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ABSTRACT 

 

 

 

 With increasing environmental concerns raised from fossil fuel 

sources, the prominent feature of next-generation smart grids is 

to supply power from clean/renewable energy sources (i.e., solar, 

wind and fuel cell, etc) in order to provide economic, 

environmental, reliability and security benefits. To achieve these 

goals, future smart grids will work in highly complex and dynamic 

environments and will have small-capacity distributed renewable 

energy generators (DREGs) with non-dispatchable and intermittent 

characteristics. Moreover, the utilization of DREGs on a large-

scale helps to flatten peak demand to avoid substantial 

overcapacity in the size of a power system due to high aggregated 

peak demand. However, DREGs need to manage, and they required 

interaction with each other, with storage systems and an energy 

provider for improved asset utilization and energy efficiency. In 

this context, an efficient demand-side management system (DSMS) is 

essential for coordinate control of DREGs and responsive loads to 

maximize the system’s utilization and reliability in a smart grid. 

Fundamentally, demand-side management (DSM) is a process of 

shifting/reshaping electrical loads and utilizing new technologies 

to reduce power bills, overall operational costs and increase 

energy efficiency. This thesis addresses the challenges of 

developing a framework for optimal DSMS by modeling the energy 

usage behavior of self-interested distributed entities through 

studying the propriety DREGs and consumers in a smart grid. The 

major contributions of this research are given below.
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The first contribution of this research is to develop an 

algorithm for analyzing the performance of an experimental smart 

building through real-time data analysis, and then recommend 

possible measures to improve its energy efficiency. It focusses on 

the performance gap in terms of energy efficiency and the 

criticalities related to the characteristics of chosen devices and 

demand management strategies adopted. In addition, new 

technologies (to enhance DREGs production), coordinated measures 

(to improve building energy management system) and transactive 

control (to control the building’s responsive load) are proposed. 

The scientific analysis of proposed recommendations for an 

intelligent energy management system demonstrates significant 

energy and cost savings for smart buildings.  

The second contribution of this research is to present a three-

level hierarchical energy-trading framework for encouraging the 

owners of DREGs to voluntarily take part in an energy trading 

process. The developed strategy captures the complex interactions 

between the owners of geographically DREGs and the aggregator in 

the smart grid using a non-cooperative contract theoretic 

approach. Moreover, a dynamic pricing scheme is developed that the 

aggregator can utilize to incentivize the owners of DREGs and a 

distributed algorithm is proposed to enable the energy-trading 

process. Various categories, types, and constraints of DREGs, 

different trading scenarios and wholesale price impact on trading 

are considered in the analysis for practical applications. The 

solution of the developed scheme shows that socially optimal energy 

management for both trading partners can be achieved.  

The third contribution of this research is to develop an 

occupant’s comfort aware energy imbalance management scheme for 

efficiently curtailing responsive loads of commercial buildings 

with the market price. The aim is to reduce the aggregated and 

peak demand to deal with energy imbalance problem in case of DREGs 

intermittency and/or power shortage from the grid while providing 
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the desired quality of service. To achieve this goal, an 

intelligent and new price-based demand response (PBDR) control 

strategy is proposed to optimize the responsive load scheduling. 

Occupants’ varying thermal preferences in the response of price 

signals are considered and modeled using the artificial neural 

network (ANN) to integrate into the optimal scheduling problem.  

The performance of the proposed management techniques is tested 

in real Australian power distribution networks under real load, 

weather conditions, and electricity tariff structure. The 

developed models, algorithms, and techniques can capture the 

different cost-benefit trade-offs that exist for efficiently 

managing buildings energy in a smart grid. These strategies have 

shown significant performance improvement when compared with 

existing solutions. The work in this thesis demonstrates that 

modeling power usage behavior of distributed entities in a smart 

grid for robust DSMS is both possible and beneficial for increasing 

the energy efficiency of smart buildings in a smart grid. 
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Chapter 1  

Introduction  

The awareness for efficient usage and conservation of energy in 

various sectors, specifically in the power sector, grew 

tremendously in the twenty-first century. The reasons behind this 

consciousness are 1) increasing fuel prices, 2) environmental 

issues, and 3) carbonization of the energy system. These reasons 

drive an energy transition from fossil fuels to distributed 

renewable energy generators (DREGs) to meet the growing 

electricity demand and to provide clean energy. The smart grid 

with its flexible and bidirectional power and information flow 

strategy is capable of integrating a large percentage of renewable 

energy resources (RERs) to form an advanced energy delivery network 

at a distribution level. One prominent feature of a smart grid is 

to facilitate the on-site deployment of RERs due to their proven 

technical, economical, environmental and peak load management 

feasibility. However, the smart grid power management and control 

infrastructure will indeed face a number of challenges due to the 

large-scale deployment of RERs. For example, enabling services, 

products, and techniques for energy efficiency, increasing 

consumer’s choices in new emerging markets such as microgrids, and 
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facilitating two-way delivery of energy information at the device 

level. This thesis addresses the challenges of developing 

mechanisms for the optimal demand-side management system (DSMS) by 

modeling the energy usage behavior of rational distributed 

entities in a smart grid. The focus is on the optimal utilization 

and management of DREGs to develop a techno-economic DSMS for smart 

grids, and further, to increase the building's energy efficiency 

and reducing the energy consumption in the energy-constrained 

smart network.  

1.1.   Background and Motivation  

1.1.1   The Future Electric Power System   

The existing power system infrastructure, or as it is 

universally called, the ‘Power Grid' is an interconnected network 

for delivering electricity from power plants to remotely located 

electricity consumers. It consists of generating stations, high 

voltage transmission lines, and distribution systems designed in 

a vertical fashion. Each subsystem of the power grid is supported 

by controllers and associated devices to ensure unidirectional 

reliable and efficient operation [1]. However, due to increased 

environmental concern, high penetration of RERs into the 

traditional system, and growing user prospects are compelling 

utilities to redesign an electricity generation and distribution 

system.  Consequently, the transition of the conventional ‘power 

grid’ towards a modernized system is required. This modernized 

system needs advanced monitoring, information-gathering, 

communication, control, management, and decision-making 

capabilities. Driven by the dynamics of a new energy environment 

including low-cost telecommunication technologies, new generation 

options, and advanced automation systems, different organizations 

have envisioned a future energy delivery network known as ‘The 

Smart Grid’ [2]. The Australian standards for Smart Grids [3], 

defines the smart grid as: 
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“A smart grid is an electricity system incorporating electricity 

and communications networks that can intelligently integrate the 

actions of parties connected to it”.  

According to the International Energy Agency and the United 

States Department of Energy (US-DOE) [4, 5], the smart grid has to 

be: 

Intelligent: capable of sensing and monitoring for rapid diagnosis 

and solutions to power outage events, and aligns the utilities, 

regulatory authorities, and consumers goals; 

Efficient: capable to apply the latest technologies to manage the 

increased load demand without adding surplus expenditures; 

Accommodating: competent in accepting not only large power plants 

but also the consumer-sited distributed energy resources (DERs). 

These resources include any type of renewable e.g. mini-hydropower 

plant, combined heat and power plant and energy storage 

technologies;  

Motivating: facilitate real-time communication among consumers and 

associated utilities so consumers help balance supply and demand 

by modifying their energy consumption considering electricity 

pricing and incentives; 

Opportunistic: capable of creating new opportunities in the market 

to exploit plug-and-play facilities irrespective of place and 

time. It provides flexibility to energy operators, regulators, and 

users to change the procedures of business to suit market/operating 

conditions; 

Quality-focused: capable of delivering the essential quality of 

power that is free from interruptions and disturbances to increase 

the digital economy; 

Resilient: resistant to natural disasters and cyber-attacks with 

a self-healing ability using smart grid security protocols. This 

feature helps service providers better manage the delivery 

infrastructure.   
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Green: enable the slow growth of global climate change by offering 

the transition towards clean energy sources to significantly 

reduce environmental problems. 

The smart grid must offer the above-mentioned features in order 

to function efficiently, deliver the level of service consumers 

are expecting e.g. affordable electricity system, and offer a 

sustainable environment. However, the development of essential 

characteristics of the smart grid faces a number of challenges 

including power management with large scale deployment of RERs, 

enabling valuable technologies for energy efficiency, and 

increasing consumer’s choices with aid of bidirectional 

communication infrastructure. The aim of this research is to 

overcome these challenges by developing mechanisms for an 

efficient energy management system. The developed system is 

capable of optimally utilize and manage RERs, enable consumers’ 

participation, increase the building’s energy efficiency and cut 

electricity cost and consumption.   

1.1.2   Green Energy Technologies   

Owing to increasing fuel costs and global concern regarding 

environmental issues, green energy technologies including solar, 

wind, mini-hydropower plants and storage technologies, are gaining 

market demand. These clean energy sources offer substantial 

advantages over fossil fuel sources such as coal, diesel and 

natural gas [6]. Taking advantage of the smart grid feature of 

facilitating the on-site deployment of RERs, a number of countries 

around the world developed the policies and regulations to promote 

green energy technologies. For instance, Sweden, Denmark, Vietnam, 

Cambodia, Australia, Japan, China, and the USA aim at 100% 

renewable electricity by 2040, and have established targets, 

policies and plans to succeed in deploying RERs in both residential 

and commercial sectors [7, 8].  
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A thorough and state-of-the-art condition regarding policies and 

targets with planned or installed projects regarding renewable 

energy throughout the world can be extracted from [8]. The large-

scale deployment of DERs will indeed present a number of challenges 

for the smart grid power management and control infrastructure, 

grid stability, and energy exchange[9]. An uncoordinated and 

inefficient distributed resources management system could add 

considerably to electricity costs. For instance, Energy Networks 

Australia determines that over $16 billion in network expenses 

could be avoided through proper management of DERs [10].  

Moreover, the increased deployment of intermittent renewable 

sources escalates the challenging ‘ramping’ and voltage management 

issues. The renewable generation increases in the middle of the 

day due to the high penetration of residential PV panels. 

Meanwhile, electricity demand from the grid decreases as solar is 

generating enough energy. As a result, export to the grid at midday 

and electricity demand in the evening time rapidly increases, which 

causes a voltage rise at the grid side [11]. A small-scale power 

system with efficient demand-side management (DSM) programs can 

add value to renewable energy by reducing electricity costs, 

avoiding exports to the grid and enabling consumers to participate 

in emerging energy markets.   

1.1.3   Microgrid/Active Distribution System 

Successful integration of DERs in the presence of dynamic loads 

and storage has yet to overcome abundant technical challenges to 

ensure reliability and efficiency. These challenges include 

optimum DSM, proper scheduling, and dispatch of RERs, uncertain 

distributed-generation (DG) unit dynamics, load forecasting, 

voltage and frequency control using a power electronics interface 

and the unified plug-and-play features of DG units. The concept of 

microgrids could be an appealing solution to confronting these 

challenges. 
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The term “microgrid" actually refers to a localized and miniature 

version of the existing grid that can support particular electrical 

vicinity during an outage. The US-DOE has adopted the following 

definition of microgrid [5]: “A microgrid is a group of 

interconnected loads and distributed energy resources within 

clearly defined electrical boundaries that act as a single 

controllable entity with respect to the grid and that connects and 

disconnects from such grid to enable it to operate in both grid-

connected and islanded mode". 

These miniature and smart versions of the existing grid can 

support a self-sustaining military base, hospitals, industrial 

plants, data centers or any institutions that cannot afford a power 

outage for even a minuscule period of time. Both utilities and 

customers are looking beyond the capability of microgrids used 

just as support, but rather as distributed generators that can 

generate power and contribute to overall demand management. A self-

sustaining microgrid cannot only help its corresponding 

neighborhood riding through disruptions but can also support the 

grid during that time by exporting extra power. These microgrids, 

used as active distribution systems, could be unavoidable building 

blocks for the next generation smart grid if they can be properly 

planned and coordinated. They will also need to be able to operate 

the microgrid in grid-tied or islanded modes. Smart energy 

management and/or a DSMS is required for the successful operation 

of a microgrid in different operating modes with the following 

technical challenges [12]. 

 Optimum power flow control within and outside of the microgrid 

 Dynamic load management by balancing generation-load-storage-

loss balance 

 Reserve margin by introducing battery energy storage systems 

(BESS) 

 Adequate installed DG units within islanded microgrids to 

serve loads 
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This thesis is an effort to address the microgrid technical 

challenges by exploiting the customer’s capacity to develop load 

flexibility with renewable energy, storage systems, and demand 

controls by developing robust DSMS. The proposed demand management 

system includes novel distributed models and algorithms to 

facilitate interactions among distributed entities, power flow 

control within and outside of the microgrid with economic analysis, 

and supply-demand balance with demand response (DR).     

1.1.4   Smart Energy Management System  

Modern residential/commercial buildings are equipped with 

renewable and sustainable technologies such as efficient 

inverters, smart thermostats and meters, storage technologies, and 

building automation systems. These buildings can contribute to 

both the electricity market and the electric power grid by managing 

their demand by utilizing these technologies [13]. Particularly, 

smart energy management systems (EMS) incorporation with DG units 

and storage systems can ensure flexible, reliable, secure and 

profitable power delivery. Keeping track of the global trends, the 

number of green star rated buildings is rapidly increasing in 

Australia, which shows a tendency toward a sustainable and clean 

environment [14].  

By proper utilization of available technologies, smart buildings 

can operate as self-sufficient electrical entities or microgrids. 

Nevertheless, the coordination and control of multiple internal 

loads, storage, and generation in these vicinities is a difficult 

task, specifically with an emphasis to enable informed 

participation by customers. Considering the prospects of smart 

autonomous buildings, research interest in the applications of 

DERs in microgrids for energy management are increasing. In [15, 

16], EMS that consists of ultra-capacitors and flywheel storage 

systems respectively, are presented for active power balancing and 

voltage regulation in microgrids when the wind turbine is the 
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primary supply source. An intelligent building often employs a 

building automation system to monitor and optimally control the 

various building loads, such as lighting [17, 18], air conditioning 

[19-21], thermal and comfort control [22-24] to better manage the 

energy demand and to increase the building’s energy efficiency. 

Incentive driven energy trading schemes are developed in [25, 26] 

to trade power between electricity suppliers and consumers. These 

energy management strategies model the electricity market 

mechanisms to maximize trading partners’ utilities with a truthful 

bidding auction. Real-time peak shaving models based on predictive 

and fuzzy control are presented in [27, 28] respectively to curtail 

peak load using DR and thermostatic load scheduling techniques.   

However, in most of the above-mentioned studies, the scale of 

the demand management systems is limited to the domestic level, 

not large-scale. This may be due to the inadequate engagement of 

commercial consumers. Moreover, in previous studies, the 

evaluation of the environmental and economic impacts of energy-

saving measures is based on assumed and/or market average data. 

Thus, these models are unable to provide an insight into real cost 

and benefit analysis required to improve the smart buildings' 

energy efficiency. This research focuses on optimal DSM strategies 

by modeling the energy usage behavior of distributed entities in 

a smart grid, which are often self-centered in nature. The aim of 

this thesis has been to find the optimal techno-economic solution 

vectors for consumer-centric DSM schemes in smart grids and to 

conduct real cost and benefit analysis to support energy-saving 

measures in a smart building. 



1.2  Research Challenges and Objectives  

 

9 
 

1.2.   Research Challenges and Objectives  

While the importance of RERs and numerous policies and 

regulations, such as financial incentives and feed-in-tariffs, has 

been addressed in the literature [29] to support the investment on 

DREGs, there is a need to address DREGs power management issues to 

achieve the full benefits of the smart grid. These challenges 

include exploiting the customer’s capacity to develop load 

flexibility with RERs and integrating renewable energy, storage 

systems, energy efficiency, and demand controls to develop an 

economical demand management system. In this context, energy 

analysis of a building integrating RERs that includes the economics 

of two-way power flow, islanded operation, and an evaluation of 

technological advancements and energy management strategies to 

improve the buildings' energy efficiency are worth investigating. 

There is a need to develop distributed models and algorithms to 

maximize the use of available renewable power with the support of 

accurate cost-benefit analyses of two-way power flow between 

buildings with RERs building, a battery storage system and/or the 

utility grid. These analyses and models can help to achieve a power 

profile of buildings integrating RERs that is socially optimal for 

both the utility grid and the users.   

It is worth mentioning that to improve the smart buildings' 

energy efficiency monitoring and performance analyses are crucial 

to gain insight into built-environment projects in order to pave 

the path towards a rapid energy transition from fossil fuels to 

RERs. This transition helps to reduce energy consumption and carbon 

footprints from the commercial sector, which could lead to 

developed countries to achieve zero carbon-building targets. In 

the literature, various approaches such as empirical research [30-

32], simulation research [33-36] and mathematical modeling for 

cost-benefit analysis [37-39] have been proposed to evaluate the 

environmental and economic impacts of energy-saving measures in a 

smart building. Although the existing studies have provided useful 
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methodological and theoretical insights, the main challenges are 

limited evidence of real cost and benefits involved and the use of 

assumed and/or market-average data to conduct a cost-benefit 

analysis to support the implementation of energy-saving measures. 

Considering these challenges, a thorough, practical methodology is 

needed to assess the performance of experimental green buildings 

where a range of energy conservation measures has already been 

implemented. Performance analysis could include islanded 

operation, coordinated measures, energy management strategies and 

technologies adopted to provide more positive development 

solutions for the building industry.  

Renewable energy trading is an important aspect of energy 

management in smart grids with an increasing share of electricity 

supply from DREGs. This energy trade is created by the deliberate 

involvement of the geographically DERs and energy users of the 

network. This participation could improve grid reliability and 

provide social benefits for the entire network.  Therefore, 

economic consideration of energy management of geographically DERs 

for energy trading at a large scale is important and is mutually 

beneficial for both the aggregator and prosumer. However, the 

participation of prosumer in voluntary energy management programs 

is necessary to exploit the benefits of the smart grid. Therefore, 

to encourage the prosumer’s participation it is necessary to design 

an incentive-driven energy-trading scheme.    

In addition to energy trading schemes, the voluntary 

participation of consumers is desired in energy imbalance 

management strategies at times of power supply shortage in a smart 

grid. As DREGs are owned by self-seeking individual personnel [1], 

it is a challenging task to provoke the energy consumers to 

effectively manage their energy usage, while achieving the desired 

quality of service. While most of the research in this area has 

been devoted to incentive-based DR programs such as direct load 

control and peak time rebates, the method of energy reduction in 
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response to real-time pricing (RTP) during the supply shortage has 

seemed to receive less attention. Managing an energy imbalance and 

reducing peak demand is crucial to decreasing the impact of growing 

demand on network infrastructure. For example, in 2012, the annual 

expense of energy imbalance in Australia was assessed to be 

approximately $11 billion [40, 41]. Hence, energy imbalance 

management in the smart grid in the event of supply shortage is 

worth investigating to reduce the considerable stress on the entire 

grid system. Motivated by the issues related to the DSM in a smart 

grid considering high penetration of RERs the objectives of the 

current research are defined as follows: 

 Developing a profound understanding of the characteristics 

of RERs which involve uncertainty, privacy and 

intermittency, and their applicability to the microgrid 

paradigm.  

 Proposing new technologies and coordinated measures to 

improve real-world smart buildings' energy efficiency, and 

to gain insight into built environment projects.    

 Developing communication-assisted distributed control 

techniques to facilitate interactions among distributed 

entities in a smart grid.    

 Designing a novel energy-imbalance management strategy for 

efficiently curtailing responsive loads of commercial 

buildings with the market price.   

 Building a platform for consumers to take part in evolving 

energy market opportunities such as energy trading, DR, and 

network provision. 

 Providing cost-effective socially optimal solutions for 

efficiently managing a building's energy in a smart grid as 

compared to existing solutions. 
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1.3.   Contribution   

To develop an efficient DSMS framework by modeling the energy 

usage behavior of self-interested distributed entities in a smart 

grid, the questions that must be asked are:  

1) Which strategies/techniques should be adopted to improve the 

smart buildings' energy efficiency for an islanded operation? 

2) How to design the incentives for distributed entities so as 

to motivate them to optimally utilize their resources as well as 

come to an energy trading agreements, which are socially optimal 

for all the energy users of the network? 

3) What are the most applicable strategies for energy consumers 

to reduce the energy demand to not only decrease the burden on 

network infrastructure but that also lead to the energy consumers 

accomplishing the required quality of service?  

The main contributions of this thesis are to provide answers to 

the above-mentioned questions by exploring the new research 

possibilities as discussed in Section 1.2. To that end, the aim of 

my research has been to develop the optimal techno-economic 

solution vectors for DREGs in a smart grid, and to determine the 

energy reduction potential for energy users to reduce the 

aggregated and peak load demand stress on the power system while 

providing them the desired quality of service by making the 

following contributions: 

1. To assess the effectiveness of the energy efficiency measures 

and technical solutions incorporated in a net-zero energy 

building for an islanded operation in a smart grid, the 

performance of an experimental smart building is studied 

systematically:  

 A comprehensive energy analysis of an experimental green 

building is presented by monitoring energy conservation 

measures through real-time data analysis. It focuses on the 
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performance gap in terms of energy efficiency, possible 

explanations, the criticalities related to the 

characteristics of the chosen devices and demand management 

strategies adopted. 

 Since the monitoring and data analysis results show 

significant differences from the estimated and real-time 

energy-saving results, solutions are recommended for 

optimal performance of the green building. The solution set 

comprises new technologies, coordinated measures, and 

control strategies for a robust demand management system. 

These solutions are proposed to enhance the DREGs 

generation capacity, improve building energy management 

system and efficient control of responsive loads in a smart 

building.   

 Several scientific analyses of the proposed recommendations 

are conducted using Solar Pro and a MATLAB/Simulink tool. 

The results show a significant improvement in the DREGs 

generation capacity, the building’s energy efficiency and 

a reduction in energy consumption and cost with the proposed 

intelligent/advanced energy management system.  

 

2. Taking advantage of the bidirectional communication structure 

of smart grids, the economics of hierarchical energy trading 

framework in a smart grid is analytically evaluated by  

 Providing a comprehensive framework based on a non-

cooperative contract theoretic approach by encouraging the 

prosumers to voluntarily take part in an energy trading 

process. The developed strategy captures the complex 

interactions between trading partners such as energy 

retailers known as aggregators and prosumers in an 

asymmetrical information environment.  

 Presenting a novel dynamic pricing mechanism and a 

distributed algorithm to incentivize the consumers and 
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enable the energy trading process respectively. Moreover, 

various categories, types, and constraints of DREGs, 

different trading scenarios and wholesale price impact on 

trading are considered in the analysis for practical 

applications.    

 Evaluating the simulation results of the developed scheme 

shows that by adopting the contract theoretic approach the 

aggregator can maximize its profit while stimulating the 

prosumers to satisfy the load demand with positive utility. 

 

3. To minimize the commercial aggregated and peak load demand in 

the event of a power shortage, an occupant’s comfort-aware 

energy imbalance management scheme is proposed. In developing 

the energy curtailment scheme: 

 A commercial building heating, ventilation, and air-

conditioning (HVAC) system with multiple zones is 

considered, where occupants of each zone have different 

thermal comfort preferences. In the proposed scheme, 

occupants in various zones decide on an amount of energy 

curtailed in a zone considering their thermal requirements 

in the co-efficient of bidding price. These preferences are 

modeled using an artificial neural network, which is 

trained using a machine learning algorithm.  

 A novel price-based demand response (PBDR) control 

algorithm is developed to control the HVAC thermostat 

setting in various zones in response to RTP signals. 

Occupant’s preferences are directly integrated into the 

objective function for the optimal scheduling of the HVAC 

system. 

In the numerical analysis various case studies are 

conducted, in which the effects of properties such as the 

occupants bidding price and the set-point interval’s effect 

on energy consumption and thermal comfort are considered. 



1.4  Thesis Outline 

15 
 

The results indicate substantial peak and off-peak load 

curtailment in various zones according to the chosen 

bidding price. They also reveal that energy savings at a 

low-set point interval are more significant than at a high 

set-point interval. With the proposed strategy, the total 

energy cost of the HVAC system reduces and energy users 

achieve the quality of service they are expecting.  

1.4.   Thesis Outline   

Subject to the above research objectives and targeted 

contributions this dissertation is outlined as follows: 

 

Chapter 1 provides the motivation and scope of the current 

research including the inadequacies of the previous studies, 

research gaps, and the main contributions of the research. Later, 

the thesis outline is presented at the end of this chapter.  

 

Chapter 2 focuses on a contemporary literature survey in smart 

grid DSM including an overview of the smart grid, DERs, microgrid, 

and DSM techniques. It discusses the existing research trends, 

research methodologies, and research progress in the selected 

research area.  

 

Chapter 3 begins by providing an overview of a real smart 

building considered for energy analysis with monitoring and data 

analysis results. It describes the possible explanations of the 

performance gap, criticalities related to the chosen devices, and 

energy management strategies adopted. It then proposes new 

techniques, coordinated measures, and control strategies to 

improve building energy efficiency. It also includes several 

scientific analyses to show the effectiveness of proposed 

recommendations.   
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Chapter 4 provides the mathematical modeling of an aggregator 

and the consumers that capture the complex interactions between 

trading partners using a non-cooperative contract theoretic 

approach. It then proposes a novel dynamic pricing mechanism to 

incentivize consumers under different trading scenarios. 

Further, a distributed algorithm is presented for a socially 

optimal solution for both trading partners. Finally, it 

describes case studies to analyze the proposed energy trading 

scheme.   

 

Chapter 5 concentrates on a comfort-aware energy-imbalance 

management scheme, in the event of a supply shortage in an 

energy-constrained environment. It provides a model of a multi-

zone office building’s HVAC system and formulation of the 

control problem with constraints. The next occupant’s thermal 

preference is modeled using an artificial neural network that 

is trained using a machine learning algorithm. Thereafter, a 

PBDR control strategy is developed for optimal scheduling of 

the HVAC system. Finally, this chapter concludes with numerical 

simulations and discussion of the proposed strategy.  

 

Chapter 6 provides the concluding remarks by signifying the 

importance of contributions for a smart grid energy management 

system. The chapter conclusion shows that the development of a 

robust DSMS with advanced techniques and algorithms is both 

feasible and valuable for the whole power system. Future 

directives for this research are also described in this chapter. 
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Chapter 2                                                                                                                                  

Literature Review  

This chapter highlights the different aspects of the background 

literature regarding energy management in the smart grid, which 

covers an introduction to the smart grid, the integration of 

renewable energy resources (RERs) and various DSM programs in order 

to promote more efficient energy consumption in the smart grid.  

2.1.   Introduction to Smart Grid  

The next-generation electric power system known as the “Smart 

Grid” is a considerable improvement to the standard twentieth-

century traditional electric grid [42]. The Smart Grid can be 

described as an electrical system that incorporates information, 

digital communication technology, and computational methodologies 

into every aspect of electricity generation, delivery and 

consumption for improving system reliability and efficiency, 

reducing environmental impacts and costs, and providing energy 

markets and services [1, 43]. Moreover, it facilitates the 

deployment of small-scale distributed renewable energy generators 

(DREGs), such  as  solar,  wind, and  fuel cells,  which  can be  
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dispersed around the load centers to reduce the transmission losses 

and enhance the system’s reliability and to add flexibility to the 

current power system, while also increasing the system complexity 

[9]. To manage the DREGs, the Smart Grid introduces the idea of 

demand-control systems, advanced metering infrastructure (AMI), 

and monitoring and control of power system components for enhancing 

energy efficiency and grid reliability against malevolent damages 

[44]. However, its initial scope is widening with the emergence of 

new markets, and the growing desires of consumers to achieve the 

specified quality of service. There are different definitions and 

descriptions of Smart Grid that are available in the literature, 

as it is envisioned by different organizations, and each has many 

technology options and functionalities [45]. Considering standard 

concepts of Smart Grid, which are integrated communications, power 

system automation and smart power generation different 

organizations have anticipated the benefits and requirements of 

future Smart Grid systems as follows:  

1. Improving electricity system flexibility, security, and 

reliability, and optimizing facility utilization using 

communications, sensors, and automation to avoid construction 

of backup power plants [46, 47].  

2. Efficiently supporting a failure protection mechanism with 

self-healing retaliation to system disruptions [47]. 

3. Accommodating various distributed energy resources (DERs) 

with storage technologies and electric vehicles (EVs) 

charging support to reduce reliance on fossil fuels for a 

clean environment [46]. 

4. Enhancing capacity and efficiency of existing electric power 

networks by bringing all components of the electric power 

system generation, distribution, and consumption near each 

other for the benefit of consumers and the environment [46, 

47].  
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5. Enabling device level near-instantaneous balance of supply 

and demand by delivering real-time information with the aid 

of distributed computing and advanced communication 

infrastructure [5]. 

6. Ability to monitor the whole power system including power 

plants, individual appliances and consumer requirements with 

an automated widely distributed energy delivery network [5]. 

7. Integrating the actions and behavior of all connected devices 

using advanced communication infrastructure to provide 

economical, sustainable, and secure power supply systems 

[45]. 

8. Enable new technologies, facilities, and markets, and 

increase consumer's selections and connections[47].  

9. Facilitate opportunities for consumers to respond to dynamic 

electricity pricing by controlling their electricity use, 

specifically during peak usage periods [46]. 

In order to support the planning and organization of the several 

power supplying and power absorbing distributed entities, which 

are connected through a communication network in the Smart Grid, 

the National Institute of Standards and Technology (NIST) provides 

a framework that divides the Smart Grid into seven domains [47] as 

shown in Fig. 2.1. Each domain and its subdomain consists of Smart 

Grid actors and applications. Actors are responsible for making 

decisions, performing application-specific roles by exchanging 

information, and include devices, systems or programs. 

Contrariwise, applications are functions executed by single or 

several actors within a realm. For instance, applications can be 

renewable power production, storage system, home automation, and 

power control and management.  
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Figure 2.1. NIST smart grid framework [47]. 

Seven domains with the actors’ definition in each domain are: 1) 

Customers: they are electricity consumers that may produce, store, 

and control the energy within their premises; 2) Markets: 

electricity market operators and participants; 3) Service 

providers: these are organizations delivering facilities to 

utilities and electricity consumers; 4) Operations: they are 

managers to ensure the flow of power and information; 5) Bulk 

generation: the power plants responsible for producing electricity 

in bulk and may later distribute this energy with the aid of 

storage technologies; 6) Transmission: the transporters of bulk 

electricity from a generation site to a distribution site, usually 

located at long distances from the site of generation, and possibly 

will produce and store energy; 7) Distribution: the traders of 

electricity responsible for two-way power flow between the utility 

and customers. They will possibly produce and store energy. To 

enable Smart Grid functionality, a specific domain of actors needs 

to communicate with other domain actors, as illustrated in Fig 

2.1. Although actors in one domain have comparable goals, they may 

have different communications requirements within the same domain. 
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The detailed description of each domain with the actors’ role can 

be found in [47].  

To successfully deploy the Smart Grid technologies and services 

in the near future, NIST prioritizes six key functional areas that 

are critical for the development of the Smart Grid [47]. The six 

key priority areas were recommended by the Federal Energy 

Regulatory Commission and include wide-area situational awareness, 

demand-side management, consumer energy efficiency, energy 

storage, electric transportation, advanced metering 

infrastructure, and distributed grid management with the aid of 

cybersecurity and network communications [47, 48]. The six key 

functionalities are described below: 

1.  Wide-area Situational Awareness 

Monitoring critical infrastructures such as transformers, 

generators, data acquisition and control systems, and utility 

control centers. The objectives of situational awareness are to 

detect and prevent malicious threats occurring within critical 

infrastructure by generating an efficient response to disruptions, 

as well as optimizing the performance of power system components.  

 

2.  Demand Response and Consumer Energy Efficiency 

Technology-enabled strategies and incentive payments for 

electric power supply users such as residential and commercial 

consumers to reduce their energy consumption at times of peak 

demand or when power reliability is jeopardized. Demand response 

(DR) is essential for matching the demand for power with the 

supply.  

 

3.  Energy Storage 

Collection of methods to store energy on a small and large scale 

within an electric grid. A wide variety of energy storage 

technologies are now commercially available e.g. pumped-storage 

hydroelectricity, electrochemical, and electromagnetic storage. 
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The grid-connected energy storage system is a valuable tool for 

improving system resiliency by providing emergency backup power.  

 

4.  Electric Transportation 

This refers to the use of electric motor technology to facilitate 

large-scale integration of plug-in hybrid electric vehicles, plug-

in fuel cell vehicles, and electric batteries. Electrifying 

transportation could bring significant benefits by reducing diesel 

consumption and carbon footprints and enhancing the use of 

renewable resources and their integration.  

 

5.  Advanced Metering Infrastructure  

To implement a dynamic pricing mechanism for demand management 

programs, utilities are concentrating on developing AMI. It is 

composed of several systems including consumer energy controllers, 

meter data management software, hardware, communications, and 

consumer-related systems. These systems enable bi-directional 

communications between energy providers and smart meters, and 

collect, analyze, and distribute information to energy-users and 

other parties involved. AMI enables consumers to make informed 

consumption decisions and facilitate the integrated operation of 

DR for utilities.  

 

6.  Distribution grid management 

Utilities are investing in updated advanced distribution 

management systems to meet customers’ anticipations of power 

quality, reliability, and security by optimizing the performance 

of distribution systems components. The development of advanced 

metering and data management strategies and the deployment of DERs 

and hybrid EVs on a large scale, pave the path towards automation 

of distribution systems to achieve reliable system operation. The 

prospective advantages of distribution grid management with next-

generation control capabilities include the management of DERs, 



2.1  Introduction to Smart Grid  

24 
 

interactions with building energy management systems (EMS), and 

automated billing.  

For the development of Smart Grid, governments with a focus on 

the above-mentioned six key functionalities, universities, 

businesses, and research institutions have attempted several 

experimental projects, field trials, and demand management 

programs.  Meanwhile, the key challenges, as elaborated in [1], 

for realizing the vision of the Smart Grid can be described as 

follows: 

 Accurate modeling of RERs due to the stochastic nature of 

renewable resources e.g. solar, wind and hydro generation. To 

overcome this challenge efficient, reliable, and high-quality 

forecasting and scheduling models are required. Various 

forecasting models including extreme weather forecasting, 

short term, long term, and variations in resource levels 

should be.  

 With large scale deployment of EVs, the electric grid 

certainly has to overcome two main challenges: 1) EVs charging 

will present a considerable new load on current distribution 

networks where several grid circuits do not have any extra 

capacity; 2) As EVs can only deliver power when they are 

parked and connected to the grid, there is uncertainty in how 

much power EVs can deliver if a vehicle to grid system is 

implemented.  

 A large amount of data/information is available in a smart 

grid that is collected from smart meters, phase measurement 

units, and sensors. Constructing a meaningful database or 

history from abundant data and deciding which data ought to 

be stored in a smart grid control system is another 

challenging task.  
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 Effective communication between smart grid nodes depends on 

the interoperability of communication protocols. Since in a 

smart grid, a wide range of communication technologies, 

functions and protocols will be utilized, where each 

technology most probably relies on its own protocol and/or 

algorithm [1], the interoperability of communication 

protocols is a challenging task.  

 The development of new markets, products, and services enable 

customers to participate in the energy market by utilizing 

energy bidding strategies. However, the design of a truthful 

bidding strategy while protecting the user’s privacy is a 

highly challenging task. It is because certain consumers may 

make untruthful bids to swindle the seller to acquire benefits 

they cannot get with truthful bidding. 

 Efficient management of energy is a difficult task in the 

presence of renewable resources e.g. wind and solar due to 

their stochastic and fluctuating characteristics. Therefore, 

the design and development of a robust energy management 

system are crucial to maintain the supply-demand balance and 

enhance system reliability, while considering the uncertainty 

associated with renewable resources and forecast values.  

