Francesca Manea Bachelor of Medical Science (Honours I)

A thesis presented to Macquarie University in fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Chemistry & Biomolecular Sciences Macquarie University, Sydney NSW Australia August 2015

Table of Contents

TABLE OF CONTENTS	i
Acknowledgements	v
DECLARATION	vi
ABSTRACT	ix
LIST OF ABBREVIATIONS	X

PROTEIN-BASED TECTONS FOR NANOBIOTECHNOLOGY	1
1.1 PROTEINS AS A RESOURCE IN NANOTECHNOLOGY	1
1.2 Self-assembly as a construction tool	2
1.3 MODIFICATION OF PROTEINS FOR NANOTECHNOLOGY APPLICATIONS	6
1.4 RING-FORMING PROTEINS	7
1.5 RING ARCHITECTURES OF LSM PROTEINS	12
1.5.1 PHYLOGENY OF LSM PROTEIN SEQUENCES	12
1.5.2 THE LSM PROTEIN SCAFFOLD	14
1.5.3 LINKING LSM RING STRUCTURE TO FUNCTION	17
1.6 HIGHER-ORDER SUPRAMOLECULAR ASSEMBLIES OF LSM	19
1.7 ENGINEERED LSM SCAFFOLDS	21
1.8 SCOPE OF THIS THESIS : NEW LSM TECTONS23	

MATERIALS	& METHODS

_

MATE	RIALS & METHODS	26
2.1 MATERIALS		26
2.1.1	Reagents	26
2.1.2	GROWTH MEDIA AND BUFFERS	26
2.1.3	BACTERIAL STRAINS AND PLASMIDS	28
2.2 MET	THODS	29
2.2.1	MOLECULAR BIOLOGY PROCEDURES	29
2.2.1.1	PLASMID ISOLATION	29
2.2.1.2	PCR AMPLIFICATION OF LSM GENES	31
2.2.1.3	LIGATION-INDEPENDENT INFUSION REACTION	32
2.2.1.4	PCR COLONY SCREENING	33
2.2.1.5	SITE-DIRECTED MUTAGENESIS	33
2.2.1.6	PREPARATION OF COMPETENT EXPRESSION HOST CELLS	34
2.2.1.7	TRANSFORMATION PROCEDURES	34
2.2.2	PRESERVATION OF BACTERIAL STRAINS	35
2.2.3	RECOMBINANT PROTEIN PRODUCTION	35
2.2.3.1	EXPRESSION TRIALS	35
2.2.3.2	LARGE-SCALE PROTEIN EXPRESSION	36
2.2.3.3	CELL LYSIS	37
2.2.4	PURIFICATION OF RECOMBINANT LSM PROTEINS	37
2.2.4.1	IMAC PURIFICATION OF LSM PROTEINS	37
2.2.4.2	PREPARATIVE SIZE EXCLUSION CHROMATOGRAPHY	37
2.2.5	PROTEIN HANDLING AND ANALYSIS PROCEDURES	38
2.2.5.1	PROTEIN CONCENTRATION	38
2.2.5.2	PROTEIN ELECTROPHORESIS	39
2.2.5.3	ANALYTICAL SIZE EXCLUSION CHROMATOGRAPHY	39

	Engineering synthetic Lsm rings for applications in nanotechnology	
2.2.5.4	MULTI-ANGLE LASER LIGHT SCATTERING (MALLS)	40
2.2.5.5		44
2.3 LO	W-RESOLUTION STRUCTURAL STUDIES	45
2.3.1	SMALL ANGLE X-RAY SCATTERING (SAXS)	45
2.3.1.1	THEORY OF SAXS	45
2.3.1.2	SAXS ACQUISITION ON LSM PROTEINS	49
2.3.2	ATOMIC FORCE MICROSCOPY (AFM)	51
2.3.3	TRANSMISSION ELECTRON MICROSCOPY (TEM)	53
2.3.3.1	PRINCIPLES OF TEM	53
2.3.3.2	TEM METHODOLOGY	53
2.4 CR	YSTALLOGRAPHIC STUDIES	55
2.4.1	CRYSTALLISATION SCREENING OF LSM	55
2.4.2	OPTIMISATION STRATEGIES	55
2.4.3	CRYSTALLOGRAPHIC DATA COLLECTION	56
2.4.4	CRYSTALLOGRAPHIC DATA PROCESSING AND PHASING	57

