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ABSTRACT  

 

This PhD thesis is devoted to the estimation and examination of default probabilities 

(PDs) within credit risk management. Assigning an appropriate PD is a widely employed 

strategy by many financial institutions as well as the supervisory authorities , and 

providing accurate estimates of PDs is considered as one of the key challenges in credit risk 

management. False estimation of these probabilities leads to, among other things, 

unreasonable ratings and incorrect pricing of financial instruments. As a matter of fact, these 

issues were among the key reasons for the global financial crisis (GFC) as undervaluation of 

the default risks in the mortgage market almost caused the collapse of the financial system. 

The first research paper, titled Structural Credit Risk Models with Subordinated Processes, 

analyses structural models based on the Merton framework. First, we observe that the 

classical distributional assumption of the Merton model is rejected. Second, we implement a 

structural credit risk model based on stable non-Gaussian processes as a representative of 

subordinated models in order to overcome some drawbacks of the original Merton approach. 

Finally, following the Moody’s KMV estimation methodology, we propose an empirical 

comparison between the results obtained from the classical Merton model and the stable 

Paretian one. In particular, we suggest alternative parameter estimation techniques for 

subordinated processes, and we optimise the performance for the stable Paretian model. Our 

results indicate that PDs are generally underestimated by the Merton model and that the 

stable Lévy model is substantially more sensitive to the period of the financial crises. 

The second study, Prediction of U.S. Commercial Bank Failures via Scoring Models: The 

FFIEC Database Case, is devoted to examining the performance of static and multi-period 

credit-scoring models for determining PDs of financial institutions. We use an extensive 

database for the U.S. provided by the Federal Financial Institutions Examination Council 

(FFIEC). Our sample contains more than 7,000 U.S. commercial banks with 405 default events. 

Our analysis also focuses on evaluating the performance of the considered scoring 

techniques. We apply a substantial number of model evaluation techniques, including 



methods that have not yet been applied in the literature on credit scoring. We also provide 

an overall ranking of the models according to the different evaluation criteria and find that 

the considered scoring models provide a high predictive accuracy in distinguishing between 

defaulting and non-defaulting financial institutions. Despite the difficulty of predicting 

defaults in the financial sector, as has been mentioned in the literature, the proposed models 

also perform very well in comparison to results on scoring techniques for the corporate 

sector. 

Finally, the last research paper, titled Distress Risk and Stock Returns of U.S. Renewable 

Energy Companies, investigates the question of whether distressed risk is priced in the 

renewable energy sector. Using the Expected Default Frequency (EDF) measure obtained 

from Moody’s KMV, we demonstrate that there is a positive cross-sectional relationship 

between distress risk and returns of equally-weighted (EW) portfolios, providing evidence for 

a distress risk premium in the U.S. renewable energy sector. The positively priced distress 

premium is also confirmed by investigating returns corrected for common Fama and French, 

and Carhart risk factors. We further show that raw and risk-adjusted returns of EW portfolio 

that takes a long position in the 10% most distressed stocks, and a short position in the 10% 

safest stocks, generally outperform the S&P 500 index throughout our sample period (2002–

2013).
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1 Introduction 

Credit risk modeling and the estimation of default probabilities (PDs), that represent a 

borrower’s risk level, have become some of the most intensely studied topics in the financial 

literature and have undergone extensive development in recent decades. The PD indicates a 

probability that a given counterparty will not be able to meet its obligations, and is one of the 

key input factors for the modeling and measurement of credit risk. Its estimation is nowadays 

a widely employed strategy by many financial institutions and supervisory authorities. The 

significance of this assessment has increased substantially since 2008 when several countries 

had encountered a period of financial and economic turmoil often referred to as the global 

financial crisis (GFC). Providing accurate estimates of PDs can be considered as one of the key 

challenges in credit risk management. False estimation of PDs leads to unreasonable ratings 

and incorrect pricing of financial instruments. As a matter of fact, these issues were among 

the key reasons for the GFC, when the undervaluation of default risk in the mortgage market 

and for structured credit products such as collateralized debt obligations almost caused the 

collapse of the financial system which had been over-extended through credit derivatives on 

global markets. Probabilities of default can also be considered as key parameters for the 

calculation of economic and regulatory capital of financial institutions under the Basel II and 

Basel III Accords that emphasise the risk sensitivity of the capital of commercial banks. These 

reasons highlight how important the estimation of PDs is and why it has been a significant 

research topic for a long time. 

Probability of default itself, and its estimation and subsequent validation in particular, is 

the core of this thesis. The thesis provides significant contribution to the state-of-the-art of 

respective sub-topics of credit risk. In each chapter relevant open questions are discussed, 

new methods and approaches are suggested, and extensive study utilising real market data is 

provided.  

There are several ways to proceed with estimating PDs, see, for example, Hull (2012) or 

Trück and Rachev (2009) for more details. In general, there are two model-based approaches, 

both with their own advantages and drawbacks, and their application largely depends on 

situation in which we want to make our estimation. The first approach focuses on so-called 
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credit-scoring models that are based on economic and financial indicators of a company (we 

will discuss these models in Section 1.2 and apply some of them in Chapter 3). These models 

are among the ones most widely used to predict a company’s default. They can be found in 

virtually all types of credit analysis, from consumer credit to commercial loans, and are mostly 

applied when a given counterparty has not issued bonds and, therefore, market valuation is 

not possible. Since we work with the entire database of US banks in Chapter 3, where many 

of them are not publicly traded, we apply credit-scoring models in our analysis. 

The second approach is then the utilisation of market valuation. In this case we are either 

talking about structural models (based on equity prices) or so-called reduced-form models 

(based on bond prices). The framework of structural models was introduced by Merton 

(1974). Unlike instruments within estimation of PDs that rely on the companies’ credit ratings, 

which are revised relatively infrequently, this approaches is based on equity prices and, 

therefore, can provide more up-to-date information for default probability estimation. We 

apply this approach (along with a structural model which differs from the Merton one in its 

distributional assumptions) in Chapter 2. 

Reduced-form models are another major class of models where, unlike structural models, 

defaults do not explicitly depend on the value of the firm. They are more general than 

structural models and assume that an exogenous random variable drives default and that the 

probability of default over any time interval is non-zero. An important input to determine the 

default probability and the price of a bond is the rating of the company. Thus, in order to 

determine the risk of a credit portfolio of rated issuers generally historical average defaults 

and transition probabilities for current rating classes have to be consider (Trück and Rachev 

(2009)). Besides the fact that they allow for realistic short-term credit spreads, reduced-form 

models also give great flexibility in specifying the source of default. However, we will not be 

discussing this approach in further detail in this thesis. Instead, we refer to Duffie and 

Singleton (2003) or Trück and Rachev (2009), for example, for an overview. 

This PhD thesis deals with topics related to the estimation and examination of default 

probabilities within credit risk management. The contribution of the thesis concentrates on 

the following three research areas: 

 structural models 
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 scoring systems (credit-scoring models) 

 distress risk within an asset-pricing framework. 

This introduction discusses the motivation and objectives for each of these research 

topics and provides an overview of the thesis. 

1.1 Structural models 

The framework of structural models was introduced by Merton (1974). Unlike instruments 

within estimation of PDs that rely on the companies’ credit ratings, which are revised 

relatively infrequently, this approach is based on equity prices and, therefore, can provide 

more up-to-date information for default probabilities estimation. The core concept of the 

Merton model is to treat a company’s equity and debt as a contingent claim written on a 

company’s asset value. Suppose, for simplicity, that a firm has one zero-coupon bond 

outstanding and that the bond matures at time T . In the following we denote the value of 

the company’s assets today, and at time T , as 0V  and TV , respectively, and the value of the 

company’s equity today and at time T  as 0E  and TE , respectively, the amount of debt 

interest and principal due to be repaid at time T  as D , the volatility of assets (assumed 

constant) as V , and the instantaneous volatility of equity as E .  

If TV D , it is rational for the company to default on the debt at time T .1 The value of 

the equity is then zero. If TV D , the company should make the debt repayment at time T  

and the value of the equity at this time is TV D . The Merton model, therefore, gives the 

value of the firm’s equity at time T  as 

 max , 0 .T TE V D                                                        (1) 

In line with the Black-Scholes option pricing theory2 (Black and Scholes, 1973), the Merton 

model stipulates that the company’s equity can be considered as a European call option on 

                                                           
1 It is important to make a distinction between short and long term debts. It is often supposed that the default 
should occur only if the asset value drops below the former; i.e. it can be below the total debts for some time. 
We discuss the relevant debt usually used in this framework in more detail in Footnote 12. 
2 In fact, a so called Black and Scholes model and relevant PDE (partial differential equation) is often credited to 
Merton as well (for example as BMS PDE), since Merton developed the same result independently at more or 
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the value of the total assets of the firm and satisfies the following equation (derived under a 

risk-neutral framework) 

   0 0 1 2

rTE V d De d                                                     (2) 

where 

   2

0

1 2 1

ln / / 2V

V

V

V D r T
d d d T

T






 
                           (3)  

and   is the cumulative standard normal distribution function. 

Under the Merton model, the company defaults when the option is not exercised. It can 

be shown that the probability of such event is  2d  . To calculate this probability, we 

require 0V  and V , both not directly observable. However, if the company is publicly traded, 

we can observe 0E . This means that equation (2) provides one condition that must be 

satisfied by 0V  and V . From a result in stochastic calculus known as Ito’s lemma, we can also 

estimate E , using the following relationship 

0 0 .E V

E
E V

V
 





                                                               (4) 

Here /E V   is the delta of the equity and is equal to  1d , so that  

 0 1 0 .E VE d V                                                               (5) 

This provides another equation that must be satisfied by 0V  and V . Equations (2) and (5) 

provide a pair of simultaneous equations that can be solved for 0V  and V . 

The Merton model requires a number of simplifying assumptions (the company can 

default only at debt’s maturity time T  but not before; the model is not able to distinguish 

between the different types of debt; constant and flat term structure of interest rates, etc.) 

                                                           
less the same time, see Merton (1973). The extension for credit risk was developed later. However, even Black 
and Scholes (1973, p. 649) suggested to regard company’s stock as an option on its assets. 
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and many extensions of this framework have been proposed in order to overcome one or 

more of these unrealistic assumptions. For reviews covering structural models, see, for 

example, Lando (2009), Bielecki and Rutkowski (2002), Uhrig-Homburg (2002), or Section 2.1. 

One of the most important drawbacks is the assumption that the value of the company can 

be described by a log-normal distribution. It is well known that log-returns of equities are not 

normally distributed, and several empirical investigations have shown that log-returns of 

equities present skew distributions with excess kurtosis which leads to a greater density in 

the tails, and that the normal distribution with a comparatively thinner tail simply cannot 

describe this phenomenon, see, for example, Mandelbrot (1963a, 1963b, 1967), Fama (1963, 

1965a, 1965b), or Rachev and Mittnik (2000). 

Chapter 2 of the thesis focuses on overcoming this assumption and contributes to the 

literature by introducing a structural credit risk model based on the stable Paretian 

distributions as a representative of subordinated models. The idea of using subordinated 

stable Paretian processes goes back to the seminal work of Mandelbrot and Taylor (1967) and 

stable laws have been applied in several financial sectors (see Rachev (2003) and Rachev and 

Mittnik (2000)). For these reasons, the stable Paretian law is the first candidate used as a 

subordinated model investigating credit risk modeling. In our study, we discuss how to use 

the Hurst et al. (1999) option pricing model, which is based on the stable Paretian 

distributions, in the framework of structural credit risk models. In fact, we show that it is 

possible to use this subordinated model in the Merton framework and, as for the Merton 

model, we propose two different methodologies for the parameter estimation: the first is to 

generalise the maximum likelihood parameter estimation proposed by Duan (1994); the 

second is a generalisation of the Moody’s KMV methodology. Finally, we provide an empirical 

comparison of the Moody’s KMV methodology applied to the Merton model and our 

subordinated one. 

1.2 Scoring systems (credit-scoring models) 

In the first paper, we deal with structural credit risk models and apply this framework to 24 

U.S. companies with strong capitalisation in the U.S. market. In fact, all these companies were 

components of the Dow Jones Industrial Average index at the time our analysis was 

conducted. However, we dropped financial institutions from our analysis since one of our 
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findings is that the companies with a higher value of the ratio between the debt and the 

companies’ asset values tend to have a higher average value of default probability. One of the 

consequences of this is that structural credit risk models are typically not feasible for the 

estimation of PDs of financial institutions due to their different balance sheet structure. This 

is why we devote our second study to estimation of PDs of financial institutions using credit-

scoring models. 

This class of statistical models is among the models most widely used to predict a 

company’s default. They can be found in virtually all types of credit analysis, from consumer 

credit to commercial loans. The idea is to pre-identify certain key factors that determine the 

PD, and combine or weight them into a quantitative score. This score can be either directly 

interpreted as a probability of default or used as a classification system. 

Two major seminal papers in the area on bankruptcy prediction have been published in 

the 1960s by Beaver (1966) and Altman (1968). Since then an impressive body of research 

concerning this topic has evolved and we will address these studies in Section 3.2 in more 

detail. The major methodologies used for credit scoring include logit and probit models, or 

discriminant analysis models. 

Discriminant analysis (DA) tries to derive the linear combination of two or more 

independent variables that will discriminate best between a priori defined groups, which in 

the simplest case are failing and non-failing companies. A basic principle is to maximise the 

difference between two groups, while the differences among particular members of the same 

group are minimised.  

DA can also be thought of as multiple regression. If we code the two groups in the analysis 

as 1 and 2 and use that variable as the dependent one in a multiple regression analysis, 

analogous results to using a discriminant analysis could be obtained, see Trück and Rachev 

(2009). This is due to the statistical decision rule of maximising the between-group variance 

relative to the within-group variance in the discriminant analysis technique. DA derives the 

linear combinations from an equation that takes the following form: 

0 1 1 2 2 ... n nZ X X X        ,                                               (6) 
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where Z  is the discriminant score ( scoreZ  ), 0  is a constant, i (i = 1, 2, … ,n) the 

discriminant coefficients, and iX (i = 1, 2, … ,n) the independent variables, that is, the financial 

ratios.  

Logit and probit models can be considered to be among the most popular approaches in 

the empirical default-prediction literature, see, for example, Ohlson (1980), Zmijewski (1984), 

or Shumway (2001). Unlike the linear probabilistic model, where the outcome variable may 

be above 100% or below 0%, transformations used in logit and probit models guarantee that 

the dependent variable is always between 0 and 100%, and can therefore be correctly 

interpreted as a PD. These models can be easily applied to cases where the dependent 

variable is either nominal or ordinal, and has two or more levels. Further, the independent 

variables can be any mix of qualitative and quantitative predictors. 

Logit and probit models allow for estimation of the probability for the occurrence of a 

defined event. In credit scoring, the studied event is the default or credit failure of a company. 

Thus, the response variable Y  takes on the value 1Y   if the company failed, and 0Y  , 

otherwise. We are interested in modeling the probability Y  by specifying the following 

model: 

1

n

i i

i

Y f X 


 
  

 
                                                          (7) 

where iX  (i = 1, 2, … ,n) are the explanatory variables,   is a constant, and the i   denote 

the estimated coefficients for the explanatory variables iX .  

The literature suggests various ways to specify the function f . In case of the logit model, 

we apply the so-called logistic transformation  
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For the probit model, the cumulative distribution function of the normal distribution is 

used: 

1
21 1

exp .
22

n

i i

i

X

Y t dt
 








  
  

 
                                              (9) 

We will discuss these two models in more detail in Chapter 3. 

Chapter 3 of the thesis focuses on examination of the performance of static and multi-

period logit and probit models for determining PDs of financial institutions. We contribute to 

the literature on credit-scoring models in the following way. First, unlike many other studies 

that focus on estimating rating models for the corporate sector, we provide a study where 

rating models for financial institutions are derived and investigated. Our sample contains 

more than 7,000 U.S. commercial banks with 4 default events between the years 2007 to 

2013, which is substantially more than previous studies that estimated similar models for 

banks, see, for example, Canbas et al. (2005) or Kolari et al. (2002). Second, we provide one 

of the first studies to look at the Federal Financial Institutions Examination Council (FFIEC) 

database and to provide scoring models for these banks. Finally, we provide a variety of 

methods for evaluating the performance of the considered models. Following Stein (2007), 

arguably a key study in this regard, we apply the techniques such as the walk-forward 

approach with out-of-time validation, ROC (relative or receiver operating characteristic) curve 

analysis, calibration accuracy tests and bootstrapping of ROC curve areas. We also suggest a 

number of additional performance evaluation techniques that have not yet been applied in 

the literature on scoring models. In particular, we suggest the use of non-parametric tests 

such as the Kruskal-Wallis and Tukey’s multiple comparison test to investigate significant 

differences between the particular models in terms of bootstrapped ROC areas. These tests 

do not require the assumption of normality, which would not be satisfied in our case. Further, 

as an extension of log-likelihoods calculated within calibration accuracy test suggested in 

Stein (2007), we apply the Vuong’s closeness test for non-nested models (Vuong (1989) to 

determine whether calculated log-likelihoods for various models are statistically different. 

Finally, we also apply the Hosmer-Lemeshow’s chi-squared goodness-of-fit test (Hosmer Jr 

and Lemeshow (2004)) to examine the overall fit of the estimated models. 
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1.3 Distress risk within an asset-pricing framework 

While the first two studies are devoted to the estimation of PDs using two different 

approaches (structural models in Chapter 2 and credit-scoring models in Chapter 3), in the 

last research paper, we take advantage of the Moody’s KMV3 database and use its structural-

based default probability indicators (Expected Default Frequencies – EDFs) in an asset-pricing 

framework applied to the renewable energy sector in the U.S. 

The Moody’s KMV model (officially called PortfolioManagerTM) is based on Merton’s 

insight that debt behaves like a European short put option on the value of the firm’s assets. 

With such a perspective, default occurs when the value of a firm’s assets falls below the value 

of  the  firm’s  debt  (or  other  fixed   claims).  There  are  six   variables  that  determine   the   

Figure 1 

The Moody’s-KMV model 

 

 Source: Crosbie and Bohn (2003), page 13 

                                                           
3 KMV was founded by Kealhofer, McQuown, and Vasicek and it was an independent company until 2002 when 
it was acquired by Moody’s Analytics and became Moody’s KMV. This company provides various products for 
monitoring credit risk. For example, Credit Monitor integrates with RiskAnalystTM, Moody’s KMV Financial 
Analyst®, and Moody’s KMV RiskCalc® to support the analysis of private and public companies EDF credit 
measures. In addition, it also provides data for the analysis of credit portfolio risk within Moody’s KMV Portfolio 
ManagerTM. 
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default probability of a firm over some horizon, from now until time H  (see Figure 1): 1. the 

current asset value; 2. the distribution of the asset value at time H ; 3. the volatility of the 

future assets value at time H ; 4. the level of the default point, the book value of the liabilities; 

5. the expected rate of growth in the asset value over the horizon; 6. the length of the horizon 

H . 

Moody’s KMV derive the so-called Expected Default Frequency (EDF) for a firm based on 

its capital structure, the asset return value and its volatility using the framework of Merton 

(1974). Each value of the EDF can then be used to specify a credit rating. The default 

probabilities are derived in three steps. First, the value of the firm’s assets is estimated based 

on a standard geometric Brownian motion as in the Merton framework. Second, the distance-

to-default is computed. The distance-to-default is the number of standard deviations 

between the mean of the asset value and the default point where the default point is defined 

as the sum of the short-term debt liabilities and half of the long-term liabilities to be met over 

the risk horizon. The third and last step is to derive the default probabilities, EDFs, from the 

distance-to-default index. The PD is then the proportion of the firms of a given ranking of 

distance-to-default which have historically defaulted over a risk horizon, usually chosen to be 

one year. The EDFs can then also be used as an indicator of the creditworthiness of the issuing 

firms. 

As mentioned above, in Chapter 4 of the thesis we use the EDF measure as a proxy for 

distress risk in an asset-pricing framework applied to U.S. renewable energy companies. The 

renewable energy sector has exhibited significant growth rates in the global economy during 

the last decade.  At the same time, similar to the high-tech sector or venture capital, 

investments in renewable energy companies can be considered as being relatively risky; due 

to the nature of their business, there is often a significant gap between innovation, adoption, 

and a phase where the company really becomes established in the market (referred to as the 

“Valley of Death”). Therefore, investors who buy shares of renewable energy companies, that 

is, stocks of firms with potentially higher volatility and probabilities of distress or default, may 

expect higher average returns for bearing this risk. Our study aims to shed light on this 

important question, and thoroughly examines the relationship between distress risk and 

returns in the renewable sector.  
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For other sectors, there has been controversy with regards to the relationship between 

distress risk and (expected) returns in equity markets arising from several prominent studies. 

While Vassalou and Xing (2004) found a positive cross-sectional relationship, other key 

studies, for example, Campbell et al. (2008) or Garlappi et al. (2008), suggest that distress risk 

is priced negatively; that is, stocks with higher distress risk typically earn lower average 

returns. In the literature on financial economics, this controversial relationship is often 

referred to as the “distress risk puzzle”. Recently, there has also been a growing interest in 

examining returns of renewable energy companies, as well as identifying potential drivers of 

these returns. See, for example, Henriques and Sadorsky (2008), Kumar et al. (2012), Sadorsky 

(2012a), Bohl et al. (2013) and Inchauspe et al. (2015). These studies typically focus on the 

relationship between renewable energy stocks, changes in the oil price, other equity indices 

and carbon prices. The authors report evidence for the impact of several of these variables 

on renewable energy stock prices and suggest that, in particular, returns of high technology 

and renewable energy stocks seem to be highly correlated. However, none of these studies 

has examined how distress risk is priced in the renewable energy sector. 

We contribute to the literature by combining work on the relationship between distress 

risk and equity returns with studies that focus on the driving factors of returns of renewable 

energy companies. In particular, we provide the first empirical study that investigates 

whether distressed renewable energy companies earn, on average, higher returns than 

renewable stocks of companies with low default risk. Thus, we examine whether, on top of 

the widely used Fama and French (1993) and Carhart (1997) risk factors, distress risk is priced 

in the renewable energy sector. 

1.4 Structure of the thesis 

This PhD thesis consists of three research papers which can be assigned to the research areas 

discussed above in the following way: 

 Structural models 

- Structural Credit Risk Models with Subordinated Processes, co-authored with 

Sergio Ortobelli and Rosella Giacometti 

 Scoring systems (credit-scoring models) 

- Prediction of U.S. Commercial Bank Failures via Scoring Models: The FFIEC 

Database Case, co-authored with Egon Kalotay and Stefan Trück 
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 Distress risk within an asset-pricing framework 

- Distress Risk and Stock Returns of U.S. Renewable Energy Companies, co-

authored with Stefan Trück. 
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Abstract 

In this paper, structural models based on the Merton framework are discussed. 

First, we observe that the classical distributional assumption of the Merton model 

is rejected. Second, we implement a structural credit risk model based on stable 

non-Gaussian processes as a representative of subordinated models in order to 

overcome some drawbacks of the Merton one. In particular, we propose to use 

option pricing model based on the stable Paretian distributions which generalises 

the standard Merton methodology. Finally, following the Moody’s KMV estimation 

methodology, we propose an empirical comparison between the results obtained 

from the classical Merton model and the stable Paretian one. In particular, we 

suggest alternative parameter estimation for subordinated processes, and we 

optimise the performance for the stable Paretian model. Our results suggest that 

probability of default (PD) is generally underestimated by the Merton model, and 

that the stable Lévy model is substantially more sensitive to the periods of 

financial crises. 

Keywords: Credit risk, Probability of default (PD), Merton model, Stable Paretian  

distributions, Subordinated processes
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2.1 Introduction 

Estimating a borrower’s risk level, namely the probability of default (PD), by assigning an 

appropriate PD, is a widely employed strategy by many financial institutions as well as the 

supervisory authorities. PD indicates a probability that a given counterparty will not be able 

to meet its obligations. The incorrect estimation of PD leads to, among other things, 

unreasonable ratings and incorrect pricing of financial instruments, and thereby it had been 

one of the causes of the recent global financial crisis (GFC). Undervaluation of the risk caused 

the collapse of the financial system which had been over-extended through credit derivatives 

on the global markets. PD is also a crucial parameter used in the calculation of economic and 

regulatory capital, under the Basel II and Basel III Accords for banking institutions. These 

reasons highlight how important the estimation of PD is and why it has been a significant 

research topic for a long time. 

The probability of default, as one of the key risk parameters in the IRB approach4, has 

many methodologies for its estimation. In general, we can classify the existing methodologies 

into three groups: structural models, reduced-form models, and credit-scoring (statistical) 

models. We discuss the first type of models in this paper. The structural approach to credit 

risk modeling was proposed by Robert Merton (1974) in his seminal paper on the valuation 

of corporate debt. Largely as a logical extension of the Black and Scholes (1973) option pricing 

framework, he introduced a model for assessing the credit risk of a company by characterising 

a company’s equity as a derivative on its assets. 

The Merton model requires a number of simplifying assumptions (the company can 

default only at debt’s maturity time T  but not before; the model is not able to distinguish 

between the different types of debt; constant and flat term structure of interest rates, etc.). 

Notwithstanding this fact, one of the most important drawbacks is an assumption that 

company value follows the log-normal distribution. It is well known that log-returns of 

equities are not Gaussian distributed, and several empirical investigations have shown that 

log-returns of equities present skew distributions with excess kurtosis which leads to a greater 

                                                           
4 The Internal Rating Based (IRB) Approach is linked to capital requirements under Basel II Accord. Under this 
approach, banks are allowed to use their internal estimates of borrower creditworthiness to assess credit risk in 
their portfolios, subject to strict methodological and disclosure standards, and translate the results into 
estimates of a potential future loss amount.  
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density in the tails, and that the normal distribution with a comparatively thinner tail simply 

cannot describe this phenomenon (see, for example, Mandelbrot (1963a, 1963b, 1967), Fama 

(1963, 1965a, 1965b), or Rachev and Mittnik (2000)). 

The main contribution of this paper is twofold. First, we introduce a structural credit risk 

model based on the stable Paretian5 distributions as a representative of subordinated models. 

Second, we show that it is possible to use this model in the Merton framework, and we 

propose an empirical comparison of the Moody’s KMV methodology applied to the Merton 

model and our subordinated one. In particular, we prove that the basic assumption of the 

Merton model is rejected, and consequently the log-returns of the companies’ asset values 

are not Gaussian distributed. For this reason, we discuss the possibility for using other 

subordinated processes to approximate the behaviour of the log-returns of the company 

value. Thus, we propose to use the Hurst et al. (1999) option pricing model based on the 

stable Paretian distributions which generalises the standard Merton methodology. 

The practical and theoretical appeal of the stable non-Gaussian approach is given by its 

attractive properties that are almost the same as the normal ones. As a matter of fact, the 

Gaussian law is a particular stable Paretian one, and thus the stable Paretian model is a 

generalisation of the Merton one. The first relevant desirable property of the stable 

distributional assumption is that stable distributions have a domain of attraction. The 

generalised central limit theorem for the normalised sums of i.i.d. random variables 

determines the domain of attraction of each stable law. Therefore, any distribution in the 

domain of attraction of a specified stable distribution will have properties close to those of 

the stable distribution. Another attractive aspect of the stable Paretian assumption is the 

stability property; that is, stable distributions are stable with respect to summation of i.i.d. 

random stable variables. Hence, the stability governs the main properties of the underlying 

distribution. In addition, in the empirical financial literature, it is well documented that the 

asset returns have a distribution whose tail is heavier than that of the distributions with finite 

variance. 

                                                           
5 Throughout this paper we use the ‘stable Paretian’ term interchangeably with ‘stable non-Gaussian’, ‘stable 
Lévy’, and ‘α-stable’ terms. 
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The idea of using subordinated processes goes back to the studies by Bochner (1955) and 

Clark (1973) who used it for investigation of evolution of stock prices. Subordinated stable 

Paretian processes then have been introduced in the seminal work of Mandelbrot and Taylor 

(1967). Stable laws have been applied in several financial sectors (see Rachev (2003) and 

Rachev and Mittnik (2000)). For these reasons, the stable Paretian law is the first candidate 

as a subordinated model for investigating credit risk modeling, and in this paper we discuss 

how to use the Hurst et al. (1999) stable subordinated model in the framework of structural 

credit risk models. In particular, as for the Merton model, we propose two different 

methodologies for the parameter estimation: the first is to generalise the maximum likelihood 

parameter estimation proposed by Duan (1994); the second is a generalisation of the Moody’s 

KMV methodology. 

This paper is organised as follows. In Section 2.2, we first provide literature review on 

structural credit risk models. In Section 2.3, we review the theory and the distributional 

assumptions of the Merton model. Subsequently, we introduce the credit risk models with 

subordinated processes and describe the Mandelbrot-Taylor distributional assumptions. 

Section 2.4 is devoted to the parameters estimation for both the Merton and the 

subordinated models. We characterise empirical data and make a comparison between the 

obtained results in Section 2.5. Finally, we provide a brief summary in Section 2.6. 

2.2 Literature review 

The first generation structural credit risk models are based on the Merton (1974) model.6 The 

basic idea behind this model is to treat a company’s equity and debt as a contingent claim 

written on the company’s asset value. If the asset value is lower than the amount of debt 

interest and principal, it is rational for the company to default on this debt. The payment to 

the debt holders at the maturity of debt is therefore the smaller of the face value of the debt 

or the market value of the firm’s assets. Following this basic intuition, Merton derives a 

formula for risky bonds to estimate the probability of default of a firm, and the yield gap 

                                                           
6 It is worth to mention here an important issue: the separation of disciplines. While in finance it seems that 
Merton (1974) is treated as a revelation, the accounting identity and interpretation of the debt and equity 
holders having claims on the company’s assets is an accounting truism known for over a century, and used in 
bankruptcy research reported in accounting journals since the early 1970s. For example, work by Balcaen and 
Ooghe (2006) provides an excellent overview of the classic statistical methodologies in bankruptcy prediction 
and their related problems. 
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between a risky bond and default-free bond. In addition to Merton (1974), models by Black 

and Cox (1976), Geske (1977), and Vasicek (1984) might be classified in the first generation 

structural credit risk models. These models try to improve the original Merton framework by 

relaxing one or more of the unrealistic assumptions (Laajimi (2012)). 

Black and Cox (1976) first describe some solution methods to be applied when the 

problem of valuation of contingent claims is discrete in time. They then examine the effects 

of safety covenants, subordination arrangements, and restrictions on the value of the security 

from the financing of interest and dividend payments. They find that in theory these 

provisions may have significant effects on the behavior of the firm’s securities, and may 

increase the value of the risky bonds. 

Geske (1977) modifies the original Merton framework by allowing the risky bond to have 

discrete interest payments. Although Black and Cox (1976) look at a similar problem, in their 

case, the interest payments are continuous in time and they state that in general, there is no 

closed form solution when the interest payments are discrete in time. However, Geske (1977) 

derives a general valuation equation for a risky coupon bond with an arbitrary number of 

discrete coupon payments and a principal payment using the compound option technique. 

He also discusses the effects of safety covenants, subordinated debt, and payout financing 

restrictions in the compound option case. In particular, the general valuation equation 

developed using the compound option technique is applied to the subordinated debt. 

In addition to the study by Geske (1977), Vasicek (1984) discusses the distinction between 

the long-term and short-term liabilities in valuing credit risk. However, the valuation of debt 

becomes more complicated when one considers a debt structure by priority and by term. 

When all debt matures at the same time, the senior bondholders need not to be concerned 

about any junior debt. Because, in this case, the senior bondholder faces a loss only if the 

firm’s higher priority liabilities are greater than the firm’s assets. However, if the maturity 

dates for the firm’s debt differ, the lender should not only be concerned about its claim but 

also other claims on the firm’s asset that mature earlier even if they are junior debt. He further 

points out that the size of the expected loss will depend on the market value of the firm’s 

assets, and also on that of its total maturing debt and higher priority debt. Moreover, Vasicek 

(1984) states that the long-term debt is as good as the firm’s capital. After describing the 

effects of debt structure by term on the probability of default and the expected loss, he gives 
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a method to find the price of a short-term loan. He argues that the price of a short-term loan 

can be calculated by the difference between the loan face value and the expected loss 

discounted at the risk-free interest rate. 

The second generation structural credit risk models then assume that a firm may default 

any time between the issuance and maturity of the debt, which relaxes another of the Merton 

assumptions, and specify a stochastic process for the evolution of the short-term rates 

(Laajimi (2012)). In this scenario, the default may occur whenever the market value of the 

firm goes below a lower limit determined by the lender and borrower in the debt contract. 

The second generation structural-form models include Kim et al. (1993) and Longstaff and 

Schwartz (1995). 

Kim et al. (1993) show that conventional contingent claims models are unsuccessful in 

generating the credit spreads observed empirically, even when excessive debt ratios and high 

level business risk parameters are used in numerical simulations. Due to this finding, they 

modify the conventional contingent claims model in two directions. First, they allow the 

bankruptcy to occur any time between the issuance and maturity of the bond. In particular, 

the issuing firm may default on its coupon payment obligations any time. Second, they relax 

the flat risk-free rate assumption by specifying a stochastic process for the evolution of the 

short rate. They also introduce in their study the call feature to examine its effect on the yield 

spreads between corporate and Treasury bonds. 

Longstaff and Schwartz (1995) then modify the first generation models in three 

directions: (i) default can arise any time between the issuance and the maturity of the bonds; 

(ii) interest rates are not flat. That is, there exists interest rate risk; (iii) strict absolute priority 

is violated. In contrast to Kim et al. (1993), this paper derives a closed form solution to the 

valuation equation of risky fixed-rate and floating-rate coupons in a model with complex 

capital structures. In an application of their model to value risky discount and coupon bonds, 

they show that credit spreads produced by the model are comparable in magnitude to actual 

spreads. Furthermore, the model implies that credit spreads may differ among firms with the 

same default risk. The main reason for this is that the value of these firms’ assets may have a 

different degree of correlation with interest rates. This implication of the model is helpful in 

explaining the observed differences in credit spreads among the similar rated bonds across 

various industries. 
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There are many other extensions of the Merton framework. Ju et al. (2005) consider a 

dynamic model of optimal capital structure where the firm financing decision is determined 

by a balancing between corporate taxes advantage and bankruptcy costs (trade-off theory). 

Collin-Dufresne et al. (2001) also consider a dynamic capital structure by modeling a mean-

reverting leverage ratio and stochastic interest rate. Acharya and Carpenter (2002) develop a 

model with both stochastic interest rate and endogenous defaults. The interest rate is 

modeled as a one-factor diffusion process and the issuer follows optimal call and default 

rules. Thus, they bridge the gap between endogenous default and stochastic interest rate 

literatures. 

Hackbarth et al. (2007) distinguish between bank and public debt. They assume that 

renegotiation through private workout is only possible for bank debt. This renegotiation 

possibility makes bank debt more attractive, but limits banks’ debt capacity to strong firms, 

that is, firms with high bargaining power. Bourgeon and Dionne (2007) extend the Hackbarth 

et al. (2007) model to allow banks to adopt a mixed strategy in which renegotiation is some-

times refused ex-post in order to raise debt capacity ex-ante. Carey and Gordy (2007) suppose 

that holders of private debt, for example, banks with strong covenants, control the choice of 

the bankruptcy threshold. Since the private debt is senior, the bank triggers bankruptcy only 

when the asset’s value falls below the face value of the bank’s debt. In accordance with their 

model, they find empirical evidence indicating that the recovery rate is sensitive to debt 

composition. 

Other extensions include Mauer and Triantis (1994), Childs et al. (2005), and Sundaresan 

and Wang (2007), who consider endogenous investment. The cash holding management 

policy is accounted for in Acharya et al. (2006), Anderson and Carverhill (2007), and Asvanunt 

et al. (2011). Sarkar and Zapatero (2003) consider mean reverting cash flows. Zhou (2001), 

Duffie and Lando (2001) and Giesecke and Goldberg (2004) add a jump component to the 

value process of assets allowing for “surprise” default at the cost of closed-form solution. 

Alternatively, Hackbarth et al. (2006) consider jumps in the cash flow process with regime 

change. Finally, Longstaff (1995), Morellec (2001), and Ericsson and Renault (2006) include a 

liquidity premium to price corporate debt, while Duffie and Lando (2001)  consider accounting 

information uncertainty. 
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It is also important to mention that the Merton framework is the underlying idea behind 

a commercial model originally developed by KMV which is nowadays referred to as the 

Moody’s KMV model (see Footnote 3 for a more thorough discussion of the founders of KMV 

and its acquisition by Moody’s Analytics). Distance-to-default, which is the normalised 

distance measured in standard deviations, of a firm’s asset value from its default threshold 

plays a central role in calculating the Expected Default Frequency (EDF) in this model (Laajimi 

(2012)). Sobehart et al. (2000) and Stein (2002), among other studies, examine the accuracy 

of the Moody’s KMV model. Both studies find the Moody’s KMV model to be incomplete. 

Kealhofer and Kurbat (2002) find opposite results, namely that the Moody’s KMV model 

captures all the information contained in agency ratings migration and accounting ratios. This 

is not really surprising as Kealhofer is one of the founders of this model and logically supports 

its usage. Crosbie and Bohn (2003) find that combining market prices and financial statements 

gives more effective default measurement. The authors empirically test the predictive power 

of EDFs derived from the KMV methodology versus credit ratings, and show that the model 

based on EDFs yields a better power curve, i.e. better forecasting results. 

The accuracy of default forecasting of the Moody’s KMV model is studied in Bharath and 

Shumway (2008). The authors compare the accuracy of this model with simpler alternative. 

They find that implied default probabilities from credit default swaps and corporate bond 

yield spreads are only weakly correlated with Moody’s KMV default probabilities. The authors 

conclude that this model does not provide a sufficient statistic for default, which can be 

obtained using relatively naïve hazard models. Hillegeist et al. (2004) and Du and Suo (2007) 

compare the Moody’s KMV model to other models and conclude that it does not provide 

adequate predictive power. However, Duffie et al. (2007) discover a significant predictive 

strength over time within the Moody’s KMV model. 

Despite the fact that there have been many various studies which tried to improve the 

original Merton work by relaxing one or more of the unrealistic assumptions (valuation of 

contingent claims in continuous time; the risky bond having continuous interest payments; 

the company can default only at debt’s maturity time T  but not before; the model is not able 

to distinguish between the different types of debt; constant and flat term structure of interest 

rates, etc.), none of these studies really looked at the assumption of the underlying 

distribution for the company value – i.e. the log-normal distribution. However, it is well known 
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that log-returns of equities are not normally distributed, and several empirical investigations 

have shown that log-returns of equities exhibit skewness and excess kurtosis which leads to 

a greater density in the tails. 

2.3 Merton and subordinated credit risk models 

The core concept of the Merton (1974) model is to treat a company’s equity and debt as a  

contingent claim written on the company’s asset value. In this framework, the company is 

considered to have a very simple capital structure. It is assumed that the company is financed 

by one type of equity with a market value tE  at time t  and a zero-coupon debt instrument at 

t   tD  with a face value of L  maturing at time T 7. The exercise price of a European call 

option is defined as the value L . Let tA  be the company’s asset value at time t . Naturally, 

the following accounting identity holds for every time point: 

.t t tA E D                                                                  (1) 

In the Merton framework the value of company’s equity at maturity time T  is given by 

 max ,0 .T TE A L                                                            (2) 

2.3.1 The Merton-Black-Scholes distributional assumptions 

Under the Merton model, the asset’s value is assumed to follow a geometric Brownian motion 

(GBM) in the following form: 

,t t t tdA A dt A dW                                                            (3) 

where   is the expected return (drift coefficient),   is the volatility (diffusion coefficient), 

both unobserved, and tW  is the normal variable  1,0N . Using Ito’s lemma, we can obtain 

the solution of (3) as follows: 

                                                           
7 Generally, in a credit risk model framework we assume one-year time horizon for debt maturity and subsequent 
estimation of PD. One year is perceived as being of sufficient length for a bank to raise additional capital on 
account of increase in portfolio credit risk (if any). 
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where  tT   is a remaining maturity. 

