The structural and metamorphic evolution of the central Arunta Block: evidence from the Strangways Metamorphic Complex and the Harts Range Group, central Australia.

by

Anthony Richard Norman

Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

School of Earth Sciences, Macquarie University, N.S.W. 2109, Australia.

July, 1991

Abstract

An analysis of the compositions of minerals and the geometries of their fabrics in rocks from the Strangways Metamorphic Complex and the Harts Range Group indicates that the central Arunta Block was affected by two major granulite facies tectonometamorphic cycles prior to greenschist facies retrogression and uplift to the surface. The Strangways Metamorphic Complex consists of interlayered felsic, mafic and pelitic gneisses that contain granulite facies assemblages. A continental rift setting or a rifted continental margin setting is inferred, on the basis of the composition of mafic granofelses, metapelites and felsic gneisses. Uncommon K-poor felsic granofelses probably indicate diagenetic alteration of rhyolitic tephra, rather than widespread metasomatism during metamorphism. The whole-rock compositions of mafic granofelses in the Strangways Metamorphic Complex are similar to those of mafic gneisses in the Harts Range Group. Mineral chemistry and zoning indicate that limited decompression accompanied cooling after peak metamorphism in both the Strangways Metamorphic Complex and the Harts Range Group. Isostatic compensation of the lithosphere, inferred as having been due to a magmatic thickening of the crust, resulted in the limited decompression and intense non-coaxial ductile extensional deformation. Mineral assemblages and compositions indicate that peak metamorphism occurred at conditions of high-temperature and low- to intermediate pressure in the Strangways Metamorphic Complex ($P = 5.3 \pm 1.5$ kbar, T~850°C) and high-temperature and intermediate pressure in the Harts Range Group (P \ge 6.5 kbar, T~800°C). Dissimilar P-T-t paths for the Strangways Metamorphic Complex and the Harts Range Group may reflect spatially separate but contemporaneous metamorphism/deformation, cooling and decompression of one protolith, rather than recording unrelated early-Proterozoic histories. The metamorphic geotherm is inferred to have been greater to the south during peak metamorphism, reflecting the geometry of an extensional detachment during the first tectonometamorphic cycle (the Strangways Event).

The central Arunta Block was subsequently reworked along a northeast to southwest-trending axis during a second major tectonometamorphic cycle (the *Arunta Orogeny*) that affected large portions of the Arunta Block and was unlike the events responsible for peak metamorphism. This event progressively deformed the Harts Range Group and Strangways Metamorphic Complex, and buried the Strangways Metamorphic Complex to greater depths. The pervasive layer-parallel granoblastic foliation in the Strangways Metamorphic Complex was folded into northeast-plunging, isoclinal to open folds that are colinear with an almost ubiquitous northeast-plunging stretching lineation. These folds resemble mylonitic folds in shear zones and were probably produced during progressive non-coaxial deformation. Retrograde minerals in the axial planes of these folds indicate the movement of Cl-bearing and F-bearing fluids during deformation,

which may have resulted in strain weakening and the formation of local macroscopic sheath folds. The Strangways Metamorphic Complex is also dissected by ultramylonite zones that contain recrystallized, high-temperature mineral assemblages and stretching lineations that are oriented parallel to stretching lineations in the unmylonitized gneisses. Most ultramylonites preserve evidence for normal movement and may represent limited gravitational collapse after tectonic thickening.

The granoblastic mineral assemblages in the Strangways Metamorphic Complex are enveloped by fine-grained symplectic aggregates that represent the effects of a second metamorphism. An increase in temperature and pressure ($P = 7.3\pm0.8$ kbar, T~800°C) during this second metamorphic event may have been concomitant with the dominant folding of the Strangways Metamorphic Complex.

The pervasive high-grade foliation in the Harts Range group is folded into tight, upright eastsoutheast-trending folds and north-plunging reclined folds. Unlike the Strangways Metamorphic Complex, the effects of a distinct second metamorphic event are not recognized in the Harts Range Group and hydrous minerals are poor in Cl and F. The Harts Range Group may represent a lower crustal section that was progressively deformed during the Arunta Orogeny and juxtaposed with the Strangways Metamorphic Complex. The inferred P-T-t paths for the Strangways Metamorphic Complex and the Harts Range Group converged during this major tectonometamorphic cycle.

The Strangways Metamorphic Complex and Harts Range Group are separated by wide shear zones and anastomosing north-dipping ultramylonite zones that resemble a tectonic mélange. These zones contain a northnortheast-plunging, high-grade mineral elongation lineation and preserve evidence for a reverse sense of movement. Deformation along these shear zones was probably responsible for juxtaposing the Harts Range Group against the Strangways Metamorphic Complex during the second tectonometamorphic cycle.

