
Chapter 1

Introduction

In this chapter of the study, introduction is presented. Initially, the background on

Artificial Intelligence (AI) and agent technologies is summarised. Then, motivation

and contributions of this dissertation study are presented. Finally, the organisation

of the dissertation is given.

1.1 Background

The idea of representing intelligence on machines dates back to the 18th century.

Initially, one of the most popular games requiring intelligence, chess, became the first

application area of Artificial Intelligence [200]. The chess game has a single objective

and it has very strictly defined rules; therefore, it is rather easy to imitate on machines.

In 1769, Wolfgang von Kempelen invented “Türk” which is a mechanical chess player.

Although it is just a quasi automaton, “Türk” is one of the most meaningful attempts

in the Artificial Intelligence field [97].

The idea of von Kempelen was so attractive that even poet and writer Edgar Allen

Poe [181] wrote an article on this pseudo automaton. In the article “Maelzel’s Chess

Player”, Poe tried to explain actions that were performed by “Türk”. The first real
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chess playing system was designed by Torres y Quevedo. He introduced a machine

that plays an end game with king against king and rook [227].

In 1920, Rossum’s Universal Robots was written by Czech novelist Karel Capek.

In this book, the term “robot” was coined to refer to intelligent humanoid machines.

This science fiction book concerns robots that revolted against their human masters.

Through this book, the term robot came to replace the terms automaton and android

[66].

Even though these ideas on machines that somehow simulate intelligence were

proposed before the 20th century, the term Artificial Intelligence was not coined until

the 1950s. In “Computing Machinery and Intelligence”, Alan Turing [224] asked

if machines could think. Having been inspired by this question, Marvin Minsky,

John McCarthy, Nathaniel Rochester and Claude Shannon organised the Dartmouth

Conference in 1956 [229]. The proposal of the conference provided a framework for

the notion of Artificial Intelligence with the following sentence [160]:

“The study is to proceed on the basis of the conjecture that every

aspect of learning or any other feature of intelligence can in principle be

so precisely described that a machine can be made to simulate it.”

At the conference, the term Artificial Intelligence (AI) was coined by McCarthy.

At the same conference, the first Artificial Intelligence program Logic Theorist was

presented. This program was developed by Allan Newell and Herb Simon to expose

a view on theorems in symbolic logic [81]. After these developments, AI started to

become a research domain that focuses on simulating aspects of human intelligence

on machines [171].

In the mid-1950s, Oliver G. Selfridge proposed the term agent which originated

from the ideas of McCarthy [127]. Both researchers stated that agents are softbots

that perform actions in a computer environment where they are situated. Commands



CHAPTER 1. INTRODUCTION 3

are the sensors and effectors of the softbots; by using commands, they interact with

the environment [240]. At that period of time, the term agent did not draw sufficient

attention.

Following these developments in 1970s, researchers began to develop expert sys-

tems based on the ideas lying behind Logic Theorist. Expert systems are built in

order to simulate decision-making processes of human experts. These systems are

devised to assist users in complex processes which include problem analysis and solv-

ing [170]. In the subsequent decade, commercial applications of the expert systems

became popular [108].

However, expert systems are just constructs that ask questions to receive answers.

Based on the answers obtained, they give suggestions on decision alternatives by

the help of their knowledge base. Moreover, these constructs are disembodied which

means that they do not have any effect on the environment.

In 1980, a group of researchers held a workshop at the Massachusetts Institute

of Technology which led to a sub-research domain Distributed Artificial Intelligence

(DAI). Until that time, the AI community was focusing on intelligence as a whole.

However, DAI asserted that intelligence is constituted of distributed properties like

learning, reasoning, and so on. After this workshop, the term agent attracted the

focus of attention. This development gave rise to agent technologies which became a

commonly approved research area [119].

Even though the term agent still refers to situated entities which interact in a

computer environment, the meaning of it has changed slightly. Today, the term

implies entities that represent some aspects of intelligence. In spite of the fact that

there is a debate on what the term agent means, Jennings et. al. [119] put forward

a commonly acceptable definition as follows:

“A computer system, situated in some environment that is capable of

flexible autonomous action in order to meet its design objectives.”
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In this definition, Jennings et. al. [119] put forward three attributes that an

agent should have: situatedness, flexibility and autonomy. They state that the term

situatedness implies entities that are capable of obtaining sensory data and performing

actions to change the environment where they are embodied.

They explained the term flexibility as a capability for performing flexible actions.

They further elaborated this attribute by asserting its three constituents: responsive,

pro-active and social. Entities that can understand their environment and respond to

the changes that occur in their environment are called responsive. Pro-active entities

can perform actions and take initiatives to achieve their objectives. Finally, the term

social implies systems that are able to interact with other entities and also help others

in their activities.

By the term autonomy they were referring to those entities that can perform

actions without the assistance of other entities. Moreover, those entities have the

ability to control their internal state and actions. Russell and Norvig [194] gave a

stronger sense of autonomy by adding that those entities should also have the ability

to learn from experiences. To achieve stronger autonomy, Luck and D’Inverno [150]

suggested that the agents should have motives to allow them to generate goals.

In addition to strong autonomy, to develop human-like intelligent agents, the re-

search has indicated the importance of emotions [22]. Many researchers have stressed

that the core requirement for believable agents is a capability for affect display. There-

fore, to achieve human-like intelligence, intelligent agents should also be capable of

affect display by employing an emotion model.

Some researchers stated that agents could not be limited to these four core at-

tributes; they added that agents can also have some additional properties based on

their design objectives. Bradshaw [34] listed these properties as reactivity, knowledge

level, inferential capability, mobility, temporal continuity, and personality.



CHAPTER 1. INTRODUCTION 5

It must be noted that while developing agents, the commonly approved funda-

mental attributes that a believable agent should have are situatedness, autonomy,

flexibility, and affect display. Assigning other attributes to agents depends on their

design objectives.

Today, the notion of an agent has become central to Artificial Intelligence. There-

fore, agent technologies hold promise to recreate intelligent behaviour in all respects

while trying to imitate these core attributes [239].

Furthermore, agent-based solutions evolved in such a way that they started to be-

come evolutionary societies. Evolutionary agent societies expand agent technologies

further [190]. In such agent societies, agents are capable of seeking each other and

cooperating in a parallel and distributed manner. Channon and Damper [1] state that

evolutionary emergence is a key to generating social agents. In order to achieve this

aim, they suggest adopting neural networks; since, neural networks suitable for in-

telligent behaviour. Along with the core attributes of intelligent agents, evolutionary

agent societies provide a promising way to imitate social phenomenon in the computer

environment.

Recently, artificial neural networks have been adopted in robotics and evolutionary

algorithms. Evolutionary robotics, based on evolutionary agents, are being used as a

scientific tool for studying models of cognition. Such systems can help re-orginise the

conception of human-intelligence [109].

While conceptualising agent architectures, most of the researchers utilize the in-

tentional notion which provides a theoretical infrastructure for agency. They use this

notion while they are trying to satisfy core attributes of intelligent agents. While

explaining intentional stance, Dennett [71] states three levels of abstraction which

help explain and predict the behaviours of entities and objects: (1) physical stance;

(2) design stance: and (3) intentional stance.
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Dennett [71] puts forward physical stance to explain behaviours by utilizing con-

cepts from physics and chemistry. In this level of abstraction behaviours of entities

are predicted by considering the knowledge related with things like energy, velocity

and so on. As an example, it can easily be predicted a ball would fall down to the

ground if it is released from the top of a building. It is due to the fact that there is

gravity on earth and the behaviour of the ball can be anticipated by considering this

physical principle.

Design stance is a more abstract level and at this level of abstraction, the manner

of acting is explained and predicted through biology and engineering. At this level,

things such as purpose, function and existential attributes are taken into account.

It can be predicted that the speed of a car is going to increase whenever we press

on the gas pedal. It is because of the fact that it is known that the gas pedal is

made for increasing the speed of the vehicle. In this case, design stance is utilized to

understand the behaviour of the car.

Last stance is intentional stance which is the most abstract level. At this level

of abstraction, an attempt is made to understand and predict the behaviours of

software and minds by considering mental concepts such as intention and belief. As

an example, if a bird flies away while a cat tries to catch it, it can be understood that

the bird desires to live. This can be comprehended by taking intentional stance into

account.

As stated formerly, the theory of agency is based on the intentional stance. Ac-

cording to this, entities are treated as rational agents. Behaviours of agents are

predicted by considering what beliefs an agent ought to have based on its purpose in

a given condition. Afterwards, an attempt is made to predict what desires the agent

ought to have, based on the same conditions. Finally, it is predicted that a rational

agent will act to achieve its goals under the guidance of its beliefs. From this point

of view, practical reasoning helps towards an understanding of what the agent ought
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to do based on the chosen set of beliefs and desires.

1.2 Motivation and Aims

In the literature, there are several architectures that attempt to mimic human-like

intelligence. These architectures fail to satisfy the aforementioned core attributes all

at once. Most of those studies utilize the intentional notion to simulate human intelli-

gence. To achieve strong autonomy, some of those studies employ learning approaches

while others adopt motivation theories. To simulate affect display, a few studies em-

ploy an emotion model. In this respect, there is no general approach covering all

aspects of the problem. To achieve this aim an approach should employ a learning

model, adopt motivation theories, and utilize an emotion model. Therefore, the first

research question addressed in this study is: “What kind of an agent architecture is

required to cover the core attributes of agents to develop a believable agent?”. The

first major objective of this study is to seek an answer to this research question.

Besides, the existing approaches mainly adopt Means-Ends Analysis or some prob-

abilistic techniques. If fixed values are used to compare different plan alternatives,

this results in choosing the same plan alternative under the same conditions. This is

not sufficient to explain intelligent behaviour. On the other hand, action flexibility

provided by adopting these techniques is similarly not sufficient. It is because of the

fact that for a given set of probabilities the produced behaviour is quite predictable.

Therefore, these approaches are inadequate in simulating the unpredictability of hu-

man behaviour even if the probability matching techniques are utilized.

The question of “How does an agent architecture simulate unpredictability of

human behaviour?” still remains unanswered. The second major objective of this

study is to find an answer to this research question.

In the light of this discussion, this study proposes the development of an agent
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architecture that satisfies the aforementioned core attributes. The other objective

of this study is to simulate the unpredictability of human behaviour. With this re-

spect, the major aim of this study is twofold: (1) to develop a general framework that

covers the core attributes of intelligent beings in order to support the development

of believable agents; and (2) to develop a more realistic decision-making mechanism

while simulating the unpredictability of human behaviour. The major aim in address-

ing these issues is to achieve a general approach to simulate human-like intelligent

behaviour. By addressing these issues, this thesis study attempts to develop a gen-

eral agent architecture to support the development of believable agents with a highly

realistic decision-making mechanism.

1.3 Contributions

In this study, a new approach is proposed to simulate the intelligence of intelligent

beings. This approach is based on three fundamental assumptions. Firstly, it is

assumed that all intelligent entities are intentional. Secondly, all of these beings are

driven by some motives. Thirdly, intelligent behaviour is produced in accordance

with causality.

For this purpose, the intentional notion and theories of needs are combined. It

is proposed that motives, particularly the needs of intelligent entities, drive them to

satisfy their motives while acting intentionally. In the proposed study, needs (i.e.,

motives) are introduced as a nexus. In this manner, the satisfaction obtained by

meeting needs provides the means to measure different alternatives and select among

alternatives. The satisfaction degrees are normally distributed random numbers ly-

ing between 0 and 1 with certain mean values. By providing a degree of randomness

in the decision-making process, the proposed approach promises to simulate the un-

predictability of intelligent behaviour. In this manner, the new approach provides
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enhanced action flexibility.

In this approach while explaining motives, theories of needs are adopted. It is

proposed that decision-making is a process in which intelligent entities produce effects

which yield intelligent behaviour due to some causes. These causes are the conditions

which result from the observation of either the internal state or the external world.

In the decision-making process, the nexus is offered as needs which provide a metric

to measure different alternatives.

Along with these issues, it is proposed that emotions emerge when the needs

of intelligent beings are satisfied or not satisfied. According to this viewpoint, while

satisfaction of lower level needs triggers primitive emotions, meeting higher level needs

results in more complex emotions. Therefore, every need in the hierarchy is associated

with two different emotions. While one of these emotions is positive, the other one

is negative. Whenever a particular need is sufficiently satisfied, it results in the

generation of a positive emotion. If a particular need is not satisfied sufficiently, it

results in the generation of a negative emotion.

In this approach, the effect of emotions on intelligent behaviour is similarly illus-

trated. To illustrate this effect, it is proposed that emotions have a direct influence

over the order of needs. If a particular need is sufficiently satisfied, it results in a

positive emotion. In addition, if a particular need is more than sufficiently satisfied

then it is going to result in strong emotions. Therefore, emotions are categorised as

regular and strong emotions. Strong emotions change the order of the associated need

while regular emotions do not. From this point of view, a strong positive emotion

can bring the associated need to a lower level. While a strong negative emotion can

force the associated need to move to a higher level.

Under the light of these ideas, it is proposed that the term intelligence refers to

an abstract notion to express cognitive processes of autonomous, embodied, flexible,

and social entities which can display affect and learn while they perform activities
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intentionally that are motivated by their needs. The new definition is meant to explain

behaviours of all intelligent entities which are human-beings, animals and agents.

Based on this framework, a new agent architecture called Reactive-Causal Ar-

chitecture (ReCau) is proposed. This architecture is a general purpose architecture

which can be adopted to mimic human intelligence. This architecture is not meant

to be an efficient one but rather it is meant to illustrate the proposed approach.

The major contribution of the current study is that it provides a general approach

that covers the core attributes of believable agents. The other contribution of this

dissertation is that it proposes a new agent architecture ReCau which provides a

guideline to implement the proposed approach. This research study also contributes to

development of highly realistic decision-making mechanism to mimic unpredictability

of human-intelligence.

1.4 The Organisation of the Thesis

The organisation of this dissertation is organised as follows. In the second chapter, the

background on intelligent agent technologies is given. The theoretical infrastructure of

intelligent agents related to intentional notion is presented first. Then, issues related

to multi-agent systems are presented. To support the flexibility attribute, agents

must be capable of communicating and cooperating with one another. Therefore, in

this chapter agent communication and agent cooperation approaches are reviewed.

Finally, a review on agent oriented programming languages is provided.

In the third chapter of the study, the literature on agent architectures is discussed.

Currently, agent architectures are mainly categorised in four groups: (1) deliberative,

(2) reactive, (3) hybrid, and (4) cognitive. In accordance with these categories existing

architectures are explored in this chapter.

In the fourth chapter, the details of the proposed approach are presented. As
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previously stated, in the proposed approach, an attempt is made to combine the

intentional notion and the theories of needs. In this respect, while explaining the

foundations of the proposed approach, the background on the theories of motivation

is also presented.

In the fifth chapter, the details of the proposed architecture called Reactive-Causal

Architecture (ReCau) are elaborated on. ReCau is a three-tiered architecture consist-

ing of reactive, deliberative and causal layers. This architecture is a general purpose

one which can be used to simulate intelligent human behaviour. In this chapter, the

general structure of the architecture is explained. Then the mechanisms and compo-

nents employed in the architecture are elaborated on. Finally, ReCau is compared

with a number of existing architectures.

In the sixth chapter of the study, two simulation studies are presented. The

first simulation is performed to illustrate the action flexibility provided by ReCau.

The second one called the radar task simulation is an organisational decision-making

simulation. To illustrate the decision-making mechanism of the architecture, the

radar task simulation is undertaken. In this task, a collection of agents attempts to

determine whether a blip on a radar screen is a hostile plane, a civilian plane, or a

flock of geese. This simulation was also performed by a few existing architectures;

therefore, it allows for comparison of ReCau with those architectures.

In the last chapter of the study, discussions and conclusions are given. In addition,

the future research directions are discussed.



Chapter 2

Intelligent Agent Technologies

In this chapter of the study, the literature related to intelligent agent technologies

is reviewed. The background on intentional notion which forms the theoretical in-

frastructure of agency is explored first. Then, agent communication and agent coop-

eration approaches are presented. Finally, programming languages that are used to

develop intelligent agents are summarised.

2.1 Agent Theories

There are a few theories on formally representing the properties of the agents [240].

The most common theory for representing the properties of agents is to utilize the

intentional notion [239]. According to this view, agents are designed as intentional

systems by ascribing some mental qualities like beliefs, desires, likes and dislikes to

machines.

The notion of intentionality was first introduced by Brentano [37]. While putting

forward this term, Brentano aimed to form a criterion in order to distinguish mental

from physical phenomena. In his book, he did not try to develop systematic accounts

of intentionality.
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Inspired by the ideas of Brentano, intentional stance was coined by Dennett [69].

He put forward three levels of abstraction in order to understand and predict the

behaviours of systems like animals and computers. These three levels are called

physical, design and intentional stance.

For instance, the actions of a chess playing computer can be predicted by using

these three abstraction levels. The first level of abstraction is called physical stance.

By utilizing this stance, predictions are based on the physical state of the objects.

The predictions are made by applying knowledge related to the laws of nature. From

this stance, it is not possible to understand the actions of a chess playing computer.

However, malfunction of a computer system can be understood at this level of ab-

straction.

Dennett [69] states that in principle, the actions taken by a chess playing computer

can be predicted from physical stance. However, he says that it is pointless to attempt

the prediction of the behaviours of such systems by employing this stance. Moreover,

it is suggested to reserve physical stance for instances of system breakdowns.

Secondly, there is the design stance which takes elements such as purpose, function

and existential attributes into account. If one knows the design details of a computer

system and the programs that are installed on it then the responses of the system

can be predicted by following computation instructions. The predictions are true

provided that the computer performs as designed, which implies that there should be

no breakdowns.

These predictions are actually based on the notion of function. Dennett [69] sug-

gests adopting the design stance to try to understand the responses of mechanical

objects. At this level of abstraction, the predictions are made solely based on the

knowledge and/or assumptions on the functional design of the system. Such predic-

tions are irrespective of the physical constitution or condition of a particular object.
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Dennett [69] suggests intentional stance to predict the behaviours of a chess play-

ing computer instead of the design stance or the physical stance. He states that these

systems become so complex that their behaviours cannot be predicted from the design

stance or the physical stance.

If intentional stance is followed, given the rules and goals of chess, the responses

of a computer can be predicted by finding its best or most rational move. Such

predictions are based on two basic assumptions:

• The computer functions as designed, and

• Design is optimal and the computer will choose the most rational move.

In this manner, a computer can be seen to be rather like an intelligent being

and its movements are predicted. By assuming that a chess playing computer is an

intentional system, its actions can be understood; therefore, while developing such

systems it is reasonable to develop them as an intentional system which has beliefs,

desires, intentions, and goals.

Dennett [70] suggests that intentional systems have different levels of intention-

ality. First-order intentional systems have only beliefs and desires. Second-order

intentional systems have beliefs and desires on their own beliefs and desires and those

of others. By this assertion, he does not only infer beliefs and desires but also means

other intentional stances such as intentions and obligations.

McCarthy [157] goes further by stating the conditions under which intentional

stance can to be ascribed to machines. According to his opinion, it is more appropriate

to use intentional stance for agents and computers when such an ascription expresses

the same information on an intelligent being.

Within the frame of these references, the behaviours of intelligent entities are pre-

dicted and explained through the attribution of attitudes such as believing, desiring,

hoping, fearing and so on. According to intentional stance, the attitudes, that form
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intentions, consist of information attitudes and pro-attitudes. While information at-

titudes cover knowledge and belief; pro-attitudes include desire, choice, commitment,

intention, obligation and so on [239].

Information attitudes are related to the information on a situated environment.

Information attitudes can be categorized in two groups: knowledge and belief. Knowl-

edge can be explained as true information. Belief is something believed or accepted

as true. Beliefs are the information that is obtained by sensing, learning, etc... Pro-

attitudes which include desire, intention, obligation, commitment, and choice guide

actions [240].

