Fabrication, Characterisation and Modification of a Carbon Film Microelectrode to Selectively Monitor Dopamine *In Vivo*.

by

Michael McNally

Bachelor of Science (Chemistry)

Australian National University

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry

Macquarie University

New South Wales 2109

Australia

October 2005

ii

•

Abstract

In this thesis a procedure is presented for the fabrication of a microelectrode to monitor the neurotransmitter dopamine in vivo. The microelectrodes are fabricated by in situ pyrolysis of acetylene under a nitrogen blanket onto a quartz capillary. The carbon film was then anodically oxidised in the presence of 2,4-dinitroaniline. These microelectrodes are stable, provide the physical strength to penetrate brain tissue, have a low capacitance, are resistant to fouling in vivo and selectively suppress the endogenous ascorbic acid which oxidises at the same potential as dopamine. With such properties the carbon film microelectrode appears ideally suited for fast scanning cyclic voltammetric studies of cationic neurotransmitters, such as dopamine, in vivo.

During this thesis work the following properties of the carbon film were reported:

Electrochemical heterogeneous electron transfer characteristics

Use of acetylide pendent groups in adsorptive stripping voltammetry of cation π cation complexes to sub ppb sensitivity.

The catalysis of the anodic oxidation of dopamine was found to be pH dependent and independent of the adsorbed dopamine quinone.

The adsorption of the dopamine quinone was found to dependent on the hydroxyl groups, not the amine group as previously reported for carbon fibres.

Anodic oxidation of ethanol forms ethanoic acid on the surface liked via the β carbon, not an ether linkage as previously reported.

The inherently stable surface can be expected to provide a single or dual platform for other analytical applications and, when unmodified, in speciation studies of π complexing cations. Improvements in fabrication, such as pyrolysis temperature and carbon film thickness control will enable this unique carbon surface structure to be utilised for additional electrochemical analytical applications.

Acknowledgements

Firstly and foremost I wish to thank my wife Kay and children for their support, patience and encouragement without which this thesis would neither have started nor finished. I would also like to especially thank the following for their assistance: Bill Ben Gong (University of New South Wales) for his interpretation of the X-ray photoelectron spectra, Jenny Norman (University of New South Wales) for her assistance in ensuring the scanning electron micrographs were artefact free, James Murphy (CSIRO) and Andrew Piggott (Macquarie University) for discussions on organic chemistry, Susannah Tye (Macquarie University) and Charles Blaha (University of Memphis) for their help in carrying out the in vivo experimentation, Chris McRae (Macquarie University), my Associate Supervisor for assistance with computing glitches, Don Barnett (University of New South Wales), my external Supervisor for his proof reading and help in the presentation of this thesis, Danny Wong, my supervisor for his assistance in conference presentations, and finally the students, particularly Mohamed Akram, in the Department of Chemistry at Macquarie University for their companionship over the years.

Declaration

I hereby declare that this thesis represents my own work entirely, except where specifically indicated otherwise in the text, and has not been submitted for a higher degree to any other university or institution.

Michael McNally

Dated

Table of Contents

Abstract	iii
Acknowledgements	iv
Declaration	v
List of Chapters	vii
List of Figures	xviii
List of Tables	xxvi
List of Abbreviations	xxviii
Appendix	
Conference proceedings and published paper	297

Chapter I

Microelectrode Voltammetry

Introduction	1
Theory of Electron Transfer at a Microelectrode	10
The Sigmodial Shape	11
Limiting Current	12
Cottrell Decay	14
Steady State	15
Capacitance	17
E ¹ /2	18
Wave Slope	19
Heterogeneous Electron Transfer Rate	19
Conclusion	20
References	20

Chapter II

Experimental

Introduction	25
Puller	25
Electrochemical Equipment	27
Cyclic Voltammetry	28
Solution Preparation	31
References	31

Chapter III	Microelectrode Fabrication	
Abstract		33
Introduction		33
Experimental		40

