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Abstract

Image captioning is the task of describing images using natural language. Recent advances

in deep neural networks have boosted the performance of image captioning systems on

large benchmark datasets such as COCO [2]. However, these data-driven approaches

result in low quality captions for images containing novel objects (i.e., image objects

whose corresponding textual labels are not included in the parallel image-caption training

data). This thesis aims to improve generated caption quality for images containing novel

objects.

We notice the limitations in previous novel object captioning benchmark and systems.

The contributions of this thesis are twofold. The first contribution is a new evaluation

dataset nocaps for novel object captioning, which is intended for evaluation of image

captioning models trained on COCO. The nocaps benchmark is sampled from Open

Images Dataset [3] with more than 400 classes of objects that are rarely seen in the COCO

data. The second contribution is an improved novel object captioning model UpDown-C,

which balances generation quality between in-domain and novel object captions.

The evaluation results show that UpDown-C outperforms several strong baselines,

including the state-of-the-art Up-Down model with CBS and NBT model, with substan-

tial improvement over previous work and sets a new state-of-the-art on the nocaps

benchmark.
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“Begin at the beginning”, the king said, gravely, “and go on till you

come to the end; then stop.”

Lewis Carroll, Alice in Wonderland

1
Introduction

Language, one of the most shining pearls in the human intelligence, is a reflection human

understandings and thoughts about our physical world. Human brains can handle visual

and linguistic information jointly without explicit training. Even a two-year-old baby can

point to a running dog and say “Look, that’s a dog!”. Image captioning is such a task

that simulates this vision-to-language process. The history of this task dates back to 1966

when Marvin Minsky asked one of his undergraduate students to build up an automatic

system to describe scenes from a camera [4].

A modern image captioning system takes an image as input and returns a caption for

that image. Figure 1.1 shows three examples of image-caption pairs. Examples like this

are used to “teach” machine learning models to talk about salient objects in the images.

Although recent advances in deep neural networks have achieved impressive performance

1



2 INTRODUCTION

FIGURE 1.1: Image Captioning Examples From the COCO Image Caption Benchmark.

on image captioning benchmarks, according to [5], many existing image captioning

models generalize poorly to images in the wild. That is, existing image captioning models

learn to mention horse only when the image-caption training data contains visual objects

and textual mentions of horse, which is quite different from human beings who can

describe images well once being told the exact object labels. What’s more, even the largest

image captioning COCO benchmark provides less than 100 types of image objects. This

significantly hurts the application of automatic image captioning models in real world,

such as helping people with impaired vision [6].

Novel Object Captioning [7] is a special case of image captioning that explores how

to deal with the visual or textual concepts that are not present in the image-caption

training data. Figure 1.2 shows a comparison of Novel Object Captioning and standard

image captioning. They share similar training data and neural networks, but they are

different in the evaluation images. In this thesis, we define Novel Objects as image objects

whose corresponding textual labels (i.e., words or phrases) are not included in the parallel

image/caption training data. Image objects whose labels are included are referred to

as Seen Objects. Standard image captioning focuses only on images containing Seen

Objects whilst novel object captioning deals also with images containing Novel Objects. In

Figure 1.2, elephant is a novel object because this word never appears in the image-caption

parallel training dataset. However, horse is a seen objects as it can be found in the training

captions. Note that we use external sources to provide information on novel objects,

effectively able to "see" them, such as object detection systems.

There are specialised object detectors for wide varieties of objects, e.g., animals, plants,
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furniture, automobiles, etc., and it is much easier to build a specialised object detector

than it is to collect captions mentioning all these objects. Instead of constructing large

image-caption datasets, we consider ways of using the information produced by such object

detectors in the image captioning task to generalise captioning models to Novel Objects.

This information includes image object bounding boxes (the blue box in Figure 1.2), the

extracted (visually based) features from the corresponding objects (Regions Of Interest

or ROI vectors) and associated text labels. This is similar to zero-shot learning where

models can recognize the concepts that are not well-trained [8]. The main idea is that,

as the model sequentially constructs the caption, the caption decoder decides when and

which image object labels to mention given the caption generation context and extracted

object information.

FIGURE 1.2: An comparison of Novel Object Captioning and Image Captioning.

More specifically, in this thesis, we tackle this problem in two following steps:

i) nocaps: A New Evaluation Dataset

Developing deep neural network models requires large and high-quality training and

validation datasets. We note that the existing novel object captioning benchmark has

several drawbacks and we propose an improved benchmark nocaps for Novel Object

Captioning.

Existing approaches to novel object captioning [9–11] have been evaluated using a
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proof-of-concept COCO eight object benchmark introduced in [7]. There are at least three

limitations of this benchmark: 1) It only has eight novel objects 1 held out from the COCO

datase (hence, COCO eight object), all highly similar to existing ones, e.g. horse is a seen

object, zebra is a novel object. 2) It requires captions to train an external system that

provides information about novel objects. A large number of captions are still needed in

this situation. 3) In this benchmark, novel objects belong to the image object label system

used in the COCO training data. However, we often have to deal with image objects

annotated with different scheme (i.e., Open Images labelling system).

To tackle these issues, we construct the large-scale nocaps benchmark from the

evaluation and test split of the Open Images Dataset, which has a much larger image

object label system than the COCO benchmark (600 vs. 80) and around 400 classes of

objects that are rarely seen in COCO captions.

ii) UpDown-C: A New Captioning Model

After identifying the strengths of existing novel object captioning systems, we combine

those strengths and further incorporate a novel object filtering heuristic and novel copy

mechanism to produce our newly proposed UpDown-C model.

Copy networks [12, 13] are a special case of Seq2Seq model [14] which additionally

learn to insert words from external sources (i.e.: they copy the words). Neural Baby Talk

(NBT) [15] is a state-of-the-art novel object captioning system that learns to effectively

talk about unseen image objects through such a copy mechanism. However, experiment

results on the nocaps benchmark show that the state-of-the-art normal captioning model,

the Up-Down model, in conjunction with Constrained Beam Search (CBS) [11] outper-

forms NBT by a large margin. CBS is a special inference-time decoding algorithm that

enforces the use of pre-specified lexical items. CBS is disconnected from the underlying

language generation model and makes sub-optimal decisions about novel object mentions.

Therefore, there should be potential for captioning models with copy mechanisms to

outperform models with CBS. In this thesis, we propose the UpDown-C model with a novel

object filtering heuristic and copy mechanism which sets the new state-of-the-art on the

1bottle, bus, couch, microwave, pizza, racket, suitcase, and zebra
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nocaps benchmark.

1.1 Contributions

In summary, this thesis makes two main contributions:

• A large-scale Novel Objects Captioning Benchmark. Image captioning models

have achieved impressive results on datasets containing limited visual concepts and

large amounts of paired image-caption training data. However, if these models

are to ever function in the wild, a much larger variety of visual concepts must be

learned, ideally from less supervision. To encourage the development of image

captioning models that can learn visual concepts from alternative data sources, such

as object detection datasets, we present the first large-scale benchmark for this

task. In the computational aspect, we make a small step further: The Up-Down

model can only generate words that it has seen in the image-captioning training

data. To improve the performance on novel object captioning, we utilise the power

of large-scale pre-trained language models so that the Up-Down model has some

information about words that do not appear in the image-captioning training data.

We initialise word representations and the output layer using parameters from the

ELMo [16] model. Experiment results show that this improves out-of-domain

performance on the nocaps benchmark.

• New Novel Object Captioning UpDown-C Model. This model builds on two state-

of-the-art image captioning systems, the Up-Down and NBT models. We design a

novel object filtering heuristic and copy mechanism. The UpDown-C model outper-

forms previous work by a large margin when decoding with beam search and sets

the new state-of-the-art on the nocaps benchmark.

1.2 Thesis Outline

The remaining chapters of this thesis are organized as follows: Chapter 2 provides a

general overview of the existing literature (CV and NLP) relating to novel object captioning.



6 INTRODUCTION

Chapter 3 introduces more details about the nocaps benchmark, including data collection,

characteristic and preliminary computational experiments. Chapter 4 introduces our

newly proposed model UpDown-C. The UpDown-C model sets a new state-of-the-art on

the nocaps benchmark. In Chapter 5, we conclude the thesis with a summary of our

main contributions and a discussion of future research opportunities.

1.3 List of Publications

In this thesis, the nocaps benchmark (described in Section 3) is published as:

• H. Agrawal, K. Desai, Y. Wang, X. Chen, R. Jain, M. Johnson, D. Batra, D. Parikh,

S. Lee, and P. Anderson. nocaps: novel object captioning at scale. International

Conference on Computer Vision (2019). https://nocaps.org

During Mres Y2 study (2019.01.15 - 2019.10.25), the author also contributed to the

following projects and publications (they are not necessarily related to with thesis):

• Y. Wang, M. Johnson, S. Wan, Y. Sun, and W. Wang. How to best use syntax in seman-

tic role labelling. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pp. 5338-5343 (Association for Computational Linguis-

tics, Florence, Italy, 2019). https://www.aclweb.org/anthology/P19-1529

• P. Jamshid Lou, Y. Wang, and M. Johnson. Neural constituency parsing of speech

transcripts. In Proceedings of the 2019 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Technolo-

gies, Volume 1(Long and Short Papers), pp. 2756-2765 (Association for Compu-

tational Linguistics,Minneapolis, Minnesota, 2019). https://www.aclweb.org/

anthology/N19-1282

• Yifang Sun, Shifeng Liu, Yufei Wang, Wei Wang. Extracting Definitions and Hy-

pernyms with a Two-Phase Framework. The 24th International Conference on

Database Systems for Advanced Applications (DASFAA 2019), 2019. https://

link.springer.com/chapter/10.1007/978-3-030-18590-9_57

https://nocaps.org
https://www.aclweb.org/anthology/P19-1529
https://www.aclweb.org/anthology/N19-1282
https://www.aclweb.org/anthology/N19-1282
https://link.springer.com/chapter/10.1007/978-3-030-18590-9_57
https://link.springer.com/chapter/10.1007/978-3-030-18590-9_57


“All of us are interested in our roots.”