Moreover, Dennett [70] stresses that intentional notion explains the human intel-

ligence somehow. However, from the functionalist point of view it lacks in clarifying

all aspects of the human intelligence. In particular, the emergence of intelligent be-

haviour cannot be explained by only intentional notion. But it must be emphasised

that intentional stance provides a very good theoretical infrastructure for agency.

Based on this infrastructure, agent theories provide relations in between several

attributes while trying to explain following issues:

• Relations between information and pro-attitudes,

• Change in the cognitive state of an agent over time,

• Interaction between cognitive state of an agent and the environment in which

the agent is situated, and

• Performing actions in guide of the attitudes.

Moore [161], one of the pioneer agent theorists, attempted to develop theory of

knowledge and action. He researched on the things that should be known by an agent.

He studied on determining pro-attitudes regarding actions. By his model, he recom-

mended which actions should be performed in case of incomplete information. In this
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manner, he determined how agents should achieve their objectives with incomplete

information.

At the same period of time, Cohen and Levesque [59] developed the theory of

intention. While developing their theory they were inspired from Bratman [35]. Ac-

cording to intention theory, following criteria are proposed by Cohen and Levesque:

• Intentions cause problems that are needed to be solved by agents,

• Intention filtering is required in order to prevent conflicts,

• Agents perform actions until they reach their goals even if they fail in some

cases,

• Agents believe that their intentions are possible, and

• Agents believe that they bring about their intentions.

According to these criteria, Cohen and Levesque proposed a new approach. They

developed a logic of rational agency and partial theory of rational action. Logic of

rational agency is defined in terms of relations between other modal logic operators.

There are a lot of proposals on determining combination of attitudes that are

required to build a rational agent [239]. The most popular of these approaches is called

Belief, Desire and Intention (BDI) which is put forward by Rao and Georgeff [185].

As it can be understood from its name, this approach includes three components:

Belief, Desire and Intention.

Beliefs correspond to the information that an agent has about itself and its envi-

ronment. Beliefs can also include inference rules, allowing an agent to generate further

beliefs. Typically, when implementing the BDI approach, beliefs can be stored in a

database (belief base). Here the term belief implies that the relevant information may

or may not be true and beliefs can change in time.
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Desires represent the possible alternatives that can be chosen by an agent. In

other words, desires represent objectives or situations that an agent would like to

accomplish or bring about. Instead of desires, in some cases the term goal can be

used. However, the term goal adds further restrictions that the set of goals must be

consistent.

Furthermore, the attitudes are defined in terms of beliefs and desires. In the BDI

approach, intentions are the choices of an agent. Intentions are the desires to which

an agent has committed. In an implemented system, this means that the agent has

begun executing a plan. Plans are sequences of actions that an agent can perform to

achieve one or more of its intentions. In some cases, plans may include other plans.

In the BDI approach, practical reasoning occurs by updating beliefs continuously

and comparing possible alternatives; therefore, alternatives are filtered to determine

new intentions. According to these intentions, plans are made and the actions are

performed in accordance with the plans.

Another approach is proposed by Singh [204, 205, 206, 207]. He developed logical

infrastructure for representing intentions, beliefs, knowledge, know-how and commu-

nication. His model of intentions and beliefs is based on Discourse Representation

Theory (DRT) [124]. In the traditional natural language semantics, only individual

sentences are examined. But the context of a dialogue also plays a critical role in the

meaning. Therefore, DRT is put forward to represent language for examination of

contextually dependent meaning in discourse.

Recently, Wooldridge [237] extended the logical framework of the BDI approach

to define the Logic of Rational Agency (LORA). LORA allows representing and rea-

soning on beliefs, desires, intentions, and actions of agents. By this study, Wooldridge

explained how beliefs, desires, intentions, and actions change over time. Moreover, he

presented two different perspectives of the LORA for an individual agent and multiple

agents.
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2.2 Agent Cooperation Approaches

Agent theories are related to isolated components of agents. However, intelligent-

beings are not isolated from others. They interact, communicate and cooperate with

each other. In this subsection, the agent cooperation approaches are explored.

Multi Agent Systems (MAS) focus on building systems that include autonomous

entities. The researches within the MAS domain are interested in the behaviours

of the autonomous agents that aim to solve particular problems. In multi agent

systems, each agent has incomplete knowledge and ability to solve a problem. In these

systems, there is no global control over the system. Moreover, the data is distributed

and computation is asynchronous. Multi agent systems provides interaction between

systems, manages and controls distributed knowledge [119].

Multi agent system researchers mainly focus on solving the following issues [119]:

• Designing a system that includes many agents and assigning problems to those

agents,

• Formulating interaction and communication between agents,

• Defining relations between local and global decisions,

• Achieving coordinating among autonomous agents,

• Solving intention conflicts among agents, and

• Improving efficiency in local computation.

When planning a single agent the objectives, the abilities and the environmental

constraints are to be evaluated. However, when designing a multi agent system, the

constraints regarding to each agent, the decisions that are given by a single agent

and their effects on the other agents and predicting the undetermined environment
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become the key issues. Therefore, the main aim is to enable the agents to cooperate to

achieve a common goal. Cooperative behaviour allows the agents to promote coherent

system behaviour [221].

Among the studies of distributed artificial intelligence, one of the pioneering stud-

ies was on a group of agents that focus on common objectives. The agent interactions

are directed by the cooperation strategies that assist in developing the performance

of all agents. The pioneering studies on distributed planning used the “complete

planning before action approach”. According to this approach, in order to develop

a coherent plan, the agents must be aware of sub-goal interactions and either avoid

them or else resolve them [119].

Georgeff [95] is one of the researchers who adopted this approach. He proposed

a method for synthesizing the plans of multiple agents into single agent plans. In

this manner, the agents can synchronize their activities and avoid the conflicting

interactions.

Lesser [144] proposed another approach for task decomposition and agent inter-

action called Functionally Accurate Model (FA/C). This model is meant to resolve

sub-problem interdependencies. In this model, the agents do not need to have all the

information to solve sub-problems, and the agents interact through an asynchronous,

co-routine exchange of partial results. The FA/C enables an agent to behave in an

uncoordinated manner.

The FA/C model paved the way to develop distributed control schemes for agent

coordination. Partial Global Planning is an approach to coordinate the agents dy-

namically. In this approach, the agents communicate their plans and goals. Through

these communications, the agents learn the intentions of each other. In this model,

the agents are cooperative; therefore, they adjust their plans [119].

In the area of the agent cooperation, another approach is modelling teamwork

explicitly. This approach is particularly helpful in dynamic environments. In such
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environments the agents may fail or find new opportunities. In these types of situa-

tions, the team should be able to observe its performance and reorganise accordingly

[119].

Another approach called joint intentions framework focuses on representing the

team’s mental state called a joint intention. If the team members commit to complete

an action together, the team is in the intention of cooperatively completing the action.

The commitment protocol synchronizes the beliefs and the commitments of the team

to complete a team task [119].

The interaction between the agents is called negotiation in the domain of self

interested Multi-Agent Systems. Negotiation is proposed as a means for agents to

communicate and cooperate. Negotiation refers to a method that involves communi-

cations to solve plan changes, to assign tasks and to overcome the constraint violations

centrally. These conflicts should be resolved by self interested agents in such circum-

stances that there are incomplete information and bounded rationality. Besides, the

agents should communicate and exchange their proposals and counter proposals [119].

One of the most important issues is reaching agreements among self-interested

agents. Negotiation and argumentation are the most important capabilities that an

agent should have to reach an agreement. Negotiation scenarios require particular

mechanisms (i.e. protocol) which are the rules of encounter between agents [238].

In a multi agent system, the agents need to cooperate on given tasks. In some

cases, the agents need to share tasks. Contract Net Protocol is the first task sharing

protocol that is used for task allocation. In this approach, each agent can be either a

manager or a contractor of a particular task(s). Whenever an agent gets a composite

task or cannot solve its task, the agent breaks the problem down into sub-tasks. Then

it advertises the sub-task(s) to the contract net as a manager. Potential contractors

send their bids to the manager. Then the winning contractor(s) are given the task(s)

[213].
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One of the pioneering studies on self interested agents is Persuader. The Persuader

system provides mechanisms to modify the plans, the goal and the behaviour of the

other agents. In this manner, this system increases cooperation among agents to find

a global solution. This system operates in the labour negotiations domain [221].

The Persuader system which is inspired by human negotiation involves a union

agent, a company agent and a mediator agent. The negotiation is on issues like

wages, pensions, seniority, and so on. The Persuader models the iterative exchange of

proposals and counter-proposals in order to reach an agreement between the agents.

Each agent has a multi-dimensional utility model which is private and different from

the others [119].

Another pioneering study based on game theory is performed by Rosenschein

[191, 192]. Game theory is a way of analysing the decision-making process when

there is more than one decision-maker. Each agent’s payoff depends on the actions

taken by other agents. The actions of an agent depend on its beliefs on what the

others do. What the other agents do depends on their beliefs on what each agent

does. Based on these beliefs, in a game each agent tries to find the optimum outcome

for themselves [186].

In the Rosenschein’s study, the agents reason about the alternatives in order to

find the alternative that has the maximum payoff. After finding the alternative with

the maximum payoff, the agents select the alternative with the maximum payoff [119].

Kraus et. al. [132] examined the problems of resource allocation and task distribu-

tion among multiple autonomous agents. They proposed a negotiation model which

takes time spent on the process into account. In this manner, they aimed to achieve

efficient agreements without delays even if there are changes in the environment.

Another approach for creating cooperation to solve problems is result sharing. In

result sharing, the agents cooperatively exchange information whenever a solution is

developed. This process proceeds while the problem is being solved. Typically, the



CHAPTER 2. INTELLIGENT AGENT TECHNOLOGIES 22

results progress from smaller to larger, more abstract solutions. [238].

Harandi and Rendon [106] distinguished three different basic modes of organisa-

tions as master-slave, the society of peers and the federation of autonomous agents.

These organizational modes are used to create a cooperation structure in a multi agent

system. In their study, they also stated that there are some derived organizational

modes out of these three basic modes.

The master-slave cooperation concept is another approach in multi agent systems.

In these systems, there are master and slave agents. The role of the master agent

is to create cooperation among the other agents by having full responsibility for the

goal and controlling the resources. The other agents are fully committed to the

goals assigned to them and they can only use the resources allocated to them. All

interactions are resolved by the master. Therefore, the others do not interact with

each other.

Another approach is called the society of peers. This is a democratic group in

which privileges and constraints are distributed. All decisions are made through

negotiations. The responsibility for achieving a goal is shared among the agents that

are assigned to that goal.

Another approach for cooperation is the federation of autonomous agents. In

such systems, the agents are loosely coupled and they are somewhat independent.

However, they still have central control at certain degree to achieve a final solution.

Autonomy is granted to the agents; since, they can plan their goals, take the course

of action they choose to achieve the goal. In addition, in this approach, the agents

determine their level of interaction with the others.

Changhong et. al. [54] stated that there are two cooperation structures: the

complete cooperation structure and the incomplete structure. A cooperation structure

is said to be complete cooperation structure for agent i and goal g if and only if either

[75]:
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• “agent i has been delegated the goal g, and i is capable of g”; or else

• “agent i has delegated each immediate sub-goal g0 of g
′

of g to some agent j ,

and the cooperation structure (C; l) is complete for agent j and goal g0”.

d’Inverno et. al. [75] stated that not all the structures are cooperation structures.

They indicated that a structure is a cooperation structure only if and only if:

• There are at least two cooperating agents,

• Each agent is connected to another through a cooperation over goals between

them, and

• The agents do not delegate goals to the others.

Recently, Sioutis and Tweedale [208] studied on agent cooperation and collabo-

ration. They stated that the existing implementations of the Multi Agent Systems

define highly structured teams. They explained that a team is created by defining

and assigning roles of the members (i.e. the agents in the system). They underlined

the fact that in order to effectively form the agent teams, communication, negotia-

tion and trust are the key issues. Therefore, research on cooperation focus on these

issues. When creating teams, the basic modes and derived modes of organisations are

adopted.

2.3 Agent Communication Approaches

To create cooperation among agents the communication becomes the key factor.

Blackboard systems can be considered as the pioneering approach to agent com-

munication. Blackboard-based problem solving is usually explained by the following

example [63]:
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“Imagine a group of human specialists seated next to a large black-

board. The specialists are working cooperatively to solve a problem, using

the blackboard as the workplace for developing the solution.

Problem solving begins when the problem and initial data are writ-

ten onto the blackboard. The specialists watch the blackboard, looking

for an opportunity to apply their expertise to the developing solution.

When a specialist finds sufficient information to make a contribution, she

records the contribution on the blackboard, hopefully enabling other spe-

cialists to apply their expertise. This process of adding contributions to

the blackboard continues until the problem has been solved.”

The basic components of the blackboard systems are knowledge sources, a shared

blackboard and a control component. The knowledge sources contain the knowledge

required to solve the given problems. The blackboard is a global database which

contains input data and partial solutions, alternatives, final solutions, and control

information. The control component decides on the course of problem solving and

managing resources. With this structure, blackboard systems support agent commu-

nication for problem solving.

The first blackboard system was called the Hearsay speech understanding system

[187]. One of the researchers in the Hearsay project was Lesser. He and Fennel

studied on exploiting parallelism in blackboard systems [83]. Their research exposed

a bottleneck in the classical blackboard model which implied that at a given time

only one thread can be written on a blackboard. By enabling multiple blackboards

Lesser and Erman overcame this problem. They allowed multiple blackboard systems

to communicate by message passing [145].

In early object oriented programming systems, communicating by message passing

was the key idea [238]. Today message passing can be used as another approach for

the agent communication. By using the message passing approach agents can send
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and receive messages. The messages can contain bytes, complex data structures or

segments of codes.

The pioneering theory for the communication between the agents is the speech

act theory that is put forward by Austin [14]. He proposed some performative verbs

like request, inform, and promise for corresponding to different types of speech acts.

He indicated three different aspects of speech acts [238]:

• The Locutionary Act: The act of making an utterance (For instance, saying

“Please prepare a cup of coffee” is the locutionary act),

• The Illocutionary Act: The action is performed while saying something (For

instance, saying “He requested me to prepare a cup of coffee” is the illocutionary

act), and

• The Perlocution: The effect of the act (For instance, saying “He got me to

prepare a cup of coffee” is the perlocution).

For successfully completing performatives the required conditions are called felicity

conditions [238]:

• “There must be an accepted conventional procedure for the performative, and

the circumstances and persons must be as specified in the procedure”,

• “The procedure must be executed correctly and completely”, and

• “The act must be sincere, and any uptake required must be completed, insofar

as is possible.”

A few years later, the speech act theory is further improved by Searle [198]. The

basic axiom of the theory is communicative expressions which are acts that resemble

the physical acts. The speech acts are performed by a speaker to cause a desired
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change with her intention which the speaker brings about in the world. In this

manner, the act of the speaker tends to cause change in the mental state of the

listener.

Searle systematically classified the types of the speech acts as follows [238]:

• “Representatives: A representative act commits the speaker to the truth of an

expressed proposition.”

• “Directives: A directive is an attempt on the part of the speaker to get the

hearer to do something.”

• “Commissives: Commit the speaker to a course of action.”

• “Expressives: Express some psychological state.”

• “Declarations: Effect some changes in an institutional state of affairs.”

Later, Cohen and Perrault [61] attempted to develop a speech act theory. They

proposed to model speech acts in a planning system like operators. In this manner,

speech acts are treated similarly to the physical actions. This approach is called the

plan-based theory of speech acts.

In 1990, Cohen and Levesque [60], developed a theory to model speech acts as

actions performed by rational agents. This model of rational action was built on their

theory of intention [59]. Today, most of the Agent Communication Languages (ACL)

are based on these speech act theories.

Even though, it is not directly based on the speech act theory, the most commonly

known agent communication language research is Knowledge Sharing Effort funded

by the Defence Advanced Research Projects Agency (DARPA). With this research

two languages are developed: Knowledge Interchange Format (KIF) and Knowledge

Query and Manipulation Language (KQML) [240].
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Knowledge Query and Manipulation Language is an agent communication lan-

guage to standardise the communication among agents. KQML defines performa-

tives for knowledge retrieval, insertion or deletion. The communication facilitators

of KQML coordinate interactions of the agents. In this manner, KQML supports

knowledge sharing [103]. However, KQML does not provide the means to deal with

the content part of messages [238]. In the 1990s, several different versions of KQML

were proposed. All of these versions include different collections of performatives.

Naturally, all agents have a different internal representation of knowledge. There-

fore, the agents attribute knowledge to other agents. The term virtual knowledge

base implies the attributed knowledge of other agents [238].

KQML have many different implementations which cannot interoperate. The

semantics of KQML was not thoroughly defined. The set of KQML performatives are

too large. Based on such criticisms, it became inevitable to undertake new research

on agent communication languages.

Due to the criticisms towards KQML, the Foundation for Intelligent Physical

Agents (FIPA) proposed an agent communication language which is called FIPA-

ACL. The syntax of FIPA-ACL is very similar to the KQML syntax. FIPA-ACL is

based on the speech act theory and it contains two distinct parts: a communicate

act and the content of the message [104]. Unlike KQML, FIPA-ACL has very well

defined semantics. JADE is one of the agent-oriented development platforms that

implements FIPA-ACL.

The Knowledge Interchange Format is a content language designed to interchange

the knowledge among disparate computer systems. It is capable of representing first

order predicate logic. The syntax of KIF is based on common LISP [94]. KIF is

proposed to form the content parts of KQML messages.

Standard Upper Ontology Knowledge Interchange Format (SUO-KIF) is devel-

oped to support the upper merged ontology by simplifying KIF. Like KIF, SUO-KIF
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is a language to author and interchange the knowledge between different entities [177].

There are some other content languages like Semantic Language and Extensi-

ble Mark-up Language (XML). These content languages can also be used as agent

communication languages for the content which is embedded in the messages of the

agents.

As a conclusion, in order to provide flexibility to an agent, it must be able to com-

municate and cooperate with other agents. To create cooperation among agents the

communication becomes the key factor. Even though there are number of communica-

tion approaches, still there is no standard communication language. In addition, the

simple message passing gives higher flexibility to the researchers while implementing

their architectures.

2.4 Agent Oriented Programming Languages

Based on the theories and by following the agent architectures many applications

have been developed. To develop these applications, it is expected to use a variety

of software tools. To develop intelligent agents, concurrent object languages are

originally utilized. Some instances of concurrent object languages are concurrent

METATEM, and TELESCRIPT, Placa, April, ConGolog, May and Able [240].

Concurrent object languages that are the ancestors of agent languages are devel-

oped to execute objects running concurrently and autonomously. These systems can

send messages to other objects with some internal state which is indirectly accessi-

ble to the environment. The Actor model and Actor-Based Concurrent Language

(ABCL) system are the first instances of concurrent object languages. Without need-

ing others, the actors form the autonomous components of interacting computing

systems that communicate by asynchronous message transfer [240].

Many applications of the Belief, Desire and Intention approach are developed. As
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explained in the review, such systems are the instance of practical reasoning. They

gave a basis for one of the pioneering agent oriented programming language that is

proposed by Shoham [203]. Shoham’s agent oriented programming language focuses

on the social viewpoint of computation.

Agent oriented programming is directly based on programming agents in terms

of intentional notions. Shoham [203] proposed that three components are needed

to develop a complete agent oriented programming system. The first component

is recommended as a logical system that defines the mental state of an agent. To

program agents, the second component is defined as an interpreted programming

language. The last component is called the agentification process by Shoham to imply

compiling agent programs. The first developed agent oriented programming language

is called AGENT0 system. Belief, commitment and ability were the three modalities

that are covered by this system. This system is only intended as a prototype.

The first commercial agent language is developed by General Magic Inc. and it

is called Telescript. This technology covers many methods and notions. It provides

a language based environment to develop agents. The places and the agents are the

two key concepts of this system. The agents that can be developed by this system

are applications of customers and providers in an electronic marketplace [240].

