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ABSTRACT

Elliptic eurve eryptography (ECC) is the more efficient alternative to the widely
used Ron Rivest, Adi Shamir and Leonard Adleman (RSA) cryptosystem since
283-bit ECC provides the same security per bit as 3072-bit RSA. This makes it
useful for resource constrained portable devices since smaller operands can be
used. For practical use of ECC, an efficient hardware implementation must bhe
achieved in terms of area and time. Elliptic curve scalar multiplication (ECSM)
is the crucial operation required for ECC processors. The goal of this research
is for the implementation of area efficient and high-speed ECSM over a binary
field in field-programmable gate array (FPGA) technology for the binary fields
GF(2%3) and GF(223). In order to achieve an efficient implementation of ECSM,
the trade-off between area and time for two types of multipliers with various digit
sizes was examined so that the most efficient hardware design can be achieved.
Traditional digit-serial multipliers have the computational time complexity of
[m/d] clock cycles while the modified digit-serial multipliers had a time com-
plexity of Q[M + 1 clock cyeles for the digit-size d. The comparison of affine
coordinates and Jacobian coordinates were also analysed, which revealed that
an implementation in affine coordinates is up to 13 times slower than that in
Jacobian coordinates. In this research the efficient hardware implementation of
ECSM on the Virtex-6 (XC6VLX760-2ff1760) FPGA device in GF({2%%) takes
16,048 clock cyeles, has the computation time of 64.72us, and occupies 35,615
slices. ECSM in the binary field GF(2%%) is performed in 13,565 clock cycles in

G3.61ps, and occupies 69,908 slices on the same device.
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Chapter 1

Introduction

Cryptography consists of techniques used to secure information on public communication
networks from adversaries. There are many schemes used for encryption, decryption and
digital signatures which vary in security and complexity. These schemes are separated
into private-key and public-key cryptography. Private-key cryptosystems use identical
keys for both the receiver and the sender. Public key ervptosystems use two asymmetric
keys where a private key is derived from a public key. Elliptic Curve Cryptography (ECC)
is a public-key cryptography approach introduced by Miller [14] and Koblitz [10] in 1985.

ECC is an alternative to the widely used Ron Rivest, Adi Shamir and Leonard Adle-
man (RSA) cryptosystem [21]. ECC provides high levels of security per bit such that
256-bit ECC provides the same level of security as 3072-bit RSA. This allows significantly
smaller key sizes which are favourable for portable devices to protect data with their
limited resources. For ECC to be used in practical applications, the implementation of
ECC must be efficient in terms of speed, area, and power. The focus of this research is
to achieve an area-efficient, high-speed hardware implementation of Elliptic Curve Scalar
Multiplication (ECSM) (also known as Elliptic Curve Point Multiplication (ECPM)) over
a binary field using Field-Programmable Gate Array (FPGA) technology which can then
be used for ECC protocols. ECC Protocols such as the Elliptic Curve Diffie-Hellman
(ECDH) and Elliptic Curve Digital Signature Algorithm (ECDSA) requires the compu-
tation of a point on a defined elliptic curve where it is infeasible to derive the private key
from this point due to the elliptic curve diserete logarithm problem (ECDLP).

The main advantage of ECC over RSA is that it is computationally more efficient,
useful in portable devices, and shorter operands can be used during computation. A
summary comparing the Advanced Encryption Standard (AES), ECC, and RSA is shown
in table 1.1 [17]. 3072-bit RSA is shown to achieve the same security level as 128-bit AES
since there are lots of attacks available, so more bits are required. Although 3072-bit RSA
can still be used, it is inefficient for practical use. This is where ECC is useful since the
best attack used on ECC is much harder compared to RSA.

An implementation in hardware will produce results that are at least 37 times faster
than software implementations of ECC [16]. An implementation in hardware also allows
for modulo-2 arithmetic required for binary field operations to be efficiently implemented.
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Cryptosystem Equivalent Security Size

AES (symmetric key) 80| 112 128 | 192 256
ECC (public key) 163 | 233 | 283 | 409 | T680
RSA (public key) 1024 | 2048 | 3072 | 7680 | 15360

Table 1.1: Comparison of security levels per bit in cryptosystems.

The chosen technology for the hardware implementation is FPGA which provides high
flexibility for hardware design and development. FPGA is reprogrammable by using
VHDL (Very High Speed Integrated Circuit Hardware Description Language) to describe
digital signals and circuits. FPGA brings a cost and time effective design approach since
multiple designs can be updated on the same device which does not need to be fabricated
for each new implementation. The use of Xilinx products for hardware development such
as Xilinx Integrated Software Environment (ISE) allows project management of VHDL
code, generation of synthesis reports, generation of programming files and the use of Xilinx
ISim for waveform simulations.

1.1 Project Scope

The primary goal of the project is to achieve an efficient hardware implementation of
ECC over the binary field using FPGA. The scope of the project will only consist of the
implementation of ECC up to the point of elliptic curve scalar multiplication. This means
that the implementation of actual ECC protocols such as ECDH and ECDSA will be
considered out-of-scope. The project will be completed with the following specifications:

e All implementations for FPGA will be done using VHDL.

e The implementation of Galois Field operations addition, squaring, multiplication,
inversion and reduction will be over the binary fields GF(2**) and GF(2%%).

e The implementation of elliptic curve group operations elliptic curve point doubling
(ECPD) and elliptic curve point addition (ECPA) will be done using the National
Institute of Standards and Technology (NIST) recommended non-supersingular el-
liptic curves and associated parameters.

e The implementation of ECSM will be achieved using the NIST recommended curves
and parameters.

The aim of this project is also to explore alternative methods, algorithms and hard-
ware architectures which will improve the efficiency of the computation of ECSM. Some
implementations will improve the speed of the system while others will produce a better
result in terms of area. Through trying different solutions, the trade-off between area and
time can be analysed and the optimal solution can be proposed for ECSM over the binary

fields GF(2%*) and GF(2%).
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Chapter 2 presents the background knowledge that is required for ECC to be used in
the later chapters. The relevant theories, algorithms and hardware design is introduced
for the foundations of ECC. Relevant work by other authors and the performances of
their implementation is then noted which is later used as a comparison for the work of
this project.

The experimental procedures used for the design, implementation and verification of
the hardware architecture used for the ECSM processor is shown in chapter 3. This
chapter describes the resources used and the typical design flow that was used for the
implementation of each module used in this project.

In Chapter 4, the hardware design and development for Galois field arithmetic is
proposed. The algorithms chosen are presented here which were then used to construct
binary field addition, squaring, multiplication and inversion.

Chapter 5 then presents the hardware design and implementation for elliptic curve
arithmetic using the hardware for Galois field arithmetic that was implemented in Chapter
4. In this chapter, ECPA and ECPD were constructed for affine coordinates and Jacobian
coordinates. ECPA and ECPD were then used to implement the hardware which performs
ECSM.

Chapter 6 reveals the optimisation techniques explored to improve the area and time
efficiency of the overall ECSM hardware architecture. These include the design and im-
plementation of modified multipliers, coneurrent hardware methods, and the optimisation
of ECPA and ECPD.

Chapter 7 then summarises the results of the hardware implementations proposed
in chapter 4, 5, and 6. The synthesis reports generated from the VHDL design are
analysed for advantages and disadvantages of the different methods used at each level of
the ECSM architecture. The trade-off between area and time is then discussed where the
most efficient design of ECSM in FPGA for GF(2*%) and GF(2%3) is proposed.
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Chapter 2

Background and Related Work

2.1 Elliptic Curve Cryptography

A detailed overview of ECC was presented by Hankerson et al. [7] where they present
core concepts, algorithms, and explores various methods of implementation. The ECC
scheme can be broken down into a hierarchy of operations as shown in figure 2.1. Each
level of this hierarchy depends on the efficiency of the underlving level of operations.
Because of this, it is highly important that the Galois Field operations are implemented
as efficiently as possible in a bottom up approach to achieve a high performance ECSM
hardware architecture. There are different techniques that can be used to improve the
efficiency of operations at each level of operation that will be discussed in the following
subsections.

ECDHIECDSA } Elltic Curve Cryplographic Protocols

Elliptie Curve Group Operations
ECPINECPA
| Addinan | Multplicaton | Sequanng ‘ ‘ Inversion ‘ } Galois Field Operations

Figure 2.1: Hierarchy of operations for elliptic curve cryptography.

o
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2.2 Galois Field Arithmetic

Galois Field Arithmetic {GFA) also known as finite field arithmetic (FFA) is crucial in the
implementation of ECC. There are three types of finite fields as shown in [7], including
prime fields, binary fields, and optimal extension fields. Modulo-2 arithmetic is very
efficient and easily implemented in hardware and so a focus on the binary field will be
used for this research. A binary field has an order of 2™ with a maximum degree of
m — 1 and can be denoted as GF(2™). A polynomial basis is used to represent elements
in the field such that z* + 22 + 1 is represented in GF(2') as 1101,. f(x) is used to
denote the reduction polynomial with a degree of at most m for a chosen binary field.
Any arithmetic using a binary field is performed modulo the corresponding reduction
polynomial of the binary field used. The following subsections will introduce addition,
squaring, multiplication and inversion over GF(2™).

2.2.1 Addition over the Binary Field

Addition is the simplest operation over a binary field which can be achieved in one clock
cycle. Adding two elements in GF(2™) is done using bit-wise exclusive-or (XOR). Using
bit-wise XOR is the best method of addition over a binary field and is used for all ECC
implementations.

2.2.2 Squaring over the Binary Field

Squaring is the multiplication of two identical binary polynomials. Squaring in GF(2™)
is performed in m clock cycles [8]. Squaring can be achieved by inserting a ‘0’ bit be-
tween each bit of a binary polynomial followed by reduction of the result. The result of
squaring must be reduced if it lies outside of GF(2™). A squaring method is often im-
plemented since it can be more efficient than the multiplication of two identical numbers.
This consideration will depend on the efficiency of multiplication implemented, since if
multiplication becomes more efficient that squaring, then the squaring method can be
replaced.

Reduction

Reduction may also need to be performed on the result of squaring and multiplication to
ensure that the result exists within the binary field chosen. Reduction uses the reduction
polynomial f(z) of the corresponding binarv field so that a binary polynomial a(z) is
reduced to r(x), where r(x) = a(z) mod f(x). Reduction can be done one bit at a time
through modular reduction, or by fast reduction algorithms are also shown by Hankerson
for the NIST recommended binary fields for GF(2'%%), GF(2%%), GF(2%%), GF(2'%),
and GF(2°!) [7].
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2.2.3 Multiplication over the Binary Field

Multiplication is the second most expensive operation over a binary feld. Similar to
squaring, multiplication can also be done through normal polynomial multiplication and
addition of partial products followed by a reduction of the final result. However, this
is inefficient and more popular algorithms use interleaved modular reduction so a spe-
cific reduction method is not required. The common methods to perform multiplica-
tion include multiplication with an interleaved modular reduction algorithm [8], bit-serial
multiplication, radix-multipliers, digit-serial multiplication. and digit-parrallel multipli-
cation [7] [11]. Pan have also proposed a more efficient version of the digit-serial multi-
plication algorithm in [11].

2.2.4 Inversion over the Binary Field

Inversion is the most expensive operation of binary field arithmetic for ECC. The in-
verse of a non-zero element a € GF(2™) is g € GF(2™), where ag = 1 mod f(r) and
g = a~'. Inversion takes approximately double the time for multiplication in the same
binary field as shown in table 2.1, [8] and [G]. Popular algorithms for inversion used for
ECC implementation include the extended Euclidean algorithm and the almost inverse
algorithm. Another algorithm for inversion is the Itoh-Tsuji algorithm based on Fermat’s
little theorem [9], where a high-speed implementation was achieved in [18]. A systolic ar-
ray implementation of a modified Euclid’s algorithm for inversion is also proposed in [5].

2.3 Elliptic Curve Scalar Multiplication

2.3.1 Elliptic Curve Group Operations

Elliptic Curve Cryptography is the use of elliptic curves over finite fields for key exchange,
encryption and digital signatures. ECC is based on the elliptic curve discrete logarithm
problem (ECDLP) where it is infeasible to derive a private key, k from a public key
Q) = kP, where k is an integer value and P is a point on the elliptic curve. There are
multiple elliptic curves that can be used. However, the elliptic curves as recommended by
the National Institute of Standards and Technology (NIST) [15] use a non-supersingular
elliptic curve for ECC over binary fields as shown by equation 2.1. ECSM is used to
compute multiples of points on an elliptic curve by the use of repeated addition and
doubling of points on an elliptic curve. Elliptic curve point doubling and point addition
are illustrated as shown by the graphs in figure 2.2. There are multiple algorithms that
can be used for elliptic curve scalar multiplication. The simplest is the right-to-left double-
and-add method. Other methods that have been implemented include the binary /window
non-adjacent form (NAF) method and the Montgomery Ladder method (2,7, 16].

