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Abstract

The smart grid is a user system that will elevate the conventional electrical grid system to

one that functions more cooperatively, responsively and economically. One of the most

important features of smart grid technology that makes it smart or smarter than the current

grid is the integration of bi-directional flow of information along with electricity, which can

be used to provide effective and controlled power generation and consumption. In this project,

first we investigate how game theory can be used in smart grid communication due to its

proven efficiency in wireless and wireline communication. And then to implement algorithms

using cooperative game theory to solve the problem of the power loss during power transfer

process. We have applied the game theoretic coalition formulation strategy and explain how

the micro-grid action as to form coalition group to minimize the power loss when power

is transmitted from a micro-grid to another micro-grid or the macro station. To maximize

the profit of coalition, a micro-grid will find partners which are able to maximize the payoff

function value. In this project we focused in particular on using cooperative game theory to

solve the problem of power loss.
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When theory and experiment

agree, that is the time to be espe-

cially suspicious.

Niels Bohr

1
Introduction

The smart grid is envisioned to be a large-scale cyber physical system that can improve the

efficiency, reliability and robustness of power and energy grids by integrating technologies.

Thus, the smart grid is a power network that contains intelligent nodes that can operate,

communicate, interact in order to efficiently deliver power and electricity to their customer.

The future of energy could be a network of renewable micro-grids.

Recently the consumption of electricity has increased with the growth of technology,

however the demand of electricity is not balanced during a day. Therefore , new type of

intelligent power grid called smart grid is becoming popular because it can help to organise

effectively the demand of electricity and reduce the power loss and wasted power.

There are a number of problems in supplying power at a national level. One arises when

the national grid supplied by eg coal and nuclear power plants is supplemented by renewable

energy generated at a local level (eg solar panels). Here there is a load balancing problem

where the power generated from various sources must be shared equally across the grid.

Another problem is due to energy loss. Energy can be lost when the electricity travels great
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Figure 1.1: Future of energy grids

distances. This is primarily due to the quality of the cables. In this project we will focus on

techniques to reduce this kind of power loss by using game theory techniques to formulate

the coalition group of micro-grids. Recent work has shown that there can be some efficiency

savings when the architecture of the grid is considered as a market where electricity can be

bought and sold [1]. When considered as a market it has been proposed to use game theoretical

results to find the optimal way to arrange power distribution. We outline the relevant game

theory in section 2.3.1. In the next section we summarize how the grid can be viewed as a

market for electricity, and describe the research challenges that we address in this thesis.

1.1 Detail about the grid in general

In this section, we describe the smart grid architecture in general [2]. There are 2 main

components of smart grid which are distribution system and communication layer.

As they can considered to be separated, We then can consider the general model of

distribution system as following. In a power grid organised as a market we assume that there is

a centralised macro station supplying power over a wide geographical area. This macro station

supplies power to local micro grids which in turn distribute power to houses and businesses.

Micro-grids have been introduced recently as a way to reduce power loss , which can supply

electricity to end users linked to corresponding micro grids. Micro grids can exchange power

with others and also transfer power with Macro station, which play roles as substation of the

smart grid Macro-station is the main substation of smart grid, micro-grids are deployed near
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Figure 1.2: Smart grid communication networ

the users to avoid power loss.Users are residential customers, schools , companies which

use electricity. The end users can install a smart meter. As shown in above figure, the

users are supplied electricity by the macro station or number of micro grids , because the

power loss between the macro station and a micro grid is more than between micro grids

thus forming coalition is the way to reduce power loss. Every micro-grid is connected with

macro-station via medium voltage line through a voltage transformer while it is connected

with other micro-grids with low voltage line. Therefore, if micro-grids transfer power with

macro-station then loss will occur at transformer device. The efficiency of power transformers

is quite high and may reach 99 percentages thus power loss occurring in the transformer can

be ignored. For cables its the contrary, when power is transfer via lines, temperature can be

raised and heat bleeds away as lost energy.

1.2 The challenges today

The assumption is that the distance between the macro station and the micro grids is large

whereas the distance between some micro stations can be relatively smaller. This suggests

that there is an opportunity for micro-stations that are geographically close can trade power

thereby reducing overall power loss because the power can be transferred directly between

micro grids. This can be more efficient than eg wasting energy when there is a surplus rather

than redirecting it to a nearby micro grid. The micro grids can cooperate by forming coalitions

where the total power requirements of the coalition can be balanced between members trading

between each other.
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There are several challenges for organizing an effective cooperation. We address the

following:

1. What is the best way to form coalitions to optimize power loss?

2. Once the coalition has been formed, how can the power be balanced across the coalition?.

3. How are the communications arranged so that the load balancing can be implemented?.

1.3 Research method

There are a number of proposals in the literature for using game theory to form coalitions in

the context of power grids. We first reviewed these methods. Next we chose an algorithm

proposed by Chakraborty et al. [3] and studied its advantages and disadvantages as follows.

1. We first implemented the algorithm proposed by [3].

2. We tested the algorithm to reproduce their results.

3. We analysed shortcomings of the algorithm, and in particular evaluated its effectiveness

for reducing power loss.

