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Abstract 

 

Cannabinoids from plants are some of the oldest human medicine, while synthetic 

cannabinoid receptor agonists (SCRAs) new psychoactive substances have been responsible 

for hundreds of deaths all over the world. The studies presented in this thesis were 

undertaken to further the understanding of the molecular pharmacology of cannabinoids, 

and how structurally diverse cannabinoids have greatly varied outcomes when acting via the 

same target. The characterisation of cannabinoids at activating cannabinoid receptors (CB1 

and CB2) combined with operational model, functional selectivity and allosteric modulation 

together form the basis of the current thesis to better understand the molecular contributions 

to the toxic effects of SCRAs and therapeutic effects of phytocannabinoids.   

The first major finding of this thesis was the quantitative determination of the efficacy of 

SCRAs downstream of CB1 using the operational model of pharmacological agonism. A 

panel of 17 cannabinoids were compared for their ability to induce response after the 

pharmacological knockdown of CB1 receptor using AM6544 (irreversible CB1 antagonist). 

The operational efficacy of cannabinoids ranged from 233 (5F-MDMB-PICA) to 0.9 (THC), 

with CP55940 in the middle of the efficacy rank order. SCRAs generally demonstrated 

substantially higher efficacy at activating CB1 receptors than THC. This work is the first of 

its kind to provide a framework to quantify the efficacy of chemically diverse cannabinoids 

and help identify some of the potential underlying molecular mechanisms regarding the 

SCRAs-related adverse effect on CB1 activation. 

The functional activity of the same panel of cannabinoids was also characterised in two 

signalling endpoints - Gαi/o (inhibition) and Gαs (stimulation) of cAMP signalling. The rank 

order of potency of the cannabinoids to stimulate Gαs-like signalling compared to Gαi/o 

signalling was significantly different. This suggests the differing ability of cannabinoids to 

preferentially induce CB1-dependent cAMP inhibition over stimulation of cAMP 

(functional selectivity). Cannabinoids showed diverse signalling profile (wide range of 

EMAX) at Gαs-like pathway than their activity at canonical Gi-mediated signalling pathway. 

Evaluating the differences in G protein preference among SCRAs may contribute to 

unravelling their complex effects in humans. 
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Another important concept in molecular pharmacology is the allosteric modulation of 

receptor signalling. The fourth chapter of this thesis was a natural continuation of the 

original investigation of the SCRA-associated toxicity, where we utilised the concept of 

allosteric modulation to understand mechanisms underlying the adverse effects related to 

the mixing of brodifacoum (superwarfarin) with SCRAs. Results revealed that cannabinoid 

signalling was not affected by brodifacoum, indicating that combining SCRA with 

brodifacoum is not likely to enhance user experience through interactions with cannabinoid 

receptors.  

Allosteric modulation of cannabinoid receptors was also studied in the context of the 

‘entourage effect’ - an emerging idea amongst users of cannabis is that the whole plant must 

be used in order to achieve the maximal therapeutic effect. However, Chapter 5 determined 

that aromatic compounds called terpenoids that are commonly found in cannabis had no 

additive effect on cannabinoid receptor function in the presence of a high efficacy agonist 

(CPP5940) or a low efficacy agonist (THC), suggesting the absence of ‘entourage effect’. 

While the earlier chapters are focused on the pathways involved in the on-targets effects 

associated with SCRA toxicity, Chapter 6 featured an exploratory study primarily concerned 

with the pharmacological effects underlying the potential therapeutic effects of cannabidiol 

(CBD) signalling on multiple receptors. We demonstrate the specific inhibitory effects of 

CBD on CB1 responses at physiologically relevant temperature, however, the effect of CBD 

on CB2, or mu-opioid receptor appears relatively non-specific in nature. The outcome of 

this chapter indicates that more work is required to understand whether the promiscuity of 

CBD interaction with multiple receptors is due to the membrane interaction. 

The finding of this thesis provides new mechanistic insight into cannabinoid receptor 

function, and would hopefully direct future investigations into design of cannabinoids with 

high specificity and improved pharmaceutical properties. 
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Chapter I. General Introduction 

 

This chapter will address, in general, the pharmacology of cannabinoids, and particularly 

will summarise the history of medical cannabis from ancient Chinese pharmacopoeias to the 

incremental development of the current understanding of the human endocannabinoid 

system involved in many brain functions. The endocannabinoid system comprises of 

endogenous cannabinoids, the enzymes which produce or metabolise them, and the 

cannabinoid receptors (CB1 and CB2). Each of these components will be introduced in this 

chapter, with emphasis on the spectrum of the CB1 signalling responses.  The concept of 

phytocannabinoid-terpenoid entourage effect will then be introduced, with focus on their in 

vitro activity profiles in cannabinoid receptor function. Although cannabinoids have 

therapeutic potential, recent decades have seen emergence of vast numbers of new 

psychoactive substances - synthetic cannabinoids. This chapter will also focus on the 

emergence of synthetic cannabinoids as drugs of abuse, their nefarious adverse effects and 

their potential mechanism of action. These themes will then be combined in a brief 

discussion about unlocking the activity of chemically diverse cannabinoids to associate the 

signalling dynamics of CB1 with potentially useful therapeutic properties (i.e. biased 

agonism) and the use of operational model to quantify agonist efficacy. This thesis presents 

a comprehensive and up-to-date summary of many aspects of cannabinoid research, and it 

will be of interest to biomedical researchers, as well as chemists and toxicologists. 

1.1. Cannabis - Over 5000 years ago 

The first evidence of the use of Cannabis Sativa (cannabis) can be traced back to China by 

at least 5000 years ago, where archaeological evidence indicated that the plant was first used 

for fibre and textile (Li, 1974, Touw, 1981, Grotenhermen and Russo, 2002, Ren et al., 

2019). It is difficult to exactly identify where and when the medical use of cannabis first 

came into existence. While the oldest journal articles available suggest that the medical use 

of cannabis was first documented in Chinese Pharmacopoeia (credited to Emperor Shen 

Nung), the Rh-Ya (Touw, 1981, Li, 1974, Zuardi, 2006). Since then the therapeutic 

indications of cannabis are mentioned in the medical texts of civilisations throughout Asia 

and North Africa (reviewed in Zuardi (2006)) (Figure 1-1). The widely documented 

medicinal uses of cannabis include anti-nociception, anti-inflammatory, anticonvulsant, and 

anti-emetic properties (Mechoulam, 1986b, Iversen, 2001). Specific mention of cannabis for 
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the treatment of seizures and epilepsy was first reported in Arabic and Islamic writings 

(Lozano, 2001). While the first detailed description of the anti-convulsant effect of cannabis-

based products tested for safety and toxicological profile in animals was reported by William 

O′Shaughnessy (O'shaughnessy, 1843, Friedman and Sirven, 2017, Perucca, 2017). In 

addition to the safety profile of cannabis, the effectiveness of cannabis extracts was also 

evaluated for the treatment of infantile convulsions (O'shaughnessy, 1843, Friedman and 

Sirven, 2017, Perucca, 2017). He wrote a brief qualitative description of a 40-day-old child 

who developed nocturnal convulsive episodes and was treated repeatedly for weeks with 

cannabis extracts until the convulsions stopped; he concluded, “the child is now in the 

enjoyment of robust health, and has regained her natural plump and happy appearance” 

(O'shaughnessy, 1843). 

Though the ancient texts mainly discuss medicinal applications of cannabis, there was a 

peculiar silence on the psychoactive effects of cannabis (Li, 1974, Touw, 1981). It was not 

until 10th century A.D/A.C.E. that the first definitive record of the psychological effect of 

cannabis was observed, and they stated that: 

“Ma-fen (the fruit of cannabis)... if taken in excess will produce visions of devils … over a 

long term, it makes one communicate with spirits and lightens one's body…” 

There is a considerable difference of opinion concerning the psychological consequences of 

the recreational use of cannabis – those that underestimate and others who exaggerate the 

psychotropic effects related to cannabis use (Rubin, 2011). Epidemiologic and preclinical 

data suggest that the recreational use of cannabis is associated with  euphoria, sedation, 

stimulation of appetite, hallucinations, impaired short-term memory, altered perception of 

time and space, and aphrodisiac effects (Lee, 2012). The use of cannabis, whether for 

medicinal or recreational purposes, is a polarising concept shrouded in myths and 

misconceptions (Friedman and Sirven, 2017). The effect of recreational cannabis use during 

adolescence is of particular concern, since adolescents are more vulnerable than adults to 

deleterious cognitive effects produced by cannabis (Tortoriello et al., 2014). One study 

showed that the adults who smoked cannabis during adolescence have impaired neural 

connectivity in specific brain regions (Zalesky et al., 2012). However, an ever-increasing 

number of studies examine the psychological effects of cannabis, the long term behavioural 

and biochemical data for cannabis remain an emerging area of research (Volkow et al., 

2014). Some studies reported little to no change in cognitive functions between the long-
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term cannabis users and the people who have never used cannabis in their lifetime (reviewed 

in Earleywine (2002)). These results, however, may have been confounded by many factors 

including sample size (in this case 10 people), biased sampling that may include chronic 

users who were not experiencing negative consequences, and the tests employed often are 

too simple to detect the detrimental effects of long-term cannabis use (Earleywine, 2002). 

On the other hand, largest set of studies accessed over 1600 Egyptian prisoners revealed 

cannabis-related cognitive in users compared to nonusers (reviewed in Earleywine (2002)). 

It was also perhaps difficult to interpret the distinctive effects (medical and recreational) of 

cannabis use. For example, a study presented the long-term use of cannabis in patients with 

human immunodeficiency syndrome (HIV) infection or AIDS, they found that cannabis use 

could alleviate neurocognitive impairment in people with HIV (Cristiani et al., 2004). While 

another study found that smoking cannabis helped patients with HIV gain weight by 

stimulating their appetite with no effect on the viral load  (Watson et al., 2000). Investigation 

into the extreme varying effects of cannabis spurred the discovery of its’ active component, 

(-)-trans-Δ9- Tetrahydrocannabinol (THC). 
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Figure 1-1. History of Medical Cannabis 

The use of medical cannabis has a long history. A brief timeline illustrating the periods in 
which the medical uses of cannabis began. The picture incorporated in the figure is under 
the terms of the Creative Commons Attribution License. Figure created with BioRender. 

1.2. Phytocannabinoids 

Cannabinoid was originally the collective term given to a group of oxygen-containing C21 

aromatic hydrocarbon compounds from Cannabis sativa, and their derivatives and synthetic 

analogues (Huestis, 2005). Since the synthesis of synthetic cannabinoids, a separate term 

“phytocannabinoids” has been coined to those that originate from plant itself (Table 1-1). 

Beyond the phytocannabinoids, cannabis produces an extensive range of terpenoids that are 

synthesised alongside phytocannabinoids and concentrated mainly in the trichomes of the 

plant (discussed in Chapter 5).  

Table 1-1. Types of Phytocannabinoids 

More than 100 phytocannabinoids across 10 different classes listed in this table have been 
isolated and identified to date. Adapted from (Pertwee, 2006) 

 

1.2.1. Δ9- Tetrahydrocannabinol (THC) 

1.2.1.1. Discovery of ∆9-THC 

The 19th century saw dramatic advances in the chemical research for active natural products.  

Numerous alkaloids were identified from various plants - including morphine, cocaine, 

strychnine and their derivatives of potential therapeutic interest (Mechoulam and Hanuš, 
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2000). However, the active constituent of cannabis was not identified until the 1960s; unlike 

alkaloids crystallised as salts, cannabinoids are usually present in mixtures and many are 

similar in structure making separation of individual components more difficult (reviewed in 

Mechoulam and Hanuš, (2000)). A group in Cambridge, Wood et al. (1896), developed a 

method for the purification of compounds in cannabis. Using fractional distillation from the 

ethereal extract of the plant, they obtained four distinct chemical fractions – a terpene, a 

sesquiterpene, a paraffin and a red oil extract (Wood et al., 1896). In a further elaboration, 

authors proposed that the actions of terpenes have very little to no physiological effect (‘0.5 

gram of terpene produced none of the characteristic symptoms of cannabis action’), while 

the toxic red oil extract (regarded as active constituent of the cannabis) when taken in a dose 

of 0.05 grams ‘induces decided intoxication followed by sleep’ (Marshall, 1898, Wood et 

al., 1896). Later it was shown that the red oil fraction was not homogeneous, and the first 

phytocannabinoid cannabinol was isolated, which was believed to be the psychoactive 

component of cannabis (Dunstan and Henry, 1898, Wood et al., 1899). In continuing 

Wood’s characterisation of cannabinol, Cahn (1933) discovered that pure cannabinol was 

only weakly psychoactive in dog ataxia test, and hence the quest for the active component 

of cannabis continued (reviewed in Pertwee (2006)). Several groups (Roger Adams in USA, 

and Alexander Todd in England) reported initial attempts to isolate and identify active 

compound in cannabis (Adams et al., 1940, Todd, 1946) - they published the preparation 

and evaluation of synthetic compounds, such as Δ6a,10a-THC (Figure1-2); while the 

pharmacological activity of this synthetic racemate mixture was investigated in 

collaboration with (Loewe, 1950), who noted that Δ6a,10a-THC showed cannabis-like effects 

(i.e. increase in pulse rate and reddening of the eyes) in humans with potency 15-30% of 

THC (reviewed in (Banister et al., 2019b)). Subsequently, Adams and colleagues 

synthesised a series of analogues of THC - one of the compounds synthesised had a potency 

significantly greater than that of natural THC (Adams et al., 1949). 
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Figure 1-2. Chemical structure of selected phytocannabinoids (Δ9-THC and CBD), and 
synthetic cannabinoid (Δ6a,10a-THC). Chemical structures were drawn using ChemDraw 
Professional 18.2. 

 

Ultimately, the credit for identifying Δ9-THC from cannabis plant, and that can be isolated 

(in pure form) by using column chromatography, was carried out in Raphael Mechoulam’ 

laboratory in a study published in 1964 (Gaoni and Mechoulam, 1964). In it, Gaoni and 

Mechoulam demonstrated that repeated chromatography of hexane extract of cannabis on 

alumina can induce separation of the following compounds - cannabidiol (CBD), Δ9-THC, 

cannabinol (CBN), cannabichromene (CBC), cannabigerol (CBG), and polar constituents 

and polymers (Gaoni and Mechoulam, 1964, Mechoulam and Shvo, 1963, Gaoni and 

Mechoulam, 1971). The absolute configuration of Δ9-THC was then established by 

correlation with known terpenoids (Mechoulam and Shvo, 1963). Later, the 

pharmacological profile of the purified compounds was evaluated in rhesus monkey – they 

noted that the psychotropic-like effects in monkeys (including akinesia, apathy, reddening 

of eyes, drowsiness, and tameness) was largely attributed to Δ9 -THC (Mechoulam et al., 

1970). Studies in humans have demonstrated dose-dependent impairment of motor 

coordination and performance, loss of muscle strength, and rapid heart rate following 

inhalation of THC (reviewed in Mechoulam (1986a), Reyes et al. (1973)). While the early 

research provided a more detailed description of the chemistry and psychopharmacological 

effects of Δ9-THC, the mechanisms by which these effects were produced were not known 

during this time. 

1.2.1.2 Molecular pharmacology of THC 

THC binds to both cannabinoid-type-1 (CB1) and type-2 (CB2) receptors in the nanomolar 

range, although it exhibits lower intrinsic activities at these receptors when compared to 

CP55940, a prototype high-efficacy cannabinoid agonist (see below, cannabinoid receptors). 

While it behaves as a partial agonist at both these receptors types, it activates CB2 with 

apparently lower efficacy as compared to CB1 (the mediator of cannabinoid-related 

psychoactivity) (reviewed in Huestis (2005), Pertwee (2008)). Previous studies using 

molecular characterisation have reported that THC also exerts its activity at non-canonical 

endocannabinoid system, summarised in Table 1-2 (reviewed in Huestis (2005), Turner et 

al. (2017)). However, only a few studies have been published examining the physiological 

role of this non-cannabinoid target effect of THC responses (Turner et al., 2017).  
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Table 1-2. Pharmacological profile of THC at multiple targets based on results of studies 
in different experimental systems. 

Receptor/target Pharmacology 
CB1 Low efficacy agonist (Pertwee, 1999) 
CB2 Low efficacy agonist (Pertwee, 1999) 
GPR55 
 

*Conflicting (agonist or NAM) (Ryberg et al., 2007, 
Anavi-Goffer et al., 2012)  

GPR18 Agonist (< 1 µM) (Mchugh et al., 2012) 
Serotonin 3A receptors NAM (< 1 µM) (Barann et al., 2002) 
PPARγ nuclear receptor Agonist (O’Sullivan et al., 2005) 
TRPA1 Low efficacy agonist (De Petrocellis et al., 2011) 
TRPV2 Low efficacy agonist (De Petrocellis et al., 2011) 
TRPV3-4 Low efficacy agonist (De Petrocellis et al., 2012) 
α1, α1β1 glycine PAM (< 1 µM) (Hejazi et al., 2006) 
Cav3.1, Cav3.2, or Cav3.3 Inhibitor (IC50 1-3 µM) (Ross et al., 2008) 

 

1.2.2. Cannabidiol (CBD) 

Here, I must disrupt the chronological sequence. While CBD was discovered more than 20 

years before THC, cannabinoid research was overwhelmingly dominated by THC (Castle 

and Murray, 2004) (Figure 1-3). There was no detailed pharmacological report on CBD until 

the 1970s, except that CBD lacks the THC-like psychoactive effects altogether in vivo 

(Reyes et al., 1973). Although the interest in medical cannabis and its individual constituents 

persisted throughout the years, it is only in the last decade that clinical and preclinical 

research has focused on the anti-convulsant profile of CBD (Perez-Reyes and Wingfield, 

1974, Perucca, 2017). Cunha et al. (1980) became the first researchers to report that pure 

CBD was effective in the treatment of seizures in humans at an initial dose of 200 mg/day. 

To date, the largest exploratory study on the safety and effectiveness of CBD against drug-

resistant epilepsy in Dravet syndrome was tested in a double-blinded, placebo-controlled 

trial, involving 120 children and young adults (sponsored by GW Pharmaceuticals) 

(Devinsky et al., 2017). This trial for the first time provided robust evidence that the use of 

CBD results in a greater reduction in convulsive seizure frequency than the placebo group. 

Note that the patients were under stable-antiepileptic regime during this trial, suggesting that 

some effects of CBD may be due to drug-drug interaction (additive effect) between CBD 

and other anti-epileptic medication (Devinsky et al., 2017). A recent study systematically 

characterised the pharmacodynamic and pharmacokinetic interaction between CBD and 

clobazam (conventional anti-epileptic drug) (Anderson et al., 2019). The authors found that 

CBD and clobazam coadministration produced a greater anticonvulsant effect than that of 
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the drug alone, while pharmacodynamic interactions revealed novel mechanism of action 

where CBD and clobazam together enhanced inhibitory GABAA receptor activation 

(Anderson et al., 2019). Beyond epilepsy, CBD has been suggested to possess therapeutic 

effects for a wide range of health conditions, attributed to its activity at multiple targets – G 

protein coupled receptors (GPCRs), ion channels and membrane bound-enzymes, but nearly 

all at micromolar potency (Perucca, 2017). Recent research has included a randomised 

double-blind controlled trial to examine the effect of CBD on the permeability of the 

gastrointestinal tract (Couch et al., 2019). The aspirin-induced gut hyperpermeability was 

reduced when treated with CBD, and that these effects were mediated by CB1 receptors 

(Couch et al., 2019). While CBD has emerged as an important cannabinoid for its wide range 

of possible therapeutic activities, our current understanding of CBD interactions with 

multiple targets are limited by assay conditions. Frequently, CBD assays are performed at 

room temperature without the appropriate control for effector modulation by CBD, and thus 

the results of these studies are difficult to extrapolate to normal human physiology (e.g 

Laprairie et al. (2015), Navarro et al. (2018)). This picks up on the idea discussed in Chapter 

6; where the specificity of CBD signalling across multiple GPCRs was investigated using 

uniform in vitro assays, and would hopefully direct future investigations into the biological 

relevance of assays with physiological face validity. 

 

Figure 1-3. Cannabinoid research timeline 

A brief timeline illustrating the periods in which the cannabinoids and the endocannabinoid 
system were first discovered. Figure created with BioRender. 
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1.3. Cannabinoid receptors  

Two class A (Rhodopsin-like) GPCRs have been identified through which cannabinoids 

primarily exert their pharmacological effects – CB1 and CB2. CB1 is one of the most 

abundant GPCRs in the mammalian central nervous system. The distribution of CB1 in 

peripheral and central nervous system accounts for therapeutic effects of cannabinoids for 

conditions as diverse as pain, nausea, neurological diseases, and cancer (reviewed in Zou 

and Kumar (2018)). CB2 receptors are expressed primarily in the immune system, and as 

such may be a therapeutic target for immune modulation in a wide range of disorders 

(reviewed in Pacher and Kunos (2013)). Thus, because activation of these receptors 

regulates fundamental physiological processes, effort has been made towards understanding 

the signalling phenotypes of cannabinoid receptor activation. 

1.3.1. Discovery of cannabinoid receptors 

The fundamental idea that a cannabinoid (THC, in this case) exerts their pharmacological 

activity by binding to discrete molecular entities (a receptor) was weakened by the non-

experimental opinion of Paton (1975). In it, he proposed that THC belongs to a group of 

biologically active lipophiles (anaesthetics and solvents), and that these compounds exert 

their effects by non-specific interaction with the phospholipid constituents of the membrane 

(Paton, 1975, Pertwee, 1988). It is worth noting that the idea of discrete receptors in general 

was not well accepted at the time. Gill and Lawrence (1976), went further to provide 

experimental evidence to support the above suggestion, concluding that: 

“it is unnecessary to postulate the existence of a more complex macromolecular receptor 

substance to account for the observed structure-activity relationships” 

A second conceptual problem was the lack of stereoselectivity of THC – synthetic (+) isomer 

demonstrated cannabimimetic activity, although to a much lesser extent as compared to 

natural (-) isomer of THC (see Castle and Murray (2004)). However, later it was established 

that cannabinoids with chiral centres exhibit high stereoselectivity (this picks up on the 

indication of the existence of cannabinoid receptor), and that the previous observation 

resulted from an impure sample (Mechoulam et al., 1988, Howlett et al., 1990). In 1974, the 

pharmaceutical company Pfizer launched a medicinal chemistry campaign to synthesise a 

new class of cannabinoids - CP55940, CP47497, and CP55240 in order to determine the 

molecular target for cannabinoids (structure-activity relationship analysis) (reviewed in 

Pertwee (2014)).  
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In 1988, Allyn Howlett's laboratory at St Louis University provided the first direct evidence 

of the existence of cannabinoid receptors in brain (Devane et al., 1988). Howlett observed 

that cannabinoids inhibit adenylyl cyclase enzyme in neuroblastoma N18TH2 cell line, 

indicated by reductions in cAMP levels (Howlett and Fleming, 1984). Subsequently, the 

tritium labelled [3H] CP55940 was used to identify and characterize CB1 in rat brain 

membranes (Devane et al., 1988). Autoradiographic studies showed the heterogenous 

distribution pattern of CB1 receptors within the central nervous system – presence of large 

population of CB1 receptors in cortex, basal ganglia, hippocampus, and cerebellum 

((Herkenham et al., 1990), reviewed in Howlett (2005), Mackie (2005)) (Figure 1-4). The 

authors note that the previous attempts to characterise the CB1 receptors was unsuccessful 

due to low binding affinity and specificity of THC, thus CP55940 was used to circumvent 

some of these technical issues (Herkenham et al., 1990). Additional studies to further 

investigate the activity of cannabinoids on CB1 were made in collaboration with Devane et 

al. (1988). The authors found that the ability of unlabelled cannabinoids to displace [3H] 

CP55940 from discrete binding sites of receptor was shown to correlate with their 

cannabimimetic effects in vivo in mice (reviewed in (Howlett, 2005, Pertwee, 2006)). The 

discovery of the CB1 receptor was further confirmed upon cloning of rat CB1 (473 amino 

acids) in Tom Bonner's laboratory at NIH and of the human CB1 (472 amino acids) by Gérard 

and colleagues in Brussels (Matsuda et al., 1990, Gerard et al., 1991). Shortly thereafter, the 

molecular identity of CB2 was revealed in Sean Munro's laboratory in Cambridge (360 

amino acids, 44% homology with CB1 (Munro et al., 1993)). However, CB2 receptors are 

largely found in the peripheral tissues of immune cells (Galiègue et al., 1995), and have also 

been identified in brain (expressed mainly in glial cells (Pazos et al., 2004)).  More recent 

studies have focused on whether CB2 is expressed in the neurons, and if they present distinct 

physiological characteristics depending on where they are expressed. Molecular biological 

studies have demonstrated CB2 mRNA expression in neurons in brain regions (including 

cerebellum, hippocampus, cerebral cortex) (Zhang et al., 2015), although studies using CB2 

antibodies are somewhat controversial as the commercially available anti-CB2 antibodies 

have poor specificity for their intended target (reviewed in Li and Kim (2017)).  
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Figure 1-4. Autoradiographs showing cannabinoid receptor binding and expression in 
sections from mouse and human brain, and mouse spleen 

(a,b) showing binding of [3H] CP55940 to the cannabinoid receptor in the basal ganglia, 
cerebellum, hippocampal, and cerebral cortex; (b,d) expression of CB1 mRNA in the 
sections from brain (b) and spleen (d); (c,e) expression of CB2 mRNA in the sections from 
brain (c) and spleen (e) respectively. Adapted from (Howlett et al., 2002).   

1.3.2. Cannabinoid CB1 and CB2 receptor signalling 

The molecular identity of CB1 and CB2 receptor was soon followed by the development of 

a number of in vitro bioassays (except that the cAMP assay guided the discovery of CB1) 

to understand the mechanism of action of these receptors (reviewed in Huestis (2005)). Both 

CB1 and CB2 receptors were initially described to inhibit adenylyl cyclase in a pertussis 

toxin-sensitive manner, implicating a cannabinoid receptor coupling to a Gi/o protein (Felder 

et al., 1995). Additional characterisation of  cannabinoid-mediated inhibition of adenylyl 
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cyclase (and thus inhibition of cAMP production) was demonstrated in slices of rat brain 

(hippocampus, striatum, cerebral cortex and cerebellum) (Bidaut‐Russell et al., 1990), and 

in CHO cells expressing exogeneous CB1 (Matsuda et al., 1990, Felder et al., 1993, Hillard 

et al., 1999). In recent years, the cAMP assay has become an important pharmacological 

technique for studying cannabinoid-mediated modulation of adenylyl cyclase in a high-

throughput environment (Cawston et al., 2013). The functional characterisation of 

cannabinoids in this thesis have employed a kinetic Bioluminescence Resonance Energy 

Transfer (BRET) assay to assess cAMP levels in intact cells (method described in Appendix. 

B).  

An year later, a more direct measure of CB1-G-protein coupling, an early event after GPCR 

activation, was determined using membrane-bound assay, involving GTPγS (Selley et al., 

1996). Both CP55940 and WIN5512-2 stimulated [35S]GTPγS binding to a similar extent in 

an SR141716A (CB1 antagonist) sensitive-manner, giving a relatively simple mechanistic 

understanding of cannabinoid specific effect (Selley et al., 1996). Another study showed the 

WIN55212-2-mediated stimulation of [35S]GTPγS in CB1 knockout mice, and that this 

effect was not blocked by SR141716A, possibly hinting on the involvement of other 

molecular targets (of which CB2 is an example) (Breivogel et al., 2001).  Moreover, the first 

indication of the constitutive activity of CB1 was observed in the previous study, where 

SR141716A alone produced a small inhibition of basal [35S]GTPγS binding (Selley et al., 

1996), although this activity was examined in more detail by others (Seifert and Wenzel-

Seifert, 2002, Leterrier et al., 2004, Grimsey et al., 2010).  

The modulation of ion channels is another significant pathway downstream of the 

cannabinoid receptor activation through a Gi/o-dependent mechanism (Demuth and 

Molleman, 2006). An early study showed the cannabinoid-mediated inhibition of N-type 

voltage-gated Ca2+ channels in differentiated N18 neuroblastoma and NG108-15 

neuroblastoma-glioma hybrid cells (Mackie and Hille, 1992, Mackie et al., 1993). Further 

investigation on the mechanism of inhibition of N-type currents revealed that this effect was 

mediated by Gi/o proteins (PTX-sensitive) and was independent of the cAMP pathway 

(unaffected by 8-Bromo-cAMP treatment) (Mackie et al., 1993). In rat cervical ganglion 

neurons microinjected with CB1 mRNA, WIN55212-mediated inhibition of Ca2+ currents 

were both PTX- and ω-conotoxin-sensitive, demonstrating its mediation by N-type Ca2+ 

channels via Gi/o protein subunits (Pan et al., 1996). When CB1 was expressed in AtT-20 

cells, cannabinoids mediated inhibition of P/Q-type calcium channels and an activation of 
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G protein-gated inwardly rectifying potassium channels (GIRKs) was observed (Mackie et 

al., 1995). Again, this process was mediated via Gi/o-dependent mechanism (Mackie et al., 

1995). Further elaboration into cannabinoid-mediated regulation of these channels was 

demonstrated in Xenopus oocytes and rat sympathetic neurons co-expressing the CB1 

receptor and GIRK1 and GIRK4 channels (Mcallister et al., 1999). By contrast, early reports 

in AtT-20-CB2 cells were unable to find evidence of CB2 coupling to either Q-type Ca or 

Kir current, but inhibition of adenylyl cyclase was reported (Felder et al., 1995). This may 

be because of the poor coupling of WIN55212-2 to CB2 (i.e. ligand-specific effects on the 

conformation states of the receptor), as later CP55940 was shown to inhibit voltage-gated 

Ca2+ channels downstream of CB2 activation, but a later study found that WIN55212-2 also 

failed to modulate Ca2+ channel in the same cells expressing mouse CB2 (Atwood et al., 

2012, Ibsen et al., 2017), suggesting ligand bias. However, a recent detailed study on human 

CB2 receptor signalling profile showed the ability of WIN55212-2 and CP55940 to 

stimulate canonical CB2 receptor Gi/o-mediated activation of GIRK channel in AtT20 cells 

(Soethoudt et al., 2017). Assaying the activity of GIRK channel has become more common 

in recent years with the development of a high-throughput assay by the Connor group in 

Macquarie University to readily measure the real-time activation of GIRK channel in AtT-

20 cells expressing cannabinoid receptors (Knapman et al., 2014, Banister et al., 2016, 

Sachdev et al., 2019c). 
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Figure 1-5. CB1 receptor signalling with a focus on the Gα proteins 

Signalling through CB1 can be mediated via more than one G protein subtypes. Gi/o is 
canonical CB1 signalling pathway; Gs is the second most characterised G protein alternative 
signalling pathway; while CB1 coupling to Gq has also been observed under various 
circumstances (represented as *). Figure created with BioRender. 

CB1 coupling to Gs (stimulation of cAMP) has also been observed under certain 

circumstances. Glass and Northup (1999) demonstrated the ability of cannabinoids to 

stimulate cAMP on co-expression with D2 receptor. The mechanism likely involves 

sequestration of Gi/o by D2 receptor – such that Gi/o is no longer available for coupling to 

CB1, and thus  drives the coupling to Gs (Glass and Felder, 1997, Jarrahian et al., 2004). Gs-

like signalling of CB1 has also been suggested under circumstances where Gi is limited; pre-

treatment of cells with PTX to prevent Gi coupling to the CB1 is used readily to measure 

CB1-Gs coupling (Jarrahian et al., 2004). A recent study has observed Gs-like signalling of 

CB1 in assays with very high receptor expression levels (Finlay et al., 2017). The ability of 

cannabinoids to activate Gs-like signalling of CB1 is discussed in detail in Chapter 3 

summarised in Figure 1-5 (Differential activation of G-protein-mediated signalling by 

synthetic cannabinoid receptor agonists). In contrast to CB1 receptors, CB2 does not couple 

to Gs, HU-210 and CP55940 failed to increase cAMP levels in CHO-CB2 cells pre-treated 

with PTX (Glass and Felder, 1997, Calandra et al., 1999). In studies with native CB2, 

however HU-308 mediated stimulation of cAMP was observed in human primary leukocytes 

(Saroz et al., 2019a). Gs-protein was specifically implicated in this effect, as a selective 

inhibitor of this G protein, NF-449 abolished the net cAMP response such that CB2 agonist 

(HU-308) can no longer drive effects (Saroz et al., 2019a). 

A few reports also suggest that cannabinoid-mediated increase in intracellular Ca2+ influx 

may be due to CB1 coupling to Gq protein (Lauckner et al., 2005). The first report of CB1-

Gq involved a fura-2 fluorescence assay in HEK cells transfected with CB1 as well as in 

cultured hippocampal neurons (which endogenously expresses CB1). WIN55212-2 (but not 

THC, HU-210, and 2-AG) increased intracellular Ca2+ in a PTX-insensitive manner. On 

treatment with U73122 (PLC inhibitor), the effect was blocked suggesting a potential 

involvement of Gq pathway in this response (Lauckner et al., 2005). This was further 

confirmed when WIN55212-2 failed to change the intracellular Ca2+ levels in cells 

expressing dominant negative Gq proteins (Q209L/D277N) (Lauckner et al., 2005). An 

opportunity therefore existed in the current study to better understand the agonist-dependent 
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coupling to different G proteins (may be explained by different receptor conformation) - an 

example of biased signalling (Ibsen et al., 2017). The earliest reports with CB1 have 

otherwise suggested PTX-sensitive (Gi/o mediated) increase of Ca2+ release from internal 

stores (Sugiura et al., 1997, Netzeband et al., 1999). Recently, the Connor group has shown 

another example of significant bias in CB1 coupling to Gq - functional characterisation of 

N-arachidonoyl dopamine (NADA, an endocannabinoid) revealed Gq-mediated increase in 

intracellular Ca2+ levels, while NADA failed to affect cAMP, ERK, or GIRK signalling 

(Redmond et al., 2016). To date, the literature does not present strong evidence for CB2 

coupling to Gq (Figure 1-6). One study suggests anandamide-mediated increase in cytosolic 

Ca2+ was blocked by SR144528 (CB2 antagonist) and PLC inhibitor, indicative of a CB2 

receptor-mediated PLC mechanism for Ca2+ mobilisation from endoplasmic reticulum stores 

(Zoratti et al., 2003).  

 

 

Figure 1-6. CB2 receptor signalling with a focus on the Gα proteins 

Signalling through CB2 can be mediated via more than one G-protein subtypes. Gi/o is 
canonical CB2 signalling pathway; and there is limited evidence for CB2 coupling to Gs and 
Gq (represented as *). Figure created with BioRender. 
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Activation of mitogen-activated protein kinase (MAPK, also known as the Ras-Raf-MEK-

ERK) pathway downstream of CB1 is an important pharmacological endpoint as it is 

involved in many cellular processes (including proliferation, differentiation, and apoptosis), 

although the precise mechanism for the induction of MAPK remains to be elucidated (Ibsen 

et al., 2017). CB1 is believed to regulate MAPK pathway via many different mechanisms - 

activation of phosphatidylinositol-3-kinase (PI3K) (Del Pulgar et al., 2000), stimulation of 

protein kinase B (PKB) (Sánchez et al., 2003), production of lipid second messenger 

ceramide (Sánchez et al., 1998), inhibition of cAMP levels (Derkinderen et al., 2003), and 

modulation by transcription factors (Krox-24) (Bouaboula et al., 1995) (reviewed elsewhere 

Sachdev (2016)). The diverse responses of CB1-MAPK activation are unique to the whole-

cell systems being studied, indicating a degree of system bias effect. While CB2-mediated 

activation of MAPK pathway has not been extensively studied, two publications exist on the 

mechanism underlying MAPK pathway activation (PTX-sensitive phosphorylation of 

ERK1/2 (Bouaboula et al., 1996), and a study primarily focused on CB2-mediated signalling 

in human primary leukocytes suggests Gβγ involvement in ERK signalling of CB2 (Saroz 

et al., 2019a)). 

Although the studies presented in this thesis only investigated the signalling dynamics of 

CB1 and CB2 receptors, it should be noted that several studies have also reported the ability 

of certain cannabinoids to interact with the putative non-CB1/2 target, particularly G protein 

coupled receptor (GPR55), and transient receptor potential (TRP) channels (Ryberg et al., 

2007). Initially, cannabinoids have been shown to interact with GPR55 in a yeast expression 

system in a GlaxoSmithKline patent, where the CB1 antagonists SR141716, and AM251 

showed agonistic profile for GPR55 activating the system at a micromolar concentration 

range (Brown and Hiley, 2009). While, AstraZeneca group demonstrated the stimulatory 

effect of a diverse group of cannabinoids (including endocannabinoids, CP55940, and THC) 

on GPR55 in an assay of GTPγS binding in HEK cells (Ryberg et al., 2007). Although, based 

on data from various cell types and functional readouts, some studies have reported that 

endogenous and synthetic cannabinoids, including many mentioned above, failed to affect 

the signalling transduction pathway downstream to GPR55 (Oka et al., 2007). Given the 

large variation in signalling readouts - suggesting a form of observational bias based on 

relative sensitivity of assays, GPR55 has been considered to have a unique response profile 

compared to CB1 and CB2 receptor, highlighting the enigmatic pharmacology of GPR55 

(Sharir and Abood, 2010). Although it’s physiological role has yet to be fully elucidated, it 
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has been implicated in neuropathic and inflammatory pain, and bone remodelling (Staton et 

al., 2008). Pharmacological evidence also suggests that cannabinoids can modulate the 

activity of TRP channels implicated in sensation of temperature, pH, smell, taste, vision, and 

pain perception (Ramsey et al., 2006, Pertwee et al., 2010). Channels of Transient Receptor 

Superfamily (TRP), such as TRPV1-4, TRPM8, and TRPA1, are non-selective channels that 

conducts calcium and sodium into range of cell types in mammals (Ramsey et al., 2006). A 

suite of cannabinoids have been investigated for their differential responses upon activation 

of TRP channels (Morales et al., 2017). For example, the endocannabinoid, anandamide and 

NADA, were identified as endogeneous antagonist of TRPM8 (De Petrocellis et al., 2007), 

while anandamide was identified as an agonist of TRPV1 in an assay of vasodilatior action 

of AEA and electrophysiology (Zygmunt et al., 1999). CBD and THC were both found to 

modulate different subtypes of TRP channels – TRPA1 and TRPV2 (discussed below). 