In accordance with the Black and Scholes (1973) option pricing theory (see Footnote 2 for 

closer discussion on relation between Black and Scholes and Merton work), the Merton model 

stipulates that the company’s equity value satisfies the following equation for pricing the 

European call option within a risk-neutral framework: 
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 2 1 ,d d T t                                                              (7) 

r  is the risk-free interest rate8 and    is the cumulative distribution function of the 

standard normal variable. Equation (7) is referred to as the distance-to-default (DD) by 

Moody’s KMV. The larger the number in DD is, the less chance the company will default.  

We can estimate PD by rearranging (4) as follows: 
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8 The Treasury bill yields are commonly used as the risk-free interest rate r . Their rates are considered an 
important benchmark because treasury securities are backed by the full faith and credit of the U.S. Treasury. 
Therefore, they represent the rate at which investment is considered risk-free. 
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where   is the probability density function of a standard normal variable. Note that unlike 

(8), (5) is not a function of  , but it is a function of r  (we would get PD under the risk-neutral 

probability measure). When we estimate PD, the risk-free interest rate r  has to be replaced 

with real company drift  , since this step has nothing to do with option pricing. Thereby, the 

default probability of the company under the objective probability measure is given by  
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                                      (9) 

Further discussion on this topic can be found in Delianedis and Geske (2003) who showed 

that risk-neutral PDs can serve as an upper bound to objective PDs. 

2.3.2 Credit risk models with subordinated assumptions 

Using subordinated processes, we are usually able to capture empirically observed anomalies 

which are presented in the evolution of return processes over time. That is, we substitute the 

physical (calendar) time with a so-called intrinsic (operational) time which provides 

distribution tail effects often observed in the market - see Hurst et al. (1999) and Rachev and 

Mittnik (2000). Thus, if   , 0W W t t   is a stochastic process and   , 0T T t t   is a 

non-negative stochastic process defined on the same probability space and adapted to the 

same filtration, a new process      , 0Z Z t W T t t    may be formed, and it is defined as 

subordinated to W  by the intrinsic time process T . Next, we will suppose that W  is a standard 

Brownian motion. In this case, if the intrinsic time process T  is the deterministic physical 

time, that is,  T t t , we obtain the classical lognormal model (see Osborne (1959)). 

Typically, subordinated models with random intrinsic time are leptokurtic with heavier tails 

compared to the normal distribution. Feller (1966) showed that if the intrinsic time process 

has non-negative stationary independent increments, then the subordinated process Z  also 

has stationary independent increments. 
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Generally, we assume frictionless markets, where the log-price process Z  is 

subordinated to a standard Brownian motion W  by the independent intrinsic time process 

T . Therefore, we model the assets price process tA  (the company’s asset value in our case) 

by using a stochastic equation as follows:      

               
0 0 0

0 exp ,
t t t

t t t
A t A t s ds s dT s s dW T s                       (10) 

where the drift in the physical time scale  s , the drift in the intrinsic time scale  s , and 

the volatility  s  are generally assumed to be constant. The appeal of processes 

subordinated to a standard Brownian motion W  by an intrinsic time process T  with non-

negative stationary independent increments, is also due to the option pricing formula which 

follows from the classical Black-Scholes one in a frictionless complete market and a risk-

minimising strategy in incomplete markets.9 The stable subordinated model in Hurst et al. 

(1999) uses the unique continuous martingale that makes sense in a discrete setting, but a 

priori it is not derived from a risk-minimising strategy even if the markets are incomplete (see 

Rachev and Mittnik (2000)). Following the same notation used in the Merton framework, the 

value of a European call option at time t  (the value of a company’s equity) with exercise price 

L  (face value of a zero coupon debt instrument) and time to maturity t 10, is given by 
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9 In incomplete markets, there exist non-redundant claims carrying an intrinsic risk. In order to evaluate a 
contingent claim, a risk-minimising strategy is often applied (see Hofmann et al. (1992), Follmer and Sondermann 
(1986), and Follmer and Schweizer (1993)). 
10 Here, we change the notation of maturity time from T  (used in the Merton framework) to t , since T denotes 

the intrinsic time process in the subordinated option pricing models. 
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    is the cumulative distribution function of the standard normal variable, YF  is the 

cumulative distribution function of a random variable    
0

2
t

t
Y s dT s  , and 

 
0

0
, , exp

t

r t t
t

L L r s ds
 

  
   is the discounted exercise price (the right continuous with left-

hand limits (RCLL) time-dependent function  tr  defines the short term interest rate). 

Considering a continuous distribution of the random variable Y  with density function Yf , 

 xF  can now be numerically integrated over the finite interval  1,0  using the 

transformation  
3

1y u u


   (see Rachev and Mittnik (2000)); that is, 
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Moreover, as for the classical Black-Scholes model, in the case of subordinated models, 

we can also monitor the variation in the derivative price with respect to the parameters that 

enter into the option formula (the Greeks). For our purposes, it is sufficient to define delta, 

which is given by 
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Analogously to the Merton model, the probability of default can be estimated under the 

risk-neutral probability measure as follows: 
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Recall that under the risk-neutral measure the stationary increment    tZstZ   has 

mean 0, sZ  and variance 2

,

2

,  sTsZ  , where   and 
sT ,  are, respectively, the volatility 

and the mean of the increment of the stationary process T  when they exist (see Hurst et al. 

(1999)). The skewness coefficient of this increment is zero (models are symmetric around the 

zero mean). Kurtosis of the subordinated models is defined as 
sT

sT

sZk
,

2

,

,

1
3




  for all 0s  

(where 2

,sT  is the variance of the random variable    tTstT   when it exists); that is, 

subordinated models with intrinsic random time are leptokurtic. Therefore, the model we 

consider in the following presents heavier tails and higher peaks around the origin compared 

to a normal distribution. 

2.3.3 The Mandelbrot-Taylor distributional assumptions 

Mandelbrot (1963a, 1963b, 1967) and Mandelbrot and Taylor (1967) have proposed the 

stable Paretian distribution to estimate the log-returns. An  -stable distribution 

  ,,S  depends on four parameters: the index of stability  2,0  ( 2  in the 

Gaussian case), the skewness parameter  1,1 , the scale parameter   ,0 , and the 

location parameter   , , see Samorodnitsky and Taqqu (1994) for further details on 

stable distributions. Mandelbrot and Taylor (1967) supposed that the intrinsic time process 

T  has stationary independent increments as follows: 

     2/
/2 ,1,0 ,

d

T t s T t S cs 
                                                 (16) 

for all 0, ts ,  2,0 , and 0c . Here, the index of stability is 2/ ; the scale parameter 

is 2/cs ; the stable skewness is 1; and the location parameter is zero. Under the Mandelbrot-
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Taylor assumptions, the subordinated process  ( ) ln ,thZ t A  is a symmetric  -stable Lévy 

motion with stationary independent increments as follows: 

        1/ln / ,0,0 ,
d

th t s hZ t s Z t A A S s 
                                   (17) 

for all 0, ts , where 
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                                                        (18) 

If we consider the constant scale parameter  , then the random variable Y  in (11) is as 

follows: 

    2
0 ,Y T t T t V                                                    (19) 

where  
2/2

0c t t
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it follows that    1/ ,0,0
d

Z t S t 
  . Thus, we can estimate the index of stability   and the 

scale parameter   using the maximum likelihood method (see Rachev and Mittnik (2000) 

and the references therein). Moreover, considering the density function Vf  of the 2/  stable 

random variable V , we obtain the following expression for  xF : 
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The probability of default under the risk-neutral probability measure is then given by 
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                 (22). 

2.4 Estimation methodology 

While for the Merton model there are just three parameters necessary for the estimation of 

default probabilities — namely, the company’s market value tA  at time t , the asset drift  , 

and the asset volatility   — in the case of the subordinated models, we have to estimate the 

company’s market value at time t  and the parameters of the subordinated process. Clearly, 

different distributional hypotheses of the subordinated model could require the estimation 

of several different parameters. For example, in the  -stable Lévy process, once the index of 

stability   is estimated, the scale parameter   is the unique parameter that should be 

estimated since the skewness parameter and the location parameter have been fixed equal 

to zero in the model.  

2.4.1 Parameter estimates for the Merton model 

The unknown parameters of the Merton model come from (5). Since the market value of 

assets is a random variable and cannot be observed directly, it is impossible to directly 

estimate the drift and the volatility in a movement of log-returns on tA . Therefore, these 

three parameters have to be estimated in a different way. In fact, we use the observed market 

value of equity tE  along with (5) to estimate them indirectly. 

Generally, the starting point for the two iterative methodologies proposed in literature 

(the maximum likelihood estimation method and the Moody’s KMV method) is based on the 

so-called calibration method (see Bluhm et al. (2003), Crosbie and Bohn (2003), Bruche 

(2005), or Ericsson and Reneby (2005)), which finds two unknown parameters ( tA  and  ) by 

solving the system of two equations as follows: 
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where E  is the standard deviation of the equity log returns   htth EE 1/ln 
. Nevertheless, 

this method does not estimate asset drift  ; it determines the risk-neutral probability of 

default using the risk-free asset r . As a consequence, Jovan (2010) showed that this method 

provides different estimates of PDs for the same obligors compared to the two following 

iterative methodologies: the maximum likelihood estimation method, and the Moody’s KMV 

method. 

Maximum likelihood estimation (MLE) method 

This methodology was initially proposed by Duan (1994) and enhanced later by Duan et al. 

(2004).  The time series of daily market value of equity tE  is equal to n   days, where 

 0, ... ,t n . In Duan et al. (2004) the time step h  is introduced. Typically, the value of this 

coefficient for daily data would be h  = 1/250. The methodology is iterative and the following 

log-likelihood function for the estimation of   and   of model (3), where  0, ... ,th nh , is 

defined on the basis of observed values of tE  as follows:  
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where 
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and where  ˆ ˆ ˆ,    and 
thÂ  is estimated from (5). To launch the iteration process we could 

insert as initial values the values obtained by solving the system (23). Despite the fact that 

these estimates are not the best ones from a solution point of view, they can be good enough 

as the initial values for different kinds of iterative procedures. Each iteration produces a time 

series of daily values  i
thÂ , where the debt maturity ranges over   TthT 1 . We 
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maximise (24) to obtain estimates of the unobserved asset drift and volatility )(ˆ i . Since this 

is an iterative procedure, we use the new estimates obtained from (24) and the new market 

value of assets obtained from (5) for maximising (24) once again. The procedure is repeated 

until the differences in )(ˆ i  and )(ˆ i  between the successive iterations are sufficiently small 

(i.e., until ( 1) ( ) ( 1) ( )ˆ ˆ ˆ ˆi i i i          for a given small  ). 

Duan et al. (2004) found that the Moody’s KMV method provides the same estimates as 

the MLE method, even though they state that the latter method is preferable for inference 

statistics. 

Moody’s KMV methodology 

This iterative procedure follows a disclosed part of Moody’s KMV methodology for a 

calculation of Expected Default Frequency (see Duan et al. (2004), Duffie et al. (2007), Crosbie 

and Bohn (2003), or Vassalou and Xing (2004)). This method is quite similar to the MLE 

method. The unique difference is that in order to obtain estimates of the asset drift and 

volatility, instead of maximising the log-likelihood function, we have explicit formulas. 

The first step is exactly the same, calculation of the daily value of  i
thÂ ,  0, ... ,th nh  

from (5). As the initial values can be used again the estimates obtained by solving the system 

(23). Then, the arithmetic mean of the sample is given by 
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where 
tR̂  is defined in (25). Another step is the calculation of estimates of the asset volatility 

̂  and the drift ̂  of model (3), which are defined as follows: 
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Since this is again an iterative procedure, we use the new estimates obtained from (27) 

to calculate  1i

thA . The procedure is repeated until the differences in ̂  and ̂  among 

successive iterations are sufficiently small. 

It is worth mentioning that the Merton model with parameters estimated according to 

the methodology described above differs from the one actually employed by Moody’s KMV. 

The Merton model performance relies substantially on the simplifying assumptions 

facilitating its implementation. These simplifying assumptions are not really realistic in 

practice, though; that is why Moody’s KMV does not rely solely on them. Indeed, the founders 

of KMV, Oldrich Vasicek and Stephen Kealhofer, developed a so-called Vasicek-Kealhofer (VK) 

model (see Arora et al. (2005)) to estimate the distance-to-default of an individual company. 

One of the most important differences is that while we use the cumulative normal distribution 

to convert distances-to-default into “real” default probabilities in the classical Merton model, 

Moody’s KMV uses its large historical database to estimate the real empirical distribution of 

distances-to-default, and it calculates default probabilities based on that distribution. 

2.4.2 Parameter estimates for subordinated models 

We can extend the estimation methodologies proposed for the Merton model in order to 

estimate the parameters of a subordinated model. 

Maximum likelihood estimation (MLE) method 

Obviously, in order to use this method, we have to revise (24). In fact, (24) can be derived 

from a more general formula that can be used for the derivation of log-likelihood functions 

for any subordinated model. This formula is defined in the following way: 

        
1 1 1

ˆ ˆ ˆˆ; ln ln ln ,
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th th Z t th E

t t t

L A E f R A
  

                           (28) 

where ̂  represents the set of the parameters in the density function  tZ Rf ˆ  of the   

stationary increment       1ln / 1th t hA A Z t Z t    , 
thÂ  is estimated from (11), 

tR̂  is 

defined in (25), and E  is given by (14). The initial values  1ˆ
thA  of the iteration process could 

be the ones obtained by solving the system (23). The procedure continues iteratively till the 
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distance )()1( ˆˆ ii    is sufficiently small. Typically, there are two problems regarding this 

maximum likelihood method. The first difficulty is related to computation time. This method 

generally presents more local optima, and it can be very time-consuming to reach a global 

optimum. Second, it is often very problematic to implement this methodology since many 

subordinated models do not have close form equations for the density function Zf . 

An extended Moody’s KMV methodology 

As for Moody’s KMV iterative methodology, we have to first compute the daily value of  i
thÂ , 

 0, ... ,th nh  solving (11), then the other parameters of the subordinated process )1(ˆ i  are 

estimated on the series     ( )
( 1)

ˆ ˆˆ ln /
i ii

t th t hR A A   considering the distributional assumption of 

the subordinated model. The procedure continues iteratively till the distance )()1( ˆˆ ii    is 

sufficiently small. In particular, for the  -stable Lévy model, we first suggest determination 

of the index of stability  . Second, the unique parameter that must be estimated is the scale 

parameter  , since the skewness parameter and the location parameter are fixed equal to 

zero. Clearly, even in this case, we need to insert some initial values  1ˆ
thA  of the iteration 

process that could be the ones obtained by solving the system (23). Moreover, as for the 

Merton model (see Duan et al. (2004)), the extended Moody’s KMV methodology provides 

the same estimates as the MLE method when the parameter estimates )1(ˆ i  are the MLE on 

the series )(ˆ i

tR . 

2.5 Application and results 

In this section, we first describe the data used in the computational analysis and apply the 

Merton model. Subsequently, we test the distributional assumption of this model. Finally, we 

apply the stable Lévy model and compare obtained results with the Merton ones. We use 

Moody’s KMV and the extended Moody’s KMV methodology described in Section 2.4.1 and 

2.4.2, respectively, while estimating parameters of the models. 

To apply the above-mentioned models to a particular company, we need the market 

value of equity tE , the face value of the zero-coupon debt instrument L , and the risk-free 
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interest rate r . We used the 13-week Treasury bill for the risk-free interest rate. Thomson 

Reuters Datastream dataset was used to obtain the market value of equity and the face value 

of the zero-coupon debt instrument. Our sample contains 24 U.S. companies with strong 

capitalisation in the U.S. market.11 Our data spans the period from January 3, 2000, to 

December 30, 2011. For the market value of equity, we used the consolidated market value 

of a company which is defined as a share price multiplied by the number of ordinary shares 

on issue. Finally, for the face value of the zero-coupon debt instrument, we used the sum of 

the short-term debt, current portion of the long-term debt, and half of the long-term debt.12 

While the short-term debt and current portion of the long-term debt represent that portion 

of the debt payable within one year, including the current portion of the long-term debt and 

sinking fund requirements of preferred stock or debentures, the long-term debt represents 

all interest-bearing financial obligations excluding amounts due within one year. 

2.5.1 Analysis of the distributional assumptions of the company value log-returns 

The Merton model’s distributional assumption implies that the unobservable company value 

log-returns are Gaussian distributed. In order to test this assumption, we use the daily log-

returns of the companies’ asset values obtained from both the Merton model and the alpha 

stable Lévy model, from January 3, 2000, to December 30, 2011 (for a total of 3,157 daily 

values). 

First of all, we test the Gaussian and the stable non-Gaussian hypotheses on the company 

value log-returns obtained from the Merton model. Thus, we compute different statistics 

                                                           
11 The companies are (1) Boeing, (2) Cisco Systems, (3) Chevron, (4) E. I. du Pont de Nemours, (5) Walt Disney, 
(6) Home Depot, (7) Hewlett-Packard, (8) IBM, (9) Intel, (10) Johnson & Johnson, (11) Coca Cola, (12) McDonalds, 
(13) 3M, (14) Merck & Co., (15) Microsoft, (16) Pfizer, (17) Procter & Gamble, (18) AT & T, (19) UnitedHealth 
Group, (20) United Technologies, (21) Verizon Communications, (22) WalMart Stores, (23) Exxon Mobil, and (24) 
Travelers Companies. While the set of liquidly traded U.S. firms may be much larger, in our analysis we decided 
to analyse 24 companies from the Dow Jones Industrial Average index as these companies presumably should 
have very low PD. Our analysis aims to investigate whether there will be substantial differences in estimated 
PDs obtained from the two models even for these companies. The applied sample of 24 companies from various 
industries is considered to be sufficient for this task.   
12 There needs to be chosen an amount of the debt that is relevant to a potential default during a one-year 
period. Total debt is inadequate when not all of it is due in one year (a one-year time horizon is assumed for 
debt maturity and subsequent estimation of PD), as the firm may remain solvent even when the value of assets 
falls below its total liabilities. Using the short-term debt for the default barrier would be often wrong, for 
instance, when there are covenants that force the company to service other debts when its financial situation 
deteriorates. Prior studies generally choose the short-term debt plus half of the long-term debt for the default 
barrier (see Bharath and Shumway (2008), Vassalou and Xing (2004), or Duffie et al. (2007)). 
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every day on the last 250 daily company values (1 year of daily values). Table 1 reports the 

average among all the firms and for all the ex-post period of different statistics applied to 

company value log-returns to test the Gaussian hypothesis and the stable non-Gaussian 

hypothesis. In particular, we consider the average of the following statistics: the mean, the 

standard deviation, the skewness      
1.5

3 2
( ) / ( )E X E X E X E X  , the kurtosis 

     
2

4 2
( ) / ( )E X E X E X E X  , the percentage of rejection of the Gaussian hypothesis 

using the Jarque-Bera (JB) test at the 5% significance level (see Jarque and Bera (1987)), the 

stable index of stability “alpha”, the stable index of skewness “beta”, the stable scale 

parameter “sigma”, the stable location parameter “mu”, and the percentage of rejection of 

the stable Paretian hypothesis using the Kolmogorov-Smirnov (KS) test13 at the 5% 

significance level.  

The results reported in Table 1 suggest that: (1) the returns exhibit heavy tails since the 

average of the stability parameters alpha is less than 2, and the average of kurtosis is much 

higher than 3; (2) the returns are slightly asymmetric since the average of the skewness 

parameter and the average of the stable parameter beta are different from zero; and (3) the 

Gaussian hypothesis is almost always rejected for all companies while the stable Paretian 

hypothesis is rejected only for four companies of the considered sample. 

Table 1 

Descriptive statistics for the log-returns of the companies’ asset values 

mean 0.0000   alpha 1.7089 

st.dev. 0.0196   beta 0.0062 

skewness -0.6140   sigma 0.0106 

kurtosis 33.4351   mu 0.0001 

JB test (95%) 96.77%   KS test (95%) 16.56% 

The table reports the average of chosen statistics among 24 companies 

in our sample, applied to the daily log-returns of the companies’ asset 

values obtained from the Merton model. We also test the Gaussian 

hypothesis using the Jarque-Bera (JB) test and the stable non-Gaussian 

hypothesis using the Kolmogorov-Smirnov (KS) test. Particular 

statistics are expressed in decimal numbers, whilst JB and KS tests 

denote the percentage of the hypotheses rejection. 

                                                           
13Note that as an alternative, one could also apply an Anderson-Darling test which places more weight on 
observations in the tail of the distribution.  
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Next, using a Kolmogorov-Smirnov (KS) test (at the 5% significance level) we test the 

different distributional hypothesis for the log-returns of the companies’ asset values 

obtained from the stable Lévy model. We observe almost the same percentage of rejection 

(16.55%) as we get from the Merton model (16.56%). Similarly, applying the Jarque-Bera (JB) 

test we get 98.44% of rejection of the Gaussian hypothesis from the stable Lévy model 

(compared to 96.77% obtained from the Merton model). From this preliminary analysis, we 

deduce that the classical distributional hypothesis of the Merton model is almost never 

verified. Moreover, the stable non-Gaussian hypothesis appears more realistic than the 

Gaussian one. Therefore, it is appropriate to apply the stable Lévy model which is able to 

capture empirically observed anomalies that contradict the classical normality assumption. 

The results we get here are not a real surprise, since the stable Paretian laws generalise the 

Gaussian one.  

 

2.5.2 PD estimates from the Merton model 

We applied Moody’s KMV methodology14 to estimation of the parameters for the Merton 

model and subsequently used these parameters for calculation of the probability of default 

for a given company. The results of the empirical analysis are reported in Figure 1 and  

Table 2. In Table 2, there are listed average values of the ratio between the debt and the 

companies’ asset values, and average values of PDs and distances-to-default obtained from 

the Merton model. In particular, we observe that when the average ratio between debt and 

company value is high, there is generally an analogous higher probability of default and a 

lower distance-to-default. This aspect could be a problem when using this model for 

calculating the risk-neutral and real default probabilities of a bank, since financial institutions 

have significantly greater debt compared to other companies. Therefore, the Merton model 

is not plausible for the estimation of PDs of financial institutions unless some adjustments are 

made.15  

Figure 1 describes the evolution of the PDs on a monthly basis. These probabilities are 

almost null during the whole decade. However, we can distinguish three periods of increased 

                                                           
14 We perform our analysis using MATLAB. 
15 For example, Byström (2006) shows that one of the main implications of his simplified “spread sheet” version 
of the Merton model is the fact that the default probability’s insensitivity to the leverage ratio at high levels of 
debt makes it possible to apply his model to banks and other highly leveraged firms. 
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PDs for some companies from our sample. First, at the beginning of the century after the high-

tech crisis and September 11, 2001; second, during the subprime crisis in 2008 and 2009; and 

finally third, during the country credit risk crisis in 2011. During the first period and the 

country credit risk crisis, the most evident grown of PD is due to the Hewlett-Packard firm (its 

PD increased up to 2.1% in the first period and to 1% in the last one). The period with more 

significant growth in PDs is dated from September 2008. This might be easily explained by the 

subprime mortgage crisis that reached a critical stage during the first week of September 2008 

and was characterised by severely contracted liquidity in the global credit markets and 

insolvency threats to investment banks and other institutions. Beginning with the bankruptcy 

Table 2 

Outcomes from the Merton model 

Company 
Average ratio Average Average 

(L/A) PD DD 

(1) Boeing 0.1308 0.000830 8.9020 

(2) Cisco Systems 0.0262 0.000000 20.6010 

(3) Chevron 0.0606 0.000000 13.8524 

(4) E. I. du Pont de Nemours 0.1169 0.000845 9.9706 

(5) Walt Disney 0.1305 0.000083 8.5109 

(6) Home Depot 0.0599 0.000002 11.8297 

(7) Hewlett-Packard 0.0914 0.000511 8.3242 

(8) IBM 0.1032 0.000000 11.4799 

(9) Intel 0.0098 0.000000 14.2761 

(10) Johnson & Johnson 0.0330 0.000000 22.8226 

(11) Coca Cola 0.0614 0.000000 17.5142 

(12) McDonalds 0.1012 0.000015 12.2037 

(13) 3M 0.0494 0.000000 14.9342 

(14) Merck & Co. 0.0610 0.000037 11.1672 

(15) Microsoft 0.0068 0.000000 21.4008 

(16) Pfizer 0.0813 0.000019 11.0915 

(17) Procter & Gamble 0.1010 0.000000 13.9819 

(18) AT&T 0.1607 0.000013 8.4346 

(19) UnitedHealth Group 0.0925 0.002424 10.2912 

(20) United Technologies 0.0798 0.000001 12.1045 

(21) Verizon Communications 0.2106 0.000106 8.8750 

(22) Wal Mart Stores 0.0955 0.000000 12.4895 

(23) Exxon Mobil 0.0207 0.000000 18.0516 

(24) Travelers Companies 0.1291 0.000035 8.9095 

The table reports average monthly values of the ratio between the debt and the 

company value  /L A , default probabilities (PD), and distances-to-default (DD) 

obtained from the Merton model for 24 companies in our sample. All values are 

expressed in decimal numbers. Considered time period is from December 2000 to 

December 2011. 
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of Lehman Brothers on September 14, 2008, the financial crisis entered an acute phase 

marked by the failures of prominent American and European banks and efforts by the 

American and European governments to rescue distressed financial institutions. Among the 

companies from our sample that were most affected were UnitedHealth Group, E. I. du Pont 

de Nemours, and Boeing. UnitedHealth Group is a care company which offers a spectrum of 

products and services. This company suffered a jump in PD from 0% in May 2008 up to 14.6% 

in November 2008. E. I. du Pont de Nemours was the world’s third largest chemical company 

based on market capitalisation in 2009. This company’s PD increased from 0% in October 2008 

to 8.1% in February 2009. Finally, Boeing, as a representative of aerospace industry, suffered 

Figure 1 

The Merton model – monthly PDs 

 

The figure plots the evolution of monthly PDs obtained from the Merton 

model for 24 companies in our sample. 
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an increase in PD from 0% in October 2008 to 6.2% in February 2009. This phase of financial 

crisis lasted approximately one year and the values of PD of observed companies went back 

to zero by October 2009. 

2.5.3 PD estimates from the stable Lévy model 

In order to evaluate the stable Lévy model, we estimate the parameters using the extended 

Moody’s KMV methodology. First, we calculate the indices of stability (alphas) on the daily 

log-returns of the companies’ asset values, obtained by the stable Lévy model, which are 

reported in Table 3. To evaluate the stable parameters and the distributions of subordinator 

Vf  in (21), we perform a maximum likelihood estimator that uses the fast Fourier transform  

Table 3 

Outcomes from the stable Lévy model 

Company Alpha 
Average ratio Average Average 

(L/A) PD DD 

(1) Boeing 1.6619 0.1308 0.0149 8.9153 

(2) Cisco Systems 1.5756 0.0262 0.0116 20.4104 

(3) Chevron 1.6671 0.0606 0.0067 13.7868 

(4) E. I. du Pont de Nemours 1.6575 0.1169 0.0137 10.0480 

(5) Walt Disney 1.5680 0.1305 0.0265 8.5155 

(6) Home Depot 1.6101 0.0599 0.0173 11.9741 

(7) Hewlett-Packard 1.5850 0.0914 0.0253 8.3069 

(8) IBM 1.6110 0.1032 0.0120 11.5404 

(9) Intel 1.6411 0.0098 0.0131 14.3321 

(10) Johnson & Johnson 1.5803 0.0330 0.0068 22.9854 

(11) Coca Cola 1.5505 0.0614 0.0120 17.6094 

(12) McDonalds 1.7570 0.1012 0.0032 12.3247 

(13) 3M 1.5590 0.0494 0.0136 14.9028 

(14) Merck & Co. 1.5909 0.0610 0.0150 11.1738 

(15) Microsoft 1.5459 0.0068 0.0082 21.1204 

(16) Pfizer 1.6691 0.0813 0.0085 11.2040 

(17) Procter & Gamble 1.4745 0.1010 0.0204 13.9846 

(18) AT&T 1.5985 0.1607 0.0176 8.5163 

(19) UnitedHealth Group 1.5839 0.0925 0.0256 10.3436 

(20) United Technologies 1.6064 0.0798 0.0138 12.0951 

(21) Verizon Communications 1.6645 0.2106 0.0114 8.9470 

(22) Wal Mart Stores 1.6398 0.0955 0.0080 12.5641 

(23) Exxon Mobil 1.6494 0.0207 0.0060 18.1822 

(24) Travelers Companies 1.4659 0.1291 0.0464 8.9419 

The table reports the indices of stability (alphas) and average monthly values of the ratio between the 

debt and the company value  /L A , default probabilities (PD), and distances-to-default (DD) obtained 

from the stable Lévy model for 24 companies in our sample. All values are expressed in decimal 

numbers. Considered time period is from December 2000 to December 2011.  
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Figure 2 

The stable Lévy model – monthly PDs 

 

The figure plots the evolution of monthly PDs obtained from the stable 

Lévy model for 24 companies in our sample. 

(see Rachev and Mittnik (2000) or Nolan (1997)). The estimated index of stability is 

maintained constant for each firm and for all the period of analysis. Clearly, we could have 

adapted the model more dynamically, requiring that the index of stability changes periodically 

with the scale and location stable parameters. However, this would require knowledge of the 

subordinator density distribution Vf  that changes with the index of stability. Since this 

distribution  is  obtained by  inverting  the  Fourier transform, the  iterating procedure  of  the 

Moody’s KMV methodology would require too much computational time in that case. In Table 

3, there are also listed the average values of the ratio between the debt and the companies’ 

asset values and average values of PDs and distances-to-default obtained from the stable Lévy 

model. Figure 2 then describes the evolution of PDs on a monthly basis.  
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2.5.4 Comparison of the Merton and stable Lévy models 

Comparing the outcomes of the two models, we observe that there are not very large 

differences between the companies’ values obtained by the stable Lévy model and by the 

Merton model. This finding is not very surprising, as we could not have expected strong 

differences in these values that represent an unobservable objective variable whose big 

differences could not be easily justifiable. This observation implies that there are not large 

differences between the two models with respect to: (1) the average ratio between the debt 

and the company value; (2) the average distance-to-default. 

Figure 3 reports the main differences between the two models for those companies that 

present the highest peaks in default probabilities (E. I. du Pont de Nemours, Walt Disney, 

Hewlett-Packard, UnitedHealth Group, and Travelers Companies). In particular, Figures 3(a) 

and 3(b) show that the main differences in the ratio between the debt and the company value, 

and the debt and the distances-to-default, respectively, are concentrated during the high 

volatility period after September 11, 2001. However, this difference (as remarked previously) 

is almost null during the big crisis following the Lehman Brothers bankruptcy. Figures 3(c) and 

3(d) show default probabilities of chosen companies during “calm” periods and during periods 

of the crisis, respectively. In this case, we observe very big differences between estimated 

PDs. On the one hand, the probabilities of default computed by the Merton model are almost 

null during the “calm” periods, and increase during one or two months of the crisis; on the 

other hand, the default probabilities computed by the stable Lévy model are never null during 

the “calm” periods and become very high during the months of the crisis and in the close 

subsequent periods. 

In particular, we observe the biggest difference for the Travelers Companies for which 

the Merton model does not register any significant difference in the default probabilities, 

while the stable Lévy model shows the highest values. This difference is essentially caused by 

the combination of two aspects. First, the index of stability of the Travelers Companies is very 

small, which means very fat tails with high probability of losses. Second, the ratio between 

the debt and the Travelers Companies assets value is high. This analysis confirms the previous 

finding that the average default probabilities obtained by the stable Lévy model are much 

higher than those obtained by the Merton model. This is not a real surprise, because while 
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the probability tails of the Gaussian distribution tend to zero exponentially, the probability 

tails of stable non-Gaussian distribution tend to zero in polynomial order. Therefore, the 

probability of losses calculated by the stable Lévy model is much higher than the probability 

of losses obtained from the Merton one. This effect is also emphasised in Figure 2 that reports 

the evolution of default probabilities during the decade 2001–2011. It shows much higher 

sensitivity  of  these  probabilities  for  all  companies  with  respect  to  the  periods  of  crises. 

Figure 3 

Differences between the models for chosen companies 

 

 

 

 

The figure plots the main differences between the Merton and stable Lévy model for companies that 

present the highest peaks in default probabilities (E. I. du Pont de Nemours, Walt Disney, Hewlett-Packard, 

UnitedHealth Group, and Travelers Companies). In particular, (a) plots the differences between stable and 

Gaussian ratio  /L A  over the whole sample period; (b) plots the differences between stable and Gaussian 

distances-to-default over the whole sample period; (c) plots probabilities of default during “calm” periods; 

(d) plots probabilities of defaults during the crisis. 
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Moreover, since all the tests have shown that the stable non-Gaussian hypothesis appears 

more realistic than the Gaussian one, we conclude that the Merton model generally 

underestimates the probability of default. 

2.6 Conclusions 

The structural approach to credit risk modeling, initially developed by Merton (1974), has 

been widely used over recent decades. The basic idea behind this framework is to treat a 

company’s equity and debt as a contingent claim written on that company’s asset value. 

However, the classical version of this model requires a number of simplifying and unrealistic 

assumptions. In this paper, we focus on overcoming the assumption that company value 

follows the log-normal distribution. In fact, we prove that this assumption is rejected, and 

consequently the log-returns of the companies’ asset values are not Gaussian distributed. For 

this reason, we propose an alternative structural credit risk model and discuss how to 

evaluate the probability of default of a given firm under different distributional hypotheses.  

In particular, we implement a structural credit risk model based on the stable Paretian 

distributions as a representative of subordinated models. The practical and theoretical appeal 

of the stable non-Gaussian approach is given by its attractive properties that are almost the 

same as the normal ones. We argue that it is possible to use this model in the Merton 

framework. In fact, we propose an empirical comparison of the Moody’s KMV methodology 

applied to the Merton model and our subordinated one. In particular, we suggest alternative 

parameter estimation for subordinated processes, and optimise the performance for the 

stable Lévy model.  

The results of our conducted empirical analysis suggest that the probability of default is 

generally underestimated by the Merton model. Nevertheless, it is worth to note that there 

are some limitations in this study. Some studies have found that structural models may not 

be very accurate for measuring default probabilities and fail to provide appropriate 

calibration and backtesting results. This critique relates to both models presented and we will 

discuss other approaches in subsequent chapters of this thesis. The resulting PD estimates for 

both models are significantly lower than the ones reported in the literature, see, e.g., Bharath 

and Shumway (2008). This is caused by the sample selection. While these authors examined 
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all firms in the intersection of the Compustat and CRSP databases (excluding financial firms), 

we analyse 24 firms from the Dow Jones Industrial Average index as these companies 

presumably should have very low PDs. Our analysis aims to examine whether there are 

substantial differences in the estimated PDs obtained from the two models even for these 

companies. Also, the computation of the debt ratios may be further scrutinised in a 

robustness check as the resulting debt ratios are low and central to the analyses. All these 

issues could be the content of possible extensions in future research. 

Clearly, our results should be further discussed and compared to other distributional 

models in a future research program. As a matter of fact, two alternative structural credit risk 

models, based on well-known Lévy processes (the Variance Gamma (VG) process and the 

Normal Inverse Gaussian (NIG) process), were proposed by Brambilla et al. (2015). Once the 

framework of these models has been established, the authors focus on empirical comparison 

of estimated default probabilities. On the same data set used in (Gurny et al. (2013)), the 

authors demonstrate that both models are able to capture the situation of instability that 

affects each company in the considered period and, in fact, are very sensitive to the periods 

of the crises. Specifically, default probabilities from the NIG model exhibit a greater level of 

variability compared to the VG model.16 Furthermore, they observe that increased PDs are 

also present in the aftermath of the crises. Overall, the authors find that PD estimates 

obtained from the NIG model are significantly higher than those from the VG model. 
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Abstract 

We examine the performance of static and multi-period credit-scoring models for 

determining probabilities of default (PDs) of financial institutions. We use an 

extensive data base for the U.S. provided by the Federal Financial Institutions 

Examination Council (FFIEC). Academic research linked to the performance of 

rating models for financial institutions is rather limited, as most studies mainly 

focus on corporates and, due to their different balance sheet structure, often 

exclude financial institutions from their sample. However, the importance of 

assessing the default risk of financial institutions has become even more obvious 

since the recent period of financial and economic turmoil during the financial 

crisis. We use an extensive sample of more than 7,000 U.S. commercial banks that 

also contains 405 default events, using the unique Federal Financial Institutions 

Examination Council (FFIEC) database. Our analysis also focuses on evaluating the 

performance of the considered scoring techniques. We apply a substantial number 

of model evaluation methods, including techniques that have not yet been applied 
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in the literature on credit scoring. We also provide an overall ranking of the models 

according to the different evaluation criteria. We find that the considered scoring 

models provide a high predictive accuracy in distinguishing between default and 

non-default financial institutions. Despite the difficulty of predicting defaults in 

the financial sector, as has been mentioned in the literature, the proposed models 

also perform very well in comparison to results on scoring techniques for the 

corporate sector. 

Keywords: Credit-scoring models, Bank failure, Probability of default (PD), The FFIEC 

database, Discrete hazard model, Model evaluation techniques 

3.1 Introduction 

Credit risk and estimation of default probabilities (PDs) have become some of the most 

intensely studied topics in the financial literature and have undergone extensive development 

in recent decades. The PD indicates a probability that a given counterparty will not be able to 

meet its obligations and is one of the key input factors for the modeling and measurement of 

credit risk. Its estimation is nowadays a widely employed strategy by many financial 

institutions and supervisory authorities. The significance of this assessment has increased 

substantially since 2008 when several countries had encountered a period of financial and 

economic turmoil often referred to as the global financial crisis (GFC). Providing accurate 

estimates of PDs can be considered as one of the key challenges in credit risk management. 

False estimation of PDs leads to unreasonable ratings and incorrect pricing of financial 

instruments. As a matter of fact, these issues were among the key reasons for the GFC as 

undervaluation of the risk caused the collapse of the financial system. Probabilities of default 

can also be considered as key parameters for the calculation of economic and regulatory 

capital of financial institutions under the Basel II and Basel III Accords that emphasise the risk 

sensitivity of the capital of commercial banks. 

In this paper, we examine the performance of static and multi-period credit-scoring 

models for determining default probabilities of financial institutions. Due to their simplicity, 

credit-scoring models are among the most popular and widely used approaches for the 

estimation of PDs. These multivariate models use financial indicators of a company as input 
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and attribute a weight to each of these indicators that reflects its relative importance in 

predicting the risk of default. 

