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In this thesis we argue that regime-switching models can significantly improve the pric-

ing models for financial derivatives. We use three examples to analyse the valuation

of derivative contracts under the Markovian regime-switching framework namely, 1) a

European call option 2) a Ruin Contingent Life Annuity and 3) a Participating Product.

Such a regime-switching framework unveils a potent class of models. Through the mod-

ulation of the model parameters by a Markov chain, they can simultaneously explain

the asymmetric leptokurtic features of the returns’ distribution, as well as the volatility

smile and the volatility clustering effect. The intuition behind regime-switching models

is to capture the appealing idea that the macro-economy is subjected to regular, yet

unpredictable in time, states, which in turn affect the prices of financial securities.

The market considered in this thesis is incomplete in general due to additional sources

of uncertainty, particularly the regime-switching risk. Under these market conditions, a

perfectly replicating trading strategy does not exist and there is more than one equivalent

martingale measure. As a result, a perfect hedge for derivative contracts is impossible

and the holder of the financial derivative needs to impose some testable restrictions to

price the residual risk. In this study, we argue that a condition that minimizes the

relative entropy between the risk-neutral and the historical probability measures is very

suitable. Such condition, determines a price for the derivative contract that maximizes

an exponential utility function for the holder. For doing so, we either use the Minimum

Entropy Martingale Measure or Esscher Transform to choose the equivalent martingale

measure.

Due to the complexity of the pricing models, stemmed from either the modeling as-

sumptions or the path-dependency of the payoff of the derivatives products, there is

no known analytical solution to our problems. We employ different numerical methods

in each chapter, depending on the respective modeling framework, to approximate the

solutions. We also examine numerically the performance of simple hedging strategies
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by investigating the terminal distribution of hedging errors and the associated risk mea-

sures such as Value at Risk and Expected Shortfall. The impacts of the frequency of

re-balancing the hedging portfolio and the transition probabilities of the modulating

Markov chain on the quality of hedging are also discussed.
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Chapter 1

Introduction

This study concerns the valuation of financial derivatives under the regime-switching

framework. We present three examples in order to argue that Markovian regime-

switching models can significantly improve the pricing models for financial derivatives,

through capturing the impact of the structural changes in the economy. The examples

are 1) a European call option, 2) a Ruin Contingent Life Annuity and 3) a Participating

Product. We also present robust arguments about different facets of regime-switching

models and compare the effectiveness of our models with the similar, but non-regime-

switching models in the literature.

Financial derivatives are contracts between two parties that specify conditions under

which payments are to be made between themselves. The value of the contracts are

based on the value of an underlying asset. The history of financial derivatives can be

traced back to ancient history. Thales of Miletus, referred to by Aristotle as the first

philosopher in Greek tradition, was a pre-Socratic Greek philosopher and geometrician

from Miletus in Asia Minor, and one of the Seven Sages of Greece. At the time of

Thales, olive-farming and production of olive oil was the largest component of the Greek

economy. For their production, the farmers rented olive presses from local owners. Due

to his skills, Thales was approached by the press owners to predict the olive harvest in

the next year. He signed a contract that granted him the privilege to use these presses

in the upcoming autumn. Thales negotiated low prices successfully because the olive

harvest took place in the future and the press owners wanted to hedge against a possible

1



Chapter 1. Introduction 2

poor yield. With the contemporary definitions of financial derivatives, the contract

signed by Thales was a European-style option on the use of olive presses in the future.

Throughout history, contracts similar to options are believed to have been used, inspired

by Thales’s ingenuity. Real-estate call options were widely used in the Roman Empire

to assemble large parcels of land from separate owners. In London, ’puts’ and ’refusals’

first became well-known contracts in the 1690s during the reign of William and Mary.

’Over the counter’ and ’non-tradable’ put and call options on shares and commodities

grew in popularity in North America during the nineteenth century. (This short history

is extracted from Smith [2004])

Market participants mainly engaged with these contracts with the incentive of risk de-

position. However, the fair valuation of derivatives contracts remained an open question

until 1973, when Fischer Black, Myron Scholes and Robert Merton proposed the risk-

neutral valuation methodology, a groundbreaking Nobel prize-wining model (see Black

and Scholes [1973] and Merton [1973]). Since the introduction of the Black-Scholes-

Merton model (BSM, henceforth), not only did the market for financial derivatives grew

immensely in size and volume, but also the ability to determine the fair valuation of

conventional option contracts facilitated innovation in modern insurance products such

as equity-linked insurance products. Equity-linked or unit-linked products are modern

innovations in insurance contracts that link the amount of benefits to a financial asset.

This asset could be a certain stock, a stock index, or a foreign currency. For convenience,

we refer to the linked investment as the reference portfolio.

Compared with traditional life insurance contracts, the main advantage of equity-linked

policies from the policyholder’s point of view resides in the fact that they have higher

flexibility in the determination of their risk exposure to different asset classes. This

also implies that they can achieve a better yield, adjusted to their risk preferences.

Moreover,there is more transparency about the returns on the policyholder’s account and

the fee structure. Compared with a direct investment in a mutual fund, the policyholder

can benefit from a more favorable tax treatment, in particular tax relief is often available

on premiums.

We show that equity-linked products are considered as complex financial derivatives,

because their pay-off structure can be decomposed to a combination of vanilla and

exotic options. Therefore, the risk-neutral valuation technique can be extended to price
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equity-linked products. This study demonstrates that when the regime-switching risk is

considered, a better pricing model and risk management strategy may be achieved for

the issuer of the equity-linked products.

The remainder of this chapter is structured as follows. Section1.1 provides an overview

of early option pricing models in complete markets. Section1.2 discusses the notion

of market incompleteness, the different sources of incompleteness and their impact on

the option pricing models. More specifically, Section1.2 describes the regime-switching

framework as a source of market incompleteness. Section1.3 outlines the different reme-

dies as outlined in the previous studies to overcome the modeling difficulties when pricing

options in incomplete markets. Section 1.4 provides a brief overview of the conventional

numerical methods, available in the literature, to assist analysis of pricing financial

derivatives in incomplete markets. Finally, Section 1.6 provides the thesis outline.

1.1 The Early Option pricing models

A crucial element in option pricing is the assumption made about how the price of

underlying assets evolve over time. BSM, as the first option valuation model, proposed

a geometric Brownian motion with a constant drift and a constant relative volatility for

the price process. Furthermore, Black-Scholes assumed a constant risk-free interest rate

and a frictionless complete market.

The market completeness assumption ensures that the pay-off of any financial derivative

can be constructed by the existing primitive financial instruments (i.e. the risky assets

and the risk-free asset). In other words, a financial market is complete if contracts exist

to insure against all possible eventualities. Complete markets are desirable because they

enable economic agents to allocate scarce resources, invest capital, and share financial

risks in a Pareto-efficient way. Additionally, complete markets in the Arrow-Debreu

space provide state-of-the-art analysis of capital markets and capital structures. For

example, arbitrage-free pricing is feasible only in a complete market and investor expec-

tations are easy to infer from complete market prices. (see Magill and Quinzii [1996]

and Magill and Quinzii [2003] for the detailed discussion)

From these assumptions, BSM showed that it is possible to create a risk-free (or hedged)

position, consisting of a long position in the stock and a short position in the option,
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the value of which will not depend on the price of the underlying asset. Based on their

assumptions about the dynamics of the price process of the underlying assets, Black-

Scholes derived a Stochastic Differential Equation (SDE, henceforth) for the value of the

hedged portfolio. Since the portfolio is instantaneously riskless, and as a consequence of

the no-arbitrage assumption, it can only appreciate at the risk-free rate. Therefore, the

drift term of the SDE must be equal to the risk-free rate of return. This results in the

Partial Differential Equation (PDE, henceforth), the solution of which is the price of the

option. Hence, the approach is often referred to as the PDE approach. The relationship

between the geometric Brownian motion and the BSM PDE is a special case of the

SDEs and PDEs. This relationship is more formally established under the Feynman-

Kac theorem. Oksendal [2003] provides a detailed discussion and proof of Feynman-Kac

theorem in the diffusion case, which were later extended to the jump-diffusion case in

Oksendal and Sulem [2005].

In 1979, Harrison [1979] provided an alternative approach to price financial derivatives,

using the Martingale theory. A ’martingale’ is a stochastic process for which, at a

particular time, the expectation of the next value in the sequence is equal to the present

observed value, given knowledge of all prior observed values. The concept of martingale

is entwined with ’fair game’ in probability theory, and corresponds well to the ’efficient

market hypothesis’ in finance and economics.

To price assets under the modern portfolio theory framework, the calculated expected

values need to be adjusted for an investor’s risk preferences. Therefore, the discount

rates would vary between investors based on their individual risk preference. As an

alternative approach, Harrison [1979] argued that in a complete market with no arbi-

trage opportunities, one can adjust the probabilities of future outcomes such that they

incorporate all investors’ risk premia and then take the expectation under this new

probability distribution, the equivalent martingale measure. As a result, the value of

all financial securities is the expected payoff, discounted at the risk-free rate. Since

the martingale approach directly corresponds to the risk-neutral valuation, the equiv-

alent martingale measure is also known as the risk-neutral probability measure. More

formally, the risk-neutral probability measure is the real probability measure with the

expected rate of return on the underlying security replaced by the risk-free rate. The

real probability distribution of stock returns can be estimated from the time series of
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past returns. However, the risk-neutral probability distribution of stock returns can be

estimated from the cross-section of option prices.

Consequently, in order to price any financial derivative, it is important to determine the

existence and the uniqueness of the equivalent martingale measure. These were discussed

in Harrison [1979, 1981] and more comprehensively in Delbaen [1994] through the ’first’

and the ’second’ fundamental theorems of asset pricing. The former states that the

market is arbitrage-free if, and only if, there exists at least one risk-neutral probability

measure that is equivalent to the original probability measure. The latter states that the

financial market is complete if, and only if, the existing risk-neutral measure is unique.

Work by Ross [1976], Cox and Ross [1976a], Constantinides [1978], Harrison [1979, 1981]

provided more insightful analysis into the option pricing formulation, employing more

elegant mathematical techniques. In particular, they developed the concept of the pric-

ing kernel or stochastic discount factor, which is the ratio of the risk-neutral probability

density and the real probability density, discounted at the risk-free rate. They argued

that the absence of arbitrage implies the existence of a strictly positive pricing kernel.

The concept of arbitrage-free prices and the BSM framework became a standard pricing

argument in financial economics. Black [1976] extended the BSM model to price options

on future contracts. Heath et al. [1992] developed a model for options on bonds and the

market LIBOR models for swaptions, caps and floors. These are options on discretely

compounded simple interest rates and are amongst the most traded interest rate options

(see also Brace et al. [1997], Jamshidian [1997], amongst many). However, the unique-

ness of the risk-neutral probability measure was challenged soon after BSM. Scholars,

supported by empirical evidence, argued that modeling incomplete markets is crucial to

explain the counterfactual predictions of the complete market models. For instance, as

opposed to complete market, where the agents are insured against idiosyncratic risks,

in incomplete markets the consumption of individuals are not highly correlated with

each other. In addition, the relative position in terms of wealth distribution of agents is

volatile. Magill and Quinzii [2003]

In this thesis, we concentrate on predominantly one source of market incompleteness,

namely, the Markovian regime-switching framework. We price three different financial

derivatives, under the assumption that the structure of the economy can change in

accordance to a Markov chain. The general characteristics of this framework, as well as
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the remedies for the consequent modeling complications are explained in the next section.

The specific mathematical modeling for each product is explained in each respective

chapter.

1.2 Incomplete Markets

The classic definition of incomplete markets is found in Arrow [1964]: incomplete mar-

kets refers to markets in which the number of Arrow-Debreu securities1 is less than

the number of states of nature. In the context of derivatives pricing, the market in-

completeness translates to the existence of more than one martingale measure. Under

these market conditions, a replicating dynamic trading policy does not exist and the

perfect risk transfer2 is not possible. Despite the ever-increasing sophistication of fi-

nancial and insurance markets, markets remain significantly incomplete, with important

consequences for their participants: workers and homeowners remain exposed to risks

involving labor income, property value and taxes. Investors and portfolio managers have

limited choices, and traders of derivative securities must bear residual risks. From a the-

oretical perspective, incomplete markets complicate the study of the financial market

equilibrium, portfolio optimization, and derivative securities.

As apposed to complete markets, the theory of derivative securities in incomplete mar-

kets is not well understood. This profoundly impacts the practice of trading, speculating,

and hedging with derivative securities. Jouini [2001] provides a distinguished survey of

derivative security pricing in incomplete markets, covering no-arbitrage bounds, utility

maximization, and equilibrium valuation. Cont and Tankov [2004b] provides the topic

a text book treatment by expanding the discussion to quadratic and entropy criteria, as

well as the model calibration issues.

The instances of market incompleteness are often attributable to the insufficient span

of traded assets, market frictions and the model assumptions. In the next 3 sections,

the first two are briefly discussed and referenced. Subsequently, the impact of model

1An Arrow-Debreu security or a state-price security may be defined as a security which pays one unit
of account when a particular state of the nature is realized (see for example, Chapter 1, Duffie [2010]).

2Perfect risk transfer in derivatives pricing refers to the situation where the option writer(or holder)
can create a self-financing portfolio consisting of the claim, underlying asset and risk free borrowing/lend-
ing that is perfectly hedged at all time.
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assumptions on the market incompleteness is elaborated and referenced, as it is the focus

of this thesis.

1.2.1 Insufficient span of traded assets

A fundamental assumption in risk-neutral valuation is the continuous availability of the

underlying asset to trade. This assumption ensures that the payoff of the derivative can

dynamically be replicated by a combination of risk-free asset and the underlying asset.

When the underlying asset is not available for trading, temporarily or permanently, the

holder (or issuer) of the derivative contract would not be able to create hedged positions.

The following scenarios instantiate market incompleteness due to the limitations on

underlying assets’ tradability.

Firstly, the institutional rigidness3 is a prominent source of incomplete markets (Boehmer

and Cocquemas [2011]). Some examples of institutional rigidness includes periodic mar-

ket closures and discreteness in trading opportunities and prices. Secondly, markets are

incomplete when the payoffs of the derivative securities are not entirely determined by

market prices, such as weather derivatives, catastrophe bonds, and derivatives written

on economic variables such as the gross domestic product (see Alexandridis et al. [2012]).

Thirdly, over-the-counter contracts are also issued on no-traded assets (Hung and Liu

[2005]). An agent can only trade them through an over-the-counter market-makers, usu-

ally at investment banks, and by requesting a quote for ’bid’ and ’ask’ prices at which

the market-makers are willing to buy or sell, respectively.

When there is an insufficient span of traded assets, the market-maker must bear the risk

associated with the trades due to the market incompleteness. In order to measure the risk

of their portfolio and manage it through hedging, they need to model the future value of

the derivatives, and dynamically re-balance their portfolio, using the prices extrapolated

from the market prices of some correlated assets. Related problems involving pricing

derivative securities on non-traded assets has been examined in the literature, most

notably in Duffie et al. [1997], Detemple and Sundaresan [1994], Zariphopoulou [2001],

Musiela and Zariphopoulou [2004].

3In this context refers to the quality of a financial institution or the financial market, which prevents
continuous access to the market or information.
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Finally, corporate asset capital investment opportunities in real assets such as land,

building, plant and equipment, constitute another instance of market incompleteness.

Often there are options embedded in these investment opportunities, known as real

options, which are very difficult to value using capital investment appraisal techniques.

This is due to the fact that in real options the underlying state variables are non-

tradable, so perfect hedging of these real options may be difficult, if not impossible.

Some examples of these options include the option to defer or abandon a project, or

the option to expand a project. McDonald and Siegel [1985], Titman [1985], Brennan

and Schwartz [1985] provided the early analysis for pricing real options (i.e. options on

real assets). Furthermore, Schwartz and Trigeorgis [2004] collects classical readings and

recent contributions in real options and investment under uncertainty.

1.2.2 Market friction

Market friction is the measure of difficulty with which an asset is traded. Many scholars

have studied market micro-structures in order to quantify market friction. A compre-

hensive survey of the literature is provided in O’Hara [1995]. There are two prominent

approaches in measuring friction. Firstly, Demsetz [1968] argues that there are additional

costs for being involved in any market, including explicit costs such as the exchange fee,

and implicit costs such as immediacy premium. The immediacy premium is the addi-

tional cost incurred by active buyers to induce the passive sellers to transact. Secondly,

Lippman and McCall [1986] measured friction by how long it takes optimally to trade a

given amount of an asset. On a more practical level, there are other sources of market

imperfection, due to the constraints imposed on the market participants. For example,

an employee who is granted stock options is not able to hedge them by selling stock

in the company. Different interest rates for borrowing and lending may be modeled by

constraints as well.

With frictions in financial markets, the concept of the no-arbitrage option pricing is

ill-defined. With market imperfections, the transaction prices of options generally differ

from the prices that would prevail in a complete and frictionless market. Under these

market conditions, a replicating dynamic trading policy does not exist. Constantindes

and Perrakis [2006] provides a comprehensive literature review about different remedies

for pricing options in imperfect markets.
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1.2.3 Incomplete markets due to model assumptions

In contrast to the BSM model, which is based on the log-normality assumption for

the returns distribution, three puzzles emerge from many empirical investigations (see

Bouchaud and Potters [2003], amongst many).

• The asymmetric leptokurtic features: the return distribution is skewed to the left,

and has a higher peak and two heavier tails than those of the normal distribution.

• The volatility smile: it is widely recognized that the implied volatility is a convex

curve of the strike price, which is in contrast to the BSM assumption of volatility

being constant.

• The volatility clustering effect: it suggests that returns distributions are best char-

acterized by autocorrelated volatilities, as opposed to asset returns themselves with

almost no autocorrelation.

Many researches have addressed the above issues. In order to incorporate the asymmetric

leptokurtic features in asset pricing, a variety of models have been proposed. These

include, amongst others:

1. Jump-diffusion models. Merton [1976] proposed the first extension of the BSM

model, where he used the compound Poisson process to model the random jumps.

For this model, an analytical solution for the derivative value is limited to very

specific cases such as the European options.

2. Chaos theory, fractal Brownian motion, and stable processes. In these models,

the Brownian motion is typically replaced by a fractal Brownian motion which

has dependent increments, rather than independent increments. For instance, see

Mandelbrot [1963,, 1967], Fama [1963, 1965]. However, Rogers and Chris [1997]

pointed out that these models may lead to arbitrage opportunities.

3. Generalized hyperbolic models. These include ’log t’ model and ’log−hyperbolic’

model, whereby the normal distribution assumption is replaced by some other

distributions; see, for instance, Barndorff-Nielsen and Shephard [2001], Praetz

[1972].
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4. Variance Gamma models and other time changed Brownian motions. See, for ex-

ample, Clark [1973], Madan and Eugene [1990], Madan et al. [1998]. An immediate

problem with these models is that it may be difficult to obtain analytical solutions

for option pricing; more specifically, they might give some analytical formulae for

vanilla options, but certainly not for interest rate derivatives and path-dependent

options.

In parallel, different models have also proposed to incorporate the volatility smile, and

the volatility clustering effect in option pricing, most notably :

1. Stochastic volatility and (generalized) autoregressive conditional heteroskedastic

type models; see, Hull and White [1987], Engle [1995], Fouque et al. [2000,], Boller-

slev [1986].

2. Constant elasticity variance model as proposed by Cox and Ross [1976b].

3. Affine stochastic-volatility model, in particular that presented by Heston [1993].

4. Regime-Switching models as discussed in Tong [1983], Hamilton [1989], Guo [2001],

Buffington and Elliot [2002], Elliott et al. [2005]

In this thesis we investigate certain aspects of three different examples where the in-

completeness results from different sources. Nevertheless, the primary source of market

incompleteness is regime-switching risk. In what follows, we provide an elaborate liter-

ature review for regime-switching models.

1.2.3.1 Regime-Switching models

In this thesis we argue that regime-switching models can significantly improve the pric-

ing models for financial derivatives. We use three examples to analyse the valuation of

derivative contracts under Markovian regime-switching framework; namely, 1) a Euro-

pean call option, 2) a Ruin Contingent Life Annuity and 3) a Participating Product.

Regime-switching framework is a potent class of models. Through the modulation of the

model parameters by a Markov chain, they can simultaneously explain the asymmetric

leptokurtic features of the returns’ distribution, as well as the volatility smile and the

volatility clustering effect. The intuition behind regime-switching models is to capture



Chapter 1. Introduction 11

the appealing idea that the macro-economy is subjected to regular, yet unpredictable

in time, states, which in turn affect the prices of financial securities. For example, in-

flation and recession may induce changes in the stock returns, periods of high market

turbulence and liquidity crunches may increase the default risk of financial institutions,

and governmental monetary policies may distort equilibrium prices for different asset

classes.

