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Abstract 

Current knowledge on threatened species’ distributions is essential for effective 

conservation decision-making. Species distribution models (SDM) are widely used to map 

species geographic ranges and identify new areas of suitable habitat. This paper uses a 

SDM to identify regions in NSW that may have suitable habitat for the long-footed potoroo 

(Potorous longipes) and guide the selection of field survey sites. In NSW, there are grave 

doubts surrounding the persistence of this critically endangered species and identification 

of occupied sites is a high priority for its conservation. The SDM, Maxent, had strong 

predictive performance (AUC: 0.94 to 0.95) and enabled identification of new areas of 

climatically suitable habitat, beyond areas of known occurrence in NSW and prior survey 

locations. Importantly, ground-validation of the SDM output was undertaken and showed 

that projected habitat suitability values were: a) significantly higher at independent presence 

locations than absence locations (H=55.61, DF=1, P=0.000); and b) correlated with six out 

of ten microhabitat variables. However, baited camera trapping, undertaken at 58 sites in 

NSW, did not detect any long-footed potoroos. Refinement of binary regression models 

found that the combination of connectivity, i.e. larger, connected areas of climatically 

suitable habitat (χ2=5.51, P=0.019), understorey cover (χ2=6.86, P=0.009) and soil moisture 

(χ2=7.6, P=0.006) best predicted this species presence. If the long-footed potoroo remains 

extant in NSW, it is extremely rare. The findings indicate that, in addition to climatic factors, 

microhabitat features and connectivity are important predictors of presence of the long-

footed potoroo and should be incorporated into any future distribution modelling and survey 

site selection.     
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INTRODUCTION 

 

Naturalists have long been fascinated by species’ distribution across space and time, and 

understanding the relationship between distribution and the environment. An early example 

is Grinnell (1904) describing the distribution of morphological variations in the Chestnut-5 

backed chickadee (Parus rufescens) in relation to an environmental gradient: atmospheric 

humidity. Accurate information regarding species’ distributions is critical to numerous 

conservation and land management decisions. Many studies on species distributions have 

been undertaken to deliver conservation outcomes across multiple spatial scales (Guillera-

Arroita, Lahoz-Monfort, Elith et al., 2015, Guisan and Thuiller, 2005). For instance, 10 

knowledge regarding species’ distributions has aided biodiversity hotspot identification 

(Myers, 1988); guided protected area identification and reserve design decisions 

(Kirkpatrick, 1983, Loyn, McNabb, Volodina et al., 2001, Pearce, Ferrier and Scotts, 2001) 

and enabled identification of biological invasion risks (Thuiller, Richardson, Pysek et al., 

2005). Furthermore, this information is critical for the conservation of threatened species. 15 

Extinction risk is often associated with range size, whereby significant reductions in the size 

of a species’ distribution is a key element in determining its conservation status and required 

management actions (Mace, Collar, Gaston et al., 2008, Purvis, Gittleman, Cowlishaw et 

al., 2000). 

A key challenge with establishing a species’ distribution is identifying and understanding its 20 

geographical range limits (Geber, 2011). Multiple factors can limit a species’ distribution, 

including habitat suitability (e.g. abiotic factors, resources, biotic interactions, disturbance 

and behaviour), history and geography of the species’ origin, dispersal opportunities and 

barriers and ecological and evolutionary dynamics  (Geber, 2011, Hoffmann and Blows, 

1994). The importance of the effect of climate in explaining species’ distributions has been 25 

recognised by early, largely qualitative, studies linking biological patterns to observed 

environmental gradients (Grinnell, 1904, Murray, 1866). For instance, global vegetation 

patterns have been explained by correlations with climate and other environmental variables 

(Salisbury, 1926, Woodward and Williams, 1987). Humboldt’s (1807) “Essay on the 

Geography of Plants” was one of the earliest papers on this topic. These early studies, 30 

confirming that organisms tend to occupy distinct zones, generated further questions 

regarding species’ associations and, ultimately, what determines a species’ range limits 

(Parmesan, Gaines, Gonzalez et al., 2005). 
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Descriptive approaches, such as comparative or correlative studies, can identify which 

environmental factors e.g. climate, resources or biotic interactions, are important in the 35 

determination of a species’ distribution (Hoffmann and Blows, 1994). For example, 

Leishman and Wild (2001) found that the distribution of lichen in the Antarctic was positively 

correlated with soil total nitrogen and phosphorus, suggesting nutrients may be important 

limiting factors.  In a comparative study of the distributions of three kangaroo species across 

Australia, Caughley, Short, Grigg et al. (1987) found that climate variables, such as mean 40 

annual temperature and mean annual precipitation, can characterise each species’ 

distribution. Manipulative experiments, such as those involving transplants can test whether 

a species can persist beyond its current range and may highlight important abiotic factors 

or biotic interactions that influence its distribution. Transplant studies can also aid 

investigation into whether absence from an area is due to dispersal limitations or limited 45 

adaptation (Geber, 2011, Sexton, McIntyre, Angert et al., 2009). For example, in a long-

running transplant experiment, Van der Veken, Rogister, Verheyen et al. (2007) found that 

plant performance was lower for transplanted plants than those in ‘origin’ populations, and 

that significant drivers of plant extinction were soil disturbance and forest management. 

Over the past two decades, however, the number of correlative studies has rapidly increased 50 

with the advent of computer-based species distribution models, emerging as essential tools 

for evaluating and defining species’ distributions (Guisan and Thuiller, 2005, Sexton et al., 

2009). 

 
Species Distribution Models 

Correlative species distribution models (SDMs) are statistical tools that combine 

observations of species occurrence/absence with environmental estimates to model the 65 

distribution of suitable habitat under past, current or future conditions (Booth, Nix, Busby et 

al., 2014, Elith and Leathwick, 2009, Monnet, Hardouin, Robert et al., 2015). These tools 

emerged from the parallel development of i) statistical methods (e.g. generalised linear 

regression models (GLMs)); ii) geographical datasets (e.g. data from digital elevation 

models (DEM), interpolation of climate parameters); and iii) geographical systems, chiefly 70 

the advent of Geographic Information Systems (GIS) (Elith and Leathwick, 2009).  

Computer-based predictive modelling of species distributions originated in the mid-1970s 

using simple geographic envelopes and convex hulls within GIS (Elith and Leathwick, 2009). 

One of the earliest SDMs developed was BIOCLIM, which predicts suitable conditions in a 

“bioclimatic envelope”, which consists of a rectilinear region in environmental space that 75 

corresponds to the range (or percentile range) of values of the bioclimatic variables at known 
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locations of the species’ occurrence (Booth et al., 2014, Nix, 1986). BIOCLIM has been used 

to predict distributions for a variety of Australian fauna, such as the Leadbeaters possum 

(Gymnobelideus leadbeateri) (Lindenmayer, Nix, McMahon et al., 1991), the mountain 

brushtail possum (Trichosurus caninus) (Fischer, Lindenmayer, Nix et al., 2001), the long-80 

footed potoroo (Claridge, 2002) and multiple Australian butterfly species (Beaumont and 

Hughes, 2002) and flora such as eucalypt species (Booth, Nix, Hutchinson et al., 1988, 

Lindenmayer, Mackey and Nix, 1996). 

Although still in use, these earlier models were succeeded in the early 1980s by the 

pioneering simulations of Ferrier (1984), who used GLMs based upon field observations to 85 

predict the distribution of the rufous scrub-bird (Atrichornis rufescens). There is now a 

proliferation of SDMs in use, including regression-based models (e.g. Generalized Linear 

Models (GLM), Generalised Additive Models (GAMs), Resource Selection Function (RSF)), 

Bayesian models and algorithmic modeling based on machine learning (e.g. Artificial Neural 

Networks, Classification And Regression Trees, Maximum Entropy (Maxent)) (Elith, 90 

Graham, Anderson et al., 2006, Fourcade, Engler, Rödder et al., 2014, Phillips, Anderson 

and Schapire, 2006).  

Interpretation of SDMs relies upon environmental niche theory, whereby a higher probability 

of species occupancy is expected to occur in geographic areas at the centre of a species’ 

environmental niche rather than at the edges (Bean, Prugh, Stafford et al., 2014, Guisan 95 

and Zimmermann, 2000). The concept of the “fundamental” (“Grinellian”) ecological niche 

was first defined by Hutchinson (1957) as an “n-dimensional hypervolume” which 

corresponds to an environmental state that permits a species to persist indefinitely.  

Hutchinson (1957) also noted, however, that a species will not typically utilise its entire 

fundamental niche, but rather a smaller area where it is competitively dominant: its “realised” 100 

niche. Pulliam (2000) identified two further possible niche states: i) a metapopulation 

‘source-sink’ concept whereby a species, through immigration processes, may occur in sink 

locations that by definition would not be suitable for the species’ persistence, and ii) 

dispersal limited, whereby a species may be absent from suitable habitat as they cannot 

reach it. Differentiating between these concepts is important as the data used in predictive 105 

SDMs can have implications depending upon which niche concept is assumed to underlie 

the model. Guisan and Thuiller (2005) highlighted that SDM studies frequently assume the 

quantification of the realised niche, often on the basis that the observed distributions are 

“already constrained by biotic interactions and limiting resources”. This assumption is 
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considered appropriate for static predictive models that use large datasets of field-derived 110 

observations (Guisan and Zimmermann, 2000). 

The type of species location data available is a key factor in model selection. In many 

instances, only occurrence (i.e. presence) data are readily available from online biodiversity 

atlases (e.g. Atlas of Living Australia (ALA)). In this instance, Maxent has become a widely 

used model, due to its superior predictive capacity compared to other presence-only models 115 

(Elith et al., 2006, Hernandez, Graham, Master et al., 2006). Elith et al. (2006) compared 16 

presence-only modelling methods, over 226 species, and found that novel methods, 

including Maxent, consistently outperformed more established methods, including 

BIOCLIM.  

Maxent 120 

Maxent is a machine learning technique based on the maximum entropy method for 

modelling habitat suitability with a species’ presence-only data (Phillips et al., 2006). The 

goal of Maxent is to estimate a distribution that agrees with what is known and avoids 

assumptions unsupported by the data (Pearson, 2008). Thus Maxent estimates a target 

probability distribution of maximum entropy (i.e. closest to uniform/most spread out), subject 125 

to a set of constraints (e.g. the mean of the estimated probability distribution of a covariate 

must equal the covariate’s mean value at presence location) (Phillips et al., 2006). Maxent 

is capable of modelling complex, non-linear relationships, as well as, incorporating both 

continuous and categorical environmental covariates (Elith, Phillips, Hastie et al., 2011, 

Merow, Smith and Silander, 2013, Phillips et al., 2006). Furthermore, Maxent is less 130 

sensitive to small sample sizes, overfitting can be reduced using L1-regularisation, and the 

output is continuous, allowing fine distinctions to be made between projected suitability of 

different areas (Elith et al., 2006, Phillips et al., 2006, Wisz, Hijmans, Li et al., 2008). These 

elements are key differentiators from the BIOCLIM model (Booth et al., 2014). 

Species Distribution Models: Applications 135 

Species distribution models are a valuable tool for multiple scientific disciplines, including 

ecology, wildlife management, conservation biology and biogeography. These models have, 

and continue to be, widely used to identify factors influencing a species’ distribution 

(Hayward, de Tores, Dillon et al., 2007, Lindenmayer, Ritman, Cunningham et al., 1995). 

Nevertheless, since the uptake of SDMs in the 1970s/1980s there has been a subtle shift in 140 

their purpose: from seeking an understanding of factors delineating species’ distributions to 

predicting distributions (Elith and Leathwick, 2009). As such, they have become widely used 

to map potential geographic ranges, assess climate change impacts on species distributions 
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(Adams-Hosking, Grantham, Rhodes et al., 2011, Beaumont, Gallagher, Leishman et al., 

2014), identify gaps in protected areas (Catullo, Masi, Falcucci et al., 2008, Pearlstine, 145 

Smith, Brandt et al., 2002), predict the effects of human impacts (Seoane, Justribó, García 

et al., 2006, Yates, McNeill, Elith et al., 2010), and locate new populations (McCune, 2016, 

Mizsei, Uveges, Vagi et al., 2016). Hence, SDMs have become an essential tool, providing 

input for conservation planning, assessing risk and directing surveys (VanDerWal et al. 

2009b, Elith et al. 2011, Aizpurua et al. 2015).  150 

Guillera-Arroita et al. (2015) conducted a review of the use of SDMs over the period 2008 

to 2014, which revealed that the most common motivation for using SDMs is management 

of threatened species (16%), prediction of climate change impacts (13%), and exploring 

phylogenetic patterns (9%). These themes persist in recent peer-reviewed literature.  An 

updated review of journal articles in Web of Science, using the same topic search terms as 155 

Guillera-Arroita et al. (2015) (i.e. “species distribution model”; “ecological niche model” and 

“habitat model”) for the period 2014 to June 2017, produced 1,323 article results, a two-fold 

increase since the Guillera-Arroita et al. (2015) study. A random selection of 20 articles 

highlights the diversity of current SDM applications (Table 1).  

There are several reasons for the uptake and usefulness of SDMs. When information on a 160 

geographic distribution is biased or incomplete, field surveys to further assess species’ 

distributions can be challenging, requiring large amounts of human effort and 

financial/capital expenditure (Le Lay, Engler, Franc et al., 2010). SDMs can be used at the 

desktop to fill in these distribution gaps by extrapolating habitat specific information from 

one area to another to identify suitable areas for a species and infer a likelihood of presence 165 

under both current conditions and future climate scenarios (Beaumont et al. 2005, Fourcade 

et al. 2014).  

 

 

 170 
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Table 1 : Summary of Current SDM Uses 175 

SDM Uses Author  Model(s) 

Presence-Absence (PA); 

Presence Background 

(PB); Presence-Only 

(PO) 

Refugia identification  

 

a) Identified habitat refugia for the pink-

footed goose (Anser brachyrhynchus) 

b) Located climate refugia for koalas 

(Phascolarctos cinereus) 

c) Identified critical areas for protection and 

monitoring for the Orinoco crocodile 

(Crocodylus intermedius) 

d) Identified habitat and protected area 

needs of soft corals. 

 

 

 

 

a) Baveco, Bergjord, Bjerke 

et al. (2017) 

b) Briscoe, Kearney, Taylor et 

al. (2016) 

c) Balaguera-Reina, 

Espinosa-Blanco, Morales-

Betancourt et al. (2017) 

d) Poulos, Gallen, Davis et al. 

(2016) 

 

 

 

a) GLM (PA)  

 

b) Maxent (PB); 

NicheMapper 

c) Maxent (PB) 

 

 

d) Resource Selection 

Function (PO) 

Assessing human impacts  

 

a) Cetaceans (multiple species) – mapping 

distributions and fisheries overlap. 

b) Bird - Bachman's sparrow (Peucaea 

aestivalis) – identified restoration areas and 

interaction with urban growth impacts. 

 

 

 

 

a) Breen, Brown, Reid et al. 