One of the pioneering agent-oriented programming languages is AgentSpeak(L).

This is one of the best known languages based on the BDI architecture. AgentS-

peak(L) is an abstract logic-based language that allows agent programs to be written

and interpreted. This language is proposed by Rao [184].

In addition to these pioneer programming languages, today there are mainly four

agent-oriented programming languages based on the Java platform. The most com-

monly known of these programming languages is called Java Agent DEvelopment

Framework (JADE). JADE is mostly used for developing multi-agent systems. It
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enables the programmer to develop applications based on the peer-to-peer intelli-

gent agent approach and solve complex problems in a distributed way. JADE is in

compliance with the Foundation for Intelligent Physical Agents specifications for in-

teroperable intelligent multi-agent systems. The FIPA is an organisation to develop

standards for generic agent technologies [26].

Another agent-oriented programming language is JACK [115]. JACK uses com-

ponent based approach and it extends Java with agent oriented concepts. It enables

users to develop agent knowledge bases and databases. It incorporates graphical de-

sign tools and plan reasoning can be laid out using simple diagrams. Besides, these

plans can be traced graphically at run time. It also allows non-programmers to outline

the reasoning process in natural language.

Another Java based agent-oriented programming language is JASON. It is the

extended version of the AgentSpeak(L) and provides a platform for the development

of multi-agent systems. Moreover, it enables the implementation of reactive planning

systems according to the BDI architecture. It provides a library of essential internal

actions. It also provides a speech-act based inter-agent communication mechanism

[30].

An Abstract Agent Programming Language (3APL) is a programming language

for cognitive agents. It provides programming constructs for implementing beliefs,

goals and plans of an agent. It is capable of performing belief updates and commu-

nication actions. It provides a set of practical reasoning rules to update or revise the

goals of agents [68].

There are also some agent development toolkits like ZEUS, FIPA-OS, TRYLLIAN

and SimAgent [90, 209]. ZEUS provides a set of software components and tools to

develop an agent system. It enables programmes to rapidly develop multi-agent

applications. ZEUS has general purpose planning and scheduling mechanisms to

easily develop agents.
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FIPA-OS is another toolkit which enables the rapid development of FIPA compli-

ant agents. FIPA-OS is being used in a number of European Collaborative projects.

FIPA-OS is being improved as an open source project.

Another noteworthy agent development toolkit is TRYLLIAN. It enables task ori-

ented programming. The communication between components can be performed with

the hypertext transfer protocol, secure hypertext transfer protocol, or Java message

service. It provides integration with the Java platform application servers and with

web services.

SimAgent toolkit is developed as part of the Cognition and Affect project. It

enables programmes to rapidly develop prototypes. It also supports object-oriented

techniques. It enables the development of interacting agents in environments of vari-

ous degrees and kinds of complexity [209].

In addition to these toolkits, there are agent simulation software tools such as

Agent-Object-Relationship Simulation (AOR) and Multi-Agent Simulation for the

SOCial sciences (MAS-SOC) [230, 31]. AOR provides extensions for modelling cog-

nitive agents to support agent-based discrete event simulation. MAS-SOC provides

a framework that allows the creation of multi-agent simulation tasks.

Even though these given systems are proposed specifically for developing agent

based systems; there are some other applications which are developed by using general

purpose programming languages. Those applications are mainly developed by using

C++, Java, Lisp and Prolog programming languages [240].

While implementing the ideas presented by the theorists in the previous subsec-

tions, several software tools and programming languages are available. In accordance

with the design purpose, an appropriate software tool or programming language can

be utilized.
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Agent Architectures

Based on the theories presented in the previous chapter, researchers look for ways

to develop agents that simulate intelligent behaviour. For this purpose, particular

methodologies such as agent architectures are used. Maes [152] defined an agent

architecture as a particular methodology for building agents. She stated that agent

architecture should be a set of modules. Kaelbling [123] presented similar point

of view and stated that agent architecture is a specific collection of modules and

there must be arrows to indicate data flow among modules. In this context, agent

architecture can be considered as a methodology for designing particular modular

decompositions for tasks of the agents.

In accordance with these definitions, many agent architectures have been devel-

oped to simulate intelligent behaviour. These architectures are mainly categorized in

three groups:

• Deliberative,

• Reactive, and

• Hybrid.

32
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Chronologically, the deliberative architecture is the pioneering approach. Reac-

tive architectures have been developed later in order to overcome the obstacles of

deliberative architectures. Neither deliberative nor reactive architectures are able to

provide good enough solutions to the real world problems. On one hand, the purely

reactive architectures were not as strong as deliberative architectures in developing

plans and making decision. On the other hand, the deliberative architectures was

not capable of reacting to the events in their environment without complex reason-

ing [240]. Therefore, hybrid architectures are proposed to combine the strengths of

deliberative and reactive architectures.

Deliberative, reactive and hybrid architectures are mainly concerned with sim-

ulating some aspects of intelligent behaviour. In addition to these architectures,

there are also cognitive architectures. The cognitive architectures attempts to mimic

certain cognitive systems like human-beings. In the following sections existing the

deliberative, reactive, hybrid and cognitive architectures are reviewed.

3.1 Deliberative Architectures

In the beginning, knowledge based systems are put forward to represent intelligent

behaviour on machines. Physical symbol system hypothesis is formulated to combine

and form structures, and operate on symbols [170]. These types of systems in practice

are disembodied constitutions that ask questions, give answers to these questions,

make decisions and give advice. To operate, they require a knowledge base that is

defined at the phase of development. In this manner, these systems are said to mimic

intelligent behaviour.

The first symbolic agent architecture is called State Operator And Result (SOAR).

Actually, it is a cognitive architecture proposed by Laird et. al. [134]. The main

goal of SOAR is to achieve general intelligence. The SOAR architecture is designed
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according to the physical symbol system hypothesis.

The cognition underlying SOAR is tied to the psychological theory expressed

by Newell [168]. This theory is called Unified Theories of Cognition. This theory

attempts to explain the following questions related to intelligent entities:

• How to flexibly react,

• How to exhibit goal-directed behaviour,

• How to acquire goals rationally, and

• How to represent knowledge and learning.

Inspired from the physical symbol system hypothesis, deliberative agents are put

forward. These architectures contain an explicitly represented symbolic model of the

world. By symbolic manipulations and pattern matching, the agents reason to decide

their actions. Deliberative agents make decisions purely based on logical reasoning

[202].

Planning systems are the first instance of deliberative architectures [194]. In the

AI domain, the term planning stands for the task of coming up with a sequence of

actions that will achieve a particular goal. Initial planning systems adopted strong

assumptions to investigate planning paradigms:

• There is only one agent which is a planner such that it can affect the world,

• While the planner agent is planning, it has a well defined goal which remains

fixed,

• The planner agent has complete and accurate knowledge on the current situa-

tion,

• The planner agent possesses an accurate model of the world, and
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• The planner agent has the required resources to use its model of the world to

reason on the possible worlds (i.e. possible alternative courses of actions) to

achieve its goal.

To illustrate these ideas, state space search techniques are applied as a planning

approach. Here the term state means a possible situation that could arise in the

environment. The state could represent the position of a robot or location of the tiles

in an environment. The term state space implies all possible situations that could

arise [140]. In state space search, the successive state of an instance is considered as

achieving a goal state with a desired property. Problems are usually modelled as a

state space and a set of states. The states are connected with an operation that can

be performed to transform the first state into the second.

The first system that employed the state space search is called General Problem

Solver which is proposed by Newell and Simon [169]. In their study, they put forward

Means-Ends Analysis (MEA) to control the state space search. In MEA, when the

current state and the goal state is given, an action is chosen which reduces the differ-

ence between the current state and the goal state. Afterwards, the chosen action is

performed to achieve the goal state. This type of systems is called linear planner.

One of the pioneering linear planning systems is denominated as STanford Re-

search Institute Problem Solver (STRIPS) which is developed by Fikes and Nilsson

[86]. This system takes the symbolic desired goal state, the set of actions and the

definition of the real world. The set of actions cover pre- and post- conditions of the

actions. According to the pre- conditions, one of the deterministically defined post-

conditions is chosen by an agent to achieve its desired goal state by matching the

condition and the desired state. In this manner, the agent acts by using the simple

Means-Ends Analysis.

This type of planning systems searches all of the possible alternatives and makes

decision. After the decision making, they take the action to achieve the desired goal
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state. These systems are criticised as not being efficient. To operate planning systems

more efficiently, Sacerdoti [195, 196] put forward the hierarchical and the non-linear

planning approaches.

Hierarchical planning approaches use abstraction to reduce the complexity of the

search. They divide up a problem into smaller sub-problems. Given the space and

the abstraction spaces (i.e. a hierarchy of abstractions), an agent (or the problem

solver) solves the problem in an abstract space. Then it uses abstract solutions as

a guide to search for a solution in more detailed spaces. The hierarchical planning

which uses abstraction is an effective approach but it is reported that finding a good

abstraction is a very difficult task [130].

The main idea behind the non-linear planning is that a plan may have the structure

of a partial ordering. The partial ordering provides some plan steps to achieve goals.

Classical linear planning approaches attempt to provide a total order of plans. The

non-linear planners are sometimes called the least commitment planners. In general,

it means that an agent should make low commitment choices before making high

commitment choices [156].

Chapman [55] criticised planning systems by presenting some theoretical results.

He stated that the planning systems are not usable in the time-constrained real life

situations. He underlined the fact that even if Sacerdoti’s refined techniques are used,

in real life situations planning systems cannot be used efficiently.

Even though Chapman’s critique had been quite influential, some planning sys-

tems were proposed afterwards. Integrated Planning, Execution and Monitoring is

the first of such systems and it is based on a non-linear planner [8]. Another such sys-

tem is PHEONIX that is proposed by Cohen et. al. [58]. This system employs several

planning agents that are designed to operate in a simulated forest fire management

domain. One another system that employs planning agents is Agents in a Simulated

Driving World (AUTODRIVE) which is put forward by Wood [235]. These agents
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are used to simulate traffic flow which is a highly dynamic environment.

In the mid 1990s, AI Planning community started investigating plan evaluation

metrics to guide the search behaviour of various planning systems to overcome the

obstacles stated by Chapman. The development of Planning Domain Definition Lan-

guage (PDDL) influenced this interest and resulted in planning actions with duration

and modelling resource consumption. The modelling time and resources allows met-

rics to be developed to operate planning systems more efficiently [87].

In 2002, Hawes [110] put forward an anytime planning agent to be used in com-

puter games. He criticised traditional planning approaches and stated that they fail

in a computer game environment. Based on this critique, he introduced an anytime

agent which is capable of producing intelligent behaviour in a computer game en-

vironment with the hierarchical task network planner. Anytime agents form their

plans iteratively and they have an additional constraint to form their plans. These

constraints are called time slices and the iterations are constrained with a time slice.

When the time slice runs out the best available action is taken.

Coddington and Luck [57] criticised planning systems as being disembodied. They

stated that these systems are not situated in an environment, thus they lose informa-

tion concerning the system and the environment. In their paper, they argued such

information may be very valuable constraining plan formulation. They underlined

that the context is important; since, it constraints and prioritises the goals and the

actions.

With this respect, they introduced a framework for planning and plan execution.

This framework can be considered as a dynamic system in which an agent generates

goals in response to its motivations. According to this framework, whenever a goal

is chosen, it is passed to the planner to generate a plan to achieve the goal. The

planner generates a search space of alternatives during planning and it includes a

plan evaluation metric to select the optimum plan for further refinement. After the
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decision is made, the plans are executed and updated accordingly.

Their system is also capable of getting feedback from the environment; since, they

try to develop a situated system. The system evaluates the outcomes of the actions.

If outcomes significantly differ from the predicted outcome; it attempts to repair the

plans. Additionally, they provide flexibility to their system by enabling an agent to

update its motivations which in turn may cause generating new goals or updating

existing goals.

At the same period of time, symbolic artificial intelligence community spent much

effort on constructing agents that are deliberative. One of these agent architectures

is called Intelligent Resource-Bounded Machine Architecture (IRMA) [36]. This ar-

chitecture is based on belief, desire and intention approach. IRMA has four main

symbolic data structures: plan library and representations of beliefs, desires and

intentions. In this architecture, there are some other components: a reasoner, a

means-ends analyser and an opportunity analyser. The reasoning mechanism stands

for reasoning on the world where the agent is situated. The means-ends analyser

determines the plans which have potential to achieve the intentions. The opportu-

nity analyser monitors the environment to determine further options which may be

available for the agent.

In addition to these components, there are also two processes: deliberation and

filtering. The deliberation process enables an agent to choose an option among the

alternatives. The filtering process determines the potential courses of action and

guarantees a course of actions consistent with the agent’s intentions. The filtering

also enables the agent to act not only resource bounded but also knowledge bounded.

The architecture is evaluated in an experimental scenario known as Tileworld by

Pollack and Ringuette [182]. In their study, they investigated the behaviour of various

meta-level reasoning strategies and evaluated them in a different environment. The

settings of the agent and the environment was highly parameterized which in turn
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enabled them to evaluate different reasoning strategies by following IRMA.

Another well known instance of deliberative architectures is proposed by Vere and

Bickmore [226]. This was a basic agent to operate a submarine with whom a human

could interact in natural language in a simulated SeaWorld. They called this system

HOMER. It could communicate by using a vocabulary which contains around 800

English words.

The agent was able to form future plans and generate new plans in response to

the new information it obtained. In this system, the verbs were represented in state

transition semantics for compatibility with its planner. The agent was able to give

answers related to its past experiences, present activities and future intentions.

Jennings [118] put forward a layered deliberative architecture called GRATE in

1993. The behaviours of an agent that is developed according to this architecture

are guided by mental attitudes including not only beliefs, desires, and intentions but

also joint intentions. These mental notions were playing a central role in guiding the

behaviour of an individual agent and multiple agents for solving problems. This ar-

chitecture has been illustrated in a real-world domain for an electricity transportation

management.

There are mainly two difficulties while developing deliberative agents: (1) Trans-

duction Problem; and (2) Representation Problem. The transduction problem im-

plies the difficulties in translating the real world into an accurate, adequate symbolic

description. The representation problem is related to symbolically representing in-

formation about the real-world entities and processes. Based on the representation

developing useful reasoning mechanism is also problematic.

Even though, deliberative architectures overcome these problems somehow, they

are criticized as not applicable in practical real world situations due to searching all

alternatives in a time-constraint situation. However, the deliberative architectures
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provide very good infrastructure for developing plans alternatives and making deci-

sions. Therefore, these aspects of the deliberative architectures are usually merged

into hybrid architectures.

3.2 Reactive Architectures

Rodney Brooks [39, 40, 41, 42] is the first researcher who criticised traditional sym-

bolic Artificial Intelligence. He stated that the real intelligence does not have explicit

symbolic representations and does not reason according to explicit abstract reasoning.

Therefore, he proposed that intelligence can be generated without explicit represen-

tations and abstract reasoning. In addition, he underlined that intelligence is an

emergent property of certain complex systems including human-beings.

The ideas of Brooks are based on the following observations: (a) Real intelligence

is not disembodied; and (b) Interactions between intelligent entities and their envi-

ronment constitutes intelligent behaviour. The reactive architectures can simply be

defined as architectures that do not include symbolic world model, and do not use

symbolic reasoning.

In accordance with these critics and ideas, he put forward the first reactive archi-

tecture which is called subsumption architecture. The subsumption architecture is

a way of decomposing complicated intelligent behaviour into many simple behaviour

modules. Each module is organised into layers which implements a particular goal of

an agent. The lowest layers represent more primitive behaviours while higher layers

represent more abstract behaviours. The goal of each layer subsumes those of the

underlying layers. Such systems get feedback from the past decisions and perform

actions accordingly. In those systems interactions between behaviours determine the

actions that are going to be performed.
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In contrast to more traditional architectures, subsumption architecture uses bottom-

up design. Each of the layers can access data coming from sensors and the layers can

give commands to the actuators to perform some actions. The main advantage of

this architecture is modularity. However, it cannot support too many layers; since,

the goals may interfere with each other.

He proposed the architecture for controlling mobile robots. A mobile robot is

proposed to be used for wandering around and building maps of its environment. As

an example, if a mobile robot developed to explore certain area and to build a map

of that area, the uppermost layer would have an ultimate goal to create a map of the

area. In such a case, the lowest layer could be designed to avoid objects in the area

and the upper layer of it would have a goal to wander around. The lower layers of

such systems would work like fast-adapting mechanisms to obtain input data while

the higher layers would control the main course of action to achieve the overall goal.

The subsumption architecture is adopted in some applications. The situation and

action rules are utilized for mapping in these applications. The current state of an

agent determines the actions that are going to be taken; then, the agent performs

actions based on the current information and it has no information related to the

past knowledge [240].

At the same period of time, Agre [4] came face to face with the fact that everyday

activities are routine such that they require little or no new abstract reasoning. He

stated that most activities, once learned, can be accomplished with little variation.

He suggested that an efficient agent architecture should be based on dynamic theo-

ries. With this respect, he proposed to develop low-level structures which only need

periodic updates. He stated that if required such structures should also be capable

of handling new kinds of problems.

Based on these ideas, Agre and Chapman [5] started researching on alternatives to

the AI planning paradigm. They illustrated their ideas with a system called PENGI
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which is developed to simulate Pengo. Pengo is a computer game in which a player

takes the role of a red penguin. Red penguin fights the blob-like Sno-Bees who patrol

a maze. The objective of this game is to survive as long as possible by eliminating

the Sno-Bees.

Afterwards, Chapman [56] developed a similar system called as Sonja. Sonja had

a special-purpose function which must balance all considerations to compute a good

action in any situation. For this purpose, Sonja was accessing internal data structures

of the computer game it plays.

When Chapman was presenting Sonja, Woodfill and Zabih [236] put forward a

new architecture for action with concentration. They presented a model of attention

motivated by constraints which are psychological and computational. The archi-

tecture called Flox is designed to use their model of attention. They implemented

this architecture to play Pengo. In their implementation they showed the success of

autonomous systems with realistic perceptual components.

In 1986, Kaelbling [123] presented issues related with resource-bounded rational

agents. Then Kaelbling proposed an agent architecture similar to the subsumption

architecture. It is reported that such kind of reactive robotic control systems produced

impressive results in the area of generating intelligent robotic action [183].

Following the subsumption architecture, diverse reactive architectures have been

proposed by researchers in due course. Rosenschein and Kaelbling [193] specified

agents in declarative terms based on their situated automata paradigm in which the

agents are specified in terms of logic of knowledge.

In their study, Rosenschein and Kaelbling specified the agents in terms of per-

ception and action components. The action component is called GAPPS while the

perception component is called RULER. RULER includes three components: speci-

fications of inputs, a set of static facts and specifications of the state transitions of

the world. The GAPPS takes inputs as a set of goal reduction rules and generates
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a program to achieve its goals. This system actually is not purely reactive; since, it

includes deliberative components.

Another successor of the subsumption architecture called Agent Network Archi-

tecture (ANA) is proposed by Maes [152]. According to ANA, an agent consists

of a distributed set of competence modules which are linked in a network. These

modules resemble the behaviour of the subsumption architecture. Based on the cur-

rent context, an activation process which implements a competition among modules

for activation energy operates on the network to determine the relevance or relative

strength of a competence module.

The module with the highest activation level has the most influence on the be-

haviour of an agent. Learning is the core of the architecture and it is an integrated

feature. The competence module network is developed and changed based on the

experience of the system. Each module is specified in terms of the pre- and post-

conditions and the modules are linked in accordance with these conditions. The links

are added and removed depending on the observations while new macro modules are

created whenever a goal is achieved.

Another purely reactive agent architecture is proposed by Boella and Damiano

[27]. They stressed that the existence of implicit or explicit norms is one of the

distinctive features of social systems like agents and human-beings. Therefore, they

suggested incorporating explicit normative reasoning in their architecture.