The history of regime-switching models can be traced back to Quandt [1958], Goldfield

and Quandt [1973] when regime-switching regression models were employed to describe

nonlinearity in economic data. The idea of probability switching also appeared in the

early development of nonlinear time series analysis. Here Tong [1983] proposed one

of the oldest classes of nonlinear time series models, namely the threshold time series

models. Subsequently, Hamilton [1989] popularized regime-switching time series models

in the economic and econometric literature. Since then, considerable attention has been

directed at the investigation of the regime-switching framework to model economic and

financial data. Due to the empirical success of regime-switching models, the models

have been applied to different areas in banking and finance, including asset allocation,

option valuation, risk management, term structure modeling, and others. Recently,

scholars have turned their attention to option valuation under regime-switching models,

including Naik [1993], Guo [2001], Buffington and Elliot [2002], Elliott et al. [2005],

amongst others.

Regime-switching models have become popular in actuarial science in recent years. For

instance, Hardy [2001], Siu [2005], Siu et al. [2008] modeled different equity-linked in-

surance products under regime-switching economy.

In this thesis, the effect of Markovian regime-switching models on pricing options and

equity-linked life insurance contracts is studied. In addition, to achieve a more accu-

rate pricing model, the regime-switching risk is coupled with other sources of market

incompleteness, in different chapters.

1.3 Remedies for Incomplete Markets

When the market is incomplete, there is not, in general, a unique no-arbitrage price for

a given contingent claim. In other words, a perfect replicating strategy is not attainable,
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thus not all risks can be hedged. The most popular approach to price a divertive under

this conditions, is to invoke some other criteria to single out a martingale measure from

a continuum of existing martingale measures. As a result of the process, a fair price for

contingent claims is determined by selecting a feasible price for risk.

This approach is particularly advantageous, when compared to the early approaches

proposed in Jeanblanc-Picqu’e and Pontier. [1990], Shirakawa. [1991]. They addressed

the issue of pricing derivatives by adding as many new assets to the sources of uncertainty

as possible, in pursuant of completing the market. However, by adding new assets (or

new state variables) the dimensions of the problem increases and the possible correlation

between assets leads to degenerate PIDEs, with no known solution.

Therefore, we chose the first approach in our pricing methodology. Different criteria

have been proposed in the literature to choose the equivalent martingale measure, most

prominently:

• Minimal Martingale Measure (MMM) Follmer and Schweizer [1991]

• Variance Optimal Martingale Measure (VOMM) Schweize [1995]

• Mean Correcting Martingale Measure (MCMM)

• Esscher Martingale Measure (EMM) Gerber and Shiu [1994]

• Minimal Entropy Martingale Measure (MEMM) Frittelli [2000]

• Utility Based Martingale Measure (UMM)Davis [1997]

From the list above EMM, MEMM, and MCMM belong to a more general category,

known as the Esscher transformed martingale measures group. The underlying argument

for these methods is based on minimization of relative entropy of a probability measure

with respect to another probability measure (also called Kullback-Leibler information

number or I-divergence), and its minimization over a convex set of measures.

In our pricing methodologies in the subsequent chapters, EMM and MEMM are our

methods of choice. This is because minimization of the relative entropy has been shown

to be linked with the maximization of expected utility in the case of an exponential
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utility function4. As a case in point, Buhlmann et al. [1996] showed that in a financial

market model maximizing expected exponential utility over a set of admissible trading

strategies is dual to finding the entropy minimizing martingale measure for the price

process.

The Esscher transformation is a very useful method technique to obtain a reasonable

equivalent martingale measure and it is related to the corresponding risk process. Ess-

cher introduced the idea of risk function and transformed risk function for the calculation

of collective risk in Esscher [1932]. The idea soon became very popular in actuarial sci-

ence and risk management. Later, the pioneer work by Gerber and Shiu [1994] extended

the implication of the Esscher transform to option pricing, by providing a pertinent

solution to the pricing model in incomplete markets. There are two kinds of Esscher

transformed martingale measures: 1) The compound return Esscher transformed mar-

tingale measure, introduced by Gerber and Shiu [1994]. 2) The simple return Esscher

transformed martingale measure, identified with the MEMM (see Elliott et al. [2005]).

The latter is particularly useful for investigating and characterizing the existence of the

minimal entropy martingale measure in concrete models in an analytically tractable way.

1.4 Numerical methods in options pricing

In the global financial markets, vanilla options are traded along with options that can

often have far more complicated payoffs (i.e. exotic options). While sometimes we can

find close form solutions for certain exotic derivetives (e.g. European Barriers and Look-

back options), for other products a close form solution does not exist. Additionally, more

complex model assumptions often results to higher dimensionality of the pricing process,

therefore harder to discover analytical solutions. In these cases, the only way a market

participant will be able to obtain a price is by using an appropriate numerical method.

Path-dependency is a common reason, for which one may consider a numerical procedure.

Path-dependent options are options whose payoffs depend on historical values of the

underlying asset over a given time period as well as its current value. Well-known

4An exponential utility function may be considered one of the major classes of utility functions used
in finance and actuarial science, which utility implies constant absolute risk aversion, with coefficient of
absolute risk aversion equal to a constant. In the standard model of one risky asset and one risk-free
asset this feature implies that the optimal holding of the risky asset is independent of the level of initial
wealth; thus on the margin any additional wealth would be allocated totally to additional holdings of
the risk-free asset.(see Cvitanić and Zapatero [2004] for further discussions)
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examples are look-backs, which give their owners the right to buy (sell) the asset at an

exercise price equal to the minimum (maximum) price of the asset over the life of the

option.

Regime-switching models can also produce path-dependency, since the price evolution

for the underlying asset could result in different values, depending on the duration that

the Markov chain had occupied each state. In this study we examine different numerical

schemes to 1) treat the path-dependency issue, imposed by the the Markovian regime-

switching model and 2) solve partial differential equations with no known analytical

solutions.

Three different numerical procedures are predominantly used in derivatives pricing lit-

erature; namely, the lattice model, Monte Carlo simulation, and numerical solutions for

the differential equation.

1.4.1 Lattice model

A lattice model can be used to find the fair value of different financial derivatives. The

model divides time between now and the option’s expiration into a number of discrete

periods. For any specific time (or node), the model has a finite number of outcomes in

the next period, such that every possible change in the state of the world within the

period is captured in a branch. This is an iterative process that maps all the possible

paths of the evolution of asset price until the expiration of the option. Accordingly, the

risk-neutral probabilities are calculated using the risk-neutral argument, so that through

the backward induction of the option prices, the option values could be calculated for

each node. The backward induction is the process that starts with the terminal value of

the option (intrinsic value of the option at the expiry) for the terminal points and moves

backwards in time by calculating the values for the previous points using discounted

expectation under risk-neutral probabilities.

The simplest lattice model for options is the binomial options pricing model, which was

first introduced by Cox, Ross and Rubenstein in their honored 1979 paper Cox et al.

[1979]. For some types of options such as the American options, using an iterative model

is the only choice since there is no known closed-form solution that predicts price over

time. Ever since Cox et al. [1979], various variations of trees have been proposed in the
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literature to account for different features of derivatives pricing models. In the second

chapter of this thesis, the regime-switching version of the binomial model is proposed

for the valuation of vanilla calls. We present the path-dependent structure created due

to the state dependency of the variables. Our latices model calculates the fair value of

the option through pricing the regime-switching risk.

1.4.2 Monte Carlo simulation

Monte Carlo methods are a broad class of computational algorithms that rely on repeated

random sampling from an assumed distribution or model. In financial engineering,

Monte Carlo simulation is often designed to generate sample paths of asset prices(or

returns) based on the model assumptions for the asset dynamics. In derivatives pricing

models, the payoff of the contract is calculated for each generated path, and the fair

value of the derivative is approximated when some convergence criteria are met.

The method was first introduced to finance in Boyle [1977] and is generally quite easy

to implement as it can be used without too much difficulty to value a large range of

European style exotic options. The Monte-Carlo simulation is reliable, and providing

enough sample paths are taken, there can be a high statistical confidence in the accuracy

of the prices. It is, therefore, often used as the benchmark valuation technique for many

complex, European-style exotic options.

However, this accuracy can often come at a large computational cost. To generate

sufficiently accurate prices, a large number of paths must be generated. If some kind of

path-dependent exotic is to be priced, then the value of the asset on each point of the

paths need to be calculated. For instance, in a typical option valuation problem, one

must consider storing and evaluating 109 asset values. This creates an immense amount

of computational time and processing expense, which is not attractive from a practical

point of view. Another draw-back using the Monte Carlo simulation is the fact that it is

very difficult to be implemented for American style contracts, due to the early exercise

feature.

After the seminal paper by Boyle [1977], the paper by Boyle et al. [1997] may perhaps

be a more recent representative literature on the use of Monte Carlo method for option

pricing. This paper also discussed the use of Quasi Monte Carlo method for option
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pricing which was introduced by Joy et al. [1996]. The Quasi Monte Carlo method is

based on low discrepancy sequences, which are deterministic, instead of pseudo random

numbers. The rate of convergence of Quasi Monte Carlo method is the reciprocal of

the number of simulations while the rate of convergence of Monte Carlo method is

the reciprocal of square root of the number of simulations. Furthermore, in recent

years, there have been a number of advancements in more efficient Monte Carlo based

techniques for derivatives valuation. For instance, Fouque and Han [2004] used the

variance reduction technique for Monte Carlo methods to evaluate option prices under

multi-factor stochastic volatility models. McLeish [2011] and Schlogl [2013] provide a

comprehensive review of literature and discuss some modern applications of Monte Carlo

simulation in derivatives pricing.

1.4.3 Numerical solutions for the differential equation

The third class of numerical methods for options pricing targets solving the pricing

partial differential equations (PDE). These numerical schemes, which were originated

from applied mathematics and physics, have rapidly grown in popularity, due to their

reasonable accuracy of the results, the simplicity in the implementation and the speed

of execution (particulary, compared to Monte Carlo based algorithms). The methods

rely on discretization of the pricing PDEs and calculation of each nodal value using the

boundary conditions, through backward induction. The discretization can be in both

times and space dimensions (as in Finite Difference Method, FDM) or just the space

dimension (as in Finite Element Method, FEM).

The FDM was first applied in Brennan and Schwartz [1978] to solve derivatives-pricing

problems with jump. In this method the derivative terms (both time and space)are

replaced by their respective numerical approximation values (or the Finite Difference

approximations). Therefore, the by-product of the procedure is the numerical approxi-

mation of the so-called Greeks, which are the sensitivity of the option value to time and

different state variables. This is a, particularly, attractive feature for practical purposes,

due to the importance of Greeks in risk management. Due to the simplicity and the

popularity of the method, many textbooks on option pricing, such as Wilmott [1998],

provide thorough introductions to the approximate solution of differential equations

arising in finance with FDM.
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FEM is a more powerful procedure, compared to FDM, especially, when dealing with

irregular shapes of partial integro-differential equations or high curvature in the value

function. Additionally, the method computes a solution for the entire domain, instead

of isolated nodes as in the case of FDM. The basic idea of FEM is to approximate the

solution of a given differential equation with a set of algebraically simple functions. The

spatial domain of the differential equation is divided into sub-domains called elements.

For each element, the parameters of this function are usually different. The functions

are equal with respect to the function type but different with respect to the values of

the parameters. Each of these functions has only local support, that is, outside a small

number of elements it takes on the value zero. The elements are non-overlapping and

cover the domain on which the differential equation is defined. Topper [2005] provides a

comprehensive discussion on different approaches to Finite Elements Method and their

application in economics and finance.

In this thesis we employ both FDM and FEM for evaluating the value functions in

Chapter3 and Chapter4, respectively.

1.5 Valuation of Equity-linked insurance products

This study gives a ’financial engineering’ treatment to valuation of equity-linked insur-

ance products. One distinguishing characteristic of equity-linked products, compared

to the traditional insurance contracts, is the principle of equivalence, which states that

the company’s income and expense should balance in the long term. In the case of

traditional insurance products, actuarial techniques are used in tandem with financial

valuation theories to price such products. However, under the principle of equivalence,

it is assumed that the financial risk factors, mortality and risk neutrality are indepen-

dent. That is the insurance company is not expected to receive any compensation for

accepting the mortality risk. The assumption is also justified by the pooling argument

which states that the insurer can eliminate the mortality risk by adequately increasing

the number of identical and independent contracts in his portfolio.

The above argument allow us to treat equity-linked contacts as a combination of some

vanilla or exotic financial derivatives. In Chapter3 and Chapter4 we price two differ-

ent equity-linked contracts. We show that similar to Chapter2 standard no-arbitrage



Chapter 1. Introduction 18

arguments do not provide unique prices, hence the market is incomplete.

Early work on pricing equity-linked contracts using a combination of no-arbitrage argu-

ments and actuarial principles was carried out by Brennan and Schwartz [1976], Boyle

and Schwartz [1977]. They recognized that the payoff from an individual equity-linked

contract at expiration is identical to the payoff from an European call option plus a cer-

tain amount (the guarantee amount) or to the payoff from an European put option plus

the value of the reference portfolio. Further considerations with deterministic interest

rate have been discussed in Aase and Persson [1994] and Persson [1993], where they ap-

plied a continuous-time model of mortality. These two papers established a connection

between the classical Thiele equation of the actuarial sciences and the BSM equation.

The advancements in the option pricing literature, simultaneously benefited the mod-

els for pricing equity-linked products. For example, Delbaen [1986] used Monte Carlo

simulation for pricing the contracts, where a close form solution could not be found.

Bacinello and Ortu [1993c,a,b], Nielsen and Sandmann [1995] applied the martingale-

pricing theory credited to Harrison [1979]. The main achievement by this methodology

is that the single premium of an insurance contract may be calculated as an expectation

under a risk-adjusted probability measure. Further, Bacinello and Ortu [1993b] showed

that the assumption of deterministic interest rates cannot conform interest rate risk

in the real market. The paper allowed for interest rate risk by assuming an Ornstein-

Uhlenbeck process implying a closed form solution of the single premium endowment

policy. Many other researchers tried to achieve a better price, by taking more complex

model assumptions into consideration. For instance, Kassberger et al. [2008], Le Cour-

tois and Quittard-Pinon [2008] studied the problem under the jump-diffusion framework.

Wilkie [1995], Hardy et al. [2006] considered (Generalized) Autoregressive Conditional

Heteroscedastic models. Additionally, there have been a number of researches on pric-

ing the equity-linked products under the regime-switching framework, including, Hardy

[2001], Siu [2005], Siu et al. [2008].

1.6 Research Question and Thesis Outline

In this thesis, we price three different financial derivatives under the Markovian regime-

switching framework. We primarily focus on 1) the analysis of market incompleteness,



Chapter 1. Introduction 19

due to the regime-switching risk; 2) the usefulness of some numerical methods, when

pricing financial derivatives under the Markovian regime-switching framework.

We investigate the problem of market incompleteness, appeared under different model

assumptions. The only source of market incompleteness in Chapter2 is the regime-

switching risk. In Chapter3 and Chapter4, nevertheless, our models also incorporate

random jumps, which is an additional source of market incompleteness. As discussed

in Section1.3, in our pricing methodologies for all chapters, we only consider methods

that minimizes the entropy between the equivalent martingale measure and the historical

measure. Buhlmann et al. [1996] showed that the method is dual to maximizing expected

exponential utility over a set of admissible trading strategies. Therefore, we either use

the Minimum Entropy Martingale Measure or Esscher Transform for this purpose. As

previously discussed, these two methods correspond to the same martingale measured,

therefore, it maintains the cohesion of the pricing methodology across the thesis.

In this study, we also investigate the usefulness of some numerical methods, when pricing

financial derivatives under the Markovian regime-switching framework. In Chapter2,

we develop a lattice approach for the valuation of a vanilla call option. In Chapter3,

we utilize the Finite Difference method for pricing ruin contingent life annuities. In

Chapter4, we consider the Finite Element method to approximate the solution for a

partial integro-differential equation and ultimately value a participating life-insurance

product.

1.6.1 Thesis Outline

In the subsequent chapters, we analysed the problem of pricing financial derivatives from

three different angels. Nevertheless, every chapter is closely bonded to the others, from

the methodological point of view.

In Chapter2 we consider the pricing of vanilla European call options. We implement

the regime-switching version of the lattice approach in the valuation of the option.

More importantly, we develop a method to price the regime-switching risk, through

calculating the risk-neutral transition probabilities of the Markov chain (in addition to

the risk-neutral probabilities of the evolution of the asset), using MEMM. Finally, due

to the market incompleteness, there is no strategy available, consisting of the primitive
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assets, that perfectly replicates the payoff of the option. Consequently, the imperfect

nodal hedging results in a nodal hedging error, which has important implications from

the risk management point of view. We evaluate the nodal hedging error, through the

implementation of a simple Delta hedging strategy. Then we approximate the terminal

distribution of hedging error, with which we calculate two important risk metrics, namely

Value at Risk and Expected Shortfall.

In Chapter3, we consider the pricing of a Ruin Contingent Life Annuity, RCLA, which

is a modern innovation in the equity-linked life insurance products. We use the regime-

switching version of the Variance Gamma process to model the evolution of the under-

lying reference portfolio. The source of incompleteness is not only the regime-switching

risk, but also the random jump process. We employ the Esscher Transform to choose the

equivalent martingale measure, under which we derive the risk-neutral dynamics for the

asset. Then we determine the PIDE for pricing the contract and we solve it numerically,

using the FD method. Finally, we implement a simple Delta hedging strategy, using

the FD approximation for the Delta and Monte Carlo Simulation for the underlying

portfolio. Then we approximate the terminal distribution of hedging error, with which

we calculate two important risk metrics, namely Value at Risk and Expected Shortfall.

In Chapter4, we propose a model for the valuation of the participating life insurance

product under a generalized jump-diffusion model with a Markov-switching compen-

sator. We employ the Esscher transform to determine an equivalent martingale measure

in the incomplete market. The results are further manipulated through the utilization

of the change of numeraire technique to reduce the dimensions of the pricing formula-

tion. This paper is the first that extends the technique for a generalized jump-diffusion

process with a Markov-switching kernel-biased completely random measure which nests

a number of important and popular models in finance. Similar to Chapter3, due to

the path dependency for the payoff of the contract, no close form solution exists for

the problem. Therefore, we implement the collocation method, a subclass of the FE

method, to find the numerical approximation for the value function. Finally, the results

are compared to the conventional Merton model, through a numerical example.

Our study shows that 1) the regime-switching risk can be priced using MEMM method,

2) Esscher transform is a computationally convenient and an economically efficient
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method of pricing financial derivatives in incomplete markets, 3) under certain con-

ditions, similar to Chapter4, the utilization of the change of numeraire technique can

simplify the value function, through the reduction of dimensionality; and 4) an appro-

priate numerical method may approximate the value function very efficiently.

Chapter5 concludes the thesis, and provides thorough discussion for the in future pos-

sibilities in the research area. Despite the recent attention to the regime-switching

literature, not all facets of it has been thoroughly understood. Further research may

shed light on different theoretical concepts and practical implications of this class of

models.
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Abstract

We discuss the pricing and risk management problems of standard European-style op-

tions in a Markovian regime-switching binomial model. Due to the presence of an addi-

tional source of uncertainty described by a Markov chain, the market is incomplete, so

the no-arbitrage condition is not sufficient to fix a unique pricing kernel, hence, a unique

option price. Using the minimal entropy martingale measure, we determine a pricing

kernel. We examine numerically the performance of a simple hedging strategy by investi-

gating the terminal distribution of hedging errors and the associated risk measures such

as Value at Risk and Expected Shortfall. The impacts of the frequency of re-balancing

the hedging portfolio and the transition probabilities of the modulating Markov chain

on the quality of hedging are also discussed.

Keywords Binomial tree - Regime-switching - Minimum entropy martingale measure
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2.1 Introduction

The history of regime-switching models can be dated back to the early works of Quandt

[1958], Goldfield and Quandt [1973] where regime-switching regression models were used

to describe nonlinearity in economic data. The idea of probability switching also ap-

peared in early development of nonlinear time series analysis, where Tong [1983] pro-

posed one of the oldest classes of nonlinear time series models, namely the threshold

time series models. Hamilton [1989] popularized regime-switching time series models in

the economic and econometric literature. Since then, considerable attention has been

paid to investigate the use of regime-switching models to model economic and finan-

cial data. Regime-switching models have become popular in actuarial science in recent

years. Hardy [2001] provided sound empirical evidence to support the use of a discrete-

time regime-switching lognormal model for fitting long-term investment returns using

the S&P 500 and the TSE 300 indices.

