε0εr

∣∣∣a(1)
0

∣∣∣2 + µ0µr

∣∣∣b(1)
0

∣∣∣2)Φ0 +
π

2

∞∑
n=1

γn , (4.91)

where {Φn,Γn}∞n=0 are as defined in (4.14), and we introduce

γn :=Φn

[
ε0εr

(∣∣x(1)
n

∣∣2 +
∣∣y(1)
n

∣∣2)+ µ0µr

(∣∣x(2)
n

∣∣2 +
∣∣y(2)
n

∣∣2)]
+ 2jΓn Im

(
x

(2)
n y(1)

n + x(1)
n y

(2)
n

)
. (4.92)

4.6.2 Radiation pattern and RCS

Expressions for the components of the radiation pattern, R(φ), can be obtained by

substitution of the large argument approximations for H
(2)
n (x) and H

′(2)
n (x) into the

series representations for Esc
z , Esc

φ and Esc
ρ . Expressing the components in terms of

a
(1)
0 , b

(1)
0 , and

{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 1, 2), we get

{Rz, Rφ, Rρ} =

√
2

πκ0

ej
π
4

{
S1(φ),

η0

sin θpw
z
S2(φ), cot θpw

z S1(φ)

}
, (4.93)

where S1 and S2 are used to denote the following series for brevity

S1(φ) :=
a

(1)
0 o0 − c0

H
(2)
0 (κ0R)

(4.94a)

+
∞∑
n=1

ejn
π
2

H
(2)
n (κ0R)

[(
x(1)
n on − c(1)

n

)
cosnφ+

(
y(1)
n on − c(2)

n

)
j sinnφ

]
,

S2(φ) :=
µr

κ0
κ1
b

(1)
0 q0

H
′(2)
0 (κ0R)

+
∞∑
n=1

ejn
π
2

H
′(2)
n (κ0R)

(4.94b)

×
{[

j cos θpw
z

η0κ0R

(
κ2

0

κ2
1

− 1

)
n ony

(1)
n + µr

κ0

κ1

qnx
(2)
n

]
cosnφ

+

[
j cos θpw

z

η0κ0R

(
κ2

0

κ2
1

− 1

)
n onx

(1)
n + µr

κ0

κ1

qny
(2)
n

]
j sinnφ

}
.

The parameters {cn, on, qn}∞n=1 are as defined in (4.2a), (4.25) and (4.27), while{
c

(1,2)
n

}∞
n=0

are introduced to denote c
(1,2)
n :=cn ± c−n, for n = 1, 2, . . .

Without loss of generality, we take the amplitude of the incident plane wave A0

to be 1, and the normalized RCS σ̂(φ) can be expressed as

σ̂(φ) =
2

R
|R(φ)|2 =

4csc2θpw
z

πκ0R

{(
1 + cos2 θpw

z

)
|S1(φ)|2 + η2

0 |S2(φ)|2
}
. (4.95)
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4.6.3 Surface current density

Due to the oblique incidence, both of the φ- and z-components of the surface current

density, J, are present on the surface of the PEC strip. From its definition (2.42), J

per unit length along the z-axis depends only on the angular variable φ, and can be

expressed mathematically as

Jφ(φ) = −Htr
z (R, φ) +

[
Hsc
z (R, φ) +H inc

z (R, φ)
]
, (4.96a)

Jz(φ) = Htr
φ (R, φ)−

[
Hsc
φ (R, φ) +H inc

φ (R, φ)
]
. (4.96b)

From the series representations given in Subsection 4.3.1, Jz and Jφ for the TMz

incidence problem can be expressed in terms of
{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 1, 2) as:

Jφ =−s0b
(1)
0 −

∞∑
n=1

{[
rny

(1)
n + snx

(2)
n

]
cosnφ+ j

[
rnx

(1)
n + sny

(2)
n

]
sinnφ

}
, (4.97a)

Jz =− jk0

η0κ0κ1

{
a

(1)
0 t0 + z0 +

∞∑
n=1

[
x(1)
n tn + y(2)

n un + nz(1)
n

]
cosnφ

+j
∞∑
n=1

[
x(2)
n un + y(1)

n tn + nz(2)
n

]
sinnφ

}
. (4.97b)

The parameters
{
rn, sn, tn, un, z

(1,2)
n

}∞
n=1

are as defined in (4.32)–(4.36) and (4.42c).

Writing Jφ and Jz in terms of the asymptotically small parameters defined in

(4.45d)–(4.45g), we have:

Jφ =− κ2
1 + µrκ

2
0

jπκ3
1R

{
s̃0b

(1)
0 −

∞∑
n=1

[
y(1)
n (1− r̃n) υ + x(2)

n (1− s̃n)
]

cosnφ

−j
∞∑
n=1

[
x(1)
n (1− r̃n) υ + y(2)

n (1− s̃n)
]

sinnφ

}
, (4.98a)

Jz =− ζk0

πη0κ2
0κ1R2

{
a

(1)
0 t̃0 + z̃0 +

∞∑
n=1

n
[
x(1)
n

(
1− t̃n

)
+ y(2)

n (1− ũn) ς + z̃(1)
n

]
cosnφ

+j
∞∑
n=1

n
[
x(2)
n (1− ũn) ς + y(1)

n

(
1− t̃n

)
+ z̃(2)

n

]
sinnφ

}
, (4.98b)

where the remaining scaled parameters are as defined in (4.50a)–(4.50c).

4.7 Improving the rate of convergence

From the series representations given in (4.98a) and (4.98b), we can see that the

general series terms for Jz decreases at order O
(
n−1/2

)
, while that for Jφ decreases
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at order O
(
n−3/2

)
, as n→∞. In other words, correspondingly accurate calculation

of Jz will require a larger Ntr than that for Jφ.

To accelerate the decay rate of the terms in the two series in the slower converg-

ing (4.98b), we make use of the block matrix equations given in (4.55) and (4.68).

Left multiplying (4.55) with the bounded inverse F−1
1 defined in (4.62), followed by

rearrangement of the equation, we get(
x1

y2

)
= F−1

1 C1

(
x1

y2

)
+ F−1

1

(
z1

0

)
. (4.99)

Similar operations on (4.68), by using F−1
2 defined in (4.74), lead us to(

x2

y1

)
= F−1

2 C2

(
x2

y1

)
+ F−1

2

(
0
z2

)
. (4.100)

Recalling the definitions of Ci and zi (i = 1, 2) given in (4.57), (4.60), (4.70), and

(4.73), we can rewrite (4.99) and (4.100) in the following forms:

x1 =

{
ξT + (1− ξ)R+H1 [O − ξT − (1− ξ)R]

+ [ξI + (1− ξ)H1]H2 (T − O)

}
x1

+ {ξς (I −H1) (U − S)− ς [ξI + (1− ξ)H1]H2 (I − U)}y2

+ {ξI + (1− ξ)H1} z1 , (4.101a)

y2 =

{
ξυ (R− T ) +H1 [τ (P −O)− ξυ (R− T )]

+ [(ξυ − τ)H1 − ξυI]H2 (T − O)

}
x1

+

{
ξS + (1− ξ)U +H1 [Q− ξS − (1− ξ)U ]

+ [(1− ξ + τς)H1 − (1− ξ)I]H2 (I − U)

}
y2

+ {(ξυ − τ)H1 − ξυI} z1 , (4.101b)

x2 =

{
ξS + (1− ξ)U +H3 [Q− ξS − (1− ξ)U ]

+ [ξI + (1− ξ)H3]H4 (Q− S)

}
x2

+

{
ξυ (R− T ) +H3 [τP − ξυ (R− T )]

+ [ξI + (1− ξ)H3]H4 [υ (I −R)− τ (I − P)]

}
y1

+ {(ξυ − τ)H3 − ξυI} z2 , (4.101c)

y1 =ξς {(U − S)−H3 (U − S)− (I −H3)H4 (Q− S)}x2

+

{
ξT + (1− ξ)R−H3 [ξT + (1− ξ)R]

+ (I −H3)H4 [(1− ξ) (I −R) + ξςτ (I − P)]

}
y1

+ {ξI + (1− ξ)H3} z2 , (4.101d)

or equivalently in series forms:

√
mx(1)

m =
√
m
{
x(1)
m

[
ξt̃m + (1− ξ)r̃m

]
+ ξςy(2)

m (ũm − s̃m)− ξz̃(1)
m

}
+ êm
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+
∞∑
n=1

√
n

{[ (
õn − ξt̃n − (1− ξ)r̃n

)
x(1)
n

+ ξς (s̃n − ũn) y(2)
n + ξz̃(1)

n

]
Q̂

(1,0)
m−1,n−1(ψPEC)

+
[(
t̃n − õn

)
x(1)
n − ς (1− ũn) y(2)

n − z̃(1)
n

]
T̂m−1,n−1

}
, (4.102a)

√
my(2)

m =
√
m
{
ξυx(1)

m

(
r̃m − t̃m

)
+ y(2)

m [ξs̃m + (1− ξ)ũm] + ξυz̃(1)
m

}
+ f̂m

+
∞∑
n=1

√
n

{[ (
τ (p̃n − õn)− ξυ

(
r̃n − t̃n

))
x(1)
n

+ (q̃n − ξs̃n − (1− ξ)ũn) y(2)
n − ξυz̃(1)

n

]
Q̂

(1,0)
m−1,n−1(ψPEC)

+
[(
t̃n − õn

)
x(1)
n − ς (1− ũn) y(2)

n − z̃(1)
n

]
Ûm−1,n−1

}
, (4.102b)

√
mx(2)

m =
√
m
{
x(2)
m [ξs̃m + (1− ξ)ũm] + ξυy(1)

m

(
r̃m − t̃m

)
+ ξυz̃(2)

m

}
+
∞∑
n=1

√
n

{[
(q̃n − ξs̃n − (1− ξ)ũn)x(2)

n

+
(
τ p̃n − ξυ(r̃n − t̃n)

)
y(1)
n − ξυz̃(2)

n

]
Q̂

(0,1)
m−1,n−1(ψPEC)

+

[
(q̃n − s̃n)x(2)

n

+ (υ(1− r̃n)− τ(1− p̃n)) y(1)
n

]
V̂m−1,n−1

}
, (4.102c)

√
my(1)

m =
√
m
{
ξςx(2)

m (ũm − s̃m) + y(1)
m

[
ξt̃m + (1− ξ)r̃m

]
)− ξz̃(2)

m

}
+
∞∑
n=1

√
n

{[
ξς (s̃n − ũn)x(2)

n

−
(
ξt̃n + (1− ξ)r̃n

)
y(1)
n + ξz̃(2)

n

]
Q̂

(0,1)
m−1,n−1(ψPEC)

+

[
− ξς (q̃n − s̃n)x(2)

n

+ ((1− ξ)(1− r̃n) + ξςτ(1− p̃n)) y(1)
n

]
Ŵm−1,n−1

}
. (4.102d)

We have introduced the following notations to simplify the above series equations:

êm :=−
√

2(1 + ψPEC)õ0z̃0

t̃0 ln
(

1−ψPEC

2

)
− õ0

×

{
ξ
P̂

(0,1)
m−1(ψPEC)

m

+(1− ξ)

[
∞∑
k=1

Q̂
(1,0)
m−1,k−1(ψPEC)

P̂
(0,1)
k−1 (ψPEC)

k

]}
, (4.103)

f̂m :=−
√

2(1 + ψPEC)õ0z̃0

t̃0 ln
(

1−ψPEC

2

)
− õ0

×

{
−ξυ

P̂
(0,1)
m−1(ψPEC)

m

+(ξυ − τ)

[
∞∑
k=1

Q̂
(1,0)
m−1,k−1(ψPEC)

P̂
(0,1)
k−1 (ψPEC)

k

]}
, (4.104)

T̂m−1,n−1 :=
t̃0(1 + ψPEC)2

t̃0 ln
(

1−ψPEC

2

)
− õ0

P̂
(0,1)
n−1 (ψPEC)

n
×

{
ξ
P̂

(0,1)
m−1(ψPEC)

m

+(1− ξ)

[
∞∑
k=1

Q̂
(1,0)
m−1,k−1(ψPEC)

P̂
(0,1)
k−1 (ψPEC)

k

]}
, (4.105)
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Ûm−1,n−1 :=
t̃0(1 + ψPEC)2

t̃0 ln
(

1−ψPEC

2

)
− õ0

P̂
(0,1)
n−1 (ψPEC)

n
×

{
−ξυ

P̂
(0,1)
m−1(ψPEC)

m

+(ξυ − τ)

[
∞∑
k=1

Q̂
(1,0)
m−1,k−1(ψPEC)

P̂
(0,1)
k−1 (ψPEC)

k

]}
, (4.106)

V̂m−1,n−1 :=
q̃0(1− ψPEC)2

q̃0 ln
(

1+ψPEC

2

)
− s̃0

P̂
(1,0)
n−1 (ψPEC)

n
×

{
ξ
P̂

(1,0)
m−1(ψPEC)

m

+(1− ξ)

[
∞∑
k=1

Q̂
(0,1)
m−1,k−1(ψPEC)

P̂
(1,0)
k−1 (ψPEC)

k

]}
, (4.107)

Ŵm−1,n−1 :=
q̃0(1− ψPEC)2

q̃0 ln
(

1+ψPEC

2

)
− s̃0

P̂
(1,0)
n−1 (ψPEC)

n
×

{
P̂

(1,0)
m−1(ψPEC)

m

−

[
∞∑
k=1

Q̂
(0,1)
m−1,k−1(ψPEC)

P̂
(1,0)
k−1 (ψPEC)

k

]}
, (4.108)

By substitution of the equations in (4.102) into the series expression for Jz given

in (4.98b), we obtain a modified series expression for Jz, for which the general series

terms are of order
(
n−3/2

)
, as n → +∞. The modified series expression has the

following form:

Jz =− ζk0

πη0κ2
0κ1R2

×
(
a

(1)
0 t̃0 + z̃0 (4.109)

+
∞∑
m=1



{
x(1)
m

[
(1− τς) õm + τςp̃m − t̃m

]
+ ςy(2)

m (q̃m − ũm) + z̃(1)
m

}
Âm

+
{
x(1)
m

(
t̃m − õm

)
− ςy(2)

m (1− ũm)− z̃(1)
m

}
B̂m

+
{
ςx(2)

m (q̃m − ũm) + y(1)
m

(
τςp̃m − t̃m

)
+ z̃(2)

m

}
Ĉm

+ ς
{
x(2)
m (q̃m − s̃m) + y(1)

m [υ (1− r̃m)− τ (1− p̃m)]
}
D̂m

+ Êm




,
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where the following notations are introduced for brevity:

Âm :=
√
m

∞∑
n=1

√
n cosnφ Q̂

(1,0)
n−1,m−1 (ψPEC) , (4.110)

B̂m :=
t̃0 (1 + ψPEC)2

t̃0 ln
(

1−ψPEC

2

)
− õ0

P̂
(0,1)
m−1 (ψPEC)√

m
(4.111)

×
∞∑
n=1

√
n cosnφ

[
P̂

(0,1)
n−1 (ψPEC)

n
− τς

∞∑
l=1

Q̂
(1,0)
n−1,l−1 (ψPEC)

P̂
(0,1)
l−1 (ψPEC)

l

]
,

Ĉm :=j
√
m
∞∑
n=1

√
n sinnφ Q̂

(0,1)
n−1,m−1 (ψPEC) , (4.112)

D̂m :=j
q̃0 (1− ψPEC)2

q̃0 ln
(

1+ψPEC

2

)
− s̃0

P̂
(1,0)
m−1 (ψPEC)√

m
(4.113)

×
∞∑
n=1

√
n sinnφ

∞∑
l=1

Q̂
(0,1)
n−1,l−1 (ψPEC)

P̂
(1,0)
l−1 (ψPEC)

l
,

Êm :=−
√

2 (1 + ψPEC) õ0z̃0

t̃0 ln
(

1−ψPEC

2

)
− õ0

[
P̂

(0,1)
n−1 (ψPEC)

n
− τς

∞∑
l=1

Q̂
(1,0)
n−1,l−1 (ψPEC)

P̂
(0,1)
l−1 (ψPEC)

l

]
.

(4.114)

The above transformation can also be applied to W and Jφ by substitution of

(4.102) into (4.91) and (4.98a), respectively. Doing so, we can improve the conver-

gence rate of the series terms from O
(
n−3/2

)
to O

(
n−5/2

)
for Jφ, and from O (n−2)

to O (n−3) for W .

4.8 Numerical investigations

In this section, the solutions for the unknowns
{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 0, 1) are computed

by two separate numerical matrix inversions of (4.55) and (4.68) for the TMz incidence

case. The values of the physical quantities (e.g., RCS and surface current density)

can be computed once the values of these unknowns coefficients are found.

The goal of the first part of this section is to numerically validate the formulation

in previous sections, and also the numerical codes developed. Internal as well as

external tests have been carried out as follows:

1. the MBC on the contour of the CLR are verified, by substitution of the com-

puted
{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 0, 1) back into the series representations of the field

components,
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2. the numerical results for near and far-field patterns are compared with available

results from the literature.

The second part investigates the rates of convergence of the solution computed

by looking at the relative error, as Ntr increases. It is shown that for Ntr > κ1R,

the relative error decreases steadily as Ntr goes up. The condition numbers for the

matrices are also computed, and are shown to be bounded.

Finally, some numerical results of the effect of different polar incident angle (θpw
z )

on the RCS and internal stored energy are reported.

4.8.1 Numerical validation

Internal tests:

The computed coefficients are substituted back into (4.3)–(4.6). The values of the

tangential components of the fields on the contour are calculated to verify the MBC

(2.9a) and (2.9b) numerically. In both Figure 4.2 and Figure 4.3, the characteristics

of the CLR were set to take values R = 1, εr = 2.1, µ = 1, and θPEC = π
3
. The

incident TMz plane wave was taken to have k0 = 20, θpw
z = π

4
, and θpw

x = π
5
.

The magnitudes of Etr
z and Etr

φ on the contour are displayed in Figure 4.2. Ev-

idently, both Etr
z and Etr

φ vanish on the PEC strip, ΩPEC. In fact, although not

displayed in the figures, the tangential components of the sum of the incident and

scattered electric field,
(
Einc
z + Esc

z

)
and

(
Einc
φ + Esc

φ

)
, when plotted for the same

problem characteristic, produces exactly the same figures as in Figure 4.2. These

observations confirm with both (2.6a) and (2.9a). The oscillations observed near

the sharp edges (when φ = ±θPEC) in both sub-figures are examples of the Gibbs

phenomenon. We can see that the phenomenon is more profound in the bottom sub-

figure
(
Etr
φ

)
than that in the upper sub-figure (Etr

z ). This is because the general series

terms for Etr
φ given in (4.5c) converges at a slower rate O

(
n−1/2

)
, when compared

with the rate of O
(
n−3/2

)
for Etr

z as given in (4.4). The convergence rate of Etr
φ can

be improved, by following the same approach proposed in Subsection 4.6.3.

In Figure 4.3, the absolute values of the differences between the exterior and in-

terior tangential components of total magnetic fields along the contour of the CLR

are displayed. It is clear from the sub-figures that both Hz and Hφ are continuous

across the aperture, Ωaper. We observe similar Gibbs phenomenon in both sub-figures.

It is worth noting that the magnitudes of the differences over ΩPEC are the φ- and
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Figure 4.2: Numeric verification of (2.9a); i.e., Etr
z (top) and Etr

φ (bottom) vanishes
on ΩPEC. [R = 1, εr = 2.1, µr = 1, θPEC = π

3
, k0 = 20, θpw

z = π
4
, and θpw

x = π
5
.]
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z-components of the induced surface current (in the top and bottom figures, respec-

tively) on the PEC strip.

External tests:

Besides the excellent agreements of the numerical results for the internal tests

conducted, the numerical algorithm is also employed to compute for the induced

surface current and RCS for the normal incidence case
(
θpw
z = π

2

)
, in order to compare

results externally. Unfortunately, external verification of the algorithm for the oblique

incidence case is not available, due to the lack of published results for the problem. To

the best of our knowledge, [94] is the only published literature dealing with the oblique

scattering problem of a slotted cylinder, using mode matching technique. However,

we also notice that the problem formulation in [94] has ignored the presence of mixed

polarizations, and neglected the non-vanishing axial-components of the secondary

(scattered or transmitted) magnetic field.

In Figure 4.4, the real and imaginary parts, as well as the magnitude of Jz are

computed for an empty slit CLR (εr = µr = 1) of radius R = 1.0λ, when illuminated

by a normally incident TMz plane wave. The incident wave is characterized by θpw
z =

π
2
, and θpw

x = π. The series representation of Jz in terms of
{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 0, 1),

has been obtained in (4.98b). In Figure 4.4, the real (solid red line) and imaginary

(dashed black line) parts of Jz are plotted against the angular variable φ in the left

sub-figure. In the right sub-figure, the absolute value of Jz is depicted. These sub-

figures are compared directly to the corresponding results given in Figure 2 (a) from

[97]. The curves match with those in Figure 2 (a) from [97]. Although the numerical

results are not included here, we have also checked that Jφ, as given in (4.98a),

vanishes under normal incidence. It is worth noting that Gibbs phenomenon is rather

pronounced in these plots, due to the slow convergence rate of the sum resulting from

the expansion coefficients of O
(
n−1/2

)
. As mentioned previously, these observed

Gibbs phenomenon can be suppressed by using the modified series expression for Jz

given in (4.109), instead of the originally-derived expression given in (4.97b). In the

modified series expression (4.109), the general series term has a magnitude of order

O
(
n−3/2

)
. Alternative approaches to suppress the Gibbs phenomenon include Fejér’s

method of summing Cesàro sums, ε-algorithm extrapolation method, and the explicit

extraction of the square root singularities at the two edges of the strip at φ = ±θPEC.

Figure 4.5 provides another check of the algorithm under the special case – normal

incidence. The backscattering RCS produced by an empty CLR upon a normal

72



Figure 4.3: Numeric verification of (2.9b); i.e., Hz (top) and Hφ (bottom) varies
continuously across Ωaper. [R = 1, εr = 2.1, µr = 1, θPEC = π

3
, k0 = 20, θpw

z = π
4
, and

θpw
x = π

5
.]
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Figure 4.4: Real and imaginary parts (top), as well as magnitude (bottom) of Jz
induced when a normal incident plane wave excites an empty CLR (with θPEC = π

2
)

at angle θpw
x = π. [R = 1.0λ, εr = µr = 1, θPEC = π

2
, θpw

z = π
2
, and θpw

x = π.]
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incident plane wave excitation is displayed in Figure 4.5. The series representation of

the normalized RCS in terms of
{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 1, 2) has been obtained in (4.95).

Here, the following values were taken in the computation, εr = 1, µr = 1, R = 1,

θPEC = 5
6
π, θpw

z = π
2

and θpw
x = π. The figure is compared directly with the result

published on pg.419 in [85], and the curves are indistinguishable from each other.

Figure 4.5: RCS induced when a normal incident plane wave excites an empty CLR.
[εr = 1, µr = 1, R = 1, θPEC = 5

6
π, θpw

z = π
2

and θpw
x = π. ]

4.8.2 Stability and convergence of the algorithm

Rate of convergence of solutions:

As both of the matrix equations are the second kind Fredholm equation, the

solutions computed from the truncated systems converge to the exact solutions as

Ntr → +∞. To investigate the accuracy of the computed solutions, the normalized

relative error e(Ntr) defined in (2.43) is studied. In Figure 4.6–4.8, e(Ntr) for each

unknown coefficients
{
x

(1)
n

}∞
n=1

(dotted black),
{
y

(1)
n

}∞
n=1

(solid green),
{
x

(2)
n

}∞
n=1

(dashed red),
{
y

(2)
n

}∞
n=1

(dash-dotted blue) are plotted as functions of the truncation

number Ntr. The figures are plotted on a logarithmic scale for the vertical axis. For all

three of these figures, the characteristics of the CLR were set to take values R = 1,

εr = 2.1, µ = 1, and θPEC = π
3
. The incident TMz plane wave takes fixed values
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θpw
z = π

4
, and θpw

x = π
5
. Three different values of k0 (20, 100 and 200) are considered

in Figure 4.6–4.8.

Figure 4.6: The normalized relative error of each unknown coefficients when k0 = 20.
[R = 1, εr = 2.1, µr = 1, θPEC = π

3
, θpw

z = π
4

and θpw
x = π

5
]

From Figure 4.6–4.8, we can see that the normalized relative error e(Ntr) for each

of the computed unknown coefficients is clearly steadily decreasing once the chosen

Ntr exceeds the parameter κ1R, which has value around 25 (126 or 253) when k0 is 20

(100 or 200). This is greatly due to the fact that the magnitudes of the asymptotically

small parameters diminish at the order O
([

κ1R
n

]2)
. As a result, we can see that Ntr

required for an aforesaid accuracy increases with the incident wavenumber k0, by

comparing the three plots.

Stability of the systems:

As the computation process of the unknown coefficients involves numerical inver-

sion of the matrices (F1 − C1) and (F2 − C2), another useful quantity to investigate is

the condition number of each of these two matrices. The scattering problem consid-

ered in these figures has the same parameter values as those in Figure 4.6–4.7; that

is, R = 1, εr = 2.1, µ = 1, θPEC = π
3
, θpw

z = π
4

and θpw
x = π

5
. The reason why the solu-

tions can be obtained in any predetermined accuracy can be explained by the plots of

the condition numbers against Ntr given in Figure 4.9–4.11, for k0 = 20, 50 and 100.
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Figure 4.7: The normalized relative error of each unknown coefficients when k0 = 100.
[R = 1, εr = 2.1, µr = 1, θPEC = π

3
, θpw

z = π
4

and θpw
x = π

5
]

Figure 4.8: The normalized relative error of each unknown coefficients when k0 = 200.
[[R = 1, εr = 2.1, µr = 1, θPEC = π

3
, θpw

z = π
4

and θpw
x = π

5
]
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We can see that the condition numbers — solid blue for (F1 − C1), and dashed red

for (F2 − C2) — tends to a constant value while the dimension of the systems, Ntr,

increases and exceeds the value of κ1R. In other words, they are uniformly bounded,

as Ntr increases. These corresponding condition numbers to the matrix operators of

the problem tends to a constant value. That is just the reason why the solution can

be obtained in any predetermined accuracy. For condition number of magnitude 106

to 107, as shown in Figure 4.6–4.7, we can see that about 7 decimal places are lost

by computer due to roundoff errors. An accuracy of 9 decimal places can still be

achieved with an average computer and 16 decimal places precision. This level of

accuracy is more than adequate for most numerical investigations in the field.

Figure 4.9: The condition numbers of the matrices (F1 − C1) and (F2 − C2) when
k0 = 20. [R = 1, εr = 2.1, µr = 1, θPEC = π

3
, θpw

z = π
4

and θpw
x = π

5
]

Besides the uniformly bounded condition number for the matrices, another inter-

esting feature of the systems is that the condition numbers peak when a resonance

frequency is approached. To demonstrate this, the backscattering RCS is plotted

against k0R in Figure 4.12, in order to locate the resonance frequency. The normal-

ized magnitude of the backscattering RCS in decibels (dB) is depicted; i.e.,

σ̂b(dB) = 10 log10

( σb

πR

)
. (4.115)

The two data cursors outlined peak and trough frequencies where k0R = 9.019 and

9.816, respectively. A closer examination of the rate of convergence and condition
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Figure 4.10: The condition numbers of the matrices (F1 − C1) and (F2 − C2) when
k0 = 50. [R = 1, εr = 2.1, µr = 1, θPEC = π

3
, θpw

z = π
4

and θpw
x = π

5
]

Figure 4.11: The condition numbers of the matrices (F1 − C1) and (F2 − C2) when
k0 = 100. [R = 1, εr = 2.1, µr = 1, θPEC = π

3
, θpw

z = π
4

and θpw
x = π

5
]
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number of the problem at these two frequencies is carried out in Figure 4.13 and

Figure 4.14. The plots of the condition numbers (the bottom figures) reveals that

the matrices have larger condition numbers (about 15 times larger) at the resonance

frequency k0R = 9.019 than those at the higher frequency k0R = 9.816. However, the

plots of the normalized relative error (the top figures) suggest that 3-digit accuracy

may be achieved if Ntr ≈ 100 for both of the frequencies.

