Ultra-low power FFT Processor Design for IoT Devices

Reza Homainejad

Bachelor of Engineering

Computer Engineering Major

-
"
ey

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Electronic Engineering

Macquarie University

October 22, 2017

Supervisor: Dr Ediz Cetin







ACKNOWLEDGMENTS

I would like to thank to my supervisor, Dr. Ediz Cetin, who offered great help in
the fully understanding of the 64 -point FFT algorithms, and providing me

supportin the world of signal processing,

Reza Homainejad,







STATEMENT OF CANDIDATE

1. Reza Homaingjad. declare that this report, submitted as part of the requirement for
the award of Bachelor of Engineering in the Department of Electronic Engineering,
Macquarie University, is entirely my own work unless otherwise referenced or
acknowledged. This document has not been submitted for qualification or assessment

an any academic institution.

Student’s Name: Reza Homainejad

Student’s Signature:

Date: 19/08/17







ABSTRACT

In a world where sensor data can be collected through smart grid and sensor backup
applications, reducing power consumption has become one of the most important
factors for data transmission. FFT Processing is capable of low power, high
throughput sensor data collecting. The IEEE 802.1 lah standard is designed with the
Physical Layer(PHY) and the Medium Access Control (MAC). This paper discusses
developing a FFT processor for this new standard. A simulation of the FFT processor
is created in MATLAB, along with a VHDL component that handles the FFT
architecture. These 2 are then tested for competency and validity, before then tested

each other for evaluation and results.
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Chapter 1 Introduction

Current technology is advancing to the point where Sensor data and long-range
communications between two machines are becoming more plausible to achieve.
The technology for the Internet of Things(loT) is becoming more sophisticated
with the advent of newer technologies and better Wireless Network Standards.
The biggest problem, though, is that the technology itself must become more and
more energy efficient. Several solutions have been made to provide ultra-low

power, power conserving solutions.

The Project will be discussing on implementing a FFT processor on the IEEE
802.11ah standard for IoT communications. Reducing power consumption while
dealing with data transmission is essential for the FFT processor to operate

competently.

The report is separated into 6 chapters. Each chapter will talk in detail into
important portions of the project. Chapters 2 and 3 will describe in detail the
background of the IEEE 802.11ah standard, as well as FFT architecture and

history.

Chapter 4 will talk in detail regarding the implementation of a FFT processor
simulator in matlab, as well as a FFT processor with a specific architecture in
VHDL.

Chapter 5 will describe the verification process used to validify the FFT
processor in MATLAB and in VHDL, and provides improvements to the current

design to make it more power efficient.

Finally, the project will conclude with a brief paragraph on the future work of

FFT.




Chapter 2 The characteristics of the IEEE
802.11ah WiFi Standard and Its

requirements for A FFT Processor

This section of the report will briefly talk about the IEEE 802.11 standard. It will
specifically talk more about the properties of the IEEE 802.11ah standard, its
properties and uses, and what it is required to build a FFT processor for that

standard.

2.1 The IEEE 802.11

The Wifi Standard, or IEEE 802.11, is a set of specifications for MAC and PHY
material to be implemented in Wireless Local Area Network(WLAN)[10]. The
Institute of Electrical and Electronics Engineers(IEEE) Standards Association
maintains every current version of the IEEE standard, and archives them when
they're superseded. The IEEE carry standards for the 900MHz, 2.4, 3.6, 5, and 60
GHz frequency bands [16].

One common example of the IEEE 802.11 standard that is used commercially is
the IEEE 802.11ac. Designed for the 5 GHz band, the 802.11lac carries
considerable throughput. This project will delve further into another

specification standard, the IEEE 802.11ah.

2.2 The IEEE 802.11ah Standard

The IEEE 802.11ah, or Ha-Low. is a standard for the wireless network (WLAN).
Designed by the 802.11ah task group. the scope of IEEE 802.11ah is to enhance
Medium Access Control(MAC), and Physical layer design (PHY) [10]. The system
has been standardized as of 2015, and global Industrial. Scientific, and Medical(ISM)

bands have been established.