Due to their empirical success, regime-switching models have been applied to different

important areas in banking and finance, including asset allocation, option valuation, risk

management, term structure modeling, and others. Recently the spotlight seems to turn

to option valuation under regime-switching models. Early works in this area include Naik

[1993], Guo [2001], Buffington and Elliot [2002], Elliott et al. [2005], amongst others.

These works deal with the option valuation problem under continuous-time regime-

switching models. The option valuation problem in a discrete-time regime-switching

model has received relatively little attention in the literature, (see, for example, Liew and

Siu [2010]). Nevertheless, the investigation of the option pricing problem in a discrete-

time regime-switching framework is certainly important from the practical perspective,

since in practice data is monitored discretely over time and a discrete-time model is

relatively easy to estimate than its continuous-time counterpart.

The main challenge of option valuation in regime-switching models is that the market

in a regime-switching model is, in general, incomplete. This is attributable to the addi-

tional source of uncertainty described by the modulating Markov chain. Consequently,

there is more than one equivalent martingale measure, and hence, more than one no-

arbitrage price for an option. Different approaches have been proposed for pricing and

hedging derivative securities in incomplete financial markets. Follmer and Sondermann
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[1986], Follmer and Schweizer [1991] and Schweize [1995] selected an equivalent martin-

gale measure by minimizing the quadratic utility of the terminal hedging errors. Davis

[1997] adopted an economic approach based on the marginal rate of substitution to pick

a pricing measure via a utility maximization problem. Gerber and Shiu [1994] pioneered

the use of the Esscher transform, a time-honored tool in actuarial science, for option

valuation in an incomplete market. Elliott et al. [2005] proposed the use of the Ess-

cher transform to select a martingale pricing measure in a continuous-time, Markovian

regime-switching market. The Esscher transform provides a convenient way to select

a pricing measure in the regime-switching market. One of the key features of the Ess-

cher transform in Elliott et al. [2005] is that the regime-switching risk was not priced.

This is evidenced by the fact that the probability laws of the modulating Markov chain

does not change after the measure change by the Esscher transform. Siu and Yang

[2009] extended the Esscher transform in Elliott et al. [2005] to take into account ex-

plicitly the regime-switching risk in the specification of a pricing kernel. Elliott and

Siu. [2011b,a] considered a general pricing kernel which is defined by the product of two

density processes, one for a measure change for a diffusion process and another one for

a measure change for a Markov chain. It appears that the existing literature focuses on

investigating the pricing of regime-switching risk in a continuous-time regime-switching

market. However, a relatively little attention has been paid to discussing the pricing of

regime-switching risk in a discrete-time regime-switching model.

The purpose of this paper is to investigate the pricing and hedging of vanilla European

options in a discrete-time Markovian regime-switching binomial model. Particular focus

is placed on pricing regime-switching risk. Here we specify the parametric form of a

pricing kernel by a product of two density processes, one for a measure change for the

discrete-time binomial model and another one for a discrete-time Markov chain. This

pricing kernel allows the pricing of both market risk due to price movements and the

regime-switching risk. In this situation, the martingale condition in the fundamental

theorem of asset pricing is not sufficient to fix a pricing kernel. Here we adopt the min-

imal entropy martingale measure (MEMM) approach to fix a pricing kernel and obtain

a closed-form expression for the ’risk-neutral’ transition probabilities of the modulating

Markov chain. We present a computationally efficient method to price options in such

a modeling framework. For the hedging of options, we investigate consequences of not

hedging the regime-switching risk. In particular, we consider a simple delta hedging
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strategy, which does not take into account regime-switching risk, and document the po-

tential risk inherent from adopting such a simple hedging strategy. We examine the risk

measures such as Value at Risk (VaR) and the Expected Shortfall (ES), for the terminal

hedging errors associated with the delta hedging strategy.

The rest of this paper is organized as follows. The next section presents the discrete-time,

Markovian regime-switching binomial model. In Section2.3, we discuss the specification

of the parametric form or a pricing kernel using the product of two density processes. The

use of the MEMM approach to pick a pricing kernel is discussed in Section2.4. We also

describe the dynamic delta hedging strategy to be used in our numerical experiment. We

present the numerical results of option valuation and the risk measures for the hedging

errors associated with the delta hedging strategy in Section2.6. We conclude our paper

by discussing a heuristic hedging strategy which takes into account the regime-switching

risk.

2.2 The Markovian Regime-Switching Binomial Tree

We consider a discrete-time, Markovian regime-switching, binomial model consisting of

a bond B and a share S. To describe uncertainty, we consider a complete probability

space (Ω,G,P), where P is the historical probability measure. Let T := {0, 1, 2, · · · , T}

be the time parameter set, where transactions take place in the time points in T .

To describe the evolution of economic conditions over time, we consider a discrete-time,

finite-state, Markov chain {Xt}t∈T on (Ω,F ,P) taking values in the canonical state space

E := {e1, e2, · · · , eN} ⊂ RN , where the jth-component of ei is the Kronecker product

δij , for each i, j = 1, 2, · · · , N . To describe the probability laws of the Markov chain

under P, we define the transition probability matrix A := [aji]i,j=1,2,··· ,N , where

aji := P(Xt+1 = ej |Xt = ei) .

That is, aji is the transition probability of the chain {Xt}t∈T from state ei to state ej .
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Let r be the constant risk-free interest rate of the bond B, where r > 0. Then the bond

price process {Bt}t∈T evolves over time as:

Bt+1 = Bte
r , B0 = 1 .

We now specify the share price process {St}t∈T . For each t ∈ T \{0}, let ωt := St/St−1

be the return from the share S from time t − 1 to time t. We suppose that for each

t ∈ T \{0},

ωt ∈ {u(Xt), d(Xt)} ,

where u(Xt) and d(Xt) are modulated by the chain as follows:

u(Xt) := 〈u,Xt〉 ,

d(Xt) := 〈d,Xt〉 .

Here u := (u1, u2, · · · , uN )′ ∈ RN and d := (d1, d2, · · · , dN )′ ∈ RN ; y′ is the transpose

of a matrix, or a vector, y; 〈·, ·〉 is the scalar product in RN ; ui (resp. di) is an upward

jump (resp. a downward jump) of the share price at time t when the chain Xt = ei.

In other words, the upward jump and the downward jump of the share price depend on

the state of the chain {Xt}t∈T .

Let Fω := {Fωt }t∈T be the P-completed, natural filtration generated by the return

process {ωt}t∈T \{0}, where for each t ∈ T \{0}, Fωt := σ{ω1, ω2, · · · , ωt} ∨ N , Fω0 =

σ{∅,Ω} and N is a P-null set. We suppose that for each t ∈ T and each j = 1, 2, · · · , N ,

pt,j := P(ωt = u(Xt)|Xt = ej ,Fωt ) = P(ωt = uj) ,

so that {ωt}t∈T is a sequence of independent random variables conditional on the sample

path of the Markov chain {Xt}t∈T .

Then for each t ∈ T , the probability of a downward jump is:

1− pt,j = P(ωt = d(Xt)|Xt = ej ,Fωt ) = P(ωt = dj) .
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Figure 2.1: Evolutions of the price of the underlying asset under Markovian Regime-
Switching Binomial Tree, with two states in the economy

Let FX := {FX
t }t∈T be the P-completed, natural filtration generated by the chain

{Xt}t∈T , where for each t ∈ T \{0}, FX
t := σ{X1,X2, · · · ,XT }∨N and FX

0 := σ{∅,Ω}.

For each t ∈ T , we define:

Gt := Fωt ∨ FX
t .

This is the minimal σ-field containing both Fωt and FX
t . Write G := {Gt}t∈T .

The Markovian regime-switching binomial model consists of two sources of risk, one

inherent from the binomial process and another one inherent from the Markov chain.

Given that there are two primitive securities in the model, the market model is, in

general, incomplete. Unlike the situation of the standard CRR binomial model, there

is more than one equivalent martingale measure, or pricing kernel, in the Markovian

regime-switching binomial model. Consequently, a key question is how we can select an

equivalent martingale measure in such a market model.

The structure of the Markovian regime-switching binomial model is depicted in Figure

(2.1), where a three-step, two-regime, binomial tree is displayed. The tree is recombining

at both the levels of the binomial process and the Markov chain.
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2.3 A Pricing Kernel and MEMM

In this section, we shall discuss a pricing kernel which is defined by the product of two

density processes, one for a measure change for the binomial process and another one for

a measure change for the Markov chain. This pricing kernel can price both the price risk

and the regime-switching risk. Since the parametric form of the pricing kernel involves

two ’prices of risk’, the martingale condition is not sufficient to fix a pricing kernel.

Additional criteria are required. Here we employ the minimal equivalent martingale

measure (MEMM) to determine a pricing kernel. We obtain a closed-form expression

for the ’risk-neutral’ transition probability matrix for the Markov chain.

Firstly, we define the density process for the measure change for the binomial process.

Consider the G-adapted process {λSt }t∈T \{0} defined by:

λSt :=
N∑
j=1

(qt,j)
I{wt=u(ej)}(1− qt,j)

1−I{wt=u(ej)}

(pt,j)
I{wt=u(ej)}(1− pt,j)

1−I{wt=u(ej)}
× 〈Xt, ej〉 .

Here qt,j ∈ (0, 1) and I{wt=u(ej)} is the indicator function of the event {wt = u(ej)}.

Furthermore, we define the G-adapted process {ΛSt |t ∈ T } by putting:

ΛSt :=
t∏

u=1

λSu , ΛS0 = 1 .

It is then easy to check that {ΛSt }t∈T is a (G,P)-martingale. This is the density process

for a measure change for the binomial process.

We now define the density process for a measure change for the Markov chain. Let

C := [cji]i,j=1,2,··· ,N , where

1. for each i, j = 1, 2, · · · , N , with i 6= j,
∑N

j=1 cji = 1;

2. cji ≥ 0, so cii ≤ 0.

Consider the FX-adapted process {λXt }t∈T \{0} defined by:

λXt :=

N∏
i,j=1,i 6=j

(
cji
aji

)〈Xt−1,ej
〉〈Xt,ei 〉

.
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Then we define the FX-adapted process {ΛX
t }t∈T by setting:

ΛX
t :=

t∏
u=1

λXu , ΛX
0 = 1 .

Again it is easy to see that {ΛX
t }t∈T is an (FX,P)-martingale. This is the density process

for a measure change for the Markov chain.

Define the G-adapted process Λ := {Λt}t∈T by putting:

Λt := ΛX
t · ΛSt ,

so Λ is a (G,P)-martingale. This then implies that E[ΛT ] = 1.

A probability measure Q equivalent to P on GT is then defined by setting:

dQ
dP

∣∣∣∣
GT

:= ΛT .

Then we have the following lemma.

Lemma 2.1. Under Q, the transition probability matrix of the chain X is C.

Proof: Let EC be the expectation under QC. Write IE for the indicator function of an

event E. Then by a version of the Bayes’ rule, the Markovian property of the chain X

and the martingale property of ΛX,

QC[Xt+1 = ej |Xt = ei]

= EC[I{Xt+1=ej}|Xt = ei]

=
E[ΛX

t+1I{Xt+1=ej}|Xt = ei]

E[ΛX
t+1|Xt = ei]

= E[λXt+1I{Xt+1=ej}|Xt = ei]

= E

[ N∏
i,j=1,,i 6=j

(
cji
aji

)〈Xt,ei〉〈Xt+1,ej〉
I{Xt+1=ej}|Xt = ei

]

=

(
cji
aji

)
E[I{Xt+1=ej}|Xt = ei]

= cji .

Hence, the result follows. �
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By the fundamental theorem of asset pricing, (see Harrison and Kreps [1979], Harrison

and Pliska [1981, 1983]), the absence of arbitrage opportunities in a market is essentially

equivalent to the existence of an equivalent martingale measure under which discounted

asset prices are martingales. The latter condition is called a martingale condition. In

our current context, the martingale condition states that there is a probability measure

Q equivalent to P on GT under which the following condition is satisfied:

EQ[e−rSt+1|Gt] = St , P-a.s , t ∈ T .

Conditional on Xt+1 = ej , the martingale condition becomes:

EQ[e−rSt+1|Gt,Xt+1 = ej ] = St , P-a.s , t ∈ T .

We call this the conditional martingale condition given Xt+1 = ej . Then we have the

following lemma.

Lemma 2.2. The conditional martingale condition holds if and only if for each t ∈

T \{0} and j = 1, 2, · · · , N ,

qt,j =
er − dj
uj − dj

.

Proof: The conditional martingale condition is given by:

EQ[e−rSt+1|Gt,Xt+1 = ej ] = St .

This, if and only if,

EQ[ωt+1|Gt,Xt+1 = ej ] = er .
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By a version of the Bayes’ rule,

EQ[ωt+1|Gt,Xt+1 = ej ]

=
E[Λt+1ωt+1|Gt,Xt+1 = ej ]

E[Λt+1|Gt,Xt+1 = ej ]

=
E[ΛSt+1ωt+1|Gt,Xt+1 = ej ]

E[ΛSt+1|Gt,Xt+1 = ej ]

= E[λSt+1ωt+1|Gt,Xt+1 = ej ]

= qt+1,juj + (1− qt+1,j)dj .

Consequently, the conditional martingale condition holds true if and only if

qt+1,juj + (1− qt+1,j)dj = er .

Hence, the result follows. �

Note that the martingale condition is not sufficient to determine a risk-neutral transition

probability matrix C of the chain X. Additional criteria are required to determine the

matrix C.

2.4 Option Valuation by MEMM and Dynamic Hedging

In this section, we adopt the minimal entropy martingale measure (MEMM) approach to

determine a risk-neutral transition probability matrix C. Indeed, the MEMM approach

is a popular approach for option valuation in an incomplete market. The basic idea

is to select an equivalent martingale measure so that it minimizes the relative entropy

between an equivalent martingale measure and the physical probability measure, (i.e.

the distance between the two probability measures.) From a statistical perspective,

the MEMM approach selects an equivalent martingale measure which is closest to the

physical one so that the probabilistic features of the physical probability measure are

preserved when changing the measures from the physical measure to a risk-neutral one.

From an economic perspective, the choice of an equivalent martingale measure by the

MEMM approach can be justified by the maximization of an expected exponential utility.

For more details, interested readers may refer to Frittelli [2000].
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Consider the probability measure QC absolutely continuous with respect to P on FX
T

defined by putting:

dQC

dP

∣∣∣∣
FX
T

:= ΛX
T .

For each t ∈ T , let QC
t and Pt be the restriction of QC and P on FX

t , respectively.

That is, QC
t := QC|FX

t and Pt := P|Ft. Here we suppose that QC is locally absolutely

continuous with respect to P. That is, for each t ∈ T , QC
t is absolutely continuous with

respect to Pt on FX
t , so

dQC
t+1

dQt+1

∣∣∣∣
FX
t+1

:= ΛX
t+1 .

Then we define a one-step-ahead conditional relative entropy between QC
t+1 and Pt+1

given FX
t as follows:

I(QC
t+1,Pt+1|FX

t ) := E

[(
dQC

t+1

dPt+1

)
ln

(
dQC

t+1

dPt+1

)
|FX
t

]
= E[ΛX

t+1 ln ΛX
t+1|FX

t ] .

Our object is to determine the risk-neutral transition matrix C so as to minimize

I(QC
t+1,Pt+1|FX

t ). That is to solve the following optimization problem:

I(QC†
t+1,Pt+1|FX

t ) = min
C

I(QC
t+1,Pt+1|FX

t ) ,

subject to the constraints:

N∑
j=1

cji = 1 , cji ≥ 0 , ∀i, j = 1, 2, · · · , N .

In the sequel we assume that there are only two states in the Markov chain X, (i.e. the

slow regime denoted by 1 and the fast regime denoted by 2) 1 We further assume that

the probability of a transition from state ei to state ej is equal to that of remaining in

state ej . Then we have the following result.

1The slow regime is characterized by a low volatility state and is referred to as stable markets and
trending markets. On the other hand, in the fast regime, we observe a high level of volatility. The term
jumpy regime is often used by practitioners to refer to the fast regime.
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Theorem 2.3. Under the assumptions described above, an optimal risk-neutral transi-

tion probability matrix C† := [c†ji]i,j=1,2 is given by:

c†1i =
exp

(
1− 2a1i − ln

(
1−a1i
a1i

))
1 + exp

(
1− 2a1i − ln

(
1−a1i
a1i

)) (2.1)

c†2i =
1

1 + exp
(

1− 2a1i − ln
(
1−a1i
a1i

)) , (2.2)

for each i = 1, 2.

Proof: By a version of the Bayes’ rule,

E[ΛX
t+1 ln ΛX

t+1|FX
t ]

= EC[ln ΛX
t+1|FX

t ]ΛX
t

= ΛX
t ln ΛX

t + EC[lnλXt+1|FX
t ]ΛX

t

Consequently, the original optimization problem

min
Ct+1

E[ΛX
t+1 ln ΛX

t+1|FX
t ]

is equivalent to the following simplified optimization problem:

min
Ct+1

EC[lnλXt+1|FX
t ] .

Note that

EC[lnλXt+1|FX
t ] =

2∑
i,j=1,i 6=j

ln

(
cji(t+ 1)

aji

)
cij(t+ 1) 〈Xt, ei〉 .

The result then follows by differentiating EC[lnλXt+1|FX
t ] with respect to cij(t + 1), for

i, j = 1, 2 with i 6= j, and setting the derivatives equal to zero. �

Then from Lemma (2.2) and equations (2.1) and (2.2), as well as using standard com-

binatorial arguments, it is not difficult to show that given the initial state of the chain

X0 = ei, i = 1, 2, a price of a standard European call option with maturity at time T
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and strike price K is given by:

V i
0 = e−rT

∑
k1+k2+k3+k4=T

(
T

k1, k2, k3, k4

)(
c1iq1

)k1(c1i(1− q1))k2(c2iq2)k3(c2i(1− q2))k4
× max{0, S0uk11 d

k2
1 u

k3
2 d

k4
2 −K} . (2.3)

Here the number of terms in the summation corresponds to the non-negative roots of

k1 + k2 + k3 + k4 = T .

In what follows, we shall describe the dynamic hedging Delta strategy to be used in our

numerical experiment. One of the fundamental problems in mathematical finance is how

the issuer of an option can hedge the resulting exposure by trading in the underlying.

However in an incomplete market there are no perfect hedging strategies for all options,

so a second question always follows. This is how should one partially hedge an option?

There is always a trade-off between the simplicity and the realism of a hedging strategy.

Here we subscribe to the view of simplicity and to assess the performance of a simple

Delta hedging strategy in the regime-switching binomial model.

The initial value of an option found from (2.3) has a practical significance apart from

being a fair selling price. At time zero the option writer establishes a hedge portfolio, at

the cost of V0, consisting of the primitive assets. This portfolio is continuously rebalanced

throughout the life of the option such that the amount of stock held at any instant is

given by the delta, calculated based on the current state of the economy. The delta

hedging portfolio is self financing, which means that no infusion or withdrawal of money

is admissible. We assume that the option holder adapts a strategy to trade ∆ amount of

the stock, calculated based on the current state of the economy, in order to dynamically

hedge his portfolio. Mathematically:

∆t

∣∣
Xt=ei

=
V u
t+1,ei

− V d
t+1,ei

Sut+1,ei
− Sdt+1,ei

(2.4)

This may clearly show the source of risk for an option issuer. If the market was complete,

the hedging portfolio value at the expiry would be exactly enough to cover the payoff

if the option is exercised. However, in the regime-switching binomial model, there is an

anticipation of cumulative discrepancy at the maturity time between the payoff of the
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option and the hedging portfolio value. The source of the hedging error is the inability

of the hedger to predict the next step’s regime. In other words, when the hedger is

adapting the delta strategy, he would require to trade an amount of the underlying asset

equal to the difference between the prospective high and low values of the asset in the

next step, and their corresponding option prices. Nevertheless, in this paradigm, he is

restricted to make a decision based on the state of the economy, in which he operates at

the time. Now, it is clear that if the economy stays in the same state in the next period,

there would be no local hedging error. However, since the economy switches over time

throughout the life of the option, there will exist local hedging errors that will accumulate

to the maturity time. Our aim is then to examine the performance of the dynamic Delta

hedging strategy in the regime-switching binomial tree by evaluating some important

risk metrics, such as Value at Risk (VaR) and Expected Shortfall (ES), of the terminal

hedging errors of the imperfectly Delta hedging portfolio in various scenarios, where the

terminal hedging errors are evaluated as the differences between the terminal payoffs of

the option and the terminal values of the dynamic Delta hedging portfolio. The uses

of VaR and ES for evaluating option risks have been discussed in the paper by Boyle

et al. [2002]. However, they considered unhedged option positions rather than partially

hedged option positions as we consider here.

