
Chapter 1

Introduction

The modern world depends on information technology, and since 1962 computing power has roughly

doubled every two years. Here, computing power is conceptualized as the maximum number of tran-

sistors that can fit in a given area of an inexpensive integrated circuit [1, 2, 3]. Society continuously

demands increased computing power in the military, industry, business, medicine, scientific research and

for private purposes. This has lead to continuous cycles of development and obsolescence in information

technology. Hence the progress of information processing power is important both to the infrastructure

and the economy of the global society. Effectively, this depends on making processing power denser.

However, the standard method of producing very fine integrated circuitry using UV light lithography is

progressing closer to its inherent physical limits of miniaturisation [4]. What will be the next step in push-

ing the limits of information processing hardware? As miniaturisation and more innovative approaches

progress, information processing will eventually involve device components of atomic or molecular scale.

Thus, whether by conventional semiconductor transistors or other technologies, the physical role of quan-

tum coherence will become more important in information technology. Accordingly, quantum mechanics

will increasingly be required to describe, design and understand information processing hardware in the
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future.

Quantum computing is different from conventional computing, because it is subject to different logic

and physical constraints. Hence it requires a different theoretical understanding and precise engineering

[5]. However, quantum computing holds the promise of significant advantages over conventional com-

puting.

Quantum mechanics describes the world of atomic and subatomic particles, revealing a set of laws

that differ fundamentally from the classical laws of the macroscopic world. By understanding the laws

of quantum physics and using refined instruments, various technologies have been developed that har-

ness the effects of the quantum mechanical world. Nuclear power, lasers, electron microscopy, nuclear

magnetic resonance imaging are just a few examples of technologies which were developed through ap-

plications of quantum mechanics.

As the available instrumentation is being increasingly refined, much attention and effort is being de-

voted to developing computers based on quantum effects, in the hopes that systems can be developed that

outperform conventional computers, at least in specific tasks. For some of these tasks, theoretical algo-

rithms already exist. These tasks which classical computing would perform in exponential time, quantum

computing can accomplish in only polynomial time. In other words, for a problem of size N, i.e. where

N items must be treated, a classical computer might need to spend computing time on the order of eN

while the quantum computer could do the task in computing time as some polynomial of N. For example,

the Shor quantum algorithm efficiently factors numbers into component primes, and can thus break any

classical encryption which is based on the multiplication of large prime numbers [6]. Efficiently here
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means that the computational resources merely grow polynomially, not exponentially, relative to the size

of the problem. A search algorithm for unsorted databases has also been developed which functions

with quadratic speed-up compared to the best known classical search algorithms, which scales linearly

with the size of the database [7]. The Shor algorithm has primarily military, intelligence and security

applications, but any endeavour that avails itself of information technology will deal with databases. The

possibility has also been postulated to use quantum computing to simulate quantum systems more effi-

ciently than a conventional computer [8, 9], and this could benefit all the physical sciences. This provides

a strong motivation to investigate the potential hardware and software of quantum computing devices.

How can a quantum computer be implemented? One of the primary challenges is to protect a quantum

system from environmental noise, which would cause computing errors if quantum states are uninten-

tionally decohered. To make quantum computing work, a quantum computer must be built which protects

the quantum information from noise. Also, another challenge is communicating between the different

realms, i.e. between the classical physics and quantum physics portions of a device. In a quantum system,

reading data must involve taking a measurement of the system. This in turn changes the quantum state

measured. For this reason, the logic of quantum computing differs from the logic of conventional comput-

ing, where reading data does not change the stored data. A qubit is the quantum information equivalent

of the classical computer bit, i.e. it is a two-level quantum system used to store or express data. Entan-

glement is a quantum physical phenomenon of non-classical, non-local correlation of different parts of

a quantum system. This phenomenon is an essential part of quantum computing and quantum informa-

tion, although the reasons why are not yet properly understood [5]. Experiments have demonstrated that

quantum computing can be implemented in principle [10, 11]. However, the challenge remains to find an

appropriate, robust form of implementation that can be scaled up to solve more complicated problems.
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In other words, assembling and coordinating quantum computing resources to deal with problems which

are not trivial in conventional computing. Only when this is achieved can quantum computing become

a useful technology. Further developments can bring quantum computing to its full potential, surpassing

the capabilities of conventional computing in specific areas.

There are many different kinds of implementations of quantum computing which are currently being

investigated. These different approaches all base themselves on different technologies to encode, control

and measure quantum information physically. A few different approaches that are being investigated in-

clude nuclear magnetic resonance (NMR), superconductor chips, ion traps and optical implementations

[5, 12, 13, 14] . We note that in almost any practical implementation, photons play a pivotal role in

measuring, manipulating and transferring quantum information. Recently, implementing quantum com-

puting optically with integrated quantum photonics has received interest due to the potential stability and

scalability of this technology [15]. This project is based on such an optical implementation.

More specifically, this project uses photonic quantum science to investigate quantum random walks

(QRWs). Classical random walks consist of a series of steps, where for each step there is more than one

direction to take the next step, with a certain probability associated with each direction. The simplest

case can be imagined as a person walking on a line and flipping a coin before each step to decide whether

the next step will go forwards or backwards. This literal example can be translated into a position on an

integer number line that changes by one for each step, with a 50 % chance of going in each direction. The

mathematics of random walks have been involved in conventional computing algorithms, as randomness

has been found to make many algorithms more efficient or to simplify them relative to their deterministic

equivalents [16].
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To understand the difference between classical random walks and QRWs, it is important to understand

the role of quantum superposition. Quantum superposition means that a coherent quantum system can

exist in many different possible states or positions simultaneously until a measurement is made, causing

the system to decohere and collapse into a single position or state. QRWs are similar to classical random

walks, but using the principle of quantum superposition, whereby instead of choosing one path out of

many possible, the quantum random walker walks all possible paths simultaneously. It is important to

note that the QRW is therefore not in fact random — and is sometimes referred to only as a quantum

walk — but if the quantum walker is decohered, the system immediately collapses to a single position,

making it a classical random walk. This can be used to speed up quantum algorithms relative to their

conventional counterparts [17]. It’s important to note that on the one hand, many schemes have been

proposed to physically implement QRWs, e.g. with quantum dots and solid state charge qubits [18, 19],

or with single photonic qubits [20]. On the other hand, these papers do not refer to actual experiments.

Relatively few papers present actual experiments with QRWs, although a two-qubit NMR implementa-

tion of QRW has been reported by Du et al. [21] and Ryan et al. [22] have reported an eight step QRW

on a three-qubit NMR implementation. Since then, Ribeiro et al. [23] have implemented a single step of

a single-photon QRW.

It is far too ambitious to produce a device which runs an algorithm based on a QRW. Instead, this

project investigates the physics of QRWs in a specific physical structure. The purpose of the project is to

investigate the physics of the QRW in a waveguide array to create a level of understanding that enables

future developments towards quantum computing.

8



Integrated photonic 3D waveguide arrays for quantum random walks on a circle

1.1 Aim and scope of project

The aim and scope of the project can be summarised as an investigation of QRWs in an integrated

quantum optical device. An optical implementation of quantum computing depends on precise and

reliable manipulation of photonic qubits. A array of adjacent waveguides hold the promise of a tool that

can provide such control of quantum states by photon coupling between waveguides [24]. Furthermore,

waveguides can be fabricated in an integrated architecture to perform operations equivalent to bulk optics

devices in a far more compact space [25, 26].

Recently, Bromberg, et al. [24] investigated photonic QRWs in a planar waveguide array. Using sim-

ulations, they study the quantum mechanical interference of photon pairs propagating in planar waveg-

uide arrays. This is done to see how the positions of the photons correlate after propagating through

the waveguide array. Analogous experiments with classical bright light are performed where possible,

and these correlation matrices correspond to those of the quantum mechanical simulations, but with re-

duced contrast. No quantum mechanical experiments are performed, all the experimentation is done with

classical light. Light is injected at one side of the array and the correlation matrices show how the exit

positions of photon pairs are associated depending on the injection positions of the photons, and whether

the photon pairs are entangled. Light is injected into either a single waveguide, two adjacent waveguides

or next-to-adjacent waveguides. Both entangled and unentangled photon pairs are simulated, but here

entangled photons are not both injected into the same waveguide. The entanglement employed is path

entanglement, which means that the paths taken by the two photons are correlated non-classically. Photon

path entanglement is observed by sending both photons into the same beamsplitter, at the same time, from

different sides, and then allowing the photons to travel the same distance before entering either of two

detectors. Given the described conditions, the two photons will both go to either of the two detectors. The
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experimental setup that was used to discover this effect is shown in Fig. 1.1 [27]. The Bromberg study has

produced matrices correlating the exit positions of the two photons. These matrices indicate bunching

and anti-bunching of photons due to quantum mechanical interference, and this is called the the Han-

bury Brown-Twiss effect [24]. The current project investigates this same topic but in a more ambitious

manner, by studying a three-dimensional array of tubular waveguides. This three-dimensional structure

significantly changes the pattern of coupling. The tubular structure has no boundaries, which would re-

verse the direction of the walk’s propagation. The current project involves designing a platform to study

three-dimensional QRW structures. No work published to date has considered a three-dimensional QRW

experimentally.