(2016) 

b) Pickens, Marcus, 

Carpenter et al. (2017) 

 

 

a) Maxent (PB) 

 

b) Maxent (PB) 

 

 

 

Threatened species conservation 

 

a) Blanding's turtle (Emydoidea blandingii) 

 

b) Swift parrot (Lathamus discolour) 

 

c) Pine marten (Martes martes) 

 

 

 

a)Stryszowska, Johnson, 

Mendoza et al. (2016) 

b) Webb, Wotherspoon, 

Stojanovic et al. (2014) 

c) O’Mahony (2017) 

 

 

 

a) Maxent (PB); GLM (PA) 

 

b) GAM (PA)  

 

c) Maxent (PB) 

 

Predicting climate change impacts 

a) Fish (two species) 

 

b) Eucalyptus (16 species) 

 

 

c) Australian Odonata (various spp.) 

 

d) Western ringtail possum (Pseudocheirus 

occidentals) 

 

 

a) Hansen, Read, Hansen et 

al. (2017) 

b) Hamer, Veneklaas, Poot et 

al. (2015) 

 

c) Bush, Nipperess, Duursma 

et al. (2014) 

d) Molloy, Davis and Van 

Etten (2014) 

 

a) Random Forests (PA) 

 

b) Maxent (PB) 

 

 

c) Maxent (PB) 

 

d) Maxent (PB) 

 

Invasive species management 

 

a) Invasive plant distributions (Bitou Bush, 

Chrysanthemoides monilifera) 

b) Mapping distributions of invasive wild 

pigs (Sus scrofa) in Northern Australia 

c) Predicting the range and abundance of 

fallow deer (Dama dama) in Tasmania 

 

 

 

a) Beaumont et al. (2014) 

 

b) Froese, Smith, Durr et al. 

(2017) 

c) Potts, Beeton, Bowman et 

al. (2015) 

 

 

a) Maxent (PB) 

 

b) Bayesian network 

model (PB) 

c) Maxent (PB) 
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SDM Uses Author  Model(s) 

Presence-Absence (PA); 

Presence Background 

(PB); Presence-Only 

(PO) 

Investigation of phylogeographic 

patterns 

 

a) Northern red-backed vole, Myodes rutilus 

 

b) Cactus (seven species in the 

Pilosocereus aurisetus complex) 

 

 

 

 

a) Kohli, Fedorov, Waltari et 

al. (2015) 

b) Bonatelli, Perez, Peterson 

et al. (2014) 

 

 

 

a) Maxent (PB) 

 

b) Maxent (PB) 

Mapping distribution of disease vectors 

 

a) Yellow fever mosquito (Aedes aegypti) 

and tiger mosquito (Aedes albopictus) (for 

Zika virus) 

b) Anopheles darlingi (for Malaria in French 

Guinea) 

 

 

a) Santos and Meneses 

(2017) 

 

b) Moua, Roux, Girod et al. 

(2017) 

 

 

a) Maxent (PB) 

 

 

b) Maxent (PB) 

 

 

 

Species Distribution Models as a Guide to Field Surveys 

An important application of SDMs is predicting where species are likely to occur to facilitate 

surveys to monitor and study these species. Often knowing where to direct survey effort is 180 

hampered by paucity of data regarding species’ distributions, biology and ecology. SDMs 

provide a simple approach to mapping potentially suitable habitat to guide field surveys, and 

have been used in this manner for a variety of taxa, including marine invertebrates (Rooper, 

Sigler, Goddard et al., 2016), amphibians (Groff, Marks and Hayes, 2014), reptiles 

(Stratmann, Barrett and Floyd, 2016), birds (Walker, Hart and Griffin, 2003) and mammals 185 

(Lumsden, Nelson, Todd et al., 2013). This approach is appealing as it is likely to be very 

efficient. For instance, Guisan, Broennimann, Engler et al. (2006) found that using an SDM 

to guide field surveys may save up to 70% of the time spent in the field relative to a random 

sampling approach. 

Surveying for rare and endangered species is essential for monitoring populations and 190 

supporting positive conservation outcomes. Research has demonstrated that detection of 

rare species is greatly improved when surveys are guided by SDMs (Guisan et al., 2006, Le 

Lay et al., 2010).  Guisan et al. (2006) used a GAM to guide “model based” random-stratified 

sampling of a rare plant species (Eryngium alpinum) and successfully discovered seven new 

populations. McCune (2016) undertook forest surveys for eight rare plants guided by a 195 

Maxent SDM, which led to the discovery of new populations for four species, with no target 

species found in sites predicted as being “unsuitable”. Furthermore, five of the eight study 
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species had significantly higher relative abundance in areas predicted by Maxent to be 

suitable rather than unsuitable (McCune, 2016).  

Surveys directed by SDMs have been found to be efficient and equally, or more, effective 200 

at locating the target species than other approaches (e.g. random sampling, expert 

guidance) (Aizpurua, Cantú‐Salazar, San Martin et al., 2015, Guisan et al., 2006). For 

instance, Crall, Jarnevich, Panke et al. (2013) found that detection of three invasive plant 

species in western USA using Maxent output was significantly more successful than a non-

model based survey approach. Wang, Zachmann, Sesnie et al. (2014) also utilised Maxent 205 

output to identify high habitat suitability sites (i.e. 90th percentile) for invasive species: field 

surveys went on to locate the species at 70% of previously-unsampled sites. Guisan et al. 

(2006) compared a GAM model based survey approach to random sampling using an 

iterative, virtual simulation. This study found that the number of new presences was 

approximately four times higher when using the model approach as compared to simple 210 

random sampling (Guisan et al., 2006).  Similarly, Le Lay et al. (2010) compared GAM and 

ecological niche factor analysis (ENFA) SDMs for eight native plant species to a random 

sampling approach and found that for six out of eight target species, the model approach 

was significantly more efficient than random sampling for finding new populations.  

Surveys predicated upon a method of random site selection, however, are not the only 215 

alternative to model based site selection. For example, Aizpurua et al. (2015) compared 

surveys based on a SDM (Maxent) to surveys based on: i) a random sample approach, or 

ii) expert-opinion. Their study found 95 new shrike territories during ground validation 

surveys using Maxent compared to 72 with expert-based sampling and only 11 new 

territories using a random sampling strategy (Aizpurua et al., 2015). Furthermore, a GLM 220 

analysis confirmed that “sampling strategy” was the only significant factor explaining this 

variation in new territories found (Aizpurua et al., 2015). These studies highlight the 

important role that SDMs can play in guiding field surveys, whilst also recognising that the 

best outcomes are achieved when there is expert input into modelling (Aizpurua et al., 2015). 

The positive outcomes from model based surveys are not universal. Some studies found 225 

new populations of some, but not all, target species (McCune, 2016), or the overestimation 

of suitable habitat (Stratmann et al., 2016). Ultimately, however, there is sufficient evidence 

that the use of SDMs to guide field surveys can avoid inefficiencies of random, haphazard 

searches, even in fragmented landscapes (Aizpurua et al., 2015, McCune, 2016, Stratmann 

et al., 2016). 230 
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Ground validation of species distribution models  

Model output is considered a useful index of habitat quality, implicitly assuming that locations 

with higher predicted habitat suitability have higher quality habitat, resulting in greater 

species abundance and probability of persistence (Bean et al., 2014). However, an SDM 

may correctly identify suitable habitat at a regional scale, yet fail to capture the fine-scale 235 

ecological requirements of a species or predict local variations in habitat suitability (Le Lay 

et al., 2010).  Studies evaluating the relationship between SDM output and habitat quality 

have predominantly focused upon abundance measures (see Weber, Stevens, Diniz‐Filho 

et al. (2016) for a comprehensive review). Recent studies have confirmed that Maxent’s 

predicted habitat suitability values are positively related to the abundance of various 240 

species, e.g. 10 bird species and eight butterfly species in the UK (Oliver, Gillings, Girardello 

et al., 2012); 84% of 69 rainforest vertebrate species in the wet tropics of Australia 

(VanDerWal, Shoo, Johnson et al., 2009b); and 19 of 21 bird species on La Palma Island 

(Spain) (Carrascal, Aragón, Palomino et al., 2015).  

Other studies have evaluated this relationship using density (Torres, Virgos, Santos et al., 245 

2012) or proxy measures of habitat quality (Bean et al., 2014). For instance, Bean et al. 

(2014) compared Maxent predictions for the Giant Kangaroo Rat (Dipodomys ingens) with 

three proxy measures of habitat quality: survival, abundance and body condition, finding a 

positive correlation with abundance. In contrast, Giovannini, Seglie and Giacoma (2014), 

found a positive, significant, relationship between regions predicted to have high suitability 250 

for a European amphibian, Pelobates fuscus insubricus, and the species persistence. 

Overall, studies suggest that SDMs are effective at predicting habitat quality on the ground. 

However, research investigating the relationship between SDMs and finer scale habitat 

attributes remains limited (Bean et al., 2014, Gogol-Prokurat, 2011). 

The ability of an SDM to identify the appropriate fine-scale requirements may be of 255 

significance if microhabitat characteristics are an important factor limiting the species’ 

distribution (Claridge, 2002, Gogol-Prokurat, 2011). Many studies have highlighted the 

importance of microhabitat factors, such as vegetation cover, different plant species, ground 

cover and logs, for the abundance and distribution of a variety of small Australian mammals 

(Bennett, 1993, Graham, Blackwell and Hochuli, 2005, Pizzuto, Finlayson, Crowther et al., 260 

2007, Tulloch and Dickman, 2007, Vernes, 2003). For instance, Tulloch and Dickman (2007) 

investigated whether differences in local attributes (e.g. vegetation types, site fire history, 

floristics, vegetation structure) influenced the abundance and distribution of the eastern 

pygmy-possum (Cercartetus nanus). The capture rate of C. nanus was found to differ 
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between vegetation types and site fire history, with more individuals captured in “unburnt 265 

woodland” than other vegetation types (Tulloch and Dickman, 2007). There was also a 

strong association between C. nanus and certain plant species, including Banksia serrata, 

B. ericifolia and Xanthorrhoea species, which are thought to represent important food 

resources for this species (Tulloch and Dickman, 2007). Vernes (2003) undertook multiple 

regression modelling to investigate relationships between mammal capture success for 270 

several small mammals and 21 fine-scale habitat features. The highest northern bettong 

(Bettongia tropica) captures occurred in areas of Eucalyptus woodland with sparser ground 

cover density, a variety of tree sizes, fewer pig diggings, and low density of blady and 

molasses grass (Vernes, 2003). In contrast, northern brown bandicoot (Isoodon macrourus), 

captures were found to be higher in both Eucalyptus and Allocasuarina forest types with 275 

dense ground cover, higher density of blady and molasses grasses, and wetter gullies. The 

differences in microhabitat preferences of these two mammals provides an example of the 

high degree of microhabitat partitioning that can arise between species.  

The relationship between the distribution and abundance of numerous small ground-

dwelling mammals and microhabitat variables (e.g. canopy cover, shrub cover, ground 280 

vegetation cover, ground cover type, moisture, basal area of canopy tress and logged 

stumps and foliage nutrients) have been examined in detail by Catling, Burt and Forrester 

(2000) (north-eastern NSW) and Catling, Burt and Forrester (1998) (south-eastern NSW). 

In south-eastern NSW, GLMs were fit for three small mammal species, brown antechinus 

(Antechinus stuartii), bush rat (Rattus fuscipes) and dusky antechinus (Antechinus 285 

swainsonii). The microhabitat variables selected in the best performing model for each 

species were highly varied. For example, the abundance of the dusky antechinus was 

positively related to tree cover, groundcover, rainfall and foliage magnesium and potassium, 

whereas, the abundance of the brown antechinus was positively related to community type 

(i.e. Eucalyptus gummifera community), leaf litter depth and shrub cover.  290 

In contrast, Bennett (1993) was not able to find a strong relationship between capture rates 

of the long-nosed potoroo (Potorous tridactylus) and selected floristic and vegetation 

structural measures. Overall, however, studies highlight the important role played by 

microhabitat features in the local distribution of many small mammals.  

  295 
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A Case Study: The NSW distribution of the long-footed potoroo (Potorous longipes) 

Ecology of the long-footed potoroo 

The endangered long-footed potoroo (Potorous longipes) is a small marsupial rat kangaroo 

(1.5-2.3 kg) (Scotts and Seebeck 1989). Rare and elusive, it was first described as a 

separate species in 1980 (Seebeck and Johnston 1980). Since then, three small, disjunct, 300 

populations have been located: two in north-eastern Victoria (Department of Sustainability 

and Environment (DSE) 2009), and one in south-eastern NSW (National Parks and Wildlife 

Service (NPWS) 2002), with a combined population size estimated at 10,000 individuals 

(DSE 2009). However, the recently updated IUCN listing notes the total population size is 

less than a few thousand individuals (Woinarski and Burbidge, 2016).  Furthermore, at the 305 

East Gippsland Bellbird study site (Victoria), the population is likely in decline, with an 

estimated long-term average annual proportional population growth rate of 0.94 (Chick et 

al. 2006; DSE 2009; Lumsden et al. 2013).  

Knowledge of the biology and ecology of the long-footed potoroo comes from studies 

conducted in Victoria. The long-footed potoroo has been found across various ecological 310 

vegetation classes, altitudes (150 - 1370 m), topographic types (from creeks to ridge tops) 

and forest age classes (e.g. eight-year regrowth post-timber harvesting to old growth 

forests) (Scotts and Seeback 1989; Green et al. 1998, Chick et al. 2006; Elsner et al. 2012). 

Preferred habitat, however, appears to be areas with moist soils and sheltered aspects, 

likely due to the species’ relationship with fungal food sources (DSE 2009; NPWS 2002). 315 

Indeed, the long-footed potoroo is the most fungi-dependent mammal in Australia: on 

average, 91% of its diet comprises truffle-like fungi with the remainder consisting of 

invertebrates and plants (Green et al. 1999). As such, year-round fungal abundance and 

diversity is likely a key requirement for the species (NPWS 2002).  