Figure 4.12: The normalized backscattering RCS for 5 ≤ k0R ≤ 15. [R = 1, εr = 2,
µr = 1, θPEC = π

3
, θpw

z = π
4

and θpw
x = π

5
]

4.8.3 Effect of the polar incident angle on the scattering be-
haviors

The frequency dependent, dB-scaled energy stored inside the CLR, W , is plotted in

the following figures, for a CLR with characteristics θPEC = 5
6
π, εr = 2.1, µr = 1, and

R = 1. The CLR is excited by a TMz plane wave at θpw
x = π, and varying values

of θpw
z . To investigate the effect of polar incident angle θpw

z has on the scattering

behaviors of the CLR, the value of θpw
z is taken to be π

2
(dashed red), π

3
(dotted

black), or π
6

(dot-dashed blue) in Figure 4.15. The effect of the oblique incident angle

θpw
z on RCS (dB) of the same CLR is investigated. The comparison is depicted in

Figure 4.16.
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Figure 4.13: The normalized relative error and condition numbers of (F1 − C1) and
(F2 − C2) at the resonance frequency k0R = 9.019. [R = 1, εr = 2, µr = 1, θPEC = π

3
,

θpw
z = π

4
and θpw

x = π
5
]
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Figure 4.14: The relative error and condition number of (F1 − C1) and (F2 − C2) at
frequency k0R = 9.816. [R = 1, εr = 2, µr = 1, θPEC = π

3
, θpw

z = π
4

and θpw
x = π

5
]
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Figure 4.15: Energy stored inside the CLR when excited by a TMz plane wave at
different polar angle; i.e., θpw

z = π
2

(dashed red), π
3

(dotted black), or π
6

(dot-dashed
blue). [R = 1, θPEC = 5

6
π, εr = 2.1, µr = 1, and θpw

x = π]

Figure 4.16: Backscattered RCS induced when the CLR is excited by a TMz plane
wave at different polar angle; i.e., θpw

z = π
2

(dashed red), π
3

(solid green), π
4

(dotted
black), or π

6
(dot-dashed blue). [R = 1, θPEC = π

2
, εr = 2.1, µr = 1, and θpw

x = π]
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From both Figure 4.15 and Figure 4.16, we can see that as the polar angle θpw
z

moves away from the π
2

(being perpendicular to the cylinder axis), the resonance

frequencies are shifted to the right. It is as though a smaller CLR is excited when

θpw
z decreases. From Figure 4.15, we see that the energy stored in the interior of CLR

slightly increases, as θpw
z decreases. Part of the incident plane wave propagates down

the z-axis, and remains in the interior of the CLR, when the incident wavelength

exceeds the cut-off for the CLR. In this case, the CLR acts like a waveguide3. On the

other hand, in addition to the stretching out of the RCS pattern as θpw
z decreases, we

also notice that the magnitude of the peaks and troughs are dampen in Figure 4.16.

This is because the obliquely-incident plane wave does not penetrate as deeply into

the interior of the CLR as the case for a normal incident plane wave. The smaller

θpw
z is, the more energy is lost to the surrounding due to refraction and transmission,

instead of being diffracted back in the direction of the incoming source.

4.9 Comments and conclusion

In this chapter, the MoR is extended to study the scattering characteristics of CLR

under an oblique plane wave excitation. This is the first rigorous treatment of this

subject necessitating a substantive and extended application of analytical regulariza-

tion approaches that have previously appeared in the literature. For oblique incidence

of either TMz or TEz plane wave, the z-components of the electric and magnetic fields

are coupled together, and have to be treated simultaneously. Two pairs of coupled IS-

LAE are obtained for the unknown coefficients. Each pair of them can be formulated

as a 2-by-2 block matrix equation of the second kind Fredholm, and solved efficiently,

reliably by numerical matrix inversion.

As an internal check of the algorithm, the MBC is validated by substitution of

the computed coefficients back into the series representations of fields. To validate

the algorithm externally, the surface current density and RCS are computed. The

computed results are in good agreement with those which appear in previous studies

[97] and [85].

The computed solution is also tested for warranty of stability and convergence by

studying the normalized relative error e(Ntr) for different values of k0. We can see

that, by choosing Ntr ≈ [κ1R + 100], a 3 decimal places accuracy can be guaranteed

3The propagating modes of a closed waveguide have been widely documented in the literature.
For the range of dimensions we consider here, several propagating modes are supported by a closed
waveguide of these dimensions. Comparing the open CLR problem to this standard closed waveguide,
we deduced that guided modes are supported for the dimension considered in the figures.
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for the computation of RCS. Series expressions of the internal stored energy, RCS and

surface current density are obtained in terms of the coefficients
{
x

(i)
n , y

(i)
n

}∞
n=1

(i =

0, 1). An approach to improve the convergence rate of the series are also proposed.

We see that, by using the reformulated series representation for Jz, a smaller valued

Ntr is required for a predetermined accuracy.

The effect of the oblique incident angle on the scattering behaviors of the CLR are

investigated, by studying the energy distribution and RCS. As the oblique incident

angle, where θpw
z ∈

(
0, π

2

)
, decreases in value, more energy is stored in the interior of

the CLR (as the wave propagates down the cylinder) and less is diffracted back. In

addition, the surface current possess both the z- and φ- components, for an oblique

incident problem. As θpw
z moves away from π

2
, the value of Jz decreases, while that

of Jφ increases. Some parametric optimizations maybe introduced to achieve well-

suppressed side lobes and powerful backscattering (see next chapter).
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Chapter 5

RCS studies of dielectric
cylindrical lens reflectors

5.1 Introduction

Lens Reflectors have been used in microwave communications for many years. Most

investigations are concerned with the Spherical Lens Reflectors (SLR) [29, 31, 63,

70, 71, 83] in the form of a stepped-index Luneburg Lens (LL) with attached PEC

spherical cap. The stepped-index LL has been intensively used as a focusing device.

As an approximation to the ideal LL with continuously varying dielectric constant,

the stepped-index version reveals the same performance as expected of the ideal LL

at a frequency range limited by some “cut-off” frequency strictly depending on the

number of concentric layers. It simply means that when using the stepped-index LL,

the widening of the frequency range for desired performance is only possible with an

increased number of layers. Such an approach is not efficient as manufacturing LL

with a larger number of layers is highly costly.

For this reason, some recent investigations, for example [83], have studied a ho-

mogeneous dielectric sphere as an alternative choice to the LL. Possessing a less pro-

nounced focusing at any selected frequency, this simple spherical lens is advantageous

when it is used as a wide-band frequency lens. It was shown in [83] that, in some cases

the RCS spectral characteristics of the reflector attached to a homogeneous sphere

are superior to those of based on the LL.

The objective of this chapter is two-fold. First, similar to [83], we study the

competitiveness of the reflector based on a constant-K lens (homogeneous dielectric

cylinder) with that based on a cylindrical LL. Secondly, we study the properties of

the backscattering when the incidence angle varies from that value corresponding to
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normal incidence to that describing the grazing incidence. This part of the investiga-

tion is of strong interest for 3D lens reflectors, because the dependence of RCS versus

incidence angle has not been studied in full, perhaps because the relevance of such

results for 3D SLR is of qualitative character. From a general physical approach, it is

clear that focusing provided by 2D dielectric lenses is much weaker than that realized

by 3D lenses. When implementing the ray-tracing techniques, a 2D lens produces fo-

cusing in the plane, whereas a 3D lens produces volumetric focusing. In other words,

in the second case the more rays collected at the focus represents a higher intensity

of electromagnetic energy density.

To some extent, the study in this chapter may be regarded as “2D version” of [83],

with only one but essential addition, which concerns the RCS studies with varying

incidence angle. The chapter is organized as follows. In Section 5.2, we describe, in

brief, the problem geometry. In Section 5.3, the solution to the scattering problem

employing the MoR is obtained. It analytically transforms the singular series equa-

tions of the first kind to an ISLAE of the second kind. In Section 5.4, we apply the

well-known solution for plane wave scattering by a homogeneous dielectric cylinder

to study the focusing effect at different values of permittivity εr and electrical size D
λ(

= k0R
π

)
. Here, D = 2R is the diameter of the cylindrical lens of radius R, while λ and

k0 = 2π
λ

are, respectively, the wavelength and wavenumber in a free space. The study

concentrates on the exact calculation of the focal spot location, which is to be further

used for proper placement of the reflecting PEC cylindrical strip. This provides the

optimal illumination by the focused electromagnetic flux, which leads to the strong

backscattering that makes the CLR a powerful reflector. Section 5.5 is related to the

comparison of effectiveness of the lenses based on the constant-K lens or LL. The

spectral dependence of the RCS versus electric size of structure is studied in a wide

frequency range extending up to the quasi-optical region (D
λ
≈ 200). In Section 5.6,

we examine the behavior of the RCS depending on the incident angle of the incoming

plane wave. In the conclusion, we summarize the basic results and discuss further

work.

5.2 Geometrical description of the problem

A multi-layered version of the homogeneous CLR studied in Chapter 4 is considered

in the formulation here. Figure 5.1 gives a description of the geometry of a general

infinitely-long, L-layered dielectric cylinder with a PEC strip conformally placed on

its surface. All the cylinders are assumed to be parallel to the z-direction. The
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Figure 5.1: A cross-sectional view of a generic multi-layered dielectric-loaded cylinder
with attached conformal PEC strip.

whole medium is divided by the L interfaces of the multi-layered cylinder (i.e., when

ρ = R1, R2, . . . , RL) into (L + 1) regions. The numbering system used here is such

that region 0 denotes the scattering region external to the cylinder; while region L

denotes the innermost dielectric loaded layer. The outermost region 0 is taken to be

the free space with constitutive parameters (ε0, µ0). Each of the dielectric regions

is characterized by its relative permittivity and permeability (εi, µi), i = 1, 2, . . . , L.

The PEC strip, assumed to be infinitely thin, is attached to the multi-layered cylinder

at ρ = R1. We adopt the same notations as in Chapter 4 for the angles; i.e., θPEC

denotes the half-angular width subtended by the strip at the center, while θpw
x is the

incident angle the normal incident TMz plane wave makes with respect to the x-axis

at the center.

The LL is a dielectric lens with its permittivity varying with the radius of the

cylindrical lens. Its relative permittivity is given by the well-known formula

ε(ρ) = 2−
(
ρ

R1

)2

, for 0 ≤ ρ ≤ R1, (5.1)
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Figure 5.2: Geometry of a infinitely long CLR with a carefully located conformal
PEC strip to achieve maximum backscattering.

where R1 is the radius of the LL. A PEC strip is conformally attached to the surface

of the LL. In this construction, the CLLR focuses the incident plane wave to a point

at its surface, where the reflecting PEC strip is located. The focusing waves are

reflected backward in the opposite direction to the incident plane wave. From the

manufacturing point of view, the CLLR is approximated by a stepped-index dielectric-

loaded lens. This approximation to the ideal CLLR is a special case of the multi-

layered cylinder described in Figure 5.1.

In addition, with appropriate choice of parameters, this multi-layered cylinder can

be considered as CLR or Cylindrical Luneburg lens reflector (CLLR). The CLR is a

“two-layered” model of this general model, with region 0 and region 1 sharing the

same physical quantities; (i.e., they are both the free space), while region 2 represents

the homogeneous dielectric lens. We use (ε0εr, µ0µr) to denote the physical quantities

of this dielectric lens, and R to denote its radius. The PEC strip, which serves as a

reflector, is placed at ρ = R1. The location of the reflecting surface (i.e., the PEC

strip) is carefully selected to lie close to the spot where incoming plane wave is focused.

This is done by studying the energy distribution of the constant-K cylindrical lens

after the impingement of the incident plane wave. In other words, we have a concentric

layer of air surrounding the core dielectric cylinder, as shown in Figure 5.2.
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5.3 Problem formulation

As a normal incident TMz plane wave is considered (i.e., θpw
z = π

2
and kz = 0), only

Ez, Hφ and Hρ are non-vanishing in this problem. We adopt the following series

representation for the secondary Ez in each region i:

E(i)
z =

∞∑
n=−∞

[
a(i)
n

H
(2)
n (kiρ)

H
(2)
n (kiRi+1)

+ b(i)
n Jn(kiρ)H

′(2)
n (kiRi)

]
ejnφ , (5.2)

where i = 0, 1, . . . , L. In order for the scattered field in the unbounded region 0 to

satisfy the Sommerfeld radiation condition, we have
{
b

(0)
n

}
n∈Z
≡ 0. On the other

hand, for the boundedness of the transmitted field in the innermost region L, we

set
{
a

(L)
n

}
n∈Z
≡ 0. The series representations for H

(i)
φ and H

(i)
ρ in region i can be

obtained from (2.33) to be:

H
(i)
φ =

1

jηi

∞∑
n=−∞

[
a(i)
n

H
′(2)
n (kiρ)

H
(2)
n (kiRi+1)

+ b(i)
n J

′
n(kiρ)H

′(2)
n (kiRi)

]
ejnφ , (5.3)

H(i)
ρ =− 1

ηikiρ

∞∑
n=−∞

n

[
a(i)
n

H
(2)
n (kiρ)

H
(2)
n (kiRi+1)

+ b(i)
n Jn(kiρ)H

′(2)
n (kiRi)

]
ejnφ , (5.4)

where ηi =
√

µ0µi
ε0εi

is the characteristic impedance of region i (i = 0, 1, . . . , L).

As stated in (2.6a) and (2.7), the tangential total electric and magnetic fields are

continuous across the dielectric interface. That is, for all φ ∈ (−π, π):

E(i−1)
z (φ,Ri) = E(i)

z (φ,Ri) , for i = 1, 2, . . . , L; (5.5)

H
(i−1)
φ (φ,Ri) = H

(i)
φ (φ,Ri) , for i = 2, 3, . . . , L. (5.6)

Imposing these continuity conditions allows us to write all the unknown coefficients{
a

(i)
n , b

(i)
n

}
n∈Z

for i = 0, 1, . . . , (L− 1) in terms of the unknown
{
b

(L)
n

}
n∈Z

.

Application of the continuity of Ez on each of Ri (for i = 1, 2, . . . , L) allows us to

write every one of
{
a

(i)
n

}
n∈Z

in terms of the unknowns
{
b

(i)
n

}
n∈Z

.

a(i)
n =b(L)

n Jn(kLRL)H
′(2)
n (kLRL)

L−1∏
j=i+1

H
(2)
n (kjRj)

H
(2)
n (kjRj+1)

− b(i)
n Jn(kiRi+1)H

′(2)
n (kiRi)

+
L−1∑
j=i+1

b(j)
n ς(j)

n

H
′(2)
n (kjRj)

H
(2)
n (kjRj+1)

j−1∏
k=i+1

H
(2)
n (kkRk)

H
(2)
n (kkRk+1)

, (5.7)

for i = 1, 2, . . . , L− 1; while for i = 0, we have:

a(0)
n =− cn + b(L)

n Jn(kLRL)H
′(2)
n (kLRL)

L−1∏
j=1

H
(2)
n (kjRj)

H
(2)
n (kjRj+1)
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+
L−1∑
j=1

b(j)
n ς(j)

n

H
′(2)
n (kjRj)

H
(2)
n (kjRj+1)

j−1∏
k=1

H
(2)
n (kkRk)

H
(2)
n (kkRk+1)

. (5.8)

In the above, we have introduced
{
ς

(i)
n

}
n∈Z

to simplify the expressions. For i =

1, 2, . . . , (L− 1),

ς(i)
n :=Jn(kiRi)H

(2)
n (kiRi+1)− Jn(kiRi+1)H(2)

n (kiRi) . (5.9)

In addition, the application of the continuity of Hφ across each of Ri for i =

2, 3, . . . , L (that is, the interface of the inner dielectric layers), allows us write
{
b

(i)
n

}
n∈Z

(for i = 1, 2, . . . , L − 1) in terms of one single unknown sequence
{
b

(L)
n

}
n∈Z

. For

i = 1, 2, . . . , (L− 1), we have

b(i)
n =b(L)

n ζiα
(i)
n β

(i)
n , (5.10)

where the following notations are introduced for i = 1, 2, . . . , (L− 1):

ζi :=
πkiRi+1

2j
, (5.11a)

α(i)
n :=

H
′(2)
n (kLRL)

H
′(2)
n (kiRi)

H
(2)
n (kiRi+1)

H
(2)
n (kL−1RL)

, (5.11b)

β(i)
n :=

{
%(L−1)
n , for i = L− 1,

γ(i)
n υ

(i)
n + ζi+1

(
%(i)
n − ψ(i)

n ς
(i+1)
n

)
β(i+1)
n , otherwise,

(5.11c)

%(i)
n :=



ηL−1

ηL
J ′n(kLRL)H(2)

n (kL−1RL)

− Jn(kLRL)H
′(2)
n (kL−1RL) , for i = L− 1,

ηi
ηi+1

[
J ′n(ki+1Ri+1)H(2)

n (ki+1Ri+2)

−Jn(ki+1Ri+2)H
′(2)
n (ki+1Ri+1)

]
, otherwise,

(5.11d)

and the following for i = 1, 2, . . . , (L− 2):

γ(i)
n :=

[
ηi
ηi+1

H
′(2)
n (ki+1Ri+1)

H
(2)
n (ki+1Ri+1)

− H
′(2)
n (kiRi+1)

H
(2)
n (kiRi+1)

]
L−2∏
j=i+1

H
(2)
n (kjRj)

H
(2)
n (kjRj+1)

, (5.11e)

ψ(i)
n :=

H
′(2)
n (kiRi+1)

H
(2)
n (kiRi+1)

, (5.11f)

υ(i)
n :=


Jn(kLRL)H(2)

n (kLRL) , for i = L− 2,

υ(i+1)
n + ζi+2β

(i+2)
n ς(i+2)

n

L−2∏
j=i+2

H
(2)
n (kjRj)

H
(2)
n (kjRj+1)

, otherwise.
(5.11g)
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We are now left with the unknown
{
b

(L)
n

}
n∈Z

to be solved by imposing the MBC

on the outermost layer ρ = R1. The Meixner finite condition requires that the energy

contained in the innermost region L (where ρ < RL) is bounded; i.e.,

W =
1

2

∫ RL

0

∫ π

−π

{
ε0εL

∣∣E(L)
z

∣∣2 + µ0µL

[∣∣∣H(L)
φ

∣∣∣2 +
∣∣H(L)

ρ

∣∣2]} dφ ρ dρ <∞ . (5.12)

Following similar steps as those in Subsection 4.3.2, (5.12) leads to the requirement

that the unknown
{
b

(L)
n

}
n∈Z

satisfy the Fejér’s Tauberian condition (D.4).

The CLR, as depicted in Figure 5.2, consists of a constant-K lens and (in gen-

eral case) a PEC cylindrical strip separated by an air gap. When the cylindri-

cal strip is located at some distance from the surface of the cylinder, this may

be treated as a “two-layer” model with a layer of air surrounding the dielectric

cylinder. The virtual air layer extends from the dielectric interface of the cylinder

ρ = R2 to ρ = R1. The location of the cylindrical strip is described by coordinates

ΩPEC =
{

(ρ, φ) : ρ = R1, |φ| < θPEC,−∞ < z <∞
}

. When the cylindrical strip is

attached to the cylinder, we use the limiting case of our developed code which de-

scribes the single-layer model. When there is an air-gap (i.e., ε1 = 1 and µ1 = 1), the

elimination of all unknowns except
{
b

(2)
n

}∞
n=1

provides the following DSE:

∞∑
n=−∞

b(2)
n one

jnφ = 0 , φ ∈ (−θPEC, θPEC), (5.13)

∞∑
n=−∞

[
b(2)
n tn + zn

]
ejnφ = 0 , φ ∈ (−π,−θPEC) ∪ (θPEC, π), (5.14)

where {zn}n∈Z is as defined in (4.36), while the remaining coefficients are:

on :=Jn(krR2)H
′(2)
n (krR2) + ζ1H

′(2)
n (krR2) [Jn(k0R1)− Jn(k0R2)]

×
[
η0

ηr
J ′n(krR2)H(2)

n (k0R2)− Jn(krR2)H
′(2)
n (k0R2)

]
, (5.15a)

tn :=ζ1
H
′(2)
n (k0R2)

H
(2)
n (k0R2)

[
η0

ηr
J ′n(krR2)H(2)

n (k0R2)− Jn(krR2)H
′(2)
n (k0R2)

]
×

{[
J ′n(k0R1)H(2)

n (k0R2)− Jn(k0R2)H
′(2)
n (k0R1)

]
−H

′(2)
n (k0R1)

H
(2)
n (k0R1)

[
Jn(k0R1)H(2)

n (k0R2)− Jn(k0R2)H(2)
n (k0R1)

]}
. (5.15b)
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This set of DSE can be directly converted to two independent ISLAE of the

second kind by using the results given in Chapter 3. Due to the normal incidence

of the plane wave, the E- and H-polarizations decouple, and the above DSE can be

regularized into two independent ISLAE, instead of four as in Chapter 4. The two

ISLAE resulting from regularizing these DSE are the basis of this study.

5.4 Focal studies of a dielectric cylindrical lens

In this section, we consider the homogeneous dielectric cylindrical lens excited by

the E-polarized plane wave. The energy density distribution, W , resulting from the

plane wave scattering is studied using the classical exact series solution. The energy

density distribution, W , is as defined in (2.37); i.e.,

W =
1

2

[
ε0εL

∣∣E(L)
z

∣∣2 + µ0µL

∣∣∣H(L)
φ

∣∣∣2 + µ0µL
∣∣H(L)

ρ

∣∣2] . (5.16)

When regarded as a focusing device, the homogeneous dielectric cylinder exhibits

huge aberrations which are more pronounced for electrically large cylinders (i.e., those

described by D
λ
� 1). The ray-tracing technique shows that paraxial rays are focused

at the focus point, F , outside the cylinder, and location of the relative focus distance,

f , is defined by an elementary formula (when 1 < εr < 4)

f =
OF

OR
=

√
εr

2
(√

εr − 1
) , (5.17)

where O is the center of the cylinder. According to (5.17), the dielectric cylinder with

εr = 4 collects the paraxial rays at the point f = 1; i.e., conditional focal point lies

exactly at dielectric interface (F = R).

Simple GO in the paraxial regime indicates that a flat or curved PEC placed

exactly at the paraxial focus of the dielectric lens will produce a collimated backscat-

tered wave from a collimated incident wave. If the PEC reflector, flat or curved, is

placed away from the lens focus, then the backscattered wave becomes decollimated.

In this chapter, we consider the reflector to be concentric with the dielectric lens,

instead of a flat screen, not only because such structure is easily adaptable to our

chosen solution method, the MoR, but also because one of the objectives for our

study, as stated in Section 5.1, is the 2D analogue study of the competitiveness of

spherical reflector [83] with varying incident angle.

However, the dielectric lens or the step-indexed cylindrical LL lens is not a perfect

lens, non-paraxial rays always suffer aberration, and the wavelength is not zero as for
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GO. The very meaning of the “focus point” at microwaves is very conditional, since,

in fact, each individual ray passing the dielectric cylinder crosses the optical axis at

different point inside some region called the “focal spot”. The characteristic size the

focal spot is comparable with the wavelength [83]. We restrict ourselves to calculation

of the value W along the optical axis for the variation of intensity along the z-axis.

The calculation of W gives us the necessary information for further insight into the

distribution of W near the focal spot. More importantly, this defines the location of

the maximum energy distribution, Wmax, across the focal spot for a fixed electrical

size D
λ

. The dB-scaled value of W (dB) is plotted against the relative distance ρ
R

.

We examine a few constant-K lenses made of material with dielectric constant

from εr = 2.1 (Polytetrafluoroethylene PTFE) to εr = 3.5 (fused quartz). According

to (5.17), maximum intensity of the electromagnetic field, Wmax, occurs at the points(
ρ
R

)
GO

= 1.613 (when εr = 2.1) and 1.074 (when εr = 3.5). These may be called the

GO focal points.

However, at microwaves the electrical size of a constant-K lens is always finite.

When the electric size D
λ

takes values 20, 50, 100 and 200, the calculations reveal

significant discrepancies between locations of the GO focal points and the actual

values of the locations ρ
R

of the maximal intensity for each of four values D
λ

. The

chain of local maxima observed as dicussed below is actually an interference pattern

observed along the axis on one side of the cusp between the caustics. For constant-K

lens with εr = 2.1, these values are ρ
R

= 1.361, 1.437, 1.480 and 1.517, respectively,

as shown in Figure 5.3 (a). Similarly, when εr = 2.4 as shown in Figure 5.3 (b), the

local maxima occur, respectively, at the points ρ
R

= 1.222, 1.277, 1.318 and 1.340;

when εr = 3.0 as shown in Figure 5.3 (c), they correspond to the points ρ
R

= 1.081,

1.097, 1.122 and 1.142; when εr = 3.5 as shown in Figure 5.3 (d), they correspond

to the points ρ
R

= 1.001, 1.009, 1.026 and 1.038. Using (5.17), one can find that the

estimated GO focal points lies at the point where
(
ρ
R

)
GO

= 1.613, 1.410, 1.183 and

1.074 for εr = 2.1, 2.4, 3.0 and 3.5, respectively.

It is evident that the local maxima approaches the focus predicted by the GO

concept as the electrical size increases but aberration is visible. However, the funda-

mental effect is achieved by the dielectric structure. Nevertheless, the local maxima

locations are still far away from that predicted by the GO concept. It can be clearly

seen from Figure 5.4 and Figure 5.5 that, instead of a single focal point as predicted

by simplified GO concept, the actual distribution of the energy density forms a chain

of local maxima of nearly equal values at higher frequencies (D
λ

= 100, 200). We are
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(a) εr = 2.1

(b) εr = 2.4

Figure 5.3: Continued next page.
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(c) εr = 3.0

(d) εr = 3.5

Figure 5.3: Comparison of W across the optical axis of the constant-K lens, when
εr = 2.1 (a), 2.4 (b), 3.0 (c) and 3.5 (d), while D

λ
= 20 (dot-dashed green), 50 (dotted

blue), 100 (dashed red), or 200 (solid black).
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going to calculate the optimal location of the PEC strip for backscattering in next

section, taking into account the discrepancies between ideal and actual structures.

Accurate knowledge of the distribution ofW across the optical axis is of paramount

importance for optimal location of the PEC cylindrical strip, in order to maximize

the backscattering phenomenon. The optimal location is one of the necessary but

sufficient prerequisites for the radiation to be effectively reflected. The optimal choice

of the angular size of the reflecting strip is equally important. The simplest idea

consists in overlapping of the focused beam entirely with the PEC strip, so that at

least the Half Power Beam Width (HPBW) of the focused radiation would not be

larger than angular size of the strip. The calculations of the spatial distribution of W ,

illustrated in Figure 5.4 and Figure 5.5, show that it is sufficient to have cylindrical

strip of the angular half-width θPEC no less than π
36

(or 5◦), for maximal interception

of the energy in a wide range of constant-K lens with electrical size ranging from
D
λ

= 5 up to D
λ

= 200.

5.5 Calculation of backscattering RCS

The objective of this section is to analyze the RCS behavior of a properly designed

CLR in a wide frequency range. To obtain a dimensionless measurement for studies,

normalized backscattering RCS, σ̂b, in dB-scale is plotted against the electric size D
λ

.

All the computations of σ̂b(dB) for both the CLR and CLLR are based on solutions

given by the MoR.

The values of σ̂b(dB) against increasing electric size are studied in order to locate

the optimal location for the reflecting PEC strip. The results from the study of

paraxial energy density distribution, W , provide us with a good initial estimate of this

optimal location, where the maximum backscattering is achieved. The dependences

of RCS, σ̂b(dB), for a CLR with reflector located in the vicinity of the focus region

are computed. The computed average RCS over the range of D
λ
∈ (0, 200) at each

reflector location
(
ρ
R

)
are compared with each other. The dependences of σ̂b(dB) at

three locations
(
ρ
R

)
offering the three highest average RCS are displayed in Figure

5.6 (εr = 2.1) and Figure 5.7 (εr = 3.5), respectively. From these two figures, we

deduce that the optimal location of the reflector is ρ
R

= 1.55 (εr = 2.1) and ρ
R

= 1.04

(εr = 3.5), as measured by maximal average RCS over this band.