These observations highlight the complexity of the pharmacology of cannabinoids 

interaction with TRP channels, and their involvement in chronic pain and inflammation 

merits further study (reviewed in Muller et al., 2019). 

1.3.3. Regulation of cannabinoid receptors - Desensitisation, arrestins and 
internalisation 

The continuous stimulation of receptor with ligand generally results in the reduction of 

receptor activity referred to as desensitisation. In brief, desensitisation involves 

phosphorylation of the receptor by GPCR kinases (GRKs), which increases the affinity of 

β-arrestins for receptor. Binding of β-arrestins to receptor facilitates the recruitment of 

another protein called clathrin, which is followed by receptor internalisation into 

cytoplasmic vesicles. Lastly, the receptor is either recycled to the membrane or degraded, 

depending on the receptor studied (Von Zastrow, 2003). These steps highlighting regulation 

of GPCRs are rather generalisations as not all receptors rely on these mechanisms. 

An early study conducted during the 1990s indicated no change in receptor number or 

mRNA levels on repetitive administration of THC in whole-brain homogenates prepared 

from male mice, although a 27-fold tolerance to THC was observed in the behavioural assay 

suggesting that tolerance can develop to many of the effects of THC (Abood et al., 1993). 

However, the authors noted that the possibility remains that the cannabinoid receptor signal 

transduction system may cause desensitisation without having an effect on the receptor 

number (Abood et al., 1993). Other studies to date, following daily THC treatment in 

developing rats at different time-points, showed extensive reduction in cannabinoid receptor 
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binding in cerebellum, hippocampus, caudate-putamen, and globus pallidus in a time-

dependent manner (Oviedo et al., 1993, Breivogel et al., 1999). These effects have been 

reviewed in detail (Huestis, 2005). Soon after that, Mackie and colleagues, studied the role 

of regulatory proteins involved in the desensitisation of rat CB1 transfected in Xenopus 

oocyte and AtT-20 cells (Jin et al., 1999, Roche et al., 1999). They demonstrated that both 

GRK3 and β-arrestins were required for desensitisation of CB1-mediated activation of 

GIRK channel injected in oocytes, but not affected by either protein alone (Jin et al., 1999). 

Further investigation into the region of CB1 involved in receptor regulation showed that 

mutation of two sites (S426A or S430A) in the C-terminal tail of CB1 significantly 

attenuated desensitisation in oocytes; however, these sites had no influence on CB1 

internalisation when tested in AtT20-CB1 cells (Jin et al., 1999). When the C-terminal of rat 

CB1 was truncated at residue 418, WIN55212-2-mediated desensitisation was abolished, 

suggesting GRK-dependent desensitisation of CB1 (Jin et al., 1999). Another study was 

conceived by the same group to understand the differences in receptor signalling between 

rat- and human-CB1 expressed in autaptic hippocampal neurons, while human CB1 differs 

from rat only by 13 residues, significant differences in their signalling profile was observed 

when depolarisation-induced suppression of excitation (DSE) was induced (Straiker et al., 

2012). Although clearly more research is required to assess distinct amino acid residues 

involved in GRK- or arrestin-mediated cannabinoid receptor regulation - as the cellular 

trafficking observed in oocyte is different to those observed in native tissues or neurons 

(expressing multiple native channels) (Goldin, 2006). Our group has studied the mechanism 

underlying the CB1 desensitisation by more recent catalogues of synthetic cannabinoids in 

AtT20 cells that had been stably transfected with human CB1 in assays examining the 

sensitivity of the process to Compound 101 (a potent selective inhibitor of GRK2/3) 

(Sachdev, 2016). Our data suggest GRK-dependent and independent mechanisms for CB1 

receptor desensitisation by the highest efficacy agonists, but only GRK-independent 

mechanisms for lower efficacy agonists (Appendix A.) (Sachdev, 2016). To date there is 

little evidence on CB2 receptor desensitisation, Bouaboula et al. (1999) showed that CB2 

receptor is also desensitised and internalised following agonist treatment in vitro - 

phosphorylation by S352 may be a key factor for CB2 receptor regulation.   

Like other GPCRs, CB1 also undergoes internalisation after brief exposure to agonist as 

observed in AtT-20-CB1 cells, where WIN55212-2 caused rapid internalisation of CB1 

receptor while THC only caused modest CB1 internalisation (Hsieh et al., 1999). In CHO 
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cells transfected with CB1, chronic treatment with an inverse agonist resulted in alteration 

in cellular distribution profile by upregulating the cell surface receptors (Rinaldi-Carmona 

et al., 1998). Direct evidence of the involvement of β-arrestins1/2 in CB1 internalisation has 

been assessed using confocal imaging of β-arrestin-2-RFP recruitment to CB1 receptor 

(Daigle et al., 2008, Gyombolai et al., 2013). Studies using β-arrestin 2 knockout mice 

revealed greater antinociception and hypothermia following treatment with THC compared 

to their wild-type counterparts, while CP55940 failed to affect in vivo activity in either β-

arrestin 2 -/- or +/+ (indicating the role of other arrestins, and protein kinases in the 

regulation of CB1) (Breivogel et al., 2008). It is suggested that β-arrestin 2 may regulate 

CB1 receptor signalling in an agonist-specific manner (Breivogel et al., 2008). Further 

studies revealed that CB1 may recycle or degrade following internalisation depending on 

the duration of agonist stimulation (Hsieh et al., 1999, Martini et al., 2007). However, 

another study performed a detailed quantification of CB1 trafficking in four different cell 

lines (Grimsey et al., 2010). They found that CB1 does not recycle following agonist-

induced internalisation, but rather exhibits a primarily degradative phenotype (Grimsey et 

al., 2010) (summarised in Figure 1-7). A more detailed study on CB1 receptor trafficking 

can be found in (PhD Thesis, Grimsey (2010)). Recently, Ibsen et al. (2019) investigated the 

ability of CB1 and CB2 to induce β-arrestins 1/2 translocation to the membrane on 

stimulation with range of cannabinoid ligands - using a new method that does not require 

any modification of receptors. The authors found diverse range of efficacy profile between 

ligands for translocation of arrestins, with endocannabinoid 2-arachidonoyl glycerol 

showing higher efficacy for translocation of β-arrestin 2 via CB1, while THC was unable to 

induce translocation of either arrestin via CB1 or CB2 (Ibsen et al., 2019). These studies 

also suggest that the important area for further investigation include differential regulation 

of cannabinoid receptor activation by agonists with diverse efficacy profile, a systematic 

investigation of the protein kinases involved in cannabinoid receptor desensitisation, 

identification of the key residues required for receptor desensitisation and internalisation, 

and modulation of CB1 targeting to the degradation pathway. 
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Figure 1-7. Regulation of CB1 receptors  

The whole process is initiated by binding of an agonist to the CB1 for an extended period of 
time, which triggers a signalling (coupling of Gi to CB1). Prolonged receptor activation also 
results in phosphorylation by GRKs. This post-translational modification leads to CB1 
desensitisation and the recruitment of β-arrestins, resulting in CB1 internalisation. Unlike 
other GPCRs, CB1 intracellular pool is not delivered back to the cell surface (presented as 
x) and is instead degraded. Thus, the newly synthesised receptors are transported from the 
endoplasmic reticulum to the cell surface. Figure created with BioRender. 

1.4. Endocannabinoids 

Endogenous cannabinoids are generally referred to as ‘endocannabinoids’, and together with 

cannabinoid receptors, and the enzymes responsible for their synthesis and degradation, 

form the endocannabinoid system. The endocannabinoid system modulates a wide range of 

physiological processes in mammals, including learning, memory, motor control, and 

neurodegenerative diseases (reviewed in (Hillard, 2018, Maccarrone, 2019)).  

1.4.1. Discovery of endocannabinoids 

The identification of CB1 receptors in the brain suggested the presence of an endogenous 

cannabinoid that activate these receptors. Professor Mechoulam presented the early ideas of 

the existence of endogenous ligands, proposing that: 
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“It was quite unacceptable to most neuroscientists that the brain will waste its resources to 

synthesize a receptor in order to bind a constituent of a plant.” 

Devane et al. (1992) and his group developed tritium-labelled probe [3H]HU-243 (CB1 

agonist) to test the ability of porcine brain extract to displace the probe-receptor complex in 

a ligand-binding assay. The constituents of the fraction that displaced the radioactive probe 

were purified using column chromatography, which was then isolated as one main peak on 

gas chromatography-mass spectrometry (GC-MS). This lipophilic compound represented 

the first brain constituent that exhibited cannabis-like (or, cannabimimetic) activity – 

binding of [3H]HU-243 was displaced in a manner consistent with that of competitive ligand 

(Ki similar to THC) (Devane et al., 1992). They named this endogenous cannabinoid 

‘anandamide’ from ‘ananda’ the Sanskrit word for bliss. Subsequently, Pertwee et al. (1992) 

demonstrated the inhibitory effect of anandamide (AEA) on twitch response in electrically-

stimulated mouse vas deferens in a result which further confirmed the cannabimimetic 

activity of AEA at CB1. In the late 1990s, several groups initiated work aimed at 

investigating the pharmacological profile of AEA in bioassays for cannabinoid receptor 

agonists (reviewed in Huestis (2005)). The discovery of a second endogenous cannabinoid, 

again an arachidonic acid derivative, 2-arachidonoyl glycerol (2-AG), was followed soon 

after (Sugiura et al., 1995). Although both AEA and 2-AG contain arachidonic acid, they 

are synthesised and degraded by almost completely distinct enzymatic pathways. The best 

characterised endocannabinoid enzymes include diacylglycerol lipase (synthesis of 2-AG), 

monoacylglycerol lipase (degradation of 2-AG), N-acyl phophatidylethanolamine 

phospholipase D (synthesis of AEA), and fatty acid amide hydrolase (degradation of AEA) 

(reviewed in Zou and Kumar (2018), Maccarrone (2019)). 

1.4.2. Endocannabinoid Signalling 

Although produced by the same cell-types in central nervous system, the endocannabinoids 

2-AG and AEA have unique pharmacological profiles at CB1 and CB2, exhibiting different 

efficacies and affinities (Hillard, 2000, Savinainen et al., 2001, Luk et al., 2004). It is well 

established that 2-AG has high intrinsic efficacy at CB1 compared to AEA, which is a partial 

agonist of CB1 (Horne and Stella, 2008). A systematic characterisation of the 

endocannabinoids in oocytes transfected with CB1 showed that 2-AG activated the GIRK 

currents to a similar extent as the reference compound, WIN55212-2 (100% maximal WIN 

response); AEA was less efficacious at activating GIRK currents, achieving only 65% of the 
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WIN response (Luk et al., 2004). Consistent with this, our laboratory recently performed a 

quantitative pharmacological study to measure the efficacy of a range of cannabinoids, 

where 2-AG was found to be 12-fold more efficacious in activating native GIRK channels 

in AtT-20-CB1 cells than AEA ((Sachdev et al., 2019c), Chapter 2). Some evidence suggests 

that AEA (or THC) may antagonise 2-AG-mediated CB1 receptor signalling under certain 

circumstances, such as low receptor density or limiting post-receptor effectors (Kelley and 

Thayer, 2004, Kellogg et al., 2009). Studies in brain homogenates of CB1 knock-out mice 

demonstrate that AEA was still able to stimulate GTPγS binding (Hájos et al., 2001), this 

finding was added to and largely confirmed in a later study which examined the activity of 

AEA and 2-AG in HEK293 cells expressing GPR55 (putative cannabinoid receptor) 

(Lauckner et al., 2008, Alexander et al., 2011). In addition, AEA has also been shown to 

activate TRPV1, and inhibit L-type Ca2+ channel (Van Der Stelt et al., 2005, Puente et al., 

2011, Zou and Kumar, 2018). A list of molecular target and actions reported for 

endocannabinoids to date is summarised in the Table 1-3.  

Table 1-3. Pharmacological profile of endocannabinoids at multiple targets based on 
results of studies in different experimental systems. 

1.5. Entourage effect: the first ideas 

The ‘entourage effect’ was first proposed by Raphael Mechoulam in relation to 

endocannabinoid system in which the activity of the primary endogenous cannabinoid, 2-

AG, is largely regulated (inhibited or augmented) by the formation and presence of related, 

inactive, fatty acid esters of glycerol (Ben-Shabat et al., 1998). This theory of ‘entourage 

effect’ was ultimately advanced to explain the idea that cannabinoids and other components 

of cannabis have a greater therapeutic or psychotropic effect combined than when consumed 

individually (Mechoulam and Ben-Shabat, 1999, Russo, 2018). This theory can be broken 

Endocannabinoid Receptor/target Pharmacology 

AEA CB1 
CB2 
GPR55 
TRPV1 

low efficacy agonist (Hillard, 2000) 
low efficacy agonist (Hillard, 2000) 
low efficacy agonist (Ross, 2009) 
low efficacy agonist (Roberts et al., 2002) 

2-AG CB1 
CB2 
GPR55 

high efficacy agonist (Sachdev et al., 2019c) 
high efficacy agonist (Luk et al., 2004) 
agonist* (only in [35S]GTPγS assay) (Ross, 
2009) 

 PPARγ agonist (Kozak et al., 2002) 
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down into two main classes: cannabinoid-cannabinoid interaction and cannabinoid-

terpenoid interaction. The idea of cannabinoid-cannabinoid interaction was first implied by 

Russo and Guy (2006), and Thomas et al. (2007) in an observation that CBD was able to 

antagonise THC-mediated effect of CB1 receptor, despite the low affinity of CBD for the 

CB1 orthosteric site. In line with this observation, CBD has been reported to negatively 

modulate the CB1 signalling, which is likely to contribute to its anti-psychotic effect 

(Laprairie et al., 2015). This finding, however, remains controversial with some studies 

producing contradictory results (discussed in Chapter 6). In a clinical trial in multiple 

sclerosis patients with spasticity, CBD mitigated some of the adverse effects caused by THC 

when CBD and THC (Sativex) was administered together, suggesting the possibility of 

synergistic benefit of a THC-CBD preparation (Russo, 2011, Koppel et al., 2014, Benbadis 

et al., 2014). 

Over 200 terpenoids have been isolated from the cannabis plant (Hendriks et al., 1975, Ross 

and Elsohly, 1996, Brenneisen, 2007). Terpenoids, the collective name given to large 

number of monoterpenes (limonene, myrcene, pinene, etc.) and sesquiterpenoids (especially 

caryophyllene), are lyophilic compounds that can permeate the cell membrane, and are 

responsible for the unique aroma of cannabis (Russo, 2011). Unlike for cannabinoid-

cannabinoid interaction, there is very little scientific evidence on the cannabinoid-terpenoid 

interaction (Santiago et al., 2019). Terpenoids are widely professed to exhibit anti-

inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, 

and neuroprotective properties (mostly derived from non-scientific literature). Moreover, 

terpenoids are believed to exert their therapeutic effects through interactions with multiple 

targets, including CB1, CB2, GPR55, acetylcholine receptors, serotonin receptors, and 

GABA receptors (summarized in (Nahler et al., 2019)). A single publication also exists on 

the selective agonist activity of β-caryophyllene on CB2 (Gertsch et al., 2008). This 

interesting facet of the hypothesised cannabinoid-terpenoid ‘entourage effect’ has been 

investigated by our group in a uniform in vitro study. We found that the cannabinoid 

receptors were not altered by any of the six major terpenoids tested (including β-

caryophyllene), neither when used individually nor when mixed, suggesting the absence of 

an ‘entourage effect’ (discussed in more detail in Chapter 5, (Santiago et al., 2019)). Still, 

more research is needed to conclusively determine if terpenoids produce physiologically-

relevant interactive effects with other targets.  
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1.6. Synthetic cannabinoid receptor agonists (SCRAs) 

1.6.1. Discovery of synthetic cannabinoids 

Since the precise determination of the structure of THC in the early 1960s, synthetic 

cannabinoids were synthesised in order to investigate the endocannabinoid system (Harbert 

et al., 1979, Compton et al., 1992b). THC served as a template for generation of the first 

synthetic cannabinoids, HU-210 and CP47497; however, over time the structure of synthetic 

cannabinoids have deviated further from THC (Wiley et al., 2011) (Figure 1-8). Subsequent 

studies synthesised CP55940 (a bicyclic compound) to assess potential cannabinoid receptor 

binding (Harbert et al., 1979). For example, the tritium labelled [3H] CP55940 was used to 

identify and characterise the CB1 in rat brain membranes (Devane et al., 1988). Martin et 

al. (1991) categorised CP55940, a bicyclic compound, as a non-classical cannabinoid (as 

opposed to classical cannabinoids such as THC). Importantly, the authors fully characterised 

the pharmacological similarities and differences between CP55940 and THC. CP55940 can 

produce the full spectrum of tetrad effects (hypoactivity, hypothermia, antinociception and 

catalepsy) in mice that is typical of cannabinoids (Martin et al., 1991), though this 

phenomenon has been explicated in more detail in other studies (Little et al., 1988, Fox et 

al., 2001). Further, the behavioural potency of CP55940 was found to be 30 times that of 

THC (Gold et al., 1992, Wiley et al., 1995). The finding of the in vivo reinforcing effects of 

CP55940 was determined by the conditioned place preference and conditioned taste 

avoidance paradigms (McGregor et al., 1996). Indeed, the more that is known about these 

compounds, the more question that arise.  
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Figure 1-8. Molecular structures of THC, and early synthetic cannabinoids identified in 
herbal incense products 

Molecular structures of THC (a phytocannabinoid), HU-210 (classical cannabinoid based 
on the template of THC), CP47497 and CP55940 (non-classical cannabinoids characterised 
as bi- and tri-cyclic THC analogues lacking pyran ring), WIN55212-2 (aminoalkylindole), 
JWH-018 (first generation synthetic cannabinoids). Structures were drawn using ChemDraw 
Professional 18.2. 

Considerable effort was made into modifying the structure of cannabinoids to further explore 

the structural requirements of CB1 receptor binding - the work at Sterling-Winthrop led to 

some aminoalkylindole analogues (originally designed as non-steroidal anti-inflammatory 

drugs) (Haubrich et al., 1990, D'ambra et al., 1992). Researchers later discovered that this 

group of synthetic aminoalkylindole compounds, including WIN55212-2, produce strong 

analgesic effects at relatively lower doses (D'ambra et al., 1992). Further research into the 

pharmacological profile of aminoalkylindole analogues suggested that these compounds 

have nanomolar potency in a cannabinoid receptor binding assay and corresponding 
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cannabimimetic activity in in vivo assay (Compton et al., 1992a, Eissenstat et al., 1995). In 

an effort to dissect the analgesic properties of cannabinoids from unwanted psychotropic 

effects, a whole new library of synthetic cannabinoids were developed (based on 

WIN55212-2 scaffold) in the lab of John Huffman at Clemson University (Huffman et al., 

1994). These compounds (including JWH-018) were relatively easy to synthesise with 

carbon chains attached to the nitrogen in the indole substituent (Wiley et al., 2011) (Figure 

1-8). Later, studies reported the binding affinity and efficacy of JWH-018 for CB1 and CB2 

receptors. In contrast to THC, which is a low efficacy agonist of CB1 (meaning it cannot 

activate CB1 receptor to the same extent irrespective of concentration), JWH-018 showed 

maximal agonist activity at the CB1 receptor compared to THC (Atwood et al., 2010, 

Paronis et al., 2012, Sachdev et al., 2019c). Huffman and his colleagues eventually created 

more than 300 new compounds with the incremental development of understanding of 

cannabinoid receptor  pharmacology (Wiley et al., 1998). Some years later, Professor 

Huffman received a call from law enforcement agencies as JWH-018 was identified in a 

herbal mixture being marketed as a recreational drug in the new psychoactive substances 

(NPS) market (Wiley et al., 2011). Basically, in Huffman’s own words (Money, 2019): 

“It was the 18th compound that we synthesized, and it was pretty potent - never thought 

anything of it”. 

Recreational use of synthetic cannabinoids was first reported in Europe in the early 2000s, 

and shortly thereafter it was introduced in the NPS market in USA in 2008 (Dresen et al., 

2010). These herbal products were made by dissolving synthetic cannabinoids in a solvent 

(acetone) and sprayed onto a dried-plant derived base which is then packaged for retail. 

SPICE was the brand name for the herbal product, and contained several synthetic 

cannabinoids, yet primarily JWH-018 (Auwärter et al., 2009, Griffiths et al., 2010, Logan et 

al., 2012). Often products were labelled “not for human consumption” in an attempt to 

circumvent legislation (Bretteville-Jensen et al., 2013). These products spread in popularity 

by word of mouth and drug-user blogs, were thought to produce similar highs to that of 

cannabis (words such as, “safe”, “natural”, and “legal” were used). In consequence, 

synthetic cannabinoid products quickly spread to other markets, and were readily accessible 

on the internet, head-shops, gas station, convenience stores etc (Bretteville-Jensen et al., 

2013). For example, an increase in the headshops up from 314 in 2011 to 693 in 2012 in 

Ireland was reported to the European Monitoring Centre for Drugs and Drug Addiction 

(EMCDDA, 2012). Subsequently, more structurally diverse (and some unknown) synthetic 
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cannabinoids have been identified in herbal mixtures with brand names such as K2, Cloud 

9, Kronic, Black Mamba, Rasta King, etc., accounting for 30% of the 888 NPS reported to 

the United Nations Office on Drugs and Crime (UNODC, 2018) Early Warning Advisory 

(EWA) up to December 2018. Whereas most of the early compounds were derived from 

prototypic napthoylindole JWH-018, several chemical innovation of the napthoyl group 

soon began to appear (Wiley at al., 2016). Unlike the substitution at other positions, 

additions to the napthoyl group is less likely to interfere with the optimal aromatic stacking, 

important for cannabinoid receptor recognition (binding affinity of the compounds may be 

greatly enhanced by this modification) (Huffman et al., 2003). Later, the SCRAs resulting 

from the substitution of napthoyl core with tetramethylcyclopropyl ketone (UR-144, XLR-

11) have been identified in the NPS market (Kavanagh et al., 2013). It was also recognised 

that the addition of the fluorine group at the terminal end of the n-alkyl substituent of UR144 

(i.e. XLR-11) displayed more potent activation of CB1 receptor (Bansiter at al., 2015b). The 

substitution of indole group with indazole core (AB-PINACA, AB-CHMINACA, etc.) was 

another major pharmacophore for CB1 activation (Wiley at al., 2016, Bansiter at al., 2015a); 

indazole-derived cannabinoids were reported to demonstrate drastic changes in their 

pharmacological abilities (greater efficacies of these compounds compared to the full 

agonist activity of CP55940 or WIN55212-2 at CB1) (Wiley et al., 2015). Figure 1-9 

provides a summary of the structurally diverse and rapidly changing compounds that have 

been found since 2009, highlighting the continued evaluation and sophistication of the 

chemical modifications in response to regulation (reviewed in Banister and Connor (2018a), 

Worob and Wenthur (2019)). Given the structural heterogenicity of synthetic cannabinoids 

with very little known about their pharmacology and toxicology at time of identification, 

substantial conflicts remain in the literature regarding the name and classification of 

synthetic cannabinoids (Potts et al., 2019). As synthetic cannabinoids are high efficacy 

agonist of CB1 and CB2 receptors and produce psychoactive effects attributed mainly to the 

activation of CB1, these compounds are referred to as synthetic cannabinoid receptor 

agonists (SCRAs) in the rest of this thesis (Whiting, 2015, Helander, 2017).  
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Figure 1-9. Evolution of SCRAs over time 

Structurally diverse and rapidly changing SCRAs beyond aminoalkylindole compounds 
since 2009. Structures were drawn using ChemDraw Professional 18.2. Figure created with 
BioRender. 

1.6.2. Synthetic cannabinoid receptor agonists toxicity 

SCRAs, unlike their natural counterpart (THC), produce a wide range of acute effects – 

physiological and psychological (Schneir et al., 2011, Castaneto et al., 2014). The acute 

effects of SCRAs include changes in mood, anxiety, perception, thinking, and memory, 

often result in more amplified neuropsychiatric effect as compared to THC (reviewed in 

Spaderna et al., 2013). A clinical case report of acutely intoxicated patients described a 

variety of other effects including nausea, tachycardia, respiratory difficulties and 

generalized convulsions (Hermanns‐Clausen et al., 2013). A very common psychological 

reaction was fear and paranoia (Soussan and Kjellgren, 2014). For example, one user 

reported anecdotal account of his first experience trying K2, saying, “It felt like my body 

was just failing on me, my organs were not working any further, it was just shutting down” 

(similar reports are abundant across various internet drug forums) (Speiser, 2015).  The acute 

cognitive effect of SCRAs have also been studied in relation to driving. Consumption of 
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SCRAs showed clear symptoms of impairment (sedating effects, retarded movements and 

impairment of fine motor skills) typically described as somewhat similar to that of cannabis 

(Musshoff et al., 2014, Cohen and Weinstein, 2018). There have been a number of case 

studies with SCRA-associated impaired driving, where JWH-018, AM-2201, JWH-210, and 

JWH-122 were all found in drivers’ systems ranging from 0.1-9.9 ng/ml (Musshoff et al., 

2014). The author suggested that analytical procedures should include lower limits of 

quantification (below 1 ng/ml) as SCRAs were detected at lower serum levels than THC, 

indicating high potency of these compounds (Musshoff et al., 2014). In addition to the 

psychological effects, users also reported tachycardia and hypertension (Spaderna et al., 

2013, Alipour et al., 2019). In one case, supraventricular tachycardia with a heart rate as 

high as 172 beats per minute was noted in a 24-year-old after ingestion of e-cigarette fluid 

containing AB-FUBINACA and ADB-FUBINACA, confirmed by quantitative analysis of 

the serum drug concentrations and urine toxicology screening, although the presence of AB-

FUBINACA was undetected in the patient’s urine (Lam et al., 2017). This highlights the 

challenges faced by clinicians to accurately identify and confirm human urinary SCRAs and 

their metabolites, as may be the case for closely structurally-related SCRAs that produce 

identical metabolites (Andersson et al., 2016). Another study determined the clinical 

characteristics of SCRA toxicity in a cohort of patients (from the ToxIC registry) (Monte et 

al., 2017). The authors identified 321 cases of SCRA use, in this analysis, they reported that 

44 patients (12.5%) had heart rates above 140 beats per minute. While, bradycardia was the 

second most commonly found abnormality with 20 patients (5.7%) having heart rates less 

than 50 beats per minute (Monte et al., 2017). The clinical history provided by medical 

professional suggest that there is no consistent SCRA toxidrome, and every single case has 

the potential to be completely different from previously reported cases.   

Several reports have documented various and substantial adverse effects associated with 

SCRAs, including psychosis, cardiac arrest, nephrotoxicity, gastrointestinal problems 

including hyperemesis, hyperthermia, cerebral ischemia, and seizures (reviewed in Cooper 

(2016)). Mass intoxication with use of AMB-FUBINACA in 2016 was described at the time 

as a “zombie outbreak’, due to altered mental status of users, with reports by medical 

emergency services as users “being slow to respond to questioning and as having blank 

stare” (Adams et al., 2017). Multiple cases also detail cerebral seizures following use of 

SCRAs. For example, a high frequency of seizures was observed in 12 of 44 patients after 

using MDMB-CHMICA and AB-CHMINACA, which was detected in both blood and urine 
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samples (Hermanns-Clausen et al., 2018). In another case, unfortunately, an 8-year-old male 

was brought to an emergency department for tonic-clonic episodes, following consumption 

of non-pharmaceutical graded CBD oil contaminated with the SCRA (AB-FUBINACA) 

(Rianprakaisang et al., 2019). Acute kidney injury (AKI) has also been documented in over 

ten cases after smoking SCRA-product, where nine patients were hospitalised, and one 

required haemodialysis. The authors concluded that a new SCRA, XLR-11, may have been 

the cause of AKI, which was detected in both suspected product and clinical samples, 

reinforcing the importance of vigilance to detect unique toxidrome caused by SCRAs (Buser 

et al., 2014, Bhanushali et al., 2013). Cardiovascular fatalities have also been reported in the 

literature. For example, a 41-year-old female died due to fatal coronary thrombosis after 

smoking an SCRA-product, Mojo, containing ADB-FUBINACA (Shanks et al., 2016). 

Unexpectedly, in 2018 an outbreak of severe bleeding and abnormal coagulation profile 

(including four deaths) was reported following use of SCRA (Riley et al., 2019). Clinical 

investigation reported 81 cases testing positive for brodifacoum (superwarfarin) (Moritz et 

al., 2018), and AB-FUBINACA was recently detected in toxicological analyses of blood 

and urine samples in a single case study in the USA, suggesting apparent mixing of 

brodifacoum with SCRAs (Riley et al., 2019). There exists a number of very important and 

unanswered questions. Why has brodifacoum been mixed with SCRA? Was this an accident 

or deliberate? And how is it metabolised? (discussed in detail in Chapter 4 (Sachdev et al., 

2019b)).  

The increasing use of SCRA in prison over recent years is a crucial area of research 

(EMCDDA, 2018). Earlier reports have suggested high level of drug (like heroin, cannabis, 

opioid analgesics, etc.) consumption in prison (70%), although, the pattern of drug use in 

prison is changing from traditional drugs to NPS (Ralphs et al., 2017). While, a total of 670 

NPS has been reported to EMCDDA, with SCRAs being the most common group of NPS 

used in prison (EMCDDA, 2018). The earliest report of the use of SCRA among prisoners 

in UK comes from Her Majesty’s Inspectorate of Prisons (HMIP) in 2015, where it was 

observed that “spice and black mamba…had had a severe impact and...led to debt and 

serious violence” (HMIP, 2015). A 2016 survey led by user Voice found that one in three 

prisoners in England and Wales have tried SCRA in the past month, where, at the time, over 

85,000 people were living in nine prisons across England and Wales (Voice, 2016). Specific 

motivation of SCRA use in prison has also been investigated by (EMCDDA) - as would be 

expected SCRA is undetectable in urine toxicology screening (at the time of identification), 
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effect of SCRAs themselves (boredom and escapism from prison life), the legal perception, 

value for money, and availability compared to natural cannabis. The actual number of deaths 

resulting from SCRA consumption has not been documented (for a number of technical and 

practical reasons reviewed in EMCDDA (2018)). Of the 79 deaths reported by EMCDDA 

for the years 2013-2016, 56 were self-inflicted, highlighting the likely possibility of abuse 

potential of SCRAs (considering the earlier reports of suicidal thoughts and self-harm after 

consumption of SCRA-based product). Studies have also reported some of the methods for 

supplying SCRAs in prison - the use of drones to delivery “packages”, drugs smuggled by 

body packers, or paper sheets (“letters”) impregnated with SCRAs (Angerer et al., 2018, 

EMCDDA, 2018, Norman et al., 2019). This latter issue was further investigated to provide 

analytical support to test 354 individual paper seized from three Scottish prisons (Norman 

et al., 2020). The authors confirmed that 41% (146 sa/mples) contained at least one SCRA, 

while 23% (33 samples) contained multiple SCRAs, of which the most prevalent SCRAs 

detected include 5F-MDMB-PICA and 4F-MDMDB-BINACA. It is hoped that the close 

monitoring of SCRAs supplied in prison may help to minimise their adverse effects to this 

end.  

1.6.3. The pharmacology of synthetic cannabinoid receptor agonists  

The pharmacological evaluation of SCRAs is essential to understand the mechanism by 

which SCRAs exert adverse effects, and to determine if their activity through CB1 receptor 

is sufficient to contribute to their ongoing impact across clinical aspects. Similar to THC, 

SCRAs have high binding affinity for CB1 and CB2 receptors - homogenate binding 

competition-displacement assays revealed nanomolar-range affinities (reviewed in 

Castaneto et al. (2014)). A battery of standard in vitro assay have been used to study the 

pharmacological profile (potency and efficacy) of SCRAs at CB1 and CB2 receptors. 

Qualitative assessment of the activity profiles of SCRAs suggests that they are far more 

potent and efficacious at CB1 than THC (Banister and Connor, 2018b, Wouters et al., 

2019c), a finding which this thesis aims to explore further. Earlier studies revealed that 

JWH-018 potently inhibited excitatory postsynaptic neurons when tested in autaptic 

hippocampal neurons, and acted with essentially equivalent potency in multiple CB1 

signalling pathways (Atwood et al., 2010).  Wiley et al. (2012) used a GTPγS assay to 

determine the ability of the first generation of SCRAs to activate CB1. The authors 

concluded that all the SCRAs tested exhibited higher potency, except JWH-415 that had 

lower potency and efficacy at CB1 (Wiley et al., 2012). With the identification of 
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tetramethylcyclopropyl ketone indoles in the NPS market, researchers investigated the 

functional activity of UR144 and XLR-11 in an assay of GTPγS binding in HEK cells (Wiley 

et al., 2013), and a membrane potential assay in AtT-20 cells (Banister et al., 2015b). They 

found that both UR-144 and XLR-11 activated CB1 with a higher potency (within 90-160 

nM range) compared to THC (>10µM) in the GTPγS binding assay (Wiley et al., 2013), 

while Banister et al. (2015b) found that UR-144 had 2- and 4-times lower potency compared 

to THC and XLR-11, respectively. This discrepancy could be due to a system bias effect 

(bias relating to the pathway or experimental model). A popular design trend in the NPS 

market is the addition of a fluorine group in the end of the side chain, with evidence 

suggesting a higher functional activity of fluorinated analogues at CB1 receptor (Banister et 

al., 2015b, Sobolevsky et al., 2015). For example, the terminally-fluorinated analogue of 

PB-22, 5F-PB-22, roughly showed 2-times greater potency compared to its corresponding 

non-fluorinated parent. This effect was more pronounced for fluoro/non-fluoro 

UR144/XLR11 pair, focusing our attention to structure-activity relationship - linking the 

chemical structure with the observed cellular signalling profile (reviewed in Banister et al. 

(2015b), Worob and Wenthur (2019)). More recently, indole and indazole SCRAs have been 

identified featuring a valinate or a tert-leucinate group, and/or a carboxamide group, that 

activate the CB1 receptor with sub-nanomolar potencies in a classical signalling cascade 

(assessed in GTPγS assay (Gamage et al., 2018), cAMP signalling (Gamage et al., 2018, 

Banister et al., 2019a), membrane potential assay (Banister et al., 2015a, Banister et al., 

2016, Banister et al., 2019a), and recruitment of β-arrestins using the NanoBiT® 

complementation assay (Antonides et al., 2019, Wouters et al., 2019b, Fabregat‐Safont et 

al., 2019)). Despite the chemical diversity of the ligands characterised, these SCRAs 

exhibited similar maximal effect to that of the reference compound CP55940 (though 

NanoBit® assay was able to differentiate between the EMAX of SCRAs, indicating a low level 

of receptor reserve for SCRAs coupling to β-arrestin (Wouters et al., 2019c)). These studies 

did not appear to consider the confounding influence on efficacy measurement that arise 

from the “spare receptors” in the system, where only submaximal receptor occupancy is 

required for the agonist to achieve system maximum. This also means that qualitative 

measurement of SCRAs efficacy may not be transferable between different assay systems, 

and would explain why several studies disagree in their efficacy findings (Kenakin and 

Christopoulos, 2013). The most appealing starting point for this would be to quantitatively 

measure the efficacy of SCRAs using an operational model of agonism to understand the 

diverse physiological consequences resulting from CB1 receptor activation by high and low 
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efficacy agonists (discussed in more detail in Chapter 2, (Sachdev et al., 2019c)). Some 

evidence exists on SCRAs activity at targets other than CB1 and CB2 - partial agonist 

activity at TRPA1(Stuart, 2015), potent activity of CP55940 and HU-210 at GPR55 (De 

Petrocellis and Di Marzo, 2010), binding affinities of some SCRAs for serotonin 2B 

receptors (Wiley et al., 2012), indole-derived SCRAs-mediated inhibition of alpha subunit 

of K channels (Wiley et al., 2012), and SCRA-mediated inhibition of Cav3.2 T-type Ca 

channel (Bladen et al., 2018), although these remain poorly characterised. These interactions 

alone, or in combination with CB1/2, may explain the range of physiological and 

toxicological effects produced by these compounds. Indeed, the seizurogenic effect of 

SCRAs may arise from strong activation of CB1 receptors (Malyshevskaya et al., 2017, 

Funada and Takebayashi-Ohsawa, 2018).  

The cannabinoid tetrad effect has been extremely useful approach for characterising the 

cannabimimetic activity of SCRAs in rodent studies (Fantegrossi et al., 2014). Qualitative 

assessment of cluster of four classical tetrad endpoints for cannabinoids are characterised by 

dose-dependent decrease in body temperature and motor activity, and dose-dependent 

increase in measures of analgesia and catalepsy (reviewed in Tai and Fantegrossi (2014)). 

However, tetrad effect does not necessarily reflect the “cannabis-like high” effect. The first 

generation of SCRAs, JWH-018 and JWH-073, produced tetrad effects of similar magnitude 

compared to THC (Wiley et al., 2012). Similarly, UR-144 and XLR-11 exhibited a complete 

profile of tetrad effects in mice, with potencies up to 15- and 17- fold greater than THC 

respectively (Wiley et al., 2013). A recent study compared THC- and XLR-11-induced 

tetrad effects between wildtype and CB1-, CB2- and GPR55-knock-out mice (Wang et al., 

2019). Genetic deletion of CB1 blocked the THC- and XLR-11-induced tetrad effects; while 

genetic deletion of CB2 had no effect on the XLR-11-induced tetrad effects but selectively 

blocked THC-induced analgesia and catalepsy. However, genetic deletion of GPR55 

receptors appears to produce opposing effect on THC-induced tetrad effects, but not XLR-

11, suggesting distinct receptor mechanism underlie the classical tetrad effects produced by 

phytocannabinoid or SCRAs (Wang et al., 2019). Studies with recent groups of SCRAs have 

utilised drug discrimination paradigms in which animals are usually trained to distinguish 

administration of a dose of a particular drug from administration of the vehicle (Glennon 

and Young, 2011, Tai and Fantegrossi, 2014). In a study by (Gamage et al., 2018) rodents 

were trained to lever press on a particular lever or poke nose on a particular aperture when 

administered with THC. The authors found that UR-144, XLR-11, AB-CHMINACA, 
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MDMB-FUBINACA, 5F-CUYL-PICA and many other SCRAs fully and dose-dependently 

substituted for THC with significantly greater potency. Application of radiotelemetric 

probes have enabled the real-time measurement of body temperature and heart rate, and hold 

the capacity to show both the magnitude and time-course of cannabinoid effects in rat 

physiology (Banister et al., 2016). Bradycardia and hypothermia were induced by UR-144, 

XLR-11, PB-22, AB-PINACA, AB-FUBINACA, MDMB-FUBINACA, and many other 

structurally diverse SCRAs with much greater potency than THC in vivo (Banister et al., 

2015a, Banister et al., 2015b, Banister et al., 2016, Banister et al., 2019a). However, SCRAs 

failed to produce a tachycardiac effect in the biotelemetry assay in vivo, this is surprising, 

as tachycardia is one of the common adverse effects seen with these drugs. This means that 

the effects may be confounded by other factors in the system. 