The home range of the long-footed potoroo is estimated to be between 14-59.9ha (95% 320 

Minimum convex polygon (MCP)), with range widths between 527-1193m (average = 710m) 

(Green, Mitchell and Tennant, 1998). Green et al. (1998) radio-tracked 17 individuals at two 

separate locations in Victoria (Bellbird (11) and Riley (6)). Individuals in Riley were found to 

have significantly smaller home ranges (14.3-22.7 ha) than individuals in Bellbird (22.3-59.9 

ha), ascribed to relatively better habitat quality at Riley.  325 

Survey History 

All known records of long-footed potoroos in New South Wales occur within the boundaries 

of the South-East Forests National Park (SEFNP). In NSW, multiple, intensive surveys have 

been undertaken to evaluate the species’ distribution and patterns of occupancy. Hair tubing 
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and scat surveys in 1986 and 1989 confirmed the presence of the species within the Sheep 330 

Station Creek catchment of SEFNP (Claridge 2002; NPWS 2002). These records, along 

with existing records from Victoria, were used in BIOCLIM modelling, which formed the basis 

of extensive live-trap and hair tube surveys conducted between 1990-1995 (Figure 1). This 

effort yielded less than ten definitive records (Claridge 2002). The most recent survey 

undertaken in 2008/09 used scat searches, hair tubes and low-intensity camera traps and 335 

yielded no new findings (pers. comms. Joss Bentley, Office of Environment and Heritage 

(OEH), 14 July 2015). Furthermore, ongoing sand plot monitoring in Sheep Station Creek, 

NSW has yielded no results (pers. comms. Franz Peters, NPWS, 18 September 2014). In 

NSW, there has never been a live capture or direct observation (Claridge 2002; NPWS 

2002).  340 

 

 

Figure 1: Historical long-footed potoroo survey transects (red lines) as at 1997 (transect data courtesy of Dr. 
Joss Bentley, OEH) overlayed on the pre-survey Maxent SDM output whereby orange areas have relatively 
higher habitat suitability values and green areas have lower habitat suitability values. 345 
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In Victoria, however, surveys for the long-footed potoroo have been vastly different, with 

recent camera surveys being highly successful in detecting the long-footed potoroo. In 2011, 

a multi-year survey program commenced using baited camera traps at 13 sites spread 350 

across 10,000 hectares west of the Snowy River (pers. comm. Marc Perri, DELWP 21 

February 2017). Although no long-footed potoroos were detected in 2011, three sites yielded 

detections in 2012, increasing to 13 sites by 2016 (pers. comm. Marc Perri, DELWP 21 

February 2017). These represented the first records of the species in the Gippsland area 

west of the Snowy River (Lumsden et al., 2013). In a separate study, a SDM was utilised to 355 

guide a field survey for the species in Gippsland during April to August 2012. Camera 

surveys were undertaken across 170 sites that fell across four zones: i) the existing known 

range of long-footed potoroo, ii) a 5km buffer around the known range, iii) a 10km buffer 

around the known range and iv) east of the 10km buffer and north of the Princes Highway 

to the New South Wales border, an area predicted by the study’s SDM to have suitable 360 

habitat (Lumsden et al., 2013). Baited cameras were left in situ for three weeks. Long-footed 

potoroos were detected at 41 sites. While several were new records outside the known 

range, the majority (88%) were within the previously known range (Lumsden et al., 2013). 

Possible factors contributing to increased detection over time are the long-footed potoroo’s 

response to predator control (fox baiting) in these areas; a post-drought response to the 365 

2002-2010 drought; and extension of surveys into these new areas.  

Most recently, camera surveys undertaken between July and October 2016, as part of the 

Southern Ark Program (monitoring fox control) in Victoria, gave rise to 67 new long-footed 

potoroo camera detections across 35 locations (pers. comm. Andy Murray, DELWP, 1 

December 2016). On nearly all camera traps the long-footed potoroos provided several 370 

unambiguous photos on (usually) multiple visits, thus confirming presence (pers. comm. 

Andy Murray, DELWP, 1 December 2016).  

The unsuccessful resurveying efforts of regions in NSW where the species was originally 

detected, raise concerns about possible extirpation in NSW. Alternatively, these findings 

might suggest: 1) past survey methods do not reliably census the species, 2) the long-footed 375 

potoroo is present at extremely low density, or 3) sampling is occurring in the wrong 

locations. If the long-footed potoroo persists, however, its distribution and population size in 

NSW is unclear. These concerns are echoed in the recent decision to change the species’ 

conservation status in NSW to critically endangered (NSW Scientific Committee (NSW SC) 

2015). Further field surveys, covering both known and new locations, were proposed to 380 

establish the species’ persistence, distribution and population size in NSW (pers. comm. 
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Joss Bentley 14 August 2015). This information is critical to recovery planning for the 

species, and the effective management of its habitat. 

In NSW, predictions from the SDM BIOCLIM have previously been used to direct long-footed 

potoroo survey efforts (Claridge, 2002, Saxon and Noble, 1993). However, modelling has 385 

not been updated in NSW since Claridge (2002) (pers. comm. Joss Bentley, 14 July 2015). 

Since then, new occurrence data have become available from the Victorian surveys 

expanding the long-footed potoroo’s distribution and discovering populations in new habitat 

types, e.g. drier coastal (Cape Conran) and hinterland habitat types (Lumsden et al. 2013; 

Elsner et al. 2012; pers. comm. Joss Bentley, 8 July 2015). Furthermore, the availability of 390 

environmental data and SDM techniques has advanced considerably, e.g. Maxent (Phillips 

et al. 2006; Elith et al. 2006; Merow et al. 2013). 

The objective of the current study is to determine the long-footed potoroo’s current 

distribution and persistence in NSW using targeted camera surveys based upon an updated 

SDM. Further, in the absence of detailed data on abundance or other proxy measures of 395 

long-footed potoroo habitat quality in NSW, this study proposes to use field surveys and 

microhabitat assessments to ground-truth the SDM predictions. Thus, this paper seeks to 

answer the following questions: i) what is the current distribution of the long-footed potoroo 

in NSW? ii) does the SDM accurately predict the presence of the long-footed potoroo? iii) is 

the species’ preferred microhabitat characteristics encompassed by the SDM prediction of 400 

suitable habitat? and iv) to what extent do climate suitability and various microhabitat 

variables, in combination, predict the occurrence of the LFP? This information is critical to 

assess the likelihood that long-footed potoroo populations remain extant in NSW and, if so, 

aid with the development of recovery planning for the species and effective management of 

its habitat. This research will also contribute towards establishing the usefulness of SDMs 405 

in guiding future field surveys. 
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METHODOLOGY 

 

Species Distribution Modelling - Maxent 410 

To establish the long-footed potoroo’s current distribution in NSW, species distribution 

modelling was undertaken to identify areas of potentially suitable habitat. Maxent (Version 

3.3.3k) was used as it does not require absence data, which was unavailable pre-field 

survey, and due to its well-recognised high predictive performance (Elith et al., 2006).  

A description of the Maxent model and program, including the procedure for determining the 415 

logistic output for habitat suitability, has been outlined by various authors (Elith et al., 2011, 

Phillips et al., 2006, Phillips and Dudík, 2008). The program requires up to three key data 

inputs: locations of species occurrences, environmental variable grids and an optional 

sampling bias grid (Syfert, Smith and Coomes, 2013). In brief, several model iterations were 

run using Maxent’s default settings with two exceptions relating to the background file and 420 

feature selection (outlined below), to investigate the impact of different covariate 

combinations on model predictions.  

i) Locality data 

Locality data were obtained from occurrence records in the Atlas of Living Australia (ALA) 

database (http://www.ala.org.au). The initial 531 occurrence records were examined to 425 

identify definitive records of the species (i.e. locations where the animals were live-trapped, 

camera-trapped, had hair in hair-tubes; and/or had reliable expert observers). Spatially 

invalid, duplicate records or those that were poorly geocoded (i.e. coordinate uncertainty 

greater than 1000m) were deleted. As the long-footed potoroo was identified as a distinct 

species in 1980, records with dates stated as ‘first of the century’ (i.e. 1900) or before 1980 430 

and that were based upon human observation were deleted as they are potentially less 

reliable. There were 341 occurrence records remaining; 34 from NSW and 307 from Victoria. 

The coordinates of cleansed occurrence records were projected to the Australian Albers 

Equal Area (EPSG:3577) coordinate system and reduced to one record per grid cell (250m 

resolution) using custom code in the R statistical computing environment (v3.1.1) (R 435 

Development Core Team, 2015).  

ii) Background Grids 

By default, Maxent randomly samples 10,000 background locations from covariate layers, 

to which it compares the characteristics of occurrence data. This approach assumes that 

the occurrence records are also a random sample from the landscape (Elith et al., 2011). 440 
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However, sampling bias is likely to be present in the occurrence data because of the ad hoc 

nature of many of these collections. Accounting for sampling bias is critical to the accuracy 

of SDMs generated from presence-only datasets, and failure to correct for it can result in 

predictions that reflect sampling effort rather than true distributions (Phillips, Dudík, Elith et 

al., 2009, Syfert et al., 2013, VanDerWal, Shoo, Graham et al., 2009a).  Hence, to reduce 445 

sampling bias, we followed the approach outlined by Elith et al. (2011) and generated 

background data with similar biases to those in the presence data. Using R (v3.1.1) we 

generated a background file of all mammal records in ALA, that were recorded from the four 

IBRA (Interim Bioregionalisation of Australia) regions within which the long-footed potoroo 

occurs (Australian Alps, South East Coastal Plain, South East Corner, South Eastern 450 

Highlands) (Figure 2). 

 

Figure 2: Distribution of 10,000 randomly selected ALA mammal records that were used to generate a 
background file for use in Maxent (green circles), overlayed with the LFP occurrence records (red circles). 

 455 

iii) Environmental Variables (Covariates) 

A number of variables pertaining to climate, topography and vegetation, were considered 

for inclusion in the Maxent models. Climate data were obtained from the baseline data 

(1990-2009) generated as part of the NSW and ACT Regional Climate Modelling (NARCliM) 

project (Evans, Ji, Lee et al., 2014). These data represented a set of 35 bioclimatic variables 460 

generated by M. Hutchinson (ANU) using ANUCLIM version 6.1.1., at a spatial resolution of 
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~250 x 250m. (Supplementary Material - SM 1). The Geoscience Australia 9 second DEM 

was used as the basis for deriving slope and aspect variables. The spatial data were 

projected to Australian Albers Equal Area projection, with gridded raster data resampled by 

cubic spline to a resolution of 250 x 250m Slope and aspect (both measured in degrees) 465 

were calculated using the gdaldem function provided by the gdalUtils R package (Greenberg 

and Mattiuzzi, 2015). Aspect was then transformed to two separate variables expressing the 

northness and eastness. National Vegetation Information System (NVIS) vegetation 

categories were generated from NVIS Major Vegetation Subgroups (Version 4.1)  

(Department of Sustainability Environment Water Population and Communities, 2015) data 470 

that was originally at 100 x 100m, resampled to 250 x 250m, assigning the most common 

cell value to the whole 250m cell. There was a total of 39 environmental variables included, 

prior to variable selection.  

With respect to variable selection, it is recommended that they be ecologically relevant, and 

while correlations should be minimised Maxent is considered robust to correlated variables 475 

(Elith et al., 2011, Guisan and Zimmermann, 2000, Merow et al., 2013). Thus, variable 

selection proceeded as follows: i) a correlation analysis was generated in R (v3.1.1) to 

identify highly correlated variables; and ii) a model with all variables was run to identify 

variables that did not make a significant contribution to the model (SM 2,SM 3). Next, a set 

of 10 variables was put forward for discussion with an expert (BIOCLIM 5, 6,14,16, 21, 22, 480 

23, 30, 31, 34 and vegetation) following which two sets of variables were selected (see Table 

2 – “Select Variables A” and “Select Variables A_No VEG”). Maps were produced for these 

two datasets, evaluated for ecological relevance and variables were discussed again with 

an expert, giving rise to the “Final” model (Table 2). Maxent was calibrated with each of the 

three variable sets, using five-fold cross validation. The use of a single dataset to calibrate 485 

and evaluate each model was necessary due to the small size of the presence dataset and 

desire to use as many of these observations as possible for model calibration (Guisan and 

Zimmermann, 2000).  

 

 490 
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Table 2: Summary of the Maxent SDMs evaluated 

Model Name Covariates AUC 

(Average across 5-fold 

cross validation) 

Maxent   

1. All Variables BIOCLIM 1 to 35, NVIS 

(vegetation), aspect 

0.959 (std. dev +/- 0.01) 

2. Select Variables A BIOCLIM 5, 14, 21, 22, 23, 30, 31 

and NVIS (vegetation) 

0.954 (std. dev +/- 0.008) 

3. Select Variables A_NO VEG BIOCLIM 5, 14, 21, 22, 23, 30, 31 0.953 (std. dev +/- 0.007) 

4. Final model = ‘pre-survey’ 

model 

BIOCLIM 5, 14, 21, 22, 30, 32, 33 0.941 (std. dev +/- 0.011) 

 495 

Model Settings and Evaluation  

Maxent’s default setting is to apply five feature types to covariates, enabling the model to fit 

complex, non-linear functions (Merow et al., 2013, Phillips et al., 2006).  However, simpler 

models are worth considering if ecological relationships can be met (Syfert et al., 2013). For 

this study, only linear, quadratic, product and categorical binary features were used as these 500 

capture likely ecological relationships.  

Maxent obtains a solution by maximising the ‘gain function’, which corresponds to finding a 

model that can best distinguish between sites associated with presences and background 

locations (Merow et al., 2013, Syfert et al., 2013). This study used five-fold cross-validation 

to define training and test data sets used to fit the models and to enable evaluation of model 505 

performance using the Area Under the Curve (AUC) metric. An AUC value close to 1 

represents excellent predictive power and 0.5 or less is considered no better than random 

(Syfert et al., 2013). In addition, a visual comparison of areas projected by each model to 

contain suitable habitat was undertaken to identify differences (Elith et al., 2011). 

Long-footed potoroo Field Survey 510 

Study Location 

The study area was located in South-East Forests National Park (SEFNP), south-east New 

South Wales (NSW), and across four sites in north-east Victoria: Errinundra National Park 

(NP), Arte Flora Reserve, Bemm State Forest (SF) and Murrungower SF, within the box 

148”40’0”E and 149”37’0”E and 36”51’0”S and 37”40’0”S (Figure 3). The SEFNP is 515 

115,499ha, consisting of several sections that are mostly joined to form a narrow park with 



25 
 

a very long perimeter (National Parks and Wildlife Services (N.P.W.S.), 2006). NSW survey 

sites were located on seven vegetation classes, including South East Dry Sclerophyll 

Forests, Southern Hinterland Dry Sclerophyll Forests, Southern Escarpment Wet 

Sclerophyll Forests and South Coast Wet Sclerophyll (Office of Environment and Heritage, 520 

2012). Sites ranged from being open, dry sclerophyll forests, with varying understorey and 

groundstorey species, to wet sclerophyll with a more rainforest understorey (Figure 4). In 

contrast, the vegetation across Errinundra NP and Murrungower SF is dominated by tall, 

wet eucalypt forests, with Errinundra NP protecting the largest contiguous area of Cool 

Temperate Rainforest in Victoria (Parks Victoria, 2016). Several survey sites in this study 525 

are located in, or close to, well studied areas, such as the Bellbird Grid, for which an area 

description can be found in Green et al. (1998). Elevation across sites ranged from 170m to 

1144m a.s.l. Both National Parks are bounded predominantly by areas of State Forest and 

private agricultural land-holdings. 

 530 

Figure 3: Map of study area. 2016/2017 field survey sites (dark circles) are located across the habitat suitability 
gradient predicted by the Maxent pre-survey model.  
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Figure 4: Sites surveyed for the long-footed potoroo in New South Wales and Victoria ranged from being open, 535 
dry sclerophyll forests, with varied understorey and groundstorey species including various Acacia sp., 
Persoonia linearis, Leucopogon lanceolatus, Lomandra longifolia, Ghania sp., Dianella sp,. Pteridium sp., and 
Hibbertia sp. (e.g. site 30, 24, 37, 49, 55, 29), to wet sclerophyll, with understorey characterised by Bedfordia 
arborescens, Dicksonia antartica, Olearia argophylla and Pomaderris sp. and various groundstorey ferns (e.g. 
Blechnam sp.) (e.g. sites 5,54). Dominant eucalypt species across all sites included Eucalyptus cypellocarpa, 540 
E. sieberi, E. obliqua, E. fastigata, E. dives, E radiata and E. viminalis. 