The contribution of this thesis is to reevaluate the techniques used to justify the algorithm

proposed by [3] In doing so we discovered some problems with their proposed approach,

together with some discrepancies in their experimental results.

We report our findings and recommendations in Section 4.
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Game theory used in designing a Smart Grid

2.1 Review of game theory

Game theory is a key tool in the design of future smart grid, which is a formal analytical

as well as conceptual framework with a set of mathematical tools that can help to study the

complex interactions among independent rational players [4]. For many years, game theory

has been applied to wide range of disciplines from economics to politics. In this thesis, we aim

to apply cooperative game theory to solve the problem of power loss of micro grid distribution

network and also provide algorithm which can be deployed using game theory approach. A

game consists of a set of players, each of whom may select a strategy having the an objective

of maximizing payoff.

For example, one could easily set up a game similar to the one above using companies

as the players. This game could include product release scenarios. If Company 1 wanted to

release a product, what might Company 2 do in response? Will Company 2 release a similar

competing product? By using game theory we can set up the payoff function as the profit each
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company can get with a set of predefined strategies.

In many forms of game, there is also a quantitative component describing the amount if

winnings a player will receive. In abstract terms, a player can choose a strategy to play a game.

Depending on his strategy he will entire win or lose, and usually his objective is to choose a

strategy to maximize his payoff or to minimize his losses.

Types of game theory. Game theory is a mathematical framework that can be divided into

two main branches: noncooperative game theory and cooperative game theory.

2.2 Non-cooperative game theory

In the smart grids, the applications of non-cooperative games are numerous. On the one

hand, non-cooperative games can be used to perform demand side management[4].On the

other hand, market and dynamic pricing are a crucial part of the smart grid which non-

cooperative games can be used to optimize pricing strategies. Game theory, where there

are many players , there is a choice between cooperating with other players or not [4].

Non-cooperative game theory,(NCGT) models the actions of agents, maximizing their utility

in a defined procedure, relying on a detailed description of the moves and information

available to each agent. Non cooperative game theory can be grouped into two categories:

static games and dynamic games. Static games are games in which the notions of time or

information do not affect the action of choices of the players. In contrast, dynamic games

are games which the players have some information about each other choices, can act more

than once, and time has a central role in the decision marking. When the game is dynamic,

one needs to also define additional components such as information sets, time or histories

which are usually reflected in the utility function. The objective of non-cooperative game

theory is to provide algorithms and techniques suitable for solving optimization problems,

when the players are making their choice without any communication. Nash equilibrium is

one of the crucial concepts for game theory. A Nash equilibrium recommends a strategy

to each player that the player cannot improve upon unilaterally, that is, given that the

other players follow the recommendation. Since the other players are also rational, it is

reasonable for each player to expect his opponents to follow the recommendation as well.

A Nash equilibrium of a static non-cooperative game is a vector of actions (s1, ..., sn) for
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each player i, hold that ui (si, s−i) >= ui (s′i, s−i)[1] The Nash equilibrium serves as a building

block for many types of non-cooperative games. non-cooperative games can be used in the

distributed control of micro-grids. The work in [5] shows that the use of non-cooperative

games can model the interactions between sources and load in a small-scale power system.

Game theory can also constitute a foundation for enabling distributed control of loads and

sources in small scale system by developing objective optimization. Another application of

non-cooperative game is to use in price load balancing [6].

2.3 Cooperative games

In non-cooperative games, the players are unable to communicate with one other. However,

cooperative game theory models how agents complete and cooperate as coalitions in unstruc-

tured interactions to create and capture value[7]. Cooperative games allow to investigate how

agent can provide an incentive for independent decision makers to act together as one entity so

as to improve their payoff in the game. For example, in politics, parties can merge or split into

a coalition group as to improve their chances in obtaining a share of power. Cooperative game

theory is divided two parts: Nash bargaining and coalitional game. In the first part, a number

of players need to agree the terms under which they cooperate while in the second part the

formation of cooperative groups is introduced. Cooperative game theory in both situations

provides that the players to decided on whom to cooperate with and under which terms given

several cooperation incentives and fairness rules.

2.3.1 Game theory applied to the smart grid

Game theoretic approaches present a promising tool for the analysis of the smart grid. The

applications of non-cooperative games are numerous. Non-cooperative games can be used to

perform demand side management and real time monitoring to control micro-grids.Others

application of non-cooperative game theory for smart grid is for autonomous consumer

load balancing. In the traditional power market, electricity consumers often pay a fixed

retail price for electricity usage. Agarwal and others [6] formulate non-cooperative games

among the consumers with real-time pricing schemes to derive autonomous load balancing

solutions. The problem of maximizing the payoff at each consumer by designing the distributed

load balancing strategy under real-time pricing schemes set by the retailer. The first is the
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average cost based pricing scheme and the second is the increasing block pricing scheme.