Chemicals	40
Pyrolysis Apparatus	40
Procedure	40
Small cylinder and disc microelectrodes	41
Larger cylinder microelectrodes	41
Scanning Electron Microscopy	43
Results and Discussion	44
Disc Microelectrodes	44
Small Cylindrical Microelectrodes	46
Large Cylindrical Microelectrodes	48
Morphology of the Carbon Film Surface	51
Maximum and Minimum Microelectrode Size	54
Conclusion	58
References	59

Chapter IV Characterisation of the Carbon Film Surface

	Introduction		61
	References		63
Chaj	pter IV-(i)	Surface Stability	
	Abstract		65
	Introduction		65
	Experimental Section		
	Chemicals, equipment	, electrode fabrication and cyclic voltammetry	67
	Results and Discussion		68
	Conclusion		71
	References		72

Chapter IV-(ii)	X-Ray Photoelectron Spectroscopy	
Abstract		73
Introduction		73
Experimental Section		
Chemicals, equip	oment, electrode fabrication and cyclic voltammetry	76
Procedure		
Surface Mo	odification with 2,4-Dinitrobenzenesulfenyl Chloride	76
Results and Discussion	1	77
Conclusion		80
References		81
Chapter IV-(iii)	Raman Spectroscopy	
Abstract		83
Introduction		83
Experimental Section		
Electrode Fabrica	ation	85
Raman Spectroso	сору	85
Results and Discussion	1	86
Conclusion		92
References		93
Chapter IV-(iv)	Capacitance	
Abstract		95
Introduction		95
Experimental Section		
Chemicals, equip	oment, electrode fabrication and cyclic voltammetry	97
Procedure		
Cyclic volt	ammetry	97

Results and Discussion	98
Conclusion	101
References	101
Chapter IV-(v)Edge Plane Concentration	
Abstract	103
Introduction	103
Experimental Section	
Chemicals, equipment, electrode fabrication and cyclic voltammetry	105
Results and Discussion	106
Conclusion	108
References	109
Chapter IV-(vi) Potential Window	
Abstract	111
Introduction	111
Experimental Section	
Chemicals, equipment, electrode fabrication and cyclic voltammetry	112
Results and Discussion	113
Conclusion	115
References	115
Chapter IV-(vii) Surface Concentration of Alkenes and alkynes	
Abstract	117
Introduction	117
Experimental Section	
Chemicals, equipment, electrode fabrication and cyclic voltammetry	120
Procedure	
Immersion in π -complexing solutions and cyclic voltammetry	120

Results and Discussion	ns	121
Mercury π Com	plex	124
Ferrous π Comp	lex	127
Nickel π Comple	ex	129
Trace Analysis of	of Cations using π -Complexation	132
Conclusion		134
References		135
Chapter IV-(viii)	Outer Sphere Electron Transfer using	
	Hexaamineruthenium (III) Chloride	
Abstract		137
Introduction		137
Experimental Section		
Chemicals, equi	pment, electrode fabrication and cyclic voltammetry	139
Results and Discussion	n	140
Conclusion		147
References		148
Chapter IV-(ix)	Reduction of Potassium Hexacyanoferrate (III)	
Abstract		149
Introduction		149
Experimental Section		
Chemicals, equi	pment, electrode fabrication and cyclic voltammetry	151
Results and Discussion	n	152
Conclusion		155
References		157

Chapter IV-(x)

Anodic Oxidation - Diol to Dione – Dopamine and Ascorbic Acid

Abstract	159
Introduction	160
Experimental Section	
Chemicals, equipment, electrode fabrication and cyclic voltammetry	163
Results and Discussion	
Dependence of Heterogeneous Electron Transfer of DA and AA	
as a Function of Electrode Size	164
Cathodic Wave	168
Effect of Adsorbed Species on Heterogeneous Electron Transfer Rate	172
Calculation of Graphene Surface Area from Cathodic Wave Area	174
Heterogeneous Electron Pathway for the Oxidation of Dopamine	
at a Carbon Film Surface	175
Conclusion	183
References	184
Chapter IV-(xi) Surface Oxidation	
Abstract	185
Introduction	185
Experimental Section	
Chemicals, equipment, electrode fabrication and cyclic voltammetry	187
Procedures	
Chronopotentiometric anodic oxidation	187
Results and Discussion	188
Conclusion	191
References	192