The Ha Low carries substantial advantages. as explained by Aust. Etal [11]:




Longer range and less power consumed due to optimal propagation
characteristics below 1 GHz.

No licensing and regulatory issues (ISM band).

License-exempt in various different countries.

Almost clear co-cxistence issucs.

Easy to understand. follow and to implement for network device manufacturers.
Enrichment of current wireless communication devices, e.g., IEEE
802.11a/b/g/m.”

Aust Et al., and Sum et al mention the uses of the HaLow Standard, mainly smart
grid and smart utility applications, sensor networks, backhaul networks for
servers, rural communication, and machine-to-machine(M2M) communication

[10] [11].

The currently allocated bands that use the HaLow standard in Australia is the
918-926 band, determined by the Australian Commissions and Media Authority
[16].

Table 1: IEEE 802.11ah parameters

System Parameters IEEE802.11ah
Number of required FFT Points 32
Radio Frequency 918-926(Australia), 917.5-923.5

(South Korea), 916.5-927.5 (Japan),
863-868 (Europe), 755-787 (China),
866-869 and 920-925
(Singapore),902-928 (US)

Channel Bandwidth(MHz) 1-16

Modulation Type BPSK, QPSK, 16QAM, 64QAM,
256QAM

Number of Subcarriers 26

Data Rate 17.7 Mbps (256QAM, Nss=4)




2.3 The Requirements of the FFT Processor
for the IEEE 802.11ah Wifi Standard

Based on the table in appendix A given by Aust et al [11], the FFT processor
needs to follow a set of requirements so it can be a hub for sensor transmission. A
good example of FFT requirements is shown through N. Li’s Thesis, which in its
second chapter talked about the specifications of the FFT for the Multi-Band
Orthogonal Division Multiplexing (MB-OFDM) Ultra-Wide Band(UWB) standard
[9]. Much of the requirements presented here is based on the draft of the IEEE
802.11ah standard. The radio frequency of the ISM bands is between 918 and 926
[13]. so a sampling frequency of 922 MHz is required. There are 24 data subcarriers,
and 2 pilot subcarriers. totalling up to 26 subcarriers. This means the FFT size in this
case must be around 32 points. The period for this FFT must be 34.7 07 nano seconds.

This is calculated by inversing the sample frequency given f.




Chapter 3 Fast Fourier Transform: The

Algorithms and Architecture That Define

It

3.1

Introduction

The following section will provide an overview of the FFT, the algorithms that make up an

FFT Processor and the terminology used internationally, the different types of FFT that are

more often used. and the architecture of the FFT Processors.

3.2

The Discrete Fourier Transform
The Discrete Fourier Transform Formula is defined as:

In a sequence of N-points, the DFT of such a sequence is defined as a sum of all points

multiplied by their twiddle factor components, or:

izmnk

X(k) =ENgx(m)e” v, k=012..,N—1 (1)

X (k) and x(n), for general purposes, are complex equations containing a series of

values. n and k are integers.

izmk

e N is most often represented as the Twiddle Factor, also represented as the symbol

Wk Tt is described as:

Wik = eiz%k = cos (%T) — jsin (2?1:) (2)

Wy can be replaced with the first equation, leading to:




3.3

N-1
X(k) = Z x(M)WF* , k=012..,N-1
n=0
DFT can take any number of points and create a result based on the twiddle factor and
the value of x(n). The Twiddle factor, also known as the primitive nth root of unity,
can also take any N points. However, because of this, the same amount of adders and

multipliers is required.