Cooperative game theory can be applied to enable a limited form of communication between

the micro-grids. The integration of power , communication and networking technologies in

future smart grids opens up the door to several application in which smart grid nodes can

cooperate to improve the robustness and efficiency of the grid. In this thesis, we provide

coalition game theory on the deployment of micro-grids and we provide the communication

protocol over the coalition form algorithm. There are 3 parts in game theory - the set of

players N, the strategy of players and the function v that assigns for every coalition showing

total benefits achieved by this coalition group. Players are the micro grids and their objective

to supply users with sufficient power whilst minimizing power loss. It has been observed that

if the micro grids form coalition so that they can transfer power directly between members

of coalition rather than going through the macro grids,then the is some benefit in terms of

reducing power loss

Introduction to micro-grid distribution network A power grid can be divided into two

main phases: electric power transmission and electric power distribution. Electric power

transmission deals with the transmission of the energy generated at the power plants or macro

grid. Electric power distribution is for delivering electricity in which the distribution network

carries the electricity received at a substation and delivers it to the consumers.The concept

of a micro-grid is defined as a networked group of distributed energy sources such as solar

panels or wind turbines located at the distribution network side and which can provide energy

to a small area. Thus controlling the operation of the micro-grids and integrating them in the

smart grid introduces several technical challenges that need to be solved.

Coalition game theory to solve the power loss of micro-grid distribution The novel

cooperative strategies for micro-grid distribution network was proposed by Walid Saad and

others [8] but the algorithm to form the coalition was not explained clearly.

In figure 4.2 we illustrate the architecture of an electrical grid. Let MG be the set of micro

grids and Pi, j be the power loss incurred by i sending power to j and we denote 0 for Macro

station. Let S ⊆ MG be a coalition of the micro grids which contain power seller and Ss and

power buyer Sb, and S = Sb
⋃

Ss. In one coalition, it consists of buying and selling power

of micro grid so in order to calculate the payoff functions of all coalition we calculate the

payoff function of each coalition . In one coalition, the power loss between seller and buyer is
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Figure 2.1: Architecture of an electrical grid

expressed as follows :

Pi j = Ri jQ
2
i j/U

2
i j

where Ri j is the resistance of the distribution lines between micro grid i and micro grid j, Q i j

is that power micro grid i wants sell , and Ui j is the transfer voltage between micro grid i and

micro grid j. Due to power loss between micro grid, then micro grid j buy an extra power

U2
i j/2Ri j from micro grid i. The total payoff function of one coalition group can calculated by

following formula.

u(S) = −(ω1

∑

i∈Ss, j∈Sb

Pi j +ω2

∑

i∈Ss

Pi0 +ω2

∑

j∈Sb

Pj0) (2.1)

where ω1 and ω2 are the price of a unit price. As shown in the equation above, in

one coalition S, total payoff function consists 3 parts - power loss between the micro

grids and the power loss by the micro-grid selling power to the macro station, and the

power loss caused by the micro grid buying power from micro station. The resistance

between micro-grids or micro-grid with macro station depends on the quality of wire

and the length of wire, thus the resistance between micro-grids is much smaller than

between micro-grid and macro-station. The value function for the micro grid coalition

game and we need to find the maximum of this function. While this work described the
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coalition formation problem but the algorithm to form coalition still not clearly developed.

In this project, we review the work in paper [3] and implement algorithm to form coalition

group of micro-grids and research how it can help to reduce the power loss. Then we compared

the results by experiments and provided the data structures for proposed algorithm.



3
Algorithm to form coalition group

Problem In game theory, each micro grid acts as player that can make different choices

about which coalitions to join and which micro-grid or macro station to buy power from. And

the problem is that how to get the best decision for each player or micro grid. One way to

fulfill the power demand is to buy power directly from macro station but in this arrangement

there is a lot of power loss. Better is to find a cooperative strategy whereby micro-grids form

coalition which allows them to trade power without going through the macro station. For

example, let us look at the formation with total of 9 micro-grids. The coalitions are formed

based on their location, power demand or surplus to achieve the goal of minimizing the power

loss. In coalition 1, micro-grid will generate surplus power of 250 kWh while micro-grid 1

has power demand of 70 kWh. After the power need of micro-grid 1 is satisfied, the surplus

power of 180 kWh will be sold to macro-station. In the coalition 2, micro-grid 2 can supply

about 80 kWh and the total demand is 80 kWh. Thus, total demand can be satisfied in the

coalition.

The problem now is to find the best way to form coalitions so that all micro-grids fulfill their
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Figure 3.1: Micro-grid coalition form example

power demands, whilst as a whole there is as little power loss as possible. In a coalition, one

micro grid could be in surplus that allows the surplus to be sold direct to another micro-grids

in the same coalition. Let denote for micro-grid i, the total supply is Si and the demand is Di ,

the coalition C . We can calculate utilities of micro-grids and for coalitions. Utility function

for micro-grids:

Ui =
1

1+ |Si − Di|
(3.1)

Utility function for coalitions. The aggregated energy status of a coalition - EC is defined

by following:

EC = |
∑

i∈C

�

Di − Si

�

(3.2)

The utility function for a coalition can calculated by following :

UC =
1

1+ EC
(3.3)

In proposed game, the characteristic function of coalition C is defined by:

ϑ (C ) =
∑

i∈C

Ui − UC (3.4)

We then try to show the convexity of the game. The meaning of that convexity is to show no

micro-grid can increase its payoff by switching coalitions unless one of the other microgrids

decreases the payoff and thus decrease the payoff of the coalition where they belong. The

characteristic function can rewrite as follow:

ϑ(C ) =
∑

i∈C

Ui − UC =
∑

i∈C

[
1

1+ |Ei|
]−

1
1+ |

∑

i∈C Ei|
(3.5)

Then we can reformulate as to find maximum of following function:

V (C ) =
∑

i∈C

|Ei| − |
∑

i∈C

Ei| (3.6)
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S and T are the two subsets of N . We can rewrite as follow:

V (S)+V (T ) = (
∑

i∈S

)|Ei|−|
∑

i∈S

Ei|)+(
∑

i∈T

|Ei|−|
∑

i∈T

Ei|) = (
∑

i∈S

|Ei|+(
∑

i∈T

|Ei|)−(|
∑

i∈S

Ei|+|
∑

i∈T

Ei|)

≤ (
∑

i∈S∪T |Ei|+ (
∑

i∈S∩T |Ei|) − (|
∑

i∈S∪T Ei|+ |
∑

i∈S∩T Ei|)

≤ (
∑

i∈S∪T )|Ei| − |
∑

i∈S∪T Ei|) + (
∑

i∈S∩T |Ei| − |
∑

i∈S∩T Ei|)

≤ V (S ∪ T ) + V (S ∩ T )

⇒ V (S ∪ T ) ≥ V (S) + V (T ) − V (S ∩ T )

(3.7)

Therefore, V is convex. A micro-grid can get highest payoff when energy exchange is

maximized. The Optimal Coalition is state that every micro-grid is stay with the current

coalition that mean no micro-grid can increase its utility by joining to other coalitions.

We redo the algorithm with more clearly data structure and test with different number of

micro-grids and thresholds. While in the paper [3], they mentioned about the power loss but

did not take into account the power loss without clear explanation. The power loss ignored

in the their paper is between micro-grids itself because of short distance but the power loss

reduction is that instead of buying energy from macro-station which has long distance to

micro-grids and the users , the micro-grid can buy and sell between each other in one coalition

to avoid long distance transfer power loss.

3.1 Cost to the consumers

Traditionally, a micro-grid operates in the grid connected mode where the demand is fulfilled

by buying energy between that microgrid and macrostation. However , micro-grid prefers

to sell or purchase energy from another micro-grid between formed coalition than to buy

from macro station because power loss caused by the energy transmission and transformers

. Microgrids inside the coaltion can transfer necessary energy to minimize losses. Let

denote, ω1 is the selling/purchasing price between micro-grid, ω2 is the purchasing price
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from macrostation. For example ω1 = 0.1,ω2 = 0.2 A micro-grid always try to buy from

other micro-grids to get benefit as 0.2− 0.1 = 0.1 and a micro-grid will make profit if sell to

macrostation 0.2− 0.1 = 0.1. Without coalitions, the cost to the consumer is ω1 ∗ S. The

consequence of power loss to the consumer is that they need to buy more power to satisfy the

demands. Thus the power loss is proportional to the amount saved.

When there is no power loss at all, S matches D and so the cost is ω1 ∗ D so ω1 ∗ |S − D|

is the extra that the consumer pays. Therefore, if micro-grids form the coaltion the power

losses will be significantly reduce and the cost to the customer is reduced too.
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3.2 Algorithms to form coalition

Hierarchical priority based Coalition (HR Coalition) We describe how to model the

formation of coalitions and how to distribute energy one the coalitions had been formed. We

model a micro-grid as a point on a map; each micro-grid has an Energy Status which means

the power demand or surplus.A coalition is a set of of micro-grids. Each coalition has an

energy status which is given by sum of power surplus over power demand of all micro-grids

inside the coalition.

The first phase of the algorithm is to group the mirogrids in such a way as to minimise

the energy loss. We follow approach [3] for this, given that we want to maximise the convex

function V.This is done by grouping together micro-grid and then transfer energy between

them.

HR Coalition form optimal micro-grid coalitions and analyze the characteristics through

the eyes of coalitional game theory. HR coalition formation scheme pairs up two high priority

coalitions( highest aggregated load and highest aggregated supplier), if they are located within

certain distance from each other.[3]. We develop the following data structures to implement

the algorithms.