The architecture is composed of three modules: deliberation, execution and sens-

ing modules. The internal state of the agent is defined by its beliefs on the world, its

goals, and its intentions. Deliberation is based on a goal of maximizing utility based

on a set of preferences which are encoded in a utility function.

In this architecture, the intentions are dynamic which means they can change over

time. To represent such a structure, the goal-level and the action-level commitments

are introduced. In this manner, the intentions are stored in the plans which represent
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the goal-level commitment and the action-executions which represent the action-level

commitment.

The behaviour of the agent is controlled by an execution-sensing with a meta-

level deliberation. Initially, the deliberation module is invoked and the goals are

matched against the plan scheme which is stored in a plan library. Afterwards, the

best plan is selected as the current intention and it is executed. While executing

actions, the sensing module monitors the outcome of the action and updates the

world representation. If the outcome meets the agent’s expectation no further action

is required; otherwise, the agent undertakes re-deliberation.

These reactive architectures do not employ models of their environment. Only

current state and interactions define decisions and actions. Therefore, performing ap-

propriate actions is not possible in each time. Moreover, learning from the experiences

cannot be simulated on those agents. Therefore, problems can be encountered with

these types of agents while they perform their duties [240]. Despite these disadvan-

tages, the reactive architectures are much simpler than the deliberative architectures.

3.3 Hybrid Architectures

In the 1990s, many researchers asserted that neither reactive nor deliberative archi-

tectures are suitable for real world problems. According to this assertion, researchers

started studying on hybrid architectures that combine deliberative and reactive ar-

chitectures. Hybrid architectures have a layered structure like the subsumption ar-

chitecture.

According to hybrid architectures, agents are modelled as a set of at least two

components: a deliberative and a reactive layer. The deliberative component contains

a symbolic world model to develop plans and make decisions. The reactive component

performs actions in an environment without complex reasoning [240].
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The layers of the subsumption architecture are vertically arranged. However,

hybrid architectures can be arranged either vertically or horizontally. In the horizontal

layering perception is performed by every layer and the actions are controlled by every

layer. In the vertical layering the reactive layer is at the lowest level of the hierarchy.

While the middle level of the architecture deals with the knowledge level view of the

environment of an agent, the uppermost level of the architecture represents the most

abstract view.

There are many successful applications of hybrid architectures. One of the pioneer-

ing hybrid architectures is Procedural Reasoning System (PRS) [96] The illustration

of PRS is given in Figure 3.1. PRS is based on the notion of Belief, Desire and In-

tention. It includes a plan library and explicit representations of beliefs, desires and

intentions. The beliefs are the facts on the internal state of the agent and the envi-

ronment where the agent is situated. The beliefs are expressed in classical first-order

logic. The desires are represented as the agent behaviours and the desires are not

static goal states.

The plan library contains a set of plans which are called knowledge areas. Each

of these knowledge areas is associated with an invocation condition which determines

when to activate a particular knowledge area. The knowledge areas can be activated

in a goal- or data-driven fashion. The active knowledge areas represent the intentions

of an agent. The other component of PRS is called the system interpreter and it

updates beliefs, invokes the knowledge areas and executes the actions.

The Procedural Reasoning System architecture is implemented in several applica-

tions. One of the most significant implementations is called as PRS-CL architecture

[165]. This research is undertaken by the Stanford Research Institute (SRI) Interna-

tional to represent and use procedural knowledge of experts for accomplishing goals

and tasks. PRS-CL consists of four components. The first one is a database which

contains current facts and beliefs. The second component is a set of goals to be
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Figure 3.1: Procedural Reasoning System [Source: Lee et. al. [142]]

achieved. The third component is a set of plans or procedures which describe the

details of how to achieve goals under certain situations. The last component is an

interpreter which manipulates the other components to select and execute plans to

achieve the objectives of the system.

Another implementation is provided by several researchers from the University

of Michigan and their implementation is called UM-PRS architecture [142]. UM-

PRS is an object oriented implementation of the PRS concepts by using the C++

programming language. In this research, several enhancements and simplifications

in PRS are reported. These developments enabled developers to implement PRS in

some application areas like unmanned vehicles.

A few years later PRS is further extended. The extended architecture is called

distributed Multi-Agent Reasoning System (dMARS) [73, 74]. Both PRS and its

successor dMARS are examples of the Belief, Desire, and Intention approach. In

dMARS agents, the BDI approach is operationalised by plans and each agent has a
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plan library. The plan library of the agent represents its procedural knowledge or

know-how which is related with bringing about states of affairs.

Each plan has several components: an invocation condition, a pre-condition, a

maintenance condition, a body, an event queue and an interpreter. The invocation

conditions which are usually specified in terms of events specify the conditions under

which the plan should be considered. The pre-conditions define the circumstances

under which the plan execution starts. The plans may have a maintenance condition

which indicates the circumstances that must remain unchanged while the plan is

executing. The plans also have a body which defines the course of action which

consists of goals and primitive actions. There is also an event queue where perceived

events are placed in.

The last component of dMARS is an interpreter which is responsible for managing

the operations of the agent. The interpreter continually executes certain operations

for monitoring, generating new desires, matching plans, managing sub-goals, and so

on. One significant merit of dMARS agents is that they monitor their internal state

and environment.

Another hybrid architecture is TouringMachines [84]. It has three control layers

and perception and action subsystems. The subsystems of action and perception

interface with the environment. The control layers perform the controlling function

and mediate between the layers. There are three layers which are called reactive,

planning and modelling layers.

The reactive layer is implemented as a set of situation-action rules to generate

potential courses of actions for the other layers in response to the events occurring in

the environment. The reactive layer is designed in accordance with the subsumption

architecture.

In the TouringMachines architecture, the planning layer is responsible for forming

plans and selecting actions to achieve goals. There are two components in the planning
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layer: a planner and a focus of attention mechanism. The planner uses a library of

elaborated plans with a topological world map. By utilizing the topological world

map the agent constructs plans to achieve its main goal. The planner also executes

generated plans. The focus of attention mechanism filters out irrelevant information

from the environment. In this manner, it reduces the amount of data handled by the

planner.

The last layer is called the modelling layer and it contains symbolic representations

of the cognitive state of the other entities in the environment. These cognitive states

are called models and these models are manipulated to identify and resolve goal

conflicts between the agent and the other entities.

Activities are produced by each layer independently and the layers communicate

with each other via message passing. These layers are embedded in a control frame-

work. This framework mediates between the layers by using control rules. It enables

the agent to deal with conflicting action proposals from the different layers.

Another instance of hybrid architectures is called COSY which is a BDI archi-

tecture [43, 105]. The main components of the architecture are sensors, actuators,

communications, cognition and intention. The first three components undertake the

most concrete activities: the sensors receive perceptual input, the actuators ensure

to perform the actions and the communications send messages.

The control elements like long term goals, attitudes and responsibilities are covered

by the intention component. These control elements take part in the reasoning and

decision making components. The cognition component mediates between intentions,

reasons, makes decisions by choosing actions to perform.

In the cognition component, there is a knowledge base which contains the beliefs

and three procedural components. These components are a script execution, a proto-

col execution, reasoning, deciding component, and reacting components. In COSY,

the script is a plan for achieving a goal.



CHAPTER 3. AGENT ARCHITECTURES 49

An agenda which contains some active scripts is obtained by the reasoning, decid-

ing and reacting component. These scripts can be invoked in a goal- or data-driven

fashion. Goal-driven fashion means that scripts are activated to satisfy one of the

intentions of the agent while data-driven fashion means that scripts are activated in

response to the current situation of the agent. There is also a filter in the architecture,

to choose between the competing scripts.

The pioneering believable agent architecture is called Tok [23]. Tok agents are

capable of reactive, social and goal-directed behaviour, and employ emotions. The

Tok architecture also has natural language processing capabilities. Several successful

applications of Tok have been developed.

InteRRaP is a layered hybrid architecture [162, 163]. The higher layers of the ar-

chitecture represent higher level of abstraction. From bottom to top a world interface

component, a behaviour-based component, a plan-based component and a coopera-

tion component are situated hierarchically. Each layer of InteRRaP is subdivided into

two vertical layers. The first one contains layers of knowledge bases and the other

contains control components that interact with the knowledge bases.

At the lowest level, the world interface control component deals with acting, com-

municating and perception by utilizing corresponding world model knowledge base.

The behaviour-based component implements and controls the basic reactive capa-

bilities of the agent while manipulating a set of patterns of behaviour (PoB). The

PoB has a STRIPS type structure. The pre-conditions define when the PoB is to be

activated and post-conditions imply conditions that define the circumstances under

which the PoB is succeeded or failed. There is also an executable body in PoB for

defining what action should be preformed if the PoB is executed. These actions can

either be primitive or planned. Primitive actions involve calling the world interface

component while planned actions require calling higher layers to generate plans.

Above the behaviour-based component, there is a plan-based component. This



CHAPTER 3. AGENT ARCHITECTURES 50

component contains a planner to generate plans in response to requests from the

lower layer. The knowledge-layer of this component contains a set of plans with a

plan library. The highest layer of InteRRaP is the cooperation component. The

cooperation component generates joint plans in response to the requests from the

plan-based component to satisfy the goals of multiple agents. To do so the component

elaborates plans selected from the plan library.

Control in InteRRaP is both in data- and goal-driven fashion. The perceptual

inputs can result in a change to the world model and PoB may be activated, dropped,

or executed accordingly. As a result of the PoB execution, the higher layer may be

asked to generate plans and joint plans to achieve the goals. As a result of these

actions, messages are generated by the world interface.

In 1993, Beaudoin and Sloman [25] proposed that while explaining autonomous

agents like human-beings, it is required to account for a number of features concerned

with attention and motivation. They suggested that an agent should have multiple

independent sources of motivation operating asynchronously. They added that these

motivations are triggered by some internal and external events like hunger and seeing

a friend in trouble. They underlined the importance of attention by stating that

attention is directed to meet a subset of current needs.

Based on these ideas, Beaudoin [24] put forward a new architecture. Today,

this architecture is called as Motive Processing Architecture (MPA) which is another

instance of PRS. There are three additional components in MPA: goal generactivation,

goal management and goal meta-management.

The goal generactivation is a process for monitoring the beliefs of an agent and

generating and activating goals on the basis of its desires. Once a goal is generated

it is activated at the same time automatically. The goal activation makes the goal

control state a candidate for directing management processes. There is also busyness

filter to check the load on the planning processes of the agent. Once a goal is activated
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the busyness filter controls if the planning processes are busy, if not the goal passes

through the filter. In MPA, if a goal passes through planning process it means that

the goal is surfaced. In this manner, MPA attempts to direct and limit reasoning

attention.

In MPA, goal management refers to the processes involved in making decisions

on goals and/or management processes. Decision-making is the main function of

the management process. To take decisions, the system performs various auxiliary

functions like information gathering about the attributes of particular goals. The

management process is also concerned with the control of action and management of

the management processes.

The heuristic meta-management is developed in MPA to overcome the control

problem stated by Hayes-Roth [111]. The control problem is related to deciding

actions that are going to be performed next in good computational time. For this

purpose, the meta-management controls every lower level action. When the problems

or opportunities are detected, the heuristic meta-management is invoked to determine

if an action should be taken in response to these problems or opportunities.

Another hybrid architecture concerning the control problem is Adaptive Intelligent

System (AIS) [112]. AIS is a blackboard-based architecture which uses dynamic

control plans. These plans guide the meta-level decisions which mean that the agent

decides what goals to focus attention upon. An AIS agent dynamically constructs

explicit control plans. These plans guide the agent to choose among the situation-

triggered behaviours.

AIS is a hierarchical architecture which has mainly three processes: a percep-

tion process, an action process, and a cognition process. The perception component

acquires, abstracts, and filters observed data, then sends those data to other com-

ponents. The action system controls the execution of external actions that are per-

formed by the effectors. Through the perception-action coordination processes, the
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perception component can directly influence the actions.

In AIS, the cognition component is realized as blackboard architecture. The black-

board is used by the agents to communicate by simply writing on a shared data struc-

ture [79]. The blackboard architectures mainly consist of three major components:

the software specialist modules, the blackboard, and the control shell. The software

specialist modules are the knowledge sources of the system which provide specific

expertise needed by the application. The blackboard is a data structure which is a

shared repository of the problems. Finally, the control shell is the controlling centre

of the flow of the activities related with solving the problems.

In AIS, the blackboard architecture is extended to support the dynamic control

planning. The cognition system interprets the inputs, solves the problems, makes

the plans and guides the agent in the perception and the action. These main three

processes operate concurrently and asynchronously while communicating by message

passing.

In 1995, Luck and D’Inverno [150] attempted to specify the relation between the

autonomy and the agents. They criticised that the so called autonomous agents

are only objects with goals. They suggested that autonomous agents should have

motivations in such a manner that they should enable them to generate goals.

Following Luck and D’Inverno, Norman [172] asserted that for an agent to be

autonomous, it is necessary condition to be able to generate goals. In the light of

these ideas, Norman put forward a model of a goal autonomous agent. According

to his model an agent generates goals in response to the unexpected changes in the

environment.

Based on this model, Norman presented an abstract agent architecture called

Motivated Agency (MA). In his study, he proposed that motives cause an agent to

act. Motives are used to generate motivated goals which are goals associated with

some motivation. The motivations are functions to be used to evaluate the intensity
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level which is the motivation level. According to this architecture, the agents pursue

goals with a higher motivation level first.

A motivated agent performs two important functions: goal generation and goal

activation. The agent is driven by a number of motives that have the capacity to

generate goals in response to the changes observed in the environment. The goals are

activated under two conditions:

• if the intensity of a motivation related with a goal is sufficient to exceed a

threshold, or

• if an agent decides to act on a goal.

In this architecture, there is an alarm processing mechanism which serves to fo-

cus the planning attention on the most salient goals to avoid unnecessary reasoning

thereby prevent the cognitive overload. The alarms are generated on the basis of

prediction of relevancy and importance of the goals. Each goal is associated with an

alarm which has intensity. The threshold which is a part of alarm processing mecha-

nisms is used for controlling goal activation. If the intensity of the alarm associated

with a goal exceeds the threshold; this is called alarm triggering. Once the alarm is

triggered, the associated goal is considered to be activated. When a goal is activated,

the agent starts acting to achieve that goal.

In 1999, Huber [116] proposed a hybrid agent architecture called as JAM which

is another instance of the BDI architecture. JAM combines BDI theories; PRS spec-

ifications; the structured circuit semantics; and the act plan interlingua. The struc-

tured Circuit Semantics is semantics of robotic languages that is used to represent

the control behaviour of control systems [142]. The act plan interlingua enables a

representation for creating and manipulating acts according to the plans [166].

A JAM agent is composed of five components: a world model, a plan library, an

interpreter, an intention structure, and an observer. Except for the observer, the
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constituents of JAM are standard PRS components. The world model is a database

which represents the beliefs of an agent. The plan library is a collection of plans which

can be used to achieve goals. The interpreter is the component that is responsible for

reasoning on what to do, when to do it and how to do it. The intention structure is a

model of an agent’s current goals and it keeps track of progress and accomplishment.

The observer is an optional declarative procedure which is executed by the in-

terpreter. JAM interpreter executes observer between each action in a plan. The

observer procedure is a plan with the procedural body of a plan. The programmer

can use the observer to provide asynchronous capabilities. One of the important at-

tribute of JAM agents is mobility which enables developers to building applications

requiring mobility by using check point capabilities. The check points are used to

save the agent’s state and restore later on the same or the different environments.

McCauley and Franklin [158] proposed agent architecture called Conscious Mattie

(CMattie). CMattie has the ability to display adaptive emotional states. CMattie

is capable of learning more complicated emotions to interact in more complicated

situations. CMattie attempts to achieve its goals reinforced by the emotional worth

of them. The CMattie architecture has many capabilities like learning, being social

and flexible.

In the same year, Camurri and Coglio [44] proposed an architecture for affect

display. By this architecture, they were not trying to model human like agents.

Instead, they were trying to illustrate architecture for affect display by providing

practical behaviours. The proposed architecture leads to the agents that are social,

flexible and situated.

Based upon the split of multi agent systems, M-Agent architecture is proposed by

Cetnarowicz and Nawarecki [52]. In their model, every agent is characterized by an

agent’s mind which is composed of strategies, goals and models of the environment.

The strategies provide the means to modify the models of agents. The goals represent
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the objectives to be satisfied.

According to their approach, the agent observes the environment and builds a

model of it by using an imagination operation. While operating the imagination, the

agent utilizes its strategies to obtain an estimate of the environment. Afterwards, the

agent compares the environment and the model of the environment by using its goal

function. The goal function determines the objective of the agent functioning. Then

the agent chooses the best available strategy to achieve its goal, finally realises it. In

the model, realisation is performed by the execution process. In M-Agent architecture,

the decisions are taken by using a common decision function. This function is used

for selecting the best strategy for execution.

In 2001, Sadio et. al. [197] proposed emotion-based agent architecture. This

architecture is an advanced version of DARE which is proposed by Maças et. al.

[151]. This architecture employs two types of emotions: primary and secondary

emotions. In this architecture, the goals are generated from an agent’s behaviours

and needs.

Baillie and Lukose [18] introduced an agent architecture in which the affective

decisions are made through an emotion appraisal. The architecture is called Emo-

tionally Motivated Artificial Intelligence (EMAI). EMAI enables agents to change

their behaviours based on their emotional states in guide of the interactions with

the environment. EMAI agents are capable of predicting future emotional states and

deciding how to behave in case of a change in their emotional state. EMAI includes

a motivational drive generation component. However, EMAI only processes internal

sensory data. Therefore, it does not employ motives to generate goals.

In 2005, Imbert and de Antonio [117] proposed an emotionally-oriented architec-

ture called COGNITIVA. This architecture distinctively differs from the conventional

architectures which employ an emotion component. This architecture includes three

layers which are the reactive, the deliberative and the social layer. The components
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and the processes of COGNITIVA are designed to deal with emotions. This archi-

tecture provides some mechanisms and structures to build agents with emotionally

influenced behaviour.

Originally, BDI agent architectures do not employ emotional states. Pereira et.

al. [179] proposed an approach to develop emotional BDI agents. In their study, they

presented a highly abstract architecture which employs an emotional component. This

component enables emotions to influence the behaviour of an agent. Even though this

addition is promising, this approach does not employ any motives to support strong

autonomy.

In 2006, Rational Agent Architecture (RAA) is put forward by Lloyd and Sears

[148]. In this architecture, agents have belief bases which can be modified by belief

acquisition. Belief acquisition can be performed in two ways: by online learning

and by conventional knowledge base update. Moreover, they adopt the maximum

expected utility principle for selecting the rational action.

One major component is a model of the environment which is a model of enough of

the environment. It enables agents to select the actions effectively. Their model has

state and belief parts. They also employ a learning component in their architecture

to enable agents to acquire whatever information is required for the action selection.

Karim et. al. [125] stated that one of the most important issues related with

the agent research is developing an architecture that combines conventional agent ap-

proaches and learning concepts. Then, they proposed FALCON-BDI hybrid architec-

ture. FALCON is based on a reactive learning approach which employs reinforcement

learning. Reinforcement learning algorithms basically, attempt to find a policy that

maps the states of the world to the actions the agent ought to take in such states.

Karim et. al. [125] underlined the fact that the reactive learning approach of

FALCON and high level abstract capabilities of BDI are very promising. Therefore,

they suggested combining the strengths of these approaches in their proposal. To
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achieve their aim, they proposed a layered architecture with FALCON at the bottom

level and an instance of the BDI approach above it.

To realise their ideas, they developed uppermost layers by using JACK Intelligent

Agent and the reactive learning layer by following FALCON. JACK Intelligent Agent

is an agent-oriented programming language which can be used to develop BDI agents.

Since it is an instance of JACK, their architecture also contains the JACK execution

engine. The uppermost layer of the architecture contains a plan generation sub-

component which contains a priori data and goals, a plan dispatcher and a planner.