The points on an elliptic curve can be represented using different coordinate systems
such as affine coordinates and Jacobian projective coordinates which will be discussed
further in section 2.3.2 and 2.3.3. The choice of coordinate system will determine how




Chapter 2. Background and Related Work

Point Doubling

Point Addition

¥
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Figure 2.2: Point addition (P + @) and point doubling (2P) on an elliptic curve [20)].

Affine Jacobian
Point Addition | Point Doubling | Point Addition | Point Doubling
Inversion 1 1 0 0
Multiplication 2 2 15 5
Squaring 1 2 5 5
Addition 9 5 7 4

Table 2.1: Comparison of operations required for point addition and point doubling in
affine coordinates and Jacobian coordinates.

ECPA and ECPD will be constructed, as a different number and combination of un-
derlying Galois field operations will be used. One advantage of projective coordinates
over affine coordinates is the minimisation of inversion, however many more hinary field
operations for multiplication and squaring must be used. A summary of the operations
used for ECPA and ECPD are shown in table 2.1. Other coordinate systems have also
been used in literature such as Lopez-Dahab coordinates and the Montgomery method
of point addition and doubling, which can offer even more improvements as shown by
implementations in [19] and [4].

2.3.2 Affine Coordinates

Affine coordinates can be used to represent points on an elliptic curve. The set of points
for a binary field is the set of solutions to equation 2.1 of a non-supersingular elliptic curve
E. A point P is shown by P(z,y) : =,y € GF(2™). Elliptic curve point addition and
point doubling is shown in equation 2.2 and equation 2.3 respectively [7]. Point addition is
used for the addition of two different points, while point doubling is used for the addition
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of identical points.

E:yv+azy=a+az?+b (2.1}

R(fi‘:isy:i) = P(-’i‘|-'y|) 4+ Q(:i‘g, ',';-2) e F
T3=XN+ A+ +22+a,

2.2
ys = Maxy +a3) + a3 + 11, (2.2)
A= (1 +y)/(z1 + x2)
R(z2, 1) = 2P(z1,1n) € E
I = AE A »
r2 + A+ a, 53

Yo = &3 + ATa + T,
(z1 4+ m)/x

p
If

2.3.3 Jacobian Coordinates

A projective coordinate system such as Jacobian coordinates can also be used to perform
ECPD and ECPA. The non-supersingular curve used for Jacobian projective coordinates
is the set of solutions to equation 2.5. Jacobian coordinates are more appealing than affine
coordinates since these two operations can be performed without the need of inversion.
Inversion is only needed for converting from Jacobian coordinates to affine coordinates
and this can be achieved using equation 2.4. Just like affine coordinates, point addition
shown in equation 2.6 is used for the addition of two different points while point doubling
shown in equation 2.7, is used for the addition of two identical points [16].

Affine(X /2%, Y/Z%) = Jacobian(X,Y, Z),
where Z # ()

AL =X +aX?®Z: 4+ b2° 5
E: Y4+ Xvz=Xx} X272 4 b2t 2
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R(Xa,Ya, Zo) = P(Xo, Yo, Zo) + Q(X1, Y1, Z)) € E,
Up = XoZ?
U, = X, 22

So = YoZ3

S =23
W = Up+ Uy
R= 5+ 5 (2.6)
L= ZyW

V = RX, + LY,

Zy =Lz,
T=R+2Z

X, =aZ; + TR+ W?

Yo=TX,+VL?

R(X.

Xy =X} +bZ?

Yo =X1'Z, + UX, (¢
Z, =X, 73

U=Z,+ X2+ 112

\Ya, Z) =2P(X1, Y1, Z1) € E,

b
=l
—
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2.4 Related Work

There have been many implementations of ECSM in the literature which present several
approaches for the design of an efficient hardware system. In this section a focus on FPGA
implementations of ECSM over a binary field will be explored. One implementation of
ECSM is shown by Hossain et al [8], where their design is able to perform one point mul-
tiplication in 2.66ms and 5.54ms in the field sizes of GF(2%*) and G F(2%%) respectively.
The methods used in their implementation present an area-efficient implementation which
uses bit-serial multiplication, the modified extended Euclidean algorithm and performs
ECPA and ECPD in affine coordinates. The clock cyeles required for their binary field op-
erations are shown in table 2.2, Their paper also suggests the use of Jacobian coordinates
for further improvement on their design.

Operation Addition | Multiplication | Squaring | Inversion
Clock cycles 1 233 233 467

Table 2.2: Clock cycles of binary field operations using bit-serial multiplication and the
modified extended Euclidean algorithm.

An implementation by Govem in [3] requires 65,000 clock eyeles with a computation
time of 0.24ms on a Xilinx Virtex-5 device. Lutz and Han implemented their design
on the Virtex-E device and were able to achieve a computation time of 0.075ms using
Lopez-Dahab projective coordinates in G F(2%%).

Due to the disadvantages of using inversion in affine coordiantes, there has been a
shift to Jacobian coordinates which will require efficient multiplication algorithms. Bit-
serial multiplication in GF(2™) performs a multiplication in m clock eycles. Multiple
implementations use digit-serial multiplication as shown in [7] which reduces the latency
of multiplication to [m/d] clock cycles. Pan and Lee have worked on improvements
on binary field multiplication where they propose digit-serial and digit-parrallel systolic
multipliers in [11], where a binary field multiplication can be achieved in 2 - [y/m/d]
clock cycles. Another multiplication algrithm used for ECSM implementations is the
Karatsuba-Ofman algorithm which was used in [12], where a ECSM is achieved in 0.059ms
in GF(2'%%), 0.084ms in GF(2%*) and 0.102ms in GF(2**). A hardware implementation
which also uses digit-serial multiplication is presented in [22] which produces a latency of
0.089ms for ECSM in the binary field of G F(22%).
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Chapter 3

Experimental Procedures

This chapter presents the resources and experimental procedures used in conducting re-
search for the hardware design, implementation and testing of an ECSM processor. A
description of resources used is presented in section 3.1 followed by the experimental
procedures in section 3.2.

3.1 Resources

The resources used consist mostly of Xilinx software products which were downloaded from
www, xilinx.com/products/design-tools. A free (but restricted) Xilinx “WebPACK” license
was used for this project. The Xilinx Integrated Software Environment (ISE) was used for
FPGA design and development using VHDL. The Xilinx ISE was used for compiling the
design from VHDL code, waveform simulations using Xilinx ISim, generating synthesis
reports, and to generate the programming file that can be used to load a design onto an
FPGA hardware device. Xilinx iMPACT or Diligent Adept software can then be used for
loading a hardware design onto FPGA devices. To minimise risks associated with the use
of software, a private GitHub repository was used for back-up and as a version control
system for all VHDL files and Xilinx ISE projects.

3.2 Experimental Procedures

To conduct the experiments for this project, a design flow is required for the construction
of a digital system from VHDL for FPGA devices. As identified in the background
in chapter 2, this research will require the hardware design for multiple modules such
as for Galois field operations (addition, squaring, multiplication and inversion) and the
elliptic curve group operations (ECPA, ECPD and ECSM). A complete list of modules to
be designed and implemented for both binary fields GF(2%?) and GF(2%%) include the
following:

o Addition

13
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e Traditional digit-serial multipliers (for the digit sizes of 1, 2, 4, 8, 16, 32, and G4)
e Inversion

e Affine point doubling (APD)

Affine point addition (APA)

Jacobian point doubling (JPD)

Jacobian point addition (JPA)

e ECSM controller in affine coordinates

¢ ECSM controller in Jacobian coordinates

o Conversion from Jacobian to Affine coordinates
e Serial-in-parallel-out (SIPO)

e Parallel-in-serial-out (PISO)

FISD

Culgut:
Plxyl

Figure 3.1: Simplified top-level model for the ECSM architecture in FPGA.
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The completion of the above modules will resulf in the initial implementations of an
ECSM hardware architecture as shown in figure 3.1. These will then be optimised with the
addition of the design and implementation of the following modules which are discussed
further in chapter G:

e Modified digit-serial multipliers (for the digit sizes of 1, 2, 4, &, 16, 32, and 64)
e Concurrent ECSM controllers for both affine and Jacobian coordinates
o Combined Jacobian point addition and point doubling (PAPD)

The design How used will be repeated for each module to be constructed which is
outlined as follows:

1. Algorithm selection

2. Logic Modeling

3. VHDL coding

4. Syntax and behavioral verification
3. Testing and waveform simulations
6. Synthesis

7. Comparison and analysis of hardware designs

3.2.1 Algorithm selection

This is the first step taken in the design flow to create a hardware module. The present
literature related to binary field arithmetic and elliptic curve group operations were anal-
ysed for efficient methods, algorithms and hardware architectures that could be used in
this research. The timing complexities and area of designs were considered before an
algorithm was chosen for implementation.

3.2.2 Logic Modeling

The algorithms selected were then modeled in various ways to assist in easing the tran-
sition from an algorithm to a hardware design using VHDL. Trying to implement the
VHDL code for large binary fields of GF(2***) and GF(2***) can be difficult. So smaller
field sizes such as G F(27) were initially used where examples using the algorithm could be
done using pen and paper. Flow-charts were also used which were beneficial in showing
the data flow of an algorithm.




16 Chapter 3. Experimental Procedures

3.2.3 VHDL coding

Once an algorithm was modeled, the VHDL code could then be created. The VHDL code
was written using Xilinx ISE. A new entity and separate VHDL file was created for each
new module required.

3.2.4 Syntax and behavioral verification

VHDL coding is not complete until the syntax and behaviour checks for a hardware design
is successful. These checks are available as tools in the Xilinx ISE. If these checks fail
then the errors must be corrected by modifying the VHDL code.

3.2.5 Testing and waveform simulations

In this phase, the VHDL code for a module is verified. This requires the creation of a
VHDL test bench where inputs to the designed module can be chosen. This test bench
is then used for simulations using Xilinx ISim where the waveform output is checked
against the expected value(s) and delays. If the results of the simulation are not correct
then the VHDL code and logic models must be checked to ensure the correct hardware
implementation of an algorithm that is free of errors.

3.2.6 Synthesis

Once the tests are correct, then the hardware design in VHDL can be synthesised to a
target FPGA device using the Xilinx Synthesis Tool (XST). The target FPGA device
used in this research is the Xilinx Virtex-6 (XC6VLX760-2ff1760). The XST generates
a synthesis report for the design which displays the area and timing constraints such as
slice registers, slice look-up-tables (LUT), LUT flip-flop pairs, minimum clock periods,
and clock frequencies. Minor changes in VHDL code can result in different hardware
performances analysed from the synthesis reports in terms of time and area so the design
should be optimised for the most efficient results.

3.2.7 Comparison and analysis of hardware designs

Finally the hardware performances shown by the synthesis reports are recorded. Different
hardware implementations are then analysed and compared against each design with a
focus on area and time. The most efficient design is then chosen to be used in the final
ECC processor for GF(2%%) and GF(2%%).

For this research, the hardware performances from the synthesis reports were recorded
as the results in chapter 7. For the implementation on an FPGA device, a bit file would
need to be generated using Xilinx ISE. This bit file is then loaded onto the FPGA from
a computer using a JTAG cable and either Xilinx iMPACT or Digilent Adept software.




Chapter 4

Hardware for Galois field arithmetic
over GF(2)

This chapter will show the hardware design and implementation of Galois field arithmetic
for this research using VHDL for FPGA devices. Each section will discuss the design
process leading up to creation of VHDL code including algorithms chosen, flow chart
models, and block diagrams. The related background shown in section 2.2 identifies that
addition, multiplication, squaring and inversion modules will be necessary for ECC. The
design methods used for this project can be used for any sized binary field. However, only
the hardware designs for GF(2%%) and GF(2%%) have been implemented as specified by
the project scope.

The design of each module is shown in figure 4.1, where each module also has the
inputs ‘clock’, ‘run’, and ‘reset’, and output ‘done’. The input ‘reset’ is used to reset all
internal signals of a module, ‘run’ is used to start a module and keep it running for the
duration that run is ‘1", The ‘done’ signal then indicates when the module has produced
a final output. The designs use an asynchronous reset. These external signals aid the
correct timing of Galois field operations in ECPA and ECPD since each operation will have
different delays. The modular design of finite field arithmetic will allow for modifications
of the system which can easily be achieved by replacing an individual module.

