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Abstract

In the context of failure time data, interval censoring is a censoring type which has

become increasingly prevalent in many areas, including medical, financial, actu-

arial and sociological studies. In interval-censored data, the actual failure time is

neither exactly observed nor right-censored nor left-censored, but one can establish

boundaries of an interval within which the survival event has occurred. The aim

of this thesis is to develop a maximum penalized log-likelihood (MPL) method

which estimates model parameters of the semiparametric additive hazards model

with partly interval-censored failure time data. This data will contain exactly ob-

served, left-censored, finite interval-censored and right-censored data. This MPL

method estimates the regression coefficients and the underlying non-parametric

baseline hazard function, simultaneously, by imposing non-negativity constraints

on the baseline hazard and the overall hazard function. We approximate infinite

dimensional baseline hazard from a finite number of non-negative basis functions.
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The chosen MPL method guarantees the smoothness of the baseline hazard es-

timates, which clearly depicted the trend of how the estimates changed over time.

We adopted the augmented Lagrangian method to solve this constraint optimiza-

tion problem, and the estimates were obtained simultaneously using the Newton

and multiplicative iterative (Newton-MI) algorithm followed by line-search steps.

The asymptotic properties of these derived constrained MPL estimators were stud-

ied when the number of basis functions was fixed and when it went to infinity. We

investigated the performance of this proposed MPL method by conducting simu-

lation studies for both right-censored data and partly interval-censored data. Both

of the simulation studies demonstrated that our method worked well for small

and large datasets as well as small and large censoring proportions. The derived

asymptotic standard deviation formula was generally accurate in approximating

the standard deviation of the constrained MPL estimates. In addition, we also

made comparisons between our MPL method and existing parameter estimation

methods developed by Aalen (1980) and Lin & Ying (1994). Results show that our

MPL method provided better estimates. In a real data analysis, we applied our

MPL method to fit the additive hazards model to a melanoma data set with all

types of censoring, which was provided by the Melanoma Institute of Australia.
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Chapter 1

Introduction

Survival analysis describes the analysis of data selected from a well-defined time

origin until the occurrence of some event of interest or end-point (Collett 2003).

For that reason survival analysis is often referred to as time-to-event analysis.

It is widely used in research areas, such as medicine, biological studies, financial

studies, epidemiological studies, sociological studies and engineering. In engineer-

ing sciences, survival analysis is largely known as reliability theory or reliability

analysis, because modeling the lifetime of mechanical or electronic components is

the main purpose of the analysis (Lawless 2002). In the field of economics, survival

analysis is referred to as event history analysis or duration analysis. The time taken

to commit a crime, or recidivism, after former convicts have been released from

jail, could be considered as an example. Even though survival analysis is known

by different names in many scientific fields, it uses the same analytical technique
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2 1.1. Failure time data

to investigate those survival models (Lee & Wang 2003).

Generally, the occurrences of events of interest in survival analysis are referred

to as failures, even though the event may not actually be a failure; for instance,

the birth of a child. When the response variable is time to failure, then we can use

the term failure time data to represent it. A basic overview of failure time data is

presented in the next section.

1.1 Failure time data

Failure time data concerns positive random variables which represent the time

taken to a certain event. It appears extensively in biomedical studies and technical

reliability studies, but there are many other disciplines where it may also occur. In

a medical research context, the starting time, diagnosis date or the time of origin

often corresponds to the enrolment of an individual into a study. The data is re-

ferred to as a failure time if the end-point of a study is the death of an individual.

However, a similar kind of data can be obtained when the end-point of a study is

not a terminal event, such as the diagnosis of a secondary disease or recurrence of

symptoms. Therefore, sometimes it is possible to use the term survival data and

can refer the variable of interest as survival time. As a generic term, the time from

the beginning of the study up to the event of interest can be denoted as survival

time (Aalen et al. 2008). While these discussions refer to survival times and pa-
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tients, and thereby imply survival analysis in human subjects, the methodology

discussed applies broadly to all time-to-event data with experimental units that are

not necessarily human subjects. Therefore, the terms survival data, failure data,

and time-to-event data are used interchangeably throughout this thesis. Generally,

survival data is not symmetrically distributed, and it tends to be positively skewed

implying that there is a longer tail to the right which is generally caused by cen-

soring. Therefore, it is inappropriate to use standard statistical modeling methods

to analyse survival data (Torben & Scheike 2006).

The main reason which differentiates the failure time data from other types

of data is the existence of censoring. A failure time is known to be exactly ob-

served when the actual failure time is observed. When the end-point of interest

has not been observed for an individual, the failure time is referred to as censored

(Therneau & Grambsch 2000) which implies that the failure time is known to fall

within a certain range instead of knowing the exact time. Censoring might be due

to an individual being still alive at the end of the study or the survival status of

that person might not be known as he or she has not been located for follow-up.

There are three types of censoring: right-censoring, left-censoring and finite

interval-censoring. When the failure time of interest is greater than the study end

time, it is referred to as right-censored failure time data. This often occurs when

an individual has dropped out, or a survival study finished before the occurrence
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of the event of interest. In such situations, the corresponding failure time is known

to be greater than the censoring time. Another form of censoring is known as left-

censoring, which occurs when the actual failure time of an individual is less than the

observed time. Yet another censoring method is available known as finite interval-

censoring. If the individuals of interest are not under continuous monitoring, the

actual failure time is neither exactly observed nor right-censored nor left-censored,

but one observes the interval within which the survival event has occurred.

Consider a survival study which focuses on time to recurrence of a tumor after

removal of the primary site and assume that there are follow-up consultations at

six and twelve months. If an individual is found to have had a recurrence at the

first follow-up, then it is left-censored. If the patient is free of a tumor recurrence at

six months, but it is found to have had a recurrence at the second follow-up, then

it is finite interval-censored and if the recurrence has not occurred by the second

and final follow-up, then it is considered as right-censored. Leiderman et al. (1973)

provides a classic example of censoring types using some data on children’s ability

to learn. Right-censored or left-censored failure times can be considered as special

cases of interval-censored failure times (Sun 2006). Thus, through out this thesis we

use the term interval-censored data to represent a collection of left, right and finite

interval-censored data. In some survival studies, the failure time of an individual

is restricted to knowledge of whether or not it exceeds a time point. This type of
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data is generally referred to as current status data (e.g. Rossini & Tsiatis 1996)

and they are just equivalent to left and right-censoring.

Truncation is another feature which distinguishes the failure time data from

the other types of data. In truncation, individuals enter the study only if they

survive a sufficient length of time or individuals are included in the study only if

the event has occurred by a given date (Mandel 2007). Analyzing failure time data

with censoring is the main focus of this thesis, and truncation is not considered.

1.2 Notations and formulations

Some notation for failure time data is defined in this section. Suppose in a given

survival study, there are n independent subjects. For each subject denoted by i,

i = 1, . . . , n, the failure time is denoted by Ti, and the censoring time is denoted by

Ci. For interval-censored failure time data, Ti is not always exactly observed and

we may only observe a time interval within which the failure event has occurred.

Thus, according to the definition of interval-censored data discussed in Section 1.1,

for Ti there is an observed time interval (Li, Ri] such that

Ti ∈ (Li, Ri], for i = 1, 2, . . . , n, (1.1)

where Li ≤ Ri. Throughout this thesis, it is assumed that Ti, Li, Ri and Ci are

continuous random variables. Ti is exactly observed, when Li = Ri. If Li = 0, it

implies that Ti is left-censored and if Ri =∞, then Ti is right-censored. Ti is said
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to be finite interval-censored if (Li, Ri] satisfies the requirement 0 < Li ≤ Ri <

∞. Throughout this thesis, partly interval-censored data, which is defined as a

collection of fully observed and interval-censored data, is considered.

Sun (2006) presented an alternative method for representing interval-censored

data based on the assumption that each subject i in a given survival study is

observed twice and the suggested functional form is given by:

{
Ci1, Ci2; δi1 = I(Ti ≤ Ci1), δi2 = I(Ci1 < Ti ≤ Ci2), δi3 = 1−δi1−δi2; i = 1, 2, . . . , n

}
,

(1.2)

where Ci1 and Ci2 are the two monitoring random variables satisfying Ci1 < Ci2,

and δi1, δi2 and δi3 are the indicators. Here I(·) is an indicator function. Note that

the formulation in equation (1.1) can be easily obtained by equation (1.2).

It is possible to obtain a generalized form of interval-censored failure time

data representation by assuming that each individual is observed more than twice.

Therefore, a sequence of monitoring time points exists, for an instance Ci1 ≤

Ci2 ≤, . . . ,≤ CiMi
, where Mi is the number of monitoring random times for the

individual i. Then, the observed information can be expressed as:

{Mi, Cij; δij = I(Ci(j−1) < Ti ≤ Cij); i = 1, 2, . . . , n; j = 1, 2, . . . ,Mi}, (1.3)

where Ci0 = 0. Failure time data of this type is often described as mixed case

interval-censored data (Wellner 1995, Schick & Yu 2000). Subsequently, Wang

et al. (2010) used functional formulations similar to equations (1.2) and (1.3) in
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developing a counting process approach for interval-censored data, which will be

discussed under Section 2.3.1.

1.3 Hazard function and survival function

The hazard and survival functions are two common functions used in survival

studies. Those two functions along with relevant existing relationships between

survival measures will be discussed in this section. Denote h(t) and S(t) as the

hazard and the survival function of failure time T respectively. h(t) is commonly

used to express the hazard or risk of death at time t. It is obtained using the

conditional probability that an individual fails at time t, given that the subject

has survived up to that time. Thus, h(t) defines the instantaneous probability that

a subject fails at time t given that the subject has not failed before t, i.e.,

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
. (1.4)

Note that h(t) must be a non-negative function.

Suppose T has a probability density function f(t), then the cumulative distri-

bution function of T is given by,

F (t) = P (T < t) =

∫ t

0

f(u)du, (1.5)

and it represents the probability that the survival time T is less than some random

value t. On the other hand, the survival function S(t) is defined as the probability
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that the failure time T is greater than, or equal to, t, and therefore,

S(t) = P (T ≥ t) = 1− F (t). (1.6)

A useful relationship between h(t) and S(t) can be obtained by considering equa-

tions (1.4), (1.5) and (1.6) as follows,

h(t) ≡ f(t)

S(t)
. (1.7)

Then, the hazard function can be re-expressed as

h(t) = − d

dt
{logS(t)}, (1.8)

and

S(t) = exp{−H(t)}, (1.9)

where H(t) =
∫ t

0
h(u)du, which is known as the cumulative hazard function.

1.4 Hazard model

In survival analysis, the main concern is to calculate the hazard to evalaute the risk

of failure at any time (after the time origin) of the survival study. Therefore, the

hazard function is modelled directly. The hazard function is a convenient method

of describing the probability distribution for an event time T . Also, there may

be explanatory variables which might be used in a survival study as covariates
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affect the final outcome (Klein & Moeschberger 2003). Two models are mainly

used to explore the relationship between the hazard function of an individual and

its covariates. They are: (i) the proportional hazards model and (ii) the additive

hazards model.

1.4.1 Proportional hazards model

The proportional hazards model (or well-known as Cox PH model) (Cox 1972) is

one of the most popular survival models (Kalbfleisch & Prentice 2002). The Cox

PH model is based on the proportional hazards assumption, that the hazard ratio

of two strata (determined by the particular choices of covariates) is constant over

time. For each individual i, the Cox PH model specifies h(t|xi) as

h(t|xi) = h0(t) exp(xiβ). (1.10)

Here, h0(·) is an unspecified (non-parametric) baseline hazard function which shows

the shape of the hazard rate when covariates are set at baseline values, while

exp(xiβ) is the hazard ratio which can be used to explain how the magnitude

of the hazard depends on covariates (Aalen et al. 2008). In equation (1.10), xi is

the time-independent covariate vector, and β is a vector of regression coefficients

which is usually the primary interest in the model fitting process. Here, h0(t) and

the regression coefficients, β can be considered as model parameters. This model

assumes that the covariates act multiplicatively on some unknown baseline hazard.
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For two individuals with corresponding covariate vectors denoted by xi and xj, the

ratio of their hazard functions at time t is given by,

h(t|xi)
h(t|xj)

≡ exp{(xi − xj)β}. (1.11)

As discussed under model (1.12), this ratio is called the hazard ratio of an indi-

vidual with risk factor xi, compared to an individual with risk factor xj. Thus, it

is possible to conclude that the hazards are proportional to each other as they do

not depend on time t.

The cumulative hazard function for model (1.10) is

H(t|xi) =

∫ t

0

h(u|xi)du = H0(t) exp(xiβ), (1.12)

where H0(t) =
∫ t

0
h0(u)du is known to be the cumulative baseline hazard function.

Then the survival function is given by,

S(t|xi) = exp{−H0(t) exp(xiβ)} = [S0(t)]exp(xiβ) (1.13)

where S0(t) is the baseline survival function.

1.4.2 Additive hazards model

An additive hazards model is a good alternative when the proportionality assump-

tion in the Cox PH model is not satisfied (Huffer & McKeague 1991). In contrast

to the Cox PH model, where the covariates are assumed to act multiplicatively on

the baseline hazard function, the additive hazards model assumes that the effect
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of covariates is to additively increase or decrease the hazard function. This model

is quite useful when an absolute change in risk is of more interest than a relative

change in risk. Also, examples exist where the additive hazards model fits better

when compared to the Cox PH model (Breslow & Day 1987).

Similar to the Cox PH model, the baseline hazard h0(t) and the regression

coefficients β are the model parameters of interest for the additive hazards model.

In general, in order to be a valid additive hazards model, there are two requirements

to be satisfied;

(a) non-negative baseline hazard: h0(t) ≥ 0, and (1.14)

(b) non-negative hazard function: h(t|xi(t)) ≥ 0. (1.15)

The requirements specified in (1.14) and (1.15) are referred to as non-negativity

constraints for the additive hazards model.

Two forms of additive hazards models are presented in this section. The first

was introduced by Aalen (1980, 1989) and the second was introduced by Lin &

Ying (1994). Aalen (1980, 1989) considered a more generalized additive hazards

model which specifies the hazard function, h(t|xi(t)) for each individual i at a time

point t according to

h(t|xi(t)) = h0(t) + xi(t)β(t), (1.16)

where β(t) = (β1(t), β2(t), . . . , βp(t))
> is a vector of time-varying regression coef-

ficients in which βj(t) denotes the excess risk at time t for the jth covariate and
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xi(t) = (xi1(t), xi2(t), . . . , xip(t))
> is a p× 1 vector of possibly time-dependent co-

variates. Since this model does not make any distributional assumptions, this can

be identified as a non-parametric model (Aalen et al. 2008). Note that Aalen’s ad-

ditive hazards model allows the regression coefficients to be functions of t, thus it

can reveal the changes in the influence of the covariates over time. This is consid-

ered as one of the main advantages of Aalen’s model. Estimation of the regression

parameters, testing the model and assessment of the model fit can be found in

Aalen (1989).

Lin & Ying (1994) proposed a simpler additive hazards model. Lin and Ying’s

additive hazards model replaces β(t) in the Aalen’s model by time-independent

regression coefficients β (Lin & Ying 1994, 1995, 1997). Thus, Lin and Ying’s

additive hazards model is given by,

h(t|xi(t)) = h0(t) + xi(t)β. (1.17)

Using an estimating equation approach, it is possible to estimate regression coef-

ficients directly for this model. This method treats h0(t) as a nuisance parameter

and only estimates β.

Another additive hazards model has been proposed by McKeague & Sasieni

(1994) and it is an intermediate between the models (1.16) and (1.17) in which some

of the regression coefficients are assumed to be constant over time while others are

allowed to be arbitrary regression functions. Note that for both models proposed by



Chapter 1. Introduction 13

Lin & Ying (1994) and McKeague & Sasieni (1994), no explicit assumptions about

the distributional form of the underlying baseline hazard needs to be made and the

estimation of the β parameters can be conducted independent of the underlying

baseline hazard.

Several authors presented parameter estimation techniques for those additive

hazards models discussed (see Aalen (1989), Lin & Ying (1994), McKeague &

Sasieni (1994), Huffer & McKeague (1991), Andersen et al. (2012)). Most of the

studies mainly focused on estimating the regression coefficients while the baseline

hazard has been considered as a nuisance parameter. Furthermore, none of the

implementations consider both of the non-negativity constraints discussed under

(1.14) and (1.15) in their parameter estimation procedures. The development of

the novel methodology proposed in this thesis to estimate model parameters and

to derive their asymptotic properties is based on Lin and Ying’s additive hazards

model given in (1.17).

1.5 Existing semi-parametric estimation methods

Limited literature exists on the semi-parametric estimation methods for the ad-

ditive hazards models (see Section 1.4.2) with right-censored or interval-censored

data. For right-censored data, Lin & Ying (1994) develop an estimation function

for β, which mimics the counting process characteristics of the partial likelihood
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score function in the Cox PH model (Cox 1975). This approach does not facilitate

the estimation of h0(t). The estimator for the cumulative baseline hazard function

can be obtained by the method proposed by Lin & Ying (1994) which is similar

to the Breslow method (Breslow 1972).

For interval-censored data, Lin et al. (1998) and Wang et al. (2010) proposed a

counting process approach, where a partial likelihood type score function for β is

obtained. Regression coefficient estimates are obtained by finding the root of the

score function. The baseline hazard h0(t) is again considered as a nuisance parame-

ter and is not estimated directly in this method. Thus, this method is not suitable

for prediction. A maximum likelihood approach was developed in Ghosh (2001)

and Zeng et al. (2006) for the additive hazards model with interval-censored data.

Ghosh (2001) developed an estimation procedure for time-independent covariates

in model (1.17), whereas Zeng et al. (2006) considered time-dependent covariates

(model (1.17)). Using a primal-dual interior point algorithm (Wright 1997), es-

timates for β and H0(t) were developed by Ghosh (2001), with non-negativity

constraint and monotonicity on H0(t). Zeng et al. (2006) estimate β, and baseline

survival function S0(t) using Newton’s algorithm, where a log function was used

to impose the non-negativity constraint on S0(t). Since the estimates of h0(t) can

be obtained indirectly, this method can be used for prediction purposes. Yet, this

method may not be time efficient when the sample size is large, because of the
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need for estimation of S0(t) at each distinct observed time point. A generalized lin-

ear model (GLM) approach was proposed to estimate the model parameters with

interval-censored data in Farrington (1996). This approach considers occurrence of

survival observations as independent Bernoulli trials and links the occurrence prob-

ability to a linear predictor. For that linear predictor, β and h0(t) are regression

coefficients which can be estimated using the statistical software GLIM (Nelder

1975). However, this approach does not satisfy the non-negativity constraint. A

detailed discussion of these methods is available in Section 2.3.

1.6 Goal

In this thesis, a novel methodology to fit an additive hazards model with partly

interval-censored data (collection of fully observed, left-censored, right-censored

and finite interval-censored data) is proposed. We assume that: (i) the observations

(ti,xi) from different individuals are independent: (ii) the distribution of covariates

does not involve regression coefficients and the covariates are time-independent;

and, (iii) censoring time is independent of the failure time.

Estimating the regression coefficients β and the baseline hazard h0(t) for the

additive hazards model is the main purpose of our proposed method. The estimates

of β and h0(t) are obtained simultaneously by adopting the maximum penalized

likelihood (MPL) method. This procedure requires both h(·|xi) and h0(·) con-
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strained to be non-negative (according to (1.14) and (1.15)) during the estimation

process. We adopt the augmented Lagrangian method (Hestenes 1969, Powell 1969,

Rockafellar 1976, Bertsekas 1996) to perform this constrained optimization. The

hazard of failure of most biological mechanisms tends to happen gradually. For ex-

ample, the underlying hazard of time to death of patients suffering from cancer is

likely to increase gradually with time. Thus, a penalty function is used to produce

a smoothed estimate of h0(t) in this MPL method. The asymptotic properties of

the MPL estimates are also derived. Therefore, those MPL estimates can be used

for predictions, to perform hypothesis testing and to obtain variance estimates.

In summary, the objective of this thesis is to develop a MPL approach to esti-

mate the additive hazards model parameters with partly interval-censored data by

considering the two non-negativity constraints. The performance of this method

is evaluated through a series of simulation studies. Furthermore, the proposed

method is applied to analyze a real data set to further exemplify the significance

of the method. Applying the MPL approach for right-censored data is less com-

plex than that of partly interval-censored data. Therefore, the implementation of

our MPL method for right-censored data is considered first followed by the imple-

mentation of this MPL method for partly interval-censored data. However, for the

interval-censored data, there are no publicly available computational developed

statistical tools for the parameter estimation process. There are few R packages
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available for additive hazards models of Aalen (1989) and Lin & Ying (1994) with

right-censored data. Thus, a comprehensive simulation study is performed to com-

pare our MPL approach with the results from these R packages for right-censored

data. For interval-censored data, a simulation study is only used to demonstrate

the effectiveness of the proposed method. Note that, for the simplicity of implemen-

tation, here we only consider time-independent covariates. However, the proposed

approach can be easily extended to time-dependent covariates.

1.7 Thesis overview

This thesis consists of an Introduction, Literature review, five research chapters

and a Conclusion which also suggests future work on this proposed methodology.

In Chapter 3, we develop a parameter estimation approach for the additive haz-

ards model and, as an initial attempt, we restrict the failure time data to be either

right-censored or fully observed. We used the MPL method to estimate the model

parameters and the augmented Lagrangian method was used for constrained op-

timization.

Chapter 4 considers the same parameter estimation method. In this chapter,

we extend the method proposed in Chapter 3 for partly-interval censored data.

Asymptotic properties of the derived MPL estimates are considered in Chapter

5. Here, we discuss the asymptotic properties in two ways; one is more important
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in theoretical nature and the second method is more useful in applications. These

asymptotic properties can be used for model checking and the model validation

process.

A detailed simulation study is given in the Chapter 6. Firstly, it presents the

simulation results for less complex right-censored data by following the method

discussed in Chapter 3. These simulation results are compared against the results of

two other existing parameter estimation methods. Then, it presents the simulation

results based on Chapter 4 for partly interval-censored data. The results from a

real dataset are given in Chapter 7.

A discussion for each of these five research chapters is given in their respective

chapters, followed by an overall conclusion along with suggestions for future work

is provided in Chapter 8.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, some of the existing parameter estimation methods for the semi-

parametric additive hazards model are reviewed. Semi-parametric survival mod-

els assume that there is a relationship between covariate effects and the hazard

function, but the underlying distribution functions for the failure time are not

fully specified and it needs to be estimated during the estimation process. Semi-

parametric models contain both parametric and non-parametric components and,

particularly for the additive hazards model, h0(t) being the non-parametric com-

ponent and the contribution of the covariates being the parametric component.

Section 2.2 presents parameter estimation approaches followed by Aalen (1989)

and Lin & Ying (1994) when they first introduce the additive hazards mod-

19
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els. Section 2.3 discusses three existing parameter estimation approaches for the

semi-parametric additive hazards models; (i) counting process approach; (ii) max-

imum likelihood approach and (iii) generalized linear model approach. Section 2.4

presents the proposed parameter estimation methodology for the additive hazards

model using the MPL method.

2.2 Parameter estimation for additive hazards model

This section presents the parameter estimation procedures followed by Aalen (1989)

and Lin & Ying (1994) when they introduced additive hazards models given in

equations (1.16) and (1.17) respectively. The parameter estimation procedures

summarized in this section are only developed for right-censored data.

