Proteomics of Wheat Bran

(*Triticum aestivum* var. Babbler)

A thesis submitted in fulfilment of the requirements

for the Honours Degree of Master of Science

By

Ante Jerkovic

October 2006

Declaration

The work presented in this thesis was carried out between March 2005 and October 2006 on a full-time basis. This work represents original research which has not been submitted for any other degree. All work was carried out by the author unless otherwise acknowledged.

Candidates Signature

Ante Jerkovic

Acknowledgements

I would like to thank Associate Professor Robert Willows for his guidance, help and support during the past few years. Thank you for this great opportunity and also the weekly squash games.

Thank you to Dr Ron Bradner, Dr Alison Kriegel and Artur Sawiki with whom I share the office, for the fun and help, and for having to listen to my procrastinating (I will eventually do all those things). A special thank you to Ron for your wealth of suggestions and for being so helpful in keeping me organised and on track ("Thanks Ron!").

I would like to thank my parents for supporting me at home over the years during my career change and my sister and brother for their support also. Big thanks to all my friends for their encouragement and understanding.

I would also like to thank the following people who have helped me during this project: Debra Birch and Nicole Vella from microscopy, for their help and suggestions in getting wonderful pictures of bran tissue for my thesis. Matt Laver, Julie Soon, Thiri Winn, Narelle Jay, Alamgir Khan, Brett Cooke, Nasreen Yaghoutyfam, Rebecca Touma, Lewis Adler and Xiaomin Song from APAF who have been so friendly and helpful in every step of proteomic analysis. My co-supervisor Associate Professor Brian Atwell for his guidance and suggestions throughout this project. Tom Roberts for his editorial advice/proof reading at the last minute. Finally, I also acknowledge the contribution made by Robert Willows for constructing the wheat EST database. Last but not least, I would like to thank the Grain Foods CRC for the financial support in offering me the scholarship to do this project. Also, I have thoroughly enjoyed the experience working as part of the Grain Foods CRC as it was challenging in that the project was commercially focused and I was able to present my work at annual research meetings.

Abstract

Wheat is a major crop in Australia with around 25 million tonnes of grain harvested in an average year. Improved wheat grain cultivars and wheat grain milling can result in higher biological yields and flour quality. The introduction covers the general aspects of the wheat grain from bran development and structure through to milling and the importance of flour quality in flour-based products. It also highlights the problem with bran contamination in flour during milling and other factors that may have an effect on flour quality. Proteomics was used to identify proteins in three separate bran tissue fractions: the inner fraction (aleurone), intermediate fraction (nucellar tissue, testa, tube cells and cross cells) and the outer fraction (hypodermis and epidermis). The aim of the project was to identify proteins in bran tissue fractions which may potentially be useful in improvements in wheat quality for farmers and consumers and flour yield for millers. The results show that more than 80% of the identified proteins in the outer and intermediate tissue fractions are defence-and stress-related proteins (chitinase, xylanase, thaumatinlike protein, wheatwin 1, lipid-transfer protein, oxalatae oxidase (OXO), polyphenol oxidase (PPO), peroxidase (POX). Almost 60% of the proteins identified in the inner tissue fraction are 7S Globulin storage proteins and around 15% are protein synthesis-and energy-related. Water-soluble proteins were also identified and it was found that endochitinase, OXO, PPO and POX all leach out from the grain during imbibition. This study has added to the knowledge of bran tissue-specific proteins and has broad implications for improving crop yield and flour quality.