Figure 1.1: Experimental setup to observe path entanglement. (Reproduced from [27].)

This project creates integrated photonic waveguide networks using the laser direct-write fabrication

technique [28]. The aim is to explore the effect of a tubular waveguide array on bright classical light in-

put. This architecture exploits the unique three-dimensional advantage which the direct-write fabrication

technique has over the lithographic approach. In other words, this structure could not be easily fabricated

with any other technique. The direct-write fabrication technique not only enables the fabrication of the
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3D structure, it also is much quicker, requiring less processing time with fewer steps of fabrication than

a comparable length of waveguide created with lithography. Six parallel waveguides are created in a

tubular array, as shown in Fig. 1.2. The integrated waveguide circuits that are fabricated have a coupling

network equivalent to approximately 96 bulk optics beam splitters but are compressed to span a physical

distance of merely 20-22 mm. By comparison, previously a photonic device (i.e. a CNOT gate) was

lithographically created which consisted of four waveguides and with the coupling network equivalent to

four bulk optics beamsplitters [26].

Figure 1.2: Image of a six-waveguide tube from the RSoft classical light simulator.

As we will detail later in this thesis: At the end of this project, almost all of the initial goals have

been achieved. The tubular array devices have been designed and fabricated, and the resulting two

six-waveguide devices have been measured with beam profilometry and refractive contrast profilometry.

These two devices were designed differently with respect to the fan-in section leading light from bulk

optics light sources into the tube while minimising interference and cross talk between waveguides be-

fore they reach the tube. The first device has a single fan-in stage, while the second has two stages in the

fan-in section, as shown in Fig. 1.3 and Fig. 1.4, respectively. The simulations have also been made up to
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the point where the quantum mechanical case can begin to be considered in detail. Quantum mechanical

simulations involving a single photon were performed by taking classical bright light to be equivalent

to a single photon. However, due to time constraints, completely quantum mechanical simulations for

multiple photons as well as quantum mechanical experiments are pending. With regard to reproducing

the results of Bromberg et al., classical bright light measurements have been made, shining 780 nm light

into each waveguide and recording the resulting beam profilometry at the exit of the tubular waveguide

arrays. This novel device appears to have two different tubular waveguide arrays with no fabrication

errors. Hence, the tubular waveguide arrays are ready to be experimentally tested with pairs of real sin-

gle photons, both entangled and unentangled. In the latter case we expect little difference in correlation

matrices from classical bright light.

Figure 1.3: Image of a six-waveguide tube with a single stage fan-in section, from the RSoft classical

light simulator.

For the system of interest, the waveguide array without boundaries, the fabrication results are promis-

ing, but some theoretical concerns remain. Experimentally ideal conditions could not be met in terms

of refractive contrast and waveguide width, but the way to physically fabricate an optimal system has
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Figure 1.4: Image of a six-waveguide tube with a two-stage fan-in section, from the RSoft classical light

simulator. The second stage is already in a tube form but has a larger radius than the interaction length of

the tube. The numbers 1-6 indicate the numbering convention used throughout this project to keep track

of which waveguides fan into which part of the tube.

been investigated and the challenges have been identified and theoretical solutions have been proposed.

A more radical re-design is also being considered, as outlined in the conclusion. The project builds on

the results of Bromberg, et al. [24] .

In Chapter 2, I review literature relevant to the fields which the project falls within, as well as litera-

ture relevant to the project itself.

In Chapter 3, the theory behind the project is presented and the process of simulating and designing

the device is explained. Simulation results are included in the explanation.
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In Chapter 4, the methods used to fabricate and measure the device are explicated, and the experi-

mental results are shown.

In Chapter 5, the theoretical and experimental results are discussed.
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Chapter 2

Literature review

2.1 Overview

With reference to literature, explanations are given about what QRWs are and how they can benefit

quantum computing. The next topic how optics can be used to physically realise quantum information

designs. Furthermore, what are the advantages of doing so with integral photonics? Also, the laser direct-

write fabrication technique, the specific fabrication technology in this project, is presented. Finally, we

look at relevant previous work in the intersection of QRWs and optical realisations.

2.2 Quantum random walks

To define a random walk, one can first consider the simplest, classical case. Given a line divided into

discrete steps, with a walker on the line — often described as a drunkard — a coin toss with an unbiased

coin can be used to decide, for each step, whether the walker will take a step forward or backward along

the line. Taking the line to be a set of integers and the walker begins at zero, then after t discrete time

steps, the walker will be somewhere along the number line between −t and +t, as illustrated in Fig. 2.1.
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Figure 2.1: A classical random walk on an infinite line. (Reproduced from [29].)

If a number of classical random walks occur on the line, each starting at position zero and each evolv-

ing for a time t, and record the final position of each random walk, then the distribution of final positions

approaches the Gaussian distribution as the number of random walks increases. The variance is σ2 = t

and consequently standard deviation is σ =
√

t [30, 31]. More complicated random walks occur when

the walker is placed on a graph — a set of vertices interconnected by edges — which is not the number

line. Take for example Fig. 2.2, the graph G4.

Figure 2.2: The graph G4, or glued binary tree. We can label the columns of vertices in this type of graph.

Gn has 2n + 1 columns of vertices. (Reproduced from [32].)

In this type of graph, Gn, two binary trees of depth n are “glued together” as shown in Fig. 2.2. We
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Figure 2.3: Probability distribution of the quantum walker being in each of the 2n + 1 columns in Gn

where n = 500, after 400 time steps. The walker has already walked through the entire graph because the

quantum walk propagates with speed 2
√

2. (Reproduced from [32].)

start a classical random walker at the leftmost vertex and then ask for the average time for that walker to

traverse to the rightmost vertex. In the classical random walk the probability of reaching halfway across

this graph is large. However, from the halfway point, the probability to step farther decays exponen-

tially. One can estimate that the classical random walker has a probability less than 2−n of traversing Gn

irrespective of how long they walk [32]. By comparison, the QRW propagates across the graph linearly

with n. In Fig. 2.3, after just 400 steps the leading edge of the QRW probability distribution has already

reached and been reflected back from the rightmost root vertex of G500 [32].

In theoretical computer science, the classical random walk constitutes a fundamental concept and is

used in various algorithms, such as Monte Carlo applications [33]. Some of these algorithms have a
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significant probability of error, but can be repeated many times to get an arbitrary degree of probabilistic

accuracy.

2.2.1 Coined quantum random walks

There are different types of quantum random walks. The two main models are the discrete time and

the continuous time quantum random walks. Both are being explored as possible means of constructing

novel or significantly more efficient quantum algorithms [31]. The coined QRW is a kind of discrete

QRW which not the subject of this project. Nevertheless, the coined QRW illustrates the concept of

QRWs and is a simpler case than the continuous QRW, which this project has dealt with. Also, discrete

QRWs may become relevant in future work, as will be discussed later. Historically, the discrete QRW

also precedes the continuous QRW, since the discrete QRW was the form of quantum random walk which

was first explored in the work of Aharonov [34].

An important concept in quantum mechanics is Hilbert space. The Hilbert space is a complex vector

space with a well-defined inner product. The vectors in this space are used to represent quantum states

[5].

The discrete QRW is similar to the classical random walk in that time progresses by discrete intervals.

The discrete QRW is described by a Hilbert space H consisting of the graph and a complex space rep-

resenting the quantum ”coin.” For example, for the quantum random walker on the integer number line,

we haveH = Z ⊗ C2. Here Z represents the integer line, and C2 represents the two level quantum coin.