PREP	ARATION & SOLUTION	
CHAF	RACTERISATION OF LSM RING TECTONS	59
3.1 RE	COMBINANT LSM PROTEIN RING ASSEMBLIES	59
3.2 Wo	ORKING WITH COMPOSITE LSM POLYPROTEINS	61
3.3 Pr	EPARATION OF RECOMBINANT LSM TECTONS	64
3.4 So	LUTION CHARACTERISATION OF SYNTHETIC LSM RING TECTONS	66
3.4.1	ASSEMBLY OF LSM3 IN SOLUTION	67
3.4.2	ASSEMBLY OF LSM[4+1] IN SOLUTION	68
3.4.3	ASSEMBLY OF LSM[2+3] IN SOLUTION	71
3.4.4	ASSEMBLY OF GLY-LINKED VARIANTS IN SOLUTION	72
3.5 Th	ERMOSTABILITY OF LSM TECTONS	74
3.5.1	Melting temperature of $Lsm3_8$	75
3.5.2	MELTING TEMPERATURES OF LSM POLYPROTEIN ASSEMBLIES	76
3.5.3	MELTING TEMPERATURES OF GLY-LINKED LSM POLYPROTEIN ASSEMBLIES	76
3.6 RN	A SENSITIVITY OF LSM RING TECTONS	79
3.6.1	Responsiveness of $Lsm3_8$ tecton to nucleotides	79
3.6.2	RESPONSIVENESS OF LSM $[4+1]_4$ TECTON TO NUCLEOTIDES	80
3.6.3	RESPONSIVENESS OF LSM $[2+3]_4$ TECTON TO NUCLEOTIDES	82
3.7 Co	NCLUSION	85

QUATERNARY STRUCTURE	
ASSESSMENT OF LSM TECTON ARCHITECTURES	87
4.1 PROBING HIGHER-ORDER ARCHITECTURE OF LSM	87
4.2 X-RAY SCATTERING (SAXS) BY SYNTHETIC LSM COMPLEXES	91
4.2.1 OPTIMISED LSM TECTON SAMPLES	91
4.2.2 SAXS SCATTERING BY LSM3 $_8$	93
4.2.3 SAXS SCATTERING BY $LSM[2+3]_4$	98
4.2.4 SAXS SCATTERING BY $LSM[4+1]_4$	101
4.3 COMPARISON OF LSM RING SAXS SCATTERING TO THE LSM38 CRYSTAL STRUCTURE	104
4.4 VISUALISING THE CIRCULAR MORPHOLOGY OF LSM ASSEMBLIES BY TEM	106
4.4.1 SAMPLE PREPARATION FOR TEM	106
4.4.2 EXAMINING LSM SINGLE RING ASSEMBLIES BY TEM	109
4.4.2.1 <i>VISUALISATION OF LSM3</i> $_8$	109
4.4.2.2 VISUALISATION OF $LSM[2+3]_4$	109
4.4.2.3 VISUALISATION OF $LSM[4+1]_4$	110
4.5 CONCLUSION	112