In this project, a specific squaring module has not been created and a multiplication
module will be used instead to perform squaring more efficiently. The reason for this is
identified from table 2.2 as shown by [8]. This implementation showed that an implemen-
tation in GF(2%%) and GF(2%3) for bit-serial multiplication requires the same number
of clock-cycles and area as squaring. Once the efficiency of multiplication is improved, a
multiplication module can then be used to replace the squaring module since it will bring
better area and time and thus improve the efficiency of the ECSM hardware architecture.
The exclusion of a squaring module will also allow the simpler design of elliptic curve
point doubling and point addition as the scheduling and ordering of operations will not
be greatly affected if all multiplication and squaring modules have identical latencies.

As shown earlier in section 2.4, inversion is the most expensive operation in Galois
field arithmetic over the binary field followed by multiplication and squaring. This is

17




18 Chapter 4. Hardware for Galois field arithmetic over GF(2™)
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Figure 4.1: The top level block diagrams of Addition, Multiplication, Squaring and
Inversion.

summarised in table 2.2 which shows the clock eveles for an implementation of binary field
arithmetic in FPGA using bit-serial multiplication and a modified extended Euclidean
algorithm [8]. Inversion is shown to have approximately twice the clock cycles required
for multiplication and squaring. The goal of implementing efficient Galois field operations
will require the selection of algorithms which reduce these clock cyeles. It is more difficult
to reduce inversion than multiplication.

This chapter focuses on the design and implementation of efficient addition, inversion
and multiplication modules. As shown previously in table 2.1, Jacobian coordinates can
be used to perform ECPA and ECPD without the need of inversion. However, many
more multiplications and squaring are needed which need to be implemented efficiently.
In order for an implementation of ECSM in Jacobian coordinates to have an advantage
over affine coordinates, the clock eycles required to perform ECPA and ECPD in Jacobian
coordinates need to be less than that to achieve ECPA and ECPD in affine coordinates.

4.1 Design and implementation of Galois field arith-
metic over binary fields

4.1.1 Addition over binary fields

The addition module was made using bit-wise XOR of two inputs as shown in algorithm 1.
A flow chart representing the VHDL representation is shown in figure 4.2. The hardware
architecture of this design for addition in GF(2™) is shown in figure 4.3.




4.1 Design and implementation of Galois field arithmetic over binary fields 19

Algorithm 1 Addition in GF(2™)
Input: Binary polynomials a = (a,, 1, - aq,a9), b= (b1, ..., by b))
Output: ¢ =a-+ b

I: fori=0tom—1do

2 c=a; @ IIJ,'.

3: end for

4: return c.

Sum=0
Dane =0

Figure 4.2: Flowchart for the addition module.

Ani Bma Amz Bmz Amz  Bma Az Bz Ay By Ag Ba

Figure 4.3: Hardware design for addition over the binary field.

Ca C Co

4.1.2 Multiplication in GF(2™)

Multiplication is important for efficient ECC implementation over binary fields. Multi-
plication can be done in multiple ways but bit-serial and digit-serial multiplication were
used for this design. A motivation for improving the efficiency of multiplication is for
the speed up of ECSM using Jacobian coordinates. By multiplying 2-bits at a time in
digit-serial multiplication, the clock cycles required to perform binary field multiplication
will be halved. The following sections present the algorithms and hardware architectures
which were used to implement bit-serial multiplication and digit-serial multiplication of

digit-sizes up to 64-bits using VHDL.
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Bit-Serial Multiplication

Bit-serial multiplication creates one partial product for each bit of the input during mul-
tiplication. An example of the mulfiplication logic used is shown by binary multiplication
as shown in figure 4.4. In each clock cycle, one partial product is generated and accumu-
lated in the product €. To obtain a result in GF(2™), in each clock cycle the product C
also undergoes reduction. A simple example of the reduction logic is shown in figure 4.5
which focuses on calculating the remainder using binary long division. This illustrates
that reduction is achieved by checking each bit with a degree greater than m in the divi-
dend whether or not it is a ‘1" or a '0". If it is a '1" then the left-most ‘1" bit of the dividend
and the divisor are aligned and undergo bit-wise XOR. This process is repeated until a
remainder is determined. Algorithm 2 was used to implement Galois field multiplication
from the least significant bit (LSB) to the most significant bit (MSB) where a multiplica-
tion in GF(2™) will take m clock cyeles. This implementation of bit-serial multiplication
actually uses the same algorithm as digit-serial multiplication with the digit-size of 1.
The next section will discuss the hardware architecture required to perform digit-serial
multiplication.

iy Bz ay a Mulipleand & 1 a 1 o A
% by by by b Mukgpleans E ® 1 1 o 1 B
+ | Doy | BeBy | Dofy | bodg [ BoA + 1 Q 1 o
+ | by | biay | beay | Beag L - * o ] o o
& [ 050 | Bsas | sy | bome ba [ roducs +[1 o]0
+ | beas | Buag | by | by byA +| 1 o 1 o
G o |a|a C;|Cj|C¢|woumc [N EY ER u|1|n|r,

Figure 4.4: General method for Galois field multiplication where an m-bit multiplier
and multiplicand will produce m partial products and the product will have a size of 2m-1
bits. An example is given for the multiplication of 4-bit binary numbers 1010; and 11014

Algorithm 2 Multiplication using right-to-left shift and add

Input: Binary polynomials ¢ = (a,,_1,...,21,ag), b = (bp_1s.-..b1,by) and Reduction
Polynomial F'(2) = 2™ + r(z).
Output: ¢=a-bmod F(z).
1: ¢« 0.
2 fori=0tom—1do
3 o4+ e ba.
& a+a-z@Ba, T
5: end for
G: return .
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Divisor = 10011 }11010101 «=Dividend
10011

Figure 4.5: General method for reduction of a binary polynomial when multiplication
of 2 elements in GF(2™) produces a product with degree greater than m. An example
is given for the reduction of 11010101: by f(x) = 100115 for a result in GF(2'). This is
equivalent to the computation of 110101015 mod 100115 = 0001,.

Traditional Digit-Serial Multiplication

Once the bit-serial multiplier was completed, the digit-serial multiplier was then designed
based on algorithm 3 [11]. Digit-serial multipliers will speed up the multiplication process
significantly compared to the bit-serial multiplier as multiple partial products are gener-
ated and added per clock, thus reducing clock cyeles. However, this method of reducing
clock cveles will increase the area of hardware used. Different digit sizes were implemented
for 2-bit, 4-bit, 8-bit, 16-bit, 32-bit, and 64-bit digit-serial multipliers so that their area-
efficiency and delays can be recorded and compared. The most efficient multiplier can
then be used for the later stages of the project in order to achieve the best area-time for
ECPA and ECPD. The clock cycles required for multiplication over a binary field using
traditional digit-serial multipliers will be [m/d], where d is the digit size.

The implementation of traditional digit-serial multiplication used in this project re-
quired the use of registers shown in table 4.1. The number of padding bits for register
‘Bv’ is determined by first caleulating g = [m/d]. A detailed flow-chart for the design of
a traditional digit-serial multiplier in FPGA is shown in figure 4.8.

Register Name | Description Bit-size
Ay Used to store the new multiplier representing m
A from ‘shiftModA’ for the next iteration.

RP Reduction polynomial f(x). m+1
tempA Used to initialise and perform multiplication. m
shiftModA Used to perform A - 27 mod F(x). m o+ d
Bv Used for padding the B input by adding ‘0" | m + (gd — m)

bits to the MSB of B.
Cv Used to store the product during each mul- m +d-1
tiplication iteration.

Table 4.1: Registers used for G F(2™) traditional digit-serial multiplication.
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Algorithm 3 Multiplication using right-to-left traditional digit-serial multiplication

Input: Binary polynomials A = (a1, ..., a1,a5), B = (by_1,...,01,by), reduction poly-
nomial F(z) = 2™ 4 r(z).
Output: C = A-B mod F(x).
1: (_:' +«— 0.
2 B = By+ Biz?+ ... + B,_;2"%"Y), where B; = Zj;
3 fori=0toqg—1do
: C+Co B;A.
5 A« A -2%modF(z).
6: end for
7: C + C mod f(z).
& return C.

1 g
o a7

A hardware architecture is shown in figure 4.6 which implements the above algorithm.
This method of multiplication is efficient in hardware since it uses left shifts and addition.
In each iteration, B; is multiplied with fempA which contains A-2%modF(x) of the current
iteration. While the multiplication of B; and fempA is performed, the computation of
A med f(x) is done in parallel. The current multiplicand tempA is left shifted
by d bits followed by reduction mod f({z). At the final iteration, register C'v can have
results with binary polynomials of degree greater than m from the accumulation of partial
products. So reduction of ‘Cv’ is also needed to compute the final output C.

The reduction used in the block diagram of multiplication to perform mod f(r) in
figure 4.6 is shown in figure 4.7. The way reduction was implemented in the hardware
architecture for this project was by connecting all bit positions representing a binary
polynomial with a degree more than m to be selectors to a multiplexor each. For each °1°
bit of C'v greater than C,,,_,, the contents of C'v from Cv(C), downto C,, —m) for the bit-
size of m will be added with the reduction polynomial such that Co(C,, downto C,, —m) =
Co(C, downto C,, —m) xzor f(x), where n > m. This allows for reduction of a binary
polynomial with degree greater than m fo be achieved in one clock cyvele in hardware.
This approach for reduction follows the same methodology shown previously for binary
long division to find the remainder as shown in figure 4.5.
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Figure 4.6: Block diagram for multiplication of m-bit binary polynomials where the

product C' = A - B mod f(x).
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Figure 4.7: Block diagram for the reduction of a binary polynomial greater than m-bits
used to perform “mod f(x)” during multiplication.
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Figure 4.8: Flowchart for the implementation of m-bit digit-serial multiplication with

digit size d.
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4.1.3 Inversion in GF(2™)

Inversion has the most costly computation compared to the other finite field operations
as shown in table 2.2. Inversion is needed to perform division using finite-field operations.
The division A(z)/B(z) mod f(z) is performed by first finding the inverse B! and
secondly performing the multiplication where A(z)- B~'(z) = A(x)/B(xz). The inversion
module implemented in this research project consists of 5 registers, V, Quv, Zv, Pv and
Count. Registers V, Qv, Zv and Pv all have the bit-size of m + 1, and Count has the size
of 2 bits.

The algorithm used takes the input U(x) and returns the output Z(x) which is the
modular inverse of U(x). Register Puv is initialised with U(z) padded with a ‘0" bit.
Register (Jv is initialised with the reduction polynomial of the binary field used. Register
Zv is initialised with the binary value of 1. Register V' and Count are initialised with
the value of zero. The inversion module used for this project is based on algorithm 4.
This algorithm used was proposed by Brunmner in [1], and implemented in [8] and [3]. The
internal register operations in every clock cycle is summarised in table 4.2, The time
complexity of this implementation of inversion in terms of clock cycles is 2m + 2 for the
binary field GF(2™). A detailed flow-chart which shows the hardware implementation in
VHDL is shown in figure 4.10 and the hardware representation of this design is then given
in figure 4.10.

Register Next Register State

Init Pv(m)=0 Pv(m) =1

Count = () Count != 0

Pv ‘W& Ax) x- Py x (Pv & Qv) Pv
Qv F(x) Qv Pv x-T
Zv 1 z- Zv - (V& Zv) | Zv / x mod F(X)
v 0 V Zv V@ Zv
Count 0 Count+1 Count+1 Count-1

Table 4.2: Summary of register operations required when performing inversion.
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Algorithm 4 Inversion in GF(2™) with Modified Euclidean Algorithm,
Input: U(x) = (tm_1, ..., 1, ug), reduction polynomial F(z).
Output: Z(z) = 1U(x) mod F(x).

I P, =0&U(2),Q, =F(z),Z,=1,V=0ent =0.

2 for i =1 to 2m do

3 if P,(m) ="0" then

4: Bo=F.-x.

5 = Fy L,

6: if Z,(m)="1 then
T Zy = Zy + F(z).
8: end if

0 cnt = ent + 1.

10:  else

11: if Q,.(m) ="1" then
12 Qv = QW + Fo.

13: V =V + ZmodF(z).
14: end if

15: Q,=0Q,- =

16: if ent = (0 then

17: P, & Q,.

18: Z,- = V.

