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Abstract

In this thesis a procedure is presented for the fabrication of a microelectrode to monitor

the neurotransmitter dopamine in vivo. The microelectrodes are fabricated by in situ

pyrolysis of acetylene under a nitrogen blanket onto a quartz capillary. The carbon film was

then anodically oxidised in the presence of 2,4-dinitroaniline. These microelectrodes are

stable, provide the physical strength to penetrate brain tissue, have a low capacitance, are

resistant to fouling in vivo and selectively suppress the endogenous ascorbic acid which

oxidises at the same potential as dopamine. With such properties the carbon film

microelectrode appears ideally suited for fast scanning cyclic voltammetric studies of cationic

neurotransmitters, such as dopamine, in vivo.

During this thesis work the following properties of the carbon film were reported:

Electrochemical heterogeneous electron transfer characteristics

Use of acetylide pendent groups in adsorptive stripping voltammetry of cation πcation

complexes to sub ppb sensitivity.

The catalysis of the anodic oxidation of dopamine was found to be pH dependent and

independent of the adsorbed dopamine quinone.

The adsorption of the dopamine quinone was found to dependent on the hydroxyl

groups, not the amine group as previously reported for carbon fibres.

Anodic oxidation of ethanol forms ethanoic acid on the surface liked via the carbon,

not an ether linkage as previously reported.

The inherently stable surface can be expected to provide a single or dual platform for other

analytical applications and, when unmodified, in speciation studies of πcomplexing cations.

Improvements in fabrication, such as pyrolysis temperature and carbon film thickness control

will enable this unique carbon surface structure to be utilised for additional electrochemical

analytical applications.
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