The main contribution of this paper is threefold. First, unlike many other studies that 

focus on estimating rating models for the corporate sector, we provide a study where rating 

models for financial institutions are derived and investigated.17 Literature on this topic is still 

rather limited, mainly due to insufficient number of historical defaults in the financial sector, 

which is essential for estimating such models. However, the importance of such assessment 

for financial institutions has become even more obvious since the recent period of financial 

and economic turmoil during the financial crisis. We take advantage of the fact that there 

were 492 defaults of commercial banks in the U.S. from February 2, 2007 to December 31, 

2013.18 This fact encouraged us to compile and examine a significant database of historical 

financial ratios for defaulted banks. To the best of our knowledge, we provide the first 

empirical study to use this extensive sample of financial institutions for the estimation and 

evaluation of default prediction models. While, for example, Canbas et al. (2005) work with 

40 privately owned Turkish commercial banks and 21 defaults, Kolari et al. (2002) use over 

1,000 large U.S. commercial banks (they define large banks to be greater than $US250 million 

in total assets) in each year, with 55 defaults in total. They split their sample of failed banks 

into an original sample used to build a model (containing 18 large failed banks) and a holdout 

sample (containing the remaining 37 large failed banks). In comparison, our sample contains 

more than 7,000 U.S. commercial banks, with up to 405 banks defaulted during the period 

2007-2013.19  

We use a framework called the walk-forward approach, see, for example, Stein (2007), 

with out-of-time validation. The approach allows us, in each period, to use the maximum 

                                                           
17 One of the reasons why banking is usually excluded from bankruptcy analysis with scoring models and financial 
ratios, are the various regulatory changes and constraints in the banking sector and their impacts on the values 
of balance sheet items. See, e.g., KPMG (2014), for a general overview on imposed regulatory changes in the 
banking industry. Further, studies such as Cohen (2013), Lee and Chih (2013) illustrate the impact regulatory 
changes and constraints may have on reported balance sheet items and financial ratios of financial institutions. 
Note, however, that given the relatively high explanatory and predictive power of the applied scoring models in 
our study, we suggest that financial ratios can still successfully be applied to default prediction also in the 
banking sector. 
18 http://www.fdic.gov/bank/individual/failed/banklist.html 
19 While there were 492 defaults in considered period, our sample contains only 405 defaulted banks. As it will 
be explained later, Savings & Loan Associations are not included in the FFIEC database. 
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number of available data points to fit and test the models, such that we are not restricted to 

dividing our sample into estimation and holdout samples. This procedure works as follows: 

First, we select a year t . Second, we fit the model using all the data available on or before the 

selected year. Third, once the model’s form and parameters are established for the selected 

time period, we generate the model outputs for all of the banks available during the following 

year 1t  . Fourth, we save the prediction as part of a result set. Fifth, we move the window 

one step forward (to 1t  ) so that all of the data through that year can be used for fitting, 

and the data for the next year can be used for testing. Sixth, we repeat these steps adding the 

new predictions to the result set for every year. 

Second, we provide one of the first studies to look at the Federal Financial Institutions 

Examination Council (FFIEC) database and to provide scoring models for these banks. This 

publicly accessible database includes complete and detailed financial reports on most FDIC-

insured institutions. Even though there were authors such as Vitale and Laux (2012), who used 

information from this database in order to examine the hypothesis that mergers and 

acquisitions did not produce better performing institutions during the 2006 to 2008 period, 

the full sample of banks contained in this database has not been used so far to build a credit-

scoring model.  

Third, we focus and provide a variety of methods for evaluating the performance of the 

considered models. Unfortunately, the literature does not provide a large number of studies 

that distinguish between the performance of the models, and if they do, they often seem 

satisfied with a comparison to the Z -score proposed by Altman (1968) or the O -score 

suggested by Ohlson (1980). Clearly, more sophisticated techniques for model comparison 

are required, as those scores were derived several decades ago. A key study in this regard 

might be considered to be Stein (2007), where an overview of some evaluation and 

comparison techniques is provided with a focus on potential challenges of model validation 

under real-world conditions. We apply some of the techniques suggested in Stein (2007), 

including the walk-forward approach with out-of-time validation, ROC (relative or receiver 

operating characteristic) curve analysis, calibration accuracy tests, and bootstrapping of ROC 

curve areas. Building on existing work, we also suggest a number of additional performance 

evaluation techniques that have not yet been applied in the literature on scoring models. We 

suggest of use nonparametric tests such as the Kruskal-Wallis and Tukey’s multiple 
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comparison test to investigate significant differences between the particular models in terms 

of bootstrapped ROC areas. Although DeLong et al. (1988) provide a test for the difference 

between the areas under the ROC curves of two rating models, this test relies on assumptions 

of asymptotic normality that is often violated, as pointed out by Engelmann et al. (2003). 

Unlike this test, the proposed nonparametric Kruskal-Wallis and Tukey’s multiple comparison 

tests for our study do not require the assumption of normality. Further, as an extension of 

log-likelihoods calculated within calibration accuracy test suggested in Stein (2007), we apply 

the Vuong closeness test for non-nested models (see Vuong (1989)) to determine whether 

calculated log-likelihoods for various models are statistically different. Finally, we also apply 

the Hosmer-Lemeshow’s chi-squared goodness-of-fit test (see Hosmer Jr and Lemeshow 

(2004)) to examine the overall fit of the estimated models. Due to the number of estimated 

models and the fact that different models perform best according to different criteria, we also 

create a simple ranking system to provide an overall summary on the performance of 

estimated models.  

The majority of the estimated models build on variables that form a reasonable mixture 

of profitability, liquidity, assets quality and capital adequacy indicators.20 We find that our 

models have a high default/non-default classification and predictive accuracy, with more than 

95% of defaulted banks being captured within the banks with the highest 10% PDs.  These 

figures can be compared to results from recent studies conducted for the corporate sector, 

for instance, Beaver et al. (2005) with 80.3% - 92%, or Duffie et al. (2007) with 94% of the 

year-ahead defaulters being captured in the lowest two deciles. Since all the models perform 

very well and their performances are similar in terms of power (areas under the ROC curves) 

we use the Kruskal-Wallis and the Tukey multiple comparison test to examine significant 

differences between the particular models in terms of bootstrapped ROC areas. Specifically, 

the Tukey test proves to be a very powerful tool as it is able to distinguish between the models 

where the differences between mean values of bootstrapped ROC areas are very small. Using 

a calibration accuracy test and its likelihood estimates, we show that logit models outperform 

                                                           
20 Unfortunately, there is no theoretical justification why or why not a certain financial accounting variable (or 
ratio) should be included into a default model. Typically, models are estimated based on a list of variables that 
are thought to be relevant in explaining default events, while the actual choice of the variables is often based 
on individual judgment of an analyst in an iterative procedure. The selection decision is usually based on the 
statistical significance and relative contribution of each independent variable, the evaluation of inter-
correlations between the relevant variables, and observations on the predictive accuracy of the various profiles. 
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probit models in accuracy of estimated PDs in particular years. We also find that multi-period 

hazard models generally produce more accurate default probability estimates compared to 

static models. Finally, we state that our estimated default probabilities might be considered 

as reasonable estimates, since we show and prove by accepting the null hypothesis in 

Hosmer-Lemeshow’s chi-squared tests (except of the first deciles containing 10% banks with 

the worst rating) that the expected and actual default rates are statistically equal for most of 

the deciles. Also, due to the fact that we work with all of the available information on U.S. 

commercial banks and so avoid choice-based samples within estimation, we obtain ratios of 

defaulted and non-defaulted banks very close to empirical ones. This is necessary in order to 

produce estimates that are close to “real” PDs. 

This paper is organised as follows. In Section 3.2, we provide a literature review on credit-

scoring models. Section 3.3 is devoted to description of the FFIEC council and its database. 

The theoretical aspects of particular models used in this paper, including static single-period 

and multi-period discrete hazard models based on logistic and probit regression techniques, 

along with the proposed evaluation techniques, are described in more detail  

in Section 3.4. Section 3.5 provides empirical results on model estimation and validation. 

Finally, Section 3.6 concludes and summarises the results.  

3.2 Literature review 

Although the techniques underlying credit-scoring models were devised in 1930s by authors 

such as Fisher (1936) and Durand (1941), the decisive boost to a development and spread of 

these models came in the 1960s with the studies by Beaver (1966) and Altman (1968). The 

latter study has been considered by many as the most significant in this field. The resulting 

Z -score (derived from multiple discriminant analysis) has often been considered as a 

benchmark model and has often been compared to the performance of models presented in 

the literature at a later stage. 

Other seminal contributions in the field are attributed to McFadden (1976) who, from  

the statistical point of view, contrasted discriminant analysis with logit models. Altman et al. 

(1977) investigated the predictive performance of a seven-variable discriminant analysis 

model (“Zeta model”) which improved on Altman’s (1968) earlier five-variable model. The 
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study by Santomero and Vinso (1977) systematically developed probabilistic estimates of 

failure. Ohlson (1980) showed that the predictive power of any model depends on when the 

information (financial report) is assumed to be available, and the predictive power of linear 

transforms of a vector of ratios seems to be robust across estimation procedures. The natural 

Hausman specification test of distributional assumptions for discriminant and logit analysis 

by comparing the two estimators is proposed by Lo (1986). Queen and Roll (1987) used 

market indicators in order to predict survival of firms in their study. More recently, a simple 

hazard model for forecasting bankruptcy in the corporate sector has been developed by 

Shumway (2001) who demonstrates that this model corrects for the period at risk and allows 

for time-varying covariates. Altman et al. (2010) developed a new “ Z -Metrics” model for the 

RiskMetrics Group which is, in fact, an updated and improved version of the Z -score 

methodology.  An excellent overview of corporate failure prediction models, the classic cross-

sectional statistical methods and their related shortcomings is then provided by Balcaen and 

Ooghe (2006). 

It is commonly thought that just as banks and other lending institutions examine the 

financial statements of prospective borrowers, the financial statements of banks themselves 

need to be analysed by regulators to assess the risk of bank failure. However, the majority of 

previously proposed credit-scoring models have been derived from samples of non-financial 

institutions, mainly due to their different balance sheet structure and insufficient number of 

financial institutions’ defaults occurring in the past. Nevertheless, there were several 

attempts to identify the key factors for healthy financial institutions originating from financial 

statements.  

Among the first authors to apply these models to commercial banks and develop so-

called early warning system (EWS) of bank failure, are Stuhr and Van Wicklen (1974), Korobow 

and Stuhr (1975), Sinkey (1975), and Korobow et al. (1976). These authors used multiple 

discriminant function or arctangent regression in order to distinguish between banks that 

were accorded high summary ratings by bank supervisory authorities, and banks that were 

given low summary ratings. Martin (1977) first used a logistic regression approach for early 

warning of bank failure. An excellent overview and critique of the literature for scoring models 

up to 1981 can be found in Altman et al. (1981). West (1985) implemented a factor-analysis 

approach along with logit regression to measure the condition of individual institutions and 
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to assign each of them a probability of being a problem bank. Other contributions to research 

on failed banks can be found in Bovenzi et al. (1983), Korobow and Stuhr (1985), Lane et al. 

(1986), Maddala (1986), Whalen and Thomson (1988), Espahbodi (1991), Thomson (1991), 

Kolari et al. (1996). This research has confirmed that scoring models perform well as EWSs. 

More recent work on this topic has been conducted by Logan (2001) who implemented a logit 

model to identify leading indicators of failure for U.K. small banks. His analysis focuses on the 

small banks’ crisis of the early 1990s. 

Another stream of studies tend to combine parametric and nonparametric approaches 

for the prediction of bank failures. Tam and Kiang (1992) implement a neural network 

approach to perform discriminant analysis. An integrated model approach for bankruptcy 

prediction has been introduced by Jo and Han (1996). The authors use discriminant analysis 

with two artificial intelligence models (neural network and case-based forecasting) and 

conclude that the integrated models produce higher prediction accuracy than individual 

models. Alam et al. (2000) identifies potentially failing banks using fuzzy clustering algorithms 

and self-organising neural networks. Kolari et al. (2002) apply both logit analysis and the 

nonparametric approach of trait recognition to the problem of predicting large U.S. 

commercial bank failures. They conclude that both models performed well in terms of 

classification results; however, with regards to the prediction results using holdout samples, 

trait recognition outperforms logit in most tests in terms of minimising Type I and II errors. A 

very similar approach is employed by Lanine and Vennet (2006) to predict failures among 

Russian commercial banks. The study tests if bank-specific characteristics can be used to 

predict vulnerability to failures and shows that liquidity, asset quality and capital adequacy 

are important determinants of bankruptcy. Lam and Moy (2002) combine several 

discriminant methods and perform simulation analysis to enhance the accuracy of 

classification results. Canbas et al. (2005) conduct research on bank failure prediction in 

Turkey and use principal component analysis to explore the basic financial characteristics of 

the banks. The authors also subsequently estimate discriminant, logit and probit models 

based on these characteristics. The most recent methods often use neural networks as 

representatives of the latest developments in artificial intelligence techniques. A key 

advantage of this approach is that the models do not require assumptions about the statistical 

distribution or properties of the data and can capture nonlinear relationships between the 
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explanatory variables and default risk. Authors who have been recently dealing with this 

approach are, for example, Boyacioglu et al. (2009) and Ioannidis et al. (2010). 

Despite the fact that business failure prediction has become a major research domain 

within corporate finance over the last decades, regrettably, within the past 10 years, there 

are not that many studies which focus on financial sector. In fact, to the authors knowledge, 

there are only a couple of them - Canbas et al. (2005), Lanine and Vennet (2006), Boyacioglu 

et al. (2009), and Ioannidis et al. (2010). We could also mention here a study by Berger and 

Bouwman (2013) that does not deal directly with PD estimation, however, it analyses the 

default and survival risk of U.S. banks by examining how capital affects a bank’s performance 

and how this effect varies across banking crises, market crises, and normal times that 

occurred in the U.S. over the past 25 years. This obvious lack of relevant studies, along with 

the recent GFC, encouraged us to apply our analysis on the FFIEC database. 

In general, there is no overall agreement on the best statistical technique or method for 

building credit-scoring models. Approaches have been designed with regards to the details of 

the problem, the data structure, the characteristics used, the extent to which it is possible to 

segregate the classes by using those characteristics, and the objective of the classification 

(Hand and Henley (1997)). However, more simple classification techniques, such as linear 

discriminant analysis and logistic regression, are generally considered to provide good results 

in comparison to advanced statistical techniques, such as neural networks and fuzzy 

algorithms, and for the majority of the cases the results are not statistically different (Baesens 

et al. (2003)). 

3.3 The FFIEC council & database 

The Federal Financial Institutions Examination Council (FFIEC)21 is a formal interagency body 

to prescribe uniform principles, standards, and report forms for the federal examination of 

financial institutions. It comprises the following five United States’ federal banking regulators: 

 the Board of Governors of the Federal Reserve System (FRB), 

 the Federal Deposit Insurance Corporation (FDIC), 

 the National Credit Union Administration (NCUA), 

                                                           
21 http://www.ffiec.gov/  
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 the Office of the Comptroller of the Currency (OCC), 

 the Consumer Financial Protection Bureau (CFPB). 

The Council was established on March 10, 1979, pursuant to title X of the Financial 

Institutions Regulatory and Interest Rate Control Act of 1978 (FIRA), Public Law 95-630. It is 

responsible for developing uniform reporting systems for federally supervised financial 

institutions, their holding companies, and the nonfinancial institution subsidiaries of those 

institutions and holding companies. It also provides patronage for the Home Mortgage 

Disclosure Act (HMDA), which provides public loan data, and the Community Reinvestment 

Act (CRA), which is intended to encourage depository institutions to help meet the credit 

needs of the communities in which they operate. The act also requires a periodical evaluation 

of each insured depository institution's record in helping meet the credit needs of the 

community, yielding a so-called CRA rating. This record is taken into account in considering 

an institution's application for deposit facilities, including mergers and acquisitions. 

The data used in this study is collected from the FFIEC database. This publicly accessible 

database includes complete and detailed financial reports on financial institutions. Through 

the FFIEC Central Data Repository’s Public Data Distribution web page22, financial and 

structural information for most FDIC-insured institutions is available from March 31, 2001.  

Table  1-3  provide   some  descriptive   statistics   on   the  banks  included   in  the  FFIEC 

Table 1 

U.S. banks according to institution type  

Institution Type Number   Percentage 

Non-member Bank 3,911   57% 

National Bank 1,150   17% 

State Member Bank 883   13% 

Federal Savings Bank 545   8% 

State Savings Bank 385   6% 

Total number of banks 6,877   100% 

The table shows the numbers and percentages of particular 

institution types contained in the FFIEC database as of December 31, 

2013. Non-member Banks are represented by 57%, National Banks 

by 17%, State Member Banks by 13%, Federal Savings Banks by 8%, 

and State Savings Banks by 6%. 

                                                           
22 https://cdr.ffiec.gov/public/ 
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database. In particular, we report statistics as of December 31, 2013 on the institution type 

(Table 1) and the location of the banks (Table 2). We also report some descriptive statistics 

on the size of the banks (Table 3) as of December 31, 2006 until December 31, 2012.  

In Table 1, non-member Banks (defined as commercial banks, state charters and Federal 

non-members, supervised by the FDIC) comprise 57% of the FFIEC database, followed by 

National Banks (defined as commercial banks, national/federal charters and Federal 

members,  supervised by the OCC)  17%, State Member Banks  (defined as commercial banks, 

state charters and Fed members, supervised by the FRB) 13%, Federal Savings Banks (defined 

as savings associations, state/federal charters, supervised by the OTS23) 8%, and State Savings 

Banks (defined as savings banks, state charters, supervised by the FDIC) 6%.  

With regards to location24 of the banks in the FFIEC database, Table 2 shows that the 

highest number is represented in Illinois (553) and Texas (536), the lowest number in Guam 

(3), Virgin Islands (2) and Federated States of Micronesia (1). 

Table 3 illustrates the wide range of bank size included in the FFIEC database. The largest 

bank in 2012 in terms of total assets was JPMorgan Chase Bank, Columbus (OH) with 

approximately $US1,897 billion in total assets. The mean value of total assets among banks 

included in the FFIEC database has increased from $US1.3 billion in 2006 to $US2 billion in 

2012. It is obvious that there is a domination of larger banks in this database. In other words, 

our sample is skewed which justifies the analysis that will be applied later on – segregation 

into subsamples according to the size. 

Through the FFIEC CDR web page, Reports of Condition and Income (Call Report) data can 

be obtained for individual institutions.  The Uniform Bank Performance Reports (UBPR) are 

also available online. The UBPR is an analytical tool created for bank supervisory, examination, 

and management purposes. In a concise format, it shows the impact of management 

decisions and economic conditions on a bank's performance and balance-sheet composition.  

 

                                                           
23 As of June 30, 2011, the Office of Thrift Supervision (OTS) is no longer an active regulatory agency. It was 
merged with the OCC, FDIC, and CFPB as of July 21, 2011. 
24 The state in which the institution is physically located. The FDIC Act defines state as any State of the United 
States, the District of Columbia, and any territory of the United States, Puerto Rico, Guam, American Samoa, the 
Trust Territory of the Pacific Islands, the Virgin Island, and the Northern Mariana Islands. 
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Table 2 

Number of U.S. banks in particular states 

State / Country Number   State / Country Number   State / Country Number 

  Alabama 139     Kentucky 189     Ohio 228 

  Alaska 5     Louisiana 144     Oklahoma 230 

  Arizona 24     Maine 30     Oregon 29 

  Arkansas 118     Maryland 73     Pennsylvania 200 

  California 222     Massachusetts 154     Puerto Rico 6 

  Colorado 100     Michigan 128     Rhode Island 10 

  Connecticut 46     Minnesota 361     South Carolina 68 

  Delaware 24     Mississippi 87     South Dakota 76 

  District of Columbia 4     Missouri 315     Tennessee 182 

  Fed. St. of Micronesia 1     Montana 65     Texas 536 

  Florida 194     Nebraska 208     Utah 55 

  Georgia 225     Nevada 19     Vermont 13 

  Guam 3     New Hampshire 21     Virgin Islands 2 

  Hawaii 9     New Jersey 103     Virginia 103 

  Idaho 14     New Mexico 46     Washington 62 

  Illinois 553     New York 167     West Virginia 62 

  Indiana 131     North Carolina 74     Wisconsin 263 

  Iowa 336     North Dakota 89     Wyoming 34 

  Kansas 296             

The table reports the numbers of banks contained in the FFIEC database as of December 31, 2013 sorted by 

location, i.e. the state in which the institution is physically located. The highest number of banks is located in 

Illinois (553) and Texas (536), while the lowest number is located in Guam (3), Virgin Islands (2) and Federated 

States of Micronesia (1). 

The performance and composition data contained in the report can be used as an aid in 

evaluating the adequacy of earnings, liquidity, capital, asset and liability management, and 

growth management. 

The UBPR is produced for every commercial and savings bank insured by the FDIC. The 

report is computer-generated from a database derived from public and non-public sources. It 

contains several years’ worth of data, which is updated quarterly. This data is presented in 

the form of ratios, percentages, and dollar amounts computed mainly from Call Reports 

submitted by each bank. Each UBPR also contains corresponding average data for the bank’s 

peer group and percentile rankings for most ratios. The UBPR therefore permits evaluation of 

a bank’s current condition, trends in its financial performance, and comparisons with the 

performance of its peer group. 
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Table 3 

Mean value and percentiles of total assets (in $US000) for U.S. banks 

Total Assets (in $US000) 

Date   Mean   q (0.05)   q (0.25)   q (0.50)   q (0.75)   q (0.95) 

31/12/2006   $1,313,590   $19,451   $56,060   $120,735   $287,388   $1,447,302 

31/12/2007   $1,475,439   $20,659   $58,930   $127,647   $299,173   $1,509,570 

31/12/2008   $1,667,495   $23,132   $64,585   $136,231   $315,951   $1,583,903 

31/12/2009   $1,662,707   $24,446   $70,023   $146,715   $331,758   $1,602,073 

31/12/2010   $1,774,114   $25,848   $73,627   $148,954   $328,321   $1,641,129 

31/12/2011   $1,919,396   $27,234   $76,460   $155,546   $346,476   $1,745,165 

31/12/2012   $2,022,651   $28,840   $81,599   $165,704   $368,499   $2,017,260 

The table reports descriptive statistics on the size of the banks (mean value and chosen percentiles of total assets 

in thousands of dollars) contained in the FFIEC database from year 2006 to 2012. The mean of total assets among 

considered FFIEC banks has increased from $US1,314 million in 2006 to $US2,023 million in 2012. 

 

3.4 Credit-scoring and model evaluation techniques 

In this section, we review the techniques of logistic and probit regression as representatives 

of credit-scoring models. Subsequently, we describe static and dynamic discrete hazard 

models that will be applied in the empirical analysis. The section also reviews a number of 

model evaluation techniques, such as ROC analysis, bootstrapping, calibration accuracy tests 

and the use of nonparametric techniques such as the Kruskal-Wallis test and Tukey’s multiple 

comparison procedure, for comparison of model performance. 

3.4.1 Logistic and probit regressions 

Logistic and probit regressions are multivariate techniques that belong to the class of 

probabilistic statistical classification models and have been heavily used for credit scoring, 

see, for example, Martin (1977), West (1985), Logan (2001), Shumway (2001). They are 

typically used to predict a binary response based on one or more predictor variables and allow 

for estimation of the probability for the occurrence of an event using a set of independent 

variables. In credit scoring, the studied event is the default or credit failure of a corporation 

or, in our case, of a financial institution. Thus, the response variable iy  takes on the value 

1iy   (with probability PDi ), if bank i  fails, and 0iy   (with probability  

1 PDi ) otherwise. We are interested in modeling the probability PDi   for the occurrence 

of a default event by specifying the following model: 
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where ,i jx  denotes particular explanatory variable of i th bank used to forecast the probability 

of default, and , j   are the estimated parameters of the model. The functional form of f  

then may assume specific distribution functions, depending on a given model. 

The literature suggests various ways to specify the probability PDi . In our study, we will 

concentrate on the application of logistic and probit regressions, also referred to as logit and 

probit models. For the logit model, the so-called logistic transformation 
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is applied. For the probit model, the cumulative distribution function of the normal 

distribution is used: 
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Due to nonlinear nature of these models it is necessary to use maximum likelihood 

estimation in order to obtain the model parameters. Given PDi  and assuming that defaults 

are independent25, we can express the maximum likelihood function as follows: 
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                                                      (4) 

Since it is easier to maximise a summation rather than a product, it is a common practice to 

work with the logarithm of the maximum likelihood function:  

                                                           
25 It is obvious that in our analysis we make the assumption of default independence, as this is widely used in 
similar default studies. Nevertheless, a possible question remains to what degree this assumption holds 
considering the GFC, the frequent mergers observed in the banking industry and their dependence on monetary 
and economic US policies. This question would be an interesting direction for future research, however, is 
beyond the scope of this study. 
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Therefore, by combining (5) and (2) we get the logarithm of the maximum likelihood function 

for the logit model as follows: 
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and by combining (5) and (3) we get the logarithm of the maximum likelihood function for the 

probit model as follows: 
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For model evaluation or testing the significance of a model, the log-likelihood ratio test 

or Wald test can be used; see, for example, Tabachnick and Fidell (2007) or Hosmer Jr and 

Lemeshow (2004). Logit and probit models typically provide rather similar results. However, 

one of the main differences between the techniques is that the logistic function exhibits 

heavier tails (see, for example, Trück and Rachev (2009)). 

3.4.2 Static and discrete hazard models 

Static (single-period) models, even though widely used in the past, may not be fully 

appropriate for estimation of default probabilities, see Shumway (2001) or Hillegeist et al. 

(2004). First, there are often multiple-period data sets available. Since static models consider 

only one set of explanatory variables for each bank, they neglect the fact that the 

characteristics of most banks change from year to year. Also, through time, various 
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observations for the explanatory variables such as, for example, financial ratios of a 

corporation or bank, become available and the question rises which of these observations 

should be included into the model to predict default events in an optimal way. A common 

practice is to use information on financial ratios one year prior to the default or non-default 

event that may actually introduce an unnecessary selection bias into the estimation process. 

Second, by ignoring the fact that banks and their performance change over time, static models 

produce inconsistent estimates of default probabilities, and test statistics may subsequently 

be biased and provide incorrect inferences. 

On the other hand, dynamic discrete-time hazard (multi-period) models take advantage 

of multiple-period data sets and consider several observations on each bank that existed for 

some time throughout the sample period. Each bank either defaults during the sample period, 

survives, or may leave the sample for a reason other than default (for example, a merger, 

takeover, or if the bank failed to provide financial ratios, etc.). Unlike static models, hazard 

models are also able to incorporate explanatory variables that change over time (time-varying 

covariates). Therefore, the approach also allows for the inclusion of additional 

macroeconomic or market indicators into the model. Clearly, these variables typically take on 

the same value for all banks at a given point of time, but may provide some additional 

explanatory power over time.  

The discrete hazard model estimates the PDs as: 

   , , , ,PD P 1 E | ,i t i t i t i ty y x                                                 (8) 

where ,PDi t  denotes the probability that bank i  will default in period t , conditional on 

surviving until the end of period 1t    and on the observed covariates ,i tx . These covariates 

represent bank-specific independent variables that are observable at the beginning of period 

t . The response variable ,i ty  equals one if bank i  defaults in period t , and equals zero 

otherwise. The discrete hazard model has then the following form:  

 , , ,

1

PD ,
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i t j i t j

j
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                                                 (9)  
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where  t  is a time-varying, system-wide variable that captures the baseline hazard rate.  

Again, the link function f  may be specified in various ways, for example, using a logit or 

probit model. Note the two key differences between equations (1) and (9): first, in model (9), 

the constant   is replaced by the baseline hazard rate  t , while, second, the subscript t  

reflects the use of multiple bank-year observations of data for the same bank i . 

Furthermore, hazard models treat all observations of a particular bank as dependent 

observations.26 Therefore, an adjustment of the sample size to account for the lack of 

independence between bank-year observations is necessary for calculating correct test 

statistics of coefficients. In fact, hazard models often produce different statistical 

inferences.27  

3.4.3 Evaluation techniques 

Once an appropriate model has been identified, the performance of the model can be 

validated across a variety of criteria.  This section outlines approaches to model validation as 

they have been suggested in the literature for credit-scoring models such as ROC curve 

analysis or likelihood-based measures.  We also suggest a number of possible directions for 

new validation techniques. In particular, we suggest the use of econometric techniques that 

provide statistical power to distinguish between models that provide relatively similar results. 

In particular, we propose nonparametric techniques such as the Kruskal-Wallis test and 

Tukey’s multiple comparison procedure (see Hochberg and Tamhane (1987)). We further 

propose the use of Vuong’s closeness test (see Vuong (1989)) that is based on comparing the 

log-likelihood of non-nested models. Finally, we propose the use of the Hosmer-Lemeshow 

chi-squared goodness-of-fit test (see Hosmer Jr and Lemeshow (2004)) that allows for a 

comparison of the predicted and actually observed default frequencies for sub-groups of the 

entire sample. 

                                                           
26 This is a unique difference between hazard and “pooled” models that are estimated with data on each bank 
in each year of its existence as if each bank-year observation was an independent observation (“pooled” models 
treat each bank-year as a separate observation). 
27 For more detailed discussion on discrete-time hazard models and their econometric properties we refer to 
Shumway (2001). 
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3.4.3.1 ROC analysis 

ROC (relative or receiver operating characteristic) curves, see, for example, Green and Swets 

(1966), Hanley (1989), Hosmer Jr and Lemeshow (2004), Stein (2007), are among the most 

powerful tools to quantify the predictive power of models and are widely used for evaluation 

of credit default models. A ROC curve plots the Type II error against one minus the Type I 

error. Unlike contingency table analysis, where a specific model cut-off point needs to be 

chosen, ROC curves provide information on the performance of a model at any cut-off point 

that might be chosen. The ROC curve is also known as the trade-off curve, because it shows 

the trade-off between “goods” and ”bads" – the percentage of total bads that must be 

accepted in order to accept a given percentage of total goods. 

An example of the ROC curve is given in Figure 1, where a TP (true positive) is a predicted 

default that actually occurs; a TN (true negative) is a predicted non-default that actually 

occurs (the company does not default); a FP (false positive) is a predicted default that does 

not occur, and a FN (false negative) is a predicted non-default where the company actually 

defaults. The errors of the model are FN and FP shown on the off diagonal, where FN 

represents a Type I error and FP represents a Type II error.  

A convenient measure for summarising the ROC curve is the area under the curve (the 

ROC area), which is calculated as the integral of the ROC curve: the proportion of the area 

below the ROC curve relative to the total area of the unit square. A value of 0.5 indicates a 

random model, while a value of 1 indicates perfect discrimination. A similar measure, the 

accuracy ratio (AR), can also be calculated and Engelmann et al. (2003)  

provide the following identity relationship between the ROC area and the AR: 

 AR 2 ROC area 0.5  . 
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Figure 1 

An example of the ROC curve 

 

Source: Stein (2007), page 82. 

3.4.3.2 Bootstrapping, Kruskal-Wallis and Tukey’s multiple comparison test 

Since the results of model testing are subject to sample variability, one may also be interested 

in conducting a variety of resampling techniques such as, for example, bootstrapping (Efron 

and Tibshirani (1994)) which allows leveraging of the available data to reduce the dependence 

on the particular sample. As described in Stein (2007), a typical resampling technique 

proceeds as follows. From the result set, a sub-sample is selected at random. The 

performance measure of interest (e.g. ROC area) is calculated for this sub-sample and 

recorded. Another sub-sample is then drawn and the process is repeated. This continues for 

many repetitions until a distribution of the performance measure is established. The sampling 

distribution is used to calculate statistics of interest (standard error, percentiles of the 

distribution, etc.).  

For testing whether the performance measures calculated from bootstrapping are 

significantly different among the various models, we suggest the use of a nonparametric 

Kruskal-Wallis test or Tukey’s mutiple comparison test. The Kruskal-Wallis test is a 

nonparametric version of the classical one-way analysis of variance (ANOVA), and tests the 

null hypothesis that all samples are drawn from the same population, or equivalently, from a 

different population with the same distribution (Hollander and Wolfe (1999)). Rejecting the 

null hypothesis means that at least one of the samples stochastically dominates at least one 
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other sample. Unlike a standard one-way ANOVA, the test does not require the assumption 

that all samples come from a population with a normal distribution. 

To perform the test, it is necessary to put the data in ascending order and write down the 

ranking of each observation in the sample. Specifically, let group j , where 1,...,j k , have 

jn  observations and 1 2 ... kn n n n     be the total number of observations. Put all of the 

observations into one big group, and rank them, with the rank of 1 for the smallest 

observation and the rank of n  for the largest one, and keep track of which observation and 

rank goes with which of the k  groups. In the case of tied observations, average the ranks. 

Finally, add up the ranks for each separate group and denote the rank sum for group j  by 

jT . The Kruskal-Wallis statistic K  is then given by the following expression: 
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                                            (10) 

This test is always one-sided and its statistic is chi-squared distributed (under the 

assumption that 5jn  ) with 1k   degrees of freedom. Note that the Kruskal-Wallis statistic 

K  is an omnibus test statistic and cannot tell you which specific groups of independent 

variable are statistically different from each other. It tells you only that at least two groups 

are different. 

This drawback is overcome by the Tukey test (Hochberg and Tamhane (1987)). It is a 

multiple comparison procedure which allows further investigation of which of the samples 

are significantly different. The test uses Tukey’s honestly significant difference (Tukey’s HSD) 

criterion, that is optimal for the comparison of groups with equal sample sizes, to test for 

significant differences with respect to the performance of the various models. It basically 

compares the means of every treatment to the means of every other treatment. Therefore, 

the test is simultaneously applied to the set of all pairwise comparisons 
i j   and identifies 

any difference between two means that is greater than the expected standard error. 

Tukey’s test is based on a formula very similar to that of the t -test. In fact, Tukey’s test is 

essentially a t -test, except that it corrects for an experiment-wide error rate. When there are 

multiple comparisons being made, the probability of making a Type I error increases – Tukey’s 
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test corrects for that, and is thus more suitable for multiple comparisons than doing a number 

of t -tests would be (Linton and Harder (2007)). The formula for Tukey’s statistic is: 

,A B
s

Y Y
q

SE


                                                                (11) 

where AY  is the larger of the two means being compared, BY  is the smaller of the two means 

being compared, and SE  is the standard error of the data in question. The value of the test 

statistic can then be compared to a cut-off value from the studentised range distribution.  

3.4.3.3 Calibration accuracy test and Vuong’s closeness test 

The second dimension within validating credit models (after examination of a model’s power) 

is model calibration. Calibration examines how well the estimated model PDs match with 

actual outcomes. Using a calibration accuracy test and its likelihood estimates, it is possible 

to determine which model’s PDs (from a set of candidate models) are closest to actual PDs 

given a set of empirical data. Refer to Stein (2007) for a closer discussion about calibration 

and likelihood-based measures of calibration. The higher the likelihood the more accurate is 

the model in predicting default probabilities. 

If a model predicts a binary event (default/no default), its estimate of the probability for 

the occurrence of a single event y  given data x  is 

       1
1 ,

y y
prob y x p x p x


                                              (12) 

where  p x  is the PD predicted by the model, conditional on the input variables x , while the 

event y  is defined as one if the bank defaults, and zero otherwise. Using these two inputs (a 

vector of estimated PDs and a vector of default outcomes) the likelihood measure L  for the 

estimated model can then be calculated as follows: 
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                                 (13) 

 Since, in general, it is more convenient to work with summations than products, by 

convention it is normal to work with the log of the likelihood , defined as: 
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In order to determine whether calculated log-likelihoods for various models are 

significantly different, Vuong’s closeness test for non-nested models may be used, see Vuong 

(1989). It is a likelihood-ratio based test for model selection using the Kullback-Leibler 

information criterion that makes probabilistic statements about two models that can be 

nested, non-nested or overlapping. The test examines the null hypothesis that the two models 

are equally close to the actual one, against the alternative hypothesis that one model is closer. 

With non-nested models and i.i.d. exogenous variables, model A is preferred with 

significance level  , if the Z  statistic exceeds the positive (falls below negative)  

 1  -quantile of the standard normal distribution. The Z  statistic is defined as: 
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where 
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Therefore, j

NL  denotes the log-likelihood of model j , 
jK  is the number of parameters in 

model j , and N  is the number of observations. The denominator in the expression for 

Z  , N , is defined by setting 2

N  equal to either the mean of the squares of the pointwise 

log-likelihood ratios i , or to the sample variance of these values, where 
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3.4.3.4 Hosmer-Lemeshow test 

Hosmer-Lemeshow’s chi-squared goodness-of-fit test (Hosmer Jr and Lemeshow (2004)) is a 

test based on grouping the values of the estimated probabilities. It consists of dividing the 

ranked predicted probabilities into k  groups (probabilities are often divided based on deciles, 
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such that 10k  ) and computing the Pearson chi-squared statistic that compares the 

predicted and actually observed frequencies in a 2 k  contingency table. The HL  test 

statistic follows a chi-squared distribution with k  degrees of freedom28, where ND

iO  is the 
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                                    (18) 

observed number of non-defaults in group i , and ND

iE  is the expected (predicted) number of 

non-defaults based on the model. Similarly, D

iO  is the observed number of defaults in group 

i , and D

iE  is the expected number according to the estimated model.29 The closer the 

agreement between the observed and expected values, the smaller will be the value of the 

HL test statistic, which indicates a good fit to the data and, therefore, good overall model fit. 

The appropriateness of the p -value calculated using the HL statistic depends on the 

validity of the assumption that the estimated expected frequencies are large. In general, all 

expected frequencies should be greater than 5, what might pose a problem for sub-groups 

with very low probabilities of default. The advantage of a summary goodness-of-fit statistic 

like HL  is that it provides a single, easily interpretable value that can be used to assess the 

model fit. The disadvantage is that in the process of grouping the data, we may miss important 

information on the deviation of model probabilities and actual occurrences of defaults, due 

to a small number of individual data points (Hosmer Jr and Lemeshow (2004)). Tables listing 

the observed and estimated expected frequencies in each decile contain valuable descriptive 

information for assessing the adequacy of the fitted model over the deciles. Comparison of 

the observed and expected frequencies within each cell then may indicate regions where the 

model does not perform satisfactorily. 

                                                           
28 In general, for a j k  contingency table there are   1 1j k  degrees of freedom in the Pearson chi-

squared statistic, which implies 1k   degrees of freedom in our case. However, in case of the out-of-sample 

validation the distribution, if we use k  groups, is  2
k . 

29 Alternatively, the HL test statistic might be defined as 
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where ˆi  are observed default 

rates, i  are corresponding expected rates, 
i

n are the number of observations in group i  and k  is the number 

of groups for which frequencies are being analysed. 
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3.5 Application and results 

The following section provides empirical results of the study. We first describe the data used 

in our analysis, in particular, the number of observations in our sample for each year. Then 

we provide results on the estimated credit-scoring models, that is, static and discrete hazard 

models based on logistic and probit regressions. Finally, all of the estimated models are 

validated on control samples. Following Stein (2007), we apply a rolling window methodology 

with out-of-time validation within estimating and validating the models. 

3.5.1 Data description 

As mentioned in the introduction, there were in total 492 defaults of commercial banks in the 

U.S. from February 2, 2007 to December 31, 2013. A defaulted (failed) bank can be defined in 

a variety of ways. In our study a defaulted bank is defined as a financial institution which has 

been closed by a federal or state regulator. 