 The smart grid vision from various perspectives relies on 

some basic characteristics e.g. protection and resilience to 

failures, reliable system operation, and active participation 

of consumers. However, the realization of these aims presents 

several challenges such as the effect of growing energy 

demand, complex decision-making processes, availability of 

information under users’ privacy constraints, cryptographic 

systems interpretability issues, and analyzing system 

complexity.  
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The most of the technologies that are needed to achieve services 

and standards for future deployment of the Smart Grid are known 

[49], and the critical issue is the incorporation of these 

technologies and services under the common Smart Grid structure. 

The aim of this research is to contribute to two key functional 

areas of the Smart Grid e.g. DR and consumer’s energy efficiency, 

and distribution grid management as discussed above. The 

contribution in these two areas is done by developing new 

techniques and algorithms for energy management in an Smart Grid. 

These techniques are capable to incorporate voluntary 

participation of consumers in DR programs, and energy trading 

schemes to optimally utilize renewable resources, and to enhance 

the building’s energy efficiency. 

As previously mentioned the one important aspect of the Smart 

Grid is to facilitate the deployment of DREGs that create a new 

market mechanism known as a smart microgrid distribution network. 

A microgrid is a building block of future Smart Grid which is 

capable to coordinate various types of DERs utilizing dynamic 

energy management strategies. A brief introduction of DERs and a 

microgrid are provided in the subsequent sections.  

2.2.   Distributed Energy Resources   

Around the globe, continuing exhaustion of fossil fuels, 

environmental issues, and inefficiency in energy systems divert 

the world’s attention towards new ways of power generation at the 

distribution level from clean energy resources. These resources 

include a variety of technologies such as biogas, fuel cells, mini-

hydropower plants, wind power, and solar photovoltaic cells and 

their integration into the distribution system. These types of 

power generators are known as DREGs and the energy resources are 

labeled as DERs. The DERs are capable of providing a local supply 

of electricity because they could be placed at utility amenities 

or at consumers’ buildings due to their small size. DERs could 
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possibly bring about a noteworthy change in conventional 

approaches to power production, where energy is produced by large 

generators and is then transmitted using high voltage transmission 

lines over long distances to load centers. DERs technology can 

further offer electricity to distant places where the necessary 

Transmission and Distribution (T&D) services are not obtainable or 

are too expensive to construct. In addition, DERs offer economical 

construction charges and low deployment time compared to large 

centralized power plants and T&D services [50]. 

Among available renewable technologies, commonly and widely used 

DERs are wind power, solar cells, and battery energy storage 

systems (BESS). Due to the clean and sustainable nature of such 

DERs, government organizations have ordered the wide-scale 

deployment of DREGs and imposed environmental policies to 

alleviate the greenhouse gas effect created by the fatigue of 

petroleum products. Moreover, the struggle against global warming 

is also an influencing factor in increasing the DREGs 

proliferation. DREGs suggest a range of advantages such as abundant 

natural resources, fewer harmful emissions, a sustainable 

environment, and lower operating costs [51, 52]. There are numerous 

rules and strategies proposed and implemented by several world 

economies to encourage speculation on RERs including output-based 

environmental regulations, interconnection standards, state-based 

feed-in-tariff schemes, renewable energy certificates, financial 

incentives, production tax credit, buildings, and vehicle clean 

energy standards as described in [29, 53-55]. 

2.2.1   Challenges 

With a massive growth in the deployment of DREGs and the broad 

diversity of related technologies, a number of challenges arise 

out of increased decentralization. The conventional power network 

is not intended to integrate electricity production and storage at 

a low voltage level for distribution. It is also not capable of 
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supporting the system with a vision to directly supply power to 

consumers [55]. Therefore, interconnection and integration of DERs 

to the existing power system is a critical issue and involve 

significant and critical technical issues as described below [56-

58]: 

i. Voltage Fluctuations  

The existing power system and its associated distribution 

feeders are designed for unidirectional power flow that avoids 

voltage sags and swells for end consumers. However, the 

introduction of DREGs in low voltage networks will require 

bidirectional power flow where consumers will act as prosumers. 

They export power to the grid at a higher voltage than their local 

supply and as a result, the traditional grid may suffer significant 

overvoltage events, specifically during midday when PV generation 

is the highest and renewable power is available for export. 

Complexities related to bidirectional power flow such as 

unbalanced voltage levels, reverse power flow and unexpected power 

flow patterns may arise if existing feeder systems persist in the 

presence of distributed-generation (DG) units in low voltage 

networks. 

ii. Uncertainty  

RERs generation capacity normally relies on climatic aspects, 

which make these resources intermittent and stochastic in nature 

with a high probability of uncertainty in their power generation. 

Due to the intermittent nature of DREGs, the balance between supply 

and demand is difficult to obtain, as sometimes the energy supply 

is lower than the demand and on other occasions, there is an 

abundance of supply. For instance, the power output of intermittent 

energy sources is determined by the diurnal cycle such as the wind 

turbine’s power output being influenced by air density and wind 

speed. Likewise, solar generation is affected by the position of 
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the sun, the amount of cloudiness and solar irradiance at a given 

time. Thus, intermittent resource variability is one of the 

challenges that need to be addressed to integrate renewable energy 

at a broader level.  

iii. Distributed Network Protection  

With the integration of DREGs, the traditional network 

protection philosophy that assumes single-source in-feed and 

radial current flow no longer apply. The traditional strategy uses 

time and current graded protection, where the coordination of 

overcurrent devices is employed to clear all types of faults. 

Principally, DREGs utilize dynamic mechanisms to transform the low 

voltage distribution system into a multisource energy system with 

a bidirectional flow of power, which may cause a possible loss of 

coordination because of unpredictable operating times of the 

existing protection devices. The reliability of the distribution 

system is affected adversely due to this loss of protection 

coordination. Thus, an appropriate protection mechanism is 

required to maintain coordination between devices under two-way 

and inconstant power flow conditions with the integration of DREGs.    

iv. Privacy and Security  

DREGs with their associated controllers are capable of 

communicating with a number of dispersed consumers, DG units, and 

the power grid through distributed computing schemes and 

communication network infrastructure. However, cyber network 

computing schemes are vulnerable to malware and data infringement, 

resulting in infrastructure disaster, violation of consumer 

privacy agreements, theft of energy, and jeopardizing the security 

of operating personnel. Therefore, with the growing number of 

consumers and DG units, cyber-physical security and customers’ 

privacy are important issues, which need to be tackled to prevent 

possible threats and failures.
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The proposed work overcome the voltage fluctuations, RERs 

uncertainty and consumer privacy challenges through a robust 

demand-side management system. With developed demand management 

schemes the voltage fluctuations at the grid level can be overcome 

by avoiding the power export to grid at midday by efficiently 

managing the demand at the local level. Moreover, with proposed 

strategies supply and demand balance is achieved while taking into 

account RERs uncertainty and consumer privacy challenges.   

To implement the energy management schemes, a small-scale power 

system known as microgrid is required with islanding and self-

support capability in order to deliver electricity to local 

consumers. The following section provides a brief overview of 

microgrid, expected features of the microgrid system and the 

applications of DREGs in microgrids.    

2.3.   Microgrid: A Future for Distribution Systems             

Considering the significant growth in DREGs in recent years, 

the microgrid concept is being introduced to facilitate local-

scale power generation and consumption systems. There are 

different definitions of microgrid available in the literature. 

1. A controlled system with a cluster of distributed micro-

energy sources and loads, which is known as a microgrid, and 

is capable of delivering electricity to its neighbor 

communities [59].  

2. The United States Department of Energy defines a microgrid as 

“a group of interconnected loads and distributed energy 

resources within clearly defined electrical boundaries that 

acts as a single controllable entity with respect to the grid 

(and can) connect and disconnect from the grid to enable it 

to operate in both grid-connected and islanded-mode.”  
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3. A microgrid is viewed as an evolutionary concept of future 

smart grids with the integration of distributed small-scale 

renewable energy resources [1].  

Figure 2.2 shows a conceptual framework of a microgrid in the 

context of a smart grid. A microgrid typically consists of a wide 

variety of small-scale power generating and storage units e.g. 

rechargeable batteries, capacitors, and phase-change materials to 

generate power at a distribution level. It usually includes a 

variety of small power generating sources, as well as storage units 

such as batteries, flywheels, and super-capacitors [55, 60]. The 

DG units that are ordinarily found near or at customer premises 

may include clean energy sources such as solar panels and wind 

turbines [60]. The point of common coupling (PCC) is a single 

connection used to connect the electric grid with a microgrid. 

Depending on the energy supply and demand in a microgrid, the 

electric power can flow in either direction through this coupling. 

The scenario in which a microgrid is disconnected from the power 

grid has termed as microgrid operating in islanded mode. In an 

islanded mode, DREGs maintain the supply of power to consumers 

without obtaining the power from the electric grid [1, 61]. The 

PCC defines the connect and disconnect procedures in a microgrid.  

 

 

 

 

 

 

 

 

 

Figure 2.2. A conceptual illustration of a microgrid [4]. 
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The application of DERs in microgrids is extensively studied in 

the literature with the aim to overcome the challenges arising out 

of increased DG. In [62] to compensate for the fluctuating demand 

and output of renewable energy, a microgrid utilizes controllable 

prime movers, such as the gas engine. An aggregate wind generation 

system is developed in [63] using a sequential Monte Carlo 

algorithm to mitigate the effects of the high variability in the 

output of the wind turbines. In [64] and [65] a ‘perturb and 

observe’ technique and a neural network system are proposed for 

maximum power point tracking of PV systems respectively. These 

studies show that efficient stable operation can be accomplished 

without any fluctuations around the maximum power point and the 

quantity of achievable power from solar panels in a microgrid can 

be estimated. The work in [66] exhibits that energy balance 

fluctuations in a microgrid can be reduced by including various 

technologies of sustainable power generation and optimizing asset 

utilization.   

Another group of researchers supports the installations of BESS 

to compensate for the variable nature of DREGs and for smooth 

islanding events in microgrids. With this technology, DREGs can 

continue to meet load demand even in the absence of power 

generation sources such as sunlight and wind, which means having 

the ability to achieve a sustainable energy solution with reduced 

grid dependency. Moreover, BESS benefits can be seen in terms of 

extra profits, avoided costs, and reducing electricity bills for 

the operator, owner and electricity end-users respectively [67]. 

One of the benefits of avoided costs with a BESS is that the 

operators can avoid the cost of generation equipment because there 

is no need to install it. The extra profit would be related to the 

profit earned by selling stored energy and other facilities 

obtained by the BESS owner. From a consumer point of view, the 

benefits of a storage system would be a reduction in their 
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electricity bill, which means a lower cost of electricity [68, 

69].    

In literature, studies have been proposed to overcome the 

microgrids' voltage regulation, security, and privacy challenges. 

In [70], the intermittent energy source consists of a wind turbine 

that is considered and its operational challenges in capacity-

limited microgrids are presented. In this study, the researchers 

proposed to utilize static synchronous compensator to reduce the 

microgrid voltage fluctuations in case of short circuit faults. In 

[15], a composite storage system that consists of ultra-capacitors 

and batteries with high power and high energy density respectively 

is presented for active power balancing and voltage regulation in 

microgrids. The developed system ensures load leveling and 

lessening the power trade with the grid for more efficient and 

flexible system operation. In addition to the above-mentioned 

technologies, power electronics can likewise assume a significant 

role in microgrid integration. Electronically coupled units that 

utilize power electronics converters acting as voltage sources in 

AC/DC microgrids can interface DERs with a microgrid. Therefore, 

power converters are required with an unregulated output voltage 

to integrate the power sources to the electric grid [71, 72]. A 

three-phase voltage source converter system is investigated in 

[72] by developing a control system framework to perform stability 

analysis. The simulation results indicate that the proposed 

control strategy is effective to regulate the real and reactive 

power production and alleviates the grid voltage distortion online 

currents influence. 

Dispersed generating units are capable of interacting with each 

other and/or the energy providers by using the enhanced 

communication infrastructure in a microgrid. These interactions 

happening on a large scale has raised an energy security concern 

with energy being a premium resource. Adequate cybersecurity 

measures against fraudulent acts, breach of consumer’s privacy, 



2.3  Microgrid: A Future for Distribution Systems  

34 
 

and loss of data and information related to energy consumption are 

important to ensure the stability of the microgrid [73]. There are 

three main objectives of cyber-secure systems:  

1) integrity, 

2) confidentiality, and 

3) availability. 

Integrity is the protection of the system against unauthorized 

modifications or destruction of information. Confidentiality 

ensures the user's privacy and proprietary over information 

through authorized access to data and control over disclosure. 

Availability means to provide well-timed and trustworthy access to 

data, information, and amenities. Previously from a system 

reliability perspective, integrity and availability are considered 

the most important security objective in a microgrid. Now, the 

importance of confidentiality has significantly grown as users' 

interactions with the system increased. This interaction involves 

a bidirectional communication system that interconnects various 

components of the power system, such as smart meters, AMI systems, 

data centers, and communication interfaces. A specific point of 

vulnerability for cyber-attack starts from a consumer's smart 

meter and goes to the AMI collector system, where customers may 

utilize a wireless communication interface that provides an 

opportunity of attack to hacker [74]. In literature, several 

security mechanisms such as public key infrastructure [75], 

anonymization [76], privacy-preserving smart meters [77], 

aggregated data strategy for bill calculation [78] and cooperative 

methodology for resource utilization [79] have been proposed to 

handle the security issues in a microgrid system.   

Overall, microgrids can incorporate RERs to alleviate 

environmental concerns [1]. It could offer a reliable power system 

by  limiting  line  losses, improving power quality, and enhancing 
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system resiliency and flexibility [80]. However, microgrid 

reliability depends on the dynamic control of power supply sources 

and controllable loads. This research work proposes an appropriate 

energy management system to make sure system efficiency, 

reliability, and stability with various DERs, storage systems, and 

internal loads integration. The section below discusses the 

various demand-side management (DSM) techniques to improve energy 

consumption, energy efficiency and optimal economic dispatch in 

smart grid systems.  

2.4.   Demand Side Management  

At the end of the 1970s, the term DSM was introduced which aimed 

to make aware and encourage the customer to participate in energy 

management programs. In the middle of the 1980s, DSM programs came 

into practice and at the end of this decade, these programs were 

familiar with everyone. There are different definitions of DSM in 

the literature. 

1. DSM programs encourage customers to be more energy efficient 

by using energy management algorithms and building control 

strategies [81]. 

2. DSM has a set of rules or planning to monitor and implement 

the customer awareness programs used to manage the energy 

efficiency along with peak shaving [82]. 

In traditional energy supply systems, energy demand is fulfilled 

by turning on peak power plants. On the other hand, DSM uses 

different strategies or developed incentives for smart grid 

customers to change their energy consumption patterns to reduce 

the peak load demand on the electric grid or simply shutting off 

the undesired load. Thus, the DSM strategies help to stabilize the 

smart grid by providing a balance between energy demand and supply. 

Moreover, DSM facilitates the consumers to act as a virtual power 

plant by lowering their energy demand, which ultimately lowers the 

risk factors on the grid side. 
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DSM is a collective term used to describe distributed or non-

generation demand-side resources. Based on this definition, the 

concept of DSM includes energy efficiency and DR programs where 

the DR objective is to support the peak reduction while energy 

efficiency focus is on energy-saving measures [83]. DSM programs 

in order to promote more efficient energy consumption in the smart 

grid include: 

1) Promoting high-efficiency buildings, which include a focus 

on the design of 100% renewable energy systems at consumer 

premises and utilizing high-efficiency equipment and 

technologies including energy-efficient lighting, 

appliances, and heating, ventilation, and air-conditioning 

(HVAC) units.  

2) Facilitating consumers’ participation in energy trading 

schemes with consumer-centric energy management schemes.  

3) Encouraging customers to reduce their energy consumption 

demand at different time slots in response to electricity 

price variations or based on incentives offered by 

utilities or control of responsive thermostatic loads for 

DR to contribute to the efficient operation of the grid. 

In the above-mentioned DSM programs, customers could be viewed 

as flexible power consumers because they play a significant role 

in power system stability. They allow the utility to monitor and 

control their appliances or lower, shift and change their 

consumption patterns in return for incentive payments [84]. Thus, 

it is important to make the consumers an integral part of energy 

management schemes to encourage voluntary participation in the DSM 

programs. The concept of DSM is utilized to facilitate the 

consumer's participation in order to exploit the complete benefits 

of the smart grid, which facilitates the customer’s interaction 

with the utility through two-way communication technology [85]. 

Thus  to  implement the vision of Smart Grid, it is imperative to 
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focus on the DSM models and their associated challenges. The 

following section elaborates on the DSM programs in detail 

discussed above. 

2.4.1   Energy Efficient Buildings  

Energy efficiency is a way of managing and limiting the 

incredible growth in energy consumption. In other words, energy-

efficiency means using less energy to achieve the same outcomes or 

doing more using the same energy [86, 87]. Energy efficiency 

includes using RERs, installation of efficient appliances and 

energy monitoring and control using advanced techniques [88]. The 

notion of power generation from DERs facilities the smooth 

transition from conventional buildings to energy-efficient 

buildings.  

There are numerous studies [89-91] showing the practicability of 

a variety of technologies related to renewable energy for both 

existing and newly constructed buildings including potential 

advantages and the estimated cost of installation, financial 

incentives, CO2 savings over time, and improvements to building 

energy efficiency. For instance, the study results reported in 

[89] show that in Australia within 10 years solar and wind 

technologies including concentrated solar thermal power could meet 

over 90% of energy demands with a minor extra cost to households. 

The full-scale residential building retrofit analysis located in 

north China indicates that a retrofit of both buildings envelop 

and the space heating system with temperature control of the space 

can reduce the space heating load up to 65%  and the retrofit 

building can achieve a good improvement of the indoor thermal 

environment with an acceptable payback period [91]. Moreover, the 

importance of energy-saving measures including building 

refurbishment, investment in energy-efficient appliances, and 

energy monitoring and control using advanced tools have gained 

researchers' attention for DSM.  
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The refurbishment of existing buildings is required to achieve 

energy-saving goals because these buildings, unlike new buildings, 

are unable to satisfy current building energy codes. In [92], a 

refurbished university building’s energy performance,  daylighting 

features, and the facilities’ thermal behavior are studied.  The 

researchers utilized real-time operating schedules and mechanical 

data of the test building and completed an investigation using 

both numerical and experimental techniques. In the refurbishment 

procedure, the single-glazed aluminum framed windows are replaced 

with double glazed polyvinyl chloride framed windows. The results 

demonstrate that the yearly cooling and heating demand for energy 

is reduced by 9.7% and 5.3% respectively, which corresponds to a 

4.3% reduction in annual building energy consumption. A life cycle 

assessment at the material level is used in [93] to show the energy 

savings in the refurbishment of the buildings. This study compared 

the environmental sustainability and thermal performance of three 

different insulation materials. The study recommended expanded 

polystyrene and extruded polystyrene for the facade, terraces, 

foundations, basement walls, and floor insulation over 

polyurethane. The analysis of the results indicates that there is 

a 55% reduction in operational energy usage of the refurbished 

building compared to the building with old insulation technology.  

Along with the refurbishment of existing buildings, many 

research studies [94-97] stimulate energy conservation behaviors 

and supplanting of traditional appliances with energy-efficient 

equipment. For example, in [94] resident’s actions and behaviors 

related to the utilization of household machines and equipment 

were evaluated for energy performance. The simulation results 

demonstrate that the most compelling energy conservation actions 

to reduce energy consumption in Thai style homes include turning 

on electric fans rather than using air-conditioners when comfort 

requirements are satisfactory at room temperature, replacing 

cathode ray tube TV technology with light-emitting diode 

https://www.sciencedirect.com/topics/engineering/polyurethanes
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technology, and upgrading incandescent lamps to LED lighting. 

These measures have the potential to save 978.06, 369.36 and 245.04 

kWh/year respectively. The work in [96] reported the survey results 

of 215 commercial buildings located in an Indian state. The study 

was conducted to gain insight into commercial consumer’s 

activities and their energy usage patterns. The results show that 

both small and large scale buildings can achieve an 11% to 26% 

reduction in energy consumption by replacing non-star rated Air 

Conditioners (ACs) and conventional lighting with star-rated ACs 

and LED lighting. 

 Furthermore, improving building EMS using optimization 

strategies and robust control can help to increase the energy 

efficiency of the building [98, 99][13][14]. A smart building 

usually utilized a building automation system to monitor and 

optimally control the various building loads, such as lighting 

[17, 18], air conditioning  [19-21], thermal and comfort control 

[22-24] for dynamic control of load and to enhance the energy 

efficiency of the building. In [17], consumer-centric software is 

developed to monitor, control and manage the power demand in public 

buildings that are operational at the current time. The designed 

system monitors and controls the lighting of various office places 

with the support of hardware-independent interoperability and the 

integration of heterogeneous technologies. The monitoring data 

shows that the standby power consumed by luminaires and sensor 

noise contributed to parasitic power consumption. In [21], a model 

predictive control mechanism is designed for the building to decide 

HVAC system variability for an upcoming operating schedule in order 

to maximize the profit. The simulation results indicate that the 

variable frequency drive fans' energy demand could fluctuate up to 

25% in a short span of time around its minimal energy demand 

without creating a significant impact on the temperature of the 

building. A hierarchical multi-agent control system with an 

intelligent optimizer using a particle swarm optimization 
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technique is developed in [23]. The proposed system control goals 

are to coordinate the multiple agents and the optimizer to optimize 

the overall system and enhance the intelligence of the integrated 

building. 

2.4.2   Consumer-Centric Energy Trading Schemes   

Energy trading refers to the transfer of energy from a player 

that produces more energy than it needs to a player with a deficit 

within a certain time interval in an energy market [100]. Energy 

trading/energy exchange is an effective way of energy management 

with the development of DREGs to satisfy the growing demand for 

electricity. The renewable growth rate has increased the number of 

participants/players in the energy market including consumers and 

end-users [101]. These players have created positive competition 

and investment in the area of energy trading, and an opportunity 

to develop trading frameworks. There are many factors that need to 

be considered for efficient energy trading schemes such as players' 

rationality and privacy, trading volume, number of buyers/sellers 

and fair pricing between supply and demand prices [102]. 

 The Internet of Things (IoT) incorporates the energy-trading 

framework with an ability to distribute energy and transmit 

information. All consumers and end-users are connected through the 

IoT to communicate in real-time and regulate supply and demand 

imbalance [103]. With the development of IoT technologies and 

DREGs, the energy market relies more and more on new players with 

renewable energies to relieve the power generation pressure of 

energy suppliers in utility grids. An efficient energy trading 

framework is required to assess the behavior of all trading 

partners and includes their personal requirements [100]. In the 

literature, game-theoretic and contract-theoretic approaches are 

adopted to tackle the energy-trading problem.  
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i. Game Theory 

To implement an energy management scheme efficiently, the 

participation of both supply and demand sides is required and they 

are assumed selfish and self-centered in nature. In an energy 

management mechanism, suppliers are required to modify their 

generation, transmit their techniques and energy rates considering 

various operating conditions. While end-users answer the 

suppliers’ strategies by purchasing more cost-effective 

electricity than on the traditional market to capitalize on their 

profit. As both suppliers and end-users are part of the energy 

market for an electricity trading mechanism, the decision making 

strategies of one side can influence the other. In such a 

situation, game theory is an excellent option that provides an 

opportunity to design a framework to analyze the decisions and 

techniques of rational players [100, 104]. 

There are three main components of the model based on game theory 

such as the set of players symbolized as N, the action set 𝐴𝑖 

belongs to the 𝑖th player, and utility function 𝑈𝑖 that corresponds 

to the 𝑖th player, where 𝑖 ∈ N. The game mechanism is that each 

player 𝑖 selects an action 𝑎𝑖 ∈ 𝐴𝑖 to maximize its utility function 

𝑢𝑖(𝑎𝑖, 𝑎𝑖−1). The 𝑖th player’s action is not only contingent on its 

own action 𝑎𝑖 but also on the actions chosen by the players other 

than 𝑖th player, symbolized as {𝑎𝑖−1}.   

The aim of the players is to maximize their revenues by changing 

their techniques. A significant aspect of game-theoretic 

approaches is the Nash equilibrium, which is a particular condition 

where no player can enhance its revenue by adjusting its action 

individually with respect to the actions of the other players. The 

Nash equilibrium with unaltered techniques could be defined in a 

mathematical term as a vector of actions 𝑎∗ ∈ 𝐴, provided 𝑢𝑖(𝑎𝑖
∗, 𝑎𝑖−1

∗ ) 

≥ 𝑢𝑖(𝑎𝑖, 𝑎𝑖−1
∗ )  holds, ∀ 𝑎𝑖 ∈ 𝐴𝑖 , 𝑖 ∈ N, for a static game [105]. 
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The game-theoretic approaches can be categorized into two main 

types: cooperative and non-cooperative games depending on whether 

players achieve the Nash equilibrium state by doing competition or 

cooperation with each other [100, 106]. In a smart grid framework, 

the non-cooperative game-theoretic approach can be utilized to 

analyze the energy trading decisions of competitive suppliers and 

customers. On the other hand, cooperative game-theoretic schemes 

are appropriate when energy-trading partners cooperate with each 

other by utilizing communication infrastructure to obtain a 

socially optimal solution or enhance the efficiency of the traders.  

ii. Contract Theory  

 The energy trading players may have different characteristics 

according to their power generation and consumption priorities. 

Innately, different incentives must be offered to these players 

based on their characteristics. Some players may mislead the 

utility about their type in order to obtain more revenue owing to 

their rationality. In addition, in the real-world energy market 

information asymmetry is present where energy suppliers have no 

knowledge about the actual types of players.  These two challenges 

make the trading scheme designing tasks very challenging [106-

109]. 

To design an effective trading scheme that overcomes the above-

mentioned challenges, the contract-theoretic approach is suitable 

which categorizes the players into various types depending on their 

trading features under an asymmetric information environment. 

Contract theory which is categorized within an economics field 

is a powerful mechanism that can be utilized to incentivize the 

trading players according to their actual types in the presence of 

asymmetric information [110]. Taking into account N types of 

players, the trading contract for each type can be written as 

(𝑎𝑖,𝑞𝑖), where 𝑖 ∈ N , N = {1, 2, . . . ,N}. Here 𝑞𝑖 is the quantity 
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of traded electricity and 𝑎𝑖 is the 𝑖th player’s reward to provide 

that electricity.  

For a realistic contract theoretic approach, the designed 

contracts must meet the Individual Rationality (IR) and the 

Incentive Compatibility (IC) constraints. These constraints can be 

described as follows 

   IR constraint 

Definition: A designed contract meets the individual rationality 

constraint if the utility of each type of players is assured to be 

non-negative or positive, i.e., 

𝑈𝑖(𝑎𝑖, 𝑞𝑖) ≥  0, 𝑖 ϵ N                           (2.1) 

Where 𝑈𝑖 is the 𝑖th player’s utility.  

The IR constraint stimulates the rational trading players to 

take part in a trading process with a guarantee of positive 

revenue.   

   IC constraint 

Definition: A designed contract meets the incentive 

compatibility constraint if the contract (𝑎𝑖,𝑞𝑖) selected by the 

𝑖th player obtains the maximum utility they can achieve, i.e., 

𝑈𝑖(𝑎𝑖, 𝑞𝑖) ≥ 𝑈𝑖(𝑎𝑗 , 𝑞𝑗)0, 𝑖, 𝑗 ϵ N, 𝑖≠ 𝑗        (2.2)       

The IC constraint encourages the 𝑖th player to choose the (𝑎𝑖,𝑞𝑖) 

contract from all available contracts.  

In the energy trading mechanism, primarily, an aggregator or 

retailer designs and offers the contracts to consumers and/or 

producers. Therefore, the aggregator can use a well-designed 

contract scheme to achieve the highest revenue by stimulating other 

players to act in a required manner.   
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2.4.3   Demand Response via Control of Thermostatic Loads   

The DR definition as provided in [111, 112] is “changes in 

electric usage by end-use customers from their normal consumption 

patterns in response to changes in the price of electricity over 

time, or to incentive payments designed to induce lower electricity 

use at times of high wholesale market prices or when system 

reliability is jeopardized”. Based on this definition most of the 

DR programs are designed with an objective to alleviate the power 

system’s burden during peak demand periods or during emergencies. 

The utility incentivizes customers to modify, shift, and control 

their appliances consumption through DR programs [113]. They are 

attracting public attention in contemporary power systems due to 

their added advantages [114-117].  

The highest percentage of electricity in a building is consumed 

by responsive/thermostatic loads such as air conditioners, 

refrigerators, and heaters [118]. For instance, HVAC systems in 

Australia are responsible for nearly half (45%) of the commercial 

peak demand [119][9]. There are various benefits of controlling 

thermostatic loads including peak demand reduction, voltage 

regulation, frequency stability, and supply and demand balance to 

the microgrid with renewable sources [120]. The control mechanism 

of these loads is to utilize the small variations in temperature 

around the temperature band while maintaining the desired 

temperature for most of the occupied hours. This characteristic 

amounts to the possibility of shifting demand from one moment in 

time to another in response to the network’s needs, without 

noticeably affecting the quality of service [121]. Control of 

thermostatic loads for DR can be generally classified as:   

2.4.3.1   Price Based  

Price-based demand response depends on consumers modifying their 

consumption patterns while responding to time-varying electricity 

https://www.sciencedirect.com/topics/engineering/consumption-pattern
https://www.sciencedirect.com/topics/engineering/consumption-pattern
https://www.sciencedirect.com/topics/engineering/market-price
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pricing e.g. time-of-use (TOU), critical peak, and real-time 

pricing (RTP). 

i. Time-of-Use Pricing  

In the TOU model, the entire day is partitioned into various 

time periods and electricity pricing is known ahead of time and is 

usually monthly or seasonal based. The price of energy changes and 

depends on the time periods of usage such as the off-peak, the 

shoulder, and the peak period. In this pricing mechanism, the 

customers can cut electricity costs by scheduling their appliance 

usage in the cost-effective shoulder and off-peak period instead 

of the costly peak period. Prices are cheaper in off-peak and 

shoulder periods and more expensive during peak periods. For 

instance, energy prices are usually high from 2 pm to 8 pm during 

the summer months, thus, consumers can save money by turning on 

the least appliances during this time. The spirit of the DR program 

relies on the electricity market principle that is energy prices 

cannot be kept constant for a long-time period and differ along 

with supply and demand fluctuations. Therefore, to take advantage 

of TOU mechanisms, customers are required to do rescheduling in 

order to operate their appliances in the lower-priced period as 

prices stay constant for a month or a season [122].  

ii. Critical Peak Pricing  

This pricing model utilizes predetermined pricing values and is 

normally implemented in combination with other pricing models e.g. 

TOU or RTP. In the event that consumers exceed the energy 

consumption limit specified by the energy providers, utilities 

substantially raise energy prices to limit energy consumption. 

However, the utility notifies the consumers before preceding to 

execute a critical peak-pricing scheme. The prominent feature of 

this plan is to restrict consumers to use minimum power during 

peak demand periods to obtain supply-demand balance. An 

investigation directed in California state reveals that the power 
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consumed by a heater can be decreased by 41% when utility imposes 

two hours threshold limit to hot water usage with a consumer 

control [123]. However, without consumer control with a five-hour 

threshold limit about 13% power is conserved.  

iii. Real-Time Pricing  

Unlike TOU which doesn’t change frequently, the RTP fluctuates 

as the load conditions vary [106]. RTP is known as electricity 

retail charges and wholesale electricity prices as determined by 

the retail market prices. These are the charges to provide the 

electric power that varies each hour depending on the current load 

demand [124]. In other words, the RTP scheme provides accurate 

information about electricity charges at any given time as 

determined by overall demand. RTP allows end-users to modify their 

energy usage according to the actual cost of electricity. For 

instance, adjusting the usage of thermostatic loads when load 

demand and prices are low because they consume a large amount of 

electricity [125]. To implement the RTP mechanism, smart metering 

technologies are essential for a two-way flow of information 

between the smart meter and consumers [122]. 

2.4.3.2   Transaction-Based Control  

Transaction-based control, a market-based control technique, is 

a distributed control scheme. It stimulates self-centered 

thermostatic loads to utilize market mechanisms in order to provide 

amenities to the electric grid. One important aspect of this 

control scheme is that it represents consumers’ privacy, 

preferences, and free will because it only requires the electricity 

price and the amount of desired power information from end-users 

for implementation. In transaction-based schemes, responsive loads 

offer their bidding price which is an amount of money they are 

willing to pay for a specific quantity of power. The bidding price 
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is submitted to the aggregator, also known as a market operator. 

The end-user bidding price is calculated considering three main 

factors: 1) current load condition; 2) customer comfort 

requirement; 3) anticipated market price and its instability. The 

aggregator accumulates buy and sell bids from end-users and energy 

suppliers respectively and clears a double auction market at a 

clearing price. If the consumer bidding price is higher than the 

clearing price then the end-user allows using the power at the 

clearing price. Otherwise, the consumer will wait for the upcoming 

market-clearing and defer consumption. Afterward, it broadcasts 

the clearing price and schedules future operations according to 

the amount of cleared power.  

Since the transaction-based approach is like an indirect control 

operation that does not limit consumers’ independence or attack 

their privacy, it is more popular among users than direct control 

techniques [126]. The previous studies [127, 128] demonstrate that 

transaction-based control can be easily implemented by modernizing 

current thermostatic loads using bidding operation. Another way of 

implementation is to develop a novel thermostatic controller that 

is only responsive to market-clearing price and does not operate 

based on a set temperature dead band. The benefit of this scheme 

is that the amount of electricity available for consumption 

corresponds to the clearing price thus provides better tracking 

for DR [129].  

The above literature review reveals that researches have done a 

lot of work in the area of energy management in smart grids, 

however, for smart grid realization, there are several prospects 

in the area of energy management where novel contributions are 

required. This thesis makes various novel contributions in the 

area of energy management by modeling the energy usage behavior of 

distributed entities in a smart grid and making the consumers an 

integral part of smart grid demand management schemes.  

https://www.sciencedirect.com/topics/engineering/control-operation
https://www.sciencedirect.com/topics/engineering/control-operation
https://www.sciencedirect.com/topics/engineering/thermostatics
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2.5.   Chapter Summary  

A thorough literature survey on smart grid technology including 

key functionalities and challenges, DERs potential and challenges, 

microgrid technologies and DERs application in microgrids and DSM 

techniques are presented in this Chapter. Based on the analysis 

presented in this chapter, an energy management system in smart 

grids with DERs has been designed by utilizing various approaches 

shown to be effective for DSM in smart grids. Albeit the above 

literature review shows that researchers have proposed various 

energy management approaches within the context of the smart grid, 

still there is sufficient room to do novel contributions in the 

area of energy management in the smart grid. This thesis proposes 

various significant novel contributions in this area, beginning 

with a comprehensive energy analysis of experimental smart 

building by monitoring energy conservation measures through real-

time data analysis as presented in Chapter 3. The next Chapter 

provides the design and modeling of energy trading schemes in a 

smart grid for energy management with large penetration of DERs to 

attain social benefits for trading partners. In Chapter 5, an 

optimal energy imbalance management strategy is developed for 

efficiently curtailing responsive loads of commercial buildings 

with the market price when the energy at the grid and/or from DREGs 

is limited.  
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Chapter 3                                                                                                                                                                 

Performance Analysis of an 

Experimental Smart Building  

This chapter investigates the performance of an experimental 

green building funded by the Australian Research Council, 

Australia, as a part of a Zero Carbon Australia (ZCA) building 

plan to reduce energy consumption and carbon footprints. Beyond 

Zero Emissions (an Australian research and education organization) 

draws up a ZCA building plan to avoid average global warming of 

greater than 2oC and achieve zero carbon emissions from the 

commercial sector in a decade. In order to implement this plan, 

the Australian Government and other non-profit organizations offer 

a large number of grants, subsidies, and incentives to commercial 

building owners for an energy transition from fossil fuels to 

renewable energy resources (RERs). In this chapter, the energy 

analysis of an experimental (6-star rated) green building where a 

range of energy conservation measures was undertaken is presented. 