First, due to the superposition principle, a quantum walker will not simply traverse one particular

trajectory. A single quantum random walk consists of all possible walks consistent with the starting
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state, in superposition. Thus QRWs are not really random per se. Furthermore, intermediate steps or

iterations interfere quantum mechanically with each other. For example, the symmetric QRW on the

number line will have a probability distribution that differs markedly from the Gaussian and has two

peaks away from the centre [35]. This is illustrated in Fig. 2.4. Here, the QRW, when viewed on the

walker’s line, is symmetric because the initial state is taken to be |Φsym〉 = 1
√

2
(| ↑〉 + i| ↓〉)C ⊗ |0〉W , where

| ↓〉C is the state of the quantum coin and |0〉W is the state when the walker is completely localised at the

origin. This evolution results in a probability distribution to find the quantum walker at a specific location

on the line which peaks far away from its initial position.

Figure 2.4: Probability distribution of the symmetric quantum random walk after 32 discrete time steps,

showing a wavelike symmetric propagation away from the origin. The axis labelled n is the position axis.

(Reproduced from [35].)

Since while propagating the QRW we don’t wish to interfere with, measure or decohere the quantum

system which is highly susceptible to errors and noise, the equivalent of a classical coin flip is not ap-

plied at each iteration of a QRW. Instead, we then “flip” the coin by applying a unitary operation called

the Hadamard gate Ĥ, to the “coin” state, Ĥ = | j〉C → 1
√

2
(|0〉C + (−1) j|1〉C), and then a conditional step

depends on the state of the coin, Ŝ :
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Ŝ = | ↓〉C | j〉W → | ↓〉C | j + 1〉W

Ŝ = | ↑〉C | j〉W → | ↑〉C | j − 1〉W

It has the effect equivalent to a coin flip, although no outside randomness is introduced into the quan-

tum system.

2.2.2 Continuous quantum random walks

This project focused on a physical system where injected photons perform a continuous QRW because of

the geometry of the waveguide array being studied. As the photon travels through one waveguide, there

is a continuous probability that it couples to another waveguide. Therefore, the continuous QRW is an

integral concept in this project.

The continuous time model of quantum random walks was developed by Farhi et al. [36] based on the

idea of Markov chain processes. The continuous QRW does not have a “quantum coin.” The entire graph

is represented by the time independent Hamiltonian Ĥ of the system, a matrix with non-zero off-diagonal

elements. Here each non-zero element represents the edge between two vertices in the graph and the

transition rate of moving from one vertex to the other. However, to make the process continuous, the

walker can step between any adjacent connected vertices at any time. The walker does so with jumping

rate γ per unit time.

Thus the off-diagonal elements corresponding to connected pairs of vertices are equal to −γ while
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the elements on the diagonal are equal to kγ where k is the number of edges connected to the vertex

which is represented by the diagonal element. The negative sign in the off-diagonal elements represents

probability of transitioning away from the vertex in question, while the positive elements in the diagonal

represent probability of transitioning into the relevant vertex. Both the continuous and discrete QRWs

propagate in linear time on the graphs Gn.

We can illustrate the continuous QRW in a simple, relevant form. Given the continuous QRW on

a three-step circle, as in Fig. 2.5, transitions between vertices occur with a probability γ per unit time.

Hence, the walk can be described by a Hamiltonian matrix Ĥ, where each element represents the transi-

tion probability per unit time. Each element ai j represents the transition probability rate from element i

to j. The Hamiltonian is expressed as

Ĥ =


2γ −γ −γ

−γ 2γ −γ

−γ −γ 2γ


.

Figure 2.5: A three vertex circle with some transition probability rate elements shown.

We then have that the unitary time operator
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Û(t) = exp (−iĤt).

For a more general and detailed explanation, see Kempe [31] and Farhi [36].

2.2.3 Useful properties of quantum random walks

Quantum random walks can behave in surprising ways, but there are some quantitative properties which

can be used to compare different types of QRWs. Two important concepts in characterising different

types of QRW are the mixing time and hitting time [31]. Essentially, the mixing time is the time a

particular QRW takes before taking on some characteristic stationary distribution, so that successive steps

do not significantly alter the shape of the distribution. Some QRWs never reach a stationary distribution,

continuing to propagate as long as the walk continues. These can not be said to have a mixing time. The

hitting time is the amount of time required for a walk to reach a specific point, such as a particular vertex

on the graph being walked.

Another important property is the position variance of the final position of the walker. The variance

of final position for the simple QRW ∼ t2, hence the standard deviation or expected distance from the

starting point ∼ t [37]. Therefore the quantum random walk expands linearly with time, quadratically

faster than the classical random walk. The linear expansion means that quantum random walks may po-

tentially perform algorithms much more efficiently than classical random walks.

Specifically, in the case of a random walk over a circle (a graph of N vertices connected in a circle or

in the shape of a regular polygon), the mixing time of a quantum random walk is likewise quadratically

shorter than the classical case, and hence any algorithm for the classical walk on the circle might have

the potential to be performed quadratically faster with a quantum computer [38].

Studies have been made on the effects of controlled decoherence on the system, bridging the differ-
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ence between the quantum and classical worlds. For a walk on the line, the quantum system is highly

susceptible to decoherence, becoming essentially classical even if there is only very little noise in the

coin space [39]. Despite this fragility, the powerful potential of QRW is well illustrated by the algorith-

mic speed-up which has been theoretically established. For example, Childs et al. [17] have shown that

for a general graph traversal problem, the (continuous) QRW can be used in a way which is better than

any possible classical algorithm. This is useful since many problems can be mapped onto such a graph

traversal problem, including decision problems [17].

These traits all help define QRWs, yet there are many variations on the graphs being walked and how

they are being walked. Some QRWs do not have all of these properties, so it is not possible to make

a list of quantitative parameters to compare and pick a QRW which will be most suitable for quantum

computing. Therefore, there is a continuous interaction between investigations into promising theoret-

ical constructions and the physical constraints which define how a QRW will behave if experimentally

realised.

2.3 Optical quantum processing

This project is aimed towards investigating a physical platform of quantum information processing using

optical devices. Currently, using single photons as qubits has emerged as a leading approach to physi-

cally realise a quantum computer [25]. A significant advantage of single photons as qubits is that they

are less prone to noise or decoherence than other systems under investigation. However, a significant

disadvantage is that interfering photons with each other is all the more difficult than other quantum sys-

tems. Photons have several degrees of freedom such as polarization, frequency and spatial mode (i.e. the
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path of propagation). Each of these can be used to store information. If the information is stored in the

polarisation of a photon, we say that the qubit is polarisation encoded. If the information is stored in the

path taken by a photon, we say that the qubit is spatially encoded.

In quantum computing, qubits are manipulated by gates just like bits are in classical computing. Of

course, qubit gates interact with qubits differently from how classical gates interact with classical bits.

In classical circuit logic, all logic gates can be generated by various combinations of the NAND gate.

In quantum computing, there are single-qubit gates that modify individual qubits. Also, there is the

two-qubit CNOT (controlled-NOT) gate as shown in Fig. 2.6, which is a fundamental qubit gate. The

truth table for the CNOT gate is displayed in Fig. 2.7. Any other multi-qubit gate can be generated by

combining CNOT gates and single-qubit gates [40]. Therefore, the CNOT gate is considered a vital part

of implementing quantum computing. We also look at it here because a CNOT gate is an example of an

important quantum device that can be created in an integrated optical chip.

Figure 2.6: The Controlled-NOT gate acts on the target bit q1 if and only if control bit q0 = 1. (Repro-

duced from [41]. )
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Figure 2.7: The Controlled-NOT gate truth table. (Reproduced from [42].)

2.4 Bulk optics devices

Initial investigations of optical quantum information were performed with bulk optics equipment. There-

fore, integrated photonics devices often emulate bulk optics devices, as we will see later. However, to

understand this relationship, we here introduce the bulk optics device which is emulated in the project.

In bulk optics, a 50-50 beam-splitter (BS) is a partially reflecting mirror that allows half the intensity of

incident classical light to pass through the mirror, and reflects another half of the light in another direction.

Using polarisation encoded qubits, single qubit logic gates are relatively easy to implement through

birefringent wave plates, and it is also possible to convert between polarization and path encoding using

a polarizing beam splitter [25]. However, creating an optical CNOT gate represents more of a challenge.

This is theoretically possible by sending the control photon and target photon together through a nonlinear

phase shifting medium. Note that the target qubit is operated on by Hadamard gates before and after the

phase shifting medium, as in Fig. 2.8. The Hadamard gates can each be implemented as a 50-50 BS [25].