/ / Data s t r u c t u r e s

c l a s s micro−g r i d {

Coo r d i n a t e (X,Y ) ; / / p o s i t i o n o f micro−g r i d

double Ene r g yS t a t u s ; / / can be s u r p l u s or need

}

c l a s s c o a l i t i o nG r o u p {

double e n e r g y S t a t u s ;

f u n c t i o n addmicro−g r i d ( ) ;

f u n c t i o n removemicro−g r i d ( ) ;

f u n c t i o n c a l c u l a t e E n e r g y S t a t u s ( ) ;

/ / method t o c a l c u l a t e t h e energy s t a t u s a c o a l i t i o n

f u n c t i o n g e t C e n t e r O f c o a l i t i o n ( ) ;

/ / c a l c u l a t e t h e c e n t r o i d o f a c o a l i t i o n

}
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c l a s s sma r tG r i d {

mac r oS t a t i o n (X,Y ) ; / / p o s i t i o n o f m a c r o s t a t i o n

c o n n e c t i v i t yM a t r i x [ ] [ ] ; / / c o n n e c t i v i t y m a t r i x

double r e s i s t a n c eV a l u e ; / / r e s i s t a n c e va l u e o f w i re

}

The first algorithm to form the coalition, a micro-grid l g tries to find the nearest pg which

located in the distance threshold d from l g and the connectivity between l g and pg exist.

Data: Input: Information of microgrids - Location, energy status G, connection matrix,

where conn(i,j) = 1 if there is a physical connection between i and j. Based on

location we can estimate the distance between i and j. Distance threshold - d

Result: Output: Set of coalitions.

forall <set Ci = i>;

Find the centroids of Cis;

change = True;;

while change do

Set CPG = Group of Cis who can provide energy;

Set CLG = Group of Cis who need energy;

Sort CPG in descending order of energy supply amount;

Set CLG in descending order of energy demand amount;

for Cl in CLG do
Find the coalition in CPG whose central is located within the distance threshold

d;

Cl = Cl ∪ Cp;;

Remove Cp from CPG;

update energy status of Cl ;

update centroid of Cl ;

change = False;

end

end

Algorithm 1: Algorithm 1 Hierarchical priority based coalition formation



3.2 Algorithms to form coalition 17

Algorithm 2 is used to manage the proper distribution of energy among the microgrids

after coalition groups formed.

Data: Input : micro-grid Coalition result from algorithm 1, connection matrix conn(i,j),

distance threshold d

Result: Output: Energy transfer matrix between i and j.

Set PG = Group of energy provider in coalition C;

Set LG = Group of energy need in coalition C;

Sort LG in descending order of energy demand;

for each l g ∪ LG do do

while lg.energy > 0 do

pg = find the nearest available micro-grid in PG from lg;

pg is not found then ET(0,lg) = lg.energy;

t = min(pg.energy,|lg.energy|);

lg.energy = lg.energy - t;

pg.energy = pg.energy - t;

ET(pg,lg) = t;

available(pg,lg) = False;

end

end
Algorithm 2: Energy management within a coalition
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4
Experimental results

Our aim in this section is to reproduce the experiments in paper [3] and to re-evaluate the

results.

In [3] the result was that there was up to 70-80 percents reduction in power loss using the

algorithms explained above.

In summary, we were unable to reproduce their results, but we did find that there could be

some relationship between the parameters used in the simulation and the degree of power loss.

This suggests that the claimed reduction in power loss is not generally observed, but only in

scenarios where the parameters are close to those used in the simulation experiment reported

in [3].

We randomly put numbers(10 to 100) of micro-grids within of 5 square km, the distance

threshold is 2.5, 5 and 10 km and the power requirement is randomly generated. The distance

between micro-grids are randomly generated based on the location of micro-grids. The power

losses are both from transformer high/low voltage and from distance between micro-grids and

macro-station, the power loss occurs in the transformer device are now about 5 percents, thus
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the most loss when power is travel via line. The more coalitions are formed can make the

power loss reduce by shortening transmission distance.

4.1 Power loss reduction

Power loss is loss to transfer energy E over the geographical distance between node i and node

j, between micro-grids of a coalition and between micro-grids and macro station.

loss(i, j) = I2R =
P (E)
Ψ

2

×α(i, j)

where P (E) is the power required to transfer energy, Ψ is carrying voltage of transmission

line, α is the resistance of the wire , d (i, j) is geographical line distance between i and j.
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We first explored how the power loss was affected by the formation of coalitions as show

in the figure 4.1.
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Figure 4.1: Average power loss with d = 1.5km

As the number of micro-grids grow, HR coalition algorithm increases power loss reduction.

The average percentage of reduction is about 7 percents.
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Figure 4.2: Average number of coalitions

As we can see from 4.2 , more coalitions are formed when the number of micro-grids is

increased.

As the 4.1 shows , when the distance threshold is increased, more micro-grids join a

coalition which means that there are fewer coalitions in total.
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Figure 4.3: Average number of coalitions with different thresholds
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Figure 4.4: Average power loss with d = 2.5km

As show in 4.4, the average percents of power loss reduction is about 10 percents if we

use HR algorithm to form the coalition, also the reduction will see clearly if there are many

more micro-grids in the distance threshold of 2.5km. We then change the parameter distance

threshold with d = 5km and d = 10 km to verify relation between distance thresholds and

number of formed coalitions as in figures 4.5, 4.6

Figure 4.5 shows that when we increase the distance threshold d = 5 and 10 km, the

number of formed coalitions reduced and this trend makes the reduction of power loss is

reduced.
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Figure 4.5: Average number of coalitions with d = 5km
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Figure 4.6: Average number of coalitions with d = 10

Table 4.1 show that the power loss occur when micro-grids buy from macro-station is

more than 2 times between power loss between micro-grids in one coalition.
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Figure 4.7: Power loss reduction percentage

Table 4.1: Average power loss with d = 2.5

Number of micro-grids Number of coalition Between coaltions(kW)
From micro-grids

to macrostation(kW)

10 3 10 20

20 7 12 25

30 10 9 21

40 16 12 23

50 29 13 26

60 34 8 16

70 55 10 22

80 60 11 22

90 78 12 25

Above figures show the number of average number of coalitions, we can see the more

micro-grids the more coalitions are formed.As we can see from graph, when the number of

micro-grids more than 50 then the power loss is significantly reduced with coalitions ( about

10 percents).