Chapter	IV-(xii)
---------	----------

Ferrocene in a Non Aqueous Solvent

Chapter IV-(xii)	Ferrocene in a Non Aqueous Solvent	
Abstract		193
Introduction		193
Experimental Second	ection	
Chemicals	, equipment, electrode fabrication and cyclic voltammetry	195
Procedure	S	
Safe	ty and cyclic voltammetry	195
Results and Disc	cussion	196
Conclusion		200
Reference	S	200
Chapter IV-(xiii)	Conclusion of Chapter IV	
Conclusion		201
Chapter V	Selectivity	
Chapter V Introduction	Selectivity	205
-		205 209
Introduction		
Introduction Reference Chapter V-(i)	s	
Introduction Reference Chapter V-(i)	s Formation of Carboxylic Acid Groups on a	
Introduction Reference Chapter V-(i) Carbon F	s Formation of Carboxylic Acid Groups on a	209
Introduction Reference Chapter V-(i) Carbon F Abstract	s Formation of Carboxylic Acid Groups on a	209 211
Introduction Reference Chapter V-(i) Carbon F Abstract Introduction Experimental	s Formation of Carboxylic Acid Groups on a	209 211
Introduction Reference Chapter V-(i) Carbon F Abstract Introduction Experimental	s Formation of Carboxylic Acid Groups on a ilm Surface by Ferrous II Sulfate Complex Oxidation	209 211 211

1,2-diaminopropane modification of carbon film microelectrodes

216

3,5-dinitrobenzyl chloride modification of the carbon film microelectrodes	216
Cyclic voltammetric reduction of 3,5-nitro adduct in 0.1 M HCl	216
Results and Discussion	
Heterogeneous electron transfer of AA and Da after chemical modification with ferrous sulfate	217
Deductive verification of the presence of carboxylic acid formed after ferrous sulfate modification, using cyclic voltammetry of AA	220
Determination of carboxylic acid surface concentration following	
the ferrous sulfate modification.	224
Conclusion	227
References	227
Chapter V-(ii) Ethanol Modified Carbon Film Surface	
Abstract	229
Abstract Introduction	229 229
Introduction	229
Introduction Experimental Section	229
Introduction Experimental Section Chemicals, equipment, electrode fabrication and cyclic voltammetry	229
Introduction Experimental Section Chemicals, equipment, electrode fabrication and cyclic voltammetry Procedure	229
Introduction Experimental Section Chemicals, equipment, electrode fabrication and cyclic voltammetry Procedure Anodic oxidation of ethanol, ethanal, ethanoic acid, methanol	229 232
Introduction Experimental Section Chemicals, equipment, electrode fabrication and cyclic voltammetry Procedure Anodic oxidation of ethanol, ethanal, ethanoic acid, methanol and DBU at the carbon film surface.	229 232
Introduction Experimental Section Chemicals, equipment, electrode fabrication and cyclic voltammetry Procedure Anodic oxidation of ethanol, ethanal, ethanoic acid, methanol and DBU at the carbon film surface. 3,5-Dinitrobenzyl chloride reaction with the modified	229232232
Introduction Experimental Section Chemicals, equipment, electrode fabrication and cyclic voltammetry Procedure Anodic oxidation of ethanol, ethanal, ethanoic acid, methanol and DBU at the carbon film surface. 3,5-Dinitrobenzyl chloride reaction with the modified carbon film surface.	 229 232 232 232 233
Introduction Experimental Section Chemicals, equipment, electrode fabrication and cyclic voltammetry Procedure Anodic oxidation of ethanol, ethanal, ethanoic acid, methanol and DBU at the carbon film surface. 3,5-Dinitrobenzyl chloride reaction with the modified carbon film surface. Capacitance measurements	 229 232 232 233 233