After the second tectonometamorphic cycle, the central Arunta Block remained at depth until uplift during the late-Proterozoic and mid-Carboniferous. North of late-Proterozoic sediments belonging to the Amadeus Basin, a mylonitic foliation in the Strangways Metamorphic Complex is overprinted by a northwest-trending, fine-grained muscovite lineation. This lineation is parallel to mineral elongation lineations in the deformed Amadeus Basin metasediments and represents deformation during the mid-Carboniferous *Alice Springs Orogeny*.

CONTENTS

Abstract	i
	1
List of figures	vi
List of tables	xiii
Acknowledgements	xiv
Acknowledgements	AIV

Introduction

Aim	IS	1
	sis outline	1 2 5 7
Reg	ional geology	5
-	Strangways Metamorphic Complex	
	Harts Range Group	12
	Gough Dam Schist Zone and the White Lady Block	13
	Reynolds Range Group	14
Min	eral abbreviations used in figures and tables	15
Chapter 1	Geochemistry of a K-poor felsic granofels in the Strangways Metamorphic Complex	16
1.1	Introduction	[′] 17
1.2	Petrology	17
	1.21 Petrography	22
	1.22 Geochemistry of the Mount Schaber granofels and adjacent felsic gneisses	25
	1.23 Altered rhyolitic tephras as a precursor?	29
1.3	Structure	31
1.5	1.31 The Mount Schaber antiform (sheath fold)	34
1.4	The structural and metamorphic history of the	36
	Mount Schaber granofels	50
1.5	Nature of the protolith and the effects of fluid	38
Appendix-1A	Whole-rock analyses from felsic gneisses in the Ongeva	47
Appendix-1B	granulites Whole-rock analyses from mafic gneisses in the Ongeva	48
	granulites	40
Appendix-1C	Whole-rock analyses from metapelitic gneisses in the Ongeva granulites	49
Chapter 2	The structural geology of the Strangways	50
-	Metamorphic Complex	
2.1	Introduction	51
2.2	Ongeva granulites	52
	2.21 \tilde{D}_1/M_1 event	53
	2.22 D_2 deformation	54
	2.23 D_3 folding event	62
	2.24 D_4 ultramylonitization	73
	2.25 D_5 deformation	75
2.3	Anamarra granite domain	77
	2.31 D_1/D_2 deformations	81
	2.32 D_3 folding	82
	2.33 Shear foliations	82
	2.34 D ₅ deformation	85
2.4	Structural evolution of the Strangways Metamorphic	86
	Complex	

~

Chapter 3	Metamorphic evolution of the Strangways Metamorphic Complex: evidence from metapelites	94
3.1 3.2 3.3 3.4	Introduction Geological setting Geochronological constraints Metamorphic geology	95 97 103 104
	3.41 Petrography3.42 A petrogenetic grid to account for the mineral assemblages	105 113
3.5	 3.43 Quantitative estimates for M₁ and M₂ Discussion 3.51 A P-T-t path for the Strangways Metamorphic 	116 121 123
	Complex 3.52 The tectonic setting of M_1 and M_2	124
Chapter 4	Mineral zoning and P-T-t paths for the early evolution of the Strangways Metamorphic Complex and the Harts Range group	127
4.1	Introduction	128
4.2	Geological setting	131
4.3	Whole-rock compositions	132
4.4	Petrography and mineral compositions	137
	4.41 Ongeva granulites	138
	4.42 Harts Range Group	149
4.5	Estimates of metamorphic conditions	157
	4.51 Ongeva granulites	157
	4.52 Harts Range Group	162
4.6	Discussion	164
4.7	Conclusions	169
Chapter 5	The kinematic history and metamorphic conditions associated with ultramylonitization in the Strangways Metamorphic Complex	171
5.1	Introduction	172
5.2	Critical field relationships	174
	5.21 Displacement	183
	5.22 Kinematic indicators	183
	5.23 Antithetic shear zones	185
5.3	Petrography	185
0.0	5.31 Primary assemblages in S_2	185
	5.32 M_2 assemblages	187
	5.33 Ultramylonite textures and assemblages	187
	5.34 Marble breccia	192
5.4	Estimates of P-T conditions from ultramylonite	192
J.4	mineral compositions	193
	5.41 Interpretation	203
5.5	Discussion	203
5.6	Conclusions	205
J.U		211

