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Abstract 

An analysis of the compositions of minerals and the geometries of their fabrics in 

rocks from the Strangways Metamorphic Complex and the Harts Range Group indicates 

that the central Arunta Block was affected by two major granulite facies 

tectonometamorphic cycles prior to greenschist facies retrogression and uplift to the 

surface. The Strangways Metamorphic Complex consists of interlayered felsic, mafic 

and pelitic gneisses that contain granulite facies assemblages. A continental rift setting or 

a rifted continental margin setting is inferred, on the basis of the composition of mafic 

granofelses, metapelites and felsic gneisses. Uncommon K-poor felsic granofelses 

probably indicate diagenetic alteration of rhyolitic tephra, rather than widespread 

metasomatism during metamorphism. The whole-rock compositions of mafic granofelses 

in the Strangways Metamorphic Complex are similar to those of mafic gneisses in the 

Harts Range Group. Mineral chemistry and zoning indicate that limited decompression 

accompanied cooling after peak metamorphism in both the Strangways Metamorphic 

Complex and the Harts Range Group. Isostatic compensation of the lithosphere, 

inferred as having been due to a magmatic thickening of the crust, resulted in the limited 

decompression and intense non-coaxial ductile extensional deformation. Mineral 

assemblages and compositions indicate that peak metamorphism occurred at conditions of 

high-temperature and low- to intermediate pressure in the Strangways Metamorphic 

Complex (P = 5.3±1.5 kbar, T~850°C) and high-temperature and intermediate pressure 

in the Harts Range Group (P > 6.5 kbar, T~800°C). Dissimilar P-T-t paths for the 

Strangways Metamorphic Complex and the Harts Range Group may reflect spatially 

separate but contemporaneous metamorphism/deformation, cooling and decompression of 

one protolith, rather than recording unrelated early-Proterozoic histories. The 

metamorphic geotherm is inferred to have been greater to the south during peak 

metamorphism, reflecting the geometry of an extensional detachment during the first 

tectonometamorphic cycle (the Strangways Event). 

The central Arunta Block was subsequently reworked along a northeast to 

southwest-trending axis during a second major tectonometamorphic cycle (the Arunta 

Orogeny) that affected large portions of the Arunta Block and was unlike the events 

responsible for peak metamorphism. This event progressively deformed the Harts Range 

Group and Strangways Metamorphic Complex, and buried the Strangways Metamorphic 

Complex to greater depths. The pervasive layer-parallel granoblastic foliation in the 

Strangways Metamorphic Complex was folded into northeast-plunging, isoclinal to open 

folds that are colinear with an almost ubiquitous northeast-plunging stretching lineation. 

These folds resemble mylonitic folds in shear zones and were probably produced during 

progressive non-coaxial deformation. Retrograde minerals in the axial planes of these 

folds indicate the movement of Cl-bearing and F-bearing fluids during deformation, 
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which may have resulted in strain weakening and the formation of local macroscopic 

sheath folds. The Strangways Metamorphic Complex is also dissected by ultramylonite 

zones that contain recrystallized, high-temperature mineral assemblages and stretching 

lineations that are oriented parallel to stretching lineations in the unmylonitized gneisses. 

Most ultramylonites preserve evidence for normal movement and may represent limited 

gravitational collapse after tectonic thickening. 

The granoblastic mineral assemblages in the Strangways Metamorphic Complex 

are enveloped by fine-grained symplectic aggregates that represent the effects of a second 

metamorphism. An increase in temperature and pressure (P = 7.3±0.8 kbar, T~800°C) 

during this second metamorphic event may have been concomitant with the dominant 

folding of the Strangways Metamorphic Complex. 

The pervasive high-grade foliation in the Harts Range group is folded into tight, 

upright eastsoutheast-trending folds and north-plunging reclined folds. Unlike the 

Strangways Metamorphic Complex, the effects of a distinct second metamorphic event 

are not recognized in the Harts Range Group and hydrous minerals are poor in CI and F. 