Chapter V-(iii)	Modification of Carbon Film Microelectrode	
	Surface using Aromatic Amines	
Abstract		251
Introduction	I	251
Experimenta	al Section	
Chemi	icals, equipment, electrode fabrication and cyclic voltammetry	254
Proced	lure	
I	Modification of electrode surface	254
I	Determination of nitro group surface concentration	255
Results and	Discussion	256
Conclusion		259
Refere	ences	259
Chapter V-(iv)	Modification of Carbon Film Surfaces to form a	
	Dual Functional Ascorbic Acid Barrier	
Abstract		261
Introduction	L	261
Experimenta	al Section	
Chemi	icals, equipment, electrode fabrication and cyclic voltammetry	262
Surfac	e Modifications	262
Detern	nination of dinitro group concentration on the surface	262
Results and	Discussion	263
Conclusion		265
Refere	ences	265

Chapter VI

In Vivo Anti Fouling Properties of Surface Modified Carbon Film Microelectrodes

Abstract	267
Introduction	
Experimental Section	
Chemicals	272
Equipment	
In vivo	272
In vitro	272
In vivo electrochemistry	
Preparation of animals	272
Surgery	272
Fixed Potential Chronoamperometry	
In vitro electrochemistry	
Electrode fabrication	
Carbon fibre microelectrodes	274
Carbon film microelectrodes	274
Surface Modification	
Nafion coating	275
Ferrous sulfate oxidation	275
Ethanol anodic oxidation	275
2,4-Dinitroaniline anodic oxidation	275
Dual functional oxidation	275
Cyclic voltammetry of AA and DA	275
Electrode cleaning after in vivo use	275

I	Results and Discussion	
	Ferrous sulfate modified surface	279
	2,4-dinitroaniline modified surface	281
	Dual functional modified surface	284
	Nafion	286
(Conclusion	
	References	288

Chapter VI

Conclusion

Conclusion 291

Table of Figures

Chapter 1

Figure I-i	Diffusion pathways at electrode surfaces	6
Figure I-ii	Voltage ramp, chronoamperograms, and cyclic voltammetry	
	at disc microelectrodes and small disc electrode	10
Figure I-iii	Comparison of the cyclic voltammogram of the reduction of $Ru(NH_3)_6Cl_3$ at a carbon film microelectrode 1.3 µm radius and the theoretical voltammogram.	12
Figure I-iv	Comparison of the Cottrell decay of a disc and cylindrical microelectrode	16
Figure I-v	Cottrell decay of $Ru(NH_3)_6Cl_3$ at 1.2 µm radius disc microelectrode	16
	Chapter II	
Figure II-i	Schematic of Sutter P-2000 Puller	26
Figure II-ii	Schematic of electrochemical layout	28
Figure II-iii	Effect of scan rate on cyclic voltammetric shape	29
	Chapter III	
Figure III-i	Crystalline structure of graphite	34
Figure III-ii	Schematic of pyrolysis equipment	40
Figure III-iii	Schematic of assembled carbon film microelectrode.	42
Figure III-iv	Schematic diagram for SEM mounting configuration	43
Figure III-v	SEM of platinum plated disc microelectrode and	
	cyclic voltammogram	45
Figure III-vi	SEM of cylindrical microelectrodes fabricated by parallel flow	46
Figure III-vii	Schematic of nitrogen and acetylene flow with high nitrogen flow	47
Figure III-viii	SEM of large cylindrical microelectrodes	49
Figure III-ix	SEM of carbon film microelectrode near tip	51

Figure III-x	High magnification SEM of tip of cylindrical microelectrode	52
Figure III-xi	SEM of microelectrode tip with small orifice	53
Figure III-xii	Cyclic voltammogram at large carbon film microelectrode	54
Figure III-xiii	Cyclic voltammograms at nanodes	55
Figure III-xiv	Cyclic voltammogram at a nanode with 0.1 V s ⁻¹ scan rate	57

Chapter IV

Chapter IV-(i)