2.2.1 Aalen’s additive hazards model

Aalen (1989) considered a generalized additive hazards model (1.16) in which no

finite dimensional parameter is assumed; thus, it can be considered as a non-

parametric model. In general, estimating the cumulative distribution function is

far easier than estimating the density function. For similar reasons, estimating cu-

mulative regression functions are much easier than estimating regression functions

themselves. Thus, a least squares approach is used by Aalen (1989) for model (1.16)

to estimate cumulative regression coefficients and the standard errors of those es-
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timates. This method directly estimates the cumulative regression coefficient for

the jth covariate, Bj(t) and then the crude estimates of βj(t) can be obtained from

the slope of Bj(t) as follows:

Bj(t) =

∫ t

0

βj(u)du, for j = 1, 2, · · · , p. (2.1)

Better estimates for βj(t) can be acquired indirectly from kernel-smoothing tech-

nique (Huffer & McKeague 1991).

According to the approach followed by Aalen (1989), to estimate the cumulative

regression coefficient vector B(t), a design matrix Z(t) with dimensions (n×(p+1))

should be defined as follows: for the ith row of Z(t), assign Zi(t) = Yi(t)(1,xi(t)).

Here, Yi(t) = 1 if ith individual is under observation (at risk) at time t, and

Yi(t) = 0 if ith individual is not under observation (not at risk) at time t. That is,

if the ith individual is a member of the risk set at time t (event has not occurred or

the individual has not been censored), then Zi(t) = (1, xi1(t), xi2(t), . . . , xip(t)). If

the ith individual is not in the risk set at time t (the event of interest has already

occurred or the individual has been censored), then Zi(t) is a (p+ 1) row vector of

zeros. Suppose that I(t) is the (n× 1) vector with the ith element equal to 1 if the

subject i fails at time t and 0 otherwise. Then, the least square estimate of B(t)

is given by

B̂(t) =
∑
Ti≤t

[Z>(Ti)Z(Ti)]
−1Z>(Ti)I(Ti). (2.2)
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Aalen (1989) derived the variance-covariance matrix of B̂(t) as

Var[B̂(t)] =
∑
Ti≤t

[Z>(Ti)Z(Ti)]
−1Z>(Ti)I

D(Ti)Z(Ti){[Z>(Ti)Z(Ti)]
−1}>, (2.3)

where ID(t) is a (n× n) diagonal matrix in which diagonal elements are given by

I(t). B̂(t) only exists up to the smallest time at which the matrix Z>(Ti)Z(Ti)

becomes singular and it is unbiased up to the time where Zi(Ti) loses its full rank

(Aalen 1989). Furthermore, this procedure does not obey the two non-negativity

constraints discussed under (1.14) and (1.15), which is clearly a disadvantage of

this method. This procedure is not suitable for prediction as it does not involve

the estimation of h0(t).

2.2.2 Lin and Ying’s additive hazards model

Lin & Ying (1994) proposed a semi-parametric parameter estimation method for

model (1.17) and developed an estimation equation approach to estimate the model

parameters. This approach directly estimates β and treats h0(t) as a nuisance

parameter. To estimate the regression coefficients βj, the vector of the average

values of the covariates at time t, x̄(t) are constructed by

x̄(t) =

∑n
i=1 xiYi(t)∑n
i=1 Yi(t)

. (2.4)

The numerator in equation (2.4) is the sum of the covariates for all individuals at

risk at time t and the denominator is the number of individuals at risk at time t.
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Next, a (p × p) matrix A, a (p × 1) vector B and a (p × p) matrix C are

constructed as follows:

A =
n∑
i=1

i∑
j=1

(Tj − Tj−1)[xi − x̄(Tj)]
>[xi − x̄(Tj)], (2.5)

B> =
n∑
i=1

δi[xi − x̄(Tj)], (2.6)

C =
n∑
i=1

δi[xi − x̄(Tj)]
>[xi − x̄(Tj)]. (2.7)

Then, the estimate for β

β̂ = A−1B, (2.8)

and the variance-covariance matrix for β̂

Var(β̂) = A−1CA−1. (2.9)

An estimator of the cumulative baseline hazard can be obtained indirectly through

the Breslow method (Breslow 1972). But this method has some efficiency issues

when working with left-truncated and right-censored data by using the conditional

estimating equation method. Furthermore, these estimates naturally cannot be

extended to interval-censored data.
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2.3 Estimation methods for additive hazards mod-

els with interval-censored data

In this section, three approaches to fit the semi-parametric additive hazards model

with interval-censored data are reviewed. Specifically, the additive hazards model

with time-independent regression coefficients is considered here.

2.3.1 Counting process approach

A counting process method to fit the additive hazards model for current status

data was introduced in Lin et al. (1998). Subsequently, Wang et al. (2010) adopt

this method to study interval-censored data. According to the definition of current

status data given in Section 1.1, the exact value of the failure time Ti is never

known, but known that it is observed below or above the monitored time variable

Ci. Thus, only monitoring time variable, Ci and the indicator variable δi = I(Ci ≤

Ti), where I(·) is the indicator function, are observed. Denote the ith observation

by {Ci, δi,xi}. Lin et al. (1998) considered two cases: (i) the monitoring time Ci

is dependent on xi; and, (ii) the monitoring time Ci is independent of xi. Their

results indicated that the estimates of β obtained in case (i) have smaller standard

errors compared to those in case (ii).

This section discusses the counting process approach mentioned under case (i).
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Lin et al. (1998) suggest the dependence of Ci on xi through a proportional hazards

model, and denote the hazard function of Ci at time t as

dH̃(t|xi) = exiαdH̃0(t), (2.10)

where H̃0(·) is an unspecified cumulative baseline hazard function, and α is a

(p× 1) vector of unknown regression parameters for the effect of xi on Ci. When

α = 0, the process is simplified into case (ii). Define a counting process for subject

i as Ni(t) = δiI(t ≥ Ci). Ni(t) increases by one unit at time t whenever the ith

individual is monitored at time t and found still to be failure-free. Let Yi(t) =

I(t ≤ Ci), and the hazard rate function of Ni(t) is defined as

dΛ̃i(t) = Yi(t)e
−xiβt+xiαdΛ̃0(t), (2.11)

where dΛ̃0(t) = e−H0(t)dH̃0(t) with H0(t) =
∫ t

0
h0(u)du. Equation (2.11) is the

well-known Cox proportional hazards model. Lin et al. (1998) proves that the

compensated counting process

Mi(t) = Ni(t)−
∫ t

0

Yi(u)e−xiβu+xiαdΛ̃0(u) for i = 1, 2, . . . , n (2.12)

is a martingale. By applying the partial likelihood approach to model (2.11) to

make inference about β, the score function for β with given α is,

Uβ(β,α) =
n∑
i=1

∫ ∞

0

[
txi −

W
(1)
β (t;β,α)

W
(0)
β (t;β,α)

]
dNi(t), (2.13)

where,

W
(j)
β (t;β,α) =

n∑
i=1

Yi(t)(txi)
(j)e−xiβt+xiα for j = 0, 1.
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In order to estimate α, Lin et al. (1998) apply the partial likelihood approach

to model (2.10) which carries information about monitoring time Ci. The partial

likelihood score function for α is given by

Uα(α) =
n∑
i=1

∫ ∞

0

[
xi −

W
(1)
α (t;α)

W
(0)
α (t;α)

]
dI(Ci ≤ t),

where

W (j)
α (t;α) =

n∑
i=1

Yi(t)x
(j)
i exiα for j = 0, 1.

Let β̂ and α̂ be estimates of β and α respectively, which can be obtained

through the Newton’s algorithm. This approach requires Ci to follow the propor-

tional hazard model. Note that the dependence of Ci on xi through the proportional

hazards model may result in dependent censoring, since Ti is also dependent on

xi, but through the additive hazards model.

Following the methodology proposed by Lin et al. (1998), an estimation equa-

tion approach has been introduced by Wang et al. (2010) for interval-censored

data {(Li, Ri],xi; i = 1, 2, . . . , n}. In that approach, it is assumed that for each

individual i, there exist only two monitoring times denoted by Ci1 and Ci2, where

Ci1 < Ci2. Assume that the event time Ti is independent of Ci1 and Ci2. Then, the

indicator functions for interval-censored data can be defined as δi1 = I(Ti < Ci1),

δi2 = I(Ci1 ≤ Ti < Ci2) and δi3 = 1 − δi1 − δi2 corresponding to the failure time

of individual i has occurred before Ci1, during the interval [Ci1, Ci2), or after Ci2

respectively. Similar to Lin et al. (1998), Wang et al. (2010) also model Ci1 and
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Ci2 respectively through proportional hazards models as,

dH̃i1(t|xi) = exiαdH̃01(t) (2.14)

and

dH̃i2(t|Ci1,xi) = I(t > Ci1)exiαdH̃02(t), (2.15)

where H̃01(·) and H̃02(·) are unspecified cumulative baseline hazard functions, and

α is a (p× 1) vector of unknown regression parameters. Then, for each individual

i, they define counting processes Ni1(t) = (1− δi1)I(t ≥ Ci1) and,

Ni2(t) =


δi3I(t ≥ Ci2) if t ≥ Ci1,

0 if t < Ci1.

Let Yi1(t) = I(t ≤ Ci1) and Yi2(t) = I(Ci1 < t ≤ Ci2). Adopting similar

arguments as Lin et al. (1998), and using models (1.17), (2.14) and (2.15), hazard

functions for Ni1(t) and Ni2(t) are derived respectively as

dΛ̃i1(t) = Yi1(t)e−xiβt+xiαdΛ̃01(t) (2.16)

and

dΛ̃i2(t) = Yi2(t)e−xiβt+xiαdΛ̃02(t), (2.17)

where

dΛ̃01(t) = e−H0(t)dH̃01(t) and dΛ̃02(t) = e−H0(t)dH̃02(t).

Clearly models (2.16) and (2.17) are Cox proportional hazards type models similar

to model (2.11). Also note that the model (2.17) is a conditional model since its
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starting time point is Ci1. For given α, the score function for β is defined as

Uβ(β,α) =
n∑
i=1

{∫ ∞

0

[
txi −

W
(1)
1,β(t;β,α)

W
(0)
1,β(t;β,α)

]
dNi1(t)

+

∫ ∞

0

[
txi −

W
(1)
2,β(t;β,α)

W
(0)
2,β(t;β,α)

]
dNi2(t)

}
(2.18)

where

W
(j)
1,β(t;β,α) =

n∑
i=1

Yi1(t)e−xiβt+xiα(txi)
(j) for j = 0, 1

and

W
(j)
2,β(t;β,α) =

n∑
i=1

Yi2(t)e−xiβt+xiα(txi)
(j) for j = 0, 1.

Then, for each individual i, define 0-1 counting processes Ñi1(t) = I(t ≥ Ci1)

and, conditional on Ci1,

Ñi2(t) =


I(t ≥ Ci2) if t ≥ Ci1

0 if t < Ci1.

In order to estimate α, it is possible to apply the partial likelihood approach to

equations (2.14) and (2.15) to obtain the score function for α as

Uα(α) =
n∑
i=1

{∫ ∞

0

[
xi −

W
(1)
1,α(t;α)

W
(0)
1,α(t;α)

]
dÑi1(t) +

∫ ∞

0

[
xi −

W
(1)
2,α(t;α)

W
(0)
2,α(t;α)

]
dÑi2(t)

}
,

where

W
(j)
1,α(t;α) =

n∑
i=1

Yi1(t)x
(j)
i exiα for j = 0, 1

and

W
(j)
2,α(t;α) =

n∑
i=1

Yi2(t)x
(j)
i exiα for j = 0, 1.
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The root of Uα(α) gives the estimate of α, and then β can be estimated by

solving Uβ(β, α̂) = 0. With the resulting estimates denoted by β̂ and α̂, Wang

et al. (2010) showed that the estimates are consistent and asymptotically normal,

and the variance-covariance matrix of β̂ can be consistently estimated.

This procedure does not require estimation of h0(t) at any stage of the esti-

mation process, which is an advantage of this approach. However, this procedure

highly depends on the proportional hazards assumption. The user should check

the validity of the proportionality assumption before utilizing this approach. On

the other hand, this method is not suitable for prediction as it does not estimate

h0(t).

2.3.2 Maximum Likelihood (ML) approach

Ghosh (2001) and Zeng et al. (2006) developed a maximum likelihood (ML) ap-

proach for the additive hazards model, which can be considered as an alternative

method to the counting process approach (see Section 2.3.1). Using current status

data, Ghosh (2001) developed a primal-dual interior point algorithm (e.g.Wright

(1997)) for estimating β and the cumulative baseline hazard function H0(t) simul-

taneously. His algorithm imposes positivity constraints on both h0(·) and h(·) and

maintains monotonic increments on both H0(·) and H(·). The maximum likelihood

(ML) estimator of β is shown to be consistent and it converges to a multivariate
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normal distribution.

Zeng et al. (2006) developed a parameter estimation procedure for the additive

hazards model with interval-censored data based on the ML approach, where the

corresponding log-likelihood function is specified using regression coefficient vector

β and the baseline survival function S0(·) as

`(β, S0) =
n∑
i=1

log
{
S0(Li)e

−xiβLi − S0(Ri)e
−xiβRi

}
. (2.19)

Let 0 = v0 < v1 < v2 < · · · < vm < vm+1 =∞ be distinct ordered time points of all

observed interval end points {(Li, Ri]; i = 1, 2, . . . , n}. Here, S0(·) is only evaluated

at those unique ordered time points. Define S0 = [S0(v0), S0(v1), . . . , S0(vm+1)]>,

where S0(v0) = 1 and S0(vm+1) = 0. Let indicator functions be ξij = I(vj ∈

(Li, Ri]) for i = 1, 2, . . . , n and j = 1, 2, . . . , (m+1), then the log-likelihood function

(2.19) can be re-expressed as

`(β, S0) =
n∑
i=1

log

{
m+1∑
j=1

ξij

[
S0(vj−1)e−xiβvj−1 − S0(vj)e

−xiβvj

]}
. (2.20)

In order to impose the non-negativity constraints and monotonicity of S0(·) (i.e.:

0 ≤ S0(vm) < S0(vm−1) < · · · < S0(v1) ≤ 1), log transformation is applied on S0(·)

as;

ωj =


logS0(v1) for j = 1

log[S0(vj−1)− S0(vj)] for j = 2, 3, . . . ,m.

Let the log-transformed vector be ω = [ω1, ω2, . . . , ωm]>. Replacing S0 in equation

(2.20) by ω gives the updated log-likelihood with respect to β and ω. Maximizing
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the log-likelihood `(β,ω), the estimates of β and ω can be obtained. Then New-

ton’s algorithm can be applied to find the optimal solution when m is not large.

When m is large, the Nelder-Mead method (Nelder & Mead 1965) can be used

to solve the score equations for β and ω. This method estimates h0(·) indirectly.

Thus, the results from this method can be used for prediction. However, this pro-

cedure is not efficient in terms of processing time when the sample size is large

as it requires the estimation of the baseline survival at each unique observed time

point.

2.3.3 Generalized linear model (GLM) approach

Farrington (1996) introduced another parameter estimation approach for the ad-

ditive hazards model with interval-censored data using the GLM approach. This

approach facilitates the estimation of both β and h0(t).

Let nL, nR, nI be the number of left-censored, right-censored and finite interval-

censored individuals respectively, and the total number of individuals in the sur-

vival study n = nL + nR + nI . Let the observations be ordered as left-censored,

right-censored and finite interval-censored and S(·|xi) be the survival function con-

ditional on xi and (tLi , t
R
i ) denotes the observed survival time interval. Then, the

likelihood can be expressed in terms of S(·|xi) as

L =

nL∏
i=1

[1− Si(tRi |xi)]
nL+nR∏
i=nL+1

Si(t
L
i |xi)

n∏
i=nL+nR+1

Si(t
L
i |xi)

[
1− Si(t

R
i |xi)

Si(tLi |xi)

]
, (2.21)
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where the first, second and third product terms on the right-hand side correspond

to the likelihoods for the left-censored, right-censored and finite interval-censored

observations respectively.

From the GLM point of view, it considers (2.21) as a particular realisation for

n+ nI independent Bernoulli trials with probability πi and response yi, where i =

1, 2, . . . , n+nI . The associated model can be defined as follows. If the ith individual

is left-censored, it contributes one Bernoulli trial with probability πi = 1−S(tRi |xi),

response yi = 1 and observed time interval Ji = (0, tRi ]. If the ith individual is

right-censored, then it contributes one Bernoulli trial with πi = 1 − S(tLi |xi),

yi = 0 and Ji = (0, tLi ]. Finally, if the ith individual is finite interval-censored

(when n−nI + 1 ≤ i ≤ n), it contributes two Bernoulli trials indexed i and i+nI .

The first Bernoulli trial has πi = 1 − S(tLi |xi), yi = 0 and Ji = (0, tLi ], and the

second Bernoulli trial has πi+nI
= 1− S(tRi |xi)

S(tLi |xi)
, yi+nI

= 1 and Ji+nI
= (tLi , t

R
i ]. Thus,

the likelihood function (2.21) can be rewritten as

L =

n+nI∏
i=1

πyii (1− πi)1−yi , (2.22)

where

πi = 1− exp

{
−
∫
Ji

h(t|xi)dt

}
. (2.23)

Therefore, maximizing (2.21) is equivalent to maximizing (2.22). According to the

GLM approach, h0(·) is assumed to be a piecewise constant over the time intervals,

(ψr−1, ψr]; r = 1, 2, . . . ,m, which divides the time line into m intervals. Thus, it
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is possible to define h0(t) = θr for t ∈ (ψr−1, ψr] and θ = [θ1, θ2, . . . , θm]>. As per

equation (2.23), the probability πi is related to a linear predictor through a link

function

ηi = − ln(1− πi) = xiβdi +
m∑
r=1

θrhir, (2.24)

where di is the length of Ji and hir denotes the length of Ji ∩ (ψr−1, ψr]. Equa-

tion (2.24) defines a GLM with covariates xidi and hi, and by fitting the GLM,

the parameters β and θ can be estimated. During the estimation process, all the

linear predictors in (2.24) need to remain positive, which may cause some com-

putational difficulties. Moreover, this estimation approach does not guarantee the

non-negativity or smoothness of the h0(t). This is a disadvantage of this method.

On the positive side, since this method estimates both of the model parameters,

this can be used for prediction purposes.

2.4 Proposed methodology

In this section, the novel methodology developed in this thesis to fit the additive

hazards model is summarized. Here, the additive hazards model proposed by Lin

& Ying (1994) is evaluated by estimating the model parameters β and h0(·) simul-

taneously by adopting the maximum penalized likelihood (MPL) method. One of

the major advantage of our MPL is that it imposes the non-negativity constraints

on both h0(·) and h(·|xi) when maximizing the penalized log-likelihood function.
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Furthermore, this methodology accommodates partly interval-censored data which

contains exactly observed, left-censored, finite interval-censored and right-censored

failure time data.

Firstly, this new method attempts to maximize the penalized log-likelihood

function, which is obtained by approximating the undefined baseline hazard, h0(t)

using a finite number of non-negative basis functions. The estimate of h0(t) is

smoothed through a penalty function and an associated smoothing parameter.

For parameter estimations, the Newton-MI algorithm is used, which combines the

Newton algorithm and the multiplicative iterative (MI) algorithm of Ma (2010).

Constrained optimization is achieved by using the augmented Lagrangian method;

see, for example Bertsekas (2014). The augmented Lagrangian method guarantees

non-negativity of h(·|xi) and the MI algorithm guarantees non-negativity of h0(t).

Furthermore, the asymptotic properties and the convergence properties of these

MPL estimates are considered. The accurate asymptotic covariance matrices for

the model parameters are also considered. Since this MPL method produces es-

timates of both of the parameters during this iterative procedure and the corre-

sponding asymptotic results, this can be used for prediction purposes.



Chapter 3

Penalized likelihood parameter

estimation for additive hazards

model with right-censored data

3.1 Introduction

This chapter discusses a parameter estimation method for the additive hazards

model for right-censored data, where the parameter estimation is conducted via a

penalized likelihood approach. The hazard function for an additive hazards model

proposed by Lin & Ying (1994) is given by equation (1.17). Unlike the proportional

hazards model (1.10) which assumes a relative increase or decrease of magnitude

35
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exp(βj) to the hazard with a unit change in the jth covariate, xj, the change in the

hazard under an additive hazards model is assumed to be an increase or decrease of

|βj|. As noted in Section 1.4.2, h0(t) needs not be explicitly defined. Therefore, this

additive hazards model can be described as a semi-parametric model. The goal in

this chapter is to develop a parameter estimation method for this semi-parametric

model with right-censored survival data.

To this end, Section 3.2 presents the background of the parameter estimation

of an additive hazards model with right-censored data. Section 3.3 introduces the

Maximum Penalized Log-likelihood (MPL) function for the additive hazards model

including aspects related to smoothing, and Section 3.4 discusses the associated

parameter estimation method with the constrained optimization algorithm.

3.2 Background of the problem

As discussed in Chapter 1, when survival data contains right censoring, one of the

most common parameter estimation approach is the conventional partial likelihood

type estimation equation approach proposed by Lin & Ying (1994). It is adequate

if one’s intent is simply to estimate the βs. This partial likelihood approach has

been widely used since it can accommodate some of the censoring types and the

availability of asymptotic properties of the maximum partial likelihood estimates

(Lin & Ying 1994). However, this approach does not allow the estimation of h0(t)
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which is needed if prediction is the aim of the estimation. A method that allows

the estimation of the cumulative baseline hazard function separately has been pre-

sented in Lin & Ying (1994), which is similar to the Breslow estimator for the

proportional hazard model (Breslow 1972). Separate estimation of β and h0(t)

certainly causes difficulties when calculating standard deviations for the predic-

tions. Furthermore, this approach does not impose non-negativity constraints on

the baseline hazard (constraint (1.14)) or the hazard function (constraint (1.15)).

This chapter addresses those limitations of the existing approach, and proposes

a new methodology using a penalized likelihood approach to facilitate the simul-

taneous estimation of β and h0(t) by imposing the two non-negativity constraints.

The penalized likelihood method was implemented by Good & Gaskins (1971), and

also by Silverman (1978), in the context of density estimation. This was extended

to the proportional hazards model estimation by Anderson & Senthilselvan (1980).

Later, the asymptotic properties of those MPL estimates were investigated by Cox

& O’Sullivan (1990). The application of this method in the case of right censoring

is discussed in detail in this chapter and more complex partly interval censoring is

reserved till Chapter 4.

The MPL method presented in this chapter addresses the scenarios where the

failure times are either fully-observed or right-censored. It allows modeling through

smoothing of h0(t) using an appropriate penalty function, while ensuring the non-
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negativity constraint of h0(t) (constraint (1.14)). The constraint on h(t|xi) (con-

straint (1.15)) is also satisfied using a Newton-MI algorithm (Ma et al. 2014),

which is a combination of the Newton algorithm and a multiplicative-iterative

(MI) algorithm (Ma 2010).

3.3 MPL method for the additive hazards model

with right-censored data

As discussed earlier in Chapter 1, most of the available techniques for estimating

β in the additive hazard regression model in the presence of right censoring do

not allow the simultaneous estimation of h0(t). To this end, this section introduces

the MPL approach for an additive hazards model with right-censored data, and

discusses how this technique can be used to attain simultaneous estimation of both

β and h0(t). Furthermore, this section addresses the optimization issues related to

this method.