Donald E. Osterbrock, Organizations and Strategies in Astronomy

2
Background and Related Work

2.1 Computer Vision Background Knowledge

2.1.1 Image Classification

Image classification is the task of assigning a class label to input images with a probability

indicating how likely the input image belongs to that class. This task can either be a single-

class classification task where the sum probability of all labels equals to 1, or a multi-label

classification task [17] where the output is a set of image labels (e.g., a dog and a cat).

The existing state-of-the-art systems for image classification are Convolutional Neural

Networks (CNN) [18] with various architectures, such as VGG [19] and ResNet [20].

Pre-trained CNN models, which are trained on large amounts of image-label pairs, are

used as powerful feature extractors for many down-stream tasks, such as object detection.

7



8 BACKGROUND AND RELATED WORK

2.1.2 Object Detection

Object detection is a fine-grain image understanding task that identifies bounding boxes

that cover entire objects and assigns objects to pre-defined categories simultaneously.

Figure 2.1 compares image classification to object detection. Modern neural object

detection systems can be categorised into two-stage systems, such as Fast R-CNN [21],

Faster R-CNN [22] and one-stage systems, such as SSD [23] and YOLO [24]. The two-stage

object detectors usually have better performance than their one-stage counterparts, whilst

one-stage object detectors usually enjoy faster speed with lower memory requirements.

FIGURE 2.1: A comparison between image classification and object detection outputs. Both
tasks detect a dog and a cat from the given image, but in different ways.

In this thesis, a two-stage Faster R-CNN object detector is deployed to identify image

objects for image captioning systems. Figure 2.2 shows the standard architecture of a

Faster R-CNN object detector. The first stage proposes object bounding boxes using the

base CNN features and the second one computes a Region of Interest (ROI) vector for each

proposal via ROI Pooling which transforms a bounding box (potentially from an external

source) into a fixed-sized dense vector. The ROI vector is used as input to an object classifier

and to refine the bounding box position via Box Regression. The state-of-the-art image

captioning models, Up-Down and NBT, use ROI vector in their visual attention modules.
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FIGURE 2.2: Faster R-CNN architecture

2.2 Natural Language Process Background Knowledge

2.2.1 Large-scale Pre-trained Language Models (LM)

The idea of learning word representations from large-scale text corpora has a long history

in the NLP community [25–27]. [28] proposes word2vec, a reduced version of a forward-

feed neural language model proposed in [29], to learn a set of dense vectors for words

encoding their semantics. These fixed word vectors are widely used in neural networks,

such as Recurrent Neural Networks (RNN). As computational power has increased, training

large-scale context-aware pre-trained language models has become possible. The first such

model was ELMo [16] which uses the linear-weighted outputs of a large bi-LSTM model to

represent input words. These word representations vary given different sentence contexts.

The follow-up works, Bert [30], GPT [31] and XLNet [32] train large transformers [33]

to learn word representations using larger training data and novel loss functions other

than the standard left-to-right language modeling loss.

As shown in Table A.1, these language models are all trained by increasingly large

text corpora, which increases their representational power. When incorporating word

representations from these language models in down-stream tasks, such as Question An-

swering [34] and Semantic Role Labelling [35], the performance is significantly improved.

In this thesis, to handle words from unseen image objects, parameters from ELMo are

used to initialize some important parameters of our image caption decoder.
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2.2.2 Copy Networks

The original copy network, namely the pointer network [12], is adapted from a sequence-

to-sequence model [14] to solve problems whose output size depends on their input size,

such as the Travelling Salesman Problem and Delaunay Triangulation. Instead of predicting

from pre-specified output schemes (e.g., fixed vocabularies), pointer networks predict the

input item order (i.e., which input items come first, second etc.).

FIGURE 2.3: A General Copy Network Architecture

The follow-up works [13, 36, 37] adapt this idea to the sequence-to-sequence models

used in machine translation and text summarisation. These copy networks either generate

words from the standard output layer, or copy words from external sources, such as input

sequences. The main motivation is to copy out-of-vocabulary words from the inputs. As

shown in Figure 2.3, a common copy network is based on a sequence-to-sequence model

with attention over input tokens. The input attention weights are used as copy probability

which is then compared with the standard output probability in order to make the final

copy decision.

2.3 Image Captioning

One important breakthrough of deep neural networks is to represent everything in the

network as dense vectors. Both words and image regions are represented in the same

feature space. This revolutionary change makes image captioning systems with and
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without deep learning technologies different, which will be introduced separately. We

also talk about the common evaluation metrics used for image captioning task.

2.3.1 Image Captioning Before Deep Learning

Text generation systems without deep learning usually use image object labels, attributes

and relationships to fill pre-defined templates. [38] proposes Visual Dependency Repre-

sentations (VDR), similar to dependency graphs, to capture object spatial relations and

traverse them to fill the templates. [39] uses image object information to generate a

syntax tree that describes the image content. [40] trains an n-gram language model to

generate function words to connect key components in the scene-graphs.

Another approach is to “generate” captions by retrieving from training captions [41–

43]. All output captions are actually from the training captions. Given the input images,

these systems first look for similar training images and then copy from the corresponding

captions. For example, [43] proposes to map sentence and image representation into

the same space. A similarity score can be calculated from this space given image-caption

pairs. [42] first looks for similar images and selects the most representative captions by

using lexical overlap with other training captions. They show a strong baseline on COCO,

the largest and most widely used benchmark for image captioning.

2.3.2 Image Captioning with Deep Learning

Figure 2.4 shows a typical neural image captioning architecture which includes a Convo-

lutional Neural Network (CNN) as an image encoder and a Recurrent Neural Network

(often, LSTM [44]) as a text decoder. [45] uses a LSTM decoder with an attention module

that operates on a set of uniformly-divided feature vectors from a CNN encoder. The

system is trained to focus on the salient and relevant image regions when generating

captions.

Note that the feature vectors from a CNN model are usually associated with uniformly-

divided grids on the input images. However, for image captioning, salient parts of the

images are often much more important than other parts. To model the salience of the
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FIGURE 2.4: Basic CNN-RNN Image Captioning System

input images, [46–48] extract vectors representing high-level semantic elements, such as

image objects and labels from external object detectors. The ROI vectors of these extracted

image objects are used as the basis of the visual attention in these models.

2.3.3 Evaluation Metrics

Given an output caption y , a set of ground truth references S= {s1, . . . sk} and an image

I , the goal of image captioning evaluation metrics is to estimate quality of y given I . The

common idea is to discard the visual information in I and only compare the linguistic

similarity between y and ground truth references S, making it a NLP analysis problem.

Bleu [49] and METEOR [50] are proposed to evaluate machine translation systems by

calculating n-gram precision and synonym matching between the outputs and ground

truth references. ROUGE [51], a text summarization evaluation metric, is based on n-gram

recall. CIDEr [52] and SPICE [53] are all specially designed for image captioning task.

CIDEr focuses on measuring tf-idf weighted n-gram cosine similarity between the output

captions and ground truth ones. SPICE is built on scene graph (See an example of scene

graph in Figure A.1). In summary, Bleu, METEOR, ROUGE and CIDEr are evaluating the

lexical overlap and SPICE measures the preserved structural semantic meaning in the

output captions.

2.4 Novel Object Captioning

In Novel Object Captioning, “novel objects” are defined as those image objects whose

corresponding textual labels (i.e., words or phrases) are not included in the parallel
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image-caption training data. This presents a big challenge for captioning models to learn

how to mention those unknown labels in the captions. In this section, we introduce three

types of Novel Object Captioning models.

2.4.1 Decoupled Language Model for Novel Objects

[7, 54] attempt to decompose the image captioning task into visual and linguistic sub-

modules that can be trained independently as well as jointly. In the independent training

phrases, images and sentences that contain novel object information are used in the

visual and textual sub-module separately. They are also jointly trained using the available

image-caption dataset. Their experiments show that the joint models can learn to talk

about novel objects fluently.

2.4.2 Copy Network for Novel Objects

As mentioned above, copy networks can generate out-of-vocabulary words from input

sequences. In the context of novel object captioning, [9, 10, 15, 55] propose novel copy

networks to copy from image object labels. These systems share a similar framework: a

standard text decoder, a copy mechanism and a novel object information provider. The

text decoders are usually a two-layer LSTM with an attention module in the middle. The

copy mechanisms decide when to copy and which particular object labels to copy. Object

detectors [15, 55] or image classifiers [9, 10] are often used to characterize novel objects

in the input images.

For example, when generating a caption for the image with elephant in Figure 2.5,

instead of generating all the words, copy networks would generate a group of people

riding on an slot in the first step. The slot is tied to a particular object in the input image.

It is then refined to a concrete word and caption generation continues.
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FIGURE 2.5: A Running Example of Copy Networks for Novel Object Captioning

2.4.3 Constrained Beam Search for Novel Objects

Constrained Beam Search (CBS) [11] and its follow-up studies [56, 57] propose sophisti-

cated beam search algorithms that enforce the inclusion of pre-specified lexical items in

captions. CBS with beam size K maintains a top-K beam in each state of a finite-state

machine (FSM). In each generation step, each state updates its top-K beam from all other

connected states. Take the image containing elephant in Figure 1.2 as an example. An FSM

with 22 = 4 states is required to maintain two constraints D1 = people and D2 = elephant.

As shown in Figure 2.6, q1 keeps the top-K captions without people and elephant. Once

the decoder generates captions with either people or elephant, they move to either q2 or

q3. Finally, captions in q4, the accepting state, satisfy both constraints people and elephant.