Figure IV-i	Cyclic voltammograms of DA before and after 25 months storage	70
Figure IV-ii	Cyclic voltammograms of DA before and after 12 months storage	70
Chapter IV-(ii)		
Figure IV-(ii)-i	Reaction of 2,4-dinitrobenzenesufenyl chloride and alkyne	75
Figure IV-(ii)-ii	XPS spectrum of an unmodified carbon film electrode tip	77
Figure IV-(ii)-iii	XPS spectrum of 2,4-dinitrobenzenesulfenyl chloride derivatised electrode surface	79
Chapter IV-(iii)		
Figure IV-(iii)-i	Raman spectrum at distances from the tip. Wavelength 410 nm	87
Figure IV-(iii)-ii	Raman spectrum at distances from the tip. Wavelength 325 nm	88
Figure IV-(iii)-iii	Raman spectrum near tip Wavelength 325 nm	89
Figure IV-(iii)-iv	Schematic of possible aromatic pendent groups	90
Chapter IV-(iv)		
Figure IV-(iv)-i	Cyclic voltammograms in deoxygenated 1 M KCl	99
Figure IV-(iv)-ii	Double layer capacitance versus scan rate	100
Figure IV-(iv)-iii	Distribution of double layer capacitance measurements	101
Chapter IV-(v)		
Figure IV-(v)-i	Structure and electrode reactions for AQDS and PQ	104
Figure IV-(v)-ii	Cyclic voltammogram of AQDS	106

Figure IV-(v)-iii Expanded cyclic voltammogram of AQDS	107
Chapter IV-(vi)	
Figure IV-(vi)-i Cyclic voltammetry in 0.1 M $H_2SO_4 C_{dl} 4.4 \ \mu F \ cm^{-2}$	114
Figure IV-(vi)-ii Cyclic voltammetry in 0.1M H2SO4 C_{dl} 0.3µF cm ⁻²	114
Chapter IV-(vii)	
Figure IV-(vii)-i Cyclic voltammetry in KNO3 after immersion in AgNO3	122
Figure IV-(vii)-ii Anodic peak area during continuous and discontinuous scanning	123
Figure IV-(vii)-iii Ag+/Ag versus Ag/Ag+ during continuous cyclic voltammetry	124
Figure IV-(vii)-iv Cyclic voltammetry of impurities in acetic acid	126
Figure IV-(vii)-v Linear voltammetry after 3 minutes in 0.05 M KCl	126
Figure IV-(vii)-vi Linear scan in KCl after immersion in HgAc	127
Figure IV-(vii)-vii Linear scans in KCl after FeSO ₄	129
Figure IV-(vii)-viii Linear scans in KCl after NiCl ₂	130
Figure IV-(vii)-ix Linear scan after 6 minutes in Millipore water	133
Chapter IV-(viii)	
Figure IV-(viii)-i Cyclic voltammogram of Ru(NH ₃) ₆ Cl ₃ in KCl at various scan rates	142
Figure IV-(viii)-ii Waveslope and limiting current of Ru(NH ₃) ₆ Cl ₃ in KCl	143
Figure IV-(viii)-iii Limiting current versus square of the scan rate for Ru(NH ₃) ₆ Cl ₃	143
Figure IV-(viii)-iv Differential pulse voltammetry of Ru(NH ₃) ₆ Cl ₃ at different	
concentrations in KCl	146
Figure IV-(viii)-v Differential pulse peak area of Ru(NH ₃) ₆ Cl ₃ at different concentrations in KCl	146
Chapter IV-(ix)	
Figure IV-(ix)-i Cyclic voltammograms of two carbon film microelectrodes in K_3 Fe(CN) ₆	152
Figure IV-(ix)-ii Cyclic voltammogram of carbon film disc of K ₃ Fe(CN) ₆ in 1 M KCl	155

Chapter IV-(x)