3.3.1 Notations

The notations used in this and subsequent sections of this chapter are briefly

describe in this section. Note that the term survival data is used interchange-

ably with failure time data throughout this chapter as mentioned in Section 1.1.



Chapter 3. MPL approach for right-censored data 39

Consider survival data that are either fully-observed or right-censored. Survival

times that are fully-observed will be indicated by the subscript, O, while survival

times that are right-censored will be indicated by the subscript, R. Now consider

n independent and identically distributed survival times, t1, t2, . . . , tn. Thus, the

survival time of subject i will be indicated by {ti; i ∈ O} if fully-observed and

by {ti; i ∈ R} if right-censored. Assume now that associated with subject i, there

is a set of p covariates, xi1, xi2, . . . , xip. Thus, the set {(ti,xi), i ∈ O} describes a

fully-observed survival time including a covariate vector while {(ti,xi), i ∈ R} is

its right-censored equivalent.

The censoring times are assumed to be independent of ti given xi. Our develop-

ments assume covariates xi are time-independent; however, they can be extended

to time-dependent covariates. The next section presents the steps taken to estimate

the hazard function associated with the failure time of the ith patient, h(t|xi).

3.3.2 Imposing non-negativity constraints and estimating

the baseline hazard function

This section will discuss how the two non-negativity constraints given by (1.14)

and (1.15) are addressed. Since h0(t) is infinite dimensional, estimation of h0(t)

from a finite number of observations can be ill-conditioned. This problem can be

addressed through approximating h0(t) using a finite number of non-negative basis
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functions. To this end, assume ψ1, ψ2, ..., ψm form a basis of this finite dimensional

space. Then, h0(t) can be expressed as

h0(t) =
m∑
u=1

θuψu(t), (3.1)

where m is the dimension of the approximating space and ψu(t)s are the non-

negative basis functions. Since ψu(t) ≥ 0 for all u, if we restrict the basis coefficient

vector θ = [θ1, θ2, ..., θm]> to be non-negative, then h0(t) ≥ 0. There are number

of choices available for the basis functions. M-splines and B-splines are known to

be powerful basis functions where as functions such as indicator and haar known

to be simple and easy to implement basis functions. This thesis adopts indicator

basis functions to simplify computations and to clearly illustrate the parameter

estimation approach. Other basis functions such as M-splines, B-spline will be

considered during the further development of this proposed method in future.

For indicator basis functions, h0(t) becomes a piecewise constant function,

which we also termed as discretization of h0(t). Assume that all the survival times,

t1, t2, . . . , tn, are contained within a finite interval  = [t(1), t(n)], where t(1) =

min(ti) and t(n) = max(ti). Suppose now that there are m bins, B1, B2, ..., Bm,

partitioning the interval  with the bin edges t(1) = τ0 < τ1 < ... < τm = t(n),

where

Bu = {t : τu−1 < t ≤ τu} for u = 1, 2, ...,m (3.2)
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with ∪mu=1Bu =  and Bu ∩Bv = ∅ for u 6= v. Thus, at a given time t,

h0(t) =
m∑
u=1

θuI(τu−1 < t ≤ τu), (3.3)

where I(·) is an indicator function. After discretization, estimation of h0(t) is

equivalent to estimating the basis coefficients vector θ, subject to θu ≥ 0 for all u.

We comment that although the baseline hazard is discretized, the non-parametric

nature of h0(t) is preserved up to some extent as there is no restriction on the

number of bins m.

Denoting the cumulative baseline hazard function by H0(t), the cumulative

hazard for subject i is

H(t|xi) =

∫ t

0

h(s|xi)ds = H0(t) + xiβt, (3.4)

where

H0(t) =
m∑
u=1

θuΨu(t), (3.5)

with Ψu(t) =
∫ t

0
ψu(v)dv being the cumulative basis function. From equation (3.3),

the discretized H0(t) is

H0(t) =
m∑
u=1

θu[(t− τu−1)I(τu−1 < t ≤ τu) + ρuI(t ≥ τu)], (3.6)

with ρu = (τu − τu−1) indicating the width of Bu.

Now that h0(t) and H0(t) functions have been defined using indicator basis

functions, the hazard, the cumulative hazard and the survival functions for the
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additive hazards model follow directly from equations (3.3) and (3.6) as:

h(t|θ,β,xi) =
m∑
u=1

θuI(τu−1 < t ≤ τu) + xiβ, (3.7)

H(t|θ,β,xi) =
m∑
u=1

θu

[
(t− τu−1)I(τu−1 < t ≤ τu) + ρuI(t ≥ τu)

]
+ xiβt, (3.8)

S(t|θ,β,xi) = exp[−H(t|θ,β,xi)]. (3.9)

After the discretization of h0(t), our aim is to estimate the model parameters θ

and β and the estimation process is discussed in the next section.

3.3.3 Maximum Penalized Likelihood estimation

Based on the survival times t1, t2, . . . , tn, which include fully-observed and right-

censored data, the log-likelihood is

`(θ,β) =
∑
i∈O

[log h(ti|θ,β,xi)−H(ti|θ,β,xi)]−
∑
i∈R

H(ti|θ,β,xi). (3.10)

Here, the first term on the right captures the log-likelihood for the uncensored fail-

ure times while the second term captures the log-likelihood for the right-censored

failure times. Substituting the expressions in (3.7) and (3.8) into (3.10) results in

the following representation of the log-likelihood function

`(θ,β) =
m∑
u=1

∑
ti∈Bu,i∈O

log(θu + xiβ)−

[
m∑
u=1

wu

u−1∑
v=1

(ρvθv)

+
m∑
u=1

∑
ti∈Bu

(ti − τu)θu +
n∑
i=1

xiβti

]
,

(3.11)

where wu is the number of observations in bin u.
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As explained in Section 1.6, it is possible to assume that h0(t) is smoothed. This

can be achieved by subtracting a penalty function (Anderson & Senthilselvan 1980)

from the log-likelihood function introduced in (3.11), which results in a penalized

log-likelihood function,

Φ(θ,β) = `(θ,β)− λJ(h0). (3.12)

Here, λ > 0 is a smoothing parameter used to balance smoothness of the estimated

h0(t) and reliability of the fitted model, and J(h0) is a penalty function, which

depends only on h0(·). The penalty function in (3.12) could be, for instance, a

roughness penalty function, i.e., J(h0) =
∫ t

0
[h′′0(u)]2du, which measures the total

curvature of h0(t). Since h0(·) is approximated by a piecewise constant function, a

penalty representing the square of the second order differences is adopted:

J(h0) = J(θ) =
m−1∑
j=2

(θj−1 − 2θj + θj+1)2. (3.13)

This penalty can also be re-written in a quadratic form as

J(θ) = θ>Rθ, (3.14)

where R = A>A and A is an m × m matrix with Aθ representing the second

order differences of θ. Therefore, the matrix R is given by,
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R =



5 −6 1 0 0 · · · 0

−6 9 −4 1 0 · · · 0

1 −4 6 −4 1 · · · 0

... . . . . . . . . . . . . . . . ...

0 · · · 1 −4 6 −4 1

0 · · · 0 1 −4 9 −6

0 · · · 0 0 1 −6 5



.

The penalty term introduced in (3.14) supports the penalization of the variation

between the θus and the average of its neighborhoods.

For the additive hazards models, both h0(t) and h(t|xi) have to be constrained

to be non-negative in obtaining MPL estimates of θ and β. Hence, under piecewise

constant approximation for h0(t), the proper constrained optimization problem is;

(θ̂, β̂) = argmax
θ,β

Φ(θ,β) (3.15)

subject to:

θu ≥ 0 for u = 1, 2, ...,m (3.16)

and
m∑
u=1

θuI(t ∈ Bu) + xiβ ≥ 0 for i = 1, 2, ..., n. (3.17)
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3.4 Constrained optimization by the augmented

Lagrangian method

This section discusses the constrained optimization technique used to solve the

optimization problem in (3.15) under the constraints (3.16) and (3.17). In the

context of optimization problems, although methods such as gradient descent or

conjugate gradient descent are quite common, those methods can only be used for

unconstrained optimization problems. Here, we have a constrained optimization

problem as it is required to consider the two non-negativity constraints. Then,

the projected gradient descent method or the Lagrange multiplier method can be

considered as possible candidates. But, depending on the number of time points,

n, and the number of bins that are chosen, m, these non-negativity constraints

could result in an optimization problem with a large number of constraints. Thus,

it is required to use an optimization method which can handle large number of

constraints to solve this problem.

3.4.1 Optimization method

Since the involvement of xiβ in the constraints, directly imposing those constrains

can be inefficient particularly when n is large. In order to address this issue, the

augmented Lagrangian method (Hestenes 1969, Powell 1969, Bertsekas 1996) is
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used as it is capable of handling a large number of constraints. Similar to penalty

methods (Zangwill 1967, Fletcher 1973), this augmented Lagrangian method oper-

ates by replacing a constrained optimization problem with a series of more manage-

able unconstrained problems. The difference of this method with penalty methods

is that the augmented Lagrangian performs optimization by adding a term to

mimic the Lagrange multiplier (Rockafellar 2015) to discourage solutions which do

not satisfy the constraints. Then, those small unconstrained optimization problems

can be solved by using a suitable solver.

The approach of solving a global problem by a set of local sub problems makes

this approach an efficient optimization method (Boyd et al. 2011). Rather than

optimizing all the parameters jointly as in method of multipliers (Nocedal &Wright

2006), in this method, it performs one pass of a Gauss-Seidel method (Golub

& Van Loan 2012) for each parameter. That means each parameter is updated

by fixing all the other parameters at their most current estimates. As oppose

to the Jacobi method (Saad 2003) which iterates the updating procedure until

convergence, the augmented Lagrangian method then proceeds directly to a dual

update step and then repeats the process until convergence.

Let η and γ be vectors for (η1, . . . , ηn) and (γ1, . . . , γn), respectively. Then the
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augmented Lagrangian function can be written as follows:

L =
m∑
u=1

∑
ti∈Bu,i∈O

log(θu + ηi)−

{
m∑
u=1

wu

u−1∑
v=1

(ρvθv) +
m∑
u=1

∑
ti∈Bu

(ti − τu)θu

+
n∑
i=1

ηiti

}
− λ J(θ)−

n∑
i=1

γi(xiβ − ηi)−
α

2

n∑
i=1

(xiβ − ηi)2, (3.18)

where γi is the Lagrange multiplier for imposing the constraint ηi = xiβ, and the

last term in this augmented Lagrangian is a penalty term with α > 0. The reasons

for having a penalty term are (i) to relax the constraints ηi = xiβ in such a way

that they are true at convergence of the algorithm, and (ii) to stabilize estimation of

the Lagrangian multipliers γi during each iteration. In this algorithm, we gradually

change the value of α from a small value (say α0 > 1) to a large quantity (such

as α12
0 ). This is useful in defining the convergence criteria for the outer iterations

of this algorithm and details about inner and outer iterations will be discussed at

the end of this chapter. The Karush-Kuhn-Tucker (KKT) necessary conditions for

the constrained MPL estimation of θ and β are

∂L
∂θu

= 0 if θu > 0 and
∂L
∂θu

< 0 if θu = 0, for u = 1, 2, . . . ,m, (3.19)

∂L
∂βj

= 0 for all j. (3.20)

From (3.18), we have the following constraint optimization problem

(θ̂, β̂, η̂) = arg max
θ,β,η

[L(θ,β,η)] (3.21)

subject to θu ≥ 0 for u = 1, 2, ...,m and
∑m

u=1 θuI(t ∈ Bu) + ηi ≥ 0 for

i = 1, 2, ..., n.
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3.4.2 Details of the algorithm

Here, we propose an iterative algorithm to solve the optimization problem (3.21)

under the two non-negativity constraints. In this algorithm, the two model parame-

ters θ and β are updated alternately in each iteration. Let v(k) denote the estimate

of v at iteration k. Then, the constraint optimization problem under (3.21) can be

solved by the following alternative iterative approach.

θ(k+1) = arg max
θ≥0

L(θ,β(k),η(k)) (3.22)

β(k+1) = arg max
β

L(θ(k+1),β,η(k)) (3.23)

η(k+1) = arg max
ηi≥η∗

L(θ(k+1),β(k+1),η) where η∗ = max
u

(−θ(k+1)
u ) (3.24)

γ(k+1) = γ(k) + α (xiβ
(k+1) − η(k+1)) (3.25)

Here, the multiplicative-iterative (MI) (Ma 2010) algorithm was used to solve

equations (3.22) and (3.24), and Newton’s algorithm for equation (3.23). The MI

algorithm is an efficient non-negatively constrained algorithm which demands only

the first derivative of the objective function, making it very easy to derive and im-

plement. Applying the MI algorithm to equation (3.22) ensures that constraint

(3.16) is satisfied and constraint (3.17) is imposed through applying Newton’s

algorithm and the MI algorithm to equations (3.23) and (3.24) respectively. Ob-

taining estimates for θ, β, η and γ at iteration (k+ 1), given the estimates at kth

iteration (i.e.: θ(k), β(k), η(k) and γ(k)), comprise the four steps described below.
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3.4.2.1 θ updating step

First, θ(k+1) is obtained with β,η and γ fixed at their updates at the kth iteration

by performing one iteration of the MI algorithm followed by a line search. The main

purpose of performing a line search step is that it guarantees that the objective

function L(θ,β,η) increases as a function of θ when the other parameter estimates

remain at their current iteration values.

The first order derivative of the augmented Lagrangian with respect to θu is

∂L(θ,β,η)

∂θu
=

∑
ti∈Bu,i∈O

1

(θu + ηi)
−
∑
ti∈Bu

(ti − τu)− λ

[
∂J(θ)

∂θu

]
(3.26)

for u = 1, 2, ...,m. For the purpose of developing the MI algorithm for this context,

equation (3.26) was re-arranged since the derivative is zero, in such a way that the

resulting equation does not contain any negative terms on both sides:

θu

{ ∑
ti∈Bu

(ti− τu) + λ

[
∂J(θ(k))

∂θu

]+}
= θu

{ ∑
ti∈Bu,i∈O

1

(θu + η
(k)
i )
− λ

[
∂J(θ(k))

∂θu

]−}
.

(3.27)

The derivative of f(a) evaluated at a = a(k) is denoted by ∂f(a(k))/∂a with [a]+ =

max {0, a} and [a]− = min {0, a} such that a = a+ + a−. From equation (3.27), we

suggest updating θu by two steps. In the first step, a temporary estimate θ(k+1/2)
u

is computed from θ
(k)
u via the following updating equation:

θ(k+1/2)
u = θ(k)

u

∑
ti∈Bu,i∈O

1

(θu+η
(k)
i )
− λ
[
∂J(θ(k))
∂θu

]−
+ ξ1u∑

ti∈Bu
(ti − τu) + λ

[
∂J(θ(k))
∂θu

]+

+ ξ1u

. (3.28)
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In order to avoid zero denominator and to improve the convergence speed of the

algorithm, a small constant ξ1u(> 0) is introduced to both the numerator and the

denominator. The choice of ξ1u does not affect the final solution of the algorithm.

It can be seen from (3.28) that θ(k+1/2)
u satisfies the non-negativity constraint if

θ(k) ≥ 0. However, this θ(k+1/2)
u may fail to increase L(θ,β(k),η(k)) when θ is

moving from θ
(k)
u to θ(k+1/2)

u , leading to possible divergence. Hence, a line search

step is required and first we rewrite equation (3.28) as:

θ(k+1/2)
u = θ(k)

u + S1(θ(k))
∂L(θ(k),β(k),η(k))

∂θu
, (3.29)

where S1(θ(k)) is a diagonal matrix with diagonal elements s(k)
1u , u = 1, 2, . . . ,m,

where s(k)
1u = θ

(k)
u /w

(k)
1u with w(k)

1u represents the denominator of the right hand side

of (3.28). Here, s(k)
1u is non-negative due to the constraints discussed earlier. Thus,

from equation (3.29), we know that the MI step given by (3.28) proceeds along

the gradient direction with a non-negative step size.

Finally, the second step of the MI algorithm, θ(k+1) is obtained as:

θ(k+1)
u = θ(k)

u + ω
(k)
1

[
θ(k+1/2)
u − θ(k)

u

]
, (3.30)

where [θ
(k+1/2)
u − θ(k)

u

]
is the search direction and ω(k)

1 ∈ (0, 1] is the corresponding

line search step size which ensures L(θ(k+1),β(k),η(k)) ≥ L(θ(k),β(k),η(k)), with

equality being achieved when the algorithm has converged. The step respects the

non-negativity of θ(k+1). Armijo’s rule (Luenberger et al. 1984) can be used to

update ω1. Note that 0 < ω
(k)
1 ≤ 1 guarantees that θ(k+1)

u ≥ 0 when θ(k)
u ≥ 0.
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3.4.2.2 β updating step

With θ being fixed at θ(k+1) at iteration (k + 1), β(k+1) is obtained by running

one iteration of Newton’s algorithm followed by a standard line search. The line

search step ensures that the objective function L(θ(k+1),β,η(k)) increases with the

updated β estimate of β(k+1). To deliver the Newton update of β, firstly, consider

the first order derivative of the augmented Lagrangian with respect to βj as follows:

∂L(θ,β,η)

∂βj
= −

n∑
i=1

γixij − α
n∑
i=1

(xiβ − ηi)xij (3.31)

for j = 1, 2, ..., p. Secondly, the second order derivative of L with respect to βj and

βt is:

∂2L(θ,β,η)

∂βj∂βt
= −α

n∑
i=1

xijxit (3.32)

for j = 1, 2, ..., p and t = 1, 2, ..., p. One iteration of the Newton’s algorithm for

solving the KKT necessary condition given in (3.20) for the optimal β with line

search gives

β(k+1) = β(k) + ω
(k)
2

[
∂2L(θ(k+1),β(k),η(k))

∂β∂β>

]−1[
∂L(θ(k+1),β(k),η(k))

∂β

]
. (3.33)

In this step also, ω(k)
2 ∈ (0, 1] is the line search step size and we can use Armijo’s rule

to determine the ω(k)
2 ’s. Again, the line search step ensures that L(θ(k+1),β(k+1),η(k)) ≥

L(θ(k+1),β(k),η(k)) when β is moving from β(k) to β(k+1), where the equality holds
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only if the iterations have converged.

Here, note that even though Newton’s algorithm requires calculation of the

second order derivative with respect to β’s iteratively to update β, it does not

cause slow computation since the second derivative given in (3.32) does not involve

updated β and it depends only on the covariates. For any given iteration, it results

in a constant for a combination of βj and βt. This can be considered as an advantage

of this proposed method.

3.4.2.3 η updating step

In this step, we impose the non-negativity constraint on the overall hazard (con-

straint (3.16)). Similar to Section 3.4.2.1, the MI algorithm is applied to solve this

non-negatively constrained optimization subproblem. The updating process of the

new constraint vector η, using the updated θ and β values as follows. Firstly, the

first order derivative of L with respect to ηi is

∂L(θ,β,η)

∂ηi
=

m∑
u=1

1

(θu + ηi)
I(ti ∈ Bu, i ∈ O)− ti + γi + α(xiβ − ηi). (3.34)

The derivative given in (3.34) is a function of single ηi. Therefore, this can be

updated by subjecting ηi. But, to keep consistency, here we are using the MI

algorithm to update ηi.

Since this step deals with handling the non-negativity constraint on h(t|xi), it



Chapter 3. MPL approach for right-censored data 53

can be presented as:

ηi ≥ −min
u

(θ(k+1)
u ) or ηi + min

u
(θ(k+1)
u ) ≥ 0.

In order to follow the MI updating scheme, first the derivative was re-arranged as

in Section 3.4.2.1 in such a way that both sides of the resulting equation does not

contain any negative terms. Then, the updating step of the intermediate estimate

of ηi: ηi(k+1/2) from ηi
(k) based on the MI algorithm can be given as:

[
η

(k+1/2)
i + min

u
θ(k+1)
u

]
=

[
η

(k)
i + min

u
θ(k+1)
u

]{
∆1

∆2

}
, (3.35)

where ∆1 = ti − [γi]
− − α[(xiβ − ηi)]− + ζ1i and

∆2 =
m∑
i=1

1

(θu + ηi)
I(ti ∈ Bu, i ∈ O) + [γi]

+ + α[(xiβ − ηi)]+ + ζ1i.

In order to avoid zero denominator and to improve the convergence speed of this

MI algorithm, ζ1i is introduced to both the numerator and the denominator. It is

clearly seen from (3.35) that {η(k+1/2)
i + minu (θ

(k+1)
u )} satisfies the non-negativity

constraint if {η(k)
i + minu (θ

(k+1)
u )} ≥ 0. Even though this maintains {η(k+1/2)

i +

minu (θ
(k+1)
u )} ≥ 0, it is necessary to ensure that L(θ(k+1),β(k+1),η) increases

when moving from η
(k)
i to η(k+1/2)

i . Thus, similar to Section 3.4.2.1 a line search

step is performed and first we rewrite the equation (3.35) as:

[
η

(k+1/2)
i + min

u
θ(k+1)
u

]
=

[
η

(k)
i + min

u
θ(k+1)
u

]
+ S2(η(k))

∂L(θ(k+1),β(k+1),η(k))

∂ηi
,

(3.36)
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where S2(η(k)) is a diagonal matrix with diagonal elements s(k)
2i , i = 1, 2, . . . , n,

where s(k)
2i = (η

(k)
i + minu θ

(k+1)
u )/w

(k)
2i with w(k)

2i represents the denominator of the

right hand side of (3.35). Here, s(k)
2i is non-negative due to the earlier discussion.

Thus, from equation (3.36), it is clear that the MI step given by (3.35) proceeds

along the gradient direction with a non-negative step size.

Then, the updated η: η(k+1) can be obtained by a line search as follows:

η
(k+1)
i = η

(k)
i + ω

(k)
3

[
η

(k+1/2)
i − η(k)

i

]
. (3.37)

In order to guarantee that η(k+1)
i ≥ 0 when η(k)

i ≥ 0, we only restrict ω(k)
3 ∈ (0, 1]

and Armijo’s rule can be used to determine the values of ω(k)
3 ’s.

3.4.2.4 γ updating step

The Lagrangian multiplier, γ is updated using the standard dual update equation

as the final step of this iterative approach, which is updated as

γ
(k+1)
i = γ

(k)
i + α[xiβ

(k+1) − η(k+1)
i ]. (3.38)

The algorithm of these four parameter updating steps (Sections 3.4.2.1 - 3.4.2.4) is

performed iteratively until the convergence conditions are satisfied. Convergence

of the algorithm is controlled by an inner loop and an outer loop. The inner loop is

responsible for enhancing the accuracy of the two model parameters, θ and β. The
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outer loop focuses on minimizing the effect of the penalty term of the augmented

Lagrangian in the equation (3.18).

First, in the inner loop, the absolute difference between two adjacent estimated

values of θ and β are of concern. Then, the convergence criteria for the (k + 1)th

inner loop can be given as

|θ(k+1) − θ(k)| < 1× 10−6 and |β(k+1) − β(k)| < 1× 10−6.

For the outer loop, the minimization of (xiβ − ηi) is of interest and for that

purpose, the convergence criterion is applied for α as mentioned in Section 3.4.1.