i v

Chapter 6	Structural and metamorphic evolution of the central Arunta Block: a synthesis	213
6.1 6.2	Introduction Structural and metamorphic history of the Strangways Metamorphic Complex	214 215
	 6.21 Ongeva granulites and the Anamarra granite domain 6.22 Structural and metamorphic fabrics in the Erontonga metamorphics and Ankala gneiss 	215 219
	6.23 Structural and metamorphic fabrics in the Anuma Schist	225
6.3	Structural and metamorphic history of the Harts Range Group	226
	6.31 Structural geology of the Riddock Amphibolite Member	226
	6.32 Structural geology of the Irindina Gneiss	230
	6.33 Structural geology of the Naringa Calcareous Member	234
	6.34 Tectonometamorphic history of the Harts Range Group	236
6.4	Shear zone deformation and metamorphic conditions	237
	6.41 Deformation in the Gough Dam Schist Zone	237
	6.42 Deformation in the White Lady Block	238
	6.43 The relationship between deformation in the Amadeus Basin and the central Arunta Block	241
6.5	Deposition of the Reynolds Range Group	242
6.6	Regional correlations	244
6.7	Models of early- to mid-Proterozoic tectonism in the Arunta Block	246
6.8	Conclusions	250
References		252
Appendix	Depositional history of the mid-Proterozoic (1800 Ma) Reynolds Range Group (Dirks and Norman)	AA 1
AA.1	Introduction	AA 3
AA.2	Regional geology	AA 4
AA.3	Depositional facies	AA 6
	AA.31 The quartz-arenite facies association	AA 9
	AA.32 The mudstone facies association	AA 17
	AA.33 The carbonate facies association	AA 20
AA.4	Depositional model	AA 21
AA.5	Tectonic implications	AA 24
AA.6	Conclusions	AA 27
	A barometric response to late compression in the Strangways Metamorphic Complex	

Norman, A. R. and Clarke, G. L., 1990. *Journal of Structural Geology*, **12**, 667-684.

LIST OF FIGURES

	18
1-1 Geological map of an area south of the Harts Range showing the Ongeva granulites, Anamarra granite domain and Harts Range	10
Group.	10
1-2 Geology of the Mount Schaber area.	19 21
1-3 (a) S ₂ leucosome layers in a felsic gneiss adjacent to the Mount	21
Schaber granofels. (b) Outgrap of the Mount Schaber granofels	
(b) Outcrop of the Mount Schaber granofels.(c) Magnesio-hastingsite hornblende rimming orthopyroxene. Base of	
photo is 4.4 mm.	
(d) Scapolite filling pullaparts in andesine. Base of photo is 1.75 mm.	
(c) Myrmekite and scapolite at an M_1 plagioclase grain boundary. Base	
of photo is 1.75 mm.	
(f) M_2 Scapolite and recrystallized and sine at a M_1 and sine grain	
boundary. Base of photo is 1.75 mm.	
1-4 Ternary plot of normative quartz-plagioclase (An+Ab)-	28
orthoclase for the Mount Schaber granofels and adjacent felsic	
gneisses.	
1-5 (a) Selected Harker variation diagrams of the Mount Schaber	30
granofels and adjacent felsic gneisses.	
(b) Plot of Na_2O+K_2O against Na_2O/K_2O , Mount Schaber granofels	,
and adjacent felsic gneisses.	
(c) SiO ₂ against Zr/TiO ₂ discrimination diagram and Zr/TiO ₂ against	
Nb/Y discrimination diagram for the Mount Schaber granofels and felsic gneisses and mafic rocks from the Ongeva	
granulites.	
(d) Selected covariance diagrams for the Mount Schaber granofels and	
adjacent felsic gneisses.	
1-6 Structural elements of the Mount Schaber area.	33
(a) Lower hemisphere, equal angle polar plot of S_1 , S_2 and S_3 .	
(b) Lower hemisphere, equal area stereographic projections of L_3 on	
S_2/S_3 , and F_3 and F_4 fold axes.	
(c) Lower hemisphere, equal area stereographic projections of	
mylonitic stretching lineations (L ₄).	
1-7 Sketch of the Mount Schaber antiform.	33
1-8 (a) Normative mineralogy of mafic gneisses and granofelses from	40
the Ongeva granulites, showing field of Mid Atlantic Ridge	
tholeiites (Schilling, 1975).	
(b) Plot of Y versus Cr for mafic gneisses and granofelses from the	
Ongeva granulites, showing field of MOR basalts and island arc	
basalts (Pearce et al., 1984).	
(c) Plot of Th versus La for metapelites from the Ongeva granulites, showing the field of Hodgkinson Basin and Bendigo Trough	
sedimentary rocks (Bhatia and Taylor, 1981).	
1-9 Nb-Y and Rb-(Nb+Y) discriminant diagrams (Pearce et al., 1984) for	44
felsic rocks at Mount Schaber and felsic gneisses from the Ongeva	+
granulites.	