The Fast Fourier Transform

A DFT and FFT. functionality wise. provide the same result. However, a DFT requires
N? operations, while an FFT requires nLogN operations. The Fast Fourier Transform,
devised in 1965 by James Cooley and John Tukey, is an efficient method for
calculating DFT [1]. It was based on I. I. Good’s algorithm for a Fourier series. which
multiplies a N-vector by an N * N matrix into m matrices, where m is proportional
to Log N. The algorithm Cooley and Tukey formulated provided an optimization of

redundancy, and the pattern of redundancy.

Since the article’s release, there have been designs based on Cooley and Tukey’s work
[1] that implement the FFT formula and making them more efficient. Different
algorithms were implemented for computing the DFT, but they provide the same

result. Some examples of this are shown below.

3.2.1 Decimation-in-time and Decimation-in-frequency FFT
Algorithms

FFT Algorithms, in general, tend to reduce the amount of computation nceded to
perform DFT algorithms. This is done by allocating stages of the previous record of
the DFT into a new set of allocated DFTs. There are two different algorithms that
handlc the allocation: Decimation-in-time FFT, and Decimation-in-frequency FFT.
For the purposes of the following examples, the difference will be shown through

radix-2 8-point FFT figures.

Decimation-in-Time FFT Algorithms decompose the pre-allocated sequence x(n)
into smaller sub-sequences of even and odd parts. Based on the process shown in [14],

Since:




N-1

X(k) = Z X)W k=012.. N—1

n=0
Then we can separate this sequence into two parts, the even part and the odd part.

Nj2-1 N/2-1
X@2m) = Z x(2m)W2mk 4 Z x@m+ W™ k=0,12..,N/2-1
n=0 n=0
N/2-1 N/2-1
= Z XMW + wy Z x(2m + W™~

n=0 n=0

Where x(n)is divided to into the even sequence x(2m). and the odd sequence
x(Zm+1).




The twiddle factor is affected by this, as:

2

4
=

—
NI#
PPy b=

ani
Wr&:eN = e

E

Because of this, the final equation for a DIT FFT algorithm is:

N/2-1 Nj2-1
X(k) = Z X 2m)WE + W Z x@m + DWF | k=012..,N/2 -1
n=0 z n=0 2

Since each figure is divided into 2 parts, the amount of complex additions and
2
multiplications for calculation that is needed to operate the algorithm is O ((g) )

The DIT FFT algorithm requires O(N) complex multiplications and additions for

each once divided N-point, leaving with a complex multiplication and addition

2
requirement of N + 2 (%) operations. Compared to the amount of operations for a

standard DFT calculation, the DIT FFT is 50% more efficient.




Figure 1. 8-point DIT FFT, based on f14]

From the example shown above, the amount of operations of a radix-2 N-Point FFT
is O(NlogN). which is less than DFT’s O (N?) operations. Overall, the multiplication
is done before the additions. The inputs in this case is bit-reversed in the input

sequence, while the output sequence is in normal order.

DIF FFTs perform their algorithm by dividing the outputs of ecach DFT into a smaller

scquence.

To better show this equation in action, and based on [14]:

N-1
X(2m) = Z X ; k=012l ~1

n=0




N-1

N-1
= Z x(n)Wim* + Z x(n)wamn
N

n=0 N
n=%

Like the DIT formula, the formula can be altered. As shown below:

N=1

= N Zm(ni—ﬂ)
X2m) = Z x(m)WEmn + Z X (n + 5) W, 2 k=012..
n=0

n=0

N-1

1
N
x(M)Wim" + Z x (n + E) Wi
0

n=0

N-
n

= z (x(n) +x (n + ;)) ng”

DIF’s amount of opcrations is the same as DIT’s amount, however it performs the

additions before the multiplications. Not only that, but the inputs in DIF are in normal

order, while the outputs are to be allocated in bit-reverse order,




x[0] > -0 o> - o X|[0]

(19 A —o X[4]
VA0
‘V’ T B

"~ v%&" ] ' i X16]

x[4] ¢ o X[1]
x[5]¢ X[5
IA\WQ.. D
x[7] ¢ mm il 0 X[7]

Figure 2: 8 point DIF FFT, based on f14]

Both DITs and DIFs have common requirements for the algorithms to function: they
both require bit-reversal sequences, and require a set amount of adders and multipliers
in each stage. However, one of the biggest differences between DIT and DIF
algorithms is with quantization. When the input involves a large amount of values,
quantization refers to the process of mapping those inputs into a smaller, but more
countable set. However, Signal-to-Quantization-Errors(SQNR) occur while the

algorithm goes through this.