It can seen from the figures that, when strip is located away from the optimal spot,

more oscillations appear in the spectral dependence of σ̂b(dB). This phenomenon can

be seen in Figure 5.7 when ρ
R

= 1.02 (the black line). The deep null indicates the
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(a) D
λ = 5

(b) D
λ = 20

Figure 5.4: Continued next page.
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(c) D
λ = 100

(d) D
λ = 200

Figure 5.4: Spatial distribution of W due to the presence of the constant-K lens with
εr = 2.1 of varying electrical size D

λ
= 5 (a), 20 (b), 100 (c), and 200 (d).
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(a) D
λ = 5

(b) D
λ = 20

Figure 5.5: Continued next page.
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(c) D
λ = 100

(d) D
λ = 200

Figure 5.5: Spatial distribution of W due to the presence of the constant-K lens with
εr = 3.5 of varying electrical size D

λ
= 5 (a), 20 (b), 100 (c), and 200 (d).
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Figure 5.6: Comparison of σ̂b(dB) against electric size of a CLR with the PEC strip
located at different distances: ρ

R
= 1.53 (black), 1.55 (red) and 1.57 (blue). [R2 = 1,

θPEC = π
36

= 5◦, εr = 2.1, µr = 1, θpw
x = π = 180◦]
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Figure 5.7: Comparison of σ̂b(dB) against electric size of a CLR with the PEC strip
located at different distances: ρ

R
= 1.02 (black), 1.04 (red) and 1.06 (blue). [R2 = 1,

θPEC = π
36

= 5◦, εr = 3.5, µr = 1, θpw
x = π = 180◦]
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Figure 5.8: The dependences of RCS when reflector is located away from the focus
region: R1 = 1.01R2 (dotted black), R1 = 1.08R2 (dashed red), R1 = 1.10R1 (solid
blue). [R2 = 1, εr = 3.5, µr = 1, θpw

x = π = 180◦, θPEC = π
6

= 30◦]

complex interference between the reflector and the dielectric lens. To better illustrate

this phenomenon, the dependences of σ̂b(dB) for reflector located away from this

optimal location are displayed in Figure 5.8. For practical application over a relatively

wide band, the oscillation in RCS values should be as small as possible relative to the

average value across the band. By this reason, behavior as in Figure 5.8 is undesirable,

and it reinforces the reason for choosing the optimal location to be in the vicinity of

the locations specified in the last column of Table 5.1.

To obtain the maximum backscattering for a CLR, when εr = 2.1, 2.4, 3.0 and

3.5, the PEC cylindrical strip is chosen to be placed at a relative distance ρ
R

= 1.55,

1.35, 1.15 and 1.04, respectively. Table 5.1 provides the summary of the optimal

locations for the PEC strip based on the GO concept, the computed paraxial energy

intensity and the computed maximal backscattered RCS, for each of the CLR with

εr = 2.1, 2.4, 3.0 and 3.5.

In addition, observing Figure 5.9, we conclude that the angular width of the

cylindrical PEC strip, θPEC, does not have significant effect on the reflectivity of the

CLR. The comparative analysis of the spectral dependence for CLR in Figure 5.10

also shows that the performance of CLR with εr = 3.5 is marginally higher than those

with εr = 2.1, 2.4 and 3.0. However, it is worth noting that as εr increases, there
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εr
(
ρ
R

)
GO

(
ρ
R

)
max paraxial intensity

(
ρ
R

)
max RCS

2.1 1.163 1.361, 1.437, 1.480, 1.571 1.55
2.4 1.410 1.222, 1.277, 1.318, 1.340 1.35
3.0 1.183 1.081, 1.097, 1.122, 1.142 1.15
3.5 1.074 1.001, 1.009, 1.026, 1.038 1.04

Table 5.1: The optimal locations of the PEC strip according to the three different
approaches, for the CLR with εr = 2.1, 2.4, 3.0 and 3.5. The second column displays
the focus distance calculated according to the GO concept; the third column lists
the four local maximal according to the computed paraxial energy intensity; the last
column gives the location of the reflector that offers maximal average RCS over the
range D

λ
∈ (0, 200).

are more oscillations in the spectral dependence of σ̂b(dB). For this reason, the CLR

with dielectric material of εr = 2.1 is preferred over those with higher εr.

Figure 5.11 illustrates the spectral dependence of σ̂b(dB), when a plane wave

incident normally (θpw
z = π

2
= 90◦ and θpw

x = π = 180◦) on a cylindrical reflector,

and the PEC strip is of total width π
18

= 10◦ and π = 180◦, respectively. They

compare the performance of a CLR with εr = 2.1 with those of a L-layered CLLR

(constructed using stepped-index cylindrical LL). We can see from these figures that,

for a minimal strip of angular size 10◦, when L = 3, the CLR outperforms the CLLR

in the range D
λ
> 20; when L = 5, the CLR outperforms the CLLR in the range

D
λ
> 60; when L = 7, the CLR outperforms the CLLR in the range D

λ
> 115. We

have even better performance from the CLR when the strip size is increased to 10◦

to 180◦. When 2θPEC = 10◦, the dependence of RCS against the electric size has

an oscillatory character up to N = 7. As the strip size increases, more oscillations

appear in the spectral dependence RCS for CLLR, whereas for CLR, the behavior is

still overall monotonic for both sizes (2θPEC = 10◦ and 180◦). From our observations

based on TMz polarization, we draw the conclusion that the CLLR can be replaced

by the cheaper alternative of the CLR, which offers reasonably high and smoother

RCS against the electric size.

5.6 RCS of CLR and CLLR versus incident angle

θpw
x

From a general point of view, it is evident that the case of normal incidence causes

the most powerful reflection, as the incident plane wave illuminating the constant-
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(a) εr = 2.1 and R1 = 1.55R2

(b) εr = 3.5 and R1 = 1.04R2

Figure 5.9: Comparison of σ̂b(dB) against electric size of a CLR with PEC strip of
different angular widths: θPEC = π

36
= 5◦ (black), π

6
= 30◦ (blue) and π

3
= 60◦ (red).

[R2 = 1, µr = 1, θpw
x = π = 180◦] 107



Figure 5.10: Comparison of σ̂b(dB) against electric size of a CLR composed of
constant-K lens of different εr: εr = 2.1 (red), 2.4 (green), 3.0 (blue) and 3.5 (black).
[R2 = 1, θPEC = π

36
= 5◦, µr = 1, θpw

x = π = 180◦, R1 = 1.55, 1.35, 1.15 and 1.04 R2,
respectively]
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(a) θPEC = 5◦

(b) θPEC = 90◦

Figure 5.11: Comparison of the RCS of a CLR and a CLLR: CLR with εr = 2.1 (solid
black) versus CLLR with L = 3 layers (dot-dashed green), L = 5 (dotted blue) and
L = 7 (dashed red).
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K lens or cylidinrical LL forms a focal spot right at the central part of the PEC

strip reflector. As has been shown in Section 5.4, the strip should extend over the

transverse size of a focal spot to provide strong reflection. We can observe from Figure

5.4 and Figure 5.5 that the characteristic transverse size of a focal spot is about 1.0λ.

Therefore, the geometrical size of the PEC strip reflector should be, at least, no less

than this value. At the incidence angle θpw
x of value π

2
= 90◦, there is no significant

backscattering. This is because from the GO concept, the entire surface of a strip is

completely shadowed. Thus, the effect of strong backscattering can be observed only

in the range 0 ≤ θpw
x < π

2
= 90◦.

A simple physical argument predicts the existence of a cut-off incidence angle,

θicut-off, which defines the usable scanning range for the incident angle θpw
x , where

0 ≤ θpw
x < θicut-off, so that a high value of RCS is practically unchanged across the

angular range. It is reasonable to suppose that θicut-off is that angle at which the right

or left boundary (depending on θpw
x ) of the focal spot lies exactly at the sharp edge

of the PEC strip reflector so that whole focal spot is covered by the strip. It is also

clear that the workable range 0 ≤ θpw
x < θicut-off strongly depends on the semi-width

of the reflecting strip θPEC. We assume that diffraction effects are negligible. Thus,

to find the value θicut-off, we choose at the strip surface the point at which the distance

to the edge equals the angular semi-width of the focal spot; i.e., 0.5λ. Elementary

algebra leads to the simple formula for θicut-off, that is

θicut-off =θPEC − sin−1

(
π

2k0

)
. (5.18)

According to (5.18), when θPEC = π
12

= 15◦, k0 = 20π (Figure 5.12 (a)) and

100π (Figure 5.12 (b)), we have θicut-off = 13.56◦ and 14.71◦, respectively. It can

be seen these sub-figures that these results for θicut-off are in good agreement with

accurate numerical results. It should be noted that the CLR provides a more stable

dependence of RCS (θpw
x ) compared to the CLLR, even though the 5-,7- and 9-layered

CLLR exhibits a higher overall level of RCS when k0 = 20π. At higher frequency,

where k0 = 100π, the use of the CLR is preferable as its performance is superior

to that of a 3-,5- or 7-layered CLLR. More strictly, our argument which led to an

approximate formula for θicut-off is reasonable only for shallow and medium size PEC

strip reflectors (θPEC ≤ π
4

= 45◦), otherwise, shielding starts to occur as well as

multiple reflections.

For wider PEC strip reflectors, the situation is more complicated because in a

wider reflector, there are multiple reflections causing significant aberrations to the
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(a) k0 = 20π

(b) k0 = 100π

Figure 5.12: Comparison of RCS against the incident angle for a CLR (εr = 2.1)
with those of CLLR with different number of layers, when θPEC = π

12
= 15◦. CLR

with εr = 2.1 (solid black) versus CLLR with L = 3 layers (x-marked pink), L = 5
(dot-dashed green), L = 7 (dashed blue) and L = 9 (dotted red).
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shape of the focal spot. This results on narrowing the range to 0 ≤ θpw
x ≤ θicut-off, as

shown in Figure 5.13. For example, it can be seen from Figure 5.13 (b) that, θicut-off

lies far from the angular semi-width of the PEC strip, θPEC = π
2

= 90◦. Again, as

before the scanning performance of the CLR is preferable compare with the CLLR.

5.7 Conclusion

Accurate numerical results are computed for the RCS of both the CLR and CLLR,

based on MoR, in a broad frequency band including not only the region of Rayleigh

scattering (λ � R) and diffraction region (λ ≈ R), but also the quasi-optical region

(λ � R). With the numerical results produced, we have demonstrated competitive-

ness of microwave reflectors based on simple cylindrical lenses against those based on

stepped-index Luneburg lenses. We also deduce from the results that CLR with lower

dielectric constant εr are preferable to those with higher εr, as wavelength dependent

oscillations become too strong for higher dielectric contrasts. We also observe that for

higher frequencies, the scanning performance of a CLR is superior of that provided

by CLLR, in the sense that the dependence of RCS has relatively less oscillations,

and is of higher average value over the range of D
λ
∈ (0, 200).
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(a) k0 = 20π

(b) k0 = 100π

Figure 5.13: Comparison of RCS against the incident angle for a CLR (εr = 2.1)
with those of CLLR with different number of layers, when θPEC = π

2
= 90◦. CLR

with εr = 2.1 (solid black) versus CLLR with L = 3 layers (x-marked pink), L = 5
(dot-dashed green), L = 7 (dashed blue) and L = 9 (dotted red).
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Chapter 6

Scattering from a finite array of
CLR under normal incidence

6.1 Introduction

As a natural extension to the scattering problems of CLR considered in Chapter 4 and

5, the scattering problem of an incident plane wave by multiple CLR is considered

in this chapter. A finite number M of parallel CLR (each with arbitrary size, PEC

strip width and dielectric loading) are assumed located in the vicinity of one another.

Consequently, the mutual interaction of the CLR cannot be ignored. Such an array

is very attractive in microwave and optic wave applications, as it can be used to

design for a wavelength- and polarization-selective components. It offers additional

degrees of freedom for controlling the scattered fields. When the CLR are identical

and equally spaced, this finite array of CLR forms a special example of gratings which

are widely used in spectrum analyzers, open mesh reflectors, etc.

The analysis of scattering by multiple closed cylinders (either dielectric or con-

ducting) has been studied over the years, using various techniques such as the inte-

gral equation formulation, the partial differential equation formulation, the T -matrix

approach, the lattice sums approach, the source model technique, and the Green’s

function diakoptics approach [18, 81, 44, 91, 46, 82]. However, in all of the above

literature, the surface of each of these cylinders is taken to be either purely dielectric

or purely PEC. To the best of our knowledge, the analysis of multi-body scattering

problem of slotted cylinders has not been done.

This chapter studies the feasibility of using of the MoR in the solving of the 2D

scattering problem by a finite array of CLR under a normal plane wave excitation.

The MoR has been widely used in the solution of scattering problems involving a

single structure, such as a punctured spheroidal shell, a toroidal shell with slits, and
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a slotted cylinder [84, 85]. The work is extended here to the investigation of the

scattering problem from an arbitrary finite number M of CLR, where the CLR are

of arbitrary radii, positions, dielectric loading and strip sizes.

The analysis starts in a similar approach as that of the single body problem.

The scattered and transmitted fields, from each of the M CLR, are represented by

series involving cylindrical harmonic functions in terms of the local coordinate system

(which origin is the center of the corresponding cylinder). The sum of the scattered

fields from all other CLR is then considered to be an incident wave on each of the

individual cylinder. Subsequently, MBC are enforced on the surface of each of the M

CLR, which leads to 2M sets of DSE involving the trigonometric functions. Each of

the 2M sets of DSE are regularized to produce an ISLAE involving every unknown

expansion coefficients. Therefore, the 2M infinite systems are interconnected, and

need to be solved simultaneously for the values of all the unknown coefficients.

6.2 Problem specification

Figure 6.1: Cross-sectional view of the finite array of CLR

A cross-sectional view of the multi-body scattering problem considered is shown in

Figure 6.1. Each of the CLR is as described in Chapter 4; that is, they are infinitely-

long and axially-symmetric, the conducting strip on each is assumed to be infinitely

thin and perfectly conducting. The CLR are assumed to be parallel to each other and
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to the z-axis of the global coordinate system (ρ, φ, z). In addition, the PEC strips

are assumed to have the same alignment. No further assumption has been made on

the dimension, strip width, dielectric loading and location of each of the CLR.

We suppose the gth CLR is positioned with axial axis located at (rg, ϕg, z) of

the global polar coordinates (ρ, φ, z), for g = 1, 2, . . . ,M . Radius of this CLR is

denoted as Rg. We suppose the gth CLR is constructed with a constant-K lens of

relative permittivity and permeability (εg, µg). An infinitely thin, PEC strip of half

angular size θPEC
g is placed on the surface of the gth cylinder as depicted in Figure

6.1. Without loss of generality, the surrounding homogeneous medium is taken to be

free space with permittivity and permeability (ε0, µ0).

We suppose the array is excited by an E-polarized plane wave traveling in the

direction making an angle θpw
x with respect to the x-axis of the global coordinate

system, as illustrated in Figure 6.1. The scattering problem involving a H-polarized

plane wave excitation can be treated similarly.

6.3 Derivation of the sets of DSE

The complete scattering domain is divided into (M + 1) regions by the contours of

the M CLR. Let region 0 denotes the surrounding medium, and region g denotes the

interior of the gth CLR with ρg < Rg, for g = 1, 2, . . . ,M . Since the incident wave

propagation direction is normal to the cylinder axis (i.e., the z-axis), the problem is

2D and the induced secondary fields do not depend on z.

The analysis begins from expressing the scattered and transmitted fields by the

gth CLR in terms of the local coordinate system (ρg, φg, z), for g = 1, 2, . . . ,M . To

enforce the MBC on the gth CLR, the incident plane wave and the scattered fields by

all other CLR have to be first expressed in terms of the gth local coordinate system, in

order to take into account the interaction between the M cylinders. This is achieved

by making use of the addition theorem given in (B.26).

6.3.1 Series representations for the fields

Since all of the CLR are uniform in the z-direction, and the plane wave is incident

normally on the CLR, the axial components of the electric and magnetic fields are

independent. For the TMz incidence (H inc
z ≡ 0) considered, only the components Ez,

Hφ and Hρ are non-vanishing, from (2.33).

In order to enforce the MBC on the surface of the gth CLR, the expression of the

incident plane wave must be written in terms of the cylindrical harmonic functions
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with reference to the local coordinate system (ρg, φg, z). This is done by application

of the addition theorem given in (B.26). The series representation of the plane wave

in terms of the gth local coordinate system can be obtained as

Einc(g)
z (ρg, φg) = e−jk0rg cos(ϕg−θpwx ) × e−jk0ρg cos(φg−θpwx ) (6.1)

=
∞∑

n=−∞

(−j)nJn(k0ρg)e
−jk0rg cos(ϕg−θpwx )e−jnθ

pw
x ejnφg . (6.2)

The superscript (g) is in reference to the gth local coordinate system (ρg, φg, z).

Suppose the series representations of the scattered and transmitted fields for the

gth cylinder, in terms of the local coordinate system (ρg, φg) centered at (rg, ϕg), are

Esc(g)
z (ρg, φg) =

∞∑
n=−∞

a(g)
n

H
(2)
n (k0ρg)

H
(2)
n (k0Rg)

ejnφg , (6.3)

Etr(g)
z (ρg, φg) =

∞∑
n=−∞

b(g)
n

Jn(kgρg)

Jn(kgRg)
ejnφg , (6.4)

where kg = k0
√
εgµg is the wave number of the dielectric material inside the gth

cylinder. Here,
{
a

(g)
n , b

(g)
n

}
n∈Z

, for g = 1, 2, . . . ,M , are the unknown coefficients to

be determined.

Both the scattered field and the transmitted field associated with each of the

cylinders are based on its local coordinate system. However, to enforce the MBC on

the gth cylinder, the scattered fields of all the other cylinders need to be expressed

in terms of the gth coordinate system. The addition theorem in (B.26) is used to

transfer the series representation from one local coordinate system to another. The

transformation from the hth local coordinate system (ρh, φh) to the gth local coordi-

nate system (ρg, φg) of the Hankel function can be deduced from (B.26) as

H(2)
n (kρh) e

jnφh =
∞∑

m=−∞

Jm(kρg)H
(2)
m−n(kdg,h)e

−j(m−n)θg,hejmφg . (6.5)

Here, dg,h is the distance between the origins of the gth and h local coordinate system,

dg,h =
√
r2
g + r2

h − 2rgrh cos(ϕg − ϕh) whereas θg,h is the angle between the line joining

the origins of two systems and the positive x-axis, θg,h = ± cos−1
(
rh cosϕh−rg cosϕg

dg,h

)
(where ‘−’ is taken when rh sinϕh < rg sinϕg).

Having established the series representations for the longitudinal components of

the electric (incident, scattered and transmitted) fields, the two non-zero transverse

components of the magnetic field follows from (2.33), with kρ = k as kz = 0,

Hφ = − j

kη

∂

∂ρ
Ez and Hρ =

j

kρη

∂

∂φ
Ez . (6.6)
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All other components, Eφ, Eρ and Hz, for the incident and induced fields vanish for

normal TMz incidence.

6.3.2 Solution class

It is worth noting that the series representations given in (6.3) and (6.4) satisfy

the Sommerfeld radiation condition and the finiteness of electromagnetic field at the

origins of the local coordinate systems. Similar to the oblique scattering problem of

a single CLR considered in Chapter 4, the Meixner finite energy condition puts an

additional constraint on the unknown coefficients
{
a

(g)
n , b

(g)
n

}
n∈Z

by considering the

electromagnetic energy per unit length of the gth CLR; that is,

W =
1

2

∫ 1

0

∣∣ejk0z∣∣2 dz ×
∫ R

0

∫ π

−π

{
µ0µr

∣∣Etr(g)
z (ρg, φg)

∣∣2
+ε0εr

∣∣∣Htr(g)
φ (ρg, φg)

∣∣∣2 + ε0εr
∣∣Htr(g)

ρ (ρg, φg)
∣∣2} dφg ρgdρg . (6.7)

Following the same integration process and arguments as that in Subsection 4.3.2, it

can shown that both
{
a

(g)
n , b

(g)
n

}
n∈Z

satisfy the Fejér’s Tauberian condition given in

(D.4); i.e.,

∞∑
n=−∞

|n|
∣∣a(g)
n

∣∣2 <∞ and
∞∑

n=−∞

|n|
∣∣b(g)
n

∣∣2 <∞ . (6.8)

6.3.3 Enforcing the MBC

The solution of the unknown coefficients
{
a

(g)
n , b

(g)
n

}
n∈Z

(g = 1, 2, . . . ,M) can be

obtained by applying the boundary conditions outlined in Subsection 2.2.1, on the

surface of each of the CLR (i.e., ρg = Rg, for g = 1, 2, . . . ,M). The boundary condi-

tion requires that the tangential components of the total electric field vanishes on the

PEC surface. In this TMz case, the electric field has only one non-zero component;

i.e., Ez. On the other hand, the boundary condition also requires that the tangen-

tial components of the total magnetic field varies continuously across the dielectric

interface. As the axial-component of the magnetic field vanishes for E-polarization,

Hφ = − j
kη

∂
∂ρ
Ez is the only non-vanishing tangential component of the magnetic field.
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Therefore, the MBC on the surface of the gth CLR are given by

lim
ρg→R+

g

[
Einc(g)
z +

M∑
h=1

Esc(h)
z

]
= lim

ρg→R−g
Etr(g)
z = 0 , ∀|φg| < θPEC

g , (6.9)

lim
ρg→R+

g

∂

∂ρ

[
Einc(g)
z +

M∑
h=1

Esc(h)
z

]
= lim

ρg→R−g

1

µg

∂

∂ρ
Etr(g)
z , ∀|φg| > θPEC

g . (6.10)

In addition to the MBC, the continuity of the tangential total electric field also

requires that, for all ρg = Rg and φg ∈ [−π, π],

lim
ρg→R+

g

Einc(g)
z +

M∑
h=1

Esc(h)
z = lim

ρg→R−g
Etr(g)
z . (6.11)

It is worth noting that the solution for the unknown coefficients
{
a

(g)
n , b

(g)
n

}
n∈Z

related

to the gth CLR, includes the effect of all interactions between the cylinders under

this formulation.

There are 2M sequences of unknowns
{
a

(g)
n , b

(g)
n

}
n∈Z

(g = 1, 2, . . . ,M) to be de-

termined from imposing the MBC on the surface of each of the CLR. The num-

ber of unknowns can be reduced by enforcing the continuity condition given in

(6.11). By matching the fields across each of the surfaces, every one of the unknown{
b

(g)
n

}
n∈Z

(g = 1, 2, . . . ,M) can be expressed as a linear combination of
{
a

(g)
n

}
n∈Z

for

g = 1, . . . ,M :

b(g)
n = a(g)

n + c(g)
n +

∑
h6=g

∞∑
m=−∞

a(h)
m A(g,h)

n,m . (6.12)

where c
(g)
n = e−jk0rg cos(ϕg−θpwx )(−j)nJn(k0Rg)e

−jnθpwx . Here, the summation
∑

h6=g de-

notes the summation for h = 1, . . . , g − 1, g + 1, . . . ,M .

The MBC on the gth CLR lead to the following DSE involving only the unknowns{
a

(g)
n

}
n∈Z

(g = 1, . . . ,M):

∞∑
n=−∞

[
a(g)
n + c(g)

n +
∑
h6=g

∞∑
m=0

a(h)
m A(g,h)

n,m

]
ejnφg = 0 (A) , ∀|φg| < θPEC

g . (6.13)

∞∑
n=−∞

[
a(g)
n p(g)

n + d(g)
n + q(g)

n

∑
h6=g

∞∑
m=−∞

a(h)
m A(g,h)

n,m

]
ejnφg = 0 (A) , ∀|φg| > θPEC

g . (6.14)

Recall that the notation (A) implies that the series are Abel-summable to 0 over their
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corresponding intervals. The following notations are introduced for brevity:

d(g)
n = k0c

′(g)
n − kg

µg
c(g)
n

J
′
n(kgRg)

Jn(kgRg)
, (6.15a)

p(g)
n = k0

H
′(2)
n (k0Rg)

H
(2)
n (k0Rg)

− kg
µg

J
′
n(kgRg)

Jn(kgRg)
, (6.15b)

q(g)
n = k0

J
′
n(k0Rg)

Jn(k0Rg)
− kg
µg

J
′
n(kgRg)

Jn(kgRg)
, (6.15c)

A(g,h)
n,m =

Hn−m(k0dg,h)Jn(k0Rg)

Hm(k0Rh)
ej(m−n)θg,h , (6.15d)

for n,m ∈ Z.

We have M sets of DSE given in (6.13) and (6.14), for g = 1, 2, . . . ,M . As each

of these sets of DSE involves all the unknowns
{
a

(g)
n

}
n∈Z

for g = 1, 2, . . . ,M , these

M sets are interconnected and need to be solved simultaneously.

6.4 Regularization process

Following the similar process presented in Chapter 3, the M DSE derived in (6.13) and

(6.14) are reformulated with trigonometric functions as the kernels, then regularized

to 2M connected ISLAE. The constant unknowns a
(g)
0 (g = 1, 2, . . . ,M) are removed

from all the 2M ISLAE before matrix inversion is performed numerically to solve

for the unknown coefficients. This is achieved by a simple algebraic elimination

(equivalent to the application of Cramer’s rule). In the final step, one single 2M -by-

2M block matrix equation is obtained. The block matrix is shown to be a compact

perturbation of the identity operator in `2.

6.4.1 Introducing the asymptotically small parameters

Due to the symmetry of the intervals, we can reformulate the DSE given in (6.13)

and (6.14) defined over (−π, π) in terms of the trigonometric functions over (0, π).

We introduce the following:

x(g)
n :=a(g)

n + a
(g)
−n , (6.16a)

y(g)
n :=a(g)

n − a
(g)
−n , (6.16b)

e(g)
n :=c(g)

n + c
(g)
−n , (6.16c)

f (g)
n :=

d
(g)
n + d

(g)
−n

n
, (6.16d)

g(g)
n :=c(g)

n − c
(g)
−n , (6.16e)
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h(g)
n :=

d
(g)
n − d(g)

−n

n
, (6.16f)

B(g,h)
n,m :=

1

2

[
A(g,h)
n,m + A

(g,h)
−n,m + A

(g,h)
n,−m + A

(g,h)
−n,−m

]
, (6.16g)

C(g,h)
n,m :=

1

2

[
A(g,h)
n,m + A

(g,h)
−n,m − A

(g,h)
n,−m − A

(g,h)
−n,−m

]
, (6.16h)

D(g,h)
n,m :=

1

2

[
A(g,h)
n,m − A

(g,h)
−n,m + A

(g,h)
n,−m − A

(g,h)
−n,−m

]
, (6.16i)

E(g,h)
n,m :=

1

2

[
A(g,h)
n,m − A

(g,h)
−n,m − A

(g,h)
n,−m + A

(g,h)
−n,−m

]
, (6.16j)

for n,m = 1, 2, . . .

It is worth noting that p
(g)
n = p

(g)
−n and q

(g)
n = q

(g)
−n, for all n = 1, 2, . . . By examining

the asymptotic behaviors of the Bessel function and the Hankel function, the following

asymptotically parameters are introduced:

p̃(g)
n = 1 +

Rgµg
1 + µg

p
(g)
n

|n|
, (6.17)

q̃(g)
n =

q
(g)
n

|n|
, (6.18)

for n = 1, 2, . . . Both of the above parameters have the order of O
(
k2gR

2
g

n2

)
, as n→ +∞.

On the other hand, from its definition, we can see that f
(g)
n = e

(g)
n q̃n, for n = 1, 2, . . .