Figure IV-(x)-i	Equation for the anodic oxidation of DA and AA	160
Figure IV-(x)-ii	Cyclic voltammogram of DA and citrate/phosphate buffer pH 7.4 at a "small" carbon film microelectrode	164
Figure IV-(x)-iii	Cyclic voltammogram of AA in citrate/phosphate buffer pH 7.4 at a "small" carbon film microelectrode	165
Figure IV-(x)-iv	Cyclic voltammogram of AA in citrate/phosphate buffer pH 7.4 at a "medium" carbon film microelectrode	166
Figure IV-(x)-v	Cyclic voltammograms of DA and AA in buffer pH 7.4 at a large carbon film microelectrode	167
Figure IV-(x)-vi	Equation for anodic oxidation pathway catechol and norepinephrine	169
Figure IV-(x)-vii	Cyclic voltammograms of solutions of DA , norepinephrine , catechol and AA in buffer pH 7.4, with insets of cyclic voltammograms between -0.2 V and 0.2 V	170
Figure IV-(x)-vii	i Cyclic voltammograms of 10 ⁻⁴ M norepinephrine in buffer pH 7.4 including cyclic voltammogram over a reduced range.	171
Figure IV-(x)-ix	Comparison of linear regression with scan rate and square of the scan rate	173
Figure IV-(x)-x	Laviron heterogeneous electron transfer pathway for 1,4-benzoquinone/1,4-hydroquinone	176
Figure IV-(x)-xi	Anodic oxidation pathway of phenol in H ₂ SO ₄ at a GC electrode	177
Figure IV-(x)-xii	Cyclic voltammograms of DA in buffer pH 7.4 and citric acid	179
Figure IV-(x)-xii	i Cyclic voltammograms of catechol in buffer pH 7.4 and citric acid, pH 2.1 with inset of catechol in citric acid, between -0.2 V to 0.4 V.	180
Figure IV-(x)-xiv	Cyclic voltammograms of DA in buffer pH 7.4 and phosphate buffer pH 10.1.	181
Figure IV-(x)-xv	Cyclic voltammograms of catechol in buffer pH 7.4 and phosphate buffer pH 10.1.	182

Chapter IV-(xi)

Figure IV-(xi)-i	Chronoamperometry of a carbon microelectrode at 1.5 V in	
	citrate/phosphate buffer pH 7.4.	188
Figure IV-(xi)-ii	Cyclic voltammograms of DA and AA in buffer pH 7.4	
	before and after anodic oxidation.	189
Figure IV-(xi)-iii	Cyclic voltammetry of DA in buffer pH 7.4 after	
	extended anodic oxidation.	191
Chapter IV-(xii)		
Figure IV-(xii)-i	Cyclic voltammetry of 10 ⁻⁴ M ferrocene in TEAHFP/acetonitrile	
	and TEAHFP/acetonitrile	196
Figure IV-(xii)-ii	Cyclic voltammetry of ferrocene in TEAHFP/acetonitrile	
	at slow scan rates	197
Figure IV-(xii)-ii	i Limiting current of the oxidation of ferrocene in TEAHFP	
	acetonitrile versus the square of the scan rate	198
Chapter IV-(xiii)	

Figure IV-(xiii)-i Diagrammatic representation of the proposed carbon film surface	203

Chapter V

Figure V-i	Cyclic voltammogram of AA in buffer pH 7.4 at a Nafion coated and uncoated carbon film microelectrode.	206
Chapter V-(i)		
Figure V-(i)-i	Cyclic voltammogram of AA in buffer pH 7.4 of a carbon film microelectrode before and after ferrous sulfate immersion.	217
Figure V-(i)-ii	Cyclic voltammogram of DA in buffer pH 7.4 of a carbon film microelectrode before and after ferrous sulfate immersion.	218
Figure V-(i)-iii	Averaged forward and reverse cyclic voltammogram of DA in buffer pH 7.4 before and after immersion in ferrous sulfate.	220
Figure V-(i)-iv	Cyclic voltammograms of AA in buffer pH 7.4 after modification with ferrous sulfate by reaction with1,2-diaminopropaneand citric acid.	h 222