Wei-Hsin Chang and Truong Q. Nguyen tested quantization errors and FFT
algorithms in [8]. where they compared DIT and DIF FFT algorithms and tested them
with algorithmic SQNR to see how many errors are given based on the algorithm and
N-point. The results show that in most scenarios, a DIT FFT algorithms carries less

quantization errors than DIF FFT.
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Table 2: Comparison of Overall Noise Power for DIF FFT, based on [8]

FFT Size Radix-2 Radix-4 Split-Radix
8 8 4 g

16 64 32 28

32 352 176 148

4 1664 832 684

Table 3: Comparison of Overall Noise Power for DIT FFT, based on [8]

FFT Size Radix-2 Radix-4 Split-Radix
8 4 8 8

16 28 32 64

32 140 208 200

64 620 688 840

3.2.2 Higher Radix Algorithms
A data sequence in FFT algorithms by default go divides a sequence and
generates samples of N to the power of 2. A radix-4 FFT, then, would divide the

sequence and generate samples of N to the power of 4. The amount of twiddle

factors is also increased, as in the case of a DIT radix-4 FFT algorithm:




N N N

?_1 Z_l Z—l
X(k) = Z x(A)Wyms + Z x(4n + I)WAE“’“l)k " Z wAn+ Z)W}\Emu)k
n=0 n=0 n=0
N

T_l

+ Z x(4n+ WK e =012..,N-1
n=0
Overall, a radix-4 FFT requires less multipliers, but in return requires a lot more
adders. For example, a 16-point FFT would require 3 multipliers and 10 adders
if the sample rate was radix-4, whereas for a radix-2 it would take 4 multipliers

and 8 adders.

3.3 FFT architecture types

Each FFT architecture can be described as either memory-based, or pipeline

based, as told from [7].

3.3.1 Memory Architecture

Memory Architecture, or memory based architecture, uses memory in each stage
where it must read and write data. Data exchanges between the memory and the
operation are done by a dual serial bus. There are two different types of memory

Architecture: single memory architecture and dual memory architecture.

In the singular memory architecture, data exchanges are taken between the

processor and the memory at every stage. One butterfly processing period is

Serial Bus Main Memory

Processing

Figure 3: Single Memory Architecture of a FIFT, Based on [3]

done for each stage, best represented by figure 3.
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In dual-memory architecture, both memory blocks are connected to the main
processing block. The data from one memory is processed, and moved to the
other memory block. This repeats for each processing stage, and behaves like
tennis. A good example of Dual memory architecture is the Honeywell DASP

Processor [4].

First Bus1f Processing\ gys2

Memory

Second Memory

Figure 4: Dual Memory Architecture of the FI'T. Based on [3]

While this architecture is the most direct out of the rest, itis also the most power-

consuming due to the reliance on memory than anything else.

3.3.2 Cache Memory Architecture

Cache Memory Architecture follows a similar approach to a single memory
architecture, in that it includes a step in between the data exchanges. This extra
step is the data cache, and it communicates with the processing and with the
memory. [tis not as popular because FFT processors have very poor locality, and
data caches rely on a sufficient locality to carry its efficiency prior to the

inception of this design.