 

Site Selection 

Survey sites in NSW and Victoria were selected using a random stratified sampling 

approach based upon the Maxent output of the pre-survey model. To ensure sites were 545 

stratified across the predicted habitat suitability (HS) gradient, model output was arranged 

into four climate suitability bands that were loosely based upon the range of predicted SDM 

HS values at known long-footed potoroo locations:  

a) Low: 0-0.13 (unsuitable) (i.e. equal sensitivity and specificity binary threshold)  

b) Low-Moderate: 0.131 to 0.61 (worse than the 50th percentile of known records) 550 

c) Moderate: 0.611 to 0.89 (better than the 50th percentile of known records) 

d) High: >0.891 (better than known occurrences) 

In NSW, 58 field sites were surveyed across the predicted HS gradient for camera surveys 

and microhabitat assessments. Sites were randomly located on moderate topography, 

within 40-100m of the nearest access track, and (mostly) within SEFNP boundaries. In 555 

NSW, there were no sites in the ‘High’ HS value. There was roughly equal coverage of sites 

across the three HS value bands present in NSW (Moderate: n = 15; Moderate-Low: n = 

23; Low: n = 20) (Figure 3 and see SM 5 for detailed maps). Selection of areas with 

moderate slope and proximity to tracks enabled reduced effort to access sites and 
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increased the number of sites sampled. As the long-footed potoroo’s range has been 560 

estimated to be between 22-100ha, sites were located a minimum of 1km apart to ensure 

independence (Green et al., 1998; pers. comm. Andy Murray, DELWP, 1 December 2016).  

In Victoria, 13 sites, situated across the HS gradient were selected for microhabitat 

assessments only (High: n=4, Moderate: n = 3; Moderate-Low: n = 4; Low: n = 2). Most 

sites were within 1km of a long-footed potoroo occurrence record, at least 30m from the 565 

nearest road, at least 1km from other sites, and within either National Park or State Forest. 

Overall, sites were generally located in areas that had not been logged or exposed to fire 

for greater than 25 years, giving sufficient time for forest succession to occur and deliver 

greater habitat complexity (Coops and Catling, 2000). Exceptions, encompassing all sites 

in NSW and Victoria, were seven sites and two sites in locations that had been exposed to 570 

fire or logging for less than 25 years, respectively.  

NSW LFP Survey: Camera Trapping 

Due to the likely low population density and patchy distribution of the long-footed potoroo in 

NSW, individuals may be difficult to detect using traditional survey methods, e.g. live 

trapping and hair tubing. As such, camera trapping is likely the most effective survey 575 

technique (Scroggie, Henry and Lumsden, 2011). Camera trapping has seen an exponential 

uptake in wildlife research and monitoring both in Australia and overseas (Claridge, Paull 

and Barry, 2010, Meek, Ballard, Vernes et al., 2015). It is considered a preferred survey 

technique as it is less invasive, enables remote monitoring for prolonged periods and is 

more cost effective (De Bondi, White, Stevens et al., 2010, Paull, Claridge and Cunningham, 580 

2012). Further, multiple studies have found camera surveys to be more effective than other 

survey techniques (Driessen and Jarman, 2015, Paull et al., 2012, Welbourne, MacGregor, 

Paull et al., 2015), and recent camera trapping in Victoria has been highly successful for 

detecting the long-footed potoroo (pers. comm. Andy Murray, 1 December 2016, and Marc 

Perri, 6 December 2016). 585 

Camera surveys in NSW took place across six field trips between April 2016 to May 2017. 

Up to 10 sites were completed every trip and at each site between six to eight baited 

cameras were deployed along a 500m transect, 100m apart. Cameras were mounted on a 

tree (40-80cm above-ground depending on site topography) at a distance of 1.5-2m from 

the bait station and left in-situ for up to 63 days (Claridge et al., 2010, Taylor, Goldingay and 590 

Lindsay, 2014) (Figure 5). This extended deployment time, which is more than double the 

recommended number of days required to give rise to 95% detectability (Scroggie et al., 

2011), was considered necessary to maximise detection probability in NSW. Baits contained 
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either peanut butter and oats (fieldtrip 1) or only peanut butter (fieldtrips 2 to 6) and were 

suspended approximately 20 to 30cm above the ground (Claridge, Paull and Cunningham, 595 

2016, Paull, Claridge and Barry, 2011).  

Two types of passive infrared (PIR) cameras were used: Reconyx Hyperfire HC600 

(hereafter “Reconyx”) and Scoutguard DTC-530V (hereafter “Scoutguard”). A mix of both 

camera types were consistently placed along transects. The infrared motion detection 

trigger settings for each camera were: i) Reconyx: “High” sensitivity, 5 images per trigger 600 

event, 1 second delay between triggers and 1 minute quiet period; ii) Scoutguard: “High” 

sensitivity, 3 images per trigger, 5M resolution (highest resolution setting) and 1 minute quiet 

period. Camera images were reviewed by myself and Office of Environment and Heritage 

(OEH) experts. Data on species occurrences will be incorporated into the NSW BioNet: the 

Atlas of NSW Wildlife.  605 

 

Figure 5: Photo of a) camera set up and bait station; b) double camera set-up; c) bait station; d) microhabitat 
20mx20m plot set up.  

 

Microhabitat assessments 610 

Microhabitat data was collected at both NSW and Victorian sites. At three locations along a 

transect (approx. 200m apart), microhabitat features were measured within a 20 x 20m plot 

(Figure 5d) using a modified form of the habitat complexity method developed by Newsome 

and Catling (1979). The method typically involves assigning habitat complexity scores based 
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on field estimates of percentage cover of five habitat attributes, then assigning these 615 

attributes a score of 0–3 and tallying the resultant scores to derive an overall “habitat 

complexity score” (Catling and Burt, 1995, Catling, Coops and Burt, 2001). Therefore, lower 

tallied scores (4-5) are “indicative of lower habitat complexity (poor structure, few 

understorey shrubs and little groundcover), whereas anything above 9 is considered “high 

habitat complexity (thick understorey, good ground and litter cover)” (Coops and Catling, 620 

2000). Studies applying this methodology have found that there is a positive significant 

relationship between habitat complexity scores and potoroo abundance (Catling et al., 2001) 

as well as abundance of other small mammals (e.g. brown antechinus (Antechinus stuarrtii), 

dusky antechinus (Antechinus swainsonii), and bush rat (Rattus fuscipes) (Catling and Burt, 

1995)). 625 

For this study, the five microhabitat attributes of the Habitat Complexity Score were 

measured (Table 3). However, original values for data gathered on each attribute was 

maintained for data analysis purposes (i.e. there was no conversion to a “complexity score”). 

With respect to understorey and groundstorey cover measures, two approaches were 

initially trialled: i) whiteboard cover % (Robley, Woodford, Lindeman et al., 2013), whereby 630 

a photo was taken of vegetation against a 1.7 x1m whiteboard and the percentage cover 

was computed using HabitApp software (Scrufster, 2016); and ii) pole intercept touches 

(Nipperess, Beattie, Faith et al., 2012). A comparison of these measures found them to be 

significantly, positively correlated (Pearsons r = 0.77; P<0.001) (SM 6). Consequently, the 

pole intercept method was used on future fieldtrips as it was less difficult to implement in the 635 

field. For one site, number 26, a site revisit to obtain raw pole intercept data was not possible 

due to time constraints. As such, interpolated intercept values, based upon a linear 

regression model, were calculated. 

 

 640 

 

 

 

 

 645 
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Table 3: Explanatory variables used to investigate the relationship between SDM 

predicted values and microhabitat features. 

Variable Name Description 

Upper canopy 
cover  
(% cover) 

Cover was estimated via a visual assessment at 5 locations within each 
20x20m plot. HabitApp software (Scrufster, 2016) was used to calculate 
the percentage cover using a photo of the canopy and a smart device as 
a coverage measurement tool. Using an image of the canopy, HabitApp 
converts the pixels to black and white and the percentage cover is 
calculated from the number of black pixels in the resulting image. 
 

Understorey cover  
(Total # intercept 
points) 

A relative measure of density was calculated as follows: at 20 locations 
within each plot, the number of plants touching against a 1.17m pole 
(above 30cm to the top of the pole) were tallied.  
 

Groundstorey cover  
(Total # intercept 
points) 

A relative measure of density was calculated as follows: at 20 locations 
within each plot, the number of plants touching against a 1.17m pole from 
the ground 0cm to 30cm marker on the pole were tallied. 
 

Groundcover Type 
(% cover) 
 

Every 2m, along the two 20m tape measures, one of five ground cover 
types at that point was recorded: forbs/grasses, rock, bare ground, leaf 
litter, or logs. The total percentage for each category was calculated. 
 

Soil moisture (%) 
 

A soil moisture probe (MPM-160) was used to measure soil moisture 
(millivolts and %) at 5 locations within each 20mx20m plot, and average 
soil moisture values were calculated. 
 

Leaf litter depth 
(cm) 

The leaf litter depth was measured using a ruler at 5 locations within each 
plot and average values were calculated. 
 

 

 

Data Analysis 650 

Relating model predictions to field survey findings  

Modelling species’ distributions is an iterative process and models can be assessed and 

recalibrated as new information, e.g. new presence and absence data, becomes available. 

To determine whether the SDM accurately predicts the presence of the long-footed potoroo, 

the approach applied used long-footed potoroo presence/absence datasets that were 655 

independent of those data used in the pre-survey Maxent model that guided the current field 

survey. The datasets were: i) absence data generated from the current NSW field survey 

(n=58), and presence data associated with the Victorian microhabitat field sites (n=13 sites, 

of which nine sites were within 1km of an occurrence record and, of these nine sites, six 

sites were within 1km of an “independent record” i.e. not utilised in the pre-survey Maxent 660 

model);  ii) presence data from Victorian camera trap surveys conducted during 2012-2016 

(n=91), but not incorporated in the Victorian Biodiversity Atlas at the time of Maxent 

modelling (data courtesy of Marc Perri, DELWP, 6 December 2016); and iii) absence data 
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from Victorian camera trap surveys conducted in 2012 (n= 128) (data courtesy of Jenny 

Nelson, DELWP, 5 July 2017, refer to Lumsden et al. (2013) for further details on survey 665 

methodology).  

Data analysis involved a comparison of the median values of predicted habitat suitability 

scores for absence and presence sites using all three independent datasets noted above. 

To evaluate whether there was a difference between these two groups a Kruskal-Wallis H 

Test was undertaken (Bennett, 1993) in Minitab® Statistical Software (Version 17) (Minitab 670 

Inc, 2014).    

Relating model predictions to microhabitat 

The microhabitat data gathered during the field survey were used to investigate whether the 

SDM predictions encompassed the species’ preferred microhabitat characteristics. Prior to 

analysis, the microhabitat data gathered at the three assessment locations per transect were 675 

pooled and averaged to obtain a site-level value. Furthermore, analysis required evaluation 

of data points collected across a 10-month period. Most of the variables are unlikely to be 

significantly impacted by short-term temporal changes in environmental factors (e.g. daily 

weather). However, upper layer soil moisture conditions are primarily controlled by 

precipitation (Entekhabi and Rodriguez-Iturbe, 1994, Pan, Peters-Lidard and Sale, 2003). 680 

To enable comparison of soil moisture values across all study periods, an alternative 

variable “Soil moisture residual” was calculated to account for rainfall impacts close to, or 

during, the study periods. This alternative variable is the difference between: i) actual soil 

moisture values and ii) soil moisture values predicted by a simple linear regression model 

of soil moisture based upon total rainfall (mm) 14 days prior to surveying (SM 7). Rainfall 685 

data was obtained from rain stations located nearby and/or at similar elevation to survey 

locations (NSW: Cathcart (Mt Darragh), Bombala (Therry St), Eden (Timbillica); Victoria: 

Goongerah, Club Terrace and Cabbage Tree Creek, sourced from Bureau of Meteorology's 

Climate Data, http://www.bom.gov.au/climate/data/ accessed on 1 April 2017).  

Regression analyses of HS values with individual microhabitat variables was carried out in 690 

Minitab® Statistical Software (Version 17) (Minitab Inc, 2014) to identify whether SDM 

predicted “HS value” was a statistically significant predictor of the microhabitat feature. In 

addition, to test whether there were significant differences in microhabitat variables in sites 

where the long-footed potoroo is present versus absent, a one-way ANOSIM (Analysis of 

Similarities) was computed in Past (v3.14) (Hammer, Harper and Ryan, 2001) with 695 

Euclidean distances of microhabitat variables and a one-tailed significance test computed 

by permutation of group membership, with 9,999 replicates. An ANOSIM can determine 

http://www.bom.gov.au/climate/data/
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whether there is a significant difference between two or more groups using a distance-based 

measure (Clarke, 1993). The output is the test statistic R, whereby a large positive R (up to 

1) signifies distinct groups (i.e. dissimilarity between groups), and values close to 0 suggest 700 

there are no well-defined groups, i.e. close to random (Hammer, 2016). As the microhabitat 

data are in different units, data were transformed using the normalising equation (𝑥𝑖-𝑥̅/ σ) 

prior to analyses. 

Model Refinement  

Species Distribution Modelling (Post Field Survey)  705 

i) Binary Logistic Regression 

Binary logistic regression modelling was carried out to investigate the extent to which climate 

suitability in combination with additional variables, such as microhabitat, disturbance and 

connectivity, predicts the presence of the long-footed potoroo. These additional variables 

are ecologically important and hence it is worthwhile investigating their statistical 710 

significance for predicting long-footed potoroo presence (see SM 8 for a list of variables and 

data sources and SM 9 for raw data).  

Binary logistic regression models were carried out in Minitab® Statistical Software (Version 

17) (Minitab Inc, 2014), using default settings (i.e. logit link function). Models were derived 

using two datasets: i) “current survey” dataset that incorporated data associated with sites 715 

from the current survey (i.e. presence sites in Victoria within 1km of an occurrence record 

(n=9) and absence sites (n=58)) and utilised the full suite of variables outlined in SM 8 and 

SM 9; and ii) an “extended” dataset that incorporated presence sites (n=100) and absence 

sites (n=186) associated with the current field survey data, as well as the newly acquired 

Victorian presence and absence data (refer to datasets noted under “Relating model 720 

predictions to field survey findings”). With respect to the ‘extended’ data, as microhabitat 

surveys were not conducted across all these locations, only a subset of variables (climate 

suitability, connectivity, and disturbance (time since fire / time since logging)) were able to 

be analysed in the models.  

Ideally correlation between variables should be minimised in additive models. Therefore, 725 

prior to modelling, a Principle Component Analysis (PCA) and Pearsons r correlation 

analysis were computed using Past (v3.15) to aid initial variable selection. A principal 

components analysis (PCA) finds hypothetical variables (components) accounting for as 

much of the variance in a multivariate dataset as possible (Davis and Sampson, 1986). A 

PCA can also be used to reduce the data set to fewer, e.g. two variables, for plotting 730 
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purposes (Hammer, 2016). A PCA can aid identification of microhabitat variables that are 

driving the variability across the dataset, identify highly correlated variables, and provide an 

overall measure of variability. Additionally, binary fitted line plots were carried out for each 

variable in Minitab® Statistical Software (Version 17) (Minitab Inc, 2014) to evaluate fit. 