Therefore, the gth set of DSE given in (6.9) and (6.10) can be reformulated as the

two sets of DSE below. The first set of DSE involving the cosine function is:

a
(g)
0 + c

(g)
0 +

∑
h6=g

a
(h)
0 A

(g,h)
0,0 +

1

2

∑
h6=g

∞∑
m=1

[
x(h)
m B

(g,h)
0,m + y(h)

m C
(g,h)
0,m

]
(6.19a)

+
∞∑
n=1

{
e(g)
n + x(g)

n +
∑
h6=g

[
a

(h)
0 B

(g,h)
n,0 +

∞∑
m=1

(
x(h)
m B(g,h)

n,m + y(h)
m C(g,h)

n,m

)]}
cosnφ = 0 ,

for φg ∈ (0, θPEC
g ), and

ζgp
(g)
0 a

(g)
0 + ζgd

(g)
0 + ζgq

(g)
0

∑
h6=g

a
(h)
0 A

(g,h)
0,0 (6.19b)

+
ζgq

(g)
0

2

∑
h6=g

∞∑
m=1

[
x(h)
m B

(g,h)
0,m + y(h)

m C
(g,h)
0,m

]
+
∞∑
n=1

n

{
ζgf

(g)
n + x(g)

n

(
1− p̃(g)

n

)
+ζg q̃

(g)
n

∑
h6=g

[
a

(h)
0 B

(g,h)
n,0 +

∞∑
m=1

(
x(h)
m B(g,h)

n,m + y(h)
m C(g,h)

n,m

)]}
cosnφ = 0 ,
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for φg ∈ (θPEC
g , π), where

ζg :=− Rgµg
1 + µg

. (6.20)

The second set of DSE involving the sine function is:

∞∑
n=1

{
g(g)
n + y(g)

n (6.21a)

+
∑
h6=g

[
a

(h)
0 D

(g,h)
n,0 +

∞∑
m=1

(
x(h)
m D(g,h)

n,m + y(h)
m E(g,h)

n,m

)]}
sinnφ = 0 ,

for φg ∈ (0, θPEC
g ), and

∞∑
n=1

n

{
ζgh

(g)
n + y(g)

n

(
1− p̃(g)

n

)
(6.21b)

+ζg q̃
(g)
n

∑
h6=g

[
a

(h)
0 D

(g,h)
n,0 +

∞∑
m=1

(
x(h)
m D(g,h)

n,m + y(h)
m E(g,h)

n,m

)]}
sinnφ = 0 .

for φg ∈ (θPEC
g , π).

6.4.2 Conversion to infinite system of linear algebraic equa-
tions

It may be shown with the ideas in Chapter 3, that the gth set of series equations given

in (6.19) and (6.21) can be transformed to two ISLAE in terms of
{
x

(g)
n , y

(g)
n

}∞
n=1

by

the MoR. The ISLAE for x
(g)
n has the form of

√
mx(g)

m

[
1− p̃(g)

m

]
+
∞∑
n=1

√
nx(g)

n p̃(g)
n T (g)

m,n

= 2ζg

[
p

(g)
0 c

(g)
0 − d

(g)
0

]
τ (g)
m − ζg

√
mf (g)

m +
∞∑
n=1

√
n
[
ζgf

(g)
n − e(g)

n

]
T (g)
m,n

−
∑
h6=g

a
(h)
0 H(g,h)

m +
∑
h6=g

∞∑
n=1

[√
nx(h)

n U (g,h)
m,n +

√
ny(h)

n V (g,h)
m,n

]
(6.22)

The following are parameters introduced that can be explicitly calculated in terms of

the geometry and physical quantities of the problem.

ψg = cos(θPEC
g ) (6.23)

T (g)
m,n = Q̂

(0,1)
m−1,n−1(ψg)−

ζgp
(g)
0 (1 + ψg)

2

ζgp
(g)
0 ln

(
1−ψg

2

)
− 1

P̂
(0,1)
m−1(ψg)

m

P̂
(0,1)
n−1 (ψg)

n
(6.24)
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τ (g)
n =

(1 + ψg)
√

2
[
ζgp

(g)
0 ln

(
1−ψg

2

)
− 1
] P̂ (0,1)

n−1 (ψg)

n
(6.25)

H(g,h)
n = 2ζg

[
q

(g)
0 − p

(g)
0

]
τ (g)
n A

(g,h)
0,0 + ζg q̃

(g)
n B

(g,h)
n,0

+
∞∑
m=1

[
1− ζg q̃(g)

m

]
B

(g,h)
m,0 T

(g)
n,m (6.26)

U (g,h)
m,n = ζg

[
p

(g)
0 − q

(g)
0

]
τ (g)
m B

(g,h)
0,n − ζg q̃(g)

m B(g,h)
m,n

−
∞∑
k=1

[
1− ζg q̃(g)

k

]
T

(g)
m,kB

(g,h)
k,n (6.27)

V (g,h)
m,n = ζg

[
p

(g)
0 − q

(g)
0

]
τ (g)
m C

(g,h)
0,n − ζg q̃(g)

m C(g,h)
m,n

−
∞∑
k=1

[
1− ζg q̃(g)

k

]
T

(g)
m,kC

(g,h)
k,n (6.28)

B(g,h)
m,n = 1

2

√
m
n

[
A(g,h)
m,n + A

(g,h)
−m,n + A

(g,h)
m,−n + A

(g,h)
−m,−n

]
(6.29)

C(g,h)
m,n = 1

2

√
m
n

[
A(g,h)
m,n + A

(g,h)
−m,n − A

(g,h)
m,−n − A

(g,h)
−m,−n

]
(6.30)

The ISLAE for
{
y

(g)
n

}∞
n=1

is similar to that of
{
x

(g)
n

}∞
n=1

, and is omitted here for

reason of space. Together with the two ISLAE obtained, an expression for a
(g)
0 is

derived, which has been isolated from the ISLAE for
{
x

(g)
n

}∞
n=1

and
{
y

(g)
n

}∞
n=1

,

a
(g)
0 = −

∑
h6=g

a
(h)
0 ag,h + Ψg . (6.31)

This expression is obtained by making use of the fact that
{
x

(g)
n , y

(g)
n

}∞
n=1

belong to

`2, and the continuity at z = ψg. The two new notations ag,h and Ψg introduced are

defined as

ag,h :=


1 , g = h,

−

[
γgA

(g,h)
0,0 +

∞∑
n=1

τ (g)
n B

(g,h)
n,0

]
, g 6= h,

(6.32)

Ψg :=λg +
M∑
h=1

∞∑
n=1

[√
nx(h)

n F (g,h)
n +

√
ny(h)

n G(g,h)
n

]
, (6.33)

where we have also introduced

γg :=
1− ζgq(g)

0 ln
(

1−ψg
2

)
ζgp

(g)
0 ln

(
1−ψg

2

)
− 1

, (6.34)
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λg :=
c

(g)
0 − ζgd

(g)
0 ln

(
1−ψg

2

)
ζgp

(g)
0 ln

(
1−ψg

2

)
− 1

−
∞∑
n=1

√
n
[
ζgf

(g)
n − e(g)

n

]
τ (g)
n , (6.35)

F (g,h)
n :=

{
τ

(g)
n p̃

(g)
n , g = h,

1
2
γgB

(g,h)
0,n +

∑∞
m=1

[
1− ζg q̃(g)

m

]
τ

(g)
m B

(g,h)
m,n , g 6= h,

(6.36)

G(g,h)
n :=

{
0 , g = h,
1
2
γgC

(g,h)
0,n +

∑∞
m=1

[
1− ζg q̃(g)

m

]
τ

(g)
m C

(g,h)
m,n , g 6= h.

(6.37)

For the normal incidence problem involving only single cylinder, the ISLAE for{
x

(1)
n

}∞
n=1

and
{
y

(1)
n

}∞
n=1

are disjoint. They can readily and separately be solved by

matrix inversion. When there are M cylinders involved, the resulting 2M systems are

all connected to one another. Some manipulations are required before the systems

can be solved numerically by the truncation method. We remove all the unknowns

a
(g)
0 (g = 1, . . . ,M) from each of the 2M systems, by analytically solving the 2M

expressions of the form of Eqn.(6.31) by Cramer’s rule or equivalent. An explicit

expression for the a
(g)
0 that is independent of all the other a

(h)
0 (for h = 1, . . . , i−1, i+

1, . . . ,M) is obtained as

a
(g)
0 =

M∑
h=1

ΨgΦg,h , (6.38)

where the coefficients Φg,h (for g, h = 1, 2, . . . ,M) can be computed from

Φg,h =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 . . . a1,h−1 a1,h+1 . . . a1,M
...

...
...

...
. . .

...
ag−1,1 . . . ag−1,h−1 ag−1,h+1 . . . ag−1,M

ag+1,1 . . . ag+1,h−1 ag+1,h+1 . . . ag+1,M
...

...
...

...
. . .

...
aM,1 . . . aM,h−1 aM,h+1 . . . aM,M

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
a1,1 . . . a1,M

...
...

...
aM,1 . . . aM,M

∣∣∣∣∣∣∣
. (6.39)

Therefore, once the values for the unknowns
{
x

(g)
n

}∞
n=1

and
{
y

(g)
n

}∞
n=1

(g = 1, . . . ,M)

are computed, all the unknowns a
(g)
0 (for g = 1, . . . ,M) can be readily calculated.

These expressions for a
(g)
0 in the form of Eqn.(6.38) are substituted back into

each of the 2M infinite systems. For the unknown
{
x

(g)
n

}∞
n=1

, the following ISLAE is

obtained

K(g)
m,n =

√
mx(g)

m

[
1− p̃(g)

m

]
+

M∑
h=1

∞∑
n=1

[√
nx(h)

n I(g,h)
m,n +

√
ny(h)

n J (g,h)
m,n

]
, (6.40)
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where the expressions for I
(g,h)
m,n , J

(g,h)
m,n and K

(g)
m,n are defined as

I(g,h)
m,n =



p̃
(g)
n T

(g)
m,n +

∑M
q=1 F

(q,g)
n R

(g,q)
m , g = h,

ζg q̃
(g)
m B

(g,h)
m,n +

∑M
q=1 F

(q,h)
n R

(g,q)
m , g 6= h,

+
∑∞

k=1

[
1− ζg q̃(g)

k

]
T

(g)
m,kB

(g,h)
k,n

+ζg

[
q

(g)
0 − p

(g)
0

]
τ

(g)
m B

(g,h)
0,n

(6.41)

J (g,h)
m,n =



∑M
q=1 G

(q,g)
n R

(g,q)
m , g = h,

ζg q̃
(g)
m C

(g,h)
m,n +

∑M
q=1G

(q,h)
n R

(g,q)
m , g 6= h,

+
∑∞

k=1

[
1− ζg q̃(g)

k

]
T

(g)
m,kC

(g,h)
k,n

+ζg

[
q

(g)
0 − p

(g)
0

]
τ

(g)
m C

(g,h)
0,n

(6.42)

R(g,h)
n =

∑
p6=g

H(g,p)
n Φp,h . (6.43)

A similar ISLAE can be obtained for
{
y

(g)
n

}∞
n=1

. These ISLAE can now be written

as a single matrix equation in the operator form of (I +H) x = b. By truncating the

infinite system of equations to Ntr, the problem is solved by matrix inversion. Here,

I is the (2NtrM ×2NtrM) identity matrix, H is a compact 2M ×2M block matrix in

`2 where each of these block matrices is of size Ntr ×Ntr, b is a known vector, and x

is the vector consisting of the unknowns
{
x

(g)
n

}∞
n=1

and
{
y

(g)
n

}∞
n=1

. It is worth noting

that the infinite system (for Ntr → ∞) is a Fredholm matrix equation of the second

kind. By increasing Ntr, the accuracy of the computed solution can be improved.

6.5 Numerical results

In this section, sample numerical results are presented to prove the validity of the

developed formulation for the scattering problem involving multiple CLR. The un-

known coefficients computed are substituted into the series expressions for the near

field, RCS and surface current density. The properties of grating formed by an array

of identical CLR are studied based on the RCS analysis. The effect of the number of

CLR in the grating as well as the effect of the relative distance between each CLR

have on the RCS are investigated numerically.

6.5.1 Series representations of physical quantities

For the multiple scattering problem considered in this chapter, the RCS σ(θ) still has

the same definition as that in (2.40). However, the total scattered field by this array
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of CLR is the sum of all the scattered field produced by each individual CLR. On top

of that, each of this scattered field has been expressed in terms of its local coordinate

system. In order to obtain a series representation for this multiple scattering problem,

the far-field approximations

ρg ≈ ρ− rg cos(ϑg − φ) , (6.44)

φg ≈ φ , (6.45)

are employed, in addition to the use of the asymptotic expression of the Hankel

function.

6.5.2 Numerical validation

To check the adequacy and the accuracy of the proposed formulation and the numer-

ical algorithm, the scattering problem of five PEC cylinders as described in [18] is

solved. Five closed PEC cylinders (θPEC
g = 180◦, for g = 1, 2, . . . , 5) of the same size

(Rg = 0.1λ, for g = 1, 2, . . . , 5) are considered. Suppose the center of the first cylinder

is located at the origin, the centers of the remaining four cylinders are located 0.5λ

away; i.e., at the points (0.5λ, 0), (0.5λ, 90◦), (0.5λ, 180◦) and (0.5λ,−90◦) in rela-

tion to the global coordinate system (ρ, φ). The cross-sectional view of the particular

problem considered is depicted in the top figure in Figure 6.2. The values of the

bistatic scattering cross section computed for the problem is plotted along the entire

contour, and the curve is compared directly with that in [18]. Good agreement is seen

with the results calculated using the hybrid exact-method of moments technique, the

iterative technique and the boundary value solution method.

As another method to check the validity of this developed formulation for slotted

PEC cylinders (when θPEC
g 6= π), the computed values of the 2M unknown coefficients,{

x
(g)
n , y

(g)
n

}∞
n=1

(g = 1, . . . ,M), have been substituted back to the series representa-

tions given in (6.3), (6.4) and (6.6) to check the validity of MBC. For this purpose,

the scattering of a TMz plane wave incident on a pair of arbitrary chosen CLR is

considered. The first CLR is assumed to have a radius of R1 = 2.5λ, attached with

a PEC strip of half angular width θPEC
1 = 90◦ and located with center at (0, 0);

whereas the second CLR is assumed to take values R2 = 3.75λ, θPEC
2 2 = 60◦, r2 = 10

and ϑ2 = 45◦. Both cylinders are filled with dielectric material characterized by

(ε1, µ1) = (ε2, µ2) = (2, 1). The computed real and imaginary values of the tangential

total electric field, Ez, along the contour of the first CLR are depicted in Figure 6.3.

The exterior field (sum of the scattered fields by both CLR and the incident field) is
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depicted as the solid red line; while the interior field computed (the transmitted field

inside the first CLR) is depicted as the dashed black line. Evidently, the total electric

field is continuous across the surface and vanishes on the PEC strip. In Figure 6.4,

the computed real and imaginary values of the difference between Hφ of the exterior

and interior total fields are plotted over the entire contour. As seen from the plot,

Hφ varies continuously across the dielectric surface. In conclusion, both of Figure

6.3 and Figure 6.4 confirm the MBC given in (6.9) and (6.10) on the surface of the

first CLR. The same check has been conducted on the surface of the second CLR and

excellent agreement is observed again. The figures are omitted to avoid repetition.

As another means of display for the same internal test conducted in the last

paragraph, the near field distribution of the scattering problem is illustrated in the

contour mesh given in Figure 6.5

6.5.3 Numerical investigation

After the problem formulation and the validation of the method, the solution can

now be computed numerically and applied to actual analysis. However, there are a

number of parameters to choose from. Due to the limit of space, it is not feasible

to present a full range of features of the structures. Let us show a representative

result. Figure 6.6 illustrates the near field distribution of a TMz plane wave incident

at θpw
x = 180◦ on a sawtooth-shaped PEC surface formed by joining CLR. Consider

such a surface constructed using three cylinders of the same size, where Rg = 2.5λ,

εg = 1 and µg = 1 (for g = 1, 2, 3).

6.6 Conclusion

A rigorous and accurate method of solving for the problem of 2D scattering from a

finite array of CLR has been presented. As the CLR are open, the interior cavities

of the CLR are coupled through free space. The formulation is based on the MoR,

which has the advantage of a stable and convergent computed solution. The dielectric

constant, strip width, radius and location of each of the cylinders can be varied to

model a range of scattering problems, including a periodic array of fully- (or partially-)

shielded cylinders.

The solution method described in this chapter makes no assumption nor simpli-

cation of the interaction among the multiple CLR. As the number of CLR increases,

the computation cost increases significantly. One possible extension to the current

work is the combination of the Green’s function diakoptics approach [82] with our
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method developed here. In the Green’s function diakoptics approach, the configura-

tion is decomposed into computational bricks, and the fields incident on and scattered

from a computational brick are captured through the use of equivalence principles.

The near-field (intricate coupling) and far-field (simple coupling) are effectively de-

composed in the Green’s function diakoptics approach, and thus, the computational

burden is reduced.
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Figure 6.2: The bistatic scattering cross section of five closed PEC cylinders due
to a TMz plane wave incident at θpw

x = 180 ◦. [R1,2,3,4,5 = 0.1λ, θPEC
1,2,3,4,5 = 180◦,

ε1,2,3,4,5 = 1, µ1,2,3,4,5 = 1, r1 = 0 = ϑ1, r2,3,4,5 = 0.5λ, ϑ2 = 0, ϑ3 = 90◦, ϑ4 = 180◦,
ϑ5 = −90◦ and θpw

x = 180◦]

130



Figure 6.3: Numeric verification of boundary condition (2.9a) on the surface of the
first CLR; i.e., Ez vanishes on the PEC strip. [R1 = 2.5λ, R2 = 3.75λ, ε1,2 = 2,
µ1,2 = 1, θPEC

1 = 90◦, θPEC
2 = 60◦, r1 = 0, r2 = 10λ, ϑ1 = 0, ϑ2 = 45◦ and

θpw
x = 180 ◦]
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Figure 6.4: Numeric verification of (2.9b) on the surface of the first CLR; i.e., Hφ

varies continuously across the dielectric surface. [R1 = 2.5λ, R2 = 3.75λ, ε1,2 = 2,
µ1,2 = 1, θPEC

1 = 90◦, θPEC
2 = 60◦, r1 = 0, r2 = 10λ, ϑ1 = 0, ϑ2 = 45◦ and θpw

x = 180 ◦]
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Figure 6.5: The near field distribution of a TM plane wave incident on the. [R1 =
2.5λ, R2 = 3.75λ, ε1,2 = 2, µ1,2 = 1, θPEC

1 = 90◦, θPEC
2 = 60◦, r1 = 0, r2 = 10λ,

ϑ1 = 0, ϑ2 = 45◦ and θpw
x = 180 ◦]

Figure 6.6: The near field distribution of a TM plane wave incident on a sawtooth-
shaped surface. [R1,2,3 = 2.5λ, ε1,2,3 = 1, µ1,2,3 = 1, ϑ1,2,3 = 90◦, r1 = 0, r2,3 = 5λ,
ϑ1 = 0, ϑ2 = 90◦, ϑ3 = −90◦, θpw

x = 180◦]
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Chapter 7

Scattering from and penetration
into a multi-conductor cylinder

7.1 Introduction

This chapter reports the development of a rigorous numerical algorithm for a braided

cylindrical shield, based upon the MoR. The model under study is a braided cylin-

drical shield constructed by periodically placing an arbitrary number of PEC strips

of the same width on a dielectric cylinder as depicted in Figure 7.1. Numerical code

is developed to provide a prediction of the amount that an obliquely incident plane

wave will penetrate through the apertures into the cavity.

The structure considered belongs to the class of nonplanar frequency selective

surface (FSS) geometries. Periodic grids of PEC strips are often employed as polar-

ization selective surfaces in applications such as improving the radiation characteris-

tics of waveguide and antennas. In general, the PEC strips (when properly located)

reflect the polarization parallel with the strips while transmitting the polarization

normal to them. They have also been used to realize hard surfaces, which reflection

coefficient is independent for geometrical optics ray fields. The hard surface can be

used to reduce the forward scattering from the support struts in reflector antennas

(which may be well modeled by a circular cylinder). The two main aspects concerning

a braided cylindrical shield are that 1) the strips provides shielding for an interior

cable against external disturbances, 2) the strips form a part of a transmission line

with a core conductor as the cable. We consider the former aspect in this chapter,

while the latter is considered in Chapter 8.

The scattering problem by such a braided cylindrical shield has been widely stud-

ied using various techniques. The literature on the problem is extensive, some ex-

amples of reported studies are given below. A resonant mode expansion has been
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Figure 7.1: Cross-sectional view of a periodic braided cylindrical shield.
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developed in [20] for the diffracted field by slit coupled cylindrical cavities with inte-

rior loading. The problem was studied in [16] using the characteristic mode theory

coupled with the MoM, for a cylinder with a limited number of strips. In [35],

the asymptotic strip boundary condition (ASBC), which approximates the boundary

conditions directly to simplify the analysis, has been applied to study this multi-

conductor problem, when the distance between each strip is small enough for the

approximation. Shumperts and Butler approached the penetration of both TMz and

TEz waves through multiple slots in conducting cylinders from the MoM perspec-

tive [67, 68]. The technique of using integral equations directly has also been used

extensively, many papers of the literature are listed in [92, 93]. In [22], a combined

boundary conditions method is used to calculate the field inside and around a circular

cavity with longitudinal slots. To the best of our knowledge, none of the reported

works deal with the oblique plane wave incidence problem.

Previous study under the MoR, as detailed in [84, 85], has considered the potential

problem of a toroidal shell with 2M azimuthal cuts. The formulation for the problem

with two symmetrically placed apertures involves reducing the series equations ob-

tained from the MBC to a set of symmetrical triple series equations. The triple series

equations are then transformed to two sets of DSE, each accounting for the odd and

even unknown coefficients respectively. The transformation is achieved by exploiting

the following symmetry property and identity of the Jacobi polynomials when β = α:

P (α,α)
n (−z) = (−1)nP (α,α)

n (z) ,

P
(α,α)
2n+j (z) =

Γ(n+ 1)Γ(2n+ α + 1 + j)

Γ(2n+ 1 + j)Γ(n+ α + 1)
zjP

(α,j−1
2

)
n

(
2z2 − 1

)
.

For the problem with 2M apertures, the process is repeatedly applied to the series

equation and halving the interval at each step, until the interval is reduced that of

the unit cell.

In this chapter, the MoR is extended to treat a cylindrical structure. The period-

icity of the structure along the φ-direction allows us to restrict the analysis to only

one unit cell; i.e., the one limited by the cuts φ = − π
M

and φ = π
M

. The proposed for-

mulation makes use of the identity involving the exponential function, instead of the

above two formulas, to restrict the analysis to considering only the unit cell. Under

the proposed approach, the mathematical formulation is greatly reduced and we can

now consider the scattering problem of a structure loaded with an arbitrary number

M of strips. In subsequent sections, the formulation for the oblique TMz problem
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is presented and the series representations of the surface current and energy are ob-

tained. As discussed in Chapter 4, the matrix operators for the scattering problem

of a TEz plane wave are the same as those for an oblique TEz problem. Therefore,

we omit the detailed derivation for the TEz problem. The RCS, surface current and

energy coupled into the cavity due to an oblique plane wave excitation are computed.

The shielding effects of structure with different parameters are compared. The for-

mulation can be readily adapted to other insightful problems, like that consisting of

the same structure with a conducting core inserted or that involving a multi-layered

dielectric cylinder.

7.2 Geometrical description of the problem

The structure under study in this chapter is a generalization of the CLR investigated

in Chapter 4, with its cross section depicted in Figure 7.1. A finite number M of con-

formal strips are placed on the surface of the dielectric cylinder, which is characterized

by its relative permittivity and permeability (εr, µr). The strips are infinitely-thin,

perfectly conducting, equally-spaced and each has angular width 2θPEC. The multi-

conductor cylinder is illuminated by an obliquely incident plane wave, transverse

magnetic (TMz) to the cylinder axis. The plane wave is characterized by the polar

angle θpw
z and the azimuthal angle θpw

x , as shown in Figure 2.2.

The multi-conductor cylinder has a periodicity of Pφ = 2 π
M

, where its periodic unit

cell is the interval (− π
M
, π
M

). We denote the location of the strips by ΩPEC and its

complement by Ωaper (that is, the sections not shielded by the PEC strips). Without

loss of generality, suppose the conducting strips are symmetrical with respect to the

horizontal plane (i.e., the x-axis). To facilitate the reduction of the analysis to only

one unit cell, each of ΩPEC and Ωaper is expressed as a union of 2M subintervals as

ΩPEC =
M−1⋃
α=0

Θ′αPEC ∪Θ′′αPEC , (7.1a)

Ωaper =
M−1⋃
α=0

Θ′αaper ∪Θ′′αaper , (7.1b)
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where the subintervals are defined as

Θ′αPEC :=
(
αPφ, αPφ + θPEC

)
, (7.2a)

Θ′′αPEC :=
(
[α + 1]Pφ − θPEC, [α + 1]Pφ

)
, (7.2b)

Θ′αaper :=
(
αPφ + θPEC,

[
α + 1

2

]
Pφ
)
, (7.2c)

Θ′′αaper :=
([
α + 1

2

]
Pφ, [α + 1]Pφ − θPEC

)
, (7.2d)

for α = 0, 1, . . . , (M − 1). We recall that Pφ = 2π
M

is the periodicity of the structure.

7.3 Problem formulation

The first part of the formulation for this multi-conductor cylinder is exactly the

same as that of the single strip CLR problem reported in Chapter 4, with the only

difference being ΩPEC and Ωaper now each made up of multiple disjoint intervals. We

adopt exactly the same notations and series representations as those for the CLR

problem; i.e., the field components of the obliquely incident TMz plane wave are

given in (4.1), while the longitudinal-components of the scattered field in region 0

and the transmitted field in region 1 are given in (4.3) and (4.4), respectively. The

transverse components of the secondary fields have expressions written in (4.5) and

(4.6).

Consequently, we obtain the same set of series equations as given in (4.23), (4.24),

(4.30) and (4.31) upon enforcing the MBC, except that for the current multi-conductor

cylinder, the first pair is defined on the multiple disjoint intervals of ΩPEC defined

in (7.1a), while the second pair is defined on the multiple disjoint intervals of Ωaper

defined in (7.1b). In addition, the electromagnetic energy contained per unit length

of the multi-conductor cylinder has the same series expression as given in (4.9) and

(4.10). Therefore, the unknown expansion coefficients encountered for the multi-

conductor cylinder problem belongs to the same solution class as those for the single

CLR problem considered in Chapter 4; i.e., they satisfy the the Fejér’s Tauberian

condition (D.4). To avoid repetition, we begin our analysis by looking at the series

equations obtained from the MBC.

The azimuthal periodicity of the multi-conductor cylinder suggests that the regu-

larization process can be reduced from the consideration of the series equations defined

over the entire contour to those defined over the single periodic unit cell
(
− π
M
, π
M

)
.

The ordinary Floquet formulation often applied to (planar) periodic structure is not

directly applicable to this scattering problem, because the oblique plane wave (or
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any other incident waves usually considered) does not satisfy the azimuthal Floquet

condition, which requires all the field components to satisfy f(φ+ Pφ) = ej C Pφf(φ),

for some constant C. However, by exploiting the identity involving the exponential

function, the set of series equations defined over entire contour can be decoupled

into M independent sets, where each set is defined over the single periodic interval(
− π
M
, π
M

)
. Each of these M sets of series equations can subsequently be regularized

and transformed into a pair of 2-by-2 block matrix equations of the second kind. In

other words, we have decoupled the problem into 2M matrix equations to be solved

independently. Most of all, for a predetermined accuracy of the solution computed,

the truncation number Ntr required for each matrix equation is only one-Mth of that

for the single CLR problem in Chapter 4. That is, the computational cost of the

multi-conductor problem is independent of the number of the periodic PEC strips on

the cylinder. In fact, this multi-conductor problem may even be marginally easier,

since the matrix equations corresponding to different cells decouple.

7.3.1 Interval reduction due to periodicity

Similarly to Chapter 4, the four series equations are derived from the MBC on ρ = R.