2.5 Numerical Results

In this section we present the numerical results for the option prices and the risk metrics,

say VaR and ES, of the hedging errors arising from the dynamic Delta hedging strategy

presented in the previous two sections.

2.5.1 Option Prices

We present numerical results of European call option prices arising from the standard

CRR binomial model and the regime-switching binomial model. Assume that an under-

lying risky asset is currently traded at $10, and money is worth 4.5% per annum. An

option writer is considering a one year to maturity option with exercise price of $11.

The economy can either be in the slow state with 30% volatility or in the fast state

with 60% volatility. Based on Moody’s average one-year rating transition rates for the
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period 1970en2009, we calculate the historical transition probability from any state to

state slow to be 89.28% and from any state to state fast to be 10.72%. If the writer uses

the CRR model he is limited to choose only one state, hence one volatility, to price the

option. However, the reigme-switching binomial model allows the writer to incorporate

the possibility of regime switches (and the corresponding volatility of each regime) to

calculate the option price. Figure (2.2) depicts the price of the call option calculated

for different term maturities and moneyness. We can see that the option prices arising

from the regime-switching binomial model fall between prices calculated by the standard

CRR binomial model with high and low volatility. This result makes intuitive sense.

Figure 2.2: Call prices for different values of the maturity time and the moneyness. Here,
Moody’s transition probabilities are used for calculating the option prices in the regime-

switching binomial model

Furthermore, to illustrate the sensitivity of the option’s prices to changes in the values of

the transition probabilities, we re-plot the prices of the option described above; however,

this time we assume the unrealistic transition probabilities of 60% changing to state slow,

and 40% changing to state fast. From Figure (2.3), we observe that the option prices

arising from the regime-switching binomial model are more distanced from the CRR

option prices in the slow economy. We, therefore, conclude that if the option writer uses

the CRR model, he is bound to either underprice or overprice the option in comparison

to the regime-switching binomial model. Furthermore, the degree of the pricing error is

directly related to the transition probabilities.
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Figure 2.3: Call prices for different maturity time and moneyness. Here, Hypothetical
transition probabilities of 40% and 60%, (for changing to regime fast and slow, respectively)

are used for calculating the option prices in MRSBT framework

2.5.2 Risk Metrics for Dynamic Delta Hedging

We now present and discuss the numerical results of the VaR and ES for dynamic Delta

hedging portfolios. In this case, we value an option on an underlying risky asset that

is currently traded at $8 with strike price $10. The option has 90 days to maturity

and the risk-free interest rate is 6% p.a. The volatility of the underlying asset price

would be 30%, when the economy is in the state slow, and 60% when the economy is

in state fast. We convey a sensitivity analysis for different transition probabilities and

different hedging frequencies. Our aim is to investigate the behavior of the hedging

errors distributions for these two variables.

To approximate the distribution of the hedging errors, we use a kernel density estima-

tion with Epanechnikov as our choice of kernel function. The performance of a kernel

function is measured by Asymptotic Mean Integrated Squared Error (AMISE), and

Epanechnikov kernel minimizes AMISE, hence is optimal. The validity of the density

approximation is tightly entwined with the optimal choice bandwidth. If we take a very

small bandwidth the approximation errors would be small; nevertheless, this is restricted

to the number of data points in the local neighborhood. Besides, the variance of the

estimated local parameters is often large for small number of data points. On the other
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hand, large bandwidth would create large modeling bias depending on the underlying

function. Hence, the determination of the best bandwidth involves a trade-off between

bias and variance. In this paper we use the approach introduced in Shimazaki and

Shinomoto [2010] in order to determine the optimal bandwidth.

Figure 2.4: Distributions of hedging errors for different transition probabilities, when the
option is hedged in 8 and 9 (respectively from right to left) equal time intervals, starting from

the beginning

Figure 2.4 illustrates the sensitivity of the density of hedging errors to the transition

probabilities. Each of the figures show that as the probability of a switch to regime one

(a1i = 1 − a2i) increases the mean of the terminal hedging errors approaching to zero

from negative values, and the variance of the distribution decreases. Assume that an

agent issues a standard European option, and at the same time, he constructs a self-

financing portfolio to hedge his risk exposure. As the price of the underlying evolves

over time, the agent requires to re-balance his positions, based on the delta calculated

for the current state. This is indeed the source of hedging errors; because if the state

switches, the state delta would not be the sufficient amount to hedge all sources of risk.

Consequently, similar to any speculative position, the un-hedged amount might either

result in unanticipated loss or profit. On the other hand, when the values of a1i and

a2i are equal or very close to each other, the frequency of having positive and negative

hedging errors would also get closer, hence some of the losses would be compensated

along the tree.

Figure 2.5 shows the sensitivity of the hedging errors density to the frequency of hedging.

Our result reveals that the distribution of hedging errors is negatively skewed. However,

we observe that as the frequency increases, the distribution tends to be more symmetric.
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This provides evidence for reasonably good performance of the regime-switching to value

contingent claims, especially when the hedging portfolio is frequently balanced. Of

course due to the presence of transactions costs, the frequent rebalancing of hedging

portfolios becomes very costly in practice. To further examine the hedging performance,

the VaR and ES of the hedging errors are calculated for different hedging frequencies and

transition probabilities. Table 2.1 and Table 2.2 report the results for the 95% and 99%

thresholds, respectively. It can be observed that there is a consistent declining trend of

risk metrics as the transition probability approaches to 50%, which further justifies the

discussion above.

Figure 2.5: Distribution of hedging errors for different hedging frequencies: N equals to 6,
7, 8, and 9 respectively from left to right and top to bottom. The transition probability to

state 1 for all of these graphs equal to 40%.

2.6 Conclusion

We discussed the option pricing and hedging in a regime-switching binomial tree, where

there are two sources of uncertainties, namely, the risk due to binomial movements of

the underlying risky asset price and the risk due to transitions in economic states. We

adopted the MEMM approach to price the two sources of risk and examined the pricing

and hedging performance of this approach using numerical examples. A simple dynamic
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Table 2.1: VaR and ES calculated for the distribution of hedging errors of the regime-
switching binomial model at the 95% threshold. The risk metrics are calculated for different

hedging frequencies (N) and transition probabilities (a1i = 1 − a2i).

Transition Probabilities

Hedging Frequency a1i = 0.2 a1i = 0.3 a1i = 0.4

N=4 VaR=0.2573 VaR=0.2247 VaR=0.1962
ES=0.2720 ES= 0.2379 ES= 0.2080

N=5 VaR=0.2412 VaR=0.2049 VaR=0.2049
ES= 0.2629 ES= 0.2215 ES= 0.2215

N=6 VaR=0.2904 VaR= 0.2422 VaR=0.2065
ES= 0.3413 ES= 0.2944 ES= 0.2544

N=7 VaR=0.2964 VaR=0.2457 VaR=0.2013
ES= 0.3266 ES= 0.2719 ES= 0.2263

N=8 VaR= 0.3429 VaR=0.2841 VaR=0.2376
ES= 0.3903 ES= 0.3312 ES= 0.2819

N=9 VaR=0.3424 VaR=0.2787 VaR=0.2258
ES= 0.3894 ES= 0.3225 ES=0.2668

Table 2.2: VaR and ES calculated for the distributions of hedging errors in the regime-
switching binomial model at the 99% threshold. The risk metrics are calculated for different

hedging frequencies (N) and transition probabilities (a1i = 1 − a2i).

Transition Probabilities

Hedging Frequency a1i = 0.2 a1i = 0.3 a1i = 0.4

N=4 VaR=0.2812 VaR=0.2462 VaR=0.2154
ES= 0.2812 ES= 0.2462 ES= 0.2154

N=5 VaR=0.2858 VaR=0.2404 VaR=0.2404
ES=0.2920 ES= 0.2457 ES= 0.2457

N=6 VaR=0.3776 VaR=0.3266 VaR=0.2834
ES= 0.3876 ES= 0.3377 ES=0.2948

N=7 VaR=0.3437 VaR=0.2881 VaR=0.2398
ES= 0.3660 ES= 0.3098 ES= 0.2634

N=8 VaR=0.4228 VaR= 0.3618 VaR=0.3082
ES= 0.4596 ES= 0.3980 ES= 0.3457

N=9 VaR= 0.4207 VaR=0.3520 VaR=0.2941
ES= 0.4424 ES= 0.3721 ES= 0.3132
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Delta hedging was considered and its performance was examined by evaluating the VaR

and ES of the terminal hedging errors arising from the dynamic Delta hedging strategy.

Numerical results were provided which reveal that the impact of pricing regime-switching

risk is significant and that both the hedging frequencies and transition probabilities of

regime switches have significant impacts of the performance of the delta hedging strategy.

For future research, one may further investigate the hedging strategies in the regime-

switching binomial model. In our current paper, we illustrated the risk of the option is-

suer based on the terminal hedging error, if they conveniently ignore the regime-switching

risk. Such a hedger observes the regime at each node and choose the appropriate delta

accordingly. However, the issuer is able to reduce the terminal hedging error (in the case

of vanilla European options, potentially to zero), by implementing a trading strategy

that takes the delta of the all states into consideration, concurrently.

Assume that an agent is issuing a standard European option in an economy where

all of the assumptions presented in Section2.3 hold true. Given the information at

time t, the model suggests that the economy may be either in regime 1 or regime 2,

(i.e. the process is governed by the Markov chain). Therefore, the agent may have

two choices of delta, namely, ∆t,1 = (V u
t+1,1 − V d

t+1,1) × (Sut+1,1 − Sdt+1,1)
−1 and ∆t,2 =

(V u
t+1,2 − V d

t+1,2)× (Sut+1,2 − Sdt+1,2)
−1.

Thus, at time t, the agent has to choose an appropriate delta. In Section2.4 we pre-

sented the result of the case where the hedger chooses the delta corresponding to the

current regime. However, the terminal hedging error for a standard European option

can potentially be reduced to zero, if the hedger selects a delta hedge calculated based

on the weighted average of ∆t,1 and ∆t,2. In this strategy the weights are calculated

according to the risk-neutral transition probabilities. Consequently, the value at time t

of an option can be written as:

Vt = c1i{∆t,1St −Bt,1}+ c2i{∆t,2St −Bt,2}. (2.5)

where Bt,i denotes the amount of riskless borrowing and lending at time t when the

economy is in the state ei. Hence, the hedging strategy involves trading c1i∆t,1 +c2i∆t,2

of the underlying asset and −(c1iBt,1 + c2iBt,2) riskless borrowing and lending. One

may expand the equation (2.5) as follows, which suggests the possibility of complete risk

transfer or a perfect hedge under our incomplete market framework.
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Vt = c1iqt,1V
u
t+1,1 + c2iqt,2V

u
t+1,2 + c1i(1− qt,1)V d

t+1,1 + c2i(1− qt,2)V d
t+1,2

We re-emphasize that this only show that there exist a trading strategy which can

perfectly hedge all the risks in a regime-switching economy. However, the remaining

question would be: out of the infinite number of martingale measures, which one would

provide the perfect hedge? In other words, whilst we can show the possibility of perfect

hedge in the regime-switching economy, we are unable to find the specific [cji] that

perfectly hedges the contingent claim.
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Abstract

We propose a model for valuing ruin contingent life annuities under the regime-switching

variance gamma process. The Esscher transform is employed to determine the equivalent

martingale measure. The PIDE approach is adopted for the pricing formulation. Due to

the path dependency of the payoff of the insurance product and the non-existence of a

closed-form solution for the PIDE, the finite difference method is utilized to numerically

calculate the value of the product. To highlight some practical features of the product,

we present a numerical example. Finally, we examine numerically the performance of a

simple hedging strategy by investigating the terminal distribution of hedging errors and

the associated risk measures such as the value at risk and the expected shortfall.

Keywords Ruin contingent life annuity - Regime-switching variance gamma - Esscher

transform - Pricing and risk management
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3.1 Introduction

The Ruin Contingent Life Annuity (RCLA, henceforth) contract is a modern innovation

in bundle insurance contracts that allows the near to retirement population to hedge

their retirement risks. This is delivered by the means of insuring the joint occurrence of

two independent events; namely, an above average survival rate and bear market during

the retirement risk zone.

The concept of RCLA, as well as the preliminary pricing formulations of the contract, was

first introduced in Huang et al. [2009]; with the purpose of improving more conventional

products such as advanced life-delayed annuities (ALDA). They demonstrated that the

life-long income provided by RCLA should come at much less cost to the annuitant.

The RCLA contract, as a contingent annuity contract, is bought by the insured by a

lump sum payment. The insurance contract entitles the insured to receive a series of

periodic payments from the insurer. One key feature of the policy is the sharing of profits

from an investment portfolio between the policyholder and the insurer. Nevertheless,

the policyholder can manage his exposure to the risk of an underlying reference portfolio

through their choice of the asset mix.

An optional feature that a RCLA product might offer is periodic withdrawals from the

fund before retirement, provided that the mark-to-market value of the reference portfolio

is larger than the size of the withdrawal. In this paper we assume no withdrawals prior to

the retirement for two reasons. First, there is no economic advantage for the insured to

withdraw from the fund, since the accumulated money is to remain as the bequest for the

descendants. Second, the withdrawals create discontinuity in the mark-to-market value

of the reference portfolio, hence, unnecessary modeling complications. Nevertheless, the

findings of this paper could be extended to accommodate for the withdrawals.

Huang et al. [2009] developed a risk-neutral pricing model for the RCLA contracts using

the PDE approach assuming a complete market. They then describe some efficient

numerical techniques and provide estimates of a typical RCLA under a variety of realistic

parameters. Under the same framework, Huang et al. [2012] further investigated the

hedging strategy of the contract and a thorough comparison is made across different

options embedded variable annuity products. Rong and Fard [2013] considered the

valuation of the contracts using stochastic volatility for the dynamics of the underlying
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portfolio. In this paper, we consider the valuation of RCLA, under the regime-switching

Variance Gamma process(MVG, henceforth).

Since the mid-1990s, the pure-jump Levy processes have been growing in popularity

amongst scholars as an alternative to the Black-Scholes economy (e.g. Eberlein and

Prause [1998], Madan et al. [1998], Elliott and Siu [2013]). In particular, Geman et al.

[2001] noted that the pure-jump Levy processes are appropriate, when in the process of

an asset evolution the time varies with the martingale component. The Variance Gamma

process (VG, henceforth) is shown by Madan et al. [1998] to be a class of the pure-jump

Levy processes, thus it inherits all the attributes. As a result the VG processes can be

advantageous to use when pricing options and equity linked insurance products, since

it allows for a wider modeling of skewness and kurtosis than a diffusive model does.

In particular, in the case of equity linked products, such as RCLA, where the payoff is

decomposed to different options with different strikes and maturities, the VG process

provides a more consistent pricing framework.

Madan et al. [1998] showed that the VG process can be represented in a number of

equivalent ways, including, the time-changed Brownian motion, the difference between

two Gamma processes, the Levy measure representation and the predictable compen-

sator representation. In this paper, we use the regime-switching version of the Levy

measure representation. We first specify the model parameters such that the impact of

regime-switching is captured by the modulation of the parameters of the VG process by

a Markov chain. Then we take the approach presented by Madan et al. [1998] to link the

MVG process with the regime-switching pure-jump Levy processes. Subsequently, we

define the dynamics of the underlying portfolio, similar to Elliott and Siu [2013] and use

the Esscher transform to find the equivalent martingale measure. Finally, the pricing

PIDE is driven and solved using a numerical method.

The history of regime-switching models can be traced back to Quandt [1958], Goldfield

and Quandt [1973] where they employed regime-switching regression models to describe

nonlinearity in economic data. The idea of probability switching also appeared in the

early development of nonlinear time-series analysis, where Tong [1983] proposed one

of the oldest classes of nonlinear time series models, namely the threshold time series

models. Hamilton [1989] popularized regime-switching time series models in the eco-

nomic and econometric literature. Since then, considerable attention has been paid to
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the use of regime-switching framework in modeling economic and financial data. Due

to the empirical success of regime-switching models, the models have been applied to

different areas in banking and finance, including asset allocation, option valuation, risk

management, term structure modeling, and others. Recently, scholars have turned their

attention to option valuation under regime-switching models. This includes Naik [1993],

Guo [2001], Buffington and Elliot [2002], Elliott et al. [2005] , and Fard and Siu [2013]

amongst others. These studies analyse the option valuation problem under continuous-

time regime-switching models. Regime-switching models have become popular in actu-

arial science in recent years, for example, in Hardy [2001], Siu [2005], Siu et al. [2008]

work.

This article is structured as follows: Section 3.2 presents the Markov-modulated Variance

Gamma process. The section continues by presenting the pricing formulation through

the Esscher transform. Section 3.3 provides the numerical solution for the underlying

PIDE through a version of the Finite Differences method. The section continues by a

numerical experiment, as well as the analysis of the hedging error, under dynamic delta

hedging.

3.2 Modeling Framework

3.2.1 The Pricing Dynamics

We fix a complete probability space (Γ,F ,P), where P is the real-world probability

measure. Let T denote the time index set [0, T ] of the economy. We describe the

state of the economy by a continuous-time Markov chain {Xt}t∈T on (Γ,F ,P) with a

finite state space S := (s1, s2, · · · , sN ). Without loss of generality, we can identify the

state space of the process {Xt}t∈T to be a finite set of unit vectors {e1, e2, · · · , eN},

where ei = (0, · · · , 1, · · · , 0) ∈ RN . From Elliott et al. [1995] we present the following

semi-martingale decomposition for the process {Xt}t∈T :

Xt = X0 +

∫ t

0
QXsds+Mt. (3.1)
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Here Q is called the ’generator’ and is defined as Q = [qij ]i,j=1,2,··· ,N and Mt is a RN -

valued martingale with respect to the filtration generated by {Xt}t∈T . In the remainder

of this paper, any parameter P modulated by the Markov chain Xt is denoted by PXt ,

and defined as follows:

PXt = 〈P, Xt〉 =

N∑
i=1

Pi〈Xt, ei〉, t ∈ T , (3.2)

where P := (P1, P2, · · · , PN ) with Pj > 0 for each j = 1, 2, · · · , N and 〈., .〉 denotes the

inner product in the space RN .

Let {rXt}t∈T be the instantaneous market interest rate of a money market account,

which depends on the state of the economy. Hence, rXt is defined as per (3.2) and the

dynamic of the value of the risk-free asset, {Bt}t∈T would be:

dBt = rXtBtdt. (3.3)

Let Zt to be an observation process that follows a MVG process. Now let (T ,B(T ))

denote a measurable space, where B(T ) is the Borel σ-field generated by the open subset

of T . Then the measurable space is given by (T ×R,B(T )).

Then for a family of Borel sets U ∈ R, let NXt(dz, dt) denote a differential form of

a Markov-switching jump measure and a compensator measure under the historical

measure P given by

νXt(dz, dt) = kXt(z)dzdt, (3.4)

where,

kXt =
C

z

(
exp(−zMXt)I{z>0} − exp(zGXt)I{0<z}

)
, (3.5)

and C,M,G ∈ R+ are parameters of the MVG process. The definitions for NXt , νXt ,

kXt , and GXt are as per (3.2).
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Proposition 1. Let bXt (defined as in (3.2)) denote the drift of the process. By setting

to

bXt = −C
∫ 0

−1
ezGXtdz + C

∫ 1

0
e−zMXtdz, (3.6)

ZXt would become a uniquely defined Markov-modulated Levy process, with the Levy

triple (bXt , 0, ρXt).

Proof . Set φj , j = 1, ..., N to be the the characteristic function for the time t level of

the MVG process under the historical measure, given that Xt = ej . Then consistent

with Madan et al. [1998] write:

φj(u) =
( 1

1− iuρjϑj + σ2ju
2ρ/2

) t
ρ

=
(

1− iu

Mj

)−Ct(
1 +

iu

Gj

)−Ct
Then by similar calculations as in the chapter 8 of Sato [2004], we continue:

φj(u) = exp
(
Ct

∫
R+

(eiuz − 1)
e−zMj

z
dz
)

exp
(
− Ct

∫
R−

(eiuz − 1)
ezGj

z
dz
)

= exp
(∫
R

(eiuz − 1)ρj(dz)
)

= exp
(
tiubj + t

∫
R

(eiuz − 1− iuzI|z|<≥1)ρj(dz)
)
,

where ρj(dz) = kj(z)dz is the Levy measure, with k defined in (3.5). Then by the

Levy-Khintchine formula the results follow.�

Notice that, as in Madan et al. [1998], the volatility in the Levy triple is set to zero, which

sets the (M)VG process as a pure jump process with no continuous Brownian motion

component. Then the process Z can be expressed in terms of the random measure

NXt(dz, dt) as follows:

Zt =

∫ t

0

∫
R
zNXt(dz, ds), t ∈ T . (3.7)

such that the compensator νXt(dz, dt) specifies the probability law of the jump process

Z under the historical measure. For the modeling to be well-posed we must further
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assume that:

∫
R
z2kj(dz) <∞, j = 1, 2, · · · , N.