However, the optical CNOT conception described above and in Fig. 2.8 requires a material with

strong single photon nonlinearity, but no such material exists. In integrated photonics, nonlinear optics is

currently impossible. Some solutions have been developed. Knill, LaFlamme and Milburn [43] have de-
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Figure 2.8: The Controlled-NOT gate could possibly be optically implemented as in A. Equivalently we

write this form of the CNOT gate as in B, in quantum circuit notation, where qubits always move forward

in time from left to right. (Reproduced from [25].)

vised a robust scheme of linear optics quantum information processing, consisting of BS, phase shifters,

memory and sources and detectors of single photons. In this scheme, the nonlinearity required to per-

form the CNOT operation is induced by the measurement [43, 44]. A probabilistic CNOT gate operates

correctly as a CNOT gate with probability less than 100%. However, it is known which events succeed

and which fail, so it is possible to only measure successful operations of the CNOT gate. With various

repetitions and modifications such as quantum teleportation or using auxiliary photon measurements,

the probability can approach 1 but huge numbers of entangled states must be consumed for each CNOT

operation to get a reliable outcome [25].

Nevertheless, it has been demonstrated that scalable optical quantum computing is feasible using only

single photon detectors, simple (i.e. linear) optical circuits made up of BSs and single-photon sources

[43]. Scalability is very important in order for an implementation of quantum computing to be cost- and

space-efficient enough to fully begin to realise the potential of quantum computing. However, due to the

probabilistic nature of linear optical quantum computing gates, this scheme will require a large amount of
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resources to scale up. Various architectures are being investigated to balance out the resources required

in a way that maintains the quantum computing advantage [25].

In one such scheme, a single informational qubit can be encoded into several physical qubits. In

other words, the vulnerability of the information is reduced by encoding it redundantly. Thus after mea-

surement the original qubit is still recoverable [43, 25]. These qubits are entangled and therefore need

entangling gates to be formed. By using more than 10000 entangled photon pairs one scheme managed

only to have 95% deterministic CNOT gate [25]. Clearly such resource overhead can be considered im-

practical by today’s standards.

Optical quantum computing also relies on photon sources that can generate single photons to very

stringent specifications. Firstly, to interfere quantum mechanically, two photons must be mutually in-

distinguishable in every degree of freedom. Therefore, to have the necessary control over the qubits,

independent sources must be able to generate single photons which are indistinguishable. This has been

achieved with trapped atoms and ions. Colour centres in diamond are a likely candidate for single photon

sources, combining the benefits of solid-state and atom-like energy properties [25]. However, the princi-

pal source of single photons remains the single-photon downconversion (SPDC) sources.

As for detectors, current detectors have an efficiency of only approximately 70% and only very spe-

cialised detectors can distinguish between one, two and three photons in a single mode [25].

Another challenge is the downconversion sources, nonlinear optical crystals which, when suitably

driven, produce photon pairs. Barbieri et al. [45] state that the primary problem with optical quantum

gates is the downconversion sources of single photons which are not ideal and hence cause low fidelity
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either due to higher-order photon terms or noise due to reduced brightness in photon sources.

However, work is also being done to improve detector technology and superconductor-based devices

may be the solution. To make optical quantum computing scalable, both sources and detectors need

to reach a sufficient level of development, detecting and generating an arbitrary number of degenerate

photons. The circuits for the photons are assumed to necessarily consist of low-loss microscopic optical

waveguides, and integrated optics is the primary hope. Still, the final integration of sources, detectors

and integrated waveguide circuits remains to be achieved. It might also be possible to store quantum

information in the single-photon sources, such as in the spin of the colour centres in diamond [25]. If

possible, the interaction of stationary and traveling qubits in the form of atoms and photons could have

great enabling implications for quantum computing [46].

2.5 Integrated Quantum Photonics

For quantum computing to be a useful technology, it must have fidelity and fault tolerance. In other

words, the instruments must produce less errors and noise, and ideally be robust to environmental sources

of noise. To satisfy these conditions, an integrated quantum photonics approach may prove very attrac-

tive. We can say that a device is monolithic if it is made from a single unit. A monolithic integrated circuit

which will possess no bulk parts, should minimise any noise in the system. In integrated waveguides, it

is possible to perform Hadamard operations not by beamsplitters, but through directional couplers.

Couplers are devices that take advantage of the fact that when two sufficiently close waveguides are

built in parallel in an integrated circuit, any light passing through one waveguide has a certain probabil-
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ity of tunnelling across from that waveguide to the other. The probability depends on the separation of

the waveguides, as well as distance the light travels in parallel with the alternate waveguide and the dif-

ference in refractive index, or refractive contrast between the waveguides and the surrounding medium.

With classical light, this translates into a proportional exchange of intensity of light from one waveguide

to the other. When photons couple from one waveguide to the other, they do so probabilistically. In

other words, the photon has a certain probability of existing in one waveguide, and as it couples into

the next, the probability of existing in the first waveguide decreases. Simultaneously, the probability

increases that the photon exists in the other waveguide. It’s important to note that given an indefinite

length of propagation along two coupling waveguides, the intensity of light never evens out between the

two waveguides, but instead continues to couple back and forth, alternating the position of the maximum

intensity laterally with respect to the light’s direction of propagation. Therefore, coupling is a unitary

and reversible process.

Again, if the photons passing through the circuit are non-degenerate, i.e. distinguishable in any degree

of freedom, the photons will interact with the waveguide and each other as classical particles. However,

if they are degenerate, then the photons can interfere quantum mechanically. Exploiting these interfer-

ences is the basis of building logic gates and other quantum information devices in integrated quantum

photonic circuitry [28].

2.6 Laser Direct-Write Fabrication Technique

Using the laser direct-write technique to create integrated waveguide circuits in fused silica (SiO2) glass,

Marshall et al. [28] have investigated the fabrication and measurement of photonic quantum circuits.
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This project builds on that work, using fused silica glass because it is an excellent low loss optical ma-

terial and is robust. There is a reason why this technique has been chosen. In order to create integrated

waveguide circuits, currently there are two fabrication techniques available: Lithography and the laser

direct-write technique.

Lithography is an iterative process where chemical vapour deposition, UV irradiation over circuit

masks and etching are separate and necessary steps. The lithographic technique for producing waveg-

uides in glass is similar to the techniques used to produce semiconductor transistor chips in the conven-

tional computer industry. A great advantage of lithography is that once the fabrication equipment and

correct circuit design are available, a large volume of chips with extensive, complex circuits can be effi-

ciently fabricated, in a manner suitable for mass production. In addition to this physical advantage, since

lithography builds on techniques established by the semiconductor industry, there is a lot of expertise

behind this approach. However, lithography also has disadvantages. The fabrication equipment is expen-

sive. The circuit design of a device can not be modified after it has been created. Thirdly, lithography

creates patterns in layers, and as such the technique is intrinsically limited to two-dimensional circuit

fabrication.

Theoretically, lithography could create blocky three-dimensional structures by coordinating superim-

posed two-dimensional layers. However, with the direct-write technique, waveguides can be produced

which are smooth and contiguous and which form a path in any direction, in all three spatial dimensions.

The laser direct-write technique is fairly slow compared to optimal lithography in terms of how much

waveguide circuitry can be produced at a given rate. However, unlike lithography, where the design of the

entire circuit must be complete before fabrication, the direct-write technique is versatile in that one can
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create the waveguide circuits in parts, iteratively testing, investigating and changing different designs or

parts thereof in the same monolith. Another advantage of the direct-write technique is that the necessary

production equipment is inexpensive compared to lithographic fabrication equipment [28]. For the pur-

poses of this project, the three-dimensional writing capability is the crucial advantage of this technique.

How, then, does the laser direct-write technique work? Monolithic integrated circuitry can be directly

written in paths which are programmed by using computer-aided design software. The laser direct-write

technique used in this study uses short, femtosecond long pulses to modify the chemical structure of

glass in a focus point. The modification locally changes the refractive index in the glass permanently, but

without damaging the glass in a way that prevents the propagation of light. This requires balancing the

power level of the laser between what gives no effect and the power level where the glass gets damaged.

The femtosecond laser direct-write technique can create a the refractive index modification in glass

which is only located at the laser focus. The interaction between the laser and the glass is highly non-

linear with laser intensity, and thus enables this precision. The laser-glass interaction initiates various

photoionisation processes as shown in Fig. 2.9, such as multi-photon ionisation (MPI) by absorption,

or tunnelling ionisation [47]. All these processes require a very high intensity which can only exist at

the focus of the laser. For example, a bound electron in fused silica glass can be ionised by MPI when

approximately six 800 nm photons — each with an energy of 1.55 eV — are simultaneously absorbed

to bridge the 9 eV band gap of this particular material. Thus liberated, a free electron can modify local

bond structures. In this case, the bond structures are modified to densify the material and thus locally

increase the refractive index.