On the surface of the strips, the total tangential electric field vanishes; i.e.,

lim
ρ→R+

(
Esc
z + Einc

z

)
= lim

ρ→R−
Etr
z = 0 , (7.3)

lim
ρ→R+

(
Esc
φ + Einc

φ

)
= lim

ρ→R−
Etr
φ = 0 . (7.4)

Enforcing these boundary conditions, we obtain the following two series equations:
∞∑

n=−∞

a(1)
n one

jnφ = 0 (A) , on ΩPEC, (7.5)

∞∑
n=−∞

{
a(1)
n pn + b(1)

n qn
}
ejnφ = 0 (A) , on ΩPEC. (7.6)

On the other hand, for the interface not shielded by the PEC strips, we have

lim
ρ→R+

(
Hsc
z +H inc

z

)
= lim

ρ→R−
Htr
z , (7.7)

lim
ρ→R+

(
Hsc
φ +H inc

φ

)
= lim

ρ→R−
Htr
φ , (7.8)

which result in:
∞∑

n=−∞

{
a(1)
n rn + b(1)

n sn
}
ejnφ = 0 (A) , on Ωaper, (7.9)

∞∑
n=−∞

{
a(1)
n tn + b(1)

n un + zn
}
ejnφ = 0 (A) , on Ωaper. (7.10)
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The coefficients appear in the above series equations are as defined in (4.25)–(4.27)

and (4.32)–(4.36); that is,

on :=Jn(κ1R)H
′(2)
n (κ1R) , (7.11a)

pn :=
j cos θpw

z

η0µrκ1R
nJn(κ1R)H

′(2)
n (κ1R) , (7.11b)

qn :=J ′n(κ1R)H
′(2)
n (κ1R) , (7.11c)

rn :=
j cos θpw

z

η0κ0R

(
1− κ2

0

κ2
1

)
nJn(κ1R)H

′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

, (7.11d)

sn :=Jn(κ1R)H
′(2)
n (κ1R)− µr

κ0

κ1

J ′n(κ1R)H
′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

, (7.11e)

tn :=εrκ0J
′
n(κ1R)H

′(2)
n (κ1R)− κ1Jn(κ1R)H

′(2)
n (κ1R)

H
′(2)
n (κ0R)

H
(2)
n (κ0R)

+ n2 cos2 θpw
z κ1

κ2
0R

2

(
1− κ2

0

κ2
1

)
Jn(κ1R)H

′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

, (7.11f)

un :=n
η0κ0 cos θpw

z

jκ1R

[
Jn(κ1R)H

′(2)
n (κ1R)

−µr
κ1

κ0

J ′n(κ1R)H
′(2)
n (κ1R)

H
(2)
n (κ0R)

H
′(2)
n (κ0R)

]
, (7.11g)

zn :=κ1

[
cn(κ0R)

H
′(2)
n (κ0R)

H
(2)
n (κ0R)

− c′n(κ0R)

]
. (7.11h)

We aim to reduce the set of series equations (7.5), (7.6), (7.9) and (7.10) defined

over the whole contour to the sets defined over the single periodic interval
(
− π
M
, π
M

)
.

This is achieved by exploiting the periodicity in φ-direction, and the introduction of

new variable to shift each of the subintervals to one lying in the periodic unit cell.

We illustrate this manipulation by looking at the series equation (7.5) defined over

the subinterval Θ′αPEC, for some fixed α ∈ {0, 1, . . . ,M − 1}; i.e.,

∞∑
n=−∞

a(1)
n on e

jnφ = 0 , φ ∈
(
αPφ, αPφ + θPEC

)
. (7.12)

By means of new angular variable, φ′α = φ− αPφ, (7.12) can be rewritten as

∞∑
n=−∞

a(1)
n on e

jnφ′αejnαPφ =0 , φ′α ∈
(
0, θPEC

)
. (7.13)

The series equation (7.13) holds for all values of α from 0 to (M − 1). On top of

that, the interval of (7.13) is independent of the values of α. Consequently, we can
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drop the subscript for φ′α. In other words, there are M members of (7.13), each of

which taking a distinct value of α from {0, 1, . . . , (M − 1)}. All these M members

are defined over the same interval
(
0, θPEC

)
and are interconnected as they all involve

the unknown
{
a

(1)
n

}
n∈Z

.

The next step involves reformulating the M members of (7.13) to decouple them

into M independent series equations, as follows. We multiply the α-th member of

(7.13) by the factor e−jmαPφ , where m is some arbitrary real value, for each α =

0, 1, . . . , (M −1). It is worth noting that this factor is non-zero and is independent of

the index n. By summing over all the α-th members of (7.13) for α = 0, 1, . . . , (M−1),

we obtain

∞∑
n=−∞

a(1)
n on e

jnφ′α

M−1∑
α=0

ejα(n−m)Pφ =0 , φ′ ∈
(
0, θPEC

)
. (7.14)

Recall that Pφ = 2π
M

, the second summation is a geometric progression with ratio

ej(n−m)Pφ , if the value (n−m) is not a multiple of M . Its sum is given by

M−1∑
α=0

ejα(n−m)Pφ =

{
M , if (n−m) ≡ 0 (modM) ,

0, otherwise.
(7.15)

As a result, the M interconnected members of (7.13) are decoupled into M of

series equations in the form

Mejαφ
′
∞∑

n=−∞

a
(1)
α+nMoα+nM ejnMφ′ =0 , φ′ ∈

(
0, θPEC

)
, (7.16)

for α = 0, 1, . . . , (M − 1). Each of these newly formulated series equations involves

only one of the non-overlapping subsequences of the original unknown,
{
a

(1)
nM+α

}
n∈Z

for α = 0, 1, . . . , (M −1). They are therefore independent of one another. Effectively,

a discrete Fourier transform has been performed on (7.12). The factor Mejαφ
′

is

omitted from the following.

Similar deduction can be applied to the remaining series equations. Consequently,

the analysis is reduced to the consideration of M independent sets of series equations

defined over the unit cell
(
− π
M
, π
M

)
, which α-th member is the following set:

∞∑
n=−∞

a
(1)
α+nMoα+nM ejnMφ′ = 0 (A), (7.17a)

∞∑
n=−∞

{
a

(1)
α+nMpα+nM + b

(1)
α+nMqα+nM

}
ejnMφ′ = 0 (A) , (7.17b)

142



for φ′ ∈ (−θPEC, θPEC), while

∞∑
n=−∞

{
a

(1)
α+nMrα+nM + b

(1)
α+nMsα+nM

}
ejnMφ′ = 0 (A) , (7.17c)

∞∑
n=−∞

{
a

(1)
α+nM tα+nM + b

(1)
α+nMuα+nM + zα+nM

}
ejnMφ′ = 0 (A) , (7.17d)

for φ′ ∈
(
− π
M
,−θPEC

)
∪
(
θPEC, π

M

)
. These M sets of series equations are inde-

pendent, as each set involves only the subsequences
{
a

(1)
nM+α, b

(1)
nM+α

}
n∈Z

, for index

α = 0, 1, . . . , (M − 1).

These reformulated M sets of series equations can be alternatively derived by

representing the incident field as a sum of M fictitious fields: Einc =
∑M−1

α=0 einc
α ,

where the set
{
einc
α

}M−1

α=0
are assumed to be mutually orthogonal on (−π, π) and each

satisfying the condition einc
α (ρ, φ+ Pφ) = einc

α (ρ, φ) ejαPφ . Therefore, each of these

fictitious fields einc
α satisfy the Floquet periodicity condition. We write the secondary

fields induced by each einc
α when the fictitious field is assumed to be present by itself

as es
α and hs

α. It has been shown in [8] that, es
α and hs

α also satisfy the Floquet

periodicity condition. As the secondary fields induced by the incident plane wave

Einc are simplify the sum of all es
α and hs

α, for α = 0, 1, . . . , (M − 1), the scattering

problem with incident field Einc can be decomposed into M independent problems,

each with einc
α as its incident source, for some α = 0, 1, . . . , (M − 1).

By writing φ = Mφ′ in (7.17a)–(7.17d), and φ0 = MθPEC, these series equations

can be rewritten as

∞∑
n=−∞

a
(1)
α+nMoα+nM ejnφ = 0 (A), (7.18a)

∞∑
n=−∞

{
a

(1)
α+nMpα+nM + b

(1)
α+nMqα+nM

}
ejnφ = 0 (A) , (7.18b)

for φ ∈ (−φ0, φ0), while

∞∑
n=−∞

{
a

(1)
α+nMrn + b

(1)
α+nMsα+nM

}
ejnφ = 0 (A) , (7.18c)

∞∑
n=−∞

{
a

(1)
α+nM tα+nM + b

(1)
α+nMuα+nM + zα+nM

}
ejnφ = 0 (A) , (7.18d)

for φ ∈ (−π,−φ0) ∪ (φ0, π), α = 0, 1, . . . , (M − 1). Therefore, each of these M sets,

which are now rewritten in a same form as the set encountered in Chapter 4, can
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be converted to a second kind ISLAE, upon upon the introduction of appropriate

asymptotically small parameters. A single 4-by-4 block matrix equation is obtained,

as opposed to the pair of 2-by-2 block matrix equations derived in Chapter 4. This

is due to the fact that for hn ≡ {on, pn, qn, rn, sn, tn}, hα+nM 6= hα−nM , for non-trivial

values of α.

7.3.2 Introducing the asymptotically small parameters

To convert the series equations to those involving the trigonometric functions and thus

halving the interval to (0, π), we introduce the following notations for n = 1, 2, . . .

x(1)
αn :=a

(1)
α+nM + a

(1)
α−nM , y(1)

αn :=a
(1)
α+nM − a

(1)
α−nM , (7.19a)

x(2)
αn :=b

(1)
α+nM + b

(1)
α−nM , y(2)

αn :=b
(1)
α+nM − b

(1)
α−nM , (7.19b)

o(+)
αn :=

1

2
(oα+nM + oα−nM) , o(−)

αn :=
1

2
(oα+nM − oα−nM) , (7.19c)

p(+)
αn :=

1

2
(pα+nM + pα−nM) , p(−)

αn :=
1

2
(pα+nM − pα−nM) , (7.19d)

q(+)
αn :=

1

2
(qα+nM + qα−nM) , q(−)

αn :=
1

2
(qα+nM − qα−nM) , (7.19e)

r(+)
αn :=

1

2
(rα+nM + rα−nM) , r(−)

αn :=
1

2
(rα+nM − rα−nM) , (7.19f)

s(+)
αn :=

1

2
(sα+nM + sα−nM) , s(−)

αn :=
1

2
(sα+nM − sα−nM) , (7.19g)

t(+)
αn :=

1

2
(tα+nM + tα−nM) , t(−)

αn :=
1

2
(tα+nM − tα−nM) , (7.19h)

u(+)
αn :=

1

2
(uα+nM + uα−nM) , u(−)

αn :=
1

2
(uα+nM − uα−nM) , (7.19i)

z(+)
αn :=

1

2n
(zα+nM + zα−nM) , z(−)

αn :=
1

2n
(zα+nM − zα−nM) . (7.19j)

Therefore, by exploiting the symmetry of the subintervals (−φ0, φ0) and (−π,−φ0)∪
(φ0, π), we can reformulate (7.18a)–(7.18d) as

x
(1)
α0oα +

∞∑
n=1

[
x(1)
αno

(+)
αn + y(1)

αno
(−)
αn

]
cosnφ = 0 (A), φ ∈ (0, φ0), (7.20a)

x
(1)
α0 tα + x

(2)
α0uα + zα +

∞∑
n=1

[
x(1)
αnt

(+)
αn + y(1)

αnt
(−)
αn

+x(2)
αnu

(+)
αn + y(2)

αnu
(−)
αn + nz(+)

αn

]
cosnφ = 0 (A), φ ∈ (φ0, π), (7.20b)

∞∑
n=1

[
x(1)
αnp

(−)
αn + y(1)

αnp
(+)
αn + x(2)

αnq
(−)
αn + y(2)

αnq
(+)
αn

]
sinnφ = 0 (A), φ ∈ (0, φ0), (7.21a)

∞∑
n=1

[
x(1)
αnr

(−)
αn + y(1)

αnr
(+)
αn + x(2)

αns
(−)
αn + y(2)

αns
(+)
αn

]
sinnφ = 0 (A), φ ∈ (φ0, π), (7.21b)
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

x
(1)
α0pα + x

(2)
α0 qα +

∞∑
n=1

[
x(1)
αnp

(+)
αn + y(1)

αnp
(−)
αn

+x(2)
αnq

(+)
αn + y(2)

αnq
(−)
αn

]
cosnφ = 0 (A), φ ∈ (0, φ0), (7.22a)

x
(1)
α0 rα + x

(2)
α0sα +

∞∑
n=1

[
x(1)
αnr

(+)
αn + y(1)

αnr
(−)
αn

+x(2)
αns

(+)
αn + y(2)

αns
(−)
αn

]
cosnφ = 0 (A), φ ∈ (φ0, π), (7.22b)



∞∑
n=1

[
x(1)
αno

(−)
αn + y(1)

αno
(+)
αn

]
sinnφ = 0 (A), φ ∈ (0, φ0), (7.23a)

∞∑
n=1

[
x(1)
αnt

(−)
αn + y(1)

αnt
(+)
αn + x(2)

αnu
(−)
αn + y(2)

αnu
(+)
αn

+nz(−)
αn

]
sinnφ = 0 (A), φ ∈ (φ0, π). (7.23b)

Due to the reflective property of the Bessel and Hankel functions, we can see

that for n = 1, 2, . . ., if we have hn ≡ {on, qn, sn, tn}, then hα−nM = hnM−α. On

the other hand, when hn ≡ {pn, rn, un}, we can see that hα−nM = −hnM−α. From

the asymptotic behaviors (when n → +∞) of {on, pn, qn, rn, sn, tn, un}∞n=1 given in

(4.43a)–(4.43g), we can deduce the magnitudes of the newly introduced parameters{
o

(±)
αn , p

(±)
αn , q

(±)
αn , r

(±)
αn , s

(±)
αn , t

(±)
αn

}∞
n=1

, for large order n:

o(+)
αn = − j

πκ1R

{
1 +O

(
κ2

1R
2

M2n2

)}
, (7.24a)

o(−)
αn =


0, for α = 0,

O

(
κ2

1R
2

M2n2

)
, otherwise,

(7.24b)

p(+)
αn =


0, for α = 0,

α cos θpw
z

πη0µ1κ2
1R

2

{
1 +O

(
κ2

1R
2

M2n2

)}
, otherwise,

(7.24c)

p(−)
αn =

Mn cos θpw
z

πη0µ1κ2
1R

2

{
1 +O

(
κ2

1R
2

M2n2

)}
, (7.24d)

q(+)
αn = − jMn

πκ2
1R

2

{
1 +O

(
κ2

1R
2

M2n2

)}
, (7.24e)

q(−)
αn =


0, for α = 0,

− jα

πκ2
1R

2

{
1 +O

(
κ2

1R
2

M2n2

)}
, otherwise,

(7.24f)
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r(+)
αn =


0, for α = 0,

O

(
κ2

1R
2

M2n2

)
, otherwise,

(7.24g)

r(−)
αn = − cos θpw

z

πη0κ1R

(
1− κ2

0

κ2
1

){
1 +O

(
κ2

1R
2

M2n2

)}
, (7.24h)

s(+)
αn = − j

πκ1R

(
1 + µ1

κ2
0

κ2
1

){
1 +O

(
κ2

1R
2

M2n2

)}
, (7.24i)

s(−)
αn =


0, for α = 0,

O

(
κ2

1R
2

M2n2

)
, otherwise,

(7.24j)

t(+)
αn = − jζMn

πκ0R2

{
1 +O

(
κ2

1R
2

M2n2

)}
, (7.24k)

t(−)
αn =


0, for α = 0,

− jζα

πκ0R2
O

(
κ2

1R
2

M2n2

)
, otherwise,

(7.24l)

u(+)
αn =


0, for α = 0,

−α cos θpw
z η0κ0 (1 + µ1)

πκ2
1R

2

{
1 +O

(
κ2

1R
2

M2n2

)}
, otherwise,

(7.24m)

u(−)
αn = −nM cos θpw

z η0κ0 (1 + µ1)

πκ2
1R

2

{
1 +O

(
κ2

1R
2

M2n2

)}
, (7.24n)

where ζ :=1 + ε1
κ20
κ21
− cos2 θpw

z

(
1− κ20

κ21

)
, as defined in (4.44). Correspondingly, the

following asymptotically small parameters are introduced, where we use an accent

( ˜ ) to distinguish these asymptotically small parameters from their corresponding

coefficients:

õ(+)
αn = 1− jπκ1Ro

(+)
αn , (7.25a)

õ(−)
αn =

{
0, for α = 0,

jπκ1Ro
(−)
αn , otherwise,

(7.25b)

p̃(+)
αn =


1, for α = 0,

1− πµ1η0κ
2
1R

2

α cos θpw
z

p(+)
αn , otherwise,

(7.25c)

p̃(−)
αn = 1− πµ1η0κ

2
1R

2

Mn cos θpw
z
p(−)
αn , (7.25d)

q̃(+)
αn = 1− jπκ2

1R
2

Mn
q(+)
αn , (7.25e)

q̃(−)
αn =


1, for α = 0,

1− jπκ2
1R

2

α
q(−)
αn , otherwise,

(7.25f)
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r̃(+)
αn =


0, for α = 0,

jπκ1R

1 + µ1
κ20
κ21

r(+)
αn , otherwise, (7.25g)

r̃(−)
αn = 1 +

πη0κ1R

cos θpw
z

(
1− κ20

κ21

)r(−)
αn , (7.25h)

s̃(+)
αn = 1− jπκ1R

1 + µ1
κ20
κ21

s(+)
αn , (7.25i)

s̃(−)
αn =


0, for α = 0,

jπκ1R

1 + µ1
κ20
κ21

s(−)
αn , otherwise, (7.25j)

t̃(+)
αn = 1− jπκ0R

2

ζMn
t(+)
αn , (7.25k)

t̃(−)
αn =


1, for α = 0,

1− jπκ0R
2

ζα
t(−)
αn , otherwise,

(7.25l)

ũ(+)
αn =


1, for α = 0,

1 +
πκ2

1R
2

η0κ0α (1 + µ1) cos θpw
z
u(+)
αn , otherwise,

(7.25m)

ũ(−)
αn = 1 +

πκ2
1R

2

η0κ0 (1 + µ1)Mn cos θpw
z
u(−)
αn . (7.25n)

Each of these newly introduced parameters has an order of O
(
κ21R

2

M2n2

)
, as n→ +∞.

By substitution of them into the four sets of DSE given in (7.20)–(7.23), the sets have

a similar form to those given in Chapter 4.

x
(1)
α0 õα +

∞∑
n=1

[
x(1)
αn

(
1− õ(+)

αn

)
+ y(1)

αn õ
(−)
αn

]
cosnφ = 0 , φ ∈ (0, φ0), (7.26a)

x
(1)
α0 t̃α + x

(2)
α0 ũα + z̃α +

∞∑
n=1

n
[
x(1)
αn

(
1− t̃(+)

αn

)
+y(1)

αn

(
1− t̃(−)

αn

) α

Mn
+ x(2)

αn

(
1− ũ(+)

αn

) α

Mn
ς

+y(2)
αn

(
1− ũ(−)

αn

)
ς + z̃(+)

αn

]
cosnφ = 0 , φ ∈ (φ0, π), (7.26b)
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

∞∑
n=1

n
[
x(1)
αn

(
1− p̃(−)

αn

)
τ + y(1)

αn

(
1− p̃(+)

αn

) α

Mn
τ

+x(2)
αn

(
1− q̃(−)

αn

) α

Mn
+ y(2)

αn

(
1− q̃(+)

αn

)]
sinnφ = 0 , φ ∈ (0, φ0), (7.27a)

∞∑
n=1

[
x(1)
αn

(
1− r̃(−)

αn

)
υ + y(1)

αn r̃
(+)
αn + x(2)

αns̃
(−)
αn + y(2)

αn

(
1− s̃(+)

αn

)]
× sinnφ = 0 , φ ∈ (φ0, π), (7.27b)

x
(1)
α0 p̃α + x

(2)
α0 q̃α +

∞∑
n=1

n
[
x(1)
αn

(
1− p̃(+)

αn

) α

Mn
τ

+y(1)
αn

(
1− p̃(−)

αn

)
τ + x(2)

αn

(
1− q̃(+)

αn

)
+y(2)

αn

(
1− q̃(−)

αn

) α

Mn

]
cosnφ = 0 , φ ∈ (0, φ0), (7.28a)

x
(1)
α0 r̃α + x

(2)
α0 s̃α +

∞∑
n=1

[
x(1)
αnr̃

(+)
αn + y(1)

αn

(
1− r̃(−)

αn

)
υ

+x(2)
αn

(
1− s̃(+)

αn

)
+ y(2)

αn s̃
(−)
αn

]
cosnφ = 0 , φ ∈ (φ0, π), (7.28b)

∞∑
n=1

[
x(1)
αnõ

(−)
αn + y(1)

αn

(
1− õ(+)

αn

)]
sinnφ = 0 , φ ∈ (0, φ0), (7.29a)

∞∑
n=1

n
[
x(1)
αn

(
1− t̃(−)

αn

) α

Mn
+ y(1)

αn

(
1− t̃(+)

αn

)
+ x(2)

αn

(
1− ũ(−)

αn

)
ς

+y(2)
αn

(
1− ũ(+)

αn

) α

Mn
ς + z̃(−)

αn

]
sinnφ = 0 , φ ∈ (φ0, π). (7.29b)

In the above series equations, ς, τ and υ are as defined in (4.50a); i.e.,

ς :=
η0 cos θpw

z (1 + µr)κ
2
0

jζκ2
1

, τ :=
j cos θpw

z

η0µr
, υ :=

(κ2
1 − κ2

0) cos θpw
z

jη0 (κ2
1 + µrκ2

0)
, (7.30a)

while õα, p̃α, q̃α, r̃α, s̃α, t̃α, ũα, z̃α and
{
z

(±)
αn

}∞
n=1

are defined as:

õα :=jπκ1Roα , p̃α :=
jπκ2

1R
2

M
pα , q̃α :=

jπκ2
1R

2

M
qα , (7.30b)

r̃α :=
jπκ3

1R

κ2
1 + µrκ2

0

rα , s̃α :=
jπκ3

1R

κ2
1 + µrκ2

0

sα , t̃α :=
jπκ0R

2

ζM
tα , (7.30c)

ũα :=
jπκ0R

2

ζM
uα , z̃α :=

jπκ0R
2

ζM
zα , z̃(±)

n :=
jπκ0R

2

ζM
z(±)
n . (7.30d)

We can see that, each α-th set of these series equations in (7.26)–(7.29) involves

only the subsequences
{
x

(i)
αn, y

(i)
αn

}∞
n=1

, for i = 1, 2. Therefore, each of these M sets are

independent for different values of α, and are solved separately by the MoR detailed

in Chapter 3.
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7.3.3 Regularization process and the ISLAE

For each fixed value of α = 0, 1, . . . , (M − 1), we have the above four sets of DSE

to solve simultaneously for the unknowns
{
x

(i)
αn, y

(i)
αn

}∞
n=1

. Each of these four sets of

DSE are converted to a second kind ISLAE by the MoR. As all four of these DSE

involve the same unknowns
{
x

(i)
αn, y

(i)
αn

}∞
n=1

, the four ISLAE obtained separately are

interconnected, and can be written as one 4-by-4 block matrix equation of the second

kind.

We begin by considering the first pair of DSE given in (7.26). By making the

following replacement in (3.27): x0 7→ x
(1)
α0 , xn 7→ x

(1)
αn, a 7→ õα, b 7→ t̃α, c 7→ 0,

d 7→ ũαx
(2)
α0 + z̃α, sn 7→ õ

(+)
αn , tn 7→ t̃

(+)
αn , en 7→ õ

(−)
αn y

(1)
αn , fn 7→ α

nM
y

(1)
αn

(
1− t̃(−)

αn

)
+

y
(2)
αn

(
1− ũ(−)

αn

)
ς + α

nM
x

(2)
αn

(
1− ũ(+)

αn

)
ς + z̃

(+)
αn , and ψ0 7→ cosφ0 = cosMθPEC, the

equation for the unknown x
(1)
α0 is obtained as:

x
(1)
α0 =−

(
ũαx

(2)
α0 + z̃α

)
ln
(

1−ψ0

2

)
t̃α ln

(
1−ψ0

2

)
− õα

+
1 + ψ0√

2
[
t̃α ln

(
1−ψ0

2

)
− õα

] (7.31)

×
∞∑
n=1

{
x(1)
αn

(
t̃(+)
αn − õ(+)

αn

)
+ y(1)

αn

[
õ(−)
αn −

α

Mn

(
1− t̃(−)

αn

])
−y(2)

αn

(
1− ũ(−)

αn

)
ς − x(2)

αn

α

Mn

(
1− ũ(+)

αn

)
ς − z(+)

αn

} P̂ (0,1)
n−1 (ψ0)√

n
.

Similarly, from the other DSE involving cosine functions (7.28), we make the

following replacement in (3.39): x0 7→ x
(2)
α0 , xn 7→ x

(2)
αn, a 7→ s̃α, b 7→ q̃α, c 7→

r̃αx
(1)
α0 , d 7→ p̃αx

(1)
α0 , sn 7→ s̃

(+)
αn , tn 7→ q̃

(+)
αn , en 7→

(
1− r̃(−)

αn

)
y

(1)
αnυ + r̃

(+)
αn x

(1)
αn + s̃

(−)
αn y

(2)
αn ,

fn 7→
(

1− p̃(−)
αn

)
y

(1)
αnτ + α

Mn

(
1− p̃(+)

αn

)
x

(1)
αnτ + α

Mn

(
1− q̃(−)

αn

)
y

(2)
αn , and ψ0 7→ cosφ0 =

cosMθPEC, the equation for the unknown x
(2)
α0 is obtained as:

x
(2)
α0 =

r̃α − p̃α ln
(

1+ψ0

2

)
q̃α ln

(
1+ψ0

2

)
− s̃α

x
(1)
α0 −

1− ψ0√
2
[
q̃α ln

(
1+ψ0

2

)
− s̃α

] (7.32)

×
∞∑
n=1

{
x(2)
αn

(
q̃(+)
αn − s̃(+)

αn

)
+ y(1)

αn

[(
1− r̃(−)

αn

)
υ −

(
1− p̃(−)

αn

)
τ
]

+x(1)
αn

[
r̃(+)
αn −

α

Mn

(
1− p̃(+)

αn

)
τ
]

+ y(2)
αn

[
s̃(−)
αn −

α

Mn

(
1− q̃(−)

αn

)]} P̂ (1,0)
n−1 (ψ0)√

n
.

The two expressions above; i.e., (7.31) and (7.32), are related as they both involve

the two of x
(1,2)
α0 . By substitution of (7.31) into (7.32), we can obtain an expression

for x
(2)
α0 that is independent from x

(1)
α0 . With this expression, an expression for x

(1)
α0
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in terms of only
{
x

(i)
αn, y

(i)
αn

}∞
n=1

(for i = 1, 2) can be derived subsequently by back

substitution. These two expressions are:

x
(1)
α0 =− 1

%
z̃α ln

(
1− φ0

2

)[
q̃α ln

(
1 + φ0

2

)
− s̃α

]
P̂

(0,1)
m−1(ψ0)

m
(7.33a)

+
∞∑
n=1

(
x(1)
αn

{(
t̃(+)
αn − õ(+)

αn

)
v(1)
αn +

[
r̃(+)
αn −

α

Mn

(
1− p̃(+)

αn

)]
w(1)
αn

}
+y(1)

αn

{[
õ(−)
αn −

α

Mn

(
1− t̃(−)

αn

)]
v(1)
αn +

[(
1− r̃(−)

αn

)
υ −

(
1− p̃(−)

αn

)
τ
]
w(1)
αn

}
+x(2)

αn

{
− α

Mn

(
1− ũ(+)

αn

)
ςv(1)
αn +

(
q̃(+)
αn − s̃(+)

αn

)
w(1)
αn

}
+y(2)

αn

{
−
(
1− ũ(−)

αn

)
ςv(1)
αn +

[
s̃(−)
αn −

α

Mn

(
1− q̃(−)

αn

)]
w(1)
αn

}
−z̃(+)

αn v
(1)
αn

)
,

x
(2)
α0 =

1

%
z̃α ln

(
1− φ0

2

)[
p̃α ln

(
1 + φ0

2

)
− r̃α

]
P̂

(0,1)
m−1(ψ0)

m
(7.33b)

+
∞∑
n=1

(
x(1)
αn

{(
t̃(+)
αn − õ(+)

αn

)
v(2)
αn +

[
r̃(+)
αn −

α

Mn

(
1− p̃(+)

αn

)]
w(2)
αn

}
+y(1)

αn

{[
õ(−)
αn −

α

Mn

(
1− t̃(−)

αn

)]
v(2)
αn +

[(
1− r̃(−)

αn

)
υ −

(
1− p̃(−)

αn

)
τ
]
w(2)
αn

}
+x(2)

αn

{
− α

Mn

(
1− ũ(+)

αn

)
ςv(2)
αn +

(
q̃(+)
αn − s̃(+)

αn

)
w(2)
αn

}
+y(2)

αn

{
−
(
1− ũ(−)

αn

)
ςv(2)
αn +

[
s̃(−)
αn −

α

Mn

(
1− q̃(−)

αn

)]
w(2)
αn

}
+z̃(+)

αn v
(2)
αn

)
.