Let ÑXt(dt, dz) denote the compensated Poisson random measure defined by

ÑXt(dz, dt) = NXt(dz, dt)− νXt(dz, dt). (3.8)

Let µXt (defined as in (3.2))be the appreciation rate of the reference portfolio A, where

µXt > rXt . Then, as in Elliott and Siu [2013] we define the following return process for

the portfolio:

Yt = µXtt+

∫ t

0

∫
R
zÑXt(dz, ds). (3.9)

It is conventional to define At = A0 exp(Yt). Then, by Ito’s differentiation rule we have:

At = A0 + µXt

∫ t

0
A(s)ds+

∫ t

0

∫
R
A(s−)(ez − 1)ÑXt(dz, ds)

+

∫ t

0

∫
R
A(s)(ez − 1− z)νXt(dz, ds). (3.10)

3.2.2 Pricing through the Esscher Transform

The RCLA contract can be viewed as a combination of a European call option and

a down-and-in barrier option. The provisions of these featured options are typically

financed by the lump sums at the initiation of the contract; nevertheless, it could be

replaced by continuous proportional fees to the insurer, or a combination of the two.

Instead of evaluating the fair value of the terminal payoff of the policy, we consider

the fair valuation for each of the components of the terminal payoff. We present the

procedure for the fair valuation based on an equivalent martingale measure chosen by

the regime-switching Esscher transform.

In accordance with the first fundamental asset pricing theorem, for the fair valuation of

the policy we need to ensure there is no arbitrage opportunities in the market, through



Chapter 3. RCLA under Regime-Switching Variance Gamma Process 52

the determination of the equivalent risk-neutral martingale measure. In incomplete

markets, as is the case in this paper, there is more than one equivalent martingale

measure, and hence, more than one no-arbitrage price. Different approaches have been

proposed for pricing and hedging derivative securities in incomplete financial markets.

To name a few, Follmer and Sondermann [1986], Schweize [1995], Follmer and Schweizer

[1991]selected an equivalent martingale measure by minimizing the quadratic utility

of the terminal hedging error. Davis [1997]adopted an economic approach based on

the marginal rate of substitution to pick a pricing measure via a utility maximization

problem. Gerber and Shiu [1994] pioneered the use of the Esscher transform, a time-

honored tool in actuarial science. The Esscher transform provides market practitioners

with a convenient and flexible way to value options. More importantly, Elliott et al.

[2005] showed that the result achieved from the Esscher transform corresponds directly

to the Minimum Entropy Martingale Measure method.

Let FX := {FXt }t∈T and FY := {FYt }t∈T denote the P-augmentation of the natural

filtration generated by X and Y , respectively. Then, define Gt for the σ-algebra FX∨FY

for each t ∈ T . Further, let L(Y ) be the space of processes θXt ,∀t ∈ T , such that it is

integrable with respect to the return process.

For each t ∈ T , write

(θ.Y )t :=

∫ t

0
θXudY (u).

This is the stochastic integral of θ with respect to Y . Let {Λt}t∈T denote a G-adapted

stochastic process defined as below:

Λt :=
e−(θ.Y )t

M(θ)t
, t ∈ T , (3.11)

where M(θ)t := EP[e−(θ.Y )t |FYt ], is a Laplace cumulant process. Apply Ito’s differenti-

ation rule for jump diffusion
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e−(θ.Y )t = 1−
∫ t

0
e−(θ.Y )sθXsµXsds−

∫ t

0

∫
R
e−(θ.Y )s−zθXs−ÑXs(dz, ds)

+

∫ t

0

∫
R
e−(θ.Y )s−

(
ezθXs − 1

)
ÑXs(dz, ds)

+

∫ t

0

∫
R
e−(θ.Y )s−

(
ezθXs − 1 + zθXs

)
νXt(dz, ds). (3.12)

Conditioning on FX for both sides of (3.12),

MY (θ)t = exp

[
−
∫ t

0
θXsµXsds

+

∫ t

0

∫
R

(
e−zθXs − 1 + zθXs

)
νXt(dz, ds)

]
. (3.13)

Therefore,

Λt = exp

[
−
∫ t

0

∫
R
zθXsÑXs(dz, ds)

−
∫ t

0

∫
R

(
e−zθXs − 1 + zθXs

)
νXs(dz, ds)

]
. (3.14)

Proposition 2. Λt is martingale with respect to the enlarged filtration G.

Proof:

E[Λt|Gt] = E

{
exp

[
−
∫ t

0

∫
R
zθXsÑXs(dz, ds)

−
∫ t

0

∫
R

(
e−zθXs − 1 + zθXs

)
νXs(dz, ds)

]∣∣∣∣Gt
}
.

Note that by James [2002, 2005],

E
[

exp
(
−
∫ t

0

∫
R
zθXsÑXs(dz, ds)

)∣∣Gt] = exp
(∫ t

0

∫
R

(
e−zθXs − 1 + zθXs

)
νXs(dz, ds)

)
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Hence:

E[Λt|Gt] = 1 P− a.s.

�

Then, following Elliott et al. [2005], we define the regime-switching Esscher transform

Q ∼ P on Gt as:

dQ
dP

∣∣∣
Gt

= Λt, t ∈ T . (3.15)

Elliott et al. [2005] presented that following the fundamental theorem of asset pricing,

the parameter θ must satisfy the marginal condition for the discounted market value of

the underlying asset. Hence:

Ãs = EQ[Ãt|Gs], ∀t, s ∈ T , with t ≥ s, (3.16)

where EQ denotes the expectation under Q, and Ãt := exp(−
∫ t
0 rXsds)At. The filtration

Gt ensures that the Markov Chain process is accessible to the market’s agents in advance.

By the tower law, if one can find a probability measure Q satisfying the martingale

condition on Gt, Q also satisfies the martingale condition without knowing Gt.

Therefore, using the Bayes’ rule and (4.5) as:

Ãs = exp

{
−
∫ t

0
(rXsds)E

P[ΛtAt|G0]

}

= exp

{
−
∫ t

0
(rXsds)E

P
[

exp(−(θ.Y )t)× exp(
∫ t
0 dYs)

M(θ)t

]}
(3.17)

= exp

{∫ t

0

(
µXs − rXs

)
ds−

∫ t

0

∫
R

[
z − e(1−θXs )z + e−zθXs

]
νXt(dz, ds)

}
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Then by setting s = 0, the martingale condition implies that:

EQ[Ãt|G0] = 1

Therefore, θ could be determined from:

µXt − rXt −
∫
R

[
z − ez(1−θXt ) − e−zθXt

]
νXt(dz, dt) = 0, ∀t ∈ T . (3.18)

It is noteworthy that despite taking a different path for the proofs, our results are

in full agreement with Elliott and Siu [2013]. Consequently, we must attain same price

dynamics for the reference portfolio under a risk-neutral measure specified by the Esscher

transform. We shall present the result and refer the readers to Elliott and Siu [2013] for

the proof.

At = rXt

∫ t

0
A(s)ds

−
∫ t

0

∫
R
A(s−)

{
z − ez(1−θXs− ) + e−zθXs−

}
NQ
Xt

(dz, dt), (3.19)

where ÑQ
Xt

denote a compensated Markov-modulated random measure with compensator

νQXt(dz, dt) := e−θsγ(z)νXt(dz, dt). Additionally, for convenience in the notation let:

f(t, z, θ,X) := ez(1−θXs− ) − z − e−zθXs− .

3.2.3 Fair Valuation

Let τ0 := inf{t : At = 0} denote the first passage time of the value process At hitting

zero, after which the value of At remains zero forever (i.e. t ≥ τ0). The RCLA policy

stipulates that within this time until the policyholder deceases, Td, he will receive the

life annuity from the insurance company. The payoff at ruin time τ0 is defined as in

Huang et al. [2009], for a typical $1 annuity value as:

FXt(τ0) =

∫ Td∨τ0

τ0

exp(−rXss)ds. (3.20)
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Define the survival probability as:

Pr(Td > t) = exp(−
∫ t

0
λsds) (3.21)

Consistent with Huang et al. [2009] we show that, for the regime-switching version

of Gompertz-Makeham continuous law of mortality that λt obeys, the payoff equation

(3.20) can be defined as:

FXt(τ0) =
βΓ
(
− (λt + rXt)β, exp (τ0 − β−1mgm)

)
exp

{
(mmg − τ0)(λ+ rXt)− exp (τ0 − β−1mgm)

} (3.22)

where λ is the constant non-age-dependent hazard rate, which is time dependent but

there is no economic justification for it to be state dependent. Furthermore, β > 0 de-

notes the dispersion coefficient, mgm > 0 is the modal value and Γ(.) is the gamma func-

tion. Let V (A,X, t) denote the no-arbitrage value of the RCLA contract and V̂ (A,X, t)

denote the discounted value of V (A,X, t), both under Q-measure. Thus

V̂ (A,X, t) = exp
(
−
∫ Td

t
(rXs + λs)ds

)
V (A,X, t) (3.23)

= EQ
[

exp
(
−
∫ τ0

t
(rXs + λs)ds

)
F (τ0)Iτ0<Td

+ exp
(
−
∫ Td

t
(rXs + λs)ds

)(
ATd −A0

)
Iτ0≥Td

∣∣∣∣Ft].
The above representation indicates that the value of the RCLA contract can be decom-

posed into a combination of:

1. European call option maturing at the time of death of the policyholder with strike

price equals to the initial investment amount A0.

2. a ’down-and-in’ barrier option with payoff structure defined in equation (3.22),

depending on the ruin time of the investment value process.
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The path dependency of the state variable F (τ0) does not allow us to get an analytical

formulation for the value of the policy. On the other hand, the Monte Carlo based

simulation methods are too slow for this type of question. As an alternative, the option

value can be determined by numerically solving the PIDE.

Write Vi for V (A, ei, t), where i = 1, 2, ..., N and V := {V1, V2, ..., VN}. Then, as in

Buffington and Elliot [2002] V satisfies the following N coupled PIDEs:

LA,ei(Vi) + 〈V,Qei〉 =
(
rXt + λ

)
Vi, i = 1, 2, ..., N. (3.24)

Where LA,ei(Vi) is the partial-integro differential operator. By applying the Ito’s lemma:

dV (A,X, t) =

[
∂V

∂t
+
∂V

∂A
rXtAt−

+

∫
R+

{
V
(
At− + f(t, z, θ,X)

)
− V (At−)− ∂V

∂A
f(t, z, θ,X)

}
νQXtdz

]
dt

+

∫
R

{
V
(
At− + f(t, z, θ,X)

)
− V (At−)

}
ÑQ
Xt

(dt, dz)

hence:

LA,ei(Vi) =
∂V

∂t
+
∂V

∂A
rXtAt− +

∫
R+

{
V
(
At− + f(t, z, θ,X)

)
− V (At−)

−∂V
∂A

f(t, z, θ,X)

}
νQXtdz (3.25)

3.3 Numerical Analysis for Valuation and Hedging

3.3.1 Explicit finite difference scheme

While the continuous version of the pricing model has infinite domain, the discretized

computational domain must be limited by finite boundaries. Let [0, Amax]× [0, T ] denote

the finite computational domain, where the width of the spatial interval is chosen to be

sufficiently large. We may obtain a solution to equation (3.24) by specifying the following
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boundary conditions:

V (0, X, T ) = Fτ0 , (3.26)

V (A,X, T ) = (ATd −A0)
+, (3.27)

dV (Amax, X, t)

dA
= 1. (3.28)

The derivatives of the value function V (A,X, t) in equations (4.11) can be replaced by

the finite differences and the integral terms are approximated by using the trapezoidal

rule at first. Then, the problem then can be solved by using an explicit scheme. The

computational domain is discretized into a finite difference mesh, where ∆A and ∆t are

the step-width and time step, respectively. Let Umj (X) denote the numerical approxima-

tion to U(j∆A,m∆t), where m = 0, 1, 2, ...,M and M∆t = T , as well as j = 0, 1, 2, ..., J

and J∆A = Amax.

Instead of prescribing the boundary conditions along the numerical boundaries, corre-

sponding to j = 0 and j = Amax, we enforce the satisfaction of the discretized version of

the governing equation along the boundaries. This is done by using one-sided difference

operators to approximate the differential operators in the differential equation so that

fictitious mesh points outside the computational domain are avoided. We approximate

the differential terms by the following difference:

∂U

∂A
(J∆A,X,M∆t) =

U jm(X)− U j−1m (X)

∆A
, (3.29)

∂U

∂t
(J∆A,X,M∆t) =

U jm(X)− U jm−1(X)

∆t
(3.30)

In order to approximate the integral term, we adopt the trapezoidal rule used by Cont

and Tankov [2004a], with the same spatial grids as in (3.29). The domain of the integral

is truncated to a bounded interval, with [Bl, Br] denotes the jump in the investment

value. Then we choose integers Kr and Kl such that:

[Bl, Br] ⊂ [(Kl − 0.5)dA, (Kr + 0.5)dA]. (3.31)
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Then the integral term in equation (4.11) is approximated by:

Kr∑
h=Kl

Ui+h

∫ (h+0.5)dA

(h−0.5)dA
ÑQ(dt, dz). (3.32)

By the explicit finite difference scheme, we start at T = Td with terminal values, and

move backwards on the time dimension so that we can calculate the value function for

the fair value of RCLA contact.

3.3.2 Numerical Example

Let’s assume an economy with two states, where ′Xt = 1′ represents ’Good’ economy,

and′Xt = 2′ represents ’Bad’ economy. Let P(t) be the transition probability matrix for

time t. Write:

P(t) =

1− p1 p1

p2 1− p2

 , (3.33)

where pi is the probability in which the economy switches from i to state 3 − i, for

i = 1, 2. Since P(t) = eQt, we have by simple calculation that:

P(t) =
1

π

q22 q22

q11 q11

+
e−πt

π
Q (3.34)

where π = q11 + q22.

In the following numerical example, we assume that the probability for which the econ-

omy switches from state one to state two is p1 = 40%, and from state two to state one

is p2 = 30%.

Further, suppose T0 = 50 and Td = 100, and divide one year into n = 252 time-

interval, each representing one business day. Also, consider some specimen values for

model parameters. These values are in a reasonable range of magnitude from a practical

point of view, and are consistent with the magnitudes of model parameters in empirical

literature.
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Figure 3.1: Age-dependent hazard rate λ from age 50 to 100.

r1 = 0.05; r2 = 0.01; ;C = 1;

M1 = 200; M2 = 250; G1 = 500; G2 = 600;

In addition, in (3.22) we defined the age-dependent hazard rate λ such that it follows the

Gomperts-Makeham continuous law. For this example, let us assume mmg = 86.34 and

β = 9.5. Figure3.1 presents the hazard rate for agents between T0 = 50 and Td = 100.

In order to discretize the space domain, we assume that Amax = $400, with dA = 1.

In addition, we choose the value of dt to be sufficiently small, to avoid instability.

Figure3.2, displays a comparison between the value of a RCLA contract under two

different scenarios; namely with Markov regime-switching and without Markov regime-

switching. We assume that the parameter values of the no-regime-switching version of

our model match with those in the corresponding regime-switching model, when the

economy is in state one. For both cases, we calculate the value of a policy that pays $1

per annum life annuity.
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Figure 3.2: The value of $1p.a. life annuity for policyholder purchases at age from 50 to
100.

3.3.3 Dynamic Delta hedging

In addition to the fair valuation of the RCLA contracts, it is interesting to investigate

how the risks inherent in these products can be hedged once the policy has been sold from

a risk management perspective. Despite our main focus being the fair valuation issue of

the policy, we highlight the practical importance of the hedging and risk management

issues.

There are different ways to hedge the risks inherent in the options embedded in the

policy. Hedging via the Greeks and the risk-minimizing hedging represent two popular

approaches to hedging these risks. However, due to the fact that hedging using the

Greeks is only an approximating hedging strategy, and also due to the market incom-

pleteness, a perfect hedge strategy is not attainable. There is a wealth of literature

about different methods of calculation of the Greeks. Some prominent examples are the

efficient Monte Carlo simulation method proposed by Broadie and Glasserman [1996],

the Mallivian calculus approach introduced by Fournie et al. [2001], and a combination

of the two methods in a more recent paper by Davis and Johansson [2006], in particular

for jump-diffusion models.

In this paper we choose to use a conventional method to numerically calculate the

values for Delta, at discrete equidistance time intervals. The numerical hedging analysis

is widely used in the practical arena, due to its efficiency and simplicity in implication.

We compute the Delta at each point using the Finite Difference values from (3.29)
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to evaluate the sensitivity of the RCLA contracts to the changes in the value of the

underlying portfolio. Then, we employ the Monte Carlo algorithm to simulate a dynamic

Delta hedging strategy for our numerical example. We expect nodal hedging errors due

to the market incompleteness. Finally, we approximate the distribution of the terminal

hedging error, based on which we calculate non-parametrically the Value at Risk (VaR)

and the Expected Shortfall (ES) of the hedging error.

The nodal hedging error is the profit or loss arisen from the difference between the nodal

value of the insurance product, and the nodal value of the replicating portfolio of the

primitive assets. In a complete market such as Black-Scholes economy, the difference

is zero. In contrast, in an incomplete market we always have a none-zero amount for

the hedging error that accumulates to the terminal time. We let Π(T,N) denote the

accumulated value, which is known as the terminal hedging error, and can be defined

as:

Π(T,N) =

N∑
n=1

[
(An −An−1))∆(tn−1, An−1)

−
(
U(tn, An)− U(tn−1, An−1)

)]
(3.35)

where the path of {An}, n = 1, ..., N is simulated by a simulation experiment, ∆(t, An)

is calculated by (3.29) and the path of U(tn, An) is calculated by the Finite Difference

method as explain in section3.3.1.

For the purpose of simulating the path of {An}, we employ the Monte Carlo simulation.

The time intervals for the simulation is chosen such that it corresponds to the FD mesh.

We perform the simulation for the numerical example in section3.3.2 and we consider

daily, weekly, monthly and quarterly hedging frequencies. The purpose of this exercise

is to investigate how much of the hedging error is due to the market incompleteness,

and how much is due to the frequency of the hedging strategy.

To approximate the distribution of the hedging errors, we use a kernel density estima-

tion with Epanechnikov as our choice of kernel function. The performance of a kernel

function is measured by the Asymptotic Mean Integrated Squared Error (AMISE), and

the Epanechnikov kernel minimizes the AMISE. The optimal choice of the bandwidth is

critically important for the accuracy of the density approximation. The determination



Chapter 3. RCLA under Regime-Switching Variance Gamma Process 63

−0.6 −0.4 −0.2 0 0.2
0

1

2

3

4

5

Distribution of Terminal Hedging Error
Quarterly ∆ Hedging

−0.6 −0.4 −0.2 0 0.2
0

1

2

3

4

5

Distribution of Terminal Hedging Error
Monthly ∆ Hedging

−0.4 −0.2 0 0.2
0

1

2

3

4

5

Distribution of Terminal Hedging Error
Weekly ∆ Hedging

−0.4 −0.2 0 0.2
0

1

2

3

4

5

Distribution of Terminal Hedging Error
Daily ∆ Hedging

Figure 3.3: Distribution of hedging error for different hedging frequencies.

of the best bandwidth involves a trade-off between bias and variance. A very small

bandwidth would result in small errors in the approximation; however, this is limited

to the number of data points in the local neighborhood. Besides, the variance of the

estimated local parameters is often large for a small number of data points. On the other

hand, large bandwidth would create a large modeling bias depending on the underlying

function. In this paper we use the approach introduced in Shimazaki and Shinomoto

[2010] in order to determine the optimal bandwidth.