Several variables, e.g. rock, log, bare ground percentage cover variables, had poor fit. 735 

Therefore, ARCSINE transformations of these select variables was conducted prior to 

inclusion in the logistic model.  

Following initial variable selection, logistic models were evaluated using forward stepwise 

selection procedures, applying α=0.25 for variable entry and compared using Adjusted-R2 

and Akaike Information Criterion (AIC). The AIC is a measure of the amount of information 740 

lost in an estimating model, effectively measuring the trade-off between model complexity 

(number of variables) and model fit (precision) (Burnham and Anderson, 2003).  

ii) Maxent 

New observations may help to refine a species realised niche or aid removal of bias (Guisan 

et al., 2006). Data availability at the time of initial modelling meant that the NSW field survey 745 

was informed by presence-only modelling techniques and expert opinion. Updated ‘post-

survey’ Maxent species distribution modelling was undertaken that incorporated the new 

occurrence records from Victoria spanning the period 2012-2016 (refer to presence datasets 

under: “Relating model predictions to field survey findings”). The same Maxent program, 

settings, background file and pre-survey model covariates, as noted previously, were 750 

applied. The post-survey model output was contrasted against the pre-survey model used 

to guide the survey using a difference map generated via the Raster Calculator function in 

ArcMap10.5. 

RESULTS 

 755 

Pre-Survey: Maxent Species Distribution Model  

Models generated had average AUC values ranging from 0.953+/- 0.007 to 0.941 +/- 0.011, 

suggesting that changing the number of covariates did not greatly change predictive 

performance (Table 2). Based upon this evaluation, each of the modelled outcomes could 

be considered potentially useful (Phillips and Dudík, 2008).  760 

The core areas of predicted high habitat suitability (HS) (red-orange pixels in the maps) were 

almost identical across models and aligned with areas containing the majority of long-footed 

potoroo occurrence records (Figure 6). However, differences in predicted HS emerged 
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around the periphery of core areas and models with fewer, ecologically relevant, covariates 

had larger areas of relatively higher HS values (i.e. a greater area covered in yellow to red 765 

coloured pixels), with the pre-survey model appearing to have the most extensive areas of 

higher HS. This finding is consistent with overfitting concepts, whereby reducing the number 

of variables can enable the model to better generalise to the landscape (Beaumont, Hughes 

and Poulsen, 2005). 

All model maps were discussed with experts and the pre-survey model map was determined 770 

to be the most biologically realistic. The pre-survey model included seven covariates: 

maximum temperature of warmest period, precipitation of the driest period, highest period 

radiation, lowest period radiation, lowest period moisture index, moisture index of highest 

quarter, moisture index of lowest quarter. These variables were based upon expert opinion 

and are considered ecologically relevant due to their ability to influence the species’ primary 775 

limiting factor: fungi availability; in that hotter, drier conditions will likely affect soil and 

vegetation characteristics and the associated presence, diversity and abundance of 

hypogeal fungi (Claridge, Barry, Cork et al., 2000). It is noted that this model included two 

highly correlated variables (BIOCLIM 30, 33), however, one variable (BIOCLIM 30) 

contributed almost nothing to the model. Although aspect and slope are ecologically 780 

important, these were found to have low variable importance in early model runs (SM 2, SM 

3). Also, although the vegetation covariate (NVIS sub-categories) appeared to be important 

in early model runs (SM 2, SM 3), the predicted distributions of models with and without 

vegetation were visually very similar (Figure 6) suggesting that climate covariates are driving 

the prediction. Therefore, vegetation was not included in the pre-survey model.  785 

The most important variables for the pre-survey model were moisture index of the lowest 

quarter (29.7%), maximum temperature of warmest period (24%) and moisture index of 

lowest quarter (19.9%) (SM 4). Also, covariate response curves indicated that the highest 

predicted HS values are in areas with higher moisture (SM 4).  

The pre-survey Maxent model projects a large, contiguous area in Victoria to have the 790 

highest HS values, consistent with the locations of known populations (Figure 7). In 

comparison, there is relatively little area projected to be suitable in south-eastern NSW and, 

where higher HS areas do occur (yellow to dark orange areas), they appear patchy, 

indicative of more marginal habitat (Figure 7). In NSW, many of the areas projected to have 

higher HS are located at higher elevations and along the sides of ridgelines, on steeper 795 

slopes. Only 2 out of 34 known occurrence records in NSW are in higher HS areas: the 

remaining 32 records are located on flatter areas that are predicted to be low HS. There are, 
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therefore, areas predicted to have relatively high HS that do not have any known occurrence 

records in NSW, for example, areas around Candelo Creek, Back Creek, Basin Creek, and 

Reedy Creek, providing numerous candidate locations for survey work. Other areas 800 

predicted to have high HS are within the SEFNP and State Forest areas, of which the latter 

is subject to active logging and is less likely to provide suitable habitat conditions.  Areas 

adjacent to the coast that are considered by experts to be survey candidates, e.g. Nadgee 

Nature Reserve (pers. comm. Mike Saxon and Joss Bentley, 13 October 2015), were 

predicted to be relatively unsuitable. 805 

 

Figure 6: Maxent predictions for the four logistic models per Table 2: a) All variables; b) Select Variables A 
with vegetation; c) Final ‘pre-survey’ Model and d) Select Variables – No Vegetation. Warmer colours show 
areas predicted to have more suitable environmental conditions. 
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  810 

Figure 7: Map of Maxent predictions for the pre-survey model and long-footed potoroo occurrence records. 
Warmer colours show areas predicted to have more suitable environmental conditions. Core (red/orange) 
areas of high habitat suitability appear to closely intersect with existing occurrence records. 

 

Camera Survey  815 

A total of 215,759 images capturing 43 species from 58 transect sites (or 431 individual 

camera sites) were recorded during this study from 25,120 camera trap nights. Incorrect 

camera settings (e.g. time lapse / video) on four cameras (28.3, 29.3, 29.5, and 41.2) 

generated a large number of images (102,412), of which, only night images were reviewed 

in detail. 820 

Fifteen native mammal species, 22 bird species and one reptile species were detected. 

Seven introduced mammal species were also detected. Two mammal species: long-nosed 

potoroo (Potorous tridactylus) and southern brown bandicoot (Isoodon obesulus) are listed 

as ‘Vulnerable’ and ‘Endangered’ (respectively) under the Environment Protection and 

Biodiversity Conservation Act 1999, and considered at risk from fox and cat predation. Of 825 

concern for native small- to medium -sized mammals is the dominance of foxes (Vulpes 

vulpes) and feral cats (Felis catus), detected across 28% and 43% of survey sites 

respectively. A full list of the species detected, the total number of sites occupied and a 

breakdown by the Maxent model suitability bands can be found in Table 4.  

 830 
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Table 4: List of Species Identified from Camera Traps 

 

*Mammal species listed as threatened with extinction under the Environment Protection and Biodiversity 
Conservation Act 1999 

**The mountain brushtail possum (Trichosurus cunninghami) has been separately identified. However, it is 835 
noted that the relative distributions of the two brushtail possum species found in this area are not finalised. As 
such, although it is believed most of the mountain brushtail possums are likely to be T. cunninghami, they may 
be T. caninus. 

 

Species List

Total 

Number 

of Sites

% Sites Moderate 

HS Band

Moderate-

Low 

HS Band

Low

HS Band

Australian magpie (Cracticus tibicen ) 1 2% 0 0 1

Bassian thrush (Zoothera lunulata ) 23 40% 8 11 4

Bushrat (Rattus fuscipes) 37 64% 13 14 10

Common brushtail possum (Trichosurus vulpecula) 39 67% 6 15 18

Common ringtail possum (Pseudocheirus peregrinus) 7 12% 3 3 1

Crimson rosella (Platycercus elegans) 1 2% 1 0 0

Dasyurid (Antechinus sp. ) 37 64% 10 12 15

Dingo / Wild dog (Canis lupis dingo) 16 28% 4 5 7

Dusky woodswallow (Artamus cyanopterus) 1 2% 0 0 1

Eastern grey kangaroo (Macropus giganteus) 11 19% 0 4 7

Eastern pygmy-possum (Cercartetus nanus) 2 3% 1 0 1

Eastern whipbird (Psophodes olivaceus) 10 17% 5 2 3

Eastern yellow robin (Eopsaltria australis) 6 10% 1 3 2

Short-beaked echidna (Tachyglossus aculeatus) 32 55% 10 13 9

Grey currawong (Strepera versicolor) 14 24% 4 5 5

Grey shrike-thrush (Colluricincla harmonica) 21 36% 4 8 9

Lace monitor (Varanus varius) 14 24% 1 7 6

Laughing kookaburra (Dacelo novaeguineae) 5 9% 3 1 1

Long-nosed bandicoot (Perameles nasuta) 27 47% 9 10 8

Long-nosed potoroo (Potorous tridactylus)* 3 5% 1 1 1

Mountain brushtail possum (Trichosurus cunninghami)** 32 55% 11 15 6

Olive whistler (Pachycephala olivacea) 1 2% 1 0 0

Owlet nightjar (Aegothelus cristatus) 1 2% 0 0 1

Pied currawong (Strepera graculina) 13 22% 4 5 4

Red-necked wallaby (Macropus rufogriseus) 20 34% 0 9 11

Rufous fantail (Rhipidura rufifrons ) 2 3% 2 0 0

Satin bowerbird (Ptilonorhynchus violaceus) 4 7% 1 0 3

Southern brown bandicoot (Isoodon obesulus)* 5 9% 1 3 1

Spotted harrier (Circus assimilis) 1 2% 0 0 1

Spotted quail thrush (Cinclosoma punctatum) 10 17% 0 3 7

Superb fairy-wren (Malurus cyaneus) 1 2% 0 0 1

Superb lyrebird (Menura novaehollandiae) 53 91% 15 20 18

Swamp wallaby (Wallabia bicolor) 58 100% 15 23 20

White-browed scrub wren (Sericornus frontalis) 13 22% 5 5 3

White throated tree creeper (Cormobates leucophaea) 1 2% 0 1 0

White-winged chough (Corcorax melanorhamphos) 6 10% 0 3 3

Common wombat (Vombatus ursinus) 53 91% 15 20 18

Wonga pigeon (Leucosarcia melanoleuca) 15 26% 0 8 7

Introduced Species

Cat (Felis catus) 25 43% 5 11 9

Deer (various sp including Fallow deer (Cervus dama ), Javan 

Russa (C. timoriensis ), Sambar (C. unicolor )

5 5% 1 1 3

Fox (Vulpes vulpes) 16 28% 3 8 5

Pig (Sus scrofa ) 8 14% 0 3 5

Rabbit (Oryctolagus cuniculus ) 7 12% 2 2 3



38 
 

Despite these significant efforts, on the completion of the NSW field surveys in 2017, no 840 

new long-footed potoroo records were found. The survey sites in NSW with no new long-

footed potoroo observations were deemed ‘absences’. This determination was considered 

appropriate as baited cameras were left in-situ for between 52 to 60 days, almost double 

the recommended trapping period to attain 95% detectability for the species (Scroggie et 

al., 2011). 845 

SDM Ground Validation: Relating model predictions to survey findings  

The camera survey in this study generated 58 long-footed potoroo absence data points in 

NSW.  In contrast, most of the 13 sites selected for microhabitat surveys in Victoria could 

be considered presence data points: nine sites were within 1km of a known LFP record, of 

which six were independent occurrence records, i.e. not included in the “Pre-Survey” model.  850 

A comparison of the interquartile range and 95% confidence intervals (CI) of the median HS 

values at presence (n=97) and absence (n=186) locations highlights significant variability 

within groups and some overlap between groups (Figure 8). Furthermore, there are long-

footed potoroo absences in areas that may be considered “suitable” when a binary threshold 

measure, e.g. equal sensitivity and specificity, is applied. Overall, however, the Kruskal-855 

Wallis test of mean ranks revealed that there is a statistically significant difference between 

HS values at presence and absence locations (H=55.61, DF=1, P=0.000). This result 

suggests that the pre-survey Maxent model used to conduct the field survey can 

successfully distinguish between these two groups. 

 860 

Figure 8: Boxplot of interquartile range (green diagonal lines) and 95% confidence interval (solid green) around 
median HS values at long-footed potoroo (LFP) presence (1) and absence (0) sites using all independent LFP 
data. The red line represents the pre-survey SDM “equal sensitivity and specificity” value (0.13), which is a 
binary (suitable /unsuitable) threshold. 
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SDM Ground Validation: Relating Model Predictions to Microhabitat  865 

Linear regression analysis of Maxent predicted HS values against individual microhabitat 

variables identified statistically significant relationships for six out of the ten variables 

measured (Figure 9). Habitat suitability was found to be a positive predictor for canopy 

cover, leaf litter depth, understorey cover, soil moisture and log groundcover, and negatively 

related to grass cover. Although there is significant variability within each variable, these 870 

findings indicate that higher HS sites are more likely to have higher canopy, understorey 

and log cover, greater soil moisture and deeper leaf litter.  

This result is consistent with the preferred micro-habitat requirements of this species. For 

instance, a preferred habitat feature of the long-footed potoroo is dense understorey cover, 

offering nesting sites and protection from predators (Scotts and Seebeck, 1989). Also, as 875 

hypogeal fungivores, sites with moist soils and higher canopy cover are likely to have greater 

fungal diversity and abundance (higher canopy cover could signal either a larger number of 

trees closer together or larger (older) trees, which is particularly relevant when these are 

species that form mycorrhizal relationships with fungi, e.g. Eucalyptus and Acacia, which 

were found to dominate many sites surveyed) (Claridge et al., 2000, Green, Tory, Mitchell 880 

et al., 1999). Additionally, leaf litter is considered an important foraging substrate for 

Potorous (Claridge and Barry, 2000).  

Furthermore, the ANOSIM of all microhabitat variables at presence (n=9) vs absence (n=58) 

locations generated a statistically significant dissimilarity (R) value of 0.4345 (p(same) = 

0.0002), indicating that microhabitat variables are not the same across all sites. This 885 

confirms that there are differences between sites where the long-footed potoroo is present 

as compared to where it is absent, suggesting that microhabitat characteristics are important 

to the long-footed potoroo.  

Overall, these findings suggest that the Maxent model is a good predictor of select 

microhabitat features on the ground. 890 
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Figure 9: Linear regression analysis of predicted habitat suitability values against the six microhabitat variables 
with statistically significant relationships 
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Long-footed potoroo Model Refinement 895 

Binary logistic regression 

The selection of the variables for logistic regression was guided by a PCA and correlation 

analysis. A PCA on all site characteristics (i.e. microhabitat, logging and fire history, and 

connectivity) identified leaf litter depth (cm) as having the highest amount of variance and 

to be strongly correlated with Principle Component (PC) 1 (Figure 10), followed by 900 

connectivity and understorey cover. The PCA suggests that sites with higher understorey 

cover are better connected to other areas of higher HS, have high soil moisture, but little 

rock and bare ground. Furthermore, sites with high canopy cover also had high leaf litter 

cover (%) on the ground and little grass cover (%). Locations where long-footed potoroos 

were absent (NSW) were more likely to have higher grass, rock and bare ground coverage 905 

values than sites where there are known presence records (Victoria) (Figure 10). Principle 

component 1 may be analogous to an overall “microhabitat” variable. A linear regression 

analysis suggests that Maxent’s HS values are a statistically significant predictor of 

“microhabitat” (t =6.02, P=0.00). However, only 45% of the variance in the site 

characteristics data is explained by the first and second components, which suggests there 910 

is complexity in the dataset.   