In the outer iteration (s+ 1), the value of α is calculated as min{αs+1
0 , α12

0 } where

α0 is the α value at the 1st outer iteration. With the selection of appropriate α, the

above four updating steps are performed iteratively until the convergence criterion

for the inner loop satisfied. Once the inner loop satisfies the convergence criterion,

then the convergence criterion for the outer loop can be given as

max |xiβ − ηi| < 1× 10−5.

This algorithm is converged once the convergence conditions for these inner and

outer loops are satisfied.

In the next chapter, the parameter estimation procedure discussed in this chap-

ter is extended for more general and complex case of interval-censored data.
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Chapter 4

MPL parameter estimation

approach for additive hazards model

with interval-censored survival time

data

4.1 Introduction

This chapter presents a parameter estimation approach for the semiparametric

additive hazards models with partly interval-censored failure time data. Partly

interval-censored data describes the most general form of censored data that can be

57



58 4.2. Background of the problem

encountered in time-to-event analysis. Exactly observed event data, right and left-

censored data are special cases of interval-censored data as described in Chapter

1. Therefore, the methodology presented in Chapter 3 for right-censored data is a

special case of the estimation methodology that will be presented in this chapter.

To this end, the estimation steps are presented in the same order as in the previous

chapter, but these are inevitably more complex due to interval censoring data.

4.2 Background of the problem

Several approaches are currently available to fit the semiparametric additive haz-

ards model with partly interval-censored data (Farrington 1996, Ghosh 2001, Zeng

et al. 2006, Wang et al. 2010) as discussed in Section 2.3.

Farrington (1996) introduced a generalized linear model (GLM) approach for

partly interval-censored data assuming that the occurrences of censored obser-

vations are from independent Bernoulli trials and the corresponding probability

related to a linear predictor by a negative log link function (see Section 2.3.3).

The linear predictor includes the baseline hazard and the GLM model regression

coefficients which are directly related to the additive model coefficients. Additive

hazards model coefficients are then estimated by the GLM model. However, this

approach did not guarantee non-negativity or smoothness of the estimated baseline

hazard. Ghosh (2001) applied a maximum likelihood (ML) approach to studying



Chapter 4. MPL approach for interval censored data 59

the current status data, a special case of interval-censored data and considered the

non-negativity constraints on the cumulative baseline hazard. Zeng et al. (2006)

also applied a ML approach to estimate the regression coefficients β and the base-

line survival function S0(t) for partly interval-censored data. For the estimation

process they considered the logarithm transformation to impose monotonically

decreasing and positivity constraints on the baseline survival function S0(t) as

discussed in Section 2.3.2. However, due to the logarithm transformation, when

S0(t) approaches zero this estimation procedure is unstable. Wang et al. (2010)

implemented a counting process estimation approach for partly interval-censored

data. They focused their attention on estimating the regression coefficients β while

the baseline hazard h0(t) was considered to be a nuisance parameter and was not

estimated. The method proposed in this chapter addresses the limitations of these

existing methods. It simultaneously estimates the baseline hazard h0(t) and the

regression coefficients β while ensuring that both of the non-negativity constraints

are met.

The remainder of this chapter is laid out as follows. Section 4.3 details the

MPL function for the additive hazards model with partly interval-censored data.

Section 4.4 discusses the simultaneous estimation of h0(·) and β using a constrained

optimization algorithm. Suitable basis function is chosen and the non-negativity

constraints are imposed in order to ensure the non-negativity of h0(·) and h(·)
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during the estimation process which is conducted via a Newton-MI algorithm.

4.3 MPL function for the additive hazards model

with partly interval-censored data

This section discusses the MPL approach with partly interval-censored data which

can be used to estimate the β and h0(t) simultaneously by considering the two

non-negativity constraints pertaining to the additive hazards model.

4.3.1 Model and notations

Firstly, the mathematical notations used for the survival times considered in this

and subsequent sections are defined, including fully observed event times, finite

interval censoring times and left or right censoring times. Suppose there are n

observations in a study and let {Yi : i = 1, ..., n} be the random variables repre-

senting time to event of interest. Let the bivariate random vector Ci = (CL
i , C

R
i )>

represent the random censoring interval. Here, 0 ≤ CL
i < CR

i . It is assumed that

Yi and Ci are independent and cannot be observed simultaneously. Then, the ob-

served survival time for the ith individual is denoted by T i = (TLi , T
R
i )>. If Ci is

observed, then TLi = CL
i and TRi = CR

i and if Yi is observed, then TLi = TRi = Yi.

Assume further that the T i’s are independent. Observed values for TLi and TRi are
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represented by tLi and tRi .

Now, the survival information for individual i can be denoted by (tLi , t
R
i ,xi)

with (tLi , t
R
i ) representing the observed survival time and xi be the p × 1 vec-

tor of covariates. It is now possible to illustrate how the fully observed, left and

right censoring are special cases of interval censoring. For example, left censor-

ing occurs when tLi = 0 in the (tLi , t
R
i ) vector. Likewise, right censoring happens

when tRi = ∞. Uncensored data arise when tLi = tRi . Let δLi , δIi , δRi represent the

censoring indicators for left-censored, finite interval-censored and right-censored

observations respectively. Partly interval-censored data for subject i can be writ-

ten as {(tLi , tRi ), δLi , δ
R
i , δ

I
i ,xi}. Note that δi = 1 − (δLi + δIi + δRi ) represents the

indicator for fully observed subjects. Let nO, nL, nI and nR be the number of

subjects with their failure times exactly observed, left-censored, finite interval-

censored, and right-censored respectively. Thus, following the above description

we have only one time point each of (nO + nL + nR) number of subjects and for

nI number of subjects we have both left and right censoring time points. The as-

sumptions on time-independence of xi and independence between the censoring

times and the failure times remain the same as in Section 3.3.1.

The semi-parametric additive hazards model defined under (1.17) is considered

in this chapter as well. Then, the non-parametric baseline hazard h0(t) is treated

similarly to Section 3.3.1 in order to approximate the infinite dimensional space by
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a finite dimensional space. Again, in this thesis, the indicator function is selected

as the basis function and it results in a piecewise constant approximation to h0(t).

This discretization procedure of h0(t) is similar to the procedure discussed under

Section 3.3.1 except the number of time points observed. In Section 3.3.1, for

n subjects we consider n number of time points, whereas in the case of partly

interval-censored data we have (n + nI) number of time points from n subjects.

Recall that under the indicator basis functions, the hazard, the cumulative hazard

and the survival functions are (see Section 3.3.2):

h(t|θ,β,xi) =
m∑
u=1

θuI(τu−1 < t ≤ τu) + xiβ (4.1)

H(t|θ,β,xi) =
m∑
u=1

θu

[
(t− τu−1)I(τu−1 < t ≤ τu) + ρuI(t ≥ τu)

]
+ xiβt (4.2)

S(t|θ,β,xi) = exp[−H(t|θ,β,xi)]. (4.3)

4.3.2 Maximum penalized likelihood (MPL) estimation

Using equations (4.1) to (4.3), the log-likelihood function is given as

`(θ,β) =
n∑
i=1

{
δi[log h(ti|θ,β,xi)−H(ti|θ,β,xi)] + δLi log[1− S(tLi |θ,β,xi)]

+ δIi log[S(tLi |θ,β,xi)− S(tRi |θ,β,xi)]− δRi H(tRi |θ,β,xi)
}
. (4.4)

In this log-likelihood function, the first three terms correspond to fully observed

event times, left-censored times and finite interval-censored times respectively,

while the last negative term is for right-censored times. As per Section 3.3.1, a
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smoothness constraint is applied to h0(t) by introducing a penalty term. Then,

the resulting penalized log-likelihood is,

Φ(θ,β) = `(θ,β)− λ J(θ). (4.5)

Note that the non-negativity constraints for the additive hazards model are h0(t) ≥

0 and h(t|xi) ≥ 0. Thus, we wish to solve the following constrained optimization

problem for θ and β:

(θ̂, β̂) = arg max
θ,β

Φ(θ,β) (4.6)

subject to the conditions,

θu ≥ 0 for u = 1, 2, ...,m (4.7)

and
m∑
u=1

θuI(t ∈ Bu) + xiβ ≥ 0 for i = 1, 2, ..., n. (4.8)

Parameter estimation can be performed by using a suitable constraint opti-

mization algorithm taking into account these two non-negativity constraints ((4.7)

and (4.8)). In next section, we develop an optimization algorithm which is similar

to the one in Chapter 3, and has the capability of estimating model parameters

simultaneously by considering these constraints.
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4.4 Constrained optimization by the augmented

Lagrangian method

Similar to the case of right-censored data, since the sample size n can be large,

we may have a large number of constraints for the partly interval-censored data

as well. Thus, we may have a constrained optimization problem with a potentially

large number of constraints depending on the sample size. Therefore, as per the

properties discussed in Section 3.4, we again adopt the augmented Lagrangian

method to deal with this constrained optimization problem.

4.4.1 Optimization method

Let η and γ be the vectors for ηi and γi, respectively. Then, the augmented La-

grangian function can be obtained from the penalized log-likelihood equation (4.5)

as follows:

L =
n∑
i=1

{
δi[log h̃(ti)− H̃(ti)] + δLi log[1− S̃(tLi )] + δIi log[S̃(tLi )− S̃(tRi )]

− δRi H̃(tRi )
}
− λ J(θ)−

n∑
i=1

γi(xiβ − ηi)−
α

2

n∑
i=1

(xiβ − ηi)2, (4.9)

where γi is the Lagrange multiplier for imposing the constraint ηi = xiβ and the

functions h̃(ti), H̃(ti) are defined by substituting ηi for xiβ in (4.1) and (4.2). S̃(ti)

can be obtained as: S̃(ti) = exp[−H̃(ti)].
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This augmented Lagrangian function is very similar to (3.18) in Section 3.4.1

and, we also move α from a small value to a large quantity as explained in Chapter 3

to assist the convergence. The KKT necessary conditions for the constrained MPL

estimation of θ and β discussed in Section 3.4.1 are considered in this algorithm

as well. Then, from (4.9), the following constraint optimization problem must be

solved:

(θ̂, β̂, η̂) = arg max
θ,β,η

[L(θ,β,η)] (4.10)

subject to θu ≥ 0 for u = 1, 2, ...,m and
∑m

u=1 θuI(t ∈ Bu) + ηi ≥ 0 for

i = 1, 2, ..., n.

4.4.2 Details of the algorithm

The constrained optimization problem under (4.10) can be solved by an alternative

iterative approach when the estimate of u at iteration k is denoted by u(k) as

follows:

θ(k+1) = arg max
θ≥0

L(θ,β(k),η(k)) (4.11)

β(k+1) = arg max
β

L(θ(k+1),β,η(k)) (4.12)

η(k+1) = arg max
ηi≥η∗

L(θ(k+1),β(k+1),η) where η∗ = max
u

(−θ(k+1)
u ) (4.13)

γ(k+1) = γ(k) + α (xiβ
(k+1) − η(k+1)). (4.14)
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Similar to Section 3.4, θ and η are updated using the MI algorithm since it is

efficient in handling non-negativity constraints while Newton’s algorithm is used

to update β. A standard Lagrange multiplier updating step is used to update γ.

Detailed parameter updating procedures of θ, β, η and γ are given below.

4.4.2.1 θ updating step

Similar to Section 3.4.2.1, θ(k+1) is firstly obtained by fixing β,η and γ at their

updates at the iteration k by performing one iteration of the MI algorithm followed

by a line search. Again this updating step ensures that each updated θ follows the

non-negativity constraint given by (4.7). Again as in Section 3.4.2.1, the line search

search step guarantees that the objective function L(θ,β,η) increases as a function

of θ when the other estimates remain at their current iteration values.

The first order derivative of L(θ,β,η) with respect to θu is:

∂L(θ,β,η)

∂θu
=

n∑
i=1

{
δi

1

h̃(ti)
ψu(ti)− δiΦu(ti) + δLi

S̃(tLi )Φu(t
L
i )

1− S̃(tLi )

− δIi
S̃(tLi )Φu(t

L
i )− S̃(tRi )Φu(t

R
i )

S̃(tLi )− S̃(tRi )
− δRi Φu(t

R
i )

}

− λ

[
∂J(θ)

∂θu

] (4.15)

for u = 1, 2, ...,m. The Karush-Kuhn-Tucker (KKT) necessary conditions for the

constrained MPL estimation of θ is exactly same as (3.19). Then, the parameter θ

is updated using the MI algorithm. For that purpose, equation (4.15) is rearranged

such that the resulting equation contains non-negative terms on both sides as
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follows:

θu

{
n∑
i=1

{
∆4 + ∆6 + ∆8

}
+ λ

[
∂J(θ)

∂θu

]+}

= θu

{
n∑
i=1

{
∆3 + ∆5 + ∆7

}
− λ

[
∂J(θ)

∂θu

]−}
, (4.16)

where ∆3 = δi
1

h̃(ti)
ψu(ti) ∆4 = δiΦu(ti) ∆5 = δLi

S̃(tLi )Φu(t
L
i )

1− S̃(tLi )

∆6 = δIi
S̃(tLi )Φu(t

L
i )

S̃(tLi )− S̃(tRi )
∆7 = δIi

S̃(tRi )Φu(t
R
i )

S̃(tLi )− S̃(tRi )
∆8 = δRi Φu(t

R
i ).

Here, the notations [a]+ and [a]− carry the same meanings as in Section 3.4.2.1.

Then, the equation (4.16) leads to the following intermediate θ updating scheme

which calculates the value, θ(k+1/2),

θ(k+1/2)
u = θ(k)

u

∑n
i=1

{
∆3 + ∆5 + ∆7

}
− λ
[
∂J(θ)
∂θu

]−
+ ξ2u∑n

i=1

{
∆4 + ∆6 + ∆8

}
+ λ
[
∂J(θ)
∂θu

]+

+ ξ2u

. (4.17)

The constant ξ2u ≥ 0 is used to avoid a zero denominator and to improve the

convergence speed of the algorithm. It is evident that from (4.17), θ(k+1/2)
u satisfies

the non-negativity constraint given in (4.7) if θ(k) ≥ 0. However, in order to

guarantee that L(θ,β(k),η(k)) increases when θ is moving from θ
(k)
u to θ(k+1/2)

u ,

the equation (4.17) is rewritten in a form similar to equation (3.29) in Section

3.4.2.1. This ensures that the updated θ from this intermediate step follows the

non-negativity constraint and increment of the likelihood.

Finally, θ is updated to θ(k+1) using the MI updating step given by:

θ(k+1)
u = θ(k)

u + ω
(k)
4

[
θ(k+1/2)
u − θ(k)

u

]
. (4.18)
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The line search step size, 0 ≤ ω
(k)
4 ≤ 1 possess the same characteristics as the line

search step size in Section 3.4.2.1 which guarantees the increment of the likelihood:

L(θ(k+1),β(k),η(k)) ≥ L(θ(k),β(k),η(k)) and the updated θ(k+1)
u ≥ 0 when θ(k)

u ≥ 0.

Here also Armijo’s rule is used to update ω4.

4.4.2.2 β updating step

When θ is fixed at θ(k+1), the regression coefficient estimator at iteration (k + 1),

β(k+1) is obtained by running one iteration of Newton’s algorithm followed by a

line search. This assures that L(θ,β,η) increases with the new β estimate β(k+1).

The overall first order derivative of the augmented Lagrangian for fully ob-

served, left-censored, finite interval-censored and right-censored data with respect

to βj can be computed as follows:

∂L(θ,β,η)

∂βj
= −

n∑
i=1

γixij − α
n∑
i=1

(xiβ − ηi)xij (4.19)

for j = 1, 2, ..., p. Then, the overall second order derivative of the augmented

Lagrangian with respect to βj and βt can be computed as follows:

∂2L(θ,β,η)

∂βj∂βt
= −α

n∑
i=1

xijxit (4.20)

for j = 1, 2, ..., p and t = 1, 2, ..., p.

Thus, one iteration of Newton’s algorithm is performed to solve the KKT nec-

essary condition for the constrained MPL estimation of β given in (3.20). From
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equations (4.19) and (4.20), the updated estimate of β(k+1) derived from β(k) is

given by

β(k+1) = β(k) + ω
(k)
5

[
∂2L(θ(k+1),β(k),η(k))

∂β∂β>

]−1[
∂L(θ(k+1),β(k),η(k))

∂β

]
. (4.21)

Here, to update the regression parameters β, Armijo’s rule is used and the se-

lection of ω5 assures that L(θ(k+1),β(k+1),η(k)) ≥ L(θ(k+1),β(k),η(k)) when β is

moving from β(k) to β(k+1). As mentioned in Section 3.4.2.2, the β updating step

in partly interval-censored data also does not result slow computation even though

it requires the second derivative.

4.4.2.3 η updating step

Update of η is carried out exactly same as in Section 3.4.2.3 by performing one

iteration of the MI algorithm. In this step, we impose the non-negativity constraint

on the overall hazard (constraint (4.8)). The first order derivative of the augmented

Lagrangian with respect to ηi is

∂L(θ,β,η)

∂ηi
= δi

1

h̃(ti)
− δiti + δLi

S̃(tLi )tLi
[1− S̃(tLi )]

− δIi
[S̃(tLi )tLi − S̃(tRi )tRi ]

[S̃(tLi )− S̃(tRi )]
− δRi tRi

+ γi + α (xiβ − ηi). (4.22)

This step requires handling the constraint on h(t|xi), which can be presented as:

ηi + minu (θ
(k+1)
u ) ≥ 0. In order to perform the MI algorithm to handle this non-

negativity constraint, the derivative given in equation (4.22) was first re-arranged
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as in Section 3.4.2.3 in such a way that the both sides of the resulting equation

contains only non-negative terms. Then, the updating step of intermediate estimate

η
(k+1/2)
i based on MI algorithm can be given as:

[η
(k+1/2)
i + min

u
θ(k+1)
u ] = [η

(k)
i + min

u
θ(k+1)
u ]

{
∆9

∆10

}
, (4.23)

where ∆9 = δiti + δIi
[S̃(tLi )tLi

[S̃(tLi )− S̃(tRi )]
+ δRi t

R
i − [γi]

− − α[(xiβ − ηi)]− + ζ2i and

∆10 = δi
1

h̃(ti)
+ δLi

S̃(tLi )tLi
[1− S̃(tLi )]

+ δIi
S̃(tRi )tRi

[S̃(tLi )− S̃(tRi )]
+ [γi]

+ + α[(xiβ − ηi)]+ + ζ2i.

ζ2i is introduced to avoid a zero denominator and to improve the convergence speed

of this MI algorithm. This updated
{
η

(k+1/2)
i + minu θ

(k+1)
u

}
satisfies the non-

negativity constraint as explained in Section 3.4.2.3. Then, in order to ensure that

L(θ(k+1),β(k+1),η) increases when moving from η
(k)
i to η(k+1/2)

i , equation (4.23) is

rewritten in a form similar to equation (3.36) in Section 3.4.2.3.

Then, η(k+1) is computed by a line search as

η
(k+1)
i = η

(k)
i + ω

(k)
6

[
η

(k+1/2)
i − η(k)

i

]
. (4.24)

In order to assure that η(k+1)
i ≥ 0 when η

(k)
i ≥ 0, we restrict ω(k)

6 ∈ (0, 1] and

Armijo’s rule can be used to determine the search step size updates.
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4.4.2.4 γ updating step

As the final step, the value of the augmented Lagrangian multiplier γ is updated

by using the standard dual update equation as

γ
(k+1)
i = γ

(k)
i + α[xiβ

(k+1) − η(k+1)
i ]. (4.25)

With this iterative parameter estimation (Sections 4.4.2.1-4.4.2.4), it is guaranteed

that this MPL method estimates both θ and β simultaneously by ensuring the

non-negativity of the two constraints. These four parameter updating steps are

performed iteratively until both inner and outer loop convergence conditions are

satisfied. The value of α(> 0) is determined by the inner and outer iterations of

the algorithm as explained at the end of Chapter 3. The convergence conditions for

the algorithm for partly interval-censored data remain the same as the convergence

criteria considered in Chapter 3. The asymptotic properties of this parameter

estimation method are presented in Chapter 5. Simulation studies for the right-

censored and interval-censored survival data are presented in Chapter 6.
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Chapter 5

Asymptotic properties

5.1 Introduction

The asymptotic properties of the derived constrained MPL estimates for β and

h0(t) are discussed in this chapter. We will investigate the asymptotic convergence

and asymptotic distributions of MPL estimates when (i) the number of basis func-

tions, m tends to infinity, and (ii) m is fixed. Section 5.2 presents notation and a

mathematical framework which will be used through out this chapter. In Section

5.3, the asymptotic consistency of the estimates β̂ and ĥ0(t) when the number

of distinctive knots m (number of basis functions) → ∞, but m/n → 0 and

µn = λ/n → 0 when n → ∞, is discussed. Section 5.4 presents the asymptotic

results for the constrained MPL estimates when m is fixed.

73
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5.2 Notations and mathematical framework

When a = mini t
L
i and b = maxi t

R
i , it is assumed that the baseline hazard h0(t)

is a bounded function and has q(≥ 1) bounded derivatives over [a, b], which is

denoted by Cq[a, b]. The parameter space for h0(t) is considered to be A = {h0(t) :

h0(t) ∈ Cq[a, b], 0 ≤ h0(t) ≤ J1 < ∞, ∀t ∈ [a, b]}. Here we assume that the

h0(t) is bounded and the upper bound J1 exists. The parameter space for β is

given by B = {β : |βj| ≤ J2 < ∞, ∀j}, where for any β ∈ B, the boundary

J2 = max ‖ β ‖. This is a compact finite dimensional parameter subspace for Rp.

Let π = (h0(t),β). Then, the overall parameter space is given by Π = {π : h0(t) ∈

A,β ∈ B} = A ∗B.

In this section, the baseline hazard h0(t) is approximated by hn(t) =
∑m

u=1 θunI(t ∈

Bu), where I is an indicator function for a time point in bin u, and θun are assumed

to be non-negative and bounded. Thus, a finite dimensional space for the approx-

imated baseline hazard hn(t) is defined by An = {hn(t) : 0 ≤ hn(t) ≤ J3 <

∞,∀t ∈ [a, b]}, where J3 is the upper bound and it exists. The parameter space

for πn = (hn(t),β) can be denoted by Πn = {πn : hn ∈ An,β ∈ B} = An ∗ B.

The corresponding MPL estimates for πn is denoted by π̂n = (ĥn(t), β̂). Through-

out this thesis, we consider ‖ a ‖ to be the Euclidean norm of a vector a and

‖ a1 − a2 ‖2
2 denotes the square of the Euclidean distance between two vectors a1
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and a2.

Next, with the use of censoring indicators, left and right survival time vectors

and covariates, a combined random vector Zi is defined as follows:

Zi = (δi, δ
L
i , δ

R
i , δ

I
i , T

L
i , T

R
i ,xi)

>, for i = 1, 2, ..., n

and the random vectors Zi are assumed to be i.i.d. The density function for any

Zi is

f(zi) = [hi(ti)Si(ti)]
δi [1− Si(tLi )]δ

L
i Si(t

R
i )δ

R
i [Si(t

L
i )− Si(tRi )]δ

I
i ζ(xi), (5.1)

where ζ denotes the density function of xi which is independent of β and h0(t),

and tLi = tRi = ti when δi = 1. Let Z represent a general Zi and F be the cumu-

lative distribution function of Z. The log-likelihood functions of Z corresponding

to spaces Π and Πn are denoted by `(π; Z) and `(πn; Z) respectively and the

class Λn can be defined as Λn = {`(πn; Z) : πn ∈ Πn}. For π ∈ Π, the ac-

tual mean and the empirical mean are denoted as P`(π) =
∫
`(π; z)dF (z) and

Pn`(π) = 1
n

∑n
i=1 `(π; Zi) respectively. For πn ∈ Πn, the actual mean P`(πn) and

the empirical mean Pn`(πn) are similarly defined.