19: Zy @ mod F(x).
20: et = ent — 1;
a1 else
22 Zy = Zyfz mod F(x).
23 ent =cni — 1.
24: end if
25 end if

26: end for
27 Z = Zy(m — ldowntol).
28: return 7.
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Figure 4.9: Flowchart representing the hardware design of inversion over binary fields.
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4.2 Simulation results for Galois field arithmetic

This section displays the simulation of VHDL modules created for binary field addition,
multiplication and inversion. Only some test cases are presented in here, however multiple
test cases were conducted in the research. The simulations were created from VHDL test
benches using Xilinx ISim. The simulations for the addition modules created are shown
in figure 4.11 and 4.12 for the binary field GF(2%*) and G F(2%%) respectively.

B sumi282:0)
B clk_period

Figure 4.12: The ISim simulation for the addition module in GF(2%%),
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4.2.1 Testing of traditional digit-serial multipliers

This subsection shows the waveform simulations for for the digit-serial multipliers. Table
4.3 and table 4.4 show the clock cveles for each digit-size for the traditoinal digitserial
multipliers in GF(2°%) and GF(2%?%) respectively. The clock cycles are reflected with the
simulation results. This is shown in figure 4.13 and figure 4.14 for the digit-sizes of 1, 2,
32, and 64 to illustrate the reduction of clock cycles.

Digit-size | Clock eyeles

1 233
2 117
4 58
8 30
16 15
32 8

64 4

Table 4.3: Clock cycles for 233-bit traditional digit-serial multipliers.

Digit-size | Clock cveles

1 283

2 142

4 71

8 36

16 18

32

G4 5

Table 4.4: Clock cycles for 283-bit traditional digit-serial multipliers.

4.2.2 Testing of binary field inversion

Testing of the inversion module was performed by first obtaining a result of inversion
as shown in figure 4.15 for GF(2%?) and in figure 4.17 for GF(2%%%). To check that the
inversion module was implemented correctly, it is followed by multiplication of this inverse
and its original input. The expected output is equal to 1 med f(x) as shown in figure
4.16 and figure 4.18.
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Figure 4.13: The simulations for traditional digit-serial multiplication with d = 1, 2,
32, and 64 in GF(2%%).
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run
§ alzez0l
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§ clzzz0

done
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[
reset

L run

By al282:0)
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(d) d = G4.

Figure 4.14: The ISim simulations for the traditional digit-serial multiplication from
top to bottom with d = 1, 2, 4, 8, 16 and 32 in in GF(2%%%).
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g 20320
PR irversel232:00
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Figure 4.15: The simulation for inversion in G F(2%%),

& dk_period

Figure 4.16: The simulation result for multiplication of a binary polyvnomial and its
inverse in GF(2%%),

@ dk
g reset

@ run

B alza2q

B inverse[282:00
3 done

& dk_period

Figure 4.17: The simulation for inversion in G F(2%%).

B bl2sz0
By czeza

@ done

& ok_period

Figure 4.18: The simulation for multiplication of a binary polynomial and its inverse in
GF(2283),
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Chapter 5

Hardware for ECSM over GF(2")

This chapter presents the design, implementation and testing of ECPD, ECPA and ECSM
using an affine coordinate system as well as a Jacobian coordinate system. The design of
ECPD and ECPA is based on the underlying finite field arithmetic shown previously in
chapter 4.

Different symbols are used to represent addition, multiplication, squaring and inversion
in binary fields which are shown in figure 5.1. These will make the architecture diagrams
built with finite field arithmetic easier to trace with all wires being input /output signals.
A close-up of connections between modules is shown in figure 5.2 where an example
of computing A? is used. The design and implementation of all elliptic curve group
operations including elliptic curve point addition, elliptic curve point addition and elliptic
curve scalar multiplication will use the NIST recommended curves for binary field ECC.
These NIST recommendations show random elliptic curves and Koblitz elliptic curves
over GF(2™). For this project, only the NIST-recommended random elliptic curves will
be used and their associated reduction polynomial f(x), coefficient a, coefficient b, cofactor
h and the x and y coordinates of the base point P as shown in appendix A. Of course, the
Koblitz elliptic curves can also be used which will require the use of different associated
parameters as recommended by NIST in appendix A.

This chapter shows the process of using the binary field arithmetic from chapter 4
for constructing ECPA, ECPD and ECSM for the initial, basic implementation of ECSM
in GF(2%%) and GF(22®). Section 5.1 and 5.2 will discuss the hardware design using
affine coordinates and Jacobian coordinates respectively. Considerations for hardware
implementations and compatability with FPGA devices are then discussed in section
5.3. The ISim simulation waveforms of the VHDL implementations are then presented in
section 5.4 for the verification of the hardware design. These initial implementations will
then be further optimised in chapter 6.
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Addition

Squanng

N/

Multiplication Inversion

Figure 5.1: Symbols used to represent addition, multiplication, squaring and inversion

modules.

clk

reset

Ad done

Figure 5.2: Scheduling of sequential finite field operations and the connections between
each module. An example for two squaring operations is shown.

5.1 Design and Implementation of affine ECSM

This section presents the design and development of elliptic curve scalar multiplication
using the affine coordinate system. Computing affine point addition, point doubling and
point multiplication involves the use of coordinate points with two values such as P(x, y).




5.1 Design and Implementation of affine ECSM 37

Point Doubling (PD) Point Addition (PA)
X1 Y, a Xy Yo a Yz Y1
Legend
stage 1((_) o
@ Mubliplication
Stage 2
© Squaring
Stage 3 @ Inwersion
Stage 4
Stage 5
Stage 6
Stage 7
Stage 8
Stage 9
Stage 10
T T T T T T | Complexity:
Stage 11 PD:3M+5+
______ PA3M+7+I
Y

Figure 5.3: Hardware architecture nsed for affine point doubling (left) and affine point
addition (right). The critical path for each is shown by the red arrow. The complex-
ity shown is in terms of clock eveles where M is the clock cyeles to perform a single
multiplication and [ is the clock cyvcles to perform a single inversion.




38 Chapter 5. Hardware for ECSM over GF(2™)

5.1.1 Affine Elliptic Curve Point Doubling

Point doubling using affine coordinates is based on equation 2.3. The point P(x,y)
is taken as an input where addition, multiplication and inversion modules have been
arranged so that the output 2P(x, i) = (x4, y2) is produced which satisfies this equation.
The hardware architecture for the construction of affine ECPD is shown in figure 5.4.
Whenever a module such as multiplication or addition requires more than one input, the
done signal of the module in the previous stage(s) with the longest total delay time is
used as the run input of the module. This is to ensure that at the time that this module
begins its computation, that the correct data inputs are available from all the previous
binary field operations. This also allows for any data dependencies between modules
to be accounted for. The implementation of affine ECPD requires 5 additions (A), 4
multiplications (M) and 1 inversion (I) and has the critical delay of [+3M+5 clock cyles,
where M is the number of clocks to compute one multiplication and I is the clock cyvcles
for a single inversion.

5.1.2 Affine Elliptic Curve Point Addition

Affine ECPA was implemented in a similar way based on equation 2.2. Given two inputs
points Pz, y) and Q(x,, i) the architecture shown in figure 5.4 will produce the output
R(xs,y3) = P + Q. This implementation of affine ECPA requires the use of 8 addition
modules, 3 multiplication modules and 1 inversion module. Affine ECPA has the critical
delay of T+3M+1 clock eyeles, where M is the clock cycles taken to complete a single
multiplication, and [ is the clock cycles required for a single inversion.

5.1.3 Affine Elliptic Curve Point Multiplication
Affine ECSM was then implemented using affine ECPD and affine ECPA based on the

right-to-left binary method for point multiplication as shown in algorithm 5. A detailed
flow chart representing the VHDL implementation is shown in figure 5.5. The hardware
block diagram is also shown in figure 5.4.

This proposed design uses 2 registers for the point P(x,y) and it's coordinates, 2 regis-
ters for the point Q(a,y) and it's coordinates, a register for the counter to iterate through
each bit of the key, and a register for the current state (currentST). The three states
used for this implementation is for initialisation (INI), execute-point-addition (EPA) and
execute-point-doubling (EPD). The inialisation state resets the counter and temporary
values. It also assigns Q(z, y) with the point at infinity for affine coordinates as (0,0) and
assigns P(x,y) with the coordinates of the base point as defined by NIST in appendix
A. The algorithm computes the final result by iterating through each bit of the key and
doubling point P for every bit. The points P and ¢} are added together and stored in
register Q(x, y) every time the current bit of the key is a ‘1'. After m iterations, the final
output result is the value of register Q(x,y).

The EPA state is used to perform ECPA in affine coordinates. The affine point
addition module is given the input points from register P(x, y) and Q(z,y). If the current
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key(count) =1, then register Q(z,y) is updated with the addition of these two points.
The new value of the QQ(x, y) registers will not always be the outputs from the affine
point addition module. The next value of this register will depend on the previous P
and @ values. This is determined through the use of a comparison and the selection
of possible outputs. This is summarised as follows where the condition is on the left,
and the new value of register Q(z,y) is shown on the right column of the table. These
conditions are required because the result of the ECPA module will return the point (0, 0)
for these conditions which is not correct. In affine coordinates, @ = -P when Q(x,,1,) =
Plxy,y + 1)

Condition Final result for ECPA

& =00 P

P=ro Q

F=g Result of the ECPD module
=—-Por P=-Q Point at infinity oo

else Result of the ECPA module

Table 5.1: Summary of conditions and their corresponding results when performing
point addition where ¢ and P are points.

The state then changes to EPD once a done signal has been received from the affine
point addition module or that point addition was not required at all since key(count) = (.
A PA_done2 signal has also been used to indicate that the affine point addition module is
not needed since the next value of P(z,y) can be pre-determined from values defined in
table 5.1 in one clock cycle. The state EPD then assigns the affine point doubling module
with the input point from register P(x, y). The resulting outputs from this module is then
assigned as the next values for register P(x,y) once the done signal of the affine point
addition module is indicated. The counter is also incremented by one and the state is
then changed to EPA when the done signal is *1". The last iteration is when the counter
has the value of m — 1 and the final result for kP is achieved in register QQ(z,y), where k
is the key and P is the base point.

This implementation performs ECPA and ECPD sequentially and will have a variable
computation time. The worst-case computation time for this implementation is m*(PD+
2)+mx(PA+2)+1 clock cycles, where PD and PA is the time taken to compute point
doubling and point addition respectively and m is the bit-size of the binary field. This is
caleulated from performing ECPA m times, ECPD m times, and having one clock for the
initialisation of registers. An additional 2 clock cycles is also required for each ECPA and
ECPD module for assigning inputs to the modules and saving the results in a register.
This worst-case computation time is the time taken to perform kP where all the bits of
k are '1°. The average computation time to perform ECSM is taken assuming a random
key having half ‘1’ bits and half ‘0" bits to have a computation time to complete ECSM
as m* (PD+2) + (m/2) % (PA+2) + 1 clock cycles.
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Algorithm 5 Right-to-left binary method for Point Multiplication
Input: k = (k1. ..., ky, kp)e, P € E.
Output: kP,

I: () + co.

2 fori=0tot—1do

3

if k; =1 then
Q+—Q+P.
5 end if
6: P+ 2P
7: end for
8 return ().

v ' v i
IF'="= e e, = "= A
Affine PD_reset | Loop Cantrolier | PA_resat Affine
Point Doubling = | Paint Addition
Foendl > com | e
x| = | | ks
gl ¢ | |> Current State | | g 2
b e e e e e J
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3
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Figure 5.4: Hardware block diagram used for the implementation of sequential affine

ECSM.




41

5.1 Design and Implementation of affine ECSM

= eeaT gy
A0, = Eop yd

(Ao wOxIBE) = ()R

Od3 = 15Mma

[Llepeil]
= (R xald

24 e = Al
T W = wiiaa
Wdd = LSWENT AB=TA vd
T+ilmnes = wrns *D=TR W
T=0san v Ad=04 ¥d
] =
(247 0d 2" 0al=id vl A 7 15
; H
'
e ;
Ad = A"0d
¥ =¥ 0d
=135 Od
QuD e

"y

ada = Lsmanna

g
Ad = Acuss)
el = ROE _ 3 =

ZRISE g

A5isaurs _ _ W3 = L5RBNS

N ﬁ

o

T
e

TmuniTgd

RO T ]

Tomlasal ad

1= s vd
s, wandh={Ad wadled
(ol = o = (8D

s
1

D= SR Ko

g the hardware design of VHDL for the affine controller

Figure 5.5: Flowchart representin

in GF(2™).