To summarize the results, in figure3.3 we plot the distribution of the hedging error,

for different hedging frequencies. In addition, table3.1 reports the key statistics for the

distribution plots in figure3.3. The results demonstrate that by increasing the frequency

of hedging, we can reduce the hedging error. Particulary, figures in table3.1 show im-

provements in the VaR and ES measures, after increasing the hedging frequency from

quarters to weeks. Nevertheless, in line with our expectations, we see that after a certain

threshold the hedging error cannot be reduced. The residual hedging error is due to the

market incompleteness. In this paper, due to the long life of the insurance contracts, we

believe the threshold could be chosen between one day to one week.
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Table 3.1: The 95% Value at Risk and Expected Shortfall, as well as the mean and the
standard deviation for the distribution of hedging error, using different ∆-hedging frequencies

Statistics

Hedging Frequency VaR (95%) ES (95%) Mean Standard Deviation

Quarterly 0.3412 0.3883 -0.1533 0.1087
Monthly 0.2584 0.3067 -0.1119 0.0849
Weekly 0.2449 0.2711 -0.0805 0.0925
Daily 0.2314 0.2611 -0.0806 0.0875

3.4 Conclusion

In this paper we consider pricing and managing the hedging risk of Ruin Contingent Life

Annuities, under the regime-switching Variance Gamma process. The RCLA contract is

a modern equity-linked insurance contract that allows the near-to-retirement population

to hedge two types of retirement risks; namely, an above average survival rate and bear

market during the retirement risk zone.

The Variance Gamma process is a class of the pure-jump Levy processes, with growing

popularity as an alternative to the Black-Scholes economy. We use the Levy measure

representation of the VG process and modulate its parameters by a Markov chain to

capture the impacts of the regime-switching risk.

We employ the Esscher transform to find an equivalent martingale measure in our in-

complete market and derive the risk-neutral dynamics of the underlying portfolio. Sub-

sequently, we derive the pricing PIDE, and solve for the value function numerically.

To highlight the practical implications of our model, we conduct a numerical example,

through which we calculated the value of the RCLA product. Then we conduct a Monte

Carlo simulation experiment for a simple dynamic Delta hedging strategy. The perfor-

mance of the strategy is analyzed by examining the VaR and ES of the terminal hedging

errors, arisen from the dynamic Delta hedging.
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Abstract

We propose a model for the valuation of participating life insurance products under a

generalized jump- diffusion model with a Markov-switching compensator. The Esscher

transform is employed to determine an equivalent martingale measure in the incomplete

market. The results are further manipulated through the utilization of the change of

numeraire technique to reduce the dimensions of the pricing formulation. This paper

is the first that extends the technique for a generalized jump-diffusion process with a

Markov-switching kernel-biased completely random measure, which nests a number of

important and popular models in finance. A numerical analysis is conducted to illustrate

the practical implications.

Keywords: Participating products - Generalized jump-diffusion - Esscher transform -

Reduction of dimensionality - Collocation method
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4.1 Introduction

Participating life insurance products are a popular class of equity linked insurance prod-

ucts around the world. In these policies the insured not only receives the guaranteed

annual minimum benefit, but also receives proceeds from an investment portfolio. At the

initiation of the contract, the policyholder pays the first annual premium to the insurance

company, who will manage a well diversified reference portfolio. The insurer employs

a surplus distribution mechanism to credit interest at or above a specified amount of

guaranteed rate annually to the insured. The net difference between the market value of

the asset portfolio and the book value of the policyholder’s account is called the bonus

reserve or buffer. The bonus reserve is used to provide stable and smooth returns to

the policyholder in the future and protect against insolvency. If the terminal surplus

of the fund is positive, the policyholder can also receive a terminal bonus. The insurer

has an option to default at the maturity of the policy, in which case the insured will

receive the outstanding assets. Grosen and Jorgensen [2000] provided a comprehensive

discussion on different contractual features of participating policies. It is important to

develop a mathematical model for the fair valuation of these policies, due to the inter-

national trend of using the market-based and fair valuation accountancy standards for

the implementation of risk management practices.

Accurate pricing of life insurance participating policies, through the fair valuation of the

embedded options, can be traced back to Wilkie [1987]. Grosen and Jorgensen [2000]

analyzed the minimum rate guarantee and surplus distribution mechanism, and mod-

eled the surrender risk as an American early exercise feature in their contingent claims

model. Bacinello [2001, 2003a,b] employed binomial models to construct pricing models

of participating policies with different types of embedded features. Prieul et al. [2001]

and Siu [2005] priced the participating policy using a partial differential equation (PDE)

approach. In both papers, the authors utilized the method of similarity transformations

of variables to reduce the dimensions of the PDE. In addition, Siu [2005] and Siu et al.

[2008] considered the pricing of the participating policies when different parameters of

the dynamics of the underlying reference portfolio are Markov-modulated, in order to

model the regime-switching risk for the economy. While the former, employed a Markov-

modulated diffusive process, the latter considered the valuation of the products under a

generalized jump-diffusion model with a Markov-switching compensator.
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In the present paper, similar to Siu et al. [2008], we propose a model for the valuation

of participating life insurance products under a generalized jump-diffusion model with

a Markov-switching compensator. We make the assumption that the parameters of

the market values of the reference portfolio, namely, the risk-free interest rates, the

expected growth rate and the volatility of the risky asset, depend on the state of the

economy, which is modeled by a continuous-time Markov-chain process. In addition, we

specify the jump component by a class of Markov-modulated kernel-biased completely

random measures. Our model is a modified version of the kernel-biased representation

of James [2002, 2005]. Here the kernel function allows different forms of distortion of

jump sizes into the model. Incorporation of the Markov chain process to this framework

provides further flexibility to describe the impact of structural changes in macroeconomic

conditions and business cycles on the valuation model. Hence, we utilize the Esscher

transform to determine the equivalent martingale measure and price the participating

product under the generalized jump-diffusion model.

Siu et al. [2008] solve the risk-neutral stochastic differential equation (SDE) using a

robust Monte Carlo based simulation, whereas, in this paper we derive the pricing

formulation using the partial integro-differential equation (PIDE) approach. For this

approach we face the problem of the high dimensionality of the PIDE, because of the

embedded credit scheme in the policy. However, we overcome the problem by reduceing

the dimensions of the PIDE by using a version of the change of numeraire technique,

through which we avoid the evolution of the joint distribution of two stochastic variables.

The technique was introduced in Hansen and Jorgensen [2000], however, to the knowl-

edge of the authors, this is the first paper that extends the technique for a generalized

jump-diffusion process with a Markov-switching kernel-biased completely random mea-

sure, which nests a number of important and popular models in finance. Finally, we

employ a numerical scheme, namely the collocation method, to approximate the solu-

tion of the valuation differential equation.

The concept of regime-switching can be traced back to Quandt [1958] and Goldfield

and Quandt [1973] where they employed regime-switching regression models to describe

nonlinearity in economic data. The idea of probability switching appeared in the early

development of nonlinear time series analysis, where Tong [1983] proposed one of the
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oldest classes of nonlinear time series models, namely the threshold models. Regime-

switching models aim to capture the appealing idea that the macro-economy is subject

to regular, yet unpredictable in time, regimes which in turn affect the prices of financial

securities. For example, structural changes of macro-economic conditions, such as infla-

tion and recession, may induce changes in the stock returns or in the term structure of

interest rates. Similarly, periods of high market turbulence and liquidity crunches may

increase the default risk of financial institutions.

Hamilton [1989] popularized regime-switching time series models in the economic and

econometric literature and since then, considerable attention has been paid to investigate

the use of regime-switching to model economic and financial data. Due to the empirical

success of regime-switching models, they have been applied to different areas in bank-

ing and finance; including asset allocation, option valuation, risk management, term

structure modeling. Recently, scholars have turned their attention to option valuation

under regime-switching model, including, Naik [1993], Guo [2001], Buffington and Elliot

[2002], Elliott et al. [2005] , and Fard and Siu [2013]. Additionally, regime-switching

models have become popular in actuarial science in recent years. For example, Hardy

[2001], Siu [2005], and Siu et al. [2008] used the regime-switching models to capture the

impact of the structural changes in the economy on the value of different equity linked

insurance products.

This article is structured as follows. Section 4.2 presents the Markov-modulated pure-

jump asset price model, the pricing formulation through the Esscher transform, as well as

the change of numeraire technique for the dimensionality reduction. Section 4.3, provides

some important parametric cases of the model, namely, Markov-modulated generalized

gamma processes, as well as the scale-distorted and power-distorted versions. Finally,

Section 4.4.2 provides the numerical solution for the underlying PIDE through a class

of the finite element method, known as the collocation method.

4.2 Modeling Framework

Let us suppose that the economy can switch between a finite number of states each of

which are characterized by their respective parameters. In this economy, we consider a

financial market, where an agent can either invest in a risk-free money market account
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or choose from a range of risky assets. All the parameters of the risk-free asset, as

well as the risky assets, vary as the economy switches regimes, a process governed by a

Markov-chain. We assume that the market is frictionless, the mortality risk is absent,

and there are no taxes. In this market, an insurer is considering issuing a participating

life insurance policy, linked to a well diversified portfolio of the risky assets, known

as the reference portfolio, as well as a money market account. We assume that the

market value of the reference portfolio is governed by a jump-diffusion model with the

jump component being specified as a kernel-biased completely random measure with a

Markov-switching compensator.

The purpose of this paper is to develop a fair valuation model for the insurance product,

where we are challenged by:

• the market incompleteness, due to the jump competent and the regime-switching

framework;

• the high dimensionality of the pricing PIDE, due to the attached credit scheme;

and

• the complex pricing PIDE, with no known analytical solutions.

The first two challenges are addressed in this section, and the latter is discussed in

section 4.4.2.

4.2.1 The Pricing Dynamics

We fix a complete probability space (Γ,F ,P), where P is the real-world probability

measure. Let T denote the time index set [0, T ] of the economy. We describe the states

of the economy by a continuous-time Markov chain {Xt}t∈T on (Γ,F ,P) with a finite

state space S := (s1, s2, · · · , sN ). Without loss of generality, we can identify the state

space of the process {Xt}t∈T to be a finite set of unit vectors {e1, e2, · · · , eN}, where

ei = (0, · · · , 1, · · · , 0) ∈ RN .

Let Q(t) = [qij(t)]i,j=1,2,...,N , t ∈ T , denote a family of generators, or rate matrices,

of the chain {Xt}t∈T under P. Here, qij(t) represents the instantaneous intensity of

the transition of the chain {Xt}t∈T from state j to state i at time t . Note that for
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each t ∈ T , qij(t) > 0, for i 6= j and
∑N

i qij(t) = 0, so qii(t) ≤ 0. We assume that

qij(t) > 0, for each i, j = 1, 2, ..., N and i 6= j and each t ∈ T . For any such matrix

Q(t), write q(t) := (q11(t), ..., qii(t), ..., qNN (t))′. With the canonical representation of

the state space of the chain, Elliott et al. [1995] provide the following semi-martingale

decomposition for {Xt}t∈T :

Xt = X0 +

∫ t

0
QXsds+Mt. (4.1)

Further, Mt is a RN -valued martingale with respect to the filtration generated by

{Xt}t∈T . Let {r(t,Xt)}t∈T be the instantaneous market interest rate of a money market

account, which depends on the state of the economy; that is,

r(t,Xt) = 〈r, Xt〉 =
N∑
i=1

ri〈Xt, ei〉, t ∈ T ,

where r := (r1, r2, · · · , rN ), with ri > 0 for each i = 1, 2, · · · , N . Additionally, 〈., .〉

denotes the inner product in the space RN . Thus, the dynamics of the value of the

risk-free asset, {Bt}t∈T would be

dBt
Bt

= r(t,Xt)dt,

with B0 = 1.

James [2002, 2005] proposed a kernel-biased representation of completely random mea-

sures, which provided a great deal of flexibility in modeling different types of finite

and infinite jump activities by choosing different kernel functions. The approach is an

amplification of Bayesian techniques developed by Lo and Weng [1989] for the gamma-

Dirichlet processes. Perman et al. [1992] considered applications to the models, which

all fall within an inhomogeneous spatial extension of the size-biased framework. In this

sequel, we adopt the Markov-modulated version of the kernel-biased representation of

completely random measures proposed by James [2002, 2005].
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Let (T ,B(T )) denote a measurable space, where B(T ) is the Borel σ-field generated by

the open subsets of T . Write B0 for the family of Borel sets U ∈ R+, whose closure Ū

does not contain the point 0. Let X denote T × R+. The measurable space (X ,B(X ))

is then given by (T ×R+,B(T )⊗ B0).

For each U ∈ B0, let NXt(., U) denote a Markov-switching Poisson random measure

on the space X . Write NXt(dt, dz) for the differential form of measure NXt(t, U). Let

ρXt(dz|t) denote a Markov-switching Levy measure on the space X depending on t and

the state Xt; η is a σ-finite (nonatomic) measure on T . As in James [2005], the existence

of the kernel-biased completely random measure is ensured by supposing an arbitrary

positive function on R+, h(z), ρi and η are selected in such a way that for each bounded

set B in T

N∑
i=1

∫
B

∫
R+

min(h(z), 1)ρi(dz|t)η(dt) <∞.

As in Siu et al. [2008], assume the Markov-switching intensity measure

νXt(dt, dz) := ρXt(dz|t)η(dt) =
N∑
i=1

(
ρi(dz|t)〈Xt, ei〉

)
η(dt).

Define a Markov-modulated kernel-biased completely random measure

µXt(dt) :=

∫
R+

h(z)NXt(dt, dz),

which is a kernel-biased Markov-modulated Poisson random measure NXt(dt, dz) over

the state space of the jump size R+ with the mixing kernel function h(z). We can

replace the Poisson random measure with a random measure and choose some quite

exotic functions for h(z) to generate different types of finite and infinite jump activities.

Let {Wt}t∈T denote a standard Brownian motion on (Ω,F ,P) with respect to the P-

augmentation of its natural filtration FW := {FWt }t∈T . Let ÑXt(dt, dz) denote the

compensated Poisson random measure defined by

ÑXt(dt, dz) = NXt(dt, dz)− ρXt(dz|t)η(dt).



Chapter 4. Pricing Participating Products under Generalized Jump-Diffusion Model 73

Let µt and σt denote the drift and volatility of the market value of the reference asset,

respectively, and define

µt := 〈µ, Xt〉 =

N∑
i=1

µi〈Xt, ei〉,

σt := 〈σ, Xt〉 =
N∑
i=1

σi〈Xt, ei〉,

where µ := (µ1, µ2, ..., µN ), σ := (σ1, σ2, ..., σN ), µi ∈ R and σi > 0 for each i =

1, 2, ..., N . To focus on modeling the impact of transitions of economic states on the

price dynamics of the reference portfolio and the fair value of the policy, we assume here

that µt and σt depend on the current economic state Xt only. Consider a generalized

jump-diffusion process A := {A(t)|t ∈ T }, such that

dAt = At−

[
µtdt+ σtdWt +

∫
R+

h(z)ÑXt(dt, dz)

]
, (4.2)

where A0 = 0. We assume under P the price process {St}t∈T is defined as St := exp(At),

so that

dSt =

(
µt +

1

2
σ2t

)
dt+ σtdWt +

∫
R+

(
eh(z) − 1

)
ÑXt(dt, dz)

−
∫
R+

{
h(z)− eh(z) + 1

}
ρXt(dz|t)η(dt)

(4.3)

with S0 = 1.

4.2.2 The Credit Scheme

We now describe the dynamics of the liability side of the balance sheet. For each time

t ∈ T , let Rt and Dt denote the book value of the policy reserve and the bonus buffer,

respectively. The purpose of the bonus buffer is to iron out the fluctuations in the stream

of the cash flows to the policyholders, inherited from the fluctuations of the reference

portfolio. Rt is considered as the policyholder’s account balance. Let St denote the
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market value of the asset backing the policy, so that

St = Rt +Dt, t ∈ T ,

where R(0) := αpS(0), αp ∈ (0, 1]. R(0) is the single initial premium paid by the

policyholder for acquiring the contract and αp is the cost allocation parameter. The

funds are distributed between two components of liability over time according to the

bonus policy described by the continuously compounded interest rate credited to the

policy reserve cR,

dRt = cR(S,R)Rtdt.

In practice, cR(S,R) is specified by the management level based on the rule of bonus

distribution. Here we adopt the interest rate crediting scheme used in Chu and Kwok

[2006]

cR(S,R) = max
(
rg, ln

St
Rt
− β

)
,

where β is the reversionary bonus, which is a long-term constant target ratio speci-

fied by the management, and is the rg for the minimum interest rate credited to the

policyholder’s account.

4.2.3 Fair Valuation

The fair value of the participating product can be decomposed into the fair value of a

guaranteed benefit, a surrender option, and a default option. Let g(S,R,X, T ) denote

the terminal payoff of the participating policy’s maturity date T , when the state of the

economy at time T is X. Then

V (ST , RT , XT ) = RT + γP1T − P2T , (4.4)

where γ is the terminal bonus distribution rate, P1T := max(αpST−RT , 0) is the terminal

bonus option, P2T := max(RT − ST , 0) represents the terminal default option, and RT

is the guaranteed benefit. The bonus option can be viewed as a vanilla European call
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option that grants the policyholder the right to pay the policy value as a strike price to

receive αp-portion of the asset portfolio.

4.2.4 Pricing by the Esscher Transform

For the fair valuation of the policy we need to ensure that there is no arbitrage opportu-

nities in the market through the determination of the equivalent risk- neutral martingale

measure (Pilska [1997]). In incomplete markets, as is the case in this paper, there are

more than one equivalent martingale measure, and hence, more than one no-arbitrage

price. Different approaches have been proposed for pricing and hedging derivative se-

curities in incomplete financial markets. For instance, Follmer and Sondermann [1986],

Schweize [1995], and Follmer and Schweizer [1991] selected an equivalent martingale mea-

sure by minimizing the quadratic utility of the terminal hedging errors. Davis [1997]

adopted an economic approach based on the marginal rate of substitution to pick a

pricing measure via a utility maximization problem. Avellaneda [1998], Frittelli [2000],

and Fard and Siu [2013] employed the minimum entropy martingale measure method to

choose the equivalent martingale measure. Gerber and Shiu [1994] pioneered the use of

the Esscher transform, a popular tool in actuarial science. The Esscher transform pro-

vides market practitioners with a convenient and flexible way to value options. Elliott

et al. [2005] demonstrated that the results driven from Esscher transform, when pricing

a contingent claim, is equivalent to that driven from the minimum entropy martingale

measure.

In this paper, we employ the regime-switching Esscher transform to determine an equiv-

alent martingale measure for the valuation of the policy. Let FX := {FXt }t∈T , FA :=

{FAt }t∈T and FS := {FSt }t∈T denote the P-augmentation of the natural filtration gen-

erated by A and S, respectively. Since, FA and FS are equivalent, we can use either one

of them as an observed information structure. Define Gt for the σ-algebra FX ∨ FA for

each t ∈ T . Write B(T ) for the Borel σ-field of T and let BM(T ) denote the collection

of B(T )-measurable and non-negative functions with compact support on T . For each

processes θ ∈ BM(T ), write

(θ.A)t :=

∫ t

0
θ(u)dA(u), t ∈ T ,

such that
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1. for each t ∈ T , θt := 〈θ, Xt〉, where θ := (θ1, θ2, ..., θN ) ∈ RN ,

2. θ is integrable with respect to the return process.

Let {Λt}t∈T denote a G-adapted stochastic process

Λt :=
e(θ.A)t

M(θ)t
, t ∈ T ,

where M(θ)t := E[e(θ.A)t |FXt ] is a Laplace cumulant process and takes the following

form

M(θ)t = exp

[ ∫ t

0
θs

(
µs −

1

2
σ2s

)
ds+

1

2

∫ t

0
θ2sσ

2
sds

+

∫ t

0

∫
R+

(
eθsh(z) − 1− θsh(z)

)
ρXs(dz|s)η(ds)

]
.

(see Siu et al. [2008] for similar calculations). Therefore

Λt = exp

[∫ t

0
θsσsdWs −

1

2

∫ t

0
θ2sσ

2
sds+

∫ t

0

∫
R+

θsh(z)ÑXs(dz, ds) (4.5)

−
∫ t

0

∫
R+

(
eθsh(z) − 1 + θsh(z)

)
ρXs(dz|s)η(ds)

]
.

Equation (4.5) is an essential part of our pricing formulation, since we aim to use Λt

as the Radon-Nikodym Process to change the measure from the historical measure to

the risk-neutral measure. One key characteristic of risk-neutral measure is that under

this measure, every discounted price process is a martingale. So it is also essential to

demonstrate that (4.5) is Gt-martingale.

Lemma 1. Λt is P martingale w.r.t Gt.