Cache Memory Architecture is faster, and is more energy efficient. This makes it
better to use than single memory architecture. However, Cache memory
architecture carries the flaw in that it creates increased controller complexity. A
good example of Cache Memory Architecture B.M. Baas’s 1024-point cache
memory processor [5], of which he provides the benefits and downfalls of the

architecture in detail

15




Bus
Cache Memory

Figure 5: FFT Cache Architecture, based on [5]

3.3.3 Array Architecture

An Array Architecture is one of the most complicated FFT architectures, because
it requires an array of processes that carry a local buffer to perform the
computations, as shown in Figure 6. This means area space is a factor for the

architecture.

Figure 6 Array FFT architecture, based on [5]

The FFT Processor that uses array architecture is O’Brian Et al’s FFT Processor

Design, which uses 4 data paths and 4 memory banks on one chip [5].

3.3.5 Pipeline Architecture
Pipeline FFT architecture, shown in Figure 7, revolves around the process and

the buffer interleaving several times in a cascading order. Between each stage




there is a communicator, and at the last stage is an un-scrambler. This is also a

complicated memory architecture, and isn'tas flexible as the other architectures.

Pipeline provides high throughput and data efficiency.

Buff

Figure 7: Pipeline IFI'T Architecture, based on (5]

There are some common FFT pipeline architectures, such as Multipath Delay

Communicator(MDC), Singlepath Delay Communicator (SDC), and Singlepath

Delay Feedback (SDF). Pipeline Architectures also rely on multipliers as well as

butterfly structures, but one thing they have in common is that they take data

through a ‘pipeline’ that allows FFT generation to be quickly produced. A

multiplier-butterfly ratio shows the number of multipliers for the FFT to the

butterflies, shown below.

Table 4: FFT Pipeline Architecture Design analysis

FFT Pipeline | Complex Complex | Memory | Control [ Efficiency of
Architecture | Multipliers Adders | Size Logic add/sub and
mult blocks.

R2SDF log, N —2 2log, N | N—1 |Simple 50% | 50%

R2MDC log; N—2 | 2log, N | 3N , |Simple 50% |50%
2

R4SDF log;, N—1 | 8log,N | N—-1 | Medium |25% |75%

R4MDC 3(logy N —1) | 8logy N | 5N 4 Medium | 25% | 25%
2

R4SDC log, N -1 3log,N | 2N -2 | Complex | 100% | 75%

17




R22SDF logs N—1 3logy N N -1 |Simple 75% | 75%

R2SDF (Radix-2 Single Delay Feedback)

The radix-2 Single-Delay feedback is a very common FFT Architecture design. In
the pipeline process, 1 signal is passed through to one stage of the processing
component, where it is stored inside a data register temporarily. This “delays”
the processing until enough data has been registered. Once enough data is stored,
the processors begin to perform the butterfly processing. The outputdatais then
multiplied with the twiddle factors and then sent to the next stage, or if the data

goes through enough stages, is delivered as the output data of the circuit.

Figure 8The R2SDF

RZMDC (Radix-2 Multi-Delay Communicator)

The radix-2 Multi-Delay Communicator is another type of FFT Architecture. In
the pipeline process, the one signal goes through a data register and through a
communicator. After enough data is stored, it performs the computation. The
R2MDC takes the remaining results of the data to another data register, where it
goes through twiddle factor multiplication before going through the next

communicator, or until it is finished.
R4SDF (Radix-4 Single Delay Feedback)

The radix-4 single delay feedback behaves similarly in function to the R2SDF, but

it provides different results due to using the radix-4 algorithm instead of radix-




2. The Radix-4 algorithm creates more adders while making less multipliers,

which is good for handling memory space. This is reflected in the R4SDF design.
R4MDC (Radix-4 Multi Delay Communicator)

The radix-4 Multi Delay Communicator also behaves similarly to the radix-2
counterpart. With more than 1 twiddle factor needed for multiplication, the
communicator uses more control counters to toggle different twiddle

multiplication when it needs to.
R4SDC (Radix-4 Single Delay Communicator)

The radix-4 Single Delay Communicator differs from the previous architectures.
Using a modified radix-4 algorithm, it utilizes most of the multipliers and adders
to reduce the memory requirement. While this provides a highly efficient

processor, it's structure is complicated, making it difficult to recreate.
R22SDF(Radix-2 Squared Single Delay Feedback)

The radix-2 Squared Single Delay Feedback also differs from the previous
architectures. He and Torkelson implemented a radix-2 algorithm, but altered
the design so that the data go through different butterfly additions to mimic the
radix-4 multiplication algorithm [6]. While this is less efficient than the R4SDC,

it is overall a lot easier to reproduce.