The captions stay in the same states when mentioning none of the constraints. CBS only

compares captions in the same state (i.e., satisfying the same constraints), avoiding the

problem of extremely low prediction probability of unseen words. [58] apply CBS into

the training stage in an EM-like iterative algorithm [59] to further improve performance

on novel object captioning tasks.

FIGURE 2.6: FSM for D1 = people and D2 = elephant constraint. This is a snapshot after
generating 5th word. Caption colors indicate the new states to which captions will move.
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2.5 Datasets

Large-scale and high quality training datasets are critical to the success of neural image

captioning systems. This section introduces important datasets relevant to this thesis,

including Image Captioning benchmarks (Section 2.5.1), ImageNet (Section 2.5.2), Visual

Genome (Section 2.5.3) and Open Images (Section 2.5.4) datasets.

2.5.1 Image Captioning Benchmarks

Table A.2 summarizes the meta information of popular image caption benchmarks. COCO,

Flickr 1 8K and Flickr 30K are crowd-annotated benchmarks, which are collected using

crowd workers with carefully curated instructions to control the quality and style of the

resulting captions. Each image is usually associated with multiple captions to improve

the reliability of automatic evaluation metrics. However, they cover limited visual con-

cepts. For example, the COCO benchmark has less than 100 classes of objects. Im2Text,

Pinterest40M and Conceptual captions are automatically collected benchmarks, which

are mostly sourced from web pages. These benchmarks contain many diverse visual

concepts, but are also more likely to contain non-visual content in the description due to

the automatic collection pipelines. These automatic benchmarks only include one caption

per image and lack human baselines.

2.5.2 ImageNet

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC or ImageNet) [60] is

a popular benchmark and challenge for image classification and object detection. The

dataset contains photographs collected from the well-known photo and video hosting

website Flickr and other search engines, manually annotated by annotators from the

Amazon Mechanical Turk 2 crowd-sourcing platform. Various CNN architectures (e.g.,

VGG [19] and ResNet [20]) pretrained on ImageNet are used as powerful feature extractors

for downstream tasks, such as object detection.

1https://www.flickr.com
2https://www.mturk.com

https://www.flickr.com
https://www.mturk.com
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2.5.3 Visual Genome

The Visual Genome Dataset [61] is a collection of short free texts for object regions in

the images obtained via crowd-sourcing. Figure 2.7 shows the two-stage crowd-sourcing

procedure for the Visual Genome Dataset. i) given an input image, the annotators draw

bounding boxes and write short descriptions for the corresponding regions. ii) Another

group of annotators give tight bounding boxes, names, attributes and relationships for all

objects in all regions. These annotations allow us to train object detection models. The

Visual Genome Dataset provides rich contextual visual information, allowing models to

learn a better alignment between visual and textual representations.

FIGURE 2.7: Visual Genome Annotation Stages.

2.5.4 Open Images

The Open Images Dataset 3 [3] is a large benchmark with multi-level annotations, including

image-level labels, object bounding boxes, object segmentation masks, and visual object

relationships. All images are first collected from Flickr. The simple and popular images

are then filtered out so the resulting images are very diverse and often contain complex

scenes with several objects (8.3 per image on average). The Open Images Dataset uses

600 image object labels which are organized in a tree structure (see Figure A.2 for details).

We explore the use of this tree structure when representing novel objects.

3https://storage.googleapis.com/openimages/web/index.html

https://storage.googleapis.com/openimages/web/index.html


“When you make the decision to start something new, first figure

out the jobs you want to do. Then position yourself to play where

no one else is playing.!”

Whitney Johnson

3
nocaps: novel object captioning at scale

The nocaps benchmark 1 is collected from the Open Images Dataset [3], which is the

largest available human-annotated object detection dataset with complex scenes annotated

with object bounding boxes for 600 object classes. Moreover, out of the 500 classes that

are not overly broad (e.g. ‘clothing’) or infrequent (e.g. ‘paper cutter’), nearly 400 are

never or rarely mentioned in the COCO benchmark [2] which we select as image-caption

training data, making these images an ideal basis for our benchmark. Note that we need

the training split of the Open Images Dataset to build an external object detector for novel

object image captioning systems. So all images in the nocaps benchmark are from the

1Note that some materials in this chapter come from our recently published paper [1]. I am the third

author of this paper (the first two authors contribute equally). In [1], my contributions are to implement

the ELMo-enhanced Up-Down model and to contribute to implementation of the Neural Baby Talk (NBT)

model, as well as the corresponding experimental results analysis.

17
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validation and test split of the Open Images Dataset.

3.1 nocaps Data Collection

3.1.1 Image Selection

Since Open Images Dataset is primarily an object detection dataset, a large fraction of

images contain well-framed iconic perspectives of single objects. The distribution of

object classes is highly unbalanced, with a long-tail of object classes that appear relatively

infrequently. For image captioning tasks, images with multiple objects and rare object

co-occurrences are more interesting and challenging. This motivates the following image

selection steps:

– Excluding all images with unknown rotation.

– Excluding all images with single ground truth object category.

– Including all images with more than 6 unique ground truth object categories.

– Randomly selecting remaining images in a way that improves the entropy over object

classes in selected set of images.

3.1.2 Collecting Human Annotations

In the nocaps benchmark, 11 English language captions 2 for each image are collected

using a large pool of crowd-workers on Amazon Mechanical Turk (AMT). Figure 3.1 shows

the nocaps annotation interface. Our image caption collection interface closely resembles

the interface used for collection of the COCO Captions dataset, albeit with one important

difference. We prime workers by displaying the list of ground-truth object classes present

in the image (as indicated by the red box). To minimize the potential for this priming to

reduce the language diversity of the resulting captions, the object classes were presented

as ’keywords’, and workers were explicitly instructed that it was not necessary to mention

all the displayed keywords. To reduce clutter, we did not display object classes belonging
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FIGURE 3.1: nocaps annotation interface. The red box indicates the hints provided to the
annotators.

to parts of their parent classes, such as human hand, tire, door handle.

3.1.3 Comparison between nocaps and COCO

Figure 3.2 compares object categories, number of instances and word counts between

the COCO and nocaps benchmarks. Since the Open Images object label system is much

larger than the object label system in the COCO benchmark (600 vs. 80), nocaps contains

more object classes per image (4.0 vs 2.9), and slightly more object instances per image

(8.0 vs 7.4). We investigated whether priming annotators negatively reduces language

diversity. We see in Table 3.1 that nocaps has a larger vocabulary (1-grams) and more

diverse language compositions (2-, 3- and 4-grams) than the COCO benchmark.

Dataset 1-grams 2-grams 3-grams 4-grams

COCO 6,913 46,664 92,946 119,582

nocaps 8,291 59,714 116,765 144,577

TABLE 3.1: Unique n-grams in equally-sized (4,500 images / 22,500 captions) uniformly ran-
domly selected subsets from the COCO and nocaps validation sets.

21 caption for human baseline and 10 captions for evaluation.
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FIGURE 3.2: Compared to COCO Captions [2], on average nocaps images have more object
classes per image (4.0 vs. 2.9), more object instances per image (8.0 vs. 7.4), and longer captions
(11 words vs. 10 words).

3.2 nocaps Evaluation Framework

The aim of nocaps is to benchmark progress towards models that can describe images con-

taining visually novel concepts. To avoid exposing the novel object captions, an evaluation

server 3 is hosted on EvalAI [62] for fast evaluation with the following guidelines: i) Do

not use additional paired image-caption data. Improving evaluation scores by leverag-

ing additional paired data is antithetical to this benchmark – the only paired image-caption

dataset that should be used is the COCO 2017 training split. However, other datasets such

as external text corpora, knowledge bases, and additional object detection datasets may be

used during training or inference. ii) Do not leverage ground truth object annotations.

We note that ground-truth object detection annotations are available for the Open Images

validation and test splits (and hence, for nocaps). While ground-truth object annotations

may be used to establish performance upper bounds on the validation set, they should

never be used in a submission to the evaluation server unless this is clearly disclosed.

The main metrics used for nocaps are CIDEr [52] (C) and SPICE [53] (S) because

they are shown to have the strongest correlation with human judgments, but performance

on Bleu [49] (B-1, B-4), Meteor [50] (M) and ROUGE [51] (R) will also be reported.

To demonstrate the strengths of different captioning models, we divide the im-

ages in the nocaps benchmark into three subsets: in-domain, near-domain and

out-of-domain. Images with only non-novel objects are classified as in-domain and

3https://evalai.cloudcv.org/web/challenges/challenge-page/355/overview

https://evalai.cloudcv.org/web/challenges/challenge-page/355/overview
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images with only novel objects are classified as out-of-domain. The remaining images

are classified as near-domain. The 80 COCO object categories and 39 Open Images

object categories that are frequent (≥ 1000) in the COCO training captions are recognized

as non-novel objects and the remaining as novel objects. 87 Open Images object categories

are not used in the nocaps benchmark. Table 3.2 shows the size of the three splits of the

nocaps benchmark test dataset. We note that near-domain is the largest split as it is

important to handle the relationships between seen objects and novel objects.

Item in-domain near-domain out-of-domain

Images 1311 7406 1883

Captions 13K 74K 19K

TABLE 3.2: Size of three splits of the nocaps benchmark test dataset.

3.3 Baseline Models for nocaps

In this section, we introduce the details of two computational models tested on the nocaps

benchmark, the Up-Down model and the Neural Baby Talk (NBT) model. We also discusse

how we apply constrained beam search to both models.