Proof. James [2002, 2005] showed that

E
[

exp
(∫ t

0

∫
R+

θsh(z)ÑXs(dz, ds)
)∣∣∣Gt]

= exp
(∫ t

0

∫
R+

(
eθsh(z) − 1 + θsh(z)

)
ρXs(dz|s)η(ds)

)
.
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Then, by taking the conditional expectations of (4.5), the results follow.�

For each θ ∈ L(A) define a new probability measure Pθ ∼ P on G(T ) by the Radon-

Nikodym derivative

dPθ

dP

∣∣∣∣
G(T )

:= ΛT . (4.6)

This new measure dPθ is defined by the Esscher transform ΛT associated with θ ∈ L(A).

According to the fundamental theorem of asset pricing, the absence of arbitrage means

there exists an equivalent martingale measure under which discounted asset prices are

local-martingales, which is widely known as the local-martingale condition. Now we

stipulate a necessary and sufficient condition for the local martingale condition.

Proposition 3. For each t ∈ T , let the discounted price of the risky asset at time t be

S̃(t) := e−rtS(t).

Then the discounted price process S̃ := {S̃(t)|t ∈ T } is an Pθ-local-martingale if and

only if θt := 〈θ,Xt〉, t ∈ T , is such that θ := (θ1, θ2, ..., θN ) ∈ RN satisfies the following

equation

θtσ
2
t +

∫
R+

{
eθth(z)(eh(z) − 1)− h(z)

}
ρXt(dz|t)η′(t) = rt − µt. (4.7)

Proof . Since S̃ is FA-adapted, S̃ is an (FY ,Pθ)-local-martingale if and only if it is a

(G,Pθ)-local-martingale. By Lemma 7.2.2 in Elliott and Kopp [2005], S̃ is an (GY ,Pθ)-

local-martingale if and only if ΛS̃ := {Λ(t)S̃(t)|t ∈ T } is a (G,Pθ)-local-martingale.
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First, by Bayes’ rule

Eθ
[

exp

(
−
∫ t

0
rsds

)
St

∣∣∣G0] = exp

(
−
∫ t

0
rsds

)
E

[
Λt exp

(∫ t

0
dAu

)
|G0
]

= exp

(
−
∫ t

0
rsds

)E[ exp
( ∫ t

0 (θu + 1)dAu

)
|G0
]

M(θ)t

= exp

(
−
∫ t

0
rsds

)
M(θ + 1)t
M(θ)t

= exp

(∫ t

0
(µs − rs −

1

2
σ2s)ds+

1

2

∫ t

0
(2θs + 1)σ2sds

+

∫ t

0

∫
R+

{
eθsh(z)(eh(z) − 1)− h(z)

}
ρXs(dz|s)η(ds)

)
.

Then by setting time s = 0, and applying the martingale condition we achieve

∫ t

0
(µs − rs −

1

2
σ2s)ds+

1

2

∫ t

0
(1 + 2θs)σ

2
s = −

∫ t

0

∫
R+

{
eθsh(z)(eh(z) − 1)− h(z)

}
ρXs(dz|s)η′(s)ds.

Hence, for each t ∈ T , (4.7) must hold.�

The results from the Lemma 1, Equation (4.6), and Proposition 3, allow us to use (4.5)

to drive the risk-neutral dynamics of the return process.

Proposition 4. Suppose W̃t = Wt −
∫ t
0 σsθsds is a Pθ-Browning motion, ρθXt(dz|t) :=

eθsh(z)ρXt(dz|t) is the Pθ compensator of N θ
Xt

(dz, dt) then

dAt =
(
µt + 2θtσ

2
t −

1

2
σ2t
)
dt+ σtdW̃t +

∫
R+

h(z)
(
1− e−θth(z)

)
ρθXt(dz|t)η(dt)

+

∫
R+

h(z)Ñ θ
Xt(dz, dt). (4.8)
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Proof. Assume that P ∼ Pθ with density process Λt. Suppose Zu ∈ BM(T ). Then by

Bayes’ rule

Mθ
A(Z)t := Eθ[e(Z.A)t |G0] = E[Λt.e

(Z.A)t |G0]

= exp

(∫ t

0
Zs(µs −

1

2
σ2s)ds+

∫ t

0

1

2
(Zs + θs)

2σ2sds

+

∫ t

0

∫
R+

{
e(Zs+θs)h(z) − 1− (Zs + θs)h(z)

}
ρXs(dz|s)η(ds)−

∫ t

0

1

2
(θ.σs)

2ds

−
∫ t

0

∫
R+

{
eθsh(z) − 1− θsh(z)

}
ρXs(dz|s)η(ds)

)

= exp

(∫ t

0
Zs(µs + 2θsσ

2
s −

1

2
σ2s)ds

+

∫ t

0

∫
R+

(
eθsh(z) − 1

)
ρXs(dz|s)η(ds) +

1

2

∫ t

0
Z2
sσ

2
sds

+

∫ t

0

∫
R+

{
eZsh(z) − 1−Zsh(z)

}
eθsh(z)ρXs(dz|s)η(ds)

)
.

Then under Pθ, (4.8) holds. �

Similarly, we can derive the risk-neutral price process of the reference portfolio.

Proposition 5. The price process of the reference portfolio S under Pθ is

dSt = (rt −
1

2
σ2t )dt+ σtdW̃t +

∫
R+

(
eθth(z)(eh(z) − 1)− h(z)

)
Ñ θ
Xt(dt, dz).

For the proof, recall St := exp(At). Then the proof can easily follow by applying Ito’s

lemma and the martingale condition (4.7) to (4.8).

4.2.5 Reduction of Dimensionality

The fair value of the participating product Vt has three state variables. As in Hansen and

Jorgensen [2000], we choose an alternative numeraire which will result in the reduction

of one state variable. We will show that by the change of numeraire, we will avoid the

evolution of a joint distribution of two stochastic variables. To begin, define a new state

variable Z := ln( SR), so that

CZ(Z) = CR(S,R,X, t),
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and

VZ(Zt, Xt) =
V (St, Rt, Xt)

Rt
.

As a result, the intrinsic value of the policy would be

VZ(Z,X, T ) = 1 + γPZ1T − P
ZT
2T , (4.9)

where PZ1T := max(αpe
ZT − 1, 0) and PZ2T := max(1 − eZT , 0). By Ito’s lemma, the

dynamics of Z under P is given by

dZt =
(
µt − CZ(Zt)

)
dt+ σtdWt +

∫
R+

h(z)ÑXt(dt, dz).

Under Pθ and with respect to Gt we define

E(t) := exp

(
−
∫ t

0
(rs −

1

2
σ2s)ds

)
St
S0

(4.10)

= exp

(
−
∫ t

0

1

2
σ2sds+

∫ t

0
σsdW̃

+

∫
R+

∫ t

0
{ln(1 + f(z, θs)− f(z, θs)}ρθXs(dz|s)η(ds)

+

∫
R+

∫ t

0
ln
(
f(z, θs) + 1

)
Ñ θ
Xs(ds, dz)

)
,

where f(z, θt) := eθth(z)(eh(z)−1)−h(z) for convenience in presentation. We notice that

E(t) is martingale w.r.t Gt (Oksendal and Sulem [2005], chapter 1).

Define a new equivalent measure Q as follows

dQ
dPθ

∣∣∣∣
G(T )

:= E(T ),

By a version of the Girsanov theorem

WQ
t := W̃t −

∫ t

0
σsds,
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and

NQ
Xt

(dz, dt) := N θ
Xt(dz, dt)− f(z, θ)ρθXt(dz|t)η(dt).

Then,

dSt = (rt + 1
2σ

2
t )dt+ σtdW

Q
t +

∫
R+

(
eθth(z)(eh(z) − 1)− h(z)

)
ÑQ
Xt

(dz, dt).

By Ito’s lemma, the dynamic of Z under Q is

dZt =
(
rt − CZ(Zt)

)
dt+ σtdW

Q
t

+

∫
R+

(
ln(1 + f(z, θt))− f(z, θt)

)
ρQXt(dz|t)η(dt)

+

∫
R+

ln(1 + f(z, θt))Ñ
Q
Xt

(dt, dz),

Where, ρQXt(dz|t)η(dt) is defined under Q for ÑQ(dt, dz).

Hence, given the information of the chain process X, the new state variable Z is a

Markov process on its natural filtration. Then, the new valuation problem, with two

variables, is much easier than the original problem with three state variables.

Proposition 6. The valuation of Vt using the process Z under Q, is equivalent to that

from process S under Pθ.

Proof. Let EQ and Eθ be the expectation operator under Q and Pθ, respectively. Then,

by Bayes’ rule

Vt = Eθ
[

exp
(
−
∫ T

t
rsds

)
V (S,R,X, T )

∣∣∣Gt]

=
EQ
[
EQ
(
dPθ
dQ

∣∣∣Gt) exp
(
−
∫ T
t rsds

)
V (S,R,X, t)

∣∣∣Gt]
EQ
[(

dPθ
dQ

)∣∣∣Gt]
= EQ

[ E(t)

E(T )
exp

(
−
∫ T

t
rsds

)
V (S,R,X, t)

∣∣∣Gt]
= StE

Q
[(RT

ST

)
V (S,R,X, t)

RT

∣∣∣(St, Rt, Xt) = (S,R,X)
]

= StE
Q
[
e−ZT VZ(Z,X, t)

∣∣∣(Zt, Xt) = (Z,X)
]
.
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As in Hansen and Jorgensen [2000] let V̄Z(Z,X, t) denote the value of the participating

product denominated by the asset price S. We call V̄Z(Z,X, t), S-denominated value of

the contract; that is

V̄Z(Z,X, t) = EQ
[
e−ZT VZ(Z,X, T )

∣∣∣(Zt, Xt) = (Z,X)
]
.

In this paper, we provide the analysis for the S-nominated value of the participating

product V̄Z(Z,X, t) instead of V (Z,X, t). �

Corollary 1. (Zt, Xt) is a two-dimensional Markov process with respect to the enlarged

filtration Gt.

Corollary 2. The S-denominated value of the participating product V̄Z(Z,X, t) is Q

martingale.

Further, write V̄i for V̄ (Z, ei, t), where i = 1, 2, ..., N and V̄ := {V̄1, V̄2, ..., V̄N}. Then,

as in Buffington and Elliot [2002], V̄ satisfies the following N PIDEs:

LZ,ei(V̄i) + 〈V̄,Qei〉 = 0, i = 1, 2, ..., N, (4.11)

where

LZ,ei(V̄i) = LTZ,ei(V̄i) + LCZ,ei(V̄i) + LJZ,ei(V̄i). (4.12)

Here, the first term is the time differential operator, the middle term is the continu-

ous part of the space differential operator LZ,ei(.), and the latter is the integral term.

By applying Ito’s rule to V̄Z(Z,X, t), the the partial differential operators would be

distinguished as

LTZ,ei(V̄i) =
∂V̄Z
∂t
−
∫
R+

∂V̄Z
∂t

ln
(
1 + f(z, θt)

)
ρQei(dz|t)η

′(t)), (4.13)

LCZ,ei(V̄i) =
1

2
σ2
∂2V̄Z
∂Z2

− ∂V̄Z
∂Z

(
rgI{Z≤rg+β} + (Zt − β)I{Z>rg+β}

)
+
∂V̄Z
∂Z

(
rt +

∫
R+

(
ln(1 + f(z, θt))− f(z, θt)

)
ρQei(dz|t)η

′(t)

)
,
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LJZ,ei(V̄i) =

∫
R+

{
V̄Z

(
Zt− + ln(1 + f(z))

)
− V̄Z(Zt−)

}
ρQei(dz|t)η

′(t).

Further, as a result of the Corollary2, we have

dV̄Z(Z,X, t) =

∫
R+

{
V̄Z

(
Zt− + ln(1 + f(z, θt))

)
− V̄Z(Zt−)

}
ÑQ
Xt

(dt, dz)

+
∂V̄Z
∂Z

(Z,X, t)σdWQ
t + 〈V̄,QXt〉dt.

Notice that in (4.14) we use CZ(Z) = max(rg, Z − β). Also, recall that the auxiliary

condition for (4.11) is:

V̄Z(Z,X, T ) = e−ZT VZ(Z,X, T )

= e−ZT + γmax(α− e−ZT , 0) + max(e−ZT − 1, 0). (4.14)

There is no known analytical solution for the PIDE (4.11). For a similar problem, Siu

et al. [2008] implemented a robust, Monte Carlo based simulation method. In this paper,

we utilize a numerical scheme to solve the PIDE, which may be a more efficient and faster

method to reach the solution.

4.3 Parameter Specifications

In this section, we consider some parametric cases of the general jump process by spec-

ifying some particular forms of the kernel function and the Markovian regime-switching

intensity measure. Since we aim to maintain our results comparable to Siu et al. [2008],

we use their parameter specifications. These parametric cases include the Markov-

modulated generalized gamma (MGG) process, as well as the the scale-distorted and

power-distorted versions of the MGG Process.

The generalized gamma (GG) process is a special case of the kernel-biased completely

random measure and can be obtained by setting the kernel function h(z) = z. However,
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in this paper we are seeking a specific class of the GG processes that assist us in describing

the impact of the states of an economy on the jump component. Hence, we use a MGG

process, whose compensator switches over time, according to the states of the economy.

Following, we present how to derive the intensity process for different classes of the MGG

process. The result will be used in the next section to approximate the market price of

risk from (4.7), as well as the dynamics of St under Pθ and Q.

Let α ≥ 0 and b(t) denote the shape parameter and the scale parameter of the MGG

process, respectively. Further, define

b(t) := 〈b, Xt〉, (4.15)

where b := (b1, b2, ..., bN ) ∈ RN and bi ≥ 0, for each i = 1, 2, ..., N . Then, the intensity

process of the MGG process is

ρXt(dz|t)η(dt) =
1

Γ(1− α)z(1+α)
e−z〈b,Xt〉dzη(dt) (4.16)

=
1

Γ(1− α)z(1+α)

N∑
i=1

e−biz〈b, Xt〉dzη(dt).

When α = 0, the MGG process reduces to a Markov modulated weighted gamma(MWG)

process. When α = 0.5 the MGG process becomes the Markov modulated inverse

Gaussian (MIG) process.

Another class of the MGG process is the distorted MGG, which includes scale-distorted

and power-distorted versions of the MGG processes. They can describe the overstate

and understate of jump amplitudes due to overreaction and underreaction of market

participants to extraordinary events, respectively. For the scale-distorted version of the

MGG process, the kernel function takes the form of h(z) = cz, where c is a positive

constant. When c > 1 the jump sizes are overstated and when 0 < c < 1, jump sizes

are understated. For the power-distorted MGG, the kernel function takes the form

of h(z) = zq, where q is a positive constant. When q > 1 the small jump sizes are
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overstated and large jump sizes are understated; when 0 < q < 1, the large jump sizes

are overstated and small jump sizes are understated.

In general, the scale-distorted and power-distorted versions of the MGG process can as-

sist modeling different behaviors of market participants when they react to extraordinary

events, hence, they are important from a behavioral finance perspective. In addition,

similar to the MGG processes, when α = 0, the distorted MGG process reduces to the

distorted MWG process. When α = 0.5 the distorted MGG processes become distorted

MIG processes.

As an extension to this framework, one might also like to consider modulating the

distortion constants c and q, by a Markov chain, to reflect the dependency of the behavior

of market participants to the state of the economy. This, in particular, could be beneficial

for modeling the behavior of markets which become overzealous, when the state of the

economy switches.

4.4 Numerical Analysis

In this section, we employ an elegant class of finite element (FE) methods, namely the

collocation method, to numerically calculate the value of the participating policy. FE

methods have been growing in popularity in the finance arena as a strong alternative to

finite difference (FD) methods. Some examples could be found in the scholarly work of

Forsyth et al. [1999], Holmesa et al. [2012], and Matache et al. [2005].

When the underlying problem is a PIDE or contains irregular shapes of differential

equations, placing FD type grid points is difficult and provides poor approximation

of the solution. FE methods not only handle these complex models easier, but also

provide a solution for the entire domain, instead of isolated nodes as in the case of FD.

In addition, FE techniques can incorporate boundary conditions involving derivatives

easier than FD.

Although the Galerkin approach appears to be the most popular FE method in finance,

in this paper we employ the collocation method, for a number of reasons. First, the

implementation of the method is easier and more natural than the Galerkin method.

For example, the integration of the second order terms of the PIDEs is not required,
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as is the case in the derivation of the variational formulation for the Galerkin method.

More importantly, one of the reasons for the popularity of the Galerkin approach is

the equivalence of this method and the approach by Ritz when applied to self-adjoint

operators, which is not the case in (4.11).

4.4.1 The formulation of the Collocation Method

In order to render the problem well-posed, we also need two boundary conditions for

the cases when the value of the reference portfolio hits zero, or when it grows to infinity.

This can be delivered by financial insight. If the value of the reference portfolio hits

zero, the price can never rise above zero again. Thus, from (4.4), zero should be an

absorbing boundary for V (S,X, t). On the other hand, if the value of St approaches

infinity, the value of the default option in (4.4) will approach zero and the value of

the bonus option will approach γαSt. Consequently, the boundary conditions for the

S-denominated value of the policy could be written as

V̄Z(0, X, t) = 0, (4.17)

and

V̄Z(Zmax, X, t) = γα+ e−Zt . (4.18)

Suppose Ṽ (Z,X, t) is the approximation solution for V̄ (Z,X, t). Then, by the separation

of variables technique, if {φ}Mi denotes a set of nodal shape functions, we can expand

Ṽ (Z,X, t) as

Ṽ (Z,X, t) =

M+1∑
k=1

ξk(t,X)φk(Z,X), k = 1, 2, ...,M. (4.19)

Notice that the coefficients ξi(t,X) are time-dependent but not space-dependent func-

tions.
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The collocation method is used either with a shape function representing a higher degree

polynomial and possessing global support, or with a shape function with higher order

continuity and local support. The shape function must have a continuous first order

derivative, because the collocation equation supplies information about the second order

derivative of the PIDE. Examples for shape functions with global support are Legendre

or Chebyshev; employed in this setting the approach is called the spectral method.

Fixing the state of the economy to X = ei i = 1, 2, ..., N , and inserting (4.19) into (4.11)

leads to the following system of ordinary differential equations (ODEs)

0 = M
dξl
dt

(t, ei) + ACξl(t, ei) + AJξl(t, ei) + 〈D,Qei〉ξl(t, ei) = 0, (4.20)

Here, ξ(t,X) denotes a vector holding the nodal values ξl(t,X), and the entries of

matrices M, AC, AJ and D are given by

Mlk =
{

1−
∫
R+

ln
(
1 + f(z, θt)

)
ρQei(dz|t)η

′(t)
}
φk(Zl, ei),

AClk =
1

2
σ2
∂2φk(Zl, ei)

∂Z2
+ rt

∂φk(Zl, ei)

∂Z
−
(
rgI{Z≤rg+β} + (Zt − β)I{Z>rg+β}

)
∂φk(Zl, ei)

∂Z

+

(∫
R+

(
ln(1 + f(z, θt))− f(z, θt)

)
ρQei(dz|t)η

′(t)

)
∂φk(Zl, ei)

∂Z
,

AJlk =

∫
R+

φk

(
Zl + ln(1 + f(z, θt)), ei

)
ρQei(dz|t)η

′(t)−
∫
R+

φk(Zl, ei)ρ
Q
ei(dz|t)η

′(t),

and

Dlk = φk(Zl, ei),

where l, k = 1, 2, ...,M + 1.

Note that for a problem with N states of economy and M spatial nodes, there will

be a system of N × (M + 1) ODEs. In addition, each system of ODEs fixed for state

X = ei, i = 1, 2, ..., N , contains values of φ from other states (i.e. φ(Z,X = ej), j 6= i

and j = 1, 2, ..., N), therefore, it is not possible to solve the system of ODEs from each
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state, stand alone. In order to find the solutions, we will need to replace the first and the

last equation for the system of ODEs of each state by the boundary conditions (4.17)

and (4.18).

4.4.2 Numerical Example

In this section, we conduct a numerical example to calculate the fair value of the partic-

ipating policy, implied by various parametric specifications of our generalized jump-type

model described in section 4.3. We report the impact of the regime-switching effect in

the price dynamics of the reference portfolio on the fair value of the policy. In addition,

we compare our results with the no-regime-switching version of the model, as well as the

Merton model. The readers could also compare the results with Siu et al. [2008], with

caution since their specifications of the the dynamics of the reference portfolio (Equation

(4.3)) are slightly different.