In a PCA of microhabitat variables only, PC1 and PC2 explain 51% of the variability, yet it 

effectively highlights microhabitat features driving the differences across sites surveyed 

(Figure 11). This PCA also captures the diversity of vegetation types and structures across 

sites and elucidates that sites located in Tantawangalo (the northern section of South East 915 

Forests NP) had the most similar microhabitat characteristics to those in Victoria (Figure 

11).  

The Pearson’s r correlation analysis identified six microhabitat variables to be significantly 

correlated (p<0.05) to HS values: canopy cover, understorey cover, soil moisture, leaf litter 

depth, grass cover and log ground cover. Grass cover, bare ground cover and time since 920 

logging were the only variables negatively correlated with HS values. This outcome is 

aligned with a priori expectations for grass and bare ground. With respect to time since 

logging, there is a weak negative correlation, suggesting that areas with higher climate 

(habitat) suitability were more recently logged. As the correlation is not significant, this result 

should be interpreted with care.  925 



42 
 

 

Figure 10: PCA analysis scatter plot for all logistic regression variables. PC1 and PC2 explain 45% of variance 
in all variables. Convex hulls (black lines) surround each group centroid (NSW and Victoria); whereby the 58 
site locations in NSW correspond to absence sites based upon the current survey and the majority of sites in 
Victoria (9 out of 13 sites) are within 1km of a long-footed potoroo presence record.  930 
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Multiple binary logistic models were evaluated to identify which other factors, in combination 

with climate suitability (i.e. HS values), might contribute to predicting the probability of 935 

presence of the long-footed potoroo. The five models with the best fit and lowest AIC values 

are outlined in Table 5. The best overall model included three variables: connectivity 

(χ2=5.51, P=0.019), understorey cover (χ2=6.86, P=0.009) and soil moisture (χ2=7.6, 

P=0.006). The probability of presence of the long-footed potoroo is predicted to increase as 

each of these variables increase. Models that included the connectivity variable were 940 

consistently found to outperform models that included climate suitability. Understorey cover 

and soil moisture were typically selected over other variables when included in a model, and 

were always statistically significant (P<0.05) predictors. Interestingly, when HS was included 

in a model in combination with understorey or soil moisture it was never selected, suggesting 

relatively weaker explanatory power. 945 

It was not possible to fit a model that included both connectivity and HS value due to quasi-

separation issues. This issue can, however, be resolved by collecting or incorporating more 

data. Although it was not possible to collect more microhabitat data, it was possible to use 

the ‘extended’ dataset to evaluate models with only HS, connectivity and disturbance values 

(n=186 absences and n=100 presences). A summary of the models evaluated is set out in 950 

Table 6. The best overall model included two variables: connectivity (χ2=100.33, P=0.00) 

and time since logging (χ2=25.19, P=0.00) Even when both HS and connectivity variables 

could be included, connectivity variable provided a better fit model. The disturbance 

variable, time since logging, was also consistently selected and is a statistically significant 

predictor in the models, however, time since fire was never selected. 955 
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Table 5: Summary of Models Using the ‘Survey’ Dataset 

 

 

 960 

Table 6: Summary of Models using “Extended” presence/absence dataset 

 

 

  

Model 

#

Independent Variables Number of 

Parameters

Variables Selected / 

Statistically Significant 

(p<0.05)* 

Adj. R
2 

(%)

AIC Regression Equation 

P(1)  =  exp(Y')/(1 + exp(Y'))

Y'

1
Connectivity, Understorey, 

Soil Moisture
3

Connectivity*, Understorey*, 

Soil Moisture*
72.82 19.37

Y' = -14.54 + 0.0416 Understorey 

+ 0.227 Soil Moisture + 18.3 Connectivity 

2

Connectivity, Time Since 

Logging, Soil Moisture 3
Connectivity*, Time Since 

Logging*, Soil Moisture*
68.95 21.42

Y' = -1.42 + 20.43 Connectivity -

 0.259 Time Since Logging 

+ 0.328 Soil Moisture 

3

Connectivity, Canopy, Time 

Since Fire, Understorey 4
Connectivty*, Canopy*, 

Understorey*
67.77 22.04

Y' = -23.48 + 18.24 Connectivity 

+ 13.32 Canopy + 0.0522 Understorey 

4

HS Value, Understorey, Soil 

Moisture Residual, Time 

Since Fire
4 Understorey*, Soil Moisture* 64.3 22.87

Y' = -6.92 + 0.0447 Understorey 

+ 0.1887 Soil Moisture 

5

HS Value, Leaf Litter Depth, 

Understorey, Time Since 

Logging, Grasses
5

Leaf Litter Depth*, 

Understorey*
62.28 23.94

Y' = -9.20 + 0.887 Leaf Litter Depth 

+ 0.0413 Understorey

Model 

#

Independent Variables Number of 

Parameters

Variables Selected / 

Statistically 

Significant (p<0.05)* 

Adj. 

R
2
 (%)

AIC Regression Equation 

P(1)  =  exp(Y')/(1 + exp(Y'))

Y'

1B HS Values, Connectivity, Time 

Since Fire, Time Since Logging

4 Connectivity*, Time 

since logging*

32.95 252.24
Y' = -1.495-0.0857 Time Since Logging 

+ 10.89 Connectivity

4B Connectivity, Time Since Fire, 

Time Since Logging 

3 Connectivity*, Time 

since logging*

32.95 252.24
Y' = -1.495 + 10.89 Connectivity -

 0.0857 Time Since Logging

2B HS Values, Connectivity 2 Connectivity* 26.41 275.43
Y' = -4.566 + 9.98 Connectivity

3B HS Values, Time Since Fire, 

Time Since Logging 

3 HS Values*, Time 

since logging*

22.71 290.13
Y' = -0.192 + 5.618 HS Values -

 0.0685 Time Since Logging 
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Post-survey Maxent 965 

Following the initial Maxent model used to guide surveys, additional presence records 

became available. As such, an updated ‘post survey’ Maxent model was fitted that 

incorporated an additional 54 long-footed potoroo presence records from Victoria spanning 

the period 2012-2016 that were not previously included, giving a total of 395 presence 

records. The post-survey model generated an average AUC value of 0.944+/-0.007, 970 

suggesting the modelled outcome is potentially useful (Phillips and Dudík, 2008). This AUC 

value is within the range of previous models and slightly higher than the pre-survey model 

used to direct the field survey. BIOCLIM variables Maximum Temperature of the Warmest 

Period (27.4%), Mean Moisture Index of the Lowest Quarter (22.2%), and Mean Moisture 

Index of the Highest Quarter (19.9%) were found to provide the greatest contribution to the 975 

model. The environmental variable with the highest regularised training gain when used in 

isolation was Lowest Period Moisture Index, which therefore appears to have the most 

useful information by itself. The environmental variable that decreases the gain the most 

when it is omitted was the Lowest Period Radiation, which therefore appears to have the 

most information that is not present in the other variables. 980 

Comparing the post-survey Maxent model against the pre-survey model used for the current 

survey identifies several areas as being relatively more (red) or less (blue) suitable (Figure 

12). In NSW, there are areas predicted to be relatively more suitable than in the earlier 

model run. It is unlikely that this would have given rise to significant changes to the selection 

of survey sites as, in general, areas with highest HS and that were accessible were targeted, 985 

and these areas continue to have high HS in the updated model. Of interest, however, is 

that the interior Genoa area, north of Sheep Station Creek, and the Nungatta Plateau area 

(adjacent to Nungatta Station) are predicted to be relatively more suitable (as indicated in 

Figure 12). These areas are relatively remote and difficult to access so were not targeted 

for the present survey. However, access to Nungatta Plateau and Nalbaugh Plateau via a 990 

helicopter was recently organised for OEH staff and camera surveys are now in progress 

(pers. comm. Joss Bentley, 29 May 2017). However, other nearby areas may also be 

worthwhile considering for future survey work.   
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Figure 12: Map of NSW survey transect locations (short dashed lines) overlayed on a difference map of the 995 
post-survey Maxent model compared to the model used to guide the survey. Areas in red have higher HS 
values than the pre-survey model, whereas areas in blue were predicted to have lower HS values than the 
pre-survey model.  

 

 1000 
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DISCUSSION 

 

The case of the missing potoroo… 1005 

Identifying where species occur underpins many conservation management decisions 

(Guisan, Tingley, Baumgartner et al., 2013) and the use of species distribution models to 

guide field surveys has proved promising for many species (Aizpurua et al., 2015, Guisan 

et al., 2006). However, following the completion of model-based field surveys, no long-

footed potoroos were detected, despite the models receiving strong evaluation scores (AUC 1010 

values, Table 2). As such, the distribution of this critically endangered species in NSW 

remains unclear, founded upon records collected during surveys conducted in the 1990s.  

Broadly speaking, this result may be due to the species: i) not being present at the sites that 

were selected for survey; or ii) being present but not detected.  

Simply not there? 1015 

The survey results highlight that the species was not detected in any areas predicted to have 

relatively higher HS values, nor even from a wider range of areas that were considered 

suitable when a binary threshold was applied (Figure 8). Furthermore, the long-footed 

potoroo was not detected at sites with historical presence records nearby (< 1km). Possible 

explanations for the species absence at survey sites, include: unsuitable microhabitat, 1020 

fluctuations in population dynamics, impact of disturbance events (e.g. fire and logging) and 

presence of introduced predators and competitors. 

Microhabitat features are an important factor influencing the distribution of mycophagous 

mammals, including long-nosed potoroos (Bennett, 1993, Claridge and Barry, 2000, Vernes, 

2003). The PCA (Figure 10) highlighted that sites in Victoria, many of which were located 1025 

within 1km of a presence record, were found to have different microhabitat features to NSW 

survey sites. Also, microhabitat features, including soil moisture and understorey cover, 

were found to be statistically significant predictors of presence in binary logistic regression 

models. Furthermore, logistic regression models that incorporated microhabitat features had 

better fit than those that included only Maxent HS values and disturbance variables (Table 1030 

5,Table 6). Some caution must be born in mind when considering these results given the 

spatial clustering of presence and absence points. 

The Maxent model was successful at identifying some microhabitat features (Figure 9). For 

instance, sites with higher HS values were more likely to have higher canopy cover, soil 

moisture, understorey cover, log groundcover and/or leaf litter depth and/or less grass 1035 

cover, although there was significant variability across the microhabitat attributes. Further, 
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as most sites were situated in areas with relatively lower HS values (particularly when 

contrasted with HS values in Victoria) it is possible that unsuitable microhabitat contributed 

to the non-detection of the long-footed potoroo. There were, however, sites where 

microhabitat appeared to be highly suitable, such as around Tantawangalo (SM 5) and in 1040 

pockets of temperate rainforest (e.g. site 54). In these instances, it is possible that the long-

footed potoroo is locally extinct, or was simply never there, particularly as many of these 

survey sites were not located close to a historical presence record.  

Some sites in NSW may have suitable microhabitat but be unoccupied because either patch 

size is too small or located too far from known populations to be occupied. Greater 1045 

connectivity increases species’ dispersal capabilities and facilitates gene flow, which is 

essential for maintaining viable populations (Dixon, Oli, Wooten et al., 2006, Gilbert-Norton, 

Wilson, Stevens et al., 2010, Šálek, Kreisinger, Sedláček et al., 2009). The areas predicted 

to be most suitable in NSW were small and patchy (Figure 3). For instance, the area in 

Tantawangalo with relatively higher predicted HS values was ~9.5km2 in size and located 1050 

~10km from the next patch of suitable HS values at Wog Way, Coolungubra (~7.8km2). 

Binary logistic regression models that incorporated a connectivity variable had consistently 

better fit than other models using HS values alone (Table 5). This suggests that sites that 

are both climatically suitable and connected to larger suitable patches are important in 

predicting the presence of the long-footed potoroo.  1055 

Habitat fragmentation is likely to further compound the poor connectivity of climatically 

suitable areas. There has been significant landuse change in the study area over time, with 

large areas of SEFNP bounded by pine plantations and pastoral lands. Habitat 

fragmentation disrupts ecological processes and restricts the movement of organisms 

thereby isolating subpopulations, which increases extinction risk (Gilbert-Norton et al., 2010, 1060 

Worboys and Pulsford, 2011). Together these factors may hinder the species’ dispersal from 

known populations into NSW, with resulting negative impacts on local population dynamics. 

As such, poor connectivity of suitable habitat may have contributed to the non-detection of 

the species, and is an important consideration for future survey site selection.  

The presence of feral pigs (Sus scrofa), another highly mycophagous species, is a key 1065 

threatening process for the long-footed potoroo as both species compete directly for their 

food resource: hypogeal fungi (NPWS 2002). Also, the destructive feeding habits of feral 

pigs, primarily rooting disturbance, can damage and alter local ecosystems, e.g. reduced 

plant species richness, cover and regeneration (Barrios-Garcia and Ballari, 2012, Hone, 

2002). The camera survey detected evidence of feral pigs at approximately 15% of survey 1070 
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sites. Furthermore, the long-footed potoroo is at risk of predation by foxes and cats, which 

were detected at nearly 50% of sites. These findings are of concern for the persistence of 

the long-footed potoroo and a possible factor contributing to its non-detection.  

Disturbance events such as logging and fire may negatively impact the long-footed potoroo, 

for example, through reduced vegetation cover, increased risk of exposure to predators, 1075 

direct mortality, and disrupted social structure and food availability (Department of 

Sustainability and Environment (DSE), 2009). In Victoria, surveys taken following the 2006-

07 wildfires found that many sites where the long-footed potoroo was recorded were unburnt 

or experienced low-intensity burning (DSE, 2009). A fire regime encompasses multiple 

components including the frequency, intensity, seasonality, heterogeneity and size of fires 1080 

over time (Penman, Christie, Andersen et al., 2011). These components will have varying 

impacts upon the native vegetation, native fauna, pest species and abiotic factors where 

they occur. Most of the survey sites were situated in locations that had not experienced any 

fire or logging for more than 25 years. Data on fire history (i.e. time since fire) was 

incorporated into binary logistic regression models, and was not found to be a significant 1085 

predictor of the species’ presence. Yet as this data only captures one element of a fire 

regime, the inclusion of other elements may prove beneficial for fitting future models.     

The study area also has a long history of logging. Many occurrence records are located in 

previously logged forests (including the long-term Bellbird study site), suggesting regrowth 

forests are utilised by the long-footed potoroo (DSE, 2009). However, long-footed potoroos 1090 

inhabiting mature, multi-aged and old growth forest tend to forage for shorter periods, have 

smaller home ranges and are more fecund (Green and Mitchell, 1997, Green et al., 1998). 