3.3.1 Image Object Inputs

Both the Up-Down and NBT models use two sets of image objects Ovg = {ovg
1 , ovg

2 , . . . , ovg
kvg
}

and Ooi = {ooi
1 , ooi

2 , . . . , ooi
koi
}. Ovg are extracted with an object detector trained on the

Visual Genome Dataset [61]. They are originally proposed in [46]. Ooi are extracted

with a pre-trained object detector 4 trained on the Open Images Dataset [3] from the

Tensorflow model zoo [63]. They are treated as copy candidates because the nocaps

benchmark annotators use Open Images ground truth image object labels in the captions.

Both object detectors use the Faster-R-CNN [22] architecture.

4tf_faster_rcnn_inception_resnet_v4_atrous_oidv2
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In this thesis, the NBT model uses both image objects Ovg and Ooi together and the

Up-Down model only uses image objects Ovg because it does not learn to copy from

external sources. The constraints used in Constrained Beam Search are calculated from

image objects Ooi.

3.3.2 ELMo-enhanced Up-Down Model

The Up-Down model follows the standard neural text generation architecture. Figure 3.3

shows an example when the Up-Down model generates caption for an input image. Each

step recurrently uses the word generated in the last step. Special <START> and <END>

tokens control the length of output captions. The NBT and UpDown-C models are all built

on top of this generation mechanism. In this section, to handle novel object labels, we

use ELMo parameters to initialize the output layer and use ELMo output to encode input

words.

FIGURE 3.3: An example when the Up-Down model generates A person riding a horse around
the yard.

ELMo Details

ELMo is a large-scale pretrained language model. Figure 3.4 shows the ELMo architecture

on the right box. It uses a character CNN [64] to represent input words, denoted as wchar .

We have:

wc = CNN(wchar) (3.1)

The input representation wc is then passed to a two-layer LSTM model (LST M e
1 and
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LST M e
2) with a skip-connection in the last layer. We have:

he
t,1 = LSTMe

1(wc) (3.2)

he
t,2 = LSTMe

2(h
e
t,1) +h

e
t,1 (3.3)

A standard left-to-right language model predicts each word given the previous words.

This is given by:

P(yt |y1:t−1) = softmax(W ehe
t,2 + b

e) (3.4)

where W e ∈ RH e×V and be ∈ Rv. H e is the ELMo hidden state size and V is the ELMo

vocabulary size. ELMo is trained using standard cross-entropy loss.

Using ELMo LSTM output vectors (i.e., wc, h
e
t,1 and he

t,2) as word representations can

generally improve the performance of downstream tasks [65, 66]. In this thesis, we use

the linear-weighted sum of wc, h
e
t,1 and he

t,2 as the word representation we
t for image

captioning models

γ̄0, γ̄1, γ̄2 = softmax(γ0,γ1,γ2) (3.5)

we
t = γ̄0 ·wc + γ̄1 ·he

t,1 + γ̄2 ·he
t,2 (3.6)

where γi ∈ R (i=0, 1, 2) are trainable scalars. When using we
t as the external word

representation in the image captioning models, all the parameters of ELMo but γi (i=0, 1,

2) are fixed during training.

Integrating ELMo into the Up-Down Model

As shown in Figure 3.4, the Up-Down model [46] is a two-layer LSTM model (LST Mvis

and LST Mt x t , both of dimension M) with a visual attention module between the LSTM

layers.

In the Up-Down model, each input image is represented as a set of Visual Genome ROI

vectors. Given by:

Rvg = {rvg
1 ,rvg

2 , . . . ,rvg
kvg
} , rvg

i ∈ R
D (3.7)
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FIGURE 3.4: An overview of ELMo-enhanced Up-Down Baseline

In step t, we use the ELMo word representation wt of the previously generated word yt−1

and averaged ROI features:

wt = ELMo(yt−1) (3.8)

Ī =
1

kvg

kvg
∑

i=1

r
vg
i (3.9)

The input to LST Mvis is then the concatenation x1
t = [ Ī ,h

2
t−1,wt] where h2

t−1 ∈ R
M is the

previous hidden state from LST Mt x t . Given h1
t , the output of LST Mvis, we calculate the

attention score of h1
t over image objects rvg

i as the visual input to LST Mt x t , given by:

avg
t,i =w

T
vistanh(Wrr

vg
i +Whh

1
t ) (3.10)

āvg
t = softmax(avg

t ) (3.11)

Î =
∑kvg

i=1
ā

vg
t,i · r

vg
i (3.12)

where Wr ∈ RH×D, Wh ∈ RH×M and wvis ∈ RH . The full input to LST Mt x t is then given by

x2
t = [ Î ,h

1
t ,h

2
t−1]. The final output of the LSTM decoder is h2

t .

To handle unseen lexical items from novel objects, we initialize the softmax layer (Wp

and bp) of the Up-Down model using parameters from the ELMo softmax layer (We and

be) and keep them fixed during training. Note that the dimensions of output layer (Wp

and bp) and the LSTM output h2
t are different. We add an additional fully connected layer
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with a non-linearity function tanh to project h2
t to the dimension of Wp. We have:

vt = tanh(Wth
2
t + bt) (3.13)

P(yt |y1:t−1, I) = softmax(Wpvt + bp) (3.14)

where Wt ∈ RH e×H , bt ∈ RH e
, H is the LST Mt x t hidden dimension, Wp ∈ RH e×C , bp ∈ RC

and C is the caption vocabulary size.

3.3.3 The Neural Baby Talk model

In this thesis, we use the NBT model with minor modifications for fair comparison with

the Up-Down model. The Neural Baby Talk (NBT) model uses image objects Ovg and

Ooi. It has two modes of generating text: Txt Mode and Vis Mode. In Txt Mode, the NBT

model is similar to the Up-Down model. In Vis Mode, the NBT model copies from image

object labels in Ooi. Note that these labels are often generic and can be represented by

multiple words. For example, the label boat could be expressed as ship or sailboat in the

captions. So we expand each image object label into a candidate word pool including its

synonyms found in the training captions. Figure 3.5 shows an example of the two-step

generation process of the NBT model:

• Step 1: The NBT model generates a hybrid template with concrete textual words

(Txt Mode) and empty slots explicitly tied to specific image objects in Ooi. In our

example, the black words a group of people riding on an are all concrete textual

words. The slot is tied to the object elephant in the blue box.

• Step 2: The NBT model fills these empty slots by selecting a particular word from

the corresponding candidate word pool (which includes elephant and calf in our

example) and the word’s plurality (singular vs. plural) (Vis Mode). In our example,

the NBT model selects elephant and singular as the refinement of the selected object

label.

When training the NBT model, each ground truth caption is aligned with corresponding

image objects. Words successfully aligned with object labels are seen as generated via Vis

Mode and remaining words via Txt Mode.
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FIGURE 3.5: Two-step Generation Process of the NBT model.

FIGURE 3.6: An overview of the NBT Model

NBT Base Model

Figure 3.6 shows an overview of the modified NBT model which shares a similar a two-

layer LSTM architecture (LST Mvis and LST Mt x t , both of dimension M) with the above

Up-Down model. The NBT model uses Ovg and Ooi image objects. In the NBT base model,

all image objects are represented by ROI vectors, given by:

R∗ = {r∗1,r∗2, . . . ,r∗k∗} , r∗i ∈ R
D (3.15)

where ∗ can either be vg or oi.

In each step t, the input to LST Mvis is xt,1 = [wt , Īvg]wherewt is the word embedding

of previously generated word yt−1 and Īvg is the averaged ROI vectors, given by:

Īvg =
1

kvg

kvg
∑

i=1

r
vg
i (3.16)
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Given h1
t , the output of LST Mvis, we have an attention module for Ovg:

avg
t,i =w

T
vistanh(Wrr

vg
i +Whh

1
t ) (3.17)

āvg
t = softmax(avg

t ) (3.18)

Îvg =
∑kvg

i=1
ā

vg
t,i · r

vg
i (3.19)

and a second attention module for Ooi:

aoi
t,i =w

T
vistanh(Wrr

oi
i +Whh

1
t ) (3.20)

āoi
t = softmax(aoi

t ) (3.21)

Îoi =
∑koi

i=1
āoi

t,i · r
oi
i (3.22)

The input to LST Mt x t is then xt,2 = [h1
t , Îoi + Îvg]. The output and LSTM cell state of

LST Mt x t is h2
t and c2

t respectively. They are both used in the copy mechanism described

below.

NBT Copy Mechanism

The NBT model has a two-stage copy mechanism given by:

p(yt |y1:t−1,I) = p(yt |rt ,y1:t−1,I)p(rt |y1:t−1,I) (3.23)

where I is the set of visual inputs to the NBT model. The first step estimates which object

to copy via p(rt |y1:t−1,I). The second step selects a specific word given the selected

objects rt in the first step.

When copying from image object labels (Vis Mode), the NBT model uses objects from

Ooi represented as spatial features, an object label embedding and ROI vectors. The spatial

features include bounding box coordinates ( x̄min, ȳmin, x̄max , ȳmax), width w̄b, height h̄b,

area w̄b · h̄b and class confidence score conf b ∈ [0, 1]. Box position and size features are

all normalized by the input image width wI and height hI . Each spatial image feature

vector thus has 8 elements, and we have:

Soi = {soi
1 ,soi

2 , . . . ,soi
koi
} , soi

i ∈ R
8 (3.24)
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For the object label embedding, glove word embeddings eoi
i of object labels are used. NBT

first up-scales the Spatial Features s∗i to dimension U (a model parameter) and then

concatenates them with the other features, we have:

boi
i = [Wu · soi

i + bu, eoi
i , roi

i ] (3.25)

Boi = {boi
1 , boi

2 , . . . , boi
koi
} (3.26)

whereWu ∈ RU×8 and bu ∈ RU . The attention scores over image objects in Ooi is coi
t,i given

by:

coi
t,i =w

T
t x ttanh(Wbb

oi
i +Wch

2
t ) (3.27)

The choice of Vis Mode or Txt mode is determined by the attention score over image

objects and a dummy object. The dummy object representation st is given by:

gt = σ(Wx ·xt,2 +Wh ·h2
t−1) (3.28)

st = gt � tanh(c2
t ) (3.29)

p(rt |y1:t−1,I) = softmax([st , coi
t,1 . . . coi

t,koi
]) (3.30)

where Wx ∈ RH×D, Wh ∈ RH×H and � is element-wise product.