The objective of developing this green building is to reduce 

emissions and energy consumption from the built environment.  



3.1  Introduction  

51 
 

The outcome obtained from the monitored data has shown some 

significant differences from the expected and previously estimated 

energy-saving results. This chapter focuses on some possible 

explanations and criticalities related to the characteristics of 

the chosen devices and to the strategies adopted. In addition, 

some coordinated measures, strategies and new technologies to 

mitigate the highlighted problems are recommended. Furthermore, it 

includes several analyses to show the effectiveness of proposed 

recommendations. Through this case study, building designers and 

operators can gain insights into built-environment projects to 

provide more positive development solutions for the building 

industry in Australia and other countries. 

3.1.   Introduction  

In Australia, the majority of the energy used (72%) in the 

building sector is from electricity and the energy consumption in 

the commercial sector contributes approximately 26% of Australia's 

carbon emissions [130, 131]. These figures indicate that 

participation of the building sector in climate solutions is 

crucial to make Australia a carbon-neutral country. Australia's 

emission output, which is high, compared to any other developed 

economy, indicates that more effort is needed to reduce the average 

global warming. Research indicates that a 2-degree increase in 

average global warming will have very significant and adverse 

effects on human health, species extinction, weather, and sea 

levels. Therefore, it is extremely important to make an energy 

transition from fossil fuels to clean renewable sources [98, 132-

134]. Australia's net zero-carbon emissions plan is a guideline to 

achieve a zero-carbon emission goal from the commercial sector 

within a decade [135]. Research from the Green Building Council of 

Australia  has  found  that energy-efficient and green star-rated 

buildings produce 62% fewer greenhouse gas emissions and use 66% 

less electricity than the average Australian building [136, 137]. 
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However, a good understanding of wide-ranging and coordinated 

measures is required to make a move towards a zero-carbon future 

for Australia. 

ZCA building plan strategies include reducing electricity 

demand, enhancing energy efficiency, and improving building energy 

management and occupant interaction. Electricity demand can be 

reduced via distributed energy generation at individual building 

sites, and by sourcing electricity from RERs such as solar, wind 

and fuel cells [89, 138, 139]. A range of measures can be taken to 

improve energy efficiency, such as the installation of efficient 

appliances, lighting and mechanical systems and the passive design 

of a building to work with the climatic conditions of the site. 

Advanced control and optimization techniques can be applied to 

improve the building energy management system [98, 140]. Above 

all, customers' participation is necessary to capture the benefits 

that green buildings deliver to the environment, the economy and 

the community. Their behavioral change in terms of rethinking 

energy end-use in favor of electricity generated from RERs is 

important [141, 142]. Therefore, the combined implementation of 

different intervention policies should be put into practice to 

reduce carbon footprints for buildings.  

The distributed-generation (DG) concept assists to make a 

transition from traditional to green building. It enables the 

commercial consumer to generate energy near to/on-site to the 

consumption site. The availability of sunlight, rapidly increasing 

competition in the Photovoltaic (PV) market, and the 

simultaneously increasing efficiency and declining cost of PV 

panels make it a commonly used on-site generation source [143]. 

Moreover, PV generation and the load profile of commercial 

buildings match well and thus allows effective offsetting of peak 

electricity usage [144-146]. However, a complete off-grid storage 

system is needed to overcome the solar intermittency problem.  
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Commercial loads require long-term storage systems, such as 

batteries and ones based on hydrogen technology. In spite of the 

lower efficiency of the hydrogen storage system, the use of PV-

driven hydrogen generators (electrolyzers) will continue to grow 

in the future. The hydrogen fuel cell is the key technology for a 

future hydrogen economy that allows the zero-emission target to be 

achieved. In the literature, a hybrid power configuration (based 

on a battery and fuel cells) is preferred over full electrochemical 

battery power solutions due to its improved performance [147-149].  

After deployment of RERs within the storage system, the next 

step is to effectively manage renewable power production and to 

create awareness in users towards the technologies. In order to 

better manage the energy demand and to increase the building's 

energy efficiency, an intelligent building often employs a 

building automation system (BAS) to monitor and optimally control 

various buildings' loads, such as lighting, heating, ventilating 

and air conditioning (HVAC) systems. Several researchers propose 

a solution to improve lighting [17, 18], air conditioning, thermal 

and comfort control [22-24] in existing BAS. However, expanded 

deployment of variable generation on the bulk power side, 

distributed energy resources, and new intelligent load devices 

require new approaches for power management and efficient control 

strategies [150]. 

As part of the ZCA building plan, a green building project named 

Sustainable Initiatives: Sir Samuel Griffith Centre (SSGC), has 

been designed. The main objective is to exploit the benefits that 

a green building can offer to achieve a net-zero-emission building 

plan through effective demand-side management, both as electricity 

producers and consumers. In this green building design, the 

abovementioned energy-efficient measures were implemented and new 

energy-efficient technologies were adopted to reduce energy usage 

and carbon dioxide (CO2) emissions. Another purpose of this green 

building is to function as an energy-aware platform, which is to 
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be open to future developments, in terms of further adopting new 

innovative technological solutions and improving building energy 

management system.  

In this chapter, the effectiveness of the energy efficiency 

measures and technical solutions incorporated in the net-zero-

energy building are evaluated. This is achieved through a rigorous 

analysis of energy use and the performance of devices connected in 

that building. The results obtained from the monitoring activity 

from January 2014 to October 2016 are discussed with respect to 

the performance gap in RERs, devices and control systems. Moreover, 

we designed a PV system and an improved control strategy based on 

our recommendations and performed several case studies using the 

Solar Pro software and MATLAB/Simulink tool. In the future, it 

will be crucial to analyze the performance of existing green 

buildings, as consumers need effective communication of practical 

applications in order to solve the current climate crisis. 

The rest of the chapter is organized as follows. Section 3.2 

gives a brief introduction of the test green building located at 

Griffith University, Australia. Later, different factors that 

affect the net-zero-energy building performance and the outcome 

obtained from the building’s monitoring data are presented in 

Section 3.3. Recommendations to improve the test green building 

performance including the latest research-based solutions and 

better techniques and strategies are outlined in Section 3.4. The 

scientific analysis of proposed recommendations with real-time and 

the simulation results are elaborately discussed in Section 3.5. 

Section 3.6 and 3.7 summarizes the energy analysis of the test 

building and the cost of technology upgrade respectively. Section 

3.8 draws the conclusion for the chapter. 

 



3.2  Test Green Building 

55 
 

3.2.   Test Green Building 

This section provides an overview of the test office building 

SSGC that is an example of genuinely sustainable alternatives used 

to find practical solutions to environmental issues. It also 

provides a model that could be incorporated into isolated buildings 

in remote areas, such as schools in rural communities. The 

innovative SSGC was officially opened in 2014 and was awarded a 6-

star (green-star) rating by the Green Building Council of Australia 

in 2015. Green Star is a comprehensive, national, voluntary rating 

system that evaluates the environmental design and construction of 

buildings. This center (named N-78) is located at Griffith 

University Nathan Campus, which is in a southern suburb of 

Brisbane, Australia. 

The SSGC is Australia’s first teaching and research facility 

designed to rely entirely on PV modules and hydrogen metal hydride 

storage technologies for being off-grid. It consists of four levels 

with the ground and upper floor areas of 7,322 m2 and 3,740 m2, 

respectively. It provides an academic facility with a lecture 

theatre, and seminar and meeting rooms using 1.1, 1.8 and 5 

m2/person population-density design criteria. In the SSGC, a range 

of energy efficiency measures is taken to achieve high levels of 

energy efficiency. For example, lighting control strategies 

include occupancy control, time scheduling and daylight control. 

In occupancy control, infra-red motion detectors switch the load 

by detecting the presence or absence of a person in the space. In 

the time-scheduling technique, a time clock turns the luminaries 

on and off at scheduled times. Daylight control is based on 

photoelectric light sensors that automatically adjust the light 

flux of luminaries depending on the amount of light available.   

An efficient high-voltage alternating-current HVAC system is 

controlled through thermal and CO2 emission sensors. The operating  
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range of the temperature sensors is set according to the green-

building design guidelines in order to maintain reasonable comfort 

levels. External and internal temperature set-points for summer 

are 24.9°C to 31.9°C and 23.5°C while in winter they are 9.3°C and 

21°C, respectively. A flooding set point is also used, which is an 

automatic program that adjusts the temperature set point when the 

ambient temperature is extreme and outside the design parameters. 

For example, if the outside temperature during summer is 38°C 

(which is 6°C higher than the design conditions), the indoor set-

point will be increased by 2°C to ensure a comfortable environment 

for occupants. 

CO2 sensors are responsible for adjusting the required 

ventilation through the HVAC system. The installed HVAC system 

currently provides 7L/person/second of fresh air. The airflow will 

increase if the CO2 sensors detect that carbon emissions and gases 

from volatile organic compounds have increased from a set point. 

CO2 control also maintains the CO2 level between 600ppm to 900ppm 

in the return air and outside air dampers valve of the air-handling 

unit (AHU). For energy efficiency, the AHU can initiate an economy 

cycle when the outside air temperature is between 14°C and 22°C.  

The economy-cycle control splits the cooling signal into two 

halves. In the first half, the cooling signal modulates the outside 

air dampers (open to close) while the second half of the cooling 

signal modulates the chilled-water valve.  

3.2.1 Solar Coverage 

 PV arrays were installed on the roof of the building and on the 

northern façade (at different angles for maximum output in 

different seasons). The building has a total of 1200 panels (970 

are installed on the roof and 230 are installed on the northern 

façade). These panels have a maximum rated power of 375 kW at 

standard test conditions. Before installation, the average daily 

energy production of the rooftop and facade panels was projected, 
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and the results are shown in Fig. 3.1. It is predicted that the 

rooftop panels constitute 70% to 90% of the total annual energy 

production. It is also anticipated that the generation capacity of 

the façade panels will decrease in winters if they installed at 

the same angle of inclination as the rooftop panels. Based on this 

anticipation, the rooftop and façade panels are installed at 

different inclination angles for optimum overall production in all 

seasons. 

 

Figure 3.1. Predicted average daily energy production of roof and facade 

panels 

The modules installed on the roof are set at an angle of 

inclination of 15o to the horizontal for optimum summer production, 

as shown in Fig. 3.2. Meanwhile, for maximum winter production, 

the northern facade panels are set at an angle of inclination of 

37o to the horizontal (see Fig. 3.3). Together, these panels act 

to even out production over the year. It is expected that PV panels 

at these inclination angles provide maximum yearly solar 

irradiation and optimum production for the SSGC building location 

of -27.55 latitude & 150.05 longitudes.   
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Figure 3.2. Stationary PV modules installed on the rooftop 

 

Figure 3.3. Stationary PV modules installed on the facade 

3.2.2 Solar Batteries and Hydrogen Fuel Cells  

To achieve net-zero energy performance and to reduce the 

building’s load dependency on coal-fired power plants, two 

different energy storage systems are installed. These are a hybrid 

power configuration based on electrochemical batteries, and 

hydrogen metal-hydride storage tanks. The storage system capacity 

of the lithium-ion battery is 1.3 MWh, where each cell power rating 

is 1280 Wh with voltage and current ratings of 3.2 V and 400 Ah, 

respectively. The hydrogen fuel cells consist of two main units, 

each unit capable of producing 30 kW of power. A hydrogen 

generator-electrolyzer consumes 36 liters of water to produce 1 kg 

of hydrogen gas. Approximately 2.7 kg of hydrogen gas is required 
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to produce 60 kW of power and it takes 6 hours to complete this 

process.  

The hydrogen plant provides chilled and condenser water-cooling 

systems for the hydrogen-generating electrolyzer equipment. The 

condenser water-cooling system for the fuel cells includes a heat 

recovery unit. This unit utilizes the waste heat to heat up the 

hydrogen metal-hydride storage bottles. A solar hot water system 

is also utilized to provide hot water to stainless-steel baths 

housing the hydrogen metal-hydride storage bottles. Figure 3.4 

shows the solar power distribution during sunny periods. The first 

priority is to meet the load demand of the building. The second 

priority is to charge the lithium-ion batteries, which occurs 

during solar peak hours. The third operation (after charging the 

battery) is to produce gaseous hydrogen via the proton-exchange 

membrane and initiate its storage into hydrogen tanks. If excess 

power is still available, it is shared with nearby campus 

buildings.  

 

Figure 3.4. Charging batteries and fuel cells with excess solar power in 

sunny weather 

Figure 3.5 shows the cycle of meeting building load demand during 

cloudy weather conditions or when solar power is off. In this case, 

the first operation circuit is to supply the immediate demand from 

a lithium-ion battery power storage tank via a DC/AC converter. 

The second operation involves power generation using a fuel cell 

via a DC/DC converter. The hydrogen fuel cells are capable of 
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providing power over several days in long periods of cloudy 

conditions or rain.  

 

Figure 3.5. Discharging batteries and fuel cells in cloudy weather 

3.2.3 Chilled-Water System for Air Conditioning  

Chilled water for the building is generated by night and stored 

in a 750,000 liter insulated storage tank. At night, excess energy 

is used to chill water for the main air-conditioning system so 

that it can run on the next day. Figure 3.6 shows the process of 

water-cooling at night through the chiller and its storage in a 

620-kilolitre chilled-water tank. Another air-conditioning unit, 

separate from the main system, delivers personal levels of 

temperature and airflow through outlets at each desk or 

workstation. This reduces the workload of the primary system and 

provides personal levels of comfort.  

 

Figure 3.6. Chilled-water tank stores cold water produced at night when 

most efficient 
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Figure 3.7 shows the process of chilled-water usage during the 

day for air conditioning. The supply and return water temperatures 

for the chilled-water system are 7oC and 13oC respectively. The 

chiller turns on when there is a rise in entering water temperature 

and turns off when there is a drop in return water temperature.  

The chilled-water pump system is controlled by differential 

pressure switches to maintain the required water flow. The set-

point of the cooling tower controls the fan speed to maintain the 

condenser water temperature entering the chiller.   

 

  Figure 3.7. Coldwater used during the day for air conditioning 

3.2.4 SSGC Main Metering and Sub-Metering Points  

One main meter is installed to measure the energy data of the 

entire building. It gives information about the energy generated 

from renewable sources, and energy exported and used by the 

building. At each level of the building, separate distribution 

boards are installed for lighting, plug-in, mechanical, usable 

floor area and non-usable floor area loads. The usable floor area 

is the sum of the floor areas measured at floor level from the 

general inside face of the walls of all spaces related to the 

primary function of the building, for example, offices, lecture 

theatres, laboratories, etc. However, the non-usable floor area is 

the area occupied by the internal columns and other internal 

supports, internal walls and permanent partitions, service ducts 

and the like.  
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The useable floor area will normally be computed by calculating 

the fully enclosed covered area and deducting non-usable floor 

areas such as stairs, corridors, and service areas. These are 

metered separately. A single-line diagram of the SSGC electrical 

distribution system is shown in Fig. 3.8. All the sub-metering 

points are connected to the main switchboard and SSGC microgrid. 

A fuel-cell plant room is located on level-5 and each fuel cell 

unit of 30 kW is connected to a separate DC board. Apart from the 

rooftop, PV modules are installed on levels 1, 2 and 3 of the 

facade area. Separate meters are installed to measure the 

electrical parameters of the bidirectional inverters, PV and fuel-

cell inverters, and the hydrogen generator-electrolyzer.  
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Figure 3.8. Single-line diagram of the SSGC’s electrical distribution 

system 

3.2.5 Energy Management   

The SSGC building is managed and controlled through a building 

management system (BMS). All available functions of the BMS are 

programmed into various systems, such as optimum start/stop, 

temperature reset, load shed, and special days. The BMS monitors  
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and records data from the above-mentioned electrical meters 

connected to the SSGC. The BMS updates the energy data every 15 

minutes and the BMS page gives access to the data logged for 

monitoring purposes. 

The key energy meters for data presented in this work include; 

the main incomer, rooftop solar array, façade solar array, fuel-

cell units, and mechanical load. PI System Explorer software and 

Core Sight software provide access so that data from any energy 

meter can be monitored. Energy meters provide all the required 

electrical measurements such as current, voltage and frequency of 

all phases as well as active, reactive, apparent power and power 

factors. Solar radiation sensing provides additional information 

on the installed solar modules and solar data are also monitored 

through the PI monitoring software. The power output of all PV 

modules installed at building levels 1, 2 and 3 of the façade area 

and the rooftop is logged at 5-minute intervals.  Daily, weekly, 

monthly and yearly summaries of load and generation can be obtained 

through the PI software.  

3.3.   SSGC Monitoring and Performance Analysis   

This section provides an overview of different factors that 

affect the net-zero-energy building performance. The outcome 

obtained from the monitoring data of the grid-connected PV system 

and the installed BMS shows some significant differences from the 

expected and predicted PV power output and energy-saving results.  

3.3.1   Performance Gap due to Low PV Generation  

Energy data are monitored and analyzed to determine the factors 

that cause the low generation from the PV system. Temperature 

variation and partial shading are the two main reasons for reduced 

output from the PV unit.  
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3.3.1.1 Reduced Solar Capacity Caused by Temperature Variation  

Although high solar irradiance is generally beneficial to PV 

electrical generation, it can adversely affect the performance of 

PV units due to an elevated operating temperature. It is observed 

from real-time generation data that the solar generation capacity 

decreases 0.38% with each one-degree rise in temperature from a 

standard temperature of 25oC. This effect is consistent with the 

results reported in [151] which shows that solar efficiency can 

deteriorate by 0.2% to 0.5% per 1oC increase in panel temperature. 

Overall, this causes a 30% reduction in the generation capacity of 

the PV modules on the hottest days. Figure 3.9 shows the PV 

generation capacity on a cooler day (22/01/2016) in summer where 

the ambient temperature is less than the normal temperature. The 

average generation on this day is 71 kW with a maximum generation 

of 260 kW at 12:52 pm.  

 

 

 

 

 

 

   Figure 3.9. PV generation on a cooler day in summer 

However, the PV power output dropped significantly in the cloudy 

hottest summer day (27/01/2015) where the ambient temperature is 

greater than the standard ambient temperature, as shown in Fig. 

3.10. On that day, the average solar generation is only 44 kW. 

Maximum generation (286 kW) occurs at 9:15 am but the value 

suddenly falls to 50 kW in 15 minutes, as shown in Fig. 3.11. The 

short peak occurs on that cloudy day when the weather was sunny 

for a very short period of time. However, in the rest of the day 

changes in power output occur due to temperature variations.  

Time of Day 
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Figure 3.10. Reduction in PV generation on the hottest summer day 

 

 

 

 

 

 

  

Figure 3.11. Reduction in maximum generation in a short period of time 

3.3.1.2 Reduced Solar Capacity due to Partial Shading 

The panels installed on the facade at an angle of 37o for optimum 

solar production in winter cause low power generation in summer 

due to their angle. In summer, the sun’s rotation shades the façade 

area, which reduces the production capacity by up to 20%. The 

facade panel’s solar generation profile for summer and winter 

(2015-2016) is shown in Fig. 3.12 and Fig. 3.13, respectively. 

Table 3.1 shows the PV production data for summer, while Table 3.2 

represents the winter solar-generation profile. The average solar 

generation in summer is only 23 kW, which is approximately half 

the production in the winter season. This clearly shows that the 
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solar production of facade panels has fallen significantly during 

the summer because the panels on the facade become shaded and do 

not contribute much to PV generation. 

 

 

 

  

 

 

 

 

Figure 3.12. PV generation in summer 

 

 

 

 

 

 

 

Figure 3.13. PV generation in winter 

Table 3.1. Summer Season Generation Data of Facade Panels 

 

 

 

 

 

 

 

Attribute: Power Generation             Season: Summer                                                                                                                                                                  

Start Time: 1/12/2014                 End Time: 28/02/2015                                                                                                                                                                                                               

Statistic Value Unit Time Stamp 

Accuracy 99.9915 % 1/12/2014     12:00:00 AM 

Total  2018.4140 kW 1/12/2014     12:00:00 AM 

Average  22.6788 kW 1/12/2014     12:00:00 AM 

Minimum  0 kW 1/12/2014     12:00:00 AM 

Maximum  271.2239 kW 7/02/2015     10:47:21 AM 
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Table 3.2. Winter Season Generation Data of Facade Panels 

 

 

 

 

 

 

3.3.1.3 Overall Difference in Predicted and Generated Power   

 When a study was conducted to install the solar panels, it was 

expected that the maximum solar generation would be 375 kW with 

1000 W/m2 radiation capacity at 25oC. The average generation 

capacity was predicted to be 300 kW as shown in Fig. 3.14. 

 

 

 

 

 

 

 

 

Figure 3.14. Predicted PV generation 

 However, the average PV generation varies from 220 to 240 kW 

according to weather conditions as shown in Fig. 3.15. Table 3.3 

shows a summary of the annual solar generation. It is clear from 

the summarized data that the average solar generation is only 44 

kW. The maximum solar output is 378 kW that occurred at 11:21 am 

on 21/04/2015 but for only a short span of time (varying from 30 

minutes to 60 minutes. In Tables 3.1 to 3.3 the term accuracy means 

Attribute: Power Generation              Season: Winter                                                                                                                                                                     

Start Time: 1/06/2015                    End Time: 31/08/2015                                                                                                                                                                                                             

Statistic Value Unit            Time Stamp 

Accuracy 99.9949  % 1/06/2015     12:00:00 AM 

Total 3808.8332 kWh 1/06/2015     12:00:00 AM 

Average 41.8553 kW 1/06/2015     12:00:00 AM 

Minimum 0  kW 1/06/2015     12:00:00 AM 

Maximum 359.8386 kW 13/06/2015    12:00:24 AM 

Hour of Year
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Figure 3.15. Real PV generation output 

Table 3.3. Yearly PV Generation Summary 

 

 

 

 

 

 

  

 

 

 

 

 

the measured solar power generation at a specific timestamp is 

99.99 % close to the real value. In other words, the measured 

values at a specific time are 99.99% accurate. The term total in 

tables 3.2 and 3.3 refers to the sum of the PV generation in a 

day.  

 

An Attribute: Power Generation                                                                                                                                           

Start Time: 1/01/2015                    End Time: 1/01/2016                                                                                                                                                                                                                    

Statistic Value Unit Time Stamp 

Accuracy 99.9940  % 1/01/2015   

12:00:00 AM 

Total 16286.3632 kWh 1/01/2015   

12:00:00 AM 

Average 44.6201 kW 1/01/2015   

12:00:00 AM 

Minimum 0  kW 1/01/2015   

12:00:00 AM 

Maximum 378.2972 kW 21/04/2015  

11:21:26 AM 

Standard 

Deviation 

73.3108 % 1/01/2015   

12:00:00 AM 

Count 31536000 sec 1/01/2015   

12:00:00 AM 
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Figure 3.16. PV generation on a sunny day in April 

 Figure 3.16 provides a more detailed analysis of PV generation 

on 21st April 2015. The generation curve shows the maximum PV 

production (378 kW), and that the maximum generation occurs at 

11:20 am. However, it falls to 100 kW at 11:54 am. This shows that 

peak generation occurs for a very short span of time and then it 

declines with a rate of 9 kW/5 minutes. Both high PV module 

operating temperature and hot-spot phenomenon contribute to the 

sharp decline in peak PV generation. The detail about the PV module 

operating temperature and hot-spot phenomenon is provided in 

section 3.4.  

3.3.2   Performance Gap Due to Inefficient Converters  

Renewable-energy-based building or storage systems supply power 

to satisfy the permanent load demand through DC/AC converters. A 

charging process of electrochemical batteries and the hydrogen 

storage process followed by the cycle of power production through 

fuel cells also require DC/DC converters. In the SSGC building, 

the efficiency of the installed inverters is 80%. Figure 3.17 shows 

the charging process of chillers at night (on batteries). The 

energy flows through PV panels, batteries, and bi-directional 

inverters. Each time power is converted from DC/AC or AC/DC, 20% 

of the power is lost because the efficiency of the installed bi-

directional inverter is only 80%. The figure below shows the half 

P
V

 G
e
n
e
ra

ti
o
n
 (
k
W

)



3.3  SSGC Monitoring and Performance Analysis 

70 
 

process occurs at night time, while at day time the surplus power 

from PV panels flows to batteries for storage.   

PV Bi-Directional 

Inverters

BatteryChiller

Efficiency 80 %

Efficiency 80 %
Efficiency 80 %

 

Figure 3.17. Chillers charging process 

3.3.3   Inefficient Building Management System Operation   

An inefficiently implemented control strategy and faulty sensors 

cause high-energy consumption and thus reduce the building 

performance of the SSGC.  

3.3.3.1 Designed Control Strategy Problem (No pulse on movement 

detection)  

A highlighted problem in the designed control strategy is that 

the secondary output of the motion detection sensor goes high (0 

to 1) on initial occupancy and remains high until no movement has 

been detected for 5 minutes, at which point it switches from high 

to low (1 to 0). A transition is expected from 0 to 1 for every 

movement detected and latches in for a time period after which it 

times out and shuts the system down. However, there is no pulse on 

movement detection as shown in Fig. 3.18.  

i. Fault Effect   

Energy is wasted because the sensors working with the air 

conditioning units are not getting re-triggering pulses. At 

multiple occupancy spaces, air conditioning times out as there is 

no transition from 0 to 1 for every movement detected. Due to this  
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Figure 3.18. Sensor secondary output 

software problem, the supplier was bound to remotely force the 

secondary output from low to high in order to re-trigger the air 

conditioning to re-start. 

3.3.3.2 Some Sensors not Triggering the Controller  

It is found that some sensors, for example, installed at level-

3 in room numbers 3.28 / 3.29 do not work properly. These sensors 

did not appear to trigger the digital inputs of the controller to 

turn on/off the devices based on the motion detection signal.   

i. Fault Effect    

These sensors are linked with lighting control and result in the 

light remaining on (and consequently wasting energy).  

3.3.3.3 Original Implemented Software  

The software was tested during the commissioning phase of 

construction as having a pulsed input. Figure 3.19 shows the 

original software that was implemented. This software does work, 

but it was found that if the motion detector contact failed in the 

closed position (1 high) it would hold the unit on unless the 

motion the detector was rectified. Some motion detectors have been 

noted as faulty on the graphics pages i.e. AHU -1.22. 
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Figure 3.19. Original implemented software 

3.4.   Recommendations to Improve the SSGC Performance  

This section outlines some of the latest research-based 

solutions that employ better techniques and strategies to improve 

the net-zero-energy building performance.  

3.4.1   The solution to address the Low Performance of PV Modules             

The performance of the PV units can be improved by addressing 

the temperature-variation and partial-shading problems. The solar 

generation capacity can be further improved by installing a solar 

tracking system for the PV modules, instead of fixing the panels 

at a certain angle.    

3.4.1.1 Reducing PV Module Operating Temperature   

The output power of a PV unit can be enhanced by reducing the 

module operating temperature through time and temperature-relay 

actuated dynamic cooling system. The surface temperature of PV 

modules in Australia is significantly higher than the ambient air 

temperature in summer. Therefore, a significant cooling effect is 

required to increase electrical efficiency. Reducing the surface 

temperature through water cooling techniques at ambient air 

temperature (35oC to 40oC) is found to increase the energy 

production capacity of solar panels by approximately 15 to 20%. A 



3.4  Recommendations to Improve the SSGC Performance 

73 
 

time-based cooling system is preferable over a continuous water 

cooling system in order to reduce water consumption. In the 

literature [152], it is found that a time-relay actuated cooling 

sequence of 5 seconds on and 2 minutes off generates the same 

energy gain as for continuous water cooling, while requiring only 

4% of the water for continuous water consumption.   

3.4.1.2 Solar Tracking 

Solar production can be increased from the installed panels on 

the façade by installing a solar tracking system. Research studies 

show that solar tracking can improve the generated power of a PV 

module by up to 30 to 40% per annum compared to a fixed module 

tilted at an optimum angle or by 70% compared to a horizontally 

fixed module. A two-axis soft robotic actuator (SRA) for solar 

tracking, specially designed for building-integrated PV 

applications, is recommended. The low cost and weight of the SRA 

actuator make it a viable component for dynamic building façades 

or rooftops. An adaptive solar façade can optimally regulate the 

energy flow between indoor and outdoor environments. The SRA 

azimuth angle range could be varied from ± 20o to ± 45o. The energy 

efficiency of the building and the solar power gain can be improved 

in both seasons (summer and winter) by installing an SRA solar 

tracking system [153-155].  

3.4.1.3 Hot-Spot Mitigation 

A hot spot is the result of a partial shading that lowers the 

performance of a string of cells over time. The hot-spot phenomenon 

and how it can be addressed are presented in this part. 

i. Partial Shading Problem Formulation 

Partial shading produces localized heating in a string of PV 

cells and causes hot-spot problems. Localized heating not only 

degrades the string’s performance but, over time, it can damage 

the PV cells [156, 157]. Shading shifts the electrical 
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characteristics down on a current axis such that the maximum power 

point current decreases. If the string current becomes higher than 

the shaded-cell short-circuit current then its voltage becomes 

reverse bias. In this case, the shaded cell sinks power and 

generates heat. If the cell sinks significant power over time, the 

localized temperature increases drastically, forming a hot spot. 

Although extensive testing has been performed by PV manufacturers 

to screen out cells that are susceptible to hot-spot problems, it 

can still occur with partial shading. In addition, the electrical 

characteristics between cells become mismatched over time and this 

can start hot-spot problems [158-160].  

Hot- spotting is linked to shunt resistance, as higher shunt 

resistance reduces the chances of occurring hot spots. A 

traditional solution to this problem is to use a bypass diode over 

each string in a PV panel. Generally, it is assumed that bypass 

diodes are sufficient to limit the maximum potential reverse 

voltage. However, numerous long-term field studies have identified 

hot-spotting as a significant degradation source over the PV’s 

lifetime, even in systems employing bypass diodes [161-163]. 

Therefore, more advanced solutions, as mentioned in the next 

subsection, are required to address this problem. 

  

ii. The solution of Partial Shading Problem     

Research studies show that shorter strings result in lower power 

dissipation and lower temperature in the shaded cells. However, 

when the string is bypassed all string lengths (12, 24 and 36 

shorter to longer), exhibit significant temperature increases and 

hot-spot susceptibility. These results suggest that open-

circuiting, rather than short-circuiting the string, would be a 

preferable method to eliminate the hot-spotting risk [164, 165]. 

Recent studies have shown that a feedback-based series-connected 

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) bypass 

circuit can reduce over-temperature occurrences due to partial 
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shadowing. The circuit can sustain a reverse voltage across the 

shaded cell, thus appreciably reducing the cell temperature. 

Simulation results indicate a 50% reduction of reverse voltage, 

corresponding to a temperature decrease of 22oC that leads to a 

decrease of power dissipation, approximately 62%. 

A MOSFET-bypass circuit can be replaced with a diode bypass 

circuit with negligible additional cost [166]. The automatic 

switching feature of the MOSFET circuit without control logic and 

power supply makes it a preferable solution compared to other 

proposals [167-169]. To implement the recommended strategy, it is 

necessary to locate the hot-spot points. One idea is to fly drones 

to locate the hot spots. If this problem is addressed, 30% of the 

energy can be saved. 

3.4.2   Efficient Inverters   

There is a need for high-efficiency inverters with ≥ 90% 

efficiency to save energy. In [170] author proposes a novel single-

phase to the three-phase bi-directional inverter with 92.6% 

efficiency. The proposed design is simulated and its performance 

is verified with hardware experiments. The latest research [171], 

proposes a high-efficiency, bi-directional dual active bridge 

inverter with a novel hybrid modulation design. It has an 

efficiency of 94.2% and is a promising solution for high-power 

applications where efficiency and cost are important 

considerations. High-efficiency inverters based on these 

innovative designs should be considered for achieving better 

efficiency. By installing high-efficiency inverters, energy 

savings can reach 25%.  

3.4.3   Efficient BMS Operation  

This part highlights an improved control strategy that is 

designed and implemented to address the problems highlighted in 

Section 3.3. Improved control strategies lead to efficient BMS 
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operation that can assist to achieve energy savings and lower power 

consumption.   

3.4.3.1 Better Control of Movement Detection Sensors   

The timer code is changed to work with a signal that is 1, so a 

transition will occur on every movement detected when space is 

occupied and not just on a rising edge. Figure 3.20 shows the time-

control part where software changes are made to address the no 

pulse on movement detection problem.  

 

Figure 3.20. Timer control block 

3.4.3.2 Improved Software Strategy to Trigger Air-Conditioning Unit 

After detecting the fault, an improvement was made to stop a 

faulty sensor from running the unit 24/7, as shown in Fig. 3.21. 

This strategy also shuts the unit down when the time schedule 

becomes unoccupied and saves energy by canceling the run-time 

timer. This software was developed based on a pulsed input. 

i. Strategy Functionality   

 There are a time schedule and motion detector associated 

with this unit. The unit is started when motion is detected 

and the time schedule is occupied. When no motion is detected 

for a period of 20 minutes (adjustable) the unit is disabled. 

In addition, the unit is disabled when the time schedule 

becomes unoccupied which in turn cancels the timer.  
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 The motion detector is supplied and configured by 

others. The motion detector has a dedicated “AC” contact, 

which closes when motion is detected within the space. A 

built-in (dip switch setting) timer holds the contact closed 

until no motion is detected for a period of 5 minutes. The 

BMS will then proceed to time out its timer. 

 If the time schedule is unoccupied and motion is detected 

for more than 15 minutes, an alarm is raised. This alarm will 

have text to describe the unit’s details. 

 

Figure 3.21. Improved software strategy 

3.4.3.3 Solution for Sensor Triggering Fault 

We observed that some input/output checks are required, and there 

is a need to change the ‘run-on’ time of the air conditioning to 

be 5 minutes after the occupancy sensor transitions from 1 to 0 to 

solve the sensor triggering a fault. By making these changes in a 

program, the sensor starts triggering the controller to turn off/on 

lighting based on movement detection, thus helping to save energy. 

3.4.3.4 Energy Saving with Efficient BMS Operation 

Figure 3.22 and Figure 3.23 show the level-3 mechanical and 

lighting load’s increased power consumption due to the control-
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strategy problem with motion-detection sensors and some faulty 

sensors controlling the level-3 load. These values were taken on 

(30/6/2016) when a sensor fault was detected. The mechanical load, 

average, and maximum power consumption are 2.9 kW and 20 kW, 

respectively at time instant (t) with daily energy consumption of 

17131.23 kWh. Meanwhile, the average and maximum power consumed by 

the lighting load are 0.7 and 1.98 kW at time instant t, with daily 

energy consumption of 20414 kWh.  

 

Figure 3.22. Increased mechanical load consumption during sensor faults 

 

 

Figure 3.23. Increased lighting power consumption during sensor faults  

Figure 3.24 and Figure 3.25 show the reduction in the level-3 

mechanical and lighting load power consumption after sensor faults 

were addressed and a better control strategy was implemented. These 

values were taken on (26/7/2016); the mechanical load average and 

maximum power consumption are reduced from 2.9 to 1.92 kW and 20 

to 14 kW respectively at time instant t. The daily energy 

consumption falls from 17131.23 to 16217.47 kWh per day. Meanwhile, 

the daily energy delivered to the lighting load fell from 20414.13 
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to 19212.35 kWh per day. The average power consumption of the 

lighting load reduced from 0.7 to 0.56 at time instant t. Table 

3.4 compares the mechanical and lighting load power consumption 

during and after the sensor faults were addressed. 