To gain further mechanistic insight into the wide-ranging adverse effects of SCRAs, it is 

important to understand the extent to which these effects are caused by either their parent 

compounds or metabolites and thermolytic degradants. It has been shown that SCRAs are 

generally metabolised in two-step process - oxidation by cytochrome450s (CYPs) enzymes, 

followed by conjugation with UDP-glucuronosyltransferase (UGT) (Tai and Fantegrossi, 

2016). While THC is metabolised via oxidation to form a major active metabolite, 11-

hydroxy-THC, which may undergo further oxidation to produce a carboxylic group at 

several positions (11-nor-9-carboxy-THC, an inactive metabolite) (reviewed in Elsohly et 

al. (2014), Tai and Fantegrossi (2016)). This was first demonstrated in a study from Brents 

et al. (2012), where five potential Phase I metabolites of JWH-018 showed high levels of 

activation with high affinity and efficacy at CB1, relative to THC. Interestingly, only a few 

studies have examined the pharmacology of SCRAs metabolites (the aforementioned study, 

plus Brents et al. (2012), Rajasekaran et al. (2013), Longworth et al. (2017), Cannaert et al. 

(2017), Gamage et al. (2019)). One example is the in vitro pharmacological profiling of 

hydroxypentyl metabolites of selected SCRAs in a GTPγS binding assay (Gamage et al., 

2019). The authors concluded that majority of hydroxypentyl metabolites retained the same 

level of efficacy as their parent compound that may suggest that these metabolites are likely 

to contribute to the cannabimimetic effects in vivo, although the metabolites had relatively 

lower potency and affinity for CB1 (Gamage et al., 2019). Another group investigated the 

functional activity of seven common hydrolysis metabolites of fifteen SCRAs using the 

NanoBiT® complementation assay (Wouters et al., 2019a). They found that the metabolites 

of some selected SCRAs had little to no activity on CB1 at concentrations up to 1 µM, yet 
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the metabolites of other closely related SCRAs retained activity at CB1, although potency 

was significantly less than the parent compound (Wouters et al., 2019a). There appears to 

be slight discrepancy between two studies, further studies are needed to build a full 

pharmacological profile of metabolites of SCRAs in uniform in vitro assay to circumvent 

system-dependent agonist pharmacology. Characterising the functional activity of 

thermolytic degradants of SCRAs is also important for understanding how thermolysis 

products, produced during smoking, may have different pharmacological profiles compared 

to their parent compound. For example, UR-144 and XLR-11 contain a 

tetramethylcyclopropyl ring system which opens when heated to 800°C (the temperature in 

burning cigarette) (Thomas et al., 2017). This thermolysis product had higher functional 

activity (affinity and efficacy) and was more potent in producing cannabimimetic activity in 

vivo as compared to their parent compound (Thomas et al., 2017). Researchers are 

increasingly aware of the need to explore the pharmacological profile of SCRAs as we get 

closer to understanding the mechanisms through which they exert life-threatening effects.  

1.7. Unlocking the pot-ential activity of cannabinoids 

As our understanding of pharmacological processes evolves, so is the tool to facilitate 

mechanistic insight into selective receptor-agonist responses. The key component of drug 

discovery process is the pharmacological characterisation of an agonist to induce a cellular 

response. As first defined by Stephenson (1956), efficacy is the property of an agonist to 

elicit different intensities of responses as consequence of different proportions of receptors 

occupied by agonists. Importantly, he also went further to expand the efficacy parameter by 

adding a stimulus function (system properties) to indicate the amount of receptor activated 

by a given agonist in the system (Stephenson, 1956). Mathematical models were developed 

to link together two fundamental phenomenon of receptor function – receptor occupancy 

and efficacy (reviewed in Finlay et al., 2020). Mathematical model of receptor-agonist 

function is employed in this thesis to understand the extent of CB1 activation by distinct 

classes of ligands, and consequently such studies can aid in the design of drugs with better 

safety profile. For example, the high efficacy agonist of CB1, MDMB-FUBINACA has a 

rigid C shape geometry (indazole scaffold), which has been shown to interact with F2003.36- 

W3566.48 (toggle twin switch) in the binding pocket of CB1, and forms a cavity for G protein 

binding (Kumar et al., 2019). While, the lack of the toggle twin interaction has been 

suggested for the low efficacy agonist profile of THC, a characteristic that presumably 

makes it safer compared to high efficacy synthetic cannabinoids (discussed in Chapter 2 and 
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3). Studies have shown that distinct ligands stabilise different active receptor conformations, 

developing the early ideas of biased agonists (i.e. some ligands can selectively stabilise a 

particular receptor conformation to drive differential response) (Perez and Karnik, 2005). 

The key to discovering biased agonist is to further our understanding of the signalling 

dynamics of distinct receptor activation state and even provide therapeutic benefits without 

adverse consequences (Kenakin and Christopoulos, 2013).  

Historically, the drug discovery programmes for GPCR ligands have been dominated by 

efforts to develop agonist, and antagonist for the orthosteric site of the receptor, but their 

utility for therapeutic potential has been challenging due to their detrimental side effects 

(Conn et al., 2009). This has facilitated investigation into development of selective allosteric 

modulators - these molecules do not bind on the orthostertic ligand binding site but instead 

bind to a site which is topographically distinct to orthostreic site (Conn et al., 2009). 

Allosteric modulators can impact receptor activity in several ways – positive allosteric 

modulators (PAMs) increases the response of the receptor to agonist by influencing the 

binding affinity and efficacy of the orthosteric agonist, negative allosteric modulators 

(NAMs), which reduce the receptor responsiveness, and/or these modulators can also cause 

its own signalling effects separate from the effects of orthosteric ligands (reviewed in Dopart 

et al., 2018). The emerging field of positive and negative allosteric modulation of the 

cannabinoid receptors offers considerable promise for the development of drugs which may 

have less side effects (Dopart et al., 2018). For example, ZCZ011, a PAM of CB1, has been 

shown to reduce nociceptive behaviour in the chronic constriction sciatic nerve injury model 

of neuropathic pain and carrageenan model of inflammatory pain with minimal or no 

cannabimimetic psychoactive effects (Ignatowska-Jankowska et al., 2015).  

In the domain of cannabinoids, CB1 and CB2 receptors are involved in regulation of broad 

panel of central and physiological processes (Kogan and Mechoulam, 2007), while the 

adverse activity profile of SCRAs (to some extent) is also associated with CB1 activation 

(reviewed in Worob and Wenthur (2019)). The structural and pharmacological features 

contributing to cannabinoid therapeutic or toxicity profile downstream of CB1 have not yet 

been dissected. Deciphering the molecular features of CB1 receptor signalling pathways that 

confer therapeutic cannabinoid effect from their unwanted side effect is important within 

the context of cannabinoid research. Thus, examining the functional activity of molecules 

on a range of different receptor responses using high-throughput assays can provide new 

insights into receptor function (Kenakin, 2005, Wouters et al., 2019c). However, the 
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qualitative analysis of cannabinoids might be less interpretable – as agonist outcomes might 

be affected by system properties (such as receptor density). Further extension of the receptor 

function seeks to use operational model of pharmacological agonism (proposed by Black 

and Leff (1983)) to quantify agonist activity in a system-independent manner. Therefore, 

the ultimate hope of this work is to quantitatively determine the differential ability of 

structurally diverse cannabinoids to induce functional response in canonical endpoints 

downstream of CB1 activation (discussed in Chapter 2 and 3). 
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1.8. Aims of this Thesis  

Given the increase in the number and prevalence of structurally diverse SCRAs, often 

associated with significant morbidity and mortality, and the therapeutic application of 

natural cannabis for the treatment of wide range of health conditions; the purpose of this 

thesis was to further the understanding of the molecular pharmacology of cannabinoids from 

two divergent viewpoints: the toxic effects of synthetic cannabinoids and the therapeutic 

effects of medical cannabis. This work is presented in the following chapters outlined below. 

 

Chapter 2 Study I Quantitatively determine the efficacy of a library of most 

prevalent class of SCRAs using operational model of 

pharmacological agonism 

Chapter 3 Study II Determine the distinct effects of chemically diverse SCRAs 

downstream of CB1 in two signalling endpoints - Gαi/o (inhibition) 

and Gαs (stimulation) of cAMP signalling to understand the 

apparent differences in effect between these drugs in humans  

Chapter 4 Study III Examine whether mixing of brodifacoum (superwarfarin) with 

SCRAs exhibits an additive effect on cannabinoid receptor 

activity potentially illuminating the adverse effects associated 

with their consumption 

Chapter 5 Study IV Elucidation of the possible entourage effect applied to medical 

cannabis by examining cannabinoid-terpenoid interaction on 

cannabinoid receptor signalling 

Chapter 6 Study V Investigation the molecular effects of CBD on the signalling of 

multiple GPCRs to provide a greater understanding of CBD 

function and its corresponding therapeutic advantages 
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Chapter II. 

Study I. In vitro determination of the efficacy of illicit 

synthetic cannabinoids at CB1 receptors 

Synthetic cannabinoid receptor agonists (SCRAs) are gaining notoriety as an illicit class of 

recreational drugs associated with significant toxicity and even death, consequences very 

different from herbal cannabis and other forms of Δ9-THC. To investigate whether efficacy 

can explain the toxicity related to SCRAs, we have systematically quantified the efficacy of 

panel of 17 cannabinoids using operational model of pharmacological agonism. This was 

done using well-studied phytocannabinoid (THC), endocannabinoid (2-AG and AEA), and 

non-classical cannabinoid (CP55940) as reference drug for comparison with the newer, and 

chemically diverse class of SCRAs. 

Contributions to the work 

This paper represents a collaborative work hosted in Mark Connor’s laboratory at Macquarie 

University Australia. I took the lead role in experimental design, conducting the 

experiments, data analysis and writing the paper with some support from my co-

investigators: Mark Connor oversaw the work in this research group; Samuel Banister and 

Mitchell Longworth created all the SCRAs with guidance from Michael Kassiou; Kiran 

Vemuri and Alexandros Makriyannis designed and shared an irreversible antagonist of CB1; 

and Marina Santiago provided assistance in the experimental work. All authors reviewed the 

final manuscript. 
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Background and Purpose: The morbidity and mortality associated with recreational

use of synthetic cannabinoid receptor agonists (SCRAs) may reflect strong activation

of CB1 receptors and is a major health concern. The properties of SCRA at CB1 recep-

tors are not well defined. Here we have developed an assay to determine acute CB1

receptor efficacy using receptor depletion with the irreversible CB1 receptor antago-

nist AM6544, with application of the Black and Leff operational model to calculate

efficacy.

Experimental Approach: Receptor depletion in mouse AtT‐20 pituitary adenoma

cells stably expressing human CB1 receptors was achieved by pretreatment of cells

with AM6544 (10 μM, 60 min). The CB1 receptor‐mediated hyperpolarisation of

AtT‐20 cells was measured using fluorescence‐based membrane potential dye. From

data fit to the operational model, the efficacy (τ) and affinity (KA) parameters were

obtained for each drug.

Key Results: AM6544 did not affect the potency or maximal effect of native

somatostatin receptor‐induced hyperpolarization. The τ value of Δ9‐THC was 80‐fold

less than the reference CB receptor agonist CP55940 and 260‐fold less than the

highest efficacy SCRA, 5F‐MDMB‐PICA. The operational efficacy of SCRAs ranged

from 233 (5F‐MDMB‐PICA) to 28 (AB‐PINACA), with CP55940 in the middle of

the efficacy rank order. There was no correlation between the τ and KA values.

Conclusions and Implications: All SCRAs tested showed substantially higher effi-

cacy at CB1 receptors than Δ9‐THC, which may contribute to the adverse effects

seen with these drugs but not Δ9‐THC.

1 | INTRODUCTION

Synthetic cannabinoid receptor agonists (SCRAs) are a large class of

new psychoactive substances (NPS), notionally designed to mimic

the effects of Δ9‐tetrahydrocannabinol (Δ9‐THC), the main

psychoactive ingredient in cannabis (Wiley, Marusich, & Huffman,

2014). SCRAs have been marketed as herbal incense blends (often

known as Spice or K2) and legal cannabis substitutes which are unde-

tectable using conventional drug tests (Auwärter et al., 2009). Since

the first generation of generally available SCRAs (including JWH‐

018, JWH‐073, JWH‐200, and CP47497) were detected in herbal

blends in 2008, more than 250 SCRAs have been reported in over

100 countries (Banister & Connor, 2018; United Nations Office on

Drugs and Crime, 2018). SCRA use has been associated with adverse

health effects including hundreds of hospitalisations and dozens of

Abbreviations: AtT‐20‐CB1, mouse pituitary tumour cells stably transfected with HA‐tagged

human CB1 receptors; GIRK, G protein‐coupled inwardly rectifying potassium channel; NPS,
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synthetic cannabinoid receptor agonists; SRIF, somatotropin release‐inhibiting factor
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fatalities (Adams et al., 2017; Trecki, Gerona, & Schwartz, 2015). The

most commonly reported adverse effects are psychosis, anxiety, agita-

tion, seizures, tachycardia, hypothermia, and kidney injury (Tait,

Caldicott, Mountain, Hill, & Lenton, 2016). In addition to these life‐

threatening effects, daily SCRA use has been linked to dependence

and withdrawal (Cooper, 2016).

SCRAs activate cannabinoid CB1 and CB2 receptors, with their

psychoactive effects caused by activation of CB1 receptors (Pacher,

Bátkai, & Kunos, 2006). While cannabinoids, including SCRA, have

been reported to have activity at a variety of ion channels and GPCRs

other than CB1 and CB2 receptors (De Petrocellis & Di Marzo, 2010),

the relevance of these interactions to the effects of cannabinoids in

humans remains to be established, and their potential role in SCRA

toxicity is unknown. In rodents, both JWH‐018‐ and AM‐2201‐

induced seizures are mediated by CB1 receptors (Funada &

Takebayashi‐Ohsawa, 2018; Malyshevskaya et al., 2017; Vigolo

et al., 2015). SCRA‐induced hypothermia and bradycardia are also

CB1 receptor‐dependent (Banister et al., 2013; Banister et al., 2015;

Banister et al., 2016). Intriguingly, a recent report suggests that the

hypertensive effects of some SCRAs in rats may be independent of

CB1 receptors (Schindler, Gramling, Justinova, Thorndike, & Baumann,

2017).

Most SCRAs studied to date activate CB1 receptors with greater

potency and efficacy than Δ9‐THC in [35S]GTPγS binding assay

(Gamage et al., 2018; Wiley et al., 2015), AC assay (Costain et al.,

2018; Hess, Schoeder, Pillaiyar, Madea, & Müller, 2016), β‐arrestin

2 recrutiment assay using NanoLuc binary technology (Cannaert,

Storme, Franz, Auwärter, & Stove, 2016), and fluorescence‐based

membrane potential assay (Banister et al., 2013; Banister et al.,

2015; Banister et al., 2016; Banister, Stuart, et al., 2015). However,

there is little quantitative information about the efficacy of SCRA

at CB1 receptors. A substantial component of SCRA toxicity may

be mediated through activation of CB1 receptors (Krishna Kumar

et al., 2019), and defining the efficacy of SCRAs is an important step

towards understanding possible mechanisms of CB1 receptor‐medi-

ated toxicity. The similar maximal effects of several SCRAs reported

in these assays may reflect receptor reserve, with only submaximal

receptor occupancy by agonists needed to achieve their maximal

response. Depleting receptor reserve can allow for quantitative

determination of efficacy, by fitting concentration–response data

before and after receptor depletion to the operational model of

Black and Leff (Black & Leff, 1983). We have used the irreversible

CB1 receptor antagonist AM6544 (Finlay et al., 2017) to facilitate

quantitative measure of SCRAs efficacy to produce CB1 receptor‐

dependent hyperpolarisation of intact AtT‐20 cells expressing human

CB1 receptors. We determined the efficacy of a library of the most

prevalent SCRAs identified in the NPS market since 2008 and found

that the SCRAs we tested had up to 300 times the efficacy of Δ9‐

THC, which may contribute to the apparently greater toxicity of

these drugs. In this study, we have established an assay that can

be used to quantitate CB1 receptor efficacy efficiently, and which

is readily adaptable to the study of other CB1 receptor signalling

pathways.

2 | METHODS

2.1 | Cell culture

Experiments used mouse AtT‐20 pituitary tumour cells (RRID:

CVCL_4109) engineered to express FLP recombination site were

transfected with human CB1 receptors as previously described (Banis-

ter et al., 2016). Cells were cultured in DMEM (Sigma‐Aldrich, St.

Louis, MO, USA) supplemented with 10% FBS (Sigma‐Aldrich, St.

Louis, MO, USA), 100 units·ml−1 of penicillin, 100 μg·ml−1 of strepto-

mycin (Thermo Fischer Scientific, Waltham, MA, USA), and 80 μg·ml−1

of hygromycin (InvivoGen, San Diego, CA, USA). The cells were grown

and maintained in 75 cm2 flask and passaged at 80% confluency or

grown to 90% confluency for assay. Cells were incubated at 37°C in

a humidified 5% CO2 atmosphere.

2.2 | Achieving receptor depletion in a membrane
potential assay

Cannabinoid receptors couple to G protein‐coupled inwardly rectify-

ing potassium (GIRK) channels in several types of neurons (Bacci,

Huguenard, & Prince, 2004; Marinelli, Pacioni, Cannich, Marsicano, &

Bacci, 2009). This coupling reflects a close association between CB

receptors, G proteins, and channels (Guo & Ikeda, 2004), and all the

components, other than the receptor, are naturally expressed in the

AtT‐20 cells. Endogenous expression of GIRK channels (Kir3.1 and

Kir3.2) in AtT‐20 cells is crucial for the main signalling assay per-

formed during this work, and the direct activation of these channels

in AtT‐20 cells by CB1 receptors has been studied repeatedly (Garcia,

Brown, Hille, & Mackie, 1998; Mackie, Lai, Westenbroek, & Mitchell,

1995). Changes in the membrane potential of cells in response to

GIRK activation were measured using the fluorometric imaging plate

reader (FLIPR) membrane potential (blue) assay kit (Molecular Devices,

Sunnyvale, CA) as previously described (Knapman et al., 2013). Cells

were detached from the flask using trypsin/EDTA (Sigma‐Aldrich),

and the pellet was resuspended in 10 ml Leibovitz's (L‐15) media sup-

plemented with 1% FBS, 100 units·ml−1 of penicillin, 100 μg·ml−1 of

streptomycin, and 15 mM glucose. The cells were seeded in a volume

of 90 μl in poly‐D‐lysine (Sigma‐Aldrich) coated, black wall, clear bot-

tom 96 well microplates. Cells were incubated overnight at 37°C in

ambient CO2.

We used a receptor depletion assay to quantitatively determine

the efficacy of a range of SCRAs. This approach involves irreversible

binding of an antagonist to the orthosteric binding site of the recep-

tors, thus permanently occluding a fraction of functional receptors

available to an orthosteric ligand (Besse & Furchgott, 1976). We used

the new CB1 receptor irreversible antagonist AM6544, synthesised at

the Center for Drug Discovery, Northeastern University (Patent

US8084451, 2011) to systematically reduce active receptor number

in the AtT‐20‐CB1 cell expression system. The day after plating,

AM6544 (10 μM) was prepared in HBSS composed of (mM) NaCl

145, HEPES 22, Na2HPO4 0.338, NaHCO3 4.17, KH2PO4 0.441,
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MgSO4 0.407, MgCl2 0.493, CaCl2 1.26, glucose 5.56 (pH 7.4, osmo-

larity 315 ± 15), and supplemented with 0.1% BSA. Receptor depletion

was achieved following pretreatment of cells with AM6544 (10 μM) in

parallel to the vehicle (control) for 60 min after removal of the L‐15, at

37°C in ambient CO2. The concentration of DMSO (0.1%) was kept

constant for AM6544‐treated and control cells. Cells were then

washed twice with warm HBSS and loaded with 90 μl per well of L‐

15 media and 90 μl per well of reconstituted FLIPR dye. The cell plate

was incubated at 37°C in ambient CO2 for 1 hr prior to measuring the

fluorescence using a FlexStation 3 microplate reader (Molecular

Devices). The AM6544‐treated and control cells were compared side

by side. The cells were excited at a wavelength of 530 nm and emis-

sion measured at 565 nm, with cut‐off at 550 nm, and the readings

were made every 2 s. Baseline readings were taken for 2 min after

which 20 μl of drug (10×) was added to each well to give the desired

concentration. The drugs of various concentrations were prepared in

HBSS containing 0.1% BSA and 1% DMSO. The final concentration

of DMSO in each well was always 0.1%. A concentration–response

curve (CRC) for CP55940 was performed each day for quality control.

On rare occasions where AM6544 pretreatment failed to produce a

substantial shift in responses to CP55940, results were discarded, as

they probably indicated experimenter error.

SCRAs were synthesised as previously described by Banister, Moir,

et al. (2015), Banister, Stuart, et al. (2015), and Banister et al. (2016).

Chemical structure of SCRAs can be found in Figure S1. The functional

activity (EC50) of SCRAs at CB1 receptors were compared to Δ9‐THC

and CP55940 (see Table S1). We have previously shown that the

effects of SCRAs in AtT‐20‐CB1 cells were blocked by SR141716A,

a CB1 receptor antagonist, and that none of the SCRAs produced a

significant change in the membrane potential of AtT‐20 wild‐type cells

(Banister et al., 2016; Banister, Moir, et al., 2015; Banister, Stuart,

et al., 2015). SCRA‐mediated hyperpolarisation of AtT‐20‐CB1 cells

is also Pertussis toxin (PTX) sensitive, confirming that the response is

Gi/o‐dependent (Banister et al., 2016, Banister, Moir, et al., 2015, Ban-

ister, Stuart, et al., 2015).

2.3 | Data analysis

2.3.1 | Operational model analysis

Drug responses are reported as percentage change of baseline fluo-

rescence, following correction for the vehicle responses (0.1% DMSO).

The hyperpolarisation of the cells produces a decrease in fluorescence.

For convenience, values are expressed such that a change of 30%

means a reduction in fluorescence of 30%. Data for individual experi-

ments were analysed and the CRC before and after receptor depletion

was fitted with the Black and Leff operational model in PRISM (Graph

Pad Software Inc., San Diego, CA; RRID:SCR_002798), using five‐

parameter non‐linear regression (Basal, KA, Effectmax, τ, and transducer

slope) to fit the operational model‐receptor depletion equation

(Motulsky & Christopoulos, 2004).

The equation for operational model‐depletion presented in the

same style as Prism:

operate ¼ 10logKA þ 10X

10logτþX

$ %n

;

Y ¼ Basalþ Effectmax − Basalð Þ
1þ operate

;

where the maximal response of the system is given by Effectmax. The

parameter, τ, equals the total concentration of receptor in the system

divided by the concentration of agonists occupied receptors that are

required to produce half‐maximal tissue response. The parameter,

KA, is define as the equilibrium KD for agonist binding to the receptors,

while n is the slope factor of the transducer function.

From the operational model, efficacy (τ) and affinity (KA) parame-

ters were obtained for each drug. The basal parameter was

constrained to zero as the basal activity (without drug) was routinely

subtracted from the measurements. The transducer slope n of all the

agonist CRCs was constrained to 1 (after initial fits showed this to

be a good approximation). The parameter Effectmax is tissue specific

and thus shared by all agonists acting on CB1 receptors through a

given pathway for that day. The parameter, KA, is ligand–receptor spe-

cific, whereas τ has ligand‐specific elements (efficacy of ligand) and

system‐specific elements (coupling efficiency of receptors to signalling

pathway). Thus, for individual drugs, KA was shared between the

AM6544‐treated and control state, but the separate best fit values

of τ were determined for each data set. The τ value in the control state

was used to measure the CB1 receptor agonist efficacy. This proce-

dure serves to measure the efficacy of a group of agonists on a per‐

day basis obtained from fitting data simultaneously to the operational

model, with mean and SEM calculated using individual values for each

experiment.

2.4 | Estimate of relative agonist activity (RAi)

After determining the efficacy and affinity of SCRAs from the opera-

tional model under control and AM6544‐treated conditions, the data

were used for the calculation of the initial estimate of RAi value. The

relative affinities of agonists for the active state of a receptor (RAi)

expressed relative to that of a reference agonist as described previ-

ously by Ehlert (2008) was calculated.

RAi ¼ τBKA

τAKB

In this equation, τA and τB denote the intrinsic efficacies, and KA

and KB denote the KD of reference and test agonist, obtained earlier

from the operational model. CP55940 was used as the reference ago-

nist to define the RAi of the SCRAs.

We also estimated RAi values of eight SCRAs from four published

studies to compare these with the initial estimate of RAi values deter-

mined from the data generated in our laboratory. RAi values were esti-

mated from studies on the [35S]GTPγS binding assay in HEK cells

(RRID:CVCL_0045) by Ford et al. (2017), Thomas et al. (2017),

Gamage et al. (2018), and Wiley et al. (2015). We used a simple
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calculation for the estimation of RAi as only the EC50 and the Emax

values of SCRAs were available from the literature (Ehlert, Griffin,

Sawyer, & Bailon, 1999; Griffin, Figueroa, Liller, & Ehlert, 2007).

RAi ¼ EmaxB EC50A

EmaxA EC50B

in which the subscript refers to the parameters of reference (A) and

tests (B) agonists. In all instances, it was impossible to extract SEM

for these data sets, as we do not have access to their raw data. The

rank order of agonist activity based upon RAi values calculated from

the literature for [35S]GTPγS binding assay was compared to our

results for membrane potential assay. Finally, for each agonist, the

RAi value for membrane potential assay was divided by the RAi value

of GTPγS binding assay to estimate the bias factor.

Unless otherwise stated, the data represent mean ± SEM of at

least six independent experiments, each conducted in duplicate. The

data and statistical analysis comply with the recommendations of the

British Journal of Pharmacology on experimental design and analysis

in pharmacology (Curtis et al., 2018). Statistical significance is defined

as P < .05.

2.5 | Materials

CP55940, 2‐arachidonolylglycerol, anandamide, and CUMYL‐4CN‐

BINACA were purchased from Cayman Chemical Company (Ann

Arbour, MI, USA); Δ9‐THC was obtained from The Lambert Initiative

(Sydney, NSW, Australia). AM6544 was a gift from laboratory of Pro-

fessor Alexandros Makriyannis (Northeastern University, Massachu-

setts, USA). All the SCRAs, unless otherwise stated, were

synthesised by Samuel D. Banister and Mitchell Longworth in the lab

of Professor Michael Kassiou at Sydney University (Sydney, NSW,

Australia). All the drugs were stored in aliquots of 30 mM at −80°C

until needed.

2.6 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries in http://www.guidetopharmacology.org/, the com-

mon portal of data from the IUPHAR/BPS Guide to

PHARMACOLOGY (Harding et al., 2018), and are permanently

archived in the Concise Guide to PHARMACOLOGY 2017/2018

(Alexander, Christopoulos, et al., 2017; Alexander, Fabbro et al., 2017).

3 | RESULTS

3.1 | Specificity of AM6544: a new irreversible
antagonist of CB1 receptors

In vitro, AM6544 behaves as an irreversible antagonist of CB1 recep-

tors , as established by Finlay et al. (2017) using radioligand binding

assays in whole cells (pEC50 5.45 ± 0.11). To confirm that AM6544

does not non‐specifically interfere with receptor signalling

mechanisms in AtT‐20‐CB1 cells, we examined the effect of

AM6544 on the activation of native somatotropin release‐inhibiting

factor (SRIF) receptors. Pretreatment with AM6544 (10 μM, 60 min)

had no effect on the potency or maximal effect of SRIF‐induced

hyperpolarisation when compared to vehicle‐treated cells (Control,

pEC50 9.13 ± 0.05, Emax 38 ± 1%; AM6544‐treated pEC50

9.18 ± 0.04, Emax 39 ± 0.7%, Figure 1), indicating that AM6544 did

not interfere with either SRIF receptors or their signalling pathways

FIGURE 1 AM6544 is a specific irreversible antagonist of CB1

receptors. (a) Raw trace showing the change in fluorescence
normalised to the predrug baseline for SRIF on AtT‐20‐CB1 cells
pretreated for 60 min with vehicle or AM6544 (10 μM) and then
washed twice before incubation with MPA dye. The traces are
representative of at least six independent experiments. (b)
Concentration–response curve for SRIF mediated hyperpolarisation of
AtT‐20‐CB1 cells following pretreatment with AM6544 (10 μM) or
vehicle. Data represent the mean ± SEM of six independent
determinations performed in duplicate. There was no difference in the
potency or maximal effect of SRIF between vehicle or following
pretreatment with AM6544.
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likely to be shared with CB1 receptors in AtT‐20 cells. We also exam-

ined the possibility that AM6544 could affect the membrane potential

of the cells prior to agonist addition. Application of AM6544 for 60

min at concentration up to 10 μM did not significantly affect the

membrane potential of the AtT20‐CB1 cells by itself, nor did it modify

the GIRK‐mediated hyperpolarisation produced by SRIF (Figure S2,

P > .05).

3.2 | Functional activity of cannabinoids after
receptor depletion with AM6544

The efficacy of the classical CB1 receptor agonist, CP55940, was mea-

sured after the pharmacological knockdown of CB1 receptors with

AM6544 (10 μM, 60 min). The maximal response of CP55940

(10 μM) was reduced after AM6544 pretreatment compared to vehi-

cle‐treated cells (Control, Emax 33 ± 2; AM6544‐treated Emax 26 ± 2,

P < .05, Figure 2a). The τ value for CP55940 was reduced 10‐fold in

AM6544 pretreated cells compared to vehicle cells (Table 1), suggest-

ing that AM6544 can effectively deplete the receptors available to

high efficacy SCRAs. From the operational model, the pKA of

CP55940 was estimated to be 5.8 ± 0.1 (Table 1, n = 20).

We also determined the efficacy of some frequently used research

cannabinoids ‐WIN55212‐2, the main psychoactive phytocannabinoid

Δ9‐THC, and the endogenous cannabinoids 2‐arachidonolylglycerol

and anandamide ‐ on CB1 receptors after receptor depletion with

AM6544. The hyperpolarisation produced by WIN55212‐2 was

strongly inhibited by AM6544 pretreatment (10 μM, 60 min) compared

to vehicle‐treated cells (Figure 2). The τ for WIN55212‐2 was reduced

1.5‐fold compared to CP55940 but was 63‐fold greater than Δ9‐THC

(Table 1). The efficacy of endogenous cannabinoids, 2‐

arachidonolylglycerol and anandamide, was respectively 1.2‐ and 14‐

fold less than that of CP55940 (Figure 3; Table 1).

We assessed the relative efficacy of SCRAs to provide insight into

potential mechanisms of toxicity and the functional consequences of

the evolution of SCRA structures over time. The efficacy of SCRAs

was determined following receptor depletion with AM6544. Example

traces and CRC are shown for JWH‐018, MDMB‐FUBINACA, and

XLR‐11 (Figure 4). The efficacy for all the drugs we examined are

found in Table 1. The τ of SCRAs tested ranged from 28 to 233, with

two of the 13 CRAs having τ values greater than 150 (5F‐MDMB‐

PICA and XLR‐11). The first SCRA to be identified in Spice, JWH‐

018, exhibited 2‐fold less τ than CP55940 but 43‐fold higher τ than

Δ9‐THC. Only two of the SCRAs (MDMB‐CHMICA and CUMYL‐

4CN‐BINACA) exhibited similar efficacy to CP55940 (Table 1),

whereas four of the SCRAs (PB‐22, UR‐144, AM‐2201, and AB‐

PINACA) had approximately 50% of the efficacy of CP55940. The

least efficacious SCRA, AB‐PINACA, showed 3‐fold less τ than

CP55940 while the most efficacious SCRA, 5F‐MDMB‐PICA, showed

3‐fold higher τ than CP55940 (Table 1).

We calculated the functional affinity of SCRAs at CB1 receptors

using the operational model (Table 1). In the present study, the KA of

SCRAs ranged from 33 nM to 31 μM, where three of the 13 SCRAs

had KA values less than 100 nM (CUMYL‐4CN‐BINACA, MDMB‐

FUBINACA, and 5F‐PB‐22) and three demonstrated micromolar affin-

ities (JWH‐018, XLR‐11, and UR‐144). Most of the SCRAs had a

higher affinity for CB1 receptors compared to CP55940, with the

exception of UR‐144 and XLR‐11, which had 19‐ and 13‐fold lower

affinity respectively (Table 1). No correlation was found between the

operational efficacy and affinity obtained for SCRAs (Figure 5,

r2 = .0004, P > .05).

To determine the percentage of CB1 receptors available after

AM6544 pretreatment, the ratio of τ post‐ and pre‐receptor depletion

were measured for each SCRA. The ratio of τ(depleted) to τ(control) for

each drug reflects the reduction in the total functional receptor con-

centration [R0] due to AM6544‐treatment. The average value of τ

post‐ and pre‐receptor depletion curves for SCRAs tested was found

to be 0.07 ± 0.005, indicating that AM6544 caused an overall 93%

reduction in receptors available to CB1 receptor agonists.

3.3 | Quantification of relative agonist activity (RAi)

RAi values of the SCRAs for stimulating [35S]GTPγS binding assay and

membrane potential assay were calculated in an attempt to compare

the relative efficacy of these compounds in two very different assays

of receptor activation. Activity was calculated with reference to that

of the CP55940 and summarised in Table 2. A rank order of agonist

activity, based on selectivity for the [35S]GTPγS binding assay is AB‐

CHMINACA > PB‐22 > MDMB‐FUBINACA > AB‐PINACA > JWH‐

018 > XLR‐11 > UR‐144 > Δ9‐THC. By contrast, relative activity of

SCRAs in the membrane potential assay is MDMB‐FUBINACA > AB‐

CHMINACA > PB‐22 > AB‐PINACA > JWH‐018 > XLR‐11 > Δ9‐

THC > UR‐144. The pattern of selectivity that we observed in our

studies is consistent with the data from the literature for [35S]GTPγS

binding assay, with the striking exception of MDMB‐FUBINACA,

which exhibited 37‐fold greater RAi value at membrane potential assay

than those calculated for [35S]GTPγS binding assay. Most of the

SCRAs had a higher RAi value at membrane potential assay compared

to [35S]GTPγS binding assay, with the exception of UR144, which had

a higher activity at [35S]GTPγS binding assay with a bias factor of 0.21

(Table 2). UR144 had a RAi value lower than Δ9‐THC in the membrane

potential assay, despite the much higher efficacy of UR144 calculated

using the operational model; this presumably relates to the very low

functional affinity of UR144 in membrane potential assay.

4 | DISCUSSION

We have measured the efficacy of a wide range of SCRA‐induced acti-

vation of native GIRK channels in an intact AtT‐20‐CB1 cells. To

achieve this, we have employed high throughput assay technology to

construct full concentration–response data following receptor deple-

tion with the irreversible CB1 receptor antagonist AM6544 fitted to

the operational model of pharmacological agonism to calculate the

efficacy (τ) and affinity (KA) of these SCRAs. The principal finding of

this study is that all the SCRAs tested showed substantially higher
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agonist activity at CB1 receptors than Δ9‐THC (τ, 0.9 ± 0.1), with τ that

ranged between 28 and 233. 5F‐MDMB‐PICA and XLR‐11 exhibited

the highest efficacies from the SCRAs tested. However, there was

no correlation between the τ and KA of SCRAs, and no obvious trend

for decreasing/increasing τ over time.

We have used the new CB1 receptor irreversible antagonist,

AM6544, to specifically deplete the CB1 receptor reserve from the

pool available for orthosteric agonist binding. The specificity of

AM6544 was confirmed by showing the lack of effect of AM6544

pretreatment on the activation of native SRIF receptors in the same

cells. AM6544 treatment effectively blocked CB1 receptors in AtT20

cells, although as it does not have a high affinity at these receptors

on intact cells (pEC50 5.45, Finlay et al., 2017), a relatively high con-

centration had to be used. Under these conditions, the receptors are

FIGURE 2 Representative traces for research cannabinoids CP55940 (a), WIN55212‐2 (c), and Δ9‐THC (e) following pretreatment with vehicle
or AM6544 (10 μM) on AtT‐20‐CB1 cells. Raw trace showing reduction in hyperpolarisation induced by maximally effective concentration (10 μM)
of CP55940, WIN55212‐2, and Δ9‐THC after AM6544 pretreatment compared to vehicle. Concentration–response curves for (b) CP55940
(n = 20), (d) WIN55212‐2 (n = 7), and (f) Δ9‐THC (n = 6) were plotted using five‐parameter non‐linear regression to fit the operational model‐
receptor depletion equation with basal constrained to 0. Data represent the mean ± SEM of technical replicates. For some points, the error bars
are smaller than the height of the symbol.
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sufficiently depleted to ensure that the high efficacy agonist can no

longer yield a system maximum at saturating concentrations. Other

irreversible CB1 receptor antagonists have been identified, but they

are not well suited for use in the kind of studies described here.

Methyl arachidonyl flurophosphate can act at several components of

the cannabinoid system including fatty acid amide hydrolase, an

enzyme involved in the degradation of endogenous cannabinoids

(Fernando & Pertwee, 1997); falcarinol is very unstable (Leonti

et al., 2010), and previously known irreversible analogues of

SR141716A displayed lower affinities for CB1 receptors or acted

as partial agonists (Howlett et al., 2000). AM6544 was used by

Finlay et al. (2017) as an irreversible antagonist to deplete CB1 recep-

tors in order to study the effect of receptor number on G protein pref-

erence in coupling to AC and, here, we have shown that it can also be

used to study coupling to K channels through PTX‐sensitive G pro-

teins. These kinds of quantitative pharmacological studies were not

possible for CB1 receptors before AM6544 became available, and it

is likely to be a useful compound in future experiments examining

CB1 receptors.