In the above expressions, the parameters
{
v

(i)
αn, w

(i)
αn

}∞
n=1

(for i = 1, 2) are introduced

to simplify the expressions

v(1)
αn :=

1 + φ0√
2 %

[
q̃α ln

(
1 + φ0

2

)
− s̃α

]
P̂

(0,1)
n−1 (ψ0)√

n
, (7.34a)

v(2)
αn :=− 1 + φ0√

2 %

[
p̃α ln

(
1 + φ0

2

)
− r̃α

]
P̂

(0,1)
n−1 (ψ0)√

n
, (7.34b)

w(1)
αn :=

1− φ0√
2 %

ũα ln

(
1− φ0

2

)
P̂

(1,0)
n−1 (ψ0)√

n
, (7.34c)
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w(2)
αn :=− 1− φ0√

2 %

[
t̃α ln

(
1− φ0

2

)
− õα

]
P̂

(1,0)
n−1 (ψ0)√

n
, (7.34d)

where the constant % is defined as:

% :=

[
t̃α ln

(
1− φ0

2

)
− õα

]
×
[
q̃α ln

(
1 + φ0

2

)
− s̃α

]
− ũα ln

(
1− φ0

2

)
×
[
p̃α ln

(
1 + φ0

2

)
− r̃α

]
. (7.35)

We have obtained series expressions for the two unknowns x
(i)
α0 in terms of

{
x

(i)
αn, y

(i)
αn

}∞
n=1

(for i = 1, 2). Therefore, the values of x
(i)
α0 can be calculated once the values of{

x
(i)
αn, y

(i)
αn

}∞
n=1

(for i = 1, 2) are known. We obtain the first infinite system in-

volving only these unknowns
{
x

(i)
αn, y

(i)
αn

}∞
n=1

(for i = 1, 2) from the first pair of

DSE given in (7.26), by making the following replacement in (3.28): x0 7→ x
(1)
α0 ,

xn 7→ x
(1)
αn, a 7→ õα, b 7→ t̃α, c 7→ 0, d 7→ ũαx

(2)
α0 + z̃α, sn 7→ õ

(+)
αn , tn 7→ t̃

(+)
αn ,

en 7→ õ
(−)
αn y

(1)
αn , fn 7→ α

nM
y

(1)
αn

(
1− t̃(−)

αn

)
+y

(2)
αn

(
1− ũ(−)

αn

)
ς+ α

nM
x

(2)
αn

(
1− ũ(+)

αn

)
ς+ z̃

(+)
αn ,

and ψ0 7→ cosφ0 = cosMθPEC, as well as substitution of (7.33a) and (7.33b), which

leads to

√
mx(1)

αm

(
1− t̃(+)

m

)
+

α

Mm

√
my(1)

αm

(
1− t̃(−)

m

)
+

α

Mm

√
mx(2)

αm

(
1− ũ(+)

m

)
ς +
√
my(2)

αm

(
1− ũ(−)

m

)
ς

+
∞∑
n=1

√
n
(
x(1)
αn

{(
t̃(+)
αn − õ(+)

αn

)
T̂m−1,n−1 +

[
r̃(+)
αn −

α

Mn

(
1− p̃(+)

αn

)]
Ûm−1,n−1

}
+y(1)

αn

{[
õ(−)
αn −

α

Mn

(
1− t̃(−)

αn

)]
T̂m−1,n−1 +

[(
1− r̃(−)

αn

)
υ −

(
1− p̃(−)

αn

)
τ
]
Ûm−1,n−1

}
+x(2)

αn

{
− α

Mn

(
1− ũ(+)

αn

)
ςT̂m−1,n−1 +

(
q̃(+)
αn − s̃(+)

αn

)
Ûm−1,n−1

}
+y(2)

αn

{
−
(
1− ũ(−)

αn

)
ςT̂m−1,n−1 +

[
s̃(−)
αn −

α

Mn

(
1− q̃(−)

αn

)]
Ûm−1,n−1

})
= −

√
2(1 + ψ0)õαz̃α

t̃α ln
(

1−ψ0

2

)
− õα

[
1 +

1

%
ũα ln

(
1− ψ0

2

)
(p̃α − r̃α)

]
P̂

(0,1)
m−1(ψ0)

m

−
√
mz̃(+)

αm +
∞∑
n=1

√
nz̃(+)

αn T̂m−1,n−1 , (7.36)

for m = 1, 2, 3, . . ., where

T̂m−1,n−1 :=Q̂
(1,0)
m−1,n−1(ψ0)− (1 + ψ0)2

t̃α ln
(

1−ψ0

2

)
− õα

{
1

%
õαũα

[
p̃α ln

(
1 + ψ0

2

)
− r̃α

]
+ t̃α

}
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×
P̂

(0,1)
m−1(ψ0)

m

P̂
(0,1)
n−1 (ψ0)

n
, (7.37)

Ûm−1,n−1 :=
õαũα(1− ψ0)2

%

P̂
(0,1)
m−1(ψ0)

m

P̂
(1,0)
n−1 (ψ0)

n
. (7.38)

For the second ISLAE, we consider the DSE given in (7.29). By making the

following replacement in (3.28): yn 7→ y
(1)
αn , sn 7→ õ

(+)
αn , tn 7→ t̃

(+)
αn , gn 7→ õ

(−)
αn x

(1)
αn,

hn 7→ α
nM

x
(1)
αn

(
1− t̃(−)

αn

)
+ α

nM
y

(2)
αn

(
1− ũ(+)

αn

)
ς + x

(2)
αn

(
1− ũ(−)

αn

)
ς + z̃

(−)
αn , and ψ0 7→

cosφ0 = cosMθPEC, we obtain for m = 1, 2, 3, . . .

α

Mm

√
mx(1)

αm

(
1− t̃(−)

m

)
+
√
my(1)

αm

(
1− t̃(+)

m

)
+
√
mx(2)

αm

(
1− ũ(−)

m

)
ς +

α

Mm

√
my(2)

αm

(
1− ũ(+)

m

)
ς

+
∞∑
n=1

√
n
{
x(1)
αn

[
õ(−)
αn −

α

Mn

(
1− t̃(−)

αn

)]
+ y(1)

αn

(
t̃(+)
αn − õ(+)

αn

)
− x(2)

αn

(
1− ũ(−)

αn

)
ς

−y(2)
αn

α

Mn

(
1− ũ(+)

αn

)
ς
}
Q̂

(0,1)
m−1,n−1(φ0)

= −
√
mz̃(−)

αm +
∞∑
n=1

√
nz̃(−)

αn Q̂
(0,1)
m−1,n−1(φ0) . (7.39)

From the DSE given in (7.28), we can obtain the third ISLAE by making the

following replacement in (3.37): x0 7→ x
(2)
α0 , xn 7→ x

(2)
αn, a 7→ s̃α, b 7→ q̃α, c 7→

r̃αx
(1)
α0 , d 7→ p̃αx

(1)
α0 , sn 7→ s̃

(+)
αn , tn 7→ q̃

(+)
αn , en 7→

(
1− r̃(−)

αn

)
y

(1)
αnυ + r̃

(+)
αn x

(1)
αn + s̃

(−)
αn y

(2)
αn ,

fn 7→
(

1− p̃(−)
αn

)
y

(1)
αnτ + α

Mn

(
1− p̃(+)

αn

)
x

(1)
αnτ + α

Mn

(
1− q̃(−)

αn

)
y

(2)
αn , and ψ0 7→ cosφ0 =

cosMθPEC, as well as substitution of (7.33a) and (7.33b), which leads to

√
mx(1)

αmr̃
(+)
m +

√
my(1)

αm

(
1− r̃(−)

m

)
υ +
√
mx(2)

αm

(
1− s̃(+)

m

)
+
√
my(2)

αms̃
(−)
m

+
∞∑
n=1

√
n
(
x(1)
αn

{(
t̃(+)
αn − õ(+)

αn

)
Ŵm−1,n−1 +

[
r̃(+)
αn −

α

Mn

(
1− p̃(+)

αn

)]
V̂m−1,n−1

}
+y(1)

αn

{[
õ(−)
αn −

α

Mn

(
1− t̃(−)

αn

)]
Ŵm−1,n−1 +

[(
1− r̃(−)

αn

)
υ −

(
1− p̃(−)

αn

)
τ
]
V̂m−1,n−1

}
+x(2)

αn

{
− α

Mn

(
1− ũ(+)

αn

)
ςŴm−1,n−1 +

(
q̃(+)
αn − s̃(+)

αn

)
V̂m−1,n−1

}
+y(2)

αn

{
−
(
1− ũ(−)

αn

)
ςŴm−1,n−1 +

[
s̃(−)
αn −

α

Mn

(
1− q̃(−)

αn

)]
V̂m−1,n−1

})
=

1

%

√
2(1− ψ0)z̃α ln

(
1− ψ0

2

)
(q̃αr̃α − s̃αp̃α)

P̂
(1,0)
m−1(ψ0)

m
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+
∞∑
n=1

√
nz̃(+)

αn Ŵm−1,n−1 , (7.40)

for m = 1, 2, 3, . . ., where

V̂m−1,n−1 :=
(1− ψ0)2

q̃α ln
(

1+ψ0

2

)
− s̃α

{
1

%
ũα ln

(
1− ψ0

2

)
(r̃αq̃α − s̃αp̃α)− q̃α

}
×
P̂

(1,0)
m−1(ψ0)

m

P̂
(1,0)
n−1 (ψ0)

n
− Q̂(0,1)

m−1,n−1(ψ0) , (7.41)

Ŵm−1,n−1 :=
(r̃αq̃α − s̃αp̃α) (1− ψ0)2

%

P̂
(1,0)
m−1(ψ0)

m

P̂
(0,1)
n−1 (ψ0)

n
. (7.42)

For the final ISLAE, we consider the DSE given in (7.27). By making the fol-

lowing replacement in (3.51): yn 7→ y
(2)
αn , sn 7→ s̃

(+)
αn , tn 7→ q̃

(+)
αn , gn 7→ r̃

(+)
αn y

(1)
αn +(

1− r̃(−)
αn

)
υx

(1)
αn+s̃

(+)
αn x

(2)
αn, hn 7→ α

nM
y

(1)
αn

(
1− p̃(+)

αn

)
τ+x

(1)
αn

(
1− p̃(−)

αn

)
τ+ α

nM
x

(2)
αn

(
1− q̃(−)

αn

)
,

and ψ0 7→ cosφ0 = cosMθPEC, we obtain for m = 1, 2, 3, . . .

√
mx(1)

αm

(
1− r̃(−)

m

)
υ +
√
my(1)

αmr̃
(+)
m +

√
mx(2)

αms̃
(−)
m +

√
my(2)

αm

(
1− s̃(+)

m

)
+
∞∑
n=1

√
n
{
x(1)
αn

[(
1− r̃(−)

αn

)
υ −

(
1− p̃(−)

αn

)
τ
]

+ y(1)
αn

[
r̃(+)
αn −

α

Mn

(
1− p̃(+)

αn

)
τ
]

+x(2)
αn

[
s̃(−)
αn −

α

Mn

(
1− q̃(−)

αn

)]
+ y(2)

αn

(
q̃(+)
αn − s̃(+)

αn

)}
Q̂

(1,0)
m−1,n−1(φ0)

= 0. (7.43)

7.3.4 Matrix operator form

In this subsection, we write the four interconnected ISLAE in matrix operator form,

for each α ∈ {0, 1, . . . ,M − 1}. The resulting 4-by-4 block matrix operator can be

written as:

[
I + ς It − C1 +HC2

]x1

y1

x2

y2

 =

 z1

z2

z3

0

 . (7.44)

The following matrix operators have been introduced in the above equation:

C1 :=


T (+) −T (−) −ςU (+) ςU (−)

−R(+) υR(−) S(+) −S(−)

−T (−) T (+) ςU (−) −ςU (+)

υR(−) −R(+) −S(−) S(+)

 , (7.45a)
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H :=


H1 H2 0 0
H3 H4 0 0
0 0 H5 0
0 0 0 H6

 , (7.45b)

C2 :=



T (+) −O(+) R(+) − P(+) O(−) − T (−) υ
(
I −R(−)

)
+τ
(
I − P(−)

)
O(−) − T (−) υ

(
I −R(−)

)
T (+) −O(+) R(+) − P(+)

+τ
(
I − P(−)

)
−ςU (+) Q(+) − S(+) −ς

(
I − U (−)

)
S(−) −Q(−)

−ς
(
I − U (−)

)
S(−) −Q(−) −ςU (+) Q(+) − S(+)


. (7.45c)

To simplify the above, we introduce the following diagonal sub-matrices involving

the asymptotically small parameters:

O(+) :=diag
(
o(+)
αn

)
, O(−) :=diag

(
o(−)
αn

)
, (7.46a)

P(+) :=
α

M
diag

(
1− p(+)

αn

n

)
, P(−) :=diag

(
p(−)
αn

)
, (7.46b)

Q(+) :=diag
(
q(+)
αn

)
, Q(−) :=

α

M
diag

(
1− q(−)

αn

n

)
, (7.46c)

R(+) :=diag
(
r(+)
αn

)
, R(−) :=diag

(
r(−)
αn

)
, (7.46d)

S(+) :=diag
(
s(+)
αn

)
, S(−) :=diag

(
s(−)
αn

)
, (7.46e)

T (+) :=diag
(
t(+)
αn

)
, T (−) :=

α

M
diag

(
1− t(−)

αn

n

)
, (7.46f)

U (+) :=
α

M
diag

(
1− u(+)

αn

n

)
, U (−) :=diag

(
u(−)
αn

)
. (7.46g)

The remaining symmetric and bounded sub-matrices are defined as:

[H1]n,m :=T̂m−1,n−1 , [H2]n,m :=Ûm−1,n−1 , (7.47a)

[H3]n,m :=Ŵm−1,n−1 , [H4]n,m :=V̂m−1,n−1 , (7.47b)

[H5]n,m :=Q̂
(0,1)
m−1,n−1(φ0) , [H6]n,m :=Q̂

(1,0)
m−1,n−1(φ0) , (7.47c)

for n,m = 1, 2, . . . The column vectors xi and yi denote
{√

nx
(i)
n ,
√
ny

(i)
n

}∞
n=1

, respec-

tively (for i = 1, 2). The right hand vector of (7.44) is made up of the column vectors

z1, z2 and z3, which denote the right side of (7.36), (7.40), and (7.39), respectively;

i.e.,

[z1]n :=−
√

2(1 + ψ0)õαz̃α

t̃α ln
(

1−ψ0

2

)
− õα

[
1 +

1

%
ũα ln

(
1− ψ0

2

)
(p̃α − r̃α)

]
P̂

(0,1)
m−1(ψ0)

m
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−
√
mz̃(+)

αm +
∞∑
n=1

√
nz̃(+)

αn T̂m−1,n−1 , (7.48a)

[z2]n :=
1

%

√
2(1− ψ0)z̃α ln

(
1− ψ0

2

)
(q̃αr̃α − s̃αp̃α)

P̂
(1,0)
m−1(ψ0)

m

+
∞∑
n=1

√
nz̃(+)

αn Ŵm−1,n−1 , (7.48b)

[z3]n :=−
√
mz̃(−)

αm +
∞∑
n=1

√
nz̃(−)

αn Q̂
(0,1)
m−1,n−1(φ0) . (7.48c)

Following similar arguments as those given in Subsection 4.4.2, we can show that

(7.44) is a second kind Fredholm equation, and hence enjoys the same advantages

as those discussed in Chapter 3. The distinct feature of current problem, when

compared with that of the oblique scattering problem of CLR in Chapter 4 (where

only a single strip is included), is that in the final form of solution there are M infinite

systems to be solved separately. Each of these M systems is accountable for the

unknowns
{
x

(i)
αn, y

(i)
αn

}∞
n=1

(i = 1, 2), for a fixed value of α ∈ {0, 1, . . . ,M − 1}. As the

asymptotically small parameters all have magnitude of order
(
κ21R

2

M2n2

)
, as n → +∞,

we can see that the truncation number Ntr required to achieve a desired accuracy for{
x

(i)
αn, y

(i)
αn

}∞
n=1

(i = 1, 2) is only one-Mth of that for the problem involving only a

single reflecting strip (M = 1). In other words, for a predetermined accuracy of the

computed solutions, the total number of series equations required (i.e., M × Ntr) is

independent of the number of PEC strips M .

7.4 Numerical results and discussion

7.4.1 Numerical validation

With the knowledge of the expansion coefficients
{
x

(i)
αn, y

(i)
αn

}∞
n=1

for i = 1, 2 and α =

0, 1, . . . , (M − 1), the near field, surface current density and RCS can be determined

and compared for the numerical checks of the algorithm.

Some internal checks have been conducted on the scattering problem by a multi-

conductor cylinder with three strips (M = 3). The tangential components of the

total electric field, Etot
z (recall that Eφ vanishes for normally incident TMz plane

wave), along the contour of the cylinder are plotted in the top figure in Figure 7.2.

Evidently, the z-components of the interior (solid red line) and exterior (dotted black

line) electric fields match perfectly over the entire surface of the cylinder, and vanish

on the PEC strips, which are located at the intervals (−30◦, 30◦), (90◦, 150◦) and
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(−150◦,−90◦). On the other hand, the bottom figure depicts the difference between

the φ-components of the magnetic field across the structure’s contour. The boundary

condition on dielectric surface is confirmed here, as the difference is seen oscillating

around the value zero. The oscillation seen is a result of the Gibbs phenomenon, which

can be reduced by increasing the truncation number or by some series manipulation

to speed up the rate of convergence. As mentioned previously, there are various

different approaches applicable to suppress the Gibbs phenomenon: they include

Fejér’s method of summing Cesàro sums, ε-algorithm extrapolation method, and by

extracting the square root singularities at the two edges of the strip at φ = ±θPEC,

explicitly. Alternatively, we can follow the approach described in Section 4.7 to obtain

a series expression with faster convergence rate than the original one. Here, truncation

number Ntr of 50 is used.

Several external tests have also been conducted. To examine the accuracy of the

solution over the boundary of CLR, the tangential components of the total electric

field Ez, are computed for a multi-conductor cylinder with two PEC strips, each of

angular width 80◦ (i.e., θPEC = 40◦). The absolute magnitude of Etot
z are computed

for the problem characterized by parameters R = 1, εr = 1, µr = 1, θPEC = 40◦,

M = 2, k0 = 2π and θpw
x = 90◦. It is worth noting that the total tangential electric

field vanishes at the two PEC strips as dictated by the boundary condition. The

curve is compared directly with Figure 2 in [28] which results were calculated using

MoM and boundary value method.

7.4.2 Numerical investigation

For the problem involving a multi-conductor scattered by plane wave, suppose each

of the ISLAE is truncated to Ntr equations. As a result, each of the 4-by-4 block

matrix equations has a dimension of 4Ntr-by-4Ntr. We can see that, for Ntr > κ1R/4,

the relative error of the unknown coefficients decreases as Ntr increases. Therefore,

it is only sensible to choose a truncation number of at least κ1R/4, for a converging

solution. We can also see that this total number of equations, M × 4Ntr, required for

a specific accuracy has about the same magnitude as that for the structure with only

one conducting strip (i.e., M = 1). However, a comparison of the condition number

for the ISLAE, when M = 1, 2 and 4 in Figure 7.4 reveals that the system has a

higher condition number as M increases.
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Figure 7.2: MBC check for the scattering problem by a multi-conductor cylinder
with three strips when excited by a line source at the origin. [R = 1, M = 3, εr = 2,
µr = 1, θPEC = 30◦, k0 = 20, θls = 0, ψls = 0 and Ntr = 50]
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Figure 7.3: Comparison of the relative error of the ISLAE for differ-
ent M , as the total (truncated) number of equations M ∗ Ntr increases.[
k0R = 20, εr = 2, µr = 1, θPEC = π/6

]
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Figure 7.4: Comparison of the condition number of the matrix operator for
different M , as the total (truncated) number of equations M × Ntr increases.[
k0R = 20, εr = 2, µr = 1, θPEC = π/6

]
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7.5 Conclusion

The problem of a braided cylindrical shield with periodic apertures and dielectric

loading under the excitation of an oblique plane wave is considered. An algorithm

based upon the MoR is formulated, by making use of the periodicity of the structure

to reduce the formulation to one defined over the periodic unit cell. In the final step,

M non-interconnected systems of equations of the second kind are obtained, where

M is the number of strips. Each of these M ISLAE can be written as a 4-by-4 block

matrix equations and is subsequently solved numerically by truncation method. The

computed solution provides a rigorous analysis of the shielding effect of the braided

cylindrical shield.

The numerical analysis first deals with the verification of the algorithm. The tan-

gential components of the electric and magnetic fields on the surface of the scatterer

are computed to verify the satisfaction of the MBC. The solution computed is also

shown to be convergent and stable. To examine the effectiveness of the braided cylin-

drical shield, the transmitted field inside the structure is calculated as a function of

the number and width of the strips as well as the dielectric constant.
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Chapter 8

Hybrid mode analysis of a
multi-conductor microstrip line

8.1 Introduction

The shielding effect of a braided cylindrical shield exposed to an external excitation

has been investigated in previous chapter, Chapter 7. It is our goal in this chapter to

study the aspect of a braided cylindrical shield as a part of a transmission line (thus

forming a cylindrical multi-conductor microstrip line). The MBVP associated with a

double-layered, shielded transmission line, which inner interface consists an arbitrary

number M of PEC strips, is formulated in terms of a rigorous hybrid electromagnetic

mode (HEM) representation.

From substrate permittivity measurements to microwave filters, splitters, baluns,

transition adapters, and impedance transformers, the applications of multi-conductor

transmission line are vast. The investigations on multi-conductor transmission lines

have been a topic of interest for a few decades, and have used a variety of techniques

including the conformal mapping approach [26, 48, 60, 95], the MoM [3, 54, 72], the

FDM [19, 13, 64], the iterative approach [10], the FEM [39, 38], etc. Reported work

on this subject can be classified into two categories: quasi-TEM approximation and

hybrid-mode analyses. The quasi-TEM assumption provides acceptable approximate

results only in some circumstances, e.g., when the structure dimension is a lot smaller

than half a wavelength. For higher frequency bands (e.g., millimeter wave bands),

hybrid-mode analyses is needed to provide accurate prediction of the dispersion char-

acteristics. However, due to its complexity, there are a lot less reported hybrid-mode

analysis of this type of multi-conductor transmission line.

As opposed to many of the approaches mentioned above (which are purely nu-

merical), the analysis presented in this chapter is based on the MoR without any

161



a priori simplifications. Following a similar formulation to that for the scattering

problem of a multi-conductor cylinder considered in Chapter 7, the spectral problem

of the multi-conductor transmission line problem can be equivalently reduced to the

problem of determination of the propagation constant kz from the M resulting matrix

equations by solving for the eigenvalues of the following characteristic equation

[Aα(kz)] x(kz) = 0 , (8.1)

for α = 0, 1, . . . , (M − 1). Here, x is the corresponding characteristic vector, and Aα
is the α-th matrix operator derived from using the MoR on the ill-conditioned series

equations. It is worth noting that each matrix operator, Aα for α = 0, 1, . . . , (M−1),

is a compact perturbation of the identity matrix operator. As has been discussed in

preceding chapters, due to this, the accuracy of the results computed is guaranteed

and the numerical algorithm is well-conditioned. The numerical analysis concentrates

on the finding of the cutoff frequency (the lowest frequency for which the unattenuated

propagation occurs) of such a line. Numerical results of frequency-dependent effective

dielectric constants are given for different number of strips, relative dimension of the

interior cylinder and dielectric constants of substrates. A shielded transmission line

is assumed in the problem formulation for simplicity, although the approach can be

extended to the open waveguide problem.

8.2 Geometrical description of the problem

The cross-section of the multi-conductor transmission line considered is shown in

Figure 8.1. The outer circle represents a cross-section of a PEC cylinder of radius

R0, while the interior circle represents the contour of a multi-conductor cylinder of

radius R1. Both cylinders are assumed to be parallel to the z-axis and uniform in the

z direction. On the surface of the interior cylinder, a finite number M of conformal

PEC strips are placed. Similar to the assumptions made in Chapter 7, the strips are

assumed to be equally-spaced, infinitesimally-thin, and each has the same angular

width of 2θPEC.

We denote the region between the outer and inner cylinders as region 1, while

the region inside the interior cylinder as region 2. Although it offers great advantage

of low dielectric loss, an air-filled version of the line is difficult to construct as the

inner cylinder (which consists multiple PEC strips) will then have to be suspended.

Therefore, unlike the scattering problem in previous chapter, where the outer region

is supposed to be free space, we do not assume that region 1 is air-filled here. The
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dielectric materials in region 1 and 2 are assumed to be lossless, isotropic and ho-

mogeneous. We denote the relative permittivity and permeability of region 1 and

2 as (ε1, µ1) and (ε2, µ2), respectively. Due to the presence of different dielectrics,

the field distribution is a combination of TE and TM modes, which is referred to as

hybrid electromagnetic mode (HEM). The electric and magnetic field components are

denoted with superscript (1) inside the cladding (region 1), and with superscript (2)

inside the inner core (region 2). The superscripts (1) and (2) are used, instead of (0)

and (1) adopted in Chapter 7, to avoid confusion with free space parameters.

Figure 8.1: Cross-sectional view of a multi-conductor transmission line.

8.3 Problem formulation

Due to the periodicity of this multi-conductor transmission line, the Floquet formu-

lation can be applied directly to the series representations of the field components.

However, as there is great structural similarity between the line considered in this

chapter and the scatterer studied in Chapter 7, we have chosen to adopt the same ap-

proach as that in previous chapter for consistency; i.e., by making use of the identity
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for exponential functions. We have adopted the same notations and series representa-

tions as those employed in previous chapter, where possible, in our formulation here.

The series equations derived from the MBC, and the final matrix equations derived

from the application of the MoR are the homogeneous forms of those obtained in

the scattering problem in Chapter 7, with some of the asymptotically small parame-

ters redefined. To avoid repetition, the detailed derivation of the final block matrix

equation is omitted.

For this shielded transmission line, we denote the z-components of the fields in

each region as:

E(1)
z (ρ, φ) =

∞∑
n=−∞

[
a(1)
n

H
(2)
n (κ1ρ)

H
(2)
n (κ1R1)

+ cnJn(κ1ρ)H
′(2)
n (κ1R0)

]
ejnφ , (8.2a)

H(1)
z (ρ, φ) =

∞∑
n=−∞

[
b(1)
n

H
(2)
n (κ1ρ)

H
(2)
n (κ1R1)

+ dnJn(κ1ρ)H
′(2)
n (κ1R0)

]
ejnφ , (8.2b)

E(2)
z (ρ, φ) =

∞∑
n=−∞

a(2)
n Jn(κ1ρ)H

′(2)
n (κ1R0)ejnφ , (8.2c)

H(2)
z (ρ, φ) =

∞∑
n=−∞

b(2)
n Jn(κ1ρ)H

′(2)
n (κ1R0)ejnφ . (8.2d)

The unknowns
{
a

(i)
n , b

(i)
n , cn, dn

}
n∈Z

(i = 1, 2) are evaluated by applying the boundary

conditions on the contours of both cylinders (where ρ = R0 or R1).