 

Figure 3.24. Reduced mechanical power consumption after addressing sensor 

faults 

 

 

Figure 3.25. Reduced lighting power consumption after addressing sensor 

faults 

         Table 3.4. Comparison of Power Consumption during Sensor Faults and 
when the Fault is Removed 

Load Type Sensor 

Condition 

 

Power/Energy Consumption 

over one day 

Power/Energy Wastage 

during Sensor fault 

over one day 

Average Peak  Energy Average Peak Energy 

  kW  kW kWh  % % % 

Mechanical Working 1.92 14 16217.47  

33 

 

30 

 

5 Faulty 2.9 20 17131.23 

 

Lighting  

Working 0.56 1.8 19212.35  

20 

 

10 

 

5.8 Faulty 0.7 2.0 20414.02 
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3.4.4   The Proposed Transactive Control over Conventional  

  Control   

To exploit the full benefits of green buildings, it is necessary 

to make improvements in the BMS along with energy conservation 

measures. A lack of an effective BAS can consume large amounts of 

energy, with 10% to 30% of the energy wasted because of the 

improper operation [172]. It is possible for buildings to achieve 

20%-30% emission savings using an improved energy management 

system [173]. There is a need to operate the BAS at optimal 

efficiency with proper trade-offs between cost and comfort, namely 

transactive control (TC). In this control system, thermostats and 

energy price signals maintain the comfort level as shown in Fig. 

3.26, while in conventional control (CC) the thermostat setting 

alone controls the equipment [174]. 

In Australia, electricity consumed by thermostatically 

controlled equipment varies from 43% (in small office buildings) 

to 56% (in large-scale modern commercial buildings) [175, 176]. 

Thus, an existing BAS can be deployed to undertake TC with little 

or no capital investment, which is ideally suited for 

thermostatically controlled loads. This control technique can also 

be applied to sensor-based lighting control systems installed for 

saving energy in buildings. TC has added several advantages over 

CC; for example, it makes buildings more demand responsive and 

this approach can be deployed for both types of price markets 

(real-time and open). A control system based on both thermal and 

price signals enables the end-users to directly participate in the 

open market [177, 178]. 
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Figure 3.26. Transactive control 

3.5.   Scientific Analysis of Proposed Recommendations  

In this section, we focus on scientific analyses of the proposed 

recommendations presented in the previous section. The simulation 

results show the significant improvement in PV electricity 

generation and energy saving with the TC. 

3.5.1   PV System Design and Simulation   

 We designed and simulated a PV system (equivalent to the PV 

system in SSGC) to check the improvement in solar electricity 

generation with high-efficiency inverters and a solar tracking 

system. Solar Pro software is used to create a 3D model of the 

SSGC building, shed roof and facade, and horizontal and double-

axis tracker PV systems. Table 3.5 provides the parameter values, 

e.g. architectural features of an SSGC building and specifications 

of PV panels used for modeling and simulations. 
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Table 3.5. SSGC Building Architectural Features and Solar Panel 

Specifications 

 

 

 

 

 

 

 

 

 

 

3.5.1.1 Simulation Cases    

In this chapter, the designed PV system models are simulated 

with six cases. Case 1 represents the PV performance with 0.8 

efficiency inverters and without solar tracking for the shed roof. 

This represents the case of a conventional building-integrated PVs 

without a solar tracking system. Case 2 replaces the low-efficiency 

inverter with a high-efficiency (0.954) inverter with a fixed 

angle. Case 3 is the same as Case 1 but simulations are done for 

the facade. In Case 4 and 5, the simulation set-up is similar to 

Case 3 but a horizontal-axis and double- axis tracking system is 

used, respectively. Case 1 is the base case for Case 2, and Case 

3 is the reference case for Case 4 and 5 for performance 

comparisons. Case 6 repeats Case 3, 4 and 5 for the shed roof. 

Table 3.6 summarizes the simulation cases for the designed PV 

system. 

Specification Value Unit 

PV Manufacturer Sun Power --- 

Model  SPR-333NE-WHT-D --- 

Nominal Power  333 W 

Panel Efficiency  20.4 % 

Rated Voltage 54.7 V 

Rated Current 6.09 A 

Open Circuit Voltage 65.3 V 

Cells 96 no. 

Module Length 1.55 m 

Module Height 1.04 m 

Building Location -27.55 Latitude, 

153.05 Longitude 

degree 

Building Height 50 m 

Roof Width 150 m 

Façade Width 60 m 
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 Table 3.6. Simulation Cases for the Designed PV System 

In Solar Pro, calculations are performed at the module level by 

taking into account irradiation, temperature data, shading and 

other loss factors for accurate energy calculation. It allows users 

to visualize shading and analysis of solar electricity generation 

on an hourly, monthly or yearly basis. Figure 3.27 shows the 3-D 

modeling of the SSGC building, shed roof and façade designed using 

Solar Pro. 

3.5.1.2  Results 

In Griffith, there are 1200 panels but the obtained results in 

this section are for 400 modules with 133 kW capacity. All 

parameters of the PV system in the simulation are taken from the 

real PV system in the SSGC building. The experimental green 

building’s designer decided to use the PV inverters with 0.8% 

efficiency considering various other factors such as safety, PV 

inverter safety, low-noise operation, and price-performance ratio, 

etc. The efficiency of common inverters available in the market 

varies from 0.96 to 0.98% [179].  

 

Case 

Type 

Roof 

Type 

Inverter 

Efficiency 

Tracking System Tracking 

Angle 

Case 1 shed 0.8 Fixed angle (no tracking) 15o 

Case 2 shed 0.954 Fixed angle (no tracking) 15o 

Case 3 facade 0.8 Fixed angle (no tracking) 37o 

Case 4 facade 0.8 Horizontal axis Tilt α 

Case 5 facade 0.8 Double axis Tilt α and 

Azimuth β 

Case 6 shed 0.8 Fixed, horizontal axis, 

double axis 

15o, α, β 
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Figure 3.27. Model of shed and facade roof of SSGC building 

i. Improvement in PV AC Energy with High-Efficiency Inverters   

For the designed PV system with Case 1, the PV AC energy 

production on a selected day is 603.26 kWh while it increased to 

712.50 KWh with the Case 2 set-up. This shows an improvement of 

15.34% in PV AC energy generation. Figure 3.28 compares the PV AC 

energy with low and high-efficiency inverters. Similarly, the 

specific AC energy increased from 4.53 kWh/kWp to 5.35 kWh/kWp on 

the same day. Hence, the extraction of power from the PV arrays 

can be improved by using a high-efficiency inverter.  

 

Figure 3.28. Improvement in AC energy with high-efficiency inverter 

ii. Improvement in PV Production with Solar Tracking 

For Case 3, the daily module AC energy at the reference position 

tilted 37o w.r.t the wall and oriented to the North was 645.96 kWh. 

Case 4, which simulates the system with a horizontal-axis tracker 
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increases the solar electricity generation from 645.96 kWh to 

944.20 kWh, a potential gain of 31.1%. For this case, the tilt 

angle α varies from 71.25o to 22.5o for 5:00 to 18:00 solar hours. 

For Case 5, AC energy gain is 32% and the azimuth angle β variation 

is ± 18o to ± 41.37o from 5:00 to 18:00 hours. Figure 3.29 compares 

the PV AC energy production with and without a solar tracking 

system for the facade. Tracking for façade Case 6, where we repeat 

Case 3, 4 and 5 for the shed roof, horizontal- axis and double-

axis solar tracking, shows an AC energy gain of 4.5% and 5% 

respectively compared with no tracking. Moreover, it is cleared 

from Fig 3.29 that PV generation varies as the sun radiation and 

angle varies throughout the day. For instance, around 10 am PV 

generation is maximum because at this time solar irradiance is 

highest (1000 W/m2). After that solar insolation will be reduced 

depending on the angle of the incident of sun rays with the ground 

which corresponds to the decline in PV generation.    

 

Figure 3.29. Comparison of AC energy without and with solar Tracker 

Table 3.7 summarizes the PV performance for the different 

simulation cases. From our results, we conclude that facade PV 

panels with a solar tracking system can potentially enhance PV 

generation by 32 %. This is consistent with findings from [38] and 

highlights the importance of a tracking system in improving the 

solar panel’s efficiency.    
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Table 3.7. PV Performance for the Different Simulation Cases 

 

  

 

 

 

 

 

 

 

3.5.2   Bypass Circuit to Reduce Reverse Voltage    

In this section, we design and simulate a MOSFET-bypass circuit 

to address the hot-spotting problem as mentioned in Section 3.1.2. 

The result shows that the MOSFET-bypass circuit appreciably 

reduces the reverse voltage and localized heating if compared with 

the traditional bypass-diode circuit. For simulation, a few cells 

of the panel were considered to be shaded and irradiated at 300 

W/m2, while fully illuminated cells were irradiated at 1000 W/m2 

at 25oC. Figure 3.30 shows a schematic diagram of the traditional 

bypass-diode and MOSFET-bypass circuit with full illumination and 

shaded conditions. 

The designed bypass circuit is based on the feedback operation 

of a series-connected power MOSFET that develops a high voltage 

drop when a solar cell is shaded. The voltage drop across the power 

MOSFET is entirely subtracted from the reverse voltage affecting 

the shaded cell, thus significantly reducing the cell temperature. 

The development of a reverse voltage across solar panels with the 

traditional bypass-diode and MOSFET-bypass circuit is in (3.1) and 

(3.2) respectively.  

Case 

Type 

Roof 

Type 

Inverter 

Efficiency 

Tracking 

Angle 

PV AC 

Energy 

(kWh) 

Increase in 

Energy  

Production % 

Case 1 shed 0.8 15o 603.26 --- 

Case 2 shed 0.954 15o 712.50 15.34 

Case 3 facade 0.8 37o 645.96 ---- 

Case 4 facade 0.8 Tilt α 938.56 31.1 

Case 5 facade 0.8 Tilt α and 

Azimuth β 

944.20 32.0 

 

Case 6 

 

shed 

 

0.8 

15o 760.62 --- 

Tilt α 798.03 4.68 

Tilt α and 

Azimuth β 

804.04 5.4 
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Figure 3.30. Schematic diagram of traditional bypass-diode and MOSFET-

bypass circuit with sunny and bypassed conditions  

𝑉𝑅 = (𝑁 − 1)𝑉𝐹 + 𝑉𝐷                                 (3.1) 

𝑉𝑅 = (𝑁 − 1)𝑉𝐹 + 𝑉𝐷 − 𝑉𝐷𝑆                           (3.2) 

where N is the number of shaded cells, 𝑉𝐹 is the voltage supplied 

by a well-illuminated cell, 𝑉𝐷 is the diode voltage, 𝑉𝐷𝑆 is the 

voltage drop between the drain and source of the MOSFET and 𝑉𝑅 is 

the reverse voltage across a shaded cell. In normal operation, 

when all the cells are fully illuminated and its output voltage is 

high, the MOSFET is in its ON state and the string current flows 

through the panel. However, when the solar panel is shaded, its 

output voltage is low and the MOSFET tends to reduce its current 

capability, while the voltage drop between drain and source 

increases. The presence of the MOSFET allows subtracting the 

voltage 𝑉𝐷𝑆 from the maximum reverse voltage 𝑉𝑅 developing across 

shaded solar cells.  

3.5.2.1 Results    

The traditional bypass-diode and MOSFET-bypass circuit are 

designed and simulated using the MATLAB/Simulink tool. The result 
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shows that the MOSFET reduces the string current, which 

consequently reduces the power dissipation of the shaded cell. 

Figure 3.31 compares the string current with the traditional 

bypass-diode and MOSFET-bypass circuit. The string current with 

the traditional bypass-diode is approximately 1.6A, and it reduces 

to around 0.6A with a MOSFET-bypass, a 62.5% reduction in string 

current through shaded cells. The MOSFET bypass circuit causes a 

30% reduction in the reverse voltage 𝑉𝑅 with a voltage drop 𝑉𝐷𝑆 of 

7.81V across series-connected power MOSFET. The reduction of the 

reverse voltage and string current implies a corresponding 

reduction of the power dissipation of the shaded cells, which 

consequently reduces the cell temperature and mitigates the hot-

spotting. 

 

Figure 3.31. String current with and without MOSFET-bypass circuit 

3.5.3   Transactive Control of SSGC Building HVAC System    

In this section, we focus on control of the SSGC building’s HVAC 

system for demand response to unlock the benefits of TC as 

mentioned in Section 4.3.3. The TC strategy presented in [180] was 

applied to the SSGC building’s thermostatically controlled HVAC 

load to make thermostat price responsive. Figure 3.32 shows the 

SSGC building, level 3, AHU load, with a fixed thermostat setting 

of 23oC for cooling during occupied hours, referred to as CC. We 

control this load with both the thermostat setting and an energy 
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price signal to make it demand-responsive. The designed TC is 

implemented using the MATLAB/Simulink tool and results show the 

significant energy saving of using TC rather than CC.  

 

Figure 3.32. HVAC load data with conventional control 

To analyze the HVAC electricity consumption saving with zone 

temperature variation, we model the HVAC consumption given in Fig. 

3.32. The fan and chiller consumption are two major contributors 

to the HVAC energy consumption. Therefore, over a given time 

horizon the HVAC consumption is a sum of the fan and chiller 

consumptions and can be written as:  

𝐻𝑉𝐴𝐶𝑝𝑐(𝑡) = 𝐻𝑉𝐴𝐶𝑓𝑝𝑐
𝑡 + 𝐻𝑉𝐴𝐶𝑐𝑝𝑐

𝑡                           (3.3) 

where 𝐻𝑉𝐴𝐶𝑓𝑝𝑐
𝑡  ( 𝐻𝑉𝐴𝐶𝑐𝑝𝑐

𝑡 ) is fan and chiller power consumption at 

time instant t in kW. The detail about these components and their 

functionalities can be found in [181, 182]. The fan and chiller 

powers can be modeled using a simple control-oriented model drawn 

from [183, 184] and given as: 

𝐻𝑉𝐴𝐶𝑝𝑐 = ∑ ∑ {(𝑘𝑓 ∗ (
𝑞𝑧𝑖(𝑡)

𝑇𝑧𝑖(𝑡)−𝑇𝑠
)

2

) + (𝛿
𝑞𝑧𝑖(𝑡)

ƞ𝐶𝑂𝑃
+ 1 − 𝛿

𝑞𝑡

ƞ𝐶𝑂𝑃
)}𝑛

𝑖
24
𝑡=0              (3.4)              

where 𝑞𝑧𝑖 (𝑇𝑧𝑖 ) is the ith zone load (kW) and temperature (
oC), 𝑞𝑡 

is total building load (kW), 𝑇𝑠 is supply air temperature 
oC, δ ⇒ 

[0,1] is the damper position, 𝑘𝑓 is the fan efficiency and the duct 

pressure losses parameter is in kWs2/kg2, ƞ is chiller efficiency, 

Time of Day



3.5  Scientific Analysis of Proposed Recommendations 

90 
 

𝐶𝑂𝑃 is the chiller efficiency factor, n is the total number of 

zones and 𝐻𝑉𝐴𝐶𝑝𝑐 is the total power consumption of HVAC in kW. The 

given HVAC model is a good approximation to the measured HVAC 

consumption at a fixed cooling set-point temperature of 23oC. From 

this model, the HVAC energy saving can be calculated by varying 

the zone temperature. 

3.5.3.1 Control Logic     

The first step in the TC is to calculate the bidding price based 

on the current indoor temperature and the desired temperature 

required for comfort. The next step is to get the market-clearing 

price (MCP) after posting the bid price. Further, the adjusted 

set-point temperature for the thermostat is calculated based on 

the market-clearing price. The final step is to reset the 

thermostat setting to the new adjusted set-point temperature. The 

bid price and adjusted temperature setting for the thermostat are 

calculated using (3.5) and (3.6) respectively, and a detailed 

description of the TC strategy could be found in [180]. 

𝑃𝑏𝑖𝑑 = 𝑃 + (𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑇𝑠𝑒𝑡)
2∗𝑘∗𝜎

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
                          (3.5) 

𝑇𝑠𝑒𝑡,𝑎 = 𝑇𝑠𝑒𝑡 + (𝑃𝑐𝑙𝑒𝑎𝑟 − 𝑃)
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

2∗𝑘∗𝜎
                               (3.6) 

where 𝑃 is the average price of electricity over the last 24 

hours, 𝑃𝑐𝑙𝑒𝑎𝑟 is the market-clearing price, σ is the standard 

deviation of the electricity price, 𝑇𝑚𝑎𝑥 (𝑇𝑚𝑖𝑛) is the acceptable 

temperature range of indoor temperatures, 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑇𝑠𝑒𝑡 (𝑇𝑠𝑒𝑡,𝑎) are 

current, desired and adjusted the set-point temperature of the 

zone, k is a parameter that corresponds to the ratio of the 

customer bid price 𝑃𝑏𝑖𝑑 to the mean price 𝑃. A higher value of k 

means that 𝑃𝑏𝑖𝑑 is significantly higher than 𝑃 or the customer is 

willing to pay for less deviation from the current set-point 

temperature 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡.   
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3.5.3.2 Simulation Setup 

For simulations, we considered the publicly available real-time 

pricing (RTP) rate as the market-clearing price  𝑃𝑐𝑙𝑒𝑎𝑟, forecast for 

the next 24-hour period on the Australian Energy Market Operator 

(AEMO) website. Table 3.8 shows the parameter values used for 

simulation. The zone bid price 𝑃𝑏𝑖𝑑 is calculated from (3.5), and 

mainly depends on the mean price of electricity 𝑃 and the allowable 

temperature range. 

3.5.3.3 Results 

Figure 3.33 shows the MCP, the mean price and the zone bid-price 

signals on January 30, 2017. As depicted in Fig. 3.33, the customer 

bid price 𝑃𝑏𝑖𝑑 is zero when the zone temperature is 23
oC or the zone 

set-point is satisfied.  

Table 3.8. Price and Thermal Parameters 

 

 

 

 

 

 

 

 

 

Parameter Value Unit 

𝑃𝑐𝑙𝑒𝑎𝑟 RTP $/MWh 

𝑃 120 $/MWh 

𝑇𝑚𝑎𝑥 25 oC 

𝑇𝑚𝑖𝑛 22 oC 

𝑇𝑠𝑒𝑡 23 oC 

𝑇𝑠 13-15 oC 

𝑇𝑠 22-25 oC 

k 1-10 no. 

𝑘𝑓 1.675 kWs2/kg2 

ƞ 0.85 % 

𝐶𝑂𝑃 4.9 dimensionless 

Market-Clearing time 30 minutes 

Occupied period 07:00 to 18:00 hours 
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    Figure 3.33. Market-clearing, mean and zone bid price 

Figure 3.34 shows the impact of the market-clearing price 𝑃𝑐𝑙𝑒𝑎𝑟 on 

the zone temperature under TC. The local electricity market clears 

at the AEMO RTP, and the zone cooling set-point temperature varies 

accordingly. Moreover, TC maintains the thermal comfort by 

strictly regulating the zone temperature within the pre-specified 

temperature limits.   

 

Figure 3.34. Variation in cooling set-point temperature with transactive 

control 

We observe that when the electricity price is high, the indoor 

temperature increases and the HVAC power demand reduces. This 

behavior demonstrates that TC is capable of shaping HVAC demand 

according to a price signal. Table 3.9 shows the HVAC energy and  
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electricity cost saving with TC compared to CC. The HVAC energy 

consumption with  TC  is reduced by 11.34% when compared to its 

consumption with CC, which corresponds to a 12% cost saving. The 

results shown in Table 3.9 are based on the zone temperature 

variation from the desired set point for 5 hours when the consumer 

bids the price.  

Table 3.9. Conventional and Transactive Control Comparison for Energy and 

Cost-saving 

 

 

 

 

 

3.6.    Energy Analysis of SSGC Building  

The SSGC building is designed to be completely off-grid, with PV 

arrays and a hybrid storage bank consisting of lithium-ion 

batteries and hydrogen-metal-hydride storage technologies. 

However, the building receives power from the grid to meet the 

load demand because the overall energy generation of the SSGC 

building is less than the energy consumption. This happens due to 

various factors such as the low power generation of the PV units 

and fuel cells, and wastage of energy by inefficient operation of 

several devices. The PV and fuel-cell real output power are less 

than the estimated power due to temperature variations and power 

losses caused by inefficient inverters. 

Figure 3.35 shows the 30 kW installed fuel-cell inverter weekly 

power output. The average and maximum outputs of the fuel cell 

inverters are 0.6 and 2.69 kW at time instant t. Figure 3.36(a) 

shows  the  power  consumption  of the SSGC, on-and-off grid state,  

 

Control Type Temp  

Range 

Occupancy  

Time 

HVAC Energy  

Consumption 

Energy    

Cost 

 

Energy 

Saving 

 

Cost  

Saving 

 

  oC  hrs. kWh $ % % 

Conventional   23 when 

𝑃𝑏𝑖𝑑 ≠ 0  

238 42 --- --- 

Transactive 23-25 211 37 11.34 12.01% 
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from 18/11/2016 to 25/11/206; here positive power means that the 

building is getting some power from the grid while negative power 

indicates that the load is consuming only the power generated by 

the PV modules. Figure 3.36(b) shows the PV generation over seven 

days.  

 

Figure 3.35. Fuel cell inverter output 

 

 

Figure 36(a). SSGC grid on and off state 
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Figure 36(b). Weekly PV array generation 

3.7.   Cost of Technology Upgrade & Performance 

  Improvement   

This section summarizes the technologies adopted in the SSGC 

with cost and performance descriptions of the proposed technology. 

The per-unit cost of the recommended technology and the improvement 

in PV performance after implementation of the suggested solutions 

are provided in Table 3.10. The 25% saving on PV generation is 

possible by replacing low-efficiency inverters with high-

efficiency inverters as suggested. In the SSGC, the fixed PV panels 

and the absence of a PV cooling system cause a 50 to 60% degradation 

in PV performance. The proposed dual-axis solar tracking system 

and the installation of a cooling system can add a considerable 

amount of renewable power to the system. 
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Table 3.10. Proposed Technology Per-unit Cost and Performance 

 

3.8.   Chapter Summary   

In this chapter, the performance of an innovative 6-star green-

star-rated building is evaluated and analyzed in detail. Although 

the energy-efficient measures and technologies adopted in the SSGC 

building have contributed significantly to a reduction in energy 

consumption and carbon emissions, the building’s performance is 

influenced by the low energy production of the PV modules (due to 

fixed installation, ambient temperature, and shading effects, and 

inefficient building operation). The inefficient operation of the 

motion detectors and some faulty sensors results in a loss of 

communication with the controller, and therefore lighting remains 

on without occupancy. The measured energy is influenced by this 

extra power consumption. Consequently, the production and 

consumption differ significantly from what was expected during the 

design stage. As a result, the effectiveness of a net-zero-energy 

Sr 

# 

Existing 

Technology 

Proposed  

Technology 

Unit 

Name/Manufacturer 

Cost/ 

unit 

USD 

PV 

Performance  

Improvement 

1. Bi-

directional 

inverters 

with 80 % 

efficiency  

High-

efficiency 

Bi-

directional 

inverters  

100 kW hybrid Bi-

directional PV 

storage microgrid 

inverter  with 96.10% 

efficiency, Sinexcel 

Electric Ltd. 

$ 2000 20 to 25% 

2. Panels at a 

fixed angle 

Dual-axis 

solar 

tracking 

system  

9-Inch vertical type 

dual-axis slewing-

drive solar tracker 

with motor drive, 

Dezhou Lude 

Transmission 

Equipment, Ltd.  

$ 1000 30 to 40% 

3. The cooling 

system is 

not 

installed 

The relay-

based 

dynamic 

cooling 

system 

168 kW cooling 

capacity, solar panel 

cooling system, Hairf 

network power 

Beijing, Ltd.  

$ 4000 15 to 20% 

4. Solar bypass 

diode 

Replace 

diode with 

MOSFET 

IC995 Power 

transistor MOSFET, 

GAOYUE Pvt, Ltd. 

$ 0.88 20 to 30% 
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building concept requires an improved design and more efficient 

control.  

There is a need to carefully consider the temperature variations 

and hot-spot problems that adversely affect the performance of PV 

units. Measures should be taken at the design stage to address 

these issues. Secondly, buildings require a more efficient and 

improved BMS to save energy. The performance of a properly 

implemented energy management system with skilled operators can 

vary widely, but energy savings are usually expected to be in the 

order of 5 to 15%, with some cases resulting in savings of up to 

40%. The proposed solution to improve SSGC energy efficiency were 

implemented using Solar Pro software and MATLAB/Simulink tool. 

Case studies of improvement in PV production with high-efficiency 

inverters and solar tracking systems and energy-saving under TC 

were conducted. The results show that the designed PV system and 

TC strategy can significantly improve building efficiency. We 

recommend that the building envelope and layout must be properly 

considered to ensure the success of adopting innovative 

technological solutions. 

The energy management scheme presented in this chapter is well 

suited to off-grid commercial buildings with a few numbers of DG 

units or a single microgrid is involved. However, for 

geographically distributed microgrids with renewable energy 

generation facilities, distributed control techniques for energy 

management is required to manage the available surplus power of 

geographically distributed prosumers. As a result, in the next 

chapter, complex interactions between an energy retailer and 

multiple prosumers are modeled in a distributed fashion with an 

improved energy-trading scheme. 
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Chapter 4                                                                                                                                                                 

Energy Trading in Local Electricity 

Market with Renewables  

Emerging smart grid technologies and increased penetration of 

renewable energy resources (RERs) direct the power sector to focus 

on RERs as an alternative to meet both baseload and peak load 

demands in a cost-efficient way. A key issue in such schemes is the 

design and analysis of energy-trading techniques involving complex 

interactions between an aggregator and multiple electricity 

suppliers (ESs) with RERs fulfilling a certain demand. This is 

challenging because ESs can be of various categories such as 

small/medium/large scale, and they are self-interested and 

generally have different preferences towards trading based on their 

types and constraints. This chapter introduces a new contract-

theoretic framework to tackle this challenge by designing optimal 

contracts for ESs. To this end, a dynamic pricing scheme is 

developed that the aggregator can utilize to incentivize the ESs to 

contribute to both baseload and peak load demands according to their 

categories. An algorithm is proposed that can be implemented in a 

distributed manner by trading partners to enable energy trading. 
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It is shown that the trading strategy under a baseload scenario 

is feasible, and the aggregator only needs to consider the per unit 

generation cost of ESs to decide on its strategy. The trading 

strategy for a peak load scenario, however, is complex and requires 

consideration of different factors such as variations in the 

wholesale price and its effect on the selling price of ESs, and the 

uncertainty of energy generation from RERs. Simulation results 

demonstrate the effectiveness of the proposed scheme for energy 

trading in the local electricity market.  

4.1.   Introduction 

With increasing fossil-fuel prices and the environmental 

pollution caused by these fuels, many countries have started to 

rely on RERs to meet the growing electricity demand [185, 186]. For 

example, Australia sets a target of a 20% share of renewable energy 

in its electricity supply by 2020 [187]. Such a widespread growth 

of RERs and advancements in smart-grid technology will open new 

opportunities for electricity trading between aggregators and 

electricity suppliers (ESs). However, the effectiveness of the 

trading largely depends on the willingness of ESs to participate. 

In reality, ESs are selfish in nature and want to maximize their 

benefits regardless of whether a certain demand is met or not [104]. 

Meanwhile, an aggregator is also a profit-seeking entity interested 

to maximize its utility. As such, considering the rationality of 

the different electricity entities, an incentive scheme is required 

to motivate them to trade energy.    

  Existing incentive-driven energy trading schemes are generally 

classified into three types: 1) price-based, 2) game-theoretic, and 

3) contract-theoretic. Pricing is a powerful tool for energy 

management incorporating an increasing penetration of RERs. It 

stimulates consumers to behave in an economically optimal way by 

changing their consumption patterns when electricity prices are  
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high. In [188] and [189], a zero-pricing and a dynamic period 

partition time-of-use (TOU) program are proposed respectively, 

considering current market policies and the surge of renewable-

energy development to improve the effectiveness of TOU at the 

residential level. In [190-192], various load-scheduling and energy 

storage control strategies are proposed using real-time pricing 

(RTP) mechanism for a residential site with integrated renewable 

generation. Although price-based strategies are easy to deploy, 

their main challenges are to maintain reliability, predictability, 

and stability of the grid. For instance, it is shown in [193, 194] 

that large-scale implementation of price-based programs under the 

RTP schemes creates power grid stability problems.   

 Game theory, a well-developed mathematical tool that facilitates 

modeling of rational users [104], has been used to analyze the 

trading decisions of electricity suppliers and consumers in a smart 

grid [101, 195-197]. For instance, in [195], a game-theoretic 

approach is adopted to fairly allocate losses, reduced due to 

distributed generators participation in an energy management 

system. The researchers in [196] present a non-cooperative 

distributed-coordination control approach to coordinate the 

individual’s benefits in a multi-grid environment, and employs 

differential game theory to achieve the global objectives. However, 

most of these game-theoretic models are based on the symmetric 

information model, assuming that players have all the necessary 

information for electricity trading.  

Given this context, researchers focused on the contract-theory 

approach to incentivize trading participants in the presence of 

asymmetric information [110]. It is based on the principal-agent 

theory, in which a principal offers the right contract items to the 

agents to achieve maximum utility, and the agents truthfully select 

the contract items according to their type e.g. consumption and 

generation,   to  maximize   their   utilities  [198, 199]. Recently,  
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several studies have used contract theory to model the electricity 

market mechanism. For instance, in [200], a contract-based scheme 

is proposed to coordinate many electric vehicles to achieve the 

charging/discharging request. In [25], a framework is proposed to 

facilitate electricity trading between aggregators, suppliers, and 

consumers. In this game, a coalition of suppliers will sell excess 

power and revenue is divided among partners based on the asymptotic 

shapely values. The work in [201] presents a peer-to-peer energy-

trading scheme that consists of energy-contract offers between 

fuel-based generators and end-users with inflexible and flexible 

loads. In [26], a contract-theory based direct energy-trading model 

is used to address the intermittency of RERs.  

Inspired by these existing works, this chapter aims to design a 

contract-based incentive scheme for various categories of ESs with 

different types, assuming a heterogeneous setting where aggregators 

and ESs have different preferences toward the buying/selling price 

for different trading scenarios. The contributions of this study 

are summarized as 1) A new contract-theoretic framework is developed 

that enables different categories of ESs with various types to 

individually and strategically trade available surplus power with 

an aggregator in a hierarchical electricity trading system; 2) A 

novel dynamic pricing mechanism is proposed which assumes that an 

electricity supplier (ES) selling price varies depending on the 

current market state, such as fluctuation in the wholesale price 

and accomplishing the base and peak load demand; 3) A new contract-

based distributed algorithm for electricity trading is presented 

that guarantees the optimal utility of both parties in various 

trading scenarios; 4) The aggregator maximization problem is 

formulated as a principal-agent contract-based approach, and the 

number of constraints of the optimization problem is simplified to 

develop an equivalent simpler model for the original problem. 

Further, optimal contracts are theoretically derived for both 

baseload and peak load scenarios. 
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This study is mainly motivated by the work in [25, 26, 201], but 

the developed contract-theoretic scheme is substantially different 

from these studies. In contrast to [25], the proposed scheme enables 

ESs to trade their electricity individually and strategically, and 

the aggregator incentivizes various types of ESs considering their 

per-unit generation cost. Unlike [201], where a scalable price 

adjustment process (with fixed increments in buying and selling 

price) is developed to constitute a network of agreed contracts, a 

dynamic pricing scheme is proposed in this Chapter where ESs selling 

price varies depending on the current market state. Compared to the 

direct electricity-trading scheme in [26], the proposed method 

incentivizes various types of ESs considering a hierarchical 

electricity-trading framework with an aggregator as a profit-

seeking entity. Although [26] considers different types of 

suppliers for electricity trading, they have not categorized them 

and assume a constant selling price for a certain available power 

which may deteriorate the ESs utility. It is because ESs unit 

production cost may increase when RERs are not generating much due 

to their stochastic nature. Table 4.1 summarizes the proposed scheme 

differences with [26].  

Table 4.1. Difference between Proposed and Existing Scheme  

 

 

    

     

 

 

 

 

  

 

 

 

Aspect Previous Scheme 

[26] 

Proposed scheme 

Trading mechanism Direct electricity 

trading 

Hierarchical 

electricity trading 

framework 

ESs categorization No categorization Categorized into three 

main types and 

developed trading 

strategy for each 

category 

Trading scenarios No classification Two trading scenarios 

based on the load 

demand 

Selling price Constant selling 

price 

Different selling price 

for different trading 

scenario 

Wholesale price 

fluctuations impact 

on the buyer's 

decision 

Not considered Buyer decides on its 

strategy taking into 

account wholesale price 

fluctuations 
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The contributions of this study are summarized as: 

1) A new contract-theoretic framework is developed that enables 

different categories of ESs with various types to individually 

and strategically trade available surplus power with an 

aggregator in a hierarchical electricity trading system.  

2) A novel dynamic pricing mechanism is proposed which assumes 

that an ES selling price varies depending on the current market 

state, such as fluctuation in the wholesale price and 

accomplishing the base and peak load demand.  

3) A new contract-based distributed algorithm for electricity 

trading is presented that guarantees the optimal utility of 

both parties in various trading scenarios.  

4) The aggregator maximization problem is formulated as a 

principal-agent contract-based approach, and the number of 

constraints of the optimization problem is simplified to 

develop an equivalent simpler model for the original problem. 

Further, optimal contracts are theoretically derived for both 

baseload and peak load scenarios.   

The rest of the Chapter is organized as follows. Section 4.2 

presents the system model with details about the aggregator and ESs 

modeling. Section 4.3 details a theoretical derivation of the 

contract-based approach for the baseload scenario and an optimal 

solution of the formulated problem, and Section 4.4 discusses the 

peak load scenario and the electricity-trading algorithm. Numerical 

case studies are provided in Section 4.5, followed by the chapter 

summary in Section 4.6. 

 

 

 



4.2  System Model 

105 
 

4.2.   System Model  

Figure 4.1 shows the three-level hierarchical system model 

considered in this study. The power grid is at the top level, and 

the aggregator is at the second level. The electricity distribution 

network is at the third level and consists of various categories of 

ESs and traditional consumers with no generation sources. 

Traditionally, the aggregator purchases time-varying electricity 

from the power grid at the wholesale price and sells it to 

traditional users, where most of the traditional users still enjoy 

a fixed flat rate, and ESs inject their surplus power into the power 

grid at a low feed-in-tariff rate. When the wholesale price is less 

than (greater than or equal to) the flat rate at a given time, it 

is referred to as baseload (peak load) demand throughout this paper. 

In a traditional electricity market, for baseload demand, the 

aggregator generates a profit but suffers a loss when the peak 

demand scenario occurs. 

 

ESs
s

ESs
m

ESs
l

Power Grid

Aggregator

Electricity Suppliers Traditional Consumers

Power Flow

Money Flow

(𝜆𝑅𝑇𝑃 , 𝜆𝑅𝑇𝑃
′ ) 

(𝑊, 𝑊 ′ ) 
𝜆𝐹𝑅  

(𝑑𝑖 , 𝑒𝑗 , 𝑓𝑘 ) 

(𝑑𝑖
′ , 𝑒𝑗

′ , 𝑓𝑘
′ ) 

(𝑠𝑖 , 𝑚𝑗 , 𝑙𝑘 ) 

 

Figure 4.1. Proposed three-layer electricity trading model. 
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The aggregator can maximize its profit by obtaining cheaper 

electricity through the proposed contract-based incentive mechanism 

in both scenarios; however, it needs to consider the current market 

state and uncertainty of RERs. The aggregator has three significant 

roles in the developed framework: 1) it acts as an intermediary 

among different categories of ESs and traditional users. It collects 

surplus electricity from ESs and sells the collected electricity to 

traditional users; 2) it interacts with several geographically 

distributed ESs to satisfy a certain demand; 3) it buys electricity 

from the power grid when the supply from ESs is less than the 

consumers’ demand. 