The efficacy of SCRAs has principally been measured using [35S]

GTPγS binding assays, which measures the accumulated activation

of G proteins in membranes over a period of 30–60 min (De Luca

et al., 2016; Gamage et al., 2018; Thomas et al., 2017; Wiley

et al., 2015). In these assays, the maximum response is used as the

measure of efficacy, with the assumption that this maximum

response is not constrained—that there is an excess of G‐proteins

relative to CB1 receptors. Given the high levels of receptor expres-

sion that can be achieved in recombinant systems, this assumption

may not be valid (Gamage et al., 2018). In our study, we have

circumvented this limitation by reducing receptor number, and we

have been able to measure a very wide range of apparent efficacies

to produce acute hyperpolarisation of AtT‐20‐CB1 cells (>250‐fold),

compared with a twofold to threefold difference in the maximum

response to agonists in CB1 receptor GTPγS assays (Table 2). Esti-

mation of RAi values of SCRAs in GTPγS and membrane potential

assay was undertaken in order to further observe an effect of differ-

ent assays on the relative agonist activity of these compounds and

also to quantify the functional selectivity of SCRAs for different

receptor active states (Table 2). The rank order of agonist activity

that we observed in our studies is generally similar with the data

from the GTPγS assay. Only three of the SCRAs (AB‐CHMINACA,

PB‐22, and MDMB‐FUBINACA) exhibited higher Emax relative to

CP55940, whereas all the other SCRAs presented very similar max-

imal response as CP55940 in GTPγS assays. Our assay seems sensi-

tive to differences in efficacy, probably because GIRK activation is

relatively poorly amplified, probably requiring 4 Gβγ subunits to

simultaneously bind to each channel complex to open it (Whorton

& MacKinnon, 2013), in contrast to the single ligand–receptor G

protein complex required for stimulation of effectively irreversible

GTPγS binding. In contrast to the 4 Gβγ subunits required to fully

activate GIRK, inhibition of AC or voltage‐gated calcium channels

by CB receptor activation requires only 1 Gα or Gβγ subunit respec-

tively. Given that each ligand‐bound receptor is likely to activate

multiple G protein heterotrimers, there will be significantly greater

signal amplification when AC or ICa are used as readouts. Activation

of kinases such as ERK are usually multistep processes, and ERK

activation can also be stimulated by several upstream signalling path-

ways (Jain, Watson, Vasudevan, & Saini, 2018), meaning that ampli-

fication can occur at several points. CB1 receptor‐dependent

activation of GIRK has been reported in several types of neuron,

and it represents a naturalistic, if understudied, signalling pathway

for CB receptors (Azad et al., 2003; Daniel, Rancillac, & Crepel,

2004; Marinelli et al., 2009). Our work represents acute activation

of one pathway; GTPγS assays provide a more general measure of

Gαi/o‐subunit activation, but uncoupled from signalling pathways

(Ibsen, Connor, & Glass, 2017). Neither assay effectively captures

CB1 receptor coupling to Gαs or Gαq, or non‐G protein mediated

pathways, such as those dependent on arrestin, but together they

re‐enforce the quantitative differences in receptor activity between

Δ9‐THC and more recently encountered cannabinoid agonists. The

activity of SCRA‐induced arrestin recruitment by CB1 receptors has

been studied using NanoLuc binary technology, and many SCRAs

showed strong activation of CB1 receptors in this assay compared

to Δ9‐THC (Cannaert et al., 2016; Noble, Cannaert, Linnet, & Stove,

2018), consistent with its low relative efficacy reported in the pres-

ent work and GTPγS binding assays.

TABLE 1 Efficacy and functional affinity of CP55940, Δ9‐THC, and
other SCRAs

Compound

Operational efficacy τ Functional

affinity
pKA

(±SEM)
Control
(±SEM)

AM6544‐treated
(±SEM)

CP55940 72 (30) 7 (3) 5.78 (0.09)

WIN55212‐2 57 (41) 3 (1) 4.84 (0.24)

Δ9‐THC 0.9 (0.1) 0.3 (0.1) 6.54 (0.07)

2‐AG 60 (27) 3 (1) 5.16 (0.08)

AEA 5 (2) 2 (2) 5.17 (0.10)

JWH‐018 43 (21) 2.5 (1) 5.72 (0.21)

AM‐2201 32 (6) 2 (0.4) 6.53 (0.08)

UR‐144 36 (7) 3 (0.5) 4.51 (0.15)

XLR‐11 152 (73) 13 (9) 4.68 (0.26)

PB‐22 44 (10) 3.2 (1) 6.73 (0.10)

5F‐PB‐22 102 (48) 7 (5) 7.05 (0.09)

AB‐CHMINACA 92 (42) 4 (1) 6.98 (0.12)

AB‐PINACA 28 (7) 2 (0.4) 6.90 (0.21)

MDMB‐CHMICA 79 (32) 8 (4) 6.35 (0.17)

MDMB‐FUBINACA 103 (62) 5 (1.4) 7.12 (0.10)

5F‐MDMB‐PICA 233 (65) 14 (3) 6.71 (0.13)

CUMYL‐4CN‐BINACA 70 (28) 4 (1) 7.48 (0.07)

Note. Values were calculated using the operational model of pharmacolog-

ical agonism following CB1 receptor depletion with AM6544, as outlined in

Section 2.

SACHDEV ET AL. 7BJP

46



The first generation of SCRAs, JWH‐018, JWH‐073, JWH‐200,

and CP47497 were detected in herbal blends in 2008 (Auwärter

et al., 2009; Banister & Connor, 2018), and since then, there has been

a rapid increase in structurally diverse sets of compounds with rela-

tively unknown pharmacology and toxicology that continues to this

day (European Monitoring Centre for Drugs and Drug Addiction,

2018; United Nations Office on Drugs and Crime, 2018). The toxicity

associated with emerging SCRA has been reviewed elsewhere

(Hermanns‐Clausen, Kneisel, Szabo, & Auwärter, 2013). There is no

information as to whether the toxic effects of SCRAs may be mediated

via direct CB1 receptor activation in humans, but studies in animals

and cell lines indicate that seizures and effects on the kidney associ-

ated with SCRA may depend on CB1 receptor activation (Silva, Carmo,

& Carvalho, 2018; Wiley, Barrett, Lowe, Balster, & Martin, 1995). All

13 SCRAs tested in this study had a much higher efficacy than Δ9‐

THC, suggesting that adverse effects produced by Δ9‐THC intake

may provide a limited guide to the potential consequences of CB1

receptor activation with high efficacy agonists. SCRAs produce CB1

receptor‐mediated seizures in animals, in addition to the well‐

characterised CB1 receptor‐mediated “tetrad” of hypolocomotion,

catalepsy, anti‐nociception, and hypothermia, and these could con-

ceivably account for some of the adverse effects of SCRAs in humans

(Vigolo et al., 2015). We also measured the efficacy of two principal

endocannabinoids: 2‐AG and anandamide. Our results are consistent

with previous reports, showing that 2‐AG is a higher efficacy agonist

of CB1 receptors compared to anandamide (Di Marzo & De Petrocellis,

2012) and that both have a higher efficacy than Δ9‐THC (Pertwee,

1997). Thus, Δ9‐THC, but not most of the SCRAs investigated here,

is likely to act as an antagonist of 2‐AG modulation of neuronal activ-

ity in vivo (Pertwee, 2008; Straiker & Mackie, 2005).

Cannabinoid interactions with renal and cardiovascular systems

have also been described (Pacher, Steffens, Haskó, Schindler, & Kunos,

2018), but the degree to which these interactions are influenced by

agonist efficacy is unknown. A specific toxicity attributed to a particu-

lar SCRA was the acute kidney injury linked to the use of XLR‐11

(Thornton, Wood, Friesen, & Gerona, 2013). The present study shows

that XLR‐11 had a high operational efficacy, which together with its

relative non‐selectivity for CB1 over CB2 receptors (Banister, Stuart,

et al., 2015) may contribute to its unique toxicological profile. XLR‐

11 affects kidney cells via CB receptors on mitochondria, rather than

FIGURE 3 Representative traces for endogenous cannabinoids (a) 2‐arachidonolylglycerol (2‐AG) and (c) anandamide (AEA) after pretreatment
with vehicle or AM6544 (10 μM) on AtT‐20‐CB1 cells. Raw trace showing reduction in hyperpolarisation induced by maximally effective
concentration of 2‐AG (10 μM) and AEA (30 μM) after AM6544 pretreatment compared to vehicle. Concentration–response curves for (b) 2‐AG
(n = 7) and (d) AEA (n = 7) were plotted using four parameter non‐linear regression to fit the operational model‐receptor depletion equation with
basal constrained to 0. Illustrates the increase in efficacy of 2‐AG as compared to AEA. Data represent the mean ± SEM of technical replicates. For
some points, the error bars are smaller than the height of the symbol.
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through the plasma‐membrane delimited pathway we have examined,

and both CB1 and CB2 receptors were reported to be involved in the

toxic effects of XLR‐11 in vitro (Silva et al., 2018). Thus, toxicity for

individual SCRAs potentially involves a complex interplay between

activity at both CB1 and CB2 receptors as well as efficacy at CB1

receptors, cellular and subcellular distribution, access to receptors to

different body and cellular compartments, and the formation of bioac-

tive drug metabolites (Fantegrossi, Moran, Radominska‐pandya, &

Prather, 2014).

The emergence of new psychoactive substances provides a contin-

ual challenge to the development of targeted interventions and novel

therapeutics to help minimise the adverse effects associated with their

use (European Monitoring Centre for Drugs and Drug Addiction,

2018). Although some SCRAs were mined from older patents

(AM2201, AB‐CHMINACA, AB‐FUBINACA, UR144, etc.), newer drugs

have unprecedented structures (Banister & Connor, 2018). We

assessed a diversity of SCRAs identified in the NPS market, from the

earliest to most recent examples. There was no obvious trend for

FIGURE 4 Representative traces for JWH‐018 (a), CUMYL‐4CN‐BINACA (c), and XLR‐11 (e) following pretreatment with vehicle or AM6544
(10 μM) on AtT‐20‐CB1 cells. Raw trace showing reduction in hyperpolarisation induced by maximally effective concentration of JWH‐018
(10 μM), CUMYL‐4CN‐BINACA (10 μM), and XLR‐11 (10 μM) after AM6544 pretreatment compared to vehicle. Concentration–response curves
for (b) JWH‐018 (n = 8), (d) CUMYL‐4CN‐BINACA (n = 7), and (f) XLR‐11 (n = 7) were plotted using four parameter non‐linear regression to fit the
operational model‐receptor depletion equation with basal constrained to 0. Data represent the mean ± SEM of technical replicates. For some
points, the error bars are smaller than the height of the symbol.
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decreasing/increasing τ over time and τ or functional affinity, suggest-

ing that SCRAs are not designed to be more efficacious over time. Our

data also show no obvious relationship between the efficacy of SCRA

to activate native GIRK channels and their reported adverse effects. It

is not immediately apparent what causes the toxic effects of SCRAs

and whether signalling of SCRAs at Gαs, Gαq or arrestins, rather than

Gαi/o‐dependent CB1 receptor signalling is important. However, it is

clear that these drugs are likely to have very different pharmacological

profiles to the commonly consumed cannabinoid, Δ9‐THC. This was

highlighted in a recent study where the crystal structure of CB1 recep-

tors bound to MDMB‐FUBINACA demonstrated a “toggle twin

switch” interaction that Δ9‐THC did not. This might explain the low

efficacy activity of Δ9‐THC compared to the high efficacy of

MDMB‐FUBINACA when activating CB1 receptors (Krishna Kumar

et al., 2019). Furthermore, CB1 receptors are known to exert

pleotropic effects by virtue of its ability to interact with multiple

G‐proteins. A recent study reported that AB‐CHMINACA showed

FIGURE 5 Correlation of operational efficacy (τ) and functional
affinity (KA) for CB1 receptor agonists on Gi‐dependent activation of
GIRK channel in AtT‐20 cells. Representative data are presented,
demonstrating a non‐significant value of r2 of .0004, where τ and KA

values shown are the fitted values from the operational analysis.

TABLE 2 Comparison of human CB1 receptor functional efficacy for selected SCRAs at CB1 receptors, measured using [35S]GTPγS binding assay
and membrane potential assay

Compound GTPγS binding assay, RAi Membrane potential assay, RAi Bias factor

Δ9‐THC 32 (27–36)a 1 (0.1) 5.0
0.02 0.1
3 6

JWH‐018 1.02 (±0.10)b 43 (21) 1.1
0.45 0.5
4 8

UR‐144 193 (164–221)c 36 (7) 0.21
0.14 0.03
5 6

XLR‐11 205 (177–233)c 152 (73) 1.3
0.16 0.2

5 7

PB‐22 415 (373–458)c 44 (10) 5.9
0.91 5.4

2 6

AB‐CHMINACA 205 (±14)d 92 (42) 3.8

5.21 20
6 7

AB‐PINACA 192 (±25)d 28 (7) 9.8
0.51 5.0
6 7

MDMB‐FUBINACA 75 (68–82)a 103 (62) 37
0.83 31
3 9

Note. Agonist activity (RAi) of SCRAs for eliciting different responses in assays for CB1 receptors are expressed relative to CP55940 is shown in bold below

the Emax (±SEM) for GTPγS binding assay or τ (±SEM) for membrane potential assay. The bias factor is expressed as the ratio of RAi‐membrane potential

assay to RAi‐GTPγS binding assay. For each measure, the number of replicates n is shown below the relative efficacy.
aValues from Gamage et al (2018) represent Emax (95% confidence interval) for percentage increase over basal stimulation.
bValues from Ford et al. (2017) represent Emax (±SEM) are presented as the fraction of the effect produced by reference agonist CP55940.
cValues from Thomas et al (2017) represent Emax (95% confidence interval) for percentage [35S]GTPγS with basal globally shared at 100%.
dValues from Wiley et al (2015) represent Emax (±SEM) for percentage increase over basal stimulation.
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specific CB1 receptor‐dependent activation of Gαs signalling (Costain

et al., 2018). These observations highlight the complexity of the phar-

macology of SCRAs‐mediated activation of different signalling path-

ways downstream of CB1 receptors . Structural examination of CB1

receptors for ligand efficacy and G‐protein recruitment provides

molecular insights into the active state of the receptor (Krishna Kumar

et al., 2019) and is a first step in informing us about the diverse phys-

iological consequences resulting from CB1 receptor activation by high

efficacy agonists.
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Supplementary Figure 1 

Structure of selected SCRAs 
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Supplementary Figure 2 

AM6544 does not activate GIRK channels in AtT20 cells. (A) Raw trace showing minimal 

changes in hyperpolarisation induced by maximally effective concentration (10 µM) of 

AM6544 or vehicle on At-T20-CB1 cells (B) Scatter dot plot showing the percentage change 

in fluorescence of SRIF (1 µM) on AtT20-CB1 cells in the presence of HBSS or AM6544 (10 
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µM) for 60 mins. Data represents the mean ± SEM of 6 independent determinants performed 

in duplicate.  
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Supplementary Table 1 

Functional activity of CP55940, ∆9-THC, and other SCRAs. Values were calculated using the

four-parameter nonlinear regression to fit the concentration response curves. 

Compound pEC50 ± SEM (EC50, nM) 

CP55940 7.62 ± 0.07 (23) 

WIN55212-2 6.7 ± 0.05 (200) 

∆9-THC 6.81 ± 0.12 (156) 

2-AG 6.47 ± 0.07 (338) 

AEA 5.91 ± 0.07 (1229) 

JWH-018 7.37 ± 0.08 (43) 

AM-2201 8.02 ± 0.1 (9.6) 

UR-144 6.3 ± 0.08 (503) 

XLR-11 7.14 ± 0.08 (72) 

PB-22 8.36 ± 0.05 (4.4) 

5F-PB-22 9.02 ± 0.08 (0.95) 

AB-CHMINACA 7.67 ± 0.14 (21) 

AB-PINACA 8.68 ± 0.08 (2.1) 

MDMB-CHMICA 8.33 ± 0.09 (4.7) 

MDMB-FUBINACA 9.1 ± 0.13 (0.8) 

5F-MDMB-PICA 9.15 ± 0.08 (0.7) 

CUMYL-4CN-BINACA 9.16 ± 0.08 (0.68) 
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Chapter III. 

Study II. Differential activation of G-protein-mediated 

signalling by synthetic cannabinoid receptor agonists 

The third chapter of this thesis is a natural continuation of the original investigation of 

SCRA-associated toxicity, where the functional activity of same panel of cannabinoids was 

also characterised in two signalling endpoints - Gαi/o (inhibition) and Gαs (stimulation) of 

cAMP signalling. Pharmacological assessment was done to study whether different agonists 

produce different profiles of effects depending on the functional endpoint, and for better 

understanding of CB1 functional selectivity in general.  
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reviewed the final manuscript. 
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Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are new psychoactive substances 
associated with acute intoxication and even death. However, the molecular mecha-
nisms through which SCRAs may exert their toxic effects remain unclear—including 
the potential differential activation of G protein subtypes by cannabinoid receptor 
type 1 (CB1), a major target of SCRA. We measured CB1-mediated activation of Gαs 
and Gαi/o proteins by SCRAs by examining stimulation (pertussis toxin, PTX treated) 
as well as inhibition (non-PTX treated) of forskolin (FSK)-induced cyclic adenosine 
monophosphate (cAMP) accumulation in human embryonic kidney (HEK) cells sta-
bly expressing CB1. Real-time measurements of stimulation and inhibition of cAMP 
levels were made using a BRET biosensor. We found that the maximum concentra-
tion of SCRAs tested (10  µmol  L−1), increased cAMP levels 12%-45% above that 
produced by FSK alone, while the phytocannabinoid THC did not significantly alter 
cAMP levels in PTX-treated HEK-CB1 cells. All SCRAs had greater potency to inhibit 
FSK-induced cAMP levels than to stimulate cAMP levels. The rank order of potencies 
for SCRA stimulation of cAMP (Gαs) was PB-22 > 5F-MDMB-PICA > JWH-018 ≈ AB-
FUBINACA  >  XLR-11. By contrast, the potency of SCRAs for inhibition of cAMP 
(Gαi/o) was 5F-MDMB-PICA > AB-FUBINACA > PB-22 > JWH-018 > XLR-11. The 
different rank order of potency and EMax of the SCRAs to stimulate Gαs-like signaling 
compared to Gαi/o signaling suggests differences in G protein preference between 
SCRAs. Understanding the apparent differences among these drugs may contribute 
to unravelling their complex effects in humans.

K E Y W O R D S

cannabinoid receptor, G protein, signaling, synthetic cannabinoid receptor agonist, toxicity
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1  | INTRODUC TION

The use of synthetic cannabinoid receptor agonist (SCRA) new psy-
choactive substances (NPS) is associated with significant morbidity 
and mortality compared to use of ∆9-tetrahydrocannabinol (THC), 
the main psychoactive ingredient of cannabis.1,2 SCRAs are linked 
to a wide range of toxic effects including seizures, agitation, hy-
pertension, cardiotoxicity, kidney damage, and sometimes death.3,4 
There has been a rapid increase in the number of structurally diverse 
SCRAs since 2010, with little known about their pharmacology and 
toxicology at time of identification.5 The constant evolution of SCRA 
structures occurs in response to legislative restriction and develop-
ment of urine drug screens for existing compounds.6-8 A time-se-
ries of seizures (by tonnage) of NPS reported to the United Nations 
Office on Drug and Crime9 showed that the SCRAs dominated the 
synthetic NPS market over the period 2011-2017.

SCRAs are usually agonists at both cannabinoid type-1 and 
type-2 receptors (CB1 and CB2, respectively10); with the psychoac-
tive effects attributed to the activation of CB1.11 We have previously 
described the in vitro quantitative measurement of SCRA efficacy 
at CB1, where all SCRAs tested showed between 20- and 300-fold 
greater agonist activity at CB1 compared to THC.12 Cannabinoid re-
ceptor-mediated G protein signaling is predominantly through the 
Gαi/o protein family13; however, under some circumstances, CB1 can
also stimulate adenylyl cyclase (AC) through Gαs-proteins.14-16 For
example, blockade of the canonical CB1-Gαi pathway with pertussis 
toxin (PTX) or sequestration of CB1-Gαi protein in the primary stria-
tal rat neurons on coexpression with D2 results in an augmentation 
of cyclic adenosine monophosphate (cAMP) levels by cannabinoids, 
suggesting that CB1 couples to Gαs.

14,15 A recent study characterized
the relationship between CB1 receptor expression and signaling, and 
showed that at very high receptor expression levels, the effect of 
CB1 activation on cAMP signaling was stimulatory, a phenotype that 
was reversed by systematic pharmacological knockdown at the re-
ceptor level.17 The idea that certain SCRAs may preferentially acti-
vate different CB1 Gα subtypes is not unprecedented18-20; in a study 
by Costain et al21 AB-CHMINACA elicited an elevation in cAMP lev-
els in both the absence and presence of forskolin (FSK) in human em-
bryonic kidney (HEK) cells transiently expressing CB1, suggesting an 
AB-CHMINACA-specific CB1-mediated activation of Gαs signaling.

The mechanism(s) through which SCRAs exert different behav-
ioral and physiological effects remains unclear, and which pathways 
modulated by CB1 activation mediate the specific pharmacological 
effects of SCRAs is also unknown. Similarly, the question of whether 
these pathways are activated in a quantitatively or qualitatively sim-
ilar way by SCRAs and THC is only beginning to be addressed.22 
Finally, the question of whether SCRA activity at noncannabinoid 
receptors is also important for their pharmacological effects is very 
much open.23-25 With more than 250 SCRAs identified in the NPS 
market,9 elucidation of the differential molecular mechanisms by 
which these compounds can exert distinct pharmacology, including 
their signaling via CB1, is essential for understanding their adverse 
effects. This study examined whether SCRAs that are representative 

of structural classes confirmed in patients admitted to emergency de-
partments with presumed SCRA toxicity stimulate Gαs-like cAMP sig-
naling via CB1. We measured the SCRA-mediated stimulation as well 
as inhibition of FSK-induced cAMP accumulation in HEK cells stably 
expressing CB1. We have observed SCRA-specific CB1-dependent 
activation of the two signaling pathways, but THC only coupled to 
inhibition, not stimulation of cAMP. While AB-CHIMINACA, previ-
ously identified as having a unique profile among SCRAs for elevating 
cAMP, appeared to signal, in part, through non-CB1 mechanisms.

2  | MATERIAL S AND METHODS

2.1 | CB1 receptor transfection and cell culture

HEK 293 FlpIn cells with homogeneous G protein-gated inwardly rec-
tifying K+ (GIRK4) channel expression (the construction of these cells 
by Grimsey et al will be described elsewhere) were cotransfected with 
pcDNA5/FRT construct encoding hemagglutinin (HA)-tagged human 
CB1 receptor cDNA and pOG44 (Flp recombinase plasmid) using the 
same random incorporation method of stable transfection as described 
previously for AtT-20 pituitary tumor cells.26 Cells stably expressing 
the CB1 receptor were cultured in Dulbecco's Modified Eagle Media 
(Thermo Fischer Scientific) supplemented with 10% fetal bovine serum 
(FBS; Sigma-Aldrich), 100 units mL−1 penicillin, 100 µg mL−1 strepto-
mycin (Thermo Fischer Scientific), 400 µg mL−1 G418 (GIRK4 selection 
antibiotic) and 100 µg mL−1 hygromycin (CB1 selection antibiotic) up to 
passage 5 (selection phase). Hygromycin concentration was reduced to 
80 µg mL−1 beyond passage 5 (maintenance phase). Cells were grown 
in 75 cm2 flask at 37°C/5% CO2 and passaged at 80% confluency as
required. Assays were carried out on cells up to 25 passages.

2.2 | Assay for cAMP measurement

Intracellular cAMP levels were measured using pcDNA3L-His-CAMYEL 
plasmid, which encodes the cAMP sensor YFP-Epac-RLuc (CAMYEL) as 
outlined in Ref. [27,28] Cells were detached from the flask using trypsin/
EDTA (Sigma-Aldrich), and resuspended in DMEM supplemented 
with 10% FBS, 100 units mL−1 penicillin, and 100 µg mL−1 streptomy-
cin. Cells were seeded in 10 cm dishes at a density of 7 000 000 such 
that they would be 60%-70% confluent the next day. On the following 
day, the cells were transiently transfected with 5 µg of pcDNA3L-His-
CAMYEL plasmid using the linear polyethylenimine (PEI, m.w. 25 kDa) 
(Polysciences). The PEI/DNA complex mixture was sequentially added 
to the cells at the ratio of 1:6, and cells were incubated in 5% CO2 at 
37°C. Approximately 24 hours after transfection, the cells were then 
detached from the dish and the pellet was resuspended in Leibovitz's 
(L-15—Thermo Fischer Scientific) media supplemented with 1% FBS, 
100 units mL−1 penicillin, 100 µg mL−1 streptomycin and 15 mmol L−1 
glucose. In the experiments with PTX to irreversibly uncouple Gαi pro-
teins, the cells were resuspended in the media containing 200 ng mL−1 
PTX. The PTX-treated and control (non-PTX treated) cells were plated 
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at a density of 100 000 cells per well in poly D-lysine (Sigma-Aldrich) 
coated, white wall, clear bottomed 96-well microplates. Cells were in-
cubated overnight at 37°C in ambient CO2.

The day after plating, FSK (an activator of AC) was prepared in 
Hanks’ balanced salt solution (HBSS) composed of (mmol  L−1) NaCl 
145, HEPES 22, Na2HPO4 0.338, NaHCO3 4.17, KH2PO4 0.441, 
MgSO4 0.407, MgCl2 0.493, CaCl2 1.26, glucose 5.56 (pH 7.4, osmolar-
ity 315 ± 15), and supplemented with 0.1% bovine serum albumin. All 
the drugs used for the series of real-time measurements of stimulation 
and inhibition of cAMP levels were made in 3 µmol L−1 of FSK immedi-
ately before the assay. The concentration of DMSO (0.10%-0.13%) was 
kept constant for all experiments, however this limited the maximum 
drug concentration that could be tested. Coelenterazine H substrate 
(NanoLight Technologies) was made in HBSS, and added to a final con-
centration of 5 µmol L−1 (10 µL per well) to the cells, and incubated for 
5 minutes after which 10 µL of (10×) drug was added to each well to 
obtain the desired concentration. A vehicle (HBSS plus DMSO alone) 
was included in each column of a 96-well microplate and routinely 
subtracted from the measurements. The PTX-treated and control cells 
were compared side by side. Luminescence was measured using a 
PHERAstar plate reader (BMG Labtech) at 37°C. The cell signaling was 
measured at an emission wavelength of 475 and 535 nm simultane-
ously, and the readings were made every 40 seconds for approximately 
20 minutes. A concentration response curve (CRC) for CP55940 and 
WIN55212-2 inhibition of cAMP accumulation was performed for each 
experimental replicate as a reference standard (Figure 1). Day to day 
variation in the degree of Gs-stimulation was observed, presumably 
arising in part from the transient transfections and subsequent PTX 
treatment required for each assay.

2.3 | Data analysis

Raw data are presented as inverse bioluminescence resonance energy 
transfer (BRET) ratio of emission at 475/535 nm, such that an increase 

in ratio corresponds with increase in cAMP production. Real-time (raw) 
cAMP time course data were then analyzed using area under curve anal-
ysis in GraphPad PRISM (Graph Pad Software Inc). Data were normalized 
to the change produced by FSK over 20 minutes (set as 100%) for each 
experiment. The percent change values were fit to three or four-parame-
ter non-linear regression curves in PRISM to derive EC50 and Emax. In the 
three parameter fit the Hill slope was constrained to 1, in the four param-
eter fit it was free to vary. All final datasets passed the Shapiro-Wilk test 
for normality. Unless otherwise stated, the data represent mean ± SEM 
of at least five independent experiments, each conducted in duplicate. 

F I G U R E  1  Concentration response curve for CP55940 and 
WIN55212-2. Treatment with CP55940 or WIN55212-2 produced 
a concentration-dependent inhibition of forskolin-mediated cAMP 
production in human embryonic kidney 293-cannabinoid receptor 
type 1. Curves were generated by area under the curve analysis for 
CP55940 or WIN55212-2 in the presence of 3 μmol L−1 forskolin.
Data were normalized to forskolin (100%) and vehicle (0%), and 
plotted as mean ± SEM for at least five independent experiments 
performed in duplicate. cAMP, cyclic adenosine monophosphate
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F I G U R E  2  Gαs-mediated signaling of synthetic cannabinoid 
receptor agonists. A, Representative data for real-time 
measurement of stimulation of cAMP levels by 10 μmol L−1 of
cannabinoids (THC, 2-arachidinoylglycerol, and AB-FUBINACA) 
in human embryonic kidney cells expressing cannabinoid receptor 
type 1 receptors, an increase in inverse BRET ratio (emission at 
475/535 nm) corresponds to an increase in cAMP. B, A bar chart 
summarizing the cAMP signaling peaks for 16 cannabinoids 
(excluding AB-CHMINACA) showing an increase in cAMP levels 
above that of FSK (3 μmol L−1) alone (FSK, 100%). Graphs show
mean + SEM for at least five independent experiments performed 
in duplicate. BRET, bioluminescence resonance energy transfer; 
cAMP, cyclic adenosine monophosphate; FSK, forskolin; THC, Δ9-
tetrahydrocannabinol
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The differences between groups were tested using unpaired Student's 
t test, and one-way ANOVA as appropriate when comparing multiple 
groups (PRISM). Statistical significance is defined as P < .05.

2.4 | Materials

CP55940, WIN55212-2, 2-arachidonoylglycerol (2-AG), CUMYL-
4CN-BINACA, and SR141716A were purchased from Cayman 
Chemical, THC was from THC Pharm GmbH and was a kind gift 
from the Lambert Initiative for Cannabis Therapeutics (University of 
Sydney). PTX was from HelloBio, and FSK was from Ascent Scientific 
Ltd. All the SCRAs, unless otherwise stated, were synthesized by Dr 
Samuel D. Banister in the lab of Professor Michael Kassiou at Sydney 
University. Chemical structure of SCRAs can be found elsewhere.12 
All the SCRAs were prepared in DMSO and stored in aliquots of 
30 mmol L−1 in −30°C until needed.

3  | RESULTS

3.1 | Real-time cAMP BRET measurement of the 
Gαs-mediated signaling of SCRAs

Using the CAMYEL assay, we measured the effect of seventeen 
cannabinoids (10  µmol  L−1 each) on the FSK-stimulated cellular 
cAMP levels in HEK-CB1 cells following pretreatment with PTX. 
All the SCRAs produced an increase in cAMP levels above that 
produced by FSK alone (100%). Examples of raw traces are shown 
for some SCRAs (Figure 2A), note that the stimulation of cAMP 
by SCRAs in the presence of FSK and PTX plateaued approxi-
mately after 12 minutes, and maintained at that level for the en-
tire course of the assay (20 minutes). The effects of SCRAs tested 
ranged from 12% to 45% increase in signal relative to FSK alone. 
Most of the SCRAs had approximately 1.5 times higher effect 
than CP55940 (19%) or WIN55212-2 (18%), except for JWH-018, 
UR-144, AM-2201, and CUMYL-4CN-BINACA, which showed 
similar or lower effect (Figure 2B). AB-FUBINACA had up to 2.5 
times higher effect than CP55940. In PTX-treated cells, the en-
docannabinoid 2-AG (10 µmol L−1) produced an increase in FSK-
stimulated cAMP levels approximately twice that of CP55940, 
while the phytocannabinoid THC did not significantly alter cAMP 
levels in the presence of FSK (compared to FSK alone Figure 2B, 
P > .05).

3.2 | Differential SCRAs-induced stimulation and 
inhibition of cAMP signaling in HEK-CB1

To assess whether there was any evidence of preferential coupling 
to Gαi/o over Gαs among SCRAs, we assessed the pharmacological 
activity (EC50 and Emax) of a selection of SCRAs belonging to differ-
ent structural classes (JWH-018, PB-22, AB-FUBINACA, XLR-11, and 

5F-MDMB-PICA), to stimulate and inhibit cAMP in HEK-CB1 cells. 
All the SCRAs tested activated CB1 through Gαi/o (inhibitory, non-
PTX treated), and Gαs (stimulatory, PTX treated) in a concentration-
dependent manner (Figure 3). As previously reported,29 treatment 
with CP55940 and WIN55212-2 produced an immediate concentra-
tion-dependent inhibition of FSK-mediated cAMP production (pEC50 
CP55940 8.1  ±  0.4, pEC50 WIN55212-2 7.9  ±  0.4). All SCRAs had 
greater potency (0.62-63 nmol L−1) for inhibition of FSK-induced cAMP 
levels in non-PTX-treated HEK cells compared to their potency to stim-
ulate cAMP levels (69-4720 nmol L−1) (Table 1). The activation of CB1-
Gαs by SCRAs showed a wide variation in Emax values, and there was 
a significant difference in efficacy between AB-FUBINACA, XLR-11 
and JWH-018 (one-way ANOVA, P < .05). The rank order of efficacy 
for stimulation of Gαs was AB-FUBINACA  ≈  PB-22  >  5F-MDMB-
PICA > XLR-11 > JWH-018, whereas all the SCRAs were similarly ef-
fective at inhibiting cAMP production (Table 1). It should be noted that 
the CRC for the most efficacious compound tested at Gαs pathway, 
AB-FUBINACA, may not have reached a plateau at highest concentra-
tion we could test, 30 µmol L−1, and that of XLR-11 almost certainly had 
not. The first SCRA to be identified in spice, JWH-018, caused partial 
(14% increase over FSK alone) activation of Gαs pathway, but produced 
greater inhibition of the FSK-induced cAMP response (64% of FSK 
response). Whereas other SCRAs tested in this study induce moder-
ate activation of Gαs pathway (26%-36% relative to FSK) compared 
to their activity at Gαi/o inhibitory pathway (Figure 3). The rank order 
of potencies for SCRAs for inhibition of cAMP (Gαi/o) is 5F-MDMB-
PICA > AB-FUBINACA > PB-22 > JWH-018 > XLR-11. By contrast, the 
potency of SCRAs for stimulation of cAMP (Gαs) is PB-22 > 5F-MDMB-
PICA > JWH-018 ≈ ≥ AB-FUBINACA > XLR-11. The most efficacious 
SCRA at Gαs pathway (AB-FUBINACA) was roughly 300 times less po-
tent at Gαs than the Gαi/o-pathway, while JWH-018 was only 18 times 
less potent. XLR-11 had much lower potency compared to all the other 
SCRAs for both Gαs pathway and Gαi/o pathway (Table 1).

We then tested if the SCRA-induced observed stimulatory 
effects were mediated through CB1 receptors. Pretreatment of 
HEK-CB1 with SR141716A (3  μmol  L−1, 5  minutes), a potent and
selective CB1 antagonist,30 prevented the subsequent SCRA 
(10 µmol L−1)-mediated stimulation of FSK-induced cAMP response 
compared to the vehicle-treated cells (Figure 4; P < .05). Consistent 
with Gαs CB1-specific responses of SCRAs, pretreatment with 
SR141716A also blocked the inhibitory cAMP signaling induced by 
SCRAs (Figure S1; P < .05).

AB-CHMINACA has previously been reported to stimulate Gαs-
like cAMP signaling pathway in a concentration-dependent man-
ner in HEK-CB1 cells.21 Following PTX treatment, AB-CHMINACA 
increased cAMP levels above that of FSK alone (Figure 5A) in a 
concentration-dependent manner, with an increase of 86  ±  21% 
at 30  µmol  L−1. However, in cells pretreated with SR141716A 
(3 μmol L−1, 5 minutes), the stimulatory effects of AB-CHMINACA
(10 µmol L−1) were only partially inhibited, in contrast to other SCRAs 
tested in this study (Figure 5B). To confirm that this response was at 
least in part non-CB1-mediated, AB-CHMINACA was tested in HEK 
293 wild-type cells; in these cells, AB-CHMINACA (10 µmol L−1) also 
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produced a small increase in FSK-stimulated cAMP accumulation 
(Figure 5C, 29 ± 10%), suggesting that some of these stimulatory 
effects were occurring via mechanism(s) unrelated to CB1 receptor 
activity.

4  | DISCUSSION

In this study, we set out to systematically characterize the ability 
of several SCRAs to activate Gαs and Gαi/o proteins by examining 

F I G U R E  3  Concentration response curves for SCRAs-induced stimulation and inhibition of cAMP signaling. Pooled concentration 
response relationship for five SCRAs (PB-22, 5F-MDMB-PICA, AB-FUBINACA, XLR-11, and JWH-018) for two signaling outputs of 
cannabinoid receptor type 1—stimulation and inhibition of cAMP levels following overnight treatment in the absence (−PTX, black), or 
presence (+PTX, red) of PTX. Data were normalized to forskolin (FSK, 100%) and vehicle (0%), and plotted as mean ± SEM for at least 
five independent experiments performed in duplicate. For some points, the error bars are shorter than the height of the symbol. BRET, 
bioluminescence resonance energy transfer; cAMP, cyclic adenosine monophosphate; PTX, pertussis toxin; SCRA, synthetic cannabinoid 
receptor agonist
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stimulation as well as inhibition of FSK-induced cAMP accumulation 
in HEK cells stably expressing CB1. Assays of cAMP signaling revealed 
that the maximum concentration of SCRAs tested (10 µmol L−1), in-
creased cAMP levels 12%-45% above that produced by FSK alone, 
while THC failed to increase cAMP levels, an observation consistent 
with the findings of Finlay et al17 To further investigate the differ-
ential response of SCRA-induced activation and inhibition of cAMP 
production, we constructed the CRCs for SCRAs belonging to dif-
ferent structural classes (JWH-018, PB-22, AB-FUBINACA, XLR-11, 
and 5F-MDMB-PICA); the rank order of potency of these SCRAs to 
stimulate Gαs-like cAMP signaling pathway was different from their 
activity in Gαi/o-pathway (inhibition of cAMP), suggesting that some 
of these drugs differentially regulate G protein coupling to CB1.

SCRA-mediated inhibition of cAMP has been extensively stud-
ied in cell models expressing cannabinoid receptors21,24 but some 
studies have also demonstrated the ability of cannabinoids to stim-
ulate Gαs-like cAMP signaling downstream of CB1.