These figures shows the average power loss reduced with HR coalition scheme for different

thresholds and number of micro-grids. As the micro-grids increased, the power loss reduction

is also increased.
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Figure shows when the distance threshold is increased, the number of coalitions formed

tend to be reduced and this trend lead to power loss reduction declined. From figure 8, we can

see the power loss reduction depends on the number of coalition micro-grids are formed and

the number of micro-grids in the areas. The more micro-grids and more coalition groups are

formed the more power loss reduction.

4.2 Relation between grid size and threshold

Another factor affect to power loss reduction is the grid size( the distance between micro-grids).

When we change the grid size in experiments to recheck the relation between power loss and

grid size with different threshold d = 1.5km and d = 2.5 km.
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Figure 4.8: Power loss reduction percentage with d = 1.5
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Figure 4.9: Power loss reduction percentage with d = 2.5 km
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Figure 4.10: Power loss reduction percentage with d = 5 km

We then compare the power loss reduction percentages with different distance thresholds

as shown in figure 4.10. When the number of micro-grid is more than 90 then the distance

threshold will not effect to the percentages of power loss reduction when we used HR

algorithms.
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Figure 4.8, 4.9 and 4.10 show that when the grid size is longer, there is a radical

improvement in the power saved. So we can conclude that the distance between micro-grid is

important factor when coalition groups are formed and power loss are significantly reduced

with longer distance.

4.3 Summarizing section

While the proposed algorithms are clear but the experiments were not clear described in the

paper [3], there are problems with their results part as follow:

1. The power loss reduction in the paper significant higher than in this thesis. We were

unable to reproduce the results in the paper. The power loss after coalition forming also

depends on the distance threshold and grid size between micro-grids.

2. When the grid size is changed, the power loss reduction is effected. When the distance

threshold is small and the grid size is close to threshold the power loss is significantly

increased.
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If cats looked like frogs we’d re-

alize what nasty, cruel little bas-

tards they are. Style. That’s what

people remember.

Terry Pratchett

5
Conclusion

Cooperative game theory among smart grid is the new way of implementation. Researchers

have already applied cooperative game algorithms. However, mentioned algorithms have not

verified for implementing Coalition group to reduce power loss and pricing. In this thesis, we

implemented HR coalition form algorithm and verified HR algorithm with power loss.

We also verified the results by changing the distance thresholds and the grid size. Coalition

formation is not only effective way to reduce energy burden from macro-stations,but also help

to reduce the power loss while transferring energy via long distance. However, for the small

number of micro-grids in the distribution system, the percentages of power loss reduction is

not significant in compare with the power loss reduction in the bigger distribution systems. We

also found shortcomings of algorithm as they did not provide the problem of inter-connection

between micro-grid in one coalition.

The algorithms studied in [] can be used as a basic to develop more advance cooperative

forming. There are also future opportunities for extending the work in [3] as following:

1. We can continue develop the payoff function not only for power loss, but also the prices
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during energy trade and communication protocols between micro-grids.

2. We can propose a practical implementation that can be used to enable cooperative

energy exchange effectively using game theory.

3. We can implement at different algorithms to implement load balancing in smart grids

during pick and off-pick time.
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An Appendix

A.1 Appendix A: Coalition group class

package smar tg r id_demo ;

import j a v a . awt . P o i n t ;

import j a v a . awt . Polygon ;

import j a v a . u t i l . HashSet ;

import j a v a . u t i l . S e t ;

pub l i c c l a s s c o a l t i o nG r oup {

/∗∗

∗

∗/

p r i v a t e f i n a l sma r tG r i d c o a l i t i o nG r o u p ;
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pub l i c c o a l t i o nG r oup ( sma r tG r i d sma r tG r i d ) {

c o a l i t i o nG r o u p = sma r tG r i d ;

}

Set <microGr id > mgs = new HashSet <microGr id > ( ) ;

pub l i c double d i s t a n c eM i c r o g r i d ( P o i n t X, P o i n t Y) {

double d i s = Math . s q r t ( (X. x − Y. x ) ∗ (X. x − Y. x ) + (X. y − Y. y )

∗ (X. y − Y. y ) ) ;

re turn d i s ;

}

double e n e r g y S t a t u s ;

pub l i c double g e t E n e r g yS t a t u s ( ) {

re turn e n e r g y S t a t u s ;

}

pub l i c vo id addMicroGr id ( mic roGr id mg) {

t h i s . mgs . add (mg ) ;