Let h00(t) and β0 to be the true values of h0(t) and β respectively, which max-

imize P`(π). One common method to parameterize the nonparametric component

is to use the sieve estimators (Shen & Wong (1994); Huang & Rossini (1997); Shen

(1997)). The sieve method approximates an infinite dimensional parameter space

Π by a series of finite dimensional parameter spaces Πn, which involves estimating
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parameters on Πn, not on Π. The estimation depends on the sample size n and

the approximation error must decrease to zero as the sample size increases (Shen

& Wong 1994). According to Grenander (1981), such a sequence of approximating

spaces Πn is called a sieve, and the maximizer of Pn`(π) over Πn is called the

sieve MLE. That means, the maximizer π̂n could be referred to as sieve MLE if

π̂n maximizes Pn`(πn) and satisfies the condition,

Pn`(π̂n) ≥ sup
π∈Πn

Pn`(π)− ξn.

The rate at which ξn reaches 0 does not affect the asymptotic properties of the

sieve estimator π̂n.

The concepts discussed in this section are used in deriving asymptotic results of

the MPL estimates in the following sections. In the next section, the consistency

of the MPL estimates ĥn(t) and β̂ when m → ∞, m/n → 0 and the penalty

parameter µn = λ/n→ 0 is considered.

5.3 Asymptotic results when m→∞, but m/n→ 0

and µn → 0

In this section, a discussion on the asymptotic properties of the MPL estimates

when the number of distinctive knots m → ∞, but the rate is slower than the

rate of n→∞ is presented. In particular, it is assumed that µn = o(n−1/2). When
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the baseline hazard estimate is ĥn(t) =
∑m

i=1 θ̂unI(t ∈ Bu), let θ̂n and β̂ be the

MPL estimates of θ and β with θ̂n = (θ̂1n, ..., θ̂mn)>. The asymptotic results for

the estimates ĥn(t) and β̂ is presented in Theorem 5.3.1. The results require the

following assumptions.

Assumptions:

A1. Design matrix X is bounded and E(XX>) is non-singular.

A2. The penalty function J is bounded over the spaces Π and Πn.

A3. For the approximated baseline hazard function hn(t), assume its coefficient

vector θn is in a compact subset of Rm.

A4. The basis functions and their associated knots are selected in a way such that

for a h0(t) ∈ A, there exists hn(t) ∈ An such that maxt |hn(t)−h0(t)|→ 0 as

n→∞.

The claim on Assumption A4 can be achieved under certain regularity conditions.

For an example, when h0(t) is approximated using a B-spline basis function, the

difference between the approximated and true baseline hazard values reaches to

zero when the bin size reaches to minuscule, which means the number of bins, n

reaches to ∞. For more information refer to Marsden (1968) and Proposition 2.8

in De Boor & Daniel (1974).
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Theorem 5.3.1 Suppose that the Assumptions A1 - A4 are satisfied and assume

the baseline hazard h0(t) is a bounded function and has q(≥ 1) bounded derivatives

over [a, b]. When µn → 0 as n → ∞ and m = bnνc, where 0 < ν < 1, then for

n→∞ :

1. supt∈[a,b]|ĥn(t)− h00(t)| a.s.−−→ 0,

2. ‖ β̂ − β0 ‖
a.s.−−→ 0.

Proof:

The proof of the above theorem given below follows the proofs in Huang (1996),

Zhang et al. (2010) and Xue et al. (2004). Recall that the combined parameter

vector π = (h0(t),β) with π ∈ A ∗B and the combined parameter vector in finite

dimensional space πn = (hn(t),β) with πn ∈ An ∗ B ⊂ A ∗ B. Let D(π1,π2) be

the distance measure for two parameter vectors π1,π2 defined by,

D(π1,π2) = {‖ π1−π2 ‖2}1/2 =
{

sup
t∈[a,b]

|h01(t)−h02(t)|2+ ‖ β1−β2 ‖2
2

}1/2

. (5.2)

This proof needs the concept of a covering number in a space. According to Van

Der Vaart & Wellner (1996), the covering number N(ε,F , ‖ · ‖) is the minimal

number of balls {g :‖ g − f ‖< ε} of radius ε needed to cover the set F .

To prove Theorem 5.3.1 , it is required to demonstrate that the distance mea-

sure between π0 and π̂n: D(π0, π̂n) converges to zero (→ 0) almost surely (a.s.).

Since the penalty parameter µn → 0 when n → ∞ and the penalty function J is

bounded, it is required to focus only on the log-likelihood function. The following



Chapter 5. Asymptotic properties 79

steps are used to obtain the results stated in Theorem 5.3.1.

Step 1:

Denote the density function in (5.1) by f(π; Z) to emphasise its dependence on π.

Let p(π; Z) be the corresponding Fréchet derivative (Dieudonné 2013) of f(π; Z)

with respect to π and ϑ be a point between π0 and π̂n. Applying the mean value

theorem to f
1
2 (π; Z) gives,

|P`(π0; Z)− P`(π̂n; Z)| = E0(`(π0; Z)− `(π̂n; Z))

≥ ‖ f
1
2 (π0; Z)− f

1
2 (π̂n; Z) ‖2

2 (5.3)

=

∥∥∥∥∥ p(π; Z)

2f
1
2 (π; Z)

∣∣∣∣∣
π=ϑ

(π0 − π̂n)

∥∥∥∥∥
2

2

≥ J4 ‖ π0 − π̂n ‖2
2, (5.4)

where the first inequality exists since the Kullback-Leibler distance (Kullback &

Leibler 1951) is not less than the square of the Hellinger distance (Wong & Shen

1995). E0 refers to the expectation with respect to f(π0; Z) and since f(π; Z) is

non-zero and bounded, the function p(π;Z)

2f
1
2 (π;Z)

∣∣∣∣
π=ϑ

is also bounded. J4 is the lower

bound of |p(ϑ; Z)/2f
1
2 (ϑ; Z)|. Thus, in order to show D(π0, π̂n) → 0 (a.s.), it is

sufficient to show that |P`(π0)− P`(π̂n)|→ 0 (a.s.).

Step 2:

This step and the subsequent steps prove |P`(π0)−P`(π̂n)|→ 0 (a.s.). To simplify
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the proof of this convergence, triangular inequality is obtained as follows:

|P`(π0)− P`(π̂n)| ≤ |P`(π0)− Pn`(π̂n)| + |Pn`(π̂n)− P`(π̂n)|. (5.5)

Then, we just need to show that each term on the right hand side of equation (5.5)

converges to 0 almost surely. Define π0n ∈ An ∗ B which satisfies, for the sieve

space chosen, D(π0n,π0)→ 0 (a.s.) as n→∞ according to assumption A4. Since

the true parameter vector π0 maximizes the true mean P`(π) for π ∈ A ∗ B and

the estimate π̂n maximizes the empirical mean Pn`(π) for πn ∈ An ∗B, we get

P`(π0)−P`(π0n)+P`(π0n)−Pn`(π0n) ≥ P`(π0)−Pn`(π̂n) ≥ P`(π̂n)−Pn`(π̂n).

(5.6)

In equation (5.6), the middle term is sandwiched by the two terms on both sides.

Then, it is necessary to show that the two terms on both sides of the equation

(5.6) converge to zero (a.s.) in order to claim that the middle term converges to

zero (a.s.).

According to assumption A4, for the selected sieve space above, it is guaran-

teed that P`(π0) − P`(π0n) converges to 0 (a.s.). Next, we need to show that

{P`(π̂n)− Pn`(π̂n)} and {P`(π0n)− Pn`(π0n)} converge to 0 (a.s.).

Step 3:

This step demonstrates supπn∈An∗B|P`(πn)−Pn`(πn)|→ 0 (a.s.) using the follow-

ing steps:

(a) Firstly, it can be shown that N(ε, An, L∞) ≤ (6M0/ε)
m where M0 is a con-
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stant and it is obtained as follows. For any h01, h02 ∈ An (where h0i(t) =∑m
u=1 θiuI(t ∈ Bu)) there exists a relationship such that maxt|h01(t)−h02(t)| ≤

maxu|θ1u − θ2u| ≤ ‖ θ1 − θ2 ‖. This relationship is achieved since θiu is

bounded and consequently bounded h0i(t). Hence, by following Lemma A.2

of Xue et al. (2004), N(ε, An, L∞) ≤ N(ε, {0 ≤ θu ≤ M0, 1 ≤ u ≤ m}, L2).

Then, by Lemma 4.1 of Pollard (1990), we can obtainN(ε, {0 ≤ θu ≤M0, 1 ≤

u ≤ m}, L2) ≤ (6M0/ε)
m.

(b) Next, by following the Taylor’s series expansion presented in Xue et al. (2004),

it can be shown that N(ε,π0n ∈ An ∗ B,L∞) ≤ K/εm+p, where K is a con-

stant and it can be specified as follows: N(ε, An∗B,L∞) ≤
[
N(ε/2, An, L∞) ·

N(ε/2, B, L2)
]
≤ (12M0/ε)

m(6M1/ε)
p = K/εm+p whereK = (12M0)m(6M1)p.

(c) Then, select αn = n−1/2+φ1(log n)1/2 where φ1 ∈ (φ0/2, 1/2) with φ0 < 1 in

such a way that αn is a non-increasing series. Let εn = εαn for any fixed ε.

According to the proof of Theorem 1 of Xue et al. (2004) and by following

the results of Pollard (1984), for any Pn`(πn) ∈ Λn which has been defined in

Section 5.2, it can be derived that var[Pn`(πn)]/(16ε2
n) ≤ (1/n)Pl2

16ε2α2
n
≤ C

16nε2α2
n
.

Then, it is possible to claim that var[Pn`(πn)]/(16ε2
n)→ 0 (a.s.) as n→∞.

(d) From the results in Steps 3((a)-(c)), and following the results of Chapter II

equation 31 of Pollard (1984) along with same arguments of Xue et al. (2004),

it is possible to show that
∑∞

n=1 P{supAn∗B|P`(πn)−Pn`(πn)|> 8εn} <∞.
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Thus, this is a convergent series and by the Borel-Cantelli lemma (Feller

2008), supAn∗B|P`(πn)− Pn`(πn)|→ 0 (a.s.).

Following the above proof in Step 3, {Pn`(π̂n) − P`(π̂n)} in equation (5.5) and

{P`(π0n)−Pn`(π0n)}, {P`(π̂n)−Pn`(π̂n)} in equation (5.6) converge to 0 (a.s.).

By selecting π0n as in Step 2, P`(π0) − P`(π0n) → 0 (a.s.). Thus, according to

these results, the middle term in equation (5.6): |P`(π0) − Pn`(π̂n)|→ 0 (a.s.).

Consequently, the two terms on the right side of equation (5.5) converge to 0

(a.s.). Therefore, it can be shown that |P`(π0)−P`(π̂n)|→ 0 (a.s.) and, since it is

the upper bound for D(π0, π̂n), according to equation (5.4), the distance measure

D(π0, π̂n)→ 0 (a.s.).

The consistency results in Theorem 5.3.1 can be further developed to obtain

a convergence rate for the two estimates of β and hn(t) and then to show the

asymptotic normality of the estimator of β. This can be done by following the

similar type of work for the Cox model by Huang (1996), Xue et al. (2004) and

Zhang et al. (2010). But, those results are less useful in practice, even though

they are quite important from a theoretical aspect. The reasons these asymptotic

results are less popular are mainly: (i) the results do not consider the fact that

some baseline hazard estimates can be zero, (ii) the computational inefficiency of

calculation of the variance covariance matrix of β̂. Due to this impracticality of

asymptotic normality when m → ∞, useful asymptotic results of the estimators
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of θ and β, when m is fixed and for non-zero µn, are developed and given in the

next section.

5.4 Asymptotic properties for constrained MPL es-

timates with fixed m

In this section, the two model parameters are combined into a single vector σ =

(θ>,β>)>, with dimension of m + p, in order to show the asymptotic properties.

Note that we are using the basis coefficient vector θ which is equivalent to h0(t)

when it is approximated with finite m. Consider σ0 = (θ>0 ,β
>
0 )> to be its as-

sociated true parameter vector and σ̂ = (θ̂
>
, β̂
>

)> to be the MPL estimate of

σ. During this asymptotic derivation, the interval censored data representation

discussed in Section 5.2 is considered again. Then, with the inclusion of the new

combined parameter vector σ, the joint density function introduced in (5.1) can

be rewritten as:

f(zi|σ) = [hi(ti|σ)Si(ti|σ)]δi [1−Si(tLi |σ)]δ
L
i Si(t

R
i |σ)δ

R
i [Si(t

L
i |σ)−Si(tRi |σ)]δ

I
i ζ(xi),

(5.7)

where ζ(xi) represents the density function of xi. By using the joint density func-

tion defined in (5.7), the log-likelihood function in (4.4) can be re-expressed as:
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`(σ) =
n∑
i=1

`i(σ) =
n∑
i=1

log f(zi|σ). (5.8)

Then, by using the above log-likelihood function, the objective function given in

(4.5) can be re-expressed as Φ(σ) =
∑n

i=1 φi(σ) where φi(σ) = `i(σ)−µnJ(σ). The

penalty function is J(σ) = J(θ) as discussed in Section 3.3.2 and µn = λ/n. Next,

σ is estimated by maximizing Φ(σ) subject to the two non-negativity constraints:

θu ≥ 0 and
∑m

u=1 θuI(t ∈ Bu) + xiβ ≥ 0 introduced by (4.7) and (4.8). During the

estimating process, active constraints (i.e., θu = 0 or
∑θ

u=1 uI(t ∈ Bu) + xiβ = 0)

are often observed. Thus, those active constraints also should be considered when

developing asymptotic results. The following assumptions are needed to develop

the asymptotic properties of σ̂.

Assumptions:

B1. Observations (TLi , T
R
i ,xi, δi; 1 ≤ i ≤ n) are independently and identically dis-

tributed and the distribution of covariate xi is independent of σ = (θ>,β>)>.

B2. The censoring time is independent of the failure time given xi. The distribu-

tion of Ci is independent of σ.

B3. The objective function Φ(σ) is bounded.

B4. Let Ω be the parameter space for vector σ. Ω is a compact subset of Rm+p.

B5. Corresponding to the true parameter vector σ0 ∈ Ω, Eσ0 [n
−1`(σ)] exists and
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a has a unique maximum at σ∗ ∈ Ω which is not necessarily equal to σ0 due

to the penalty function J(σ).

B6. Φ(σ) is continuous over Ω and is twice differentiable in a neighborhood of

σ∗. The matrices:

G(σ∗) = −Eσ0

{
n−1∂

2l(σ∗)

∂σ∂σ>

}
and F (σ∗) = −Eσ0

{
n−1∂

2Φ(σ∗)

∂σ∂σ>

}
(5.9)

exist and are positive definite in a neighborhood of σ∗. Moreover, the matri-

ces:

n−1∂
2l(σ∗)

∂σ∂σ>
and n−1∂l(σ

∗)

∂σ

∂l(σ∗)

∂σ>
(5.10)

converge uniformly in σ∗ in a neighborhood of σ0.

B7. Penalty function J(σ) is continuous and bounded over Ω. Both ∂J(σ)
∂σ and

∂2J(σ)

∂σ∂σ> exist for all σ ∈ Ω. Furthermore, ∂2J(σ)

∂σ∂σ> is bounded in a neighbor-

hood of σ∗.

The assumptions B1-B5 are standard assumptions, which are used in maximum

likelihood theory with censored data. Assumption B6 is useful to prove consistency

and asymptotic normality of the estimates and it is similar to Assumption 4 in

Yu & Ruppert (2002). In order to control the penalty term, Assumption B7 is

used during the proof of asymptotic normality of the estimates and it is generally

applicable for many penalty types of interest.
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Crowder (1984) and Moore et al. (2008) worked on asymptotic properties for

constrained maximum likelihood estimates. Deriving asymptotic properties for es-

timates of the additive hazards model are aligned with the method of the latter

reference. Recall that there are two non-negativity constraints on the baseline haz-

ard and hazard function according to (4.7) and (4.8) and the dimensions of θ and

β are m and p respectively. The KKT conditions for both of the non-negativity

constraints discussed in Section 3.4.1 also applies here. Those constraints are con-

sidered as active constraints when θu = 0 and/or
∑m

u=1 θuI(t ∈ Bu)+xiβ = 0. Note

that, for simplicity, we do not consider any active constraints for the constraint on

hazards;
∑m

u=1 θuI(t ∈ Bu) + xiβ ≥ 0 and assume that only the first q constraints

of θu ≥ 0 are active. The consideration of active constraints for both of the non-

negativity constraints is straightforward and the proof of asymptotic properties of

that case is omitted here since it is a simple modification of the method presented

here.

Define the matrix U which takes the following form with q active constraints;

U = [0(m−q+p)×q, I(m−q+p)×(m−q+p)]
>. (5.11)

The U matrix has the property U>(σ)U(σ) = I(m−q+p)(m−q+p). Thus, asymptotic

results for the constrained MPL estimates of σ can be presented as follows.

Theorem 5.4.1 Suppose that Assumptions B1-B7 are satisfied. Assume that there

are q active constraints in the constrained MPL estimate process for both con-
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straints. And the corresponding U matrix can be defined in a similar way as (5.11).

When n→∞,

1. the estimate σ̂, the constrained MPL estimate of σ is consistent for σ∗, and

2.
√
n(σ̂ − σ∗) D−→ N(0(m+p)×1, F̃(σ∗)−1G(σ∗)[F̃(σ∗)−1]>), where F̃(σ)−1 =

U(U>F(σ)U)−1U>.

Let Φ̄(σ) = Eσ0 [n
−1Φ(σ)]. Then, according to the uniform strong law of large

numbers, it follows that n−1Φ(σ) → Φ̄(σ) (a.s.) and uniformly for σ in the com-

pact parameter space Ω. This outcome, along with σ∗ being the unique maximum

of Φ̄(σ) according to assumption B5, leads to σ̂ → σ∗ (a.s.) by following, as an

example, Corollary 1 of Honoré & Powell (n.d.). Hence, the asymptotic normality

for the distribution of
√
n(σ̂ − σ∗) can be proved as follows.

From the KKT necessary conditions stated under equations (3.19) and (3.20),

it is possible to show that the constrained MPL estimate σ̂ satisfies:

U>
∂Φ(σ̂)

∂σ
= 0.

From the Taylor’s series expansion of ∂Φ(σ̂)
∂σ :

∂Φ(σ̂)

∂σ
=
∂Φ(σ∗)

∂σ
+
∂2Φ(σ̃)

∂σ∂σ>
(σ̂ − σ∗), (5.12)

where, σ̃ is a vector between σ̂ and σ∗. Then, multiplying equation (5.12) by U>:

U>
∂Φ(σ̂)

∂σ
= U>

∂Φ(σ∗)

∂σ
+ U>

∂2Φ(σ̃)

∂σ∂σ>
(σ̂ − σ∗), (5.13)
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and,

0 = U>
∂Φ(σ∗)

∂σ
+ U>

∂2Φ(σ̃)

∂σ∂σ>
(σ̂ − σ∗). (5.14)

Let ˜̂σ and σ̃∗ be the new vectors for σ after deleting active constraints in σ̂ and

σ∗, i.e., U>(σ̂ − σ∗) = (˜̂σ − σ̃∗). We get,

(σ̂ − σ∗) = U(˜̂σ − σ̃∗). (5.15)

Applying equation (5.15) into equation (5.14) results in:

U>
∂2Φ(σ̃)

∂σ∂σ>
U(˜̂σ − σ̃∗) = −U>

∂Φ(σ∗)

∂σ
,

(˜̂σ − σ̃∗) = −
[
U>

∂2Φ(σ̃)

∂σ∂σ>
U

]−1

U>
∂Φ(σ∗)

∂σ
,

(σ̂ − σ∗) = −U

[
U>

∂2Φ(σ̃)

∂σ∂σ>
U

]−1

U>
∂Φ(σ∗)

∂σ
. (5.16)

Finally, the following equation is obtained to assess for the asymptotic results:

√
n(σ̂ − σ∗) = −U

[
U>

1

n

∂2Φ(σ̃)

∂σ∂σ>
U

]−1

U>
1√
n

∂Φ(σ∗)

∂σ
. (5.17)

Next, from (5.17) we need to show that:

1√
n

∂Φ(σ∗)

∂σ

D−→ N(0,G(σ∗)) and (5.18)

−U

[
U>

1

n

∂2Φ(σ̃)

∂σ∂σ>
U

]−1

U>
P−→ F̃(σ∗)−1, (5.19)
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where G(σ∗) and F̃(σ∗)−1 are given by

G(σ∗) = −Eσ0

[
n−1∂

2`(σ∗)

∂σ∂σ>

]
and

F̃(σ∗)−1 = U

{
U>F(σ∗)U

}−1

U> where F(σ∗) = −Eσ0

[
n−1∂

2Φ(σ∗)

∂σ∂σ>

]
.

The notation, P−→ represents convergence in probability and D−→ represents conver-

gence in distribution.

Proof of equation (5.18):

Consider

1√
n

∂Φ(σ∗)

∂σ
=

1√
n

{
n∑
i=1

[
∂`i(σ

∗)

∂σ
− λ

n

∂J(σ∗)

∂σ

]}

=
1√
n

{
n∑
i=1

[
∂`i(σ

∗)

∂σ
− µn

∂J(σ∗)

∂σ

]}
. (5.20)

Because of assumption B7 and µn = o(n−1/2), the second term on the right hand

side of equation (5.20),

µn
∂J(σ∗)

∂σ
→ 0 as n→∞.

Therefore, equation (5.20) leads to:

1√
n

∂Φ(σ∗)

∂σ
=

1√
n

n∑
i=1

[
∂`i(σ

∗)

∂σ

]
=
√
n

[
1

n

∂`(σ∗)

∂σ

]
. (5.21)

By applying the central limit theorem to (5.21),

√
n

[
1

n

∂`(σ∗)

∂σ

]
D−→ N{0, I1}, (5.22)
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where I1 = Varσ0

[
1
n
∂`(σ∗)
∂σ

]
which can be simplified as,

Varσ0

[
1

n

∂`(σ∗)

∂σ

]
= Eσ0

[
1

n

∂`(σ∗)

∂σ

][
1

n

∂`(σ∗)

∂σ

]>
− Eσ0

[
1

n

∂`(σ∗)

∂σ

]
Eσ0

[
1

n

∂`(σ∗)

∂σ

]>
.

(5.23)

According to assumption B5, Eσ0 [n
−1`(σ∗)] = 0. Therefore, the second term on

right hand side of the equation (5.23) reaches 0. Thus, equation (5.23) can be

expressed in a more simple manner as:

I1 = Varσ0

[
1

n

∂`(σ∗)

∂σ

]
= Eσ0

[
1

n

∂`(σ∗)

∂σ

][
1

n

∂`(σ∗)

∂σ

]>

= −Eσ0

[
n−1∂

2`(σ∗)

∂σ∂σ>

]
(5.24)

= G(σ∗). (5.25)

Therefore, according to the result in equation (5.24), the distribution under (5.21)

can be re-expressed as,

√
n

[
1

n

∂`(σ∗)

∂σ

]
D−→ N{0,G(σ∗)}, (5.26)

and therefore satisfies the requirement under equation (5.18) as well.