14-17 We found
that, at a concentration of 10 µmol L−1, three of the fifteen SCRAs 
tested, AB-FUBINACA, PB-22, and AB-PINACA, activated Gαs-like 
CB1 signaling to more than 30% above the FSK response. In a pre-
vious study using AB-CHMINACA, Costain et al21 showed similar 
increases in cAMP levels to that seen in this study without the need 
for FSK or PTX pretreatment. In our cells, none of the cannabinoids 
tested altered cAMP levels in the absence of FSK (data not shown). 
Costain et al21 performed their assays on HEK293T cells transiently 
transfected with CB1. Transient transfection of CB1 may have led 
to a higher level of receptor expression than in our cells, and high 
levels of CB1 receptor expression are sufficient to result in a switch 
in cAMP signaling from Gαi-mediated (inhibitory) to Gαs-mediated 
(stimulatory) nett effect.17 Costain et al21 also used a GloSensor 

cAMP assay, wherein cannabinoid was added for 12 minutes prior to 
the addition of FSK (10 µmol L−1), and luminescence was monitored 
for 30 minutes.21 This may have contributed to the differences in 
the results of the two studies, but it is not immediately obvious why 
this would be. Finally, the HEK-293 “T” subclone used in the previ-
ous study harbors considerable genomic differences to the parental 
HEK 293 cell line used in this study,31,32 which may also contribute 
to altered cAMP responses (via different AC isoforms). However, our 
data, together with that of Costain et al21 suggest potentially dif-
ferent receptor/effector coupling pathways in the presence of some 
SCRAs (AB-FUBINACA, PB-22, and AB-PINACA, AB-CHMINACA) 
compared to other CB1 ligands.

We further sought to investigate SCRA differential activation 
of distinctive G protein subsets—inhibition and stimulation of FSK-
mediated cAMP signaling. The relative ability of SCRAs to induce in-
hibition of cAMP production via Gαi/o is very similar to that observed 
in previous studies in assays of membrane potential and [35S]GTPγS
binding.12,25,33,34 The similar Emax observed for the SCRA-mediated
activation of Gαi/o-CB1 signaling in this study probably reflects re-
ceptor reserve for inhibition of cAMP accumulation in these cells, 
wherein maximal responses are elicited at less than maximal recep-
tor occupancy because the system maximum is already achieved.12 
SCRA-induced stimulation of cAMP showed significant differences 
in Emax (Table 1), suggesting an absence of receptor reserve for most 
of the Gs-dependent signaling we observed for the SCRA in these 
conditions. This may (at least for the drugs with a lower Emax) reflect 
an accurate representation of intrinsic efficacy of the ligands at this 
pathway.35 The observed dynamic range of Emax for cannabinoids
is consistent with CB1 having low coupling efficiency to both Gαs 
pathway and β-arrestin-2 (as observed previously32), compared to

Compound

Gi (-PTX) Gs (+PTX)

Gi (−PTX) 
selectivity

pEC50 (EC50, 
nmol L−1) Emax (% FSK)

pEC50 
(EC50, 
nmol L−1 Emax (% FSK)

CP55940 8.1 ± 0.4 (7) 58 ± 3 — — —

WIN55212-2 7.9 ± 0.4 (11) 70 ± 4 — — —

JWH-018 7.8 ± 0.2 
(16)

64 ± 3 6.5 ± 0.7 
(288)

114 ± 4 18

XLR-11 7.2 ± 0.2 
(63)

63 ± 2 5.3 ± 0.8 
(4720)

124 ± 5 75

PB-22 8.6 ± 0.2 
(2.5)

64 ± 3 7.2 ± 0.5 
(69)

130 ± 3 28

AB-FUBINACA 9.0 ± 0.2 
(0.96)

61 ± 2 6.4 ± 0.5 
(278)

144 ± 12 290

5F-MDMB-PICA 9.2 ± 0.2 
(0.62)

60 ± 4 7.1 ± 0.4 
(85)

126 ± 5 137

Note: The selectivity is expressed as the ratio of Gs (+PTX) EC50 to Gi (−PTX) EC50. Pooled data from 
at least five independent experiments was fit to a three parameter logistic equation in PRISM. Data 
are presented ± SEM.
Abbreviations: cAMP, cyclic adenosine monophosphate; CB1, cannabinoid receptor type 1; FSK, 
forskolin; HEK, human embryonic kidney; PTX, pertussis toxin; SCRA, synthetic cannabinoid 
receptor agonist.

TA B L E  1   Comparison of 
pharmacological activity (EC50 and 
Emax) of SCRAs-induced stimulation (Gs 
(+PTX)) and inhibition (Gi (−PTX)) of cAMP 
signaling in HEK-CB1 cells
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that of Gαi pathway.17,36,37 Future studies could examine the struc-
ture of SCRA-bound CB1-Gαs complexes, which might assist in ex-
plaining the observed cAMP signaling profiles. This is particularly 
interesting given that the interaction of SCRA MDMB-FUBINACA 
with the “toggle twin switch” in the CB1 binding pocket coupled to 
Gαi was recently studied.38 The rigid C-shape geometry of MDMB-
FUBINACA along with the strong pi-pi interaction of its indazole 
ring with “toggle twin switch” residues, might help distinguish the 
high efficacy agonist activity of SCRA from partial agonists like THC 

lacking “toggle twin switch” interaction.38 Promiscuous coupling to 
both Gαi and Gαs has been reported for multiple GPCRs (eg β2-ad-
renergic receptor),39 while some receptors couple predominantly to 
one G protein subtype (eg μ-opioid receptor coupling to the Gαi/o 
family40). The potential of cannabinoids to differentially activate one 
signaling cascade over another (functional selectivity41) may aid the 
development of new therapeutic compounds with reduced psycho-
active effects; a research domain that has attracted much recent 
interest.42

Considering the adverse effects associated with SCRA use, it is 
important to continue characterizing the pharmacological profile of 
these compounds in order to understand the mechanisms driving 
their toxicity.43,44 Although this study does not identify which path-
way contributes to the toxic effects observed following SCRA con-
sumption, our data do provide valuable insights into SCRA-mediated 
stimulation and inhibition of cAMP signaling in vitro. Previous stud-
ies have shown that JWH-018- AM-2201-, 5F-AB-PINACA-, and 
CUMYL-4CN-BINACA-induced seizures are CB1-mediated in mice, 
which might explain some of the toxicity experienced by recreational 
users of these drugs.43-49 Our data shows that SCRA-induced cAMP 
increase was abolished after SR141716A treatment, supporting the 
hypothesis that SCRAs Gαs-like effects were mediated through 
CB1 receptor. All the SCRAs tested in this study exhibited greater 
potency at Gαi- than Gαs-like pathways, and the efficacies of these 
SCRAs have previously been measured in response to Gαi-mediated 
activation of GIRK channel in AtT20-CB1 cells.12 The rank order of 
SCRA efficacy based on selectivity for Gαi-GIRK signaling was found 
to be 5F-MDMB-PICA > XLR-11 > AB-FUBINACA > PB-22 ≈ JWH-
018.12 5F-MDMB-PICA showed the highest efficacy for modulation 
of K channel activity via Gαi pathway in the former study, in contrast 
to the intermediate efficacy of 5F-MDMB-PICA to stimulate the Gαs-
like cAMP signaling pathway in this study. AB-FUBINACA exhibited 
greater efficacy for the Gαs pathway compared to its Gαi-mediated 
activity profile in the membrane potential assay.12 Evaluating the 
differences in G protein preference between SCRAs may be an im-
portant part of understanding the apparent differences in effect be-
tween these drugs in humans. However, the biological significance of 
SCRA-mediated differential coupling of CB1 to Gi/o and Gs is not well 

F I G U R E  4  Effect of CB1 antagonist on the SCRA-mediated 
cAMP signaling peaks in HEK-CB1 cells. A, Traces from a 
representative experiment showing that SCRA (JWH-018, 
5F-MDMB-PICA, and AB-FUBINACA) induced observed 
stimulatory effects were inhibited by SR141716A (CB1 antagonist, 
3 μmol L−1) pretreatment. B, Scatter dot plot representing SCRAs-
mediated stimulation of forskolin (3 µmol L−1)-induced cAMP 
response in presence and absence of SR141716A 3 µmol L−1 on 
HEK 293 cells expressing CB1. Within each set SCRAs (10 µmol L−1) 
were compared to SCRAs + SR141716 (unpaired Student's t test, 
P < .05 marked with *). Data were normalized to forskolin (FSK, 
100%) and vehicle (0%), and plotted as mean ± SEM for at least 
five independent experiments performed in duplicate. cAMP, 
cyclic adenosine monophosphate; CB1, cannabinoid receptor type 
1; HEK, human embryonic kidney; SCRA, synthetic cannabinoid 
receptor agonist
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F I G U R E  5  AB-CHMINACA does not 
modulate cAMP levels via CB1 receptors 
in HEK 293 cells. A, Treatment with AB-
CHMINACA produced a concentration-
dependent increase in forskolin-mediated 
cAMP production in HEK 293-CB1 
in presence of PTX. B, Traces from a 
representative experiment showing that 
AB-CHMINACA (10 µmol L−1) induced 
observed stimulatory effects were 
only partially inhibited by SR141716A 
3 µmol L−1. C, Scatter dot plot comparing 
AB-CHMINACA-mediated stimulation 
of forskolin (3 μmol L−1)-induced cAMP
response in presence and absence of 
SR141716 3 µmol L−1 in HEK 293-CB1 
cells, and the data were not significantly 
different. AB-CHMINACA (10 µmol L−1) 
also modestly augmented forskolin-
stimulated cAMP levels in HEK-wild-type 
cells (not containing CB1 receptors). 
Graphs show mean ± SEM for at least 
five independent experiments performed 
in duplicate. cAMP, cyclic adenosine 
monophosphate; CB1, cannabinoid 
receptor type 1; HEK, human embryonic 
kidney; PTX, pertussis toxin
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understood. The Gs signaling of CB1 arises in circumstances where 
Gi/o is exhausted or sequestered, and has been measured after PTX 
treatment or when other Gi-coupled receptors are concomitantly 
activated. The phenomenon was first observed in primary rat stri-
atal neurons natively expressing CB1 and D2 receptors,14,15 while 
a switch in Gi-Gs signaling due to high CB1 expression has subse-
quently been defined in recombinant systems.17 The phenomenon of 
CB1-Gs coupling may be relevant in specific cancer conditions where 
upregulation in CB1 receptor was reported (eg colorectal cancer, 
human epithelia ovarian tumors, and prostate cancer).17

Our study showed that SCRAs have significantly different 
pharmacological profiles (maximal activities and potencies) for the 
activation of CB1-mediated G protein-stimulation and -inhibition 
of FSK-mediated cAMP signaling. Although it is speculated that 
the adverse effects of SCRAs are mediated by CB1,49,50 based 
on the results presented here we wonder how the differential 
responses of SCRAs are related to the physiological effects re-
sulting from the activation of each intracellular pathway, and if 
these may be correlated with the in vivo toxicity of SCRAs. The 
unique toxicological profile of SCRAs may result from a combina-
tion of factors; pharmacokinetic differences, activity at both can-
nabinoid and noncannabinoid targets, pharmacological activity of 
metabolites and thermolytic degradants.25,37,51-53 These findings 
may provide a starting point to help predict the pharmacological 
characteristics of SCRAs that demonstrate differential activation 
of Gαi vs Gαs coupling to CB1.
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Supplementary Data 

Supplementary Figure 3-1 

Effect of CB1 antagonist on the SCRA induced inhibition of cAMP signalling. A. Traces 
from a representative experiment showing that SCRA (JWH-018, 5F-MDMB-PICA, and AB-
FUBINACA) induced inhibitory effects were completely blocked by SR141716A (CB1 
antagonist, 3 μM) pre-treatment. B. Scatter dot plot representing SCRAs-mediated inhibition 
of forskolin-induced cAMP response in presence and absence of SR141716A 3 µM on HEK 
293 cells expressing CB1. Within each set SCRAs (100 nM) were compared to SCRAs + 
SR141716. Data were normalized to forskolin (100%) and vehicle (0%), and plotted as mean 
± SEM for at least 5 independent experiments performed in duplicate. 
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Supplementary Table 3-1. 

Comparison of pharmacological activity (EC50 and EMAX) of SCRAs-induced stimulation (Gs

(+PTX)) and inhibition (Gi (-PTX)) of cAMP signalling in HEK-CB1 cells. Data was fit to a 4-

parameter logistic equation in PRISM. The selectivity is expressed as the ratio of Gs (+PTX) 

EC50 to Gi (-PTX) EC50. Data is presented mean ± S.E.M. 

Compound Gi (-PTX) Gs (+PTX) Gi (-PTX) 

selectivity pEC50 

(EC50, nM) 

Emax (% FSK) 

(nH) 

pEC50 

(EC50, nM) 

Emax (% FSK) 

(nH) 

CP55940 8.2 ± 0.3 

(6.4) 

57 ± 5 

-0.7 ± 0.3

- - - 

WIN55212-2 7.4 ± 2 

(40) 

60 ± 9 

-0.4 ± 0.5

- - - 

JWH-018 7.8 ± 0.3 

(16) 

64 ± 4 

-0.9 ± 0.5

6.7 ± 0.7 

(221) 

113 ± 4 

1.4 ± 2 

14 

XLR-11 7.2 ± 0.2 

(63) 

62 ± 3 

-0.8± 0.3

5.2 ± 0.8 

(6490) 

127 ± 16 

0.8 ± 0.6 

103 

PB-22 8.6 ± 0.2 

(2.5) 

64 ± 3 

-1.5 ± 0.6

7.2 ± 0.5 

(69) 

131 ± 5 

0.8± 0.7 

28 

AB-

FUBINACA 

9.0 ± 0.2 

(1.1) 

61 ± 2 

-1.4 ± 1

6.4 ±0.5 

(383) 

144 ± 12 

0.5 ± 0.3 

348 

5F-MDMB-

PICA 

9.2 ± 0.2 

(0.62) 

59 ± 4 

-0.9 ± 0.4

7.1 ± 0.4 

(85) 

126 ± 5 

1.1 ± 1.5 

137 
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Chapter IV. 

Study III. Brodifacoum does not modulate human 

cannabinoid receptor-mediated hyperpolarization of AtT20 

cells or inhibition of adenylyl cyclase in HEK 293 cells 

In the U.S., a disturbing trend towards using SCRAs mixed with Brodifacoum 

(superwarfarin) began to appear in consumers of these illicit drugs. In molecular 

pharmacology, the concept of allosteric modulation may help explain how some drugs can 

modify the receptor activity toward the agonist in a myriad of different ways from increasing 

affinity and/or efficacy to decreasing it. This chapter investigated whether brodifacoum, an 

anticoagulant associated with a recent outbreak of SCRA poisoning, is likely to affect the 

agonist responses through allosteric modulation of cannabinoid receptors. 
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This paper represents a collaborative work hosted in Mark Connor’s laboratory at Macquarie 

University Australia. I took the lead role in experimental design, conducting the 

experiments, data analysis and writing the paper with support from my co-investigators: 

Mark Connor oversaw the work in this research group; Rochelle Boyd performed some of 

the preliminary experiments exploring the activity of brodifacoum on cannabinoid receptors 

using hyperpolarisation (GIRK) assay; Marina Santiago and Natasha Grimsey provided 

invaluable input into the design and analyses of the cAMP experiments. All authors 

reviewed the final manuscript. 



Submitted 27 March 2019
Accepted 23 August 2019
Published 25 September 2019

Corresponding author
Mark Connor,
mark.connor@mq.edu.au

Academic editor
Jörg Oehlmann

Additional Information and
Declarations can be found on
page 11

DOI 10.7717/peerj.7733

Copyright
2019 Sachdev et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Brodifacoum does not modulate
human cannabinoid receptor-mediated
hyperpolarization of AtT20 cells or
inhibition of adenylyl cyclase in HEK 293
cells
Shivani Sachdev1,*, Rochelle Boyd1,2,*, Natasha L. Grimsey3, Marina Santiago1

and Mark Connor1

1Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney,
New South Wales, Australia

2Cancer Research Unit, Children’s Medical Research Institute, Sydney, NSW, Australia
3Department of Pharmacology and Clinical Pharmacology, and Centre for Brain Research School of Medical
Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand

*These authors contributed equally to this work.

ABSTRACT
Background. Synthetic cannabinoids are a commonly used class of recreational drugs
that can have significant adverse effects. There have been sporadic reports of co-
consumption of illicit drugs with rodenticides such as warfarin and brodifacoum (BFC)
over the past 20 years but recently, hundreds of people have been reported to have
been poisoned with a mixture of synthetic cannabinoids and BFC. We have sought
to establish whether BFC directly affects cannabinoid receptors, or their activation by
the synthetic cannabinoid CP55940 or the phytocannabinoid19-tetrahydrocannabinol
(19-THC).
Methods. The effects of BFC on the hyperpolarization of wild type AtT20 cells, or AtT20
cells stably expressing human CB1- or CB2- receptors, were studied using a fluorescent
assay of membrane potential. The effect of BFC on CB1- and CB2-mediated inhibition
of forskolin-stimulated adenylyl cyclase (AC) activation was measured using a BRET
assay of cAMP levels in HEK 293 cells stably expressing human CB1 or CB2.
Results. BFC did not activate CB1 or CB2 receptors, or affect the hyperpolarization
of wild type AtT20 cells produced by somatostatin. BFC (1 µM) did not affect
the hyperpolarization of AtT20-CB1 or AtT20-CB2 cells produced by CP55940 or
19-THC. BFC (1 µM) did not affect the inhibition of forskolin-stimulated AC activity
by CP55940 inHEK 293 cells expressing CB1 or CB2. BFC (1µM) also failed to affect the
desensitization of CB1 and CB2 signaling produced by prolonged (30 min) application
of CP55940 or 19-THC to AtT20 cells.
Discussion. BFC is not a cannabinoid receptor agonist, and appeared not to affect
cannabinoid receptor activation. Our data suggests there is no pharmacodynamic
rationale for mixing BFC with synthetic cannabinoids; however, it does not speak to
whether BFC may affect synthetic cannabinoid metabolism or biodistribution. The
reasons underlying the mixing of BFC with synthetic cannabinoids are unknown, and
it remains to be established whether the ‘‘contamination’’ was deliberate or accidental.
However, the consequences for people who ingested the mixture were often serious,
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and sometimes fatal, but this seems unlikely to be due to BFC action at cannabinoid
receptors.

Subjects Biochemistry, Cell Biology, Toxicology, Pharmacology
Keywords Synthetic cannabinoid, Superwarfarin, Overdose, Cannabinoid receptor signaling

INTRODUCTION
Brodifacoum (BFC) is an inhibitor of vitamin K epoxide reductase and active ingredient
of rodenticides (King & Tran, 2015). There have been sporadic reports of brodifacoum
consumption with drugs such as cocaine and cannabis (La Rosa, Clarke & Lefkowitz, 1997;
Waien, Hayes Jr & Leonardo, 2001; Spahr, Maul & Rodgers, 2007), however, a large number
of peoplewere recently hospitalizedwith poisoning by brodifacoumand related compounds
following ingestion of what are believed to be synthetic cannabinoid receptor agonists
(SCRAs) (Kelkar et al., 2018; Riley et al., 2019; Moritz et al., 2018; Panigrahi, Jones & Rowe,
2018). There is limited evidence to suggest that people have on occasions deliberately
combined brodifacoum with cannabis (La Rosa, Clarke & Lefkowitz, 1997; Spahr, Maul
& Rodgers, 2007), and the apparent mixing of brodifacoum with a variety of different
SCRA could be a deliberate attempt to enhance the effects of the drugs through either
a pharmacokinetic or pharmacodynamic mechanism. In this study, we have examined
the effects of brodifacoum on the acute signalling of human CB1 and CB2 receptors in
AtT20 and HEK 293 cells. In AtT20 cells, activation of heterologously expressed CB1 or
CB2 produces a hyperpolarization, mediated by activation of G protein-gated inwardly
rectifying K channels (Mackie et al., 1995; Banister et al., 2016). In CB1- or CB2-expressing
HEK 293 cells, we measured the real time modulation of forskolin-stimulated cAMP
accumulation (Cawston et al., 2013). We found that cannabinoid-induced signaling was
not affected by brodifacoum, indicating that combining SCRA with brodifacoum is not
likely to enhance user experience through interactions with cannabinoid receptors.

METHODS
Drugs
(-) CP 55940 was from Cayman Chemical (#90084; Ann Arbor MI, USA), 19-
tetrahydrocannabinol (THC) was from THCPharm (Frankfurt, Germany) and was a
kind gift from the Lambert Initiative for Cannabis Therapeutics (University of Sydney).
Brodifacoum was from Sigma-Aldrich (#46036), and forskolin was from Ascent Scientific
Ltd.

Hyperpolarization assay
Experiments on AtT20FlpIn cells stably transfected with human CB1 (AtT20-CB1) or
CB2 (AtT20-CB2) were carried out essentially as described in Banister et al. (2016).
The AtT20FlpIn cells were created in our laboratory from wild type AtT20 cells we
purchased from the American Type Culture Collection (ATCC CRL-1795). The assay
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method is based on that outlined in detail in Knapman et al. (2013). Cells were grown
in DMEM (#D6429; Sigma-Aldrich, Castle Hill, NSW) supplemented with 10% fetal
bovine serum (FBS, #12003C; SAFC Biosciences, Brooklyn, Victoria, Australia), 100
units penicillin/100 µg ml−1 streptomycin (1%, #15140122; Life Technologies, Scoresby,
Victoria, Australia), hygromycin gold (80 µg ml−1, #ant-hg; Invivogen, San Diego, CA).
Cells were grown in 75 cm2 flasks and passaged when 80–90% confluent. On the evening
before experiments, cells were detached using trypsin/EDTA solution (#T3924; Sigma-
Aldrich), resuspended in L-15 media (#11415064; Life Technologies) supplemented with
1% FBS, penicillin/streptomycin, and glucose (15 mM, SIGMA #G7021) and plated onto
96 well black walled, clear bottomed, culture plates which had been previously coated with
poly-D-lysine (SIGMA #P6407). Cells were incubated overnight at 37 ◦C in a humidified
incubator in room air.

Proprietary FLIPRmembrane potential dye (blue, #R8034,MolecularDevices, Sunnyvale
CA) was dissolved in Hank’s Balanced Salt Solution (HBSS) of composition (mM) NaCl
145, HEPES 22, Na2HPO4 0.338, NaHCO3 4.17, KH2PO4 0.441, MgSO4 0.407, MgCl2
0.493, CaCl2 1.26, glucose 5.56 (pH 7.4, osmolarity 315 ± 15) and added to the cells
an hour before fluorescence reading began. Dye was used at 50% of the manufacturers
recommended concentration, and cells were incubated at 37 ◦C in humidified room air for
loading. Plates were read using a Flexstation 3 (Molecular Devices) plate reader at 37 ◦C.
Plates were excited at a wavelength of 530 nm, emission was measured at 565 nm, with
cut-off filter at 550 nm. Drugs were added using the pipetting function of the Flexstation
in a volume of 20 µl after recording 60–120 s of baseline fluorescence. Readings were made
every 2 s. Drug stocks were made up in DMSO (#D8418, Sigma-Aldrich) and diluted on
the day of experiment, the final concentration of DMSO in the assay was 0.1%.

Data were expressed as the percentage change in baseline fluorescence produced by drug
addition. The change in fluorescence produced by vehicle (0.1% DMSO) addition was
subtracted from the traces before this calculation. Data is expressed as the mean ± SEM
of at least 5 independent determinations performed in duplicate, unless otherwise noted.
Pooled data was fit to a four-parameter logistic equation in Graphpad PRISM 7 (GraphPad
Software, San Diego CA, USA).

Assay of cAMP levels
Human embryonic kidney (HEK) 293 FlpIn cells stably transfected with human CB1

or CB2 receptors tagged with three haemagglutinin epitopes at the amino terminus and
human G protein gated inwardly rectifying potassium channel 4 (GIRK4) were used (the
construction of these cells will be described in another place, and we did not assay CB
receptor coupling to GIRK4 in this study). Cells were grown in DMEM containing 10%
FBS and 100 units/ml/penicillin, 100 µg/ml streptomycin and were maintained under
selection with hygromycin (80 µg ml−1) and G418 (400 µg ml−1). HEK 293 FlpIn cells
were originally obtained from Life Technologies (now Thermofisher, #75007).

Cellular cAMP levels were measured using the pcDNA3L-His-CAMYEL plasmid,
which encodes the cAMP sensor YFP-Epac-RLuc (CAMYEL), (Cawston et al., 2013).
The pcDNA3L-His-CAMYEL was a kind gift from Dr. Angela Finch (The University of
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New South Wales, NSW, Australia), and originally obtained from American Type Culture
Collection (Manassas, VI, USA). Cells were seeded in 10 cm dishes at a density of 6,000,0000
such that they would be 60–70% confluent the next day. The day after seeding, pcDNA3L-
His-CAMYEL plasmid was transiently transfected into cells using linear polyethyleneimine
(PEI, m.w. 25 kDa) (#23966, Polysciences, Warrington, PA, USA). The DNA-PEI complex
mixture was added to the cells at the ratio of 1:6, and incubated for 24 h in 5% CO2 at
37 ◦C. After the incubation, cells were detached from the dish using trypsin/EDTA and
the pellet was resuspended in 10 ml Leibovitz’s L-15, no phenol red (#21083027; Gibco)
media supplemented with 1% FBS, 100 units/ml/penicillin, 100 µg/ml streptomycin and
15 mM glucose. The cells were seeded at a density of 100,000 cells per well in poly D-lysine
(Sigma-Aldrich) coated, white wall, clear bottom 96 well microplates. Cells were incubated
overnight at 37 ◦C in ambient CO2.

On the following day, drugs were prepared in HBSS containing 0.1 mg ml−1 BSA.
For measurement of cAMP inhibition, all the drugs were made in 3 µM of forskolin.
Coelenterazine-h substrate (2.5 µM) (#S2011; Promega, Madison, WI, USA) was added to
the cells, and incubated for 5 mins prior to the addition of drugs or vehicle. Luminescence
was measured using a Flexstation 3 (Molecular Devices) microplate reader at 37 ◦C at an
emission wavelength of 461 nm and 542 nm simultaneously, with an integration time of 1 s.
Drugs were added in a volume of 10 µl (10×) to each well to give the desired concentration.
The final concentration of DMSO in each well was always 0.1%. Raw data are presented
as inverse BRET ratio of emission at 461/542. Background reading (no substrate) was
subtracted from raw values before calculating ratios. For convenience, values are expressed
such that an increase in ratio correlates with increase in cAMP production. Area under the
curve (AUC) analysis was performed in GraphPad prism (Graph Pad Software Inc., San
Diego, CA, USA), and data were expressed as percentage of the difference between basal
(vehicle, 0%) and forskolin (100%) values over a 5-minute period after forskolin addition.

For experiments examining the potential interaction between brodifacoum and
cannabinoids, the cells were pre-treated with 1 µM of brodifacoum (or vehicle) and
the response to a subsequent addition of SCRAs was measured. The concentration of
DMSO (0.1%) was kept constant for the brodifacoum-treated and control cells. Data was
normally distributed (D’Agostino and Pearson normality test, PRISM), differences between
groups were tested using unpaired Student’s t -Test (PRISM). Statistical significance was
defined as P < 0.05.

RESULTS
Acute application of brodifacoum for 5 min at concentrations up to 30 µM did not
significantly affect the fluorescence of AtT20 cells expressing CB1 or CB2 receptors (Fig. 1).
Prolonged exposure to brodifacoum at concentrations greater than 10 µM produced
decreases in fluorescence in AtT20 cells expressing CB receptors as well as wild type cells,
and so for experiments examining the potential interaction between brodifacoum and
cannabinoids we used a concentration of 1 µM.

We generated concentration–response curves for the high efficacy cannabinoid agonist
CP55940 and the lower efficacy agonist THC after 5 min of exposure to brodifacoum
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Figure 1 The effects of brodifacoum (BFC) and CP55940 in AtT20 cell expressing CB1 or CB2. Repre-
sentative traces showing the change in fluorescence induced by application of CP55940 (1 µM) but not
BFC (10 µM) in (A) AtT20-CB1 and (B) AtT20-CB2 cells. Values are expressed as a percentage of pre-
drug baseline. A reduction in fluorescence indicates a hyperpolarization. The prolonged application of
BFC (10 µM) produces small changes in the fluorescence in AtT20 cells expressing cannabinoid receptors.
Drug was added for the duration of the bar; the traces are representative of at least five independent exper-
iments.

Full-size DOI: 10.7717/peerj.7733/fig-1

(Fig. 2). In AtT20-CB1 cells, application of CP55940 produced a maximum change in
fluorescence of 33± 1%, with a pEC50 of 7.7± 0.04; with the addition of brodifacoum the
maximum change in fluorescence was 33 ± 1%, with a pEC50 of 7.7 ± 0.06 (P = 0.97).
In AtT20-CB2 cells, application of CP55940 produced a maximum change in fluorescence
of 29 ± 1.1%, with a pEC50 of 7.3 ± 0.1; with the addition of brodifacoum the maximum
change in fluorescence was 31 ± 1.2%, with a pEC50 of 7.4 ± 0.1 (Fig. 2, P = 0.85).
Brodifacoum failed to affect the hyperpolarization produced by THC in AtT20-CB1 cells
(control, pEC50 6.4 ± 0.6, maximum change in fluorescence 18 ± 5%; in brodifacoum,
pEC50 6.5 ± 0.5, max 18 ± 5%, P = 0.95). In AtT20-CB2 cells THC only produced a
small hyperpolarization, the response to 10 µM THC was unchanged in the presence of
brodifacoum (6.4 ± 1.2% in control, 7.4 ± 1.8% in brodifacoum, P = 0.65) (Fig. 2).
Application of brodifacoum (10 µM) or CP55940 (1 µM) for 5 min produced very small
changes in the fluorescence of wild type AtT20 cells, and neither drug affected the response
to subsequently applied somatostatin (100 nM), which activates native SST receptors in
AtT20 cells (Günther, Culler & Schulz, 2016) (Fig. S1).

Inhibition of adenylyl cyclase activity is another significant biological effect of
cannabinoid receptor activation. Brodifacoum (300 nM–30 µM) co-applied with forskolin
(3 µM) for 10 min did not affect increases in cAMP levels in HEK 293 cells expressing CB1

or CB2 (Fig. 3). Brodifacoum (1 µM) incubation for 5 min also failed to affect the CP55940
inhibition of forskolin-stimulated cAMP elevation. In cells expressing CB1, CP55940
inhibited cAMP with a pEC50 of 7.5 ± 0.3, to a minimum of 52 ± 12% of forskolin alone;
in the presence of brodifacoum these were pEC50 7.4 ± 0.2 and minimum of 52 ± 7% of
the forskolin response. Brodifacoum also did not affect forskolin-stimulated cAMP levels
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Figure 2 Brodifacoum (BFC) effect on CP55940 and19-THC induced hyperpolarization of AtT20 cell
expressing CB1 or CB2. Representative traces showing the change in fluorescence for CP55940 on (A)
AtT20-CB1, and (B) AtT20-CB2 in the presence of BFC 1 µM or vehicle. Values are expressed as a per-
centage of predrug baseline. A reduction in fluorescence indicates a hyperpolarization. Drugs were added
for the duration of the bar; the traces are representative of at least five independent experiments. Concen-
tration response curve of hyperpolarization of AtT20-CB1 or AtT20-CB2 cells stimulated with (C), (D)
CP55940 or (E), (F)19-THC in the continued presence of either HBSS or BFC. Data represents the mean
± SEM of five independent experiments performed in duplicate. There was no difference in the potency
or maximal effect of CP55940 and19-THC between HBSS or in presence of BFC.
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in HEK293 cells expressing CB2 (Fig. 3), or CP55940 inhibition of cAMP levels (pEC50 in
control cells expressing CB2 7.4 ± 0.2, to a minimum of 39 ± 7%; in brodifacoum pEC50

of 7.5 ± 0.1; to a minimum of 45 ± 4%).
We also examined the possibility that brodifacoum could affect the sustained responses

to CP55940 or THC. As previously described (Cawston et al., 2013), prolonged application
of cannabinoids in AtT20-CB1 cells produces a response that wanes over time, reflecting
desensitization of receptor signaling. The degree to which this desensitization reflects
changes in signaling specific to cannabinoid receptors is tested by application of
somatostatin, which activates receptors native to AtT20 cells (Günther, Culler & Schulz,
2016;Heblinski, Bladen & Connor, 2019). In these experiments, CP55940 (100 nM) or THC
(10 µM) were applied 2 min after addition of brodifacoum (1 µM), and the fluorescence
monitored for 30min before the addition of somatostatin (100 nM) (Fig. 4). Desensitization
was quantified after 30 min of agonist application, and was expressed as the % decline from
the peak response. We did not observe any significant difference in the desensitization of
CB1 signalingmediated byCP55940 (100 nM)when co-appliedwith brodifacoum (Control,
71 ± 4%; brodifacoum treated, 66 ± 7%, P = 0.55). The presence of brodifacoum had no
effect on the somatostatin (100 nM) induced hyperpolarization alone, or after 30 mins of
CP55940 treatment (P = 0.75) (Fig. S2). The desensitization produced by THC (10 µM, 30
mins) in AtT20-CB1 cells was not different when co-applied with brodifacoum, (Control,
65 ± 6%; brodifacoum treated, 53 ± 8%, P = 0.3) (Fig. 4). A similar reversal of the
hyperpolarization produced by CP55940 (100 nM) in AtT20-CB2 cells was also observed.
Treatment with brodifacoum did not significantly affect the desensitization produced
by CP55940 compared to control cells (Control, 77 ± 6%; brodifacoum treated, 63 ±
8%, P = 0.2). THC (10 µM, 30 mins) signaling at CB2, although modest, also declined
during continuous drug exposure, and this was also not affected by co-application of
brodifacoum (37 ± 14% in control, 20 ± 7% in brodifacoum treated, P = 0.3) (Fig. 4).
The hyperpolarization induced by somatostatin after prolonged application of CP55940
(P = 0.56) or THC (P = 0.87) to AtT20-CB2 cells was also not significantly different in the
presence of brodifacoum (Fig. S2).

DISCUSSION
The principal finding of this study is that brodifacoum does not affect CB1 or CB2 signaling,
either to K channels in AtT20 cells or adenylyl cyclase in HEK 293 cells. In the assay of
K channel activation, there was no effect on the concentration response relationship
for CP55940 or THC, and brodifacoum did not affect the desensitization of signaling
produced by prolonged application of either drug. Brodifacoum had no effect on the
potency, maximum effect or time-dependence of the actions of the high efficacy synthetic
cannabinoid CP55940 or the lower efficacy phytocannabinoid THC, indicating that it is
unlikely to act as modulator of the pharmacodynamic effects of cannabinoids.

Activation of GIRK is mediated by the Gβγ subunits of G protein heterotrimers, and
many Gi/Go coupled receptors effectively signal through this pathway in AtT20 cells (e.g.,
Mackie et al., 1995; Günther, Culler & Schulz, 2016; Knapman et al., 2013; Heblinski, Bladen
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& Connor, 2019). We have previously used the fluorescent measurement of membrane
potential to study CB1 and CB2 agonists, antagonists, and allosteric modulators of CB1

(Cawston et al., 2013). Inhibition of adenylyl cyclase activity by CB receptors is mediated
via the Gα subunits of G protein heterotrimers, and brodifacoum also failed to affect this
signal transduction pathway. The precise cellular signaling mechanisms responsible for
the subjective effects of Cannabis and synthetic cannabinoid agonists are not established,
although the signal transduction of cannabinoid receptors has been extensively studied
(Howlett & Abood, 2017; Ibsen, Connor & Glass, 2017) and it is unlikely that any one
pathway is responsible. It remains formally possible that brodifacoum could selectively
modulate pathways other than Gβγ -mediated activation of GIRK or Gα-mediated
inhibition of cAMP accumulation, but the lack of any effect whatsoever on the effects
of CP55940 or THC suggests that ligand interactions with cannabinoid receptors are
unaffected by brodifacoum.

The concentration of brodifacoum in blood or brain after co-ingestion with synthetic
cannabinoids is unknown.However, concentrations of up to 3µMhave been reported in the
serum of people who have deliberately ingested large quantities of rat poison (Weitzel et al.,
1990;Hollinger & Pastoor, 1993), and inhalation of BFC via smoked synthetic cannabinoids
may produce higher serum concentrations of BFC than ingestion. Brodifacoum at 1 µM
failed to affect CB1 or CB2 receptor signaling when measured continuously over a period of
30min, and 10 µMbrodifacoum failed tomimic or affect the acute response to amaximally
effective concentration of CP 55940, although at this concentration prolonged application
of brodifacoum produced a decrease in the fluorescence of wild type AtT20 cells, as well
as those expressing CB1 and CB2 receptors. This effect at higher concentrations may
reflect direct interactions of brodifacoum with cell membranes (Marangoni et al., 2016).
Concentrations of brodifacoum in the upper range of what we tested are achieved only
after ingestion of large amounts of rat bait, it is possible that they could be achieved while
ingesting contaminated synthetic cannabinoids, but this remains unreported.