To reflect the diversity of ESs, they are classified into three 

main categories based on the installed capacity of RERs. 1) Small-

scale electricity suppliers (ES𝑠𝑠): suppliers who have installed 

small-capacity wind turbines or solar panels on their rooftops 2) 

medium-scale electricity suppliers (ES𝑠𝑚) with medium-capacity 

renewable-energy systems 3) large-scale electricity suppliers 

(ES𝑠𝑙): suppliers who have installed large-capacity wind-turbine or 

solar systems. We consider a scenario in which one aggregator as a 

principal offers the right contract items and S ES𝑠𝑠, M ES𝑠𝑚, L ES𝑠𝑙 

acting as agents accept the contract according to their type. 

4.2.1   Aggregator Model  

Suppose that the aggregator pays d, e, f dollars to obtain s, m, 

l amount of power from  ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙 respectively. Let W be 

the total amount of power the aggregator procures from ESs and R(s), 

R(m), R(l) be its benefit after obtaining s, m and l units of power. 

The aggregator’s benefit reduces if the required power demand is 

not fulfilled, for example, if s+m+l<W. The aggregator gains 

maximum benefit when the required power demand is met, i.e., 

s+m+l=W. Thus, with a transaction (d, s), (e, m) and (f, l), the 

aggregator utility (𝑈𝐴), which is the benefit minus the cost, is 



4.2  System Model 

107 
 

given by 

𝑈𝐴 = (𝑅(𝑠) + 𝑅(𝑚) + 𝑅(𝑙)) − (𝑑 + 𝑒 + 𝑓)                            (4.1) 

The first term in (4.1) is the sum of the benefits gained from 

the various categories of ESs and the second term is the payment 

made to ESs to obtain the desired amount of power. A self-interested 

aggregator will determine the quantity of power and the cost to 

obtain that power from various categories of ESs in order to 

maximize its utility in a trading process. 

4.2.2   Seller Model   

The ESs are small/medium/large-scale residential/ 

commercial/industrial customers with a certain quantity of surplus 

power for trading in a local electricity market. In this work, we 

assume that ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙 can provide (2-20 kW), (22-160 kW) 

and (165-350 kW) of surplus power respectively, based on the 

installed capacity of their generation facilities. Any supplier who 

can provide excess power in the range of (2-20 kW) falls in the 

category of ES𝑠𝑠. Similarly, customers who can provide surplus power 

in the range of (165-350 kW) at a given time are in the category 

of ES𝑠𝑙. We further characterize the heterogeneity of ESs within 

their category based on the per-unit generation cost. ESs’ per-unit 

generation cost varies significantly depending on many factors, 

e.g. investment on RERs installation, their generation reliability, 

and maintenance costs. We assume that ESs do not sell at a price 

lower than the per-unit generation cost. Therefore, from now onward, 

in this Chapter, the per-unit generation cost of ESs is replaced by 

the term selling price. These cost elements are hidden from the 

aggregator and are only known to the ESs.  

Let the ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙 selling price be �̇�, �̈�, and 𝑎 

respectively. The aggregator payment should be greater than or at 

least equal to the selling price of the various categories of ESs 

because they will not sell at a loss. Let there be S type ES𝑠𝑠, M 
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type ES𝑠𝑚 and L type ES𝑠𝑙 according to their selling price. 

Therefore, ESs whose selling price falls into the  𝑖𝑡ℎ, 𝑗𝑡ℎ, and 𝑘𝑡ℎ 

cost level �̇�𝑖, i  ϵ S = { 1, … . 𝑆}, �̈�𝑗, j  ϵ M = { 1, … . 𝑀}, 𝑎𝑘, k  ϵ L = { 1, … . 𝐿} 

are called i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-type ES𝑠𝑙. For 

generalization, we make the assumptions given in equation (4.2). 

�̇�𝑖 > �̈�𝑗  >𝑎𝑘,      Ɐ i ϵ S, j ϵ M, k ϵ L                           (4.2a) 

�̇�1>�̇�2 …> �̇�𝑆 , �̈�1>�̈�2…> �̈�𝑀, 𝑎1>𝑎2. . > 𝑎L             (4.2b)        

�̇�𝑖 > λRTP,  Ɐ i ϵ S                                     (4.2c) 

�̈�𝑗  , 𝑎𝑘 < 𝜆𝑅𝑇𝑃,    Ɐ j ϵ M, k ϵ L                                (4.2d) 

where 𝜆𝑅𝑇𝑃 is the wholesale price to obtain electricity from the 

grid. The assumption (4.2a) is based on the installed capacity of 

the RERs of the ESs. As the RERs’ installed capacity increases, the 

unit production cost decreases because the RERs have a very low 

maintenance cost, and this ultimately reduces the selling price. 

The assumption (4.2b) is based on the type of ESs in a category. To 

further categorize the ESs in a category, we arrange them in 

ascending order (lower to higher type) based on the selling price 

and the surplus power procured by an aggregator. (4.2b) suggests 

that lower-types ESs can provide power at a higher cost so that the 

aggregator will buy less power from them. In contrast, the 

aggregator will obtain more power from higher-type ESs because their 

energy is cheaper. (4.2c) and (4.2d) imply that the ES𝑠𝑠 selling 

price is higher than the wholesale price, but the ES𝑠𝑚 and 𝐸𝑆𝑠𝑙 

selling price is lower than the wholesale price respectively. 

For trading the selling price of ESs should be < 𝜆𝑅𝑇𝑃; otherwise, 

the aggregator has no benefit to trade with ESs. Based on this, 

following (4.2c), the aggregator does not prefer to trade with ES𝑠𝑠. 

Hence, a trading strategy is required for ES𝑠𝑠 that is different 

from  the  ES𝑠𝑚  and  ES𝑠𝑙  trading scheme to take part in a trading  
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process. Traditionally, ES𝑠𝑠 inject surplus power to the power grid 

at  the  feed-in-tariff  rate (𝜆𝑇),  which is usually very low. 

Therefore, ES𝑠𝑠 are willing to sell power at a cost lower than �̇� but 

higher than 𝜆𝑇, in order to participate in a trading process and 

further enhance their profit. Let φ�̇� be the price at which ES𝑠𝑠 are 

ready to sell their surplus power. Where φ is the ratio of the 

revised selling price and the per-unit production cost of ES𝑠𝑠. The 

feasible range of φ�̇� is 𝜆𝑇<φ�̇�<𝜆𝑅𝑇𝑃 to ensure the rationality of both 

trading partners.  

Suppose that, by selling s, m and l units of power, the ES𝑠𝑠, ES𝑠𝑚 

and ES𝑠𝑙 the benefit is d, e, and f payments respectively from the 

aggregator. Thus, their utility obtained in the power transaction 

considering the selling price can be defined as: 

U (d, s)  = d – φ�̇�s                          (4.3a) 

U (e, m) = e – �̈�m                          (4.3b) 

U (f, l)   = f – 𝑎l                          (4.3c) 

As ESs do not want to sell at a loss, we assume that U(d, s), U(e, m), 

U(f, l) > 0 when d, s >0; e, m >0;  f, l > 0. If a supplier does not take 

part in the trading, it will get nothing. In this condition the 

utility is U(0, 0) = 0. 

4.3.   Contract-Based Approach for Base Load Scenario  

This section derives the aggregator’s optimal contracts, i.e., 

ð∗={(𝑑𝑖
∗, 𝑠𝑖

∗), 𝑖 𝜖𝑆} for the baseload scenario, where the wholesale price 

is less than the flat rate. In this scenario, the aggregator 

generates profit through a traditional trading scheme but can 

further enhance its profit by adopting the proposed contract 

incentive mechanism.  

To model the interactions of the aggregator and the ESs, we adopt 

the framework of a contract-based approach. In the considered 
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scenario, the aggregator wants to purchase a certain amount of power 

from ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙 in the local electricity market. Although 

the actual selling price of ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙 is not known to the 

aggregator, it needs to determine the quantity of power each type 

of ES can provide and the cost to obtain that power so that its 

utility is maximized.  

Suppose that the aggregator trading scheme for the i-type ES𝑠𝑠 is 

given in the form of (𝑑𝑖 , 𝑠𝑖), where 𝑑𝑖 is the agreed payment and 𝑠𝑖 is 

the amount of power the aggregator would obtain from the i-type ES𝑠𝑠. 

Therefore, the set inclosing the aggregator schemes for all S ES𝑠𝑠 

constructs a contracts ð ={(𝑑𝑖, 𝑠𝑖), 𝑖 𝜖𝑆} with (𝑑𝑖, 𝑠𝑖) being called a 

contract item. Similarly, (𝑒𝑗 , 𝑚𝑗), (𝑓𝑘, 𝑙𝑘) are contract items for j-type 

ES𝑠𝑚 and k-type ES𝑠𝑙 respectively.  

For a contract theoretic approach, it is crucial that the solution 

is incentive compatible and individually rational.  

Definition 1: A trading strategy (𝑑𝑖, 𝑠𝑖), (𝑒𝑗 , 𝑚𝑗), (𝑓𝑘, 𝑙𝑘) is said to 

be individually rational (IR), if for i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-

type ES𝑠𝑙, we have: 

  𝑈𝑖(𝑑𝑖, 𝑠𝑖) = 𝑑𝑖 − φ�̇�𝑠𝑖 ≥ 0                           (4.4a) 

  𝑈𝑗(𝑒𝑗 , 𝑚𝑗) = 𝑒𝑗 − �̈�𝑚𝑗 ≥ 0                          (4.4b) 

𝑈𝑘(𝑓𝑘, 𝑙𝑘) = 𝑓𝑘 − 𝑎𝑙𝑘 ≥ 0                          (4.4c) 

Here, 𝑈𝑖(·), 𝑈𝑗(·), 𝑈𝑘(·) is the utility function for i-type ES𝑠𝑠, 

for j-type ES𝑠𝑚 and k-type ES𝑠𝑙. The IR constraint confirms that ES𝑠𝑠, 

ES𝑠𝑚 and ES𝑠𝑙 will have a positive utility if they follow this 

scheme, hence motivating ESs to actively participate in the trading 

process.   
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Definition 2:  A trading strategy (𝑑𝑖, 𝑠𝑖), (𝑒𝑗 , 𝑚𝑗), (𝑓𝑘, 𝑙𝑘) is said to 

be incentive-compatible (IC) within a category if, for the  i-type 

ES𝑠𝑠, j-type ES𝑠𝑚 and k-type ES𝑠𝑙, we have:  

  𝑈𝑖(𝑑𝑖, 𝑠𝑖) ≥  𝑈𝑖(𝑑𝑖′ , 𝑠𝑖′)             𝑖 ≠  𝑖′, 𝑖, 𝑖′ϵ 𝑆          (4.5a) 

  𝑈𝑗(𝑒𝑗 , 𝑚𝑗) ≥  𝑈𝑖(𝑒𝑗′ , 𝑚𝑗′)   j ≠ 𝑗′, j, 𝑗′ ϵ 𝑀              (4.5b)                  

    𝑈𝑘(𝑓𝑘, 𝑙𝑘) ≥  𝑈𝑘(𝑓𝑘′ , 𝑙𝑘′)           𝑘 ≠  𝑘′, 𝑘 ,  𝑘′ϵ 𝐿                (4.5c)                   

Equation (4.5a) ensure that an i-type ES𝑠𝑠 selects a contract item 

designed according to its selling price. If a lower i-type 

ES𝑠𝑠 selects a contract item designed for a higher i-type ES𝑠𝑠 then 

the high demand for power may degrade its utility. Similarly, if a 

higher i-type ES𝑠𝑠 selects a contract item designed for a lower i-

type ES𝑠𝑠 then, due to the lower power demand, payment cannot 

compensate for the total production cost. Thus, with IC constraints, 

i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-type ES𝑠𝑙 gain no profit by hiding the 

true cost and falsely select the contract item of others’ type, 

because only their type of contract within a category brings maximal 

utility. Likewise, a trading strategy should meet the IC constraint 

according to the ESs’ category.   

Definition 3: A trading strategy, i.e., (𝑑𝑖, 𝑠𝑖) is said to be 

incentive-compatible (IC) according to its category, if for the i-

type ES𝑠𝑠, we have: 

𝑈𝑖(𝑑𝑖, 𝑠𝑖) ≥  𝑈𝑖(𝑒𝑗 , 𝑚𝑗)   Ɐ 𝑖 ϵ 𝑆, 𝑗 ϵ 𝑀, 𝑖 ≠  𝑗            (4.6a) 

𝑈𝑖(𝑑𝑖, 𝑠𝑖) ≥  𝑈𝑖(𝑓𝑘, 𝑙𝑘)     Ɐ 𝑘 ϵ 𝐿, 𝑖 ϵ 𝑆, 𝑖 ≠  k                     (4.6b)              

Equation (4.6) confirms that ES𝑠𝑠 choose the contract item 

designed according to their category of supply capacity. If an i-

type ES𝑠𝑠 selects the contract item designed for a j-type ES𝑠𝑚 or k-

type ES𝑠𝑙 then its utility is degraded, as the aggregator demands a 

higher amount of power than is available, and the opposite is true 
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for j-type ES𝑠𝑚 or k-type ES𝑠𝑙. Similar equations hold for j-type ES𝑠𝑚 

and k-type ES𝑠𝑙 IC constraints according to their category and are 

given in (4.7) and (4.8) respectively. 

𝑈𝑗(𝑒𝑗 , 𝑚𝑗) ≥  𝑈𝑗(𝑑𝑖, 𝑠𝑖)    Ɐ 𝑗 ϵ 𝑀, 𝑖 ϵ 𝑆, 𝑗 ≠  𝑖            (4.7a) 

𝑈𝑗(𝑒𝑗 , 𝑚𝑗) ≥  𝑈𝑗(𝑓𝑘, 𝑙𝑘)     Ɐ 𝑗 ϵ 𝑀, 𝑘 ϵ 𝐿, 𝑗 ≠  k                     (4.7b) 

𝑈𝑘(𝑓𝑘, 𝑙𝑘) ≥  𝑈𝑘(𝑑𝑖, 𝑠𝑖)     Ɐ 𝑘 ϵ 𝐿, 𝑖 ϵ 𝑆, 𝑘 ≠   𝑖           (4.8a) 

𝑈𝑘(𝑓𝑘, 𝑙𝑘) ≥  𝑈𝑘(𝑒𝑗 , 𝑚𝑗)     Ɐ 𝑘 ϵ 𝐿, 𝑗 ϵ 𝑀, 𝑘 ≠  𝑗                     (4.8b) 

A well-designed contract should also consider the supply capacity 

of ESs according to their category and type, i.e., 

𝑠𝑖,𝑚𝑖𝑛 ≤  𝑠𝑖 ≤ 𝑠𝑖,𝑚𝑎𝑥    Ɐ i ϵ S              (4.9a)                        

𝑚𝑗,𝑚𝑖𝑛 ≤  𝑚𝑗 ≤ 𝑚𝑗,𝑚𝑎𝑥    Ɐ j ϵ M              (4.9b)                        

𝑙𝑘,𝑚𝑖𝑛  ≤ 𝑙𝑘 ≤ 𝑙𝑘,𝑚𝑎𝑥    Ɐ k ϵ L              (4.9c)                        

 

 

where 𝑠𝑖,𝑚𝑖𝑛 , 𝑠𝑖,𝑚𝑎𝑥 , 𝑚𝑗,𝑚𝑖𝑛 , 𝑚𝑗,𝑚𝑎𝑥 , 𝑙𝑘,𝑚𝑖𝑛 , 𝑙𝑘,𝑚𝑎𝑥  are the minimum and 

maximum supply capacity of ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙 respectively. Several 

ESs of various categories will fulfill the aggregator demand, 

therefore we can write  

𝑊 = ∑ 𝑛𝑖𝑠𝑖
𝑆
𝑖=1 + ∑ 𝑛𝑗𝑚𝑗

𝑀
𝑗=1 + ∑ 𝑛𝑘𝑟𝑘

𝐿
𝑘=1                        (4.10)              

where 𝑛𝑖, 𝑛𝑗, 𝑛𝑘 is the number of i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-

type ES𝑠𝑙 respectively, and W is the total hourly power demand. Even 

though obtaining the number of each type of ES is a challenging 

task, in the literature, a multi-armed bandit model is available to 

build a learning algorithm, in order to find the number of each 

type of ES. In a multi-armed bandit model, each contract item is 

regarded as an arm, and the learning algorithm is a procedure of 

s.t.     𝑚𝑗,𝑚𝑖𝑛 >𝑠𝑖,𝑚𝑎𝑥      j = 1,  i =  S 

             𝑙𝑘,𝑚𝑖𝑛 > 𝑚𝑗,𝑚𝑎𝑥      k = 1,  j = M 
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the exploration (type) versus exploitation (profit) trade-off. 

Interested readers are referred to [200, 202, 203] for more detail 

about the learning algorithms and the bandit model. 

4.3.1   Optimal Contract Calculation  

The aggregator’s best trading strategies i.e., optimal contracts 

towards all 𝑆-type ES𝑠𝑠, 𝑀-type ES𝑠𝑚, 𝐿-type ES𝑠𝑙 can be obtained by 

solving the following maximization problem. 

max 𝑈𝐴 = ∑ 𝑛𝑖(𝑅(𝑠𝑖) − 𝑑𝑖)
S
𝑖=1 + ∑ 𝑛𝑗(𝑅(𝑚𝑗) − 𝑒𝑗

M
𝑗=1 ) + ∑ 𝑛𝑘(𝑅(𝑙𝑘) − 𝑓𝑘

L
𝑘=1 )     (4.11)      

s. t.  (4.4)(4.5)(4.6)(4.7)(4.8)(4.9) and (4.10)                           (4.11a)                                   

From equation (4.11) it can be deduced that the optimal contract-

designing problem is a complex problem with  S2 + M2 + L2, IR and 

IC constraints, which results in computational complexity. Here, it 

is required to derive necessary and sufficient conditions for 

simplifying the problem. Likewise, in [26, 106], the optimal 

solution elements, i.e., the payments {𝑑𝑖,𝑒𝑗,𝑓𝑘} and the amount of 

electricity traded {𝑠𝑖,𝑚𝑗,𝑙𝑘}, are monotonically increasing in i-

type, j-type, and k-type ESs respectively. Hence, following Lemma 

1 & 2 in [106] and Lemma 1 in [26], the number of IR and IC 

constraints can be reduced as follows:   

    𝑑1 ≥ φ�̇�1𝑠1,  𝑒1 ≥ �̈�1𝑚1,  𝑓1 ≥ 𝑎1𝑙1                  (4.12) 

 𝑠𝑆 > 𝑠𝑆−1 … . . > 𝑠1> 0                          (4.13a) 

    𝑚𝑀 > 𝑚𝑀−1 … . . > 𝑚1> 0                          (4.13b) 

 𝑙𝐿 > 𝑙𝐿−1 … … > 𝑙1> 0                          (4.13c) 

Equation (4.12) implies that if the IR constraint holds for the 

lowest-type ES, whose energy is most expensive in a category, and 

then the IR constraint for all other types is automatically 

satisfied. Following the assumption (4.2b) 𝑎1>𝑎2 … . > 𝑎L (4.13) 

implies that the aggregator procures more power from the ESs whose 
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energy is cheaper, which means that ESs with a cheaper energy option 

can gain more profit. With equation (4.12) and (4.13) suppositions, 

the number of IR and IC constraints is reduced and equation (4.11) 

can be written as: 

 max 𝑈𝐴 = ∑ 𝑛𝑖(𝑅(𝑠𝑖) − 𝑑𝑖)
S
𝑖=1 + ∑ 𝑛𝑗(𝑅(𝑚𝑗) − 𝑒𝑗

M
𝑗=1 ) + ∑ 𝑛𝑘(𝑅(𝑙𝑘) − 𝑓𝑘

L
𝑘=1 )    (4.14)                        

  s.t.   (4.9) (4.10) (4.12) and (4.13)                                (4.14a) 

Theorem 1. The proposed energy trading strategy of the aggregator 

that maximizes its utility is the optimal energy trading strategy.   

Proof: To determine the optimal contract items that maximize the 

aggregator utility, we assume that the power demands from ES𝑠𝑠, ES𝑠𝑚 

and ES𝑠𝑙 are known and satisfy equation (4.13). That is, the optimal 

price and the given contracted power amount are positively 

correlated with one another. Therefore, as the amount of contracted 

power increases, the optimal trading increases as well. Now, 

considering the linearity of the contract function in equation 

(4.14), the optimal contract items 𝑑𝑖
∗(𝑠𝑖), 𝑒𝑗

∗(𝑚𝑗) and 𝑓𝑘
∗(𝑙𝑘) can be 

derived using Theorem 1 in [26] as follows:  

 

𝑑𝑖
∗(𝑠𝑖) =   φ�̇�𝑖𝑠𝑖           if 𝑖 = 1               (4.15a) 

𝑑𝑖
∗(𝑠𝑖) =   𝑑𝑖−1

∗ + φ�̇�𝑖(𝑠𝑖 − 𝑠𝑖−1)         if 𝑖 = [2, … 𝑆]              (4.15b) 

𝑒𝑗
∗(𝑚𝑗) =   �̈�𝑗𝑚𝑗               if 𝑗 = 1                           (4.16a) 

𝑒𝑗
∗(𝑚𝑗) =   𝑒𝑗−1

∗ + �̈�𝑗(𝑚𝑗 − 𝑚𝑗−1)       if 𝑗 = [2, … 𝑀]              (4.16b) 

𝑓𝑘
∗(𝑙𝑘) =   𝑎𝑘𝑙𝑘                if 𝑘 = 1                          (4.17a) 

𝑓𝑘
∗(𝑙𝑘) =   𝑓𝑘−1

∗ + 𝑎𝑘(𝑙𝑘 − 𝑙𝑘−1)            if 𝑘 = [2, … 𝐿]              (4.17b) 
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By substituting the values of 𝑑𝑖
∗(𝑠𝑖), 𝑒𝑗

∗(𝑚𝑗) and  𝑓𝑘
∗(𝑙𝑘) in (4.14), the 

optimal amount of electricity, i.e., 𝑠𝑖
∗,𝑚𝑗

∗, 𝑙𝑘
∗ that the aggregator 

buys from different ESs can be obtained as  

𝑠𝑖
∗ =   𝑑𝑖 φ�̇�𝑖⁄                          if 𝑖 = 1                    (4.18a) 

𝑠𝑖
∗ =   𝑛𝑖𝑑𝑖 + 𝑛𝑖−1𝑑𝑖−1 (𝑛𝑖 + 𝑛𝑖−1)⁄ φ�̇�𝑖+ 𝑠𝑖−1

∗     if  𝑖 = [2, … 𝑆]              (4.18b) 

𝑚𝑗
∗ =   𝑚𝑗 �̈�𝑗 ⁄                          if 𝑗 = 1                   (4.19a)  

𝑚𝑗
∗ =   𝑛𝑗𝑒𝑗 + 𝑛𝑗−1𝑒𝑗−1 (𝑛𝑗 + 𝑛𝑗−1)⁄ �̈�𝑗+ 𝑚𝑗−1

∗   if  𝑗 = [2, … 𝑀]             (4.19b) 

𝑙𝑘
∗ =   𝑙𝑘 𝑎𝑘⁄                           if 𝑘 = 1                   (4.20a) 

𝑙𝑘
∗ =   𝑛𝑘𝑓𝑘 + 𝑛𝑘−1𝑓𝑘−1 (𝑛𝑘 + 𝑛𝑘−1)⁄ 𝑎𝑘+ 𝑙𝑘−1

∗     if  𝑘 = [2, … 𝐿]             (4.20b) 

Since the optimal solution is derived based on equation (4.12) 

and (4.13), which took individual rationality and incentive 

compatibility into consideration, the following corollary can be 

stated: Corollary 1. The proposed energy trading contract is both 

individually rational and incentive compatible. 

4.4.   Contract-Based Approach for Peak Load Scenario  

This section derives the optimal contracts, i.e., ð∗={(𝑓𝑘
∗́ ,  𝑙𝑘

∗ , г𝑘), 𝑖 𝜖𝐿} 

for the peak load scenario for time slots when the wholesale price 

is greater than or equal to the flat rate. To design an optimal 

contract strategy for this scenario, the aggregator needs to 

consider various factors such as the intermittency problem of RERs 

and the wholesale price spikes effect on the ESs’ selling price. 

4.4.1   Seller and Buyer Modeling   

Peak load demand refers to a period of time when the electricity 

demand peaks at its highest level and causes wholesale price spikes. 

At these times, the wholesale price may exceed the fixed flat rate 

[204] and the aggregator suffers a loss through the traditional 

trading scheme. It can generate profit by obtaining cheaper 
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electricity from ESs; however, the aggregator benefit of trading 

with ESs in this scenario depends on the consistency of RERs’ 

generation and the selling price of ESs. Due to the intermittent 

and uncontrollable characteristics of the output of RERs, potential 

ESs may not be able to provide the contracted power during the peak 

demand period, and thus the aggregator utility deteriorates. For 

that reason, the aggregator introduces the concept of a reliability 

level to capture the power supply uncertainty of ESs. This 

reliability level is expressed using a random variable г, and it 

expresses the probability to meet the contracted energy by ESs 

within the contracted periods. The ESs’ reliability levels are 

assumed to be within the range of [0, 1] for simplicity, and it is 

drawn identically and independently. The reliability level г = 0, 

when the power provided by ESs by the end of the contracted time is 

zero. Likewise, the reliability level г = 1, when the power provided 

by ESs by the end of the contracted time becomes equal or more than 

the contracted quantity. As to the power that ESs cannot provide, 

there is one way to complement it: the aggregator buys deficit power 

from the power grid but imposes penalty charges to ESs for the cost 

of the complement power. Considering the huge penalty charges in 

the case of power shortages, ESs will set a higher selling price 

for the same amount of power compared to the baseload scenario. 

4.4.2   Contract-Based Approach Formulation    

Let 𝜆𝑅𝑇𝑃
́  be the price to obtain electricity from the power grid 

when peak demand occurs. In this work, we assume that 𝜆𝑅𝑇𝑃
́ > 𝜆𝑅𝑇𝑃 > �̇�, 

�̈�, 𝑎. Let г𝑖 be the reliability level of ES𝑠𝑠 and �́� the payment to 

obtain s amount of power in a peak demand scenario. If 𝐸𝑆𝑠𝑠 are 

unable to provide the contracted amount of electricity at times of 

wholesale price spikes then they suffer penalty charges for the 

supply shortage. Penalty charges are assumed to be equal to 𝜆𝑅𝑇𝑃
́ . 

As 𝜆𝑅𝑇𝑃
́ >>�̇�; therefore, in order to encourage ES𝑠𝑠 to make contracts 

for the peak demand scenario with a probability of high penalty 
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charges in case of supply shortages, the aggregator pays more than 

the baseload scenario to obtain the same amount of power, therefore, 

we assume �́�>d. Moreover, in reality 𝜆𝑅𝑇𝑃
́  is public information, 

which is known to both the aggregator and ESs. Thus, ESs are 

unwilling to sell their electricity at the same rate in both 

scenarios. Therefore, in this study,  �́� is set to be positively 

correlated to 𝜆𝑅𝑇𝑃
́  to maximize the ESs utility. 

For the peak demand scenario, the aggregator will design the 

contract item (�́�𝑖,𝑠𝑖, г𝑖) for i-type ES𝑠𝑠, where �́�𝑖 is the payment to 

obtain the 𝑠𝑖 amount of electricity from ES𝑠𝑠 when peak demand occurs. 

The cost to supply the contracted amount 𝑠𝑖 is 𝑠𝑖𝜑�̇�г𝑖 and the power 

deficit cost is 𝑠𝑖(1 − г𝑖)�́�𝑅𝑇𝑃. The total cost will be 𝑠𝑖𝜑�̇�г𝑖+𝑠𝑖(1 − г𝑖)�́�𝑅𝑇𝑃.  

In this case, the  ES𝑠𝑠 utility function, which is benefit minus 

cost, is given as 

�́�𝑠(�́�, 𝑠, г) = �́�𝑖 − (φ�̇�𝑖𝑠𝑖г𝑖 + (1 − г𝑖)𝑠𝑖�́�𝑅𝑇𝑃)                 (4.21) 

  Similarly, the ES𝑠𝑚 and ES𝑠𝑙 utility function for this case can be 

obtained by replacing the baseload payments (𝑒𝑗, 𝑓𝑘) by the peak 

demand scenario payments (�́�𝑗, �́�𝑘) respectively. 

�́�𝑚(�́�, 𝑚, г)= �́�𝑗 − (�̈�𝑗𝑚𝑗г𝑗 + (1 − г𝑗)𝑚𝑗�́�𝑅𝑇𝑃)                (4.22a) 

�́�𝑙(�́�, 𝑙, г)= �́�𝑘 − (𝑎𝑘𝑙𝑘г𝑘 + (1 − г𝑘)𝑙𝑘�́�𝑅𝑇𝑃)                (4.22b) 

The first term in equation (4.21) and (4.22) is the benefit that 

ESs obtain by selling s, m, l  amounts of electricity. The second 

term is the cost to produce the s, m, l amounts of power and the 

third term is the cost to complement the deficit power. The third 

term is zero when г= 1, which indicates the condition when ESs 

maximize their utility by providing the contracted amount of power. 

However, the ESs’ utility decreases as г decreases because the cost 

to complement the power increases. In equation (4.21) and (4.22), 

�́�𝑖,  �́�𝑗,  �́�𝑘 can be calculated for two conditions. 
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4.4.2.1   𝝀𝑹𝑻𝑷
́  = 𝝀𝑭𝑹 

When the difference between 𝜆𝑅𝑇𝑃
́  and 𝜆𝐹𝑅 is zero, it represents the 

breakeven condition for the aggregator in a traditional electricity 

market, as the buying and selling price is the same. In this case, 

the aggregator trades with ESs to make a profit and ESs are willing 

to sell their surplus power at a higher rate than for the baseload 

scenario. Let 𝑎𝑖̇́ , �́̈�𝑗, �́�𝑘 be the payment made by the aggregator to 

obtain s, m, l amounts of power from ES𝑠𝑠, ES𝑠𝑚 and ES𝑠𝑙 respectively 

in this condition. Thus, the ESs’ utilities obtained in the 

transaction can be defined as:   

�́�𝑖 = 𝑎𝑖̇́ 𝑠𝑖г𝑖 + (1 − г𝑖)𝑠𝑖�́�𝑅𝑇𝑃      Ɐ {i =1…. . 𝑆}                 (4.23) 

 �́�𝑗 =  �́̈�𝑗𝑚𝑗г𝑗 + (1 − г𝑗)𝑚𝑗�́�𝑅𝑇𝑃       Ɐ {𝑗 = 1 … . . 𝑀}                   (4.24) 

 �́�𝑘 =  �́�𝑘𝑙𝑘г𝑘 + (1 − г𝑘)𝑙𝑘�́�𝑅𝑇𝑃        Ɐ {𝑘 = 1 … . . 𝐿}                 (4.25) 

Where 

𝑎𝑖̇́ =φ�̇�𝑖+0.015, �́̈�𝑗 = �̈�𝑗 + 0.015, �́�𝑘 =𝑎𝑘 + 0.015                  (4.26) 

 s.t.   φ𝑎𝑖̇́ , �́̈�𝑗, �́�𝑘< λFR                                   (4.26a) 

Equation (4.26) suggests that in this condition the per-unit 

payment to ESs is 0.015 $/kWh higher than the baseload scenario for 

the same amount of power as that procured by the aggregator.   

4.4.2.2   𝝀𝑹𝑻𝑷
́  > 𝝀𝑭𝑹 

This condition represents the case where the aggregator suffers 

a loss through a traditional trading scheme, as the buying price is 

higher than the selling price. In this case, the aggregator’s 

objective is to avoid loss through trading with ESs. The aggregator 

loss is positively correlated to the (λRTP
́  -𝜆𝐹𝑅) price difference 

that directly depends on λRTP
́  because 𝜆𝐹𝑅 is constant. This is 

intuitive since, ESs, being rational in nature, would also 
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correspond their selling price to λRTP
́ . Let the aggregator payments 

is  𝑎𝑖̇̅ , 𝑎�̅̈�, 𝑎�⃛�
̅̅ ̅ to procure s, m, l amounts of power from ES𝑠𝑠, ES𝑠𝑚, 

ES𝑠𝑙 respectively in this condition. Thus, the ESs’ utility functions 

are given as: 

�́�𝑖=𝑎𝑖̇̅ 𝑠𝑖г𝑖+(1 − г𝑖)𝑠𝑖�́�𝑅𝑇𝑃      Ɐ {i=1…. . 𝑆}                            (4.27) 

�́�𝑗=𝑎�̅̈�𝑚𝑗г𝑗+(1 − г𝑗)𝑚𝑗�́�𝑅𝑇𝑃       Ɐ {𝑗 = 1 … . . 𝑀}                   (4.28) 

�́�𝑘=𝑎�⃛�
̅̅ ̅𝑙𝑘г𝑘+(1 − г𝑘)𝑙𝑘�́�𝑅𝑇𝑃        Ɐ {𝑘 = 1 … . . 𝐿}                   (4.29) 

Where 

𝑎�̅̇� = φ�̇�𝑖+ (λRTP
́  -𝜆𝐹𝑅)∗ 0.2,   𝑎�̅̈� = �̈�𝑗+ (λRTP

́  -𝜆𝐹𝑅)∗ 0.2, 𝑎�⃛�
̅̅ ̅ = 𝑎𝑘+ (λRTP

́  -𝜆𝐹𝑅)∗ 0.2   (4.30) 

s.t.    φ𝑎𝑖̇̅ , 𝑎�̅̈�, 𝑎�⃛�
̅̅ ̅< λFR                          (4.30a) 

φ𝑎𝑖̇̅ , 𝑎�̅̈�, 𝑎�⃛�
̅̅ ̅ >  φ𝑎𝑖̇́ , �́̈�𝑗, �́�𝑘                          (4.30b) 

The following can be inferred from equation (4.30); 1) in this 

condition the 0.1 $/kWh price difference of λRTP
́  and 𝜆𝐹𝑅 corresponds 

to the 0.02 $/kWh increment in per-unit payment to ESs compared to 

the baseload scenario for the same amount of power obtained by the 

aggregator; 2) every time there is an increment of 0.1 $/kWh in the 

λRTP
́  and 𝜆𝐹𝑅 price difference due to an increase in the wholesale 

price (λRTP
́ ) leads to an increment of 0.02 $/kWh in the per-unit 

payment to ESs. This is to ensure that as λRTP
́  increases the ESs’ 

benefit also grows. However, the ESs’ revenue increases with an 

increase of λRTP
́ , until the per-unit payment is less than the flat 

rate. This is because a per-unit payment equal to the flat rate is 

the saturation point and beyond that the aggregator utility becomes 

negative, thus (4.26a)(4.30a) and (4.30b) assure the aggregator 

utility under different scenarios. In addition, equation (4.26) and 

(4.30) are designed carefully considering the various cost 

constraints mentioned in (4.2) to ensure fair-trading between the 

aggregator and the ESs.  



4.4  Contract-Based Approach for Peak Load Scenario 

120 
 

4.4.3   Optimal Contract Calculation    

Similar to the baseload scenario, in order to derive the 

aggregator’s optimal trading strategies for the peak load scenario, 

we need to define the following constraints: IR, IC, ESs’ supply 

capacity and total power demand. The ESs’ supply capacity and the 

IC constraints are the same as for the baseload scenario as defined 

in equation (4.9) and (4.13) respectively, whereas the aggregator’s 

total peak power demand is given as 

𝑊′ =∑ �́�𝑖𝑠𝑖
S
𝑖=1 + ∑ �́�𝑗𝑚𝑗

M
𝑗=1 + ∑ �́�𝑘𝑟𝑘

L
𝑘=1                           (4.31) 

 where �́� is the total hourly peak power demand of the aggregator 

and �́�𝑖, �́�𝑗, �́�𝑘 is the number of i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-type 

ES𝑠𝑙 respectively contributing to fulfilling the peak load demand. 

Since the peak demand (�́�) is greater than the baseload demand (W), 

we assume that �́�𝑖, �́�𝑗, �́�𝑘 > 𝑛𝑖, 𝑛𝑗, 𝑛𝑘 correspondingly. 