According to this hybrid architecture; plans are generated by the top-levels by using

the rules learnt by the bottom-level.

Hybrid architectures have distinct advantages over purely reactive and purely

deliberative architectures. It is because of the fact that hybrid architectures bring

strengths of these two architectures. In this manner, the agents using hybrid archi-

tectures can generate plans by reasoning while they can act quickly.

3.4 Cognitive Architectures

While deliberative, reactive and hybrid architectures are concerned with simulat-

ing some aspects of intelligent behaviour, cognitive architectures aims to provide a

blueprint for intelligent agents that act like certain cognitive systems like human-

beings. Cognitive architectures propose computational processes to act like a cog-

nitive system. These architectures form a subset of agent architectures. Cognitive

architectures can be symbolic, connectionist, or hybrid. Many of cognitive architec-

tures are based on the following idea: “Mind is like a computer” and based on a set

of generic rules.

The pioneering cognitive architecture proposed is SOAR. It is a symbolic cognitive

architecture. SOAR is proposed by Laird et. al. [134]. Even though, Laird et. al.
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developed SOAR to achieve general intelligence, they were more concerned with the

internal information processing of an agent. These processes were related to reasoning,

planning, problem solving and learning.

Detailed information on SOAR is provided in Section 2.2.1 when explaining delib-

erative agent architectures. In addition to these, SOAR is further extended by Laird

[133]. In this research study, Laird introduces non-symbolic representation to SOAR

architecture. Besides, he makes major additions like new learning mechanisms and

long-term memories.

Another early cognitive architecture is called Adaptive Control of Thought Ratio-

nal (ACT-R) [10]. This architecture has its roots in the models of human cognition

developed by Anderson [9]. The most important assumption underlying ACT-R is

about human knowledge which states that the knowledge can be divided into two ir-

reducible kinds of representations: declarative and procedural. The other important

assumption of this architecture is rationality.

In ACT-R there are three main modules: a goal module, perceptual-motor mod-

ules and memory modules. The perceptual-motor modules include a simulation of

the real world interface with an environment. In ACT-R these modules are usually

visual and manual. There are two different memory modules called declarative and

procedural memory. The declarative memory is related to the facts while procedural

memory is on how to do things.

Except for the procedural knowledge, all modules can be accessed through their

buffers whose contents represent the state of ACT-R at a given time. Declarative

knowledge of an agent is represented in the form of vector representations of individual

properties which are accessible through buffers. These representations are in some

sense specialised and largely independent brain structures.

The procedural module which is used to access contents of the other modules stores

and applies the procedural knowledge. The procedural knowledge is represented in a
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form of productions which is a formal notation to specify the information flow from

the buffers.

The other component is called the pattern matcher that searches for a production

and then maps the current state of the buffers at each moment. At a given time, only

one production can be executed and when executed it can modify the buffers which

result in a change in the state of the agent.

A decade later, Anderson and Lebiere [12] started studying neural plausibility

related to the theory of ACT-R. Based on these studies a newer version of ACT-R

which is version 5.0 is presented in 2002. This version introduced specialised sets of

procedural and declarative representations. These could be mapped to known brain

structures. Moreover, newly introduced buffers are put forward to mediate between

procedural and declarative knowledge. Based on these advancements, the modified

theory of mind is presented in 2004 by Anderson et. al. [11].

Afterwards, the newest version of ACT-R which includes significant improvements

in coding is presented. The newest version provides unification and/or standardisation

in the buffer mechanism. ACT-R 6.0 makes the system modular where a certain

module can be easily added or removed. Moreover, better integration is provided in

between the cognitive components and the production modules.

Another early cognitive architecture is called Entropy Reduction Engine (ERE)

[76]. The ERE architecture consists of the following components: a reactor, a projec-

tor and a reductor. The reactor produces reactive behaviour in the environment. The

projector is in some sense an opportunity analyser which explores possible alterna-

tives. Afterwards, it provides advice on appropriate behaviours to the reactor. The

reductor provides the means to reasoning while considering behavioural constraints.

The reductor provides search and control advice to the projector.

This architecture contains long term memories which describe the effects of the

actions, and the environmental and the behavioural constraints. At the same time the
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memories provide control rules which propose the actions to achieve goals. The long

term memories are also used to generate a simple problem out of complex problems by

using reduction rules. The operators and constraints of the architecture are used to

produce projections which provide actions to execute. Successful projections enable

an agent to learn new control rules. If an agent fails in executing actions, the agent

revises its constraints and operators.

Langley et. al. [139] presented an architecture called Icarus. Their design consists

of three main components: a perceptual system, a planning system and an execution

system. Icarus also includes a memory system. The memory is invoked by the

perceptual system and the planning system to retrieve structured experiences from

the long-term memory. The long-term memory includes objects, states, and plans.

The planning system uses a variant of Means-End Analysis to generate plans.

In 1992, Real-Time Control System (RCS) architecture is proposed by Albus [6].

RCS consists of a hierarchically layered set of processing modules which are connected

by a network of communications. The communication system conveys messages be-

tween the modules which act as a collection of intelligent agents sending and receiving

commands and requests. In RCS, there are four main modules: a behaviour gener-

ating module, a world modelling module, a sensory processing module, and a value

judgement module.

The primary feature of these modules is a bandwidth of the control loops. At each

layer, the bandwidth is determined by the spatial and temporal integration window

of filters, the temporal frequency of events, the spatial frequency of patterns, the

planning horizon, and the granularity of the planners.

The behaviour generating module is involved in job assignment, planning and

control algorithms. This contains knowledge on processing tasks which includes de-

composing tasks and executing them. The world modelling module covers a model of
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the state space of the problem domain. This module uses models to generate expec-

tations and predict the results of the actions. The world modelling module sustains a

knowledge database module which includes knowledge about entities and events. At

the same time, the knowledge database, in some sense, is the memory of the overall

system.

The sensory processing module receives and processes sensory inputs like visual,

auditory, tactile, etc This module is involved in filtering, masking, differencing, cor-

relating, and matching input data. Moreover, it includes recursive estimation algo-

rithms, feature detection and pattern recognition algorithms. The value judgement

module is responsible for computing cost, risk and benefit. In this manner, it gener-

ates alternative courses of action.

At the same time, Carbonell and Minton presented their cognitive architecture

called PRODIGY [225]. This architecture is designed to unify problem solving, plan-

ning and learning methods. PRODIGY acts as a general problem solver by using

its tightly coupled six different learning modules. The problem solver is actually a

search engine that searches over a problem space defined by the operators and the

environment.

The explanation-based learning module enables an agent to construct control rules

based on its problem solving experience. These control rules are used to improve the

search efficiency and the solution quality. In the meantime, it directs the problem

solver along unexplored paths. In the absence of control rules, the problem solver

searches according to depth-first Means-Ends Analysis.

Hexmoor et. al. [113] presented their architecture called Grounded Layered Archi-

tecture with Integrated Reasoning (GLAIR) in 1993. GLAIR is presented to develop

cognitive robots and intelligent autonomous agents. GLAIR is a three tiered archi-

tecture with the following layers: a knowledge level, a perceptuo-motor level and a

sensori-actuator level.
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The perceptuo-motor level contains physical representations of objects which in-

clude object characteristics like size, weight, texture, and shape. It also undertakes

unconscious acts by using routines for well-practiced behaviours. The knowledge

level is also referred to as the conscious level of the architecture. In this level con-

scious reasoning takes place by using abstract representations of the objects. The

sensori-actuator level controls operations of the sensors and the actuators. Besides,

the overall architecture acts according to the intentional stance. GLAIR has been

used to design and implement a cognitive robot called Cassie [201].

In the following year, a cognitive architecture called FOr the Right Reasons

(FORR) is presented by Epstein [80]. FORR is put forward to model expertise at a

set of related problem classes by employing learning and problem solving concepts.

FORR is based upon a portrayal of the nature of human expertise and attempts to

simulate it. A FORR agent can learn both from an external expert model and from

its experiences in its domain.

In 1990s, Hofstadter [114] was studying on cognition. His studies resulted in

many cognitive models. The most popular model of Hofstadter is called CopyCat.

He considered analogy making as the core of high-level cognition and perception. He

stated that high-level perception emerges from many independent processes called

codelets which run in parallel, competing or cooperating. These codelets create and

destroy temporary constructs to produce answers.

The codelets rely on slipnet which is a long-term memory of an agent. The

slipnet is an associative network. The last component of the architecture is called

coderack. The slipnet and the coderack together form a workspace which is similar

to the blackboard systems. Today there are many successors of CopyCat. The most

significant one is called MetaCat which is a self aware version of CopyCat [154, 153].

Kieras and Meyer [128] presented an architecture called Executive-Process Inter-

active Control (EPIC). By this architecture, their primary goal was to develop and
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validate a cognitive modelling architecture. They attempted to develop an agent ar-

chitecture to accurately simulate human information processing for perceptual, cogni-

tive and motor activities. EPIC provides a model to mimic human activities efficienly

and accurately in the human-system interaction domain.

Many researchers were working on three layered architectures to reliably perform

complex tasks [92]. They all came up with similar solutions which consist of three

main components: a reactive feedback control mechanism, a deliberative planner, and

a sequencing mechanism connected to the first two components [62, 91, 28]. Based

on these ideas, a cognitive architecture called 3T was developed [137].

This architecture is also three tiered thus it is known as 3T. The reactive layer is

the lowest layer and it includes a set of hardware specific situated skills. These skills

represent the connection with the world where the agent situated. The term situated

skills means capabilities that enable an agent to achieve or maintain a particular

state in the environment. The deliberative layer provides the means for planning

which involves reasoning about the goals. The sequencing mechanism is located in the

upper most layer, which is connected to the other layers. This mechanism activates

the situated skills to achieve specific tasks [29].

Another cognitive architecture is called New Millennium Remote Agent Archi-

tecture (NMRAA) [178]. A NMRAA agent mainly has four components: a mission

manager component, a planning/scheduling component, a smart executive compo-

nent, and a mode identification component and a configuration component.

The planner/scheduler that generates new mission sequences is a constraint-based

planner and a resource scheduler. The planner/scheduler is activated by the mission

manager when a new plan is requested by the smart executive. The mission manager

formulates short-term planning problems for the planner. These short-term plans are

generated based on the long-term mission profiles. The assembly and the execution

of the actions are performed by the smart executive component. The last component
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which involves mode identification and configuration enables an agent to diagnose

failures and reconfigure the hardware.

To operate in uncertain environments another cognitive architecture is put forward

by Freed [88]. This architecture is called Apex. The most significant component of

Apex is a reactive planner which selects actions from a library. The library is the

storage which holds partial plans. Its reactive planning algorithm makes decisions

on the next course of action. It is called reactive since new decisions can evolve

when information relevant to a decision becomes available. Another merit of this

architecture is that it can manage multiple tasks efficiently by resolving resource

conflicts.

In 2000, Gratch [102] proposed a model based on emotional reasoning named

Èmile. Èmile is built on prior computational models of emotion, specifically En

algorithm and Affective Reasoner [77, 188]. This architecture has five processes:

a planning, an appraisal, an appraisal evaluation, an integration, and a guidance

process. In its current form, Èmile can learn about the activities of the other agents

by observing their actions or communicating with them. In other words, it adopts

social learning theory.

In the planning process of Èmile, an agent plans and manipulates plans to deter-

mine which action to be selected to pursue its goals. The appraisal process shows

the relation between the plans and the goals. In the appraisal evaluation process,

the agent assigns a quantity to the appraisal. Afterwards, Èmile integrates appraisals

into an overall emotion state. In the final process, these appraisals guide the action

selection and the planning. Like the models of emotion, the term appraisal refers to

the process of qualitatively evaluating the emotional significance of events.

CHunk Hierarchy and REtrieval Structures (CHREST) is another cognitive ar-

chitecture. It is proposed by Gobet et. al. [98]. It is actually the successor of the



CHAPTER 3. AGENT ARCHITECTURES 65

cognitive model called Elementary Perceiver and Memorizer (EPAM) that is devel-

oped by Simon and Feigenbaum [82]. The EPAM is based on a psychological theory of

learning and memory to simulate verbal learning. Verbal learning refers to a learning

style when an agent acquires information via written or spoken language.

The most important part of CHREST is learning which is modelled as the devel-

opment of a network of connected nodes. These nodes are called chunks. CHREST

contains several capacity and time parameters. The capacity parameters include ca-

pacity of the visual short-term memory and set at three chunks. The time parameters

cover time to learn a chunk to put information into memory.

Another cognitive architecture is proposed by Sun et. al. [218, 216]. In 2001, they

proposed Connectionist Learning with Adaptive Rule Induction ON-line (CLARION).

CLARION is proposed to provide a skill learning model. The structure of this archi-

tecture is given in Figure 3.2. According to their model, the procedural knowledge is

developed first and then the declarative knowledge is developed.

The architecture includes a number of subsystems: an action-centred subsystem, a

non-action-centred subsystem, a motivational subsystem, and a meta-cognitive sub-

system. While the action-centred subsystem controls the actions, the non-action-

centred subsystem maintains the general knowledge of the agent. The meta-cognitive

subsystem monitors, directs, and modifies the operations to improve the efficiency of

the processes.

The motivational subsystem provides the underlying motivation for perception,

action and cognition. The motivational system provides drives and defines the interac-

tions between them. In the architecture, they define two types of drives: primary and

derived drives. The primary drives include low-level and high level drives. Low-level

drives are essential and built-in drives. In other words, these drives are physiological.

Beyond these low-level drives, the other hardwired drives are the high-level drives.

While explaining these drives, they follow Maslow’s hierarchy of needs and classify



CHAPTER 3. AGENT ARCHITECTURES 66

Figure 3.2: The Structure of CLARION [Source: Sun et. al. [218]]

these drives as belongingness, esteem and self-actualisation needs. In the architecture,

derived drives which are the secondary drives can change over time. These drives are

acquired in the process of satisfying primary drives.

At the end of the 1990s, Sloman [209] was studying on architectures to find a

way to give human-like powers to agents. He criticised AI and Cognitive Science by

only addressing the components of such architectures. Besides, he stated that there

should not be a fixed architecture to mimic intelligence. Then he proposed the gross

features of the human information processing architecture scheme. By this scheme,

he suggested three control layers: a reactive, a deliberative and a meta-management.

While the reactive layer is at the bottom of the architecture, the meta-management

component is the top layer.

In his scheme, the reactive and the deliberative layers are in their classical form.
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While the reactive layer interfaces with the environment, the deliberative layer gen-

erates plans and undertakes the decision-making processes. Besides these layers, he

puts forward one additional layer called the meta-management. This layer provides

self-monitoring, self-evaluation and self-control capabilities. The meta-management

layer controls and monitors the deliberative layer. The deliberative and the meta-

management layers also have long-term memory.

Another important attribute of Sloman’s scheme is that it includes a motive ac-

tivation mechanism. Motives are used as filters to focus the attention of the agent.

The attention mechanism, which selects motivators to attend to, includes motiva-

tor generators, attention filters, and a dispatcher [25]. In this scheme, he interprets

emotional states as arising out of the perturbances. In other words, he states that

certain emotional episodes are the phenomenon of a partial or total loss of control of

attention [241].

This cognitive architecture scheme is called Cognition and Affect (CogAff). Fig-

ure 3.3 shows CogAff architecture scheme. H-CogAff is an instance of the CogAff

architecture scheme [211]. By H-Cogaff, Sloman gives special emphasis to emotions.

Sloman first distinguishes emotions in two categories as primary and secondary like

Damasio [67], Goleman [99], and Picard [180]. Later, Sloman [210] proposes tertiary

emotions. The primary emotions include the most primitive emotions such as being

startled, frozen with terror, sexually aroused. The secondary emotions are the emo-

tions like apprehension and relief. The tertiary emotions are the result of peturbances

and such emotions are infatuation and humiliation.

In this architecture, he relates each emotion type with a certain layer. The re-

active layer accounts for primary emotions. He states that the secondary emotions

require reasoning abilities; therefore, the deliberative layer supports secondary emo-

tions. Finally, he stresses that the meta-management layer not only supports control
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Figure 3.3: Cognition and Affect Scheme [Source: Sloman [211]]

but also supports the loss of control. With this respect, this layer is involved in gen-

erating tertiary emotions which result from the phenomenon of a partial or total loss

of control of attention. Moreover, he states that the secondary and tertiary emotions

are probably unique to humans.

In 2001, another cognitive architecture called Shadowboard which contains a col-

lection of individual sub-selves (i.e. sub-agents) making up a whole agent is presented

[100]. According to this architecture, nine different sub-selves constitute one single

agent. The first sub-self which is called aware ego agent is in the middle of the archi-

tecture. These sub-selves have envelopes-of-capability which represent different areas

of expertise. Each envelope-of-capability also contains a number of sub-agents with

similar capabilities.

There is also one purely reactive sub-self with a rule-action mechanism. Another
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agent has deliberative capabilities to be used when the resources are available. All

sub-agents have knowledge about the capabilities of sub-selves in their envelope-of-

capability. They use this knowledge to select a suitable sub-agent to achieve certain

goals.

Lee and Zhao [143] proposed a real time agent architecture based on the human

cognition model of Neisser [167]. Neisser’s model considers human cognition as a

perpetual process which works as long as the human-being is awake. In his model, a

human-being acquires samples which bring about useful information by exploring the

environment. The human-being makes decisions and plans by modifying information.

These plans and decisions guide the being to explore the environment to obtain further

information. His model also rejects introspection as a valid method and explicitly

acknowledges the existence of the mental states such as belief, desire and motivation.

Even though this human cognition model underlines the importance of motivation,

Lee and Zhao overlook this fact in their architecture. They focus on the state of being

awake and stress that human-beings are the best examples of a real time agent. With

this respect, they realised real time agency through satisfying automation, reaction,

real time AI, perception and selectivity attributes.

In their architecture, an agent has three subsystems: a perception, a cognition and

an action subsystem. These subsystems acquire from and respond to the environment

through real time AI reasoning concurrently and synchronously.

Bozinovski and Bozinovska [33] presented their computational theory of emotions.

In their theory, they assume that the feelings of human-beings indicate how they eval-

uate people, events, and things. They consider emotion is an internal self-evaluation

of something relevant for the existence of the agent. Self-evaluation can be related to

the evaluation of the global state of the agent and the behaviours of the agent.

Based on these ideas, they put forward an agent architecture which contains a
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genetic control system, a neural component, and a hormonal component. This ar-

chitecture is based on a crossbar connectionist adaptive array. It computes from

the crossbar memory elements to determine emotions toward situations encountered

and action tendencies. In this way, the architecture provides connections between

emotions and behaviours.

Cassimatis [51] proposed a cognitive architecture called Polyscheme. Polyscheme

is designed to model and achieve human-like intelligence. The architecture consists

of several specialists. Each specialist models a different aspect of the world.

In Polyscheme, the specialists communicate with each other and by using the same

focus of attention they execute particular operations. The focus of attention enables

specialists to focus on the same aspect of the world simultaneously. The architecture

also employs several inference techniques such as script matching, backtracking search,

and stochastic simulation.

In 2006, Brain Inspired Cognitive Architecture (BICA) is put forward by Shanahan

[199]. The architecture incorporates the concepts of consciousness, imagination, and

emotion. To simulate consciousness, Shanahan adopts a model of information flow

from Global Workspace Theory (GWT).

Global Workspace Theory is another cognitive architecture that contains a large

set of conscious and unconscious processes [15, 16, 17]. GTW contains conscious

and unconscious processes which are usually explained by the theatre metaphor of

mental functioning. Consciousness is called a bright spot on the stage directed there

by focus of attention under executive guidance. Consciousness is realised through a

fleeting memory which is limited with work duration of a few seconds. The primary

function of consciousness is to allow blackboard architecture. By using the blackboard

architecture it coordinates the other specialised networks. The rest of the theatre is

the unconscious part which is called behind the scenes.