42 Chapter 5. Hardware for ECSM over GF(2™)

5.2 Design and implementation of Jacobian ECSM

This section describes the hardware design for elliptic curve scalar multiplication using
Jacobian coordinates. The completed hardware modules for Galois field arithmetic dis-
cussed in section 4 will be used to construct Jacobian ECPD and Jacobian ECPA. The
design and implementation of ECSM in Jacobian coordinates follows closely with the ap-
proach used for affine coordinates. However, Jacobian coordinates involve computations
with points with 3 coordinate values such as P(z,y, z). Upon completion of ECSM using
Jacobian coordinates, conversion between affine coordinates and Jacobian coordinates is
then required as shown in equation 2.4. This section will first present the design and
development of Jacobian ECPD in section 5.2.1 followed by Jacobian ECPA in section
5.2.2. A controller was then designed to perform ECSM using Jacobian coordinates in
section 5.2.3. Finally a A top-level module consisting of this controller and a conversion
module will then be used for the complete elliptic curve scalar multiplication with a final
output in affine coordinates as shown in section 5.2.3.

5.2.1 Jacobian Elliptic Curve Point Doubling

Jacobian ECPD uses the underlying Galois field arithmetic to satisfy equation 2.7. This
equation was used to design the hardware architecture as shown in figure 5.6. Given
the input point P(X,Y, Z), the output will be 2P(X, Y, Z). The Jacobian point doubling
architecture requires 10 multiplication modules and 4 addition modules. The critical path
for point doubling in Jacobian coordinates is the delay of 2 additions and 5 multiplication
binary field operations. This design can also be optimised for the NIST recommended
random curves where the coefficient b = 1 will allow the removal of one multiplication
operation. This will allow for the optimised delay of 4M+2 clock cycles, where M is the
clock cveles required to complete one multiplication.
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Figure 5.6: Hardware design of ECPD in Jacobian coordinates. The critical path is
shown by red wiring. The complexity given is in terms of clock cycles where M is the
clock cyeles required for a single multiplication.

5.2.2 Jacobian Elliptic Curve Point Addition

Jacobian ECPA was also implemented based on equation 2.7. The Jacobian ECPA hard-
ware architecture designed requires 20 multiplication modules and 7 addition modules as
shown in figure 5.7. The critical path to perform ECPA is the delay of 7 multiplications
and 3 additions. This design can be further optimised depending on the elliptic curve and
the coefficients used. The NIST recommended random curves have the coefficient a = 1
which will reduce the delay of ECPA by one multiplication. This allows for an optimised
delay for Jacobian elliptic curve point addition of 6M+5 clock cycles, where M is the time
taken to complete one multiplication.
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Figure 5.7: Hardware design of ECPA in Jacobian coordinates. The critical path is
shown in red. The complexity given is in terms of clock cycles where M is the number of
clock cycles to perform one multiplication.

5.2.3 Jacobian Elliptic Curve Point Multiplication

The next level of operation to be implemented is Jacobian ECPNM. There are multiple
methods for the implementation of ECSM as outlined in section 2.3. The algorithm used
for the implementation of ECSM was the same as that used for affine coordinates using
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the double-and-add method shown in algorithm 5. This is the simplest algorithm to

implement ECSM which performs point doubling m times and point addition for every
‘1" bit of the key. This method performs point addition and point doubling sequentially.

Minor changes to the hardware architecture was required from the implementation of
affine coordinates. Firstly, 0 registers were needed to represent the z, y, and z coordinates
for the point P and (). The second change that was needed is for the conditions outlined
in table 5.1. A point at infinity for Jacobian coordinates is the point (1,1,0) and the
negative of a point A(xy, iy, z) is given as B(x,,x; + y1, 21). The design of ECSM in
hardware needs a controller component to perform ECSM and a conversion component
for the conversion to affine coordinates.

Jacobian Controller

The design and implementation of Jacobian point addition and point doubling has been
presented in the previous sections. A Jacobian controller will be needed to schedule when
ECPA and ECPD is performed and the accumulation of the results of these components
in registers untill a final output is computed. The design of the Jacobian controller and
its connections are shown in figure 5.8. A detailed flow chart to implement algorithm 5
is shown in figure 5.9 for the design in VHDL.

This design uses the same states to control what function is currently being performed
during ECSM. Just like for affine coordinates, the states are INI, EPA, and EPD as
shown in figure 5.10. The state { N1 is used for the initialisation of the internal registers.
The point ((Qx, Qy,()z) is initialised to be a point at oo |, in Jacobian coordinates this
is Q(1,1,0) [7]. The point Q(z,y,z) is used for adding and accumulating the points
indicated by the current bit iteration of the key while P{Px, Py, Pz) doubles for every
iteration.

The next state is EPA when key(count) ='1" otherwise it is EPD. The EPA state
checks if the current bit of key(count) of the iteration is a ‘1’ and performs ECPA with the
points @@ and . Point Addition is performed by assigning the Jacobian ECPA component
inputs with  and ¢ coordinates and setting the ‘reset’ to 0 to allow the component to
function. The controller then waits for the done signal of the Jacobian point addition
module to update the registers representing the point Q(x, y, z) depending on the previous
conditions and values of the points P and @. The state is then changed to EPD which
performs ECPD the same wayv. The input of the ECPD component are set with point
P coordinates while the resef of the component is set to 0 to allow computation of 2P.
Once the done signal of the point doubling component is set, the registers representing
the coordinates of P(x,y, z) are updated with the new output of the ECPD component.
When the done signal of the Jacobian ECPD module is recieved, the ECPA and ECPD
resef signals are then set to "1’ and the counter is incremented for the next bit of the key.
The state is then changed to EPA to perform ECPA then EPD.
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PO_dane ="1"

Figure 5.10: State diagram used in the Jacobian controller.
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Figure 5.11: The top level block diagram showing the final conversion for Jacobian to
affine coordinates once point multiplication has completed.

Jacobian Coordinate Conversion

The Jacobian controller currently takes a key as an input and computes the output point
Pla,y, z) in Jacobian coordinates so conversion to affine coordinates is required. The
high level diagram showing the interconnections for the final conversion from Jacobian
coordinates to affine coordinates is shown in figure 5.11. The internal Galois field op-
erations to perform the conversion are shown in figure 5.12, where the critical path is
shown by red arrows. The construction of the conversion component requires the use of
5 multiplication modules and 1 inversion module. The delay of this conversion compo-
nent will be the delay of 3 multiplications and 1 inversion. The design of this hardware
architecure is based on equation 2.5. Given the input point P(F,, F,. P.) in Jacobian
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coordinates, the conversion to affine coordinates produces the output point Q(Q, Q).
where Q, = P,/(P) and Q. = (P,)/(P2) = (P.P.)/(PY).
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Figure 5.12: The top level architecture showing the conversion of Jacobian coordinates
to affine coordinates using Galois field operations.

5.3 FPGA implementation of ECSM

The hardware design for the computation of affine ECSM and Jacobian ECSM has been
presented in section 5.1 and 5.2. Both of these designs will require input pins for the
run, resef, and key signals and output pins for the done signal as well as the X and YV
coordinates of the ECSM output. For the key, X, and Y the number of pins for each of
these input/output (I/0) signals will be m for GF(2m). This results in a total of 3m +3
1/O pins with a total of 702 pins for the ECSM in GF(2%%) and 852 [/O for ECSM in
GF(22%).

The number of I[/O pins vary between different FPGA devices where the number of
pins may be too limited to support the design. In order to make the hardware design used
in this research to be compatible with any FPGA device, serial inputs will need be used
for the key, and serial outputs for the resulting coordinates of ECSM. This will reduce the
number of I/O pins to just 7. The hardware architecture is shown in figure 5.13 where
a serial-in-parrallel-ont (SIPO) module is used to accumulate the input for the ECSM
module and a parallel-in-serial-ont (PISO) module is used to output the final X and ¥
coordinate sequentially. The SIPO module has a delay of m+1 clock eyeles and the PISO
module has the delay of m+2 clock cycles.
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Figure 5.13: The top level architecture with PISO and SIPO for the implementation on
an FPGA device.

5.4 Simulations for ECSM over binary fields

This section shows the tests use to verify the hardware implementation of ECSM using
affine and Jacobian coordinates. It does not display all the tests used, but important test
cases will be discussed here,

5.4.1 Testing of ECSM over GF(2%%)

Affine point addition and affine point doubling were tested through the use of the
individual computations using the previously implemented Galois field modules. The test
for affine point doubling is shown in figure 5.14 where the base point P defined by NIST in
appendix A was used to compute 2P. The affine point addition module was then used to
compute 3P = 2P+ 1P as shown in figure 5.15. The result of ECSM in affine coordinates
using was then obtained when the key had a value of 3 as shown in figure 5.16 which
produces the expected outputs as confirmed by the affine point addition test.

Small key sizes were easily tested through the use of the affine ECPA and affine ECPD
tests. However, special test cases were used to have confidence in the correct operation
of ECSM architectures as shown in figure 5.17. The order of a curve is shown as n in
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appendix A. When the key & = n.the expected result is the point at infinity which is (0,0)
for affine coordinates. When & = n + 1, the expected result is oo + P=1F which is the
base point of an elliptic curve. Another caseis when k = n—1 = oc— 1P = —P. Negative
P is obtained when given the point P(z,, 1), —P = (2,1, +y;). The serial output of the
FPGA implementation was then checked as shown in figure 5.21 which shows the output
given when k = 3.

The tests for ECSM using Jacobian coordinates were conducted in a similar way to
affine coordinates. Simulations for Jacobian EPCD and ECPA are shown in figure 5.18
and figure 5.19 respectively. This was then used to check the point for 3P using the
Jacobian ECSM architecture in figure 5.16. The test cases for the order of the curve were
then simulated as shown in figure 5.20. These tests verify the correct implementation of
Jacobian coordinates as these produce the same output point for a key as those produced
by affine ECSM. Finally, the tests for ECSM in the binary field G'F(2%) will be briefly
shown here. The testing methods for the verification of the 283-hit hardware implementa-
tion was identical to the process used to test the 233-bit implementation. The simulations
for GF(2°*) are shown with the key k = 3,n — 1,n, and n + 1 for affine coordinates in
figure 5.23 and for Jacobian coordinates in figure 5.24.

1§ reser
B iz
B g
By soutl232
By yout(232:0)
g done

g o period |

Figure 5.14: The simulation for GF(2%%) ECPD using affine coordinates.
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B 23z
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B youlz3zd
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Figure 5.15: The simulation for G F(22%) ECPA using affine coordinates.
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Figure 5.16: The simulation for ECSM using affine coordinates with & = 3 in in
GF(2233),
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Figure 5.17: The ISim simulations for ECSM using affine coordinates with & = n — 1,
n, and n + 1 in G F(22%%).
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Figure 5.20: The simulations for ECSM using Jacobian coordinates with & = 3 in in
G205y,
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Figure 5.21: Simulation results for the serial output of Jacobian ECSM with k=3 in
GF(259),
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g done
1§ o8 _perod

(b) k& =mn.
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Figure 5.22: The simulations for ECSM using Jacobian coordinates with & =n — 1, n,
and n + 1 in in GF(2%%),
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Figure 5.23: The simulations for affine ECSM with k = n — 1.n, and n + 1 in GF(2%%),
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Chapter 6

Optimised ECC operations in GF'(2")

Each level in the hierarchy of ECC operations can be further improved. The initial
hardware implementations for ECSM using Jacobian coordinates and affine coordinates
have been presented previously in chapter 5. This chapter presents methods which have
been explored in this project which aimed to optimise the overall efficiency of ECSM
in hardware. Optimisation of binary field multiplication is presented in section 6.1 and
optimisation for elliptic curve group operations are shown in section 6.2.

6.1 Modfied Binary Field Multiplication

This section presents a modified pipe-lined digit-serial multiplier based on the hardware
architecture proposed by Pan and Lee in [11]. The modified multiplication uses algorithm
6 and is able to perform multiplication in GF(2™) in 2 [y/m/d] + 1 clock cycles.

6.1.1 Design and implementation of modified multipliers

Recall the traditional digit-serial multipliers implemented in section 4.1.2, the clock eveles
required to perform binary field multiplication is defined by ¢ = [m/d]. A pair of integers
p, and & are now used such that kp = g and &k = /q. Zeros need to also be padded to
the multiplicand B so that ¢ = [m/d]| = kp can be satisfied. The hardware design of the
pipe-lined digit-serial multiplier is shown in figure 6.1. This top level hardware design
uses k processing elements (PE) to perform the inner loop (lines 6 to 9) of algorithm 6.
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Algorithm 6 Modified digit-serial multiplication

Input: Binary polynomials A = (a1, ..., ay,a5), B = (bp_1,...,01,by), reduction poly-
nomial f(z) = 2™ 4+ r(z).
Output: C = A-B mod f(x).