NOVE	EL LSM ARCHITECTURES VIA DISULFIDE LINKAGES	114
5.1 PR	OTEIN ENGINEERING WITH DISUFIDE CHEMISTRY	114
5.2 DE	SIGN OF INTRA-RING DISULFIDE LINKAGES FOR LSM RINGS	116
5.2.1	SITING CYS RESIDUES INTO THE LSM 3_8 TECTON	117
5.2.2	SITING CYS RESIDUES INTO THE LSM $[4+1]_4$ TECTON	119
5.2.3	GENERATION OF CYS-LESS LSM TECTONS	119
5.2.4	SOLUTION BEHAVIOUR OF CYS-FREE TECTONS	122
5.3 INC	CORPORATION OF CYS RESIDUES INTO LSM TECTONS	124
5.3.1	CYS INCORPORATION INTO LSM 3_8 TECTON	124
5.3.2	CYS INCORPORATION INTO LSM $[4+1]_4$ TECTON	124
5.4 SOI	LUTION INVESTIGATION OF CYS-LINKED LSM TECTONS	125
5.4.1	OLIGOMERISATION OF CYS-MODIFIED LSM3 $_8$ TECTONS	125
5.4.2	OLIGOMERISATION OF CYS-MODIFIED $LSM[4+1]_4$ TECTONS	127
5.5 Q U	ATERNARY STRUCTURE OF 4HXLPLSM[4+1] ₄ COMPLEX	130
5.5.1	VISUALISATION OF 4HXLPLSM[4+1] 4 BY ATOMIC FORCE MICROSCOPY	130
5.5.2	VISUALISATION OF 4HXLPLSM[4+1] 4 BY TEM	131
	NTROLLABILITY OF 4HXLPLSM[4+1]4 COMPLEX	133
5.7 Th	ERMOSTABILITY OF CYS-MODIFIED LSM[4+1] ASSEMBLIES	135
5.8 RN	A RESPONSIVENESS OF 4HXLPLSM[4+1] ₄ COMPLEX	136
5.9 Co	NCLUSION	137

METAL-CHELATED LSM MATERIALS	140
6.1 ENGINEERING METAL SITES INTO PROTEINS	140
6.2 CONSTRUCTION OF METAL-CHELATED LSM COMPLEXES	142
6.3 THE LSM $[4+1]_4$ tecton in the presence of metal ions	143
6.4 Cluster forms for 4Ni-Lsm[4+1] ₄	147
6.5 THE LSM $[2+3]_4$ tecton in the presence of metal ions	149
6.6 THE LSM38 TECTON IN THE PRESENCE OF METAL IONS	149
6.7 CYLINDRICAL FORMS 2CU-LSM3 ₈	152
6.8 PH-EFFECTS ON METAL-LIGATED LSM TECTONS	154
6.9 STABILITY OF METAL-CONTAINING LSM MATERIALS	157
6.10 TOWARDS AN LSM3 ₈ -BASED TUBULE	159
6.11 RNA SENSITIVITY OF METAL-CHELATED LSM MATERIALS	160
6.12 CONCLUSION	162

<u>CRYS</u>	TALLISATION STUDIES ON SYNTHETIC LSM STRUCTURES	164
7.1 GR	OWING PROTEIN CRYSTALS	164
7.2 TH	E LSM[4+1]4 TECTON AS A CRYSTAL TARGET	165
7.3 INI	FIAL CRYSTALLISATION SCREENS	166
7.3.1	$LSM[4+1]_4$ TECTON	167
7.3.2	$LSM[4+1]_4$ ENGINEERED COMPLEXES	170
7.4 OP	FIMISATION OF LSM[4+1]4 CRYSTALS	171
7.4.1	GRID SCREENS	171
7.4.2	PH SCREENS	175
7.4.3	MICROSEEDING	176
7.5 SEI	LENOMETHIONINE DERIVATISED LSM[4+1] ₄	177
7.6 CO	-COMPLEX OF LSM[4+1] ₄ WITH RNA	178
7.7 CR	YSTALLOGRAPHIC STUDIES ON LSM[4+1] ₄	179
7.7.1	PROCESSING OF $LSM[4+1]_4$ DATASETS	179
7.7.2	MOLECULAR REPLACEMENT PROCEDURES	181