As the refractive index is modified in the focus of the femto-second laser pulse, the glass can be

31



Integrated photonic 3D waveguide arrays for quantum random walks on a circle

Figure 2.9: Two processes are involved in the refractive index modification. Incident photons cause

tunneling ionisation and multi-photon ionisation, which in turn causes chemical and hence structural

changes. (Provided by G. D. Marshall.)

moved in three dimensions around the focus to create waveguides inside the glass. For effective waveg-

uides, several passes at the appropriate power level are required, where the glass is repeatedly moved in

the same way relative to the focus point. This builds up the refractive contrast. The refractive index mod-

ification initially forms a Gaussian distribution about the focus point. As the refractive contrast builds

up with repeated passes, the refractive index profile becomes more like a step-function. However, the

Gaussian distribution of the direct-write effect about the focus volume means that the waveguide is not as

distinct as an optical fiber. This represents a problem as we shall see in the next chapter, because there are

some differences on the modelled systems’ behaviour based on assumptions about the refractive profile

of the waveguide. Previous work has led to refractive contrast profile models that are based on either a

Gaussian distribution, or a pure step function.
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The direct-write technique and equipment used in this project have enabled the creation of waveg-

uides with specific properties. The waveguides that are created using the femtosecond laser direct write

technique are equivalent to ones that can be accurately modelled in RSoft using a Gaussian profile, a

width of 2.972 µm and a refractive contrast of 0.00455.

2.7 Summary

In this chapter we have reviewed the topics of quantum random walks, optical quantum processing, in-

tegrated photonics and the femtosecond laser direct-write technique. In the current project, all the areas

discussed in the preceding sections are brought together. The intersection of these topics has already

been partly investigated by others, such as Bromberg et al.. In the following chapter, we begin a more

detailed theoretical description of the light propagation in integrated photonics.
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Chapter 3

Theory and simulations

3.1 Overview

This chapter develops the the theory which underlies the practical realisation of this project. In the

previous works by Bromberg et al. [24], Hillery et al. [48], and Wang et al. [49], several considerations

were made that are relevant to this project, and these are explained below. It is also explained how

the findings of work by others can be adapted to the particulars demands of this project. Specifically,

this chapter present underlying theory, exploratory simulations and the rationale behind certain design

decisions.

3.2 Theory

This section explains how the simple QRW on the line can be translated into light propagation between

waveguides, and presents details from the work by Bromberg et al. which inform this project.
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3.2.1 Waveguides as beamsplitters

This project is centred on a three-dimensional tubular device designed to realise continuous QRWs.

Before describing the three-dimensional QRW, we first develop a one-dimensional description. Hillery

et al. [48] explore how the QRW on a circle can be expressed by circle of beamsplitters (BS), and this can

be translated into a network of BS as shown in Fig. 3.1. They have studied transition rules and operators

that express the quantum mechanics of a single photon traversing such a circle, and this work can provide

a foundation for understanding how the single photons will act in a well formed tubular waveguide array.

Figure 3.1: The mapping of the coined QRW on the line onto light propagating through a network of

50:50 beamsplitters. As the light propagates through the BS network, the vertical axis maps to the

position x for the walker on the line, but the horizontal axis maps to time for the walker on the line. See

text for a more full description.
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The random walk on the line can be mapped onto a quincunx patterned network of beamsplitters, as

shown in Fig. 3.1. The z-direction of light propagation in the BS network represents the dimension of

time t in the simple QRW on the line. When light hits a partially transmitting mirror (i.e. a beamsplitter),

it may either transmit or reflect. Considering a quantum walk of photons transitioning between BS in a

line, the state of each photon is denoted | j, k〉, where j is the vertex which the photon is going from, k

is the vertex which the photon is going to, and k = j ± 1 [48]. Now, if a photon in state | j − 1, j〉 hits a

BS, it either reflects and becomes | j, j− 1〉 or it transmits and becomes | j, j + 1〉. This is shown clearly in

Fig. 3.2.

Figure 3.2: Visualising the QRW as a walk on a line of beamsplitters, as each photon transitions, its state

is denoted by the vertex or BS it is going from and the vertex it is going to.

Furthermore, we can express the transition rules as follows [48], with reference to Fig. 3.2, that if the

photon is incident on a BS j from the left, then

| j − 1, j〉 → t| j, j + 1〉 + r| j, j − 1〉, (3.1)

and when the photon is incident on BS j from the right,
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| j, j + 1〉 → t∗| j, j − 1〉 + r∗| j, j + 1〉. (3.2)

The complex numbers r and t give the reflection and transmission coefficients respectively for each

BS, such that |r|2 + |t|2 = 1 Each BS can be hit by a photon from two sides, so the coefficients are present

twice in the following block matrix, which represents each BS,

BBS =


−r∗ t

t∗ r

 . (3.3)

Hence, each block matrix BBS enacts the transition rule on an incident photon from either side.

This replaces the coin in the simple QRW on the line. Each column of BSs, shown as coloured rect-

angles in Fig. 3.1, can be represented as a unitary operator where the number of the column from the

starting point determines if the unitary operator is odd or even. The unitary operators representing the

columns thus take the following form, odd and even respectively:

Ûodd =



BBS 0 0 0

0 BBS 0 0

0 0 BBS 0

0 0 0 BBS


and

Ûeven =



1 0 0 0 0

0 BBS 0 0 0

0 0 BBS 0 0

0 0 0 BBS 0

0 0 0 0 1



.
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The network then acts as a succession of these odd and even unitary operators corresponding to the

columns of BS in Fig. 3.1. Furthermore, when comparing the BS network and the propagation of light

in a planar waveguide array, it is clear that this is the same pattern of light propagation, as shown in

Fig. 3.3 and Fig. 3.4. Consequently, a planar waveguide array can be equivalent to a BS network. This is

explained by the fact that regular uniform parallel waveguides have a constant coupling rate, and hence

after a certain distance, the light will have coupled 50% from one waveguide to the next. In other words,

the light is coupled at regular distances of propagation, just as in the BS network in Fig. 3.1. Therefore,

the quantum walk on the line is equivalent to the continuous QRW in the planar waveguide array.

Figure 3.3: Light propagation through a planar waveguide array in the RSoft light simulator. The light is

injected in the central waveguide at x = 0 and couples laterally in the x-direction while light propagates

in the z-direction.

The equivalence of beamsplitters and waveguide couplers is important to enable our translation of

the QRW into the waveguide picture. the equivalences mentioned above. When two parallel waveguides

are close enough over a long enough distance, all the light will eventually couple across, and if the stru-

cure continues, the light will couple back completely. After a distance where half the classical light has

38



Integrated photonic 3D waveguide arrays for quantum random walks on a circle

Figure 3.4: The three-dimensional display of a planar waveguide array RSoft light simulator.

coupled across, if instead of classical light a single photon is traveling, the photon has a 50 % chance of

being in either waveguide. This is equivalent to a photon hitting a 50-50 BS and having a 50 % chance

of continuing its propagation on either side of the BS. In the quantum case, the quantum state remains

coherent and the amplitude of the light splits into two smaller, equal peaks.

Using the scattering QRW described by Hillery et al., it is possible to produce a typical symmetrical

QRW propagation, once again underlining the analogy between the QRW on the line and the QRW in a

BS network. This is seen in Fig. 3.5.

3.2.2 Background from Bromberg et al.

What happens when photons propagate in a waveguide array? A waveguide array is a set of parallel

waveguides that are close enough for light to couple between the waveguides, as shown in Fig. 3.6. The

question was investigated by Bromberg et al. [24], who simulated and experimentally observed the corre-

lation of photon pairs propagating in a planar array of waveguides [24]. In their work, a planar waveguide

array had a pair of photons injected into either two adjacent waveguides, or next-to-adjacent waveguides.

This was analysed in quantum mechanical simulations, but the experimental observations were made
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Figure 3.5: The QRW as it appears in a scattering through beamsplitters in a line. The underlying

Mathematica code is based on the BS network from Hillery et al. [48] as described in this section. The

resulting probability distribution is familiar, as in Fig. 2.4. (Code provided by J. Matthews)

using bright classical light, to simulate the single photon experiments. This is possible because a single

photon behaves like classical light when there is no interference. Furthermore, quantum simulations were

done for the same setup but with path-entangled photon pairs.