Proof of equation (5.19):

Here, it is required to show that

−U

[
U>

1

n

∂2Φ(σ̃)

∂σ∂σ>
U

]−1

U>
P−→ F̃(σ∗)−1.

Since σ̃ is a vector between σ̂ and σ∗:

σ̂ → σ∗ and σ̃ → σ∗ as n→∞.
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Hence, using the consistent property of the constrained MPL estimate σ̂ of σ∗,

and Assumption 4 in Amemiya (1983), the term on the left side of the expression

(5.18) converges in probability as follows:

−U

[
U>

1

n

∂2Φ(σ̃)

∂σ∂σ>
U

]−1

U>
P−→ −U

{
U>Eσ0

[
1

n

∂2Φ(σ∗)

∂σ∂σ>

]
U

}−1

U> = F̃(σ∗)−1.

(5.27)

Thus, the result in equation (5.27) satisfies the requirement under equation (5.19).

With that result, as per Theorem 5.4.1, the expression for asymptotic variance

is given by:

V (σ∗) = F̃(σ∗)−1G(σ∗)[F̃(σ∗)−1]> where F̃(σ)−1 = U(U>F(σ)U)−1U>.

(5.28)

The results in Theorem 5.4.1 are quite useful in a practical aspect, since this

method accommodates active constraints and non-zero smoothing values. In prac-

tice, the unique maximum value σ∗ is often unavailable. But, the consistency

results allow us to replace it by the constrained MPL estimate σ̂. With these re-

sults, inference can be made with respect to regression coefficients or the baseline

hazard. Note that the penalty term in the penalized log-likelihood will disappear in

proving the asymptotic properties of the constrained MPL estimates, if µn → 0 as

n→∞. Then, the analysis will follow the same approach as in proving asymptotic

properties of the maximum likelihood estimator (MLE).

Next, Corollary 5.4.1.1 examines the asymptotic properties for fixed m and
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when µn = o(n−1/2).

Corollary 5.4.1.1 Suppose the assumptions B1-B7 hold and there are q active

constraints in the constrained optimization and matrix U is defined similar to

(5.11). Let σ0 be the true parameter value associated with fixed m. When µn =

o(n−1/2), the MPL estimate σ̂ is strongly consistent for σ0 and the distribution of

√
n(σ̂−σ0) converges to the normal distribution N(0(m+p)×1, U(U>G(σ0)U)−1U>)

as n→∞.

The variance formula given in (5.28) for the asymptotic normal distribution is

called the sandwich formula, and a consistent estimate can be obtained by replacing

F̃(σ∗) and G(σ∗) by their empirical versions, with σ∗ replaced by σ̂. Studying

the asymptotic variance of the MLE estimates assume that σ = (θ>,β>)> is an

interior point of the parameter space Ω, e.g., θu > 0 for all u. However, generally

it is possible that elements take zero values resulting in active constraints. Then,

it is difficult to develop the asymptotic theory for θ̂ and β̂ when some θ elements

lie on the boundary. In those situations, it is possible to perform bootstrapping

which can provide an approximate variance. This approach requires a large amount

of repeated estimations of both of the parameters and it can be computationally

intensive. But, in our study, we considered the case of active constraints as well.

Thus, it is possible to obtain asymptotic variance for the estimates using the results

obtained in Section 5.4. The simulation studies in Chapter 6 indicate that the
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sandwich formula given in (5.28) for the asymptotic variance is generally accurate

for both right-censored and interval-censored survival data.
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Chapter 6

Simulation studies

6.1 Introduction

In this chapter, simulation studies are considered to evaluate the MPL method in

fitting the additive hazards model. The main objectives of these simulation studies

are: (i) to study the effects of sample size and censoring proportion on the con-

strained MPL estimators of regression coefficient β and baseline hazard h0(t), (ii)

to compare the asymptotic standard deviations with the Monte Carlo standard

deviations of the constrained MPL estimators, and (iii) to compare our proposed

constrained MPL method with the existing parameter estimation methods devel-

oped by Aalen (1980) and Lin & Ying (1994) which has been reviewed in Sections

1.4.2 and 2.3.1. These simulation studies were performed to check and assess the

performance of the proposed MPL method with right-censored survival data and

95
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partly interval-censored survival data separately.

The first objective aims to analyse the sensitivity of the MPL estimators of

β and h0(t) with different censoring proportions πc and the sample sizes n. We

considered three sample sizes covering small, intermediate and large samples. For

each sample size, different censoring proportions covering small, intermediate and

large proportion of censoring were considered to achieve this objective. For the

second objective of this study, we investigate whether the asymptotic standard

deviations computed by the sandwich formula given by (5.28) are accurate for those

of the MPL estimators. Asymptotic standard deviations are calculated by replacing

σ∗ with σ̂ in equation (5.28) due to the consistency result and those standard

deviations were compared against the Monte Carlo standard deviations to assess

their accuracy. For the third objective, we demonstrate improvements of our MPL

method in estimating β and h0(t) compared with the existing parameter estimation

methods developed by Aalen (1980) and Lin & Ying (1994). We used R statistical

computing software with relevant R packages to do the required computations

and assess these three objectives. For the comparison of the third objective, R

packages, ‘Survival ’(Therneau & Grambsch 2000) and ‘ahaz ’(Gorst-Rasmussen

& Scheike 2012) which are available in CRAN were used as they implemented

parameter estimation methods developed by Aalen and Lin & Ying for additive

hazards models respectively. Note that the methods developed by Aalen and Lin
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& Ying are referred as "Aalen method" and "L-Y method" respectively in the

subsequent sections of this chapter.

This chapter is organised as follows. Section 6.2 presents the notations and

equations used to generate results based on simulations studies. Section 6.3 presents

the simulation results for right-censored survival data, and Section 6.4 presents the

simulation results for partly interval-censored data.

6.2 Notations

For each combination of n and πc, we perform Monte Carlo simulations for the

MPL method using K = 1,000 repeated samples, and thus obtain 1,000 MPL

estimates for β and h0(t). From those 1,000 estimates of β, we can compute the

average estimate (AEST), the estimated bias (BIAS), the Monte Carlo standard

deviation (MCSD), the average asymptotic standard deviation (AASD) and the

mean squared error (MSE) of β̂. Specifically, let β̂k be the estimate of β from the

kth sample, k = 1, . . . , K. Then we have,

AEST(β̂) =

∑K
k=1 β̂k
K

, (6.1)

BIAS(β̂) = β − AEST(β̂), (6.2)

MCSD(β̂) =

√√√√ 1

K − 1

K∑
k=1

{
β̂k − AEST(β̂)

}2

, (6.3)
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MSE(β̂) =
[
BIAS(β̂)

]2

+
[
MCSD(β̂)

]2

and (6.4)

AASD(β̂) =

∑K
k=1 ASD(β̂k)

K
, (6.5)

where ASD(β̂k) is the asymptotic standard deviation of the estimator β̂k obtained

by the sandwich formula given in equation (5.28). The coverage probabilities of

the 95% confidence intervals of the β estimates are also calculated. Let (LLk,ULk)

denote the confidence interval of βj, j = 1, 2, . . . , p for the kth sample. Then, the

coverage probability, Cp can be calculated as,

Cp =

∑K
k=1 I{LLk < βj and ULk > βj}

K
. (6.6)

Let ĥ0(t)k be the MPL estimate of the true baseline hazard h0(t) at time t for the

kth sample, k = 1, . . . , N . From the N = 1, 000 estimates of h0(t), we calculate the

AEST, MCSD and AASD of ĥ0(t) by,

AEST(ĥ0(t)) =

∑K
k=1 ĥ0(t)k
K

, (6.7)

MCSD(ĥ0(t)) =

√√√√ 1

K − 1

K∑
k=1

{
ĥ0(t)k − AEST(ĥ0(t))

}2

and (6.8)

AASD(ĥ0(t)) =

∑K
k=1 ASD(ĥ0(t)k)

K
, (6.9)

where ASD(ĥ0(t)k) is the asymptotic standard deviation of the estimator ĥ0(t)k at

time t for the kth sample and obtained from the formula (5.28). For each sample k,

we calculate the distances between the true baseline hazard and the MPL estimate
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of it. The distance used is the integrated squared error (ISE) and it is given by,

ISEk =

∫ ∞
0

[h0(t)− ĥ0(t)k]
2dt. (6.10)

Hence, the average integrated squared error (AISE) of the 1,000 baseline hazard

estimates is

AISE =

∑K
k=1 ISEk
K

. (6.11)

Variance of the ISE’s does not calculate at this stage, but from Figures 1-3 show the

distribution of ISE’s for different sample sizes and censoring proportions clearly.

6.3 Simulation studies for right-censored survival

data

The MPL method was developed for parameter estimation with partly interval-

censored data covering all the censoring types. But, firstly we used this MPL

method for the simulation studies with only right censoring due to the following

reasons: (i) we need to check the performance of the MPL method with the most

common censoring type, and (ii) as per the third objective we wish to compare the

results of this MPL method with other exisiting AH model parameter estimation

approaches, which are not developed to handle interval-censored data. Here, we

used survival data simulated from the Weibull distribution as described below. A

random sample of data, {(ti, δi),xi; i = 1, 2, . . . , n} was generated by following the
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below steps:

1. The failure time, Ti for each individual i = 1, 2, . . . , n is generated from the

Weibull distribution with the hazard function,

h(ti) = 3t2i + (xi1 + 0.8xi2 − 0.5xi3), (6.12)

where the baseline hazard function of this additive hazards model is given

by h0(ti) = 3t2i . Here, we set the regression coefficients, β = (β1, β2, β3)>

to be β1 = 1, β2 = 0.8 and β3 = −0.5. Then, the covariate vector xi =

(xi1, xi2, xi3)> is generated from the distributions: xi1 ∼ Uniform(−1, 1),

xi2 ∼ Bernoulli(0.5) and xi3 ∼ Uniform(0, 3). An inversion method is used

to generate Ti based on the relationship ui = FT (ti), where ui is a standard

uniform random variable and FT (ti) is the cumulative distribution function

of Ti, which is given by,

FT (ti) = 1− exp
[
− t3i − (xi1 + 0.8xi2 − 0.5xi3)ti

]
,

corresponding to the hazard model (6.12).

2. Corresponding to each Ti generated from the above step, we generated a

censoring time Ci from the exponential distribution Exp(µc), where µc de-

notes the mean of this exponential distribution. Then, the observed data

can be obtained as
{

(ti, δi); i = 1, . . . , n
}
, where ti = min

{
Ti, Ci

}
and

δi = I(Ti < Ci), where I is the indicator function. By adjusting the value of
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µc, it is possible to control the censoring proportion πc. Here, the values of

Ci in this step were generated independently of ti.

In order to get an overall idea on how each estimation method is affected by

sample size n and censoring proportion πc, we used samples of sizes n = 100, 500,

and 1, 000 covering small, intermediate and large sample sizes. For each sample

size, approximate censoring proportions of 20%, and 80% were considered. Model

parameters β and h0(t) were estimated using the augmented Lagrangian method

discussed in Chapter 3. In discretising the h0(t), the bins are selected in such a

way that the number of observations in each bin, nc, is approximately the same.

Some preliminary tests indicates that the MPL estimator of regression coefficient

β is not very sensitive to the choice of nc, as long as nc is not too large and the

smoothing value parameter λ is appropriate. We select nc = 2 for n = 100, nc = 5

for n = 500 and nc = 8 for n = 1, 000.

The convergence criteria of these simulation studies are the same as the con-

vergence criteria discussed in Chapter 3. Here we obtained the MPL estimates

when augmented Lagrangian method is converged or the maximum of 5,000 itera-

tions is reached, whichever occurs first. Here, we set the smoothing parameter to

λ = ξ/(1 − ξ), where the tuning parameter ξ satisfies ξ ∈ [0, 1). In the simula-

tion, we determined ξ experimentally so that good estimates of β and h0(t) were

obtained. Small samples generally require lighter smoothing while large samples
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prefer heavier smoothing. This is because there were less bins for small samples and

more bins for large samples. From the 1,000 repeated samples, the performance of

these estimates was assessed by examining their biases, standard deviations and

mean squared errors introduced in Section 6.2.

Tables 1-3 summarise the AEST, BIAS, MCSD, AASD and MSE values for

the MPL estimates of β with different censoring proportions and sample sizes. We

observe that:

i with a fixed sample size n, the MSE increases with censoring proportion, and

the MCSD, AASD and absolute value of BIAS follow the same trend,

ii with a fixed censoring proportion, all of these four quantities are decreasing

as sample size increases, and

iii comparison between MCSD and AASD demonstrates that the sandwich for-

mula given in (5.28) is generally accurate in approximating the variance of

the MPL estimates of β, particularly when the sample size becomes larger

or censoring proportion becomes smaller.

Tables 1-3 also give AISEs for the MPL estimates of h0(t). It is observed that

the AISEs exhibit an increasing trend as the censoring proportion increases, but

a decreasing trend as the sample size increases.

Along with these above mentioned simulation studies, we performed a com-

parison between our MPL method and the two existing methods, the Aalen and
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L-Y methods. These two comparisons can be easily implemented for right-censored

data using ’ahaz ’ and ’aareg ’ R functions for the Aalen and L-Y methods respec-

tively. The two methods are evaluated based on the same data sets as the MPL

method. The simulated data for both methods have sample sizes of n = 100, 500

and 1, 000. Monte Carlo simulations are done with 1, 000 repeated samples. The

covariates xi = (xi1, xi2, xi3)> and regression coefficients β = (β1, β2, β3)> are the

same as the MPL method. Here, we estimated regression coefficients β for both

of the comparison methods. Note that the baseline hazard estimates were only

estimated for the L-Y method, since the Aalen method implemented in ’aareg ’ R

function in ’Survival ’ R package does not provide estimates for h0(t). Furthermore,

the inference methods were not implemented for the Aalen method in ’aareg ’ R

function. Therefore, the asymptotic standard deviations for β were not available

for Aalen method. Hence, we only estimated Monte Carlo standard deviations.

Tables 1-3 report the estimation results for β from the two comparison methods.

We observe that, under each of the three sample sizes and two censoring propor-

tions, the biases of estimates and standard deviations using the MPL method are

smaller than those in the Aalen and L-Y methods. Thus, MPL method achieves

lower MSE than Aalen and L-Y methods. Tables 1-3 also report values of AISE

for the baseline hazard estimate for L-Y method along with that for MPL method.

We observe that our MPL method gives much smaller AISE than L-Y method. It
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can be seen that the values of AISE decrease with sample size but increase with

censoring proportion. When comparing the biases and standard deviations of the

Aalen and L-Y methods, under each sample size and censoring proportion combi-

nation, the biases of estimates in the L-Y method are smaller than those in Aalen

method, although they yield roughly similar standard deviations. This leads to, in

general, lower MSE values for the L-Y method compared to the Aalen method.

Both the MPL method and L-Y method provide reasonable coverage probabili-

ties of confidence intervals for β for all the sample sizes and censoring proportions.

When the sample sizes are n = 100 and n = 500, the regression estimate of β2

shows a slightly lower coverage probability for both of the methods compared to

coverage probabilities of other instances which might be due to small sample sizes.

As expected, the coverage probabilities tend to increase when the sample sizes

increase and/or the censoring percentage decreases. In general, the coverage prob-

abilities of the MPL confidence intervals for β tend to reach the 95% nominal value

in all the simulations except for β2 for sample sizes n = 100 and n = 500.
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Sample size n = 100

Censoring proportion c = 20% c = 80%

Method MPL L-Y Aalen MPL L-Y Aalen

β1 = 1 AEST 0.9821 0.9740 0.9572 0.9719 0.9724 0.9455

BIAS 0.0179 0.0260 0.0428 0.0281 0.0276 0.0545

MCSD 0.0724 0.0854 0.0782 0.0808 0.0932 0.0869

MSE 0.0056 0.0080 0.0079 0.0073 0.0094 0.0105

AASD 0.0696 0.0879 0.0816 0.0945

Cp 0.9492 0.9466 0.9456 0.9402

β2 = 0.8 AEST 0.8219 0.8118 0.8139 0.8157 0.8172 0.7438

BIAS -0.0219 -0.0118 -0.0139 -0.0157 -0.0172 0.0562

MCSD 0.0550 0.0705 0.0654 0.0637 0.0734 0.0813

MSE 0.0035 0.0051 0.0045 0.0043 0.0057 0.0098

AASD 0.0574 0.0679 0.0644 0.0748

Cp 0.9392 0.9364 0.9322 0.9262

β3 = −0.5 AEST -0.5704 -0.5872 -0.5962 -0.5769 -0.5784 -0.3975

BIAS 0.0704 0.0872 0.0962 0.0769 0.0784 -0.1025

MCSD 0.0851 0.0937 0.0881 0.0908 0.0970 0.0984

MSE 0.0122 0.0164 0.0170 0.0142 0.0156 0.0202

AASD 0.0884 0.0985 0.0916 0.0941

Cp 0.9622 0.9542 0.9592 0.9510

h0(t) AISE 0.2873 1.3424 0.2985 1.4768

Table 1: Comparisons of estimates of β and h0(t) between the MPL, L-Y and

Aalen methods for right-censored data with sample size n = 100
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Sample size n = 500

Censoring proportion c = 20% c = 80%

Method MPL L-Y Aalen MPL L-Y Aalen

β1 = 1 AEST 0.9819 0.9851 0.9615 0.9797 0.9793 0.9647

BIAS 0.0181 0.0149 0.0385 0.0203 0.0207 0.0353

MCSD 0.0440 0.0474 0.0467 0.0449 0.0499 0.0571

MSE 0.0023 0.0025 0.0037 0.0024 0.0029 0.0045

AASD 0.0442 0.0450 0.0435 0.0513

Cp 0.9582 0.9560 0.9470 0.9410

β2 = 0.8 AEST 0.8142 0.8204 0.8166 0.8199 0.8226 0.8204

BIAS -0.0142 -0.0204 -0.0166 -0.0199 -0.0226 -0.0204

MCSD 0.0405 0.0411 0.0378 0.0437 0.0457 0.0431

MSE 0.0018 0.0021 0.0017 0.0023 0.0026 0.0023

AASD 0.0408 0.0420 0.0441 0.0463

Cp 0.9402 0.9350 0.9412 0.9362

β3 = −0.5 AEST -0.5295 -0.5328 -0.5525 -0.5461 -0.5469 -0.5754

BIAS 0.0295 0.0328 0.0525 0.0461 0.0469 0.0754

MCSD 0.0456 0.0508 0.0540 0.0481 0.0532 0.0600

MSE 0.0029 0.0037 0.0057 0.0044 0.0050 0.0093

AASD 0.0474 0.0519 0.0461 0.0512

Cp 0.9656 0.9580 0.9628 0.9538

h0(t) AISE 0.0985 0.6587 0.0998 0.6892

Table 2: Comparisons of estimates of β and h0(t) between the MPL, L-Y and

Aalen methods for right-censored data with sample size n = 500
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Sample size n = 1, 000

Censoring proportion c = 20% c = 80%

Method MPL L-Y Aalen MPL L-Y Aalen

β1 = 1 AEST 0.9953 0.9883 0.9725 0.9863 0.9789 0.9664

BIAS 0.0047 0.0117 0.0275 0.0137 0.0211 0.0336

MCSD 0.0180 0.0206 0.0226 0.0184 0.0209 0.0266

MSE 0.0003 0.0006 0.0013 0.0005 0.0009 0.0018

AASD 0.0171 0.0220 0.0172 0.0213

Cp 0.9660 0.9588 0.9490 0.9438

β2 = 0.8 AEST 0.8083 0.8044 0.8112 0.8076 0.8047 0.8114

BIAS -0.0083 -0.0044 -0.0112 -0.0076 -0.0047 -0.0114

MCSD 0.0154 0.0196 0.0169 0.0172 0.0199 0.0207

MSE 0.0003 0.0004 0.0004 0.0004 0.0004 0.0006

AASD 0.0146 0.0192 0.0171 0.0190

Cp 0.9532 0.9410 0.9480 0.9394

β3 = −0.5 AEST -0.5220 -0.5287 -0.5894 -0.5335 -0.5507 -0.5893

BIAS 0.0220 0.0287 0.0894 0.0335 0.0507 0.0893

MCSD 0.0188 0.0210 0.0251 0.0194 0.0220 0.0275

MSE 0.0008 0.0013 0.0086 0.0015 0.0031 0.0087

AASD 0.0190 0.0219 0.0190 0.0233

Cp 0.9720 0.9598 0.9680 0.9542

h0(t) AISE 0.0398 0.2387 0.0427 0.2674

Table 3: Comparisons of estimates of β and h0(t) between the MPL, L-Y and

Aalen methods for right-censored data with sample size n = 1, 000
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6.4 Simulation studies for partly interval-censored

survival data

In this section, we focus on simulation studies based on partly interval-censored

survival data. Since our MPL approach can accommodate any type of censoring, for

these simulation studies we include right, left and finite interval-censored survival

data along with fully observed event data. Here, we performed these simulation

studies to check the first two objectives mentioned in Section 6.1. We do not

compare the MPL results with results from the L-Y and the Aalen methods for

partly interval-censored data due to: (i) the ’ahaz ’ R function which implements

the L-Y method supports only right-censored data, and (ii) acco1rding to the

simulation results from Section 6.3, it has been shown that the MPL method

outperformed the Aalen method even for right-censored data.

Simulation for the partly interval-censored data closely follows the method used

for right-censored data in Section 6.3. A random sample of data, {(Li, Ri],xi; i =

1, 2, . . . , n} was generated by following the below steps:

i The failure time, Ti, is generated from the Weibull distribution by follow-

ing the method discussed under step 1 in the right-censored survival data

generation process. We used the same hazard function from the Weibull dis-

tribution given in equation (6.12). The true regression coefficients take the
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same values and the covariate vector follows the same distributions we set in

right-censored data. The inversion method is used to generate Ti for partly

interval-censored data as well.

ii This step explains the process of generating a bivariate random vector for

partly interval-censored data with corresponding censoring type. We followed

the method used by Cai & Betensky (2003) to generate data for all censoring

types. First, we generate two monitoring times independent of Ti for each

subject i. Let Ci1 ∼ Uniform(0, 1) be the left censoring time random variable

and Ci2 = Ci1 + Uniform(0, 1) be the right censoring time random variable.

Then, a standard uniform random variable, wi was generated. If wi ≥ πc, then

the failure time Ti is deemed to be exactly observed and we set Li = Ri = Ti.

If wi < πc, the failure time is considered as censored and there are three

possible censoring scenarios: if Ti ≤ Ci1, it is left-censored and we set Li = 0

and Ri = Ci1; if Ci1 < Ti ≤ Ci2, it is considered as finite interval-censored

and Li = Ci1 and Ri = Ci2, and if Ti > Ci2, it is right-censored and Li = Ci2

and Ri = +∞. By using the different values of πc, it is possible to get the

data with different censoring proportions.

Three sample sizes, n = 100, 500 and n = 1, 000 were considered for the sim-

ulation studies and for each sample size three approximate censoring proportions,

20%, 50% and 80% were also considered. Model parameters β and h0(t) were es-
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timated using the augmented Lagrangian method discussed in Chapter 4. All the

conditions, namely binning criteria, the number of observations per bin for each

sample size, convergence criteria and smoothing parameter are remain the same as

the case of right-censored survival data. A simulation study was performed using

1, 000 repeated samples and the performance of the augmented Lagrangian method

was assessed by examining the biases, standard deviations and mean squared errors

discussed in Section 6.2.