The Harts Range Group may represent a lower crustal section that was progressively 

deformed during the Arunta Orogeny and juxtaposed with the Strangways Metamorphic 

Complex. The inferred P-T-t paths for the Strangways Metamorphic Complex and the 

Harts Range Group converged during this major tectonometamorphic cycle. 

The Strangways Metamorphic Complex and Harts Range Group are separated by 

wide shear zones and anastomosing north-dipping ultramylonite zones that resemble a 

tectonic melange. These zones contain a northnortheast-plunging, high-grade mineral 

elongation lineation and preserve evidence for a reverse sense of movement. 

Deformation along these shear zones was probably responsible for juxtaposing the Harts 

Range Group against the Strangways Metamorphic Complex during the second 

tectonometamorphic cycle. 

After the second tectonometamorphic cycle, the central Arunta Block remained at 

depth until uplift during the late-Proterozoic and mid-Carboniferous. North of late-

Proterozoic sediments belonging to the Amadeus Basin, a mylonitic foliation in the 

Strangways Metamorphic Complex is overprinted by a northwest-trending, fine-grained 

muscovite lineation. This lineation is parallel to mineral elongation lineations in the 

deformed Amadeus Basin metasediments and represents deformation during the mid-

Carboniferous Alice Springs Orogeny. 
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5-9 Zoning profile across hypersthene porphyroclast from sample 288. 198 
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5-10 (a) P-T lines estimated using assemblages in sample 287. 208 
(b) P-T lines estimated using assemblages in sample 288A. 
(c) P-T lines estimated using assemblages in sample 191. 
(d) P-T lines from (a), (b), (c) and area of best fit for ultramylonitization 

and M2. 

6-1 Lower hemisphere, equal-area, stereographic projections of L3, 218 
D3 fold axes, L4, and L5 from the Strangways Metamorphic 
Complex. 

6-2 (a) Garnet porphyroblasts and lineated sillimanite and biotite in a 221 
metapeHtic schist on the northern margin of the Ongeva granulites. 
Sample 904. Base of photograph is 4.4 mm. 

(b) Muscovite porphyroblast containing sillimanite and biotite inclusion 
trails in a sUlimanite-biotite schist on the northern margin of the 
Ongeva granulites. Sample 901. Base of photograph is 2.0 mm. 

(c) Hornblende-plagioclase metagabbro containing anthophyllite 
porphyroblasts. Anamarra granite domain. Sample 903A. 
Base of photograph is 4.4 mm. 

(d) Chlorite schist containing anthophyllite porphyroblasts adjacent to 
sample in Fig. 6-2c in the Anamarra granite domain. Sample 
903B. Base of photograph is 4.4 mm. 

(e) Elongate staurolite defining a steep lineation in the Anuma Schist. 
(f) Lineated staurolite and biotite in the Anuma 

Schist. Sample 945. Base of photograph is 4.4 mm. 
6-3 Outcrop pattern of the Erontonga metamorphics, Ankala gneiss, 223 

Anuma Schist and late-Proterozoic Heavitree Quartzite. Location 
shown on Fig. 1-0. 

6-4 Lower hemisphere, equal-area, stereographic projections of 224 
poles to mylonitic foliations and mylonitic lineations from the 
Erontonga metamorphics and the Ankala gneiss. 

6-5 Lower hemisphere, equal-area, stereographic projections of 224 
poles to So from the Heavitree Quartzite and quartz elongation 
lineations in So. 

6-6 Folded outcrop pattern of the Harts Range Group. 227 
6-7 Lower hemisphere, equal-area, stereographic projections of 228 

poles to Si and S2, and L2 from the Riddock Amphibolite 
Member. 

6-8 Lower hemisphere, equal-area, stereographic projections of 231 
structural data from the Irindina Gneiss. 