When Txt Mode is triggered, the NBT model generates a word from the caption

vocabulary via a standard softmax layer, we have:

p(yt |st ,y1:t−1,I) = softmax(Wt x t ·h2
t + bt x t) (3.31)

When Vis Mode is triggered, given the selected image object ooi
k (represented by boi

k ),

the NBT model does two independent predictions using current hidden states h2
t and

selected image object feature boi
k : fine-grained word prediction to select a word from the

corresponding candidate word pool (size l):

pg(y
g
t |rt ,y1:t−1,I) = softmax(Wg · [h2

t ,b
oi
k ] + bg) (3.32)

where Wg ∈ RK×l , bg ∈ Rl and K is the size of [h2
t ,b

oi
k ]. Plurality prediction (singular vs

plural) is given by:

ps(y
s
t |rt ,y1:t−1,I) = softmax(Ws · [h2

t ,b
oi
k ] + bs) (3.33)
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where Ws ∈ RK×2, bs ∈ R2. Final word selection is then given by:

p(yt |rt ,y1:t−1,I) = ps(y
s
t |rt ,y1:t−1,I)pg(y

g
t |rt ,y1:t−1,I) (3.34)

Note that original NBT model uses the COCO object label system and our newly

proposed nocaps benchmark uses the Open Images object label system. Several fine-

grained words in the original COCO candidate word pools are separate object classes (e.g.

man and woman are fine-grained classes of person in the COCO benchmark). To adapt to

this difference, we drop them as fine-grained words from the candidate word pools and

retain them as Open Images object labels.

To train the NBT model with Vis Mode and Txt Model, it needs to align image object

labels with caption words. The NBT model follows the rules below:

• The class prediction of the region proposal should be higher than 0.5.

• The Intersection over Union (IoU) of this region proposal with at least one of the

ground truth bounding boxes is greater than 0.5.

• The predicted class is same as the object class of ground truth bounding box having

highest IoU with this region proposal.

In this thesis, we drop the last rule because of the different image object labeling systems

between COCO benchmark and Open Images benchmark, as explained above.

3.3.4 Constrained Beam Search

As introduced above, CBS is an inference-time beam search algorithm based on a Finite

State Machine (FSM). In this thesis, a 24 state FSM is used to incorporate up to three

selected objects as constraints, including two and three word phrases. Figure 3.7 shows

the sub-FSM for two and three word multi-word expressions. The highest log-probability

caption that satisfies at least two constraints is selected as the output caption.

The constraints come from image objects Ooi. Note that not all image object labels

are useful for captions, we propose simple but effective heuristic rules here to filter image

objects. We first remove 39 object classes listed in Table A.4 from the constraint set, as

these classes are either object parts or classes that we consider to be either too rare or too

broad. We then resolve overlapping image objects (IoU ≥ 0.85) by removing the more
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abstract of the two objects (e.g., elephant would suppress mammal) based on the Open

Images class hierarchy (see Figure A.2 for details) (keeping both if equal). Finally, we

take the top-3 image objects based on detection confidence as constraints.

q0 q1 q2

V − a1

a1

V − a2

a2

V

q0 q1 q2 q3

V − a1

a1

V − a2

V − a3

a2 a2

V

FIGURE 3.7: FSM for a two-word phrase (a1 a2) constraint (left) and a three-word phrase
(a1 a2 a3) constraint (right)

3.4 Experimental Results

In this section, the Up-Down and NBT models are evaluated on the nocaps benchmark.

ELMo is applied to Up-Down model (+ ELMo) and constrained beam search is applied to

both models (+ CBS). Ground truth image objects on nocaps images are also used for

both models to establish a performance upper bound.

3.4.1 Model Setup

When applying ELMo in the Up-Down model, we use the ELMo full tensorflow checkpoint

trained on the 1 Billion Word Language Model Benchmark5 released in the official ELMo

tensorflow repo6. Both Up-Down and NBT models are optimized by SGD [67]. We

conduct hyper-parameter tuning on both models and choose the final model based on its

performance on nocaps validation split. The hyper-parameters of LSTM decoders are

shared by the Up-Down and NBT models. (See Table A.3).

5http://www.statmt.org/lm-benchmark/
6https://github.com/allenai/bilm-tf/

http://www.statmt.org/lm-benchmark/
https://github.com/allenai/bilm-tf/
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3.4.2 Results and Analysis

Ablation Study: ELMo and CBS

In this section, we quantify the effect of ELMo word representations and the impact of

the simple constraint filtering heuristic. For ELMo, we compare it with two other word

representations:

• Randomly initialized word representations (Up-Down), and

• The concatenation of Glove word embeddings [68] and dependency-based word

embeddings [69], as proposed in [11] (Up-Down + GD).

For CBS constraints, we compare our proposed rules with three variants, including:

• Using all the object classes for constraints (w/o class),

• Using overlapping objects for constraints (w/o overlap), and

• Using no filtering heuristic at all (w/o both).

Note that in all cases we rank objects based on the confidence score for detected objects

and pick the top-3 as the constraints.

As shown in Table 3.3, removing the 39 classes (See Table A.4) substantially improves

the performance of constrained beam search and removing overlapping objects can also

slightly improve the performance. This conclusion is consistent across the three models.

It is clear that ELMo word representations work better than the other two representations,

in particular for out-of-domain data.

The image object filtering rules above are heuristic. It is possible that we are over-

fitting some image object distributions in the nocaps validation set. In future work, we

may improve this situation by developing a machine learning based image object filtering

module. More analysis on the difference between prediction and ground truth image

objects would need to be carried out.

COCO Performance Degradation As shown in row 2,3,4 and 6 of Table 3.4.2, there

are substantial gains (almost 20 CIDEr for the Up-Down model and 2 CIDEr for the NBT

model) in nocaps performance and corresponding large losses on COCO when we add

constrained beam search. This may be because some of the image object labels from the
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In-Domain Near-Domain Out-of-Domain Overall

C S C S C S C S

Up-Down + w/o both 73.4 11.2 68.0 10.9 65.2 9.8 68.2 10.7

Up-Down + w/o class 72.8 11.2 68.6 10.9 65.5 9.7 68.6 10.8

Up-Down + w/o overlap 80.6 12.0 73.5 11.3 66.4 9.8 73.1 11.1

Up-Down + 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1

Up-Down + GD + w/o both 72.8 11.2 68.4 10.8 66.3 9.8 68.6 10.7

Up-Down + GD + w/o class 72.3 11.2 68.6 10.9 66.9 9.7 68.8 10.7

Up-Down + GD + w/o overlap 77.0 12.0 73.5 11.4 67.2 9.7 72.8 11.1

Up-Down + GD 77.0 12.0 73.6 11.4 69.5 9.7 73.2 11.1

Up-Down + ELMo w/o both 73.3 11.5 68.6 10.9 70.0 10.8 69.6 10.8

Up-Down + ELMo w/o class 73.5 11.5 69.2 11.0 69.9 9.9 70.0 10.9

Up-Down + ELMo w/o overlap 79.8 12.3 73.7 11.4 72.0 9.9 74.2 11.2

Up-Down + ELMo 79.3 12.4 73.8 11.4 71.7 9.9 74.3 11.2

Human 83.3 13.9 85.5 14.3 91.4 13.7 87.1 14.1

TABLE 3.3: We investigate the effect of different object filtering strategies in Constrained Beam
Search and report the model performance in nocaps eval data. We find that using both strategies
with the ELMo model performs best. C stands for CIDEr and S stands for SPICE.

Open Images object detector, which are forced to be used by CBS, are not mentioned in

the COCO ground truth captions. Limiting this degradation in the captioning setting is a

potential focus for future work.

Language Models Help To handle novel vocabulary, CBS requires representations for

novel words. We compare using ELMo encoding (row 3) with the setting in which word

embeddings are only learned during COCO training (row 2). Note that in this setting

the embedding for any word not found in COCO is randomly initialized. Surprisingly,

the trained embeddings perform on par with the ELMo embeddings for the in-domain

and near-domain subsets, although the model with ELMo performs much better on the
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COCO val 2017 nocaps val

Overall In-Domain Near-Domain Out-of-Domain Overall

Method B-1 B-4 M C S C S C S C S C S

(1) Up-Down 77.0 37.2 27.8 116.2 21.0 77.6 11.6 58.4 10.4 32.3 8.3 55.8 10.2

(2) + CBS 73.3 32.4 25.8 97.7 18.7 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1

(3) + ELMo + CBS 72.4 31.5 25.7 95.4 18.2 79.3 12.4 73.8 11.4 71.7 9.9 74.3 11.2

(4) + ELMo + CBS + G - - - - - 84.2 12.6 82.1 11.9 86.7 10.6 83.3 11.8

(5) NBT 72.2 31.5 25.3 94.1 18.0 62.6 10.0 52.7 9.4 51.8 8.6 54.0 9.3

(6) + CBS 70.2 28.2 25.1 92.8 18.1 62.1 10.1 58.3 9.4 62.4 8.9 60.2 9.5

(7) + CBS + G - - - - - 62.4 10.1 59.7 9.5 64.9 9.1 62.3 9.6

(8) Human 66.3 21.7 25.2 85.4 19.8 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2

TABLE 3.4: Single model image captioning performance on the COCO and nocaps validation
sets. B-1 and B-4 stand for Bleu-1 and Bleu-4 respectively. M stands for Meteor. C stands for
CIDEr and S stands for SPICE.

out-of-domain subset. This indicates: i) The large-scale COCO benchmark allows the

model to effectively learn to use seen lexical items. ii) The pretrained language model,

ElMo, has a positive impact on generating fluent captions with unseen words.