The FFIEC database is used for collection of financial ratios, in particular, the ratios 

acquired from UBPR reports in the database. Table 4 provides a comparison of the number of 

banks used for estimation of the models in this study30 and the total number of banks in the 

U.S.31, along with the number of defaulted banks in the FFIEC database and the U.S. in total 

for  particular  years  within  the  sample  period.  There are two reasons why  the numbers of  

Table 4 
Comparison of the number of banks (FFIEC vs. U.S. in total) 

# of banks   # of defaulted banks 

Date FFIEC database U.S. in total   Model / Year FFIEC database U.S. in total32 

31/12/2006 7,768 8,691   2008 19 25 

31/12/2007 7,579 8,544   2009 120 140 

31/12/2008 7,261 8,314   2010 138 158 

31/12/2009 6,996 8,021   2011 86 92 

31/12/2010 6,799 7,666   2012 42 51 

This table shows a comparison of the total number of banks and the number of defaulted banks between 

the FFIEC database and the actual number of banks in the U.S. for the time period 2006-2010. Note that, 

for example, for 2008 model (based on 19 defaulted banks in 2008) we use balance sheet data from 

31/12/2006.33 

                                                           
30 The exact number of banks used within estimation of models depends on a particular type of a model (static 
vs. hazard) and a particular year, and is specified for each estimated model in Tables 7 and 8. 
31 http://www.usbanklocations.com/bank-rank/total-assets.html 
32 See Footnote 18. 
33 For detailed explanation, see Section 3.5.2. 
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Table 5 

Data collection dates for the models 

MODEL Defaulted banks 
Data collection dates 

(financial ratios) 

2008 
defaulted in year                                                

2008 
31/12/2006 

2009 
defaulted in years                                            

2008 + 2009 

31/12/2006 

31/12/2007 

2010 
defaulted in years                                              

2008 + 2009 + 2010 

31/12/2006 

31/12/2007 

31/12/2008 

2011 

  31/12/2006 

defaulted in years 31/12/2007 

2008 + 2009 + 2010 + 2011 31/12/2008 

  31/12/2009 

2012 

 31/12/2006 

defaulted in years 31/12/2007 

2008 + 2009 + 2010 31/12/2008 

 + 2011 + 2012 31/12/2009 

  31/12/2010 

The table reports data collection dates for individual models. For example, 

for 2012 discrete hazard models (based on defaults from 2008 to 2012) 

we use balance sheet data up to 31/12/2010.34 

banks in the FFIEC database are lower: (a) Savings & Loan Associations are not included in the 

FFIEC database, (b) for some banks the data in the FFIEC database is available rather later. 

For the applied hazard models, a rolling window methodology (the walk-forward 

approach) with out-of-time validation is used, as it is closest to the actual application of 

default prediction models in practice and gives a realistic view of how a particular model 

would perform over time. Refer to Stein (2007) for a more thorough discussion of this 

approach. 

An important question is what time lag should be taken into account between the 

observation of balance sheet data and the default event, when compiling a database of 

financial indicators  for defaulted  and non-defaulted banks.  A common practise is  to  use at 

least a one-year lag. To ensure that financial ratio values are collected at least one year prior 

to the default event, we use a 12 to 24-month horizon before the actual default. For example, 

for banks defaulted in 2008 balance sheet data and financial ratios are collected on December 

                                                           
34 Again, see Section 3.5.2 for detailed explanation. 
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31, 2006. Data collection dates for the individual models are summarised in Table 5. The 

financial ratios used as explanatory variables for the estimation of the scoring models are 

provided in Table 6.  

We decided to examine a total of 19 financial ratios that are expected by bank regulators 

to describe the financial health of a bank. In particular, we use indicators describing the 

profitability,  efficiency,  liquidity,  assets  quality  and capital adequacy  of  a  bank.35  Chosen  

Table 6 

List of explanatory variables 

Indicator Description Indicator's Group 

  x1: ROA  Return on Assets (%)  Profitability 

  x2: ROE  Return on Equity (%)  Profitability 

  x3: NIM  Net Interest Margin (%)  Profitability 

  x4: IE_II  Total Interest Expense / Total Interest Income (%)  Profitability 

  x5: II_EA  Total Interest Income / Interest Earning Assets (%)  Profitability 

  x6: C_IBD  Cost of Total Interest Bearing Deposits (%)  Profitability 

  x7: ER  Efficiency Ratio (%)  Efficiency 

  x8: NLL_TA  Net Loans & Leases / Total Assets (%)  Liquidity36 

  x9: LP_AA  Provision for Loan & Lease Losses / Average Assets (%)  Assets Quality 

  x10: NL_TLL  Net Loss / Average Total Loans & Leases (%)  Assets Quality 

  x11: NCRLL_GLL  Noncurrent Loans & Leases / Gross Loans & Leases (%)   Assets Quality 

  x12: LLA_TLL  Loans & Leases Allowance / Total Loans & Leases (%)  Assets Quality 

  x13: EQ_TA  Total Equity Capital & Minority Interests / Total Assets (%)  Capital Adequacy 

  x14: TD_EQ  Total Deposits / Total Equity Capital & Minority Interests (times)  Capital Adequacy 

  x15: RE_EQ  Retained Earnings / Average Total Equity Capital (%)  Capital Adequacy 

  x16: NLL_EQ  Net Loans & Leases / Total Equity Capital (times)  Capital Adequacy 

  x17: T1RBC_RWA  Tier One Risk-Based Capital / Risk-Weighted Assets (%)  Capital Adequacy 

  x18: TRBC_RWA  Total Risk-Based Capital / Risk-Weighted Assets (%)  Capital Adequacy 

  x19: T1LC  Tier One Leverage Capital Ratio (%)  Capital Adequacy 

The table lists financial ratios used as explanatory variables within estimation of particular models. There are 

nineteen financial ratios in total that describe the financial health of banks. These ratios are divided into five 

indicator groups (profitability, efficiency, liquidity, assets quality, and capital adequacy).  

                                                           
35 In addition to these financial indicators we also included four macroeconomic (GDP growth, unemployment 
and inflation rate, difference between 10-year and 3-month Treasury Bill rates) and five market indicators (the 
VIX index, the TED spread, excess returns on NASDAQ, KBW and Dow Jones U.S. bank indices) to better reflect 
the economic situation on the market. Since within inclusion of these variables the collinearity issues arise, we 
used these variables only within hazard model 2012 as we already had 5 different observations. However, 
inclusion of these variables did not significantly improve the performance of the model. This is not a real surprise 
as we worked only with 5-year time period and would need a few credit cycles covered to benefit from 
macroeconomic variables (market indicators proved to be statistically insignificant in our model). 
36 Since the literature (see, e.g., Berger and Bouwman (2009)) has found liquidity risk as an important contributor 
to default (next to the profitability and capital structure of firms), it could be interesting to analyse alternative 
liquidity proxies such as the liquidity coverage ratio, the net stable funding ratio under Basel II, or the liquidity 
creation measure (see Berger and Bouwman (2009)). However, these measures are not available in the FFIEC 
database. 
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variables come from  the  FFIEC  database  and  are  often  used  by  regulators  for  comparison   

purposes. To examine whether particular variables affect PDs in a way they are supposed to, 

we initially conduct a univariate regression. Based on this analysis, the following variables 

yielded an opposite sign to that expected under the economic hypothesis37, and therefore 

were removed (refer Table 6 above): x5: Total Interest Income / Interest Earning Assets (%), 

x9: Provision for Loan & Lease Losses / Average Assets (%), and x12: Loans & Leases Allowance 

/ Total Loans & Leases (%).  

We also closely investigated outliers among the observations of financial ratios. To 

ensure that statistical results are not heavily influenced by outliers or errors in the collected 

data, we decided to use winsorised data and set all observations for the considered financial 

ratios that exceeded the 99th percentile or were below the 1st percentile, equal to these 

values.38  

3.5.2 Model estimation 

As mentioned earlier, we estimate both static and dynamic discrete hazard models using 

equations (1) and (9), respectively. For each of these approaches, we apply logistic and probit 

regressions in order to calibrate the models. Note that while estimating, for example, the 

2010 static model, we used banks defaulted in 2010 and financial ratios collected on 

December 31, 2008. While validating this model (with the parameters we have estimated), 

we are predicting defaults in 2011 using financial ratios collected on December 31, 2009. This 

process is described in more detail for estimation of the 2008 static model in Figure 2. On the 

other hand, for the 2010 discrete hazard model, we use data on defaulted and non-defaulted 

banks in 2008, 2009 and 2010, and financial ratios collected on December 31, 2006, December 

31, 2007 and December 31, 2008 to estimate the models (see Table 5). Clearly, data used for 

model validation is the same as for the static models, that is, we validate the 2010 hazard 

models by predicting defaults in 2011 using financial ratios collected on December 31, 2009. 

                                                           
37 For example, we would assume that the higher total interest income as a proportion of interest earning assets 
(x5), the lower estimated default probability for a given bank should be. However, estimated coefficient of this 
variable yielded a positive sign (the higher value of ratio, the higher estimated PD). 
38 The same approach was used, for instance, by Shumway (2001). One might argue that since we operate a 
heavily skewed sample, the symmetrical Winsorising approach might introduce a bias. However, in many cases 
the excluded observations appear to be a result of possible errors in the balance sheet data, such that we believe 
that excluding these observations from our sample is necessary. 
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Typically, models are estimated based on a list of variables that are thought to be relevant 

in explaining default events, while the actual choice of the variables is often based on 

individual judgment of an analyst in an iterative procedure. The selection decision is usually 

based on the statistical significance and relative contribution of each independent variable, 

the evaluation of inter-correlations between the relevant variables, observations on the 

predictive accuracy of the various profiles, and individual  judgment of the analysts, see, for 

example, Altman (1968). The iterative procedure is finalised when adding another variable 

could not significantly improve the results (Altman et al. (1977)). Alternatively, for example, 

a stepwise regression technique could be applied. See, for example, Kolari et al. (2002), that 

provides an algorithm for inclusion of relevant variables that is based purely on statistical 

significance of the variables and improved estimation results for the model. 

We applied stepwise regression initially, but found that several of the statistically 

significant variables did not provide the expected signs for the estimated coefficients. While 

models based on stepwise regression may provide a good in-sample fit with high explanatory 

Figure 2 

Illustration of data used for estimation and validation of the 2008 static model 

 

This figure describes the data used for estimation and subsequent validation of 

the 2008 static model. For estimation of this model (based on banks defaulted in 

2008) we used financial ratios collected at December 31, 2006. Within 

subsequent validation of this model (with the parameters we have estimated), 

we are predicting defaults in 2009 using financial ratios collected at December 

31, 2007. 
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or discriminative power, they may suffer from poor interpretation of the estimated 

coefficients and often fail to provide good results in an out-of-sample environment. 

Therefore, we decided to apply the following algorithm instead of using a method that is 

guided purely by statistical significance. For the estimation of the models, we start with one 

variable only from each of the indicator groups, that is, we include the variable with the 

highest explanatory power in the univariate regression for the category’s profitability, 

efficiency, liquidity, asset quality, and capital adequacy. Subsequently, we examine whether 

all these variables have the correct sign and are statistically significant also in the multivariate 

model. In case that a particular variable had the incorrect sign or was statistically insignificant, 

we replaced this variable by another variable from the same group of indicators, namely by 

the one with the second highest explanatory power in the univariate model. Once all the 

chosen variables had the correct sign and were statistically significant, we tried to add 

additional variables to the model. Note that the inclusion of new variables may cause a change 

in statistical significance and possibly also a change in the sign of the coefficients for variables 

previously included into the model. Therefore, the algorithm stops when no additional 

variable with a meaningful contribution to the model’s explanatory power could be added to 

the model. 

Note that all explanatory variables eventually used in the models are not statistically 

dependent on each other.39 Overall, the scale of the majority of included variables is rather 

similar for the different years and typically provides a good mixture of financial ratios relating 

to profitability, liquidity, asset quality and capital adequacy. Also, among the models that 

employ the same variables for different years, the coefficients often change only marginally 

over time, which implies that our models might be considered robust. 

Results for the estimated static logit and probit models for 2008 to 2012 are summarised 

in Table 7. The table contains information on the included variables, estimated coefficients, 

statistical significance and standard errors for the coefficients, log-likelihood of the model, 

                                                           
39 In all cases, the coefficient of correlation does not exceed a value of 0.6. Further note that the applied 
“stepwise” algorithm will exclude highly correlated variables since they do not contribute to the explanatory 
power of the model. As illustrated in the subsequent analysis, our models do not use financial ratios based on 
equal denominators. We therefore strongly believe that the applied regression models do not suffer from 
multicollinearity and the provided results are not spurious.   



Prediction of U.S. Commercial Bank Failures via Scoring Models: The FFIEC Database Case   

 

79 
 

pseudo-R2 value40, and statistical significance of the entire model (likelihood-ratio test41), as 

well as the total number of defaulted and non-defaulted banks used for the estimation. All 

estimated models contain between three and five explanatory variables, usually based on a 

subset of the following variables: x1: Return on Assets (%), x2: Return on Equity (%), x6: Cost 

of Total Interest Bearing Deposits (%), x8: Net Loans & Leases / Total Assets (%), x11: 

Noncurrent Loans & Leases / Gross Loans & Leases (%),  x13: Total Equity Capital & Minority 

Interests / Total Assets (%), x17: Tier One Risk-Based Capital / Risk-Weighted Assets (%), x18: 

Total Risk-Based Capital / Risk-Weighted Assets (%), and x19: Tier One Leverage Capital Ratio 

(%). The majority of these variables is statistically significant at the 1% level of significance. It 

is obvious that models’ power is increasing over time (with pseudo-R2 values starting at 

0.2293 for the 2008 logit and 0.1983 for the 2008 probit models, and ending up at 0.5263 for 

the 2012 logit and 0.5126 for the 2012 probit models) which will be confirmed by the ROC 

curve analysis during the out-of-sample validation. 

Regarding the economic impact of the estimated parameters of the considered ratios, we 

can see that all coefficients yield the correct sign that is consistent with the economic 

interpretation of the balance sheet ratios.  For example, we obtain a negative sign for the 

variables x1 and x2 which implies that the higher the net income, the higher will be these 

ratios. Consequently, lower income corresponds to a higher PD for a given bank. Similarly, we 

have estimated negative coefficients for the variables x17, x18, and x19. All these three ratios 

regard the required capital and, therefore, the higher the amount of capital held by a bank 

hold, the lower will typically be the PD for this bank. On the contrary, we obtain positive signs 

for the variables x6, x8, and x11. This means that the higher the cost of total interest bearing 

deposits (x6), the higher will be the estimated PD; the higher the ratio of net loans and leases 

to total assets (x8), the higher will be the estimated PD; and finally the higher the ratio of 

noncurrent loans and leases to gross loans and leases (x11), the higher will be the estimated 

PD. 

                                                           
40 Pseudo-R2 (specifically, the McFadden’s Pseudo R-Squared is reported here) cannot be interpreted as an OLS 

coefficient of determination (
2

R ) since calculation of maximum likelihood estimates is rather done through an 
iterative process and is not based on minimisation of variance. Nevertheless, higher values still indicate a better 
model fit. 
41 We also conducted Wald tests; however, test statistics and p -values for the estimated models are not 

reported here as they yielded the same results as the conducted likelihood-ratio tests (all models are statistically 
significant at the 1% significance level). 
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Results for the estimated discrete hazard models for the years 200942 to 2012 are 

reported in Table 8. Also, the dynamic models typically contain between three and five 

explanatory variables that represent a subset of the following variables:  x1: Return on Assets 

(%), x2: Return on Equity (%), x6: Cost of Total Interest Bearing Deposits (%), x8: Net Loans & 

Leases / Total Assets (%), x11: Noncurrent Loans & Leases / Gross Loans & Leases (%), and x17: 

Tier One Risk-Based Capital / Risk-Weighted Assets (%). Also here we got the expected signs 

for all estimated coefficients. Interpretation of the economic impact is then the same as in 

the case of the static models. Note that based on the applied algorithm, for most of the years, 

a very similar subset of variables was included into the final model for the estimated static 

and discrete hazard models.43 As in the case of the static models, the majority of the variables 

in the hazard models is statistically significant at the 1% level of significance and also models’ 

power is increasing over time. However, increase in pseudo-R2 values is not that significant 

here, and the values themselves are lower compared to static models (e.g. 0.5263 for the 

2012 static logit model and 0.3247 for the 2012 hazard logit model). 

In order to supplement measures such as the pseudo-R2 and the statistical significance of 

the entire model, we also examine the calibration accuracy of the models by applying Vuong’s  

closeness test (Vuong (1989)). The test examines how well estimated models’ PDs match with 

actual outcomes of defaulted and non-defaulted banks. Using a calibration accuracy test and 

its likelihood estimates, we are able to determine which model’s PDs (from a set of candidate 

models) are closest to the actual PDs given a set of empirical data.44 The higher the likelihood, 

the more accurately a model predicts actual defaults. 

 

 

                                                           
42 We did not estimate hazard models for 2008, since no pooling of the data can be done for the first year of our 
sample. As a result, the estimated discrete hazard models for 2008 would be identical to the static ones. 
43 As mentioned in Section 3.4.2, for the discrete hazard models it is necessary to adjust the sample size to 
account for the lack of independence between bank-year observations. This is what differentiates hazard models 
from simple “pooled” models and guarantees appropriate test statistics for the estimated coefficients. Based on 
the adjustment of statistical significance of particular coefficients within each estimated model, the variable x8 
(ratio of net loans & leases to total assets) had to be excluded for the estimated probit models in 2010, 2011, 
and 2012, and for the logit model in 2012. Even though this variable was statistically significant at the 5% 
(sometimes even at the 1%) level of significance for the “pooled” models, after the adjustment of the coefficients 
the variable was not significant anymore, even at the 10% level of significance. 
44 For a closer discussion on calibration and likelihood-based measures of calibration, see Stein (2007). 
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Table 9 

Calibration accuracy test (in-sample calibration) 

  model 2008 model 2009 model 2010 model 2011 model 2012 

  (log-likelihood) (log-likelihood) (log-likelihood) (log-likelihood) (log-likelihood) 

Static logit -102.2307 -467.1505 -389.7131 -228.2497 -120.6940 

Static probit -106.5046 -488.3219 -386.9624 -321.3570 -124.3151 

Hazard logit  -------- -631.3825 -1,095.7732 -1,334.3447 -1,470.3562 

Hazard probit  -------- -636.8508 -1,106.2798 -1,349.5912 -1,484.9912 

The table reports the log-likelihood measures obtained from the calibration accuracy test for in-sample. 

Note that the higher value of log-likelihood, the better calibrated a given model is (model predicts PDs 

more accurately). These models are highlighted in bold. 

Using a vector of model outputs (estimated PDs) and a vector of default outcomes (one for  

defaulted   banks   and   zero   for  non-defaulted   banks)   we  calculate  the  log-

likelihood45measure for each of the estimated models. Since different datasets were used for 

estimation of the models, we could not use these tests for making a cross-comparison (static 

against hazard models) in this case, but only for a comparison of the results within the group 

of either static or dynamic probit and logit models for each year. Results for conducted 

calibration accuracy test are reported in Table 9. In order to determine whether the calculated 

log-likelihoods for various models are significantly different, we used Vuong’s test for non-

nested models. Results are reported in Table 10. 

Our findings for in-sample calibration indicate that the logit models typically provide a 

better fit to the data than the probit models. The only exception is the 2010 static model; 

however, as indicated by Table 10, the difference between the logit and probit model is not 

statistically significant. We are also able to statistically distinguish between most of the  

Table 10 

Vuong’s closeness test for non-nested models (in-sample calibration) 

  model 2008 model 2009 model 2010 model 2011 model 2012 

static logit / -1.8285 3.8247 0.7837 8.5623 2.5873 

static probit (0.9663) (0.0001) (0.2166) (0.0000) (0.0048) 

hazard logit /  ------ 2.7908 1.2374 1.8877 2.8121 

hazard probit  ------ (0.0026) (0.1080) (0.0295) (0.0025) 

The table reports Vuong’s closeness test for non-nested models. The top number represents 

Z  statistics while the number in parenthesis is a p -value. Statistically significant differences 

are highlighted in bold. 

                                                           
45 Logarithm of the likelihood is a monotonic transformation of the likelihood and thus the fact the model with 
higher log-likelihood is better calibrated is still valid. 
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models at the 5% level of significance pointing towards a significantly better fit of the applied 

logit models in 2009, 2011 and 2012. For 2008 and 2010, the performance of the estimated 

logit and probit models cannot be statistically distinguished. The Z statistic for the 2008 static 

models is very low due to a relatively small number of defaulted banks (19) in the sample. 

Overall, based on the conducted tests we state that logit models are better calibrated and, 

therefore, produce more accurate default probability estimates compared to probit models. 

3.5.3 Model validation 

As mentioned above, we apply a framework called the walk-forward approach with  

out-of-time validation that allows for testing of models while controlling for time 

dependence, see  Stein (2007) for a more thorough discussion of this approach. This 

technique suggests use of a different set of data in validating the out-of-sample 

performance of the estimated models. At the same time, the approach allows for use 

of as much of the data as possible to fit and to test the models.46 Numbers of non-

defaulted and defaulted banks used for the validation along with data collection 

dates are reported in Table 11.Table 11 

Numbers of banks and data collection dates for control samples 

Validation of 
  

# of defaulted banks 
  

# of non-defaulted banks 
  Date 

      (financial ratios) 

model 2008 
  120   

7,515 
  

31/12/2007 
  (defaulted in 2009)     

model 2009 
  138   

7,185 
  

31/12/2008 
  (defaulted in 2010)     

model 2010 
  86   

6,978 
  

31/12/2009 
  (defaulted in 2011)     

model 2011 
  42   

6,834 
  

31/12/2010 
  (defaulted in 2012)     

model 2012 
  23   

6,618 
  

31/12/2011 
  (defaulted in 2013)     

The table reports the number of defaulted and non-defaulted banks along with the data collection 

dates used for validation of the estimated models. For out-of-sample validation of the models, we use 

financial ratios collected one year after the estimation period (see Table 5) and then investigate the 

performance of the models in predicting defaults of the next year. For example, while estimating the 

2008 static model (based on banks defaulted in 2008), we used financial ratios collected on December 

31, 2006. For validation of the estimated model, we are predicting defaults in 2009 using financial 

ratios collected on December 31, 2007. 

                                                           
46 While Stein (2007) describes this approach with out-of-sample and out-of-time sampling, we used only  
out-of-time sampling in order to avoid the reduction in the number of defaulted banks within estimation and 
testing. 
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As explained in Section 3.5.2 and Figure 2, for validation of the estimated models we use 

financial ratios collected one year after estimation of the models (see Table 5). For example, 

for the estimation of the 2008 static model, we use data on defaulted and non-defaulted 

banks in 2008 and financial ratios collected on December 31, 2006. The performance of the 

model is then validated predicting defaults in 2009 using financial ratios collected on 

December 31, 2007. 

3.5.3.1 Distributions of estimated PDs 

Let us first have a look at the estimated out-of-sample default probabilities obtained from the 

models. In Table 12, we provide descriptive statistics for the distribution of PDs (mean value, 

standard deviation, skewness, and kurtosis), calculated separately for non-defaulted and 

defaulted banks during the validation period. As expected, we find that for all models the 

mean of the estimated PDs is significantly lower for non-defaulted banks in comparison to 

defaulted banks. For example, estimated average PDs for the static logit model in the non-

default group are between 0.69% (for 2012) and 1.97% (for 2011), while in the default group 

they range from 8.24% (for 2008) up to 44.87% (for 2012). Quite similar results are obtained 

for the static probit models as well as for the dynamic discrete hazard models. Typically, 

estimated PDs for each group are highly skewed and exhibit excess kurtosis.  

3.5.3.2 ROC curve analysis 

After examining the distributions of estimated default probabilities for the individual models, 

we now compare our estimated models in terms of areas under the ROC curves (the ROC 

area) and accuracy ratios (AR). The information for each model and year is summarised in 

Table 13, while Figure 3 provides a plot of the ROC curve for the estimated static and dynamic 

probit model for 2010 and the static and dynamic logit model for 2012. 

The results in Table 13 illustrate that the areas under the ROC curve increase over time and 

reach almost 99% for the static models in 2012. This is mainly a result of the large sample size, 

that is, the high number of non-defaulted banks, in comparison to the very low number of 

defaulted banks for the years 2011 and 2012. For 2011, the sample contained 6,834 non-

defaulted banks and only 42 defaults, while for 2012 the sample contains 6,618 non-defaults 

and only 23 defaults. From a first glance, we observe that for a specific year, ROC areas and 

accuracy ratios are typically very similar for all models, which makes it hard to decide whether  
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Table 12 

PDs’ statistics of the distributions (non-defaulted and defaulted banks) 

      
model 
2008 

model 
2009 

model 
2010 

model 
2011 

model 
2012 

Static logit 

non-defaulted 

mean 1.03% 0.75% 1.72% 1.97% 0.69% 

std.dev. 0.05  0.03  0.09  0.12  0.06  

skew 14.71 15.34 8.13 7.26 12.69 

kurt 275.26 304.16 71.20 53.76 178.35 

defaulted 

mean 8.24% 14.72% 40.54% 38.74% 44.87% 

std.dev. 0.14  0.24  0.35  0.36  0.39  

skew 3.26 2.20 0.49 0.59 0.43 

kurt 11.64 3.71 -1.31 -1.28 -1.65 

Hazard logit 

non-defaulted 

mean  ------- 0.72% 1.61% 1.83% 0.58% 

std.dev.  ------- 0.03  0.08  0.11  0.05  

skew  ------- 16.19 8.84 7.70 14.68 

kurt  ------- 358.56 86.56 61.27 241.54 

defaulted 

mean  ------- 13.51% 34.15% 35.91% 39.27% 

std.dev.  ------- 0.23  0.33  0.35  0.40  

skew  ------- 2.36 0.81 0.69 0.60 

kurt  ------- 4.61 -0.76 -1.18 -1.50 

Static probit 

non-defaulted 

mean 0.90% 1.07% 1.84% 3.04% 0.62% 

std.dev. 0.04  0.05  0.09  0.12  0.05  

skew 17.32 9.91 7.66 6.22 13.79 

kurt 351.32 130.73 64.81 40.83 221.44 

defaulted 

mean 6.02% 15.60% 40.37% 45.88% 40.27% 

std.dev. 0.11  0.25  0.34  0.33  0.38  

skew 3.85 1.80 0.52 0.33 0.68 

kurt 16.07 2.37 -1.13 -1.29 -1.35 

Hazard probit 

non-defaulted 

mean  ------- 1.07% 1.80% 1.88% 0.61% 

std.dev.  ------- 0.04  0.08  0.11  0.05  

skew  ------- 13.12 8.23 7.61 14.21 

kurt  ------- 238.76 78.04 60.91 237.25 

defaulted 

mean  ------- 15.60% 34.04% 35.50% 37.97% 

std.dev.  ------- 0.21  0.30  0.32  0.38  

skew  ------- 2.28 0.81 0.73 0.71 

kurt  ------- 4.68 -0.57 -0.91 -1.26 

The table reports statistics of the distributions (mean value, standard deviation, skewness, and 

kurtosis) of estimated PDs for individual models, calculated separately for non-defaulted and 

defaulted banks. Mean values of PDs are expressed in percentage units, while other statistics are 

expressed in decimal numbers. 

any of the models is able to outperform the others. The only exception is 2012, where the 

static logit and probit models seem to clearly outperform their dynamic counterparts. While 

for the static logit model, the ROC area is 0.9881, we obtain a value of 0.9490 for the hazard 

logit model. For the static probit model we obtain a ROC area of 0.9882, while the dynamic 

probit model yields a value of 0.9511. This is quite an interesting finding and is most likely 

caused  by the exclusion of  the financial ratio net loans & leases to total assets (x8). As stated 



Prediction of U.S. Commercial Bank Failures via Scoring Models: The FFIEC Database Case   

 

87 
 

      Table 13 
ROC areas and accuracy ratios (AR) 

    model 2008 model 2009 model 2010 model 2011 model 2012 

Static logit 
ROC area: 0.8536 0.9333 0.9605 0.9624 0.9881 

AR: 0.7072 0.8666 0.9210 0.9248 0.9762 

Hazard logit 
ROC area:  ------ 0.9333 0.9592 0.9619 0.9490 

AR:  ------ 0.8666 0.9184 0.9238 0.8980 

Static probit 
ROC area: 0.8359 0.9383 0.9578 0.9595 0.9882 

AR: 0.6718 0.8766 0.9156 0.9190 0.9764 

Hazard probit 
ROC area:  ------ 0.9389 0.9556 0.9595 0.9511 

AR:  ------ 0.8778 0.9112 0.9190 0.9022 

The table shows calculated areas under the ROC curves (ROC area) and accuracy ratios (AR) for each of 

the estimated models. Reported values are very high due to a high number of non-defaulted banks 

compared to defaulted banks. 

in Footnote 43, we did estimate the simple “pooled” models to find a possible cause of the 

significant difference between the static and discrete hazard models for 2012. Including the 

variable x8 into the discrete hazard models for predicting defaults in 2012, we obtain areas 

under the ROC curve of 0.9891 for the dynamic logit and 0.9894 for the dynamic probit 

models, that is, results almost identical to those of the static models. However, even though 

this variable was statistically significant at the 5% (sometimes even at 1%) level in the 

“pooled” models, it was insignificant even at the 10% level, after the necessary adjustment of 

statistical inference. 

Figure 3 

ROC curves

A) Probit 2010 models 

 

B) Logit 2012 models 

 

The figure plots ROC curves for 2010 probit models (panel A) and 2012 logit models (panel B). Static models 

are represented by the red curves, while hazard models by the blue curves. 
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3.5.3.3 Sizing the variability of ROC areas – bootstrapping 

As pointed out by Stein (2007), results of model testing are subject to sample variability. The 

author also illustrates that it is typically the number of defaults rather than the total number 

of total observations in the sample that tends to drive the stability of performance measures 

such as the accuracy ratio or the ROC area. Small numbers of defaults lead to a very high 

variability in the results. Stein (2007) concludes that the best one can do is to size and 

understand this variability, as under normal circumstances it is not possible to reduce it. 

A common approach to sizing the variability of a particular statistic given an empirical 

sample is to use resampling techniques to leverage the available data and reduce the 

dependence of the results on a particular sample. Therefore, we bootstrapped our control 

sample data sets (sampled with replacement) 1,000 times to examine the stability of the 

results.47  Figure 4 provides an exemplary plot of the distribution of ROC areas for the hazard  

Table 14 

ROC area statistics of the distributions (bootstrapping) 

    model 2008 model 2009 model 2010 model 2011 model 2012 

Static logit 

mean 0.8545 0.9335 0.9605 0.9621 0.9882 

std.dev. 0.0170 0.0100 0.0100 0.0130 0.0042 

skew -0.0720 -0.1522 -0.5641 -0.9772 -0.8208 

kurt 3.0798 2.8460 3.3229 3.9371 3.8913 

Hazard logit 

mean  -------- 0.9338 0.9592 0.9616 0.9504 

std.dev.  -------- 0.0104 0.0102 0.0127 0.0429 

skew  -------- -0.1364 -0.6403 -0.9586 -1.2150 

kurt  -------- 2.8264 3.5545 3.9441 6.1221 

Static probit 

mean 0.8370 0.9385 0.9579 0.9593 0.9883 

std.dev. 0.0196 0.0097 0.0104 0.0128 0.0038 

skew -0.0417 -0.1745 -0.5992 -0.9191 -0.7230 

kurt 3.0058 2.9205 3.5269 3.8446 3.7050 

Hazard probit 

mean  -------- 0.9392 0.9557 0.9592 0.9524 

std.dev.  -------- 0.0104 0.0108 0.0142 0.0397 

skew  -------- -0.1843 -0.6639 -0.9536 -1.2093 

kurt  -------- 2.8707 3.7224 3.9271 6.0884 

The table reports descriptive statistics of the distributions (mean value, standard deviation, skewness, and 

kurtosis) of areas under the ROC curves (ROC area) for each model and year based on 1,000 bootstrapped 

re-samples for each year.

                                                           
47 Creating random samples for bootstrapping we combine defaulted and non-defaulted banks into one pool 
and calculate the ROC areas for static and hazard models based on 1,000 re-samples from this pool. We keep 
the bootstrap size same as sample size. 
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Figure 4 

Distribution of ROC areas based on bootstrapping 

A) Hazard logit 2009 model 

 

B) Static probit 2012 model 

 
The figure plots the distribution of areas under the ROC curves (ROC area) for 2009 hazard logit model  

(panel A) and 2012 static probit model (panel B) based on bootstrapping. 

logit model for 2009 and the static probit model for 2012.  Statistics of the distributions for 

all models are then listed in Table 14. 

Results for ROC areas based on the bootstrap re-samples suggest that the ROC area 

statistics are not affected by dependence on the particular sample as the mean value of the 

bootstrapped ROC areas (Table 14) typically differs only slightly from its original value (Table 

13).48 We also performed a Kruskal-Wallis test to examine significant differences between the 

particular models in terms of the bootstrapped ROC areas. Note that this test does not require 

the assumption that all samples come from a population with a normal distribution, which 

would not be justified in our case. Results of this test are reported in Table 15. 

Since for each of the years we reject the null hypothesis that all samples of ROC areas are 

drawn from the same population, we can say that, in terms of bootstrapped ROC areas, at 

least one model stochastically dominates at least one other model. In order to further 

investigate this issue, we also conducted a multiple comparison procedure. This procedure 

uses Tukey’s honestly significant difference (Tukey’s HSD) criterion that is optimal for the 

comparison of groups with equal sample sizes. The procedure allows testing for significant 

differences with regards to the performance (ROC area) of the particular models. The test is 

conducted with a significance level of   = 0.05. For each year, Table 16 indicates for all four  

                                                           
48 For example, mean value of ROC area statistic calculated from bootstrapping for 2009 hazard probit model is 
0.9392 while without re-sampling this statistic is 0.9389 for this model. 
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Table 15 

Kruskal-Wallis test 

  model 2008 model 2009 model 2010 model 2011 model 2012 

  (rank sum) (rank sum) (rank sum) (rank sum) (rank sum) 

Static logit 1.25E+06 1.70E+06 2.24E+06 2.15E+06 2.52E+06 

Hazard logit  ------ 1.73E+06 2.10E+06 2.09E+06 1.52E+06 

Static probit 7.49E+05 2.25E+06 1.95E+06 1.86E+06 2.51E+06 

Hazard probit  ------ 2.32E+06 1.72E+06 1.90E+06 1.45E+06 

K-statistic 380.216 245.537 112.939 46.743 791.703 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 

The table reports results of the Kruskal-Wallis test. K  statistic has a chi-squared distribution 

with 1 degree of freedom for 2008 models and 3 degrees of freedom for the rest of the models. 

In all cases, we reject null hypothesis implying that there are statistically significant differences 

between bootstrapped ROC areas among the models in particular years. 

estimated models (in 2008 only two static models have been estimated) which of the other 

models perform significantly worse or significantly better.49 

Let us consider the 2008 models to illustrate the results of the conducted tests. Overall, 

we have four estimated models: (1) the static logit model, (2) the discrete hazard logit model, 

(3) the static probit model, (4) the discrete hazard probit model. For 2008, the population of 

the bootstrap sample of the static logit model (1) is significantly to the right, which implies 

significantly higher bootstrapped ROC area values compared to the probit model (3). For 

2012, there is no statistical difference between the static models (1) and (3) and between the 

hazard models (2) and (4). However, both static models have population of the bootstrap 

samples significantly to the right, which means significantly higher bootstrapped ROC area 

values compared to the hazard models. This is in accordance to our results reported in Table 

14, where mean values of bootstrapped ROC area for static models are 0.9882 and 0.9883, 

respectively, compared to hazard models with values 0.9504 and 0.9524. Thus, using the 

Kruskal-Wallis and Tukey’s tests we managed to demonstrate significant statistical difference 

between the models’ power. 

Overall, Tukey’s test provides a very powerful tool for distinguishing between individual 

models and should be considered as an additional testing procedure for comparing the out-

of-sample performance of credit-scoring models. To the best of our knowledge, so far the test  

                                                           
49 Test statistics, along with the number of degrees of freedom and p -values, are identical to the values in the 

Kruskal-Wallis test. 



Prediction of U.S. Commercial Bank Failures via Scoring Models: The FFIEC Database Case   

 

91 
 

Table 16 

Tukey’s test 

 

The table provides results for the multiple comparison procedure of the mean ranks of particular models using 

Tukey’s HSD criterion. In particular, it illustrates for each of the four estimated models - (1) static logit model, (2) 

discrete hazard logit model, (3) static probit model, (4) discrete hazard probit model - which of the other models 

performs significantly worse or significantly better. ‘All’ means that all other models were significantly 

worse/better, while ‘-‘ indicates that none of the other models was significantly worse/better. 

has not been applied to examining the discriminatory power of credit rating models. Note 

that this test was able to statistically distinguish between all 2010 models, where, for 

example, the difference between mean values of bootstrapped ROC areas for static and 

dynamic probit models is relatively small (0.0022). Examining the performance of different 

scoring models is one of the key tasks to develop appropriate models, while often it is quite 

difficult to distinguish between the models with regards to their discriminatory power. 

DeLong et al. (1988) provide a test for the difference between the areas under the ROC curves 

of two rating models, which relies on the assumption of asymptotic normality. Engelmann et 

al. (2003) then discuss this approach and test the validity of this assumption.  Their analysis 

indicates that reliability of this method is not guaranteed in the case of a validation sample 

containing only a small number of defaults. On the other hand, despite the fact that Tukey’s 

test does not require the assumption of normality, it proved to be a very powerful test in 

distinguishing between individual scoring models. 

3.5.3.4 Calibration accuracy test 

Several of the previous sections suggest that the performance of individual models is very 

similar for a particular year. So far, we have focused on examining the discriminative power 

of the models which clearly is one of the key criteria to be applied when validating credit 

models. Another key task is to examine the performance of the models with respect to their 

likelihood. This section is devoted to examining model calibration along with the application 

of Vuong’s closeness test (Vuong (1989)). Results for log-likelihoods for the out-of-sample 

validation of  the models  are reported in Table 17.  Note that  in comparison to Section 3.5.2  

model 2008 model 2009 model 2010 model 2011 model 2012

(worse / better) (worse / better) (worse / better) (worse / better) (worse / better)

(1) static logit All / -           - / {3,4} All / -   {3,4} / -       {2,4} / -       

(2) hazard logit  ------         - / {3,4} {3,4} / {1}   {3,4} / -               - / {1,3}

(3) static probit    - / All {1,2} / -          {4} / {1,2}         - / {1,2} {2,4} / -       

(4) hazard probit  ------ {1,2} / -          - / All         - / {1,2}         - / {1,3}
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Table 17 

Calibration accuracy test (out-of-sample validation period) 

  model 2008 model 2009 model 2010 model 2011 model 2012 

  (log-likelihood) (log-likelihood) (log-likelihood) (log-likelihood) (log-likelihood) 

Static logit -605.3952 -498.1433 -126.1653 -0.2820 -153.0582 

Hazard logit  -------- -498.0313 -99.7176 -0.2515 -150.3667 

Static probit -651.0178 -506.4024 -155.3029 -1.6970 -147.9030 

Hazard probit  -------- -506.2495 -119.6402 -0.2755 -167.6681 

The table reports the log-likelihood - equation (14) – for each model and year, based on the out-of-sample 

calibration period. Note that higher values of the log-likelihood indicate a better calibration of the model 

to default and non-default data, that is, the model predicts PDs more accurately. For each year, results 

for the best model are indicated in bold.  

where results on model estimation were examined using the log-likelihood, results in Table 

17 are based only on out-of-sample results. Thus, the log-likelihood in equation (14) is 

calculated by comparing the vector of predicted PDs to actually observed defaults and non-

defaults during the out-of-sample validation period.   

The results in Table 17 indicate that static and dynamic logit models typically outperform 

their probit counterparts with regards to accuracy. We also observe that for 2009, 2010 and 

2011 the discrete hazard logit models yield the highest log-likelihood of all models. Recall that 

for 2008 the static and dynamic hazard models are identical, such that only results for the 

static models are reported. Interestingly, for 2012, we find that the static probit model 

provides the best result in terms of the log-likelihood measure. 