•

2-1	D_1 and D_2 structures in the Ongeva granulites.	55
	(a) Fine-grained S_1 sillimanite inclusion trails in a garnet	
	porphyroblast from a metapelitic gneiss. Base of photo is 4.4 mm.	
	(b) Spinel-ilmenite S_1 inclusions in a garnet porphyroblast from a falsic grazies. Note the possible sufficience of E_1 folds. Prove of	
	felsic gneiss. Note the possible outlines of F_2 folds Base of photo is 4.4 mm.	
	(c) Elongate garnet defining S ₂ . Garnet is boudinaged and isoclinally	
	folded (F_2).	
	(d) Intrafolial F_2 fold with extremely attenuated limbs and thickened	
	hinge.	
	(e) Intrafolial, discontinuous F_2 fold in a well-foliated felsic gneiss.	
	Note late- D_2 pegmatite cutting S_2 .	
	(f) Asymmetrical mafic granofels boudins and discontinuous	56
	asymmetrical F ₂ fold with quartz-K-feldspar leucosome defining	
	an axial-plane S_2 foliation.	
	(g) Boudins of coarse-grained K-feldspar in S ₂ leucosome. Possibly	
	derived from D ₁ pegmatite.	
	(h) Coarse-grained S _{2b} sillimanite foliation cutting S ₂ quartz- feldspar-biotite leucosome.	
	(i) Late-D ₂ , coarse-grained garnet-quartz-K-feldspar pegmatite.	
2-2	(a) Fine-grained S_1 sillimanite inclusion trails outlining F_2 folds in a	57
22	garnet porphyroblast form a garnet gneiss deformed by F ₃ folds.	51
	Sample 766, Ongeva granulites.	
	(b) Fine-grained S_1 sillimanite inclusion trails outlining F_2 folds in	
	cordierite porphyroblasts form a metapelitic gneiss deformed by F ₃	
	folds. Sample 823, Ongeva granulites.	
2-3	Outcrop sketch showing the accumulation of late-D ₂ garnet-rich	59
2.4	pegmatite along S_1 lithological boundaries in the Ongeva granulites.	()
2-4	Macroscopic fold pattern in the Ongeva granulites.	63
2-5	Equal-area, lower hemisphere, stereographic projections of structural data from the Ongeva granulites.	64
2-6	D_3 structures in the Ongeva granulites.	65
20	(a) Isoclinal F_2 fold folded by an isoclinal F_3 fold in a felsic gneiss.	05
	(b) Type A, tight F_3 fold of S_2 leucosome with quartz elongation	
	lineation (L_3) defining a axial-plane fabric (S_3) .	
	(c) Type B, F_3 fold with quartz elongation lineation parallel to the fold	
	axis. F_3 axial-plane has been reoriented due to F_4 .	· •
	(d) Retrograde hornblende and biotite after orthopyroxene defining S_3 .	
	S_3 is parallel to the axial-plane of F_3 folds in a felsic gneiss.	
	(e) F_3 folded by an open F_4 fold. Note the well-lineated (L ₃) coarse-	
	grained late- D_2 pegmatite in top left corner.	
	(f) S-shaped parasitic folds on the limb of a macroscopic F_4 fold.	
	(g) Garnet-quartz-K-feldspar leucosome segregations parallel to the axial-plane of F ₄ folds.	
2-7	Outcrop sketch of a type-A F_3 fold in a garnet-bearing felsic gneiss.	66
21	F_3 folds garnet-bearing S_2 leucosome and F_2 folds. Garnet-	00
	-bearing pegmatite segregations cut the F ₃ axial-plane and are	
	parallel to the axial trace of F_4 folds.	
2-8	Outcrop sketch of multiply deformed felsic and metapelitic gneisses,	68
	showing F_3 and F_4 folds and late- D_2 garnet-bearing pegmatite pods	
	cutting S_2 and S_{2b} foliation. Note that pegmatite dykes cut F_3 and F_4	
	folds but are displaced by D ₄ shear zones.	
2-9	Outcrop sketch of an F_4 folded granulite facies mafic dyke cutting S_2 ,	70
0 10	S_{2b} and F_3 folds.	
2-10	Type 2 and Type 3 (Ramsay, 1967) F_3 - F_4 fold interference pattern	71
	in the Ongeva granulites.	