For the purposes of this project, R2SDF will be used for the construction of the
FFT processor. This is mainly due to the simplicity of its design, and due to the
differences between FFT algorithms, this FFT Processor will follow the DIT

algorithm for less errors.

3.4 Conclusion

This chapter has briefly reviewed both the algorithms that define the Fourier
Transform, as well as the architecture thatis used along with it. Radix-2 DIF and
DIT algorithms have a simple structure, but carry different complications when

quantization comes into play.
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FFT architecture is a relevant part of the FFT design process, and each
architecture provides its own benefits and drawbacks. Finding the right
architecture is relevant for the overall power-saving. However, the application

of the FFT algorithm and the architecture will go on in the next chapter.
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Chapter 4

MATLAB and VHDL Implementation

With the design of the FFT Processor secured, the next step is to implement the
design into MATLAB and into VHDL. In this chapter, a FFT Processor is designed
in MATLAB, where it is compared with a built-in MATLAB FFT algorithm. Later,
a VHDL implementation of the R2SDF is designed and tested upon, with ideas to

improve on its overall design.

4.1 MATLAB Implementation

For the MATLAB implementation, the project follows a set of stages. The validity
of this FFT processor is tested with MATLAB’s inbuilt FFT operation,
fft(x)under a set of N-points that would be normal under the processor’s
algorithm. This comparison is then graphed to show any differences between the

two. The MATLAB code of this FFT processor can be seen in appendix A.

Two arrays exist in the MATLAB implementation: Stage and Twiddlefactor.
Twiddlefactor handles all the twiddle factors for each stage, while Stage handles

all the data inputs that go through each stage.




4.2 VHDL Implementation

4.2.1 The radix-2 SDF Data flow

The pipeline data flow for the Xilinx VHDL design is described as 5 big blocks
along with one final block. These big blocks are the stages of the processor, and
they contain a control counter, butterflies, memory stages, and a twiddle

multiplier.

The R2ZSDF structure was taken instead of the other designs is because it is the
simplest. Most designs mentioned earlier in chapter 3 require too much power

due to the reliance of memory blocks.
The Butterfly processing block.

Figure 11 in the next page shows an example of how one of the stages operates.
Essentially, in each stage, the input data x(n) goes through a multiplexer, where
it stores the input in one of the shift registers. When the control is 1, the
multiplexer function is altered, and takes in the difference between x(n) and the
data in the shift register. Likewise, the output is officially initiated when the

control is 1.

23
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Figure 9: The Butterfly processing block of the FFT Processor

The Full Adder

A full adder has 3 inputs and 2 outputs. In this scenario we call these inputs A1,Az, and

Carry in (Cin), and we call the outputs Sum and Carry out (Cout).

A B

Cout

S

Figure 10 A full Adder Block

The Control Signal

The control signal in the VHDL component is essentially a binary counter. Each part of the
binary counter is designated into cach stage, acting as its control signal for the purposes of

butterfly addition and subtraction, and complex multiplication.




The Shift Register

The complex data is received and is then sent to the shift register. shown in Figure 11. The
Shift register is a collection of First In, First Out D-flip flops. It is named as such because at
each clock rate, it shifts from one register to the next. up until the end of the register, where it

is used for the butterfly process.