In order to determine whether calculated log-likelihoods for various models are 

significantly different, we use the Vuong closeness test for non-nested models. In a first step, 

we test the best model, that is, the model with the highest log-likelihood in a particular year, 

against all other models. Then we test the second best model against the remaining models, 

and so on. In this way, we conducted this test for six different pairwise combinations for each 

year 2009, 2010, 2011 and 2012, while we only have one pairwise combination in 2008. The 

higher the value of the Z  statistic, the greater is the difference between the model with the 

higher log-likelihood and the other model. Results of conducted tests are reported in Table 

18. 

Unfortunately, in terms of log-likelihoods calculated from the calibration accuracy test, 

we cannot distinguish between the majority of the models (unlike for the in-sample 

calibration  results).   There  are  only  a few   pairwise combinations (highlighted  in bold) that  
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Table 18 

Vuong’s closeness test for non-nested models (out-of-sample validation period) 

  static logit / static logit / static logit / hazard logit / hazard logit / static probit / 

  hazard logit static probit hazard probit static probit hazard probit hazard probit 

model 2008 
 ------ 1.1787  ------  ------  ------  ------ 

 ------ (0.1193)  ------  ------  ------  ------ 

model 2009 
1.3433 0.3821 0.2633 0.5134 0.4134 0.5899 

(0.0896) (0.3512) (0.3961) (0.3038) (0.3397) (0.2776) 

model 2010 
2.9600 1.6880 0.4842 2.7187 0.8103 2.5622 

(0.0015) (0.0457) (0.3141) (0.0033) (0.2089) (0.0052) 

model 2011 
0.0008 0.0253 0.0981 0.0212 -0.0802 0.1040 

(0.4997) (0.4899) (0.4609) (0.4915) (0.5320) (0.4586) 

model 2012 
-0.0995 0.5577 0.7600 0.3507 1.5453 1.0171 

(0.5396) (0.2885) (0.2236) (0.3629) (0.0611) (0.1546) 

The table reports Vuong’s closeness test for non-nested models. We report Z  statistics and p -values (in 

parenthesis) for each conducted test. There are six pairwise combinations for the years 2009-2012 (as we have 

four estimated models in each year) and only one pairwise combination in 2008 (only two estimated models). 

Tests that yield a significance outperformance of the model with the higher log-likelihood are indicated in bold 

letters.  

indicate a statistically significant difference between the log-likelihoods of the models at the 

10% level. However, we got similar results to our findings obtained from ROC analysis and 

bootstrapping ROC areas, where we showed that the 2012 static models have a higher 

discriminatory power than the hazard models. The 2012 static probit model with a log-

likelihood value of -147.90 seems to perform better than the hazard probit model with a log-

likelihood value of -167.67 (although the value of the Z  statistic of 1.02 from Vuong’s 

closeness test suggests that the difference is not significant at the 10% level). The 2012 hazard 

logit model with a log-likelihood value of -150.37 might be slightly better calibrated compared 

to the static logit model with the log-likelihood value of -153.09, nonetheless this difference 

is not significant whatsoever ( p -value of 0.5396). 

3.5.3.5 PD analysis for the entire score sample 

Likelihood measures make relative comparisons between competing models. Unfortunately, 

it is not possible to use them for evaluating whether or not a specific model is correctly 

calibrated. Therefore, it is often useful to conduct an additional analysis by comparing the 

expected and actually observed number of defaults. Using our out-of-sample validation 

periods, we started with calculating the mean values of estimated PDs (defaulted and non-

defaulted  banks  together)  and  the  expected number  of defaults, along  with  the ratios  of  
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Table 19 

E(PD), actual and expected # of defaults, and ratios for out-of-time validation 

    
model 
2008 

model 
2009 

model 
2010 

model 
2011 

model 
2012 

Static logit 

E(PD): 1.15% 1.01% 2.20% 2.19% 0.84% 
actual # of D: 120 138 86 42 23 

expected # of D: 88 74 155 151 56 

ratio: 136% 186% 55% 28% 41% 

Hazard logit 

E(PD):  ------ 0.96% 2.01% 2.04% 0.72% 

actual # of D:  ------ 138 86 42 23 

expected # of D:  ------ 70 142 140 48 

ratio:  ------ 197% 61% 30% 48% 

Static probit 

E(PD): 0.98% 1.96% 2.31% 3.30% 0.75% 

actual # of D: 120 138 86 42 23 

expected # of D: 75 144 163 227 50 

ratio: 160% 96% 53% 19% 46% 

Hazard probit 

E(PD):  ------ 1.35% 2.20% 2.09% 0.74% 

actual # of D:  ------ 138 86 42 23 

expected # of D:  ------ 99 155 144 49 

ratio:  ------ 139% 55% 29% 47% 

The table reports mean values of estimated PDs (E(PD)), calculated for defaulted and 

non-defaulted banks together, actual and expected (under a given model) number of 

defaults (D), along with the ratios of actual number of defaults over expected number 

of defaults for each of the models. 

actual over expected number of defaults for every particular model. Results are summarised 

in Table 19. 

Our findings suggest that overall, the calibrated models underestimate the actual number 

of defaults for the years 2008 and 2009, while they clearly overestimate the number of 

defaults for the years 2010, 2011 and 2012.50 A possible explanation for this behaviour is that 

the models for 2008 and 2009 were estimated during periods of lower default rates using 

financial ratios from December 31, 2006 and December 31, 2007, respectively. On the other 

hand, models for later years were calibrated during the financial crisis using data from periods 

of relatively high number of defaults and may, therefore, overestimate the actual number of 

defaults in later periods. 

A common approach for researchers to determine the accuracy of estimated probabilities 

is to run experiments in which they attempt to estimate the goodness-of-fit between 

                                                           
50 The reversal in under- to overestimation between 2009 and 2010 between observation and prediction might 
imply a data-driven result which would indicate deficiencies in the models. Generally, it is acknowledge that 
one-equation models might be insufficient in representing the entire default process, see, for example, Laitinen 
(1991) or Mecaj (2013). Note, however, that the relatively convincing results for default prediction – also in 
comparison to other recent major studies such as Beaver et al. (2005) or Duffie et al. (2007) - would suggest that 
the applied approach and the estimated models are quite useful. 
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expected (under a given model) and actual default rates; see, for example, Stein (2006). Such 

a comparison for each model, along with the Hosmer-Lemeshow’s chi-squared goodness-of- 

Table 20 

Expected vs. actual default rates (Hosmer-Lemeshow test) 

 

The table reports a comparison between expected (exp. DR) and actual (act. DR) default rates along with the 

Hosmer-Lemeshow’s goodness-of-fit tests. For each of the models the ranked PD estimates were divided into 

ten intervals of the same size. The HL  test statistic (HL stat.) follows a chi-squared distribution with 10 d.f. 

exp. DR act. DR exp. DR act. DR exp. DR act. DR exp. DR act. DR exp. DR act. DR

(1 ; 0.90) 8.71% 8.78% 7.72% 14.75% 20.33% 10.76% 21.23% 5.97% 8.20% 3.46%

(0.90 ; 0.80) 1.45% 2.49% 0.97% 2.46% 0.84% 0.99% 0.32% 0.00% 0.09% 0.00%

(0.80 ; 0.70) 0.64% 1.57% 0.54% 0.68% 0.35% 0.14% 0.15% 0.00% 0.05% 0.00%

(0.70 ; 0.60) 0.32% 1.31% 0.34% 0.41% 0.20% 0.14% 0.09% 0.00% 0.04% 0.00%

(0.60 ; 0.50) 0.18% 0.52% 0.22% 0.00% 0.12% 0.00% 0.06% 0.00% 0.03% 0.00%

(0.50 ; 0.40) 0.10% 0.52% 0.15% 0.41% 0.07% 0.00% 0.04% 0.15% 0.02% 0.00%

(0.40 ; 0.30) 0.05% 0.26% 0.10% 0.14% 0.04% 0.14% 0.03% 0.00% 0.01% 0.00%

(0.30 ; 0.20) 0.03% 0.13% 0.06% 0.00% 0.02% 0.00% 0.02% 0.00% 0.01% 0.00%

(0.20 ; 0.10) 0.01% 0.13% 0.04% 0.00% 0.01% 0.00% 0.01% 0.00% 0.00% 0.00%

(0.10 ; 0) 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

HL stat. = 79.52 HL stat. = 73.92 HL stat. = 44.54 HL stat. = 102.07 HL stat. = 21.41

p -value = 0.0000 p -value = 0.0000 p -value = 0.0000 p -value = 0.0000 p -value = 0.0184

(1 ; 0.90) 6.92% 14.62% 17.56% 10.76% 19.41% 5.97% 6.75% 3.31%

(0.90 ; 0.80) 1.00% 2.46% 1.05% 1.13% 0.41% 0.00% 0.15% 0.00%

(0.80 ; 0.70) 0.58% 0.96% 0.51% 0.00% 0.20% 0.00% 0.09% 0.00%

(0.70 ; 0.60) 0.39% 0.14% 0.33% 0.00% 0.13% 0.00% 0.06% 0.00%

(0.60 ; 0.50) 0.27% 0.27% 0.23% 0.14% 0.09% 0.00% 0.05% 0.00%

(0.50 ; 0.40) 0.19% 0.14% 0.16% 0.00% 0.07% 0.15% 0.04% 0.00%

(0.40 ; 0.30) 0.13% 0.14% 0.11% 0.14% 0.05% 0.00% 0.03% 0.00%

(0.30 ; 0.20) 0.08% 0.00% 0.07% 0.00% 0.03% 0.00% 0.02% 0.00%

(0.20 ; 0.10) 0.04% 0.14% 0.03% 0.00% 0.01% 0.00% 0.01% 0.00%

(0.10 ; 0) 0.01% 0.00% 0.01% 0.00% 0.00% 0.00% 0.00% 0.15%

HL stat. =  ----- HL stat. = 88.47 HL stat. = 30.81 HL stat. = 86.43 HL stat. = 90.96

p -value =  ----- p -value = 0.0000 p -value = 0.0006 p -value = 0.0000 p -value = 0.0000

(1 ; 0.90) 6.92% 8.78% 14.22% 15.44% 21.74% 10.76% 28.60% 5.82% 7.38% 3.46%

(0.90 ; 0.80) 1.36% 2.36% 2.43% 1.91% 0.88% 1.13% 2.15% 0.15% 0.08% 0.00%

(0.80 ; 0.70) 0.68% 1.70% 1.24% 0.82% 0.26% 0.00% 0.94% 0.00% 0.04% 0.00%

(0.70 ; 0.60) 0.37% 0.79% 0.74% 0.14% 0.11% 0.00% 0.56% 0.00% 0.02% 0.00%

(0.60 ; 0.50) 0.21% 0.66% 0.44% 0.14% 0.05% 0.14% 0.34% 0.15% 0.01% 0.00%

(0.50 ; 0.40) 0.12% 0.52% 0.28% 0.14% 0.02% 0.00% 0.22% 0.00% 0.01% 0.00%

(0.40 ; 0.30) 0.06% 0.13% 0.17% 0.27% 0.01% 0.14% 0.13% 0.00% 0.01% 0.00%

(0.30 ; 0.20) 0.03% 0.52% 0.10% 0.00% 0.00% 0.00% 0.07% 0.00% 0.00% 0.00%

(0.20 ; 0.10) 0.01% 0.00% 0.04% 0.00% 0.00% 0.00% 0.03% 0.00% 0.00% 0.00%

(0.10 ; 0) 0.00% 0.26% 0.01% 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

HL stat. = 384.77 HL stat. = 9.96 HL stat. = 66.98 HL stat. = 202.04 HL stat. = 16.01

p -value = 0.0000 p -value = 0.4439 p -value = 0.0000 p -value = 0.0000 p -value = 0.0995

(1 ; 0.90) 9.69% 15.85% 19.03% 10.91% 20.03% 5.82% 7.12% 3.31%

(0.90 ; 0.80) 1.53% 1.50% 1.43% 0.85% 0.47% 0.15% 0.13% 0.00%

(0.80 ; 0.70) 0.83% 0.68% 0.60% 0.14% 0.17% 0.00% 0.06% 0.00%

(0.70 ; 0.60) 0.54% 0.00% 0.35% 0.00% 0.10% 0.00% 0.03% 0.00%

(0.60 ; 0.50) 0.36% 0.27% 0.22% 0.14% 0.06% 0.00% 0.02% 0.00%

(0.50 ; 0.40) 0.24% 0.41% 0.15% 0.00% 0.04% 0.15% 0.02% 0.00%

(0.40 ; 0.30) 0.16% 0.00% 0.10% 0.14% 0.03% 0.00% 0.01% 0.00%

(0.30 ; 0.20) 0.09% 0.00% 0.05% 0.00% 0.01% 0.00% 0.01% 0.00%

(0.20 ; 0.10) 0.04% 0.14% 0.02% 0.00% 0.01% 0.00% 0.00% 0.00%

(0.10 ; 0) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.15%

HL stat. =  ----- HL stat. = 40.65 HL stat. = 38.93 HL stat. = 92.58 HL stat. = 545.11

p -value =  ----- p -value = 0.0000 p -value = 0.0000 p -value = 0.0000 p -value = 0.0000

Hazard logit

Static logit

Static probit

Hazard probit

 ----------

 ----------

model 2010 model 2011 model 2012model 2008 model 2009
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fit tests, is carried out in Table 20, where we divided the ranked PD estimates into ten intervals 

of the same size (each interval contains the same number of banks).51 Moreover, we also 

illustrate the comparison procedure in more detail for the 2010 hazard logit and the 2009 

static probit model in Figure 5. 

Our findings imply that the expected and actual default rates are typically very similar for 

banks with a credit score that falls into one of the bands [0,0.10], (0.10,0.20], …., (0.80,0.90], 

that is, for all those that do not fall into the decile of banks’ worst credit scores.  As expected, 

the difference between expected and actual default rates is most substantial for banks with 

the worst score, that is, banks that fall into the decile (0.90,1]. While for 2008 and 2009, actual 

default rates exceed expected rates as they have been estimated by the model, for the 

remaining years actual default rates are below expected default rates according to the 

estimated models. Note that these results are in line with our findings in Table 19 for the 

entire sample. The Hosmer-Lemeshow test results in a rejection of the hypothesis of an 

accurate prediction of the number of defaults for most of the models even at the 10% level 

of significance. Exceptions include the 2009 and 2012 static probit models. Overall, the results 

suggest that expected and actual default rates are not statistically equal for the (0.90,1]. In 

order to further investigate this issue, we also conducted the same type of analysis for 

particular deciles themselves. 

Figure 5 

Expected vs. actual default rates 

A) Hazard logit 2010 model 

 

B) Static probit 2009 model 

 

This figure shows a comparison between expected (under a given model) and actual default rates for 2010 

hazard logit model (panel A) and 2009 static probit model (panel B).

                                                           
51 The first interval (0.90,1] contains the 10% banks with the lowest credit score (banks with the highest 
estimated PDs), the seconds interval (0.80,0.90] contains the next 10% of the banks, etc. 
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Table 21 

Expected vs. actual default rates (Hosmer-Lemeshow test for deciles) 

 

The table reports HL  test statistics (HL stat.) for particular deciles calculated from a comparison between 

expected and actual default rates, where for each of the models the ranked PD estimates were divided into ten 

intervals of the same size. The HL  test statistic follows a chi-squared distribution with 1 d.f. in this case. 

Particular cases of acceptance of null hypothesis at the 10% confidence level are highlighted in bold. 

Results of the Hosmer-Lemeshow test applied for particular deciles are reported in 

Table 21. Again, we divided the ranked PD estimates into ten intervals (deciles) of the same 

size (each interval contains the same number of banks). There is a visible pattern (with a few 

exceptions such as the 2012 hazard models, where these models incorrectly ranked one of 

the 23 defaulted banks into the last decile causing a high value of the HL statistic) of statistical 

equality between expected and actual default rates for the models 2009-2012, for all the 

deciles except of the first one containing 10% banks with the worst rating. Particular cases 

HL stat. p -value HL stat. p -value HL stat. p -value HL stat. p -value HL stat. p -value

(1 ; 0.90) 0.00 0.945 50.76 0.000 39.88 0.000 95.73 0.000 19.78 0.000

(0.90 ; 0.80) 5.75 0.017 16.95 0.000 0.19 0.660 2.21 0.137 0.60 0.438

(0.80 ; 0.70) 10.59 0.001 0.30 0.584 0.86 0.354 1.01 0.314 0.34 0.560

(0.70 ; 0.60) 23.20 0.000 0.11 0.740 0.11 0.742 0.64 0.424 0.24 0.625

(0.60 ; 0.50) 5.31 0.021 1.62 0.203 0.85 0.357 0.44 0.510 0.17 0.678

(0.50 ; 0.40) 13.95 0.000 3.28 0.070 0.49 0.483 1.66 0.120 0.12 0.727

(0.40 ; 0.30) 6.25 0.012 0.09 0.760 1.98 0.159 0.20 0.656 0.08 0.773

(0.30 ; 0.20) 3.15 0.076 0.47 0.494 0.13 0.722 0.12 0.737 0.05 0.826

(0.20 ; 0.10) 11.30 0.000 0.26 0.611 0.04 0.837 0.06 0.809 0.02 0.882

(0.10 ; 0) 0.01 0.914 0.07 0.785 0.00 0.945 0.01 0.908 0.00 0.950

(1 ; 0.90) 67.33 0.000 22.54 0.000 79.39 0.000 12.43 0.000

(0.90 ; 0.80) 15.68 0.000 0.04 0.833 2.85 0.092 1.00 0.317

(0.80 ; 0.70) 1.81 0.179 3.65 0.056 1.39 0.239 0.57 0.448

(0.70 ; 0.60) 1.20 0.272 2.37 0.124 0.91 0.340 0.42 0.519

(0.60 ; 0.50) 0.00 0.974 0.23 0.630 0.65 0.421 0.31 0.575

(0.50 ; 0.40) 0.11 0.744 1.14 0.286 0.61 0.433 0.24 0.626

(0.40 ; 0.30) 0.00 0.952 0.07 0.786 0.32 0.574 0.17 0.678

(0.30 ; 0.20) 0.59 0.442 0.47 0.492 0.20 0.658 0.12 0.734

(0.20 ; 0.10) 1.69 0.193 0.24 0.627 0.10 0.755 0.06 0.808

(0.10 ; 0) 0.06 0.808 0.05 0.816 0.02 0.883 75.64 0.000

(1 ; 0.90) 4.08 0.043 0.89 0.344 49.98 0.000 174.56 0.000 14.90 0.000

(0.90 ; 0.80) 5.61 0.018 0.82 0.366 0.52 0.473 13.15 0.000 0.52 0.472

(0.80 ; 0.70) 11.97 0.001 1.07 0.301 1.83 0.176 6.50 0.011 0.23 0.629

(0.70 ; 0.60) 3.64 0.057 3.59 0.058 0.80 0.372 3.84 0.050 0.14 0.705

(0.60 ; 0.50) 7.18 0.007 1.51 0.219 1.15 0.284 0.79 0.375 0.09 0.761

(0.50 ; 0.40) 10.33 0.001 0.51 0.474 0.16 0.686 1.52 0.218 0.06 0.808

(0.40 ; 0.30) 0.52 0.471 0.48 0.490 12.51 0.000 0.92 0.337 0.03 0.852

(0.30 ; 0.20) 58.37 0.000 0.70 0.404 0.02 0.877 0.50 0.479 0.02 0.897

(0.20 ; 0.10) 0.09 0.764 0.32 0.573 0.00 0.944 0.21 0.647 0.01 0.942

(0.10 ; 0) 282.97 0.000 0.07 0.791 0.00 0.986 0.04 0.835 0.00 0.983

(1 ; 0.90) 31.77 0.000 30.24 0.000 86.60 0.000 14.55 0.000

(0.90 ; 0.80) 0.00 0.959 1.68 0.195 1.53 0.216 0.86 0.354

(0.80 ; 0.70) 0.19 0.659 2.51 0.113 1.18 0.278 0.37 0.542

(0.70 ; 0.60) 3.96 0.047 2.49 0.114 0.67 0.414 0.23 0.632

(0.60 ; 0.50) 0.14 0.706 0.22 0.641 0.43 0.514 0.15 0.695

(0.50 ; 0.40) 0.83 0.361 1.06 0.302 1.85 0.173 0.10 0.749

(0.40 ; 0.30) 1.14 0.286 0.15 0.695 0.18 0.674 0.07 0.780

(0.30 ; 0.20) 0.66 0.418 0.38 0.537 0.10 0.755 0.04 0.849

(0.20 ; 0.10) 1.91 0.167 0.16 0.686 0.04 0.843 0.01 0.903

(0.10 ; 0) 0.04 0.848 0.02 0.875 0.00 0.944 528.72 0.000

model 2012

  Static logit

  Hazard logit  ---------

  Static probit

  Hazard probit  ---------

model 2008 model 2009 model 2010 model 2011
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where we accept null hypothesis of the Hosmer-Lemeshow test at the 10% confidence level 

are highlighted in bold. Overall, we can see the highest reported values of the HL statistic are 

in the first decile implying that the expected and actual default rates differ the most for the 

banks with the worst rating. This is what causes the rejection of the Hosmer-Lemeshow test 

for most of the models in Table 20. 

There is a reason why these results might be biased. As stated in Section 3.4.3.4, the 

appropriateness of the p -value calculated using HL  statistic depends on the validity of the 

assumption that the estimated expected frequencies are large. These should be greater 

than 5. Unfortunately, for many of our models this assumption is violated for most of the 

deciles. 

3.5.3.6 Focus on the tails 

There are three reasons why we decided to devote this section to the tails of the distribution 

of estimated PDs and to incorporate the tail-based measures within validation of the models: 

(1) our control samples contain a very high number of non-defaulted banks compared to 

defaulted banks and we wanted to focus on predicted defaults rather than majority of non-

defaults; (2) ROC areas in particular years were not very helpful in distinguishing between the 

models; (3) the expected and actual default rates differ significantly for the banks with the 

highest 10% PDs. 

First of all, we calculated a ratio of number of defaulted banks to the number of non-

defaulted banks within the highest 10% PDs (divided into 20 intervals of size 0.5%) along with 

the information of number of captured defaulted banks within this interval. Results are 

reported in Table 22 (to save space, we do not report values in intervals (0.92,0.925] – 

(0.975,0.98]).52 

We can see that the power of the models increases over time (which is in accordance 

with the ROC analysis conclusions).53 In fact, for the 2011 and 2012 models more than 95% of 

defaulted banks are captured within the group of banks with the 10% lowest credit scores. 

                                                           
52 Generally, there is a downward trend with gradual decline of the ratios over the small intervals. 
53 In terms of the number of defaulted banks captured by the models, the 2008 models yield a relatively poor 
accuracy. Interestingly, the reverse is the case for Table 20 which produces the smallest differences between 
expected and actual default rates for the 2008 models. This might imply data-driven results (see Footnote 50). 
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For example, twenty-two out of twenty-three defaulted banks were captured within the 4.5% 

of banks with the highest PDs for the 2012 logit and probit hazard models. In other words, 

these  twenty-two defaulted banks (as  mentioned above, we  are predicting  defaults  in 2013  

Table 22 

Ratios of # of defaulted over # of non-defaulted banks (banks with the highest 10% PDs) 

 

The table reports ratios of number of defaulted banks over number of non-defaulted banks (ratios) for the banks 

with the highest 10% PDs (divided into 20 intervals of size 0.5%) along with the information of number of 

captured defaulted banks within this interval. 

model 2008 model 2009 model 2010 model 2011 model 2012

Ratios Ratios Ratios Ratios Ratios

(1 ; 0.995) 0.36 1.06 0.52 0.03 0.38

(0.995 ; 0.99) 0.19 0.37 0.40 0.21 0.14

(0.99 ; 0.985) 0.19 0.48 0.40 0.13 0.10

(0.985 ; 0.98) 0.15 0.37 0.25 0.21 0.10

 …  …  …  …  …  …

(0.92 ; 0.915) 0.09 0.06 0.00 0.00 0.00

(0.915 ; 0.91) 0.06 0.03 0.00 0.00 0.03

(0.91 ; 0.905) 0.09 0.03 0.00 0.00 0.00

(0.905 ; 0.90) 0.03 0.03 0.00 0.03 0.00

D banks captured: 67/120 (55.83%) 108/138 (78.26%) 76/86 (88.37%) 41/42 (97.62%) 23/23 (100%)

(1 ; 0.995) 0.95 0.52 0.03 0.38

(0.995 ; 0.99) 0.42 0.30 0.17 0.10

(0.99 ; 0.985) 0.54 0.52 0.26 0.10

(0.985 ; 0.98) 0.32 0.17 0.10 0.06

 …  …  …  …  …

(0.92 ; 0.915) 0.03 0.00 0.00 0.00

(0.915 ; 0.91) 0.06 0.03 0.03 0.00

(0.91 ; 0.905) 0.03 0.00 0.03 0.00

(0.905 ; 0.90) 0.00 0.00 0.00 0.00

D banks captured:  ---------- 107/138 (77.54%) 76/86 (88.37%) 41/42 (97.62%) 22/23 (95.65%)

(1 ; 0.995) 0.36 0.85 0.46 0.03 0.38

(0.995 ; 0.99) 0.21 0.48 0.40 0.21 0.10

(0.99 ; 0.985) 0.09 0.37 0.40 0.10 0.14

(0.985 ; 0.98) 0.12 0.37 0.21 0.21 0.10

 …  …  …  …  …  …

(0.92 ; 0.915) 0.03 0.09 0.00 0.03 0.00

(0.915 ; 0.91) 0.06 0.03 0.00 0.03 0.00

(0.91 ; 0.905) 0.09 0.00 0.03 0.00 0.00

(0.905 ; 0.90) 0.03 0.06 0.00 0.00 0.00

D banks captured: 67/120 (55.83%) 112/138 (81.16%) 76/86 (88.37%) 40/42 (95.24%) 23/23 (100%)

(1 ; 0.995) 0.85 0.59 0.03 0.32

(0.995 ; 0.99) 0.32 0.21 0.21 0.14

(0.99 ; 0.985) 0.61 0.67 0.17 0.06

(0.985 ; 0.98) 0.42 0.09 0.13 0.06

 …  …  …  …  …

(0.92 ; 0.915) 0.12 0.00 0.00 0.00

(0.915 ; 0.91) 0.06 0.03 0.03 0.00

(0.91 ; 0.905) 0.03 0.03 0.00 0.00

(0.905 ; 0.90) 0.00 0.00 0.03 0.00

D banks captured:  ---------- 116/138 (84.06%) 76/86 (88.37%) 40/42 (95.24%) 22/23 (95.65%)

Hazard probit
 ----------

Static logit

Hazard logit
 ----------

Static probit
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here) are among the 299 banks (out of 6,641 banks)54 with the highest estimated PDs. These 

findings are quite promising and achieve very good results compared to recent studies 

conducted in the corporate sector. Beaver et al. (2005) build a model based on accounting 

ratios  which  captures  80.3%  of  the year-ahead  defaulting  corporations  in  the lowest two  

Figure 6 

Ratios of # of defaulted over # of non-defaulted banks 

A) Logit 2009 models 

 

B) Probit 2012 models 

 

The figure shows a comparison between ratios (number of defaulted banks over number of non-defaulted 

banks) calculated for the static and the hazard models for the banks with the highest 10% PDs. The 2009 logit 

models are considered in panel A while the 2012 probit models in panel B. 

deciles (period 1994-2002). Once the authors include additional variables derived from equity 

markets, this measure rose to 88.1%.  After allowing their model coefficients to adjust over 

time, this measure even increases up to 92%. The model of Duffie et al. (2007) places 94% of 

the one-year ahead defaults in the lowest two deciles (period 1993-2004). We typically obtain 

Figure 7 

Expected vs. actual # of defaults

A) Hazard logit 2012 model   

 

B) Static probit 2008 model

 

The figure shows a comparison between expected (under a given model) and actual number of defaults for the 

banks with the highest 10% PDs. The 2012 hazard logit model is considered in panel A while the 2008 static 

probit model in panel B.

                                                           
54 For validation of 2012 models, there are 23 defaulted banks and 6,618 non-defaulted banks in our sample (see 
Table 11). 4.5% out of 6,641 (23 + 6,618) is then 299 banks. 
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Table 23 

Expected vs. actual number of defaults (Hosmer-Lemeshow test) 

 

The table reports a comparison between expected (exp. # of D) and actual (act. # of D) number of defaults for 

the banks with the highest 10% PDs (divided into 10 intervals of size 1%) along with the Hosmer-Lemeshow chi-

squared tests. For all of the models we reject null hypothesis suggesting that there is a significant difference 

between expected and actual number of defaults.

interval exp. # of D act. # of D exp. # of D act. # of D exp. # of D act. # of D exp. # of D act. # of D exp. # of D act. # of D

(1 ; 0.99) 28.91 16 31.20 29 64.47 22 67.25 7 41.05 13

(0.99 ; 0.98) 9.28 11 8.18 22 37.28 17 46.48 10 8.33 6

(0.98 ; 0.97) 6.53 10 4.60 11 18.18 11 18.00 6 2.59 2

(0.97 ; 0.96) 5.02 8 3.14 12 8.80 15 6.72 11 1.07 1

(0.96 ; 0.95) 3.99 3 2.33 8 5.00 8 2.87 0 0.51 0

(0.95 ; 0.94) 3.33 4 1.88 8 3.26 1 1.62 3 0.30 0

(0.94 ; 0.93) 2.78 1 1.60 7 2.28 1 1.08 2 0.21 0

(0.93 ; 0.92) 2.43 5 1.40 6 1.69 1 0.76 1 0.15 0

(0.92 ; 0.91) 2.17 5 1.23 3 1.35 0 0.58 0 0.12 1

(0.91;0.90) 1.93 4 1.10 2 1.12 0 0.47 1 0.10 0

66 67 57 108 143 76 146 41 54 23

HL stat. = 24.00 HL stat. = 134.25 HL stat. = 393.97 HL stat. = 5017.44 HL stat. = 59.23

p -value = 0.0043 p -value = 0.0000 p -value = 0.0000 p -value = 0.0000 p -value = 0.0000

(1 ; 0.99) 27.57 29 58.81 20 66.12 6 34.13 12

(0.99 ; 0.98) 7.19 22 28.57 17 39.23 10 5.67 5

(0.98 ; 0.97) 4.04 16 14.15 14 14.36 9 1.99 3

(0.97 ; 0.96) 2.80 9 7.37 10 5.89 9 1.04 1

(0.96 ; 0.95) 2.16 12 4.56 11 2.80 0 0.61 1

(0.95 ; 0.94) 1.78 7 3.24 2 1.63 2 0.42 0

(0.94 ; 0.93) 1.54 6 2.42 0 1.16 1 0.31 0

(0.93 ; 0.92) 1.37 2 1.90 1 0.88 2 0.25 0

(0.92 ; 0.91) 1.22 3 1.56 1 0.70 1 0.20 0

(0.91;0.90) 1.10 1 1.31 0 0.56 1 0.17 0

 ------  ------ 51 107 124 76 133 41 45 22

HL stat. =  ------ HL stat. = 163.63 HL stat. = 183.88 HL stat. = 2036.69 HL stat. = 31.92

p -value =  ------ p -value = 0.0000 p -value = 0.0000 p -value = 0.0000 p -value = 0.0002

(1 ; 0.99) 25.82 18 42.51 29 62.79 21 67.05 7 34.37 12

(0.99 ; 0.98) 6.10 7 17.42 20 36.48 16 49.11 9 8.12 7

(0.98 ; 0.97) 4.42 6 11.08 9 21.35 14 28.41 7 3.24 2

(0.97 ; 0.96) 3.44 9 8.03 17 11.62 12 17.26 7 1.47 1

(0.96 ; 0.95) 2.88 5 6.17 9 7.10 7 10.60 4 0.70 0

(0.95 ; 0.94) 2.50 5 5.07 8 4.82 3 7.52 1 0.41 0

(0.94 ; 0.93) 2.22 6 4.34 11 3.40 2 5.67 1 0.26 0

(0.93 ; 0.92) 1.99 4 3.72 3 2.48 0 4.32 2 0.18 1

(0.92 ; 0.91) 1.79 3 3.16 4 1.88 0 3.47 2 0.13 0

(0.91;0.90) 1.61 4 2.85 2 1.46 1 2.81 0 0.11 0

53 67 104 112 153 76 196 40 49 23

HL stat. = 31.13 HL stat. = 37.00 HL stat. = 303.50 HL stat. = 4019.50 HL stat. = 36.61

p -value = 0.0003 p -value = 0.0000 p -value = 0.0000 p -value = 0.0000 p -value = 0.0000

(1 ; 0.99) 32.38 26 55.61 19 64.65 7 32.66 12

(0.99 ; 0.98) 11.13 25 28.62 17 36.58 9 7.49 4

(0.98 ; 0.97) 7.13 14 16.62 12 16.50 9 2.95 4

(0.97 ; 0.96) 4.99 18 10.12 10 8.00 6 1.56 1

(0.96 ; 0.95) 3.74 9 6.89 9 4.28 4 0.91 1

(0.95 ; 0.94) 3.08 6 5.10 7 2.62 1 0.60 0

(0.94 ; 0.93) 2.64 7 3.82 0 1.85 0 0.40 0

(0.93 ; 0.92) 2.28 4 3.01 0 1.31 2 0.29 0

(0.92 ; 0.91) 1.96 6 2.42 1 0.98 1 0.22 0

(0.91;0.90) 1.75 1 1.99 1 0.79 1 0.18 0

 ------  ------ 71 116 134 76 138 40 47 22

HL stat. =  ------ HL stat. = 94.67 HL stat. = 136.92 HL stat. = 1096.67 HL stat. = 30.02

p -value =  ------ p -value = 0.0000 p -value = 0.0000 p -value = 0.0000 p -value = 0.0004

model 2012

Static logit

Hazard logit

 ----------

model 2008 model 2009 model 2010 model 2011

Static probit

Hazard probit

 ----------
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similar or even slightly better results considering only the lowest decile for our 2011 and 2012 

models. 

Moreover, we also illustrate a comparison of these ratios in more detail for the 2009 logit 

and the 2012 probit models in Figure 6. As expected, their values have a downward trend 

with decreasing values of estimated PDs. 

We also conducted Hosmer-Lemeshow’s chi-squared goodness-of-fit tests on the banks 

with the highest 10% PDs (10 intervals of size 1%). The p -values of these tests for particular 

models along with the expected and actual numbers of defaulted banks within a particular 

interval are reported in Table 23.55 

We use these tests to examine whether the expected number of defaults is equal to the 

actual number of defaults for the set of banks with the highest 10% PDs. Results reported in 

Table 23 indicate that for all models we reject the null hypothesis at the 5% significance level. 

Also, the same trend as in the entire distribution (Table 19) regarding expected number of 

defaults compared to actual number of defaults is present in the interval of the highest 10% 

PDs. That is, the calibrated models underestimate the actual number of defaults for the years 

2008 and 2009, while they clearly overestimate the number of defaults for the years 2010, 

2011 and 2012. Note that the same issue as in Section 3.5.3.5 is present here. That is, for 

many intervals (intervals with lower PD clusters) the expected number of defaults is lower 

than 5. 

Furthermore, we also illustrate a comparison of expected and actual number of defaults 

for the banks with the highest 10% PDs in more detail for the 2012 hazard logit and the 2008 

static probit model in Figure 7. 

3.5.3.7 Estimated PDs and “real” PDs 

Overall, we state that our estimated default probabilities are slightly biased (see Table 23, 

where we got a rejection on the banks with the highest 10% PDs for all of the models, or  

Table 19, where we got underestimated PDs for the years 2008 and 2009, and overestimated 

PDs for the years 2010, 2011 and 2012). On the other hand, they still might be considered 

                                                           
55 Results in this table also imply data-driven results. Again, see Footnote 50. 
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reasonable estimates since, except for the first decile that contains the 10% banks with the 

worst rating, the analysis in Tables 20, 21 and Figure 5 illustrates that the expected and actual 

default rates do not differ much from each other. These results were also confirmed by the 

conducted Hosmer-Lemeshow’s chi-squared test for most of the deciles. However, there is 

one more reason why our default probability estimates can be considered as being close to 

“real” PDs. 

Generally, there is a difference between a discriminatory model and a model for 

determination of PDs. A ratio of defaulted and non-defaulted banks is not that crucial within 

a discriminatory model, as the key idea is to find a cut-off point that best discriminates 

between these two groups. Estimated PDs then cannot be considered as real PDs. There are 

some approaches showing how to calibrate these estimated PDs to real ones, though. For 

example, estimated model might be adjusted by a constant which will correct a bias caused 

by not using an empirical ratio. One might also use adjusted maximum likelihood functions 

within estimation that takes into account an empirical ratio (e.g. Zmijewski (1984)) or 

translate estimated PDs into real ones using various transforms (e.g. Neagu et al. (2009)). As 

mentioned earlier, we worked with all of the available information on U.S. commercial banks 

(using the FFIEC database) in our case, and so avoided choice-based samples within the 

estimation procedure. This means that we got ratios of defaulted and non-defaulted banks 

very close to the actual empirical ones. Therefore, our estimated PDs can be considered as 

“real” PDs and may be used for activities such as calculation of economic capital, credit Value-

at-Risk, for scenario analysis purposes, etc. 

3.5.3.8 A summary of the results on model comparison 

Since we have estimated a number of different models and have examined the 

performance of these models across various criteria, we now provide a summary of the 

results for all models. Results for the comparison across different criteria are provided in 

Table 24. Note that we report the results separately for each year, that is, for 2008, 2009, 

2010, 2011, and 2012. The selected criteria are divided into two groups, reflecting results for 

the estimation and the validation stage. The first group is represented by number of variables, 

Pseudo R2, the log-likelihood, and results for the calibration accuracy test (in-sample); the 

other by mean values of estimated default probabilities, calculated separately for non-
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defaulted and defaulted banks, areas under the ROC curves, mean values of bootstrapped 

ROC areas, Tukey’s test, log-likelihood of the calibration accuracy test (out-of-sample), ratio 

of actual and expected number of defaults, Hosmer-Lemeshow test, and percentage of 

defaulted banks captured in the 10% highest PDs. Note that for the in-sample calibration 

measures, only a comparison between static-static and hazard-hazard models is possible due 

to the different datasets that have been used for the estimation.  

Let us first recall that each of estimated models is statistically significant at the 1% level 

of significance (tested using the log-likelihood ratio test and the Wald test). In terms of Pseudo 

R2 measure, the static models outperform the hazard models, with the static logit models 

providing better results for the years 2008, 2011, and 2012. In terms of log-likelihoods, the 

logit models outperform probit models in all years, with the exception of 2010, where no 

significant difference between the models can be detected.  

For the validation measures, we find that the areas under the ROC curves typically differ 

only slightly for all models in a particular year, with the only exception being 2012, where the 

static models are clearly superior to the hazard models. Despite this fact, we managed to 

distinguish between the models using the Kruskal-Wallis test (see Table 15) and Tukey’s test 

applied to the bootstrapped ROC areas. With regards to the conducted out-of-sample 

calibration accuracy tests, we find that the static logit and hazard logit models outperform 

the static probit and hazard probit models. The results also indicate that overall hazard 

models produce more accurate PD estimates compared to the static models. However, unlike 

for the in-sample calibration, we cannot distinguish significantly between the majority of the 

models based on the conducted Vuong closeness test for non-nested models. While 

comparing actual and expected number of defaults for particular models, we concluded that 

for the 2008 and 2009 models the estimated PDs are too low (the only exception is the 2009 

static probit model), while for 2010, 2011 and 2012 the estimated model PDs are too high. 