•

-

2-11	Inte	rpreted 3-dimensional diagram of the fold interference pattern in Fig. 2.10 showing F_3 isoclinal folds folded by more open colinear F_4 folds.	72
2-12	Equ	al-area, lower hemisphere, stereographic projections of structural data from the Gough Dam Schist Zone.	76
2-13	Geo	logy of the Anamarra granite domain.	78
		al-area, lower hemisphere, stereographic projections of structural	79
21.	294ª	data from the Anamarra granite domain.	
2-15	(a)	Irregular outcrop of orthogneiss and metagabbro in the Anamarra	80
	<i>a</i> >	granite domain.	
		Elongate cordierite defining S_2 . Cordierite is boudinaged and isoclinally folded (F_2).	
	(c)	Phenocrystic metagabbro enclave in a deformed orthogneiss.	
	(d)	North-trending shear foliation with asymmetrical folds indicating a sinistral shear sense.	
	(e)	Crenulated north-trending shear foliation in an orthogneiss.	
	(f)	Northeast alignment of megacrysts in the Anamarra granite displaced	
	(1)	by an east-trending D_4 shear zone.	
2 16	Fold		83
2-10	FOI	led orthogneiss and metagabbro outcrop pattern in the	05
0.15	¥7.	Anamarra granite domain. Location shown on 2.13.	00
2-17	Kın	k zone model for the formation of shear foliations in the	92
		Anamarra granite domain and lateral dextral shear zones in the	
		Ongeva granulites, during the later stages of D_3 . The	
		predominance of southeast-trending dextral zones arises from	
		differently directed and differently valued shear strains parallel to	
		kink surfaces (from Ramsay and Huber, 1987).	
3-1	(a)	Coarse-grained S _{2b} sillimanite-biotite foliation, Ongeva granulites.	100
	(h)		
	(b)	Irregularly-shaped, coarse-grained, pegmatitic pod of garnet-K-	
		feldspar-quartz-biotite cutting S _{2b} sillimanite foliation and calc-	
		silicate boudins, Ongeva granulites.	
	(c)	S_{2b} sillimanite foliation and S_2 cordierite-quartz leucosome	
		(arrowed) tightly folded by F ₃ with some sillimanite reoriented into	
		the axial-plane, Anamarra granite domain.	
	(d)	Irregular pegmatitic network of plagioclase-hornblende-	
	()	orthopyroxene cutting S_2 in a mafic granofels, Ongeva granulites.	
3-2	Out	crop sketch of open F_4 folds and late D_3 quartz-feldspar-biotite	102
52	Out	pegmatite containing xenoliths of cordierite with M_2 symplectic	102
2 2	(a)	aggregates (from Norman and Clarke, 1990).	104
3-3	(a)		106
		cordierite gneiss from the Anamarra granite domain. Sample 372.	
		Base of photograph is 4.4 mm.	
	(b)	Coarse-grained S_{2b} sillimanite foliation truncated by a D_4	
		ultramylonite zone, Ongeva Granulites. Sample 377. Base of	
		photograph is 12.0 mm.	
	(c)		
	(•)	grained S_{2b} sillimanite and the enveloping M_2 orthopyroxene-	
		sillimanite-biotite symplectite, Ongeva Granulites. Sample 106.	
	(4)	Base of photograph is 1.75 mm.	
	(a)	M_2 orthopyroxene-sillimanite -biotite-magnetite symplectite replacing	
		cordierite along its grain boundaries. Symplectite encloses S _{2b}	
		magnetite which has a M_1 spinel inclusion, Anamarra granite	
		domain. Sample 257. Base of photograph is 4.4 mm	
	(e)	Vermicular intergrowth of magnetite with M ₂ orthopyroxene-	
	-	sillimanite-biotite symplectite, Anamarra granite domain. Sample	
		702. Base of photograph is 0.7 mm.	