By employing GWT, Shanahan claims that BICA emulates the consciousness.
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The cognitive functions like anticipation and planning in BICA are realised through

internal simulation of interaction with the environment. In BICA, action selection

depends on an affective system. The architecture is neurologically believable; since,

it contains a variety of the brain structures and systems. The overall implemented

system covers four modules: a visual system, an affective system, an action selection

system, and a broadcast system.

In 2008, Jilk et. al. [120] proposed a cognitive architecture called SAL (Synthesis

of ACT-R and Leabra). This architecture combines ACT-R and Local, Error-driven

and Associative, Biologically Realistic Algorithm (LEABRA)[173]. LEABRA is a

neural architecture which models the neocortical learning mechanism. He explains

this mechanism as a combination of error-driven and self-organizing learning. Based

on these two architectures, SAL is realised as a hybrid symbolic-connectionist archi-

tecture.

Wang et. al. [233] proposed Layered Reference Model of the Brain (LMRB).

LMRB covers thirty seven cognitive processes of natural intelligence. This model

contains six layers called sensation, memory, perception, action, metacognitive, and

higher cognitive layers. While the lowest layer is sensation layer, the highest layer

is higher cognitive layer. The lowest four layers are categorised as subconscious life

functions. The highest two layers, metacognitive and higher cognitive layers, are

categorised as conscious life functions. LMRB is inspired from the structural model

of the human brain.

Later, Wang [232] modelled perceptual processes like emotions, motivations, and

attitudes. He stated that the emotions arise from the factors like a personal feeling

and an internal status, a mood, circumstances, a historical context, and external

stimuli. He classified emotions in three levels: super, basic, and sub-category. Super

level categorises emotions as positive and negative. Basic level covers basic emotions

like joy, love, anger, sadness, and fear. Sub-category level includes more complicated
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emotions each of which is related with basic emotions. In addition, Wang listed

emotions hierarchically as weak, moderate, strong and strongest emotions. In his

model the strength of motivation is proportional to the strength of the emotion.

Furthermore, motivation is defined as a desire triggered by an emotion or external

stimulus to pursue a goal. Wang [231] also proposed Cognitive Informatics Reference

Model of Autonomous Agent Systems (AAS). In this study, he states that software

agents are goal-driven.

In 2009, Laird et. al. [136] attempted to evaluate human-level intelligent systems.

In that study they note that there is a significant increase in cognitive architecture

and general intelligence research in the last five years. They stated that the primary

claim in this field is that human-level intelligence can be achieved without exact

reimplementation of human brain. They also listed a number of claims and attempted

to evaluate these claims. As a conclusion, they stated that developing human-level

intelligent systems is a huge challenge. They suggested researchers to be more explicit

in their claims in order to progression in this field.

In the same year, Langley et. al. [138] analysed the research issues regarding cog-

nitive architectures. They discussed various capabilities that a cognitive architecture

can support. These capabilities are:

• Recognition and categorisation,

• Decision-making and choice,

• Perception and situation assessment,

• Prediction and monitoring,

• Problem solving and planning,

• Reasoning and belief maintenance,
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• Execution and action,

• Interaction and communication, and

• Remembering, reflection, and learning.

After determining these capabilities; Langley et. al. state that there is consid-

erable need for further research on cognitive architectures. They indicate that the

most important area to be considered for further development is introduction of new

capabilities to existing architectures. They underline the fact that only few support

capabilities listed above.

In 2010, Laird and Wray [135] attempted to define requirements for achieving

artificial general intelligence. They outlined eight characteristics regarding environ-

ments, tasks, and agents. By considering those characteristics as influences on desired

agent behaviour, they derived twelve requirements for general cognitive architectures.

However, they noted that many of the derived requirements are vague. Therefore, it

would be difficult to apply those requirements to the existing architectures.

In some of the cognitive architectures different components can be active con-

currently. Concurrency can be considered as one of the most basic requirement for

robots. By supporting concurrency, cognitive architectures may have multiple sensors

and effectors in complex and dynamic environments.

Many cognitive architectures composed of different kinds of sub-architectures.

These sub-architectures may be merged into the other hybrid architectures to enhance

their strengths further. From this point of view, it can be asserted that the hybrid

and cognitive architectures are the most promising approaches to simulate human-like

intelligent behaviour.



Chapter 4

Foundations of the Proposed

Approach

One of the aims of this study is to establish a framework for simulating human

intelligence. To achieve this objective, it is proposed to combine motivation theories

and the intentional notion. In particular, by the proposed approach the theories of

needs and Belief, Desire, Intention approach are brought together. By combining

these approaches, agents are enabled to be driven by their motives, specifically their

needs. In this manner, the emergence of intelligent behaviour is explained as the

result of unsatisfied needs.

In the literature, the simulation of intelligence is tried to be achieved under certain

assumptions. The most commonly accepted assumption in the literature is rationality.

Instead, by this study, causality is put forward as the most basic assumption of the

simulation of intelligence.

Constrained by such assumptions, researchers have attempted to explore the key

attributes of intelligence. Then these key attributes are attempted to be satisfied

while developing intelligent agents. In other words, these attributes are ascribed to

the agents. The most commonly accepted attributes of intelligence are proposed by

74
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Wooldridge and Jennings [240] as autonomy, situatedness, and flexibility. In addition

to these, Russell and Norvig [194] proposed the learning attribute as one another key

attribute.

In the present approach, these key attributes are utilized. In addition, the flex-

ibility attribute is elaborated further by dividing this property into two different

attributes. While the first one is still called flexibility, the second one is called social

ability. Furthermore, by the proposed approach, three more attributes are added:

employing motives, intentionality and ability to display affect. As explained, the

proposed approach combines the theories of motivation and the intentional notion.

This study asserts that intelligent beings are being driven by some motives and they

act intentionally to satisfy those motives. Therefore, two additional attributes of

intelligent beings are proposed as employing motives and intentionality.

Moreover, while trying to explain the intelligent behaviour it is inevitable to ad-

mit the importance of emotions. All of the intelligent beings are affective systems;

therefore, while trying to simulate intelligence, affective aspect of intelligence should

also be simulated. With this respect, ability to display affect is proposed as another

key attribute of the intelligence.

In this section of the study, a general framework to simulate all aspects of intelli-

gence is attempted to be build. Initially, the rationality assumption is analysed and

criticised. Instead of rationality, causality is proposed as the most basic assumption

of the intelligence simulation. Afterwards, in this section the details of the present

approach are elaborated while the stated key attributes is explained. Finally, these

key attributes are brought together in the last subsection.
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4.1 The Underlying Assumptions

4.1.1 Rationality

Even though, the intentional notion provides a good theoretical infrastructure for

agency, it has few but vital obstacles in simulating intelligence. Some of these prob-

lems are explicitly stated by the founder of these stances -Daniel Dennett [70]. He

stated that there were some unknown issues related to the emergence of intelligent

behaviour. Besides, some other objections related to the intentional notion can be

put forward.

First of all, the animals cannot only be considered as intentional systems. In

other words, too much abstraction in some cases may lead to false predictions in the

behaviours of intelligent animals. In the end, these creatures -including humans- also

have so called physical and design stances. The animals are bounded by the physical

and the chemical principles of the universe; therefore, this situation certainly has an

affect on intelligent behaviour.

Besides, the behaviours of animals are delimited by existential attributes, purposes

and functions and this stance is known as the design stance. Here instead of the term

design, the existential attributes are used to refer to the same thing. The term

existential attributes are used; since, this term does not refer to a creator. Usually

the term design brings about belief on a creator. In the present study, it is not aimed

to refer to a creator. Instead it is tried to express that all intelligent creatures have

existential attributes regardless of whether a supreme deity created them or not.

Secondly, the cause of the emergence of intelligent behaviour is not known as

stated by Dennett [70]. It is commonly accepted fact that intelligent animals including

human-beings are intentional. In other words, the behaviours of the animals can be

somehow understood and predicted by employing the intentional stance. However,

it cannot be known what causes the emergence of intelligent behaviour; therefore,
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the emergence of intelligence cannot be simulated by only applying the intentional

notion.

Last but not the least objection to the intentional notion is related to the ratio-

nality assumption. While explaining these stances, Dennett [71] simply assumes that

the agents are rational. The rationally debate is initially put forward by Sloman and

Logan [212]. They stated that the systems that are developed by utilizing findings of

AI are neither rational nor irrational.

Even though, Sloman’s opposition is a good starting point a more serious objection

is proposed by Stephen Stich [214]. He questioned if a man is ideally rational or

irrational. He argued that the human-beings often have beliefs and/or desires which

are irrational and the intentional stance does not help understanding and predicting

the behaviours which are the result of irrational beliefs and/or desires.

When explaining the intentional notion, Dennett [70] stated that the animals are

to be treated as rational agents and then attempted to understand what beliefs an

agents ought to have, given their situation and purpose. However, as explained by

Stich [214], human-beings have beliefs and desires which are irrational. Therefore,

while trying to understand and predict the behaviours of intelligent beings, the in-

tentional stance fails to explain the behaviours that are the result of irrational beliefs

and/or desires.

Moreover, in many cases rational behaviour depends on time, culture, context,

limited with the beliefs an intelligent-being has. Various behaviours of human-beings

in the past are thought to be rational, while today some of them look irrational. Many

more behaviours are considered as rational in certain cultures, but in other cultures

they are presumed as irrational. Moreover, all intelligent behaviours are limited with

the beliefs of an intelligent-being, which in turn may yield irrational actions.

As an example, around 5000 years ago when Sumer, the earliest civilization was in

power, many people were practicing polytheistic religion with anthropomorphic gods
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and/or goddesses. These deities were representing forces or presences in the world

[131]. At that time, nobody would question people worshipping those deities but

today most of the people would say that it is irrational behaviour to idolize several

gods and/or goddesses. Therefore, rational behaviour is time dependant; the rational

behaviour of one time can be irrational in another time.

Moreover, rational action differs from one culture to another. As an example, men

and women relationships specifically marriage can be examined. In some countries

like Tibet and Saudi Arabia, it is common and very rational to marry with many

spouses. However, in some other countries like Turkey, polygamy is prohibited by

laws due to the ethical concerns and many other reasons [129]. As an example, in

European countries if one would ask about marrying with several women at the same

time, most people would say that it is an irrational thing to talk about because of

the equity of women and men.

Besides, rational actions usually depend on the context. Assume that a man, say

Jack, and its family are sleeping in their house; somebody breaks into their house.

What should Jack do? Assume that Jack has a gun, then Jack would shoot the

burglar with a high probability. But is it a rational action? Most of the people would

say “Yes”. It is because of the fact that it is self-defence; since, Jack is protecting

himself and his family. But as an example, in Turkey if you shoot a burglar in your

house, it is a punishable crime. In Turkey, the self-defence rule applies only if one

fires a weapon in its bedroom. Therefore, shooting the thief in other rooms is an

irrational action to take in Turkey. As stated before, rational action depends on the

context which in this case is the regulations and laws of Turkey [19].

The last but not the least concern in here is that rationality is constrained with

the beliefs an intelligent-being has. For instance, consider a cat is given to Jack as

a present. Assume that Jack does not know much about cats. The following day,

assume that he wants to go outside. Before going out, he decides to keep the cat
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away from his parlour. Therefore, he rationally closes the door of the parlour!

Is it really a rational behaviour to close the doors? We would say “No” knowing

that some cats can open a closed door. Cats are capable of using a door handle.

The cats can jump on a handle and by pressing down; they can open unlocked doors

[222]. Therefore, Jack should have locked the door which is the rational action to

take before going out. But when deciding, he had a belief which is “Cats cannot

open the closed doors.”. Actually, this belief is not sufficient to provide the rational

action. Therefore, as stated previously intelligent behaviour is limited with the beliefs

intelligent-beings have.

In this study it is asserted that the rationality assumption fails to explain all

aspects of the intelligent behaviour. However, without the rationality assumption

the intentional notion is very useful in explaining, understanding, and predicting

intelligent actions.

4.1.2 Causality

Instead of the rationality assumption, by this study it is asserted that the most basic

assumption of intelligence simulation may be causality. Basically, causality denotes

the relationship between one event and another event which is the consequence of the

first. The first event is called as the cause while the latter is called the effect. The

cause must be prior to, or at least simultaneous with, the effect. According to the

causality, the cause and the effect must be connected by a nexus which is a chain of

intermediate things in contact [176].

By the proposed approach, it is suggested that intelligent behaviour is produced

in accordance with causality. Firstly, intelligent entities observe their internal state

and the environment. Then based on the perceived input, intelligent entities perform

some actions in the environment. According to this viewpoint, perceived input is the

cause while the taken action is the effect.
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Actually, all of the current architectures which try to mimic intelligent behaviour

are in accordance with causality, even if the researchers are not aware of this fact. In

other words, the existing architectures produce intelligent behaviour in accordance

with causality. Therefore, the most basic assumption of the simulation intelligence is

that intelligent behaviour is produced in accordance with the causality.

Aside from this fact, according to the present approach each cause and effect is

connected by particular motive. In other words, in the proposed approach the nexi

are the needs. These needs provide the means to select among alternatives. From

this point of view, while producing intelligent behaviour the intelligent beings choose

a plan which satisfies their motives (i.e. needs) best.

Within this point of view, one can understand and predict an intelligent-being’s

behaviour if he knows its motives. Instead of considering the rational actions an

intelligent-being has, one should consider its motives. Based on these motives, acts of

an intelligent being can be understood and predicted by considering the action which

satisfies the associated motive best.

4.2 The Key Attributes of the Proposed Approach

4.2.1 Autonomy

One of the most defining attributes of intelligent beings is autonomy. Even if in some

cases, animals can get assistance from others, they are capable of performing actions

without assistance or guidance of other entities. Besides, they have control over their

internal states and actions.

Based on this fact, Wooldridge and Jennings [240] stated that the one of the key

attributes of intelligence is autonomy. Therefore, they proposed that the intelligent

agents should be autonomous. According to their definition, the term autonomy
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refers to entities that can perform actions without the assistance of other entities.

Moreover, these entities have the ability to control their internal state and actions.

Luck and D’Inverno [150] proposed that to have a stronger autonomy, agents

should also have motivations in such a manner that motivations should enable them

to generate goals. They considered agents with motivations as autonomous agents,

while they considered objects with goals as agents only.

Abdelkader [2] stated that there are two interpretations of autonomy as self-

governance and independence. Self-governance indicates an agent which is capable

of selecting what goals have to be achieved in the guide of its motives. The inde-

pendence refers to an agent that is independent from the other agents. He proposed

self-governance as a sufficient condition to be autonomous.

In their study, Weigand and Dignum [234] stated that autonomy is still a poorly

understood concept. However, they stated that to be considered as an agent a software

system must fulfil autonomy. In addition to these, they stated that autonomy cannot

be interpreted only as independence. Besides, they underlined the fact that an agent

is dependent on its environment and the environment is also dependent on that agent.

This means, the agent performs a certain role in an environment.

Carabelea et. al. [46] studied on classifying the different forms of autonomy. They

stated that the most difficult problem in multi agent systems is to allow the agents to

be autonomous while a coherent behaviour of the system is ensured. In their study,

they explained the following types of autonomy:

• U-Autonomy (User-Autonomy): In this type of autonomy, an agent is indepen-

dent form the user for choosing what action to perform. In some cases, this

type of an autonomous agent can still pass the control of its actions to the user.

• I-Autonomy (Social-Autonomy): This type of autonomy is used to to refer the

adoption of goals. I-Autonomy implies an agent that is autonomous with respect
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to the other agents for the adoption of a goal. The agent cannot be imposed to

adopt a goal by the other agents.

• O-Autonomy (Norm-Autonomy): To reduce the degree of non-determinism

caused by autonomous agents in a multi agent system, norms like social laws

and conventions can be used to restrain the autonomy of the agents. In this

type of autonomy, an agent is autonomous with respect to a norm.

• E-Autonomy (Environment-Autonomy): In this type of autonomy, the environ-

ment has an effect on the agent. However, the environment cannot impose what

to do.

• A-Autonomy (Self-Autonomy): This form of autonomy can be seen as an at-

tribute which gives an agent the ability to choose different behaviours among

the alternatives it has.

After defining these autonomy types, Carabelea et. al. put forward an autonomy

definition. Their definition is as follows:

“An agent is autonomous with respect to the other agents for an au-

tonomy object in a given context, if in the context, its behaviour regarding

the autonomy object is not imposed by the other agent.”.

Russell and Norvig [194] stated that if the actions of an agent are only based on

its built-in knowledge, then the agent lacks autonomy. From this point of view, they

stated that the agents should also have the ability to learn from experiences. In this

manner, they put forward a stronger sense of autonomy.

The proposed approach covers the attributes learning and employing motives. By

employing motives in the present approach, the agents are allowed to be capable of

generating goals. In addition to these, learning in the proposed approach allows the

agents to learn new plans to undertake in case of need.
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4.2.2 Situatedness

All intelligent beings are capable of getting data from their environment and changing

the environment. Intelligent beings observe the environment and obtain the sensory

data from the environment. Based on those observations, they are capable of taking

actions which may result in a change in the environment. They are physically existing

beings in such a way that they can affect their environment.

Wooldridge and Jennings [240] put forward the term situatedness to explain this

attribute of intelligent beings. They stated that the term situatedness implies enti-

ties that are capable of getting sensory data and performing actions to change their

environment. Russell and Norvig [194] explains situatedness as a process of agent

deliberation which is directly connected to an environment.

Accordingly, an agent is situated if:

• The agent exists in a dynamic environment of which state changes over time,

• The agent can manipulate or change the environment through their actions,

and

• The agent can sense or perceive in the environment.

Chandrasekharan and Esfandiari [53] studied software agents and situatedness.

They stated that software agents are not embodied. While explaining situatedness,

they considered the behaviours of honeybees which live in colonies like ants and ter-

mites. They explained two behaviours of foraging bees as foraging in finding food and

communicating location of the food with the other bees. They stated that the for-

aging activity does not require representation while communicating location requires

representation.

Based on these explanations, they stated that there are two types of situatedness:
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• The first type of situatedness is the situatedness in the word which allows the

bee to forage.

• The second type of situatedness which can be called social situatedness is the

situatedness among other agents.

These two types of situatedness are different from each other. The second type of

situatedness involves exchanging symbolic structures in order to communicate.

The proposed approach is proposed to support the development of agents that

are both situated in a dynamic environment and situated socially. Here the term dy-

namic environment is one in which the agents exist. Static environments are assumed

to remain unchanged if agents do not take actions. If agents perform some actions;

the static environment changes. In contrast to the static environment, dynamic en-

vironments has other processes operating on it; therefore, it may change even if an

agent do not perform any action. With this respect, an agent does not have complete

control over dynamic environment, like real world [238].

Based on these ideas, the proposed approach adopts the definition of Wooldridge

and Jennings while also taking Russel and Norvig’s explanation into account.

4.2.3 Employing Motives

In the view of the given examples in Section 4.1, the behaviours such as worshipping

many deities, marrying with several spouses, shooting a burglar in the parlour, and

closing a door of a room to keep a cat away from the room may or may not be rational

but all those behaviours are somehow driven by some motives.

It can be asserted that while worshipping several deities, human-beings are mo-

tivated to achieve self-relief. In case of marrying with several spouses maybe people

are motivated to provide an alternative for divorce. The motivation behind shooting

the burglar is quite obvious -protection. Keeping the cat away from a parlour may
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be motivated by having clean rooms. Even the cat must be driven by a motive to

open the door. For instance, the cat might have felt hungry and attempted to find

food in the other rooms; since, it is another fact that the cats are hungry almost all

the time!

As intelligent beings are interacting with the environment, they are motivated to

take some actions. In other words, intelligent beings have motivations; based on these

motives they act intentionally to satisfy them. The motivation is the reason behind

the emergence of intelligent behaviour. The problem is to find those motives which

cause them to act. Today, there are several different motivation theories which can

be categorised in three groups: the drive reduction theories, the theories of needs,

and the cognitive theories.