Better Object Detectors Help To evaluate the importance of object detectors, we supply

ground truth object annotations to our full models (rows 4 and 7). Note that ground

truth object annotations undergo the same constraint filtering as predicted ones, except

they are sorted by area rather than confidence. Comparing to prediction-reliant models

(rows 3 and 6), we see large gains on all splits for our Up-Down model (around 9 CIDEr

and around 0.6 SPICE), but lesser gains for the NBT model. As image object detectors

improve, we expect to see commensurate gains on nocaps benchmark performance.

Potential for Further Improvement As shown in Table 3.4.2, when decoding with

beam search, the Up-Down model outperforms NBT by 15.0 CIDEr and 1.6 SPICE in

in-domain and by 5.7 CIDEr and 1.0 SPICE in near-domain. This indicates that the

Up-Down model learns to generate more fluent and meaningful captions than the NBT

model when image objects are presented during training. In addition, the NBT model
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In-Domain Near-Domain Out-of-Domain Overall

Method C S C S C S B-1 B-4 M R C S

Up-Down 73.7 11.6 57.2 10.3 30.4 8.1 74.1 18.9 22.9 50.7 54.5 10.1

+ ELMo + CBS 76.0 11.8 74.2 11.5 66.7 9.7 76.6 18.4 24.4 51.8 73.1 11.2

NBT 62.8 10.3 51.9 9.4 48.9 8.4 71.8 14.2 21.8 48.0 54.3 9.4

+ CBS 61.9 10.4 57.3 9.6 61.8 8.6 69.6 12.4 21.6 46.7 59.9 9.5

Human 80.6 15.0 84.6 14.7 91.6 14.2 76.6 19.5 28.2 52.8 85.3 14.6

TABLE 3.5: Single model image captioning performance on the nocaps test sets. R stands for
Rouge. B-1 and B-4 stand for Bleu-1 and Bleu-4 respectively. M stands for Meteor. C stands for
CIDEr and S stands for SPICE.

demonstrates its clear advantage in out-of-domain, surpassing the Up-Down model

by 19.5 CIDEr and 0.3 SPICE. The copy mechanism in the NBT model indeed learns a

good policy to mention novel object labels when generating captions. A clear pathway to

further improve performance in nocaps is to combine the advantages of the Up-Down

model (fluent captions with trained words or phrases) and the NBT model (captions

mentioning novel objects). It may be that the copy mechanism in the NBT model hurts

the quality of generated in-domain captions. Our next step (in Chapter 4) investigates a

modified version of the NBT model that can generate fluent in-domain captions as well as

the Up-Down model does.



“If I have seen further it is by standing on the shoulders of Giants”

Isaac Newton

4
UpDown-C: A New Novel Object Captioner

In Chapter 3, two state-of-the-art captioning systems, the Up-Down and NBT models

are evaluated on the nocaps benchmark. Up-Down model and NBT model show their

different advantages in in-domain and out-of-domain respectively. When decoding

with Constrained Beam Search (CBS), the Up-Down model outperforms NBT by a large

margin. Yet, we believe that the NBT model has great potential as it is trained to handle

novel object mentions in the captions. The CBS only enforces the model to output novel

object labels during inference time without enriching model’s internal representations of

novel objects.

Motivated by the above, we propose a new captioning model UpDown-C. Our first step

is to combine the strengths from previous state-of-the-art systems and further improve

nocaps benchmark performance.

35
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In this chapter1, we will describe our new UpDown-C model in terms of what to copy

and when to copy. Experimental results show that UpDown-C outperforms the Up-Down

and NBT models by a large margin when using ordinary beam search. The UpDown-C

model even beats the Up-Down with CBS baseline without using CBS. Finally, UpDown-C

model sets the new state-of-the-art on the nocaps benchmark. .

4.1 Model Design: UpDown-C

Figure 4.1 shows the overview of UpDown-C model architecture. The UpDown-C model

uses the Up-Down model as backbone. The copy mechanism of UpDown-C is inspired by

the NBT model: Each training caption is aligned with the corresponding image objects

and each image label has a corresponding candidate word pool. Comparing with the NBT

model, we simplify the process of deciding fine-grain words and include all synonym and

plural words of each image label in its single candidate word pool.

FIGURE 4.1: The UpDown-C model architecture.

Similar to the NBT model, the UpDown-C model performs the following steps (see

Figure 4.2):

1Note that the material in this chapter has not been published yet. I developed the UpDown-C model

under the supervision of Prof. Mark Johnson. Dr. Ian Wood also contributed to the UpDown-C model

design.
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• Template Generation: The NBT model generates a hybrid template with concrete

textual words (Txt Mode) and empty slots explicitly tied to specific image objects in

Ooi. In our example, the black words a group of people riding on an are all concrete

textual words. The slot is tied to the object elephant in the blue box.

• Slot Filling: Completing those empty slots by selecting a specific word from the

corresponding candidate word pool. In this step, the UpDown-C model selects

elephant from all possible variations (elephant, elephants, calf and calves).

FIGURE 4.2: The two-step Generation Process for the UpDown-C model.

To demonstrate how our UpDown-C model operates over input images, figure 4.3

visualises the attention weights for each step in our UpDown-C model when generating

the caption for an image in out-of-domain. Our UpDown-C model learns a reasonable

alignment between caption words and image objects from the image-caption training

data.

FIGURE 4.3: Attention Weights for each step when generating A frog is laying on the green
grass. The red box indicates words generating from Txt Mode and the blue box indicates words
generating from Vis Mode.
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In the remainder of this section, we introduce details of the UpDown-C model, includ-

ing the Up-Down backbone (Section 4.1.2), what to copy (Section 4.1.3), when to copy

(Section 4.1.4) and training loss (Section 4.1.5).

4.1.1 UpDown-C Inputs

The UpDown-C model uses the same sets image objects Ovg and Ooi as the NBT model

to represent input images. They are used in i) the Up-Down Backbone, represented by

ROI vectors (all from the object detector Ovg) and ii) copy decision inputs, represented by

Spatial Features (from both object detectors) and Textual features. Unlike the NBT model,

UpDown-C uses all features from both Ovg and Ooi together.

4.1.2 Up-Down Backbone

The Up-Down model is used as backbone for the UpDown-C model. It is a two-layer LSTM

model (LST Mvis and LST Mt x t , both of dimension M) with a visual attention module

between the LSTM layers. Note that, unlike the original Up-Down model, here the visual

attention utilises objects from both Ovg and Ooi.

ROI vectors The ROI vectors here are the same as the those described in Chapter 3. We

have:

R∗ = {r∗1,r∗2, . . . ,r∗k∗} , r∗i ∈ R
D , k∗ = kvg + koi (4.1)

where ∗ indicates object sources, either vg or oi.

Generation As the input to generation step t, different from the ELMo-enhanced

Up-Down model which uses linear-weighted ELMo outputs, we only use the pre-trained

ELMo [16] character encoder to represent the previously generated word yt−1 and aver-

aged ROI vectors over image objects in Ovg and Ooi:

Wt = ELMoch(yt−1) (4.2)

Ī =

∑kvg+koi

i=1 r∗i
kvg + koi

(4.3)
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The input to LST Mvis is x1
t = [ Ī , h2

t−1, Wt] where h2
t−1 ∈ R

M is the previous hidden state

from LST Mt x t . Visual input to LST Mt x t is provided via an attention mechanism over ROI

features. Given the output h1
t of LST Mvis, we have:

a∗t,i =w
T
vistanh(Wrr

∗
i +Whh1

t ) (4.4)

ā∗t = softmax(a∗t ) (4.5)

Î =
∑kvg+koi

i=1
ā∗t,i · r

∗
i (4.6)

where Wr ∈ RH×D, Wh ∈ RH×M and wvis ∈ RH . The full input to LST Mt x t is x2
t =

[ Î , h1
t , h2

t−1]. A residual connection is added to the LSTM decoder and the final output ht

is given by:

ht = h1
t + h2

t (4.7)

4.1.3 What objects to copy?

As shown in Figure 4.4, the image objects that are aligned with captions have an imbal-

anced distribution which leads to a bias towards copying frequent objects (i.e., people)

and overlooks rare objects (i.e., dolphin). To counteract this bias, we discard the most

frequent objects in Ooi before aligning object labels and caption words. That means, we

force the UpDown-C model to learn to generate those excluded frequent image objects

via the caption vocabulary softmax layer. Although this further decreases the fraction

of words copied, our ablation study results show that removing frequent objects forces

UpDown-C to learn to select rare objects and improves the overall performance.

4.1.4 When to copy?

This section introduces how UpDown-C makes decisions about when to copy from image

object labels. We will first introduce the image object representations and then talk about

our novel copy mechanism.
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FIGURE 4.4: Open Images Object Distribution

Image objects Representations for Copy

Spatial Features The spatial features used here is the same with the ones in the NBT

model (see Sectoin 3.3.3). We extract spatial features for both sets of objects. We have:

S∗ = {s∗1,s∗2, . . . ,s∗k∗} , s∗i ∈ R
8 (4.8)

Textual Features When copying words relating to image objects in Ooi, textual informa-

tion about these image objects is necessary for UpDown-C to make the good decisions. The

labels of image objects in Ovg are not the copy candidates and we only assign a dummy

value for them, which is later used as an indicator for Txt Mode.