Engineering synthetic Lsm rings for applications in nanotechnology	
CONCLUSION : THE POTENTIAL OF LSM TECTONS	183
8.1 ASSESSMENT OF SYNTHETIC LSM RINGS AS PROTEIN TECTONS	184
8.2 BUILDING SUPERSTRUCTURES FROM LSM TECTONS	186
8.2.1 Cys-linked LSM complexes	186
8.2.2 METAL-MEDIATED LSM COMPLEXES	188
8.3 RNA RESPONSIVENESS OF LSM ASSEMBLIES	190
8.4 FUTURE PERSPECTIVES AND OUTLOOK	192
Appendix I	197
APPENDIX I	197
References	

Acknowledgements

My PhD is the product of many helpful people who took the time to teach and support me. I would first like to thank my supervisor A/Prof Bridget Mabbutt for being an exceptional guide throughout my postgraduate studies. Her direction kept me interested and motivated in my work throughout the years and has prepared me for the future. Secondly, my sincere thanks to Dr Bhumika Shah who has been a wonderful mentor and friend during my PhD. Her patience and effort in training me in crystallisation and molecular biology has been remarkable and I am truly grateful. Also a huge thank-you to Dr Jens Moll, who welcomed me into the group and provided me with a solid base onto build my skills. In particular, I am thankful for the thoroughness and attention to detail towards experimental work that he has passed onto me.

A big thank-you goes to Tony Wang in MUCAB, Debra and Nicole in the MQ Microscopy Unit and Dr Grant Pierce for SAXS training at the Australian Synchrotron. I would like to specially thank Dr Akshita Wason for her support, advice, taco nights and providing a place for me to stay in Christchurch. Many thanks go to the past Structure Biology students Meghna, Nishen and Jens for providing an outstanding Lsm framework for me to build upon. I am incredibly pleased that I could contribute to the Lsm story. I would also like to thank Heather for company in the lab and chai runs.

Finally I'd like to express my deepest gratitude to my family. In particular, my heartfelt thanks goes to Anthony for taking me up mountains, down canyons and across the world many times over.

_

Declaration

Where appropriate, work done in collaboration with other groups or individuals has been acknowledged. Outside these contributions, the material in this thesis is entirely my own work and to the best of my knowledge original. No part of this thesis has been submitted for a higher degree to any other university or institution. I consent to this thesis being made available for photocopy and loan.

Francesca Manea

Department of Chemistry & Biomolecular Sciences

Macquarie University

Sydney NSW 2109

Australia

June 2015

-

Abstract

The structural diversity of proteins makes them highly attractive as self-assembling biobricks or 'tectons' for the fabrication of biocompatible materials. In the current study, ring-forming Lsm proteins were exploited to construct novel nanostructures via supramolecular engineering. The Lsm family of proteins comprise the core of the ribonucleoprotein (RNP) complexes, crucial to RNA metabolism. They assemble into oligomeric rings of six to eight protein chains *in vitro* to generate an RNA-binding scaffold.

Synthetic ring tectons composed of individual or fused Lsm sequences from *S.cerevisiae* were engineered so as to self assemble into simplified ring structures. My work focused on two polyprotein forms, fusions of Lsm[4+1] and Lsm[2+3]. In solution these recombinant Lsm polyproteins self-organise into robust ring structures (7.5 nm x 5.0 nm), that maintain their intrinsic RNA-binding ability. Elevated levels of overlaid ring pairs are favoured at low ionic strength, indicating electrostatic mediated packing of Lsm rings. SAXS output reveals these ring pairs to be assembled in a staggered conformation rather than coaxially stacked.

Using chemical modification, Lsm tectons were further fabricated into new coherent architectures. Cys residues engineered into two opposing tecton faces promoted covalent interactions between rings, generating disulfide-bonded Lsm $[4+1]_4$ clusters (11 – 12 nm) that were readily disengaged by reduction agents. This cluster assembly displayed enhanced thermal stability across a range of solvent conditions.