Both the simulations and measurements from Bromberg et al. are focused on correlations, i.e. the

degree of coincidence between different photons passing through the planar waveguide array and be-

ing detected upon exiting the array. Bromberg et al. performed a classical experiment to simulate the

injection of two separate single photons. The relationship between the correlation matrices of quantum

simulations of non-entangled photon pairs and experiments with bright classical light is shown in Fig. 3.7.

However, for the entangled photon pairs, no classical experimental analogue was possible, and no sin-

gle photon experiments were reported. The quantum simulations of the entangled photon pairs showed
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Figure 3.6: a.) The side view of a planar waveguide array. b.) The planar waveguide array, propagation

of light with coupling. (Reproduced from [24].)

that when the photon pair is injected into either of two neighbouring waveguides, the two photons will

always emerge at opposite sides of the array. On the other hand, if the entangled photon pair is injected

into either of two next-nearest-neighbouring waveguides, one photon will emerge at a side, while the

other always exits at the centre of the waveguide array, e.g. at x = 0 inFig 3.3. Note that the width of the

array and the length of propagation is such that the photons never reach a boundary, which would reflect

the coupling photon back towards the centre of the array. Indeed, boundary reflections are a fundamental

limitation to studies of this kind in one-dimensional QRWs. The correlation matrices from the quantum

simulations of entangled photons are shown in Fig. 3.8. By comparison with Fig. 3.7, Fig. 3.8 illustrates

that the behaviour of non-entangled photon pairs is very similar to classical light.

The work of Bromberg, et al., shows some aspects of how waveguide arrays can be used to control

and manipulate quantum states, which is fundamental to developing quantum computing [24]. However,

the extent of current knowledge in this are rudimentary, suggesting the need for further experimental in-

vestigations of light in a waveguide array. This project takes it a significant step further, by investigating
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a three-dimensional waveguide array. The topology of the QRW would be two-dimensional, rather than

the one-dimensional walk investigated by Bromberg et al., but could not be studied using photon without

the three-dimensional tubular array of waveguides.

3.3 Simulations

Before moving forward from the work done by Bromberg et al. it has been important to establish a firm

grasp on what has already been accomplished. By understanding how these results have come about,

it is possible to appreciate the relationship between that study and this project. Furthermore, by seeing

how this project can reproduce the Bromberg results directly, the way to expand on the previous work is

clarified. First the simple relationship between waveguide separation and the coupling rate is explored,

without reference to previous work. Then some coupling-mode theory equations are introduced which

give an alternative way of calculating the coupling process between parallel waveguides. Next, two

correlation matrices from Bromberg et al. are reproduced by simulations with parameter values that the

direct-write laser technique can realistically fabricate.

3.3.1 Side by side

We first consider two identical, parallel waveguides, as shown in Fig. 3.9. Fig. 3.10 shows the prop-

agation of light as it couples between two waveguides as computed by RSoft. Waveguide width and

refractive contrast are two parameters which may not be easily varied using the direct-write technique.

However, waveguide seperation can easily and reliably be modified in the designs in this project, with

regards to coupling strength. This makes it important to be able to predict what impact a given waveguide

separation has on coupling strength.
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An empirical way to determine coupling coefficient between two waveguides can be found by using

RSoft parameter scan, finding the length L that the light travels before coupling completely across, and

relating this to the separation d between the two waveguides. We empirically found this relationship is

expressed in the algebraic expression

L = 87.988e0.4005d. (3.4)

An empirical approach is not wholly satisfactory to gain deeper understanding of the physics involved

and we subsequently look into Coupled-Mode Theory (CMT). Another way to explain this is to say that

L is the distance in z between peaks as the light couples back and forth between the two waveguides.

However, although the sinusoidal shape is the same in Fig. 3.11 and Fig. 3.12 we see some discrepancy

between the two figures in the rate at which they oscillate.

3.3.2 Coupled-mode theory of parallel waveguides

The equations used here to model the coupling of light between parallel waveguides in Mathematica are

based on the coupling mode theory (CMT) as presented by Snyder [50], Wang et al. [49] and Yu et al.

[51]. Light propagating along a waveguide is expressed as a differential equation, and with the initial

conditions one can solve for the light propagation in the waveguide array. For a system of N (where

N > 3) parallel fibers a planar array, the coupling is described by the system of equations

dA1(z)
dz

+ iβ1A1(z) = −iA2(z)C12, (3.5)

dAm(z)
dz

+ iβmAm(z) = −iAm−1(z)Cm(m−1) − iAm+1(z)Cm(m+1), (3.6)

dAN(z)
dz

+ iβN AN(z) = −iAN−1(z)CN(N−1) − iAN+1(z)CN(N+1), (3.7)

where (m = 2, 3, ...,N − 1),
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If n1 and n2 are the refractive indices of the fiber core and the cladding background, respectively,

and the radius of each fiber core is taken as r, and d the distance between the centres of adjacent fiber

cores, then the following equations give the coupling coefficient C and the mode propagation constant β

in terms of the three dimensionless parameters U, V , and W, assuming step index profiles:

β =

(2πn1

λ

)2

−
U2

r2

 (3.8)

C =

√
δU2K0 [W(d/r)]

rV3K2
1(W)

(3.9)

where K0 and K1 represent modified Hankel’s functions — also known as the modified Bessel function of

the second kind — of the zeroth and first order, respectively. These expressions can be further expanded

by the equations defining δ, U, V and W:

δ = 1 −
(
n2

n1

)2

(3.10)

V =
2πrn1

√
δ

λ
(3.11)

V2 = U2 + W2 (3.12)

UJ1(U)
J0(U)

=
WK1(W)
K0(W)

, (3.13)
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where J0 and J1 represent the zeroth and first order Bessel functions of the first kind. Then, given

numerical values for all the physical parameters, Eq. (3.13) and Eq. (3.12) can be solved to determine U,

V , W and then Eqs. (3.11) and Eq. (3.10) give δ, and from there on β can be determined with Eq. (3.8).

Finally, Eq. (3.9) gives coupling coefficient C. With the coupling coefficients and mode propagation con-

stant thus determined, the differential equations for a particular system of parallel coupling waveguides

can be solved for any particular point of propagation. We wanted the light obey CMT so as to easily

convert into quantum mechanics.

Thus equipped, it is possible to compare RSoft results with explicit CMT calculations in Mathemat-

ica. However, the discrepancy between the two is obvious, and the simulation work largely focusses on

finding a set of parameters where the two simulation methods are in approximate agreement. Also, the

simulation work initially sought the production of distinct recurrences, where after some propagation all

the light would again exist in the waveguide where it has been injected.

3.3.3 Correlation matrices emulating Bromberg et al.

Using the RSoft BeamPROP software, the correlation matrices from the classical experiments by Bromberg

et al. [24] are reproduced by phase averaging the classical light of one of the beams injected into the pla-

nar waveguide array. Light injected into two adjacent waveguides gives a correlation matrix as seen in

Fig. 3.14, which corresponds to Fig. 3.7 a.) and c.) from Bromberg et al. [24]. Similarly, the emulation

of Fig. 3.14 corresponds to Fig. 3.7 b.) and d.). By testing this we are better able to understand how to

experimentally test three-dimensional waveguide tubes using bright light.
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3.4 Tubular waveguide array design

Finally, the design decisions behind the fabricated devices are discussed. Three primary decisions have

been made that determined the present outcome. First, the number of waveguides in the tube has been

decided. Second, the radius of the tube was determined. Third, both a single-stage and two-stage fan-in

section have been fabricated. The dilemmas and rationales behind these decisions are also presented.

Initially, the number of waveguides per tube was limited by the number of bulk optical sources which

would be connected with the device via fiber optics. Because the V-groove array, shown in Fig. 3.15

is the device which precisely spaces out optical fibers to connect bulk optics with the fan-in section

of the integrated photonic device, the maximum number of light sources into the device is either eight

or sixteen. With a view towards simplicity and producing recurrence, the limit of eight waveguides was

initially accepted, and further reduced to six in an attempt to enable recurrence after a minimum propaga-

tion length, while still having enough waveguides to make the QRW an interesting prospect. Recurrence

happens when the light has propagated far enough in the array that the coupling has come back to con-

centrate all the light intensity in the same waveguide where the light was initially injected.The reason

why recurrence is interesting is that if we can demonstrate such a recurrence in the physical device, this

will be a strong indication that the waveguides which make up the tube are indeed well-formed, parallel

and have identical refractive profiles.