}

pub l i c vo id removeMicroGrid ( mic roGr id mg) {

t h i s . mgs . remove (mg ) ;

}

pub l i c Po i n t g e t C e n t r o i d ( ) {

Polygon polygon = new Polygon ( ) ;

mgs . f o rEach (mg −> {
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po lygon . a ddPo i n t (mg . c o o r d i n a t e . x , mg . c o o r d i n a t e . y ) ;

} ) ;

re turn t h i s . po lygonCente rOfMass ( po lygon ) ;

} ;

pub l i c double PolygonArea ( P o i n t [ ] polygon , i n t N) {

i n t i , j ;

double a r e a = 0 ;

f o r ( i = 0 ; i < N; i ++) {

j = ( i + 1 ) % N;

a r e a += polygon [ i ] . x ∗ po lygon [ j ] . y ;

a r e a −= polygon [ i ] . y ∗ po lygon [ j ] . x ;

}

a r e a /= 2 . 0 ;

re turn ( Math . abs ( a r e a ) ) ;

}

pub l i c Po i n t po lygonCente rOfMass ( Polygon pg ) {

i f ( pg == n u l l )

re turn n u l l ;

i n t N = pg . n p o i n t s ;

P o i n t [ ] po lygon = new Po i n t [N ] ;

f o r ( i n t q = 0 ; q < N; q++)

po lygon [ q ] = new Po i n t ( pg . x p o i n t s [ q ] , pg . y p o i n t s [ q ] ) ;
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double cx = 0 , cy = 0 ;

double A = PolygonArea ( polygon , N ) ;

i n t i , j ;

double f a c t o r = 0 ;

f o r ( i = 0 ; i < N; i ++) {

j = ( i + 1 ) % N;

f a c t o r = ( po lygon [ i ] . x ∗ polygon [ j ] . y − polygon [ j ] . x

∗ po lygon [ i ] . y ) ;

cx += ( po lygon [ i ] . x + polygon [ j ] . x ) ∗ f a c t o r ;

cy += ( po lygon [ i ] . y + po lygon [ j ] . y ) ∗ f a c t o r ;

}

f a c t o r = 1 . 0 / ( 6 . 0 ∗ A) ;

cx ∗= f a c t o r ;

cy ∗= f a c t o r ;

re turn new Po i n t ( ( i n t ) Math . abs ( Math . round ( cx ) ) ,

( i n t ) Math . abs ( Math . round ( cy ) ) ) ;

}

pub l i c vo id c a l c u l a t e E n e r g y S t a t u s ( ) {

t h i s . e n e r g y S t a t u s = 0 ;

t h i s . mgs . f o rEach ( p −> {

t h i s . e n e r g y S t a t u s += p . g e t E n e r g yS t a t u s ( ) ;

} ) ;

}

}

A.2 Appendix B: Micro-grid class

package smar tg r id_demo ;

import j a v a . awt . P o i n t ;
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pub l i c c l a s s mic roGr id {

/∗∗

∗

∗/

p r i v a t e f i n a l sma r tG r i d mic roGr id ;

pub l i c mic roGr id ( sma r tG r i d smar tGr id , P o i n t Cor , double ene r ) {

mic roGr id = sma r tG r i d ;

c o o r d i n a t e = Cor ;

e n e r g y S t a t u s = ene r ;

}

P o i n t c o o r d i n a t e ;

double e n e r g y S t a t u s ;

pub l i c Po i n t g e tC o o r d i n a t e ( ) {

re turn c o o r d i n a t e ;

}

pub l i c vo id s e t C o o r d i n a t e ( P o i n t c o o r d i n a t e ) {

t h i s . c o o r d i n a t e = c o o r d i n a t e ;

}

pub l i c double g e t E n e r g yS t a t u s ( ) {

re turn e n e r g y S t a t u s ;

}

pub l i c vo id s e t E n e r g y S t a t u s ( double e n e r g y S t a t u s ) {

t h i s . e n e r g y S t a t u s = e n e r g y S t a t u s ;

}
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}

A.3 Appendix C: smartGrid class

package smar tg r id_demo ;

import j a v a . awt . L i s t ;

import j a v a . u t i l . A r r a yL i s t ;

import j a v a . u t i l . C o l l e c t i o n ;

import j a v a . u t i l . Compara tor ;

import j a v a . u t i l . HashMap ;

import j a v a . u t i l . HashSet ;

import j a v a . u t i l .Map ;

import j a v a . u t i l .Map . En t r y ;

import j a v a . u t i l . Random ;

import j a v a . u t i l . TreeMap ;

import j a v a . u t i l . T r e eSe t ;

import j a v a . u t i l . c o n c u r r e n t . ThreadLocalRandom ;

import j a v a . u t i l . f u n c t i o n . ToDoubleFunc t ion ;

import j a v a . awt . P o i n t ;

import j a v ax . swing . t e x t . h tml . HTMLDocument . I t e r a t o r ;

c l a s s ValueCompara to r implements Compara tor {

Map map ;

pub l i c ValueCompara to r (Map map ) {

t h i s . map = map ;