The Complex Multiplier

The complex multiplier, shown in figure 12, relies on 3 multipliers, and 5 adders. Normally

in a common complex multiplication, we’d get the idea that

X(n) = x(n) = W*
X(n) = (xo +jyo) * (x1 + jy1)

= Xox1 + jXoy1 + jYoX1 — Yoy
R = xox1 = Yoy1, 1 = Xo¥1 + yox1
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Rom

X (n)

Y(n) —

Figure 11: A representation of the complex multiplier

The complex multiplier can be simplified however, into 3 sets of equations, each requiring 1

set of multipliers.

I'=x(y+jy1)—Z
R=yo(x; —jy)) +2
Z = x1(xo — ¥o)

This representation is implemented and used in the VHDL component of the complex

multiplier.

Due to the nature of the DIT algorithm, a bit-reversal isn’t necessaty to do at the end, since it

assumes all the data at the beginning are already bit reversed.




Conclusion
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Chapter 5

Verification and Evaluation

5.1 Verification

In Xilinx, if a given code was written down correctly in a Hardware Description
Language, such as VHDL, it needs to be synthesised. Synthesis compiles the data
in the VHDL code into a series of gates that connect. This chapter will discuss the

power consumption and area space the current FFT design holds.

Testbench

To test whether the VHDL and the matlab FFT are working correctly, both
versions are given the same input data. This data is, for the purposes of this
project, a sine wave. After both simulations could process the data, the data is
compared to the MATLAB built in.

MATLAB Results

Figure 8, 9 and 10 give the results of the FFT simulation, compared with the FFT
built in algorithm in Matlab. Both the real values and the complex values show
little to no difference in the overall results compared to the matlab builtin,
showing that the code correctly simulates the FFT algorithm. Figure 10 shows
the differences in values between the MATLAB builtin and the FFT Algorithm
recreation. The difference in value is too small that any inaccuracies in the FFT

algorithm are so small that they are hardly noticeable.




Comparison of FFT real Values
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Figure 14: Value Difference between the FIFT algorithm and the MATLAB builtin

5.2 FPGA Results

The target FPGA for this FFT design was Virtex 4. Virtex 4 is a reliable and
common FPGA family to test on. To ensure the VHDL code was working correctly,
a testbench was made to see how it operates with different inputs, while
checking the accuracy of the outputs. To further evaluate the efficiency of the
architecture, a second copy of the FFT design was made. This second copy has
been modified to designa. The VHDL must compensate by adding in an extra

memory slot for the 4t multiplication.




Figure 16Modelsim Simulation results of the twiddle factor multiplication
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Table 5: Resource usage of Virtex4

Logic Utilization Used

Number of Slice Flip

Flops 372

Total Number of 4

input LUTs 4178
Number used as Shift 190

registers

4.3 Evaluation

While the current design is already implemented, due to time constraints there
weren’t any ways to improve the design to make it more efficient. Much of the
implementation in this projectrelied on the R2SDF architecture. This section will

detail improvements that could improve the efficiency of the overall processor.

4.3.1 Circular Buffer

The current FFT Processor design utilizes shift registers. Shift registers store the
data in the first register, and when new data arrives, it stores the data from the
first register while it shifts the old data to the next register. While it is simple to

utilize, itisn't power efficient to make all registers react at the same time.

To compensate this, a circular buffer could be implemented into the FFT
processer. A Circular buffer behaves similarly to a shift register. The difference
between the two is with its function. Circular buffers write data in one register,
butmoves to another register to write the nextset of data. Similarly, itreads data
from one register, and moves to another to read the next set of data. This is done
through pointers, which only provides the address to the register, and nothing

else.




Both shift registers and circular buffers follow the First-In First-Out(FIFQ)
process, which makes little to no difference to the way the overall processer

should operate.

il 2 3

LSTAI’!T T*END

Figure 17 A representation of a circular huffer.