In order to produce a recurrence intensity distribution in the physical device, it’s important that the

recurrence occurs after a relatively short longitudinal propagation on the order of 20 mm. This is because

the silica glass in which the device is direct-written has a maximum length of 30 mm, and the first one

third will be occupied by the fan-in section. This length is required to have a fan-in section where the

46



Integrated photonic 3D waveguide arrays for quantum random walks on a circle

waveguides leading input light from the v-groove array arc gently, gradually enough towards the lateral

(x-y plane) position of the tube, so that the transmission of light is not lossy.

To make the light propagation through a tubular waveguide array truly equivalent to a QRW on a

circle, there can be no transitions between non-adjacent vertices on the circle. Ideally, there should be

no non-nearest-neighbour coupling. However, during the simulations non-nearest-neighbour coupling

(NNNC) has been found to occur to some extent in the tubular array for all relevant tube radii. With a

view towards having a tubular array which can produce a recurrence within the extension of the integrated

photonic chip, the length of propagation is also limited. Since the coupling strength decays exponentially

with increasing waveguide separation, as implied by Eq. (3.4), a larger tube radius could reduce NNNC,

but would all the more counteract the possibility of recurrence within the tubular array at the available

propagation length, which as it turned out is between 20 − 22 mm depending on the fan-in section, but

even if no fan-in section was required, the tube could not exceed 30 mm in length.

So how was the 7 µm tube radius determined? If the refractive contrast could be increased signifi-

cantly, NNNC can be reduced. However, we have accepted the current development of the direct-write

technique and base the design on established production capabilities. Thus the tube radius is decided by

finding a radius value which gives both a relative agreement between the RSoft and Coupled-Mode The-

ory simulations and also with a recurrence-like maximum in the propagation length. However, there is

still discrepancy, as can be seen in Fig. 3.16 and Fig. 3.17. Other radii have simply been found to produce

more discouraging discrepancies, and ultimately a tube radius had to be decided so that fabrication could

proceed.

It is important to note that while observing recurrence was initially an important objective, and al-
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though a complete recurrence could not be observed due to NNNC, there is another reason why recur-

rence measurement have not been performed. In order to measure the evolution of light in the tube, which

would be necessary to observe the recurrence, destructive cut-back measurements would have to be made

to the fabricated device. This is not an attractive prospect.

The fan-in sections have been designed to give 95 % or greater coupling of light from the farthest input

waveguides (1 and 6) to the tube section. The light travelling through these two waveguides exeriences

the most lateral displacement, is subjected to the smallest bend radius, and hence the highest loss. The

form of the curves is the raised sine, as described in the RSoft documentation. This form has been

empirically demonstrated to be the lowest-loss type among many curves expressed in trigonometric or

polynomial functions.

The single-stage fan-in was found to have a slight rotational asymmetry in the way light propagates.

Therefore, while a single-stage device has been fabricated, a second device was also created with a two-

stage fan-in section. The first stage, like the only one in the single-stage fan-in case, is a fan-in from

waveguides in a plane into a tube, but the tube is wider than in the coupling region. This second stage

then contracts into the 7 µm radius tube. Some interference and coupling might occur before the second

stage has finished, but if so, it should at least be symmetric interference. The rotational asymmetry of

the single-stage fan-in device has been simulated in RSoft, giving Fig. 3.18. By comparison, if light is

simply launched into one tube in RSoft, the coupling pattern is symmetric, as in Fig. 3.19.
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Figure 3.7: Correlation matrices: a.) Quantum simulation of two non-entangled photons injected into ad-

jacent waveguides. b.) Quantum simulation of two non-entangled photons injected into next-to-adjacent

waveguides. c.) Experiment with bright classical light injected into adjacent waveguides. d.) Experiment

with bright classical light injected into next-to-adjacent waveguides. Each correlation matrix shows the

probability that the detection of a photon at position q at the end of the planar array should coincide with

detection of the other photon at position r. In the classical case, the correlations reflect the equivalent

coincidences of proportional intensities of light at the different exit points. (Reproduced from [24].)
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Figure 3.8: Correlation matrices: a.) Quantum simulation of two entangled photons injected into ad-

jacent waveguides. b.) Quantum simulation of two entangled photons injected into next-to-adjacent

waveguides. (Reproduced from [24].)

Figure 3.9: Two parallel waveguides in RSoft, as used to investigate the simplest case of waveguide

coupling.
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Figure 3.10: The propagation of light in two parallel waveguides in RSoft, as used to investigate the

simplest case of waveguide coupling. Light with one unit of power is launched into the left waveguide

(not shown) and this light couples between the waveguides in an oscillatorary manner. The ’physical’

waveguides are not shown in this colour contour plot of power.
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Figure 3.11: Using coupling mode theory (CMT) equations from Wang et al. [49] in Mathematica, to

compare the two models. The distance between the waveguides is here 10 µm.
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Figure 3.12: MatLab plot of RSoft results for a physical system ostensibly identical to the one modelled

in Fig. 3.11.
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Figure 3.13: This correlation matrix results from injecting bright classical light into two adjacent waveg-

uides and taking the average of the possible relative phases.

Figure 3.14: This correlation matrix results from injecting bright classical light into two next-to-adjacent

waveguides and taking the average of the possible relative phases.
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Figure 3.15: The V-groove array tightly binds optic fibers in parallel, equally spaced at precise 127 µm

intervals. This device can connect bulk optics with integrated photonics. (Provided by G. D. Marshall)

Figure 3.16: The coupled-mode theoretical calculations of the coupling of light in the six-waveguide tube

with 7 µm radius.
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Figure 3.17: The coupling of light in the six-waveguide tube with 7 µm radius, as calculated in RSoft

BeamPROP.
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Figure 3.18: The coupling of light in the six-waveguide tube with 7 µm radius, as calculated in RSoft

BeamPROP. The slight rotational asymmetry is evident.
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Figure 3.19: The coupling pattern of light in the tubular waveguide array with 7 µm radius, as calculated

in RSoft BeamPROP. Here, light is launched into one waveguide without a fan-in section, i.e. the light is

symmetrically distributed as it enters the coupling region.

58



Chapter 4

Methods and measurements

The experimental stage of the project consists of fabricating the device that was designed in previous

stages, and then measuring the intensity distribution of bright classical light after a known length of

longitudinal propagation through the tubular array of waveguides. These measurements are accomplished

with beam profilometry. Also, refractive contrast profilometry is used to determine the refractive contrast

of the waveguides. However, the numerical calibration and analysis of these measurements are still

pending.

4.1 Fabrication

Using the laser direct-write technique, first one and then another tube design are fabricated in a slide of

silica glass. The slide is mounted on a precise, mobile stage, and while the laser modifies the refractive

contrast in the focal point, the stage moves in three dimensions according to the fabrication program

being run. The laser is also blocked while the stage moves back, so that no unwanted refractive index

change occurs. To build up refractive index changes to be significant enough to form functional waveg-

uides, the laser passes over the same areas repeatedly. A single-stage tube created with eight passes has

been ruined because of power fluctuations in the laser during production. However, a sixteen pass pro-
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duction of the single-stage tube has been successful. Also, a two-stage tube was successfully fabricated

with eight passes. Both tubes have a radius of 7 m, and the second stage of the two-stage device fans

in to 7 µm from a second-stage radius of 14 µm. The two devices differ in that their 7 µm regions are

approximately 20 mm and 22 mm long, respectively. After the waveguides are direct-written in the silica

glass, the monolith/slide is polished so that the exit of the tubes can be see head on, and so that the input

waveguides can be accessed with bulk optical fibers leading in light.

Figure 4.1: The setup of the optical bench during the direct-write fabrication procedure, seen from above.

(Provided by M. Ams.)

The setup of the laser direct-write fabrication laboratory is shown in Fig. 4.1 and Fig. 4.2. After fab-

rication, the devices are examined with an Olympus IX 81 transmission differential interference contrast
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Figure 4.2: A diagram of the setup of the direct-write fabrication procedure. (Provided by M. Ams.)

microscope. A selection of images from this examination are shown as Fig. 4.3, Fig. 4.4 and Fig. 4.5.

Figure 4.3: The fan-in section of the failed eight-pass tube fabrication. (Provided by G. D. Marshall.)

The eight-pass tube which failed because of power-fluctuations in the laser during fabrication is

shown in Fig. 4.3, we can see that the waveguides are filled with white “bubbles” where scattering voids

have been created.