(a) Poles to Si and S2. 
(b) Mineral elongation lineations (L2) on Si and S2. 
(c) Poles to mylonitic foliations (S5). 
(d) Mineral elongation lineations (L5) on S5. 

6-9 Outcrop sketches of D3 structures in the Irindina gneiss. 232 
Locality is shown on Fig. 6.6. 

6-10 Lower hemisphere, equal-area, stereographic projections of 235 
structural data from the Naringa Calcareous Member, Harts 
Range Group. 

(a) Poles to Si and S2, and projections of L2 on S2. 
(b) F3 fold axes. 
(c) Poles to mylonitic foliations and projections of mylonitic 

mineral lineations. 
6-11 Outcrop shear zone pattern in the White Lady Block. 239 
6-12 Lower hemisphere, equal-area, stereographic projections of 240 

poles to Si and S2, and poles to mylonitic foliations and 
mylonitic lineations from the White Lady Block. 
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AA. 1 Regional geological map of the Reynolds Range, central Australia, AA 5 
showing the distribution of the Reynolds Range Group and Mt 
Thomas quartzite from which most palaeo-current data were 
obtained. 

AA.2 Schematic cross section showing the spatial distribution of the three AA 7 
facies associations (position shown in Fig. AA.l; adapted from 
Dirks, 1991). The section is taken across the facies boundaries and 
shows a gradual northeastward and upward transition of the quartz-
arenite facies association to the mudstone facies association, 
reflecting an overall transgression. The restored width of the palaeo-
shelf is based on strain estimates across the Reynolds Range, where 
the lateral extend of the Reynolds Range Group was at its maximum 
(Dirks, 1991). 

AA.3 Schematic strafigraphic columns, showing the distribution of the AA 8 
three facies associations along the northwestern Reynolds Range, 
based on stratigraphical columns presented in Dirks (1990), and 
indicated in Fig. AA. 1. 

AA.4 Stratigraphic column through a transgressive sequence within the AA 10 
quartz-arenite facies association, northwest of Mt Thomas (Fig. 
AA.3B). The facies association is dominated by prominent large-
scale trough and tabular cross-bedded sets. Rose diagrams indicate 
palaeocurrent directions. 

AA.5 Stratigraphic column through a transgressive sequence within the AA 11 
quartz-arenite facies association, southeast of Mt Thomas (Fig. 
AA.3D, middle quartz-arenite unit). Rose diagrams indicate 
palaeocurrent directions. 

AA.6 Rose diagrams of palaeocurrent directions in the quartz-arenite AA 13 
facies association. Trough crossbeds, tabular crossbeds and ripples 
(symmetrical + asymmetrical) have been considered separately and 
are subdivided in large and small-scale structures. 

AA.7 (a) Quartz-arenite with long-shore-directed, large-scale, tabular AA 14 
crossbeds. The upper coset surfaces are truncated by off-shore-
directed, small-scale trough crossbeds. Note that the photo has been 
rotated 90° in an anticlockwise fashion, so as to bring the bedding in 
its original position, (photo location is towards the centre of Fig. 
AA.4; pencil is in top of photo) 

(b) Quartz-arenite containing parallel-laminations and 
herringbone cross-bedding deposited in a tide-influenced near shore 
environment. 

(c) Parallel-laminated and hummocky cross-stratified cosets topped by 
thin cross laminations in a thick storm sand deposit (photo location 
is towards the top of Fig. AA.4). 

(d) Loadcast and flame structures in a storm sand layer overlaying 
mudstone. The structures resulted from rapid suspension 
sedimentation on water-laden muds. 

(e) Mushroom-shaped stromatolite bioherms, draped in parallel-
laminated algal mats. 

(f) Mudstone containing linsen-like grainstone lenses with a bidirectional 
bundled build-up typical for a high energy environment influenced by 
wave action. The pencil used for scale is approximately 15 cm long. 
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