For the later years, the static probit models seem to perform best as the ratio of expected 

over actual number of defaults is closest to 1. In terms of defaulted banks captured within the 

10% banks with the lowest credit score (i.e. highest PDs), we do not find a clear pattern with 

regards to one model outperforming all the others. 
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In order to put all of this information together, we have created a simple ranking system in 

Table 25 for the criteria considered in this study. We have excluded the number of 

explanatory variables, the log-likelihood as well as results for the calibration accuracy test (in-

sample) as we cannot use these measures to compare the static against the dynamic hazard 

models. With regards to the measures that are used to examine the performance of the 

models for the validation period, we exclude the mean value of the bootstrapped ROC areas 

in order to avoid double consideration of this measure. In a first step, all models for a 

particular year are ranked with respect to each of the considered criteria. We then assign 

points for each model in the following way: the model ranked highest gets 4 points, the 

second best 3 points, the third one 2 points, and the last one 1 point. For the Hosmer-

Lemeshow test, if the null hypothesis cannot be rejected, the model receives one point, while 

a rejection of the model yields zero points. The table also provides the final rankings of the 

models for each particular year. For 2008, we find that the static logit model outperforms the 

static probit model. For 2009, the static probit and hazard probit model obtain the same score 

and outperform the static and hazard logit models which have also the same score. For 2010, 

the static logit model is ranked first, followed by the hazard logit model, the static probit 

model, and the hazard probit model. For 2011, the static and hazard logit models have the 

same score and seem to outperform the static probit model by 7 points, and the hazard probit 

model ranked last by 8 points. Finally, for 2012, the static probit model is ranked first, 

followed by the static logit model, the hazard logit model, and the hazard probit model. 

3.6 Conclusions 

In this paper, we estimate and investigate credit-scoring models for determining default 

probabilities of financial institutions. We contribute to the existing literature on rating models 

for financial institutions by taking advantage of the fact that many U.S. commercial banks 

defaulted during the GFC and subsequent periods, which enabled us to compile and examine 

a significant database of historical financial ratios for defaulted banks. We provide the first 

empirical study to use the Federal Financial Institutions Examination Council (FFIEC) database 

and to provide scoring models for these banks. This database contains an extensive sample 

of more than 7,000 U.S. commercial banks with 405 defaults during our sample period 2007-

2013. We compare two types of models in this study: static models and dynamic discrete 

hazard models. We apply logistic and probit regression techniques in order to calibrate our 
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models, and a rolling window methodology (the walk-forward approach) allowing for out-of-

time validation of the estimated models.  

A substantial part of this paper is devoted to the application of model evaluation 

techniques. Apart from well-known techniques, such as ROC analysis with bootstrapping of 

areas under the ROC curves or calibration accuracy tests, we also apply the Kruskal-Wallis and 

the Tukey test to investigate significant differences between the particular models in terms 

of bootstrapped ROC areas. Furthermore, we apply the Vuong closeness test for non-nested 

models to determine whether calculated log-likelihoods for various models are statistically 

different for the estimated models. Finally, we use the Hosmer-Lemeshow’s chi-squared 

goodness-of-fit test to examine the overall fit of the estimated models. 

The majority of the estimated models build on variables that form a reasonable mixture 

of profitability, liquidity, assets quality, and capital adequacy indicators. We find that our 

models have a high default/non-default classification and predictive accuracy. Specifically, for 

the models that were calibrated using defaults in 2011 and 2012, more than 95% of defaulted 

banks were captured within the banks with the highest 10% PDs. These are very good results 

compared to recent studies conducted on the corporate sector. Since all the models perform 

very well and their performances are similar in terms of power (areas under the ROC curves) 

we use the Kruskal-Wallis and the Tukey multiple comparison test to examine significant 

differences between the particular models in terms of bootstrapped ROC areas. Specifically, 

the Tukey test proves to be a very powerful tool as it is able to distinguish between the models 

where the differences between mean values of bootstrapped ROC areas are very small. Using 

a calibration accuracy test and its likelihood estimates, we show that logit models typically 

outperform probit models in accuracy of estimated PDs in particular years. We also find that 

multi-period hazard models generally produce more accurate default probability estimates 

compared to static models.  

We state that our estimated default probabilities might be considered as reasonable 

estimates since we show and prove by accepting the null hypothesis in Hosmer-Lemeshow’s 

chi-squared tests (except of the first deciles containing 10% banks with the worst rating) that 

the expected and actual default rates are statistically equal for most of the deciles. Also, due 

to the fact that we work with all of the available information on U.S. commercial banks, and 
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thus avoid choice-based samples within estimation, we obtain ratios of defaulted and non-

defaulted banks very close to empirical ones. This is necessary in order to produce estimates 

that are close to “real” PDs. 

Finally, due to the number of estimated models and the fact that different models 

perform best according to different criteria, we provide a summary of comparison for all the 

models in terms of the chosen criteria and create a simple ranking system in order to 

determine which model works the best for a particular year. 
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Abstract 

During the last decade, the renewable energy sector has exhibited significant 

growth rates in the global economy. At the same time, similar to the high-tech 

sector or venture capital, investments into renewable energy companies can be 

considered as being relatively risky; due to the nature of their business, there is 

often a significant gap between innovation, adoption, and a phase where the 

company really becomes established in the market. This paper examines the 

relationship between distress risk and returns of U.S. renewable energy 

companies. Using the Expected Default Frequency (EDF) obtained from Moody’s 

KMV, we demonstrate that there is a positive cross-sectional relationship between 

default risk and equity returns in the renewable energy sector. We find that 

equally-weighted (EW) portfolios with higher default risk characteristics also yield 

higher returns. The positive relationship between distress risk and equity returns 

is also confirmed by investigating returns corrected for common Fama and French 

(1993) and Carhart (1997) risk factors. We further show that raw and risk-adjusted 

returns of EW portfolios that take a long position in the 10% most distressed stocks 

and a short position in the 10% safest stocks, outperform the S&P 500 index 

throughout our sample period.  

Keywords: Renewable energy, Distress risk, EDF measure, Asset pricing models, Raw and 

risk-adjusted returns
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4.1 Introduction 

During the last decade, the renewable energy sector has undergone significant overall growth 

in the global economy, and several renewable energy, clean energy or so-called alternative 

energy stock indices have been created. Prominent indices for the sector include, for example, 

the WilderHill Clean Energy Index (ECO), the WilderHill New Energy Global Innovation Index 

(NEX), or the S&P Global Clean Energy Index (SPGCE), see, e.g.,  Inchauspe et al. (2015). At the 

same time, similar to technology stocks or venture capital, investments into renewable 

energy stocks can be considered as being relatively risky, see, for example, Henriques and 

Sadorsky (2008), Kumar et al. (2012), Sadorsky (2012a), or Managi and Okimoto (2013). In 

general, only a fraction of renewable energy companies become major players in the sector, 

while many others go bankrupt or are acquired after some time. This goes hand–in-hand with 

the nature of their business – there is often a significant gap between innovation, adoption, 

and a phase where the company really becomes established in the market. This gap is often 

referred to as the “Valley of Death”, see, for example, Weyant (2011). As a result, one may 

argue that, in particular, investors who buy shares in small and/or highly risky renewable 

energy companies, that is, stocks with typically higher volatility and possibly higher default 

risk, will also expect higher average returns for bearing this risk. Our paper aims to shed light 

on this important question and thoroughly examine the relationship between distress risk and 

returns in the U.S. renewable energy sector. 

For other sectors, there has been some controversy with regards to the relationship 

between distress risk and expected or realized returns in equity markets, arising from several 

prominent studies. Two major studies report a positive cross-sectional relationship between 

default risk and equity returns. Vassalou and Xing (2004) argue that firms with high default 

risk on average earn higher returns than low default risk firms, however, this holds only to 

the extent that they are small in size and have high book-to-market (BM) ratios. Chava and 

Purnanandam (2010), using estimated ex-ante expected returns based on the implied cost of 

capital, also find strong support for this positive relationship. On the other hand, several other 

key studies suggest that distress risk is priced negatively, that is, stocks of companies with 

higher default risk usually yield lower average returns. In the literature, this controversial 

relationship is often referred to as the “distress risk puzzle”, see, for example, Dichev (1998), 
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Griffin and Lemmon (2002), Campbell et al. (2008), Garlappi et al. (2008), or Avramov et al. 

(2009). 

Recently, there has also been a rising interest in examining returns of renewable energy 

companies, as well as identifying potential drivers of these returns; see, for example, 

Henriques and Sadorsky (2008), Kumar et al. (2012), Sadorsky (2012a), Bohl et al. (2013), or 

Managi and Okimoto (2013). These studies typically focus on the relationship between 

renewable energy stocks, changes in the oil price, equity indices and carbon prices. The 

authors report evidence for the impact of several of these variables on renewable energy 

stock prices or returns, and suggest that, in particular, returns of high technology and 

renewable energy stocks seem to be significantly correlated.56 However, none of these 

studies has examined how distress risk is priced in the renewable energy sector. 

In this paper, we contribute to the literature by combining work on the relationship 

between distress risk and equity returns with studies that focus on the driving factors of 

returns of renewable energy companies. In particular, we provide the first empirical study 

that investigates the question of whether distressed renewable energy companies earn on 

average higher returns than renewable stocks of companies with low default risk. Thus, we 

examine whether, on top of the widely used Fama and French (1993) and Carhart (1997) risk 

factors, distress risk is priced in the renewable energy sector.  

We use the Expected Default Frequency (EDF) measure obtained from one of the major 

rating agencies (Moody’s KMV) as a proxy for distress risk. The EDF measures the probability 

that a company will default over a specified period of time (typically one year). It is based on 

the so-called structural approach to modeling default risk for a borrower, initially introduced 

by Merton (1974). One key advantage of this measure is its availability at a daily frequency;  

this clearly distinguishes it from other measures of default risk that are based on balance 

sheet data and updated only very infrequently. Thus, using EDFs allows us to construct 

portfolios of renewable energy stocks sorted by distress risk on a relatively high frequency, 

such as, for example, a monthly basis. This also allows us to investigate the performance of 

                                                           
56 As Inchauspe et al. (2015) argue, a possible explanation for this phenomenon is that high technology and 
renewable energy companies often compete for the same inputs. These resources might include highly qualified 
engineers and researchers, research facilities, semi-conductors, integrated circuits and thermoelectric materials, 
among others. 
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the constructed portfolios on a monthly basis as it is typically done in the literature that 

motivates our study, see, for example, Fama and French (1993), Carhart (1997), Vassalou and 

Xing (2004), Boyer and Filion (2007), Campbell et al. (2008), Garlappi et al. (2008). Note that 

in comparison to most earlier studies focusing in particular on the renewable energy sector, 

for example, Henriques and Sadorsky (2008), Kumar et al. (2012), Sadorsky (2012a), Bohl et 

al. (2013), Managi and Okimoto (2013), we also significantly extend the time period 

considered by using a data set of monthly returns from 2002 up to 2013. Thus, our sample 

period includes observations for the period of the global financial crisis as well as a significant 

sample period after the crisis. Furthermore, unlike many of the above-mentioned studies that 

typically look at renewable energy stock indices only, we examine returns of individual 

renewable energy companies in the U.S. market. Thus, next to examining the pricing of 

distress risk in the renewable sector, our analysis is expected to provide additional insights on 

how market risk (measured by beta), size, and book-to-market (BM) effects are priced for 

renewable energy companies. 

After sorting the companies according to their EDF measures and subsequent evaluation 

of the performance of portfolios that are based on this sorting procedure, we demonstrate 

that there is a positive relationship between equity returns of equally-weighted (EW) 

portfolios and default risk. Thus, distressed renewable energy companies earn on average 

higher expected returns than renewables with low default risk. Our results confirm a pattern 

also suggested by Vassalou and Xing (2004) and Chava and Purnanandam (2010). We find a 

significant difference between returns of EW portfolios consisting of the riskiest decile of 

stocks, and one consisting of the decile with the lowest failure risk. 

We further examine a possible link between pricing factors such as the size effect, the 

BM effect and distress risk, and find that the size effect is concentrated in the smallest firms 

that are typically also the firms with the highest distress risk. In other words, we show that 

default risk is particularly priced for small renewable energy companies. At the same time, 

the size effect is most pronounced for companies with high default risk, such that the highest 

average returns are typically observed for companies that are small in size and at the same 

time exhibit a relatively high risk of financial distress. Note that, unlike for the size effect, our 

results indicate that the BM effect is not truly related to the observed default effect.  
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Positively priced distress risk in the U.S. stock market for the renewable energy sector is 

also confirmed by applying three major asset pricing models, namely, the Capital Asset Pricing 

Model (CAPM), the Fama and French (1993) three-factor model, and the Carhart (1997) four-

factor model. These models correct observed returns of the constructed portfolios for given 

risk factors (market return, size premium, value premium, momentum). Finally, we show that 

raw and risk-adjusted returns of EW portfolios that take a long position in the 10% most 

distressed renewable stocks and a short position in the 10% renewable companies with the 

lowest default risk, generally outperform the S&P 500 index throughout our sample period 

(2002–2014). 

This paper is organised as follows. We provide a review of the existing literature on the 

pricing of distress risk in equity markets, as well as on investigating returns of renewable 

energy companies in Section 4.2. Section 4.3 is devoted to a brief description of three well-

known asset pricing models and Fama-MacBeth regression, and the construction of particular 

pricing factors. The data used in this study, and statistics of returns and the EDF measure, are 

described in Section 4.4. In Section 4.5, we investigate the relationship between distress risk 

and equity returns in the renewable energy sector, along with examining a possible link 

between pricing factors such as the size effect, the book-to-market effect and distress risk. 

Results for the pricing of distress risk are reported in Section 4.6. Finally, we conclude in 

Section 4.7 with a summary of our results. 

4.2 Literature review 

The trade-off between distress risk and stock returns has important implications for the risk-

reward relationship in financial markets. In line with the fundamental principle of financial 

theory, investors will require higher average returns for bearing additional risk. Thus, 

investors should also expect a compensation for holding more distressed stocks. This risk-

reward trade-off is the main idea behind the conceptual framework of asset pricing and 

investment decision-making in efficient markets. However, the existing empirical literature 

has not produced consistent evidence to confirm the above conjecture for distress risk. In 

fact, several studies have shown the opposite – more distress stocks usually earn lower 

average returns; see, for example, Dichev (1998), Griffin and Lemmon (2002), or Campbell et 

al. (2008).  
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Dichev (1998) was among the first to demonstrate the negative cross-sectional 

relationship between default risk and future stock returns, measuring default risk by the 

Altman (1968) Z-score and Ohlson (1980) O-score. These results suggest that default risk is 

not rewarded by higher returns, hence it casts doubt on the notion of a market premium for 

distress risk. Moreover, the results suggest that the relation between default risk and book-

to-market is not monotonic; distressed firms generally have high book-to-market values but 

the most distressed firms have lower book-to-market values. Griffin and Lemmon (2002) 

confirm the findings of Dichev (1998), and by using Ohlson (1980) O-score also find a negative 

relationship between distress risk and realised stock returns. The authors also report that the 

difference in returns between high and low book-to-market stocks is more than twice as large 

as that in other firms, suggesting that they may be mispriced.  

On the other hand, using default likelihood indicators based on the Merton (1974) model, 

Vassalou and Xing (2004) find evidence for distressed stocks earning higher returns, in 

particular in the small value segment. Therefore, these results suggest the presence of an 

equity return premium for distress risk. The authors also argue that default risk is closely 

related to size and book-to-market effects, and that these two characteristics can be viewed 

as default effects. The findings also indicate that book-to-market and size effects are 

concentrated in high default risk companies – the size effect exists only within the quintile 

with the highest default risk, and the book-to-market effect only in the two quintiles with the 

highest default risk. Moreover, they demonstrate that default risk is systematic and therefore 

priced in the cross-section of equity returns.  

Based on a hazard model that incorporates accounting and market variables as covariates 

in the spirit of Shumway (2001), Campbell et al. (2008) show that firms with high default 

probabilities have abnormally low expected returns. Thus, they argue that distress risk cannot 

explain the size and value premiums. In fact, distressed portfolios have low average returns, 

but high standard deviations, market betas, and loadings on Fama and French (1993) size and 

value factors. They also tend to do poorly when market-wide implied volatility increases. 

Interestingly, Campbell et al. (2008) also find evidence for the “distress effect” being most 

pronounced among small and illiquid stocks; however, this means that these stocks yield 

particularly low returns for these stocks. Garlappi et al. (2008) use Moody’s KMV default 

measure and confirm the negative relationship between default risk and stock returns. Their 
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proposed mechanism relies on the effects of strategic interactions between equity holders 

and debt holders on equity returns. They argue that potential violations of the absolute 

priority rule for claimants at bankruptcy can help explain this negative correlation, because 

distressed stocks have lower betas and, therefore, earn lower returns. Avramov et al. (2009) 

demonstrate that most of the negative returns for high default risk stocks are concentrated 

around rating downgrades. Consistent with Campbell et al. (2008), they find that this effect is 

even more limited in the cross-section and is driven by a small segment of the worst-rated 

stocks. Their study indicates that profits of momentum strategies that buy “winners” and sell 

”losers” are remarkably concentrated among a small subset of firms with low credit ratings, 

which adds a new dimension to the complex relationship between financial distress and cross-

sectional properties of equity returns. Their work also sheds new light on the debate about a 

priced distress risk factor in equity returns. While Chan and Chen (1991) and Fama and French 

(1992) argue that the size and book-to-market effects proxy for a priced distress risk factor, 

and Vassalou and Xing (2004) find evidence that the size and book-to-market factors contain 

some default-related information, their results are in line with Dichev (1998) and Campbell et 

al. (2008), who conclude that distress risk is unlikely to be systematic. 

Apart from Vassalou and Xing (2004), the study by Chava and Purnanandam (2010) is 

another one where strong support for the positive cross-sectional relationship between 

default risk and stock returns is found. These authors construct indices based on accounting 

numbers, options, and hazard models, and, unlike prior studies that use noisy ex post realised 

returns to estimate expected returns, they use ex ante estimates based on the implied cost 

of capital. Their results suggest that investors expected higher returns for bearing default risk, 

but they were negatively surprised by lower-than-expected returns on high default risk stocks 

in the 1980s. Finally, Garlappi and Yan (2011) explicitly consider financial leverage and study 

the cross-sectional implications of potential shareholder recovery upon resolution of financial 

distress. Contrary to Griffin and Lemmon (2002) and Vassalou and Xing (2004), they argue 

that the value premium is hump-shaped instead of monotonically increasing in default 

probability. It increases when levels of EDF are low, and declines sharply at very high levels of 

EDF. 

Increased interest in the effects of energy and stock market prices (oil prices in particular) 

on the financial performance of the renewable sector has been well documented by a number 
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of empirical studies. Faff and Brailsford (1999) examine the relationship between oil prices 

and stock market indices of various industries in Australia and find significant effects of the 

oil price on equity returns, in particular for the oil, gas, resource and building industry stocks. 

Sadorsky (2001) finds positive effects of an increasing oil price on Canadian oil and gas stocks. 

His results are confirmed by Boyer and Filion (2007) who find evidence of a significant 

relationship between oil and natural gas prices, respectively, and stock returns of Canadian 

oil and gas companies. 

Henriques and Sadorsky (2008) use a four-variable vector-autoregressive model to 

account for the relationship between returns on renewable energy stocks, technology stocks, 

crude oil price and interest rates. They report evidence of Granger causality from crude oil 

prices to stock prices for renewable energy companies listed on major U.S. stock exchanges, 

and of the behaviour of renewable energy stock prices that closely mirrored those of 

technology stock prices. Sadorsky (2012a) applies multivariate GARCH and dynamic 

conditional correlation models to examine volatility spillover effects between oil prices, 

technology stocks and clean energy companies. The results of this study suggest that 

renewable energy stock prices correlate more intensively with technology stock prices than 

with oil prices. Consequently, they argue that technology stocks cannot be considered a good 

hedge, while due to significantly lower correlations, oil provides a more useful hedge for clean 

energy stocks. Using a variable beta model, Sadorsky (2012b) studies the determinants of 

systematic risk for U.S. listed renewable energy stocks between 2001 and 2007 and finds that 

renewable energy stocks exhibit substantial market risk. In fact, the study shows that a rise in 

oil prices has a positive impact on the beta of renewable energy stocks.  

Kumar et al. (2012) also examine the relationship between alternate energy prices, oil 

prices, technology stocks and interest rates, but extend the analysis by including carbon 

prices. Similar to Henriques and Sadorsky (2008), they apply a vector-autoregressive model 

and suggest that both the oil price and technology stock prices separately affect stock prices 

of clean energy firms. However, carbon allowance prices had no significant effects on 

renewable energy stocks. Managi and Okimoto (2013) extend previous work by analysing data 

up to 2010 and apply Markov-switching vector autoregressive models to detect possible 

structural changes in the oil-renewable energy stock price relationship. They find evidence of 

a structural change occurring in late 2007, a period where a significant increase in the price 
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of oil coincides with the U.S. economy entering into a recession. In contrast to Henriques and 

Sadorsky (2008), the authors find a positive relationship between oil and the prices of clean 

energy stocks after 2007, suggesting a movement from conventional energy to clean energy. 

A copula approach is applied in Reboredo (2015), where the author examines systemic risk 

and dependence between oil and renewable energy markets. By computing the conditional 

value-at-risk as a measure of systemic risk, the author finds significant time-varying 

dependence as well as symmetric tail dependence between oil returns and several global and 

sectoral renewable energy indices.  

Broadstock et al. (2012) and Wen et al. (2014) are studies predominantly focusing on 

renewable energy markets in China. While Broadstock et al. (2012) show that oil price 

dynamics impacted on energy stocks in China, especially after the onset of the recent global 

financial crisis, when correlation increased significantly, Wen et al. (2014) use an asymmetric 

Baba-Engle-Kraft-Kroner (BEKK) model and document mean and volatility spillover effects 

between Chinese renewable energy and fossil fuel companies. Finally, Cummins et al. (2014) 

perform a price discovery analysis to determine Granger causality relationships for a range of 

prominent green equity indices with broader equity and commodity markets. Contrary to 

Henriques and Sadorsky (2008), who use one global index, or Kumar et al. (2012), who use 

three specific global indices, their study uses an expanded database of green energy indices 

by including two prominent global indices, one sectoral index, and one regional index. Also, 

in order to overcome drawbacks of the conventional vector autoregression (VAR) model, they 

apply an asymmetric vector autoregressive (AVAR) model as a first layer of robustness to 

examine Granger causality between the variables of interest in their study. 

A number of studies have also examined the factors that drive the performance of 

renewable energy stocks. There is also some literature investigating the impact on nuclear 

and renewable energy stocks of the Fukushima Daiichi nuclear disaster in Japan in March 

2011. Ferstl et al. (2012) examine this impact on alternative energy stocks in France, Germany, 

and Japan, and find positive abnormal returns for these stocks. Next, a study by Betzer et al. 

(2013) examines the severe reaction of the German Federal Government that included the 

temporary shutdown of almost half of the nation’s nuclear power plants. Lopatta and 

Kaspereit (2014) argue that the more an energy company had relied on nuclear power, the 

more its share price declined after the Fukushima accident. Further investigating the issue, 
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they suggest that energy companies could prevent increases in market beta due to such 

events by shifting some of their energy production from nuclear to renewable or other 

sources. 

Bohl et al. (2013) apply a four-factor asset pricing model and study the behaviour of 

German renewable energy stocks. Their results suggest that while renewable energy stocks 

earned considerable risk-adjusted returns between 2004 and 2007, the performance has 

deteriorated significantly, delivering negative returns since 2008. Ortas and Moneva (2013) 

study the time-varying beta behaviour of 21 clean-technology equity indices, finding that 

these indices yield higher returns and risk than conventional stock indices. Moreover, they 

also find a structural change in the dynamics of clean technology indices' return/risk 

performance that coincides with the beginning of the financial crisis. The dynamics of excess 

returns for the NEX index are examined in Inchauspe et al. (2015). The authors propose a 

multi-factor asset pricing model with time-varying coefficients to study the role of energy 

prices and stock market indices as explanatory factors, and find a strong influence of the MSCI 

World index and technology stocks throughout the sample period. Finally, Bohl et al. (2015) 

analyse whether the explosive price behavior of renewable energy stocks during the mid-

2000s was driven by rising crude oil prices and overall bullish market sentiment. They suggest 

strong evidence of explosive price behavior for European and global sector indices, even after 

controlling for a set of explanatory variables. 

Overall, during the last decade, due to substantial growth in the sector there has been an 

increased interest in examining the performance of renewable energy companies, as well as 

in identifying potential drivers of this performance. While some of the recent studies, see, for 

example,  Bohl et al. (2013), Inchauspe et al. (2015), have also included standard pricing 

factors such as market risk, Fama and French (1993) size and value  factors or a Carhart (1997) 

momentum factor, none of these studies has examined how distress risk is priced in the 

renewable energy sector. We believe, however, that given the structure of the renewable 

energy sector with a significant gap between innovation, adoption, and a phase where the 

company really becomes established, that is a high number of small, innovative but also highly 

risky companies, distress risk may play a significant role as it comes to determining investors’ 

return expectations for individual companies.  
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4.3 Asset pricing models 

Typically, the literature investigates the existence or pricing of a distress risk premium in a 

factor model set-up. This section briefly summarises three well-known asset pricing models 

that have been heavily used in the past along with the two-stage Fama-Macbeth (1973) 

approach.  

Building on the Markowitz framework (1952, 1959), Sharpe (1964), Lintner (1965), and 

Mossin (1966) independently developed the so-called Capital Asset Pricing Model (CAPM) to 

explain the behavior of common stock returns. In this model, all investors combine the market 

portfolio and the risk-free asset such that the only risk investors are compensated for is the 

systematic risk associated with the market portfolio. Therefore, the CAPM is often denoted 

as a so-called one-factor model. Several empirical studies, however, have shown that this 

model actually does not perform that well. In 1992, an influential paper by Fama and French 

(1992) was published, summarising much of the earlier empirical work in the area. As a result, 

Fama and French (1993) introduced a new three-factor model where, in addition to a market 

risk factor, a size (market capitalisation) and value (book-to-market ratio) factor were added. 

It has been shown that this model tends to produce significant coefficients on all three factors 

and that the three factors are capturing much of the common variation in portfolio returns. 

Following the success of the model, other factors based on individual stock characteristics 

have been proposed in the literature, most notably the momentum factor introduced by 

Carhart (1997), which is based on the observation that stocks with a high past performance 

(winners) outperform stocks with a low past performance (losers) in the next 3-12 months. 

4.3.1 The Capital Asset Pricing Model (CAPM) 

The CAPM is defined as  

 , , , , , ,CAPM

i t F t i i M t F t i tR R R R                                                (1) 

where 
,i tR denotes the return of a company or portfolio i  at time t , 

,F tR is the risk-free 

interest rate at time t , and 
,M tR is the market return at time t . CAPM

i  and i  are estimated 

coefficients, where CAPM

i represents the average return in excess of the reward for the 

exposure to the market factor (it is often referred to as the abnormal or active return of an 
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asset), and 
,i t  is the independently and normally-distributed error term from this regression, 

 2~ 0,t N   . The idea behind this model is that excess return of a particular company or 

portfolio  , ,i t F tR R can be explained by their relationship with a market risk factor 

 , ,M t F tR R . 

4.3.2 The Fama-French three-factor model 

The Fama-French three-factor model is denoted by the following equation 

 3

, , 1, , , 2, 3, ,SMB HML .F

i t F t i i M t F t i t i t i tR R R R                                (2) 

Here, SMBt is the realisation on a capitalisation-based factor portfolio that buys small cap 

stocks and sells large cap stocks. Similarly, HMLt is the realisation on a factor portfolio that 

buys high BM (book-to-market) stocks and sells low BM stocks. The 2,i  and 3,i  coefficients 

measure the sensitivity of the portfolio’s return to the small-minus-big (SMB) and high-minus-

low (HML) factors, respectively. 

4.3.3 The Carhart four-factor model 

The Carhart four-factor model then introduces an additional momentum factor and can be 

denoted by 

 4

, , 1, , , 2, 3, 4, ,SMB HML MOM ,F

i t F t i i M t F t i t i t i t i tR R R R                           (3) 

where MOMt is the prior one-year price momentum factor that captures the return spread 

between portfolios of past winner and past loser stocks. 

The size, value, and momentum factors are constructed in the following way. First, 

monthly stock returns are calculated and sorted according to the value of firm characteristics 

(the explanatory factors). Second, the stocks are divided into relevant groups (portfolios), 

according to their factor rank, and the difference in portfolio returns between high rated and 

low rated stocks according to these characteristics is calculated. In particular, the SMB (small-

minus-big) factor is based on the difference in portfolio returns between stocks with a small 

market capitalisation and stocks with a big market capitalisation, the HML (high-minus-low) 
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factor is based on the difference between stocks with a high book-to-market equity ratio and 

a low book-to-market equity ratio, and the MOM factor is based on the difference between 

winner and loser portfolios. For closer discussion on construction of these factors we refer to 

Fama and French (1993), Carhart (1997), or Professor Kenneth French’s website57. For the 

risk-free interest rate FR , we use one-month Treasury Bill rates and the market return MR  is 

calculated as the value-weighted return of all CRSP firms incorporated in the U.S. and listed 

on the NYSE, AMEX, or NASDAQ. 

4.3.4 Fama-MacBeth regression 

The Fama-MacBeth regression (1973) is a two-stage approach used to estimate parameters 

for asset pricing models such as the CAPM, the Fama-French three-factor model, or the 

Carhart four-factor model. The method estimates the betas and risk premia for any risk 

factors that are expected to determine asset prices. This approach can be applied to a panel 

of multiple companies with return observations across several time periods. 

Assume we have n  assets or portfolio returns over T  periods with a particular asset’s 

excess return in a particular time denoted 
,i tR . We want to test whether the m  factors 

1, 2, , ,, ...,t t m tF F F  explain our asset and portfolio returns, as well as the premiums awarded to 

the exposure to each factor. To do so, we must run a two-stage regression. The first stage 

involves a set of regressions equal to the number of assets or portfolios being tested. The 

second stage is a set of regressions equal to the number of time periods. The first stage 

regressions are a set of time series regression for each individual asset or portfolio on the 

considered factors. 

1 2

1 2

1 2

1, 1 1, 1, 1, 2, 1, , 1,

2, 2 2, 1, 2, 2, 2, , 2,

, , 1, , 2, , , ,

m

m

m

t F t F t F m t t

t F t F t F m t t

n t n n F t n F t n F m t n t

R F F F

R F F F

R F F F

    

    

    

     

     

     

                                 (4) 

Based on the estimated regression models we then know to what extent each asset’s 

or portfolio’s return is affected by the considered factors. In the second set of regressions we 

                                                           
57 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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define ,
ˆ

ki F  as the estimated s  for each asset or portfolio for factor kF . To calculate the 

premiums for each factor, we can then run the following set of cross-sectional regressions: 

1 2

1 2

1 2

,1 1 1,1 , 2,1 , ,1 , 1

,2 2 1,2 , 2,2 , ,2 , 2
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                                 (5) 

Note that the independent variables 
, ki F  are always exactly the same for every regression. 

The only variation is in the dependent variables, which are different for each time period.  

The 
,j t  terms are the estimated regression coefficients of model (5). To calculate a 

single risk premium for each factor, one must average all the 
,j t  terms into a single 

j . To 

calculate standard errors for the 
j  terms, one must treat each 

,j t  observation as an 

independent observation and calculate a t-statistic as follows 

/
j

j

T




                                                                     (6) 

where 
j

 is the standard deviation of the 
,j t  terms. The k  coefficient represents the factor 

premium for an exposure with a ,
ˆ

ki F  of 1 to factor kF . Note that instead of running multiple 

cross-sectional regressions, it is also possible to run a single model that uses the average 

returns of all assets over time. 

4.4 Data description 

Our sample contains U.S. renewable energy companies listed on the NYSE, AMEX, or NASDAQ 

stock exchanges that are, or were, components of the following renewable, clean or 

alternative energy indices: the WilderHill Clean Energy Index (ECO), the WilderHill New Energy 

Global Innovation Index (NEX), the Ardour Global Alternative Energy Index North America 

(AGINA), the Renewable Energy Industrial Index (RENIXX World), the ALTEXGlobal Index 

(ALTEXGlobal), the NASDAQ Clean Edge Green Energy Index (CELS), and the ISE Global Wind 
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Energy Index (GWE). As a matter of fact, many companies are, or were, components of two 

or more of these indices. 

The WilderHill Clean Energy Index (ECO) tracked 48 Clean Energy companies as of July 

2015. Specifically, these are businesses that stand to benefit substantially from a societal 

transition towards the use of cleaner energy and conservation. Stocks and sector weightings 

within the ECO Index are based on their significance for clean energy, technological influence 

and relevance to preventing pollution in the first place.58 The index has six sub-sectors: 

renewable energy harvesting (25% sector weight, 11 stocks), power delivery and conservation 

(21%, 9 stocks), energy conversion (19%, 10 stocks), greener utilities (17%, 7 stocks), energy 

storage (9%, 5 stocks), and cleaner fuels (9%, 6 stocks). The largest company accounts for 

3.30% and the top 5 holdings account for 15.52% of total investments into the ECO. There is 

a strong focus in favour of pure-play companies in wind power, solar power, hydrogen and 

fuel cells, biofuels, and related fields. Market capitalisation for a majority of Clean Energy 

Index stocks is typically $US200 million and above. The index focuses on North American 

companies and is listed in the U.S. only. 

The WilderHill New Energy Global Innovation Index (NEX) focuses on the generation and 

use of renewable energy, and the efficiency, conservation and advancement in renewable 

energy in general.59 The index was composed of 107 companies in 27 countries as of July 

2015. The largest company accounts for 1.87% and the top 10 holdings account for 18.7% of 

total NEX investment. As of September 2014, the index was composed of seven sub-sectors: 

storage (2.3%), energy conversion (1.4%), and projects related to renewable energy other 

than the above (12.2%). The investments are distributed by regions with weights of 41.2% for 

the Americas, 29.6% for Asia and Oceania, and 29.2% for Europe, the Middle East and Africa. 

For a stock to be included in this index, the company must be identified as one that has a 

meaningful exposure to clean energy, either as a technology, equipment, service or finance 

provider, such that profitable growth of the industry can be expected to have a positive 

impact on that company’s performance. Market capitalisation for a majority of NEX index 

stocks is typically $US250 million and above.  

                                                           
58 Source: http://www.wildershares.com/. Accessed: July 2015. 
59 Source: http://www.nexindex.com/. Accessed: July 2015. 
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The AGINA index, as a part of the Ardour Global Alternative Energy Indices, merely 

focuses on North American renewable companies and tracked 55 companies as of June 2015. 

The largest company accounts for 2.02% and the top 5 holdings account for 9.75% of total 

AGINA investment. Companies included in this index are involved in alternative energy 

resources (solar, wind, hydro, tidal, wave, geothermal and bio-energy), energy efficiency, and 

others. The RENIXX World index is run by the International Economic Platform for Renewable 

Energies and was established in May 2006. It is the first global stock index which tracks the 

performance of the world's 30 largest companies in the renewable energy sector. Companies 

must achieve at least 50% of their revenue in the renewable energy industry coming from 

wind energy, solar power, biomass, geothermal energy, hydropower or fuel cells to be 

included in the index. The ALTEXGlobal index is run by Bakers Investment Group and serves 

as a benchmark index for Alternate Energy internationally. Tracking 138 companies it is the 

world's largest Alternative Energy Index with an aggregated market capitalisation of $US1.16 

trillion. The CELS index is a modified market capitalisation-weighted index designed to track 

the performance of U.S.-traded clean energy companies. As of March 2015, the index was 

composed of 46 companies. Finally, the GWE index provides a benchmark for investors 

interested in tracking public companies that are identified as providing goods and services 

exclusively to the wind energy industry. This global index was composed of 44 companies (the 

largest company accounts for 8.49% and the top 5 holdings account for 37.62% of total GWE 

investment) as of July 2015. 

We match the MKMV (Moody’s KMV) database with the CRSP (The Center for Research 

in Security Prices) and COMPUSTAT databases, both available through Wharton Research 

Data Services (WRDS). In order to be included in our sample, all chosen companies need to 

be present simultaneously in all three databases. Specifically, for a given month, the following 

information on a company is required: share price, shares outstanding, return data from 

CRSP; accounting data from COMPUSTAT; and the EDF as a measure of default risk available 

from MKMV. Our sample spans the period from January 2002 to December 2013. 

In order to avoid a survivorship bias by taking into account only companies currently 

being the components of the above mentioned indices, we also include companies that left 

the ECO index, that is, the index whose components represent the biggest part of our sample, 

in  earlier years.  Overall, we work  with a total  of 141 companies,  where 15 companies have 
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Figure 1 

Number of companies in the sample through time 

  

The figure plots number of companies in our sample over the period from January 2002 to December 

2013. We start with 93 companies in January 2002 and end with 121 companies in December 2013. 

Minimum number of companies is 92 (July 2002), maximum is then 123 (July-October 2013).  

defaulted60 (filed for bankruptcy protection under Chapter 11), 12 companies have been 

acquired61, and another 16 companies have left the ECO index (but are still active). In total, 

our sample contains 10.6% companies that have defaulted and 8.5% companies that have 

been acquired. Note, that as it is typically done in asset pricing studies, we use monthly 

returns to measure the performance of the individual companies. Figure 1 provides a plot of 

the number of companies at each point in time throughout our sample period from January 

2002 to December 2013. 

We are particularly interested in the relationship between risk and return for renewable 

energy companies with a focus on the performance of distressed stocks (represented by the 

EDF measure) in this sector. Thus, in the following discussion we devote two sections to 

descriptive statistics of these two crucial variables, and make a comparison between our 

sample and the U.S. market as a whole. 

                                                           
60 We discuss defaulted companies, in terms of size and corresponding EDF values, in more detail in Appendix A. 
61 We discuss acquired companies in more detail in Appendix B. 
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4.4.1 Returns 

As mentioned above, returns are collected from the CRSP database.62 Because we focus on 

studying the returns on distressed stocks, we follow Campbell et al. (2008) to deal with the 

problem of delisted firms and use the delisted return for the final month of the company’s 

life reported in the CRSP database for our defaulted and acquired companies. 

Summary statistics for returns and the volatility of returns (volatility of equity) are 

reported in Table 1. We make a comparison between returns in our sample and in the overall 

U.S. market in Panel A. All returns are pooled together before summary statistics are 

calculated. That is, for our sample period we have 15,379 monthly observations of returns for 

141 companies, while there are 970,005 monthly observations of returns for 12,596 

companies contained in CRSP.  We can see that on average returns in our sample are slightly 

higher (1.2% compared to 1.0% for the U.S. market), although the median is lower (0.5% 

compared to 0.6%). Moreover, comparing the standard deviation of 0.179 in our sample to 

the lower standard deviation of 0.158 in the entire U.S. market, we conclude that our 

companies, in terms of returns, are typically more volatile. The fact that returns for our 

sample are slightly less skewed and leptokurtic suggests that there are more extreme return 

observations in the overall U.S. market. 