1

2 B=3 kp—1""Ba", where B; = Zf;é bigy 577
2 fori=0top—1do
4
5

(i
T

10:

11: C = C mod f(z).

12:

C 0.

D« B

A« %A mod f(z)

for j=0tok—1do

C+«C o Bik.{__jD.

D« D- ¥ mod f(x).

end for
end for

return C.
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Figure 6.1: Modified digit-serial multiplier hardware architecture.
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Figure 6.2: Block diagram for the processing elements used in the modified digit-serial
multiplier.
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Figure 6.3: Flowchart representing the VHDL implementation of the modified digit-
serial multiplier.
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This modified multiplier is composed of three main parts consisting of updating register
Av, the processing elements, and the reduction and accumulation of the Cowut partial
products. In each clock cycle, register Av is updated with Az* mod f(x). The first PE
then has the value of register Av as an input for y/m/d clock cycles followed by zeros
untill the multiplication is complete. The the first PE (PE1l) also has a constant Cin
input of 0. The remaining PEs have the Ain and Cin inputs of the previous processing
element’s Aout and Cout respectively. Figure 6.2 shows the internal hardware of each
processing element. Given the inputs Ain, Bin, and Cin, the processing element computes
the outputs Aout = Ain - 2% mod f(z) and Cout = Cin @ (Ain - Bin). Finally, register
Cv is used to add the partial products from the last processing element’'s (PEy) Cout
such that Cv = ng C'ouf. The number of processing elements and clock cycles for each
digit-size in GF(2%?%) and GF(2*%) are shown in table 6.2.

The design for a modified digit-serial multiplier in GF(2%?%) with the digit-size of 8
(d = 8) will be described here. The number of processing elements required is given by
k = +/[m/d] = /[233/8] = 6. The number of clock cycles is given by 2k = 12 with
the addition of one clock cyele for initalisation, making it a total of 13 clock cycles to
complete a single multiplication. As shown in the flowchart in figure 6.3, there is a sub-
process for setting the PE Bin signals. For this example, the scheduling of Bin inputs for
each processing element is shown in table G.1. The scheduling of Ain inputs for the first
processing element is also shown.

Cycle | PE1_Ain PE1 PE2 PE3 PE4 PE5 PEG6

0 A0 0 0 0 0 0 0

1 Al B[7:0] 0 0 0 0 0

2 A2 B[55:48] B[15:8] 0 0 0 0

3 A3 B[103:96] | B[63:56] | B[23:16 0 0 0

1 Ad B[151:144] | B[111:104] | B[71:64 B[31:24] 0 0

5 A5 B[199:192] | B[159:152] | B[119:112] | B[79:72] | B[39:32 0

6 0 B[247:240] | B[207:200] | B[167:160] | B[127:120] | B[87:80 B[47:40
¥ 0 0 B[255:240] | B[215:208] | B[175:168] | B[135:128] | B[95:88
8 0 0 0 B[263:256] | B[223-216] | B[183:176] | B[143:136]
9 0 0 0 0 B[271:264] | B[231:224] | B[191:184]
10 0 0 0 0 0 B[279:272] | B[239:232
11 0 0 0 0 0 0 B[287:280
12 0 0 0 0 0 0 0

Table 6.1: The scheduling of Bin inputs for each processing element in GF(2%%%) when
d=8.
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GF(2%%) GF(2*%)
Digit-size | #PEs | Clock cycles Digit-size | #PEs | Clock cycles
1 16 33 1 17 35
2 11 23 2 12 25
4 8 17 4 ] 19
8 G 13 8 G 13
16 4 9 16 5 11
32 3 7 32 3 7
64 2 ] G4 3 7

Table 6.2: The number of processing elements (PEs) and clock cycles for each digit-size
implemented in GF(22%) and G F(2%3.

6.1.2 Simulation of modified multipliers

This section shows the simulations for the verification of modified digit-serial multipliers.
These simulations were compared with results of those used in the traditional digit-serial
multipliers but a focus here is shown on the clock cyeles required to complete a single
multiplication. The simulations for the modified digit-serial multipliers for d = 1, 2, 106,
and 32 are shown in figure 6.4 for GF(2*%) while figure 6.5 shows the simulations for

G F(2%%). These results reflect the calculated clock cycles as shown in table 6.2.
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(a) d = 1.

1§ Uk _poiiod

(b)d=2.

(c) d = 16.

& ak_penca

(d) d = 32.

Figure 6.4: The simulations for the modified digit-serial multiplication with d = 1. 2,
16, and 32 in in GF(2%9).
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(a) d=1.

NN

(c) d = 16.

& ok periad | I

(d) d =32

Figure 6.5: The simulations for the modified digit-serial multiplication with d = 1, 2,
16, and 32 in GF(2%%),
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6.2 Binary field Elliptic Curve Group Operations

The previous implementation of ECSM using the double and add method in chapter 5
performs ECSM with an inconsistent computation time which is unfavourable in hardware
design. This section proposes methods to improve the efficiency of this ECSM implemen-
tation in FPGA. The first improvement in section 6.2.1 modifies the sequential double
and add method so that these operations are performed concurrently. The use of elliptic
curve point doubling and elliptic curve point addition was then combined and optimised
in section 6.2.2.

6.2.1 Concurrent ECPA and ECPD

Previously, the method for elliptic curve scalar multiplication using algorithm 5 produced
a variable time which is undesirable for hardware implementations. Rather than per-
forming point addition then point doubling, concurrent techniques in hardware have been
used to perform elliptic curve point doubling and elliptic curve point addition simultane-
ously. This brings advantages such as a decrease in total time, and that ECSM can be
performed with a constant computation time. The initial implementation of ECSM will
have the the worst case computation time of m x (PA + 2) +m » (PD + 2) + 1, where
PA is the clock cycles required to perform ECPA, and PD is the clock eycles required
to perform ECPD. The time to execute ECSM using the concurrent double and add will
now be m % (PA + 2) + 1 since each iteration of the key will wait for one execution of
point addition regardless of the current bit of the key being a 1" or a "0’ or the conditions
of elliptic curve point addition.

This concurrent module is shown in figure 6.6 which uses the same hardware architec-
ture for Jacobian point addition and point doubling as presented in figure 5.7 and figure
5.6 respectively. Given two input points P and (). this module will compute the outputs
2P and @ + P. The done signal is associated with the last output of the internal point
addition module since it has the longest critical path. The done signal will be used to
indicate the completed execution of ECPA and ECPD.

This module was then used for the design of a concurrent Jacobian ECSM architecture
proposed in figure 6.8. This hardware architecture produces results in Jacobian coordi-
nates. Conversion from Jacobian to affine coordinates will be required as presented in
section 5.2.3. This architecture uses a register for the count, a register for the current
state (currentST), and 6 registers for the x, y and z coordinates of point P and point ().
Paoint P is used to donble the initial input point for each iteration of the key bits while
point @ is used for the accumulation of point addition for each of bit of the key that is
717, At the complete iteration of all key bits, (J(x, y, z) registers contain the final result
of k= P.
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Figure 6.7: Hardware architecture for concurrent ECSM using the “double-and-add”
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Figure 6.8: Flowchart representing the VHDL implementation of concurrent ECSM
using Jacobian coordinates.

6.2.2 Optimised Jacobian ECSM
Combined Jacobian ECPD and ECPA

This subsection uses an optimised Jacobian point addition and point doubling which takes
the input A(X,Y, Z), and generates the coordinate outputs for 24 and 24 + P, where
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P is the base point given by NIST. One example is for the input P, the outputs will
be 2P and 3F. Another example is for the input 3P, the outputs will be 6P and 7TP.
This combined hardware architecture will be referred to as the Jacobian point addition
and point doubling (PAPD) module. The hardware architecture will always compute the
“double” and “double plus P”, where P is the base point determined by NIST in appendix
A. This optimised PAPD module is shown in figure 6.9. This architecture has reduces the
area of binary field operations to just 23 multiplication modules and 11 addition modules
which is a lot less than that shown previcusly for Jacobian ECPA and ECPD.

Optimised Jacobian Controller

This optimised implementation performs the ‘double and add’ method from left to right
and ECSM can be achieved in (m — 1) = (PAPD + 2) clock cyvcles, where PAPD is the
latency required for the PAPD architecture. Just like the Jacobian ECSM architecture
presented in chapter 5.2, the conversion from Jacobian to affine coordinates must also be
performed afterward. The hardware architecture for the optimised Jacobian controller
using the Jacobian PAPD module is shown in figure 6.10.

This hardware architecture uses two counters to control the ECC operations during
ECSM. A counter count is used to iterate through the bits of the key, and another counter
couni_PAPD which is used to indicate when the Jacobian PAPD module is complete.
PA(xz,y, z) will be used to refer to the X3, Y, and Z; coordinates which result from the
Jacobian PAPD module as shown in figure 6.9. PD(x,y, z) will be used to denote the
values for X, Y5, and Z, of the PAPD module. A simplified high-level Howchart is shown
in figure 6.11. The registers for Q(x,y, z) are initialised with the base point as specified
by NIST in appendix A if the key(m — 1) =’ 1’, otherwise it is initialised with (0,0, 0).
Count is initialised with m — 2 while count_PAPD is initialised with 0. Another register
is used to store the results of PD(z,y, z) of the PAPD module.

In each iteration, (@ is used to accumulate the addition of points depending on the value
of key(count) and the current values for PD{x,y, z). The conditions used to determine
the next values for the Q(x,y, z) registers is shown by table 6.3 which represents the
comparator logic and outputs of the multiplexor connected to it as shown in figure 6.10.
After each iteration of the key, count_PAPD is set to 0 and the PAPD module is run.
Since the critical path of the PAPD module is TM + 7, an additional clock is given for
saving the values in a register. ECSM is completed once the count is 0, and count p AP D
is TM + 8.

Conditions Next Register Value for Q(x,y, )
PD(z,y,2)=1P P
key(count) =*1" | PD(x,y,z) = (0,0,0) 2P
all others PA(z,y,z)
key(count) = 0 - PD(z,y,z2)

Table 6.3: The conditions for ECPA which determine the next values for the registers
representing Q(x, y, z).




68

Chapter 6. Optimised ECC operations in GF(2™)

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage B

X1 Px Py
_1 —
Legend
& O .
r'\__/’] ) -
I o
W :
Stpaarig

/,l_
ollleXXo
x|
G
Xa Yo Zs Y3 Xg Z3

Figure 6.9: Hardware architecture for the optimised Jacobian PAPD. The blue modules
for the Galois field operator modules are used to perform Jacobian point doubling, where
as the black modules are used to compute Jacobian point addition.
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Figure 6.10: Hardware architecture for ECSM using the Jacobian PAPD module.
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Figure 6.11: Simplified flow-chart for the optimised Jacobian ECSM using PAPD. The

temporary values which update registers (}(x, y, z) is shown by the conditions in table
6.3.
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6.2.3 Simulations for ECSM optimisations.

This section presents the simulations using Xilinx [Sim for the optimisations of ECSM
over the binary field. The focus of the simulations shown here is to show the clock eveles
required to perform a single ECSM. The actual output values of ECSM were checked
with tests for ECSM in chapter 5. Figures 6.12 and 6.13 show the concurrent Jacobian
implementation of ECSM with & = 3 and & = n — 1 respectively. From these simulations
it is shown that a constant computation time for ECSM is obtained regardless of the key.
The 283-bit implementation of coneurrent Jacobian ECSM is also shown in figure 6.15
and figure 6.16 for k=3 and k = n — 1 respectively. The simulations for the optimised
Jacobian ECSM using the PAPD module is then shown in figure 6.14 for GF(2**) and
in figure 6.17 for the implementation in G F(2°%),

13.316.500 ne

Figure 6.13: Simulation results for concurrent Jacobian ECSM with & = n-1.

Figure 6.14: Simulation results for Jacobian ECSM using the PAPD module with £ =
n-1.
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Figure 6.15: Simulation results for concurrent Jacobian ECSM with £ = 3.

Figure 6.17: Simulation results for Jacobian ECSM using the PAPD module with & =
n-1.