Abbreviations

1-DE	One-dimensional gel electrophoresis	
2-DE	Two-dimensional gel electrophoresis	
ABA	Abscisic acid	
ABI	Applied Biosystems International	
ACTH	Adrenocorticotropic hormone	
APS	Ammonium persulphate	
AR	Acquired resistance	
ATP	Adenosine triphosphate	
AX	Arabinoxylan	
BSA	Bovine serum albumin	
BLAST	Basic Local Alignment Tool (from NCBI)	
ВТН	Benzothiadiazole	
CHAPS	3-[]-1-propanesulfonate	
DPA	Days post anthesis	
DTT	1,4-Dithio-DL-threitol	
ESI	Electrospray ionization	
EST	Expressed sequence tag	
GA	Gibberellic acid	
IAA	Indole-3-acetic acid	
IDA	Information dependent acquisition	
IEF	Iso-electric focussing	
IPG	Immobilised pH gradient	
kDa	kilo Da	
LC	Liquid chromatography	
LOX	Lipoxygenase	
LTP	Lipid transfer protein	
MALDI-TOF MS	Matrix-assisted laser desorption/ionization time-of-flight mass	
	spectrometry	
MS	Mass spectrometry	
MS/MS	Tandem mass spectrometry	

MudPIT	Multi dimensional protein identification technology
NCBI	National Center for Biotechnology Information
OXO	Oxalate oxidase
PAGE	Polyacrylamide gel electrophoresis
PCD	Programmed cell death
РСТ	Patent Cooperation Treaty
PDI	Protein disulfide isomerase
PHYLIP	Phylogeny Inference Package
PMF	Peptide mass fingerprinting
РОХ	Peroxidase
PPO	Polyphenol oxidase
PR	Pathogenesis related
SDS	Sodium dodecyl sulfate
TBP	Tributyl phosphine
ТСА	Trichloroacetic acid
TEMED	N,N,N',N'-Tetramethylethylenediamine
TFA	Trifluoroacetic acid
TL	Thaumatin like
TOF	Time of flight
VDAC	Voltage dependant anion channel
A. fatua	Avena fatua
A. oryzae	Aspergillus oryzae
H. vulgare	Hordeum vulgare
M. viride	Mesostigma viride
O. sativa	Oryza sativa
P. glaucum	Pennisetum glaucum
P. miliaceum	Panicum miliaceum
S. cereale	Secale cereale
T. aestivum	Triticum aestivum
X. oryzae	Xanthomonas oryzae
Z. mays	Zea mays

Table of Contents	Page Number
Declaration	i
Acknowledgements	ii
Abstract	iv
Abbreviations	V
1. Introduction	1
1.1 Wheat in Australia	1
1.1.1 Wheat grain structure	1
1.1.2 Milling process	3
1.1.3 Hard and soft wheat	4
1.2 Protein distribution	6
1.2.1 Major hydrolytic enzymes	8
1.2.2 α -amylase and its effect on flour quality	9
1.3. Bran layers in grain development	10
1.3.1 Bran layers	10
1.3.2 Formation of bran layers during grain	
development	11
1.3.3 Effects on bran layers during germination	13
1.4 Analysis of protein composition in wheat grain	15
1.4.1 High resolution 2-dimensional	
electrophoresis (2-DE)	15

1.4.2 Identification of protein spots in 2-DE gels	17
1.4.3 Wheat grain proteomics	19
1.4.4 Proteomics of bran components	21
2. Materials and Methods	23
2.1 Materials	23
2.1.1 Wheat sample	23
2.1.2 Chemicals	23
2.1.2.1 Protein extraction	23
2.1.2.2 Protein quantification	23
2.1.2.3 SDS-PAGE	23
2.1.2.4 IEF and SDS-PAGE	24
2.1.2.5 Gel staining	24
2.1.2.6 Sample preparation for MS	24
2.2 Tissue fraction collection	25
2.2.1 Grain treatment prior to tissue separation	25
2.2.2 Bran cleaning and tissue separation of inner	
and intermediate fraction	25
2.2.3 Improved method for collecting outer fraction	26
2.3 Protein extraction and quantification	28
2.3.1 Protein extraction from bran fractions	28