As the transmission line is shielded, the tangential components of the electric field

vanish on on the contour of the outer cylinder; i.e.,

lim
ρ→R−0

E(1)
z (ρ, φ) =0 , φ ∈ (−π, π), (8.3a)

lim
ρ→R−0

E
(1)
φ (ρ, φ) =0 , φ ∈ (−π, π). (8.3b)

At the same time, the tangential components of the electric field are continuous

across the contour of the inner cylinder; i.e.,

lim
ρ→R+

1

E(1)
z (ρ, φ) = lim

ρ→R−1
E(2)
z (ρ, φ) , φ ∈ (−π, π), (8.4a)

lim
ρ→R+

1

E
(1)
φ (ρ, φ) = lim

ρ→R−1
E

(2)
φ (ρ, φ) , φ ∈ (−π, π). (8.4b)

We can eliminate four out of six unknown coefficients by substituting the series

representations given in (8.2) into (8.3) and (8.4), then equating termwise; i.e.,
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{
a

(1)
n , b

(1)
n , cn, dn

}
n∈Z

can be written in terms of
{
a

(2)
n , b

(2)
n

}
n∈Z

. From these conti-

nuity conditions, we derive the following relations:

a(1)
n =− c(1)

n Jn(κ1R0)H(2)
n (κ1R1)H

′(2)
n (κ1R0)

/
H(2)
n (κ1R0) , (8.5a)

b(1)
n =− d(1)

n J ′n(κ1R0)H(2)
n (κ1R1) . (8.5b)

cn =a(2)
n

Jn(κ2R1)H
′(2)
n (κ2R1)H

(2)
n (κ1R0)

ϑ
(1)
n H

′(2)
n (κ1R0)

, (8.5c)

dn =

[
na

(2)
n βz

jη0µ1κ1R1

(
1− κ2

1

κ2
2

)
Jn(κ2R1) + b(2)

n

µ2κ1

µ1κ2

J ′n(κ2R1)

]
H
′(2)
n (κ2R1)

ϑ
(2)
n

, (8.5d)

where the denominators ϑ
(1)
n and ϑ

(2)
n are defined as

ϑ(1)
n =Jn(κ1R1)H(2)

n (κ1R0)− Jn(κ1R0)H(2)
n (κ1R1) , (8.6)

ϑ(2)
n =J ′n(κ1R1)H

′(2)
n (κ1R0)− J ′n(κ1R0)H

′(2)
n (κ1R1) . (8.7)

In the above equations, we have introduced the normalized propagation constant

βz = kz/k0
1. The unknowns

{
a

(1)
n , b

(1)
n

}
n∈Z

can be expressed in terms of
{
a

(2)
n , b

(2)
n

}
n∈Z

as well by substitution of (8.5c) and (8.5d) into (8.5a) and (8.5b):

a(1)
n =− a(2)

n Jn(κ1R0)H(2)
n (κ1R1)Jn(κ2R1)H

′(2)
n (κ2R1)

/
ϑ(1)
n , (8.8a)

b(1)
n =−

[
na

(2)
n βz

jη0µ1κ1R1

(
1− κ2

1

κ2
2

)
Jn(κ2R1) + b(2)

n

µ2κ1

µ1κ2

J ′n(κ2R1)

]

× H
′(2)
n (κ2R1)J ′n(κ1R0)H

(2)
n (κ1R1)

ϑ
(2)
n

. (8.8b)

The above representations (8.5c), (8.5d), (8.8a) and (8.8b) hold when both of the

denominators, ϑ
(1)
n and ϑ

(2)
n , are non-zero for all integer values of n. When either of

them vanishes for some n ∈ Z, the representations above take slightly different forms,

and are considered in next section. It is worth noting that the conditions

ϑ(1)
n = 0 , (8.9)

ϑ(2)
n = 0 , (8.10)

are, respectively, the characteristic equations for the TMz and TEz modes for the coax-

ial line which consists of a central conductor of radius R1, surrounded by grounded

one of radius R0, and filled with dielectric material of relative parameters (ε1, µ1) (see

the left figure in Figure 8.2).

1For the scattering problem with an obliquely incident plane wave, βz = cos θpwz .
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Therefore, similar to the previous scattering problem, we have only the unknowns{
a

(2)
n , b

(2)
n

}
n∈Z

left to be determined from the MBC given below:

lim
ρ→R−1

E(2)
z (ρ, φ) =0 , φ ∈ ΩPEC, (8.11a)

lim
ρ→R−1

E
(2)
φ (ρ, φ) =0 , φ ∈ ΩPEC, (8.11b)

lim
ρ→R+

1

H(1)
z (ρ, φ) = lim

ρ→R−1
H(2)
z (ρ, φ) , φ ∈ Ωaper, (8.11c)

lim
ρ→R+

1

H
(1)
φ (ρ, φ) = lim

ρ→R−1
H

(2)
φ (ρ, φ) , φ ∈ Ωaper, (8.11d)

where ΩPEC and Ωaper are portions of the boundary Ω of the inner cylinder as defined

in (7.1a) and (7.1b).

The set of series equations derived from the MBC for this transmission line bears

great similarity to those obtained in Chapter 7 with βz replacing cos θpw
z and R1

replacing R. The main differences between the two problems lies in the definitions

of the parameters {rn, sn, tn, un}n∈Z, and the absence of external excitation (which

is summarized in the parameter {zn}n∈Z previously). From (8.11a) and (8.11b), we

have

∞∑
n=−∞

a(2)
n one

jnφ = 0 (A) , (8.12)

∞∑
n=−∞

{
a(2)
n pn + b(2)

n qn
}
ejnφ = 0 (A) , (8.13)

for φ ∈ ΩPEC; while from (8.11c) and (8.11d), we have

∞∑
n=−∞

{
a(2)
n rn + b(2)

n sn
}
ejnφ = 0 (A) , (8.14)

∞∑
n=−∞

{
a(2)
n tn + b(2)

n un
}
ejnφ = 0 (A) , (8.15)

for φ ∈ Ωaper. The coefficients {on, pn, qn}n∈Z are as defined in (4.25)–(4.27); that is,

for all n ∈ Z,

on :=Jn(κ2R1)H
′(2)
n (κ2R1) , (8.16)

pn :=
jnβz

η0µ2κ2R1

Jn(κ2R1)H
′(2)
n (κ2R1) , (8.17)

qn :=J ′n(κ2R1)H
′(2)
n (κ2R1) , (8.18)
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whereas the coefficients {rn, sn, tn, un}n∈Z are redefined as

rn :=
jnβz

η0µ1κ1R1

(
1− κ2

1

κ2
2

)
Jn(κ2R1)H

′(2)
n (κ2R1) γ(1)

n , (8.19)

sn :=Jn(κ2R1)H
′(2)
n (κ2R1)− µ2 κ1

µ1 κ2

J ′n(κ2R1)H
′(2)
n (κ2R1) γ(1)

n , (8.20)

tn :=ε2κ1J
′
n(κ2R1)H

′(2)
n (κ2R1)− ε1κ2Jn(κ2R1)H

′(2)
n (κ2R1) γ(2)

n

+
n2β2

zκ2

µ1κ2
1R

2
1

(
1− κ2

1

κ2
2

)
Jn(κ2R1)H

′(2)
n (κ2R1) γ(1)

n , (8.21)

un :=
nβzη0κ1

jκ2R1

[
Jn(κ2R1)H

′(2)
n (κ2R1)− µ2 κ2

µ1 κ1

J ′n(κ2R1)H
′(2)
n (κ2R1) γ(1)

n

]
. (8.22)

In the above, we have introduced the following for neater expressions

γ(1)
n =

Jn(κ1R1)H
′(2)
n (κ1R0)− J ′n(κ1R0)H

(2)
n (κ1R1)

J ′n(κ1R1)H
′(2)
n (κ1R0)− J ′n(κ1R0)H

′(2)
n (κ1R1)

, (8.23)

γ(2)
n =

J ′n(κ1R1)H
(2)
n (κ1R0)− Jn(κ1R0)H

′(2)
n (κ1R1)

Jn(κ1R1)H
(2)
n (κ1R0)− Jn(κ1R0)H

(2)
n (κ1R1)

. (8.24)

That is, to incorporate the effect of the external shield, we have replaced the ratios
H

(2)
n (κ1R)

H
′(2)
n (κ1R)

and H
′(2)
n (κ1R)

H
(2)
n (κ1R)

(which occur in the unbounded scattering problem in Chapter

4 and Chapter 7) with γ
(1)
n and γ

(2)
n , respectively, provided ϑ

(1)
n , ϑ

(2)
n 6= 0, for all

n ∈ Z. The circumstances when at least one of ϑ
(1)
n , ϑ

(2)
n vanishes, for some integer n,

are considered in the next section.

The series equations obtained from the MBC, as given in (8.12)–(8.15), are defined

over ΩPEC and Ωaper. Following the same approach as that in Chapter 7, this set of

series equations can be reformulated as M independent sets defined over the periodic

unit cell
(
− π
M
, π
M

)
, which are subsequently regularized individually to an ISLAE of

the second kind. Before giving the mathematical formulation to arrive at this final

matrix equation, we will first look the circumstances when βz permits propagating

(TMz or TEz) modes in this multi-conductor transmission line that are closely related

to those of a coaxial transmission line and those of a metallic waveguide. These

propagating modes are present when βz permits coexistence of the TMz (or TEz)

modes for the two closely related fundamental waveguides, at a particular wavelength

λ. The eigenvalues of these modes are independent of the number and angular size

of the strips, which affects only the set of series equations given in (8.12)–(8.15). We

first outline the eigenvalues corresponding to these modes in next section, then the M

infinite systems of the second kind derived from (8.12)–(8.15) are numerically solved

for the additional eigenvalues of the problem.
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8.4 Relationship with the coaxial line and circular

metallic waveguide

We observe in this section, the connection between the eigenvalues for the consid-

ered inhomogeneous, multi-conductor transmission line to those of the closely related

(homogeneous) coaxial line and dielectric-filled metallic waveguide. The geometry

description of these two basic waveguides are given in Figure 8.2. The coaxial line,

depicted on the left hand side of Figure 8.2, is formed by two PEC cylinders of radii

R0 and R1 (where R0 > R1), and is filled with the same material as that in region (1)

of the multi-conductor line; i.e., dielectric loading with relative parameters (ε1, µ1).

The metallic waveguide, depicted on the right hand side of Figure 8.2, is a closed cir-

cular waveguide of radius R1, the interior of which is loaded with the same material

as that in region (2) of the multi-conductor line; i.e., dielectric loading with (ε2, µ2).

Figure 8.2: Geometry description of the corresponding coaxial line and homogeneous
metallic waveguide.

For fixed wavelength λ and some specified problem parameters R0,1, ε1,2 and µ1,2,

and when βz is such that one of the two separate circumstances below takes place,

the fields do not vanish in the multi-conductor line:

1. both ϑ
(1)
n0 and Jn0(κ2R1) vanishes, for some integer n0,
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2. both ϑ
(2)
n0 and J ′n0

(κ2R1) vanishes, for some integer n0, when at least one of the

following holds:

(a) ε1µ1 = ε2µ2,

(b) βz = 0,

(c) n0 = 0,

(d) ϑ
(1)
n0 = 0,

3. det [Aα(βz)] = 0, for at least one of α ∈ {0, 1, . . . ,M − 1}, where Aα is the

matrix operator derived by the MoR from the α-th member of the set of series

equations (8.12)–(8.15).

We examine next the existence of non-trivial solutions to the multi-conductor

transmission line problem, corresponding to each of the above mentioned cases. The

two cases, (1) and (2), are mutually exclusive as only one of Jn0(κ2R1) and J ′n0
(κ2R1)

can vanish at a time. It is also worth noting that the conditions

Jn0(κ2R1) = 0 , (8.25)

J ′n0
(κ2R1) = 0 , (8.26)

are the characteristic equations of the TMz and TEz modes of the metallic waveguide

in Figure 8.2.

We begin by considering case (1). From (8.4a) and substituting of the series

representation, we arrive at the relationship

cnϑ
(1)
n

H
′(2)
n (κ1R0)

H
(2)
n (κ1R0)

=a(2)
n Jn(κ2R1)H

′(2)
n (κ2R1) . (8.27)

For n = n0, as ϑ
(1)
n0 = Jn0(κ2R1) = 0, the dependence of cn0 on a

(2)
n0 given in (8.5c) no

longer holds, and the unknown cn0 becomes a free variable as we now have one less

equation. It is worth noting that the set of permissible values of βz for case (1) to

occur is the values of βz that permit TMn0 modes for both the coaxial line and the

metallic waveguide. The coexistence can be planted or removed by careful selection

of the dielectric loadings. For example, for R0 = λ, R1 = 0.5λ, ε1 = 2.1, ε2 = 1,

µ1,2 = 1, and n0 = 0, the coexistence occurs at βz = 0.2206.

When ϑ
(2)
n0 and J ′n0

(κ2R1) vanish, we can derive from (8.4b) that

n0kz
R1

(
1

κ2
1

− 1

κ2
2

)
a(2)
n0
Jn0(κ2R1)H

′(2)
n0

(κ2R1) = 0 . (8.28)
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When none of case (2a) to (2c) applies, the above equation leads to a
(2)
n0 = 0. We

recall that κ2
i = k2

i − k2
z for i = 1, 2, therefore when ε1µ1 = ε2µ2, the factor

(
1
κ21
− 1

κ22

)
vanishes, and we have one less equation to solve for the unknowns. It is worth noting

that, case (2a) corresponds to the homogeneous multi-conductor transmission line, if

we consider non-magnetic material where µ1,2 = 1. In other words, the coexistence of

the TEn0 modes for the coaxial line and metallic waveguide also implies a propagating

mode in the homogeneous multi-conductor line. When ε1 = ε2 is considered, the

condition ϑ
(2)
n0 = 0 reduces to requiring Jn0(κ1R0) = 0. Therefore, by varying the

relative size of the radii R0 and R1, the propagating mode corresponding to this

situation can be postponed or brought forward. On the other hand, in case (2b),

where βz = 0, we are considering pure TEz modes for the multi-conductor line;

while in case (2c), where n0 = 0, the lowest order TE0 modes for the coaxial line and

metallic waveguide are considered. In all of cases (2a)–(2c), the unknown cn0 becomes

a free variable for the multi-conductor line problem. When no assumption is made

on the dielectric loadings and propagation constant βz, propagating modes exist for

the multi-conductor line when we also have ϑ
(1)
n0 = 0; i.e., the coexistence of the TMz

and TEz modes for the coaxial line. Under this case, we have a
(2)
n0 = 0 from both of

(8.4a) and (8.4b), when n = n0. Therefore, we have at least one less equation than

the number of unknowns coefficients (if det [Aα(βz)] 6= 0, we have exactly one free

variable).

The existence of all the propagating modes corresponding to cases (1) and (2) are

independent of the MBC on ρ = R1. The most difficult modes to determine are of

course those of case (3). At the values of βz such that none of the cases (1) and (2)

occurs, the series equations (8.12)–(8.15) can be transformed into M infinite systems

of equations of the following form:

[Aα(βz)] x(βz) = 0 , (8.29)

where α = 0, 1, . . . , (M − 1), x is the vector consisting the unknown coefficients ,

Aα is the α-th matrix operator derived by using the approach detailed in Chapter 7

and the MoR. This matrix equation has non-trivial solutions only for those values of

βz that make the matrix determinant vanish. These values of βz can be computed

by using a root-finding procedure such as Newton’s method. In our computation

regime, the values of βz that correspond to case (1) and (2) are predetermined, and

subsequently excluded in the root-finding calculation for det [Aα(βz)] = 0. We will

derive in the next section the modifications to problem formulation that are required,
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when at least one of the denominators ϑ
(1)
n0 and ϑ

(2)
n0 vanishes but none of the cases in

(1) and (2) applies.

8.4.1 Modifications to the problem formulation

The series equations (8.12)–(8.15) and their parameter definitions given in (8.16)–

(8.24) are only valid if ϑ
(1)
n , ϑ

(2)
n 6= 0, for all n ∈ Z. Modifications to these equations

when n = n0 are required if ϑ
(i)
n0 = 0 (for i = 1, 2), where n0 is some integer. We

consider the following three cases separately:

1. both ϑ
(1,2)
n0 = 0, and none of Jn0(κ2R1) and J ′n0

(κ2R1) vanishes;

2. ϑ
(1)
n0 = 0, and both ϑ

(2)
n0 , Jn0(κ2R1) 6= 0; or

3. ϑ
(2)
n0 = 0, ϑ

(1)
n0 6= 0 and none of the cases in (2a)–(2c) in previous subsection

applies.

In case (1), from (8.4b), we have a
(2)
n0 = 0 as ϑ

(1)
n0 = 0, and cn0 is an unknown yet

to be determined from the MBC. Similarly, from (8.4a), we have b
(2)
n0 = 0 as ϑ

(2)
n0 = 0

and a
(2)
n0 = 0, while dn0 is an unknown to be determined from the MBC. Therefore,

we replace a
(2)
n0 and b

(2)
n0 in the unknown vector x of the final matrix equation by cn0

and dn0 . The following amendments are made to the parameters of (8.12)–(8.15) to

incorporate the changes:

on0 = pn0 = qn0 = rn0 = 0 , (8.30)

while redefining the parameters below:

sn0 =Jn0(κ1R1)H
′(2)
n0

(κ1R0)− J ′n0
(κ1R0)H(2)

n0
(κ1R1) , (8.31)

tn0 =− ε1κ2
H
′(2)
n0 (κ1R0)

H
(2)
n0 (κ1R0)

[
J ′n0

(κ1R1)H(2)
n0

(κ1R0)− Jn0(κ1R0)H
′(2)
n0

(κ1R1)
]
, (8.32)

un0 =− n0βzη0κ2

κ1R1

[
Jn0(κ1R1)H

′(2)
n0

(κ1R0)− J ′n0
(κ1R0)H(2)

n0
(κ1R1)

]
. (8.33)

In case (2), similar to the argument given above, as ϑ
(1)
n0 = 0, we derive from (8.4b)

that a
(2)
n0 = 0, and replace a

(2)
n0 in the unknown vector x by cn0 . Consequently, from

(8.4b), we have

dn0 =b(2)
n0

µ2κ1

µ1κ2

J ′n0
(κ2R1)H

′(2)
n0 (κ2R1)

ϑ
(2)
n0

. (8.34)

The amendments to case (3) follow in exactly the same manner.
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8.5 Regularized systems

Following the same approach as in Chapter 7 and utilizing the identity for the expo-

nential function, these series equations can be equivalently reduced to M independent

sets of series equations defined over the unit cell
(
− π
M
, π
M

)
. Each of these series equa-

tions can subsequently be rewritten in terms of the trigonometric functions to halve

the interval of consideration, as outlined in Subsection 7.3.2. The details of these

steps are omitted to avoid repetition.

The definitions for the parameters {on, pn, qn}n∈Z are exactly the same as those

in Chapter 4 and Chapter 7. Therefore, we only look at the asymptotic behaviors

of the parameters
{
r

(±)
αn , s

(±)
αn , t

(±)
αn , u

(±)
αn

}∞
n=1

(defined in (7.19)). As n → ∞, these

parameters have the following magnitudes

r(+)
αn =


0, for α = 0

jβz
η0

(
1− κ2

1

κ2
2

)
O

(
κ2

2R
2
1

n2

)
, otherwise,

(8.35)

r(−)
αn =

jβz
η0

(
1− κ2

1

κ2
2

){
1 +O

(
κ2

2R
2
1

n2

)}
, (8.36)

s(+)
αn =

(
1 + jµ1

κ2
1

κ2
2

){
1 +O

(
κ2

2R
2
1

n2

)}
, (8.37)

s(−)
αn =


0, for α = 0,(

j − µ1
κ2

1

κ2
2

)
O

(
κ2

2R
2
1

n2

)
, otherwise,

(8.38)

t(+)
αn =

ζMn

βzη0

{
1 +O

(
κ2

2R
2
1

n2

)}
, (8.39)

t(−)
αn =


0, for α = 0,

ζα

βzη0

O

(
κ2

2R
2
1

n2

)
, otherwise,

(8.40)

u(+)
αn =


0, for α = 0,

α (1 + jµ1)

{
1 +O

(
κ2

2R
2
1

n2

)}
, otherwise,

(8.41)

u(−)
αn = Mn (1 + jµ1)

{
1 +O

(
κ2

2R
2
1

n2

)}
, (8.42)

where

ζ :=− j + εr
κ2

1

κ2
2

− jβ2
z

(
1− κ2

1

κ2
2

)
. (8.43)

From the above observations, we can introduce the following asymptotically small
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parameters:

r̃(+)
αn =


0, for α = 0,

jπκ2R1

1 + j
µ2κ21
µ1κ22

r(+)
αn , otherwise, (8.44a)

r̃(−)
αn = 1 +

πη1κ2R1

jβz

(
1− κ21

κ22

)r(−)
αn , (8.44b)

s̃(+)
αn = 1− jπκ2R1

1 + j
µ2κ21
µ1κ22

s(+)
αn , (8.44c)

s̃(−)
αn =


0, for α = 0,

jπκ2R1

1 + j
µ2κ21
µ1κ22

s(−)
αn , otherwise, (8.44d)

t̃(+)
αn = 1− jπκ1R

2
1

ζMn
t(+)
αn , (8.44e)

t̃(−)
αn =


1, for α = 0,

1− jπκ1R
2
1

ζα
t(−)
αn , otherwise,

(8.44f)

ũ(+)
αn =


1, for α = 0,

1 +
πκ2

2R
2
1

η0κ1α
(

1 + j µ2
µ1

)
βz
u(+)
αn , otherwise, (8.44g)

ũ(−)
αn = 1 +

πκ2
2R

2
1

η1κ1

(
1 + j µ2

µ1

)
Mnβz

u(−)
αn . (8.44h)

For each fixed α, four sets of DSE involving
{
x

(i)
n , y

(i)
n

}∞
n=1

(i = 0, 1) of the fol-

lowing form are derived upon the substitution of the introduced asymptotically small

parameters:

x
(1)
α0 õα +

∞∑
n=1

[
x(1)
αn

(
1− õ(+)

αn

)
+ y(1)

αn õ
(−)
αn

]
cosnφ = 0 (A), φ ∈ (0, φ0), (8.45a)

x
(1)
α0 t̃α0 + x

(2)
α0 ũα0 + z̃α0 +

∞∑
n=1

[
nx(1)

αn

(
1− t̃(+)

αn

)
+ y(1)

αn

(
1− t̃(−)

αn

) α
M

+x(2)
αn

(
1− u(+)

αn

) α
M
ς + ny(2)

αn

(
1− u(−)

αn

)
ς
]

cosnφ = 0 (A), φ ∈ (φ0, π), (8.45b)
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

∞∑
n=1

[
nx(1)

αn

(
1− p̃(−)

αn

)
ξ + y(1)

αn

(
1− p̃(+)

αn

) α
M
ξ

+x(2)
αn

(
1− q̃(−)

αn

) α
M

+ ny(2)
αn

(
1− q̃(+)

αn

)]
sinnφ = 0 (A), φ ∈ (0, φ0), (8.46a)

∞∑
n=1

[
x(1)
αn

(
1− r̃(−)

αn

)
τ + y(1)

αn r̃
(+)
αn

+x(2)
αns̃

(−)
αn + y(2)

αn

(
1− s̃(+)

αn

)]
sinnφ = 0 (A), φ ∈ (φ0, π), (8.46b)



x
(1)
α0 p̃α0 + x

(2)
α0 q̃α0 +

∞∑
n=1

[
x(1)
αn

(
1− p̃(+)

αn

) α
M
ξ + ny(1)

αn

(
1− p̃(−)

αn

)
ξ

+nx(2)
αn

(
1− q(+)

αn

)
+ y(2)

αn

(
1− q(−)

αn

) α
M

]
cosnφ = 0 (A), φ ∈ (0, φ0), (8.47a)

x
(1)
α0 r̃α0 + x̃

(2)
α0sα0 +

∞∑
n=1

[
x(1)
αnr̃

(+)
αn + y(1)

αn

(
1− r̃(−)

αn

)
τ

+x(2)
αn

(
1− s̃(+)

αn

)
+ y(2)

αn s̃
(−)
αn

]
cosnφ = 0 (A), φ ∈ (φ0, π), (8.47b)



∞∑
n=1

[
x(1)
αnõ

(−)
αn + y(1)

αn

(
1− õ(+)

αn

)]
sinnφ = 0 (A), φ ∈ (0, φ0), (8.48a)

∞∑
n=1

[
x(1)
αn

(
1− t̃(−)

αn

) α
M

+ ny(1)
αn

(
1− t̃(+)

αn

)
+ nx(2)

αn

(
1− ũ(−)

αn

)
ς

+y(2)
αn

(
1− ũ(+)

αn

) α
M
ς
]

sinnφ = 0 (A), φ ∈ (φ0, π), (8.48b)

where {õα, p̃α, q̃α} are as defined in (7.30b), while
{
t̃α, ũα, z̃α

}
are defined as in (7.30c)

and (7.30d) with the redefined ζ value in (8.43). On the other hand, we redefine r̃α

and s̃α as

r̃α :=
jπκ3

2R1

κ2
2 + j µ1

µ2
κ2

1

rα , (8.49a)

s̃α :=
jπκ3

2R1

κ2
2 + j µ1

µ2
κ2

1

sα . (8.49b)

Due to the great similarity, the ISLAE obtained after the regularization process

is the same as that in Chapter 7, and we omit the details to avoid repetition. The

ISLAE derived can be written in the following matrix operator form. The resulting

4-by-4 block matrix operator is the homogenous form of that in (7.44); i.e.,

[
I + ς It − C1 +HC2

]x1

y1

x2

y2

 = 0 . (8.50)
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The matrix operators C1, C2 and H are as defined in (7.45), where the only difference

lying in the definitions of the asymptotically small parameters
{
r̃

(±)
αn , s̃

(±)
αn , t̃

(±)
αn , ũ

(±)
αn

}∞
n=1

involved in C1 and C2.

8.6 Evaluation of the cutoff wavenumbers

The cutoff wavenumbers κ1,2 occur as arguments to the Bessel and Hankel functions.

As for a given wavelength (or frequency), the cutoff wavenumber is defined as κ2
i =

k2
0 (εiµi − β2

z ), for i = 1, 2. The problem therefore reduces to finding the values of

βz, at which at least one of the matrix operators Aα for α = 0, 1, . . . , (M − 1) is

singular. As each of the matrices Aα for α = 0, 1, . . . , (M − 1) is non-symmetric and

complex-valued, the determinant of each is thus complex-valued.

The values of βz corresponding to non-trivial solution of the systems are given

in Figure 8.3. In the figure, a multi-conductor transmission line of the following

characteristics is considered: M = 2, θPEC = π
6
, R0 = 1, R1 = 0.5, k0 = 10,

ε1 = 1, µ1 = 1, ε2 = 2.1 and µ2 = 1. The determinant of the two block matrices

are computed for increasing values of βz, for α = 0, 1. We have used the truncation

number ofNtr = 50 in our computation. When one of the determinant values vanishes,

a propagating mode is said to be present at that particular value of βz.

Figure 8.3: The determinant values of the matrix operators for α = 0 (red) and 1
(blue), for the microstrip line with two conductors (M = 2) each of width π

3
.
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To find the cutoff wavenumber for this structure, we have also plotted the absolute

values of ϑ
(1,2)
n , Jn(κ2R1) and J ′n(κ2R1), for n = 0, 1, . . . , 2Ntr. The minimum absolute

values of these functions are plotted against βz, with step size of 0.0001 in βz. From

Figure 8.4, we can see that the possible cutoff wavenumber βz is less than 1. We

take a closer look at these functions in order to find the values of βz such that

either of the pairs: “ϑ
(1)
n0 and Jn0(κ2R1)” or “ϑ

(2)
n0 and J ′n0

(κ2R1)” vanish together

for the some n0 = 0, 1, . . . , 2Ntr We can see that, for n = 0, 1, . . . , 100, ϑ
(1)
n vanishes

when βz = 0.3942, 0.5627, 0.6662, 0.7319, 0.7689 and 0.7809; while Jn(κ2R1) may

be vanishing at βz = 0.7863. These values are read from the top and bottom figures

in Figure 8.5, respectively. As none of these values coincide, we do not need to

proceed to checking that the eigenvalues actually correspond to the same order n

of both ϑ
(1)
n and Jn(κ2R1). On the other hand, ϑ

(2)
n vanishes when βz = 0.2666,

0.4681, 0.6207, 0.6657, 0.708, 0.7544, 0.7734, 0.8557, 0.9184, 0.9634 and 0.9908; while

J ′n(κ2R1) may be vanishing around βz = 0.4533 and 0.909. These values are read from

the top and bottom figures in Figure 8.6, respectively. After having a closer look at

the values of βz in the intervals (0.4533, 0.4681) and (0.9090, 0.9184), we conclude

that, in these intervals, ϑ
(2)
n0 and J ′n0

(κ2R1) never vanish at the same time, for all of

n0 = 0, 1, . . . Therefore, the cutoff wavenumber of this line comes from the eigenvalue

of [I + ς It − C1 +HC2].