The obvious representations of textual information for image objects include word

embeddings of image object labels (i.e., Glove [68]) and ROI features of the image objects

themselves (used in the NBT model). However, our experimental results show that using

either word embeddings or ROI features results in poor generalization to unseen or rarely

seen objects. We hypothesise that word embeddings or ROI features contain too much

information specific to individual objects in the training data. The model memorizes

these details and tends to select these objects over objects that are unseen during training.
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Inspired from [70], we group object labels into more general concepts derived from the

Open Images class hierarchy (see Figure A.2 for details). Figure 4.5 shows an example

sub-tree in the Open Images class hierarchy with the selected nodes.

The Open Images class hierarchy groups together object classes that have similar

properties and linguistic distribution. Representing these leaf nodes using their common

ancestors minimizes the gap between seen and unseen image objects, enhancing the

generalization ability of UpDown-C. To avoid training data bias, those selected sub-trees

should have similar number of objects mentioned in the training captions. We start

from the root node and gradually break each large tree node down to smaller ones. For

example, in Figure 4.5, the “Vehicle” node is split into “Land vehicle” and “Vehicle” (child

nodes from “Aerial vehicle” and “Watercraft” are represented by “Vehicle”). "Elephant" is

represented by "Animal". We may also select leaf nodes if they have reasonable size. We

refer this representations as Abstract Embedding. Each selected sub-tree is represented by

a trainable dense embedding e∗i ∈ R
A in UpDown-C model.

FIGURE 4.5: Open Images Class Hierarchy. Green Boxes are the selected entities.

To represent each image object using Spatial features and Textual features, we first map

Spatial Features to a higher dimension and then concatenate the resulting feature vectors

with Textual Features vector e∗i . The final representation for each image is B∗, given by

b∗i = [Wu · s∗i + bu, e∗i ] (4.9)

B∗ = {b∗1, b∗2, . . . , b∗k∗} (4.10)

where Wu ∈ RU×8 and bu ∈ RU .
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Object-Based Copy Mechanism

In this component, we propose to use image object information to decide whether to

generate a word via standard way (Txt Mode) or copy from an object (Vis Mode).

Copy Decision Figure 4.6 compares the copy systems used in [13], [15] and UpDown-C

model. We note that instead of using hidden states to make binary decisions (Vis Mode

vs. Txt Mode), NBT uses a set of objects to decide which object to copy. UpDown-C model

follows this trend and use the in-domain and out-of-domain image objects Ooi and Ovg to

make copy decision. This encourages UpDown-C model to make decisions using diverse

information and learn more complicated decision functions than linear ones to better

handle rare or unseen image object cases.

c
vg
t,i =w

T
t x ttanh(Wbb

i
vg +Wch

2
t ) (4.11)

coi
t,i =w

T
t x ttanh(Wbb

i
oi +Wch

2
t ) (4.12)

where Wb ∈ RH×B, Wh ∈ RH×M and wt x t ∈ RH . They are trainable during the training. We

normalize two sets of attention scores cvg
t and coi

t together using softmax, given by:

[c̄vg
t ; c̄oi

t ] = softmax([cvg
t ;coi

t ]) (4.13)

FIGURE 4.6: Copy Decision Comparison

UpDown-C model uses c̄vg
t and c̄oi

t to determine the mode in generation step t.

UpDown-C copy the labels from out-of-domain image objects Ooi and we interpret the

attention weights of each object in Ooi as the probability of copying that particular object.

Whilst the attention weights of the in-domain objects Ovg are the support of in-domain

“normal” mode and we calculate the probability of “normal” mode as the sum of the
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attention weights over Ovg . We have:

p(ooi
i |y1:t−1) = c̄

oi
t,i (4.14)

p(txt|y1:t−1) =
∑kvg

i=1
c̄

vg
t,i (4.15)

Txt Mode UpDown-C uses the residual output ht to generate words via the standard

softmax layer (We, be). The vocabulary in this layer comes from COCO training captions

and is initialized with the parameters in ELMo softmax layer and kept fixed during training.

We use a fully-connected layer to adapt the different shape between ELMo softmax layer

and LSTM hidden vectors, we have:

st = tanh(Ws · ht + bs) (4.16)

p(yt |txt,y1:t−1) = softmax(We · st + be) (4.17)

Vis Mode Given the selected object ooi
s for copying, UpDown-C picks a specific word as

the final output word. Similar to [15], each object label l corresponds to a few concrete

words Ul . We construct Ul by finding object label l to plurals and synonyms in COCO

training vocabulary. UpDown-C uses h1
t + h2

t to select a word from Ul via another softmax

layer (Wl , bl), given by:

ft = ReLU(Wg · ht + bg) (4.18)

p( ft |ooi
s ,y1:t−1) = softmax(Wl · ft + bl) (4.19)

where Wl and bl is initialized with parameters from ELMo softmax layer.

Inference Constraints

In the nocaps benchmark, many captions mention ground truth image object labels. To

encourage UpDown-C model to copy from object labels, we increase the probability of

copying object labels by a constant factor β to ᾱt,oi just before the final decision only

during the inference stage. We have:

p(Ooi|y1:t−1) = ᾱt,oi · β (4.20)
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In addition, we constraint words shared by both caption vocabulary and object labels to

only be generated once. We maintain the generation history during the inference and

mask out objects or words when they have been generated.

4.1.5 Training Objective

Given the model parameter θ , we design two loss functions: Lg(θ) is to train the model to

generate correct words when g∗t = txt and select correct objects when g∗t = vis. L f (θ) is

to train UpDown-C to pick the correct specific word after the object is selected, given by:

Lg(θ) = −
T
∑

t=1

log
�

p(y∗t |txt,y∗1:t−1)p(txt|y∗1:t−1)1(g∗t=txt) +
� 1
qoi

qoi
∑

i=1

p(ooi,c∗

i |y∗1:t−1)
�

1(g∗t=vis)

�

(4.21)

L f (θ) = −
∑

g∗t=vis

log
�

p( f ∗t |O
oi,c∗ ,y∗1:t−1)

�

(4.22)

where y∗t is the t th word in the ground truth caption and g∗t is the generation mode for

it, Ooi,c∗ = {ooi,c∗

1 , ooi,c∗

2 , . . . , ooi,c∗
qoi
} is the set of qoi grounding objects that are aligned with

y∗t and f ∗t is the ground truth specific word to pick if g∗t = vis, 1(g∗t=txt) is the indicator

function which equals to 1 if y∗t is textual word and 0 otherwise. We minimize the sum of

the above two losses L(θ) in a multi-task learning fashion:

L(θ) = L f (θ) + Lg(θ) (4.23)

4.1.6 Constrained Beam Search

We are still interested to see whether constrained beam search can further improve the

performance of the UpDown-C model. In our preliminary experiments we found that

instead of controlling specific image objects to be used in the captions, a two-state finite

state machine, as shown in Figure 4.7, was just as good as the previously used eight-state

machine. Here q0 is the starting state and q1 is the accepting state where at least one of the

image objects is used. The constraint D= {D1, D2, D3} is similar to the lexical constraint
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q0 q1

V\D
D

FIGURE 4.7: Two-state FSM for constraint D= {D1, D2, D3}

used in Chapter 3. In the UpDown-C model, image objects are viewed as a set of special

output vocabularies.

4.2 Experiments

4.2.1 Experimental Setup

The training scheme and LSTM hyper-parameters for the UpDown-C model is the same

with the Up-Down model described in Chapter 3. The dimension of the sub-tree trainable

embedding A = 1000. The up-scale dimension for Textual Features U = 1000. The

inference constant factor β = 2.5.

4.2.2 Main Results

Ablation study

In this ablation study, we show the impact of following components for UpDown-C. Ta-

ble 4.1 shows the results of above experiments.

• Using Objects for Copy Decision Helps Unlike NBT model, we use two sets of

image objects, Ooi and Ovg as the basic unit for copy mechanism. - New Copy uses

the ordinary copy mechanism in NBTmodel. As shown in row 2, UpDown-C improves

the performance by 0.5 CIDEr and 1.8 CIDEr in near-domain and in-domain

respectively and maintains similar performance in SPICE. UpDown-C can make more

concrete decisions using image objects.

• Filtering Image Objects Helps Before training UpDown-C, we remove frequent

image objects from aligning with caption words. - Filtering uses all detected image
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In-Domain Near-Domain Out-of-Domain Overall

Method C S C S C S C S

(1) Up-Down 80.7 11.9 74.4 11.3 77.7 10.6 75.9 11.3

(2) - New Copy 80.8 12.0 73.9 11.3 75.9 10.5 75.3 11.3

(3) - Filtering 78.7 11.7 70.4 11.0 73.5 10.1 72.2 10.9

(4) - Embedding 80.7 12.0 73.3 11.3 73.2 10.4 74.3 11.2

(5) - Object Bias 77.5 11.7 67.4 11.0 64.6 10.0 68.3 10.9

Human 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2

TABLE 4.1: The effect of imbalance removal components in UpDown-C

objects in Ooi to train UpDown-C. As shown in row 3, UpDown-C improves the

performance by 3.7 CIDEr and 0.4 CIDEr in overall and by 4.2 CIDEr and 0.5 SPICE

in out-of-domain. That is, our UpDown-C model can learn to mention frequent

image objects from Txt Mode well. This also allows UpDown-C to copy from rare

image objects more often.

• Abstract Embedding improves Generalization In UpDown-C, we represent each

object by one of its ancestors. - Embedding uses the concatenation of ROI vectors

and word embeddings used in the NBT model. As shown in row 4, UpDown-C

improves the performance by 1.6 CIDEr and 0.1 SPICE in overall and by 4.5 CIDEr

and 0.2 SPICE in out-of-domain. That shows that using the abstract embedding is

helpful with novel objects. The knowledge learned from seen objects is successfully

transformed to novel objects.