2.3.1.1 Tissue preparation and washing	28
2.3.1.2 Protein extraction	29
2.3.1.3 Protein precipitation	29
2.3.1.4 Solubilising protein pellet in rehydration	
solution	29
2.3.2 Protein collection from grain and outer	
fraction supernatant	30
2.3.3 Protein quantification	30
2.3.3.1 Protein quantification of tissue fractions	30
2.3.3.2 Protein quantification of water-soluble	
proteins	31
2.4 Iso-electric focusing (IEF) (First dimension in 2-DE)	32
2.4.1 Sample preparation	32
2.4.2 IPG strip rehydration	32
2.4.3 IEF	33
2.4.4 IPG strip equilibration	34
2.5 SDS-PAGE (Second dimension in 2-DE)	34
2.5.1 SDS-PAGE of IPG strips from tissue fractions	34
2.5.1.1 Casting 8-18% polyacrylamide	
gradient gels	34
2.5.1.2 Electrophoresis	35
2.5.2 SDS-PAGE and protein analysis of water-soluble	
proteins from supernatant	35

2.6 Staining, imaging and protein spot excision	36
2.6.1 Deep Purple staining	36
2.6.2 Protein spot selection	36
2.6.3 Coomassie staining	37
2.6.4 Spot cutting	37
2.7 Peptide extraction for MS	38
2.7.1 Gel plug destaining	38
2.7.2 Passive trypsin digestion	38
2.7.3 Peptide extraction from gel plugs	
(for Zip Tip clean up)	38
2.7.4 C18 column Zip Tip clean up	39
2.7.5 Loading peptides onto ABI plate for MS	39
2.8 Protein identification	40
2.8.1 MALDI TOF MS	40
2.8.2 ESI MS/MS	41
2.8.3 Construction of Wheat EST Database for	
searching using XTandem and Mascot	42
2.8.4 Wheat EST alignments	42
3. Results	43
3.1 Collection of tissue fractions and microscopy	43
3.2 Extraction and quantification of proteins from bran	
fractions and supernatant from imbibed grain	48

3.3 Protein spot distribution in 1D and 2D gels	50
3.3.1 Water-soluble proteins	50
3.3.2 Outer fraction	50
3.3.3 Intermediate fraction	50
3.3.4 Inner fraction	51
3.4 Proteins identified in bran tissue fractions and	
supernatant from imbibed grain	59
3.4.1 Proteins identified in the outer fraction	60
3.4.2 Proteins identified in the intermediate fraction	61
3.4.3 Proteins identified in the inner fraction	
(Aleurone cells)	64
3.4.4 Further analysis of major protein classes	
in inner fraction	65
3.4.4.1 Cupin domain containing proteins	65
3.4.4.2 Cell function proteins	68
3.4.5 Proteins identified in supernatant	
from imbibed grain	74
3.4.6 Supernatant from isolated outer fraction	75

4. Discussion	76
4.1 Bran fractionation and properties of bran fractions	77
4.2 Proteins identified in the outer fraction	80
4.2.1 Oxalate oxidase (OXO) and peroxidase (POX)	81
4.2.2 Lipoxygenase (LOX)	81
4.2.3 Lipid transfer protein (LTP)	82
4.3 Proteins identified in the intermediate fraction	82
4.3.1 Xylanase inhibitor proteins	83
4.3.2 Chitinase and endochitinase	83
4.3.3 α -amylase/subtilisin inhibitor proteins	84
4.3.4 Benzothiadiazole (BTH) - clone of wheat	
chemically induced protein (cWCI-5)	85
4.3.5 Wheatwin1	85
4.3.6 Thaumatin-like protein (TL)	85
4.4 Proteins identified in the inner fraction	86
4.4.1 7S globulin storage proteins	86
4.4.2 Protein synthesis and metabolism	87
4.4.3 Voltage dependent anion channel (VDAC)	88
4.4.4 α-amylase	88
4.5 Proteins identified in supernatant from imbibed grain	89
4.5.1 Polyphenol oxidase (PPO)	89
4.5.2 Peroxidase (POX)	89
4.6 Potential applications	90

6. Appendix		96
7. References		153
Compact Disc included on from	nt cover:	
Contents of Compact Disc		
F		

5. Conclusion and future directions

 Electronic copy of thesis "Proteomics of Wheat Bran (*Triticum aestivum* var. Babbler)"

93

- Protein ID Tables (Excel format) with links to mass spectra
- Mass spectra link file