	(f)	M_2 clinopyroxene-plagioclase corona at the interface of hornblende and plagioclase and ferroan pargasite at the interface of orthopyroxene and plagioclase in a mafic granofels from the Ongeva granulites. Sample 375. Base of photograph is 1.75 mm.	
3-4	Dia	gram from a back-scatter electron image of a S_{2b} magnetite containing a M_1 spinel inclusion, which has inclusions of ilmenite, Anamarra granite domain (from Norman and Clarke, 1990). Sample 709.	107
3-5	K ₂ (D-FeO-MgO-Al ₂ O ₃ -SiO ₂ -MgO-H ₂ O-TiO ₂ -O ₂ (KFMASHTO) petrogenetic grid, for a projection from quartz, K-feldspar, sillimanite and melt, after Clarke et al. (1989). The shaded areas represent the metamorphic conditions implied by the peak (S_1), S_2 and M_2 (D ₃) assemblages described in the text. The reactions marked as A, B, C and D are the reactions that are inferred to be involved in the development of the overprinting mineral assemblages. The large arrows show the inferred P-T path for the Strangways Metamorphic Complex: after approximately isobaric cooling from peak M_1 conditions, the terrain experienced an increase in pressure during the M_2 -D ₃ event. See Table 3.1 for the correlation between metamorphic and deformation events.	115
4-1	Ger	neralized geology of the central Arunta Block showing sample localities.	130
4-2	(a)	AFM diagram of mafic gneisses and granofelses from the Ongeva granulites and meta-gabbros from the Harts Range Group.	134
	(b)	MgO versus FeO ^T /MgO for mafic gneisses and granofelses from the Ongeva granulites and meta-gabbros from the Harts Range group.	
	(c)	Normative mineralogy of mafic gneisses and granofelses from the Ongeva granulites and meta-gabbros from the Harts Range Group plotted on a diopside-hypersthene-olivine-nepheline-quartz diagram.	
4-3	(a)	ACF diagram of the molecular compositions of mafic gneisses and granofelses from the Ongeva granulites and meta-gabbros from the Harts Range Group.	135
	(b)	AKF diagram of the molecular compositions of metapelites from the Ongeva granulites.	
4-4	(a)	MgO, CaO and Al_2O_3 (wt%) zoning profiles in clinopyroxene and orthopyroxene from a mafic granofels (sample 258), Ongeva granulites.	139
		Al ₂ O ₃ (wt%) zoning in orthopyroxene from a garnet-bearing felsic gneiss (sample 55) and FeO and MgO (wt%) zoning in clinopyroxene from a garnet-bearing felsic gneiss (sample 58), Ongeva granulites.	
	(c)	$%X_{mg}$ (Mg/Mg+Fe ²⁺) zoning in garnet and cordierite from a metapelitic gneiss (sample 622), Ongeva granulites.	
	(d)	Al ₂ O ₃ , FeO, MgO (wt%) zoning in clinopyroxene from a calc-silicate rock (sample 756), Ongeva granulites.	140
	(e)	FeO and MgO (wt%) zoning in garnet and clinopyroxene from the Riddock Amphibolite Member (sample 523), Harts Range Group.	
4-5	(a)	M_2 orthopyroxene-plagioclase symplectite at the interface of hornblende and M_1 plagioclase. Sample 258. Base of photograph is 1.75 mm.	142
	(b)	M_2 orthopyroxene-plagioclase symplectite at the interface of hornblende and M_1 plagioclase. Sample 258. Base of photograph is 1.75 mm.	
	(c)	Clinopyroxene-spinel symplectite in an ultramafic rock, Ongeva granulites. Sample 955. Base of photograph is 1.75 mm.	

•

•

	(d)	M_1 garnet and cordierite and M_2 orthopyroxene-sillimanite symplectite, across which, chemical zoning profiles are shown in	
		Fig. 4.4c., Ongeva granulites. Sample 405. Base of photograph is 1.75 mm.	
	(e)		
4-6 4-7		crop sketch of ultramafic boudins on the limb of an F ₃ fold. action textures in a calc-silicate rock (sample 756), Ongeva granulites.	143 148
4-8	(a)	P-T line estimates using assemblages in samples from the Ongeva granulites and assemblages in the Riddock Amphibolite Member, Harts Range Group.	159
	(b)	Molecular Al/2 orthopyroxene isopleths in equilibrium with garnet ($X_{Mg} = 0.47$) with variable P-T conditions.	
	(c)	Refined P-T-t paths for the early-Proterozoic history of the central Arunta Block.	
5-1	Out	crop pattern of shear zones greater than 0.75 m wide, transecting the Ongeva granulites.	175
5-2		Discontinuous shear zone outcrop.	176
	(b) (c)	Narrow shear zones and displaced S_2 foliation. Ultramylonite sheath fold in a north-side down shear zone.	
	(d)	Marble breccia, containing folded fragments of lineated ultramylonite.	
5-3	(a)	Lower hemisphere, equal-area, stereographic projections of	178
	(b)	poles to ultramylonitic foliations (S_4) . Lower hemisphere, equal-area, stereographic projections of poles to S_2 .	
5-4	(a)	Lower hemisphere, equal-area, stereographic projections of ultramylonite stretching lineations (L_4) .	179
	(b)	• •	
	(c)	Lower hemisphere, equal-area, stereographic projections of D_3 fold axes.	
5-5	D ₃ f	fold interference adjacent to prominent shear zones and antithetic shear zones. Location is shown in Fig. 5.6.	181
5-6	Out	crop fold interference pattern and cross-cutting D ₄ shear zones.	182
5-7	She	ar zone geometry, showing eastnortheast-trending antithetic shear zones connecting normal shear zones.	186
5-8	(a)	δ shaped amphibole porphyroclast and recrystallized amphibole tails. Amphibole, clinopyroxene and plagioclase define the S ₄ mylonitic foliation. Dextral shear. Sample 277. Base of photograph is 4.4 mm.	190
	(b)	δ shaped orthopyroxene porphyroclast and recrystallized amphibole tails. Amphibole, clinopyroxene and plagioclase define the	
	(c)	mylonitic foliation. Dextral shear. Sample 277. Base of photograph is 1.75 mm. Mylonitic foliation defined by fine-grained recrystallized	
		orthopyroxene and plagioclase. Dextral shear. Sample 300. Base of photograph is 4.4 mm.	
	(d)	Garnet porphyroclast with recrystallized tails of garnet and rimmed by biotite. Sample 288. Base of photograph is 1.75 mm.	
	(e)	Fine-grained neocrystallized sillimanite, parallel to the stretching lineation, defines the mylonitic foliation. Sample 105. Base of	
5-9	7.n	photograph is 1.75 mm ing profile across hypersthene porphyroclast from sample 288.	198
57	2011	ing promo uoroso nyporouono porphyrociusi moni sampie 200.	170

.