Tables 4-6 summarise the regression estimates, bias, standard deviations and

mean square error values for β̂ with different censoring proportions and sample

sizes. Similar to the observations we had for right-censored data, we observe that:

i the BIAS and MCSD increase with censoring proportion with a fixed sample

size n, thus the MSE follows the same trend,

ii the four quantities BIAS, MCSD, AASD and MSE are decreasing as n in-

creases with fixed πc, and

iii the two values MCSD and AASD are approximately the same and it implies

that the sandwich formula given in (5.28) is generally accurate in approxi-

mating the variance of the MPL estimates of β.

Furthermore, the AISEs for the MPL estimates of h0(t) increase with the censoring

proportion, but decrease with the sample size.
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Sample size n = 100

Censoring proportion 20% 50% 80%

β1 = 1 AEST 0.9987 1.0046 0.9765

BIAS 0.0013 -0.0046 0.0234

MCSD 0.1819 0.1970 0.2063

MSE 0.0335 0.0409 0.0431

AASD 0.1739 0.1909 0.1990

Cp 0.9568 0.9454 0.9422

β2 = 0.8 AEST 0.8048 0.8010 0.8081

BIAS -0.0048 -0.0010 -0.0081

MCSD 0.1531 0.1780 0.1960

MSE 0.1585 0.1639 0.1885

AASD 0.0537 0.0508 0.0539

Cp 0.9542 0.9434 0.9381

β3 = −0.5 AEST -0.5241 -0.5417 -0.5387

BIAS 0.0241 0.0417 0.0387

MCSD 0.1881 0.2024 0.2162

MSE 0.0360 0.0427 0.0482

AASD 0.1833 0.1997 0.2234

Cp 0.9509 0.9526 0.9468

h0(t) AISE 0.2873 0.3248 0.3585

Table 4: Comparison of AEST, BIAS, MCSD, AASD, MSE and Cp for β estimates,

and AISE for h0(t) estimates for partly interval-censored data with sample size

n = 100
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Sample size n = 500

Censoring proportion 20% 50% 80%

β1 = 1 AEST 0.9998 1.0092 0.9848

BIAS 0.0002 -0.0092 0.0152

MCSD 0.1403 0.1606 0.1939

MSE 0.0197 0.0259 0.0378

AASD 0.1339 0.1536 0.1808

Cp 0.9552 0.9523 0.9446

β2 = 0.8 AEST 0.8044 0.7980 0.8018

BIAS -0.0044 0.0020 -0.0018

MCSD 0.1526 0.1730 0.1858

MSE 0.0233 0.0299 0.0345

AASD 0.1437 0.1604 0.1897

Cp 0.9580 0.9508 0.9485

β3 = −0.5 AEST -0.5238 -0.5385 -0.5573

BIAS 0.0238 0.0385 0.0573

MCSD 0.1881 0.1811 0.2005

MSE 0.0359 0.0343 0.0435

AASD 0.1833 0.1894 0.1949

Cp 0.9551 0.9588 0.9464

h0(t) AISE 0.1273 0.1424 0.1585

Table 5: Comparison of AEST, BIAS, MCSD, AASD, MSE and Cp for β estimates,

and AISE for h0(t) estimates for partly interval-censored data with sample size

n = 500
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Sample size n = 1, 000

Censoring proportion 20% 50% 80%

β1 = 1 AEST 0.9995 0.9983 0.9771

BIAS 0.0005 0.0017 0.0229

MCSD 0.0318 0.0825 0.1267

MSE 0.0010 0.0068 0.0166

AASD 0.0326 0.0816 0.1210

Cp 0.9562 0.9527 0.9503

β2 = 0.8 AEST 0.8006 0.8020 0.8074

BIAS -0.0006 -0.0020 -0.0074

MCSD 0.0598 0.0915 0.1059

MSE 0.0036 0.0084 0.0113

AASD 0.0534 0.0884 0.0939

Cp 0.9603 0.9609 0.9545

β3 = −0.5 AEST -0.5344 -0.5339 -0.5382

BIAS 0.0344 0.0339 0.0382

MCSD 0.0759 0.0864 0.1163

MSE 0.0069 0.0086 0.0158

AASD 0.0708 0.0808 0.1084

Cp 0.9602 0.9567 0.9561

h0(t) AISE 0.0473 0.0594 0.0685

Table 6: Comparison of AEST, BIAS, MCSD, AASD, MSE and Cp for β estimates,

and AISE for h0(t) estimates for partly interval-censored data with sample size

n = 1, 000
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Figures 1-3 exhibit plots for the true baseline hazard, AEST of the baseline

hazard estimates, the corresponding 95% Monte Carlo piecewise confidence inter-

vals (PWCI) and the corresponding 95% asymptotic piecewise confidence intervals

(PWCI). We detect that:

i AESTs are all very close to the true baseline hazard under different sample

sizes and censoring proportions,

ii the 95% Monte Carlo PWCI is close to the 95% asymptotic PWCI, hence

the sandwich formula given in (5.28) gives a good variance approximation

for the MPL estimates, ĥ0(t),

iii both the 95% Monte Carlo PWCI and the 95% asymptotic PWCI become

wider as the censoring proportion increases, but narrower when the sample

size increases, and

iv even with the indicator basis function, the baseline hazard is approximated

well and more accurate approximations can be obtained by using powerful

basis functions such as M-spline.

In this chapter, we have tested a MPL method to fit the additive hazards model

with right-censored and partly interval-censored data, where a quadratic penalty

term is added to the log-likelihood function to assure smoothness of the estimated

baseline hazard. To obtain MPL estimators of β and h0(t), we used the augmented
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Figure 1: Plot of the true h0(t), average h0(t) estimates, Monte Carlo PWCI, and

asymptotic PWCI for partly interval-censored survival data for n = 100
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Figure 2: Plot of the true h0(t), average h0(t) estimates, Monte Carlo PWCI, and

asymptotic PWCI for partly interval-censored survival data for n = 500
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Figure 3: Plot of the true h0(t), average h0(t) estimates, Monte Carlo PWCI, and

asymptotic PWCI for partly interval-censored survival data for n = 1, 000
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Lagrangian method which computes the augmented Lagrangian with the help of

the Newton-MI algorithm and the estimates of hazard and baseline hazard are con-

strained to be non-negative by using the Newton-MI algorithm. In this study, we

considered the piecewise constant approximation to discretize the non-parametric

baseline hazard. The two simulation studies demonstrate that our MPL method

works well for any combination of small, intermediate and large number of ob-

servations and small, moderate and large censoring proportions. Comparatively

good estimates can be obtained even with very small sample sizes (such as n=30

or 50) with small censoring proportions (i.e.: πc=20%) . The sandwich formula

given in the asymptotic analysis in Chapter 5 provides accurate variance approxi-

mations for both the regression coefficients and baseline hazard. Furthermore, the

simulation study on right-censored data shows that the MPL method outperforms

the existing parameter estimation methods developed by Aalen (1980) and Lin

& Ying (1994). In developing this MPL method, we assume the covariates are

time independent and the censoring time is independent of the failure time. How-

ever, it is possible to extend our method to fit the additive hazards model with

time-dependent covariates and dependent censoring.
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Real data application

In this chapter, we apply our MPL method to fit the additive hazards model

to a melanoma data set which was kindly provided by Melanoma Institute of

Australia. This data contains information regarding patients who were diagnosed

with melanoma. Melanoma is a type of cancer that develops in the skin’s pigment

cells. It is the most serious form of skin cancer and grows very quickly if left

untreated. Melanoma can spread to the inner lower part of the skin which is known

as dermis, enter the lymphatic system or bloodstream and then spread to other

parts of the body e.g. lungs, liver, brain or bone very quickly. Similar to other

cancers, melanoma can also return even after it has been treated, and it is called

recurrence. Recurrent melanoma may appear locally (at or near the site of the

original primary melanoma tumor), or in a different part of the body. Melanoma

can comes back even 10 years after it was first treated.

119
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This melanoma data set contains records for 2,175 patients covering the study

period from January 1, 1998 to March 14, 2016. Each patient record consisted of

the diagnosis date of melanoma (tdiag) and the date of the last follow-up (tlast)

with the status at the last follow up. Furthermore, for some of the patients, it

may contain the first melanoma recurrence observed date (tfirst) and the date of

the last negative check before the first melanoma recurrence (tneg). Records for

three patients have been removed from the analysis, since those records did not

follow the chronological order of the following dates: tdiag, tfirst, tlast. This data set

covers the patient diagnostic period from January 1, 1998 to December 30, 2002

and those patients were followed up until March 14, 2016.

In this study, we are mainly interested in the time taken to the first melanoma

recurrence, which is generally interval-censored. We set the time of the melanoma

diagnosis, tdiag as the time origin for each patient. The time to event should be

considered differently depending on the availability of relevant time points. For

a patient whose tneg and tfirst are available, the first melanoma recurrence time

is interval-censored in [(tneg-tdiag), (tfirst-tdiag)]. Both of these time points were

available for 474 patients. For a patient whose tfirst is available, but tneg is missing,

then the melanoma recurrence time can be left-censored in [0, (tfirst-tdiag)] and 234

patients were in this category. If both tneg and tfirst are missing, but the status

of tlast indicates melanoma, then melanoma recurrence time is left-censored in
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[0, (tlast-tdiag)]. 15 patients were belong to this category. All the remaining 1,449

patients were identified as missing recurrence of melanoma and the melanoma

recurrence time can be right-censored in [(tlast-tdiag),+∞].

According to the primary diagnosis, melanoma was identified on the arm, head

& neck, leg and trunk. Then, Sentinel Lymph Node Biopsy (SLNB) was performed

to check the presence of cancer cells. Lymph Node Dissection (LND) was performed

for 193 patients to remove the lymph nodes that have cancer cells. Complete LND

was commonly performed (76.7%) in the excision process, followed by elective LND

(22.3%) and therapeutic LND (1%). Out of all the melanoma diagnosed patients,

there were 33.3% melanoma recurrences and 66.7% non-recurrences. First recur-

rence information was available for 706 patients and out of them only 3.4% expe-

rienced the recurrence tumor at or near the site of the original primary melanoma

tumor. The remaining 96.4% experienced the recurrence tumor on a site differ-

ent to the primary diagnosis site. The least common type of first recurrence is

regional field recurrences (1.1%) and the most common recurrence is regional node

recurrences(39.1%). As per the status of the last follow up, there were 65.0% alive

patients at the end of the study period and the remaining 35.0% were deceased

during the study period. Among the alive patients, 92.6% patients showed no sign

of recurrence, 3.9% with melanoma and 3.5% with melanoma status unknown.

Among the dead patients, 54.0% of them had melanoma, 13.6% of them died
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without melanoma recurrence and 32.4% died due to an unknown cause.

The impact of the following factors on the risk of recurrence was evaluated using

the MPL method for the additive hazards model: patient sex; age at diagnosis of

melanoma; primary tumor location; melanoma thickness and status of SLNB. Here,

the melanoma thickness or the Breslow thickness was considered as a categorical

variable. A summary of those covariates is given in Table 7. For this data set, we

assume that the observed time points are independent to each other, and assume

those time points follow the additive hazards model specified in 1.17.

Based on the asymptotic normality properties of β̂ discussed in Chapter 5, we

performed a z-test of the null hypothesis, H0 : βj = 0 versus the alternative hy-

pothesis, Ha : βj 6= 0 using the estimates of the regression coefficients. Gender is a

significant covariate and has a negative regression coefficient for females with refer-

ence to males. This implies that the male patients have a higher risk of melanoma

recurrence compared to female patients. Similarly, age at diagnosis is significant

and the corresponding estimate explains that the chance of recurring melanoma

will increase as someone gets older to diagnose melanoma. Since the regression

coefficients in the additive hazards model explain the difference of the hazards, it

is possible to interpret the regression estimate for ‘age at diagnosis’ as: the risk of

melanoma recurrence increases by 0.0012 when the age at diagnosis increases by

one year. Comparing the primary site of melanoma, the risk of recurrence when
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the trunk is the primary location is insignificant. But, when leg is the primary

location, the risk of melanoma recurrence is significant and the corresponding risk

is higher compared to that of arm as the primary location by 0.1836 on average.

The status of SLNB is highly significant and the patients with biopsy had a lower

risk of recurring melanoma as opposed to the patients without biopsy. Thickness

between 1 and 2 units is the significant categorical level associated with covariate

thickness. These results are summarised in Table 8.

To determine how the risk of melanoma recurrence behaves when all the co-

variates set to their baseline values for males and females, the baseline hazard

estimates were obtained from the MPL method. Estimates of the baseline hazard

and the corresponding 95% piecewise confidence intervals for males and females are

presented in Figure 4. This plot shows that for both males and females, the risk of

recurring melanoma decreases monotonically with time. Significant differences can

be seen on the decreasing pattern for male and female patients. It can be clearly

seen that the risk of recurring melanoma deceases to a level close to 0 nearly after

the first 6 years of melanoma diagnosis for male patients, whereas for female pa-

tients, the risk of recurrence decreases gradually over time. Furthermore, it can be

observed that the baseline hazard estimate, produced by our MPL method, gave

clear patterns of hazard over time. Similarly, the MPL method can be applied to

fit additive hazards model for data sets which contains any type of censoring.
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Characteristic Finding*

Age at diagnosis, years, mean ± SD (range) 57.25±16.77(5, 98)

Melanoma thickness

<1 191(8.8%)

1-2 961(44.2%)

2-4 678(31.2%)

≥ 4 342(15.8%)

Gender

Male 1287(59.3%)

Female 885(40.7%)

Primary melanoma diagnosis location

Arm 330(15.2%)

Head and neck 443(20.4%)

Leg 593(27.3%)

Trunk 806(37.1%)

Sentinel Lymph Node Biopsy

Performed 953(43.9%)

Not performed 1219(56.1%)

Table 7: Summary of the covariates in the model for 2,172 melanoma patients

*Data are expressed as number (percentage) unless otherwise indicated
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Estimate Std. Error z-value P value

Gender: Female -0.1356 0.0644 -2.1056 0.0352

Age at diagnosis (years) 0.0012 0.0006 2.1376 0.0325

Location: Head and Neck 0.1385 0.0794 1.7450 0.0810

Location: Leg 0.1836 0.0726 2.5288 0.0114

Location: Trunk 0.7751 0.6801 1.1397 0.2544

SLNB Status: Performed -0.1879 0.0481 -3.9068 <0.0001

Thickness: 1-2 -0.2453 0.0905 -2.7099 0.0067

Thickness: 2-4 0.0394 0.9690 0.0406 0.9676

Thickness: ≥ 4 0.0699 0.1107 0.6316 0.5277

Table 8: Regression coefficient estimates given by the MPL method with p-values,

treatment contrasts were considered for the variables ’Gender’, ’Location’ and

’Thickness’ with reference ’Male’, ’Arm’ and ’Thickness <1’ respectively
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Figure 4: Plot of the estimated h0(t) against the survival time for males and females
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Figure 5: Plots of the adjusted Cox-Snell residuals for different censoring types
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Figure 5 shows a plots of the adjusted Cox-Snell residuals versus the estimated

cumulative hazards of residuals. If a model fits well, then the graphs will be approx-

imately a 45◦ line. Thus, these figures can be used to demonstrate the goodness

of fit of this estimated additive hazards model. Since the estimated cumulative

hazard approximately follow the 45◦ degree line with some slight deviations for all

three censoring types, this plot suggests that this model fit the data well.



Chapter 8

Conclusion and Future work

8.1 Conclusion

In this thesis, we developed a novel parameter estimation procedure for the ad-

ditive hazards model with partly interval-censored data, which comprised exactly

observed, left- censored, finite interval-censored and right-censored survival data.

We fit the additive hazards model by estimating the regression coefficients and the

baseline hazard function. We assumed that the observations from different indi-

viduals were independent. For each individual, the distribution of covariates did

not involve regression coefficients and the censoring time was independent of the

failure time. Furthermore, we assumed that the covariates were time independent.

This thesis developed a maximum penalized log-likelihood (MPL) method to

estimate the regression coefficients and the underlying non-parametric baseline

129



130 8.1. Conclusion

hazard function, simultaneously, by imposing non-negativity constraints on the

baseline hazard and the overall hazard function. We approximated an infinite di-

mensional baseline hazard from a finite number of non-negative basis functions.

We used an indicator basis function which led to a piecewise constant baseline

hazard function. We obtained smoothed baseline hazard estimates through the

penalty function, which represented the square of the second order differences for

the basis coefficients of the baseline hazard.

We encountered a constrained optimization problem as it was necessary to

consider the two non-negativity constraints and was essential that we used an

optimization method which could handle large numbers of constraints in order to

solve this problem. We adopted the augmented Lagrangian method to solve this

constraint optimization issue and the estimates were obtained simultaneously using

the Newton and multiplicative iterative (Newton-MI) algorithm which combines

the Newton algorithm and the MI algorithm (Ma 2010).

During the parameter estimation procedure, the regression coefficients were es-

timated by the Newton algorithm, while the baseline hazard was estimated by the

MI algorithm. The constraints on the baseline hazard and the overall hazard were

imposed simultaneously and directly by the MI algorithm. The MI algorithm not

only guaranteed the non-negativity of the baseline hazard, but also helped avoid

the requirement of the second order derivatives of the augmented Lagrangian with
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respect to the baseline hazard. Moreover, as per the augmented Lagrangian, the

new constraint ηi = xiβ was also updated using the MI algorithm, and the corre-

sponding Lagrange multiplier was updated using a standard dual update equation.

Each of these parameter updates was followed by a line search, which ensured that

the likelihood increased during each parameter update.

The asymptotic properties of these derived constrained MPL estimators can

be studied in two ways; one is more important in theoretical nature (when the

number of basis functions goes to infinity), and the second method is more useful

in applications (when the number of basis functions is fixed). These asymptotic

properties can be used for model checking and the model validation process.

According to the limited existing literature on semi-parametric estimation

methods for the additive hazards model with interval-censored data, some meth-

ods estimate only the regression coefficients by considering the baseline hazard as

a nuisance parameter. Some methods estimate the baseline hazard indirectly, and

others do not impose the non-negativity constraints on both baseline hazard and

overall hazard function. Thus, these factors cause limitations, such as the inability

to use these methods for prediction, and an incapacity for obtaining asymptotic

variances of these estimates and violations of the two non-negativity constraints.

The proposed MPL method, however, addressed all the above limitations, and it es-

timated the model parameters simultaneously by imposing the two non-negativity
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constraints.

We investigated our proposed MPL method under the additive hazards model

by conducting simulation studies. Firstly, we performed the simulation results for

less complex right-censored data. Those results were compared against the results

of two other existing parameter estimation methods. Then, the MPL method was

used to perform simulation studies on more complex partly interval-censored data.

In both of the simulation studies, the results showed that the bias and standard

deviation for the MPL estimate of regression coefficients increased with the cen-

soring proportion but decreased with the sample size. The MPL estimate for the

baseline hazard also exhibited the same trend. The sandwich formula derived from

asymptotic theory provided a good estimate for the Monte Carlo standard devi-

ation, especially when the sample size was large, or the censoring proportion was

small.

Comparisons between our MPL method and the other two existing methods

were also made in the simulation studies. We compared results of our MPL method

with the results of parameter estimation methods by Lin & Ying (1994) and Aalen

(1980). Irrespective of the sample size and the censoring proportion, the biases

of the estimates and standard deviations in the MPL method were smaller than

those in Aalen’s method and Lin and Ying’s method. Thus, our MPL method

achieved a lower mean squared error (MSE) for the estimate of the regression
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coefficients, compared to those of the other two existing methods. Furthermore,

we observed that our MPL method gave a much smaller average integrated squared

error (AISE) for the baseline hazard estimate than Lin and Ying’s method.

In a real data analysis, we applied our MPL method to fit the additive hazards

model to a melanoma data set. In this study, we were primarily interested in the

time taken to the first melanoma recurrence, which was generally interval-censored.

But, depending on the availability of time points, some of the observations were

left- or right-censored. For this dataset, we observed that the smoothed baseline

hazard estimate produced good estimated over time, by our MPL method. Fur-

thermore, the Cox-Snell residual plot showed that the estimated model fit the data

well.

8.2 Future work

We would like to extend the proposed MPL method of this thesis further, based

on the following future research directions.

In developing this MPL method, we assumed that the covariates were time

independent and the censoring time was independent of the failure time. However,

it is possible to extend this MPL method to estimate the additive hazards model

with partly interval-censored data under time-dependent covariates and dependent

censoring where the censoring depends on the failure time. The use of time depen-
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dent covariates is a simple modification to this proposed method and the use of

dependent censoring extends beyond the current work.

Furthermore, when we discretized the baseline hazard, we considered indicator

basis function for simplicity. Extending this MPL method, which accommodates

basis functions such as M-spline, would be of interest for future research. One of the

major advantages of the proposed method is its capability of making prediction.

Thus, we are expecting to develop prediction accuracy measures which support

the prediction process as a numerical evidence. This proposed method provides a

graphical tool to empirically assess the goodness-of-fit. As an extension of assessing

the model fitting, it is possible to develop few other residual types such as Mar-

tingale and Schoenfeld residuals. Furthermore, we would like to propose an official

model assessment procedure for the additive hazards model as well. Finally, we are

expecting to develop a R function based on this proposed method with expected

further developments and add to the existing R package, SurvivalMPL which

uses to estimate model parameters of the Cox proportional hazards model using

MPL approach.
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Note that the following R codes are used to generate and check the results

presented in this thesis.