Figure V-(i)-v	Cyclic voltammograms of 3,5-dinitrobenzyl chloride derivatised surface of ferrous sulfate modified carbon film microelectrode	
	in HCl.	224
Figure V-(i)-vi	Blank cyclic voltammograms of carbon film microelectrodes after SOCl ₂ treatment and reaction with 3,5-dinitrobenzyl chloride in 0.1 M HCl.	225
Figure V-(i)-vii	Cyclic voltammogram of an unmodified carbon film microelectrode	
	in HCl, after repeated scans.	226
Chapter V-(ii)		
Figure V-(ii)-i	Cyclic voltammogram of the anodic oxidation of ethanol at a carbon film microelectrode.	234
Figure V-(ii)-ii	Cyclic voltammogram of AA in buffer pH 7.4 before and after anodic oxidation of ethanol at a carbon film microelectrode	235
Figure V-(ii)-iii	Cyclic voltammogram of AA in buffer pH 7.4 before and after anodic oxidation of ethanol with DBU.	236
Figure V-(ii)-iv	Cyclic voltammogram of the anodic oxidation of ethanol and DBU	237
Figure V-(ii)-v	Cyclic voltammogram of the anodic oxidation of DBU in DCM	238
Figure V-(ii)-vi	Cyclic voltammograms of AA carbon film microelectrodes in buffer pH 7.4 before and after anodic oxidation of DBU in DCM.	239
Figure V-(ii)-vii	Cyclic voltammograms of the anodic oxidation of ethanal in DBU and DCM showing first and twentieth scan.	240
Figure V-(ii)-viii	Cyclic voltammograms of AA in buffer pH 7.4 before and after anodic oxidation of ethanal and DBU in DCM	e 241
Figure V-(ii)-ix	Cyclic voltammograms of the anodic oxidation of ethanoic acid and DBU in DCM showing the first and twentieth scan.	242
Figure V-(ii)-x	Cyclic voltammograms of AA in buffer pH 7.4 before and after anodic oxidation of ethanoic acid and DBU in DCM.	242
Figure V-(ii)-xi	Cyclic voltammograms of the anodic oxidation of methanol and DBU, showing the first and twentieth scan.	, 244

Figure V-(ii)-xii	Cyclic voltammograms of of AA in buffer pH 7.4 before and	
	after anodic oxidation of methanol and DBU in DCM	246
Figure V-(ii)-xii	i Cyclic voltammograms of DA in buffer pH 7.4 before and after anodic oxidation in ethanol and DBU.	246
Figure V-(ii)-xiv	The proposed reaction pathway for the formation of carboxylic acid	
	groups, on the surface of a carbon film microelectrode after anodic oxidation in ethanol containing DBU.	247
Chapter V-(iii)		
Figure V-(iii)-I	Anodic oxidation pathway for the attachment of amines to a carbon fibre surface	252
Figure V-(iii)-ii	Cyclic voltammograms of the anodic attachment of dinitro groups to the surface of the carbon film microelectrodes and cyclic voltammograms of AA in buffer pH 7.4 before and after modification	1 257
Figure V-(iii)-iii	Cyclic voltammograms of the anodic oxidation of DA in buffer pH 7. at a carbon film microelectrode, before and after modification with 2, 6-dinitroaniline.	4 258
Chapter V-(iv)		
Figure V-(iv)-I	Cyclic voltammograms of AA in buffer pH 7.4 before and after modification with 3,5-dinitroaniline and ethanol.	263
Figure V-(iv)-ii	Cyclic voltammograms of DA in buffer pH 7.4 before and after modification with 3,5-dinitroaniline and ethanol	264

Chapter VI

Figure VI-i	Schematic of electrodes implanted in an anaesthetised rat's brain.	268
Figure VI-ii	Fixed potential chronoamperometric trace of DA efflux, in the nucleus	8
	accumbens of an anaesthetised rat during and after 15 pulses at 50 Hz	
	with inset, showing the peak details at 20 millisecond intervals.	270
Figure VI-iii	Cyclic voltammogram of DA and AA buffer pH 7.4, at a	
	carbon fibre microelectrode	276