-

5-10	 (a) P-T lines estimated using assemblages in sample 287. (b) P-T lines estimated using assemblages in sample 288A. (c) P-T lines estimated using assemblages in sample 191. (d) P-T lines from (a), (b), (c) and area of best fit for ultramylonitization 	208
	and M_2 .	
6-1	Lower hemisphere, equal-area, stereographic projections of L ₃ , D ₃ fold axes, L ₄ , and L ₅ from the Strangways Metamorphic Complex.	218
6-2	 (a) Garnet porphyroblasts and lineated sillimanite and biotite in a metapelitic schist on the northern margin of the Ongeva granulites. Sample 904. Base of photograph is 4.4 mm. 	221
	(b) Muscovite porphyroblast containing sillimanite and biotite inclusion trails in a sillimanite-biotite schist on the northern margin of the Ongeva granulites. Sample 901. Base of photograph is 2.0 mm.	
	 (c) Hornblende-plagioclase metagabbro containing anthophyllite porphyroblasts. Anamarra granite domain. Sample 903A. Base of photograph is 4.4 mm. 	
	 (d) Chlorite schist containing anthophyllite porphyroblasts adjacent to sample in Fig. 6-2c in the Anamarra granite domain. Sample 903B. Base of photograph is 4.4 mm. 	
	 (e) Elongate staurolite defining a steep lineation in the Anuma Schist. (f) Lineated staurolite and biotite in the Anuma Schist. Sample 945. Base of photograph is 4.4 mm. 	
6-3	Outcrop pattern of the Erontonga metamorphics, Ankala gneiss, Anuma Schist and late-Proterozoic Heavitree Quartzite. Location shown on Fig. 1-0.	223
6-4	Lower hemisphere, equal-area, stereographic projections of poles to mylonitic foliations and mylonitic lineations from the	224
6-5	Erontonga metamorphics and the Ankala gneiss. Lower hemisphere, equal-area, stereographic projections of poles to S_0 from the Heavitree Quartzite and quartz elongation	224
6-6	lineations in S ₀ . Folded outcrop pattern of the Harts Range Group.	227
6-7	Lower hemisphere, equal-area, stereographic projections of poles to S_1 and S_2 , and L_2 from the Riddock Amphibolite Member.	228
6-8	Lower hemisphere, equal-area, stereographic projections of structural data from the Irindina Gneiss.	231
	 (a) Poles to S₁ and S₂. (b) Mineral elongation lineations (L₂) on S₁ and S₂. (c) Poles to mylonitic foliations (S₅). 	
6-9	 (d) Mineral elongation lineations (L₅) on S₅. Outcrop sketches of D₃ structures in the Irindina gneiss. Locality is shown on Fig. 6.6. 	232
6-10	Lower hemisphere, equal-area, stereographic projections of structural data from the Naringa Calcareous Member, Harts Range Group.	235
	 (a) Poles to S₁ and S₂, and projections of L₂ on S₂. (b) F₃ fold axes. (c) Poles to mylonitic foliations and projections of mylonitic 	
C 11	mineral lineations.	000
	Outcrop shear zone pattern in the White Lady Block. Lower hemisphere, equal-area, stereographic projections of poles to S_1 and S_2 , and poles to mylonitic foliations and mylonitic lineations from the White Lady Block.	239 240