A.1 Data Generation

#’ @title Additive hazard fitting by MPL with arbitrary censoring ,

#’ including interval , left and right censoring

#’ @author Kasun Rathnayake

#’ @param n the sample size

#’ @param p the number of covariates

#’ @param beta regression coefficients to simulate the data set

#’ @param lambda the smoothing parameter

#’ @description This funtion simulates data from weibull distribution

#’ @export

data.gen=function(n,beta ,cp)

{

lambda =1; shape=3

x_up=c(1,2,3); x_low=c(-1,0,0)

p=length(t.beta)

temp.x=matrix(nrow=n,ncol=p)

time.surv=matrix(nrow=n,ncol =1)

aa=rep((1/lambda )^shape ,n) ;cc=runif(n,0,1)
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val=rep(-0.01,n) ; coeff=rep(0,shape +1)

for(count in 1:n)

{

while(val[count]<0)

{

temp.x[count ,]=as.matrix(data.frame(x1=runif(1,x_low[1],x_up[1]),

x2=runif(1,x_low[2],x_up[2]),x3=runif(1,x_low[3],x_up [3])))

coeff [1]= log(cc[count]) ;coeff [2]=( temp.x[count ,]%*%beta) ;

coeff[shape +1]=aa[count]

temp.roots=polyroot(coeff)

time.surv[count]=max(Re(temp.roots[abs(Im(temp.roots))<1e -10]))

###Need to consider about abs here

val[count]=temp.x[count ,]%*%beta+

(shape*((time.surv[count ])^( shape -1)/lambda^shape)) }}

###End of While & For loop

ind=rbinom(n,1,(cp))

###( censoring prop) here 0 for observed and 1 for censored

cl=runif(n); cr=cl+runif(n)##left and right r.v’s

l=r=xi.temp=matrix(rep(0,n))

time=status=matrix(rep(0,n))

for(ab in 1:n)
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{ if(ind[ab ]==0)

{l[ab]=r[ab]=time.surv[ab];xi.temp[ab]=0 ###For ah_mpl

time[ab]=time.surv[ab]; status[ab]=2}

else

{ if(time.surv[ab]<=cl[ab])

{l[ab]=0;r[ab]=cl[ab];xi.temp[ab]=1

time[ab]=(cl[ab]/2); status[ab]=1}

else if(cl[ab]<time.surv[ab] && time.surv[ab]<=cr[ab])

{l[ab]=cl[ab];r[ab]=cr[ab];xi.temp[ab]=2

time[ab]=(cl[ab]+cr[ab])/2; status[ab]=1}

else if(time.surv[ab]>cr[ab])

{l[ab]=cr[ab];r[ab]=Inf;xi.temp[ab]=3

time[ab]=cr[ab]; status[ab ]=1}}}###End of For loop

temp.x=data.frame(temp.x); time.mat=data.frame(cbind(l,r,xi.temp))

;mid.point=data.frame(time ,status)

return(list(time.mat=time.mat ,temp.x=temp.x,mid.point=mid.point ))}

### Combining Survival time is optional

A.2 Parameter estimation using MPL method

#’ @title Additive hazard function to estimate parameters

#’ @export
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add.haz=function(n,p,data ,bin.count ,smooth ,maxiter ,alpha)

{

times<<-c(times , proc.time ()[1])

lambda =1; shape=3

xi=data[,3]

obs=matrix(data [,1][xi ==0]);l.cens=matrix(data [,2][xi ==1]);

il.cens=matrix(data [,1][xi ==2]); ir.cens=matrix(data [,2][xi==2])

;r.cens=matrix(data [,1][xi==3])

n.obs=length(obs);nl.cens=length(l.cens);ni.cens=length(il.cens);

nr.cens=length(r.cens);n.new=n+ni.cens

### Centering the covariates

x=as.matrix(data[,4: length(data )])

time.obs=rbind(obs ,l.cens ,il.cens ,ir.cens ,r.cens)

xi.order=c(rep(0,n.obs),rep(1,nl.cens),rep(2,ni.cens),

rep(2,ni.cens),(rep(3,nr.cens )))

bin.cut=cut2(time.obs ,g=bin.count ,onlycuts=TRUE)
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m=bin.count

bin.cut=bin.cut+1e-12; bin.cut[m+1]= max(time.obs)+1e-12;

bin.cut [1]= max(0,(min(time.obs)-1e-12))

bin.wid=diff(bin.cut)

id=histc(time.obs ,bin.cut) ###which bin

id.obs=id$bin[xi.order ==0]; id.lcens=id$bin[xi.order ==1];

id.ilcens=id$bin[xi.order ==2][1: ni.cens]

id.ircens=id$bin[xi.order ==2][( ni.cens +1):(2*ni.cens )];

id.rcens=id$bin[xi.order ==3]

id.ordered=c(id.obs ,id.lcens ,id.ilcens ,id.ircens ,id.rcens)

R=matrix(nrow=m,ncol=m,0)

for(i in 1:m){

if (i<=m-1){R[i,i+1]=-4

R[i+1,i]=-4}

if (i<=m-2){R[i,i+2]=1

R[i+2,i]=1}

if (i<=m){R[i,i]=6}}

R[1,1]=R[m,m]=5

R[2,2]=R[m-1,m-1]=9

R[1,2]=R[2,1]=R[m,m-1]=R[m-1,m]=-6
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x.obs=matrix(x[xi==0],n.obs ,p);xl.cens=matrix(x[xi==1],nl.cens ,p)

;xi.cens=matrix(x[xi==2],ni.cens ,p);xr.cens=matrix(x[xi==3],nr.cens ,p)

x.ordered=rbind(x.obs ,xl.cens ,xi.cens ,xi.cens ,xr.cens)

old.theta=rep(0.1,m);old.beta=rep(0.8,p);old.gamma=rep(1e-2,(n+ni.cens))

#old.eta=rep(0,(n+ni.cens))

old.eta=(x.ordered%*%old.beta)

mini=. Machine$double.eps ###The smallest floating poing number

p_like=like0=like1=like2=like3=NULL;alpha_dum=alpha_ini=2

times<<-c(times , proc.time ()[1])

psi.obs=matrix(0,n.obs ,m)

if(n.obs >0){

for(i in 1:n.obs){

psi.obs[i,id.obs[i]]=1}}

phi=matrix(0,nrow=(n+ni.cens),ncol=m)

for(i in 1:(n+ni.cens )){

for(j in 1:m){

if(j<(id.ordered )[i])

phi[i,j]=bin.wid[j]

else if(j==(id.ordered )[i])

phi[i,j]=( time.obs[i,1]-bin.cut[j])
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#else phi[i,j]=0

}}

phi.mat=phi

phi.obs=phi.mat [(1:n.obs),]

phi.rcens=phi.mat[((n.new -nr.cens +1):n.new),]

phi_u.obs=apply(phi.obs ,2,sum)

phi_u.rcens=apply(phi.rcens ,2,sum)

phi.lcens=phi.mat[((n.obs +1):(n.obs+nl.cens )),];phi.ilcens=

phi.mat[((n.obs+nl.cens +1):(n-nr.cens )),];phi.ircens

=phi.mat[((n-nr.cens +1):(n.new -nr.cens)),]

phi_u.lcens=apply(phi.lcens ,2,sum);phi_u.ilcens=

apply(phi.ilcens ,2,sum);phi_u.ircens=apply(phi.ircens ,2,sum)

i_maxiter=maxiter [1];o_maxiter=maxiter [2]

iter_outter =0; iter_inner=NULL;iter_count =0; iter=0

s.time1=s.time2=s.time3=NULL

s.theta1=s.theta2=s.eta1=s.eta2=s.beta1=s.beta2=NULL

times<<-c(times , proc.time ()[1])
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#### Main function ####

for(j in 1:o_maxiter)##for this use FOR loop with number of iterations

{

times<<-c(times , proc.time ()[1])

#iter_outter=iter_outter +1

alpha=alpha

alpha[alpha < (alpha_ini*(alpha_dum ^10))]= alpha_ini*(alpha_dum^(j-1))

#iter=0

for(s in 1:i_maxiter ){

times<<-c(times , proc.time ()[1])

t1=proc.time ()[[3]]

iter=iter+1

#iter_count=iter_count+1

old.theta1=old.theta; old.theta1[old.theta1 <mini]=mini

###Just like eps

like0[iter]= likelihood0=like.func(old.theta ,old.eta ,

old.beta ,old.gamma ,alpha ,phi.mat ,x.ordered ,time.obs ,

phi.obs ,R,smooth ,x.obs ,xi.order ,ni.cens ,psi.obs)

#### Applying MI algorithm for theta ####
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times<<-c(times , proc.time ()[1])

t3=proc.time ()[[3]]

surv.vec2=exp(-((phi.mat%*%old.theta)+

((x.ordered%*%old.beta)*time.obs)))

surv.obs=surv.vec2[xi.order ==0]

surv.lcens=surv.vec2[xi.order ==1]; surv.ilcens=

surv.vec2[xi.order ==2][1: ni.cens]

surv.ircens=surv.vec2[xi.order ==2][( ni.cens +1):(2*ni.cens )];

surv.rcens=surv.vec2[xi.order ==3]

left=(t(l.cens*(surv.lcens/(1-surv.lcens )))%*%xl.cens)

leftint =(t(il.cens*(surv.ilcens/(surv.ilcens -surv.ircens )))

%*%xi.cens)

rightint =(t(ir.cens*(surv.ircens/(surv.ilcens -surv.ircens )))

%*%xi.cens)

full=t((1/(psi.obs%*%old.theta+x.obs%*%old.beta))-obs)%*%x.obs

right=t(r.cens)%*%xr.cens

lag_grad =((old.gamma)+

alpha*(as.vector ((x.ordered%*%

old.beta)-old.eta)))%*%x.ordered



Appendix A. Appendix: R code 145

grad=left -leftint+rightint+full -right -lag_grad

left_h=t(xl.cens)%*%diag(as.vector(surv.lcens*

(l.cens/(1-surv.lcens ))^2))%*%xl.cens

int_h=t(xi.cens)%*%diag(as.vector(surv.ilcens*

surv.ircens*((il.cens -ir.cens)/

(surv.ilcens -surv.ircens ))^2))%*%xi.cens

full_h=t(x.obs)%*%diag(as.vector ((1/(psi.obs%*%

old.theta+x.obs%*%old.beta ))^2))%*%x.obs

lag_hess=alpha*t(x.ordered)%*%(x.ordered)

hess=left_h+int_h+full_h+lag_hess

idH=which(diag(hess )==0)

hess[idH ,idH]=mini

inch3=as.vector(grad%*%solve(hess))

new.beta=as.vector(old.beta+inch3)

likelihood1=like.func(old.theta ,old.eta ,new.beta ,old.gamma ,

alpha ,phi.mat ,x.ordered ,time.obs ,phi.obs ,R,smooth ,x.obs ,

xi.order ,ni.cens ,psi.obs)
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sigma =0.6

s.beta1[iter]=proc.time ()[[3]] -t3

t6=proc.time ()[[3]]

while(( likelihood1 <= likelihood0 )){

new.beta=old.beta+sigma*(inch3)

likelihood1=like.func(old.theta ,old.eta ,new.beta ,

old.gamma ,alpha ,phi.mat ,x.ordered ,time.obs ,phi.obs ,

R,smooth ,x.obs ,xi.order ,ni.cens ,psi.obs)

if(sigma >=1e-2)

sigma =0.6*sigma

else if (sigma < 1e-2 & sigma >= 1e-5)

sigma=5e-2*sigma

else if (sigma <1e-5 & sigma > 1e-30)

sigma=1e-5*sigma

else

break} ## end of while for updating theta

s.beta2[iter]=proc.time ()[[3]] -t6

s.time3[iter]=proc.time ()[[3]] -t3
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#### Applying MI algorithm for beta ####

times<<-c(times , proc.time ()[1])

like1[iter]= likelihood1

surv.vec1=exp(-((phi.mat%*%old.theta)+

((x.ordered%*%new.beta)*time.obs)))

surv.obs=surv.vec1[xi.order ==0]; surv.lcens=

surv.vec1[xi.order ==1]; surv.ilcens=surv.vec1

[xi.order ==2][1: ni.cens]

surv.ircens=surv.vec1[xi.order ==2][( ni.cens +1):

(2*ni.cens )]; surv.rcens=surv.vec1[xi.order ==3]

penal =(2*R%*%old.theta ); penal1=penal2=penal

denom1=as.vector(t(surv.ilcens/(surv.ilcens -surv.ircens ))

%*%phi.ilcens )+(phi_u.obs)+(phi_u.rcens)+

(smooth*penal1 )+c(rep(1e-3,m))

num1=as.vector(t(surv.lcens/(1-surv.lcens))

%*%phi.lcens)+

as.vector(t(surv.ircens/(surv.ilcens -surv.ircens ))

%*%phi.ircens )+
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as.vector ((t(1/(psi.obs%*%old.theta+x.obs%*%new.beta))

%*%psi.obs))-

(smooth*penal2 )+c(rep(1e-3,m))

delta1=num1 -denom1

est.eta=old.eta

dd=data.table(id.ordered ,(-est.eta)); setkey(dd,id.ordered)

max.eta=( aggregate (. ~ id.ordered , data=dd, FUN=max)[,2])

max.eta[max.eta <0]=0

est.b=max.eta

ss=rep(0,m)

for(k in 1:m){

if (old.theta[k]!=0){

ss[k]=(old.theta[k]-est.b[k])/denom1[k]}

else if (old.theta[k]==0 && denom1[k]<0){

ss[k]=0}

else ss[k]=(1e-5/denom1[k])

}

inch1=ss*delta1

new.theta=old.theta+inch1

likelihood2=like.func(new.theta ,old.eta ,new.beta ,
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old.gamma ,alpha ,phi.mat ,x.ordered ,time.obs ,phi.obs ,R,

smooth ,x.obs ,xi.order ,ni.cens ,psi.obs)

sigma =0.6

s.theta1[iter]=proc.time ()[[3]] -t1

t4=proc.time ()[[3]]

while(( likelihood2 <= likelihood1 )){

new.theta=old.theta+sigma*(inch1)

likelihood2=like.func(new.theta ,old.eta ,new.beta ,

old.gamma ,alpha ,phi.mat ,x.ordered ,time.obs ,

phi.obs ,R,smooth ,x.obs ,xi.order ,ni.cens ,psi.obs)

if(sigma >=1e-2)

sigma =0.6*sigma

else if (sigma < 1e-2 & sigma >= 1e-5)

sigma=5e-2*sigma

else if (sigma <1e-5 & sigma > 1e-30)

sigma=1e-5*sigma

else

break

} ## end of while for updating beta

s.theta2[iter]=proc.time ()[[3]] -t4

s.time1[iter]=proc.time ()[[3]] -t1
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#### Applying MI algorithm for eta ####

times<<-c(times , proc.time ()[1])

t2=proc.time ()[[3]]

like2[iter]= likelihood2

new.theta1=new.theta; new.theta1[new.theta1 <mini]=mini

new.eta=(old.gamma+alpha*(x.ordered%*%new.beta))/alpha

inch2=new.eta -old.eta

likelihood3=like.func(new.theta ,new.eta ,new.beta ,old.gamma ,

alpha ,phi.mat ,x.ordered ,time.obs ,phi.obs ,R,smooth ,

x.obs ,xi.order ,ni.cens ,psi.obs)

sigma =0.6

s.eta1[iter]=proc.time ()[[3]] -t2

t5=proc.time ()[[3]]

while(( likelihood3 <= likelihood2 )){

new.eta=old.eta+sigma*(inch2)

likelihood3=like.func(new.theta ,new.eta ,new.beta ,old.gamma ,

alpha ,phi.mat ,x.ordered ,time.obs ,phi.obs ,R,smooth ,

x.obs ,xi.order ,ni.cens ,psi.obs)

if(sigma >=1e-2)

sigma =0.6*sigma
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else if (sigma < 1e-2 & sigma >= 1e-5)

sigma=5e-2*sigma

else if (sigma <1e-5 & sigma > 1e-30)

sigma=1e-5*sigma

else

break

} ## end of while for updating eta

s.eta2[iter]=proc.time ()[[3]] -t5

s.time2[iter]=proc.time ()[[3]] -t2

#### Applying MI algorithm for gamma ####

times<<-c(times , proc.time ()[1])

like3[iter]= likelihood3

new.gamma=old.gamma+alpha*(x.ordered%*%new.beta -new.eta)

new.gamma1=new.gamma

likelihood4=like.func(new.theta ,new.eta ,new.beta ,new.gamma ,

alpha ,phi.mat ,x.ordered ,time.obs ,phi.obs ,R,smooth ,

x.obs ,xi.order ,ni.cens ,psi.obs)

p_like[iter]= likelihood4

{if((max(abs(new.theta -old.theta))<1e-6) &
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(max(abs(new.beta -old.beta))<1e-6) ){

break}

else

{ old.beta=as.vector(new.beta)

old.theta=new.theta

old.eta=new.eta

old.gamma=as.vector(new.gamma )}}

}###End of for loop , end of i

print(j);print(s)

cat("Ext.␣iter:",j,"\tInt.␣iter:",s,"\n")

iter_inner[j]=iter

{if(max(abs(x.ordered%*%new.beta -new.eta))<1e -10){

break}

else

{ old.beta=as.vector(new.beta)

old.theta=new.theta

old.eta=new.eta

old.gamma=as.vector(new.gamma )}}

}##end of j
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######################## Hessian matrix calculation

surv.vec.f=exp(-((phi.mat%*%new.theta)+

((x.ordered%*%new.beta)*time.obs)))

surv.obs=surv.vec.f[xi.order ==0]

surv.lcens=surv.vec.f[xi.order ==1]; surv.ilcens=

surv.vec.f[xi.order ==2][1: ni.cens]

surv.ircens=surv.vec.f[xi.order ==2][( ni.cens +1):

(2*ni.cens )]; surv.rcens=surv.vec.f[xi.order ==3]

left_bh=t(xl.cens)%*%diag(as.vector(surv.lcens*

(l.cens/(1-surv.lcens ))^2))%*%xl.cens

int_bh=t(xi.cens)%*%diag(as.vector(surv.ilcens*

surv.ircens*((il.cens -ir.cens)/

(surv.ilcens -surv.ircens ))^2))%*%xi.cens

full_bh=t(x.obs)%*%diag(as.vector ((1/(psi.obs%*%

new.theta+x.obs%*%new.beta ))^2))%*%x.obs

lag_bhess=alpha*t(x.ordered)%*%(x.ordered)

hess_b=as.matrix(left_bh+int_bh+full_bh+lag_bhess)

# cat("beta",new.beta ,"\n")
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left_th= t(phi.lcens)%*%

diag(surv.lcens/(1-surv.lcens )^2)%*%(phi.lcens)

int_th=t(phi.ircens -phi.ilcens)%*%diag((surv.ilcens*

surv.ircens)/(surv.ilcens -surv.ircens )^2)

%*%(phi.ircens -phi.ilcens)

full_th=t(psi.obs)%*%diag(as.vector ((1/(psi.obs%*%

new.theta+x.obs%*%new.beta ))^2))%*%(psi.obs)

hess_t=hess_tg=left_th+int_th+full_th

hess_tf=hess_t+2*lambda*R

left_bth=t(xl.cens)%*%diag(as.vector ((surv.lcens*

l.cens)/(1-surv.lcens )^2))%*%phi.lcens

int_bth=t(xi.cens)%*%diag(as.vector ((surv.ilcens*surv.ircens)*

(il.cens -ir.cens)/(surv.ilcens -surv.ircens )^2))

%*%(phi.ilcens -phi.ircens)

full_bth=t(x.obs)%*%diag(as.vector ((1/(psi.obs%*%

new.theta+x.obs%*%

new.beta ))^2))%*%(psi.obs)

hess_bt=left_bth+int_bth+full_bth
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hess_g=as.matrix(rbind(cbind(hess_b,hess_bt),

cbind(t(hess_bt),hess_tg)))

hess_f=rbind(cbind(hess_b,hess_bt),cbind(t(hess_bt),hess_tf))

new.para=c(new.beta ,new.theta)

tol=1e-3

id_theta1=which(new.para <tol);id_theta2=which(new.para >=tol)

print(id_theta1 );print(id_theta2)

if(length(id_theta1 )==0){ inv_hess=solve(hess_f)}

else{

hess_f_mat=hess_f[-id_theta1 ,-id_theta1]

inv_hess=solve(hess_f_mat)

}

mat=matrix (0,(m+p),(m+p))

for(i in 1:(m+p)){

k=1

for(j in 1:(m+p)){

if(j==id_theta2[k]){

mat[j,id_theta2 ]=inv_hess[k,]
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k=k+1

if(k>length(id_theta2 )) {break}

}

mat=matrix(mat ,(m+p),(m+p))

}

}

inv_hess_f=mat

v_eta=(inv_hess_f)%*%(hess_g)%*%t(inv_hess_f)

#####################

times<<-c(times , proc.time ()[1])

s.time=cbind(s.time1 ,s.time2 ,s.time3)

s.para=cbind(s.theta1 ,s.theta2 ,s.eta1 ,s.eta2 ,s.beta1 ,s.beta2)

surv.vec3=exp(-((phi.mat%*%new.theta)+

((x.ordered%*%new.beta)*time.obs)))

surv.obs=surv.vec3[xi.order ==0]

surv.lcens=surv.vec3[xi.order ==1]; surv.ilcens=

surv.vec3[xi.order ==2][1: ni.cens]

surv.ircens=surv.vec3[xi.order ==2][( ni.cens +1):

(2*ni.cens )]; surv.rcens=surv.vec3[xi.order ==3]
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## Cox -snell residuals (Revised)

x.ordered.res=rbind(x.obs ,xl.cens ,xi.cens ,xr.cens)

##This is w/o having interval covariates twice

id.l.mid=histc((l.cens/2),bin.cut)$bin

id.i.mid=histc((ir.cens+il.cens)/2,bin.cut)$bin

id.ordered.res2=c(id.obs ,id.l.mid ,id.i.mid ,id.rcens)

###id values for cox resudual

phi.lcens=phi.mat[((n.obs +1):(n.obs+nl.cens )),];phi.ilcens=

phi.mat[((n.obs+nl.cens +1):(n-nr.cens )),];phi.ircens=

phi.mat[((n-nr.cens +1):(n.new -nr.cens)),]

phi.lcens.mid=phi.lcens/2

phi.icens.mid=(phi.ilcens+phi.ircens)/2

surv.lcens.mid= exp(-((phi.lcens.mid%*%new.theta )+((xl.cens%*%

new.beta)*(l.cens/2))))

surv.icens.mid=exp(-((phi.icens.mid%*%new.theta )+((xi.cens%*%

new.beta)*(ir.cens+il.cens)/2)))

right.cox=log(surv.rcens)

full.cox=log(surv.obs)+1
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left.cox=log(surv.lcens.mid)+1

int.cox=log(surv.icens.mid)+1

res.cox=c(full.cox ,left.cox ,int.cox ,right.cox)

times<<-c(times , proc.time ()[1])

##############

return(list(Bin.cut=bin.cut ,Data=x.ordered ,ID=id.ordered ,ID.res2=

id.ordered.res2 ,Iteration=iter_outter ,iter_inner=iter_inner ,

like.mat=cbind(like0 ,like1 ,like2 ,like3 ,p_like),p_like=p_like ,

theta=new.theta ,beta=new.beta ,eta=new.eta ,gamma=new.gamma ,m=m,

res.cox=res.cox ,x.order=x.ordered ,x.res=x.ordered.res ,

time.obs=time.obs ,sys.time=s.time ,s.para=s.para ,hess_f=hess_f,

hess_g=hess_g,v_eta=v_eta))

}

like.func=function(e.theta ,e.eta ,e.beta ,e.gamma ,alpha ,

phi.mat ,x.ordered ,time.obs ,phi.obs ,R,smooth ,x.obs ,

xi.order ,ni.cens ,psi.obs){

mini=. Machine$double.eps ###The smallest floating poing number

theta1=e.theta; theta1[theta1 <mini]=mini
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surv.vec=exp(-((phi.mat%*%e.theta)+

((x.ordered%*%e.beta)*time.obs)))

#print((surv.vec))

surv.obs=surv.vec[xi.order ==0]

surv.rcens=surv.vec[xi.order ==3]

surv.lcens=surv.vec[xi.order ==1];

surv.ilcens=surv.vec[xi.order ==2]

[1:ni.cens];surv.ircens=surv.vec[xi.order ==2]

[(ni.cens +1):(2*ni.cens)]

likelihood1=sum(log(1-surv.lcens ))+

sum(log(surv.ilcens -surv.ircens ))+

sum(log(psi.obs%*%theta1+x.obs%*%e.beta)+

log(surv.obs))+sum(log(surv.rcens))

#likelihood1=sum(log(1-surv.lcens ))+

sum(log(surv.ilcens -surv.ircens ))+sum(log(surv.rcens))

likelihood2=-smooth*t(e.theta)%*%R%*%e.theta -(alpha/2)*

sum((x.ordered%*%e.beta)-e.eta)^2

return(likelihood1+likelihood2)

}
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