T2

Chapter 6. Optimised ECC operations in GF(2™)




Chapter 7

Results and discussion of ECC
operations

This chapter presents the results and analysis of the hardware design and implementations
used in this project. The technology used for synthesis of the design in FPGA is the
Xilinx Virtex-6 (XC6VLX760-2f1760) device. The aim of this research was to produce
an efficient implementation of ECSM where a focus was used on reducing the latency
in terms of clock cyeles through the use of efficient algorithms and concurrent hardware
architectures. The hardware implementation of Galois field operations over a binary
field presented in chapter 4 will be analysed in terms of area and time in section 7.1 for
inversion, traditional digit-serial multipliers, and modified digit-serial multipliers. The
results for the hardware implementation of ECSM in GF(22*) and G F(2*%) are then
shown in section 7.2, which show the area and time complexities for the basic methods of
implementing ECSM in affine coordinates and Jacobian coordinates in chapter 5 and the
optimisations in chapter 6.

7.1 Results for Galois Field Arithmetic in GF(2™)

7.1.1 Inversion

Binary Field | Clock eveles | Clock period | Frequency | Slices | Time |  Area-Time
(ns) (MHz) (ps) | (slicesxtime)
GF(2%93) 468 3.709 269.640 542 1.74 940.81
GF(2%3) 568 3.718 268.962 618 2.11 1,305.11

Table 7.1: Synthesis results for inversion in GF(2%3) and GF(2*%)

7.1.2 Traditional Digit-Serial Multipliers

Digit-serial multipliers with the digit sizes of 1, 2, 4, 8, 16, 32 and 64 bit hardware
implementations were proposed previously in section 4.1.2. The results shown by the

73




T4 Chapter 7. Results and discussion of ECC operations

synthesis reports show that an increase in area from higher digit-sizes for a reduction of
time is able to achieve much better area-time than bit-serial multiplication. As the digit
size doubles, the clock-cyeles required to complete a single multiplication is halved due
to the fact that clock cyeles is determined by m/d for traditional digit-serial multipliers.
The trade-off for this reduction of clock-cveles is the increase of area. The results for the
G F(223) implementation of traditional digit-serial multipliers is shown in table 7.2. These
results reveal that area-time is improved from digit-sizes 1 until 32, where the trade-off
for more area and less time is no longer worth it for the 64-bit digit-serial multiplier. The
synthesis results for the GF(2%*) bit implementation is shown in table 7.4. This table
shows a similar trend where the area-time is improved as the digit-size increases for all
digit-sizes implemented.

7.1.3 Modified Digit-Serial Multipliers

The modified digit-serial multipliers were implemented as discussed in section 0.1 for the
digit sizes of 1, 2, 4, 8, 16, 32 and 64 bits. The GF(2%3) and G'F(2%%) implementation
results of these modified multipliers are shown in table 7.3 and table 7.5 respectively. The
clock eyeles required to complete a single multiplication using the modified digit-serial
multiplier is given by 2 [sgrtm/d]. The modified multiplier with the best area-time is for
the digit-size of 4 for both the 233-bit implementation and the 283-bit implementation.

7.1.4 Comparison of multipliers

Both the fraditional digit-serial multipliers and the modified digit-serial multipliers have
their own advantages and disadvantages. Graphs which compare the multipliers in G F/(22%)
in terms of time, area and area-time are shown in figure 7.1. The comparison of G F(2%%)
is then shown in figure 7.2. The multiplier with the best area in terms of slices is achieved
by the traditional bit-serial multipliers (d = 1). However, this has the slowest computa-
tion time. For high-speed implementations, the modified digit serial multipliers should
be used for the best computation time at the expense of a lot of area being used. The
implementation of modified digit-serial multipliers offer better area-time than traditional
digit-serial multipliers in GF(2%%) for the digit-sizes of 1, 2, 3 and 4. In GF(2*%) the
modified multipliers also offer better area-time for the digit-sizes of 1, 2, 4, 8 and 32.
For optimal area-time the traditional digit-serial multipliers should be used rather than
the modified digit-serial multipliers, where the best overall area-time is achieved for the
digit-size of 32 for GF(2°%) and 64 for GF(2*). In order to achieve an efficient im-
plementation of ECSM, the multipliers with the most optimal area-time were then used
to implement ECPA, ECPD. The results of these implementations are discussed in the
following section.
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Digit-size | Clock cyeles | Clock period | Frequency | Slices | Time | Area-Time
(ns) (MHz) (ns) | (slicesxtime)

1 233 3.085 324.180 320 | 718.81 | 230,017.60

2 117 3.131 319.425 350 | 366.33 | 128,214.45

4 58 3.310 302.143 512 | 19529 | 99988 .48

8 30 3.588 278.707 785 | 107.64 84.497.40

16 15 3.288 304.179 | 1,377 | 53.03 | 73.015.43

32 3 3.535 282.852 | 1,525 | 2828 | 43,127.00

64 4 3.607 277.230 | 3,340 | 14.43 | 48,189.52

Table 7.2: Synthesis results for the 233-bit implementation of traditional digit-serial
multipliers.

Digit-size | Clock cycles | Clock period | Frequency | Slices | Time | Area-Time
(ns) (MHz) (ns) | (slicesxtime)

1 33 2.533 394.86 1,750 | 83.59 | 146,280.75

2 23 2.042 489.61 1,430 | 46.97 | 67,161.38

4 17 1.779 561.97 1,806 | 30.24 | 54,618.86

8 13 1.651 60553 | 3,015 | 18.16 | 54,755.42

16 9 2.031 492,45 4,071 | 18.28 74,413.81

32 in 2.195 45548 | 5,501 | 15.37 | 84,522.87

G4 ] 2.620 381.74 | 6,530 | 13.10 |  85,543.00

Table 7.3: Synthesis results for the 233-bit modified digit-serial multipliers.

Digit-size | Clock cyeles | Clock period | Frequency | Slices | Time | Area-Time
(ns) (MHz) (ns) | (slicesxtime)

1 283 3.309 302.19 584 | 936.45 | 546,885.05
2 142 3.599 277.88 354 | 511.06 | 180,914.53
4 71 3.648 274.15 508 | 259.01 | 131,576.06
8 36 3.933 254.27 743 | 141.59 | 105,199.88
16 18 3.857 259.27 1,470 | 69.43 | 102,056.22
32 9 4.057 246.51 2,028 | 36.51 74,048.36
64 5 3.717 269.02 3,765 | 18.59 69.972.53

Table 7.4: Synthesis results for the 283-bit implementation of traditional digit-serial

multipliers.
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Digit-size | Clock cycles | Clock period | Frequency | Slices | Time | Area-Time
(ns) (MHz) (ns) | (slicesxtime)
1 35 2.155 464.08 2,117 | 75.43 | 159.674.73
2 25 1.965 508.80 1,928 | 49.13 |  94,713.00
4 19 1.607 622.37 2,347 | 30.53 | 71,660.95
8 13 1.801 555.32 3,633 | 23.41 85,059.43
16 10 2.042 489.79 5,003 | 20,42 | 102,161.26
32 7 2.196 455.41 5,839 | 15.37 | 90,587.20
G4 7 2.613 382.71 10,024 | 18.29 | 183,348.98

Table 7.5: Synthesis results for the 283-bit modified digit-serial multipliers.

ECSM Method | Clock cycles | Clock period | Frequency | Slices | Time | Area-Time
(ns) (MHz) (pes) | (slices xtime)
Affine 174.885.00 4.346 230.08 11,652 | 760.05 | 8,856,105.05
(sequential ) (average)
Affine 116.734 4.271 234.12 10,851 | 498.57 | 5,409,992.99
(concurrent)
Jacobian 17,188 4.784 209.02 | 45,821 | 82.23 | 3,767.741.33
(sequential ) (average)
Jacobian 13,315 4.710 212.31 44,433 | 62.71 | 2,786,555.61
(concurrent)
Jacobian 15,579 4.027 248.35 35,997 | 62.74 | 2,258.330.58
(PAPD)

Table 7.6: Synthesis results for the ECSM over the binary field GF(22%).

ECSM Method | Clock eyeles | Clock period | Frequency | Slices Time | Area-Time
(ns) (MHz) (ps) | (slicesxtime)
Affine 251,035 1614 216.71 | 21,300 | 1,158.28 | 24,681,692.42
(sequential ) (average)
Affine 167,537 4.414 226.58 20,101 739.51 | 14,864,856.70
(concurrent)
Jacobian 14,050 4.590 217.86 36,412 64.49 | 5,572,666.67
(sequential ) (average)
Jacobian 11,060 4.824 207.298 | 85,612 53.35 | 4,567,694.71
(concurrent)
Jacobian 12,996 4.G689 213.266 | 74,824 60.94 | 4,559,643.17
(PAPD)

Table 7.7: Synthesis results for the ECSM over the binary field GF(22%).
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Binary Field | Clock eycles | Clock period | Frequency | Slices | Time | Area-Time
(ns) (MHz) (pes) | (slicesxtime)

GF(2%9) 16,048 1.033 247.928 | 35,615 | 64.72 | 2,305,059.21
GF(2%) 13,565 4.689 213.266 | 69,908 | 63.61 | 4,446,588.17

Table 7.8: Synthesis results for the most efficient ECSM over the binary field GF(22%)
and GF(2**) with serial inputs and outputs.

7.2 Comparison of ECSM hardware implementations
over GF(2™)

Operation Complexity in terms of clock cycles
Addition

Traditional digit-serial multiplication

1
[m/d]
2% [/m/d] +1

Modified digit-serial multiplication

Inversion 2m+2

Affine Point Doubling (APD) 3M+5+Inversion

Affine Point Addition (APA) 3M+T7+Inversion
Jacobian Point Doubling (JPD) SM+2

Jacobian Point Addition (JPA) GM+5

Jacohian PA and PD (PAPD) TM-+7

Conversion 4M+-Inversion

Affine ECSM (sequential) (m/2)*(APA+2)+m*(APD+2)+1
Affine ECSM (concurrent) m*(APA+2)+1

Jacobian ECSM (sequential)
Jacobian ECSM (concurrent)
Optimised Jacobian ECSM

Serial-in-parallel-out (SIPO)
Parallel-in-serial-out (PISO)

(m/2)*(JPA+2)4+m*(JPD+2)+ 1+ Conversion
m*(JPA+2)+1+Conversion
(m-1)*(PAPD+2)+Conversion
m+ 1
m+ 2

Table 7.9: Summary of latencies for each operation involved in ECC where m is the
bit-size of the binarv field, M is the clock eyeles required to perform one multiplication
by either fraditional digit-serial multiplication or the modified digit-serial multiplication,
and d is the chosen digit-size.

In order to achieve the most efficient implementation of ECSM, the most efficient imple-
mentation of Galois field arithmetic should also be used. This research project focused on
using different multipliers where the traditional digit-serial multipliers have been revealed
to produce the best area-time with the digit-size of 32 for GF(2%3) and the digit size
of G4 for GF(2?%). The following implementations of ECSM used these multipliers for
the construction of affine point addition, affine point doubling, Jacobian point addition,
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Jacobian point doubling and for Jacobian to affine conversion modules. The following
methods of ECSM were then constructed for sequential affine and Jacobian elliptic curve
scalar multiplication as shown in chapter 5, where these implementations were then op-
timised for a concurrent implementation of ECSM and also a combined Jacobian point
addition and point doubling implementation as presented in chapter 6. The results for
the GF(2%%) implementations of ECSM are shown in table 7.6 and the results for the
GF(2%3) implementations are shown in table 7.7.

The total number of clock cycles required to perform a single ECSM are summarised
in table 7.9 which shows the general formulas required to calculate the latency for each
operation needed. The total clock cycles will vary depending on the multiplier used, the
coordinate system, and the method of using ECPA and ECPD modules for performing
ECSM. The clock cyeles required for a single ECSM can be caleulated by using table 7.9
and substituting the methods used. The total clock cycles calculated are also reflected as
shown in the simulation results.