•

•

-

AA.1	Regional geological map of the Reynolds Range, central Australia, showing the distribution of the Reynolds Range Group and Mt Thomas quartzite from which most palaeo-current data were obtained.	AA 5
AA.2	Schematic cross section showing the spatial distribution of the three facies associations (position shown in Fig. AA.1; adapted from Dirks, 1991). The section is taken across the facies boundaries and shows a gradual northeastward and upward transition of the quartz- arenite facies association to the mudstone facies association, reflecting an overall transgression. The restored width of the palaeo- shelf is based on strain estimates across the Reynolds Range, where the lateral extend of the Reynolds Range Group was at its maximum (Dirks, 1991).	AA 7
AA.3	Schematic stratigraphic columns, showing the distribution of the three facies associations along the northwestern Reynolds Range, based on stratigraphical columns presented in Dirks (1990), and indicated in Fig. AA. 1.	AA 8
AA.4	Stratigraphic column through a transgressive sequence within the quartz-arenite facies association, northwest of Mt Thomas (Fig. AA.3B). The facies association is dominated by prominent large- scale trough and tabular cross-bedded sets. Rose diagrams indicate palaeocurrent directions.	AA 10
AA.5	Stratigraphic column through a transgressive sequence within the quartz-arenite facies association, southeast of Mt Thomas (Fig. AA.3D, middle quartz-arenite unit). Rose diagrams indicate palaeocurrent directions.	AA 11
AA.6	Rose diagrams of palaeocurrent directions in the quartz-arenite facies association. Trough crossbeds, tabular crossbeds and ripples (symmetrical + asymmetrical) have been considered separately and are subdivided in large and small-scale structures.	AA 13
AA.7		AA 14
	(b) Quartz-arenite containing parallel-laminations and herringbone cross-bedding deposited in a tide-influenced near shore environment.	e.
	(c) Parallel-laminated and hummocky cross-stratified cosets topped by thin cross laminations in a thick storm sand deposit (photo location is towards the top of Fig. AA.4).	
	 (d) Loadcast and flame structures in a storm sand layer overlaying mudstone. The structures resulted from rapid suspension sedimentation on water-laden muds. 	
	 Mushroom-shaped stromatolite bioherms, draped in parallel- laminated algal mats. 	
	 (f) Mudstone containing linsen-like grainstone lenses with a bidirectional bundled build-up typical for a high energy environment influenced by wave action. The pencil used for scale is approximately 15 cm long. 	

LIST OF TABLES

page

1-1	Representative microprobe analyses of minerals in sample 2, Mount	23
1-2	Schaber granofels. Major and trace element analyses of the Mount Schaber granofels and	26
1-3	adjacent felsic gneisses. Averaged analyses from the Ongeva granulites.	27
1-3	Major and trace element analyses of the Reids Mistake Tuff and the	32
1 1	Nobbys Tuff, Newcastle Coal Measures, Sydney Basin.	52
1-5	Representative analyses from Australian Proterozoic felsic gneisses and granites.	32
2-1	Summary of the structural evolution of the Strangways Metamorphic Complex.	87
3-1	Summary of the deformation and metamorphic history of the Strangways Metamorphic Complex, showing the correlation between	98
	deformation and metamorphic events (from Norman and Clarke, 1990).	
3-2	Representative microprobe analyses of minerals in sample 704.	117
3-3 3-4	Representative microprobe analyses of minerals in sample 257. Representative microprobe analyses of cordierite and M_2	117
5-4	symplectite in sample 702.	110
3-5	Average pressure calculations on the mineral parageneses in samples 704, 257 and 702, following the approach of Powell and Holland (1988) with the expanded internally consistent dataset of Holland and Powell (1990).	120
4-1	Whole-rock analyses from the Ongeva granulites and the	133
4.2	Harts Range Group.	1.5.1
4-2	Representative microprobe analyses from a mafic granofels (sample 258), Ongeva granulites.	151
4-3	Representative microprobe analyses from an ultramafic boudin	152
75	(sample 955), Ongeva granulites.	152
4-4	Representative microprobe analyses from felsic gneisses	153
	(samples 55 and 58), Ongeva granulites.	
4-5	Representative microprobe analyses from a cordierite-garnet gneiss (sample 622), Ongeva granulites.	154
4-6	Representative microprobe analyses from calc-silicate rocks	155
	(samples 756 and 296), Ongeva granulites.	
4-7	Representative microprobe analyses from the Riddock	156
4.0	Amphibolite Member (sample 543), Harts Range Group.	150
4-8	P-T estimates using assemblages from the Ongeva granulites and the Riddock Amphibolite Member.	158
	the Kiddock Ampinoonte Member.	
5-1	Sense of shear determination in shear zones.	184
5-2	Representative microprobe analyses from ultramylonitized	204
	mafic gneisses.	
5-3	Representative microprobe analyses from ultramylonitized	205
	felsic gneisses.	• • • •
5-4	Representative microprobe analyses from ultramylonitized	206
5-5	calc-silicate rocks. P-T estimates using ultramylonite assemblages.	207
5-5	r - r commarco using unu amy tomic assemblages.	207
6-1	Whole-rock compositions from the Strangways Metamorphic Complex.	220

ACKNOWLEDGEMENTS

I am extremely grateful to Professor Ron Vernon for his continual encouragement and supervision and to Doctors Geoff Clarke and Richard Flood for helpful discussions during the preparation of this thesis. I am indebted to Doctor Geoff Clarke for his friendship and camaraderie beyond the call of Geology. I wish to thank Doctor Paul Dirks for his pleasurable and memorable company in central Australia and for the many stimulating late-night discussions.

I thank Clare Braithwaite and Carol Lawson for providing analytical assistance and the Northern Territory Geological Survey for their moral support.

Once again, I would like to thank my parents and family for their endless patience.