• Bias Term as CBS In the inference of UpDown-C, we add a bias term to the object

probability and encourage UpDown-C to copy from image objects only during the

inference. - Object bias removes bias term. As shown in row 5, UpDown-C improves

the performance by 7.6 CIDEr and 0.4 SPICE. This bias term can be viewed as a

simple version of CBS with much less computational costs. It is interesting that

although we add this term in every step, image object labels are added in the

reasonable steps.
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Comparing with existing systems

We compare UpDown-C performance on nocaps test set with results reported in [1]

in Table 4.2. When decoding using ordinary beam search (see BS), UpDown-C clearly

outperforms UpDown model by 19.9 CIDEr and 1.0 SPICE. Surprisingly, UpDown-C even

outperforms Up-Down model with CBS by 1.4 CIDEr. That is, UpDown-C develops its own

strategies of incorporating object information and we just need to inform UpDown-C to

use object information, rather than explicitly instruct UpDown-C about which particular

objects to use.

In addition, we conduct experiments that decode captions with CBS. We use the CBS

with two-state FSM as discussed above (see Figure 4.7, CBS). Experiments show that

the CBS decoding is still helpful to UpDown-C and improves UpDown-C by 0.4 CIDEr and

0.3 SPICE. Comparing with the existing systems, UpDown-C outperforms them by 2.0

CIDEr and 0.3 SPICE. That means the copy mechanism in UpDown-C can still be further

improved to pick up those missed image objects.

Comparing with human performance, the UpDown-C model achieves better perfor-

mance in Blue-1 and Blue-4 metrics and similar performance in ROUGE-L metric. All of

these metrics measure the n-gram overlapping between generated sentences and ground

truth sentences. Therefore, captions from UpDown-C model shares a similar lexical com-

plexity with human captions. However, there are still large gaps in the other metrics,

indicating UpDown-C captions can be improved in structural and semantic aspects.

Samples for the UpDown-C model

We show a few representative examples of the outputs from the UpDown-C model. Fig-

ure 4.8 shows three captions generated by the UpDown-C model, the Up-Down model with

CBS and the NBT model with CBS. Among the three examples, the in-domain captions

are similar to each other, whilst our UpDown-C model successful mentions the keywords

shotgun and cocktail in the near-domain and out-of-domain captions.
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In-Dom. Near-Dom. Out-of-Dom. Overall

Method C S C S C S B-1 B-4 M R C S

BS

Up-Down 73.7 11.6 57.2 10.3 30.4 8.1 74.1 18.9 22.9 50.7 54.5 10.1

NBT 62.8 10.3 51.9 9.4 48.9 8.4 71.8 14.2 21.8 48.0 54.3 9.4

UpDown-C 77.0 11.9 74.5 11.4 70.2 10.2 77.2 19.8 24.6 52.4 74.1 11.2

CBS

Up-Down 76.0 11.8 74.2 11.5 66.7 9.7 76.6 18.4 24.4 51.8 73.1 11.2

NBT 61.9 10.4 57.3 9.6 61.8 8.6 69.6 12.4 21.6 46.7 59.9 9.5

UpDown-C 78.0 12.2 75.2 11.6 69.2 10.3 77.0 20.0 24.8 52.5 74.5 11.5

Human 80.6 15.0 84.6 14.7 91.6 14.2 76.6 19.5 28.2 52.8 85.3 14.6

TABLE 4.2: Comparison between UpDown-C and previous systems. Bold means the best perfor-
mance given the same decoding conditions.

in-domain near-domain out-of-domain

Method

Up-Down + CBS
A beach with chairs

and umbrellas and kites.

A man in a red hat

holding a baseball rifle.

A wine glass on table

with a bowl of food.

NBT + CBS
A beach with a bunch

of umbrellas on a beach.

A baseball player holding

a baseball rifle in the field.

A glass sitting on

a table with food.

UpDown-C
A beach with umbrellas

and kites on the beach

A man holding a shotgun

and holding a baseball bat

A glass of orange cocktail

on a white plate

Human
A couple of chairs

that are sitting on a beach.

A man in a red hat

is holding a shotgun in the air.

A cocktail in a glass

with a piece of fruit.

FIGURE 4.8: Some challenging images from nocaps and the corresponding captions generated
by the UpDown-C model, the Up-Down model and the NBT model.



“Everything is theoretically impossible, until it is done”

Robert Heinlein

5
Summary and Conclusions

The Image Captioning task, which connects vision and language, is an important building

block for more sophisticated human-machine interaction systems. In this final chapter, we

summarise the main contributions of this thesis and discuss some interesting directions

for future work.

5.1 Summary

In this thesis, we first propose nocaps, a large-scale novel object captioning benchmark.

This benchmark uses the existing COCO benchmark as training data and collects 11

human-generated captions for each of 15K selected images from the Open Images Dataset.

Captions in nocaps contain more than 400 novel object classes (not seen in the COCO

benchmark). The human annotators are encouraged to use ground truth image object

49
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labels in the captions. We test two state-of-the-art captioning systems, the Up-Down

NBT models on the nocaps benchmark. The empirical results show that i) the Up-Down

model and the NBT model have different strengths; ii) Using a pre-trained language

model is helpful for Novel Object Captioning; iii) Including image object labels using CBS

can significantly improve the caption quality. This result motives us to develop the new

captioning model UpDown-C incorporating strengths from the Up-Down and NBT models.

We show that it is possible for a caption model to generate fluent in-domain captions and

copy from unseen object labels simultaneously. The UpDown-C model outperforms the

Up-Down model with CBS and sets the new state-of-the-art on the nocaps benchmark.

5.2 Future Directions

Finally, we conclude with a discussion of some promising research directions for the novel

object captioning task.

Using Reinforcement Learning Reinforcement Learning has shown great success in

image captioning tasks [71, 72]. However, these reinforcement learning methods use

ground truth captions as the training rewards. In novel object captioning, we may not

be given ground truth captions with novel objects. It is interesting to develop reference-

less automatic metrics that can be incorporated into the existing reinforcement learning

frameworks.

Using Non-Autoregressive Decoders Unlike Autoregressive decoders which generate

text from left to right, non-autoregressive decoders generate text in arbitrary orders. The

Middle-out decoder [73] can generate a fluent sentence by connecting one or two given

keywords. It is interesting to explore the potential powers of Non-Autoregressive decoders

for the Novel Object Captioning task. The novel object labels can be used as the starting

keywords and the proposed decoder should learn to build up a fluent sentence based on

those keywords.
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Info ELMo GPT Bert XLNet

Corpus
1 Billion

Word Benchmark
BooksCorpus [74]

Wikipedia

BooksCorpus

Wikipedia & BooksCorpus

Giga5 1 & ClueWeb 2012-B 2

Common Crawl 3

Size 0.8B Tokens 1.1B Tokens 3.9B Tokens 32.9B Tokens

TABLE A.1: The Training Corpora for Large-scale Language Model.

1https://catalog.ldc.upenn.edu/LDC2011T07
2http://www.lemurproject.org/clueweb09/datasetInformation.php
3//http://commoncrawl.org
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Benchmarks Size Collection Data Source

COCO 4 [2] 995,684 Captions & 164,062 images Human Annotation Web

Flicker 8K 5 [75] 40,460 captions & 8,092 images Human Annotation Flicker

Flicker 30K 6 [76] 158,915 captions & 31,783 images Human Annotation Flicker

Im2Text 7 [77] 1M captions & 1M images Automatic Collection Flicker

Pinterest40M 8 [78] 300M captions & 40M images Automatic Collection Pinterest

Conceptual captions 9 [79] 3,369,218 captions & images Automatic Collection Web

TABLE A.2: Image Captioning Benchmarks.

Parameter Value Parameter Value

Batch Size 150 Attention Size 768

LSTM Hidden Size 1200 Word Dropout 0.2

Image Feature 2048 ELMo Embedding 512

Learning Rate 0.015 Momentum 0.9

Clip Gradients 12.5 Weight Decay 0.001

TABLE A.3: Hyper-parameters for Up-Down and NBT models used in the experiment.

4http://cocodataset.org
5https://academictorrents.com/details/9dea07ba660a722ae1008c4c8afdd303b6f6e53b
6http://bryanplummer.com/Flickr30kEntities/
7http://www.cs.virginia.edu/~vicente/sbucaptions/
8https://github.com/mjhucla/P-Multimodal-Dataset-Toolbox
9https://ai.google.com/research/ConceptualCaptions

http://cocodataset.org
https://academictorrents.com/details/9dea07ba660a722ae1008c4c8afdd303b6f6e53b
http://bryanplummer.com/Flickr30kEntities/
http://www.cs.virginia.edu/~vicente/sbucaptions/
https://github.com/mjhucla/P-Multimodal-Dataset-Toolbox
https://ai.google.com/research/ConceptualCaptions
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Parts Too Rare or Too Broad

Human Eye Human Leg Clothing Building

Human Head Human Beard Footwear Plant

Human Face Human Body Fashion Accessory Land Vehicle

Human Mouth Vehicle Registration Plate Sports Equipment Person

Human Ear Wheel Hiking Equipment Man

Human Nose Seat Belt Mammal Woman

Human Hair Tire Personal Care Boy

Human Hand Bicycle Wheel Bathroom Accessory Girl

Human Foot Door Handle Plumbing Fixture

Human Arm Skull Tree

TABLE A.4: Blacklisted object class names for constraint filtering (CBS) and visual word predic-
tion (NBT).
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FIGURE A.1: An example of scene graph used in SPICE from https://panderson.me/spice/

https://panderson.me/spice/


55

FIGURE A.2: An Overview of Open Images Class Hierarchy. Image is from https://storage.
googleapis.com/openimages/2018_04/bbox_labels_600_hierarchy.json

https://storage.googleapis.com/openimages/2018_04/bbox_labels_600_hierarchy.json
https://storage.googleapis.com/openimages/2018_04/bbox_labels_600_hierarchy.json
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