Conjugation between Lsm tectons was also mediated through metal-His coordination, resulting in organisations that are sensitive to EDTA, salt concentration and pH. A Ni²⁺-chelated Lsm[4+1]₄ cluster displayed structural similarities to its Cys-

linked counterpart; this four-ringed assembly possessing an increased stability compared to $Lsm[4+1]_4$, although RNA-binding was compromised. In the presence of Cu^{2+} or Co^{2+} the tecton $Lsm3_8$ organised as ring pairs that were coaxially organised, so displaying potential as a precursor to an Lsm-based tubule.

This thesis also describes crystallisation progress towards an atomicresolution structure of the Lsm[4+1]₄ tecton. With highly pure samples, screening and optimisation across a range of conditions and crystallisation avenues allowed collection of six native datasets (at ~ 3 Å). This data could serve to solve the first crystal structure of an Lsm polyprotein ring at high resolution.

The use of Lsm rings to construct new and functional nanostructures is still in its infancy. However, this project illustrates their potential as robust and highly stable tectons, suitable for engineering endeavours. The construction of Lsm tectons into controllable higher-order superstructures, discussed in this thesis, may have future applications in RNA housing and delivery capsules or as next-generation bio-inspired nanosensors.

List of abbreviations

Å	angstrom
A ₂₈₀	absorbance at 280 nm
A ₂₆₀	absorbance at 260 nm
AFM	atomic force microscopy
AI	autoinduction
ASU	asymmetric unit
bp	base pair
BMC	bacterial microcompartment
CCP4	collaborative computational project number 4
CD	circular dichroism
CV	column volume
D _{max}	maximal particle diameter
DMSO	dimethyl sulfoxide
dn/dc	refractive index increment
Dps	DNA-binding protein
DSF	differential scanning fluorimetry
DTT	dithiothreitol
EYFP	enhanced yellow fluorescent protein
FAD	flavin adenine dinucleotide
g	standard acceleration due to gravity
GFP	green fluorescent protein
GroEL	heat shock protein 1
Hcp1	haem carrier protein 1
Hfq	bacterial Lsm protein
His ₆	hexa-Histidine
HSP 60	heat shock protein 60
IMAC	immobilised metal affinity chromatography
ITC	isothermal titration calorimetry
JCSG	joint centre for structural genomics
K _{av}	size exclusion distribution coefficient

-

kDa	kilo Dalton
LB	lysogeny broth
LIC	ligation-independent cloning
Lsm	like-Sm
Lsm[4+1]	polyprotein composed of fused Lsm4 and Lsm1
Lsm[2+3]	polyprotein composed of fused Lsm2 and Lsm3
MALLS	multi-angle laser light scattering
mRNA	messenger RNA
Mt Lsma	Methanothermobacter thermoautotrophicum Lsma
MW	molecular weight
NCS	non-crystallographic symmetry
NDS	normalised spatial discrepancies
OD ₆₀₀	optical density at 600 nm
PA-Sm1	Pyrococcus abyssi Sm1
P-body	processing body
PDB	protein data bank
PEG	polyethyleneglycol
PHENIX	python-based hierarchical environment for integrated
	crystallography
рКа	acid dissociation constant
p(r)	electron distance distribution function
R ²	coefficient of determination
R _g	radius of gyration
RNP	ribonucleoprotein
rRNA	ribosomal RNA
SAXS	small angle x-ray scattering
SEC	size exclusion chromatography
SeMet	L-selenomethionine
SmAP	Sm archaeal protein
snoRNA	small nucleolar RNA
snRNP	small nuclear ribonucleoprotein
SOC	super optimal broth with glucose added
SP1	stable protein 1
	•

_

SPR	surface plasmon resonance
Tacsimate	mixture of titrated organic acid salts
TBP	titanium-binding peptide
TEM	transmission electron microscopy
TRAP	trp RNA-binding attenuation protein
T _m	melting temperature
\mathbf{v}/\mathbf{v}	unit volume per unit volume
V_0	void volume of size exclusion chromatography
W/V	unit weight per unit volume
w/w	unit weight per unit weight
XDS	x-ray detector software

-