Several case reports suggest an interaction between therapeutic warfarin and cannabis
or cannabidiol (Grayson et al., 2018; Yamreudeewong et al., 2009; Damkier et al., 2019). It
has been suggested that cannabinoid inhibition of enzymes responsible for the metabolism
of warfarin can increase blood levels of the drug, and while these studies have focussed on
potentially dangerous changes in warfarin concentration, levels of cannabinoids could also
be reciprocally elevated. Such interactions may inform a decision to deliberately combine
‘‘superwarfarin’’ with SCRA, as has been previously suggested for cannabis (La Rosa,
Clarke & Lefkowitz, 1997; Spahr, Maul & Rodgers, 2007), although whether brodifacoum is
metabolized by pathways shared with SCRA in humans is unknown. Information about
how or even whether BFC is metabolized in humans is very sparse, although available
evidence suggests metabolism is very limited or absent (Hauck, Feinstein & Van Breeman,
2016). Apart from the obvious danger of ingesting brodifacoum, altering the metabolism
of SCRA is likely to have unpredictable consequences, as some metabolites of SCRA retain
cannabinoid receptor activity (e.g., Brents et al., 2011;Chimalakonda et al., 2012; Longworth
et al., 2017; Cannaert et al., 2016), and may contribute to the overall SCRA experience.
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Ingestion of brodifacoum is relatively common, while death from exposure is rare,
owing to ready treatment with vitamin K (King & Tran, 2015; Gummin et al., 2018). The
high number of deaths associated with the combination of SCRA and anticoagulants in
2018 (at least eight; Connors, 2018) may point to an interaction between the drugs. It may
also reflect the identity and dose of the synthetic cannabinoid(s) consumed, as well as
the general health status of the drug users. Deaths from synthetic cannabinoid exposure
are uncommon, but well documented (e.g., Kasper et al., 2015; Trecki, Gerona & Schwartz,
2015).While there is a general acceptance that brodifacoum or a similar agent is responsible
for the coagulopathies associated with synthetic cannabinoid ingestion, identification of the
synthetic cannabinoid has not been reported in most cases, but a recent report identified
a metabolite of AB-FUBINACA in one patient following ingestion of ‘‘King Kong’’, a
brodifacoum laced SCRA (Riley et al., 2019). It seems unlikely, though, that brodifacoum
would interact with higher efficacy or potency SCRAs at cannabinoid receptors when it
clearly does not interact with CP55940 or THC signaling (Noble et al., 2019; Sachdev et al.,
in press). Intriguingly, several groups have reported cannabinoid receptor ligands based
on a coumarin scaffold (Behrenswerth et al., 2009; Han et al., 2015). While these drugs
have been reported to be either antagonists/inverse agonists (Behrenswerth et al., 2009)
or CB2-selective agonists (Han et al., 2015), they remain largely uncharacterized. Given
the propensity of chemists producing and, in some cases, designing cannabinoids for the
recreational market, it cannot be ruled out that coagulopathy may be an unanticipated
adverse effect of a synthetic cannabinoid, which may have arisen from a novel, coumarin-
based cannabinoid that retains some of the vitamin K epoxide reductase inhibitory of
warfarin and brodifacoum.

In conclusion, we report that brodifacoumdoes not appear to be an agonist or antagonist
of human cannabinoid receptors, and it also does not appear to be an allostericmodulator of
CB1 or CB2 activation of K channels or inhibition of adenylyl cyclase.Why brodifacoumhas
been mixed with synthetic cannabinoid receptor agonists remains a matter for speculation,
although an intended effect on synthetic cannabinoid drug pharmacokinetics cannot
entirely be ruled out.
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4.1. Supplementary Data 

Supplementary Figure 4-1 Effects of brodifacoum (BFC) and CP55940 in wild type AtT20 
cells 

Scatter dot plot representing the percentage change in fluorescence for BFC (30 µM), BFC 
(10 µM), CP55940 (10 µM), and Vehicle (0.1% DMSO) alone (blue dots), and the response 
to the subsequent addition of Somatostatin (100 nM) to AtT20-WT cells (black dots). Data 
represents the mean ± SEM of five independent experiments performed in duplicate (p > 
0.05). 
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Supplementary Figure 4-2 Effect of brodifacoum (BFC) on somatostatin (SRIF) 
challenge after 30 minutes of drugs on AtT20-CB1 and -CB2 cells 

Comparison of percentage change in fluorescence after SRIF (100 nM) challenge on AtT20-
CB1, and AtT20-CB2 in the continuous presence of (A), (C) CP55940 or (B), (D) Δ9-THC 
added with either HBS or BFC (1 µM). BFC did not affect the hyperpolarization induced by 
SRIF after prolonged application of CP55940 or Δ9-THC. Data represents the mean ± SEM 
of five independent experiments performed in duplicate (p > 0.05). 
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Chapter V. 

Study IV. Absence of Entourage: Terpenoids Commonly 

Found in Cannabis sativa Do Not Modulate the Functional 

Activity of ∆9-THC at Human CB1 and CB2 Receptors 

 
Allosteric modulation of cannabinoid receptors was also studied in the context of the 

“entourage effect” – a belief that the components within the cannabis plant will produce 

much greater pharmacological effects when combined as opposed to the individual 

components. As a preliminary approach to investigating the terpenoid-cannabinoid 

interaction, this chapter examined whether the effects of low efficacy phytocannabinoid 

(THC), or high efficacy synthetic cannabinoid (CP55940) on the acute signalling of human 

cannabinoid receptors would be modified in the presence of terpenoids, either alone or in 

combination. At the least, this study might dispel notions of “entourage effect” at the 

pharmacodynamic level of cannabinoid receptor function. 
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Absence of Entourage:
Terpenoids Commonly Found in Cannabis sativa
Do Not Modulate the Functional Activity of D9-THC
at Human CB1 and CB2 Receptors
Marina Santiago,1,* Shivani Sachdev,1 Jonathon C. Arnold,2,3 Iain S. McGregor,2,4 and Mark Connor1

Abstract
Introduction: Compounds present in Cannabis sativa such as phytocannabinoids and terpenoids may act in
concert to elicit therapeutic effects. Cannabinoids such as D9-tetrahydrocannabinol (D9-THC) directly activate
cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2); however, it is not known if terpenoids present
in Cannabis also affect cannabinoid receptor signaling. Therefore, we examined six common terpenoids alone,
and in combination with cannabinoid receptor agonists, on CB1 and CB2 signaling in vitro.
Materials and Methods: Potassium channel activity in AtT20 FlpIn cells transfected with human CB1 or CB2 re-
ceptors was measured in real time using FLIPR� membrane potential dye in a FlexStation 3 plate reader. Terpe-
noids were tested individually and in combination for periods up to 30 min. Endogenous somatostatin receptors
served as a control for direct effects of drugs on potassium channels.
Results: a-Pinene, b-pinene, b-caryophyllene, linalool, limonene, and b-myrcene (up to 30–100 lM) did not
change membrane potential in AtT20 cells expressing CB1 or CB2, or affect the response to a maximally effective
concentration of the synthetic cannabinoid CP55,940. The presence of individual or a combination of terpenoids
did not affect the hyperpolarization produced by D9-THC (10 lM): (CB1: control, 59% – 7%; with terpenoids
(10 lM each) 55% – 4%; CB2: D9-THC 16% – 5%, with terpenoids (10 lM each) 17% – 4%). To investigate possible
effect on desensitization of CB1 responses, all six terpenoids were added together with D9-THC and signaling
measured continuously over 30 min. Terpenoids did not affect desensitization, after 30 min the control hyper-
polarization recovered by 63% – 6% in the presence of the terpenoids recovery was 61% – 5%.
Discussion: None of the six of the most common terpenoids in Cannabis directly activated CB1 or CB2, or mod-
ulated the signaling of the phytocannabinoid agonist D9-THC. These results suggest that if a phytocannabinoid–
terpenoid entourage effect exists, it is not at the CB1 or CB2 receptor level. It remains possible that terpenoids
activate CB1 and CB2 signaling pathways that do not involve potassium channels; however, it seems more likely
that they may act at different molecular target(s) in the neuronal circuits important for the behavioral effect of
Cannabis.
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Introduction
An enduring notion in the medicinal Cannabis and
cannabinoid field is that of entourage: the idea that
use of the whole plant may exert substantially greater
effects than the sum of its individual parts.1 Entourage
is usually construed as a positive attribute, with the as-
sumption that superior therapeutic actions, or a more
favorable ‘‘high,’’ will be obtained from consuming
the whole Cannabis plant rather than individual com-
ponents such as D9-tetrahydrocannabinol (D9-THC).
Somewhat surprisingly, the evidence for this widely
cited notion is relatively sparse.

Cannabis contains *150 phytocannabinoids, the
most common of which are D9-THC and cannabidiol
(CBD), together with their acid precursors THCA and
CBDA.2 Cannabis also contains a large number of
monoterpene and sesquiterpene compounds (together
called terpenoids), the most common of which include
a-pinene, b-pinene, linalool, limonene and b-myrcene
(monoterpenes) and b-caryophyllene and caryophyllene
oxide (sesquiterpenes).3 Terpenoids are volatile com-
pounds that are synthesized alongside phytocannabi-
noids mainly in the trichomes of the cannabis plant,
and provide cannabis with its distinctive aroma and fla-
vor.4 Terpenoids are often lost if the extraction process
involves heating.5

The entourage concept applied to cannabis can encom-
pass the potential for both cannabinoid–cannabinoid
and cannabinoid–terpenoid interactions. With regard
to the former, D9-THC-CBD synergy in producing anal-
gesia was reported in an animal model of neuropathic
pain6 while in humans, CBD has been proposed to ame-
liorate some of the adverse psychotomimetic and anxio-
genic effects of D9-THC.7,8 This claim is controversial,
however, with a number of contrary findings.9,10 CBD
may modulate D9-THC effects at the receptor level acting
as a CB1 negative allosteric modulator,11 providing some
biological plausibility to a modulatory interaction.

Scientific evidence for cannabinoid–terpenoid inter-
actions is essentially absent, and mostly comes from
websites and dispensaries extolling the virtues of propri-
etary Cannabis chemical varieties, or chemovars.12,13

However, some terpenoids do have intrinsic psychoac-
tive and physiological effects, and modulatory effects
on D9-THC actions are not farfetched.1,14 For example,
in studies with laboratory animals, limonene displayed
anxiolytic effects, pinene increased gastrointestinal mo-
tility, linalool was sedative, anticonvulsant, and anxio-
lytic, while myrcene produced sedation, analgesia, and
muscle relaxant effects (summarized in Russo and

Marcu14). Lewis et al.13 reported that in a low terpenoids
variety (1.1% terpenoids) myrcene concentration is
0.45%, while in a high variety (4.8% total) myrcene con-
centration is as high as 3.44%. Compelling evidence for
cannabinoid–terpenoid interactions or synergy does
not yet exist. A report on perceived efficacy of Cannabis
for childhood epilepsy identified the presence of three
predominant terpenoids (b-caryophyllene, b-myrcene,
and a-pinene); however, when extracts perceived as ‘‘ef-
fective’’ were compared with ‘‘ineffective’’ extracts, differ-
ences in terpenoid profile/content were not significant.15

With so many bioactive components present in canna-
bis, the systematic, granular elucidation of possible en-
tourage effects poses a substantial combinatorial puzzle
and scientific challenge. As a preliminary approach to
addressing this challenge, this study examined whether
the effects of D9-THC on its cognate cannabinoid recep-
tors (CB1 and CB2) would be modified in the presence of
terpenoids that are commonly found in cannabis, either
alone or in combination. The demonstration of such a
receptor-level entourage effect might lead to predic-
tions regarding functional cannabinoid–terpenoid in-
teraction effects that could be tested in vivo.

Materials and Methods
Cell culture
Experiments used mouse wild-type AtT20 FlpIn cells
(AtT20-WT), or these cells stably transfected with
human CB1 or CB2 receptors with 3 · N-terminus
hemagglutinin tags (AtT20-CB1 and AtT20-CB2, respec-
tively).16 Cells were cultivated in Dulbecco’s modified
Eagle’s medium (DMEM; Sigma-Aldrich) supplemented
with 10% fetal bovine serum (FBS; Sigma/SAFC) and
100 U penicillin/100 lg streptomycin mL�1 (Gibco).
Selection antibiotics were 80 lg mL�1 Zeocin (Invivo-
gen) for AtT20-WT or 80 lg mL�1 hygromycin B
Gold (Invivogen) for transfected cells.

Cells were grown in 75 mm2 flasks at 37�C/5% CO2

and passaged when 80–90% confluent. Assays were
carried out on cells up to 20 passages in culture.

Potassium channel activity measurements
Changes in membrane potential were measured using
the FLIPR� blue membrane potential dye (Molecular
Devices) in a FlexStation 3, as outlined in Knapman
2013.17 Cells from a 90–100% confluent 75 mm2 flask
were resuspended in Leibovitz’s L-15 Medium (Gibco)
supplemented with 1% FBS, 100 U penicillin/100 lg
streptomycin mL�1, and glucose (15 mM) and plated in
96-well black-walled clear bottom microplates (Costar)
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in a volume of 90 lL per well. Cells were incubated
overnight in humidified ambient air at 37�C incuba-
tor. Membrane potential dye, used at 50% of the
manufacturer-recommended concentration, was resus-
pended in Hank’s Balanced Salt Solution (HBSS) of com-
position (in mM): NaCl 145, HEPES 22, Na2HPO4 0.338,
NaHCO3 4.17, KH2PO4 0.441, MgSO4 0.407, MgCl2
0.493, CaCl2 1.26, glucose 5.55 (pH 7.4, osmolarity
315 – 15). Dye was loaded onto each well (90 lL per
well) and equilibrated at 37�C for *1 h before assay.
Fluorescence was measured every 2 sec (l excita-
tion = 530 nm, l emission = 565 nm, l emission cut-

off = 550 nm). Assays were carried out at 37�C, and
drugs were automatically added in volumes of 20 lL.

Determining the effects of terpenoids on acute hyper-
polarization. Terpenoids were added after *60 sec of
baseline recording and incubated for 5 min before canna-
binoid (CP55,940 or D9-THC) addition. In AtT20-WT
cells, somatostatin (SST) was added instead of canna-
binoid.

Determining the effects of terpenoids on signaling
desensitization. Homologous desensitization was
measured by simultaneously adding D9-THC with

FIG. 1. Terpenoid- and SST-mediated fluorescence change in AtT20-WT. Representative traces showing change
in fluorescence signal after terpenoid and SST (100 nM) application. A decrease in signal corresponds
to membrane hyperpolarization. Addition of terpenoids (A) b-pinene, b-caryophyllene, and b-myrcene;
(B) a-pinene, linalool, and limonene did not change baseline fluorescence, while SST mediated a clear
hyperpolarization. (C) Percentage change of fluorescence from baseline after each terpenoid (open circles)
and SST (closed circles) application. Terpenoids were added at 2 min; 5 min before SST. When compared with
positive (SST) or negative (vehicle) controls, none of the terpenoids tested affected baseline membrane potential
or peak SST response. b-Car = b-caryophyllene. n = 5, SEM, one-way ANOVA p > 0.05. Drugs were added for the
duration of the bar. ANOVA, analysis of variance; SEM, standard error of the mean; SST, somatostatin.
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terpenoids after 120 sec of baseline recording. Signaling
desensitization was calculated as percentage decrease
from peak D9-THC response after 30 min in drugs.
SST (100 nM) was added 30 min after D9-THC addition
to examine the potential effects of prolonged canna-
binoid receptor activation on native SST receptors (het-
erologous desensitization). The SST response was
compared between groups (with or without terpenoids).

Drug dilution. All drugs (except SST) were prepared in
dimethyl sulfoxide (DMSO) and stored as frozen stocks
at a concentration of 10–100 mM. Terpenoid stock solu-
tion concentrations were 100 mM, with the exception of
b-myrcene (30 mM), which was insoluble at 100 mM.
SST was dissolved in water. Fresh aliquots were used
each day, with the drugs diluted in HBSS containing
0.1% bovine serum albumin (Sigma-Aldrich) immediately
before the assay. The final concentration of DMSO in each
well was 0.1–0.11%; this limited the maximum concen-
tration of terpenoids able to be tested. A vehicle (HBSS
plus solvent alone) well was included in each column of
the 96-well plate, and the changes in fluorescence pro-
duced by vehicle alone were subtracted before determining
the maximum hyperpolarization after each drug exposure.

Drugs and reagents
D9-THC was obtained from THCPharm (Frankfurt,
Germany). Terpenoids were obtained from Sigma-

Aldrich; (+)-a-pinene, (+)-b-pinene, (�)-b-caryophyllene,
(+/�)-linalool, (R)-(+)-limonene, and b-myrcene. SST
was obtained from Auspep and CP55,940 from Cayman.
Unless otherwise indicated, the other chemicals and re-
agents were obtained from Sigma-Aldrich.

Data analysis
Each experiment was independently repeated at least
five times, with two technical replicates in each deter-
mination. Data are expressed as a percentage change
in the fluorescence compared with the predrug baseline
(30 sec before drug addition) or as a percentage of 1 lM
CP55,940 response. Graphs were plotted using Graph-
pad Prism 7.02, and scatter dot plots show means with
standard error of the mean. Means were compared
using unpaired Student’s t-test or no matching one-
way analysis of variance, followed by correction for mul-
tiple comparisons (Dunnett); and null hypothesis was
rejected if p-value was <0.05 ( p > 0.05 = not significant).

Results
Terpenoids in AtT20-WT cells
We first examined terpenoid action in nontransfected
AtT20 cells. We used SST (100 nM) as a positive con-
trol because it hyperpolarizes AtT20-WT cells through
activation of endogenous SST receptors (Fig. 1A, B).17,18

Addition of a-pinene, b-pinene, b-caryophyllene, linal-
ool, limonene (100 lM), or b-myrcene (30 lM) did

FIG. 2. Representative traces of b-caryophyllene and CP55,940 in AtT20-CB1 and -CB2. Fluorescence was
recorded for 10 min where b-caryophyllene (100 nM and 100 lM) was added at 2 min followed by incubation
for 5 min, before 1 lM CP55,940 application. b-caryophyllene did not hyperpolarize (A) AtT20-CB1 and
(B) AtT20-CB2 cells, or affect the response to CP55,940 (1 lM). Drugs were added for the duration of the bar.
CB1, cannabinoid receptor 1, CB2, cannabinoid receptor 2.
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FIG. 3. Effect of terpenoids at varying concentrations on AtT20-CB1 membrane potential and on 1 lM
CP55,940-induced hyperpolarization. Terpenoids (A) a-pinene, (B) b-pinene, (C) b-caryophyllene,
(D) b-myrcene, (E) linalool, and (F) limonene were added to AtT20-CB1 cells and incubated for 5 min. Maximum
fluorescence changes were not different from negative control (closed circles, n = 5, SEM, one-way ANOVA
p > 0.05). CP55,940 (1 lM) addition to AtT20-CB1 cells induced fluorescence changes from 33.1% – 1.7%
to 34.6% – 0.7%. Peak CP55,940 responses were not affected by the presence of terpenoids (open circles,
n = 5, SEM, one-way ANOVA p > 0.05). V, vehicle.
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not affect the membrane potential of AtT20-WT cells
(Fig. 1C, open circles). The presence of terpenoids
(100 lM/30 lM) had no effect on the subsequent SST
response (Fig. 1C).

Terpenoids in AtT20-CB1 and -CB2 cells
The absence of a terpenoid response in AtT20-WT cells
enabled the study of their effect on membrane potential
in AtT20 cells expressing human CB1 or CB2. We ex-
amined whether terpenoids (1 nM–100 lM, b-myrcene
300 pM–30 lM) hyperpolarized cells through these re-
ceptors and, in parallel, whether they affected a subse-
quent response to a maximally effective concentration
of CP55,940 (1 lM; Fig. 2).16 A summary of the fluores-
cence change after terpenoid addition to AtT20-CB1

cells is shown in Figure 3 (closed circles). No difference
between vehicle and terpenoids was observed. Further,
none of the terpenoids changed the membrane potential
of cells expressing CB2 (Supplementary Fig. S1). The
change in fluorescence produced by the subsequent ad-
dition of the nonselective cannabinoid agonist CP55,940
(1 lM) was also unaffected in both AtT20-CB1 and -CB2

(Fig. 3 and Supplementary Fig. S1, open circles).
CP55,940 is a high-efficacy agonist of both CB1 and

CB2 receptors.19 However, in Cannabis, D9-THC is the
principle cannabinoid agonist, and it has a lower efficacy
than CP55,940, which is apparent in the hyperpolariza-
tion assay as a lower maximal response.19 We next tested
the effect of a low and high concentration of terpenoids

(100 nM and 10 lM) on the hyperpolarization produced
by three concentrations of D9-THC (100 nM, 1 and
10 lM). Application of D9-THC, after 5 min of indi-
vidual terpenoid application, produced a fluorescence
change (Fig. 4) that was not significantly different
from that produced by D9-THC alone in both AtT20-
CB1 and -CB2 cells (10 lM D9-THC, Figs. 5 and 6;
100 nM D9-THC, Supplementary Figs. S2 and S3). To
explore the possibility of an emergent entourage effect,
we combined all six terpenoids (10 lM each) and tested
the effect of the mixture on the D9-THC-induced hyper-
polarization. Similar to individually tested terpenoids,
the effects of D9-THC were not changed by the mixture
(Fig. 7).

Terpenoids and desensitization in AtT20-CB1

We have previously reported desensitization cannabinoid-
mediated cellular hyperpolarization in AtT20 cells expre-
ssing rat or human CB1 receptors,20,21 and we found
that this reversal of CP55,940-induced hyperpolariza-
tion was accelerated by negative allosteric modulators
such as ORG27569 and PSNCBAM-1. Therefore, we
tested whether terpenoids may act in a similar way to
ORG27569 and other negative allosteric modulators,
altering desensitization time course. We used D9-
THC instead of CP55,940, as D9-THC is the main
phytocannabinoid agonist. Prolonged application of
D9-THC (10 lM) produced a hyperpolarization that re-
versed substantially over 30 min. Representative traces

FIG. 4. Representative traces of b-myrcene and D9-THC in (A) AtT20-CB1 and (B) AtT20-CB2. Fluorescence
change mediated by two submaximal concentrations of D9-THC (100 nM and 1 lM) in the presence of b-myrcene
(10 lM). Terpenoid was added at 1 min and incubated for 5 min before D9-THC application. CP55,940 added
as positive control. Drugs were added for the duration of the bar. D9-THC, D9-tetrahydrocannabinol.
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FIG. 5. Effect of 10 lM terpenoids on D9-THC-induced hyperpolarization in AtT20-CB1. Terpenoids tested
were (A) a-pinene, (B) b-pinene, (C) b-caryophyllene, (D) b-myrcene, (E) linalool, and (F) limonene. Response
to D9-THC at two submaximal and one maximal concentration (n = 6–7, SEM, unpaired t-test p > 0.13). Data
presented as % of maximum CP55,940 (1 lM) response.
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FIG. 6. Effect of 10 lM terpenoids on D9-THC-induced hyperpolarization in AtT20-CB2. Terpenoids tested
were (A) a-pinene, (B) b-pinene, (C) b-caryophyllene, (D) b-myrcene, (E) linalool, and (F) limonene. Response
to D9-THC at two submaximal and one maximal concentration (n = 6–7, SEM, unpaired t-test p > 0.26). Data
presented as % of maximum CP55,940 (1 lM) response.
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for this experiment are illustrated in Figure 8A. We mea-
sured the peak response to D9-THC and the signal
remaining 30 min after agonist exposure, and quantified
desensitization as a percentage decline in the peak re-
sponse. The D9-THC (10 lM) signal desensitized by
63% – 6%, in the presence of the terpenoid mix desensi-

tization, was 61% – 5% (Fig. 8B). Thus, terpenoids did
not interfere with desensitization of CB1 signaling
produced by D9-THC. We also assessed the capacity
of D9-THC alone, terpenoids alone (10 lM each), or
terpenoids combined with D9-THC to affect SST re-
ceptor signaling in AtT20-CB1 cells (heterologous

FIG. 7. Testing the ‘‘Entourage effect.’’ Effect of combination of six terpenoids at 10 lM each on D9-THC-
induced hyperpolarization in (A) AtT20-CB1 and (B) AtT20-CB2. Response to D9-THC at two submaximal and
one maximal concentration (n = 5, SEM, unpaired t-test p > 0.13). Data presented as % of maximum CP55,940
(1 lM) response.

FIG. 8. Terpenoids on D9-THC-mediated desensitization in AtT20-CB1. (A) Representative traces of
hyperpolarization and signal desensitization mediated by D9-THC alone (10 lM, black) or with terpenoids (10 lM
each, red). Cells were then challenged with SST (100 nM) after 30 min to examine heterologous desensitization.
(B) Percentage desensitization after 30 min exposure to D9-THC alone (10 lM) or in the presence of terpenoids
(10 lM each), compared with peak fluorescence response. Terpenoids did not affect D9-THC-mediated
desensitization (n = 5, SEM, unpaired t-test p = 0.76). Drugs were added for the duration of the bar.
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desensitization). SST (100 nM) was applied 30 min
after first drug application (Figs. 8A and 9A), and
the hyperpolarization produced by SST after D9-THC,
terpenoids alone, or D9-THC with terpenoids was not
significantly different from that produced by SST
alone ( p > 0.05, Fig. 9B).

Discussion
The principal finding of this study is that agonist activa-
tion of CB1 and CB2 receptors is not obviously altered
by any or all of the six major terpenoids from Cannabis
sativa. The terpenoids tested did not activate CB1 or
CB2 by themselves, nor did they modify the signaling
of the high-efficacy agonist CP55,940 or the lower effi-
cacy agonist D9-THC. In particular, D9-THC effects
would be expected to be very sensitive to the presence
of drugs that inhibited (or enhanced) signaling at the re-
ceptor. There are no spare receptors for D9-THC in this
assay, and changes in ligand binding would be directly
reflected as a change in the maximum response. The
lack of effect of terpenoids on the response to the synthetic
cannabinoid CP55,940 indicates that terpenoids do not
interfere with maximal cannabinoid receptor-mediated
hyperpolarization, suggesting no direct modulation of
the potassium channel response. This was confirmed by
the lack of effect of terpenoids on the response to SST.

A previous study showed that b-caryophyllene is a
CB2 agonist.22 However, we were unable to detect
any effect of b-caryophyllene on CB2 signaling in this

study. The reasons for this are unclear, but the efficacy
of b-caryophyllene has not been defined in cellular as-
says and may be lower than that of D9-THC. The CB2

response to even high concentrations of D9-THC in
our assay is small, suggesting that productive coupling
of CB2 to endogenous potassium channels in AtT20
cells requires high-efficacy agonists. The affinity of
b-caryophyllene for CB2 (155 nM) has been deter-
mined in membranes from HEK293 cells heterolo-
gously expressing CB2,22 but is not known in intact
cells. Its EC50 for inhibition of forskolin-induced adenylyl
cyclase in CHO-K1 expressing CB2 was *2 lM,22 sug-
gesting a low functional affinity, which may not be suffi-
cient to significantly affect the rapid response to the
higher affinity agonist D9-THC.

The role of terpenoids in cannabis-induced analgesia
in rats was recently evaluated by Harris et al.23 They
tested THC, isolated terpenoids, extract without terpe-
noids, and full extract, and suggested that the analge-
sic effect of cannabis is mainly due to THC presence
and proposed that terpenoids do not contribute to
cannabis-mediated analgesia. These findings support
our results, and interestingly their extract had a very
high percentage of b-caryophyllene.

Positive and negative allosteric modulators have been
reported for CB1,24,25 and the effects of several negative
allosteric modulators have been defined in the hyperpo-
larization assay used here.20 Both PSNCBAM-1 and
ORG27569 enhanced CP55,940 signal desensitization,

FIG. 9. SST challenge of AtT20-CB1 cells to investigate heterologous desensitization. (A) Representative traces
of cells preincubated with (black) or without (red) terpenoids for 30 min before SST (100 nM) challenge.
(B) Comparison of peak hyperpolarization (% fluorescence change) obtained after SST (100 nM) challenge
(n = 5, one-way ANOVA p > 0.05). Drugs were added for the duration of the bar.
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while PSNCBAM-1 also inhibited the initial CP55,940
hyperpolarization. Coapplication of the terpenoids
with D9-THC failed to affect the peak response, or the
degree of tachyphylaxis observed over a 30-min expo-
sure to drug, suggesting that they are not acting as allo-
steric modulators of this CB1 signaling pathway.

Limitations
A limitation of this study is that we only examined CB1

and CB2 signaling through one pathway, involving Gi/o.
The hyperpolarization of the AtT20 cells likely repre-
sents G-protein-mediated activation of inwardly rectify-
ing potassium channels (GIRK), as previously described
for CB1 and other GPCR in these cells as well as in sev-
eral different neurons.26–28 Cannabinoid receptors cou-
ple to multiple G proteins as well as signaling through
other pathways such as those dependent on arrestins,
and it is possible that entourage effects of terpenoids
are mediated through modulation of a subset of the can-
nabinoid receptor signaling repertoire.26 CB1 and CB2

receptors can be activated in a ligand-biased manner—
the phenomenon where a drug preferentially activates
a subset of the signaling pathways that the receptor
can access.29 In general, this bias has been best defined
for G protein coupling versus activation of arrestin-
mediated signaling, but to our knowledge there are no
examples of cannabinoid ligands only affecting arrestin-
mediated signaling.19,30 It remains possible that terpe-
noids have such an absolute bias, but this would be
unprecedented, and in any case recruitment of arrestin
would be expected to produce enhanced desensitization
of the CB1 responses to prolonged agonist exposure.20,29

Any subtle change to receptor signaling should be clear
with use of the low-efficacy agonist D9-THC.

Overall, our data suggest that it is unlikely that the ter-
penoids studied here affect D9-THC interactions with
cannabinoid receptors. However, this is not a definitive
rebuttal of the entourage effect. Our study cannot address
the possibility of entourage effects emerging through
effects of terpenoids on cannabinoid metabolism and dis-
tribution as well as interaction with other G-protein-
coupled receptors, ligand-gated ion channels, signaling
cascades present on the same cells that express cannabi-
noid receptors, or on other cells up or downstream of the
cannabinoid receptor expressing cells. There are many
other ways that these molecules could interact with can-
nabinoids to influence the overall therapeutic and subjec-
tive outcomes of cannabis administration, and it should
be acknowledged that D9-THC influences signaling at a
wide variety of other noncannabinoid receptor tar-

gets (see Banister et al.31 for a review). Terpenoids may
even have primary effects on distinct functional modules
that together with cannabinoid receptor-modulated
pathways are ultimately integrated into a behavioral or
physiological output. So the quest for entourage does
not end here; in many ways, it has only just begun.
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FBS¼ fetal bovine serum
HBSS¼Hank’s Balanced Salt Solution

RFU¼ relative fluorescence units
SEM¼ standard error of the mean
SST¼ somatostatin
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Supplementary Data

SUPPLEMENTARY FIG. S1. Effect of terpenoids at varying concentrations on AtT20-CB2 membrane potential
and on 1 lM CP55,940-induced hyperpolarization. Terpenoids (A) a-pinene, (B) b-pinene, (C) b-caryophyllene,
(D) b-myrcene, (E) linalool, and (F) limonene were added to AtT20-CB2 cells and incubated for 5 min. Maximum
fluorescence changes were determined and compared with negative control (HBSS, closed circles). No
significant fluorescence difference was observed when comparing means of terpenoids and HBSS (n = 5, SEM,
unpaired t-test p = 0.72). CP55,940 (1 lM) addition to AtT20-CB2 cells induced fluorescence changes from
30.4% – 2.4% to 32.2% – 2.5%. Peak CP55,940 responses were not affected by the presence of terpenoids (open
circles, n = 5, SEM, unpaired t-test p > 0.09). CB2, cannabinoid receptor 2; HBSS, Hank’s Balanced Salt solution;
SEM, standard error of the mean; V, vehicle
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SUPPLEMENTARY FIG. S2. Effect of 100 nM terpenoids on peak hyperpolarization induced by D9-THC in
AtT20-CB1 cells. Terpenoids tested were (A) a-pinene, (B) b-pinene, (C) b-caryophyllene, (D) b-myrcene, (E)
linalool, and (F) limonene. Response to D9-THC at two submaximal and one maximal concentration (n = 5, SEM,
unpaired t-test p > 0.24). Data presented as % of maximum CP55,940 (1 lM) response. D9-THC, D9-
tetrahydrocannabinol; CB1, cannabinoid receptor 1.
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SUPPLEMENTARY FIG. S3. Effect of 100 nM terpenoids on peak hyperpolarization induced by D9-THC
in AtT20-CB2 cells. Terpenoids tested were (A) a-pinene, (B) b-pinene, (C) b-caryophyllene, (D) b-myrcene,
(E) linalool, and (F) limonene. Response to D9-THC at two submaximal and one maximal concentration
(n = 5, SEM, unpaired t-test p > 0.50). Data presented as % of maximum CP55,940 (1 lM) response.
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Chapter VI. 

Study V. Investigating the specificity of cannabidiol signalling 

While the earlier chapters are focused on the pathways involved in the on-target effects 

associated with SCRA toxicity, Chapter 6 features an exploratory study of the 

pharmacological effects of cannabidiol (CBD) signalling on multiple receptors, and their 

corresponding therapeutic advantages. This Chapter presents a detailed molecular 

pharmacological study of CBD across a range of GPCRs (including CB1, CB2, D2, and 

MOR) at 37 °C or at room temperature (to mimic the significant number of studies reported 

to date). The signalling pathways investigated included the Gi/o-mediated activation of GIRK 

channels, and inhibition of forskolin-induced cAMP production. Additionally, attempts 

were made to characterise the negative allosteric-like activity of CBD at CB1. Therefore, 

the ultimate aim of this work was to determine whether CBD specifically modulates 

receptor(s) signalling at a physiologically relevant temperature or the effects observed in 

vitro are confounded by variables such as temperature.  

Contributions to the work 

This paper represents a collaborative work hosted in Mark Connor’s laboratory at Macquarie 

University Australia. I took the lead role in experimental design, conducting the 

experiments, data analysis and writing the paper with support from my co-investigators: 

Mark Connor oversaw the work in this research group; Marina Santiago assisted with the 

experiment related to acute effect of CBD on CB1 and CB2; Preeti Manandhar performed 

the experiments concerned with the CBD effect on MOR; Michael Udoh assisted with the 

experiment related to CBD effect on CB2. Cyclic AMP signalling assay were carried out 

independently in Michelle Glass laboratory to investigate the effect of CBD on CB1 and D2 

signalling. All the authors discussed the results and contributed to the manuscript.  
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6.1. Introduction 

The Cannabis sativa plant contains approximately 150 phytocannabinoids, including the 

non-psychoactive compound cannabidiol (CBD) (Hanuš et al., 2016). Unlike Δ9-

tetrahydrocannabinol (THC), which is responsible for the unique psychoactive effects of 

cannabis, CBD shows acceptable safety and tolerability profile in humans (Machado 

Bergamaschi et al., 2011), and therefore has gained popularity as a “natural treatment” for a 

wide range of health conditions (Russo, 2017). There is growing interest in the potential 

therapeutic effects of CBD as a result of its purported anxiolytic, antipsychotic, antiemetic 

and anti-inflammatory properties (Zhornitsky and Potvin, 2012, Fernández‐Ruiz et al., 2013, 

Oláh et al., 2014). Currently, the US Food and Drug Administration and the European 

Medicines Agency have approved CBD (Epidiolex®, GW Pharmaceuticals) for the 

treatment of Dravet and Lennox-Gastaut Syndromes (rare types of epilepsy in children) (GW 

Pharmaceuticals, 2018). Sativex, a medication that combines both CBD and THC has also 

been approved for the alleviation of neuropathic pain in adults suffering from multiple 

sclerosis (Pertwee, 2012). Given the potential for wide-ranging therapeutic effects of CBD, 

it is important to understand the pharmacological profile of CBD across potential molecular 

targets, including G-protein coupled receptors (GPCRs). 

The therapeutic interest in CBD has been accompanied by several studies investigating the 

fundamental signalling mechanism of CBD at multiple targets. These include the activity of 

CBD at cannabinoid receptors; despite the low binding affinity of  CBD for the orthosteric 

sites of both CB1 and CB2 (as concluded from the binding studies mean Ki was found to be 

3245 ± 803 nM – 40-fold less than the binding affinity of THC at CB1 (McPartland et al., 

2015)). While some in vitro studies have suggested that CBD may antagonise the 

cannabinoid-induced effect with KB values 37-times more potent than their binding affinities 
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at CB1 (reviewed in (Pertwee, 2008, McPartland et al., 2015)). Laprairie et al. (2014) 

reported that CBD reduced the potency and efficacy of THC and 2-arachidonoylglycerol on 

Gq (PLCβ3)- and Gi (ERK1/2)-dependent signalling of CB1, suggesting the negative 

allosteric activity of CB1 by CBD. In autaptic hippocampal neurons, CBD treatment has 

also been found to suppress endogenous cannabinoid/CB1-mediated signalling in a fashion 

consistent with negative allosteric modulation of CB1 (Straiker et al., 2018). However, early 

studies indicated that the ability of CBD to antagonise CB1-mediated effects may be due to 

its inhibitory effect on enzymatic hydrolysis of the endocannabinoid anandamide 

(McPartland et al., 2015). For example, one study showed that CBD inhibits anandamide 

hydrolysis by FAAH in a rat brain membrane with an IC50 of ~10 µM (Leweke et al., 2012). 

The initial report of opioid receptor binding data led Kathmann et al. (2006) to propose that 

CBD is an allosteric modulator of mu-opioid receptor, they found that CBD (30 µM) was 

able to fully inhibit DAMGO binding to rat brain cortical membranes when incubated for 

45 min at 25 °C. CBD may also regulate the serotonin 5HT1A; GTPγS assay data revealed 

that 16 µM of CBD increased [35S]GTPγS incorporation by 67 ± 6% in membranes 

containing 5HT1A receptor (though with an efficacy which may not be physiologically 

relevant) (Russo et al., 2005). At GPR55, several studies have suggested that CBD 

antagonises HU210- or CP55940-induced [35S]GTPγS binding in HEK293 cell membranes 

(Drmota et al., 2006, Ryberg et al., 2007). The negative allosteric activity of CBD has also 

been reported for dopamine receptors in mouse striatal membranes (Bloom and Hillard, 

1985). Around a dozen studies exist on the inhibitory effect of CBD on ion channels such 

as GABAA, α3 glycine receptors, TRPV1, and T-type calcium channels (e.g. Long et al., 

2012, Ahrens et al., 2009, Di Marzo et al., 2002, Ross et al., 2008). 

Given the promiscuity of CBD interactions with multiple targets, our current understanding 

of CBD signalling may depend on the system in which it is studied - several of the studies 

were performed at room temperature without appropriate controls for CBD modulation of 

effectors, thus the results of these studies are difficult to extrapolate to normal human 

physiology (reviewed in (Bisogno et al., 2001)). Therefore, we have undertaken a detailed 

molecular pharmacological study of CBD effects on the signalling of multiple GPCR using 

uniform in vitro assays. In this study, we examined the effects of CBD on acute signalling 

of multiple receptors (CB1, CB2, D2, and mu-opioid receptor (MOR)) stably transfected 

into AtT20 or HEK 293 cells. Intriguingly, we found a temperature-dependent effect of CBD 

modulation of Gi/o-mediated activation of GIRK channel or inhibition of adenylyl cyclase in 
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cells expressing CB1, CB2, D2 or MOR (i.e. greater inhibitory effect of CBD at RT 

compared to physiologically relevant temperature). In fact, we have observed a disparate 

pharmacological profile of CBD at CB1. We found that CBD selectively inhibited the CB1-

mediated cellular hyperpolarisation at physiologically relevant temperature, and that the 

effect of the submaximally effective concentration of the CB1 allosteric ligand (ORG27569) 

on desensitisation of receptor signalling was significantly reversed when co-applied with 

CBD. Obtaining an accurate understanding of CBD activity profile is critical to the 

meaningful interpretation of CBD function across multiple targets and in assessing its 

therapeutic potential.  