Table 1 

Summary statistics of returns and volatilities of returns 

Panel A: Returns   Panel B: Volatilities of Returns 

  Our Sample US Universe     Our Sample US Universe 

# of obs. 15,379 970,005   # of obs. 141 12,596 

Mean 0.012 0.010   Mean 0.171 0.144 

Median 0.005 0.006   Median 0.164 0.121 

Std. 0.179 0.158   Std. 0.072 0.110 

Skewness 3.263 5.380   Skewness 0.850 4.429 

Kurtosis 35.38 232.09   Kurtosis 4.76 77.19 

The table reports summary statistics of returns (panel A) and of volatilities of returns (panel B) for 

our sample and the whole U.S. market. Specifically, apart from the number of observations (# of 

obs.), we report the mean, median, standard deviation (Std.), skewness, and kurtosis. In panel A, 

all returns are pooled before summary statistics are calculated, while in panel B, for each stock we 

calculate the return volatility and summary statistics are subsequently calculated from the 

distribution of volatilities. All values are expressed in decimal units. Reported values are based on 

monthly returns (obtained from CRSP database) covering the period from January 2002 to 

December 2013. 

                                                           
62 We excluded returns for share prices below $0.50. 
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The finding of our companies being more volatile is confirmed by information reported 

in Panel B, where we look at individual companies and calculate the standard deviation of 

returns for each of them. As expected, on average, standard deviations are higher in our 

sample (0.171 compared to 0.144 for the U.S. market). The distribution of standard deviations 

is then more skewed and has a higher kurtosis for the overall U.S. market, as well as the 

variation of the estimated volatilities (standard deviation of 0.110 compared to 0.072 in our 

sample). 

Overall, by examining these returns we confirm that renewable energy stocks are 

typically more volatile (or risky) in comparison to the entire universe of U.S. equities.  

4.4.2 Expected Default Frequencies (EDFs) 

Another key variable in our analysis is a distress risk factor represented by the Expected 

Default Frequency (EDF) obtained from the MKMV database.63  EDF is a measure of the 

probability that a company will default over a specified period of time (typically one year). It 

is  based  on  the  structural  approach  to  modeling  default  risk  for  a  borrower  described 

Table 2 

Summary statistics of the EDF measure 

Month # Company Mean Std. Min Max Median Quart 1 Quart 3 

Dec-02 93 5.92 9.38 0.06 35.00 1.58 0.41 6.53 

Dec-03 93 1.92 4.51 0.03 35.00 0.45 0.15 1.60 

Dec-04 97 0.94 2.42 0.02 21.85 0.25 0.13 0.74 

Dec-05 99 1.02 4.26 0.01 35.00 0.15 0.08 0.45 

Dec-06 106 0.86 3.56 0.01 35.00 0.14 0.06 0.33 

Dec-07 112 1.02 4.24 0.01 35.00 0.10 0.06 0.32 

Dec-08 118 4.85 8.33 0.04 35.00 1.05 0.23 4.47 

Dec-09 111 4.17 8.42 0.05 35.00 0.73 0.29 3.28 

Dec-10 113 3.59 7.58 0.04 35.00 0.69 0.30 2.10 

Dec-11 113 4.85 8.88 0.04 35.00 0.63 0.19 4.13 

Dec-12 112 4.48 8.78 0.02 35.00 0.41 0.11 3.67 

Dec-13 121 2.24 6.15 0.01 35.00 0.28 0.07 1.31 

Full sample 15,270 2.96 6.93 0.01 35.00 0.39 0.12 1.78 

Our sample spans a period from January 2002 to December 2013. The table reports the number of renewable 

energy companies in our sample, as well as the mean, standard deviation, minimum and maximum, median, 

and first and third quartile of the EDF distribution at the end of each year (2002-2013). EDF quantities are 

expressed in percent units. The number of companies in a "Full sample" denotes the total number of 

observations. 

                                                           
63 This measure has been used in the study by Garlappi et al. (2008), while Vassalou and Xing (2004) used their 
own EDF-mimicking measure “DLI” for default likelihood. 
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originally by Merton (1974).64 This approach assumes that there are three major drivers of a 

company’s default probability: market value of assets, asset volatility, and default point. 

When the market value of assets falls to a level insufficient to repay the liabilities (default 

point), the company is considered to be in default. MKMV combines this framework with its 

own default database to derive an empirical probability of default for a company: the EDF. 

Thus, in this approach the Distance-to-Default (based on Merton’s model) is mapped into an 

EDF credit measure that takes on values from 0-35%.  

The EDF measure is based on share prices and share price volatilities which may be 

subject to liquidity risk. Also, the literature has found liquidity risk as an important contributor 

to default (next to the profitability and capital structure of firms). Therefore, it would be 

interesting to investigate whether it is possible to decompose the EDF measure into a credit 

risk and a liquidity risk component, or alternatively, control for liquidity risk. Such an analysis 

is clearly beyond the scope of our work, however, it is a possible direction for future research. 

For robustness check purposes within our analysis it would be worth to use alternative 

measures of default risk. For example, we could use the z-score introduced by Altman (1968) 

that is based on multiple discriminant analysis. This approach tries to derive the linear 

combination of two or more independent variables that will discriminate best between a 

priori defined groups, which in the simplest case are failing and non-failing companies. A basic 

principal is to maximize the difference between two groups, while the differences among 

particular members of the same group are minimized. Discriminant analysis can also be 

thought of as multiple regression. If we code the two groups in the analysis as 1 and 2 and 

use that variable as the dependent one in a multiple regression analysis, analogous results to 

using a discriminant analysis could be obtained (see Trück and Rachev (2009)). This is due to 

the statistical decision rule of maximizing the between-group variance relative to the within 

group variance in the discriminant analysis technique. This approach derives the linear 

combinations from an equation that takes the form of 0 1 1 2 2 ... n nZ X X X                                               

where Z  is the discriminant score (z-score), 0  is a constant, i (i = 1, 2, … ,n) the discriminant 

coefficients, and iX (i = 1, 2, … ,n) the independent variables, i.e. the financial ratios. Another 

possibility would be deriving a scoring model for the estimation of default probabilities, such 

                                                           
64 See 2.3.1 or Appendix C for a more thorough discussion of this model. 
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as logit or probit model. Nevertheless, suggested measures would require obtaining 

additional accounting data for all companies in our sample. 

Summary statistics for the EDF measure are reported in Table 2. The average EDF 

measure in our sample is 2.96% with a median of 0.39%. The reported results show that there 

are substantial variations in the average as well as in the distribution of this measure over 

time. We can also see that the majority of companies in our sample during the sample period 

typically have an EDF score below 1.8%. 

Because the EDF measure is based on market prices, we follow Garlappi et al. (2008) and 

use an exponentially smoothed version of this measure, based on a time-weighted average, 

in order to mitigate the effect of noisy stock prices on default scores. Specifically, for default 

probability in month t , we use 
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                                                        (7) 

where v  is chosen to satisfy 5 1/ 2ve  , such that the 5-month lagged EDF measure receives 

half the weight of the current EDF measure. Our empirical results are reported based on this 

transformed EDFt
measure, which we will still refer to as EDF for notational convenience. A 

comparison of the monthly averages of the original and transformed EDF measure for our 

sample along with the average EDF for the entire U.S. market is provided in Figure 2. We also 

provide a comparison of the coefficients of variation (defined as a ratio of standard deviation 

over the mean) between EDFs of our sample and the entire U.S. market in Figure 3. 

Figure 2 illustrates that there are only marginal differences between the average monthly 

original and transformed EDF measures. Interestingly, we also observe that in terms of EDF, 

on average, renewable energy stocks are less risky than stocks in the entire U.S. market for 

the considered sample period. However, Figure 3 indicates that the coefficient of variation is 

typically higher for our sub-sample of renewable energy companies throughout the time 

period considered. This implies that per unit of default risk there is a higher variation in our 

sample. In other words, the discrepancy between the low-risk and the high-risk companies in 

our sample is larger than for the overall U.S. market. 
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Figure 2 

Mean of EDF measure 

  

The figure plots the mean of original monthly EDF measure against the mean of transformed one, 

based on Equation (7) for our sample along with the average EDF for U.S. market over the period 

from January 2002 to December 2013. 

Figure 3 

EDF – coefficient of variation 

  

The figure plots the coefficient of variation (defined as a ratio of standard deviation and mean) 

between EDF of our sample and U.S. market over the period from January 2002 to December 2013.
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4.5 Distress risk and equity returns 

We start our analysis by investigating the relationship between distress risk (measured by the 

EDF) and equity returns. Specifically, we examine whether portfolios with different default 

risk characteristics provide significantly different returns. The results are reported in Table 3. 

At the end of each month t  from January 2002 to November 2013, we form ten equally-

weighted (EW) portfolios of stocks according to each company’s transformed EDF score. 

Therefore, based on the number of companies in our sample for a particular month (between 

89 and 119), we form portfolios that contain between 9 and 12 companies. We then analyse 

returns of these EW portfolios in month 1t  . Portfolio 1 represents the portfolio of the 10% 

companies with the lowest distress risk, while portfolio 10 is the portfolio of the 10% 

companies with the highest distress risk. Furthermore, we compute returns for the portfolio 

that is formed by taking a long position in stocks with the highest EDF and a short position in 

stocks with the lowest EDF. For each of these portfolios we also report the average EDF score, 

the average size (market capitalisation, expressed in billions of $US), and the average book-

to-market (BM) ratio. 

As illustrated in Table 3, we find a positive relationship between returns of EW portfolios 

and  distress  risk  –  the  higher  the  EDF, typically  the higher  the corresponding return.  This 

Table 3 

Raw returns on portfolios sorted on the basis of the EDF measure 

 

At the end of each month t from January 2002 to November 2013, we sort our companies into deciles based on 

their weighted EDF measures, as defined in (7). We then compute equally-weighted (EW) returns of these 

portfolios over the next month (month t + 1). In this table, we report the time-series averages of returns of these 

portfolios. Returns are expressed in percent units. Portfolio 1 is the portfolio with the lowest default risk and 

portfolio 10 with the highest one. The "High-Low" column is the difference between a quantity of the high EDF 

decile and that of the low EDF decile. The t-stat are the t-statistics of these differences and are calculated from 

Newey-West standard errors. The value of the truncation parameter q was selected in each case to be equal to 

the number of autocorrelations in returns that are significant at the 5 percent level. *denotes significance at the 

10% level, **at the 5% level, and ***at the 1% level. "Average EDF", "Average size" and "Average BM" denote 

the average EDF, size and book-to-market ratio for particular portfolios, respectively. Size (market capitalisation) 

is expressed in billions of $US.  

Low High

Portfol ios 1 2 3 4 5 6 7 8 9 10 High-Low

Raw returns  (EW) 0.72 1.12 1.52 0.94 1.42 0.67 0.84 1.15 1.44 2.98 2.26

t -s tat (Newey-West) (1.43) (2.11)** (2.32)** (1.58) (2.09)** (0.95) (1.14) (1.33) (1.48) (2.41)** (2.22)**

Average EDF 0.06 0.11 0.17 0.26 0.41 0.65 1.07 1.91 4.06 12.76

Average s ize 9.42 6.03 3.59 2.58 2.15 1.70 1.49 1.33 0.66 0.62

Average BM 0.37 0.45 0.48 0.51 0.51 0.58 0.60 0.63 0.62 0.90

EDF
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positive relationship is consistent with findings of Vassalou and Xing (2004), who use their 

own “DLI” measure based on the Merton (1974) model as a measure of distress risk. The 

return difference between EW high default risk portfolio and low default risk portfolio is 

2.26% per month (27.12% p.a.) and is statistically significant at the 5% level. Thus, similar to 

Vassalou and Xing (2004) we argue that the observed pattern is indicative of positively priced 

default risk.  

Also note that small-capitalisation stocks have, on average, higher EDF scores, and as a 

result, they typically provide higher returns than big-capitalisation stocks. In addition, the 

average size of a portfolio and its BM ratio vary monotonically with the average EDF score of 

the portfolio. In particular, the average size increases as default risk of the portfolio decreases, 

whereas the opposite is true for the BM ratio. These results imply that the size and BM effect 

may be linked to default risk of stocks. Therefore, we follow Vassalou and Xing (2004) and 

further investigate this possible link between the size and BM effects and default risk. We will 

focus on EW portfolios again, since this is the weighting scheme typically employed in studies 

that deal with the size and BM effects, see, for example, Fama and French (1992) and Vassalou 

and Xing (2004). 

4.5.1 Size, BM, and distress risk 

To further examine the extent to which the size (measured as market capitalisation) and BM 

effects are related to default effects, in the following discussion we perform two-way sorts 

and then examine each of the two effects for different default risk portfolios.  

Table 4 provides results from sequential sorts. Stocks are first sorted into three groups 

according to their default risk (low, medium, high). Subsequently, the stocks within each EDF 

group are sorted into three size portfolios (small, medium, big). Using these nine created 

portfolios, we investigate whether there is a size effect in all default risk groups. 

Reported results in Panel A suggest that the size effect is present, in particular for 

portfolios that contain more distressed stocks. This effect is more pronounced and statistically 

significant for the high EDF portfolio where the average return difference between small and 

big firms is 1.61% per month (19.32% p.a.). This is about six times more than for a portfolio 

containing low-distress stocks (0.28% per month). We investigate to what extent we are truly 
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Table 4 

Size effect controlled by default risk 

Size  Small Medium Big 
  

Small-Big 
t-stat  

(Newey-West) 

Panel A: Average Returns 

Low EDF   1.20 1.10 0.92   0.28 (0.54) 

Medium EDF   1.60 1.20 0.61   0.99 (1.94)* 

High EDF   2.80 1.20 1.19   1.61 (1.78)* 

Panel B: Average Size (market capitalisation) 

Low EDF   0.592 2.237 14.474       

Medium EDF   0.188 0.726 4.914       

High EDF   0.060 0.237 2.444       

Panel C: Average EDF 

Low EDF   0.145 0.133 0.100       

Medium EDF   0.637 0.583 0.527       

High EDF   6.780 5.522 5.302       

Panel D: Average BM 

Low EDF   0.470 0.473 0.390       

Medium EDF   0.548 0.551 0.550       

High EDF   0.709 0.659 0.753       

At the end of each month from February 2002 to December 2013, stocks are first sorted into three 

portfolios based on their weighted EDF measures (low, medium, high) in the previous month. Within each 

portfolio, we subsequently sort stocks into three size portfolios (small, medium, big), based on their 

market capitalisation in the previous month. The equally-weighted average returns of the portfolios in 

Panel A are reported in percent units. “Small-Big” is the return difference between the smallest and 

biggest size portfolios within each default group. t-stat are the corresponding t-statistics of these 

differences and are calculated from Newey-West standard errors. The value of the truncation parameter 

q was selected in each case to be equal to the number of autocorrelations in returns that are significant 

at the 5 percent level. *denotes significance at the 10% level, **at the 5% level, and ***at the 1% level. 

Average size (market capitalisation) in Panel B is expressed in billions of $US, while average EDF in Panel 

C is expressed in percent units, and average BM (book-to-market) in Panel D in decimal units. 

capturing the size effect in Panel B. We can see that there really is substantial variation in the 

market capitalisation of stocks within the high EDF portfolio. However, it is not necessarily 

always the case that renewable firms with a high EDF are also small in size. In fact, the biggest 

firms in the created “high distress risk’ portfolios are rather medium-sized renewable energy 

companies. Their average size is $US2.444 billion and, therefore, still bigger than the average 

small and medium sized firms in the ‘low distress risk’ and ‘medium distress risk’ categories 

(ranging from 0.188 to 2.237). This basically means that when we are sorting our stocks 

according to their EDF, it is clearly not a sorting by size only. On the other hand, the high 

EDF/small size portfolio does typically contain the smallest of the small firms. These results 

show that the size effect is concentrated in the smallest firms, which also happen to be among 

those renewable companies with the highest distress risk. 
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In Panel C, we examine how much riskier stocks in high EDF portfolios are in comparison 

to other default risk groups. The results show that they are indeed much riskier. On average, 

small firms in high default risk portfolios are about eleven times riskier in terms of the applied 

EDF measure than small firms in medium EDF portfolios, and about 47 times riskier than small 

firms in low distress risk portfolios. Thus, the large average returns earned by small high-

default risk companies (see Panel A) compared to the rest of the portfolios can be explained 

by a possible compensation for the large distress risk they have. Moreover, we can see that 

in all default risk groups the average EDF monotonically decreases as size increases and that 

the difference between small and big firms is significantly higher for high default risk groups 

(2.478) compared to medium and low default risk groups (0.11 and 0.046). This also explains 

the large difference in returns between small and big stocks in the high EDF portfolio. Finally, 

the average BM ratios of the default- and size-sorted portfolios are reported in Panel D. The 

results show that the average BM ratios are the highest for the high EDF group. 

Overall, the results in Table 4 imply that the size effect might be partially interpreted as 

a default effect, however, sorting the stocks according to their EDF is not the same thing as 

just sorting by size. The size effect is significant only in the segment of our sample with the 

highest distress risk, where the difference in returns between small and big firms can be 

explained by the difference in their default risk. For the remaining stocks in our sample, where 

no significant size effect has been detected, also the difference in default risk between small 

and big stocks is only minimal. 

Table 5 presents results from sequential portfolio sorting, where stocks are first sorted 

into three groups according to their EDF (low, medium, high), and subsequently each of these 

groups is sorted into three BM portfolios (high, medium, low). In the following discussion we 

will examine the BM effect within each of the EDF groups. 

Panel A shows that the BM effect is statistically significant only for the constructed 

medium EDF portfolios, with a return differential of 0.91% per month (10.92% p.a.). This is 

five times more than the difference for a portfolio containing high-distress stocks (0.18% per 

month), and seven times more than for low EDF group (0.13%). However, note that the 

differences between average EDF for value stocks (high BM) and growth stocks (low BM) for 

all three default portfolios in Panel C are rather marginal. These results thus suggest that for 
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Table 5 

BM effect controlled by default risk 

BM  High Medium Low  High-Low 
t-stat   

(Newey-West) 

Panel A: Average Returns 

Low EDF   1.08 1.15 0.95   0.13 (0.30) 

Medium EDF   1.50 1.28 0.59   0.91 (1.91)* 

High EDF   2.27 0.86 2.09   0.18 (0.21) 

Panel B: Average BM 

Low EDF   0.709 0.411 0.212       

Medium EDF   0.926 0.491 0.232       

High EDF   1.394 0.568 0.156       

Panel C: Average EDF 

Low EDF   0.141 0.124 0.114       

Medium EDF   0.623 0.568 0.556       

High EDF   6.812 4.104 6.615       

Panel D: Average Size (market capitalisation) 

Low EDF   5.051 5.526 7.008       

Medium EDF   2.105 2.552 1.216       

High EDF   0.873 1.263 0.653       

At the end of each month from February 2002 to December 2013, stocks are first sorted into three 

portfolios based on their weighted EDF measures (low, medium, high) in the previous month. Within each 

portfolio, we subsequently sort stocks into three BM (book-to-market) portfolios (high, medium, low), 

based on their past month’s BM ratio. The equally-weighted average returns of the portfolios in Panel A 

are reported in percent units. “High-Low” is the return difference between the highest BM and lowest BM 

portfolios within each default group. t-stat are the corresponding t-statistics of these differences and are 

calculated from Newey-West standard errors. The value of the truncation parameter q was selected in 

each case to be equal to the number of autocorrelations in returns that are significant at the 5 percent 

level. *denotes significance at the 10% level, **at the 5% level, and ***at the 1% level. Average BM in 

Panel B is expressed in decimal units, average EDF in Panel C is expressed in percent units, and average 

size (market capitalisation) in Panel D in billions of $US. 

our sample of U.S. renewable energy companies, unlike the size effect, the BM effect is not a 

default risk effect.  

The differences in average BM ratios within particular EDF portfolios reported in Panel B 

are relatively low. For instance, the difference between the value and growth firms within 

medium EDF portfolio is only 0.7, which suggests that the return differential of these 

portfolios observed in Panel A are not truly caused by the BM effect. We can also see that the 

average BM ratios are higher in portfolios with highly distressed stocks; however, this is not 

true for the low BM group where it is the medium EDF portfolio that has the highest average 

BM value. Furthermore, the average EDF in Panel C exhibits a monotonic relation with BM 

only in the low and medium EDF category, that is, not for the portfolio with the highest default 
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risk where the relation is not monotonic. This is in contrast to our results from Panel C in Table 

4, where we clearly find a monotonic relationship between default risk and size of portfolios.  

Finally, Panel D shows that a portfolio with high distressed stocks contains mainly small 

firms. This time even the highest value of 1.263 is lower than any of the values from medium 

and high EDF groups (apart from low BM/medium EDF portfolio that is only marginally 

higher). And again, contrary to our findings from Table 4, size varies monotonically only within 

the low EDF portfolio.  

Our findings from EDF-BM sorting imply that, unlike the size effect that can be to some 

extent interpreted as a default effect, the BM effect is not truly related to default risk. 

Moreover, the monthly return premium of small firms over big firms for the high EDF portfolio 

is 1.61%, and therefore about 1.4% larger than that of value stocks over growth stocks 

(0.18%).  

4.5.2 The default effect 

Tables 4 and 5 illustrate that while the size effect is somewhat related to default risk, we did 

not find much evidence that the same is true for the BM effect. In what follows, we investigate 

whether default risk is rewarded differently, depending on the size and BM characteristics of 

a company. We follow Vassalou and Xing (2004) and define the default effect as a positive 

average return differential between high and low default risk firms. 

In Table 6, we reverse the sorting procedure applied in Table 4 and examine whether 

there is a default effect in size-sorted portfolios. Thus, we first sort stocks into three groups 

according to their size (small, medium, big), and subsequently within each of this size group 

we sort stocks into three distress risk portfolios (low, medium, high). 

Reported results in Panel A show that there is no statistically significant default effect 

in any of the size-sorted portfolios, although the differences in returns are positive. The 

highest difference between average monthly returns for high risk and low risk companies is 

1.19% per month (14.28% p.a.) for portfolios containing small firms. Thus, this implies that, in 

particular, in the small size segment distressed firms earn on average higher returns than low 

distress risk firms.  Panel C also  emphasises  the substantially higher default risk  for the high  
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Table 6 

Default effect controlled by size 

EDF  Low Medium High  High-Low 
t-stat   

(Newey-West) 

Panel A: Average Returns 

Small   1.62 1.21 2.81   1.19 (1.37) 

Medium   0.78 0.79 1.27   0.49 (0.79) 

Big   0.95 1.14 1.12   0.17 (0.30) 

Panel B: Average Size (market capitalisation) 

Small   0.169 0.130 0.097       

Medium   0.791 0.733 0.634       

Big   11.221 6.636 5.142       

Panel C: Average EDF 

Small   0.448 1.961 9.424       

Medium   0.135 0.471 3.932       

Big   0.077 0.233 3.500       

Panel D: Average BM 

Small   0.553 0.633 0.733       

Medium   0.458 0.508 0.690       

Big   0.397 0.500 0.650       

At the end of each month from February 2002 to December 2013, stocks are first sorted into three 

portfolios based on their past month’s market capitalisation (small, medium, big). Within each portfolio, 

we subsequently sort stocks into three EDF portfolios (low, medium, high), based on their weighted EDF 

measures in the previous month. The equally-weighted average returns of the portfolios in Panel A are 

reported in percent units. “High-Low” is the return difference between the highest and lowest default risk 

portfolios within each size group. t-stat are the corresponding t-statistics of these differences and are 

calculated from Newey-West standard errors. The value of the truncation parameter q was selected in 

each case to be equal to the number of autocorrelations in returns that are significant at the 5 percent 

level. *denotes significance at the 10% level, **at the 5% level, and ***at the 1% level. Average size 

(market capitalisation) in Panel B is expressed in billions of $US, while average EDF in Panel C is expressed 

in percent units, and average BM in Panel D in decimal units. 

EDF categories, independent of the market capitalisation of the stocks. Note that within the 

small size portfolio, the average EDF varies between 9.42% (for the high distress risk category) 

and 0.45% (for the low distress risk category), which suggests that small firms likely 

significantly differ with respect to their default risk characteristics. The same is also true with 

respect to their returns, as illustrated by Panel A. Note, however, that we do not find a 

monotonic relationship; for the small size category, for example, medium distress risk firms 

on average yield a lower return than low distress risk firms. However, the highest returns are 

provided by small firms with the highest distress risk, confirming earlier results.   

We can also see in Panel C that the average EDF monotonically decreases as firm’s size 

increases. This confirms the close relation between size and default risk observed in Table 4. 

Finally, Panels B and D show that small size/high EDF portfolios contain the smallest stocks 
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with the highest BM ratios, while big size/low EDF portfolios contain the largest companies 

with the lowest BM ratios. 

In the last sequential sort, we investigate the presence of a default effect in BM-sorted 

portfolios. The results are reported in Table 7.  Stocks are first sorted into three groups 

according to their BM ratio (high, medium, low), and subsequently within each of these BM 

groups we sort stock into three default portfolios (low, medium, high). 

Panel A shows that there is statistically significant default effect (at the 10% level) present 

in the low BM-sorted portfolios, with a return differential of 1.45% per month (17.4% p.a.). 

On the other hand, the difference between high and low EDF portfolios for medium BM 

groups actually yields negative return.  Next, we can see that  the return difference between 

Table 7 

Default effect controlled by BM 

EDF  Low Medium High  High-Low 
t-stat   

(Newey-West) 

Panel A: Average Returns 

High BM   1.32 1.61 1.95   0.63 (0.83) 

Medium BM   1.16 1.67 0.44   -0.72 (-1.27) 

Low BM   0.70 0.72 2.15   1.45 (1.84)* 

Panel B: Average Size (market capitalisation) 

High BM   4.078 1.915 0.932       

Medium BM   6.142 2.947 1.232       

Low BM   6.836 1.417 0.632       

Panel C: Average EDF 

High BM   0.260 1.186 7.885       

Medium BM   0.116 0.416 2.815       

Low BM   0.101 0.490 6.370       

Panel D: Average BM 

High BM   0.832 0.987 1.352       

Medium BM   0.467 0.479 0.485       

Low BM   0.221 0.218 0.141       

At the end of each month from February 2002 to December 2013, stocks are first sorted into three 

portfolios based on their past month’s BM (book-to-market) ratio (high, medium, low). Within each 

portfolio, we subsequently sort stocks into three EDF portfolios (low, medium, high), based on their 

weighted EDF measures in the previous month. The equally-weighted average returns of the portfolios in 

Panel A are reported in percent units. “High-Low” is the return difference between the highest and lowest 

default risk portfolios within each BM group. t-stat are the corresponding t-statistics of these differences 

and are calculated from Newey-West standard errors. The value of the truncation parameter q was 

selected in each case to be equal to the number of autocorrelations in returns that are significant at the 

5 percent level. *denotes significance at the 10% level, **at the 5% level, and ***at the 1% level. Average 

size (market capitalisation) in Panel B is expressed in billions of $US, while average EDF in Panel C is 

expressed in percent units, and average BM in Panel D in decimal units.  
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high and low BM portfolios is relatively small (no more than 0.89% in case of the medium EDF 

portfolios).  

Once again, Panel C shows that value stocks can differ a lot with respect to their default 

risk characteristics. However, the same thing can be said about growth stocks. The smallest 

firms are typically firms with the lowest BM ratios and are contained in high EDF/low BM 

portfolios. 

4.6 Pricing of distress risk 

In this section, using the asset pricing models described in Section 4.3, we investigate whether 

distress risk is systematic, and, therefore, whether it is priced in the cross-section of equity 

returns. In other words, we measure the premium that investors receive for holding 

distressed stocks.  

Following the same approach as in Table 3, at the end of each month from January 2002 

to November 2013 we sort the companies in our sample into deciles based on their EDF 

measures and form ten equally-weighted (EW) portfolios. For each month, portfolio 1 

contains the 10% of companies with the lowest distress risk, while portfolio 10 contains the 

10% of companies with the highest distress risk. We also construct the long-short portfolio 

that takes a long position in the 10% of stocks with the highest distress risk (these stocks will 

provide higher returns), and a short position in the 10% of stocks with the lowest distress risk 

(stocks providing lower returns). A key question in our analysis is also whether returns of the 

created portfolios can be explained by the factors included into standard asset pricing models. 

Further, we want to examine whether portfolios of distressed companies in the renewable 

sector, as well as the created long-short strategy based on distress risk, yield abnormal or 

active returns beyond what would be suggested by standard asset pricing models. 

In Table 8 we report the results from regressions using the excess returns of equally-

weighted (EW) portfolios. Panel A reports monthly alphas expressed in annualised percent 

units with respect to the CAPM (1), the Fama-French three-factor model (2), and the Carhart 

four-factor model (3) with corresponding t-statistics below in parenthesis. We estimate these 

models using the standard factor-mimicking portfolios available on Professor Kenneth 

French’s website (see Footnote 57). Panels B, C, and D then report estimated factor loadings 
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for excess returns on the CAPM market factor, on the Fama-French market, size, and value 

factors, and on the four Carhart factors (including momentum), respectively, again with 

corresponding t-statistics. Finally, there are reported R-squared measures from these 

regressions in Panel E. Figure 4 then graphically summarises the behaviour of alphas across 

particular portfolios, while Figure 5 shows the evolution of factor loadings from the four-

factor   model  across   the  created   distress  risk  portfolios.   We  also   provide  correlation 

Table 8 

Risk-adjusted returns on EW portfolios sorted on the basis of the EDF measure 

 

At the end of each month t from January 2002 to November 2013, we sort our companies into deciles based 

on their weighted EDF measures, as defined in (7). Portfolio 1 is the portfolio with the lowest default risk and 

portfolio 10 with the highest one. The “High-Low” column denotes a portfolio that takes a long position in the 

10% stocks with high EDF and a short position in the 10% stocks with low EDF. In this table, we show results 

from regressions of equally-weighted (EW) excess returns of month t + 1 (period from February 2002 to 

December 2013) on a constant (alpha), market returns (RM), as well as three-factor Fama-French (RM, SMB, 

HML) and four-factor Carhart (RM, SMB, HML, MOM) regressions. Panel A shows monthly alphas or active 

returns (in annualised percent units) from these regressions and the corresponding values of t-statistics (in 

parenthesis). Panel B shows loadings on the market factor and the corresponding values of t-statistics (in 

parentheses) from the CAPM model. Panels C and D show loadings on three factors and four factors, 

respectively, and the corresponding values of the t-statistics (in parentheses) from the applied three-factor and 

four-factor regressions. R-squared are then reported in Panel E. *denotes significance at the 10% level, **at 

the 5% level, and ***at the 1% level. 

Low High

EW portfolios 1 2 3 4 5 6 7 8 9 10 High-Low

CAPM alpha 1.44 6.19 9.14 2.65 7.71 -2.12 0.18 2.03 5.52 20.72 19.28

(t -stat) (0.39) (1.55) (1.88)* (0.64) (1.48) (-0.42) (0.03) (0.28) (0.57) (1.97)** (1.85)*

3-factor alpha 0.36 4.54 7.23 1.11 5.79 -4.37 -2.38 0.67 2.03 16.62 16.25

(t -stat) (0.10) (1.21) (1.68)* (0.28) (1.22) (-0.87) (-0.47) (0.10) (0.24) (1.76)* (1.70)*

4-factor alpha -0.46 4.34 7.48 0.89 5.18 -4.39 -1.53 1.29 2.64 18.73 19.19

(t -stat) (-0.13) (1.13) (1.75)* (0.23) (1.11) (-0.88) (-0.30) (0.17) (0.30) (1.87)* (1.92)*

RM 1.067 1.082 1.358 1.286 1.385 1.516 1.476 1.757 1.755 2.240 1.174

(t -stat) (15.59)*** (14.26)*** (12.57)*** (16.75)*** (16.67)*** (17.48)*** (12.79)*** (13.79)*** (10.21)*** (12.01)*** (6.30)***

RM 0.988 0.966 1.215 1.177 1.243 1.359 1.293 1.653 1.501 1.953 0.964

(t -stat) (14.89)*** (10.68)*** (11.03)*** (13.63)*** (14.27)*** (14.21)*** (10.09)*** (11.13)*** (10.21)*** (9.92)*** (4.81)***

SMB 0.504 0.571 1.024 0.579 0.964 0.758 1.009 0.828 1.571 1.405 0.901

(t -stat) (3.93)*** (3.46)*** (5.61)*** (3.75)*** (5.69)*** (4.22)*** (4.76)*** (3.00)*** (5.48)*** (4.01)*** (2.39)**

HML -0.195 0.015 -0.548 -0.055 -0.452 0.051 -0.166 -0.541 -0.530 0.067 0.261

(t -stat) (-1.52) (0.08) (-3.01)*** (-0.42) (-2.87)*** (0.32) (-0.77) (-2.21)** (-1.84)* (0.16) (0.64)

RM 1.096 0.993 1.182 1.205 1.324 1.363 1.181 1.570 1.421 1.675 0.578

(t -stat) (13.85)*** (10.42)*** (9.61)*** (11.29)*** (12.99)*** (12.52)*** (9.04)*** (11.68)*** (9.19)*** (8.10)*** (2.95)***

SMB 0.461 0.561 1.037 0.568 0.932 0.756 1.053 0.861 1.603 1.514 1.053

(t -stat) (3.67)*** (3.34)*** (5.45)*** (3.53)*** (5.46)*** (4.19)*** (5.00)*** (3.05)*** (5.46)*** (4.06)*** (2.90)***

HML -0.158 0.024 -0.559 -0.045 -0.424 0.053 -0.204 -0.569 -0.558 -0.027 0.131

(t -stat) (-1.13) (0.12) (-3.33)*** (-0.35) (-2.66)*** (0.32) (-1.01) (-2.37)** (-1.94)* (-0.07) (0.39)

MOM 0.210 0.052 -0.064 0.055 0.156 0.007 -0.217 -0.160 -0.157 -0.539 -0.750

(t -stat) (2.92)*** (0.67) (-0.49) (0.51) (1.88)** (0.09) (-1.49) (-1.47) (-1.02) (-2.09)** (-2.69)***

CAPM 0.6365 0.5833 0.6031 0.6611 0.5895 0.6504 0.5613 0.5843 0.4585 0.4635 0.1867

3-factor 0.6732 0.6226 0.7013 0.6929 0.6673 0.6903 0.6238 0.6255 0.5509 0.5078 0.2174

4-factor 0.6987 0.6240 0.7027 0.6942 0.6750 0.6903 0.6363 0.6305 0.5546 0.5355 0.2959

Panel D: Four-factor Regression Coefficients

Panel E: R-squared

EDF

Panel A: Portfolio Alphas

Panel B: CAPM Regression Coefficients

Panel C: Three-factor Regression Coefficients
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coefficients between raw returns and the applied factors in Table 9. 

The risk-adjusted returns (alphas) corrected for given risk factors are reported in Panel A 

of Table 8. They are generally increasing across our portfolios, although this pattern is not 

monotonic. It is rather irregular between portfolios 1 to 6 (where they reach negative values), 

and they start substantially increasing and eventually reach relatively high values for portfolio 

10, containing the 10% of renewable stocks with the highest EDF (see also in Figure 4). The 

“High-Low” strategy where we hold the riskiest decile of stocks and sell the decile of stocks 

with the lowest failure risk, provides positive returns from 16.25% to 19.28% p.a., depending 

on the applied asset pricing model. Note that, generally, results on alphas are also very stable 

with respect to the applied pricing models. The calculated annualised active returns are hardly 

affected by the choice of model. Overall, our results indicate again that the distress risk 

premium seems to be an effect that is mainly concentrated in the companies with substantial  

Figure 4 

Portfolio alphas from the regressions of excess returns 

The figure plots monthly alphas (in annualised percent units) from the applied CAPM model, the Fama-French 

three-factor model, and the Carhart four-factor model for 10 distress risk-sorted equally-weighted (EW) 

portfolios from February 2002 to December 2013 (see panel A of Table 8). Portfolios are formed at the end of 

each month from January 2002 to November 2013, when we sort our companies into deciles based on their 

weighted EDF measures, as defined in (7).  
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default risk, that is, the highest decile. Only for these portfolios do we get active annualised 

returns of substantial magnitude (greater than 16%, depending on the applied model) that 

are at the same time statistically significant for all the models. Importantly, also note that the 

models yield statistically significant returns for our “High-Low” portfolio too. 

Regarding the factor loadings that are reported in panels B, C, and D in Table 8, the 

market factor RM is increasing and statistically significant for all models. We can see that 

stocks in portfolio 10 (stocks with high probability of default) have beta-factors about twice 

the size of those in portfolio 1 (stocks with low probability of default). The size factor SMB has 

irregular increasing pattern in both three-factor and four-factor models implying that the 

small companies prevail among distressed stocks. Also this factor is highly significant in all 

models. Finally, the value factor HML is irregular with no visible pattern, while the momentum 

factor MOM has a decreasing pattern with negative loadings on portfolios 3 and 7 to 10  (see  

Figure 5 

Factor loadings from the four-factor regression of excess returns 

The figure plots loadings on excess market return (RM), size factor (SMB), value factor (HML), and momentum 

factor (MOM) from four-factor regression (see panel D of Tables 8) for 10 distress risk-sorted equally-weighted 

(EW) portfolios from February 2002 to December 2013. Portfolios are formed at the end of each month from 

January 2002 to November 2013, when we sort our companies into deciles based on their weighted EDF 

measures, as defined in (7).  
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also Figure 5). Both factors are significant only for some portfolios. 

Reported R-squared measures from these regressions are relatively high, particularly for 

less risky portfolios, and generally decreasing with portfolios that hold more distressed stocks. 

The values start at 0.6365 – 0.6987 for portfolio 1 and end at 0.0.4635 – 0.5355 for portfolio 

10. Note that for our “High-Low” strategy where we take a long position in the 10% of high-

distress stocks and a short position in the 10% of safest stocks, the values drop significantly 

to 0.1867 – 0.2959. This indicates that returns created through setting up a long-short 

strategy based on distress risk in the renewable energy sector cannot be explained by 

standard factors in asset pricing models. We interpret this as an additional confirmation for a 

distress risk factor that is systematically priced in the renewable energy sector. 

Thus, contrary to the findings of Campbell et al. (2008), we consistently find that stocks 

with high risk of failure also have high average returns, both raw and risk-adjusted, implying 

that distress risk is positively priced in the U.S. stock market for renewable energy companies. 

However, as pointed out previously, our results also indicate that distress risk seems to be 

predominantly priced in the highest decile, that is, for companies with a relatively high 

probability of default.  

From reported results in Table 965 we can see that the raw returns of our 10 portfolios 

are relatively highly correlated and exhibit correlations ranging from 0.59 to 0.80. Regarding 

the correlation between raw returns of our 10 portfolios and the pricing factors, we find that 

the market factor RM is relatively highly correlated with returns of the created portfolios. 

Note, however, that the correlation is generally decreasing for portfolios that hold more 

distressed stocks. The correlation coefficient for portfolio 1 has a value of 0.80 compared to 

a value of 0.68 for portfolio 10. The size factor SMB, the value factor HML, and the momentum 

factor MOM show much lower degrees of correlation with raw returns of our portfolios. 

However, the correlation between returns from the generated distress risk portfolios and the 

Fama-French SMB factor is typically still around 0.5. Again, this confirms the relationship 

between distress risk and the size effect that we pointed out earlier. Finally, there is a very 

high correlation of 0.92 for raw returns of portfolio 10 (high risk) and our “High-Low” strategy, 

 

                                                           
65 We provide a distribution plot that shows a linearity of the data (scatterplot matrix) in Appendix D. 



Distress Risk and Stock Returns of U.S. Renewable Energy Companies    

 

148 
 

Table 9 

Correlation coefficients between raw returns and given factors 

 

The table reports correlation coefficients between raw returns of equally-weighted (EW) portfolios and the 

CAPM, Fama-French, and Carhart factors. 

confirming that it is predominantly the high distressed stocks that play a crucial role in our 

long-short strategy.  