Although many survey sites were in areas that had not been logged for at least 25 years, 

evidence of past logging was frequently apparent, e.g. felled stumps, log debris covered in 

vines, large open spaces with dense bracken understoreys, ‘matchstick’ like regrowth in E. 1095 

sieberi forested areas with minimal understorey. It is possible that the logging history of the 

area contributed to the species’ non-detection via altered vegetation structure and 

microhabitat features. Time since logging was consistently selected as a statistically 

significant explanatory variable in the updated regression models (Table 5). However, it had 

a slight negative impact upon species presence, which is contrary to a priori expectations. 1100 

This may be because of differences in logging data between states. The Victorian dataset 

represented over 100 years of logging history, however, the data were truncated to align its 

history with the shorter history of NSW data, potentially reducing “visibility” in the data of 



51 
 

much older forests in Victoria. Gaining access to expanded logging datasets from NSW may 

be worthwhile investigating in future modelling.  1105 

Or a clever disappearing act?  

It is possible that the long-footed potoroo remained hidden, defying detection in the field 

surveys due to its likely low population density in NSW. The present study tried to minimise 

this outcome by using best practice survey methodologies: camera trapping. Camera 

trapping has been widely used in field surveys for a variety of species, and has been 1110 

particularly successful for detection of small- to medium-sized mammals, including the long-

footed potoroo (Claridge et al., 2010, Paull et al., 2012, Smith and Coulson, 2012, Taylor et 

al., 2014), and more successful than other methods (e.g. Elliot traps, cage traps and artificial 

traps) (Welbourne et al., 2015).  

The study design applied baited traps and extended deployment times (53 to 60 days), 1115 

almost double the survey time required to attain 95% detectability for the species (Scroggie 

et al., 2011) to maximise the chances of detection. Recent camera surveys for the species 

in Victoria utilised deployment times ranging between 21 days (Lumsden et al., 2013) and 

35 days (pers. comms. Andy Murray, 1 December 2016) and successfully recorded the 

species at 41 sites (out of 170) and 35 sites (out of 85), respectively. However, non-detection 1120 

due to the survey method cannot be excluded as a factor that may have impacted the 

results.  

Looking forward: ongoing model refinement 

The success of a model based survey hinges upon the quality of the underlying SDM. 

Guisan et al. (2006) noted four elements that contribute to the success of a model: i) 1125 

positional accuracy of species occurrence records; ii) inclusion of only ecologically relevant 

predictors that are expected to have a physiological effect on the species; iii) use of an 

appropriate model based on available data; and iv) generation of pseudo-absences from 

presence sites of other (rare) species when absence data are not available. These elements 

were considered during the development of the pre-survey Maxent model used to guide field 1130 

surveys. Cross-validation AUC results (Table 2) suggested good predictive power for the 

pre-survey model.  

The choice of relevant predictors and appropriate resolution for data used in a SDM may 

invoke a trade-off between using larger, accessible, datasets and spatial accuracy in 

describing a species-environment relationship (Le Lay et al., 2010). The Maxent models in 1135 

this paper applied a 250m resolution, thought to be appropriate for capturing the species’ 
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environmental-spatial variability and permitting the use of a range of available climate, 

vegetation and topographic data. The pre-survey Maxent model only incorporated 

ecologically relevant climate variables that operate over larger scales. Independent model 

validation found that the pre-survey model could i) successfully distinguish between 1140 

presences and absences (Figure 8) and ii) identify trends in the long-footed potoroo’s 

realised niche (Figure 9)  However, there was significant variability within all datasets and, 

ultimately, the survey failed to detect the species.  

It is possible that the use of climate variables as the sole predictor of suitability may have 

contributed to sampling failures. Hence, the inclusion of other ecologically important 1145 

microhabitat features in future SDMs may enhance the ability to identify suitable habitats. 

Soil type is likely to play an important role in predicting the presence of the species, 

influencing vegetation type and soil moisture, both of which can impact fungal diversity and 

abundance. Quantitative soil data may be obtained from direct soil measurements e.g. 

Australian Classification Soil Type Map for NSW (available at 1150 

http://data.environment.nsw.gov.au/dataset/australian-soil-classification-asc-soil-type-

map-of-nsweaa10). However, these data are available at a high level (“order”) and maps 

are not be available for all locations across NSW, likely due to the large cost and time-

consuming nature of soil analyses. Another approach is to derive soil characteristics and 

composition (e.g. colour, clay mineralogy, organic matter content) from using visible–near 1155 

infrared (vis–NIR) (400–2500 nm) and mid infrared (mid-IR) (2500–25,000 nm) diffuse 

reflectance spectra (Rossel and Chen, 2011).  

Other structural attributes of the vegetation are also likely to be important. For instance, 

attributes of eucalypts (diameter at breast height and upper canopy cover) provide 

measures of potential availability of hosts for hypogeous fungi and, indirectly, the availability 1160 

of carbohydrates for fungi, because fruiting of hypogeous fungi is related to supply of 

carbohydrates from hosts to fungi (Claridge et al., 2000). Understorey cover and density is 

also considered an important feature of primary habitat, providing shelter, nesting sites and 

protection from predators (Scotts and Seebeck 1989; DSE 2009). Data on these structural 

attributes may be available by processing LiDAR (Light Detection and Ranging) data, which 1165 

is acquired by active remote sensing utilising a laser scanning technique. LiDAR data can 

provide useful information on the spatial extent of habitat types and the vertical height and 

structure of vegetation, e.g. canopy structure, wood biomass, groundstorey density and the 

number and height of trees (Tattoni, Rizzolli and Pedrini, 2012). A recent study that 

incorporated LiDAR derived variables in SDMs found that these variables were: often 1170 
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selected and statistically significant predictors in regression models; improved AUC values 

of Maxent SDMs; and provided ease of interpretation from an ecological and management 

perspective (Tattoni et al., 2012).  

Incorporation of these variables may improve model performance, yet ultimately may still 

not be as good as site level variables. Updated SDMs reported in this paper support the 1175 

incorporation of microhabitat variables operating at a finer scale (20m plots). Habitat 

features, such as soil moisture, understorey cover, canopy cover and leaf litter depth, in 

combination with climate suitability, were significant predictors of the long-footed potoroos’ 

presence (Table 5). Furthermore, binary logistic models using the ‘extended’ dataset, with 

no microhabitat data, were a poorer fit than all models that used the smaller, ‘survey’ dataset 1180 

(Table 5 and Table 6).  Even proxies for microhabitat variables may not be as good as actual 

predictors. For instance, models run using extended datasets that included the ‘time since 

logging” variable, which could be considered a proxy for forest age and vegetation structure, 

did not have higher fit values than those models using the microhabitat data. This suggests 

that site-level microhabitat is very important in predicting the presence of the long-footed 1185 

potoroo. However, this could not be tested directly as microhabitat data for the ‘extended’ 

dataset was not available. Overall, future studies may consider using a finer scale resolution 

or combining models of different spatial scales. For instance, Le Lay et al. (2010) combined 

models at two resolutions: 50m and 1km, to successfully survey for a number of rare and 

common plant species.  1190 

Biotic interactions affect a species’ realised niche and thus, are critical to the distribution of 

a species (Hutchinson, 1957). Fungal availability is likely to be a key limiting factor for the 

presence of the long-footed potoroo, and, consequently, competition for fungi food 

resources with feral pigs is a significant threatening process (Department of Sustainability 

and Environment (DSE), 2009). Bateman, VanDerWal, Williams et al. (2012b) outline an 1195 

SDM approach for another mycophagous species, the northern bettong (Bettongia tropica), 

whereby a resource SDM and competitor SDM were generated. The predicted values from 

these models were incorporated into an SDM of the target species (i.e. climate + resource 

+ competition variables). They found that incorporating resource related biotic interactions 

gave rise to models with stronger evaluation measures (AUC), than models utilising climate 1200 

suitability alone (Bateman et al., 2012b).  

Modelled predictions in this paper were based upon long-term climate data (averaged over 

a 20-year period), producing a static representation of suitable habitat (Bateman, 

VanDerWal and Johnson, 2012a, Fancourt, Bateman, VanDerWal et al., 2015). Recent 
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studies suggest this may be a weakness when it comes to predicting species distributions, 1205 

as long-term climate averages do not provide information on the full range of values an 

organism may experience through its life, or at key life stages crucial to fitness; nor can they 

capture the impact of short term extreme weather events on species’ distribution and 

abundance (Bateman et al., 2012a, Reside, VanDerWal, Kutt et al., 2010). Weather SDMs 

have been proposed to provide information on temporal variations in the amount and 1210 

distribution of climatically suitable space (Fancourt et al., 2015). Studies have found that 

these models are better able to define habitat suitability than climate models (Reside et al., 

2010; Bateman et al., 2012). Seasonal differences in microhabitat use by long-footed 

potoroos have been detected, with more individuals caught more frequently in moister gully 

environments in drier spring and summer months, and in mid-slopes and lower slopes during 1215 

wetter autumn and winter months (Scotts and Seebeck, 1989). As such, future studies 

investigating the use of weather SDMs may be worthwhile to determine if there are any 

changes to the extent and location of predicted suitable habitat over different time periods. 

The modelling technique chosen is another factor influencing model quality. Studies have 

compared the success of multiple SDMs (Elith et al., 2006, Elith and Graham, 2009). At this 1220 

stage, there is no single “best” SDM that can be universally applied. Instead, the optimal 

choice should depend upon the species’ specificities and existing data (Le Lay et al., 2010). 

For this study, available data meant that the NSW field survey was informed by presence-

only modelling techniques and expert opinion. Maxent was selected as it has become one 

of the most widely used techniques due to a number of factors, including its high predictive 1225 

capacity, simplicity of use and effectiveness for guiding field surveys (Aizpurua et al., 2015, 

Elith et al., 2006, Fourcade et al., 2014).  

However, models incorporating both presence and absence data have been found to 

outperform presence-only techniques (Webb et al., 2014). On the completion of the NSW 

field surveys in 2017, no new records were found and sites with no new long-footed potoroo 1230 

observations could be deemed ‘absences’. This determination may be considered 

appropriate due to the extended camera deployment period. Also, additional presence and 

absence data from camera surveys in Victoria from 2012-2016 were obtained after the initial 

field survey was underway. Thus, moving forward, it would be worthwhile investigating 

alternative modelling techniques to determine whether any additional areas of suitable 1235 

habitat are identified that could be candidates for future surveys for the long-footed potoroo.  

One possible approach would be regression based SDMs such as Generalised Linear 

Models (GLM) or Generalised Additive Models (GAM). GLM and GAM have a strong 
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statistical foundation and are able to capture complex ecological relationships, which has 

resulted in their extensive use for modelling species’ distributions (Elith et al., 2006). Guisan, 1240 

Edwards and Hastie (2002) provide a detailed overview of the use and application of GLM 

and GAMs, highlighting their use for modelling the distributions of a multitude of species. In 

GLMs the explanatory variables (i.e. parametric linear predictor) are related to the mean of 

the response variable (i.e. binary presence/absence) using a link function. As such, GLMs 

can handle a variety of distributions including Poisson, Binomial, Gaussian or Gamma. They 1245 

can also incorporate transformations of explanatory variables e.g. quadratic, cubic terms 

(Guisan and Zimmermann, 2000). In contrast, GAMs fit linear functions using non-

parametric smoothers independently to each predictor and additively calculate the 

component response (Elith et al., 2006, Guisan and Zimmermann, 2000). Both types of 

regression model can also incorporate additional information on ecological processes, e.g. 1250 

dispersal or connectivity (Guisan and Zimmermann, 2000).  

Another approach is ensemble forecasting, which combines the predictions of multiple 

modelling techniques into a single projection (Araújo and New, 2007). Although the uptake 

of this approach has typically been in studies evaluating species’ distributions under various 

climate change scenarios, it may prove to be a useful approach to guide fieldwork. For 1255 

instance,  Le Lay et al. (2010) used an ensemble forecasting approach, combining a 

presence-only and presence/absence model, to guide fieldwork for eight plant species. 

Sampling guided by the ensemble model was found to be more efficient than random 

sampling for six out of eight species and enabled the discovery of five new populations of a 

rare plant species. The ensemble model also had higher predictive accuracy than individual 1260 

models (based upon AUC and weighted Kappa) (Le Lay et al., 2010).  

The benefits of ongoing model refinement are highlighted in the post-survey Maxent model 

(Figure 12). The inclusion of additional presence records from Victoria has identified several 

areas as being more suitable than previously predicted. These areas are relatively isolated 

and inaccessible, but worth considering for future survey work. Prior to conducting further 1265 

field surveys in this area, the use of new data layers (LiDAR) or technologies, e.g. drones, 

to capture images of the microhabitat could be considered to identify suitable microhabitat 

features, ultimately aiding species detection. 

In conclusion, the pre-survey Maxent model presented in this paper predicted a distribution 

that provided insights into a number of new potential survey locations for the long-footed 1270 

potoroo in NSW. Ground validation of the model using an independent presence/absence 

dataset and microhabitat variables provided support for the predictive capabilities of the 
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model. However, the field survey was unsuccessful. Model refinement suggests that 

additional factors, such as, microhabitat and connectivity are also important in predicting the 

presence of the species. If the long-footed potoroo is still present, it is likely to be extremely 1275 

rare. Although an extensive survey was conducted, there are still large areas of SEFNP that 

were not surveyed, either due to time or their relative inaccessibility, as well as areas closer 

to the coast (e.g. Nadgee Nature Reserve) that may be worth surveying, particularly given 

recent findings of the species’ in more coastal habitats in Victoria. 
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SUPPLEMENTARY MATERIAL 

 

SM 1: Summary of BIOCLIM Variables 

Temperature Indices 1730 
BIOCLIM 1 Annual Mean Temperature 
BIOCLIM 2 Mean Diurnal Range(Mean(period max-min)) 
BIOCLIM 3 Isothermality (P2/P7) 
BIOCLIM 4 Temperature Seasonality (Coefficient of Variation) 
BIOCLIM 5 Max Temperature of Warmest Period 1735 
BIOCLIM 6 Min Temperature of Coldest Period 
BIOCLIM 7 Temperature Annual Range (P5-P6) 
BIOCLIM 8 Mean Temperature of Wettest Quarter 
BIOCLIM 9 Mean Temperature of Driest Quarter 
BIOCLIM 10 Mean Temperature of Warmest Quarter 1740 
BIOCLIM 11 Mean Temperature of Coldest Quarter 
 
Precipitation Indices 
BIOCLIM 12 Annual Precipitation 
BIOCLIM 13 Precipitation of Wettest Period 1745 
BIOCLIM 14 Precipitation of Driest Period 
BIOCLIM 15 Precipitation Seasonality(Coefficient of Variation) 
BIOCLIM 16 Precipitation of Wettest Quarter 
BIOCLIM 17 Precipitation of Driest Quarter 
BIOCLIM 18 Precipitation of Warmest Quarter 1750 
BIOCLIM 19 Precipitation of Coldest Quarter 
BIOCLIM 20 Annual Mean Radiation 
 
Radiation Indices 
BIOCLIM 21 Highest Period Radiation 1755 
BIOCLIM 22 Lowest Period Radiation 
BIOCLIM 23 Radiation Seasonality (Coefficient of Variation) 
BIOCLIM 24 Radiation of Wettest Quarter 
BIOCLIM 25 Radiation of Driest Quarter 
BIOCLIM 26 Radiation of Warmest Quarter 1760 
BIOCLIM 27 Radiation of Coldest Quarter 
 
Moisture Indices 
BIOCLIM 28 Annual Mean Moisture Index 
BIOCLIM 29 Highest Period Moisture Index 1765 
BIOCLIM 30 Lowest Period Moisture Index 
BIOCLIM 31 Moisture Index Seasonality (Coefficient of Variation) 
BIOCLIM 32 Mean Moisture Index of Highest Quarter MI 
BIOCLIM 33 Mean Moisture Index of Lowest Quarter MI 
BIOCLIM 34 Mean Moisture Index of Warmest Quarter 1770 
BIOCLIM 35 Mean Moisture Index of Coldest Quarter 
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SM 2: Maxent ‘All Variables’ Model Data Output: Jackknife Analysis 1775 

The environmental variable with highest gain when used in isolation is Bioclim 34, which 
therefore appears to have the most useful information by itself. The environmental variable 
that decreases the gain the most when it is omitted is Bioclim 14, which therefore appears 
to have the most information that isn't present in the other variables. Values shown are 
averages over replicate runs. 1780 

SM 3: Maxent ‘ALL variables’ Model: Variable Contribution Analysis 

This table gives estimates of relative contributions of the environmental variables to the 
Maxent model. To determine the first estimate, in each iteration of the training algorithm, the 
increase in regularized gain is added to the contribution of the corresponding variable, or 
subtracted from it if the change to the absolute value of lambda is negative. Values shown 1785 
are averages over 5 replicate runs. The variables with the greatest contribution to the model 
are Bioclim 34, Bioclim 5 and the NVIS Sub category. 