6.2. Methods 

6.2.1. Stable cell lines and cell maintenance 

Experiments utilized human CB1, CB2, D2, and MOR stably transfected into AtT20 or HEK 

293 cells. AtT20 Flp-In cells transfected with human CB1, CB2, or mu-opioid receptor 

(MOR) (previously described in (Knapman et al., 2014, Banister et al., 2016)) were used for 

assays of G-protein inwardly rectifying potassium channel (GIRK)-mediated 

hyperpolarisation. Clonally-isolated HEK 293 cells expressing human CB1 N terminally-

tagged with three haemagglutinin motifs (first described in (Cawston et al., 2013)) or human 

D2 receptors N terminally-tagged with a FLAG motif (not previously described) were used 

to measure changes in cAMP. AtT20 and HEK 293 cells were cultured in Dulbecco’s 

Modified Eagle Media (DMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 

10% fetal bovine serum (FBS, Sigma-Aldrich, St. Louis, MO, USA), 100 units/ml penicillin, 

100 μg/ml streptomycin (Thermo Fischer Scientific, Waltham, MA, USA). ATt20 cell 

media contained 80 μg/ml hygromycin (InvivoGen, San Diego, CA, USA), while media for 

HEK 293 cells was supplemented with 250 μg/ml zeocin. Cells were grown in 75 cm2 flasks 

at 37 °C in a humidified 5% CO2 atmosphere and passaged when 80-90% confluent. Assays 

were carried out on cells up to 25 passages. 

6.2.2. Potassium channel activity measurements 

Changes in the membrane potential of cells in response to GIRK activation was measured 

with the automated fluorometric imaging plate reader (FLIPR) membrane potential (blue) 

assay kit (Molecular Devices, Sunnyvale, CA) in FlexStation 3 as previously described 

(Knapman et al., 2013). AtT20 cells from a 90-100% confluent flask was resuspended in 10 



109 
 

ml Leibovitz’s (L-15) media supplemented with 1% FBS, 100 units/ml penicillin, 100 μg/ml 

streptomycin and 15 mM glucose. The cells were seeded in a volume of 90 μl in poly-D-

lysine (Sigma-Aldrich) coated clear bottom 96 well microplates. Cells were incubated 

overnight at 37 °C in humidified ambient CO2.  

On the following day, 90 μl of membrane potential dye diluted in HBSS composed of (mM) 

NaCl 145, HEPES 22, Na2HPO4 0.338, NaHCO3 4.17, KH2PO4 0.441, MgSO4 0.407, MgCl2 

0.493, CaCl2 1.26, glucose 5.56 (pH 7.4, osmolarity 315 ± 15), was loaded into each well of 

the plate 1 hour prior to the measuring fluorescence using the microplate reader. Meanwhile, 

the drugs (serial dilution of CP55940, or morphine for CB1, CB2 or MOR, respectively) of 

various concentration were prepared in HBSS supplemented with 0.1% bovine serum 

albumin (BSA) and 1% DMSO. The cells were excited at a wavelength of 530 nm and 

emission measured at 565 nm, with cut-off at 550 nm, and the fluorescence was measured 

every 2s. CBD (10 µM or 100 nM) was added after 2 min of baseline recording and 

incubated for 5 min after which the drug (10X) was added to give the desired concentrations. 

The final concentration of DMSO in each well was 0.1-0.11%; which limited the maximum 

concentration of drug used in the assay. A vehicle (HBSS plus DMSO alone) was included 

in each column of 96-well microplate to enable correction for any vehicle-dependent change 

in fluorescence measurements. For experiments examining the prolonged effects of CBD on 

these receptors, cells were pre-treated with CBD (10 µM or 100 nM) in parallel to the vehicle 

(control, non-CBD treated) for 60 min (incubated with the membrane potential dye). The 

percentage change in fluorescence was measured for the cells treated with CBD and vehicle. 

The measurements were obtained at both physiological (37 °C) and room temperature 

(24±1°C). 

CB1 signalling desensitisation was measured during prolonged activation of GIRK in AtT20 

cells as previously described (Cawston et al., 2013, Sachdev et al., 2019). AtT20-CB1 cells 

were pre-treated with CBD, ORG27569 (ORG, CB1 NAM (Price et al., 2005)), CBD + 

ORG, or vehicle for 5 min after which CP55940 was added. Desensitisation was calculated 

as % decline from peak response after 30 min of CP55940 application. The raw data were 

also fitted to ‘plateau followed by one phase association curves’ in PRISM (Graph Pad 

Software Inc., San Diego, CA). The parameter, X0, is the length (in seconds) of the initial 

plateau phase that represented the minimum hyperpolarisation induced by CP55940 (Y0), 

and ‘plateau’ which indicated the recovery of signalling after 30 min in CP55940. The 

parameter, tau, is defined as time constant, expressed in units of time, seconds. The 
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estimated tau value for each data set was compared between the different experimental 

conditions. On rare occasions where CP55940 failed to produce a substantial CB1 

desensitisation, the tau was constrained to the time at which the association curve ended. 

6.2.3. cAMP measurement 

BRET-CAMYEL assays to measure cellular cAMP levels were performed as previously 

described by Jiang et al. (2007) and Cawston et al. (2013). HEK 293 cells expressing human 

CB1 or D2 receptors were seeded in 10 cm culture dishes (Corning®, NY, USA) at densities 

such that confluency would be approximately 50% after either 24 or 48 hours. At this point, 

the culture medium was replaced, and cells were transfected with 5 µg pcDNA-His-

CAMYEL plasmid with 30 µg linear polyethyleneimine (PEI, Polysciences, Warrington, 

PA, U.S.A.). Cells were incubated overnight before being lifted and plated at a density of 

70,00-80,000 cells/well in poly-D-lysine (0.05 mg/mL, PDL; Sigma-Aldrich) coated, white 

96-well CulturPlate plates (PerkinElmer, Waltham MA, U.S.A.), and grown overnight. For 

assaying, culture medium was aspirated, cells were washed once with PBS and then serum-

starved for at least 30 minutes in phenol-red free DMEM (Thermo Fisher Scientific, 

Waltham MA, U.S.A.), supplemented with 1 mg/mL fatty acid-free BSA (ICPBio, 

Auckland, NZ) and 10 mM HEPES (Thermo Fisher Scientific) (“assay buffer”). Cells were 

then pre-incubated with various concentrations of CBD for 15 minutes at either 25 °C or 37 

°C in a LUMIstar® Omega luminometer plate reader (BMG Labtech GmbH, Ortenberg, 

Germany). Coelenterazine-h (final concentration 5 µM; NanoLight Technologies, Pinetop, 

AZ) was then dispensed and incubated for five minutes in darkness. Drugs (final 

concentrations 5 µM forskolin with serial dilutions of CP55,940 or quinpirole for CB1 or 

D2, respectively) prepared in assay buffer were then dispensed into assay wells. 

Luminescence was simultaneously detected at 475 nm and 535 nm for approximately one 

hour at 25 °C or 20 minutes at 37 °C. Raw data are presented as inverse BRET ratio of 

emission at 475/535. 

6.2.4. Data Analysis 

Analysis of all the experiments was performed in GraphPad Prism (Graph Pad Software 

Inc., San Diego, CA). Membrane potential assay were represented as a percentage of 

baseline fluorescence, following correction of the vehicle responses. Concentration response 

curves were fit to the four-parameter logistic equation in PRISM v8 to obtain the EC50 and 

Emax values. For cAMP measurement, inverse BRET ratios (475/535 nm) were exported 
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from Omega MARS software (V3.1 R5, BMG Labtech GmbH) and data were further 

analysed in Prism v8, with responses normalised to forskolin (100%) and vehicle (0%). 

Unpaired t-tests were used when comparing two data points, and one-way ANOVA for more 

than two data points with one independent variable. Data are expressed as the mean ± SEM 

of at least 5 independent determinations performed in duplicate, unless otherwise noted. 

Effects with p values less than 0.05 were considered to be statistically significant.  

6.2.5. Materials 

Drugs stocks were made up in DMSO and diluted on the day of the assay. CP55940, 

SR141716A, AM630, and quinpirole was purchased from Cayman Chemical Company 

(Ann Arbour, MI, USA); CBD was purchased from National Measurement Institute 

(Sydney, NSW, Australia), ORG27569 and somatostatin were from Hello Bio (Bristol, UK) 

or Auspep (VIC, Australia). Morphine was a kind gift from Department of Pharmacology, 

University of Sydney. All the drugs were stored in aliquots of 30 mM at –30 °C until needed. 

6.3. Results 

6.3.1. Studies of K channel activation 

6.3.1.1. Effect of CBD on CB1 receptor signalling 

Previous reports suggested that CBD could act as a negative allosteric modulator of CB1 

receptor signalling at concentrations well below the reported affinity (Ki) of CBD at the CB1 

orthosteric site (Thomas et al., 2007, Hayakawa et al., 2008, Laprairie et al., 2015, Straiker 

et al., 2018). Therefore, we initially examined the ability of CBD (10 µM or 100 nM) to 

modify canonical CB1 receptor Gi/o-mediated activation of GIRK channel in AtT20 cells. 

Application of CBD (10 µM or 100 nM) for 5 min did not significantly affect the 

hyperpolarisation induced by CP59940 compared to vehicle treated cells at physiologically 

relevant temperature (Control, pEC50 7.5 ± 0.1, max 34 ± 1.7%; in CBD 100 nM pEC50 7.5 

± 0.1, max 34 ± 1.9%; in CBD 10 µM pEC50 7.3 ± 0.3, max 32 ± 1.8%) (Figure 6-1, P > 

0.05). However, before agonist addition, CBD (10 µM) modestly but significantly produced 

a consistent decrease in the resting membrane potential of the cells by itself (Supplementary 

Figure 6-1A, P < 0.05). We performed the same experiments at 24 °C to closely mimic a 

significant number of key studies to date. In comparison with the assay performed at 37 °C, 

pre-treatment with CBD (10 µM, 5 min) at 24 °C inhibited the hyperpolarisation induced by 

CP55940 in the same cells (Control, pEC50 7.2 ± 0.1, max 29 ± 1.3%; in CBD 10 µM pEC50 
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6.6 ± 0.2, max 21 ± 1.8%) (Figure 6-1). At 25 °C 100 nM CBD had no effect on the CP55940 

signalling (Control, pEC50 7.2 ± 0.1, max 29 ± 1.3%; in CBD 100 nM pEC50 7.1 ± 0.1, max 

27 ± 1.2%). Unlike 37 °C, brief CBD treatment at 24 °C did not produce a change in the 

membrane potential by itself. To further understand the effects of CBD alone at 37 °C on 

the membrane potential of the AtT20-CB1 cells prior to agonist addition, we applied CBD 

for 60 min at a concentration up to 10 µM, and found that CBD produced a maximum change 

in fluorescence of 9 ± 1.2%; however when co-applied with SR141716A 1 µM (CB1 

antagonist), we did not observe any  significant difference in the CBD response 

(Supplementary Figure 6-1B), implicating that these effects were occurring via mechanism 

independent of CB1 orthosteric site. 

 

Figure 6-1. Effect of CBD on CP55940-mediated CB1 signalling  

Concentration response curve showing CP55940 induced hyperpolarisation of CB1 pre-
treated with vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 5 min at 37 °C (A) and 
at RT (B). Second panel of concentration response curve of CP55940 pre-treated with 
vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 60 min at 37 °C (C) and at RT (D). 
Data represents mean ± SEM of six independent determinants performed in duplicate. 
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To determine whether more prolonged application of CBD can affect the CB1 receptor 

signalling, we pre-treated AtT20-CB1 cells with CBD (10 µM or 100 nM) for 60 min prior 

to the subsequent addition of CP55940 at 37 °C and 24 °C. Pre-treatment of cells at 37 °C 

with CBD (10 µM, 60 min) inhibited the hyperpolarisation induced by CP55940 (Control, 

pEC50 7.7 ± 0.1, max 31 ± 1.3%; in CBD 10 µM pEC50 7 ± 0.1, max 18 ± 0.7%) (Figure 6-

1), consistent with a negative allosteric-like activity of CBD at CB1. By contrast, CBD (100 

nM) did not affect the CP55940 induced hyperpolarisation in AtT20-CB1 cells (Control, 

pEC50 7.7 ± 0.1, max 31 ± 1.3%; in CBD 100 nM pEC50 7.7 ± 0.1, max 32 ± 1.2%). When 

the experiments were performed at 24 °C, CBD (10 µM, 60 min) abolished the effects of 

CP55940 compared with vehicle treated cells (Control, pEC50 7.2 ± 0.2, max 27 ± 2%; in 

CBD 10 µM pEC50 5.7 ± 2, max 5 ± 4%) (Figure 6-1), while 100 nM of CBD was without 

effect (Control, pEC50 7.2 ± 0.2, max 27 ± 2%; in CBD 100 nM pEC50 7.2 ± 0.2, max 27 ± 

2%).  

Based on the functional profile of CBD to inhibit CP55940-induced signalling of CB1; we 

hypothesised that CBD is an allosteric modulator of CB1 and that may behave in a similar 

way as ORG, altering CB1 desensitisation time course. We investigated this theory by pre-

treating the AtT20-CB1 cells with CBD or ORG individually, in combination (CBD + 

ORG), or vehicle for 5 min prior to the subsequent application of CP55940 for 30 min. The 

presence of CBD (10 µM – 100 nM, 5 min) alone did not significantly affect the 

desensitisation produced by CP55940 (100 nM) compared to control cells (Control 64 ± 4%, 

CBD 10 µM treated 64 ±7%, CBD 1 µM treated 74 ± 6%, CBD 100 nM treated 61 ± 5%) 

(Supplementary Figure 6-2). Consistent with our previous results (Cawston et al., 2013), the 

desensitisation of CP55940 induced hyperpolarisation was potentiated in the continuous 

presence of ORG (10 µM and 1 µM) compared to corresponding CP55940 response without 

ORG (Control 64 ± 4%, ORG 10 µM treated 120 ± 4%, ORG 1 µM treated 100 ± 3%) 

(Supplementary Figure 6-2). However, when CBD and ORG was added together, the 

hyperpolarisation produced by CP55940 reversed faster in the presence of ‘CBD (10 µM) + 

ORG (1 µM)’ compared to ORG alone (CBD + ORG treated tau 405s, 92 ± 6%; ORG treated 

tau 791s, 100 ± 3%) (Figure 6-2). It was also observed that the CB1 receptor signal also 

desensitised to CP55940 at a much slower rate without CBD and ORG mix (Control tau 

1257s, 64 ± 4%). Meaning that CBD exerts its effect at a faster rate in presence of ORG, 

while desensitisation (peak response at 30 min) of receptor signalling was reduced when 
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CBD and ORG were added together, might therefore, suggest a complex signalling profile 

of CBD different to negative allosteric behaviour of ORG at CB1. 

 

 

Figure 6-2. Effect of CBD on CB1 signalling during continuous CP55940 exposure 

(A) Representative trace showing AtT20-CB1 cells pre-treated with vehicle, or ORG (1 
µM), or in combination (CBD 10 µM + ORG 1 µM) for 5 min prior to the subsequent 
application of CP55940 for 30 min. (B) Within each set, condition ‘Vehicle’ was compared 
to ‘CBD’, or ‘ORG’, or ‘CBD + ORG’. Data represent mean ± SEM of at least five 
independent determinants performed in duplicate. 
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6.3.1.2. Effect of CBD on CB2 receptor signalling 

CBD has previously, though inconsistently, being reported as an antagonist of CB2 receptor 

(Thomas et al., 2007). In AtT20-CB2 cells, CP55940 produced concentration-dependent 

hyperpolarisation (pEC50 7.2 ± 0.1, max 30 ± 2%); pre-treatment with CBD (10 µM or 100 

nM) for 5 min at 37 °C had no effect on the observed CP55940 signalling (in CBD 100 nM 

pEC50 7.2 ± 0.2, max 30 ± 2%; in CBD 10 µM pEC50 7 ± 0.1, max 31 ± 1.4%) (Figure 6-3). 

Furthermore, we observed no significant difference in CP55940 signalling at 24 °C when 

co-applied with CBD (Control, pEC50 7.1 ± 0.1, max 28 ± 1.9%; in CBD 100 nM pEC50 6.9 

± 0.1, max 29 ± 2%; in CBD 10 µM pEC50 6.7 ± 0.1, max 26 ± 1.6%). When applied as a 60 

min pre-treatment, CBD 10 µM inhibited the CP55940 induced hyperpolarisation at both 

temperatures (at 37 °C Control, pEC50 7.4 ± 0.1, max 35 ± 1.3%; in CBD 10 µM pEC50 7.1 

± 0.1, max 29 ± 0.8%; at 24 °C Control, pEC50 6.9 ± 0.1, max 31 ± 1.4%; in CBD 10 µM 

pEC50 6.3 ± 0.1, max 21 ± 1%) (Figure 6-3); however, the extent of inhibition was small in 

comparison with the effect on CB1 receptors at the same concentration (CB2 receptor 14 ± 

4%, CB1 receptor 37 ± 6%, summarised for all receptors in Figure 6-6). CBD 100 nM (60 

min) had no measurable effects on the CP55940 signalling at either temperature. Although 

CBD alone (10 µM, 60 min) produced a small decrease in fluorescence in AtT20-CB2 cells 

(5 ± 1.4%), this was not blocked by CB2 antagonist (AM630, 3 µM, P > 0.05), indicating 

that this was unlikely to represent the CB2 orthosteric-agonist effect (Supplementary Figure 

6-3). 
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Figure 6-3. Effect of CBD on CP55940-mediated CB2 signalling  
 
Concentration response curve showing CP55940 induced hyperpolarisation of CB2 pre-
treated with vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 5 min at 37 °C (A) and 
at RT (B). Second panel of concentration response curve of CP55940 pre-treated with 
vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 60 min at 37 °C (C) and at RT (D). 
Data represents mean ± SEM of six independent determinants performed in duplicate. 
 

6.3.1.3. Effect of CBD on MOR signalling  

As previously reported (Kathmann et al., 2006), CBD possesses an allosteric effect on ligand 

binding at the mu-opioid receptor (MOR). In order to study the functional consequences of 

CBD on MOR, we pre-treated the AtT20-MOR with CBD for 5 min and 60 min respectively 

before the addition of morphine (Figure 6-4). Treatment with CBD (10 µM or 100 nM) for 

5 min at 37 °C or 24 °C failed to affect the morphine-induced hyperpolarisation of MOR 

compared to vehicle treated cells (at 37 °C Control, pEC50 7.4 ± 0.1, max 30 ± 1%; in CBD 

10 µM pEC50 7.5 ± 0.1, max 32 ± 2%; at 24 °C Control, pEC50 6.7 ± 0.4, max 24 ± 5%; in 

CBD 10 µM pEC50 6.7 ± 0.6, max 26 ± 7%) (Figure 6-4).  
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Figure 6-4. Effect of CBD on Morphine-mediated mu-opioid receptor signalling 

Concentration response curve showing Morphine induced hyperpolarisation of MOR pre-
treated with vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 5 min at 37 °C (A) and 
at RT (B). Second panel of concentration response curve of Morphine pre-treated with 
vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 60 min at 37 °C (C) and at RT (D). 
Data represent mean ± SEM of six independent determinants performed in duplicate. 

 

Application of CBD (10 µM or 100 nM) for 60 min at 37 °C also failed to affect the 

morphine-mediated MOR activation, showing the lack of effect of CBD on MOR signalling 

at physiologically relevant temperature (Control, pEC50 7.7 ± 0.1, max 31 ± 1.2%; in CBD 

100 nM pEC50 7.6 ± 0.2, max 31 ± 1.3%; in CBD 10 µM pEC50 7.4 ± 0.1, max 28 ± 1.4%). 

By contrast, pre-treatment with CBD 10 µM for 60 min at 24 °C inhibited the morphine 

induced hyperpolarisation (Control, pEC50 7.2 ± 0.1, max 25 ± 2%; in CBD 10 µM pEC50 7 

± 0.1, max 17 ± 1%) (Figure 6-4). Thus, CBD (10 µM, 60 min) inhibits CB2 and MOR 

signalling to a similar extent at 24 °C (MOR 30± 3%, CB2 31 ± 4%), however under these 

conditions the effect of CBD on these receptors was much less than the effect on CB1 

receptor signalling (84 ± 2% inhibition) (Figure 6-6). 
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Figure 6-5. Effect of CBD on AtT20-WT signalling 

Concentration response curve showing native Somatostatin (SST) induced hyperpolarisation 
of AtT20 WT pre-treated with vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 5 min 
at 37 °C (A) and at RT (B). Second panel of concentration response curve of SST pre-treated 
with vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 60 min at 37 °C (C) and at RT 
(D). the third panel showing the concentration response curve of ML297 pre-treated with 
vehicle ( ), or CBD 10 µM ( ) for 60 min at 37 °C (E) and at RT (F). Data represent mean ± 
SEM of six independent determinants performed in duplicate. 
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6.3.1.4. Effect of CBD interaction with wild-type AtT20 cells 

To determine whether CBD non-specifically interferes with GPCR signalling in AtT20 cells, 

we tested the effect of CBD on native somatostatin receptors (SST), which hyperpolarise 

AtT20-WT cells via GIRKs (Cervia et al., 2003) (Figure 6-5). Application of CBD (10 µM 

or 100 nM) for 5 min did not affect the hyperpolarisation to the subsequently added SST at 

both 37 °C (Control, pEC50 9.6 ± 0.1, max 38 ± 1.4%; in CBD 100 nM pEC50 9.6 ± 0.1, max 

36 ± 1.4%; in CBD 10 µM pEC50 9.5 ± 0.2, max 38 ± 2%), and 24 °C (Control, pEC50 9.4 ± 

0.1, max 38 ± 1.5%; in CBD 100 nM pEC50 9.6 ± 0.2, max 36 ± 2%; in CBD 10 µM pEC50 

9.3 ± 0.1, max 35 ± 1.5%) respectively (Figure 6-5). Similarly to the effects of CBD at CB2, 

pre-treatment with CBD 10 µM for 60 min, modestly, but significantly inhibited the 

hyperpolarisation produced by SST alone (at 37 °C Control, pEC50 9.7 ± 0.1, max 36 ± 1%; 

in CBD 10 µM pEC50 9.4 ± 0.1, max 31 ± 1%; at 24 °C Control, pEC50 9.5 ± 0.1, max 37 ± 

1.3%; in CBD 10 µM pEC50 9 ± 0.1, max 31 ± 1%); however CBD 100 nM produced no 

change in the SST signalling (Figure 6-5). We also note that CBD 10 µM inhibits CB2 and 

SST signalling to a similar degree (CB2 14 ± 4%, SST 14 ± 4%). Because CBD 10 µM, 60 

min non-specifically interferes with the receptor signalling in AtT20 cells, we sought to 

establish whether the decline in signalling was due to its effect on GIRK channel. To address 

this, we assessed the effect of CBD on the hyperpolarisation produced by ML297, a direct 

activator of GIRK channel. The results indicate that 60 min treatment with CBD 10 µM at 

37 °C or 24 °C produced a minimal change in ML297-mediated activation of GIRK channel 

(Figure 6-5, P > 0.05), indicating that GIRK channel does not have direct consequences on 

the signalling profile of CBD.  
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Figure 6-6. Specificity of 10 µM CBD signalling  

Summarised data comparing CBD-induced % maximal inhibition of multiple receptors 
(including CB1, CB2, MOR (μ-receptor), SST) signalling when treated for 60 mins at RT 
(left panel), and 37 °C (right panel). Data represent mean ± SEM of six independent 
determinants performed in duplicate. 

 

6.3.2. Studies of cyclic AMP measurements 

6.3.2.1.Effect of CBD on CB1 signalling 

Inhibition of cAMP is another significant signalling pathway associated with cannabinoid 

receptor activation (Howlett and Fleming, 1984). Therefore, we examined the ability of 

CBD to modify cAMP levels in HEK 293-CB1 cells. CBD (10 µM or 100 nM) pre-treatment 

for 15 min at 37 °C failed to affect the CP55940-mediated inhibition of forskolin-induced 

cAMP response (Control, pEC50 7.7 ± 0.1, to a minimum of 39 ± 1%; in CBD 100 nM pEC50 

7.7 ± 0.1, to a minimum of 38 ± 1.3%; in CBD 10 µM pEC50 7.3 ± 0.1, to a minimum of 45 

± 3%) (Figure 6-7). However, when the experiments were performed at 25 °C, CBD 10 µM 

appeared to block the inhibition of FSK-stimulated cAMP activity by CP55940, though a 
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CB1 CB2 MOR SST CB1 CB2 MOR SST
0

20

40

60

80

100
%

 M
ax

im
al

 in
hi

bi
tio

n



121 
 

40 ± 1.3%; in CBD 10 µM pEC50 7.4 ± 0.2, to a minimum of 64 ± 4%); while CBD 100 nM 

had no impact on the CP55940 inhibition of cAMP levels (pEC50 7.9 ± 0.1, to a minimum 

of 40 ± 1.5%) (Figure 6-7).  

 

Figure 6-7. Concentration response curve of CP55940-induced inhibition of cAMP levels 
in HEK-CB1 pre-treated with vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 15 min 
at 37 °C (A) and at RT (B). Data represent mean ± SEM of six independent determinants 
performed in duplicate. 
Data from Glass laboratory 
 

6.3.2.2. Effect of CBD on D2 signalling 

CBD has also been reported to act as an allosteric modulator of dopamine D2 (Bloom and 

Hillard, 1985). Therefore, CBD was tested for its ability to antagonize quinpirole-mediated 

inhibition of cAMP in HEK cells expressing D2. At 10 µM of CBD (15 min, 25 °C), 

apparent blockade of quinpirole-mediated inhibition of forskolin-induced cAMP response 

was observed (Control, pEC50 9.1 ± 0.1, to a minimum of 45 ± 1%; in CBD 10 µM pEC50 

9.1 ± 0.1, to a minimum of 57 ± 2%) with the extent of the effect being smaller than that of 

CB1 receptors at the same concentration of CBD (D2 13 ± 2%, CB1 24 ± 3%). It was also 

noted that CBD produced an apparent shift in the baseline similar to that in HEK-CB1. While 

CBD (100 nM) did not affect the inhibition of cAMP accumulation by quinpirole (in CBD 

100 nM pEC50 9.1 ± 0.1, to a minimum of 45 ± 2%) nor shifted the baseline (Figure 6-8). 

Application of CBD (10 µM or 100 nM) for 15 min at 37 °C failed to affect the quinpirole 

inhibition of cAMP levels (Control, pEC50 9.1 ± 0.1, to a minimum of 41 ± 1%; in CBD 100 

nM pEC50 9.1 ± 0.1, to a minimum of 44 ± 1.3%; in CBD 10 µM pEC50 9 ± 0.1, to a minimum 

of 48 ± 1.4%) (Figure 6-8), suggesting a weak interaction of CBD with D2 receptors. 

-12 -11 -10 -9 -8 -7 -6 -5
0

50

100

[CP55940], log M

cA
M

P 
(%

 F
or

sk
ol

in
 re

sp
on

se
)

-12 -11 -10 -9 -8 -7 -6 -5
0

50

100

[CP55940], log M
cA

M
P 

(%
 F

or
sk

ol
in

 re
sp

on
se

)

Vehicle

CBD 10 µM

CBD 100 nM

A B
37 °C RT (24 °C ± 1)

15 min pre-treatment



122 
 

 

Figure 6-8. Concentration response curve of Quinpirole-induced inhibition of cAMP levels 
in HEK-D2 pre-treated with vehicle ( ), or CBD 100 nM ( ), or CBD 10 µM ( ) for 15 min 
at 37 °C (A) and at RT (B). Data represent mean ± SEM of six independent determinants 
performed in duplicate. 

Data from Glass laboratory 

 

6.4. Discussion 

CBD is widely touted to possess therapeutic effects for a wide range of health conditions 

attributed to its’ interaction with multiple receptor targets (reviewed in (Devinsky et al., 

2014, Peres et al., 2018, Morales et al., 2017)). The primary aim of the current study was to 

systematically compare the signalling profile of CBD across multiple receptor targets to 

provide a greater understanding of CBD function and its corresponding therapeutic 

advantages. The effect of CBD was examined using real-time assays of receptor signalling 

in AtT20 or HEK 293 cells expressing CB1, CB2, D2, and mu-opioid receptor (MOR) at 

both room temperature (RT 24 °C ± 1; to closely mimic a significant number of CBD studies 

to date), and 37 °C. We have provided novel insights into the promiscuous interaction of 

CBD with multiple GPCRs, including the temperature-dependent effect (given the greater 

effect of CBD to inhibit CB2, MOR, or D2 signalling at RT compared to 37 °C). However, 

our data confirms the specific inhibitory effects of CBD on CB1 responses. The non-specific 

effect of CBD at RT compared to physiological temperature highlights the value of assays 

with physiological face validity, and also re-enforce the need to include a range of receptors. 

Previous studies have demonstrated a broad pharmacological profile of CBD, including 

interaction with several GPCRs. These include the antagonistic effect of CBD on the CB1 
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and CB2 receptor (Thomas et al., 2007), allosteric modulation of MOR (Kathmann et al., 

2006), and partial agonism of D2R (Bloom and Hillard, 1985). CBD action was first 

attributed to the cannabinoid receptor - the nanomolar-range antagonistic activity of CBD 

on CB1 despite its low affinity binding for CB1 orthosteric site (Pertwee, 2008, Thomas et 

al., 2007, McPartland et al., 2015). This finding gave credence to the idea that CBD may be 

exerting its antagonistic effect on CB1 by binding to a site different from an orthosteric site 

(i.e. allosteric site), and thus led to an investigation into the allosteric activity of CBD on 

CB1. CBD negative allosteric modulation of CB1 has been studied in the past in a battery 

of in vitro assays for example; arrestin, Gαq (PLCβ3) and Gαi/o (ERK1/2) pathways 

(Laprairie et al., 2015), electrophysiology data from cultural autaptic hippocampal neurons 

(Straiker et al., 2018), and comparative study of the biased agonism of selective 

cannabinoids in the presence of CBD (Navarro et al., 2018). A significant limitation to these 

studies is that the assays were performed at RT - this means that the observed allosteric 

effect of CBD is confounded by homeostasis, presumably due to change in membrane 

fluidity as a function of temperature (Shinitzky, 1984, Otto et al., 1984). These 

considerations have led us to investigate the effect of CBD at a physiologically relevant 

temperature as well as RT. 

Decreasing the temperature from 37 °C to RT (24 °C ± 1) enhanced the inhibitory effects of 

CBD on multiple receptor (including CB1, CB2, D2, and MOR) signalling, indicating that 

the observed inhibitory effects of CBD is temperature-dependent and nonspecific. A 

possible explanation for this is that at a lower temperature the overall fluidity of the 

membrane decreases, and thereby affects the bilayer composition (Shinitzky, 1984). The 

decrease in membrane fluidity (i.e. more close and regular packing of the lipid bilayer) is 

likely to have an indirect effect on the conformational transitions of the active state (ligand-

receptor-G protein ternary complex) of the receptors, and indeed would affect the overall 

signalling profile of receptors (Altiere et al., 1981, Wei and Sulakhe, 1982); this is observed 

in our data when comparing maximum hyperpolarisation of CP55940 response at 24 °C and 

37 °C. CBD is a lipid-soluble drug which may further modify lipid membrane characteristics 

by affecting cholesterol’s role in maintaining membrane fluidity at low temperatures. One 

possible explanation of our experimental observation is that in the presence of CBD, 

phospholipids may be clustered together to a larger extent which further effects the ability 

of the receptor to stabilise an active conformation. A second possible explanation is that the 

ligand-receptor environment is destabilised (reflecting the differences in thermodynamics of 
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the binding site of receptor) in the presence of CBD and as a result, it might be difficult for 

CBD to find interaction sites that may exist in thermally volatile regions of the receptor 

(leading to reduced activity of CBD at 37 °C) (Hitzemann, 1988, IngóLfsson et al., 2014, 

Ghovanloo et al., 2018). However, our results indicate that the specific inhibition of CB1 

signalling which only occurred after pre-treatment with 10 µM of CBD over a period of 60 

min (effect of CBD 1 µM was not determined in the current study – may be worth validating 

in future studies), while CBD 100 nM had no measurable effect on CB1 signalling.  

Moving forward, the specific inhibition of CB1 signalling by CBD is consistent with 

previous reports that specifically report the negative allosteric-like activity of CBD at CB1 

(e.g. (Laprairie et al., 2015, Straiker et al., 2018)). It is tempting to speculate that this notion 

- ‘specific allosteric effect’ of CBD on CB1 may be unduly restrictive; we hypothesise that 

it may be that CB1 function is simply more intimately sculpted by the membrane 

composition/properties than other receptors. Nevertheless, an intended effect of CBD on the 

CB1 allosteric site cannot be ruled out. We then investigated whether CBD behaves in a 

similar way to the well-characterized CB1 NAM, ORG27569 (ORG) (Cawston et al., 2013, 

Price et al., 2005, Ahn et al., 2012). Our data demonstrate that CBD had no effect on the 

CP55940-mediated desensitisation of CB1 receptor signalling (it is possible that differences 

between these groups may be masked by error), but their application together with ORG 

results in much faster reversal of CP55940-mediated hyperpolarisation in AtT20-CB1 above 

that produced by ORG alone (Figure 6-2). A more prima facie interpretation, however, 

would be that the mode of regulation of ORG and CBD on CB1 is different in our system, 

and presumably acts on a different allosteric site at CB1. While some studies have suggested 

that CBD might bind to a similar site as ORG (Laprairie et al., 2015, Chung et al., 2019). 

Recently, Shao et al., 2019 determined the crystal structure of CB1 bound to ORG. The 

structure reveals that the ORG binds to an extrahelical site in the inner leaflet of the 

membrane, which overlaps with a conserved site of cholesterol interaction in many GPCRs 

(Shao et al., 2019)). It would be technically straightforward to show whether structurally 

distinct NAMs (CBD or ORG) share similar binding sites at CB1. Creating point mutation 

at the ORG-binding pocket of CB1 may provide mechanistic insight into the allosteric nature 

of CBD. In future studies, it would be of interest to quantify the affinity, cooperativity, and 

intrinsic efficacy of CBD on CB1, and whether the NAM activity of CBD in in vitro system 

can be correlated to its efficacy in vivo (Gregory et al., 2019).   
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Besides the reported allosteric-like activity of CBD at CB1, studies have shown that CBD 

also affects the signalling of CB2 (Thomas et al., 2007). This is supported by the finding 

that CBD (1 µM) produced a downward displacement of CP55940 in the [35S]GTPγS‐

binding assay, suggesting the antagonistic effect of CBD on CB2 (Thomas et al., 2007). 

Another study has suggested the orthosteric partial agonism of CBD at CB2 – using cAMP 

inhibition and β-arrestin 1 recruitment assay (note temperature of experimental conditions 

was not indicated) (Tham et al., 2019). While the present study observed a minimal 

inhibition of CB2 signalling following CBD pre-treatment at 37 °C, suggesting that the 

discrepancy between results may be due to differences in experimental temperature. Similar 

inhibitory effects to CB2 were detected in AtT20 cells expressing SST (natively) or MOR 

when pre-treated with CBD (10 µM, 60 min). The ability of CBD to induce inhibition of 

multiple receptor signalling suggests a high degree of promiscuity consistent with the 

activity profile of phenolic phytochemicals (IngóLfsson et al., 2014, Hu and Bajorath, 2013).  

These phytochemicals tend to localise in the lipid bilayer interfaces, and thereby alter bilayer 

properties by reducing membrane stiffness, increase membrane elasticity, or increase lateral 

pressure in the headgroup region – thus altering the conformation equilibrium of receptors 

or the cholesterol that are embedded in the membrane (reviewed in (Andersen and Koeppe, 

2007, Lundbæk et al., 2009)). The idea that CBD may mediate its affect by altering the 

membrane biophysical properties rather than acting through a discrete binding site is not 

unprecedented (first evaluated using fluorescent probes in brain synaptic plasma membranes 

and phospholipid vesicles, where CBD treatment decreased the polarisation of the 

fluorescent probe in various phosphatidylcholines suggesting a general ability of CBD to 

alter lipid fluidity to indirectly affect protein properties (Hillard et al., 1985)). 

An opportunity, therefore, exists in the future to examine the effects of CBD on 

viscosity/stiffness of membrane bilayer. One way to approach this question is to study 

whether the lateral diffusion constant of the receptors or lipids embedded in the membrane 

changes following CBD treatment – this can be measured by using DOPE-biotin labelled 

with GFP via streptavidin (personal correspondence with Dr. Varun Sreenivasan, University 

of New South Wales). A fluorescent probe (laurdan) approach can also be employed to 

detect changes in the membrane phase properties by taking into consideration the results of 

fluorescence emission and anisotropy measurements ((Harris et al., 2002), originally 

reported in (Sheffield et al., 1995)).  
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Overall, our data suggest that the specific inhibitory effects of CBD on CB1 responses 

occurs at a physiologically relevant temperature, however, the effect of CBD on CB2, MOR 

or native SST signalling at physiological temperatures appears relatively non-specific in 

nature. Our study cannot pin down the exact mechanism of action of CBD’s non-specific 

effects on multiple receptor signalling, as there are many ways that CBD could modulate the 

effects of GPCRs – direct interaction with the conserved site among class A GPCRs, 

alteration of membrane biophysical properties, or a combination of both. This is an 

important area for continued study to provide a greater understanding of CBD function 

across multiple receptor targets given the increasing medical and commercial interest in 

CBD.  
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6.6. Supplementary Data  

Supplementary Figure 6-1. Effect of CBD on AtT20-CB1 signalling  

(A) Summarised data comparing pre-treatment of AtT20-CB1 cells with vehicle, or CBD 
(10 µM or 100 nM) for 5 min before addition of CP55940 at RT and 37 °C (B) An individual 
representative trace showing change in fluorescence of AtT20-CB1 produced during 
continuous exposure of vehicle, CBD (10 µM), SR141716A (1 µM),  or in combination 
(CBD + SR141716) (C) Within each set, condition ‘CBD’ was compared to ‘SR141716’, or 
‘CBD + SR141716’, and had no significant difference (P < 0.05). Data represents mean ± 
SEM of six independent determinants performed in duplicate. 
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Supplementary Figure 6-2. CBD on CP55940-mediated CB1 desensitisation 

 (A) Summarised data for percentage desensitization after 30 min exposure to CP55940 (100 
nM) alone or in presence of CBD or ORG individually, or in combination (CBD + ORG), 
compared with peak fluorescence response. Within each set, condition ‘ORG 10 (10 µM)’ 
was compared to ‘CBD (10 µM-100 nM)’, ‘ORG (1 µM-100 nM)’ or ‘CBD + ORG’. Data 
represents mean ± SEM of at least independent determinants performed in duplicate. 
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Supplementary Figure 6-3. Effect of CBD on AtT20-CB2 signalling  

 (A) An individual representative trace showing change in fluorescence of AtT20-CB1 
produced during continuous exposure of vehicle, CBD (10 µM), AM630 (3 µM),  or in 
combination (CBD + AM630) at 37 °C (B) Within each set, condition ‘CBD’ was compared 
to ‘AM630’, or ‘CBD + AM630’, and had no significant difference (P < 0.05). Data 
represents mean ± SEM of six independent determinants performed in duplicate. 
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Chapter VII. General Discussion 

 

The studies presented in this thesis were undertaken to further the understanding of the 

molecular pharmacology of cannabinoids and how traditional, and structurally diverse 

synthetic cannabinoids have greatly varied outcomes when acting via the same target. This 

discussion will seek to consider the wider implications of the work reported in this thesis 

and provide potential directions for future research.  