By comparison, in Fig. 4.4 we see the result of a successful fabrication of the single-stage tube. We

can note that the all the waveguides are very sharply defined here, whereas the failed fabrication shows
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Figure 4.4: The fan-in section of the successful sixteen-pass tube fabrication. (Provided by G. D. Mar-

shall.)

that except in the waveguides which were subject to the power fluctuations, as evidenced by the white

bubbles, waveguides created with eight passes have a weaker refractive contrast than the sixteen-pass

waveguides.

In Fig. 4.5, sections of contrast microscopy photos of the eight-pass two-stage tube are shown to give

a (fore)shortened impression of the tube design.

4.2 Measurements

The refractive index profile was measured with refractive contrast profilometry using Rinck elektronik

equipment. The calibration is pending, but the image in Fig. 4.6 shows that the 16-pass tube corresponds

to the mode profiles used in this project.

After the monolithic fused silica slide has been polished, bright classical laser light at approximately

780 nm is injected with a bulk optical fiber into a single waveguide in each of the two well-formed tubes.

Using a Spiricon CCD camera with a microscope objective, beam profilometry is performed. The results

are displayed graphically, in Fig. beam1 and Fig. beam2. We can clearly see that the relationship between
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Figure 4.5: A montage combining different sections of the successfully fabricated two-stage tube. The

aspect ratio of this figure is compressed by a factor of ten in the horizontal direction. The two stages

of tube can be clearly seen with the intermediate tube occuring after the first stage of the fan-in section.

(Provided by G. D. Marshall.)

the beam profiles produced by injecting bright classical light into one specific waveguide is mirrored by

the beam profile produced by injecting the light into the waveguide which lies opposite in the tube. In

other words, the beam profile produced by injecting light into waveguide 1 mirrored the one produced

by injecting light into waveguide 6, and the waveguide pairs 2,5, and 3,4 also mirror each other. The

waveguide numbering convention used here has been illustrated in Fig. 1.4.

Unfortunately, it has not been possible to directly study the QRW on the tubular waveguide arrays

produced in this project. A suitable source of degenerate photon pairs is under construction at Macquarie

University, but it was not available to this project. However, the successful design and fabrication of

the tubular waveguide arrays has been verified by bright classical light. The hexagonal cross-section of

the tubular waveguide array has an obvious symmetry, and each waveguide has a mirroring waveguide.

For example, injecting light in waveguide 2 produces a coupling pattern which is the mirror image of
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Figure 4.6: A screenshot from refractive index profilometry of the 16 pass tube. A qualitative linear

contour plot of the 16-pass hexagonal tube region. The “shadows” of the waveguide structures extending

to the right hand side are an artifact of the measurement instrument. In this figure the surface of the sample

(the face through which the waveguides were written) is on the left. (Provided by G. D. Marshall.)

the observed output coupling pattern that arises when light is injected into waveguide 5, which mirrors

waveguide 2. Fig. 4.7 and Fig. 4.8 shows this property in both the 8 pass and 16 pass tubular arrays.

The waveguides in the tubular arrays display excellent transmission properties, which in turn indi-

cates that the fabricated devices successfully couple the injected light through the fan-in sections and into

the tube region intended for quantum mechanical interaction in the QRW. The symmetric coupling output

patterns reflect that the devices are symmetric throughout their lengths and that the coupling that occurs

between the waveguides is also symmetric. The hexagonal cross-section appears somewhat stretched

vertically, which is not ideal and the reason for which is unknown, but the symmetry of the output pat-

terns appears unaffected by the slight stretch.
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Figure 4.7: The beam profiles from injecting light into the single-stage tube, in waveguides 1 − 6 by the

numbering convention illustrated in Fig. 1.4. (Provided by G. D. Marshall.)

4.3 Summary

The experimental side of the project has been very successful in realising the designs the have been

developed before and during the device fabrication. The two devices which have been produced seem to

function well in the simple classical light tests they have so far been subjected to. It is interesting to note

the slight vertical elongation of the tubular array cross-section, the reason for which remains unclear.
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Figure 4.8: The beam profiles from injecting light into the two-stage tube, in waveguides 1 − 6 by the

numbering convention illustrated in Fig. 1.4. (Provided by G. D. Marshall.)
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Chapter 5

Discussion

The project has consisted of theoretical as well as experimental developments. Initially, the basic mecha-

nism of coupling was modelled and investigated, finding the relationship between waveguide separation

and the length of propagation required for complete coupling to occur. Then, the classical experimental

results reported by Bromberg et al. were simulated using RSoft set at parameters which the direct-write

technique can fabricate, reproducing the overall pattern in the correlation matrices. Various alternative

configurations of the tubular waveguide array have been investigated in RSoft and with Coupled-Mode

Theory code in Mathematica. Some investigations have also been performed with unrealistic values for

certain physical parameters. With a large refractive contrast or waveguide widths, the discrepancy be-

tween RSoft and CMT was reduced. The physical constraints created by non-nearest-neighbour coupling

(NNNC) have been identified. In response to this challenge, a functional compromise of variables has

been found without radically re-designing the device.

In the first fabrication run, the production of two devices was intended but one failed. However, the

succesfully produced device was the more innovative. With the sixteen pass device, there is a hope that
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the refractive contrast limit of 0.00455 can be overcome, if only fractionally. The second production

run created a two-stage device in eight passes. Both devices work as expected, and the current beam

profilometry measurements of the two devices are extraordinarily encouraging, mainly because the beam

profiles are symmetric, as illustrated in Fig. 4.7 and Fig. 4.8. This for the first time demonstrates that

three-dimensional coupling networks can now be built. This is potentially very promising results for the

field of quantum optics and supports the idea that optical implementations of quantum computing may be

the most practical alternative. Furthermore, this development provides the opportunity to further study

the fundamental properties of quantum mechanical systems.

From the beam profilometry, we can surmise that the two-stage fan-in appears to give the more sym-

metrical set of beam profiles. However, a final conclusion on this design issue depends on actual quantum

photonics experiments with single photon sources, to be performed in the future. Ultimately, the current

measurements can not determine with absolute certainty if the degenerate single-photon case will behave

as quantum mechanics predicts. Another factor in deciding which of the two devices is the best, may be

further simulation. Primarily, we see that this novel application of the direct-write technique has resulted

in functional waveguides in a three-dimensional array. We also note that some of the waveguides have

been direct-written through pre-existing waveguides, and while this had not previously been attempted

and there was concern that refraction from one waveguide could possibly perturb the writing of another,

the devices appear well-formed.
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Figure 5.1: The possible future design of the wriggler, by J. Twamley. (Provided by J. Twamley.)

5.1 Future outlook

An entirely different design is also being considered, for future investigations. Twamley is developing an

alternative tubular structure called a wriggler, which is shown in Fig. 5.1 to perform QRWs. The device

is called a wriggler and it avoids non-nearest neighbour coupling by being a tube of waveguides with

a greater tube radius than the devices produced in this project. The waveguides in the wriggler are not

always parallel, but wriggle back and forth on the circumference of the tube, with coupling ideally only

occurring in sections where two waveguides are adjacent and parallel. However, this is not part of the

work presented here. We can simply note that while the tubular array of parallel waveguides investigated

so far can implement a continuous QRW, the wriggler would implement a discrete QRW.

Mainly due to non-nearest-neighbour coupling in simulations, it seems that the tubular waveguide ar-

ray devices in their current state may not be the most apt for performing a simple quantum random walk

on a circle. The implication of the simulation results is that the tubular array of parallel waveguides fabri-
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cated here is not the most appropriate design for performing QRWs in a waveguide network analogous to

a walk on a circle. Instead, the wriggler design seems to be a more promising direction for the next step

in investigating this QRW on a circle, specifically. Also, that design makes the quantum walk discrete as

opposed to continuous. However, if the waveguides are contiguous and well-fabricated enough to couple

degenerate photons without causing decoherence, then on the one hand, the geometry of the QRW in the

tubular waveguide array may not be so simple. On the other hand, the devices produced can still provide

a unique opportunity for investigating photonic quantum interference.

5.2 Conclusion

The project has succeeded in creating novel three-dimensional devices in integrated photonics for future

quantum optics studies of quantum random walks. This represents a development not only for quantum

random walks, but potentially also for any optical quantum processing applications where a compact

three-dimensional architecture can provide an advantage. This project is a key technological demonstra-

tion of the theory and practice behind creating a three-dimensional linear optical circuit implementation

of continuous array QRWs. It has opened the door to enabling the study of this field by making use

of the novel three-dimensional waveguide circuit manufacturing capabilities offered by the direct-write

technique.
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