Our programs were written in Matlab, and we completely vectorized the codes to increase

the computational speed. Let us assume an economy with two states where an insurance

company is considering issuing a participating life insurance contract. Hence, we consider

a two state Markov-chain model X with N = 2, where Xt = 1 represents a ’Good’

economy while Xt = 2 represents a ’Bad’ economy. Let P(t) be the transition probability

matrix for time t. Write

P(t) =

1− p1 p1

p2 1− p2

 ,

where pi is the probability in which the economy switches from i to state 3 − i, for

i = 1, 2. Note that in section-4.2.1, we characterize the Markov chain using the matrix

of transition rates, Q. For simplicity in notation, for our two-states model, we write

q11 = −q1 and q22 = −q2, thus Q =

 q1 −q2

−q1 q2

.

The reason to calculate P-matrix from the Q-matrix is that for the numerical analysis it

is more natural to consider the transition probabilities. The process is justified with the

fact that in the continuous-time Markov chain, the probability of a particular transition

is roughly proportional to the duration of the infinitesimally small time interval. Thus,

we shall first calculate the Q-matrix.
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Solving the semi-martingale representation (4.1), assumingX0 the initial value of (Xt)t≥0

is known, yields the following

P(t) = exp(Qt) =
1

π

q2 q2

q1 q1

+
e−πt

π
Q,

where π = q1 + q2.

We need to choose some specimen values for our model to illustrate the practical impli-

cations. We choose the same values for the model parameters and the policy parameters

as in Siu et al. [2008] and Bacinello [2003a]:

p1 = p2 = 0.40; r1 = 0.035; r2 = 0.015;

σ1 = 0.2; σ2 = 0.2; µ1 = 0.10; µ2 = 0.05;

b1 = 200.00; b2 = 500.00.

The term to maturity of the contract is T = 20 years, ∆t is assumed to be one trading

day (∆t = 1/252), and, we select the following values for the parameters of the policy:

rg = 0.04; β = 0.5; γ = 0.7; αp = 0.6; S0 = 100.

The (M)GG processes

Since we employ the collocation method, the choice of the shape function φ, might be

critical. So we use two different functions for φ, namely Legendre and Chebyshev, in

order to examine the sensitivity of the results to the choice of the shape function. For

this example we select the MGG process with the shape parameter of α = 0.1, and we

calculate the approximation value for the S-denominated fair value of the participating

policy. The approximate solutions for V̄Z(Z,X, t) using the two different shape functions

differ no more than 0.3679 between Z Values −1.00 to +1.00. We also test the impact of

the different values of the shape parameter on V̄Z(Z,X, t), using the two different shape

function φ. Our results show a very good agreement of the solution over 0 ≤ α < 1,

with maximum divergence of 0.3803. In order to concentrate on the analysis of the

participating policy with respect to the model parameters, we choose the Legendre

function as our choice of the shape function for the rest of the paper. In addition, we
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convert the values of V̄Z(Z,X, t) to V (S,R,X, t) for the purpose of presentation, so that

our results could be easily compared to other models, such as the Merton jump diffusion

model.

We consider the MGG process with the shape parameter α that ranges from 0.0 to

0.9, with increments of 0.1. When α = 0.0, the MGG process becomes the MWG

process. When α = 0.5 the MGG process becomes the MIG process. Other values of α

generate different parametric forms of the MGG processes. The parameter values of the

no-regime-switching version of the model correspond to a regime-switching model with

only one state.

For the Merton jump diffusion model, we consider the drift and the dispersion of the ref-

erence portfolio as well as the risk-free rate to be equal to the corresponding parameters

in the no-regime-switching version of the model. In addition, we assume the intensity

parameter of the model to be 60%, and the jump size of the compound Poisson process

follows a normal distribution of N(−0.05, 0.49).

Figure 4.1 presents the impact of α on the fair values of the participating policy, cal-

culated with the above model specifications. The graph shows a meaningful difference

between the fair values of the policy, with and without switching regimes. For exam-

ple, when α = 0.2, the fair value calculated without regime-switching is 16.01% lower

than the fair value of the contract with regime-switching. This difference is as high as

73.33% for the fair values under the two scenarios with α = 0.9. We also document the

significant effect of α on the values of the contracts for both cases. For instance, under

regime-switching scenario the fair value of the policy reduces from $85.4763 to $0.1092

in the domain of 0 ≤ α ≤ 0.9.

The scale-distorted (M)IG processes

In this section we make a comparison between scale-distorted IG and MIG processes,

as well as the Merton jump-diffusion model. We examine how the variations of the

distortion parameter, c, impacts the underlying price behaviors and the fair values of

the participating policies. We consider that c takes values from 0.5 to 3.0, with incre-

ments of 0.5. The parameter values for the Merton jump-diffusion model are those in
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Figure 4.1: The fair value of the participating policy, with general (M)GG processes.

the previous part. Figure 4.2 displays the numerical results for the fair values of the

participating products for the power-distorted version of the (M)IG processes ((M)GG

with α = 0.5). The results are also compared to the Merton jump diffusion model. It

is observed that the effect of switching regimes on the fair values of the participating

policy is still significant. We document that the value of the policy under the scenario

with regime-switching is always larger than the scenario without regime-switching. The

difference is as low as 10.93% when c = 1.5, and is as high as 74.57% when c = 3.0.

The power-distorted (M)IG processes

In this section, we compare the power-distorted MIG process with the IG version of the

process, as well as the Merton’s jump-diffusion model. We examine how the changes in

the distortion parameter, q, impact the underlying price behaviors and the fair values

of the participating policies. We consider that q takes values from 0.8 to 1.4, with
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Figure 4.2: The fair value of the participating policy, with scale-distorted M(IG) processes.

increments of 0.1. The parameter values for the Merton jump-diffusion model are given

by those in the previous parts.

Figure 4.3 displays the numerical results for the fair values of the participating policy

for the power-distorted (M)IG processes. The results are also compared to the Merton’s

jump diffusion model. It is observed that the effect of switching regimes on the fair

values of the participating policy is significant.

We document that the value of the policy under the scenario with regime-switching is

always larger than the scenario without regime-switching. The difference is as low as

3.19% when q = 0.8, and is as high as 30.56% when q = 1.0. These results, compared

to those presented for the scale-distorted scenario, reveal that the impact of changes in

q is less significant that changes in c.

In addition to the fair valuation of the contracts, it is interesting to investigate how the

risks inherent in these products can be hedged once the policy has been sold from a

risk management perspective. Hedging via the Greeks and the risk-minimizing hedging
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Figure 4.3: The fair value of the participating policy, with power-distorted M(IG) processes.

represent two popular approaches to hedging these risks. However, hedging using the

Greeks is only an approximating hedging strategy and it cannot provide a perfect hedging

result due to the market incompleteness, and time discretization. There is a wealth

of literature about different methods of calculation of the Greeks. Some prominent

examples are the efficient Monte Carlo simulation method proposed by Broadie and

Glasserman [1996], the Malliavin calculus approach introduced by Fournie et al. [2001],

and a combination of the two methods in a more recent paper by Davis and Johansson

[2006], in particular for jump-diffusion models. In this paper, our main focus has been

the fair valuation issue of the policy; however, approximate values of different Greeks

can be derived directly from the PIDE grid (see Karatzas and Shreve [1998] for further

details).
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4.5 Conclusion

In this article, we have proposed a model for the valuation of participating life in-

surance products under a generalized jump-diffusion model with a Markov-switching

compensator. Participating life insurance products are a class of equity linked insurance

products, which provide the insured a certain guaranteed annual minimum benefit, as

well as the proceeds from an investment portfolio. We demonstrated that the payoff of

a participating contract can be decomposed to the guaranteed benefit, a European-style

default option, and a European-style bonus option.

Using the insights of the previous research on the pricing of the contracts with similar

model assumptions for the reference portfolio (Siu et al. [2008]), we employed the Es-

scher transform to determine an equivalent martingale measure under the incomplete

market setting. However, due to the high dimensionality of the pricing formulation un-

der the new probability measure, there is not any close form solutions using the PIDE

approach. Siu et al. [2008] showed that the price for the participating contract could be

approximated using a Monte Carlo based simulation algorithm, although, the process

can be cumbersome and time consuming.

With the intention to use the PIDE method to increase the accuracy and the com-

putational speed, we proposed a change of measure technique by defining an artificial

numeraire. The technique reduced the dimensions of the regime-switching PIDE. The

regime-switching PIDE derived from the change of measures depends on two state vari-

ables including a new observable state variable and the state of the economy. This paper

is the first that extends the technique for a generalized jump-diffusion process with a

Markov-switching kernel-biased completely random measure, which nests a number of

important and popular models in finance, including the classes of jump-diffusion models

and Markovian regime-switching models. We also considered a number of paramet-

ric cases of the Markov-modulated kernel-biased completely random measure; namely,

Markov-modulated generalized gamma, as well as the scale-distorted and power-distorted

Markov-modulated generalized gamma.

We solved the PIDE numerically using the collocation method, to calculate the fair value

of the participating policy. In particular, we utilize the spectral method, through exper-

imentation and comparing two different shape functions (i.e. Legendre and Chebyshev).
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Our numerical results exhibit a very good agreement of the solution over a reasonable

range of values of the space variable. The collocation method is a class of FE meth-

ods, which compared to the conventional FD method provide higher level flexibility and

accuracy in the numerical approximation process.

Further, we extended the numerical analysis by examining the sensitivity of the fair

values to various model parameters. In order to highlight the features of our model, we

have also compared our results to the fair value of the policy obtained from the Mer-

ton’s jump-diffusion model. The numerical analysis reveals that the impact of various

specifications of the jump component and the switching regimes on the fair value of the

participating policy are large enough to be of practical importance.



Chapter 5

Summary and Conclusion

5.1 Summary

In this thesis, we analysed pricing and risk management of financial derivatives under

regime-switching framework, captured by an observed Markov chain. The market con-

sidered in this thesis is incomplete, because of the additional source of risk described by

the switching regimes. Under these market conditions, a replicating dynamic trading

policy does not exist and there is more than one equivalent martingale measure.

In Chapter1, we briefly reviewed the literature on option pricing models, and the chal-

lenges in valuation and risk management of contingent claims. In particular, we discussed

different forms of market incompleteness, including the Markov regime-switching frame-

work. Additionally, we reviewed the literature on different remedies for pricing deriva-

tives in incomplete markets, and we discussed the advantages of choosing MEMM and

Esscher transform over other methodologies. We also reviewed the prominent numeri-

cal methods commonly used in financial engineering, and their specific applications in

derivatives-pricing methodologies. Finally, we outlined the subsequent chapters, where

we analysed the problem of pricing three different derivative contracts; namely, 1) a

European call option, 2) a ruin contingent life annuity, and 3) a participating product.

In Chapter2, we discussed the pricing and risk management problems of standard

European-style options in a Markovian regime-switching binomial model. Due to the

market incompleteness, we found that the no-arbitrage condition is not sufficient to fix

a unique pricing kernel. Using the minimal entropy martingale measure, we determined

96
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a pricing kernel. Additionally, we examined numerically the performance of a simple

hedging strategy by investigating the terminal distribution of hedging errors and the

associated risk measures such as Value at Risk and Expected Shortfall. The impact of

the frequency of re-balancing the hedging portfolio and the transition probabilities of

the modulating Markov chain on the quality of hedging were also discussed.

In Chapter3, we proposed a model for valuing ruin contingent life annuities under the

regime-switching variance gamma process. The Esscher transform was employed to

determine the equivalent martingale measure. The PIDE approach was adopted for

the pricing formulation. Due to the path dependency of the payoff of the insurance

product and the non-existence of a closed-form solution for the PIDE, the finite difference

method was utilized to numerically calculate the value of the product. To highlight

some practical features of the product, we presented a numerical example. Finally, we

examined numerically the performance of a simple hedging strategy by investigating

the terminal distribution of hedging errors and the associated risk measures such as the

value at risk and the expected shortfall. The impacts of the frequency of re-balancing

the hedging portfolio on the quality of hedging were also discussed.

In Chapter4, we proposed a model for the valuation of participating life insurance prod-

ucts under a generalized jump-diffusion model with a Markov-switching compensator.

The Esscher transform was employed to determine an equivalent martingale measure in

the incomplete market. The results were further manipulated through the utilization

of the change of numeraire technique to reduce the dimensions of the pricing formula-

tion. This paper is the first that extends the technique for a generalized jump-diffusion

process with a Markov-switching kernel-biased completely random measure, which nests

a number of important and popular models in finance. The collocation method was

utilized to numerically analysis the model and to illustrate the practical implications.
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5.2 Conclusion and Future Research

5.2.1 Chapter2: A Regime-Switching Binomial Model for Pricing and

Risk Management of European Options

In Chapter2, we discussed the option pricing and hedging in a regime-switching binomial

tree, where we assume two sources of uncertainties; namely, the risk due to binomial

movements of the underlying risky asset price and the risk due to transitions in economic

states. We adopted the MEMM approach to price the two sources of risk and examined

the pricing and hedging performance of this approach using numerical examples. A

simple, dynamic Delta hedging was considered and its performance was examined by

evaluating the VaR and ES of the terminal hedging errors arising from the dynamic

Delta hedging strategy. Numerical results were provided which reveal that the impact

of pricing regime-switching risk is significant and that both the hedging frequencies and

transition probabilities of regime switches have significant impacts on the performance

of the delta hedging strategy.

Future research, may further address the hedging strategies in the regime-switching

binomial model. In the present paper, we illustrated the risk of the option issuer based

on the terminal hedging error, if they conveniently ignore the regime-switching risk. Such

a hedger observes the regime at each node and chooses the appropriate delta accordingly.

However, the issuer is able to reduce the terminal hedging error (in the case of vanilla

European options, potentially to zero), by implementing a trading strategy that takes

the delta of all states into consideration, concurrently.

It is assumed that an agent is issuing a standard European option in an economy where

all of the assumptions presented in Section2.3 hold true. Given the information at

time t, the model suggests that the economy may be either in regime 1 or regime 2

(i.e. the process is governed by the Markov chain). Therefore, the agent may have

two choices of delta; namely, ∆t,1 = (V u
t+1,1 − V d

t+1,1) × (Sut+1,1 − Sdt+1,1)
−1 and ∆t,2 =

(V u
t+1,2 − V d

t+1,2)× (Sut+1,2 − Sdt+1,2)
−1.

Thus, at time t, the agent has to choose an appropriate delta. In Section2.4 we presented

the result of the case where the hedger chooses the delta corresponding to the current

regime. However, the terminal hedging error for a standard European option can po-

tentially be reduced to zero, if the hedger selects a delta hedge based on the weighted
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average of ∆t,1 and ∆t,2. In this strategy the weights are calculated according to the

risk-neutral transition probabilities. Consequently, in equation (2.5) we show that the

value at time t of an option can be written as:

Vt = c1i{∆t,1St −Bt,1}+ c2i{∆t,2St −Bt,2}.

where Bt,i denotes the amount of riskless borrowing and lending at time t when the

economy is in the state ei. Hence, the hedging strategy involves trading c1i∆t,1 +c2i∆t,2

of the underlying asset and −(c1iBt,1 + c2iBt,2) riskless borrowing and lending. One

may expand the equation (2.5) as follows, which suggests the possibility of complete risk

transfer or a perfect hedge under our incomplete market framework.

Vt = c1iqt,1V
u
t+1,1 + c2iqt,2V

u
t+1,2 + c1i(1− qt,1)V d

t+1,1 + c2i(1− qt,2)V d
t+1,2

We re-emphasize that this only shows that there exist a trading strategy which can

perfectly hedge all the risks in a regime-switching economy. However, the question

remains: out of the infinite number of martingale measures, which one would provide

the perfect hedge? In other words, whilst we can show the possibility of the perfect hedge

in the regime-switching economy, we are unable to find the specific [cji] that perfectly

hedges the contingent claim.

5.2.2 Chapter3: Ruin Contingent Life Annuities under Regime-Switching

Variance Gamma Process

The motivations underlying this study are twofold: 1) The paucity of literature on

pricing of RCLA contract and with respect to hedging implications for the issuer of the

contract; and 2) the significance of markets whereby RCLA contracts are able to provide

flexible hedging solutions to both financial market risk and personal longevity risk.

In Chapter3, we introduce a regime-switching variance gamma model, for pricing the

Ruin Contingent Life Annuity (RCLA) contract. This study, also, addresses different

shortcomings of Huang et al. [2009], which was based on a complete market model. To

price the RCLA contract, the payoff is decomposed into a down-and-in barrier option

and a European call option. Therefore, we derive the no-arbitrage value of RCLA using
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the PIDE method. The analytic solution to the PIDE is not known, hence we employ the

explicit finite difference method to numerically approximate the solution. The results

indicate that the model assumptions for the process driving the price of the underlying

asset may have a tremendous impact on the fair value of the contract.

The VG process is a class of jump Levy processes, with growing popularity as an alter-

native to the Black-Scholes economy. We use the Levy measure representation of the

VG process and modulate its parameters by a Markov chain to capture the impacts of

the regime-switching risk. We employ the Esscher transform to find an equivalent mar-

tingale measure in our incomplete market and derive the risk-neutral dynamics of the

underlying portfolio. Subsequently, we derive the pricing PIDE, and solve for the value

function numerically. To highlight the practical implications of our model, we conduct

a numerical example through which we calculate the value of the RCLA product. Then

we conduct a Monte Carlo simulation experiment for a simple, dynamic delta hedging

strategy. The performance of the strategy is examined by examining the VaR and ES

of the terminal hedging errors, arisen from the dynamic delta hedging.

Despite our analysis of the risk inheritance in the embedded option using two conven-

tional methods, the literature may benefit from further research on more complex risk

evaluation methodologies. There is a wealth of literature about different methods of

calculation of the Greeks that could be extended to the RCLA contracts. Some promi-

nent examples are the efficient Monte Carlo simulation method proposed by Broadie

and Glasserman [1996], the Mallivian calculus approach introduced by Fournie et al.

[2001], and a combination of the two methods, in particular for jump-diffusion models,

in a more recent paper by Davis and Johansson [2006].

5.2.3 Chapter4:Pricing Participating Products under a Generalized

and Regime-Switching Jump-Diffusion Model

In this article, we have proposed a model for the valuation of participating life in-

surance products under a generalized jump-diffusion model with a Markov-switching

compensator. Participating life insurance products are a class of equity-linked insurance

products, which provides the insured a certain guaranteed annual minimum benefit, as

well as the proceeds from an investment portfolio. We demonstrate that the payoff of a
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participating contract can be decomposed to the guaranteed benefit, a European style

default option, and a European style bonus option.

Using the insights provided by the previous study on the pricing of the contracts with

similar model assumptions (Siu et al. [2008]), we employed the Esscher transform to

determine an equivalent martingale measure under the incomplete market setting. How-

ever, due to the high dimensionality of the pricing formulation under the new probability

measure, there is not any close form solutions using the PIDE approach. Siu et al. [2008]

showed that the price for the participating contract could be approximated using a Monte

Carlo based simulation , despite the process being cumbersome and time consuming.

With the intention to use the PIDE method to increase the accuracy and the com-

putational speed, we proposed a change of measure technique by defining an artificial

numeraire. The technique reduces the dimensions of the regime-switching PIDE. The

regime-switching PIDE derived from the change of measures depends on two state vari-

ables including a new observable state variable and the state of the economy. This paper

is the first that extended the technique for a generalized jump-diffusion process with a

Markov-switching kernel-biased completely random measure, which nests a number of

important and popular models in finance, including the classes of jump-diffusion models

and Markovian regime-switching models. We also considered a number of paramet-

ric cases of the Markov-modulated kernel-biased completely random measure; namely,

Markov-modulated generalized gamma as well as the scale-distorted and power-distorted

Markov-modulated generalized gamma.

We solved the PIDE numerically using the collocation method, to calculate the fair

value of the participating policy. The collocation method is a class of FE methods,

which compared to the conventional FD method provide higher level flexibility and

accuracy in the numerical approximation process. We utilized the spectral method,

through experimentation and comparing two different shape functions (i.e. Legendre

and Chebyshev). Our numerical results exhibited a very good agreement of the solution

over a reasonable range of values of the space variable.

Further, we extend the numerical analysis by examining the sensitivity of the fair values

to various model parameters. In order to highlight the features of our model, we have

also compared our results to the fair value of the policy obtained from the Merton’s jump-

diffusion model. The numerical analysis revealed that the impact of various specifications
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of the jump component and the switching regimes on the fair value of the participating

policy are large enough to be of practical importance.

Besides fair valuation of the options embedded in the participating products, it would

also be interesting to investigate how the risk inheritance in these options can be hedged

once the policy has been sold. In this pricing model since we assumed two sources of

incompleteness, further research would shed light on the hedging strategies for issuers

of the policies from a risk management standpoint.
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