 The IR constraint under condition 1 and condition 2 in the 

simplified form are given below following (4.12). 

�́�1 ≥ φ𝑎1́̇𝑠1,   �́�1 ≥ �́̈�1𝑚1,   �́�1 ≥ �́�𝑘𝑙1                  (4.32) 

�́�1 ≥ φ𝑎1̇
̅̅ ̅𝑠1,   �́�1 ≥ 𝑎1̈

̅̅ ̅𝑚1,   �́�1 ≥ 𝑎1⃛
̅̅ ̅𝑙1                   (4.33) 

Equation (4.32) and (4.33) imply that if the IR constraint of the 

supplier whose energy is most expensive in a category is satisfied 

then the IR constraint for all other ESs will automatically exist 

since we made the assumption (𝑎1́̇>𝑎2̇
́ >… 𝑎𝑀̇́ ), (𝑎1̇

̅̅ ̅, 𝑎2̇
̅̅ ̅ … 𝑎�̇�

̅̅ ̅) following 

(4.2b). The aggregator’s optimal contracts for the peak load 

scenario considering all types of ESs can be obtained by solving 

the following optimization problem:  

max( �́�𝐴) = ∑ 𝑛𝑖 (𝑅(𝑠𝑖) − ( �́�𝑖))S
𝑖=1 + ∑ 𝑛𝑗(𝑅(𝑚𝑗) − ( �́�𝑗)M

𝑗=1 ) + ∑ 𝑛𝑘(𝑅(𝑙𝑘) − ( �́�𝑘)L
𝑘=1 )       (4.34)                        

𝑠. 𝑡.     (9)(13)(31)and (32)           for condition 1                             (4.34a) 

            (9) (13) (31) and (33)       for condition 2 
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The solution of (4.34), i.e. (𝑑𝑖
∗́ , 𝑠𝑖

∗, г𝑖), (𝑒𝑗
∗́ , 𝑚𝑗

∗, г𝑗), (𝑓𝑘
∗́ , 𝑙𝑘

∗ , г𝑘), Ɐ i 

ϵ  S, j ϵ M, k ϵ L, can be easily obtained by following subsection 

4.3.1, where φ�̇�𝑖, �̈�𝑗, 𝑎𝑘 are replaced by 𝑎𝑖̇́ , �́̈�𝑗, �́�𝑘 for condition 1 

and replaced by 𝑎𝑖̇̅ , 𝑎�̅̈�, 𝑎�⃛�
̅̅ ̅ for condition 2. 

4.4.4   Electricity Trading Algorithm     

This section presents a procedure for the aggregator to procure 

power from ESs and an algorithm for electricity trading between an 

aggregator and ESs that can be implemented by both parties in a 

distributed manner.  

Following the optimal contracts, i.e., {𝑑𝑖
∗, 𝑠𝑖

∗}, (𝑑𝑖
∗́ , 𝑠𝑖

∗, г𝑖) etc., 

from the previous sections, the aggregator achieves a higher utility 

from higher types of ESs than from lower types in a category, i.e. 

𝑈𝑘
𝐿>𝑈𝑘

𝐿−1, 𝑈𝑗
𝑀>𝑈𝑗

𝑀−1, 𝑈𝑖
𝑆
 > 𝑈𝑖

𝑆−1
. Moreover, the aggregator utility from 

the lowest type of ES in a large-scale category is higher than from 

the highest type of ES from a medium-scale category. Similar 

conditions apply to medium and small-scale category ESs, therefore 

we can write 𝑈𝑘
1>𝑈𝑗

𝑀 & 𝑈𝑗
1 >𝑈𝑖

𝑆
. Subject to: The difference between the 

requested amount of power and the surplus power from any ES is 

within a -2.5% variation. 

In a developed electricity-trading scheme, each type of ES 

provides a certain excess power at a specific rate. If the 

difference between the surplus power and the requested amount of 

power is more than -2.5% then the ES either rejects the contract or 

will provide that requested power at a higher rate. This is because 

an ES opportunity cost increases if it may not be able to capitalize 

on unsold power, therefore it would like to sell as much as it could 

have [205]. In this situation, it is more economical for the 

aggregator to buy power from an ES whose surplus power is within 

the  -2.5%  variation  of  the  requested  quantity. This way, the  
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proposed scheme enables all types of ESs within a category to take 

part in a trading process, depending on the demand in an hour. The 

systematic algorithm is provided in Algorithm 1. 

Algorithm 1. Contract-Based Electricity Trading Algorithm 

1: Initialize: W, �́�, λ𝑅𝑇𝑃, λ𝑅𝑇𝑃
́ , λ𝐹𝑅, ESs’ reliability level г𝑖, 

г𝑗, г𝑘, ESs’ supply capacity, number of ESs, i.e., 𝑛𝑖, �́�𝑖. 

2: Compute IC constraint using (4.13) for steps 3, 4 and 5.  

3: If λ𝑅𝑇𝑃<λ𝐹𝑅 

 Compute IR constraint of the lowest type of ES that satisfies 

(4.12). Solve the problem (4.14) to derive optimal contracts 

(𝑑𝑖
∗, 𝑠𝑖

∗), (𝑒𝑗
∗, 𝑚𝑗

∗), (𝑓𝑘
∗, 𝑙𝑘

∗) as described in subsection 4.3.1. 

4: else λ𝑅𝑇𝑃
́ =λ𝐹𝑅 

 Calculate IR constraint of the lowest type of ES that 

satisfies (4.32). Solve the problem (4.34) for condition 1 

to derive optimal contracts (𝑑𝑖
∗́ , 𝑠𝑖

∗, г𝑖), (𝑒𝑗
∗́ , 𝑚𝑗

∗, г𝑗), (𝑓𝑘
∗́ , 𝑙𝑘

∗ , г𝑘) 

as defined in 4.4.3.    

5: else if λ𝑅𝑇𝑃
́  >λ𝐹𝑅 

 Compute IR constraint of the lowest type of ES that satisfies 

(4.33). Solve maximization problem (4.34) for condition 2 to 

derive optimal contracts as described in subsection 4.4.3.    

endif 

6: Aggregator sends the contracts i.e., (𝑑𝑖
∗, 𝑠𝑖

∗), (𝑑𝑖
∗́ , 𝑠𝑖

∗, г𝑖), i ϵ 

S, to ESs and purchases electricity from them.  

7: ESs accept the contracts and the aggregator procures power 

from them following subsection 4.4.4.    

 

4.5.   Numerical Analysis   

In this section, the performance of the proposed contract-based 

approach is presented and is evaluated for both baseload and peak 

load demand scenarios considering one aggregator and 48 ESs from 

which there are 10, 16 and 22, i-type ES𝑠𝑠, j-type ES𝑠𝑚 and k-type 
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ES𝑠𝑙 respectively. ES𝑠𝑠 selling prices (φ�̇�𝑖) are chosen randomly from 

a range of [0.38 to 0.65] $/kWh from highest to lowest type in a 

small-scale category, and the value of φ is 0.67. Likewise, ES𝑠𝑚 

and ES𝑠𝑙 selling prices (�̈�𝑗 , 𝑎𝑘) vary from [0.34 to 0.64] and [0.11 to 

0.32] $/kWh in accordance with highest to lowest type in a medium 

and large-scale category respectively. The demand of the aggregator 

is chosen randomly from a range of [500-7000] kWh. The unit price 

to buy electricity from the wholesale market is 0.67 $/kWh for the 

baseload scenario and for the peak load scenario the price varies 

from 0.68 to 5.4 $/kWh. The aggregator sells the electricity to 

retail customers at a fixed flat rate of 1.1 $/kWh. The feed-in-

tariff rate is 0.11 $/kWh and its value is taken from [206]. All 

cost values are chosen following the assumptions in (4.2). 

Simulations are performed for seven different hours from 10 am to 

4 pm. The aggregator demands and ESs’ surplus powers are updated 

each hour. Table 4.2 lists the various simulation cases to evaluate 

the performance of the designed contract-based incentive scheme. 

Table 4.2. Simulation Cases to Evaluate the Developed Incentive Schemes  
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4.5.1   Aggregator Profit under Base Case and Case I 

This case study compares the aggregator profit under the 

traditional and contract-based trading scheme, and the results are 

shown in Fig. 4.2. It is observed that given the same power demand 

at different hours, the contract-based electricity-trading scheme 

outperforms the traditional scheme in terms of aggregator profit. 

In the traditional scheme, an aggregator obtains electricity from 

the power grid at a wholesale price; however, the contract-based 

scheme allows the aggregator to obtain more profit by purchasing 

cost-effective electricity from ESs. The reason is that, in the 

contract approach, each contract is designed for the corresponding 

ESs’ type, and the maximum profit is generated by following the IR 

and IC constraints (4.12) and (4.13) respectively. Nonetheless, in 

a traditional scheme, the aggregator purchases the bulk amount of 

electricity at the wholesale price, sells it to retail consumers at 

a fixed flat rate, and thus cannot improve its profit.  

 

Figure 4.2. Profit generated by aggregator with different schemes under Case I. 

 

4.5.2   Aggregator Utility for Base Case and Case II 

 The objective of this study is to compare the performance of two 

schemes when wholesale price becomes equal to a flat rate. The 
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simulation results are shown in Fig. 4.3 demonstrates that for the 

same power demand, as in Case I, the profit with the traditional 

trading scheme under this case is zero. This is because the retail 

revenue from customers is equal to the purchasing cost. However, 

the aggregator generates profit by trading with ESs through the 

contract-based trading scheme at the breakeven point. For instance, 

at 4 pm with 1.96 MW demand, the aggregator profit is 1.67 $/kWh 

and the ESs’ revenue is 0.30 $/kWh following the subsection 4.4.2 

condition (1) trading strategy. Given the same setting as in Fig 

4.2, Fig 4.3 reveals that the aggregator profit at 4 pm is reduced 

from 1.67 to 1.62 $/kWh because it is paying more to get the same 

amount of power in Case II. 

 

Figure 4.3. Aggregator and ESs utility with different schemes for Case II. 

 

4.5.3   Comparison of Aggregator Profit for Base Case and Case III 

The simulations, in this case, compare the performance of two 

schemes when wholesale price surpasses the fixed flat rate. This 

happens when the power demand increases in extreme weather 

conditions and wholesale price climbs, which causes a financial 

loss of aggregator under the traditional trading scheme. However, 

aggregator gains profit by adopting the contract-based trading 
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scheme as shown in Fig 4.4. The result reveals that the aggregator 

generates revenue by employing the designed strategy mentioned in 

subsection 4.4.2 condition (2). For example, at 3 pm with 6 MW 

demand, the aggregator’s loss with the traditional scheme is -4.20 

$/kWh and its profit with the contract-based scheme is 4.50 $/kWh 

with ESs’ revenue of 2.10 $/kWh. It is clear that the ESs’ revenue 

is positively correlated with energy demand and a rise in wholesale 

price, and is higher than the previous case. This is because ESs 

correspond their selling price with the wholesale price.  

 

Figure 4.4. Aggregator and ESs revenue with different schemes under Case III. 

 

4.5.4   ESs’ Payment versus Wholesale Price Spikes (Case IV) 

In this case, we perform simulations to examine the wholesale 

price spikes and ESs reliability level effect on the payment they 

received. Figure 4.5 reveals that the payments received by ESs from 

the aggregator to meet a specific power demand increase as the 

wholesale price increases. It is intuitive that, as the wholesale 

price grows, ESs have a strong incentive to increase their selling 

price. The payments received by ESs, i.e., for 1-2 and 4-7 MW demand 

are in the scenario where the ESs are paying no penalty charges 

because they are providing all the contracted amount of electricity 
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with г=1. However, as the reliability level goes down, the ESs’ 

profit significantly reduces, i.e., for 2-4 MW demand because the 

penalty charges for deficit power is higher than their selling 

price. Thus, to ensure that ESs benefit in a trading process with 

a probability of penalty charges, ESs set a higher selling price 

than in the base case for the same demand as the wholesale price 

increases following (4.30). This way, the proposed strategy aligns 

the ESs’ benefit with wholesale price spikes. 

 

 

Figure 4.5. ESs payment at various wholesale prices. 

 

4.5.5   Power Obtained from Different Categories of ESs (Case V) 

This study aims to illustrate how much electricity the aggregator 

procures in the optimal contracts from various types of ESs in 

various categories. It is clearly seen from Fig 4.6 that the 

aggregator obtains most of the required power from ES𝑠𝑙 followed by 

ES𝑠𝑚 and ESss. Further, within a category, the aggregator trades 

more electricity with higher types of ESs than with lower types 

following subsection 4.4.4. The main reason is that the aggregator 

will obtain more power from ESs whose energy is cheaper to derive 

more profits. It also reveals that, as electricity demand increases, 
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more lower types of ESs are included in the contract to meet that 

demand. In addition, ESss can participate in a trading process 

despite their high per-unit production cost as discussed in 

subsection 4.2.2. Moreover, the difference between the profits 

gained by the aggregator through trading at a given demand is 

affected by the amount of electricity obtained from various types 

of ESs and the corresponding payments. 

 

Figure 4.6. Power procured from ESs based on their category and types. 

 

4.5.6   Optimal Revenue of ESs (Case VI) 

In this case, we study the existence of optimal revenue for a 

given demand and how it affected by the variations in the wholesale 

price. Figure 4.7 demonstrates that, in each case where a certain 

demand is given, an optimal revenue does exist at which the ESs 

utility reaches a maximum and stays constant. The main reason is 

that the aggregator will pay more to ESs to meet a certain demand 

as the wholesale price increases until the per-unit payment to ESs 

is less than the flat rate following the 4.4.2 payment constraint 

(4.30a). This is because the aggregator’s utility becomes negative 

when the per-unit payment to ESs is more than the flat rate. Fig 
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4.7 highlights that ESs’ revenue increases as the wholesale price 

grows from 1.2 to 4.2 $/kWh; after that, it remains constant with 

further increases in the wholesale price. This way the designed 

scheme ensures the benefit of both trading partners and a win-win 

result arises.  

 

Figure 4.7. ESs optimal revenue at various wholesale price spikes. 

 

4.5.7   Trading Partners Utility versus Reliability (Case VII) 

In Case VII, the aggregator and the ESs’ utilities are evaluated 

at three different reliability levels with variations in the 

wholesale price, as shown in Fig 4.8. It can be deduced that two 

factors reduce the aggregator utility: 1) increments in the 

wholesale price 2) low-reliability level of ESs. This is because, 

as the wholesale price increases, the ESs’ selling price rises, and 

the aggregator has to pay more to procure power. Moreover, as a 

low-reliability level is negatively correlated with the deficit 

power, the aggregator’s total payment to purchase a certain amount 

of demand grows because it purchases the deficit power from the 

wholesale market at a high price. Furthermore, from the ESs’ 

perspective, the  penalty  charges to balance the deficit power at 
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low-reliability levels significantly reduce the ESs’ revenue, and 

this impact is more prevalent at a  high wholesale price. For 

instance, at wholesale price 3, ESs and aggregator utility decrease 

from 12.9 to 10.1 and 11.7 to 8.37, respectively, with a change in 

the reliability level from 0.8 to 0.6. 

 

Figure 4.8. Aggregator and ESs revenue at different reliability levels. 

4.6.   Chapter Summary    

In this chapter, a novel framework is developed for studying the 

complex interactions between an aggregator and different categories 

of ESs of various types to trade their surplus power to the 

aggregator strategically in the smart grid. The interaction between 

aggregator and ESs is formulated as an optimal-contract design 

problem, and optimal contracts are theoretically derived for both 

baseload and peak load scenarios. By adopting the proposed scheme, 

the aggregator can maximize its profits while stimulating ESs to 

satisfy the load demand with positive utility. Comprehensive 

simulation results show the effectiveness of the proposed contract-

based incentive mechanism over a conventional trading scheme.  
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The results indicate that with the proposed scheme the aggregator 

can procure the same amount of energy with only 22.55% and 16.41% 

of the payment in baseload and peak load scenario respectively with 

the traditional scheme. Meanwhile, the developed strategy brings 

significant profit increment of 38.14%, 51.37%, and 72.22% for 1.2, 

1.8 and 2.4 $/kWh wholesale price respectively compared to a 

conventional scheme. The designed incentive mechanism is 

characterized for regular distributions, as the aggregator only 

needs to publish an optimal unit price to ESs for implementation. 

Moreover, it is easily deployable on a large scale in smart-grid 

operations of the future because of its compatibility with the 

current electricity-tariff structure.  

It is important to note that this successful energy trading solely 

depends on the spontaneous participation of electricity suppliers 

in an energy-trading scheme motivated by proper incentive 

mechanisms. Certainly, this spontaneous participation of consumers 

in the smart grid not only has energy management benefits but also 

can be used for energy imbalance management in case of a supply 

shortage due to the stochastic nature of DREGs and/or when there is 

peak demand stress on the grid. Hence, in the following chapter, a 

consumer-centric energy imbalance management scheme is investigated 

that can effectively reduce peak demand and energy consumption when 

there is a shortage of supply in a smart grid power system. 
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Chapter 5                                                                                                                                                                 

Optimal Price Based Control of 

HVAC Systems  

Price-based demand response (PBDR) is a powerful technique that 

can be used to handle the aggregated peak demand, energy 

consumption and cost by controlling heating, ventilation, and air-

conditioning (HVAC) thermostat settings based on time-varying 

price signals. Optimizing the scheduling of HVAC systems in 

multizone buildings is a challenging task, as occupants in various 

zones have different thermal preferences dependent on time-varying 

indoor and outdoor environmental conditions and price signals. 

This paper proposes an intelligent and new PBDR control strategy 

for multizone office buildings fed from renewable energy resources 

(RERs) and/or utility grid to optimize the HVAC operation 

considering the varying thermal preferences of occupants in 

various zones as a response of real-time pricing (RTP) signals. 

Occupants’ varying thermal preferences represented as a 

coefficient of a bidding price (chosen by the occupants) in 

response to price signals are modeled using an artificial neural 

network (ANN) and integrated into the optimal HVAC scheduling. A 
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control mechanism is developed to determine the varying HVAC 

thermostat settings in various zones based on the ANN prediction 

model results. The effect of the proposed strategy on aggregator 

utility with wider implementation of the developed mechanism is 

also considered. In addition, a detailed mathematical model of a 

commercial building is presented to evaluate the thermal response 

of a multizone office building to the operation of an HVAC system. 

The developed thermal model considers all architectural and 

geographical effects to provide an accurate calculation of the 

HVAC load demand for analyses. The optimization problem for the 

proposed PBDR control strategy is formulated using a building’s 

thermal model and an occupant’s thermal preferences model, and 

simulation results are obtained using MATLAB/Simulink tool. The 

results indicate that the proposed strategy with realistic 

parameter settings shows a reduction in peak demand varying from 

7.19% to 26.8%, contingent on the occupant’s comfort preferences 

in the coefficient of the bidding price compared to conventional 

control (CC). This shows that the proposed approach successfully 

optimizes the HVAC operation in a multizone office building while 

maintaining the preferred thermal conditions in various zones. 

Moreover, this technique can help in balancing the energy supply 

and demand due to the stochastic nature of RERs by cutting 

electricity consumption. 

5.1.   Introduction  

Commercial buildings’ electricity consumption is about 26% of 

the aggregated consumption in Sydney, Australia. The commercial 

sector’s contribution to the peak (26%) is higher than its 

contribution to total energy usage (19.3%) [207, 208]. The average 

annual growth in peak summer demand is approximately 3.8% a year, 

almost twice the rate of growth in total electricity consumption 

[209]. HVAC systems are responsible for nearly half (45%) of the 

commercial peak demand. Cooling, as the largest single load in 
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Australia, accounts for more than 30% of the commercial peak demand 

[210]. Although the industrial sector dominates the total load 

demand, the joint commercial and residential HVAC operation are 

more dependent on temperature variations, while its contribution 

to the peak load increases from 17% to 20% over the peak hours on 

the hottest/most humid summer days [211]. The growing peak-hour 

demand puts considerable stress on power-supply companies to 

construct additional power plants and to maintain regulation 

services. 

However, much of this expanded capacity to accommodate the 

maximum possible peak demand lies idle other than for short 

periods. For instance, Australia’s largest distributor of 

electricity has estimated that $11 billion in network 

infrastructure is used for the equivalent of four or five days a 

year [40]. Similarly, another distribution network has estimated 

that around 20% of network capacity is used for the equivalent of 

23 hours per year [41]. Thus, to reduce the peak load of HVAC 

systems, TransGrid, Energy Australia and the New South Wales 

Planning Department jointly manage the Demand Management and 

Planning Project (DMPP). One of the activities of the DMPP is the 

widespread implementation of an innovative HVAC program that can 

reduce electrical demand during peak hours by replacing 

conventional HVAC systems with innovative HVAC technologies. The 

project team estimated the potential for a 300kVA reduction in 

peak demand at a cost of support of AU$ 242/kVA [211]. Although 

this program received an AU$ 1 million grant for implementation, 

the program failed due to timing and facilitation constraints. 

Another approach to relieving the growing demand stress on 

traditional power grid is to install distributed renewable energy 

generators (DREGs) at commercial buildings. However, the 

stochastic input from RERs can bring difficulty in balancing the 

electricity demand and supply [212]. Considering these challenges, 

the effective way to reduce the peak demand/electricity 
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consumption of HVAC systems is the control of HVAC thermostat 

settings in accordance with variations in electricity rates for 

demand response (DR).   

The control of the thermostat for DR, in general, can be 

categorized as 1) transaction-based and 2) price-based. 

Transactive control (TC) utilizes a market-based control 

technology to make thermostatically controlled loads more demand 

responsive. The TC adjusts the thermostat setting based on the 

market-clearing price (MCP). However, in the PBDR program users 

change their energy usage pattern in response to changes in 

electricity pricing. Time-of-use (TOU), real-time pricing (RTP) 

and critical peak pricing are different pricing mechanisms used 

for the DR program [106, 213].  

Several designs of transactive controllers for residential as 

well as commercial building HVAC systems are available in the 

literature. For example, in [128, 214] Olympic Peninsula and 

American Electric Power projects investigate TC for residential 

HVAC systems. The researchers in [215] design the RTP in a 

transactive environment to define the final thermostat set-point 

of a residential HVAC based on the bidding price. In [180] similar 

design concepts are applied to those in [128, 214] to control the 

thermostat in commercial building HVAC systems. The work in [180] 

adjusted the zone temperature set-point based on the MCP. The 

adjusted set-point might be lower or higher than the desired set- 

point, so it might not strictly respect a customer’s comfort 

preferences. In addition, TC implementation required extension of 

existing standards, and development of new interface standards, 

and many more studies are required to overcome the TC challenges 

[216, 217]. In contrast to [180], the current work proposes an 

easily implementable PBDR controller to change the thermostat 

setting by considering customer preferences in both thermal 

comfort and price selection. 

 



5.1  Introduction 

 

137 
 

In the literature, considerable work [218-222] has been done to 

design the DR algorithms for scheduling residential HVAC loads to 

obtain energy cost savings and/or energy efficiency. In [218] a 

fuzzy-logic based and in [219] model predictive control (MPC) 

system is developed to control residential HVAC units to reduce 

the peak power demand. An adaptive supervisory on/off algorithm is 

presented in [220] to increase the efficiency of a centralized 

HVAC system. This work studied the influence of gas consumption on 

control signals and internal temperature. However, these 

controllers do not consider a thermal comfort model for DR and are 

non-responsive to price signals. In recent years, many research 

studies introduce HVAC load control strategies based on thermal 

comfort modeling and price signaling. For instance, in [221] a 

smart thermostat is developed where the desired comfortable levels 

set by consumers determine the on/off state of the air-conditioner; 

however, the smart thermostat is unable to respond to price 

signals. The work in [222] proposes an automatic thermostat set-

point control strategy in a residential home, which response to 

the price variation in a TOU tariff, and examines the influence of 

the peak period length, home size and set-point offset on peak 

energy savings without considering the thermal comfort. 

The proposed PBDR control strategy is most closely related to 

recent DR strategies that respond to varying price signals while 

meeting user thermal comfort requirements. In [223] a control 

algorithm is proposed that regulates the running state of HVAC 

units in a community microgrid according to the RTP with bounded 

temperature constraints for cost savings. In [224] and [225] 

controllers are designed using various mathematical approaches to 

model a residential HVAC system. The developed controllers are 

able to reduce the peak consumption for HVAC of homes in response 

to RTP while taking into account thermal comfort requirements. In 

these strategies to consider the cost/comfort trade-off for 

consumers, when the energy price exceeds the maximum purchasing 

price of a customer, the thermostat setting will be increased by 
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2 to 3 oC, which may cause discomfort to many users. The mechanism 

designed in [226] and [227] controls the residential HVAC 

thermostat setting within a pre-determined thermal comfort 

interval in response to changing prices; in a single thermal zone. 

However, commercial buildings have multiple zones with a thermally 

interconnected dynamical system and therefore require careful 

attention to optimize the DR of HVAC systems. Considering this, 

unlike the above literature, the current work proposes a PBDR 

controller for a commercial building’s HVAC operation, which 

involves a large number of occupants with varying thermal comfort 

preferences and with control of multiple zones. 

Another research community works to optimize the DR of the HVAC 

systems in multizone buildings. A pre-cooling strategy is 

considered in [228-230] to utilize commercial buildings’ thermal 

storage potential for demand shifting during peak hours. In [231] 

a control strategy has been proposed for aggregation and 

coordination of industrial and commercial loads for DR using RTP. 

In [232] a predictive model of HVAC air-circulation fan power 

consumption is developed to use the commercial HVAC system for 

fast DR. Reference [233] investigates event-driven DR strategies 

to reduce commercial HVAC energy consumption. A commercial HVAC 

unit is controlled in [234] for multiple-occupant spaces for 

optimal peak load reduction while maintaining human comfort using 

a predicted mean vote (PMV) model. In [27] predictive control and 

in [28] fuzzy control is proposed to minimize the energy 

consumption of HVAC systems where the occupants’ comfort is based 

on the acceptable range of the PMV index. The PMV model relied on 

a group level presentation of thermal comfort and was unable to 

reflect variations in behavior related to the thermal environment. 

The research studies [235, 236] show that at a certain temperature 

some occupants feel cooler and more uncomfortable than others due 

to the difference in physiological and psychological 

responses based on gender and adaptive behavior. This implies that 

occupants have different thermal comfort preferences that need to 
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be considered when designing an HVAC control strategy. Considering 

this, participatory approaches were used in [237] and [238] to 

allow occupants to adjust their thermostat set-points according to 

their preference to integrate an individual occupant’s preference 

into HVAC control. However, these strategies [27, 28, 234-238] are 

non-responsive to time-varying electricity prices for HVAC 

control. Unlike these studies, in this work, a practical and new 

dynamic PBDR control strategy is proposed to optimize the 

commercial building HVAC systems energy consumption, while 

considering the varying thermal comfort preferences of occupants 

in various zones in response to RTP signals. 

Moreover, to analyze HVAC energy usage, the importance of 

accurate modeling of the HVAC system is undeniable. In the field 

of HVAC system modeling, the most complicated part is the 

development of an accurate model for a commercial building. This 

is because the components that need to be modeled for buildings 

are not limited to a building’s construction. Internal building 

loads that include the number of people within the space, their 

activities and the heat gain from lighting must also be modeled 

[239]. The authors in [240] study the transmission of heat and 

moisture through the walls, roofs, and ceilings to estimate the 

indoor air temperature and humidity. However, they do not consider 

the transmission of heat and moisture through ventilation and 

internal loads. In [241] the research is focused on reducing the 

order of dynamic models of temperature and humidity in commercial 

multi-zone buildings for model-based HVAC control. References 

[227] and [241] use MPC that requires many assumptions to 

facilitate HVAC energy usage calculations. The study in [242] and 

[243] only correlates the occupancy and air-infiltration rate with 

commercial building electricity consumption respectively. In this 

Chapter, a precise thermal and power model is developed for HVAC 

components by considering all the above-mentioned factors that 

influence the HVAC energy consumption. 
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Compared with previous studies, the key contributions are: 

 A commercial building HVAC system that is a complex, thermally 

interconnected dynamical system is considered, in contrast to 

residential buildings where researchers consider only one 

zone, which is cooled and heated up by the HVAC system. In 

this study, five zones with varying thermal comfort 

preferences are controlled.   

 Occupants’ varying thermal preferences in the coefficient of 

the bidding price are modeled by employing an ANN, which is 

trained using a machine-learning algorithm, and these 

preferences are directly integrated into the objective 

function in the optimal HVAC scheduling problem. 

 A new PBDR control mechanism is proposed to control the HVAC 

thermostat setting in various zones to cater to the varying 

thermal preferences of occupants in response to RTP signals 

while maintaining the indoor environmental conditions of 

human occupancy in occupant-controlled multizone office 

buildings.  

 Comprehensive simulation case studies are performed to show 

the effectiveness and applicability of the proposed PBDR 

controller.  

The rest of the Chapter is planned as follows. Section 5.2 

presents the HVAC system modeling, while Section 5.3 formulates 

the control problem and describes the pricing data. Section 5.4 

presents the proposed PBDR control methodology. Section 5.5 is 

devoted to the experimental setup, while Section 5.6 provides 

simulation results and a discussion on thermal comfort. Section 

5.7 describes the chapter summary.    

5.2.   System Modeling   

The structure of the proposed PBDR control methodology and a 

typical configuration of a commercial building HVAC system with  
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multiple zones are shown in Fig. 5.1(a) and Fig. 5.2(b) 

respectively. The study considered multiple occupants in a 

multizone building getting power from RERs and/or power grid. Each 

zone is equipped with an HVAC controller, which has load control 

capabilities. The HVAC controllers are connected over a local area 

network to a central control agent (CCA) that receives the 

occupant's comfort preferences in the coefficient of bidding price 

to control the thermostat setting in each zone. This study assumed 

that the CCA is owned, operated and maintained by the building 

manager. The main equipment of the HVAC system is air-handling 

units (AHU) and variable-air-volume (VAV) boxes responsible for 

producing and distributing cool/warm air for all zones.  

Zone 1 Zone 2

HVAC with 
controller

Zone Z

RES s / 

Grid

Central Control 
Agent

HVAC with 
controller 

HVAC with 
controller

Power 
Line

Power Line Bidding Price

.  .  .  .

Thermostat Setting

 

Figure 5.1(a). System model depicting the flow of signals 

 

Figure 5.1(b). Typical commercial building HVAC system configuration 
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A detailed description of the air distribution system can be 

found in [181, 182]. The air moves through VAV boxes before 

reaching a given space, while the zone cool air mass flow rate 

delivered to space is controlled by changing the damper position 

at each VAV box. A thermal zone is a space that is cooled/heated 

by one VAV box. In this work, a single centralized chiller is 

considered, which works for one AHU for providing cool/warm air to 

multiple zones, and a VAV box is associated with each temperature 

zone.  

5.2.1   Supply Fan Model 

The fan power consumption principally depends on the air mass 

flow rate and the pressure difference between the inlet and outlet. 

Earlier simulation work [184] found that the AHU supply fan power 

versus fan mass flow rate fits a quadratic model. In addition, the 

pressure drop is approximately linear with the total mass flow 

rate. With this form of fit and simplification, the fan power is 

modeled as a quadratic function of the total mass flow [183, 244]: 

𝑃𝑡
𝑓

= 𝑘𝑓(𝑚(𝑡))2                           (5.1) 

where 𝑃𝑡
𝑓
 is the power consumed by the fan in kW to supply the 

required airflow rate to all zones, 𝑘𝑓 (kW.s
2/kg2) is the parameter 

that considers both the duct pressure losses and fan efficiency. 

The total supply airflow rate 𝑚(𝑡) is the sum of the airflow rate 

into each zone 𝑚ⱬ(𝑡) in kg/sec and is given as 

𝑚(𝑡) = ∑ 𝑚ⱬ (𝑡)Ⱬ
ⱬ=1                            (5.2) 

 where ⱬ is the zone index, ⱬ= [1,…Ⱬ]. A zone airflow rate is 

dependent on the zone load, zone temperature, and supply air 

temperature. It can be expressed in mathematical form as [184] 

∑ 𝑚ⱬ(t)= ∑
𝑞ⱬ(𝑡)

1.2(𝑇ⱬ(𝑡)− 𝑇𝑠 )
                          (5.3) 
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where 𝑞ⱬ(𝑡) is the zone load in kW, 𝑇ⱬ(𝑡) , 𝑇𝑠  are the zone and supply 

air temperatures in oC, and 1.2 is a conversion factor.  

5.2.2   Chiller Model   

In the literature, comprehensive and complex chiller models are 

available [245, 246] but these models are not control-oriented. 

This paper considers a simple control-oriented chiller model [183, 

184]: 

𝑃𝑡
𝑐 = 𝜑

∑ 𝑞ⱬ(𝑡)

ƞ𝐶𝑂𝑃
 + (1 − 𝜑)

𝑞𝑡 

ƞ𝐶𝑂𝑃
                           (5.4) 

 where 𝑃𝑡
𝑐 is the total power consumed by the chiller in kW that is 

used  to  generate  the  chilled water consumed by the cooling 

coil for all zones, 𝑞𝑡 is the total load of the building in kW, 

𝜑 ⇒ [0,1]  is the damper position, ƞ is the chiller efficiency factor 

and COP is the chiller coefficient of performance. 𝑞𝑡 and COP can 

be calculated as [184].  

𝑞𝑡 =  ∑ 𝑚ⱬ (𝑡) (𝑇𝑜 (𝑡)  − 𝑇𝑠 )                           (5.5) 

𝐶𝑂𝑃 = 7.93𝜃3 − 21.12𝑏𝜃2 + 16.49 𝜃 + 2.22 + 0.1(𝑇𝑤 − 6)           (5.6) 

where 𝑇𝑜 (𝑡), 𝑇𝑤 are the outside air and chilled water temperatures 

in oC, and 𝜃 is the cooling coil and design load ratio. 

5.2.3   HVAC Power Consumption    

The aggregated power usage of the HVAC system is the sum of the 

fan and chiller power consumptions and is given as 

𝑃𝑡 = 𝑃𝑡
𝑓

+ 𝑃𝑡
𝑐                          (5.7) 

Putting the values of (5.2), (5.3) into (5.1), and (5.5) into 

(5.4), (5.7) over the given time horizon for Ⱬ zones can be re-

written as: 
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𝑃𝑡 = ∑ ∑ {(𝑘𝑓 ∗Ⱬ
ⱬ

𝑤
𝑡 (

𝑞ⱬ(𝑡)

1.2(𝑇ⱬ(𝑡)−𝑇𝑠)
)

2

) + ( 𝜑
𝑞ⱬ(𝑡)

𝐶𝑂𝑃
  + (1 − 𝜑)

𝑚ⱬ(𝑡)(𝑇𝑜 (𝑡)− 𝑇𝑠 )

𝐶𝑂𝑃
)}          (5.8) 

where 𝑃𝑡 is the total power consumed by the HVAC load in kW and t 

is the time index, t = [1….Ⱳ]. It can be noted from (5.8) that 

the fan and chiller power consumptions depend on the zone load. 

Therefore, to provide reliable and accurate DR, a precise 

calculation of the zone load is required.  

5.2.4   Zone Cooling and Heating Load     

The key design component for most HVAC systems is an accurate 

assessment of the cooling load (CL) and heating load (HL) 

requirements because these loads can significantly affect the 

comfort and the productivity of the occupants, the operating cost 

and the energy consumption. The peak HL in winter months occurs 

before sunrise and there is no considerable change in the outside 

environment during the winter season. In contrast, in summer, solar 

radiation causes a significant variation in outdoor environmental 

conditions throughout the day, and all indoor heating components 

add to the CL. Therefore, CL calculations are fundamentally more 

complex and require consideration of unsteady-state processes 

[247, 248]. Moreover, the CL’s contribution to the commercial peak 

load is the largest. For these reasons, this paper considers zones 

with cooling requirements only and presents detailed mathematical 

modeling of the CL calculation based on the cooling load 

temperature difference (CLTD) method with solar CL factors 

suggested by the American Society of Heating, Refrigeration and 

Air-Conditioning Engineers (ASHRAE). This method considers all 

factors that influence the HVAC electricity consumption such as 

building size, outdoor environmental conditions, indoor 

activities, and thermal load, etc.  
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5.2.5   Cooling Load Calculation      

The building CL is the sum of the external and internal CL of 

each zone 𝑞𝑐 
ⱬ (𝑡) and it includes both sensible and latent CL 

components. The sensible load refers to the dry-bulb temperature, 

while the latent load refers to the wet-bulb temperature of the 

zone. The CL heat balance model is based on dynamic conditions, 

which consider the heat stored in the building envelope and 

interior materials.  