 

SM2: Jackknife analysis (left)      /      SM3: Variable Contribution Analysis (right) 

  1790 
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SM 4: Maxent pre-survey Model  

a) Jackknife analysis of variable importance. The environmental variable with highest gain 
when used in isolation is Bioclim 33, which therefore appears to have the most useful 
information by itself. The environmental variable that decreases the gain the most when it is 
omitted is Bioclim 5, which therefore appears to have the most information that isn't present 1795 
in the other variables. Values shown are averages over replicate runs. 

 

b) Variable contribution analysis: The following table gives estimates of relative contributions 
of the environmental variables to the Maxent model. Bioclim 32 and Bioclim 5 make the 
greatest contribution to the model predictions. 1800 

 

c) Variable response curves for the Pre-survey model: The curves show how the logistic 
prediction changes as each environmental variable is varied, keeping all other 
environmental variables at their average sample value. The curves show the mean response 
of the 5 replicate runs. Response curves suggest that the highest predicted habitat suitability 1805 
tends to be associated with higher moisture index values (see response curves for Bioclim 
30, 32 and 33). 
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SM 5: Detailed Maps of NSW survey locations     1810 
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SM 6: Correlation analysis of Understorey and Groundstorey cover estimation 
methods  

 

SM 7: Soil moisture regression model used as the basis for the “Soil moisture 1820 
residual” variable calculation.  

 

SM 8: Table Summarising Additional Variables considered in Model Refinement: 
binary logistic regression  

Variable Dataset Name Data Summary and Source 

Time Since 

Fire 

“Time since fire” 

 

 

 

 

Data sources:  

NSW: “Fire_History_Export” 

 

 

VIC: “fire_history” 

Time since fire was computed as the difference 

between i) survey year i.e. 2017 and either ii) date of 

last fire or iii) in the instance where there was no fire 

record, the date of oldest record in NSW i.e. 1951). 

 

Data Sources:  

Polygon of fire history data for SE Forest National 

Park. Oldest record = 1951 

Source: NPWS 

 

Polygon of fire history data for all of Victoria.  

Oldest record = 1903 

Source:https://www.data.vic.gov.au/data/dataset/fire

-history-records-of-fires-primarily-on-public-land  

Copyright © The State of Victoria, Department of 

Environment, Land, Water & Planning 2017 

 

Correlation (corr/p(uncorr)) Understorey 

(Board %)

Understorey 

(Intercept 

Points)

Understorey (Board %) 3.79E-05

Understorey (Intercept 

Points) 0.77431

Correlation (corr/p(uncorr)) Groundstorey 

(Board %)

Groundstorey 

(Intercept 

#points)

Groundstorey (Board %) 2.71E-05

Groundstorey (Intercept 

#points) 0.78305

https://www.data.vic.gov.au/data/dataset/fire-history-records-of-fires-primarily-on-public-land
https://www.data.vic.gov.au/data/dataset/fire-history-records-of-fires-primarily-on-public-land
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Variable Dataset Name Data Summary and Source 

Time Since 

Logging 

Time since logging 

 

 

 

 

 

Data Sources: 

NSW:“FNSW_Compartments_Ede

n 1999_Export all” 

 

VIC:“LASTLOG25” 

Time since logging was computed as the difference 

between i) survey year i.e. 2017 and either ii) date of 

last logging event or iii) in the instance where there 

was no logging event record, the date of oldest 

record in NSW i.e. 1972). 

 

Data Sources: Polygon of logging history data for SE 

Forest National Park. 

Oldest record =1972 

Source: NPWS 

 

Polygon of logging history data for all of Victoria. 

Oldest record = 1954 

Source=http://services.land.vic.gov.au/SpatialDatam

art/viewMetadata.html?anzlicId=ANZVI0803002521

&extractionProviderId=1   

Copyright © The State of Victoria, Department of 

Environment, Land, Water & Planning 2017. 

 

LFP 

Connectivity 

Connectivity_5km_mean 

 

 

 

 

 

 

CONN_5km: Connectivity values were calculated in 

ArcGIS10.2 using average Maxent predicted HS 

values within a 5km buffer placed around each study 

site. A buffered site with a higher mean HS is 

expected to be better connected and positively 

impact the long-footed potoroo’s probability of 

presence.  

 

Microhabitat 

Variables 

 

• Canopy cover (% cover) 

• Understorey cover (Total # 
intercept points) 

• Groundstorey cover (Total # 
intercept points) 

• Groundcover Types: 
➢ Leaf litter (% cover) 
➢ Rock (% cover) 
➢ Bare (% cover) 
➢ Log (% cover) 
➢ Grasses (% cover) 

• Soil moisture residual 

• Leaf litter depth (cm) 

Obtained during current survey in NSW and Victoria. 

Refer to microhabitat survey methodology. 

 1825 

 

  

http://services.land.vic.gov.au/SpatialDatamart/viewMetadata.html?anzlicId=ANZVI0803002521&extractionProviderId=1
http://services.land.vic.gov.au/SpatialDatamart/viewMetadata.html?anzlicId=ANZVI0803002521&extractionProviderId=1
http://services.land.vic.gov.au/SpatialDatamart/viewMetadata.html?anzlicId=ANZVI0803002521&extractionProviderId=1
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SM 9: Raw Data: Aggregated Microhabitat Field Survey Data, Time Since Logging, 
Time Since Fire and Connectivity 
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Animal Conservation: Author Guidelines 

Research papers 

Must be limited to 4000 words, excluding references, tables and figures 

Conflict of interest 

Authors must declare details of any potential conflict of interest. A conflict of interest exists 1835 

when professional judgement concerning a primary interest (such as animal welfare or the 

validity of research) may be influenced by secondary interests (personal matters such as 

financial gain, personal relationships or professional rivalry). 

Presentation 

Typescripts must be typed in double spacing, and pages should be numbered consecutively, 1840 

including those containing acknowledgements, references, tables and figures. Lines must 

be numbered, preferably within pages. 

Manuscripts for review must consist of no more than two files and should, ideally be a single 

file with figures embedded in the text (please note that separate high resolution figure files 

will be required upon acceptance - please see below). Typescripts must be in English (both 1845 

English and American English are acceptable). 

The Editors reserve the right to modify accepted manuscripts that do not conform to 

scientific, technical, stylistic or grammatical standards, and these minor alterations may not 

be seen by the authors until the proof stage. 

Conventions 1850 

The Metric system must be used and SI units where appropriate. For further details see 

Baron, D.N. (1988). Units, symbols and abbreviations. 5th edition. London: Royal Society of 

Medicine Series. Whole numbers one to nine should be spelled out and number 10 onwards 

given in numerals. If a new taxon is described, the institution in which the type material is 

deposited must be given, together with details of the registration assigned to it. Full binomial 1855 

names should be given on the first occasion an organism is mentioned (and abbreviated 

thereafter), except at the beginning of a sentence. Avoid footnotes except to add information 

below the body of a table. Do not use initial capitals for the common names of animals 

unless derived from a proper noun. 
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Typescript 

The typescript should follow the conventional form and must include: 

1. Title page giving a concise title (do not include scientific names in the title), followed 

by a list of authors' names and the institutions where the work was carried out. The 1865 

name, address and email address of the corresponding author should also be given. 

A short title for page headings must be provided (maximum 8 words). 

2. Abstract of not more than 300 words which should list the main results and 

conclusions. The abstract should also explain the importance of the paper in a way 

that is accessible to non-specialists and should describe the novel aspects of the 1870 

research and highlight the relevance of the findings to other taxa or general principles 

in conservation biology. Authors may submit non-English abstracts for online 

publication to allow the international research community greater access to published 

articles. Translated abstracts should be submitted in pdf format as supplementary 

material. The Editors have no input into the content of supplementary material, 1875 

therefore accuracy is the sole responsibility of the authors. 

3. Keywords. A maximum of eight keywords may be suggested. 

4. Introduction, which should not provide a review of the area of work but should 

introduce the reader to the aims and context for the work described. 

5. Materials and Methods should be sufficient to allow the work to be replicated, but 1880 

should not repeat information described fully elsewhere. 

6. Results should be restricted to a factual account of the findings obtained and the text 

must not duplicate information given in Tables and Figures. 

7. Discussion. This should point out the significance of the results in relation to the 

reasons for undertaking the research, and describe the novel aspects of the research 1885 

and the relevance of the findings to a range of taxa or general principles in 

conservation biology. 

Please note that appendices are no longer published in the printed version of the journal. 

Supplementary material may be published online only. References Accuracy of references 

is the responsibility of the author(s). 1890 
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References 

Must be checked against the text to ensure (a) that the spelling of authors' names and the 

dates given are consistent and (b) that all authors quoted in the text (in date order if more 1895 

than one) are given in the reference list and vice versa. The full title of the paper must be 

given together with the first and last pages. 

Journal titles should be abbreviated in accordance with the Zoological Record Serial 

Sources, published annually by BIOSIS. 

Book titles should be followed by the place of publication and the publisher. Please give the 1900 

name of the editor(s) if different from the author cited. 

In the text, references must be arranged chronologically with the surname(s) of the author(s) 

followed by the date. Use a, b, etc. after the year to distinguish papers published by the 

same author(s) in the same year. Reference should not be made to unpublished data. 

i. Two authors: use both names and the year. Do not use et al. 1905 

ii. Three authors: on first citation use all authors' names and the year. Thereafter it is 

usually sufficient to give the name of the first author followed by et al. and the date. 

iii. More than three authors: on first citation and thereafter give the name of the first 

author followed by et al. and the date. 

In the list, references must be arranged first alphabetically under author(s) name(s) and then 1910 

in chronological order if several papers by the same author(s) are cited. 

Examples 

• Lemelin, P. (1996a). Relationships between hand morphology and feeding strategies 

in small-bodied prosimians. Am. J. phys. Anthrop. (Suppl.) 22, 148. 

• Lemelin, P. (1996b). The evolution of manual prehensility in primates: a comparative 1915 

study of prosimians and didelphid marsupials. PhD thesis, State University of New 

York at Stony Brook. 

• Pianka, E. R. (1978). Evolutionary ecology. 2nd edn. New York: Harper & Row. 

• Whitear, M. (1992). Solitary chemosensory cells. In Fish chemoreception: 103-125. 

Hara, T. J. (Ed.). London: Chapman & Hall. 1920 
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References in Articles 

We recommend the use of a tool such as EndNote or Reference Manager for reference 

management and formatting. EndNote and Reference Manager reference styles can be 

searched for here: http://endnote.com/downloads/styles 

Figures 1925 

Illustrations may be line drawings or photographs and should be numbered consecutively in 

the text as Fig. 1, Fig. 2 etc. Component parts of figures should be labelled (a), (b), (c) etc. 

Captions for figures, which should be self-explanatory, must be typed, double spaced, on a 

separate page and must not contain details of results. 

Our preferred electronic file type is vector-format encapsulated post script (EPS) because 1930 

these images are scaleable and therefore do not lose quality in the online PDF. All line 

drawings or photographs with added labelling should be supplied in EPS format. Half tones 

without any labelling should be supplied in TIFF format at 300 dots per inch minimum. If line 

drawings cannot be supplied as EPS files then they must be in TIFF format with a minimum 

resolution of 800 dpi. These resolutions also apply to any images embedded into an EPS 1935 

file. 

Line drawings 

Should not be larger than twice the final size and in no circumstances should exceed 168 x 

220 mm. The axes of graphs should be carefully chosen so as to occupy the space available 

to the best advantage. When reduced, the drawing should fit into either one (80 mm) or two 1940 

(168 mm) columns, preferably the former. 

Lines should be bold enough to stand reduction to about 0.25-0.35 mm. Line drawings 

should be as simple as possible and many computer-generated figures, such as 3-

dimensional graphs, fine lines, gradations of stippling and unusual symbols, cannot be 

reproduced satisfactorily when reduced. Unsatisfactory line drawings will have to be 1945 

redrawn at the author's expense. Preferred symbols are open and filled circles, boxes and 

triangles, and these should be used consistently. Lettering should be kept to a minimum and 

should be self-explanatory and unambiguous and of sufficiently high quality and size to be 

clearly visible after reduction to final size. Lettering of all figures within the manuscript should 

be of uniform style in a sans serif typeface (Helvetica) and capitals should be used for the 1950 

initial letter of the first word only. Bold lettering should not be used. 

Photographs 

http://endnote.com/downloads/styles
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Should be the same size as they will appear in the journal and should be selected to fit 

neatly into one column (80 mm) or two columns (168 mm). Photographs should be labelled 

and numbered as for line drawings. For microscopical preparations, scale bars with 1955 

appropriate units must be provided; statements of magnification are not acceptable. 

Colour Figures 

May be accepted provided that they are of a very high quality. The cost of reproduction 

must be met by the author(s) and a binding agreement to meet the costs will be required 

before the manuscript can be accepted for publication. For colour figures, the instructions 1960 

for the preparation of photographs should be followed. Original illustrations should not be 

sent until the paper has been accepted and will only be returned on request. Any article 

received by Wiley Blackwell with colour work will not be published until the colour work 

agreement form has been returned to the following address: 

 1965 

Customer Services (OPI) 

John Wiley & Sons Ltd, 

European Distribution Centre 

New Era Estate 

Oldlands Way, Bognor Regis 1970 

West Sussex PO22 9NQ 

 

Tables 

These must fit the page size (220 x 168 mm) without undue reduction. Oversize tables will 

not be accepted. Tables are referred to as Table 1, Table 2, etc., and any sub-sections as 1975 

(a), (b), etc. Footnotes in tables should be indicated by superscript a, b. 
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http://zslpublications.onlinelibrary.wiley.com/hub/journal/ACV_colourwork_form.pdf