The characterisation of the functional activation of CB1 by synthetic cannabinoid receptor 

agonist (SCRAs) was a natural starting point to examine the SCRA toxicity at molecular 

level (in comparison to THC, CP55940, WIN55212-2 etc). Intrinsic efficacy combined with 

an operational model of pharmacological agonism was found to be a new determinant for 

the quantitative measurement of the activity profile of different cannabinoids downstream 

of CB1 receptors. Results revealed that some of the SCRAs had up to 300 times the efficacy 

of THC, and this molecular effect was systematically characterised in the first results chapter 

of this thesis (Chapter 2, (Sachdev et al., 2019c)). In recent years, concerns over the current 

operational analysis, particularly, for the quantification of bias have been raised. Here, the 

assumption that all the assay endpoints are in a state of equilibrium (i.e. the receptor density 

will remain constant with time upon internalisation), does not actually reflect real biological 

states (Herenbrink et al., 2016, Zhu et al., 2019, Finlay, 2018). Changes in the number of 

receptors at the cell surface over time may therefore reflect changes in the responsiveness 

of the system (efficacy). This is particularly relevant in the case of cannabinoids, and thus 

kinetic aspects of cannabinoid signalling should be considered in future studies (Zhu et al., 

2019). However, this may not be problematic in our study as we are confident that maximum 

effect of SCRAs measured captures the efficacy appropriately – we measured the real-time 

activation of K channel as soon as the drug was added to the system (within 3 min). This 

portion of time course would certainly have no dramatic change in the receptor density. Our 

study compared the relative agonist activity of SCRAs in GTPγS binding and membrane 

potential assays, and highlighted the differences in response of some SCRAs between the 

two assay systems, suggesting a form of observational bias based on the relative sensitivity 

of assays (Kenakin and Christopoulos, 2013).  

An emerging idea in molecular pharmacology is the differing ability of agonists to activate 

multiple signalling pathways of the receptor (functional selectivity). This means that 
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agonists stabilise different (or unique) active conformational states of the receptor, which in 

turn modulates the extent (efficacy) to which different downstream pathways are activated 

(Kenakin et al., 2012). The functional selectivity of SCRAs was explored recently in a case 

study of AMB-FUBINACA (Finlay et al., 2019). The authors found that AMB-FUBINACA 

was highly efficacious and potent in the pathways assayed including cAMP inhibition, 

pERK activation, CB1 internalisation, and translocation of β-arrestin1/2 (a finding 

consistent with the high efficacy of MDMB-FUBINACA, an analogue of AMB-

FUBINACA, characterised in the Chapter 2). However, AMB-FUBINACA did not appear 

to be biased for any pathways in the operational analysis (Finlay et al., 2019). While THC 

activated all these pathways with lower potency and efficacy than AMB-FUBINACA, 

operational analysis suggested that THC may be a biased ligand, and displays lower activity 

for arrestin pathways (Finlay et al., 2019). Another study assessed the biased agonism among 

21 structurally different SCRAs in an assay of Gi or β-arrestin recruitment to CB1 (Wouters 

et al., 2019d). The authors used relative agonist activity (i.e. EMAX and potency) to compare 

the two signalling pathways. A limitation to this method arises from the fact that the CB1-

Gi pathway has a substantial degree of receptor reserve (e.g. see Finlay et al. (2017), Sachdev 

et al. (2019c)) compared to lower levels of receptor reserve for CB1-β-arrestin pathway 

(Ibsen et al., 2019). This implies that even a low efficacy agonist can have a higher activity 

profile at Gi pathway, as there are sufficient receptors available to yield a system maximum 

at saturating concentration and this might have a confounding influence on bias conclusion 

that arise from “full agonist” activity of ligands. Nevertheless, the variety of SCRAs 

presented in this study exert highly variable profile of potency and EMAX across different 

pathways (Wouters et al., 2019d). The physiological implication of different signalling 

pathways downstream to CB1 have yet to be determined. This phenomenon has been more 

closely examined for opioid receptor; for example, mu-opioid receptor is thought to mediate 

the analgesic effect via activation of G protein-coupled signalling, but adverse effects 

(including respiratory depression) exist through arrestin-coupled signalling (Bohn et al., 

1999, Xu et al., 2007). Even though the characterisation of this system continues to be 

assessed, it appears that researchers have begun to accept that it is the low intrinsic G-protein 

efficacy of opioids (not biased agonism) that is linked to the improved safety profile of new 

opioid-based treatments (such as TRV-130) (Gondin et al., 2019). It is also important to look 

at the physiological implications of the pathways involved in cannabinoid receptor 

signalling - this can be achieved by examining the CB1/2 signalling and behaviour 
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(antinociception, hyperthymia, catalepsy) in β-arrestin(s) knock-out mice following 

administration of structurally diverse selected cannabinoids. 

The concept of ‘biased agonism’ was further explored in the third chapter of this thesis, 

where SCRA-specific modulation of two signalling endpoints was investigated - Gαi/o 

(inhibition) and Gαs (stimulation) of cAMP signalling. The rank order of potency of the 

SCRAs to stimulate Gαs-like signalling compared to Gαi/o signalling as demonstrated was 

significantly different. This suggests that differences in G-protein preferences between 

SCRAs are likely due to receptor conformation differences in the presence of different 

ligands, a key determinant of receptor bias (Sachdev et al., 2019a). Recently, a cryogenic 

electron microscopy study was published on the structure of the SCRA, MDMB-

FUBINACA, bound to CB1-Gi complex, and the promiscuous nature of CB1 coupling to 

both Gi and Gs was also investigated (Kumar et al., 2019). Previous work has shown that 

L222 residue in the ICL2 is critical for mediating Gs protein coupling to GPCRs (Chen et 

al., 2010), and the ability of TM6 domain to move to a greater extent outward to 

accommodate the C terminus of Gs is also one of the determinants of Gs coupling specificity 

(Kumar et al., 2019). The authors suggested that glycine residue at the position 357 of CB1 

may add extra flexibility to TM6, driving CB1 coupling to Gs - a prototypical example is 

β2-adrenergic receptor, which couples to Gs by larger displacement of TM6 attributed to 

G6.38 and G6.42 (Kumar et al., 2019). However, the biological significance of SCRA-mediated 

differential coupling of CB1 to Gi/o and Gs are not well understood. One of the greatest 

obstacles in biomedical science is the difficulty in relating the in vitro findings of signalling 

phenotype of cannabinoids to their physiological role in normal and in disease states. Some 

studies have investigated the ability of cannabinoids to induce apoptosis in tumours, and the 

link between high CB1 expression and its functional consequence in cancer cells (such as 

prostate cancer) (Galve-Roperh et al., 2000, Cudaback et al., 2010, Cipriano et al., 2013). 

For example, one study to date has revealed the ability of cannabinoid (CP55940) to regulate 

signalling endpoints (kinases) in astrocytoma expressing low, medium and high levels of 

CB1 and CB2 (Cudaback et al., 2010). They found that increased expression of CB1 and 

CB2 receptor allowed for additional coupling to Akt signalling pathway (survival pathway 

regulating cell proliferation and apoptosis), which abolished the ability of cannabinoids to 

induce apoptosis, unless Akt was concomitantly inhibited (Cudaback et al., 2010). It is not 

yet known, however, whether the increase in CB1 expression would modify the Gi-Gs 

signalling switch in cancer cells. 
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Another important domain in molecular pharmacology is the allosteric modulation of 

receptor signalling. By its simplest definition, allosteric modulators bind to the receptor at a 

site topographically separate from the orthosteric site, and globally alter the conformation 

of the receptor, thereby modulating the receptor function in a positive or negative way. These 

molecules act at receptors as either positive allosteric modulators (PAMs) or negative 

allosteric modulators (NAMs) (Gregory et al., 2010). Kenakin and Christopoulos (2013) 

note that allosteric modulators can also induce receptor activation on their own by altering 

the basal signalling state of the receptor (called Ago-PAM). Allosteric modulators hold great 

therapeutic potential by allowing receptor activation to be tuned in a direction of maximal 

benefit. For example, ZCZ011 (a CB1 PAM) enhanced antinociceptive effects in neuropathy 

and inflammatory pain models, but held limited cannabimimetic side effects (Ignatowska-

Jankowska et al., 2015). While ORG27569 remains the most characterised allosteric 

modulator of CB1, increasing the CB1 agonist binding with ‘insurmountable antagonism of 

receptor function’ - meaning that ORG27569 increases the binding of CB1 agonist CPP5940 

but producing a concentration-dependent decrease in CB1 agonist function, a rare phenotype 

of NAM (Price et al., 2005). The third chapter of this thesis was a natural continuation of 

the original investigation into SCRA-associated toxicity, where the concept of allosteric 

modulation was utilised to understand whether or not there is a pharmacological reason for 

mixing brodifacoum (superwarfarin) with synthetic cannabinoids. Although cannabinoid-

induced signalling was not different in the presence of brodifacoum, this study suggests that 

mixing SCRAs with brodifacoum are not likely to enhance user experience through acute 

interactions with cannabinoid receptors (Sachdev et al., 2019b). Allosteric modulation of 

CB1 using ORG27569 was previously reported by Professor Michelle Glass in collaboration 

with our lab at Macquarie University (Cawston et al., 2013), where evidence of ORG27569-

mediated inhibition of the agonist response was observed after 5 min following drug addition 

(in contrast to immediate antagonism observed with SR141716), as well as a delay in ability 

to antagonise the agonist-mediated hyperpolarisation of K channel was seen (Cawston et al., 

2013). Similar experimental conditions were used to investigate the effect of brodifacoum 

on the sustained responses to cannabinoid-mediated hyperpolarisation of K channel; 

however, the presence of brodifacoum failed to affect the signalling produced by prolonged 

application of cannabinoids (Sachdev et al., 2019b). Future studies could determine the 

pharmacokinetic profile of brodifacoum-laced SCRAs (especially their metabolic pathway), 

and determine if the findings in the present study can be correlated to an in vivo model. 
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Allosteric modulation of cannabinoid receptors was also studied in the context of the 

“entourage effect” – an emerging idea that the components within the cannabis plant will 

produce much stronger effect when combined as opposed to the individual components (an 

assumption that many researchers would reject). Substantial conflicts remain in the literature 

and emphasise the complex interaction between terpenoids and cannabinoids at molecular 

or physiological level (Russo, 2011). The terpenoids tested in this study neither activated 

cannabinoid receptors alone nor modulate the response to a high efficacy agonist (CPP5940) 

and a low efficacy agonist (THC) (Santiago et al., 2019). It is noted that in a previous 

publication from Gertsch et al. (2008) β-caryophyllene appears to be a CB2 agonist, however 

this was not replicated in the current study (Chapter 5, (Santiago et al., 2019)). Very recently, 

a second study to reveal the agonist activity of β-caryophyllene at CB2 was achieved in a 

mixed human primary leukocyte (Saroz et al., 2019b). This emphasises the importance of 

using primary culture which may allow the characterisation of cannabinoids in an 

environment closer to in vivo settings, although it would be difficult to entirely isolate a pure 

CB2 response from a heterogenous cell population.  

While Chapter 2, Chapter 3 and Chapter 4 are focused on the pathways involved in the on-

target effects associated with SCRA toxicity, Chapter 6 described an exploratory study 

primarily concerned with the molecular mechanism underlying the therapeutic effects of the 

phytocannabinoid, cannabidiol (CBD). The function of CBD is believed to be attributed to 

allosteric modulation of a variety potential molecular targets. The signalling profile of CBD 

across a range of targets has been extensively studied over the recent years (reviewed in 

Perucca (2017)), however, reporting of the diverse responses of CBD is generally 

compromised by the use of physiologically irrelevant temperature and dose conditions in 

the experimental design (e.g. Laprairie et al. (2015), Navarro et al. (2018), Straiker et al. 

(2018)). Temperature-dependent effects are a frequently encountered phenomenon, and we 

cannot assume that the effect of CBD at room temperature is similar to that at body 

temperature. The current study demonstrated that the interaction of CBD with the multiple 

receptors is temperature dependent (greater effect at 24 °C ± 1 as compared to 37 °C), while 

specific inhibition of CB1 signalling by CBD was confirmed (consistent with the negative 

allosteric-like activity of CBD at CB1). As discussed in Chapter 6, the non-specific 

interaction of CBD with multiple receptors is presumably due to change in membrane 

fluidity as a function of temperature. Given the ability of CBD to alter membrane bilayer 

fluidity attributed to its physiochemical properties, development of synthetic CBD 
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derivatives is a key aim of drug design researchers in order to improve the pharmacodynamic 

or pharmacokinetic properties of CBD (Morales et al., 2017). 

Other than the experiments outlined in each chapter, future plans for the continuation of this 

project include the full pharmacological assessment of diverse class of cannabinoids at 

signalling pathway(s) downstream to cannabinoid receptor activation to help identify the 

biased signalling profiles of these compounds, and particular structural conformations 

responsible for their effects (Patel et al., 2020). Indeed, many SCRAs have demonstrated the 

apparent ability to stimulate Gαs-like cAMP signalling via CB1 in the present study. Looking 

at the CB1-Gs signalling profile of cannabinoids in specific cancer conditions may be 

relevant under conditions where upregulation in CB1 was reported (Finlay et al., 2017), 

querying the relative effect of these cannabinoids on the molecular markers involved in the 

prognosis of cancer, and warranting further investigation. A future direction may also 

involve examining the functional activity (particularly, efficacy) of this panel of 

cannabinoids on CB2 receptor as this receptor does not mediate the psychotropic effect of 

cannabis. It is hoped that targeting CB2 might be therapeutically useful in wide range of 

health conditions, including Parkinson’s disease, multiple sclerosis, stroke, 

neurodegeneration, and various cancer states (Navarro et al., 2016). Given that the use of 

cannabis and cannabis extracts is becoming more prevalent, it remains important to access 

the pharmacological profile of terpenoids in conjunction with cannabinoids. Future studies 

will investigate the possibility of entourage effects emerging through terpenoid-cannabinoid 

interaction acting via non-cannabinoid receptor mechanism. This hypothesis also has 

precedent; for example, a recent study determined whether terpenoids influence the effect 

of cannabinoids on human TRPA1 and TRPV1 channels (Heblinski et al., 2020). However, 

this study could not find any evidence of terpenoid-cannabinoid interaction at TRPA1 or 

TRPV1, but given the promiscuous nature of cannabinoids, the search should continue by 

exploring this complex interaction on additional molecular targets (e.g. GABA, GPR55, 

GPR18, glycine, etc.) (Heblinski et al., 2020). Finally, with over 65 molecular target 

identified for CBD, an accurate understanding of CBD activity profile across range of 

receptor targets is critical to the meaningful interpretation of its therapeutic potential. We 

and others are pursuing research in this area currently as evident from Chapter 6. Although, 

our data provides insights into the promiscuous interaction of CBD with multiple GPCRs, 

including the temperature-dependent effect (given the greater effect of CBD to inhibit CB1, 

CB2, MOR, or D2 signalling at RT compared to 37 °C), it does not provide a universal 
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molecular or structural basis of CBD’s non-specific interaction with multiple receptor 

signalling. Thus, given the ability of CBD to alter the membrane biophysical properties, an 

important initial study to follow-on from this significant finding will be use of a fluorescent 

probe (Harris et al., 2002), biotinylation of biological membranes (Henry et al., 2018), or a 

gramicidin-based assay (IngóLfsson et al., 2014) to understand how CBD or other 

membrane-embedded ligands can modulate the activity of range of medically-important 

GPCR. 

In conclusion, the research presented in this thesis has investigated aspects of chemically 

diverse cannabinoids to produce different profiles of activity downstream of cannabinoid 

receptors. The differing abilities of cannabinoids to activate signalling responses not only 

provides mechanistic insight into cannabinoid receptor activation that may be able to be 

linked to clinically confirmed effects of particular SCRAs, but will also aid in design of 

drugs with high specificity and improved pharmaceutical properties. The insight gained by 

this thesis will certainly serve as an important foundation for further investigations into the 

molecular contributions to the toxic effects of synthetic cannabinoids and therapeutic effects 

of phytocannabinoids. Exciting opportunities exist in future research to understand the 

consequences of cannabinoid receptor activation by a vast array of available drugs in normal 

state physiology and in disease. 
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Appendix A. 

 

In the Chapter 2 of this thesis, we initially examined the ability of the irreversible CB1 

antagonist methyl arachidonyl fluorophosphonate (MAFP) (reported by Fernando and 

Pertwee (1997)) to pharmacologically knockdown CB1 receptor function. On the day of the 

assay, cells were incubated with MAFP (10 µM) for 20 mins at 37 oC, after which MAFP 

was removed and the cells were washed twice with HBSS. Pre-treatment with MAFP 

resulted in a reduction in the hyperpolarisation induced by subsequent application of 

CP55940 compared to untreated cells (Figure A-1, Control Emax 36 ± 1.3% and MAFP 

treated Emax 29 ± 2.2%), consistent with reduction in receptor number. MAFP pre-treatment 

did not significantly affect the hyperpolarisation induced by SST (100 nM) in the same cells 

(Figure A-2, P > 0.05), suggesting that it did not interfere with G-protein coupled receptor 

signalling to G-protein gated inward rectifying potassium (GIRK) channels per se. However, 

MAFP inhibits a range of enzymes, including those that degrade endocannabinoids such as, 

fatty acid amide hydrolase (FAAH) and monacylglycerol lipase (MAGL) (Goparaju et al., 

1999). To assess whether the decrease in response of CP55940 may have been related to 

changes in endocannabinoid levels, we also investigated the effects of the structurally 

unrelated, non-selective inhibitor of FAAH and MAGL, JZL195 (Long et al., 2009), on 

CP55940 signalling. Pre-treatment of cells with JZL195 (1 µM, 60 min) also inhibited the 

hyperpolarisation induced by CP55940 (Figure A-1, Control Emax 32 ± 0.8% and JZL treated 

Emax 27 ± 1.8%), suggesting that altering endocannabinoid degradation can alter CB1 

signalling; therefore, due to uncertainty surrounding the mechanism through which MAFP 

alters CP55940 responses, we turned to AM6544 to deplete the CB1 receptors. 
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Figure A-1. Effect of MAFP and JZL-195 pre-treatment on CP55940 signalling on CB1 

Concentration response curves for CP55940 mediated hyperpolarisation of AtT20-CB1 
following pre-treatment with 10 µM of MAFP (A) and 1 µM of JZL195 (B). Representative 
data are presented as percentage in fluorescence corresponding to the hyperpolarisation of 
the cells. Each point represents the mean ± SEM of 6 independent determinants performed 
in duplicate and pooled data was fitted with four parametric logistic equation. 

 

 

 

Figure A-2. Effect of MAFP pre-treatment on native Somatostatin (SST) signalling  

Scatter dot plot showing the percentage change in fluorescence of SST (100 nM) on AtT20-
CB1 cells pre-treated for 20 min with vehicle or MAFP (10 µM) and then washed twice 
before incubation with membrane assay dye. Data represents the mean ± SEM of 5 
independent determinants performed in duplicate. There was no difference in the maximal 
response of SST between vehicle or following pre-treatment with MAFP. 
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Differential regulation of CB1 receptor by high efficacy CB1 agonists 

Long term effect of cannabinoids is still largely unknown. An especially significant 

unknown is the molecular mechanism underlying the prolong effect of cannabinoids 

(desensitisation) on CB1 signalling. The desensitisation of CB1 signalling was accessed in 

the continued presence of 5F-MDMB-PICA (most efficacious SCRA) or CP55940 (10 µM, 

30 min), after depletion of CB1 receptor reserve with AM6544. Compound 101, a potent 

and selective GRK 2/3 inhibitor was used to study the potential involvement of these kinases 

in CB1 desensitisation. The desensitisation produced by CP55,940 or 5F-MDMB-PICA, 

measured as percentage decline in CB1 receptor activity, was found to be 39±4% and 

86±2.4% respectively. Compound 101 (10 µM) did not affect the desensitisation evoked by 

CP55,940, but reduced the CB1 desensitisation by 5F-MDMB-PICA from 86±2.4% to 

63±3.2% (Figure A-3, P<0.05). Receptor depletion had no effect on the magnitude or 

Compound 101-sensitivity of CB1 desensitisation induced by CP55,940 or 5F-MDMB-

PICA. Our data suggest GRK-dependent and independent mechanisms for CB1 receptor 

desensitisation by the highest efficacy agonist (5F-MDMDB-PICA), but only GRK-

independent mechanisms for lower efficacy agonist (CP55940). 

 

 
Figure A-3 Effect of Compound 101 on CB1 signalling during continuous exposure of 
5F-MDMB-PICA or CP55940  

Summarised data comparing the CP55940- or 5F-MDMB-PICA-mediated desensitisation 
of CB1 signalling when pre-treated with vehicle (left panel) or AM6544 (right panel) for 60 
mins. Within each set, condition ‘Control’ was compared to ‘Compound 101’. Data 
represents mean ± SEM of at least five independent determinants performed in duplicate. 
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Figure A-4. Functional activity of SCRAs following receptor depletion with AM6544 

Concentration response curves for all the nine SCRAs (AM2201, UR-144, XLR-11, PB-22, 
5F-PB-22, AB-CHMINACA, AB-PINACA, MDMB-CHMICA, MDMB-FUBINACA, and 
5F-MDMB-PICA) missing from the Chapter 2 were plotted using five-parameter non-linear 
regression to fit the operational model receptor depletion equation with basal constrained to 
0. Data represents mean ± SEM of technical replicates. For some points, the error bars are 
smaller than the height of the symbol.   
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Figure A-5. Correlation of operational efficacy (τ) and evolution of SCRAs over time.  

Representative data are presented demonstrating a non‐significant value of r2 of 0.2, where 
there was no obvious trend for increasing/decreasing tau over time. Please see Figure 1-9 
for more information regarding the order of each SCRAs from the first time they appeared 
in the NPS market to the most recent ones (Evolution of SCRAs over time). 
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Evaluating opioid mediated adenylyl cyclase inhibition 

in live cells using a BRET based assay 

Preeti Manandhar, Shivani Sachdev, and Marina Santiago 

Running head: Real-time BRET based cAMP measurement 

Abstract 

Quantitative measurement of receptor signalling by different ligands is important for 

understanding the mechanism of drug action and screening of drugs. Here, we describe a 

simple and cost-effective method of measuring adenylyl cyclase inhibition, one of the 

hallmarks of opioid receptor activation. The assay is based on Bioluminescence Resonance 

Energy Transfer (BRET) that involves transfection of a biosensor in human embryonic 

kidney (HEK) 293 cells stably transfected with μ-opioid receptor (μ receptor), enabling real-

time measurement of cAMP levels.  

Key Words: cAMP, Forskolin, BRET Assay, Adenylyl cyclase, µ-opioid receptor, HEK, 

CAMYEL 

 

1 Introduction 

Monitoring changes in cAMP levels is a reliable approach of assessing receptor signalling 

as it is a proximal signalling step after receptor activation. cAMP serves as a secondary 

messenger that activates other effectors downstream of receptor signalling. Activation of μ 

receptor catalyses exchange of guanidine diphosphate (GDP) for guanidine triphosphate 

(GTP), this causes dissociation of heterotrimeric G protein. μ receptor mediates downstream 

signalling predominantly through the Gαi protein family, which leads to inhibition of 

adenylyl cyclase [1], an enzyme that converts adenosine triphosphate to cyclic adenosine 

monophosphate (cAMP) [2]. 

A novel method of cAMP measurement incorporates the use of Bioluminescence Resonance 

Energy Transfer (BRET) based biosensor. It is a simple, robust and real time-based assay 

that is easily adapted to an automated microplate reader. This sensitive and reproducible 

assay uses a specially designed biosensor, cAMP sensor using YFP-Epac-RLuc (CAMYEL) 

capable of detecting intracellular cAMP in live cells. The biosensor consists of a cAMP 
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binding protein, Epac flanked by the BRET pair - Renilla luciferase (RLuc- the donor 

luminescence enzyme) and yellow fluorescent protein (YFP- acceptor fluorescent protein) 

[3, 4].  Similar to other adenylyl cyclase inhibition assays [5, 6], forskolin (an activator of 

adenylyl cyclase) is added which causes increase in cAMP that binds to Epac and results in 

less energy transfer between Rluc and YFP (Figure 1). Upon addition of a µ-opioid agonist, 

forskolin stimulated cAMP production decreases, thus, less cAMP binds to Epac resulting 

in more energy transfer between the BRET pair. In contrast to most of the cAMP assays that 

rely on end point measurement after single agonist incubation, this assay can be used to 

study the temporal dimensions of prolonged exposure to agonists. In this chapter, we 

describe in detail how to perform a CAMYEL assay to determine real time cAMP level 

changes due to μ receptor activation in HEK cells. 

 

Figure B-1. Representative diagram of CAMYEL BRET biosensor. In the absence of 
cAMP, resonance energy is transferred between the BRET pair (Rluc and YFP). In the 
presence of cAMP, it binds to EPAC hindering energy transfer between the pair, resulting 
in loss of BRET signal.  

2 Materials 

2.1 DAY 1:  

1. HEK293-GIRK4 cells stably expressing human μ receptor at 80-90% confluency in 

75 cm2 tissue culture flask 

2. A 10 cm cell culture dish 

3. Maintenance media: DMEM supplemented with 10% fetal bovine serum (FBS) and 

100 units/ml penicillin, streptomycin 100 µg/ml 

4. Automated cell counter/ haemocytometer 
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2.2 DAY 2:  

1. CAMYEL plasmid (originally obtained from American Type Culture Collection 

(Manassas, VI, USA) [4] 

2. 1mg/ml PEI: Polyethylenimine 

3. 150 mM sterile NaCl 

4. Maintenance media  

5. Vortex Mixer 

 

2.3 DAY 3:  

1. Plating media: Leibovitz’s L-15 media without phenol red supplemented with 1% 

FBS, 100 units/ml penicillin, streptomycin 100 µg/ml and glucose to 15 mM final 

concentration 

2. PDL coated white wall clear bottomed 96 well microplates 

3. Automated cell counter/ haemocytometer 

4. 8 channel multi-pipette 

 

2.4 DAY 4:  

1. PheraSTAR FS Plate Reader (BMG Labtech) 

2. Coelenterazine h (see NOTE 1) 

3. Forskolin 

4. Opioid ligands 

5. 96-Well clear, v-bottomed microplates 

6. Hank’s Balanced Salt Solution (HBSS): 145 mM NaCl, 22 mM HEPES, 0.338 mM 

Na2HPO4, 4.17 mM NaHCO3, 0.441 mM KH2PO4 , 0.407 mM MgSO4, 0.493 mM 

MgCl2, 1.26mM CaCl2, 5.56 mM Glucose. Adjusted to pH 7.4 and osmolarity 310-

320 

3 Methods 

3.1 DAY 1: Plating the cells in a 10 cm dish  

1. Detach the cells from tissue culture flask using trypsin and centrifuge at 1000 rpm 

for 5 minutes. 

2. Resuspend the cell pellet in 4 ml media and count cells using automated cell counter 

or haemocytometer. 
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3. Seed 6 million cells in 10 cm culture dish containing at least 7 ml of maintenance 

media (see NOTE 2). 

4. Incubate the dish overnight at 37 °C in a humidified atmosphere containing 5% CO2. 

 

3.2 DAY 2: Transfection of Biosensor (see NOTE 3) 

1. The DNA:PEI ratio for transfection is 1:6. The concentration of DNA is 5 µg, hence 

concentration of PEI required is 30 µg.  

2. First, calculate the amount of DNA and PEI to be added from the stock solution to 

achieve the desired concentration. Then, determine the required volume of 150 mM 

sterile NaCl solution to make the final volume of 500 µl. 

For example: if concentration of stock DNA is 2 µg/µl, 5 µg DNA will be in 2.5 µl 

of the stock. Likewise, if the concentration of PEI in stock solution is 1 mg/ml, then 

use 30 µl to get 30 µg PEI. Combine 2.5 µl DNA and 30 µl PEI to 467.5 µl of NaCl 

solution. (see NOTE 4) 

3. Immediately vortex the PEI/DNA mixture for approximately 10 seconds and 

incubate for 10 minutes at room temperature. Meanwhile, replace the media from 

the dish containing cells to be transfected with 10 ml of fresh maintenance media. 

Once incubation is over, add 500 µl PEI/DNA dropwise while gently swirling the 

plate. Incubate the plate at 37°C in a humidified atmosphere containing 5% CO2.  

4. Record the time of transfection. (see NOTE 5) 

 

3.3 DAY 3: Replating cells in assay plate 

1. Visually inspect viability of the cells and after 24 hours of cell transfection, detach 

cells from the plate using trypsin/EDTA and centrifuge. Resuspend the cell pellet in 

5 ml of L-15 and count the cells using automated cell counter or haemocytometer. 

Dilute the cell suspension to get 100,000 cells per 80 µl (volume per well) (see NOTE 

6 for calculation). Mix and dispense 80 µl cell suspension in each well using a 

multichannel pipette. 

2. Incubate the plate overnight at 37°C in ambient CO2 (see NOTE 7). 

3.4 DAY 4: cAMP Assay 

Step 1. Prepare drug solutions 
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Forskolin and opioids are added to the cells at the same time point. Prepare forskolin 

in HBSS and use this solution to prepare different opioid concentrations. Ensure the 

final concentration of forskolin remains constant (30 µM). (see NOTE 8) 

All drug solutions are made at 10x the desired concentration. This is because the cell 

plate already contains 80 µl of cell suspension and 10µl substrate, thus adding 10 µl 

of drug in forskolin results in dilution of both drug and forskolin by 10 times. 

For example, if the final desired concentration of forskolin is 3 µM and drug A is 1 

µM, then the concentration after preparation of drug solutions should be 10 µM drug 

A and 30 µM forskolin. 

Step 2. Prepare substrate 

Prepare 50 µM coelenterazine h in cold HBSS in an amber coloured tube in small 

batches due to the low stability at room temperature. 

Step 3. Load drugs in the drug plate 

Load 100 µl of all the concentrations of drugs and vehicle in a V-bottom clear plate. 

Reserve one well for forskolin by itself and another for vehicle (see NOTE 9). 

Step 4. Set up the parameters in PHERAstarFS (see NOTE 10). 

Turn on the plate reader and set it at 37 °C. Upload the cell plate in the machine and 

set up the assay parameters in the reader as follows: 
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Step 5.  Run the assay 

First add 10 µl of 50 µM coelenterazine h in the first two columns (performing 

duplicates) of cell plate using a multichannel pipette and read luminescence signal 

for 5 minutes (baseline). After the first run is over, immediately add 10µl of different 

drug concentrations from V-bottomed plate to the same two columns of the cell plate 

and measure the luminescence for approximately 5 minutes. 

Step 6. Collect the data and analyse 

Calculate the inverse BRET ratio (461/542) in the MARS data analysis software. See 

NOTES 11-14 for further analysis details. 

4 Notes: 

1. Keep the resuspended stock in -30°C freezer and amber containers because 

coelenterazine h is temperature and light sensitive. 

BASIC SETTTING PARAMETERS  
Measurement type Luminescence (dual emission) 
Microplate name COSTAR 96 
Type of optic used Top optic 
Settling time [s] 0.1 
Reading direction ↓↑↓ 
Target temperature [°C] 37 
PLATE MODE SETTINGS  
No. of cycles 7 
Cycle time 40 
Measurement interval time [s] 0.50 
OPTIC SETTINGS  
Optic module BRET 1 plus 
Emission A 535-30 
Emission B 475-30 
Gain A 3300 
Gain B 3600 
Focal height [mm] 10.0 
Ratio multiplier 1 
SHAKING SETTINGS  
Shaking frequency [rpm] 500 
Shaking mode Linear 
Additional shaking time 10s before first cycle 
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2. Having cells at higher confluency may affect the efficiency of transfection so make 

sure to inspect the cells before transfection. This protocol is for HEK 293 human µ 

receptor cells, the number of cells to be added to plate on day 1 would be different 

for different cell lines. Thus, optimisation is highly recommended.  

3. Cells can be transfected a day or two after plating depending on the cell type and 

number of cells seeded on day 1. Different cells grow at different rate so add less 

cells if you plan to transfect 2 days after plating.  

4. Both CAMYEL DNA and PEI must be stored at -30°C. Thaw PEI at room 

temperature, to avoid precipitation, before adding to the mixture. Refreezing excess 

PEI is not recommended. 

5. Recording time of transfection is important, as the plating of cells into 96 well plate 

should be done at least 24 hours after transfection.  

6. In the assay plate, seed 100,000 cells per well (total volume per well is 80 µl). Cell 

numbers must be optimised for different cell lines to obtain a well at approximately 

80% confluency.  

For a full plate, 10 ml of total suspension is required therefore 10 ml of suspension 

should have 12.5 million cells.  

80 µl suspension would have 100,000 cells. 

1000 µl (1 ml) would have (100,000/80) x 1000 cells = 1,250,000 cells 

Thus, 10ml would have 1,250,000 x 10 = 12,500,000 cells = 12.5 million cells. If the 

cell counter reads 2.5 million cells/ml then, add 5 ml of cell suspension to 5 ml media 

to make total volume of 10 ml containing 12.5 million cells. 

If 2.5 million cells are in 1 ml suspension, then 

12.5 million cells would be in (1/2.5) x 12.5 = 5 ml suspension. 

So, add 5 ml cell suspension in (10-5) = 5 ml of fresh L-15 media.  

7. It is important to incubate the cells at right temperature and environment.  The assay 

plate containing cells in L-15 should be kept in incubator maintained at ambient CO2 
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as higher CO2 content changes the pH of the media, making the media toxic to the 

cells. Where incubators maintained at less CO2 is inaccessible, resuspend the cells 

in DMEM and incubate at 5% CO2. However, on the day of the assay, remove 

DMEM and serum starve cells in HBSS for 30 minutes prior to the assay.  

8. The concentration of forskolin used in this assay is 3 μM (approximate EC50 value). 

Some studies have used 5 μM [7], hence, it is highly recommended to obtain a 

forskolin concentration-response curve and determine EC50 value before starting the 

experiment. 

9. Forskolin and some of the ligands are dissolved in DMSO so make sure to keep the 

final concentration of DMSO constant when preparing drugs and vehicle. 

10. We have previously used FlexStation 3 plate reader for this assay [4]. We followed 

kinetics settings in the machine and measured luminescence on a top read mode. The 

parameters for FlexStation 3 is as follows: 

 Setting 1 (baseline) Setting 2 (drug) 

Read mode Luminescence, Top read 
Wavelength 1 461 
Wavelength 2 542 
Integration 1000  
Run time 5 minutes 5 minutes 
Interval 1 minute (4 reads) 0.46 (7 reads) 
Automix Yes (5 s after drug addition) 

The major difference in using Flex Station 3 to PHERAstar FS is the amplitude of 

signal. The window between background reading (no substrate) to substrate signal is 

very low in FlexStation 3. Flex Station 3 is unable to read more than one column at 

a time, while, in PHERAstar FS, it is possible to run more than one column. 

11. For data analysis:  

Calculate the inverse BRET ratio (475/535) in MARS Pherastar data analysis 

software. Plot the inverse BRET ratio in GraphPad Prism and calculate area under 

curve (AUC) for each concentration of drug and vehicle (Figure 2). When setting 

data analysis, take mean of first reading (before drug addition) as baseline, hence the 

response calculated is AUC after drug or forskolin addition.  Subtract background 
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value (vehicle) from readings and present data as percentage difference between 

forskolin response (set as 100%) and forskolin with opioid response (Figure 3).   

 

Figure B-2. Representative traces for CAMYEL assay for HEK 293 cells expressing μ 
receptors. The baseline is measured for 5 minutes before addition of various concentration 
of opioids with forskolin. An increase in BRET ratio (emission at 461/542 nm) corresponds 
to an increase in cAMP.  
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Figure B-3. Concentration response curve showing DAMGO mediated inhibition of 
forskolin stimulated cAMP production. Data is expressed as percentage of forskolin 
response (3 µM). 

12. Standard BRET ratio (535/475) can also be used instead of inverse BRET ratio [7]. 

The only difference is the interpretation of data. When using inverse BRET ratio, 

increase in ratio corresponds to increase in cAMP and vice versa, however, in 

standard BRET ratio, increase in ratio corresponds to decrease in cAMP. Using either 

of the ratio does not change the final response of the drug.  

13.  The data can be analysed in a different way as percentage inhibition of forskolin 

response. The concentration response curve is as shown in figure 4. 

 

Figure B-4. Concentration response curve for DAMGO inhibition of elevated cAMP 
levels produced by forskolin (3 µM). Data is expressed as percentage inhibition of forskolin 
response. 

 

14. This assay can be used to study the kinetics of adenylyl cyclase inhibition by pre-

treatment of cells with forskolin instead of adding opioids and forskolin together [3]. 

For instance, measure baseline for 5 minutes after adding substrate, then add 

forskolin and read for another 5 minutes before adding opioids. 
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