5.2.5.1 External Cooling Load Calculation  

The heat transferred through the building’s roof, walls and glass 

are called the external CL. The basic conduction equations for 

heat gain/conductive load from roof, wall, and glass are given as 

𝑞𝑟(𝑡) =∪𝑟∗ 𝐴𝑟 ∗ 𝐶𝐿𝑇𝐷𝑟
𝑐 (t)                          (5.9) 

𝑞𝑤(𝑡) =∪𝑤∗ 𝐴𝑤 ∗ 𝐶𝐿𝑇𝐷𝑤
𝑐  (t)                          (5.10) 

𝑞𝑔
𝑐 (𝑡) =∪𝑔∗ 𝐴𝑔 ∗ 𝐶𝐿𝑇𝐷𝑔

𝑐 (t)                          (5.11) 

The solar load through glass is the sum of a conductive and a 

solar transmission load that occurs when solar radiation is 

absorbed, stored and scattered in the atmosphere. The sum of the 

CL through glass can be calculated as 

𝑞𝑔(𝑡) = 𝑞𝑔
𝑐 (𝑡) + 𝑞𝑔

𝑠 (t)                               (5.12) 

Where  𝑞𝑟(𝑡), 𝑞𝑤(𝑡), 𝑞𝑔(𝑡) are the hourly heat gains by conduction 

through roof, wall, and glass in watts, ∪𝑟, ∪𝑤, ∪𝑔 are the thermal 

transmittances for roof, wall, and glass in W/m2.C , 𝐴𝑟,  𝐴𝑤, 𝐴𝑔 are 

the areas of roof, wall, and glass in m2, 𝑞𝑔
𝑐 (𝑡), 𝑞𝑔

𝑠 (t)  are the 

conductive and solar transmission components of the glass load in 

watts.  

The solar transmission load through glass is given as 

𝑞𝑔
𝑠 = 𝐴𝑔 ∗ 𝑆𝑐 ∗ 𝑆𝑐𝑙                                    (5.13) 
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 Where 𝑆𝑐 is the shading coefficient, 𝑆𝑐𝑙 is the solar CL factor, 

𝐶𝐿𝑇𝐷𝑟
𝑐 (𝑡), 𝐶𝐿𝑇𝐷𝑤

𝑐  (𝑡), 𝐶𝐿𝑇𝐷𝑔
𝑐 (𝑡), are the hourly-corrected CLTD values 

for roof, wall, and glass in oC. In [249] hourly CLTD values for 

roof (𝐶𝐿𝑇𝐷𝑟), wall (𝐶𝐿𝑇𝐷𝑤) and glass (𝐶𝐿𝑇𝐷𝑔) are provided for one 

typical set of conditions. Therefore, it is required to calculate 

the CLTD correction factors for roof, wall, and glass according to 

Sydney weather conditions. The CLTD correction factors can be 

calculated as: 

𝐶𝐿𝑇𝐷𝑟
𝑐 = [𝐶𝐿𝑇𝐷𝑟 + (𝑇𝑖𝑛

𝐷 − 𝑇𝑖𝑛
𝑅 ) + ((𝑇𝑜

𝐷𝐵- 𝐷𝑅
2⁄ ) - 𝑇𝑜

𝑀)]        (5.14)    

𝐶𝐿𝑇𝐷𝑤
𝑐 = [𝐶𝐿𝑇𝐷𝑤 + (𝑇𝑖𝑛

𝐷 − 𝑇𝑖𝑛
𝑅 ) + (𝑇𝑜

𝐷𝐵- 𝐷𝑅
2⁄ ) - 𝑇𝑜

𝑀)]              (5.15) 

𝐶𝐿𝑇𝐷𝑔
𝑐 = [𝐶𝐿𝑇𝐷𝑔 + (𝑇𝑖𝑛

𝐷 − 𝑇𝑖𝑛
𝑅 ) + (𝑇𝑜

𝐷𝐵- 𝐷𝑅
2⁄ ) - 𝑇𝑜

𝑀)]              (5.16)                   

where 𝑇𝑖𝑛
𝐷  , 𝑇𝑖𝑛

𝑅   are the indoor design and indoor room temperatures, 

𝑇𝑜
𝐷𝐵, 𝑇𝑜

𝑀 are the outdoor dry bulb and mean daily temperatures and DR 

is the daily temperature range in oC. Climatic design conditions 

for Sydney are taken from [248] and these are based on long-term 

(20-25 years) hourly observations.  

5.2.5.2  Internal Cooling Load Calculation  

The heat generated by occupants, equipment, and lights in a zone 

is called the internal load. The various internal loads (e.g. 

occupants and appliances) consist of sensible and latent heat 

transfers, but the lighting load is sensible. The conversion of 

the sensible heat gain to space CL is affected by the thermal 

storage characteristics of that space. However, the latent heat 

gains are considered to be instantaneous.  

i. Heat Gain from People and Appliances  

The CL due to occupancy and appliances is the sum of sensible 

and latent CL components. The sensible and latent CL from people 

and appliances is calculated as: 
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𝑞𝑝
𝑠(𝑡) = 𝑁 ∗ 𝑞ℎ

𝑠 ∗ 𝐶𝐿𝐹𝑝                            (5.17) 

𝑞𝑝
𝑙𝑡 = 𝑁 ∗ 𝑞ℎ

𝑙                            (5.18) 

𝑞𝑎
𝑠(𝑡) = 𝑞𝑎

𝑖𝑛 ∗ 𝑈𝑓 ∗ 𝑅𝑓 ∗ 𝐶𝐿𝐹𝑎                           (5.19) 

𝑞𝑎
𝑙𝑡 = 𝑞𝑎

𝑖𝑛 ∗∪𝑓                            (5.20) 

 (5.17) and (5.18) are used to calculate the dynamic occupancy 

patterns in a zone. Where N is the number of people in a zone, 𝑞ℎ
𝑠, 

𝑞ℎ
𝑙
 are the sensible and latent heat gains due to individuals’ 

activities in watts, 𝐶𝐿𝐹𝑝, 𝐶𝐿𝐹𝑎 are the people and appliances CL 

factors by an hour of occupancy, 𝑞𝑎
𝑖𝑛 is the rated energy input from 

appliances in watts, 𝑈𝑓, 𝑅𝑓 are the usage and radiation factors of 

appliances, 𝐶𝐿𝐹𝑝, 𝐶𝐿𝐹𝑎  capture the time lags of the CLs affected by 

the building’s thermal mass. 

The total CL due to occupancy and appliances is given as: 

𝑞𝑝(𝑡) = 𝑞𝑝
𝑠 + 𝑞𝑝

𝑙𝑡                          (5.21) 

𝑞𝑎(𝑡) = 𝑞𝑎
𝑠 + 𝑞𝑎

𝑙𝑡                          (5.22) 

where 𝑞𝑝
𝑠, 𝑞𝑝

𝑙𝑡, 𝑞𝑎
𝑠 𝑞𝑎

𝑙𝑡 are  the  sensible and latent cooling loads 

(CLs) from people and appliances in watts.  

ii. Lighting Heat Transfer  

The sensible CL from lighting is given by 

𝑞𝑙 = 𝑊 ∗ 𝐿𝑢𝑓 + 𝑆𝐵𝑎𝑓 ∗ 𝐶𝐿𝐹𝑙                          (5.23) 

where 𝑊 is the lighting load in watts, 𝐿𝑢𝑓 is the lighting use 

factor, 𝑆𝐵𝑎𝑓 is the special ballast allowance factor and 𝐶𝐿𝐹𝑙 is 

the CL factor of light, by an hour of occupancy. 
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iii. Heat Transfer through Infiltration Air 

The infiltration air CL has both sensible and latent load 

components and can be calculated as 

 𝑈𝐿1 = 𝑈1 + 𝑈𝐶2;  𝑈𝐿2 = 𝑈𝐶1;  𝑈𝑑𝑐 = 0                  (5.24) 

𝑈𝐿1 = 𝑈1 + 𝑈𝐶2;  𝑈𝐿2 = 𝑈𝐶1;  𝑈𝑑𝑐 = 0                     (5.25)                         

The total infiltration air CL is given by 

𝑞𝑖𝑎(𝑡) = 𝐴𝑓(𝑡) ∗ (ℎ𝑜,𝑡 − ℎ𝑖,𝑡)                          (5.26) 

where 𝐴𝑓(𝑡) is the infiltration airflow rate in m3/min, 𝑇𝑜, 𝑇𝑖 

oC, 𝑊𝑜, 𝑊𝑖 gm/gm, ℎ𝑜 , ℎ𝑖 J/gm are the outside and inside dry bulb 

temperatures, humidity ratio, and air enthalpy respectively, 𝑞𝑎
𝑠, 

𝑞𝑖𝑎
𝑙𝑡
 are the sensible and latent CL in watts due to infiltration 

air. The values of the shading coefficient, solar CL, lighting, 

and people CL factors, the rates of sensible and latent heat gain 

from occupancy, and the infiltration airflow rate are taken from 

[249].   

5.2.5.3  Zone Load Calculation  

The zone CL is the sum of all external and internal CL components 

and is given by 

𝑞ⱬ (𝑡) = 𝑞𝑟(𝑡) + 𝑞𝑤 (𝑡) + 𝑞𝑔(𝑡) + 𝑞𝑝(𝑡) + 𝑞𝑎(𝑡) +  𝑞𝑙(𝑡)  + 𝑞𝑖𝑎(𝑡)     (5.27)  

where 𝑞𝑟(𝑡), 𝑞𝑤(𝑡), 𝑞𝑔(𝑡) are the total CLs for roof, wall, and glass, 

𝑞𝑝(𝑡),  𝑞𝑎(𝑡), 𝑞𝑙(𝑡),  𝑞𝑖𝑎(𝑡) are the total CLs due to occupancy, appliances, 

lights and infiltration air, 𝑞ⱬ is the aggregate CL of the ⱬth zone 

in kW.  
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5.3.   Control Problem and Pricing Data 

In this section, a general control problem is formulated using 

the model developed in Section II, and detail about pricing 

information is given.  

5.3.1   Problem Formulation  

The proposed model has two objectives: (1) minimizing the peak 

load demand and the aggregated power usage (𝑃𝑡) of the HVAC system, 

and (2) minimizing the difference between the 

controllable/modified temperature set-point and the desired 

reference temperature of the zone. The objective function of the 

proposed model can be is re-written as: 

𝑚𝑖𝑛𝑞𝑧[.],𝑇𝑧,𝑟𝑒𝑓[.] =∑ ∑ {(𝑘𝑓 ∗Ⱬ
ⱬ

Ⱳ
𝑡 (𝑚ⱬ(𝑡))

2
) + ( 𝜑

𝑞ⱬ(𝑡)

𝐶𝑂𝑃
  + (1 − 𝜑)

𝑞𝑡

𝐶𝑂𝑃
)} + ∑ ∑ (𝑇ⱬ,𝑠𝑝

𝑡 −Ⱬ
ⱬ

Ⱳ
𝑡

𝑇ⱬ,𝑟𝑒𝑓(𝑡))                                (5.28) 

Subject to the following constraints due to control requirements:   

𝑚ⱬ,𝑚𝑖𝑛 ≤ 𝑚ⱬ (𝑡) ≤ 𝑚ⱬ,𝑚𝑎𝑥                                     (5.28a) 

𝑇ⱬ,𝑠𝑝
𝑡 , 𝑇ⱬ,𝑟𝑒𝑓(𝑡) ϵ [𝑇ⱬ,𝑚𝑎𝑥 , 𝑇ⱬ,𝑚𝑖𝑛]             (5.28b) 

 𝑞ⱬ,𝑚𝑖𝑛 ≤
𝑞𝑡

1.2 (𝑇ⱬ(𝑡)−𝑇𝑠)
≤ 𝑞ⱬ,𝑚𝑎𝑥                                   (5.28c) 

where 𝑚ⱬ,𝑚𝑖𝑛, 𝑚ⱬ,𝑚𝑎𝑥, 𝑞ⱬ,𝑚𝑖𝑛, 𝑞ⱬ,𝑚𝑎𝑥 and 𝑇ⱬ,𝑚𝑖𝑛 , 𝑇ⱬ,𝑚𝑎𝑥 are lower and upper 

bounds of the ⱬth zone’s, supply airflow rate, zone load, and zone 

temperature respectively. In (5.28) 𝑇ⱬ,𝑠𝑝
𝑡 , 𝑇ⱬ,𝑟𝑒𝑓(𝑡) represent the 

modified temperature set-point to save energy and the reference 

temperature of a zone at time t. The first term in the objective 

function (5.28) computes the aggregated HVAC energy consumption 

over Ⱳ time intervals. The energy consumption is a function of 

the cooling load 𝑞ⱬ (𝑡) as defined in (5.8), usually in kW per hour.  

The first term of the objective function in (5.28) is obtained by  
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putting the values of (5.3) and (5.5) in (5.8). The objective 

function (5.28) is solved by using a multi-objective optimization 

tool available in MATLAB. Since the time interval is assumed to be 

30 minutes in this study, the hourly usage on a 30 min basis is 

divided by 2 in the objective function. The temperature deviations 

between modified thermostat set-points and the reference 

temperature set-point in a zone are handled by the second term in 

the objective function. The controller aims to keep the 

modified/inside temperature close to a reference temperature set-

point by minimizing the deviation between the two in various zones.  

In CC, commercial HVAC units’ operation is based on a reference 

temperature set-point that does not change frequently throughout 

the considered time period, and thus the HVAC operates regardless 

of price fluctuations. The reference temperature is chosen by a 

building manager/aggregator taking into account a group level 

presentation of thermal comfort in a multizone office building. 

The major drawback of CC is that with a fixed reference temperature 

set-point both the aggregator and consumers are unable to utilize 

the advantages of dynamic electricity pricing, while the above 

model overcomes this drawback by operating the HVAC unit at 

variable thermostat set-points in response to the price 

fluctuations in various zones. The deployment of variable 

thermostat settings in various zones achieves financial benefits 

while keeping the indoor environment within the occupants’ thermal 

comfort limit. Therefore, the current work proposes a DR strategy 

for determining cost-efficient variable thermostat set-points for 

a PBDR controller within a temperature range specified in 

constraint (5.28b). The variable thermostat settings in various 

zones are determined as a function of the occupants’ chosen bidding 

price at each time t as a response to price fluctuations. The 

proposed PBDR control strategy is discussed in Section 4.  
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5.3.2   Pricing Data   

Pricing data is obtained from the Australian Energy Market 

Operator (AEMO). Wholesale electricity prices are decided by AEMO 

depending on the supply and demand at a 5-minute interval and the 

average over every 30 minutes. On the AEMO website, the day-ahead 

wholesale electricity priced on a 5-minute and 30-minute basis is 

available. The pricing system in Australia adopts an RTP structure 

in the wholesale market and a TOU tariff in the retail market for 

customers with smart meters. However, TOU tariffs do not reflect 

the actual variations of the wholesale price at the time of 

consumption. To coin the real-time wholesale price structure for 

the retail market the authors in [250] design the real-time retail 

price. They have shown that the retail price follows the pattern 

of the wholesale price. Based on this, the half-hour ahead 

forecasts wholesale energy settlement price is considered as the 

real-time retail price of electricity in this work. Half-hour ahead 

electricity prices are chosen because Australia’s National 

Electricity Market operates as a continuous-trading market for 

each half-hour interval [251].  

In addition, the retail electricity price on a 30-minute basis 

is preferred over 5-minute and hourly-based pricing for the 

following reasons. Significant accessible computing resources and 

software would be required to implement 5-minute settlement 

intervals. New spike loads away from the expected peak hours occur 

when hourly pricing is implemented; therefore, this new aggregated 

load affects the utility. The effective spread of demand after the 

typical peak occurs with 30-minute based retail prices of 

electricity [252]. Figure 5.2 shows the 30-minute based day-ahead 

time-varying electricity price in AU$ obtained from the AEMO 

electricity market [253]. The chosen electricity price is on a 

typical hot summer day of 6 November 2018. The electricity value  
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on that particular day is chosen carefully considering historical 

electricity prices. It represents those hot summer days where the 

peak electricity price substantially increases from the average 

price of electricity.  

 

 

 

 

 

 

 

Figure 5.2. Day-ahead retail electricity price on a hot summer day 

5.4.   Price-Based Demand Response Control Strategy  

The proposed PBDR controller is responsible for controlling the 

thermostat setting in ⱬ ϵ Ⱬ zones in a multizone office building. 

It is assumed that each zone has multiple rooms with a number of 

occupants as shown in Fig. 5.1(a) and they have varying thermal 

comfort requirements in each zone. In this study, occupants in Ⱬ 

zones reflect their thermal preferences in a coefficient of bidding 

price (𝑃𝑏𝑐,   𝑧
𝑡 ). This is a price of electricity that occupants of 

various zones offer considering variations in retail price (𝑃𝑅
𝑡) at 

each 30-minutes timestamp t. Occupants in Ⱬ zones can select a 

reference temperature (𝑇ⱬ,   𝑟𝑒𝑓), minimum (𝑇ⱬ ,   min ) and maximum 

temperature (𝑇ⱬ,   max ) and set-point interval (𝑎𝑧
𝑡) to further express 

their thermal comfort preferences. 𝑇ⱬ,𝑟𝑒𝑓 is the desired temperature 

at which most of the occupants in a zone feel comfortable, and 

that may be the same or different in each zone. 𝑇ⱬ,min  and 𝑇ⱬ,max  

represent the allowable temperature range in response to the 



5.4  Price-Based Demand Response Control Strategy 

 

153 
 

variation of 𝑃𝑅
𝑡. If the occupants of a certain zone feel cooler at 

time t, they bid considerably lower than the retail price, which 

indicates that the occupants want to increase the thermostat set-

point from the reference temperature. In contrast, a bidding price 

higher than the retail price reflects the feeling of warmth, and 

thus a decrease in the thermostat set-point is required from the 

reference temperature. Meanwhile, a bidding price equal to the 

retail price signifies that the occupants want to maintain the 

thermostat at the reference temperature set-point.  

The proposed PBDR controller calculates the price difference 

(Δ𝑃𝑡) between 𝑃𝑅
𝑡 and 𝑃𝑏𝑐,𝑧

𝑡  in Ⱬ zones on a 30-minute basis for a 

total simulation time t ϵ Ⱳ. The controller will take control 

action when 𝑃𝑅
𝑡 is higher or lower than 𝑃𝑐𝑏,𝑧

𝑡  by increasing or 

decreasing the temperature in each zone based on the price 

difference (Δ𝑃𝑡). If 𝑃𝑅
𝑡 is equal to 𝑃𝑐𝑏,𝑧

𝑡 , the thermostat from the 

PBDR controller maintains the 𝑇ⱬ,𝑟𝑒𝑓 set by the occupants in a zone. 

The controller changes the set-point of the thermostat within a 

range of 𝑇ⱬ,𝑚𝑖𝑛 to 𝑇ⱬ,max  in a zone in response to 𝑃𝑅
𝑡. When 𝑃𝑏𝑐,𝑧

𝑡  is 

significantly lower than 𝑃𝑅
𝑡 at time step t then the thermostat can 

be set to 𝑇ⱬ,min and when it is substantially higher than 𝑃𝑅
𝑡 then the 

thermostat setting can be as high as 𝑇ⱬ,max . The temperature change 

(Δ𝑇𝑡) from the previous setting at each time depends on the set-

point interval 𝑎𝑧
𝑡. Previous controllers [20][22] either compare 

the current retail price with the last day's average price of 

electricity or a constant threshold price to change the thermostat 

setting. However, using an average price or a constant threshold 

price is not suitable for high fluctuations in the retail price in 

the real-time market. This may cause the controller to not increase 

the thermostat setting when the load should be curtailed. In 

addition, a constant threshold price is unable to consider the 

varying thermal comfort preferences of occupants in a multizone 

office building.  
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In contrast, the current work compares the retail price with the 

dynamic bidding price 𝑃𝑐𝑏,𝑧
𝑡  that occupants change at each time step 

in various zones. This way the proposed strategy is able to cater 

to the occupants’ varying choice of 𝑃𝑏𝑐,𝑧
𝑡  with respect to time-

varying 𝑃𝑅
𝑡. Furthermore, in previous studies [19][20][26], the 

coefficient for comfort is unitless and thus it is difficult for 

occupants to show their comfort preferences in response to price 

signals, while the proposed strategy allows them to choose the 

comfort coefficient of their preference.   

Occupants in a multizone building will choose 𝑃𝑐𝑏,𝑧
𝑡  at each time 

step to change the thermostat setting according to their 

requirements. The feasible range of 𝑃𝑐𝑏,𝑧
𝑡  is given as  

𝑃𝑅(𝑚𝑖𝑛)
𝑡

≤𝑃𝑐𝑞,𝑧
𝑡 ≤ 𝑃𝑅(𝑚𝑎𝑥)

𝑡
             (5.29)     

where 𝑃𝑅(𝑚𝑖𝑛)
𝑡

, 𝑃𝑅(𝑚𝑎𝑥)
𝑡

 are the minimum and maximum values of the 30-

minute ahead forecast retail electricity price. Equation (5.29) 

implies that 𝑃𝑐𝑏,𝑧
𝑡  should be greater than the minimum value of the 

30-minute ahead forecast retail electricity price 𝑃𝑅(𝑚𝑖𝑛)
𝑡

, and it 

can be as high as the maximum value of the retail price 𝑃𝑅(𝑚𝑎𝑥)
𝑡

 

according to customers’ comfort preference at time t. According to 

(5.29) occupants cannot bid less than 𝑃𝑅(𝑚𝑖𝑛)
𝑡

 to participate in the 

DR program.  

Since the occupants’ choice of bidding price at each time step t 

in a zone follows the variations of 𝑃𝑅
𝑡 which corresponds to their 

thermal comfort preferences obtained by the desired thermal 

comfort is evaluated based on the price difference between 𝑃𝑅
𝑡  and 

𝑃𝑐𝑞,𝑧
𝑡 . The price difference Δ𝑃𝑡 is the subtraction of the electricity 

retail price 𝑃𝑅
𝑡 from the bidding price 𝑃𝑐𝑞,𝑧

𝑡  and it is calculated at 

each timestamp t in various zones when the new retail price is 

updated in every 30 minutes as   

Δ𝑃𝑡 = 𝑃𝑅
𝑡 − 𝑃𝑐𝑞,𝑧

𝑡                               (5.30) 
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When 𝑃𝑅
𝑡 is higher (lower) than 𝑃𝑐𝑞,𝑧

𝑡  , Δ𝑃𝑡 are a positive (negative) 

number and the PBDR controller starts to work. Otherwise, Δ𝑃𝑡 is 

zero and the controller stops working immediately and maintains or 

returns to 𝑇ⱬ,𝑟𝑒𝑓.  

The magnitude of the price difference is used to evaluate the 

different occupants’ thermal comfort preferences, and based on 

this they are categorized into three main types: 

1) high comfort;  2) moderate comfort;  3) low comfort  

High comfort occupants’ bidding price 𝑃𝑐𝑏,𝑧
𝑡

 is equal/close to 𝑃𝑅
𝑡 

for most of the occupied hours, which leads to a zero /lower 

positive price difference (Δ𝑃𝑡). Thus, a zero/ low magnitude of 

the positive price difference Δ𝑃𝑡 indicates higher requirements on 

thermal comfort and consequently, the designed strategy maintains 

the thermostat at the reference temperature/allows temperature 

variations close to the reference temperature set-point 

respectively. For other hours, the bidding price 𝑃𝑐𝑏,𝑧
𝑡  can be higher 

than 𝑃𝑅
𝑡 , which results in a negative price difference (−Δ𝑃𝑡) and 

thus thermostat set-point is decreased from the reference 

temperature.    

In contrast, low comfort occupants’ bidding price 𝑃𝑐𝑏,𝑧
𝑡  is 

significantly lower than 𝑃𝑅
𝑡 for most of the occupied hours, which 

results in a higher positive price difference (Δ𝑃
𝑡
). The high 

magnitude of the positive price difference Δ𝑃
𝑡
represents a lower 

thermal comfort requirement (and hence a higher temperature set-

point). For the remaining hours, the bidding price can be 

equal/close to 𝑃𝑅
𝑡 to maintain the thermostat at/near the reference 

temperature set-point. Meanwhile, modest comfort occupants’ 

bidding prices reasonably vary from 𝑃𝑅
𝑡 for most of the occupied 

hours for a moderate temperature variation from the reference 

temperature set-point. Moreover, in a high/moderate comfort zone 

𝑇ⱬ,𝑚𝑎𝑥 is lower than for a low comfort zone and this suggests that, 
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in these zones at times of high retail price, the maximum 

temperature variation is lower than the low comfort zone.   

The magnitude of the price difference can be negative, zero and 

low at times of a low retail price in various zones, however, it 

increases correspondingly in each zone as the retail price 

increases and yields a higher positive price difference Δ𝑃
𝑡
. The 

upper and lower bound of the price difference in each zone is 

different and can be calculated using (5.31) and (5.32) 

respectively.  

𝑈𝑡,𝑧 = 𝑃𝑅(𝑚𝑎𝑥)
𝑡 − 𝑃𝑐𝑞,𝑧(𝑚𝑎𝑥)

𝑡
 > 0                (5.31)            

𝑈𝑡,𝑧 =  𝑃𝑅
𝑡 − 𝑃𝑐𝑞,𝑧

𝑡 ≤ 0                              (5.32)              

where 𝑈𝑡,𝑧, 𝑈𝑡,𝑧 are upper and lower bounds of the price difference 

and 𝑃𝑅(𝑚𝑎𝑥)
𝑡

, 𝑃𝑐𝑞,𝑧(𝑚𝑎𝑥)
𝑡

 are the maximum values of the retail and bidding 

prices in a zone during occupancy hours. Equation (5.31) implies 

that, at a time of maximum retail price, the occupants bid the 

maximum price 𝑃𝑐𝑞,𝑧(𝑚𝑎𝑥)
𝑡

 so that the temperature variation does not 

exceed the maximum temperature limit 𝑇ⱬ,𝑚𝑎𝑥 set by the occupants in 

a zone. This suggests that at the upper bound of the price 

difference 𝑈𝑡,𝑧, the thermostat is set at  𝑇ⱬ,𝑚𝑎𝑥 in a zone. Since a 

high comfort occupant’s maximum temperature limit 𝑇ⱬ,𝑚𝑎𝑥 is lower 

than for low comfort occupants, they bid considerably higher than 

other occupants at times of maximum retail price, and thus the 

value of the upper bound 𝑈𝑡,𝑧 is lower in the high comfort zone than 

in the low comfort zone.     

The lower bound of the price difference 𝑈𝑡,𝑧 represents the minimum 

price difference between the retail and bidding prices at time 

step t when the retail price is low. The value of the lower bound 

𝑈𝑡,𝑧 can be negative or zero in high and moderate comfort zones but 

it is zero in low comfort zones to approach the minimum temperature 

limit 𝑇ⱬ,𝑚𝑖𝑛 that is less than/equal to the reference temperature 
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𝑇ⱬ,𝑟𝑒𝑓 in high and moderate comfort zones but equal to 𝑇ⱬ,𝑟𝑒𝑓 in low 

comfort zones.  

Since the control action of the PBDR strategy is based on the 

price difference Δ𝑃𝑡 to change the set-point temperature, it is 

required to calculate the thermostat setting as a function of Δ𝑃𝑡. 

To model the relation between the changes in price with the 

temperature a prediction model with an ANN is used. Initially, the 

bidding is carried out and the market is cleared at the agreed 

price. This clearing value is one of the parameters used to predict 

the change in temperature with the bidding price. The inputs to 

the ANN are the outside temperature, preferred indoor temperature, 

the bidding price, retail price, and the agreed price. The output 

of the network is a relation between the bidding price, retail 

price, and indoor temperature. Therefore, for n days the number of 

inputs to the ANN function is 5 × n × 24, which represents the 

inputs to the training algorithm, and the output is a 1 × n × 24 

matrix as shown in Fig. 5.3.  

 

.

.

.

Outdoor temperature

Preferred  indoor 

temperature

Bid price

Retail price

Agreed price

Set indoor 

temperature

20 hidden 

layers  

Figure 5.3. The neural network training model 

The model was trained with 20 hidden layers and the mean square 

error was the stopping condition. The training was performed with 

data for a year, with a resolution of 1 hour, i.e. the data set 

had a length of 8760. The neural-network model accurately reflected 

the relationship between the bidding price, retail price and the 
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thermal behavior of the user at the given weather profiles. Figure 

5.4 shows the training, validation and test phases of the machine-

learning algorithm, which indicates that the training produces a 

good fit.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Prediction model results based on artificial neural network  

A linear regression model is used to represent the ANN prediction 

model, resulting in the mathematical form  

Δ𝑇𝑡 = 𝑎 Δ𝑃𝑡+b                               (5.33) 

where a and b are linear regression coefficients. Equation (5.33) 

converts the price difference Δ𝑃𝑡 to the temperature change Δ𝑇𝑡 

that the thermostat accepts. The ANN prediction model results in 

the form of (5.33), implying that 1 Δ𝑃𝑡, which is equivalent to 

0.01 AU$/kWh, results in an increment of 0.25 oC in the thermostat 

setting to decrease the HVAC load. In other words, four times the 

price difference (4Δ𝑃𝑡) is used to increase the thermostat setting 

by 1oC for energy saving at peak hours. In previous work, when the 

retail price is much higher than the threshold price, the 

temperature sharply increases by 2 to 3oC. The sharp rise in 

temperature is undesirable for the following reasons: 1) it may 

affect human health through thermal shock; 2) it gives a large 
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mechanical burden to the heat pump; 3) some customers feel 

discomfort in a high-temperature difference from the initial set-

point when the retail price is higher for an extended period. In 

this study, considering these drawbacks and the varying thermal 

preferences of occupants, the temperature change is discretized to 

a set-point interval 𝑎𝑧
𝑡, which varies from 0.25 to 1oC maximum 

according to the occupants’ choice at each time t. Further the 

number of price differences (ℎ𝑧) in each zone for a given time is 

given by (5.34) and depends on the temperature range and occupants’ 

chosen set-point interval 𝑎𝑧
𝑡.  

ℎ𝑧 =
𝑇ⱬ,𝑚𝑎𝑥−𝑇ⱬ,𝑟𝑒𝑓

𝑎𝑧
𝑡 + 1                                  (5.34)              

The number of price differences ℎ𝑧 is negatively correlated with 

the set-point interval, being higher in a low set-point interval 

zone and decreasing with a high set-point interval. This is because 

with a low set-point interval there are more temperature variations 

within an occupants’ chosen temperature range [𝑇ⱬ,𝑚𝑎𝑥 − 𝑇ⱬ,𝑚𝑖𝑛] in a 

zone.  

The new set-point temperature 𝑇𝑠𝑝
𝑡  with a temperature change Δ𝑇𝑡 

from the reference temperature at a bidding price 𝑃𝑐𝑏,𝑧
𝑡  higher, 

lower or equal to the retail price 𝑃𝑅
𝑡 is determined as 

𝑇ⱬ,𝑠𝑝
𝑡   [𝐶𝑜] = 𝑇ⱬ,𝑟𝑒𝑓+ Δ𝑇𝑡     𝑖𝑓   𝑃𝑅

𝑡>𝑃𝑐𝑏,𝑧
𝑡  = + Δ𝑃𝑡           (5.35a)    

               

𝑇ⱬ,𝑠𝑝
𝑡   [𝐶𝑜] = 𝑇ⱬ,𝑟𝑒𝑓- Δ𝑇𝑡     𝑖𝑓   𝑃𝑅

𝑡<𝑃𝑐𝑏,𝑧
𝑡  = - Δ𝑃𝑡           (5.35b) 

                   

𝑇ⱬ,𝑠𝑝
𝑡   [𝐶𝑜] = 𝑇ⱬ,𝑟𝑒𝑓      𝑖𝑓   𝑃𝑅

𝑡=𝑃𝑐𝑏,𝑧
𝑡  = 0 Δ𝑃𝑡            (5.35c)                 

The above equations calculate the new set-point temperature for 

the thermostat settings according to the temperature change Δ𝑇𝑡 

that depends on the price difference Δ𝑃𝑡. The thermostat set-points 

are calculated in advance using a 24-hrs ahead forecast half-

hourly RTP signal. Equation (5.35a) operates the HVAC system at a 
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higher temperature than the reference temperature when the 

electricity retail price is higher, and consequently, the HVAC 

consumption is reduced. Equation (5.35b) ensures that the HVAC is 

set to a lower set-point than the reference temperature to make 

the indoor environment more comfortable for high comfort 

occupants, when the price of electricity reduces, while equation 

(5.35c) maintains the indoor temperature at the reference 

temperature set-point. The new set-point temperature 𝑇𝑠𝑝
𝑡  the range 

is given as 

𝑇ⱬ,𝑚𝑖𝑛≤𝑇𝑠𝑝
𝑡 ≤ 𝑇ⱬ,𝑚𝑎𝑥                              (5.36) 

Equation (5.36) suggests that the new set-point temperature 𝑇𝑠𝑝
𝑡   

should be between the minimum and maximum temperature limits of 

the zone set by the occupants. The 𝑇𝑠𝑝
𝑡  constraint ensures that the 

thermal comfort remains within the ASHRAE comfort standard for a 

trade-off between comfort and energy saving.   

Since the objective is to minimize the aggregated HVAC 

consumption during off-peak and peak times, while maintaining 

various zones’ temperature close to the reference temperature set-

point, for optimal scheduling of the HVAC system, it is necessary 

to calculate the HVAC electricity consumption as a function of the 

thermostat set-point in a zone. The HVAC model developed in Section 

5.2 for a multizone office building is used to calculate the 

electricity consumption when the indoor temperature is maintained 

equal to 𝑇ⱬ,𝑟𝑒𝑓. Previous thermostat controllers [33][34][35] do not 

have an HVAC model and thus these controllers cannot calculate how 

much electricity was consumed by HVAC nor evaluate whether the 

load was curtailed during off-peak/peak periods compared to normal 

operation. However, the proposed PBDR controller uses precise HVAC 

modeling for an accurate DR. The mathematical modeling presented 

in Section 5.2 is used to develop the HVAC load function for the 
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PBDR controller. Equation (5.28) calculates the HVAC electricity 

consumption as a function of the thermostat set-point in a zone. 

 A multizone building is initially simulated with 𝑇ⱬ,𝑟𝑒𝑓 and the 

simulation results are calculated for each time step t. The change 

in electricity consumption is then evaluated for the increase and 

decrease by 𝑎𝑧
𝑡 steps from 𝑇ⱬ,𝑟𝑒𝑓. The HVAC electricity consumption 

changes are calculated by subtracting the electricity consumption 

at the modified set-point from the consumption at the reference 

temperature set-point for each step. The temperature change Δ𝑇𝑡 

that subtracts the indoor temperature from the set-point 

temperature is denoted by Δ𝑇𝑡. A linear regression model is used 

to predict HVAC consumption as a function of Δ𝑇𝑡 during each 30-

minute time step as follows:  

𝑃ℎ
𝑡 = 0.07925Δ𝑇𝑡 − 0.00291   [𝑘𝑊ℎ 30 𝑚𝑖𝑛⁄ 𝑢𝑡𝑒𝑠]                   (5.37)   

The systematic control strategy is provided in Algorithm 1.  