Before going into the details of these theories, it would be reasonable to explain the

term motivation. Britannica Concise Encyclopaedia [78] defines the term motivation

as the factors within an animal including human-beings that arouse and direct goal-

oriented behaviours. More precise definition is proposed by Geen [93], who asserts

that the motivation refers to the initiation, direction, intensity and persistence of the

behaviour.

The other psychologists like Sigmund Freud have also studied motivation. Freud

[89] proposed that all behaviours are the result of biological instincts. He categorised

these instincts as life (sexual) and death (aggression). Besides, he stated that there

is no difference between human and animal motivation.

On the other hand, many of the other psychologists have different viewpoints on

motivation. Jung [122] proposed that the temperament and search for soul or personal

meaningfulness drive human-beings. Adler [3] believed that will to power is the basic

motive of human life. His ideas are not much different from Nietzsche [126]. Sullivan

[215] stated that interpersonal and social relationships are fundamental in explaining

human motivation.
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The drive reduction theories are based on the ideas of Walter B. Cannon [45] who

proposed that the basic human drives serve homeostatic functions. This function is

fulfilled by directing the energies towards the reduction of the physiological tensions.

There are several drive reduction theories in the literature. In general, theory states

that the human-beings have certain biological or psychological drives like hunger. As

time passes, the strength of the drive increases as it is not satisfied. If the derive is

satisfied then the strength of the drive is reduced. As an example, a person who is

hungry eats to reduce the tension caused by the hunger.

According to the drive theories, all human behaviour can be attributed to the

pleasure obtained when the tensions are reduced. Today, the drive reduction theories

lost favour. They can successfully explain the reduction of tension but they fail in

explaining all intelligent behaviours. As an example, they fail to explain why people

ride a roller coaster; since, it increases tension by causing fear and anxiety [13].

Another theory is called the theories of needs. Among many needs theories, the

hierarchy of needs theory is put forward by Maslow [155] is the most commonly known

approach. According to this theory, the human-beings are said to be motivated by

their unsatisfied needs. Maslow lists these needs in a hierarchical order in five groups:

physiological, safety, love and belongingness, esteem and self-actualization.

The lowest needs are the physiological needs. These are explained as the basic

needs such as air, water, food, sleep, sex, and so on. When these needs are not

satisfied sickness, irritation, pain and discomfort can be felt. These needs motivate

human-beings to alleviate them as soon as possible to establish homeostasis.

The environment is usually so chaotic that the safety needs become very vital.

A human-being needs security of herself and her family. This need can be satisfied

with a secure house and a good neighbourhood. In addition to this, the safety needs

sometimes motivate people to be religious. The religions comfort with the promise of

a safe secure place after death and leave the insecurity of this world.
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Love and belongingness are the next level of needs. Human-beings need to be a

member of groups like family, work groups, religious groups, and so on. They need to

be loved by the others and need to be accepted by the others. According to Maslow,

it is essential to be needed.

The esteem needs are categorized in two as self-esteem and recognition that comes

from others. Self-esteem results from the competence or the mastery of a task. The

recognition is getting attention from the others. The people, who have all of their

lower needs satisfied, often seek luxury expenditures because doing so raises the level

of esteem.

The need for self-actualization is the need in becoming everything that one is

capable of -as far as physical and mental capabilities permit. Human-beings that

meet their other needs can try to maximize their potential. They can seek knowledge,

peace, aesthetic experiences, self-fulfilment, and oneness with deity, etc...

According to Maslow certain lower needs are to be satisfied before the higher level

needs can be satisfied. From this perspective, once the lower needs are alleviated,

human-beings can think about higher level needs.

Another theory is offered by Clayton Alderfer [7]. He put forward ERG (Existence,

Relatedness and Growth) theory by expanding the hierarchy of needs of Maslow. In

the ERG theory, physiological and safety are the lower order needs and placed in the

existence category. The relatedness category contains the love and external esteem

needs. The growth category includes the higher order needs -self actualization and

self esteem. Alderfer also proposed a regression theory to go along with the ERG

theory. He said that when needs in a higher category are not met then individuals

redouble the efforts invested in a lower category need.

Some studies showed that there is an overlap in the middle levels of the hierarchy

of needs. Alderfer addressed this issue and reduced the number of levels. However,

ERG needs can still be mapped to those of Maslow’s theory as seen in Figure 4.1.
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Figure 4.1: Hierarchy of Needs [Adapted from: Maslow [155] and Alderfer [7]]

ERG theory differs from the hierarchy of needs in the following three ways:

• The ERG theory allows for different levels of needs to be pursued simultaneously,

• The ERG theory allows the order of the needs be different for different people,

and

• The ERG theory acknowledges that if a higher level need remains unfulfilled,

the person may regress to lower level needs that appear easier to satisfy. This

is known as the frustration-regression principle.

The hierarchy of needs is shown in Table 4.1. In this table, Alderfer’s hieararchy

is mapped to Maslow’s hierarchy.

Another well known needs theory is called three needs theory. This theory is

based on the ideas of Henry Murray [164] who identified the core psychological needs
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as achievement, affiliation and power. Accordingly, McClelland [159] put forward the

three needs theory.

Table 4.1: Hierarchy of Needs [Adapted from: Maslow

[155] and Alderfer [7]]

Alderfer’s Hierarchy Maslow’s Hierarchy Associated Needs

Existence

Physiological

Survival

Air

Water

Food

Excretion

Warmth

Sleep

Sex

Safety

Security

Health and Well-Being

Stability

Religion

Relatedness

Love and Belongingness

Affectionate Relationships

Involvement with Family

Involvement with Friends

Involvement with Others

External Esteem

Being Needed

Recognition

Dignity

Continued on next page
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Table 4.1 – continued from previous page

Alderfer’s Hierarchy Maslow’s Hierarchy Associated Needs

Dominance

Growth

Self Esteem

Confidence

Independence

Achievement

Mastery

Self Actualisation

Know and Understand

Fulfill Potentials

Transcendence

Wholeness

The three needs theory envisages that human-being have dominant needs for three

things which influence their behaviour and these needs are:

• Need for Achievement,

• Need for Power, and

• Need for Affiliation.

According to the three needs theory, people with a high need for achievement seek

to excel and tend to avoid the situations which include risks. Generally, achievement-

motivated individuals avoid the low-risk situations which yield easy success not a

genuine achievement. The need for affiliation is similar to the Maslow’s belongingness

need. People with a high need for affiliation need to have social relations and be

accepted by other people. According to the theory, the need for power can be either
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personal or institutional. People who need personal power want to direct other people;

while people who need institutional power want to organise the efforts of the others.

According to his study, subjective importance of each need varies from individual

to individual. The importance of each need depends also on an individual’s cultural

background. In other words, an individual’s specific needs are acquired over time and

are shaped by one’s life experiences. Therefore, McClelland’s theory sometimes is

referred to as the learned needs theory. It must be noted that Murray’s contribution is

rarely acknowledged in contemporary academic literature. It can be put forward that

McClelland’s theory is somehow weaker than the other theories; since, McClelland’s

theory is based only on Murray’s ideas.

According to the cognitive theories, a motive sensitizes a person to information

relating to that motive. As an example, a hungry person will perceive food stimuli

more than any other stimuli. These stimuli motivate people to satisfy them. The

pioneering cognitive motivation theory is called cognitive dissonance theory which is

developed by Festinger [85]. In the cognitive dissonance theory, if a person experiences

conflict or discrepancy between his beliefs and/or actions, then the person will act

to resolve those conflicts and discrepancies. As a result, this will lead to a change in

thought pattern which in turn leads to a change in the behaviour.

The expectancy theory is one another cognitive theory for motivation [228]. Ac-

cording to the theory, there are three factors called expectancy, instrumentality, and

valance. Expectancy is explained as the perceived probability of success. Instrumen-

tality stands for a connection of success and reward. Valance is the value of obtaining

goal.

When values of these three factors multiplied, the value of the motivation is ob-

tained. A low value in one of these will result in a low motivation. With this respect,

all three must be present to motivate people. From this perspective, all three variables

must be high in order to motivate a person.
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The last distinctive theory of motivation is the goal-setting theory. It is based on

the notion that the individuals sometimes have a drive to reach a clearly defined end

state [149]. Often, this end state is a reward. A goal’s efficiency is affected by three

features; proximity, difficulty and specificity. An ideal goal should present a situation

where the time between the initiation of a behaviour and the end state is close in

time. A goal should be moderate, not too hard or too easy to complete. In both

cases, most people are not optimally motivated, as many want a challenge (which

assumes some kind of insecurity of success). At the same time, people want to feel

that there is a substantial probability that they will succeed. The specificity concerns

the description of the goal. The goal should be objectively defined and intelligible for

the individual.

As it can be seen, there are many motivation theories and each of them explains

different aspects of the motivation. Actually, in the theories of motivation there is

no exact solution to understand the exact motives that drive intelligent-beings. For

the purposes of the present study, the theories of needs are adopted. Specifically,

under the light of the findings underlined by Maslow, Alderfer’s ERG is adopted.

It is because of the fact that the theories of needs are well defined and well known

approaches to explain motivation.

Even though the ideas of Maslow are adopted in the proposed approach, it is also

assumed that there is no difference between human and animal motivation. In other

words, the proposed approach also accepts Freud’s assertion which states that there

is no difference between human and animal motivation. From this point of view, for

all intelligent entities, it is proposed that the emergence of the intelligent behaviour

is the result of motives like needs. With this respect, according to the proposed

approach, driven by motives all intelligent beings act intentionally.

To achieve the simulation of intelligence, Alderfer’s ERG theory is adopted; since,

it is based on the most commonly approved approach called as the hierarchy of needs
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of Maslow. Besides, ERG expands the hierarchy of needs and resolves the overlapping

in the middle levels of the hierarchy. Furthermore, in the current approach, it is

proposed that the order of the needs can be slightly different for different beings as

suggested by Alderfer. According to the proposed approach, this provides personality

to intelligent beings.

It must be noted that the behaviours of all intelligent entities are different from

each other. It may be the result of the fact that all human’s needs are not exactly in

the same order as listed by Maslow. As proposed by Alderfer, the needs of intelligent

beings can be different from the others.

Moreover, different animal species’ behaviours are also totally different from other

species. These behavioural differences between different species are the result of the

differences between the motives and physical capabilities. It is quite obvious that

the motives of the animals are much more primitive than the human. In turn these

primitive motives yield less complicated intelligent behaviours.

Moreover, it must be stressed that intelligent behaviours are limited with the

physical capabilities. As an example, cats and dogs can be compared. It is reported

that cats are capable to open closed doors while dogs are unable [222]. It is because

of the fact that jumping capabilities of the cats are superior than the dogs and the

cat paws are more flexible. Even if cats can open the closed doors, this does not mean

that they are more intelligent then dogs or vice versa.

Moreover, human-beings can open both closed doors and locked doors. But cats

cannot open a locked door. This also should not mean that human-beings are more

intelligent then cats. This only shows that there is a difference between the physical

capabilities of these species. In fact, Gould and Gould [101] asserted that there is a

possibility for the cats for being more intelligent than human-beings!
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4.2.4 Intentionality

According to this study, being driven by their motives, the intelligent beings act

intentionally to satisfy those motives. In particular, the intentional notion provides a

way to explain, understand and mimic intelligent behaviour. With this respect, being

intentional is one of the most important attributes of intelligent beings. Moreover, it

provides a good theoretical infrastructure for agency.

As stated before, the proposed approach attempts to combine the intentional no-

tion and the theories of needs. In this manner, the emergence of intelligent behaviour

is tried to be explained as a result of the motives (i.e. needs). Therefore, it is pro-

posed that being driven by needs intelligent entities act intentionally to satisfy their

needs.

In the new approach to illustrate the intentional notion Belief, Desire, Intention

approach is adopted. As explained previously, the beliefs are the information that an

agent has about itself and its environment. The desires are the possible alternatives

that can be chosen by an agent. The intentions are the choices of an agent. In other

words, intentions are the plans to which an agent has committed. The desires of an

agent are represented in the form of plans. Plans are sequences of actions that an

agent can perform to achieve its intentions.

According to the given information, the proposed approach works as follows:

Firstly, intelligent entities observe their internal state and the environment; the per-

ceived inputs are the beliefs of the entities. These beliefs are also at the same time

the cause according to the causality assumption. Then intelligent entities check the

relevancy of these beliefs with their needs. If the beliefs are related with their needs;

then they become motivated to satisfy the relevant need. The goal of intelligent

beings is then to satisfy the corresponding need.

To pursue their goals, intelligent beings try to determine their desires. For this

purpose, they develop several plan alternatives. Afterwards, based on some criteria
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(which are explained in the following subsection), they select one of the plan alterna-

tives as their intention. Then they perform actions corresponding to the intention in

the environment to satisfy their need.

According to this viewpoint, the perceived input is the cause while the actions

taken are the effect. In this manner, the proposed approach works under the causality

assumption. Furthermore, by the proposed approach, the intentional notion and the

theories of motivation are combined.

As an example, the behaviour of the man who closed the door to keep his cat

away from the parlour can be examined. Here how the proposed approach works:

Once again consider Jack who is going to go out. Let us assume that there are

flowerpots in the parlour and he sees the cat that is playing around them. If the cat

is going to be left in the parlour, the cat will mess up the flowerpots. Therefore, the

room will lose its hygiene. Living in a hygienic place is related with existence needs.

Therefore, before he goes out, he must keep the cat away from the parlour. Keeping

the cat away from the parlour becomes the goal of Jack. Then he starts developing

plan alternatives.

Let us assume that he develops three different plans which meet his goal:

Plan 1. Close the door of the parlour and leave the cat in the corridor.

Plan 2. Tie the cat in the corridor.

Plan 3. Take the cat to the outside.

Then Jack tries to make decision on these plan alternatives. In the decision making

process, he selects one of the plan alternatives as his intention. Let us assume that for

the given example, Jack decided to close the door of the parlour and leave the cat in

the corridor. This means that the intention of Jack is to close the door of the parlour

and leave the cat in the corridor. After determining the intention, Jack executes its

intention to satisfy its need.
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4.2.5 Flexibility

Jennings et. al. [119] explains the term flexibility as the capability in performing

flexible actions. They further elaborate this attribute by putting forward three com-

ponents of it: responsive, pro-active and social. The term responsive refers to those

entities that can understand their environment and respond to the changes that occur

in their environment. The term pro-active refers to those entities that can perform

actions and take initiative to achieve their objectives. In their definition, the term

social implies beings that are able to interact with the other entities and also help

the others in their activities.

This study follows Jennings et. al. who stated that one of the key attributes of

intelligent entities is flexibility. However, in the present study, flexibility and social

ability are considered as separate attributes. Therefore, in this study the term flexi-

bility is used to refer to those entities which are responsive and pro-active. However,

the social ability is considered as a separate attribute which is elaborated on in the

following subsection.

According to this point of view, intelligent beings are capable of selecting different

actions under different conditions. Even under the same conditions, intelligent beings

have such flexibility that they select different courses of actions in accordance to the

changes in their environment. In other words, the behaviours of intelligent beings are

so unpredictable that they can choose to execute different plan alternatives. There-

fore, intelligent decision making to choose among alternative plans is unpredictable

even if the causes are known.

In the present approach, each decision is made to satisfy a particular need. As

stated before, intelligent behaviour is considered as in accordance with the causality.

Therefore, in the present approach the needs are proposed as nexi which provide the

means to select among alternatives. Besides, it is proposed that intelligent beings

select the plan alternative which satisfy their needs best.
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With this respect, in this approach each plan alternative corresponds to a satisfac-

tion degree related with a particular need. Here, the degree of satisfaction is a metric

which provides the means to select among different plan alternatives. Each action

taken does not guarantee full satisfaction of the needs. In some cases, intelligent-

beings can satisfy their needs partially. The degree of satisfaction can be considered

as a value between 0 and 1, while 0 signifies full dissatisfaction, 1 signifies full satis-

faction.

Here the question is how to provide the required flexibility to the agent by using

these metrics. Once again consider the example given in the previous subsection.

Jack has three plan alternatives and assume that the satisfaction degrees of these

plan alternatives are as follows:

Plan 1. Satisfaction Degree = 0.9

Plan 2. Satisfaction Degree = 0.7

Plan 3. Satisfaction Degree = 0.6

If each satisfaction degree is defined as a fixed value lying between 0 and 1 like

above; there is no need in defining every alternative. Because given a fixed value, Jack

would always select the same alternative, whose Plan 1 has the highest satisfaction

degree. Therefore, if the satisfaction degrees are defined as fixed values; it means that

the agent has no choice. In other words, the second and the third alternatives are

not accessible. It is because of the fact that an agent always select the alternative

that satisfies its needs best. As stated before, according to the proposal the agents

choose the alternative plan which satisfies their needs best. From this point of view,

by assigning fixed satisfaction degrees, the required flexibility cannot be provided.

To overcome this obstacle, probabilistic causality can be employed. The probabil-

ities corresponding to each plan alternative can be defined. For the given example,

assume that the following probabilities to each alternative are assigned:
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Plan 1. P1 = 0.4

Plan 2. P2 = 0.3

Plan 3. P3 = 0.3

This probabilistic causality seems more realistic; therefore, several existing cog-

nitive architectures adopt this approach. But this time, defining probabilities is a

very difficult issue. To overcome this problem some researchers adopt probability

matching techniques. Even if these techniques are useful, still there are some other

problems.

One of the problems is that when probabilities are explicitly defined, the behaviour

of the agent is no longer unpredictable. For the given example, if a simulation is

run for hundred times; then with high probability the agent would select the first

alternative for 40 times. Likewise, it is going to be observed that the agent would

select the second alternative for 30 times and the third alternative for 30 times. This

approach is quite predictable.

In some cases, researchers utilize several different probability calculations and

probability matching techniques to obtain unpredictable behaviour. Such approaches

make behaviour quite unpredictable for the observers. But if the approach or calcula-

tions employed is known the behaviours of the agent can still be predicted. Therefore,

this probabilistic approach does not provide the required flexibility.

Another problem is related with Agre’s proposal. Agre stated that the most of

the everyday activity is routine [5]. This means that intelligent-beings tend to choose

the same plan alternative under the same conditions. In the frame of these references,

to achieve the required flexibility while supporting routine activities, unpredictability

must be maintained.

In the proposed approach, the probabilities cannot be utilized to define the sat-

isfaction degrees. As it is expressed, in the present approach, needs are proposed as
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nexi. It is proposed to use the nexi as the evaluation metric which is the satisfaction

degrees. Actually, satisfaction cannot be explained in terms of probabilities.

Satisfaction is not a probabilistic issue. It can be better explained in terms of a

value with a certain mean value. For example, eating certain foods results in similar

satisfactions. A man can compare his satisfaction obtained from eating two different

foods. If it is tried to compare these satisfactions, these satisfactions can be evaluated

on a scale. Therefore, in the proposed approach, a satisfaction degree is considered

as a real value between 0 and 1, while 0 signifies full dissatisfaction, 1 signifies full

satisfaction.

In this frame of reference, normal probability distribution function is suitable

for explaining satisfaction phenomenon. The normal distribution is used as a first

approximation to describe random variables. These random variables tend to cluster

around a single mean value (like satisfaction which is explained above). The graph

of the associated probability density function is known as Gaussian function [121].

Therefore, to provide a metric measure in the selection process, in this study

random causality is proposed. The term randomness have several meanings. It has

meanings like; having no definite aim or purpose, not sent or guided in a particular

direction and done, made, occuring, etc... without conscious choice [72]. However, in

this study randomness implies a lack of predictability. From this point of view, it can

be said that in some sense the flexibility in human intelligence is result of randomness.

According to the proposal satisfaction degrees are introduced as normally dis-

tributed random numbers between 0 and 1 with certain mean and variance values.