}

pub l i c i n t compare ( Ob j e c t keyA , Ob j e c t keyB ) {
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Comparable valueA = ( Comparable ) map . g e t ( keyA ) ;

Comparable va lueB = ( Comparable ) map . g e t ( keyB ) ;

re turn valueB . compareTo ( valueA ) ;

}

}

c l a s s sma r tG r i d {

pub l i c s t a t i c Map so r tByVa lue (Map unsor tedMap ) {

Map sor tedMap = new TreeMap (new ValueCompara to r ( unsor tedMap ) ) ;

sor tedMap . p u tA l l ( unsor tedMap ) ;

re turn sor tedMap ;

}

pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {

i n t [ ] [ ] conn = new i n t [ 1 0 ] [ 1 0 ] ;

Random rand = new Random ( ) ;

f o r ( i n t i = 1 ; i < 10 ; i ++) {

f o r ( i n t j = 1 ; j < 10 ; j ++) {

conn [ i ] [ j ] = r and . n e x t I n t ( 2 ) ;

}

}

double min = 2 ; / / min max o f d i s t a n c e

double max = 10 ;

double [ ] [ ] d i s t = new double [ 1 0 ] [ 1 0 ] ;

mic roGr id [ ] mg = new mic roGr id [ 1 0 ] ;

/ / doub l e [ ] energy = new doub le [ 1 0 ] ; / / ene rgy o f m i c r og r i d

f o r ( i n t i = 1 ; i < 10 ; i ++) {
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double ene rgy = ThreadLocalRandom . c u r r e n t ( ) . nex tDoub le (−100 , 1 0 0 ) ;

/ / say

/ / i f

/ / n e g a t i v e

/ / t h en

/ / need

/ / ene rgy

double x = ThreadLocalRandom . c u r r e n t ( ) . nex tDoub le ( 1 , 1 0 ) ;

double y = ThreadLocalRandom . c u r r e n t ( ) . nex tDoub le ( 1 , 1 0 ) ;

P o i n t p = new Po i n t ( ) ;

p . s e t L o c a t i o n ( x , y ) ;

mg[ i ] . s e t C o o r d i n a t e ( p ) ;

}

f o r ( i n t i = 1 ; i < 10 ; i ++) {

f o r ( i n t j = 1 ; j < 10 ; j ++) {

i f ( i != j )

d i s t [ i ] [ j ] = ThreadLocalRandom . c u r r e n t ( ) . nex tDoub le ( min ,

max ) ; / / random

/ / d i s t a n c e

}

}

double d = 2 . 5 ; / / d i s t a n c e t h r e s o l d

HashSet < coa l t i onGroup > C = n u l l ;

f o r ( i n t i = 1 ; i < 10 ; i ++) {

c o a l t i o nG r oup i n i t C o a l t i o n = new c o a l t i o nG r oup ( n u l l ) ;

i n i t C o a l t i o n . addMicroGr id (mg[ i ] ) ;

/ / C . add ( i n i t C o a l t i o n ) ;

}
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HashSet < coa l t i onGroup > CPG = n u l l ;

HashSet < coa l t i onGroup > CLG = n u l l ;

/∗

∗ HashMap<I n t e g e r , Double> CPG = new HashMap<I n t e g e r , Double > ( ) ; / /

∗ p r o v i d e / / ene rgy HashMap<I n t e g e r , Double> CLG = new HashMap<I n t e g e r ,

∗ Double > ( ) ; / / r e q u i r e / / ene rgy

∗/

boolean change = t rue ;

whi le ( change ) {

CPG . c l e a r ( ) ;

CLG. c l e a r ( ) ;

C . f o rEach ( e l emen t −> {

i f ( e l emen t . g e t E n e r g yS t a t u s ( ) > 0 )

CPG . add ( e l emen t ) ;

e l s e

CLG. add ( e l emen t ) ;

} ) ;

T reeSe t < coa l t i onGroup > OPG = new TreeSe t < coa l t i onGroup > ( ) ;

OPG. addAl l (CPG ) ; / / how t o s o r t w i t h energy needed ???

TreeSe t < coa l t i onGroup > OLG = new TreeSe t < coa l t i onGroup > ( ) ;

OLG. addAl l (CLG) ;

change = f a l s e ;

f o r ( c o a l t i o nG r oup elem : OLG) {

boolean found = t rue ;

c o a l t i o nG r oup Cp = n u l l ;

whi le ( found ) {

c o a l t i o nG r oup elem2 = OLG. i t e r a t o r ( ) . n ex t ( ) ;

i f ( elem . d i s t a n c eM i c r o g r i d ( elem . g e t C e n t r o i d ( ) ,

elem2 . g e t C e n t r o i d ( ) ) < d ) {
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found = f a l s e ;

Cp = elem2 ;

break ;

}

;

}

;

change = t rue ;

f o r ( mic roGr id microG : Cp . mgs ) {

elem . addMicroGr id ( microG ) ;

}

OPG. remove (Cp ) ;

}

}

/ / show r e s u l t s he re

;

}

}
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