As another check of whether a distress risk is priced in the cross section of equity returns, 

we estimate additional multivariate regression models (using the Fama-MacBeth (1973) two-

stage approach) where we consider a plausible empirical asset-pricing specification in which 

distress risk appears as a factor. First, we use time-series regressions to estimate the betas on 

the CAPM, the three-factor Fama-French (1993) model and the four-factor Carhart (1997), 

while adding the distress factor DS  to all these specifications. In the second stage, we 

implement a cross-sectional regression of the average returns of all 141 stocks on their betas. 

The empirical asset-pricing specifications are given below: 

 1

, , 1, , , 2, ,DS ,Model

i t F t i i M t F t i t i tR R R R                                                                              (8) 

 2

, , 1, , , 2, 3, 4, ,SMB HML DS ,Model

i t F t i i M t F t i t i t i t i tR R R R                                         (9) 

 3

, , 1, , , 2, 3, 4, 5, ,SMB HML MOM DS .Model

i t F t i i M t F t i t i t i t i t i tR R R R                   (10) 

We use two different specifications for our distress risk factor DS . First, we follow 

standard conventions for constructing risk factors (see, for example, Fama and French (1993)) 

and use our “High-Low” strategy, that is, we use returns for the portfolio that is formed by 

taking a long position in the 10% of stocks with the highest distress risk and a short position 

in the 10% of stocks with the lowest distress risk. Second, we follow Vassalou and Xing (2004) 

and  define  the  aggregate  survival  rate SV  as 1 EDFt  where EDFt
 is  defined  as a simple  

Low High

1 2 3 4 5 6 7 8 9 10 High-Low RM SMB HML MOM

1 (Low) 1

2 0.70 1

3 0.74 0.71 1

4 0.75 0.73 0.77 1

5 0.76 0.70 0.75 0.77 1

6 0.75 0.72 0.74 0.80 0.77 1

7 0.71 0.68 0.77 0.74 0.75 0.79 1

8 0.72 0.64 0.71 0.73 0.74 0.71 0.75 1

9 0.73 0.66 0.71 0.69 0.72 0.71 0.70 0.70 1

10 (High) 0.60 0.59 0.65 0.65 0.68 0.64 0.73 0.68 0.68 1

High-Low 0.23 0.36 0.42 0.41 0.44 0.40 0.54 0.47 0.46 0.92 1

RM 0.80 0.76 0.78 0.81 0.77 0.81 0.75 0.76 0.68 0.68 0.43 1

SMB 0.46 0.47 0.54 0.47 0.52 0.49 0.51 0.44 0.52 0.45 0.32 0.38 1

HML 0.12 0.19 0.04 0.17 0.07 0.21 0.14 0.06 0.07 0.18 0.16 0.21 0.18 1

MOM -0.18 -0.28 -0.34 -0.31 -0.23 -0.33 -0.40 -0.37 -0.32 -0.43 -0.43 -0.43 -0.09 -0.16 1

EDF
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Table 10 

The Fama-MacBeth regression with the distress risk factor 

    Model 1   Model 2   Model 3 

alpha   8.63 7.36   14.52 14.45   18.39 22.44 

(t-stat)   (1.35) (1.19)   (2.30)** (2.52)**   (3.43)*** (3.59)*** 

RM   0.0029 0.0013   0.0017 -0.0003   -0.0023 -0.0045 

(t-stat)   (0.90) (0.43)   (0.49) (-0.10)   (-0.90) (-1.43) 

SMB         -0.0019 -0.0034   -0.0017 -0.0054 

(t-stat)         (-0.94) (-2.06)**   (-0.90) (-2.79)*** 

HML         0.0033 0.0035   0.0051 0.0022 

(t-stat)         (3.03)*** (3.12)***   (5.23)*** (1.70)* 

MOM               -0.0105 -0.0057 

(t-stat)               (-6.49)*** (-2.47)** 

High-Low   -0.0066     -0.0124     -0.0063   

(t-stat)   (-0.88)     (-1.67)*     (-0.95)   

Δ(SV)     0.0004     0.0005     0.0002 

(t-stat)    (4.11)***    (5.81)***    (1.54) 

R-squared   0.0147 0.1140   0.0975 0.2601   0.3113 0.2443 

The table reports results from the second step of the Fama-MacBeth regression where the average 

returns of all 141 stocks are regressed on their betas (factor loadings). Model 1 represents the CAPM 

model, Model 2 the Fama-French three-factor model, and Model 3 the Carhart four-factor model, all 

including the additional distress risk factor. The distress risk factor is represented either by our “High-

Low” strategy, or by the aggregate survival rate  SV
t

 . Alphas are expressed in annualised percent units. 

The t-stat (in parenthesis) is the t-statistic of the corresponding estimated coefficient. *denotes 

significance at the 10% level, **at the 5% level, and ***at the 1% level. 

average of the transformed EDF measure (Equation 7) of all firms at given month t . Our 

distress risk factor is then defined as the change in aggregate survival rate  SV
t

  at time t  

which is given by 1.t tSV SV   

Results from the second step of the Fama-MacBeth regression are reported in Table 10. 

We can see that the market factor RM is insignificant in all three models, while the value 

factor HML and the momentum factor MOM are statistically significant. The size factor SMB 

appears to be significant only when the aggregate survival rate  SV  is used as the distress 

factor. More importantly, the  SV  factor is statistically significant for Models 1 and 2 at 

the 1% level. Note, however, that the ‘High-Low’ factor is only significant at the 10% level in 

Model 2. Overall, our results provide additional evidence for distress risk being priced in the 

cross-section of returns for renewable energy companies.  
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Finally, we focus on a comparison of the calculated raw and risk-adjusted returns for 

our long-short strategy to various benchmark models, including two renewable energy indices 

(ECO and NEX), a technology index PSE (Arca Tech 100), and the market index S&P 500. We 

start in Figure 6 with a graphical comparison between cumulative raw returns on the “High–

Low” equally-weighted (EW) portfolio and cumulative returns on the NEX, PSE, and S&P 500 

indices over the period from February 2002 to December 2013. We can see that raw returns 

from the created distress risk portfolios clearly outperform these three indices throughout 

the sample period.  

We also report correlations between excess returns of EW “High–Low” portfolios, chosen 

indices (S&P 500, PSE, NEX), and the WTI crude oil price over the period from February 2002 

to December 2013 in Table 11. As expected, there are relatively high correlations between 

excess returns in the S&P 500 and the PSE index (0.90), between the S&P 500 and the NEX 

(0.75), and the NEX and PSE index (0.73). However, excess returns on our long-short strategy 

are not highly correlated with these indices (the highest correlation coefficient is 0.48 

between  EW  and  PSE).  We  also  find  that  correlation  between  excess  returns  from  our  

Figure 6 

Cumulative raw returns on “High-Low” EW portfolio and chosen indices 

 

The figure plots cumulative raw returns on "High-Low" equally-weighted (EW) portfolio 

that takes a long position in the 10% most distressed stocks and a short position in the 

10% safest stocks, along with cumulative returns on the NEX, PSE (Arca Tech 100), and 

S&P 500 indices over the period from February 2002 to December 2013. 
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Table 11 

Correlation coefficients between excess returns 

  Raw (EW) S&P 500 PSE NEX WTI 

Raw (EW) 1         
S&P 500 0.42 1       
PSE 0.48 0.90 1     
NEX 0.41 0.75 0.73 1   
WTI 0.08 0.27 0.24 0.43 1 

The table reports correlation coefficients between excess returns on equally-
weighted (EW) "High-Low" portfolio, that takes a long position in the 10% 
most distressed stocks and a short position in the 10% safest stocks, excess 
returns of the S&P 500, PSE (Arca Tech 100), and NEX indices, and excess 
returns on the U.S. WTI crude oil. Considered period is February 2002 - 
December 2013. 

long-short strategy and excess returns from WTI crude oil prices is very low (value of 0.08). 

While correlations between NEX or ECO index returns and returns from the WTI are typically 

quite pronounced (between 0.43 and 0.52), the identified distress risk premium for the 

renewable sector does not seem to be influenced much by returns in the oil market.  

Therefore, while movements in the oil price clearly are one of the driving factors of returns in 

the renewable sector, we do not find clear evidence for a different impact of oil returns on 

high and low distress risk renewable energy companies.   

Note that as a robustness check, we provide the same comparison on cumulative returns 

and correlations using the ECO instead of the NEX for the period from August 2004 to 

December 2013 in Appendix E and F.66 Overall, results are qualitatively the same as for the 

NEX. 

Table 12 

Descriptive statistics of monthly risk-adjusted returns (alphas) on “High-Low” portfolios 

Equally-weighted (EW) "High-Low" portfolio 

  Mean Std. Min Max Median Quart 1 Quart 3 

α-CAPM 0.0161 0.1094 -0.2406 0.4960 0.0024 -0.0528 0.0699 

α-3F 0.0135 0.1073 -0.2595 0.4932 -0.0010 -0.0548 0.0670 

α-4F 0.0160 0.1018 -0.2683 0.4974 0.0084 -0.0443 0.0691 

The table reports descriptive statistics of monthly risk-adjusted returns (alphas) on "High-Low" 

equally-weighted (EW) portfolios. These portfolios take a long position in the 10% most 

distressed stocks and a short position in the 10% safest stocks over the period from February 

2002 to December 2013. Returns are calculated using estimated coefficients from the CAPM, 

Fama-French model (3F), and Carhart model (4F). Specifically, we take the difference between 

raw and expected returns based on the models. All values are expressed in decimal units. 

                                                           
66 The ECO index is only available from August 2004. 
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Furthermore, we report descriptive statistics of monthly risk-adjusted active returns 

(alphas) on our “High–Low” EW portfolio over the period February 2002 to December 2013 

in Table 12. In order to calculate these alphas, we proceed as follows: first, we calculate the 

expected returns for each month based on the estimated coefficients from the CAPM, Fama-

French three-factor model and Carhart four-factor model. Subsequently, each month, we take 

the difference between raw returns and these expected returns. The average alphas for our 

constructed portfolios vary from 1.35% to 1.61% for the different asset pricing models. Note 

that these are the monthly alphas. After multiplying these average values by 12, we get the 

same alphas as reported in Table 8 (reported in annualised percent units). We observe that 

the active returns for the created portfolios are relatively volatile, with monthly standard 

deviations ranging from 10.18% to 10.94%. 

Moreover, we illustrate the cumulative performance of these risk-adjusted returns for 

the EW  long-short  portfolio  in  Figure 7.  For comparison purposes, we  also plot cumulative  

Figure 7 

Cumulative raw and risk-adjusted returns on “High-Low” EW portfolio 

 

The figure plots cumulative raw returns on "High-Low" equally-weighted (EW) portfolio that 

takes a long position in the 10% most distressed stocks and a short position in the 10% safest 

stocks, along with risk-adjusted returns (alphas) from CAPM model, Fama-French three-factor 

model, and Carhart four-factor model over the period from February 2002 to December 2013. 

For comparison purposes, the figure also plots cumulative return on the S&P 500 index.
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returns of the S&P 500 index. We find that cumulative raw returns of our “High–Low” EW 

portfolios outperform returns of the S&P 500 index over the considered sample period. We 

also plot the cumulative alphas from the CAPM model, the Fama-French three-factor model, 

and the Carhart four-factor model for the created distress risk investment strategy. We find 

that the alphas are highly correlated and range from 0.90 to 0.99 for the EW long-short 

portfolios. As illustrated by Figure 7, the performance of the cumulative risk-adjusted active 

returns is also above the cumulative performance of the S&P 500 index throughout our 

sample period (2002–2013). Note, however that the performance of the “High-Low” portfolio 

shows significant variations through time. Recall that earlier studies by, e.g. Bohl et al. (2013), 

emphasize high active returns in the renewable sector for the period up to 2008, and a 

relatively bad performance of the sector afterwards. Our findings for estimated alphas, i.e. 

active returns, of the examined “High-Low” portfolio, also suggest high active returns up to 

2009, while during the subsequent period of low oil prices, the distress risk “High-Low” 

portfolio even yields negative returns. However, from mid-2012 onwards up to the end of the 

sample period in December 2013, active returns become highly positive again and point 

towards a significant pricing of distress risk in the renewable sector.  

Overall, these results suggest that distress risk is particular priced during periods when the oil 

price is rising. Further, the excellent performance of the “High–Low” EW portfolio from a risk-

adjusted perspective is also confirmed in this section. We conclude that in the renewable 

energy sector distress risk seems to be systematically priced and investors are compensated 

for taking on additional risks by investing in stocks with relatively high default probabilities.  

4.7 Conclusions 

The trade-off between distress risk and stock returns has important implications for the risk-

reward relationship in financial markets and contributes to the conceptual framework of asset 

pricing and investment decision-making. During the last decade, investments in renewable 

energy stocks have achieved tremendous growth rates in the global economy, mostly due to 

the conjunction of rising oil prices, increasing market liquidity for investments in the 

renewable energy sector, and government policies. Consequently, several renewable, clean 

and alternative energy stock indices have been created, including the WilderHill Clean Energy 

Index (ECO), the WilderHill New Energy Global Innovation Index (NEX), and the S&P Global 
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Clean Energy Index (SPGCE). At the same time, companies involved in the renewable energy 

business are relatively high risk firms with high profitability potential.  

In this paper, we contribute to the literature by combining work on the relationship 

between distress risk and equity returns with studies that focus on the driving factors of 

returns of renewable energy companies. Specifically, we investigate the relationship between 

distress risk and realised returns of U.S. renewable energy companies, and examine risk-

adjusted returns corrected for common Fama and French (1993) and Carhart (1997) risk 

factors to show whether distress risk is positively priced in the renewable sector. 

Using the Expected Default Frequency (EDF) from Moody’s KMV as a proxy for distress 

risk, we find a positive relationship between realised equity returns of equally-weighted (EW) 

portfolios and distress risk in the renewable energy sector. Thus, we confirm findings of 

Vassalou and Xing (2004) and Chava and Purnanandam (2010) on positive distress risk 

premiums. Investors expect higher average returns for bearing the additional risk of holding 

more distressed stocks in the renewable sector. We find a significant difference between 

returns of EW portfolio consisting of the riskiest decile of stocks and those consisting of the 

decile with the lowest failure risk. This positively priced distress premium in the U.S. 

renewable energy sector is also confirmed by applying three major asset pricing models – the 

CAPM, the Fama and French (1993) three-factor model, and the Carhart (1997) four-factor 

model – that correct returns for given risk factors such as market risk, size premiums, value 

premiums, and momentum. 

We further investigate a possible link between the size and value (book-to-market) 

effects and default risk, and find that the size effect is concentrated in the smallest firms, 

which also happen to be among those with the highest distress risk. Thus, as suggested by 

Vassalou and Xing (2004), the size effect may partially be interpreted as a default effect; 

however, sorting renewable stocks according to their EDF does not yield the same results as 

sorting them by size. The size effect is significant only in the segment of our sample with the 

highest distress risk, where the difference in returns between small and big firms can be 

explained by the difference in their default risk. We show that distressed firms earn, on 

average, higher returns than low distress risk firms, and that significantly higher returns are 
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earned by firms that are also small in size. Unlike for the size effect, our results suggest that 

the book-to-market effect is not truly related to distress risk.  

Our findings complement other conducted studies that mostly focus on examining 

returns of renewable energy companies and on identifying potential drivers of these returns. 

Our paper is particularly closely related to Bohl et al. (2013), who investigate stocks of German 

renewable energy companies and show that the outperformance of German renewable 

energy stocks was completely reversed between 2008 and 2011, where significantly negative 

active returns were delivered. We find similar pattern for this time period in the U.S. market. 

However, we also demonstrate that raw and risk-adjusted (active) returns of EW portfolio 

that take a long position in the 10% most distressed stocks, and a short position in the 10% 

safest stocks, outperforms the S&P 500 index throughout our sample period (2002–2013). 

Returns for portfolios that implement such a “High-Low” distress risk trading strategy typically 

exhibit rather low correlations with standard factors in asset pricing models. Interestingly, we 

also find that returns for these portfolios are also not highly correlated to pricing factors for 

renewable energy stocks as are returns from technology stocks and oil prices. Overall, these 

results indicate that distress risk is systematically priced in the renewable energy sector and 

should be considered as an additional pricing factor for these companies.  
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Appendix A – Defaulted Companies 

Figure A1 

Defaulted companies (average size) 

 

The figure compares the average size, expressed by market capitalisation (MC) in $100K 

US, of 15 defaulted companies in our sample with the average size of the sample over 

the period when a given company was active on the market in our sample period.
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Table A1 

Defaulted companies  

MKMVID Company name 
Date of 

Chapter 11 
filling 

Date of 
delisted 
return 

Date of first 
reported EDF 

= 35 

Date of last 
reported EDF 

= 35 

Mean 
EDF 

Trend 
EDF 

Trend 
price 

096888 ENER1 INC 26/01/2012 Oct - 11 Nov - 11 Mar - 12 9.51 ↗ ↘ 

292659 ENERGY CONVERSION DEV 14/02/2012 Feb - 12 May - 11 Aug - 12 7.46 ↗ ↘ 

803893 SATCON TECHNOLOGY CORP 17/10/2012 Oct - 12 Jul - 12 Mar - 14 10.30 ↗ ↘ 

918914 VALENCE TECHNOLOGY INC 12/07/2012 Jul - 12 Jun - 12 Mar - 14 10.52 ↗ ↘ 

N04938* USEC INC / CENTRUS ENERGY CORP 3/05/2014  ----- Apr - 12 Dec - 14 12.22 ↗ ↘ 

N05717** QUICKSILVER RESOURCES INC 17/03/2015  ----- Oct - 14 Dec - 14 7.47 ↗ ↘ 

N06982 DISTRIBUTED ENERGY SYS CORP 4/06/2008 Jun - 08 Jun - 08 Jun - 10 11.00 ↗ ↘ 

N07069 EVERGREEN SOLAR INC 15/08/2011 Aug - 11 Jan - 11 Jun - 12 9.19 ↗ ↘ 

N07089 BEACON POWER CORP 30/10/2011 Nov - 11 Sep - 11 Apr - 13 8.16 ↗ ↘ 

N07517 MEDIS TECHNOLOGIES LTD xx/09/2011 Aug - 09 Nov - 09 Mar - 11 7.47 ↗ ↘ 

N11784 RASER TECHNOLOGIES INC 29/04/2011 Nov - 10 Jun - 10 Sep - 11 14.40 ↗ ↘ 

N11838 VERASUN ENERGY CORP 31/10/2008 Nov - 08 Oct - 08 Jun - 10 16.39 ↗ ↘ 

N12917 NOVA BIOSOURCE FUELS INC 31/03/2009 Apr - 09 Sep - 08 Jan - 11 26.81 ↗ ↘ 

N13578 GT ADVANCED TECHNOLOGIES INC 6/10/2014 Oct - 14 Oct - 14 Dec - 14 6.85 ↗ ↘ 

N21355 KIOR INC 9/11/2014 Oct - 14 Mar - 14 Dec - 14 11.91 ↗ ↘ 

 * emerged from bankruptcy (restructuring) as Centrus Energy Corp. on 30/09/2014 
 ** defaulted in 2015 

The table reports information about 15 defaulted companies in our sample. Namely, we report company 

name, date when company filed for bankruptcy protection under Chapter 11, date of delisted return in 

CRSP database, dates of first and last maximum value (35) of EDF measure reported in MKMV database, 

along with average EDF value, and EDF and price trends towards default. 

In Figure A1, we can see that all 15 defaulted companies are significantly smaller compared 

to average size of the sample. Reported information from Table A1 show that average EDF 

values for these companies are considerably high with expected increasing trend in EDFs, and 

decreasing trend in stock prices towards default. In fact, most of the time, the first maximum 

EDF value (EDF = 35) reported in the MKMV database predate both the date of filing for 

bankruptcy protection under Chapter 11 and the date of delisted return in CRSP database. 
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Appendix B – Acquired Companies 

Generally, there are two possible reasons why a given company may be acquired. First, the 

company does not perform well and the acquisition is the only way how to prevent likely 

default. Second, on the contrary, the company is performing very well and becomes desirable 

for acquisition by another more established firm, from which both companies could benefit. 

We investigate acquired companies in our sample and probable reason for the acquisition in 

the following table (Table A2). 

Table A2 

Acquired companies 

MKMVID Company name Acquired by 
Date of 

acquisition 
Last reported 

EDF 
Trend 
EDF 

Trend 
price 

029066 AMERICAN POWER CONVERSION CP SCHEIDER ELECTRIC 14/02/2007 0.04 ↘ ↗ 

155771 CENTRAL VERMONT PUB SERV QUEBEC'S GAZ METRO 27/06/2012 0.11 ↘ ↗ 

283695 EL PASO CORP KINDER MORGAN 24/05/2012 0.10 ↘ ↗ 

458771 INTERMAGNETICS GENERAL CORP ROYAL PHILIPS ELECTRONICS 9/11/2006 0.04 ↘ ↗ 

460254 INTL RECTIFIER CORP INFINEON TECHNOLOGIES 13/01/2015 0.02 ↘ ↗ 

486587 KAYDON CORP SKF GROUP 16/10/2013 0.05 ↘ ↗ 

834090 SOLA INTERNATIONAL INC CARL ZEISS VISION HOLDING 22/03/2005 0.12 ↘ ↗ 

98975W ZOLTEK COS INC TORAY INDUSTRIES 3/03/2014 0.07 ↘ ↗ 

N03918 POWER-ONE INC ABB LTD 25/07/2013 0.46 ↘ ↗ 

N06112 VERENIUM CORP BASF 31/10/2013 2.09 ↘ ↗ 

N10271 COLOR KINETICS INC ROYAL PHILIPS ELECTRONICS 27/08/2007 0.07 ↘ ↗ 

N12496 COMVERGE INC H.I.G. CAPITAL 22/05/2012 10.95 ↗ ↘ 

The table reports information about 12 acquired companies in our sample. Specifically, Moody's 
KMV ID (MKMVID), company name, name of the company it was acquired by, date of acquisition, 
last reported EDF in MKMV database, and trend of EDF and trend of the price towards the date of 
acquisition. 

On close investigation of the last reported EDFs, together with the EDF and price trends 

towards the date of acquisition, we conclude that 11 out of 12 companies were acquired due 

to very good performance on the market. For these companies, EDF remained relatively low 

and was generally decreasing, while the stock price was generally increasing. The only 

exception is the Comverge Inc. (N12496) whose last reported EDF was relatively high (10.95). 

Also, the EDF was increasing towards the date of acquisition, while the stock price was 

decreasing. These findings imply that the company was saved from likely going bankrupt by 

this acquisition by H.I.G. Capital.
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Appendix C  

The core concept of the Merton (1974) model is to treat company’s equity and debt as a  

contingent claim written on a company’s asset value. In this framework, the company is 

considered to have a very simple capital structure. It is assumed that the company is financed 

by one type of equity with a market value tE  at time t  and a zero-coupon debt instrument at 

t   tD  with a face value of L  maturing at time T . The exercise price of a call option is defined 

as the value L . Let tA  be the company’s asset value at time t . Naturally, the following 

accounting identity holds for every time point: 

.t t tA E D                                                               (A1) 

In the Merton’s framework the value of a company’s equity at maturity time T  is given 

by 

 max ,0 .
T T

E A L                                                        (A2) 

Under the Merton model the value of the total assets is assumed to follow a geometric 

Brownian motion (GBM) in the following form: 

,t t t tdA A dt A dW                                                         (A3) 

where   is the expected return (drift coefficient),   is the volatility (diffusion coefficient), 

both unobserved, and tW  is the normal variable  0,1N . Using Ito’s lemma, we can obtain 

the solution of (A3) as follows: 

    ,
2

1
exp 2


















 ttT WtTtTAA                                  (A4) 

where  T t  is the remaining maturity. 

In accordance with the Black-Scholes option pricing theory (1973), the Merton model 

stipulates that the company’s equity value satisfies the following equation for pricing the call 

option within a risk neutral framework 

     1 2 ,
r T t

t tE A d Le d
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where  
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and r  denotes the risk-free interest rate and    the cumulative distribution function of the 

standard normal variable. Equation (A7) is referred to as the distance-to-default (DD) by 

Moody’s KMV. The larger the DD, the lower is the probability that the company will default.  

We can estimate PD by rearranging (A4) as follows: 
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and   is the probability density function of a standard normal variable. Note that unlike (A8), 

(A5) is not a function of   but it is a function of r  (we would get PD under the risk neutral 

probability measure). When we estimate PD, the risk-free interest rate r  has to be replaced 

with real company drift   since this step has nothing to do with option pricing. Thereby, the 

default probability of the company under the objective probability measure is given by    
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Appendix D  

Figure A2 

Scatterplot matrix of equally-weighted (EW) raw returns and given factors 

 

This scatterplot matrix identifies the type of relationship between raw returns of our created 

portfolios (1 to 10 and High-Low) and four factors from the correlation analysis conducted in 

Table 9. We can see that the relationship is close to being linear usually for our portfolio 

returns (portfolios 1 to 10) and the market factor RM. This is also confirmed by the estimated 

correlation coefficients in Table 9 that have relatively higher values. Note that for the 

remaining three factors (SMB, HML, MOM) and our High-Low portfolio we find a rather non-

linear relationship with returns of the created decile portfolios and between each other. An 

exception is the linear relationship between portfolio 10 and the High-Low portfolio that 

yields a correlation coefficient of 0.92. This further confirms our finding that returns of our 

High-Low portfolio are mostly driven by returns in portfolio 10. 
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Appendix E 

Figure A3 

Cumulative raw returns on “High-Low” EW portfolio and chosen indices (Aug 04 – Dec 13) 

 

The figure plots cumulative raw returns on "High-Low" equally-weighted (EW) portfolio that takes a long 

position in the 10% most distressed stocks and a short position in the 10% safest stocks, along with 

cumulative returns on the ECO, PSE (Arca Tech 100), and S&P 500 indices. Since the ECO index is only 

available from September 2004, considered period is September 2004 - December 2013. 

Appendix F  

Table A3 

Correlation coefficients between excess returns (Sep 04 - Dec 13) 

  Raw (EW) S&P 500 PSE ECO WTI 

Raw (EW) 1         

S&P 500 0.36 1       

PSE 0.40 0.91 1     

ECO 0.43 0.77 0.81 1   

WTI 0.10 0.43 0.44 0.52 1 

The table reports correlation coefficients between excess returns on an 
equally-weighted (EW) "High-Low" portfolio, that takes a long position in 
the 10% most distressed stocks and a short position in the 10% safest 
stocks, excess returns of S&P 500, PSE (Arca Tech 100), and ECO indices, 
and excess returns on the U.S. WTI crude oil. Since the ECO index is only 
available from September 2004, considered period is September 2004 - 
December 2013. 
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5 Summary and Conclusions 

This PhD thesis is addressing several dimensions for estimation and examination of default 

probabilities in credit risk management. This area of research has undergone substantial 

development in recent decades and has become one of the most intensely studied topics in 

the financial literature. Assigning an appropriate PD, which is the key input factor for modeling 

and measurement of credit risk, is a widely employed strategy by financial institutions as well 

as the supervisory authorities around the world. Providing accurate estimates can be 

considered as one of the key challenges in credit risk management, since false estimation of 

PDs might lead to unreasonable ratings and incorrect pricing of financial instruments. In fact, 

these were the reasons behind the emergence of the recent global financial crises as 

undervaluation of default risk for mortgages and structured credit products caused significant 

stress on the financial system which had been extended through credit derivatives on global 

markets.  

The thesis consists of three research papers. One of the most significant approaches for 

the estimation of default probabilities are structural credit risk models. This approach was 

originally  introduced by Merton (1974) and is based on the idea of treating a company’s 

equity and debt as a contingent claim written on the company’s asset value. Significant 

attention has been given to this framework in the past and the Merton model has become 

very popular, despite the fact that the classical version of this model is based on a number of 

simplifying and unrealistic assumptions. In the first paper (Structural Credit Risk Models with 

Subordinated Processes), by demonstrating that the distributional assumption of the Merton 

model (company value follows a log-normal distribution) is rejected, we have confirmed 

several empirical investigations that have shown that log-returns of equities typically follow 

skewed distributions with excess kurtosis, which leads to a greater density in the tails. 

Therefore, we have discussed the possibility for using other subordinated processes to 

approximate the behaviour of the log-returns of the company value. In fact, we have 

introduced a structural credit risk model based on stable non-Gaussian processes as a 

representative of subordinated models and shown that it is possible to use this model in the 

Merton framework. In particular, we have proposed to use the Hurst et al. (1999) option 
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pricing model based on stable Paretian distributions, which generalises the standard Merton 

methodology. 

The practical and theoretical appeal of the stable non-Gaussian approach is given by its 

attractive properties that are almost the same as the normal ones. As a matter of fact, the 

Gaussian law is a particular stable Paretian model, and thus is a generalisation of the Merton 

one. The first relevant desirable property of the stable distributional assumption is that stable 

distributions have a domain of attraction. The generalised central limit theorem for the 

normalised sums of i.i.d. random variables determines the domain of attraction of each stable 

law. Therefore, any distribution in the domain of attraction of a specified stable distribution 

will have properties close to those of the stable distribution. Another attractive aspect of the 

stable Paretian assumption is the stability property; that is, stable distributions are stable with 

respect to summation of i.i.d. random stable variables. Hence, the stability governs the main 

properties of the underlying distribution. In addition, in the empirical financial literature, it is 

well documented that the asset returns have a distribution whose tail is heavier than that of 

the distributions with finite variance. The idea of using subordinated stable Paretian 

processes goes back to the seminal work of Mandelbrot and Taylor (1967), and stable laws 

then have been applied in several financial sectors. For these reasons, the stable Paretian law 

is the first candidate used as a subordinated model.  

We have proposed two different methodologies for the parameter estimation: the first 

is to generalise the maximum likelihood parameter estimation proposed by Duan (1994); the 

second is a generalisation of the Moody’s KMV methodology. Moreover, we have optimised 

the performance for the stable Lévy model and conducted an empirical comparison between 

the results obtained from the classical Merton model and the stable Lévy one. Besides 

confirming a hypothesis that the companies with a higher average value of the ratio between 

the debt and the companies’ asset values tend to have a higher average value of default 

probability, our findings also suggest that PDs are generally underestimated by the Merton 

model and that the stable Lévy model is substantially more sensitive to periods of financial 

crises. We have also referred to a study conducted by Brambilla et al. (2015) that extended 

our work and applied two alternative structural credit risk models based on well-known Lévy 

processes (the Variance Gamma (VG) process and the Normal Inverse Gaussian (NIG) 

process). These authors conclude that both models are able to capture the situation of 
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instability that affects each company in the considered period and, in fact, are very sensitive 

to the periods of the crises, similar to our stable Lévy model. 

 One of the implications of our findings is that structural credit risk models based on the 

Merton framework are not appropriate for the estimation of PDs for financial institutions 

unless some adjustments are made. This is the reason why we have devoted our second paper 

(Prediction of U.S. Commercial Bank Failures via Scoring Models: The FFIEC Database Case) to 

the estimation of PDs of banks. In particular, we have derived and investigated the 

performance of static and multi-period credit-scoring models, which is another significant 

approach for determining default probabilities. Due to their simplicity, credit-scoring models 

are among the most popular and widely used approaches for the estimation of PDs. These 

multivariate models use financial indicators of a company as input, and attribute a weight to 

each of these indicators that reflects its relative importance in predicting the risk of default. 

The main contribution of this paper was threefold. First, we have taken advantage of the 

fact that many U.S. commercial banks defaulted during the GFC and subsequent periods, 

which enabled us to compile and examine a significant database of historical financial ratios 

for defaulted banks. A sufficient number of historical defaults is essential for estimating such 

models. In fact, our sample contained more than 7,000 U.S. commercial banks with 405 

default events during our sample period 2007-2013. To the best of our knowledge, we have 

provided the first empirical study to use such an extensive sample of financial institutions for 

the estimation and evaluation of default prediction models. For instance, Canbas et al. (2005) 

worked with 40 privately owned Turkish commercial banks and 21 defaults; or Kolari et al. 

(2002) used over 1,000 large U.S. commercial banks in each year, with 55 defaults in total. 

Following a general approach for estimation and subsequent validation of a scoring model, 

they split their sample of failed banks into an original sample used to build a model 

(containing 18 large failed banks) and a holdout sample (containing the remaining 37 large 

failed banks). In comparison, we have used the walk-forward approach with out-of-time 

validation. This approach is closest to the actual application of default prediction models in 

practice, and gives a realistic view of how a particular model would perform over time. At the 

same time, it allowed us to use the maximum number of available data in each period to fit 

and test the models while controlling for time dependence, as we were not restricted to 

dividing our sample into an estimation and holdout sample.  
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Second, we have provided the first empirical study to use the Federal Financial 

Institutions Examination Council (FFIEC) database and to estimate scoring models for these 

banks. The full sample of banks contained in this database has not been used, so far, to build 

a credit-scoring model. Specifically, we have compared static and dynamic discrete hazard 

models and applied logistic and probit regression techniques in order to calibrate our models.  

Finally, a substantial part of this paper was devoted to the application of various model 

evaluation techniques, including techniques that have not previously been applied in the 

literature on credit scoring. We have used some of the well-known techniques, such as the 

walk-forward approach with out-of-time validation, ROC curve analysis, calibration accuracy 

tests, or bootstrapping of ROC curve areas. Furthermore, building on existing work, we have 

applied the Kruskal-Wallis and the Tukey multiple comparison procedure to investigate 

significant differences between the particular models in terms of bootstrapped ROC areas. 

The main advantage of these two nonparametric approaches is that they do not require the 

assumption of normality, which would not be justified in our case. As an extension of log-

likelihoods calculated within calibration accuracy test suggested in Stein (2007), we have 

applied the Vuong closeness test for non-nested models to determine whether calculated log-

likelihoods for various models are statistically different. Moreover, we have also applied the 

Hosmer-Lemeshow’s chi-squared goodness-of-fit test to examine the overall fit of the 

estimated models.  

The majority of our estimated models build on variables that form a reasonable mixture 

of profitability, liquidity, assets quality, and capital adequacy indicators. We have found that 

our models have a high default/non-default classification and predictive accuracy. 

Specifically, for the models that were calibrated using defaults in 2011 and 2012, more than 

95% of defaulted banks were captured within the banks with the highest 10% PDs. These are 

very good results compared to recent studies conducted on the corporate sector. Since all the 

models performed very well and their performances were similar in terms of power (areas 

under the ROC curves), we have applied the Kruskal-Wallis and the Tukey multiple comparison 

test to examine significant differences between the particular models in terms of 

bootstrapped ROC areas. The Tukey test has really proved to be a very powerful tool, as it 

was able to distinguish between the models where the differences between mean values of 

bootstrapped ROC areas were very small. Using a calibration accuracy test and its likelihood 
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estimates, we have shown that logit models typically outperform probit models in accuracy 

of estimated PDs in particular years. We have also found that multi-period hazard models 

generally produce more accurate default probability estimates compared to static models.  

Moreover, since we have shown by applying the Hosmer-Lemeshow’s chi-squared test 

that the expected and actual default rates are statistically equal for most of the deciles, we 

have stated that our estimated default probabilities might be considered as reasonable 

estimates. Also, due to the fact that we have worked in this paper with all of the available 

information on U.S. commercial banks, and thus avoided choice-based samples within our 

estimation, we have obtained ratios of defaulted and non-defaulted banks very close to 

empirical ones. This was necessary in order to produce estimates that are close to “real” PDs 

and might be subsequently used for purposes of calculation of economic capital, credit Value-

at-Risk, scenario analysis purposes, etc.  

Due to the number of estimated models and the fact that different models performed 

best according to different criteria, we have provided a summary of comparison for all the 

models in terms of the chosen criteria and created a simple ranking system in order to 

determine which model works the best for a particular year. 

Unlike in the first two papers, where we have focused on the estimation of default 

probabilities, in our last paper (Distress Risk and Stock Returns of U.S. Renewable Energy 

Companies), we have taken advantage of the Moody’s KMV database and used its structural-

based default probability indicators (Expected Default Frequencies – EDFs) in an asset pricing 

framework. In particular, we have investigated whether U.S. distressed renewable energy 

companies earn, on average, higher returns than low distress risk companies. 

The renewable energy sector is considered to be a relatively risky sector with high 

profitability potential, similar to the high-tech sector or venture capital. Therefore, based on 

the fundamental principle of financial theory where individuals expect higher average returns 

for bearing risk, investors who buy stocks of renewable energy companies should expect 

higher average returns. Nevertheless, there has been controversy with regards to this 

hypothesis as the existing empirical literature has not produced consistent evidence to 

confirm this conjecture. In fact, only two major studies, conducted by Vassalou and Xing 
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(2004) and Chava and Purnanandam (2010), found a positive cross-sectional relationship 

between distress risk and returns. Several other key studies (e.g. Dichev (1998), Campbell et 

al. (2008), or Garlappi et al. (2008)) suggest that distress risk is priced negatively - more 

distress stocks usually earn lower average returns (often referred to as a “distress risk 

puzzle”). Nevertheless, none of these studies was applied directly to the renewable energy 

sector. 

We have combined two streams of the literature in this paper. Apart from studies that 

describe the relationship between distress risk and equity returns, we have also contributed 

to the literature that investigates returns on the renewable energy sector. Increased interest 

in the effects of energy and stock market prices on the financial performance of renewable 

sector has been well documented by a number of empirical studies. However, these studies 

either focus on the relationship between renewable energy stocks and other variables, or on 

the effects of energy and stock market prices on the renewable sector. On the other hand, 

our paper has provided the first empirical research that examines the relationship between 

returns of renewable energy companies and distress risk premium. We have used the 

Expected Default Frequency (EDF) obtained from Moody’s KMV database as a distress risk 

measure. Moreover, we have significantly extended the time period considered in previous 

studies by using a data set from 2002 up to 2013 that includes observations for the period of 

the global financial crisis and beyond. Also, unlike many other studies that typically look at 

one of the renewable energy stock indices, we have worked and examined individual 

companies. 

After sorting the companies according to their EDF measures and subsequent evaluation 

of the performance of portfolios that are based on this sorting procedure, we have 

demonstrated that there is a positive relationship between equity returns of equally-

weighted (EW) portfolios, and default risk. Thus, distressed renewable energy companies 

earn, on average, higher expected returns than renewables with low default risk. Therefore, 

our results  confirm findings from studies conducted by Vassalou and Xing (2004) and Chava 

and Purnanandam (2010). We have found a significant difference between returns of EW 

portfolios consisting of the riskiest decile of stocks, and one consisting of the decile with the 

lowest failure risk. 
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We have further examined a possible link between pricing factors such as the size effect, 

the BM effect and distress risk, and found that the size effect is concentrated in the smallest 

firms that are typically also the firms with the highest distress risk. In other words, we have 

shown that default risk is particularly priced for small renewable energy companies. At the 

same time, the size effect is most pronounced for companies with high default risk such that 

the highest average returns are typically observed for companies that are small in size, and at 

the same time exhibit a relatively high risk of financial distress. Note that, unlike for the size 

effect, our results indicate that the BM effect is not truly related to default effect.  

Positively priced distress risk in the U.S. stock market for the renewable energy sector 

has been also confirmed by applying three major asset pricing models, namely the Capital 

Asset Pricing Model (CAPM), the Fama and French (1993) three-factor model, and the Carhart 

(1997) four-factor model. These models correct observed returns of the constructed 

portfolios for given risk factors (market return, size premium, value premium, momentum). 

We have concluded that, in the renewable energy sector, distress risk seems to be 

systematically priced and investors are compensated for taking on additional risks by 

investing in stocks with relatively high default probabilities. Finally, we have shown that raw 

and risk-adjusted returns of EW portfolios that take a long position in the 10% most distressed 

renewable stocks, and a short position in the 10% renewable companies with the lowest 

default risk, generally outperform the S&P 500 index throughout our sample period (2002–

2013). 
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