Figure VI-iv	Fixed potential amperometric trace of DA efflux in the nucleus accumbens of an anaesthetised rat, during 15 pulses at 50 Hz, at a carbon fibre microelectrode with inset showing peak details at 20 millisecond intervals	277
Figure VI-v	Cyclic voltammograms of 10 ⁻⁴ M DA and 10 ⁻⁴ M AA at a carbon fibre microelectrode in citrate/phosphate buffer pH 7.4, after 2 hours <i>in vivo</i> .	278
Figure VI-vi	Cyclic voltammograms of DA and AA at a ferrous sulfate modified carbon film microelectrode, in buffer pH 7.4, before and after <i>in vivo</i> use, together with inset of the DA efflux recorded during a 15 pulse electrical stimulation using a ferrous sulfate modified carbon film microelectrode	280
Figure VI-(vii)	Cyclic voltammograms of DA and AA in buffer pH 7.4, before and after 45 minutes <i>in vivo</i> , together with a fixed potential chronoamperometric recordings of DA efflux, during 15 pulses at 50 H at a carbon fibre electrode and a 2,4-dinitroaniline modified carbon film microelectrode.	Hz, 282
Figure VI-(viii)	Fixed potential chronoamperometric <i>in vivo</i> recordings at a 2,4-dinitroaniline modified carbon film microelectrode of DA efflux after 2minutes and four hours during the application of four pulses at 100 Hz, together with the cyclic voltammograms of DA and AA in a pH 7.4 buffer after 4 hours <i>in vivo</i> .	283
Figure VI-ix	Cyclic voltammograms of DA and AA at a 2,4-dinitroaniline and ethanol/DBU modified carbon film microelectrode in buffer pH 7.4, before and after <i>in vivo</i> , together with the DA efflux, after a 15 pulse 50 Hz electrical stimulation, at a 2,4-dinitroaniline, ethanol and DBU modified carbon film microelectrode	285
Figure VI-x	Cyclic voltammograms of 10 ⁻⁴ M DA and 10 ⁻⁴ M AA at a Nafion modified carbon film microelectrode in citrate/phosphate buffer pH 7.4, before and after 30 minutes <i>in vivo</i> , together with DA efflux, after a 15 pulse electrical stimulation, with a Nafion modified carbon microelectrode.	film 287

XXV

List of Tables

Chapter II

Table II-i	Typical values used for Sutter P2000 Puller	27
Table II-ii	Effect of scan rate on $E^{1/2}$ and waveslope	30

Chapter III

Table III-i	Comparison of dimensions obtained from SEM and Cottrell decay	
	for small cylinder microelectrodes	47
Table III-ii	Comparison of dimensions obtained from SEM and Cottrell decay	
	for large cylinder microelectrodes	50

Chapter IV

Chapter IV-(i)

Table IV-(i)	Summary of change in $E^{\frac{1}{2}}$ and waveslope with storage time	67
Chapter IV-(ii)		
Table IV-(ii)-i	XPS elemental composition of a carbon electrode surface	78
Table IV-(ii)-ii	XPS elemental composition of a modified carbon electrode surface	79
Chapter IV-(v)		
Table IV-(v)-i	Edge plane concentration coverage summary	108
Chapter IV-(vii)		
Table IV-(vii)-i	Summary of unsaturated aliphatic group concentration	131
Chapter IV-(viii)		
Table IV-(viii)-i	Comparison of ΔE_p and waveslope for different carbon surfaces	145
Chapter IV-(ix)		
Table IV-(ix)-i	Comparison of ΔE_p and waveslope for different carbon surfaces	154
Chapter IV-(x)		
Table IV-(x)-i	Changes in heterogeneous electron transfer control with scan rate	

	and electron transfer area calculated from cathodic wave.	172
Table IV-(x)-ii	Comparison of adsorbed species coverage on the same carbon film	
	microelectrode	175
Table IV-(x)-iii	pK _a values of catechols	178
Chapter IV-(xii)		
Table IV-(xii)-i	Effect of scan rates below 0.1 V s ⁻¹ on limiting current	199
Table IV-(xii)-ii	Effect of carbon surface on waveslope and ΔE_p	199
Chapter IV-(xiii)		
Table IV-(xiii)-i	Summary of sub chapter properties	201

List of Abbreviations

AA Ascorbic acid

AQDS	9,10-anthraquinone-2,6-disulfonic acid disodium salt
DA	Dopamine
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DCM	Dichloromethane
EMI	Electromagnetic interference
GC	Glassy carbon
HOPG	Highly orientated pyrolytic graphite
LDT	Laterodorsal tegmental
PG	Pyrolytic graphite
PQ	9,10-Phenanthrenequinone
SEM	Scanning electron microscopy
TEAHFP	Tetraethylammonium hexafluorophosphate
XPS	X-ray photoelectron spectroscopy