Algorithm 1. PBDR control strategy procedure 

for every time t,  

1:   Take 30-minutes ahead forecast retail electricity price  𝑃𝑅
𝑡. 

2:   Take input from various zones’ occupants 

             𝑃𝑐𝑞,𝑧
𝑡 , 𝑇ⱬ,𝑚𝑖𝑛, 𝑇ⱬ,𝑚𝑎𝑥, 𝑇ⱬ,𝑟𝑒𝑓, 𝑎𝑧

𝑡 

3:   Compare 𝑃𝑅
𝑡 and 𝑃𝑐𝑞,𝑧

𝑡  to calculate the price difference Δ𝑃𝑡 in 

     the various zones using (5.29) at each time step t.  

4:   Evaluate  the  various  zones’  occupants’  thermal comfort 

     preferences based on the magnitude of the price difference.  

5:   The upper and lower bounds of the price difference 𝑈𝑡,𝑧, 𝑈𝑡,𝑧 

     are calculated using (5.31)  and (5.32) to examine the price 

     difference range in various zones.  

6:   Calculate  the  temperature change Δ𝑇𝑡 as a function of the 

     price difference Δ𝑃𝑡 using (5.33). 

 



5.4  Price-Based Demand Response Control Strategy 

 

162 
 

 

5.4.1   Additional Functionality of Proposed Controller   

The designed PBDR control strategy allows the occupants to bid 

an electricity price within a range of a minimum 𝑃𝑅(𝑚𝑖𝑛)
𝑡

 to maximum 

𝑃𝑅(𝑚𝑖𝑛)
𝑡   retail price based on their preference. However, the 

occupant’s choice of a low bidding price may affect the aggregator 

profit with wider implementation of the proposed controller. The 

aggregator uses the RTP structure to purchase electricity from the 

wholesale market and then sell it to consumers for profit. However, 

with price fluctuation, a low choice of bidding price 𝑃𝑐𝑞,𝑧
𝑡  equal to 

𝑃𝑅(𝑚𝑖𝑛)
𝑡

 by multiple consumers for an extended period of time may 

exceed the aggregator’s purchasing cost over a given time horizon 

and cause a financial loss for it. In this case, the aggregator 

can impose a restriction on the consumers to choose a low bidding 

price 𝑃𝑐𝑞,𝑧
𝑡  greater than the threshold price (𝑃𝑡ℎ,𝑧

𝑡 ) to take part in a 

DR program. This restriction facilitates the wider implementation 

of the proposed controller by allowing higher payment for the 

aggregator to avoid loss when required. This additional 

functionality paves the way for wider implementation of the 

proposed controllers. In this study, the threshold price 𝑃𝑡ℎ,𝑧
𝑡  is 

calculated  based  on  the historical average prices of RTP for a   

 

7:   The number of price differences ℎ𝑧 is calculated using (5.34) 

     that  depends  on  the  temperature range and the set-point 

     interval 𝑎𝑧
𝑡 in various zones.  

8:   Calculate the new thermostat set-point 𝑇𝑠𝑝
𝑡  with a temperature 

     change Δ𝑇𝑡 from the reference temperature 𝑇ⱬ,𝑟𝑒𝑓 using (5.35a) 

     ,(5.35b) and (5.35c) depending on the magnitude and polarity 

      of the price difference Δ𝑃𝑡.  

9:   Calculate  the  electricity  consumption  as  a function of 

     temperature change Δ𝑇𝑡 using (5.37). 
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week. We consider the previous seven days 30-minutes based forecast 

RTP and calculate the average price. This average price is 

considered as a threshold price to protect the aggregator utility 

with wider implementation of the proposed controller. 

The threshold price 𝑃𝑡ℎ,𝑧
𝑡  can be calculated as 

𝑃𝑡ℎ,𝑧
𝑡 = ∑ ∑

𝑃𝑛.𝑡
𝑅𝑇𝑃

𝑛

𝑡2
𝑡=𝑡1

𝑛2
𝑛=𝑛1                                     (5.38)    

where 𝑡1, 𝑡2 are the working hours and 𝑛1, 𝑛2 are the number of 

days selected to calculate the average price of electricity.  

5.5.   Experimental Setup  

In this study, a real office building of Macquarie University 

located at 50o south latitude in Sydney, Australia is considered. 

The climate zone of the above-mentioned building is warm temperate. 

The building’s architectural features and thermal parameters are 

shown in Table 5.1. Thermal parameters are taken from [32] 

according to the building materials of construction and the Chiller 

COP is calculated using (6).  

Table 5.1. Architectural Features and Thermal Parameters of Building 

 

 

 

 

 

 

 

 

 

 

Building 

Component/Parameter 

Value Unit 

Orientation S 55o, E 158o  

Zones 5 no. 

Rooms 20 no. 

People/room 2 no. 

Floor Area 595 m2 

Roof, Wall, Window 

Area/room 

30, 20, 5 m2 

Lighting requirement/room 1500 Watts 

Occupancy/Lighting Load 

time 

08:00-18:00 hrs. 

Time index w 24 hrs 

Roof Thermal 

Transmittance ∪𝑟 

0.312 W/m2.C 

Wall Thermal 

Transmittance ∪𝑤 

1.134 W/m2.C 

Glass Thermal 

Transmittance ∪𝑔 

3.120 W/m2.C 

Shading coefficient 𝑆𝑐 0.72 unitless 

Coefficient of 

Performance COP 

4.90 unitless 

Chiller Efficiency ƞ 86 % 
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The building envelope consists of five zones (4 exterior and 1 

interior) having 20 rooms of equal area. Zones 1, 2, 3 and 4 are 

in the north (3 office rooms), east (4 office rooms), south (3 

office rooms) and west (4 office rooms) directions respectively, 

while zone 5 is in the center (6 rooms) with no exterior walls as 

shown in Fig. 5.1(b). Zone 5 consists of four office rooms, one 

kitchen and a common room with a computer and printing facility. 

The areas of floor, roof, wall, and window are 6400, 320, 216 and 

54 ft2 respectively. In this work, 8:00 to 18:00 hrs occupancy is 

assumed for people, with lighting remaining on during this time. 

Each office room has two persons and two computers, with a lighting 

requirement of 1500 watts per room. The kitchen has two ovens, a 

coffee maker, and a dishwasher. The common room includes appliances 

such as a computer, printer, etc.  

The proposed PBDR strategy was tested for the thermal load 

profile of the test building. The CL requirements for the five 

zones were calculated using the mathematical modeling developed in 

Section 5.2, and the HVAC demand is calculated by considering the 

full and dynamic occupancy pattern in zones. Full occupancy implies 

that a certain number of occupants are utilizing the workplace at 

all times during occupancy hours. However, dynamic occupancy 

implies that occupants are not present at the working place at all 

times as they may move outside for lunch, a meeting or for any 

other activity. Thus, sensible and latent heat gains and people CL 

factors that depend on the number of people in a zone at one time 

are reduced which consequently reduces the load on the HVAC system. 

The HVAC demand is highest in case of full occupancy and it reduces 

as a zones’ load is decreased by varying the people load at various 

time steps as shown in Fig. 5.5.  
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Figure 5.5. Various zones’ cooling load and HVAC consumption 

Zones 1 to 4 face in a different direction and therefore 

experience variations in solar radiation at various periods of 

time. This aspect is more prominent in zone 2 and zone 4 cooling 

load calculation. Both zones have the same number of rooms with 

equal loads but different load patterns because of the varying 

solar radiation load factor according to the zone direction. As 

zone 2 is in the east direction, so solar radiation is higher than 

zone 4 for hrs 8 to 12 of occupancy. In contrast, zone 4 solar 

load is higher than zone 2 for hrs 14 to 18 of occupancy. The 

cooling load in all zones increases at 8h when people start coming 

to work and is maintained at high levels until 18h with some 

fluctuations during occupancy hours. After 18h the load reduces to 

a low level because people leave the building.  

For simulation, zones are categories according to the occupant's 

thermal comfort preferences as shown in Table 5.2. Since zone 1 

and 2 have similar cooling load patterns with high comfort 

requirements, we assume that both zones have a similar preference 

in choosing a bidding price, temperature range, and set-point 

interval. Therefore, we only conduct simulation results for zone 

1, assuming that zone 3 has similar results.  
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Table 5.2. Zones Categorization 

 

 

 

Table 5.3 demonstrates the simulation cases for the formulated 

building model with energy and cost-saving results. The CC 

represents the HVAC energy consumption at a 23oC fixed cooling set-

point temperature with a full occupancy pattern in all zones. The 

PBDR control strategy demonstrates the proposed algorithm results 

applied with a time-varying retail price. For the PBDR strategy, 

the experiment was performed for time-varying bidding prices, 

temperature ranges and set-point intervals chosen by customers in 

various zones according to their comfort preferences.  

5.6.   Results and Discussion   

In this section, simulation results are discussed to evaluate 

the performance of the proposed PBDR controller with variable 

parameters. HVAC energy consumption and cost-saving results in 

various zones based on the bidding price are provided. In addition, 

thermal comfort satisfaction based on the ASHRAE comfort standard 

[38] with temperature variation in various zones is evaluated.  

5.6.1   Occupants’ Bidding Price and Thermal Preferences with 

High Set-Point Interval    

To demonstrate the effectiveness of the proposed strategy, 

firstly, occupants’ thermal comfort preferences in the coefficient 

of the bidding price, and thus the temperature variation based on 

that bidding price are evaluated with a high set-point interval of 

1oC as shown in Figs. 5.6 and 5.7 respectively. The high set-point 

interval 1oC is chosen to compare the performance with CC, where 

the thermostat setting is increased/decreased by 1oC based on the 

outdoor temperature and weather conditions. Figure 5.6 compares 

Zone No. Comfort Preferences 

Zone 1 and Zone 3 high comfort requirement 

Zone 2 medium comfort requirement 

Zone 4 and Zone 5  low comfort requirement 
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the thermal comfort preferences of occupants in various zones in 

the coefficient of the bidding price. It shows the 10-h profile of 

the 0.5-h average retail price, the bidding price and the price 

difference of the retail and bidding price in various zones.  

Figs. 5.6(a)(b) uncover that zone 1 and 2 occupants with high 

and moderate comfort preferences respectively bid a price higher 

than the retail price at the start of working hours (i.e., t= 8 to 

9h) to maximize their comfort, and for the rest of the working 

hours, their bidding price is close to the retail price to maintain 

the desired comfort. This effect is more evident at times of low 

retail price (i.e., t = 9.5 – 16h) and during that time the price 

difference is zero in zone 1. Meanwhile, zone 2 reasonably varies 

the bidding price from the retail price for a low positive price 

difference. However, when the electricity price significantly 

increases (i.e., t > 16h), zones 1 and 2 bid the maximum price 

(i.e., 0.18 and 0.14 $/kWh) to remain within their desired comfort 

zone, which is 22 to 25oC and 22 to 26oC respectively as shown in 

Figs. 5.7(a)(b). Even though occupants bid the maximum price at 

times of highest retail price, it is not very close to the retail 

price, which results in a noticeable price difference in both 

zones, and it is higher in zone 2.  

Likewise, Figs. 5.6(c)(d) show the bidding price based on the 

retail price in zones 4 and 5 respectively. These zones with a low 

comfort requirement bid quite low in response to the retail price 

for most of the working hours, which results in a high positive 

price difference. Though both of the zones have a low comfort 

requirement, the main difference is that the zone 5 maximum bidding 

price (maximum temperature limit) is lower (higher) than zone 4. 

This implies that at times of high retail price zone 5 occupants 

have high a positive price difference compared to zone 4 (i.e., t 

16 to 18 h). Overall, different zones’ bidding price comparison 

reveals that as occupants’ comfort requirement reduces they allow 

frequent changes in temperature setting by considerably varying 
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the bid price from the retail price, which results in a high 

positive price difference, specifically at times of a high retail 

price.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6. Bidding Price and price difference in various zones at a set-

point interval of 1oC 

Figure 5.7 compares the temperature variation in various zones 

in response to price differences as shown in Fig. 5.6. It shows 

the 10-h profile of the 0.5-h average retail price and temperature 

variation in various zones. The temperature variation is the 

temperature difference between the reference temperature and the 

modified temperature in response to the bidding price. For example, 

a 3oC variation means that the modified temperature is 3oC higher 

than the reference temperature. However, the temperature does not 

abruptly vary from the reference temperature in the one-time step 

because of the set-point interval of 1oC chosen by the occupants 

of all zones. The set-point interval of 1oC indicates that at each 

time step the temperature variation from the previous set-point is 

limited to 1oC.  
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Figs. 5.7(a)(b) reveal that in zones 1 and 2 the thermostat set-

point is reduced from the reference temperature by -1oC for t= 8 

to 9h and the modified set-point is calculated using (5.35b). This 

is because, in these zones for the mentioned price, occupants’ 

bidding price is higher than the retail price as shown in Figs. 

5.6(a)(b), which results in a negative price difference using 

(5.30), and consequently the temperature is reduced. These 

occupants prefer to decrease the cooling set-point at the start of 

the working hours to maintain the thermal zone at a comfortable 

level for the time ahead when the temperature may increase 

considerably in response to a high retail price. In zones 1 and 2, 

the temperature variation is 0 to 1oC at times of low retail price, 

however, it increases up to 2 and 3oC respectively based on the 

price difference when the retail price significantly increases 

(i.e., t= 17h).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Temperature variation in various zones as a function of bidding 

price at a set-point interval of 1oC 
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In zones 4 and 5, based on the price difference, the zone 

temperature fluctuates throughout the time period, however, 

temperature variations are more frequent and higher in zone 5 

because of the high positive price difference compared to zone 4 

as shown in Figs. 5.7(c)(d). This suggests that zone 5 occupants’ 

maximum temperature limit is higher than in zone 4 for time steps 

when the retail price climbs for a trade-off between comfort and 

cost-saving. 

5.6.2   Occupants’ Bidding Price and Thermal Preferences with 

Lower Set-Point Interval    

Here, the simulation results are obtained with similar parameter 

settings as in the previous case but with the low set-point 

interval of 0.25oC. These results provide insight into the set-

point interval’s effect on the bidding price and consequently the 

temperature variation in various zones. Figure 5.8, in comparison 

with Fig. 5.7, reveals that the temperature changes more frequently 

in various zones with a set-point interval of 0.25oC during 

simulation hours. This is because the occupants in various zones 

do not prefer high-temperature changes for energy saving in 

response to the retail price; therefore, they prefer to maintain 

a constant thermostat setting until the price remains within a 

certain limit as shown in Fig. 5.8. However, with a low set-point 

interval the occupants have an opportunity to change their comfort 

preferences following the retail price with low-temperature 

changes that have a minimal impact on human comfort.  

The high and low set-point interval effect on the bidding price 

and thus on temperature variations is more evident in zone 1, which 

has a high comfort preference as shown in Figs. 5.6(a) and 5.8(a). 

That comparison reveals that in zone 1 the bidding price is higher 

with a set-point interval of 1oC than with 0.25oC (i.e., t = 9 to 

16h) to avoid high-temperature changes from the reference set-

point. A similar effect can be observed in other zones, for 
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instance, in zone 5 for t= 13.5 to 16.5h the thermostat setting 

remains constant with a set-point interval of 1oC, however, it 

constantly changes with a 0.25oC set-point interval for the same 

time. The results shown in Figs. 5.8(c)(d) indicates that the 

design algorithm overcomes the group level presentation of an 

occupant’s thermal comfort in a multizone building and changes the 

thermostat setting in various zones in the coefficient of the 

bidding price. In addition, the proposed strategy takes into 

account the preferred set-point interval of the occupants in each 

zone to cater to the varying preferences about temperature changes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8. Bidding price and temperature variation in various zones at a 

set-point interval of 0.25oC 
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5.6.3   Comparison of Bidding Price and Price Difference in two 

Zones at various Set-Point Intervals    

In this part, the relationship between the total bidding price, 

the price difference, and the set-point interval are examined. The 

occupants’ total bidding price and the price difference during the 

simulation hours at various set-point intervals are calculated in 

two chosen zones. Zones 1 and 5 are selected because they represent 

two extremes, high and low comfort preference zones respectively. 

Figure 5.9 compares the aggregated bidding price and the price 

difference in zones 1 and 5 at three different set-point intervals 

0.25, 0.5 and 1oC, and further, it shows a comparison between the 

aggregated electricity cost with CC and bidding price. The results 

reported here indicate that the occupants’ aggregated bidding 

price is positively correlated with the set-point interval, and it 

is significantly higher in high comfort zones compared to low 

comfort zones. For instance, the aggregated bidding price 

increases from 2.65 to 3.17 and 1.42 to 1.76 AU$/kWh in zones 1 

and 5 respectively, with changes in the set-point interval from 

0.25 to 1oC. This shows a 16.4 and 19.1% reduction in electricity 

cost per kWh with changes in the set-point interval from 1 to 

0.25oC for zones 1 and 5 respectively.  

From these results, it can be further inferred that, with the 

proposed strategy, high and low comfort occupants can save 0.94 to 

17.1% and 45.0 to 55.6% on the electricity cost per kWh with set-

point intervals of 1 to 0.25oC respectively compared to CC. On the 

other hand, the price difference is negatively correlated with the 

set-point interval because a higher bidding price in a zone leads 

to a lower positive price difference. For instance, the price 

difference in zone 5 decreases from 1.78 to 1.69 AU$/kWh with a 

change in the set-point interval from 0.25 to 0.5oC.  
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Figure 5.9. Aggregated bidding price and price difference at various set-

point intervals 

5.6.4   Effect of various Set-Point Intervals on HVAC Consumption 

in various Zones     

Figure 5.10 shows the effect of temperature variations in various 

zones on the HVAC energy consumption evaluated at two set-point 

intervals, and further compares the HVAC demand with conventional 

and PBDR control strategies. In CC, the HVAC is operated to 

maintain a reference temperature (23oC) in a multizone building 

for t= 8 to 18h regardless of the retail price. In contrast, the 

PBDR control strategy causes a regular change in the HVAC 

thermostat setting in various zones based on the electricity price. 

The simulation results show that the HVAC load in various zones is 

curtailed compared to CC, with temperature variations for energy 

and cost-saving. The HVAC demand at a constant reference 

temperature and at variable temperature set-points are subtracted 

for 8h ≤ t ≤ 18h to calculate the energy saving in various zones.  

It is clear from Fig. 5.10 that the HVAC demand with CC is higher 

in all zones than the PBDR control strategy except for t= 8 to 9h 

in zones 1 and 2, where the occupants bid higher than the retail 

price to decrease the cooling set-point from the reference 

temperature. The case study results reveal that at both set-point 
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intervals the energy consumption in low comfort zones (i.e., zones 

4 and 5) is significantly lower than in the moderate and high 

comfort zones following high-temperature variations in these 

zones. However, at a lower set-point interval the HVAC operation 

constantly changes and causes an additional reduction in HVAC 

consumption, specifically in peak hours (i.e., 15h ≤ t ≤ 17.5h) 

compared to the case with a higher set-point interval. This 

indicates that with similar parameter settings the designed 

controller with a low set-point interval causes more reduction in 

HVAC demand than with a higher set-point interval.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Significant reduction in HVAC energy consumption with PBDR 

controller in various zones at two set-point intervals 

5.6.5   Comparison of HVAC Energy and Cost Saving in various 

Zones  

Table 5.3 provides a comparison of the percentage of HVAC energy 

and cost savings under conventional and PBDR control. The saving 

results at a higher set-point interval with the PBDR strategy is 

compared with CC; further, the higher and lower set-point interval 
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results with the PBDR controller are evaluated. The proposed 

controller allocates the variable temperature set-points in 

various zones for each half-hour of the day that is used as 

thermostat set-points to control the HVAC load with the retail 

price. The results reported in Table 5.3 suggest that the designed 

algorithm operates effectively to reduce the aggregated peak 

demand, off-peak demand, and electricity cost during off-peak and 

peak times, considering the comfort requirement of various types 

of occupants. For instance, zone 1 occupants with high comfort 

requirements can reduce the HVAC demand by 2.15 and 7.19% during 

off-peak and peak times respectively, compared to CC with a set-

point interval of 1oC. This energy-saving corresponds to 3.36 and 

8.90% curtailments in electricity cost with indoor temperature 

variations for only a tiny fraction of the given time. These 

occupants’ energy and cost savings are 14.34 and 14.55% 

respectively during peak times with a 0.25oC set-point interval 

that is 43.0% higher than for a 1oC set-point interval. 

 These saving results indicate that the proposed strategy with 

low-temperature changes is very effective to save energy and cost 

with minimal effect on human health. It is clear from Table 5.3 

that the aggregated demand of the HVAC system is significantly 

lower with the proposed strategy than with CC. For example, the 

aggregated demand with CC is 449.04 kWh during occupancy hours 

that is reduced to 412.8 and 362.9 kWh in high to low comfort zones 

(i.e., zones 1 and 5) respectively with the designed controller 

operating at high set-point intervals. This corresponds to 8.06 to 

19.17% curtailment in the HVAC demand during the simulation hours 

compared to CC.  
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Similarly, peak saving results are achieved in various zones 

with the developed strategy. For instance, the peak demand reduces 

from 162.66 kWh to 139.33, 131.74, 128.49 and 118.99 kWh in zones 

1, 2, 4 and 5 respectively with a 0.25oC set-point interval, 

corresponding to 14.55, 19.45, 21.21 and 27.24% reductions in the 

electricity bill compared to CC. These results indicate that the 

PBDR controller is very effective in reducing the electricity cost, 

specifically during peak hours when the energy price is higher. 

Table 5.3. Comparison of Aggregated Daily Energy and Cost Saving for Base 

Case and Case 1 

 

5.7.   Thermal Comfort   

The proposed PBDR controller, along with energy and cost savings, 

can potentially introduce thermal discomfort due to the constant 

change of the thermostat set-points in various zones based on the 

retail price. Thus, it is essential to evaluate the performance of 

the proposed strategy with respect to acceptable thermal 

environmental conditions for human occupancy. For this ASHRAE 

standard 55 [254], that establishes the range of indoor 

environmental conditions to achieve acceptable thermal comfort for 

occupants, is followed. As per the ASHRAE standard, to maintain 

thermal comfort the humidity ratio should be ≤ 12 moisture/kilogram 

of dry air and the dew point temperature < 18oC.  

HVAC  

Control 

Zone Temp 

Range 

Set-

Point 

Interval 

 

HVAC 

Demand 

Off-

Peak 

Hours 

HVAC 

Demand 

Peak 

Hours 

Energy 

Cost 

Off-

Peak 

Hours 

Energy 

Cost 

Peak  

Hours 

Energy 

Saving 

Off-

Peak 

Hours 

Energy 

Saving 

Peak 

Hours 

Cost 

Saving 

Off-

Peak 

Hours 

Cost 

Saving 

Peak 

Hours 

No. oC oC kWh kWh AU$ AU$ % % % % 

Conventional  23 1.0 449.04 162.66 69.61 29.55 --- --- --- --- 

 

 

 

PBDR  

Controller 

 

Zone 1 

 

 

22-25 

1.0 439.35 150.95 67.27 26.92 2.15 7.19 3.36 8.90 

0.25 412.8 139.33 63.45 25.25 8.06 14.34 8.84 14.55 

 

Zone 2 

 

22-26 

1.0 417.30 139.59 63.82 25.07 7.06 14.18 8.31 15.16 

0.25 395.92 131.74 60.65 23.80 11.80 19.09 12.87 19.45 

 

Zone 4 

 

23-26 

1.0 400.20 137.74 61.27 24.66 10.87 15.32 11.98 16.54 

0.25 381.7 128.49 58.61 23.28 14.98 21.07 15.80 21.21 

 

Zone 5 

 

23-27 

1.0 373.82 127.17 57.2 22.72 16.75 21.81 17.82 23.11 

0.25 362.9 118.99 55.49 21.50 19.17 26.84 20.27 27.24 
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Figure 5.11 shows the comfort zone of the test building in summer 

drawn on a psychometric chart with a metabolic rate of 1.2 met and 

clothing insolation of 0.6 clo according to the considered 

building-working environment. The green line indicates the upper 

limit of the dew point temperature, while the orange line 

represents the maximum allowable humidity ratio. The comfort zone 

shows the indoor temperature variation in various zones in response 

to the retail price. Figure 5.11 results indicate that the indoor 

temperature variations are within the comfort zone. This implies 

that under PBDR control occupants can enjoy significant cost saving 

with temperature variations in various zones within the ASHRAE 

comfort zone.  

 

 

 

 

 

 

  

 Figure 5.11. Comfort zone for a commercial building in the summer season 

Figure 5.12 provides the percentage of time when the zone 

temperature is more than the reference temperature at two set-

point intervals for the simulation hours. The case study results 

report that, for customers with high comfort preferences, the 

indoor temperature stays at 23oC for 71.4% of the occupancy hours. 

For these customers, temperature excursions of -1, +1 and +2oC from 

the reference temperature (23oC) occur in 14.2, 9.50 and 4.76% of 

the occupied hours respectively with a set-point interval of 1oC. 
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Similarly, in zones 4 and 5, +2 and +3oC excursions occur around 

57.4 and 52.38% of the occupied time respectively. Meanwhile, zone 

2, with a moderate comfort requirement, is +1 and +2oC away from 

the reference temperature for 33.3% and 9.50% of the occupancy 

hours respectively. Similar temperature variation patterns with 

more fluctuations occur at a set-point interval of 0.25oC. For 

instance, occupants with a low comfort requirement in zone 5 

maintain the thermostat setting between 23-24oC and 24-25oC for 

28.57% and 19.05% of the occupancy time, while a 4oC excursion 

occurs only for 4.76% of the occupied hours. It should be noted 

that the customer preferences for the comfort required are 

stringently maintained by the proposed strategy. The thermal 

comfort, therefore, is not overly disturbed through the 

implementation of the proposed PBDR strategy.   

 

 

 

 

 

 

Figure 5.12. Percentage of time when the indoor temperature is below/above 

the reference temperature 

5.8.   Chapter Summary    

In this Chapter, an easily deployable and improved PBDR control 

strategy in a real-time environment is proposed for a commercial 

building HVAC system. The experimental results indicate that the 

proposed technique brings significant peak load curtailments of 

7.19 to 21.7% and 14.34 to 26.84% for high to low comfort occupants 

at 1 and 0.25oC set-point intervals respectively. This implies an 

8.91 to 21.21% and 14.55 to 27.24% saving on a peak electricity 
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bill correspondingly. In addition, the indoor air temperature is 

mostly maintained inside the thermal comfort zone. For customers 

with lower comfort preferences of about 4.76% to 9.50% of the total 

hours of occupancy, the temperature becomes +3 and +4 oC higher 

than the reference temperature. This implies that, when the 

thermostat is varied during periods of high electricity price, the 

developed strategy does not cause a noteworthy change in the 

thermal discomfort.  

The obtained results through extensive simulation studies under 

various conditions demonstrate the effectiveness and applicability 

of the proposed strategy. In contrast to conventional strategies, 

where a group level presentation of occupants’ thermal comfort in 

a multizone building is implemented, the developed PBDR controller 

successfully reflects the varying thermal preferences of the 

occupants for optimal scheduling of the HVAC operation. For 

utilities and RERs integrated building operators, a real-time 

wholesale price based tariff is effective to reduce the peak load, 

the overall electricity consumption, and energy imbalance 

management. This may assist utilities in avoiding the cost of 

constructing additional power plants and transmission lines, with 

associated maintenance. The PBDR control procedure allows consumers 

to successfully take advantage of dynamic pricing and enjoy 

substantial cost savings in electricity usage. Alternatively, this 

plan can contribute greatly in facilitating an effective DR 

framework, enabling the utility provider to adopt effective demand 

management policies using RTP.     
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Chapter 6                                                                                                                                           

Conclusion and Future Work 

This thesis seeks to bring the possible advantages of an optimal 

demand-side management system by modeling the energy usage 

behavior of self-interested distributed entities in a smart grid. 

This research has studied the propriety distributed energy 

resources (DERs) and consumers in a smart grid and has proposed 

novel energy management schemes for optimal utilization of 

renewable energy resources (RERs) and improving the building’s 

energy efficiency. General concluding remarks of this dissertation 

and research directions for the future are provided below.  

6.1. Thesis Conclusions 

This thesis has discussed the prospects and challenges of 

modeling the energy usage behavior of distributed entities in a 

smart grid. In order to accomplish this, novel demand-side 

management (DSM) strategies are proposed for local power 

management and control with renewables. The main purpose of the 

case studies 
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presented in this dissertation is to assess the performance of 

the developed algorithms and control strategies. However, an 

extensive literature survey is carried out before applying the 

proposed techniques in simulation results. The survey is composed 

of the state-of-the-art of the prospects and feasibilities of smart 

grid and microgrid, DERs applications in microgrids and DSM 

techniques. This comprehensive and structured literature review is 

presented in Chapter 2.  

New cost-effective coordinated measures, technologies and 

control techniques for improving the smart buildings' energy 

performance are presented in Chapter 3. Real-time data monitoring 

and analysis results show that the performance of the smart 

building is influenced by the number of factors including low PV 

production, inefficient building operation and traditional control 

of building’s responsive loads. As a result, advanced technologies 

(e.g. efficient invertors, dual-axis tracking system, and MOSFETs) 

and control strategies (e.g. transactive control and an efficient 

controller) are proposed for improving the PV production and saving 

energy and cost by controlling thermostatic loads respectively. 

Scientific analysis under real PV system parameters and commercial 

load are carried out to demonstrate the effectiveness of the 

proposed technologies and techniques. It is evident from the 

critical analyses of the case studies that the proposed approaches 

ensure stable islanded operation of smart buildings in terms of 

asset utilization, efficient energy management, and cost-

effectiveness. 

 

Research challenges associated with making energy consumers an 

integral part of energy management schemes in a smart grid while 

respecting their privacy are considered in Chapter 4. A 

mathematical model based on a non-cooperative contract-theoretic 

approach is developed to capture the complex interactions between 

an   aggregator   and   geographically   distributed   electricity  
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suppliers. Further, a novel dynamic pricing mechanism is designed 

that an aggregator utilizes to incentivize the electricity 

suppliers considering various variable factors. Furthermore, a 

distributed algorithm is presented to characterize the regular 

distributions of the developed strategy for implementation. The 

performance of the proposed approach is validated by performing 

several case studies such as a change in reliability level, 

wholesale price fluctuations, effects of penalty charges, and 

aggregator revenue under different trading scenarios.    

 

A simulation benchmark model for a thermally interconnected 

dynamical commercial heating, ventilation, and air-conditioning 

(HVAC) system is developed in Chapter 5. A novel comfort aware 

energy imbalance management scheme is presented in the designed 

system. The potential impacts of time-varying electricity prices 

on the consumer’s thermal requirements are studied. The effects of 

occupant’s choice of bidding price and set-point interval on the 

HVAC consumption are analyzed. A new price-based demand response 

controller is designed to control the HVAC thermostat setting in 

a multi-zone office building. An optimum HVAC scheduling algorithm 

is proposed for energy and cost savings in response to price 

signals while providing the desired quality of service. Finally, 

several case studies such as variable commercial loading in various 

zones, high and low set-point interval’s effect on HVAC 

consumption, and bidding price variation with pricing are carried 

out to quantify the performance of the proposed approach.   

Overall, the following conclusions can be drawn from this research 

work: 

 Real case studies of smart buildings are crucial to expanding 

renewable energy deployments by using flexible loads in a 

business community.  
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 Large-scale deployment of renewable resources with the aid of 

the smart grid provides an opportunity for robust DSM through 

energy efficiency, demand response (DR) and other energy 

productivity measures.  

 Demand management with renewable energy has the potential to 

utilize the consumers' capacity as a flexible load with the 

integration of renewable energy in order to develop a cost-

efficient demand-side flexibility system. In a developed 

system energy consumers are capable to optimize and control 

renewable energy, storage system, energy efficiency, and 

demand-controls.   

 Coordinated load control strategies not only effective in 

providing load balancing services to the smart grid but also 

has the advantage of the reduction in peak load demand, 

avoidance of overvoltage events, and overcoming RERs 

uncertainty at the distribution level.  

 In an energy-constrained electricity market, the involvement 

of consumers in energy management schemes can significantly 

improve the power network stability, and considerably enhance 

the social benefit for the whole power system.   

 The excess energy of geographically DERs can be traded with 

an aggregator. This can benefit all parties such as producers, 

consumers, and utilities.  

 The strategic use of RERs with storage technologies can ensure 

grid stability by avoiding low-value grid export. 

 Dynamic pricing as a DSM tool can facilitate peak-load 

curtailment to avoid large capital investments.   

 There is an opportunity for decentralized energy systems in 

the future for the commercial sector with the integration of 

renewable energy, load management, and consumer 

participation.  
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6.2. Future Research Directions  

Most of the work presented in this thesis has the potential for 

future work, for extending effective demand management schemes in 

a smart grid to more dynamic scenarios with more complex 

environments. Moreover, with the increasing RERs and electric 

vehicles (EVs) penetration, particularly in the Australian 

Distribution Network, there are several challenges that require 

further research and developments. The future research directions 

of this dissertation are summarized below. 

 Coordinated measures, new technologies, and transactive 

control can significantly improve the energy efficiency 

of smart buildings, as explained in Chapter 3. However, 

RERs efficiency can be further improved by using 

Nanotechnology-based products for renewable energy. For 

instance, solar cells' efficiency can be improved by using 

Nano-structured solar cells. Thus research on Nano-

materials for improving storage technologies, conversion 

systems and renewable resources efficiency is an 

interesting future direction. Another future direction can 

be to include multiple players (e.g. autonomous commercial 

buildings, aggregators, EVs charging stations) in energy 

management systems where coordination among multiple 

players is required. In addition, the future aim of this 

study could be to investigate the cost of PV panels, 

cooling systems, and solar tracking systems.     

 The energy trading scheme with renewables has been 

discussed in this thesis. This work can be extended to 

study the more practical scenario where multiple sets of 

small/medium/large scale producers exist and they compete 

with each other to sell their electricity. One potential 

challenge that needs to be addressed to incorporate this 

scenario is to prioritize the same category and type of 
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producers to procure energy in the electricity trading 

market under the circumstances of asymmetric information. 

Another interesting extension of this work would be to 

investigate the benefits of the power grid, e.g., the 

stability of the grid and the reduction in overvoltage 

events through local power management schemes. Moreover, 

the local electricity market is quite affected by the 

other types of energy, such as natural gas, heat/cold 

supplement, etc. The impact of multi-energy supplement and 

storage technologies can be included for a more rigorous 

analysis. The analysis may evaluate the sellers' profit 

by taking into account multi-energy generation and storage 

units operational parameters and related costs. In 

addition, one future direction of this study could be to 

investigate how state-of-charge of storage units is 

effected through RERS uncertainty.   

 In the context of the comfort-aware energy-imbalance 

management scheme in a smart grid, as explained in Chapter 

5 of this dissertation, very important future work is to 

increase the scalability of the proposed approach by 

including a higher number of HVAC units. Another future 

direction could be recording the number of occupants in 

real-time for instantaneous load calculation if a large 

number of occupants shared one room/commonplace while 

considering the dynamic comfort preferences in a zone. 

Moreover, the load recovery effect, which generally 

appears after limiting the power of HVACs during a DR 

event period, can be examined for a fairer comparison with 

existing techniques. Furthermore, a range of electricity 

tariff systems such as critical peak pricing, extreme day 

pricing, and critical peak rebates can be included for 

economic analysis of the demand-management scheme to see 

the effectiveness of the proposed approach under various 

scenarios. 



6.2  Future Research Directions 

 

187 
 

 In the developed energy management schemes, the 

electricity demand is assumed to be known, but the 

predictions of demand are not that accurate nowadays, 

especially, when the demand is obtained from the 

consumers. The uncertainty is still a big problem, 

therefore, the current work can be extended by considering 

the uncertainty of demand
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