8.7 Comments and conclusion

An accurate and mathematical rigorous analysis method for the multi-conductor

transmission line with periodic strip has been proposed in this chapter. The hy-

brid mode case has been considered. The solution computed with the use of the MoR

enjoys the benefits of guaranteed convergence, as well as numerical and theoretical

stability.

In this chapter, the analysis is carried out on the assumption that εr1µr1 < εr2µr2,

and thus, the dominant mode has normalized propagation coefficient βz = kz
k0

in the

interval (εr1µr1, εr2µr2). We wish to extend the analysis of the roots of the charac-

teristic equation for βz from the interval (0, εr1µr1) to the interval (0, εr2µr2) in the

future.
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(a) ϑ
(1)
n

(b) ϑ
(2)
n

Figure 8.4: The minimum absolute values of ϑ
(1)
n and ϑ

(2)
n , for n = 0, 1, . . . ,MNtr.
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(a) ϑ
(1)
n

(b) Jn(κ2R1)

Figure 8.5: The minimum absolute values of ϑ
(1)
n and Jn(κ2R1), for n =

0, 1, . . . ,MNtr. When both functions vanish at the same time, βz is a possible prop-
agating mode corresponding to case (1).
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(a) ϑ
(2)
n

(b) J ′n(κ2R1)

Figure 8.6: The minimum absolute values of ϑ
(2)
n and J ′n(κ2R1), for n =

0, 1, . . . ,MNtr. When both functions vanish at the same time, βz is a possible prop-
agating mode corresponding to case (2).
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Chapter 9

Conclusions

The research work documented in this thesis extends the MoR presented in [84] to the

analysis of a wider selection of open, dielectric cylindrical structures. The modeling for

the interaction of electromagnetic fields with these structures has been driven by their

myriad of practical applications in fields ranging from radar, antenna design, telecom-

munications, and other imaging technologies. Accurate and reliable predictions of the

interaction is fundamental in the assessment of behaviors and compatibility of these

electrical devices and equipment.

Due to the discontinuities of the boundary condition on the contour of the cylin-

drical structures considered, the Maxwell’s equations are essentially a MBVP. A wide

selection of numerical methods have been presented over the last few decades to solve

these problems. Many of them enjoy the advantages of being applicable to wide classes

of general structures, and easy to implement. However, it is often hard to ascertain

the accuracy and convergence of the computed solution of these numerical methods,

especially in the vicinity of the sharp edges. The advantage of employing the semi-

analytical MoR is to transform the Maxwell’s equations to a well-conditioned system,

so that when numerical matrix inversion is applied, the instability of the computed

solution can be eliminated. The approach based upon the MoR is also uniformly

valid for a wide frequency range, including at or near the resonant frequency. Any

preassigned accuracy level can be achieved, by taking sufficiently large truncation

number of the infinite system, before numerical inversion of the matrix. The solu-

tions hence computed give reliable benchmark results for a wider class of problems

with increased complexity where the analysis based on MoR becomes impossible, and

purely numerical approaches must be employed.

The study of an axially-slotted PEC cylinder excited by a normal plane wave based

on the MoR, together with various problems involving open spherical and spheroidal

structures, was originally reported in [85]. For the first problem considered in this
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thesis, this semi-analytical method is extended to its 3D counterpart when the CLR

is illuminated by an oblique incident plane wave (bot TMz and TEz cases). Under

the oblique incidence, both E- and H- polarizations are mixed, and when solved

simultaneously using the MoR, two decoupled 2-by-2 block matrix equations of the

second kind Fredholm are obtained. Chapter 4 contains the first rigorous treatment of

this problem imposing the analytical regularization approaches that have previously

appeared in the literature. Extensive numerical validation of the formulation and

codes have been carried out using both internal and external tests. The computed

solution is also tested for warranty of stability and convergence numerically. We

also propose an approach to accelerate the series convergence of physical quantities,

with details given for the case of Jz particularly. It is observed that, by choosing

Ntr ≈ [κ1R + 100], a 3 decimal places accuracy can be guaranteed for the computation

of RCS. As the oblique incident angle, where θpw
z ∈

(
0, π

2

)
, decreases in value, more

energy is stored in the interior of the CLR (as the wave propagates down the cylinder)

and less is diffracted back. In addition, the surface current possess both the z- and φ-

components, for an oblique incident problem. As θpw
z moves away from π

2
, the value

of Jz decreases, while that of Jφ increases.

In Chapter 5, we can see that by properly selecting the location and size of the

reflecting strip, as well as the dielectric constant of a CLR, enhancement and control

of the RCS can be achieved. The desirability of the CLR (a cylindrical reflector based

on a Constant K-lens) is compared with that of a CLLR (a cylindrical reflector based

on a stepped-index Luneburg lens) through the studies of their spectral dependence

of the RCS at a wide frequency range, and also their scanning properties at varying

incident angle of the incoming plane wave. The focal spot locations of the Constant

K-lens (with εr = 2.1, 2.4, 3.0 and 3.5) are calculated by examining the energy

density distribution, resulting from the plane wave scattering. These locations are

then used for proper placement of the PEC strip of the CLR, in order to achieve

optimal illumination by the focused electromagnetic flux. We observe that the CLR

constructed with Constant K-lens of lower dielectric constant εr offers a more stable

and reasonably high spectral dependence of the RCS, compared to those constructed

with higher dielectric constant material. In addition, the scanning properties of the

CLR outperforms those of the CLLR of up to 7 layers, especially at higher frequencies.

We conclude that the CLR provides a cheaper and superior alternative to the CLLR

(of up to 7 layers), as it offers smoother and stronger spectral dependence of the

backscattering RCS, as well as better scanning performance.
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In Chapter 6, a finite number M of parallel CLR (each with arbitrary size, PEC

strip width and dielectric loading) are assumed located in the vicinity of one another.

The scattering problem of a plane wave diffracted by these CLR is studied using

the MoR. Due to the close proximity of the reflectors, the mutual interaction among

them are not to be omitted in the formulation. We take the sum of the incident plane

wave and all the scattered fields from other CLR to be the incident wave on each

of the individual cylinder. MBC on each of the surface of the M CLR are imposed

separately, and the resulted 2M sets of DSE are solved simultaneously using the MoR.

The MoR has also been generalized to solve the scattering problem when an

arbitrary number M of conformal PEC strips are placed on a cylindrical lens. The

method was originally applied to solve the potential problem involving a toroidal

conductor with 2M cuts, by first formulating the problem as a triple series equations,

then exploiting the symmetry property of the Jacobi polynomials, and connecting

the Jacobi polynomials with the ultraspherical polynomials in [84]. The process is

repeatedly applied, halving the interval at each step, until the interval for which the

series equations are defined over is reduced down to that of the periodic unit cell.

The new proposed approach is less tedious in the formulation, and is applicable for a

scattering problem as well as when odd number of strips are considered. Enclosing this

multi-conductor cylinder gives us a grounded transmission line, which is considered in

the last chapter. The hybrid electromagnetic mode (HEM) of such a multi-conductor

transmission line is solved by the MoR, and the cutoff frequency is computed. We can

see that there is a strong connection between the eigenvalues for the multi-conductor

transmission line to those for a closed coaxial line and a metallic waveguide.
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Appendix A

Vectors

A.1 Vector identities

a · (b× c) = b · (c× a) = c · (a× b) , (A.1)

a× (b× c) = (a · c) b− (a · b) c , (A.2)

∇ · (a× b) = b · (∇× a)− a · (∇× b) , (A.3)

∇× (∇× a) = ∇ (∇ · a)− (∇ · ∇) a . (A.4)

A.2 Relationships among unit vectors

Denote the unit vectors encountered in the Cartesian coordinates by (ix, iy, iz) and

those in the polar cylindrical coordinates by (iρ, iφ, iz). Suppose φ is the angle iρ at

a fixed point makes with the positive x−axis. The relationships among these unit

vectors are

ix = cosφ iρ − sinφ iφ , (A.5a)

iy = sinφ iρ + cosφ iφ , (A.5b)

and

iρ = cosφix + sinφiy , (A.6a)

iφ = − sinφix + cosφiy . (A.6b)
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Appendix B

Special functions

The formulas and identities of the special functions used in the problem formulations

are listed in this section. More extended and thorough treatments of these special

functions, including those not used in this thesis, can be found in [1, 45, 52, 87].

B.1 Gamma functions

The Gamma function, Γ(x), is defined as

Γ(x) :=

∫ ∞
0

tx−1e−tdt . (B.1)

From this integral definition, we can see that Γ(x) is an analytic function of x,

∀Re(x) > 0. When x is an non-negative integer n,

Γ(n) = (n− 1)! . (B.2)

The following are some useful properties of Γ(x) that have been established:

Γ(x+ 1) = xΓ(x) , (B.3)

Γ(x)Γ(1− x) =
π

sin(πx)
, (B.4)

Γ(x) ≈
√

2π

x
ex lnx−x , as z →∞ (B.5)∫ 1

0

tp−1(1− t)q−1dt =
Γ(p)Γ(q)

Γ(p+ q)
. (B.6)
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B.2 Bessel functions

The Bessel function of the first kind Jν(x) (also called the Bessel function) and the

second kind Yν(x) (also called the Neumann function) are the commonly employed

solutions to the Bessel’s equation of order ν

x2 d2y

dx2
+ x

dy

dx
+
(
x2 − ν2

)
y = 0 . (B.7)

For non-integer ν, Jν(x) and Yν(x) are defined respectively as

Jν(x) :=
∞∑
m=0

(−1)m

m!Γ(m+ ν + 1)

(x
2

)2m+ν

, (B.8)

Yν(x) :=
Jν(x) cos(νπ)− J−ν(x)

sin(νπ)
. (B.9)

For integer-valued ν = n, the functions take the following forms, where Ψ(m) =

1 + 1/2 + 1/3 + . . .+ 1/m and γ = 0.577215 . . . is the Euler’s constant

Jn(x) :=
∞∑
m=0

(−1)m

m!(m+ n)!

(x
2

)2m+n

, (B.10)

Yn(x) :=
2

π
Jn(x) log

(
eγx

2

)
− 1

π

n−1∑
m=0

(n−m− 1)!

m!

(x
2

)2m−n

− 1

π

∞∑
m=0

[Ψ(m) + Ψ(n+m)]
(−1)m

m!(n+m)!

(x
2

)2m+n

. (B.11)

Alternative solutions to the Bessel’s equation (B.7) are the Hankel functions of

the first kind H
(1)
ν (x) and the second kinds H

(2)
ν (x),

H(1)
ν (x) :=Jν(x) + jYν(x) , (B.12)

H(2)
ν (x) :=Jν(x)− jYν(x) . (B.13)

Any two of the four functions, Jν(x), Yν(x), H
(1)
ν (x) and H

(2)
ν (x), form a pair of

linearly-independent solutions to (B.7).

B.2.1 Some useful properties

Let Bn(x) represent generically Jn(x), Yn(x), H
(1)
n (x), H

(2)
n (x), or a linear combination

of them.

Recurrence relations:

B−n(x) = (−1)nBn(x) , (B.14)
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2ν

x
Bν(x) = Bν−1(x) +Bν+1(x) , (B.15)

d

dx
Bν(x) = 1

2
[Bν−1(x)−Bν+1(x)] . (B.16)

Wronskian identity:

Jν(x)H
′(2)
ν (x)− J ′ν(x)H(2)

ν (x) = − 2j

πx
. (B.17)

Large argument approximations (x� n):

Jn(x) ≈
√

2

πx
cos

(
x− 2n+ 1

4
π

)
, (B.18)

Yn(x) ≈
√

2

πx
sin

(
x− 2n+ 1

4
π

)
, (B.19)

H(1)
n (x) ≈

√
2

πx
ej(x−

2n+1
4

π) , (B.20)

H(2)
n (x) ≈

√
2

πx
e−j(x−

2n+1
4

π) , (B.21)

With time-dependence ejωt, physical interpretation of the above asymptotic ex-

pressions when x is real is that both Jn and Yn represent standing waves, H
(1)
n rep-

resents incoming waves, while H
(2)
n represents outgoing waves. When x is complex,

both Jn and Yn represent localized standing waves, while H
(1)
n and H

(2)
n represent at-

tenuated traveling waves. For purely imaginary x, all four of the functions represents

evanescent waves.

Large order approximations (n� x):

Jn(x) ≈ xn

n!2n

[
1− x2

4(n+ 1)
+

x4

32(n+ 1)(n+ 2)
+O

(
x6

n3

)]
(B.22)

J ′n(x) ≈ xn−1

(n− 1)!2n

[
1− (n+ 2)x2

4n(n+ 1)
+

(n+ 4)x4

32n(n+ 1)(n+ 2)
+O

(
x6

n3

)]
(B.23)

H(2)
n (x) ≈ j(n− 1)!2n

πxn

[
1 +

x2

4(n− 1)
+

x4

32(n− 1)(n− 2)
+O

(
x6

n3

)]
(B.24)

H
′(2)
n (x) ≈ − jn!2n

πxn+1

[
1 +

(n− 2)x2

4n(n− 1)
+

(n− 4)x4

32n(n− 1)(n− 2)
+O

(
x6

n3

)]
(B.25)

Addition theorem:

Bν(w)ejνβ =
∞∑

m=−∞

Bν+m(u) Jm(v)ejmα ,
∣∣ve±jα∣∣ < |u| . (B.26)

where the relationship of the parameters are depicted in Figure B.1.
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Figure B.1: The addition theorem of the Bessel function.

Generating function expansion:

ejx cos θ =
∞∑

n=−∞

jnJn(x)ejnθ . (B.27)

B.3 Jacobi polynomials

The Jacobi polynomials, P
(α,β)
n (x), are solutions to the following Jacobi differential

equation(
1− x2

) d2y

dx2
+ [β − α− (α + β + 2)x]

dy

dx
+ n(n+ α + β + 1)y = 0 . (B.28)

They form a complete orthogonal system in the interval [−1, 1] with respect to the

weighting function wα,β(x) = (1− x)α(1 + x)β, for α, β > −1 and n = 0, 1, 2, . . .(
P (α,β)
n , P (α,β)

m

)
:=

∫ 1

−1

wα,β(x)P (α,β)
n (x)P (α,β)

m (x)dx = h(α,β)
n δ(n−m) , (B.29)

where the inner square norm, h
(α,β)
n , is

h(α,β)
n :=

2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1)
. (B.30)

B.3.1 Normalized Jacobi polynomials

The Jacobi polynomial is normalized with respect to (B.29) when n = m. The

normalized Jacobi polynomials, P̂
(α,β)
n (x), is defined as

P̂n
(α,β)

(x) :=
[
h(α,β)
n

]−1
2 P (α,β)

n (x) . (B.31)

It has the property of orthonormality, as(
P̂ (α,β)
n , P̂ (α,β)

m

)
=

∫ 1

−1

wα,β(x)P̂ (α,β)
n (x)P̂ (α,β)

m (x)dx = δnm . (B.32)
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B.3.2 Some useful properties

Symmetry relation:

P (α,β)
n (−x) = (−1)nP (β,α)

n (x) . (B.33)

Large order approximation:

P (α,β)
n (cosφ) =

cos
{[
n+ 1

2
(α + β + 1)

]
φ− π

4
[2α + 1]

}
√
π n

(
sin 1

2
φ
)α+

1
2
(
cos 1

2
φ
)β+

1
2

+O

(
n−

3
2

)
. (B.34)

Relations with trigonometric functions:

sinnφ =

√
π n!

2 Γ
(
n+ 1

2

) (sinφ)P

(
1
2
,
1
2

)
n−1 (cosφ) , (B.35a)

cosnφ =

√
π n!

Γ
(
n+ 1

2

)P (
−1

2
,−1

2

)
n (cosφ) . (B.35b)

Integral relations for η ∈ [0, 1):

P (α,β)
n (x) =

(1− x)−αΓ(n+ 1 + α)

Γ(1− η)Γ(n+ α + η)

∫ 1

x

(1− t)α+η−1P
(α+η−1,β−η+1)
n (t)

(t− x)η
dt , (B.36a)

P (α,β)
n (x) =

(1 + x)−βΓ(n+ 1 + β)

Γ(1− η)Γ(n+ β + η)

∫ x

−1

(1 + t)β+η−1P
(α−η+1,β+η−1)
n (t)

(x− t)η
dt . (B.36b)

Differential relations:

−2n(1− x)α(1 + x)βP (α,β)
n (x) =

d

dx

[
(1− x)α+1(1 + x)β+1P

(α+1,β+1)
n−1 (x)

]
(B.37)

for n ≥ 1.

d

dx

[
(1− x)α+1 P̂ (α+1,β−1)

n (x)
]

= −
√

(n+ α + 1)(n+ β) (1− x)α P̂ (α,β)
n (x) (B.38)

for α > −1, β > 0.

d

dx

[
(1 + x)β+1 P̂ (α−1,β+1)

n (x)
]

=
√

(n+ α)(n+ β + 1) (1 + x)β P̂ (α,β)
n (x) (B.39)

for α > 0, β > −1.

Recurrence relation:

P̂
(α,β)
n+1 (x) = (bn + xan) P̂ (α,β)

n (x)− cnP̂ (α,β)
n−1 (x) , (B.40)
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with the two lowest degree polynomials as the initializations:

P̂
(α,β)
0 (x) =

[
h(α,β)
n

]−1
2 , (B.41a)

P̂
(α,β)
1 (x) = 1

2
[α− β + x (α + β + 2)] P̂

(α,β)
0 (x) . (B.41b)

The coefficients are given by

an =

√√√√h
(α,β)
n

h
(α,β)
n+1

× (2n+ α + β + 1)(2n+ α + β + 2)

(2n+ 2)(n+ α + β + 1)
, (B.42a)

bn =

√√√√h
(α,β)
n

h
(α,β)
n+1

× (2n+ α + β + 1)(α2 − β2)

2 (n+ 1)(n+ α + β + 1)(2n+ α + β)
, (B.42b)

cn =

√√√√h
(α,β)
n−1

h
(α,β)
n+1

× (n+ α)(n+ β)(2n+ α + β + 2)

(n+ 1)(n+ α + β + 1)(2n+ α + β)
. (B.42c)

B.4 Incomplete scalar products

The incomplete scalar product of two normalized Jacobi polynomials for α, β > −1,

x ∈ [−1, 1] and n,m = 0, 1, 2, . . ., is denoted as

Q̂(α,β)
nm (x) :=

∫ 1

x

(1− t)α(1 + t)βP̂ (α,β)
n (t)P̂ (α,β)

m (t)dt . (B.43)

Hence, it is clear that Q̂
(α,β)
nm (1) = 0.

B.4.1 Some useful properties

Q̂(α,β)
nm (x) =Q̂(α,β)

mn (x) , (B.44)

Q̂(α,β)
nm (x) =δnm − (−1)n−mQ̂(β,α)

nm (−x) , (B.45)

Q̂(α,β)
nm (x) =

∞∑
k=0

Q̂
(α,β)
nk (x)Q̂

(α,β)
km (x) . (B.46)

When α > −1, β > 0,

Q̂(α,β)
nm (x) =

(1− x)α+1(1 + x)β√
(n+ α + 1)(n+ β)

P̂ (α+1,β−1)
n (x)P̂ (α,β)

m (x)
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+

√
(m+ α + 1)(m+ β)

(n+ α + 1)(n+ β)
Q̂(α+1,β−1)
nm (x) . (B.47a)

When α > 0, β > −1,

Q̂(α,β)
nm (x) =− (1− x)α(1 + x)β+1√

(n+ α)(n+ β + 1)
P̂ (α−1,β+1)
n (x)P̂ (α,β)

m (x)

+

√
(m+ α)(m+ β + 1)

(n+ α)(n+ β + 1)
Q̂(α−1,β+1)
nm (x) . (B.47b)

(B.47a) and (B.47b) are deduced from the integral relations involving Jacobi polyno-

mials given in (B.36a) and (B.36b) (with η = 0).

B.4.2 Computation of the incomplete scalar product

When n 6= m, Q̂
(α,β)
nm (x) may be calculated in terms of P̂

(α,β)
n (x) using the following

expressions

Q̂(α,β)
nm (x) =

(1− x)α+1(1 + x)β

(n+ α + 1)(n+ β)− (m+ α + 1)(m+ β)

×
[√

(n+ α + 1)(n+ β)P̂ (α+1,β−1)
n (x)P̂ (α,β)

m (x)

−
√

(m+ α + 1)(m+ β)P̂ (α,β)
n (x)P̂ (α+1,β−1)

m (x)
]
, (B.48a)

when α > −1, β > 0 and

Q̂(α,β)
nm (x) =− (1− x)α(1 + x)β+1

(n+ β + 1)(n+ α)− (m+ β + 1)(m+ α)

×
[√

(n+ β + 1)(n+ α)P̂ (α−1,β+1)
n (x)P̂ (α,β)

m (x)

−
√

(m+ β + 1)(m+ α)P̂ (α,β)
n (x)P̂ (α−1,β+1)

m (x)
]
, (B.48b)

when α > 0, β > −1.

The above expressions are derived from the differential relations involving the Jacobi

polynomials given in (B.38) and (B.39) by using integration by parts.

When n = m, Q̂
(α,β)
nm (x) can be calculated using the following recurrence relation

Q̂
(α,β)
n+1,n+1(x) =

an
an+1

Q̂
(α,β)
n+2,n(x) +

(
bn − bn+1

an
an+1

)
Q̂

(α,β)
n+1,n(x)
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+ cn+1
an
an+1

Q̂(α,β)
n,n (x)− cnQ̂(α,β)

n−1,n+1(x) , (B.49)

with the initialization

Q̂
(α,β)
00 (x) =

[
h(α,β)
n

]−1
∫ 1

x

(1− t)α(1 + t)βdt . (B.50)

The above recurrence relation for the case when n = m is derived from (B.40)

directly, for the order n and m:

P̂
(α,β)
n+1 (z) = (bn + zan) P̂ (α,β)

n (z)− cnP̂ (α,β)
n−1 (z) , (B.51a)

P̂
(α,β)
m+1 (z) = (bm + zam) P̂ (α,β)

m (z)− cmP̂ (α,β)
m−1 (z) . (B.51b)

The term containing z is eliminated by first multiplying (B.51a) by ânP̂
(α,β)
n (z)

and (B.51b) by âmP̂
(α,β)
m (z), then subtracting the two. The recurrence relation for

Q̂n,n(x) can be readily derived by multiplying by the (1− z)α(1 + z)β and integrating

over (x, 1). The recurrence relation (B.49) has m set to be n+ 1.
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Appendix C

Abel’s integral transformation

C.1 Abel’s integral equations

The generalized Abel’s integral equation of the following form is considered

f(x) =

∫ x

a

u(ξ)

(x− ξ)λ
dξ , (C.1)

where 0 < λ < 1, f is a known function, x is some fixed value in (a, b), and u is the

unknown function to be determined. The companion form of (C.1) is given by

f(x) =

∫ b

x

u(ξ)

(ξ − x)λ
dξ . (C.2)

C.2 Derivation of the inversion formula

The solution to (C.1) can be obtained by considering the following integral [25, 58]∫ x

a

f(z)

(x− z)1−λdz . (C.3)

The unknown function u(ξ) is assumed to be continuous on (a, b) (hence, bounded).

The conditions for this continuity will become clear once the inversion is described.

By substitution of (C.1) into (C.3) and interchanging the order of integration of

the resulted Dirichlet formula [89], it can be derived that∫ x

a

f(z)

(x− z)1−λdz =

∫ x

a

u(ξ)

∫ x

ξ

1

(z − ξ)λ(x− z)1−λdz dξ . (C.4)

Using the change of variable t = (x−z)/(x−ξ) and noting that z−ξ = (1−t)(x−ξ),
the inner integral reduces to a constant for fixed λ as∫ x

ξ

1

(z − ξ)λ(x− z)1−λdz =

∫ 1

0

tλ−1(1− t)−λdt =
π

sin(πλ)
. (C.5)
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This reduction makes use of (B.6) with p = λ and q = 1 − λ as well as (B.4) with

x = λ.

As a result, the original integral in (C.3) is reduced to∫ x

a

f(z)

(x− z)1−λdz =
π

sin(πλ)

∫ x

a

u(ξ)dξ . (C.6)

The final step in the derivation of the solution involves differentiating of both sides

of (C.6) with respect to ξ. The solution to (C.1) is thus,

u(ξ) =
sinλπ

π

d

dξ

∫ ξ

a

f(x)

(ξ − x)1−λdx , (C.7)

which is often referred to as the inversion formula to (C.1).

The inversion formula to (C.2) can be derived in similar manner to be

u(ξ) = −sinλπ

π

d

dξ

∫ b

ξ

f(x)

(x− ξ)1−λdx . (C.8)

C.3 Conditions for uniqueness and continuity of

solution

The solution given in (C.7) is unique and continuous (including at the point a, where

it equals zero) if the following conditions are satisfied [25, 69]

1. f is continuous in (a, b),

2. f(a) = 0,

3. derivative of f is finite almost everywhere in (a, b).

Similar conditions are required for the uniqueness and continuity of solution given

in (C.8), with the second condition replaced by

(2) f(b) = 0.
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Appendix D

Methods of summation

This chapter summarizes two of the alternative methods of summation of a series:

the Abel- and Cesàro-summation methods. For more details of the summability of

divergent series, please refer to [23, 40].

D.1 Abel-summation

An alternative method to calculate the sum of a series
∑∞

n=1 an, which may be diver-

gent, is by computing the Abel summation defined as limr→1−
∑∞

n=1 anr
n.

D.1.1 Definitions of Abel-summability

A series
∑∞

n=1 an is said to be Abel-summable1 to the limit L and is written as

∞∑
n=1

an = L (A) , (D.1)

if limr→1−
∑∞

n=1 anr
n = L exists, as r → 1−.

An Abel-summable series
∑∞

n=1 an(x) is uniformly Abel-summable on [a, b] to L(x)

if for all ε > 0, there exists some δ > 0, such that∣∣∣∣∣
∞∑
n=1

an(x)rn − L(x)

∣∣∣∣∣ < ε , (D.2)

for (1− δ) < r < 1 and all x ∈ [a, b].

1It is worth noting that, by using Poisson’s integral formula, the Fourier series of a continuous
function f of period 2π can be shown to be Abel-summable.
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D.1.2 Conditions for (ordinary) convergence

Although the convergence of the series implies Abel-summability, for r lying within

any Stoltz angle (as stated in Abel’s theorem), the converse is not always true. Tauber

proved the theorem stating that: an Abel-summable series
∑∞

n=0 an is convergent if

and only if the following is satisfied as n→∞,

a1 + 2a2 + . . .+ nan
n

= sn −
s0 + s1 + . . .+ sn−1

n
→ 0 , (D.3)

where sN :=
∑N

n=0 an. The conditions necessary and sufficient for the step from Abel-

summability to convergence are called the Tauberian conditions.

Fejér shows that the area condition below implies (D.3),

∞∑
n=1

n|an|2 <∞ . (D.4)

Therefore, (D.4) is often referred as the Fejér’s Tauberian condition for the Abel-

summable series
∑∞

n=1 an. In fact, for p > 1, the following condition

∞∑
n=1

np−1|an|p <∞ , (D.5)

has been shown to be a Tauberian condition from Hölder’s inequality. More relaxed

conditions are validated, when the Littlewood’s theorem in 1911 states that:

∞∑
n=1

an is Abel-summable & |nan| ≤ C ⇒
∞∑
n=1

an converges; (D.6)

while the Hardy–Littlewood’s theorem in 1914 states that:

∞∑
n=1

an is Abel-summable & nan ≥ −C ⇒
∞∑
n=1

an converges. (D.7)

D.2 Cesàro-summation

For a series
∑∞

n=1 an, convergent or not, its Cesàro-summation of order 1 — written

as (C, 1) — is an arithmetic mean of the partial sums of the original series. It is

defined as

c1
k =

s1 + s2 + · · ·+ sk
k

=
1

k

k∑
n=1

sn (D.8)
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=
1

k

k∑
n=1

(k − n+ 1)an . (D.9)

where sn is the nth partial sum of the original series; i.e., sn :=
∑n

m=1 am. It is worth

noting that, for a convergent series, where
∑∞

n=1 an = L, the Cesàro-summation yields

the same sum; i.e., limk→∞ c
α
1 = L.
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