4.3.2 Different Adders

Much of the butterfly process in the FFT processer relies on the use of full adders.
A simple full adder doesn’t take much area space, but in high numbers, the large
number of adders may cause a high-power requirement. If a low-power FFT
processor was to be designed, one of the most important ideas to consider is

using different full adder designs.

There are different full adder designs to be considered, shown in graphs made by
Nuo Li[9]. A good example is a Kogg-Stone full adder design, which provides good
latency atthe cost of high area usage in the FFT processor. Another good example
of a good adder design is the carry skip, which carries low area costs but its

latency is not as decent.
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Conclusion
This chapter of the document described the verification of the FFT Processor that was
designed. how it worked in both the matlab and the VHDL variations. and how despite the

success of the work, how it can still be improved in the future.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

For the first half of this project, a Literature Review and a background of the IEEE 802.11
standard have been complete. A FFT algorithm code has already been written in matlab, and
the result is validified by the inherent MATLAB function FFT. The requirements of a FFT
processor to work under the 802.11ah standard has already been set up and recorded, and FFT
hardware layout is currently underway. Overall, progress has been running smoothly and

working on a steady pace.







Chapter 7

Abbreviations
DFT Discrete Fourier Transform
DIF Decimation in Frequency
DIT Decimation in Time
FFT Fast Fourier Transform
IEEE Institute of Electrical and Electronics Engineers
ISM Industrial, Science, and Medical
M2M Machine to Machine
MAC Medium Access Control
MB-OFDM Multi-Band Orthogonal Division Multiplexing
PHY Physical Layer
R2SDF Radix-2 Singlc Delay Feedback
R2MDC Radix-2 Multi-Delay Communicator
R4SDF Radix-4 Single Delay Feedback
R4MDC Radix-4 Multi-Delay Communicator
R4SDC Radix-4 Single Delay Communicator
R22SDF Radix-2 Squared Single Delay Feedback
WLAN Wireless Local Area Network

UWB UltraWideBand




Appendix A MATLAB Code of FFT

Processer

Al Overview

The portion of this report will provide the MATLAB code of a generalised-point radix-2 FFT
processer. This Processer can calculate any point that is the exponent of 2(4.8.16, etc). The
Inputs for the code is the frequency Coefficient, and the amount of points the input provides is

based on the value of N,

A.2 Generalised-point radix-2 FFT code

clear a

x=cosg(2*pi*fc*tvals)+ sin(2*pi*fc*tvals);
M=1;

j=log2 (N} ; reat 1 integer, 7j,
Butterfly = zeros(j-1,N};

Stage = zeros(j+1,N);

n = 0;

p=(0:N-1}"
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for

B=1:N

end

end

for S8=1:

for

b = reverse(decZbin(B-1,3j+1}};

if b(S) == '1°

Butterfly(S,B) = exp(-1j*2*pi/(27(S)))."(n};

n = n+l;
alse

Butterfly(S,B) = 1;

end

if 2~{5-1) == n
n=20;

end

j+1

B=1:M:N
if M ==

for n=0:M-1
if M ==
if n+l <= N/2

Stage (S, n+l)

alse

Stage(S-1,n+1) + Stage(S-1,n+14N/2);

Stage(S,n+l) = Stage(S-1,n+1-N/2) - Stage(S-1,n+1);

end
elseif n <= M/2-1
Stage(5,B+n)
Stage(S,B+n)
else
Stage(S,B+n)
Stage(S,B+n)

end

Stage(S-1,B+n) + Stage(S-1,B+n+M/2);
Stage(S,B+n) * Butterfly(S,B+n);

Stage(S-1,B+n-M/2) - Stage(S-1,B+n);
Stage(S,B+n) * Butterfly(S,B+n);




Stage re = &

Stage im =




Appendix B: Consulation Forms

This appendix contains the consultation meetings attendance form as required
by the departmentBoth the supervisor and the student had to sign o
the consultation meetings form for the record of the meetings.




Consultation Meetings Attendance Form
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