An example of calculating the clock cycles for the implementation of ECSM over the
binary field GF(2%3) using the Jacobian coordinate system, concurrent ECSM methods
and the traditional digit-serial multiplier with a digit-size of 32 is as follows:

Total clock cycles =

= mx(JPA+2)+ Conversion + 1 , where JPA =6M +5+2

= mx*(6M + 5+ 2) + Conversion , where C'onversion = 4M + Inversion
= m*(6M 45+ 2) + 4M + Inversion , where I'nversion =2m + 2

= m*(6M+5+2)+4M +2m+2 , where M =[m/d]

= m=*(6([m/d])+5+2)+4([m/d]) +2m + 2 , where m = 233 and d = 32
= 233+ (6+8+5+2)+4*8+2%23342
= 13,315

Several observations can be drawn from table 7.6 and table 7.7 to indicate the ad-
vantages of the different types of ECSM methods to achieve the maost efficient hardware
implementation. As discussed in section 6.2.1, a concurrent implementation of ECSM us-
ing affine and Jacobian coordaintes can be achieved with a huge reduction of time, and a
slight reduction of area. For the most area-efficient implementation, the affine coordinate
system should be used since a total of 7 multiplication modules, 13 addition modules, and
2 inversion modules are required to construct ECPA and ECPD. This is significantly less
than that of a the Jacobian implementation for a total of 34 multiplication modules, 11
addition modules, and 1 inversion module is required to construct the Jacobian ECPA,
ECPD, and conversion from Jacobian to affine coordinates. Although an implementation
in affine coordinates uses the least area, its computation time is extremely slow where
ECSM takes 498.57 ps in GF(2%%) and 739.51 ps in GF(2%*%). This is up to 13 times
slower than an implementation in Jacobian coordinates for both concurrent implementa-

tions of ECSM.
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The implementation of ECSM with the best time is the concurrent version of Jacobian
coordinates which is shown for both GF(2%%) and G F(2%%) where a computation time of
6G2.71 ps and 53.35 pus is achieved respectively. It would be expected that the larger field
of GF(2*%) would have a longer computation time. However, this is due to the fact that
a 64-bit traditional digit-serial multiplier has the best area-time for GF(2%%) while the
32-bit traditional digit-serial multiplier had the best area-time for binary field GF(2%9).
This means that the multiplication used in the GF(2%) takes 8 clock cycles compared
with the 5 clock eyeles in GF(2283).

Finally the most efficient implementation of ECSM is achieved using the optimised
Jacobian ECSM with the combined Jacobian PAPD module. This is shown in table 7.6
and table 7.7 where the best area-time for an ECC hardware architecture is obtained.
Table 7.8 shows the final results including the SIPO and PISO modules. The results
show that a single scalar multiplication in GF(2%%) takes 16,048 clock cycles, has the
computation time of 64.72ps and occupies 35,615 slices. A single ECSM is also performed
in 13,565 clock cycles in 63.61us and occupies 69,908 slices for the binary field GF(225%),

The final results from this work is then compared with recent hardware implemen-
tations of ECS5M found in the literature as mentioned in chapter 2. Table 7.10 shows
a comparison for the computation time to perform a single ECSM. It shows that the
design of ECSM used for this research is faster than most designs except for that by
Sutter [23]. The work in this paper performs ECSM slightly faster than Lutz and Hassan
who used Itoh and Tsuji’s method for inversion and Lopez-Dahab coordinates for ECSM
in GF(2'%). Their results indicate a slower ECSM architecture where the work presented
in this research for larger binary fields GF(2%%) and GF(2%¥) is still faster. However,
the circuit designed by Sutter is 3 times faster than this implementation in GF(2%*) and
almost twice as fast for the G'F(2°%) implementation of ECSM. Their work uses a similar
approach by using digit-serial binary operations for multiplication, division and use the
Montgomery ladder method for ECSM. This indicates the disadvantages of the hardware
implementation of the current system where better inversion techniques can be used as
well as the use of improved coordinate systems.
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| Cirenits Bit-Size | Device | Time (ps)
This design 233 Virtex-6G 64.72
This design 283 Virtex-6 63.61
Govem [3] 233 Virtex-5 240
Sutter [23] 233 Virtex-5 7.8
Sutter [23] 283 Virtex-5 33.6
Lutz and Hasan [13] 163 Virtex-E 75
Loi [12] 163 Virtex-5 59.15
Loi [12 233 Virtex-5 84.19
Loi [12 283 Virtex-5 102.10
Shu [22] 163 Virtex-E 48
Shu [22] 233 Virtex-E 89

Table 7.10: Comparison of the ECSM implementations with other work.




Chapter 8

Conclusions and Future Work

8.1 Conclusions

The primary aim of this project was for an efficient FPGA implementation of ECSM over
the binary fields G F(22%) and GF(22%). A literature review was conducted to analyse the
hardware architectures and algorithms used at each level of the elliptic curve hierarchy of
operations from the Galois field arithmetic to ECPA, ECPD and ECSM methods. Several
algorithms and hardware implementation methods were then chosen to be implemented,
where the efficiency in terms of area and time were measured and analysed in chapter 7.

Initial Galois field operations were designed and implemented as presented in chapter
4 with a focus on the implementation of efficient multipliers. For all the hardware imple-
mentations used in this research project, addition was implemented using bit-wise XOR,
and inversion was implemented using the modified extended Euclidean algorithm. Binary
field multiplication was designed for several digit-sizes for d = 1, 2, 4, 8, 16, 32, and 64 so
that the most efficient multiplier can be used for constructing the hardware to perform
elliptic curve group operations.

Two coordinate systems were then compared, namely the affine coordinates and the
Jacobian coordinates as presented in chapter 5. These required different ECPA and ECPD
modules which were constructed with the most efficient binary field operations explored
in this research project for multiplication, inversion and addition. It is concluded that an
implementation in affine coordinates produces results with the best area but will have a
significantly longer computation time than the implementation in Jacobian coordinates
due to an inversion required every time ECPA and ECPD is performed. With the current
Galois field modules designed in this research the Jacobian hardware implementation of
ECSM obtains the faster computation time and efficient area-time.

The optimisation of ECC operations were then presented in chapter 6. These optimi-
sations aimed to obtain more efficient multipliers by reducing the number of clock cycles
required through the development of modified digit-serial multipliers with various digit
sizesof d =1, 2, 4, 8, 16, 32, and 64. The comparison of these modified-multipliers and the
traditional digit-serial multipliers shows that for the binary fields GF(2%%) and G F(2%%),
the traditional digit-serial multipliers are able to obtain the best efficient area-time out

83
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of the digit-sizes explored. The modified digit-serial multiplications would be suitable for
high-speed based applications of ECC.

Finally, an efficient hardware architecture for computing ECSM over the binary fields
GF(2%) and GF(2%%) has been successfully implemented using FPGA as shown in this
research. Two types of multipliers were explored being the traditional digit-serial multi-
pliers and the modified digit-serial multipliers so that the efficiency and trade-off in terms
of area and time can be analysed. It was concluded that the the traditional digit-serial
multipliers with the digit size of 32-bits for GF(2%*) and 64-bits for GF(2*3) obtain
the best area-time. On a Xilinx Virtex-6 device, elliptic curve sealar multiplication is
performed using the optimised Jacobian PAPD method. This ECSM processor performs
a single point multiplication in 62.74ps occupying 35,997 slices for GF(22%). For an
implementation in GF(2%9), a single ECSM takes 60.94pus and has the area of 69,908
slices.

8.2 Future Work

The outcome of the research presented in this thesis is that an efficient ECSM hardware
architecture for the binary fields GF(2%) and GF(2%) was achieved. The methods
explored had a high focus on improving binary field multiplication and the comparison
between affine coordinates and Jacobian coordinates. The results obtained were limited
to the binary field of GF(2%%) and GF(2%**). To obtain more complete conclusions,
hardware implementations for ECSM in the remaining NIST recommended curves must
be conducted for GF(2'%%), GF(2'%) and GF(2°™). Accurate conclusions may then be
drawn once these binary fields have been implemented such as the use of modified digit-
serial multipliers are expected to have better performance in larger binary fields.

The ECSM hardware design for use in ECC in this research can also be further opti-
mised. There are multiple appealing algorithms and hardware architectures which were
reviewed in the literature that were not used in this design. At the Galois field arithmetic
level, the use of digit-parrallel multipliers and their efficiency in terms of area and time can
also be analysed and compared with the results of this research. Another area of focus to
improve the efficiency of inversion or division algorithins which is the most costly binary
field operation which makes affine-coordinates unappealing. Further improvements have
also been identified from exploration of different coordinate systems which will reduce
the number of underlying binary field operations and overall area such as Lopez-Dahab
projective coordinates or the Mongtomery method for ECSM.
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Abbreviations

AES
APA
APD
ECC
ECDH
ECDLP
ECDSA
ECPA
ECPD
ECPM
ECSM
EPA
EPD
EXE
FFA
FPGA
GF
GFA
INI
ISE
JPA
LUT
NAF
NIST
PA
PAPD
PD

PE
PISO
RST

Advanced Encryption Standard
Affine Point Addition

Affine Point Addition

Elliptic Curve Cryptography
Elliptic Curve Diffie-Hellman
Elliptic Curve Discrete Logarithm Problem
Elliptic Curve Digital Signature Algorithm
Elliptic Curve Point Addifion
Elliptic Curve Point Doubling
Elliptic Curve Point Multiplication
Elliptic Curve Secalar Multiplication
Execute Point Addition

Execute Point Addition

Execute

Finite Field Arithmetic
Field-Programmable Gate Array
Galois Field

Galois Field Arithmetic

Initialise

Integrated Software Environment
Jacobian Point Addition

Look Up Table

Non-Adjacent Form

National Institute of Standards and Technology

Point Addition

Paoint Addition and Point Doubling
Paoint Doubling

Processing Element
Parallel-In-Serial-Out

Reset
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RSA Ron Rivest, Adi Shamir and Leonard Adleman cryptosystem

SIPO Serial-In-Parallel-Out

VHDL VHSIC Hardware Description Langnage

VHSIC Very High Speed Integrated Circuit

XOR Exclusive-or

XST

Xilinx Synthesis Tool




Appendix A

NIST curves for the binary field
GF(2?%%) and GF(2%%)

B23:m=233, f(2)=:2"4:741, a=1, h=2

§= 0x 74D59FF) 7F6B413D 0EAl4334 4B2042DE 049850C3

b= 0: 00000065 647EDEGC 332ZCTFSC 0923BB58 2130333F 20ESCE4Z S1FELLSE 7DSF9AD

# = 0x 00000100 CO0D00DD 00000000 0000D00C 0DL3IESTd ET2FBAGY 22031DZ6 03CFEODT

x = 0x 000000FA CY9DFCBAC 83138321 39F1BB7S SFEFGSBC 331FBB36 FAFBEBTI T1FDSS58B

y= 0 00000100 6AQ8A4193 (03350578 E38528BE BFSAJBEF F3€VATCA 3€716FJE (01FE1052

B283:m=283, f(2)=z 422474541, a=1, h=2

§ = (x 77E2B073 FOEBOFA3 2A6DD526 2DFCHACD 053B4BE

b= 0x027B680A CEBE5Y6D ASA4AFSA 19A0303F CAYTFDT6 45308FA2 A581485A FE263E31
3BTOA2FS

# = 0x O3FFFFFF FFEFFFFF FEFEFEFF FFFFFFFF FFFFEFS0 33966CFC 93828016 SB042A7C

EFADR30T

x = 0x05P53925 EDBTDDY0 E1934F8C TOROCFEC 2EED2SEE 557EACIC BOEZE1SE FECDRECD
BE6B12053

y= 0x 03676854 FE24141C B9BFEsl4 BZ0DD2B4 516FF702 350EDDBO B2€779C8 12IF(DF45
BEB112F4

K-23%:m =233, flo)=z"+:" 41, a=0, b=1, h=4

= 0x 00000080 Q0000000 COOOOO0D COOGOOOOD OCOG9DSE B915BCD4 EEFBIADS F173AEDF
x= 0x 00000172 32BA833A TET3I1AF]l ZO9F22PF4 149563A4 19CZ6BFI QRACUDEE EFADELZE
y= 0x 00000102 S3ITDECES 19BTET0F SSSA67C4 27AECDYE F1lEAERID SEECCL10 SEFAEGA3
K-283:m =283, f(2)=z 42242742341, a=0, b=1, h=4

7t = 0x 01FFFFFF FFFFFFFF FFFFFFFF FFFFFEFF FFFFESAE 2ED07577 2E5DFFTF 94451E06

1E153CEL

x= 0x 0503213F T8CA4488 3FLA3BB1 62F1BBE5 53CD265F 23C1567h 1E€E76913 BOCZACZY
584928386

¥= 0x 01CCDA3S (FLCOZ31 EDH0FI3D (TES426F EETE45CO EC€164698 E4586236 4E341161
77002259

Figure A.1: The NIST recommended random and Koblitz curves and parameters for
the binary field GF(2%*%) and GF(2*%) [7].
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Appendix B

Supervisor Consultations

Appendix B shows the attendance sheet required for this project for supervisor consulta-
tions and participation.
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B.1 Supervisor Consultation Attendance Form

Consultation Meetings Attendance Form
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Figure B.1: Attendance sheet for the weekly consultation meetings with the supervisor.
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