With this respect, each plan alternative corresponds to a satisfaction degree which is

a normally distributed random number between 0 and 1 with certain mean and vari-

ance values. If each satisfaction degree is denoted by “ς”, each mean value is denoted

by “µ” and each variance value is denoted by “σ2”, by using previous example the

approach can be represented as follows:
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Plan 1. ς1 = normally distributed random number with mean µ1 and variance σ2
1

Plan 2. ς2 = normally distributed random number with mean µ2 and variance σ2
2

Plan 3. ς3 = normally distributed random number with mean µ3 and variance σ2
3

According to this proposal, when an agent tries to choose among alternatives,

the agent initially generates random numbers between 0 and 1 in accordance with

the mean and variance value of the corresponding alternative. In this manner, the

approach aims to provide flexibility in such a way that the behaviours of the agents

cannot be predicted even if we know the mean and variance values of the satisfaction.

For the given example, assume that mean and variance values of each plan alter-

native are as follows:

Plan 1. ς1 = normally distributed random number with mean µ1 = 0.70 and variance

σ2
1 = 0.20

Plan 2. ς2 = normally distributed random number with mean µ2 = 0.70 and variance

σ2
2 = 0.20

Plan 3. ς3 = normally distributed random number with mean µ3 = 0.60 and variance

σ2
3 = 0.30

By using these mean values, normally distributed random numbers can be gener-

ated as the satisfaction degrees (ς) of the plan alternatives. Assume that satisfaction

degrees are generated by using a random number generator as follows:

Plan 1. ς1 = 0.653

Plan 2. ς2 = 0.785

Plan 3. ς3 = 0.575
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According to these satisfaction degrees, Jack would select the alternative that best

satisfies his need. The highest satisfaction degree implies that the corresponding plan

alternative meets the need best. For the given example, Jack would select the second

alternative; since, Plan 2 has the highest satisfaction degree.

Apart from this, the proposed approach can be adopted to support routine activ-

ities. By this mechanism, the variance values for each plan alternative can be defined

separately. The lower variance along with a higher mean value would support the

routine activities.

For the above example, a routine activity can be defined. Assume that Plan 1,

keeping the cat outside the parlour, is wanted to be a routine activity. To simulate

this routine activity, as an example the mean and variance values can be changed as

follow:

Plan 1. ς1 = normally distributed random number with mean µ1 = 0.80 and variance

σ2
1 = 0, 05

Plan 2. ς2 = normally distributed random number with mean µ2 = 0.60 and variance

σ2
2 = 0.10

Plan 3. ς3 = normally distributed random number with mean µ3 = 0.50 and variance

σ2
3 = 0.10

By using these mean values, assume that generated satisfaction degrees (ς) are as

follows:

Plan 1. ς1 = 0.817

Plan 2. ς2 = 0.597

Plan 3. ς3 = 0.513
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As it can be seen in the example, the mean values of the second and third plan

alternatives are reduced while increasing the mean value of the first plan alternative.

At the same time, the variance value of the first plan alternative is reduced which

means that there in not much variation in the satisfaction of this activity. The

variance values of the other plans are also reduced. In this manner, as seen in the

generated satisfaction degrees, the first plan becomes a routine activity; since, the

man would select the plan alternative with the highest satisfaction. At the same

time, there is still room for unpredictability.

When one of the alternatives is selected, it becomes the intention of the agent.

After determining the intention, Jack starts executing the plan. In other words, he

is in the intention to “close the door”. After executing it, closing the door becomes

the effect.

As it can be seen in the example intelligent behaviour is generated in accordance

with causality. Here, this kind of causality is denominated random causality. Instead

of the deterministic causality or the probabilistic causality, in the proposed approach

random causality is adopted.

In the proposed approach decision-making is seen as a process in which intelligent

entities produce effects due to some causes while the needs are the nexi. These causes

are the input data related with the observation of either the internal state or the

external world. In this process, the needs which provide a metric to measure different

alternatives are put forward as nexi. When executed the actions lead to the effects.

According to this approach this whole cycle is observed as intelligent behaviour.

As it can be seen in the example, by this approach the theories of need and

the intentional stance are brought together. Here, the needs of intelligent entities

motivate them to produce intelligent behaviour. With this respect, the needs drive

the emergence of intelligent behaviour.

Even though, behaviours of animals and human-beings differ distinctively due to
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having different physical capabilities, most of their behaviour can be explained by

employing the theories of needs, the intentional notion and random causality. As it

can be seen in the given example, human-beings do not make decision in accordance

with rationality at least not all the times. But they act intentionally to satisfy their

motives. While trying to satisfy them, each action taken is not supposed to be

rational like the behaviours of a man who worships so-called false gods! Along with

the theories of the needs, random causality opens a channel to simulate this idea.

Another issue related with the flexibility attribute that is adopted in the pro-

posed approach is conditional pro-attitudes. Intelligent beings also have beliefs, obli-

gations, likes and dislikes that are related with certain conditions. Such pro-attitudes

have impact over the satisfaction degrees of plan alternatives. Therefore, in the

present approach conditional pro-attitudes which are associated with certain condi-

tions are adopted. These conditional pro-attitudes have effect on the satisfaction

degrees. Hence, the conditional pro-attitudes have influence on the selection of the

relevant plan alternatives. To illustrate this influence, in our approach certain values

to conditional pro-attitudes are assigned. In the present study, these values are called

impact factors (ψ).

To illustrate this idea, once again consider Jack who has a goal to keep his cat

away from the parlour. He may believe that tying the cat is an inhumane behaviour.

According to this belief his satisfaction obtained from the second plan alternative

should be reduced. In the proposed approach, the reduction is performed by utilizing

an impact factor. In the end, Jack would tend to select the other available options.

In this approach, these impact factors can be a real number between -1 and 1,

while negative values signify negative impact, positive values signify positive impact.

In particular, a pro-attitude which has a negative impact factor reduces the mean

value of the satisfaction degree; a positive impact factor increases the mean value of

the satisfaction degree.
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For the given example, let us assume that Jack believes that tying the cat is

an inhumane behaviour. Therefore, the satisfaction obtained from the second plan

alternative should be reduced. Consider that this conditional pro-attitude “Tying a

cat is an inhumane behaviour.” has impact factor (ψ = −0.50).

In the proposed approach, by using the given impact factor and the mean value

of the satisfaction of the second plan, the ameliorated mean value of the satisfaction

degree for the second alternative is calculated as follows: The mean value (µ2 = 0.60)

is multiplied with the impact factor (ψ = −0.50). Then, this value is subtracted from

the mean value; since, the impact is negative. Then the ameliorated mean value can

be obtained as (µ̃2 = 0.30) for the second plan alternative.

If there are other conditional pro-attitudes related with the other plans, the ame-

liorated mean values for these plans should also be calculated. Then these ameliorated

mean values of the satisfaction degrees are assigned to the corresponding plans as their

new mean values of the satisfaction degrees. Then, by using the mean values of the

satisfaction degrees and the variance values, normally distributed random numbers

between 0 and 1 are generated. By using these generated satisfaction degrees, the

agent makes a decision.

4.2.6 Social Ability

Another important attribute of intelligent beings is that they have social ability.

They can communicate with each other and they can collaborate on several different

activities. Jennings et. al. [119] explained social ability as an attribute of beings that

are able to interact with other entities and also help others in their activities. Even

though they suggest this attribute as part of flexibility, in this study social ability is

considered as a separate attribute.

To imitate the social aspect of the intelligence, it is assumed that when intelligent

beings have common motives (i.e. needs), they tend to cooperate. Intelligent entities
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are well-adjusted if they do not have contradicting pro-attitudes. In other words,

intelligent entities are so harmonious with the others that they avoid being in conflict

with others while trying to satisfy their common needs. Therefore, they would rather

avoid conflicts unless they have pro-attitudes which dictate otherwise. If they do not

have contradicting pro-attitudes, intelligent beings would rather collaborate.

To understand the proposed approach better, consider a couple, Jack and Jane

who are hungry. Initially, consider the plan alternatives of Jack. Assume that he has

two different plan alternatives:

• Going out for dinner.

• Asking Jane if she can cook something.

After comparing satisfaction degrees on these plan alternatives, assume that Jack

decided to ask Jane if she can cook.

At the same time, Jane should also has some plan alternatives. Assume that she

has the same plan alternatives. If she has chosen the same plan, then there will be no

problem. After communicating with each other, Jane is going to cook food for them.

But if she has selected the other plan, then they should resolve the conflict.

Initially, Jack offers his desire, asking if she can cook some food. According to

the proposed approach, Jane would accept the offer because she is well-adjusted. But

assume that she has a conditional pro-attitude which is “Jane is tired”. In such

a case, she has a contradicting conditional pro-attitude. Therefore, she would not

accept the offer and she would propose her desire and she would ask if they can go

out by providing the relevant conditional pro-attitude.

This time, Jack will once again think about the option proposed by her. If there

is no contradicting conditional pro-attitude, he would accept her offer and decide to

go out. Assume further that he has an additional pro-attitude which says that “Jack

does not have enough money to go out”. Then, once again he will choose the first
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plan. Along with his conditional pro-attitude, he will once again suggest Jane to cook

at home.

In this case, Jane receives the additional conditional pro-attitude. In this case,

she has two contradicting pro-attitudes which also contradict each other. This time,

she would try to compare these contradicting beliefs whichever is more influential, she

will make decision in guide of these pro-attitudes. For instance, in this case, assume

that the conditional pro-attitude that dictates “Jack does not have enough money to

go out” has stronger influence. Therefore, the satisfaction of going out is going to be

reduced and she will decide to cook at home. This negotiation can continue until a

common plan is found to satisfy the common need.

As it can be seen in the given example, according to the proposed approach, the

agents try to collaborate while trying to meet their common needs. This type of

cooperation is similar to joint intentions approach. In the present approach, both

agents are well-adjusted and try to find a common plan. But as it can be seen in the

example conditional pro-attitudes have influence on the negotiation process. In case

of a contradiction, the issue becomes complicated but to satisfy the common need,

they tend to cooperate.

For conflict resolution, the conditional pro-attitudes which have certain impact

factors are employed. The pro-attitude with higher impact factor has a stronger

effect on selecting or not selecting the corresponding plan alternative.

It must be noted that certain pro-attitudes can have more influence than the

others. For example, assume that Jack does not like his manager. Since he doesn’t

like his superior; he would not want to cooperate. But whenever his manager requests

something, he would choose to do it. It is because of the fact that he has an obligation

which dictates he should do whatever his superiors say. Therefore, it can be stated

that obligations have more influence than likes and dislikes.
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4.2.7 Learning

Another important attribute of intelligent beings is that they can learn. As stated

before, here the main objective is to achieve a general framework for simulating the

intelligence of intelligent beings. When learning of them is observed, it can easily be

deducted that intelligent beings are capable of supervised and unsupervised learning.

As an example, once again cats that can open a closed door can be considered.

Cats learn how to open such doors from their masters’. Cats observe their masters’

putting their hands on the handle and pushing the handle downward while opening

the closed doors. After this observation, cats learn it and they are physically capable

of putting it into practice. They put it into practice slightly differently due to the

physical differences between their masters’ and themselves. But they learn to open

a closed door by pushing the door handle downwards. This type of learning is called

unsupervised learning.

Another learning type is supervised learning which can be observed in intelligent

beings. As an example, consider a cat taken from streets to live at home with some

people. When a cat is brought to a house; a toilet for it at home is certainly required.

Cats in the streets use soil as a toilet; therefore, something similar is needed. Most

of the people use a box shaped toilets which are specifically provided for the cats.

Then sand or silica sand is put into the box. The silica sand is not exactly the same

as the natural sand but cats can use it for the same purpose. Teaching a cat how to

use silica sand is quite easy. If the paws of the cat are rubbed on the silica sand for

a few seconds, then the cat learns that it is a toilet. Afterwards, the cat starts using

it. This type of learning is called supervised learning.

It must be stated that not all the animals are capable of both types of learning.

But some of them at some certain level of intelligence are capable of both. In this

context, it is proposed that a framework for simulating general intelligence should

enable simulating both learning types.
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In this study, it is proposed that an agent should be capable of both learning

types. In the proposed approach, the only concern is the learning that takes place

among agents by observing others (i.e. observational learning) and receiving plans

from the others. For this purpose, social learning theory which focuses on learning

in a social context is adopted [21]. The principles of social learning theory can be

summarised as follows [174]:

• Agents can learn by observing the behaviours of others and the outcomes of

those behaviours.

• Learning may or may not result in a behaviour change of an agent.

• Expected reinforcements or punishments can have effect on the behaviours of

an agent.

Additionally, Bandura [21] suggests that the environment reinforces social learn-

ing. He states that this can happen in several different ways such as:

• A group of agents with strong likelihood to an agent can reinforce learning from

them. For instance, a group of planning agents who use a hybrid planning

approach can reinforce the other planning agents to learn the same approach.

• An individual third agent which have influence on an agent can reinforce learn-

ing from the other agents. As an example, a planning manager agent can

reinforce one of the planning agents to learn a hybrid planning approach from

the other agents.

• The expectation of satisfaction from a behaviour that is performed by the other

agents can reinforce an agent to learn. The agent can observe that the other

agents create plans faster than itself due to the use of the hybrid planning
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approach. In turn, the agent would be reinforced to learn to use the same

approach to create plans faster.

Social learning theory is adopted to simulate the intelligence of animals including

human-beings. In particular, it is proposed that an agent should be able to learn

plans by observing the other agents in unsupervised manner and get plans directly

from the others to support supervised learning.

In this approach, reinforcement learning is adopted to simulate social learning.

According to reinforcement learning, the agents learn a policy of how to act given an

observation of the world. The policy maps the states of the world to the actions that

the agent ought to take in those states [220].

An agent can learn either in a supervised or an unsupervised manner. The re-

inforcement in the present approach is provided by the predicting the satisfaction

that can be obtained by using the plan to be learned. If an agent considers that the

plan is sufficiently satisfactory then the agent starts learning. Otherwise, the agent

does not learn the plan. Subsequently, the proposed supervised learning approach is

explained, then the proposed unsupervised learning approach is elaborated.

In the supervised learning an agent receives a complete plan from another agent.

Since reinforcement learning is adopted, the plans include the conditions and the

actions. In addition, in this approach when providing a plan to another agent, an

agent provides the associated need. In the proposed approach, reinforcement realised

by the satisfaction.

To put in practice, a social context to an agent is needed to be established. For

this purpose, in this approach every agent is grouped. For instance, if a real life

like environment is simulated, the social context can be established as it is shown in

Figure 4.2.

In the figure, from the inner circle to the outer circles, influence on the agent is

reduced. This means that the agent can be reinforced more by its family, while it
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Figure 4.2: An Agent in Social Context

cannot be reinforced that much by the other agents. As proposed by Bandura, the

agents with influence and group of agents with similarities are introduced.

It must be noted that, from one agent to another the social context may vary. As

an example, an agent might be more influenced by its family, while another agent

might be more influenced by its friends which are in the agents with similarities

category.

Consider two planning agents: One of them might be more influenced by the

planning manager agent which is a member of agents with influence. The other agent

might be more influenced by the other planning agents who are members of agents

with similarities. Even though the influence of a planning manager agent varies, in

both cases the planning manager agent can reinforce learning.
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In the proposed approach, learning is associated with one of the needs of the agent.

In particular, it is associated with knowing and understanding needs. In supervised

learning, whenever an agent receives a plan from another, a goal “learn” is generated.

In this situation, the first agent can be called the learner agent, while the latter is

the teacher agent. If the learner agent is not pursuing any lower level need, then the

learner agent starts learning in a supervised manner.

When an agent learns in a supervised manner, it first assigns an expected mean

value of the satisfaction degree and an expected variance value to the plan that is

being learned. These values signify the expectations of an agent. To do so the agent

considers the teacher agent in a social context. To provide reinforcement in this

approach, each level illustrated in Figure 4.2, corresponds to an expected mean value

of the satisfaction degree E(µ) and an expected variance value (E(σ2)). The default

values in the proposed approach are as follows:

The Family of the Agent: E(µ) = 0.70, E(σ2) = 0.05

The Agents with Influence: E(µ) = 0.60, E(σ2) = 0.05

The Agents with Similarities: E(µ) = 0.50, E(σ2) = 0.10

The Other Agents: E(µ) = 0.40, E(σ2) = 0.10

As it can be seen, while moving from the inner circle to the outer circles, the

expected mean values of the satisfaction degrees are decreasing and the expected

variance values are increasing. The expected mean value represents the expected

average satisfaction that is going to be obtained by executing the learned plan. The

expected variance value signifies the expected variation in the satisfaction that is

going to be obtained by executing the plan learned.

These mean values and variance values are relatively defined to distinguish the

differences of the influence on an agent. Here, the purpose is to enable an agent to
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learn from the others. These values provide an initial reinforcement to an agent to

encourage them to learn from the others.

As explained before, the social context of an agent may vary from one to another.

Therefore, for each individual agent these mean and variance values may also vary

relatively. As an example, if an agent is more influenced by an agent with influence

than its family, the expected values should be changed accordingly.

When defining these values, two principles offered by Bandura are considered [20].

Firstly, Bandura proposes that an agent is more likely to adopt behaviour if it results

in outcomes it values. The second principle of Bandura is that an agent is more likely

to adopt a modelled behaviour if the model is similar to the agent and has admired

status. By the proposed approach, these principles are adopted.

While establishing social context, it is simply assumed that the family has more

similarity and has more admired status to an agent than the agents with influence,

the agents with similarities and the other agents. Likewise, the agents with influence

have more similarity and more admired status than the agents with similarities and

the other agents. Finally, the agents with similarities have more similarity and more

admired status than the other agents. Once again it must be noted that this social

context may vary from one agent to another. However, for the purposes of this study,

the proposed context is employed.

In supervised learning, the learner agent directly receives the plan and the associ-

ated need. Whenever the agent receives the plan, it assigns the expected mean value

of the satisfaction degree E(µ) as the mean value of the satisfaction degree to that

plan. Likewise, the agent assigns the expected variance value (E(σ2)) as the variance

value to that plan. While assigning these values, the agents take social context into

account and these values are assigned according to the place of the teacher agent

in the social context. For instance, in the proposed approach, if an agent learns a

plan in a supervised manner from an agent with similarities, then, the satisfaction
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degree of that plan will be E(µ) = 0.50 and the variance value of that plan will be

E(σ2) = 0.10.

Naturally, unsupervised learning is different from supervised learning. Unsuper-

vised learning, in the proposed approach, is observational learning. like in supervised

learning, learning occurs only if the goal is “learn”. Whenever an agent sees another

one starting an action, a goal “learn” is generated. If the learner agent is not pursuing

any other goal related with a lower level need, then the learner agent starts learning

by observing the other agent.

In unsupervised learning, social context helps an agent to determine the initial

reinforcement (Ri). If the teacher agent is a member of the family of the agent, then

the learner agent believes that the learning plan from that agent is highly satisfactory.

In other words, the expected mean value of the satisfaction degree for plans that is

learned from family is E(µ) = 0.70, while variance is E(σ2) = 0.05. If this initial

mean value of the satisfaction degree is satisfactory enough for the agent, then it

starts learning from that agent by observing it.

To determine a satisfactory plan in the proposed approach, there is a learning

satisfaction limit (ς2l ). The default limit is (ς2l ) = 0.40 to encourage learning from the

other agents. If the mean value of the satisfaction degree is greater than or equal to

the learning satisfaction limit, the agent starts learning. This limit ensures that an

agent tends to learn from the other agents; since, all of the proposed expected values

are greater than or equal to the offered limit.

For supervised learning, as it can be seen above, all satisfaction degrees and mean

values are greater than and equal to learning satisfaction limit. Therefore, an agent

at least starts to learn whenever it sees another agent in action. When a learner agent

observes other agents, it sees each action one by one. The learner agent checks if it

knows the observed action. If the agent knows it, then the agent simply does not

need to learn it again. Otherwise, the agent learns the action. Each action requires
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pre- and post-conditions while the action is associated to a need.

As stated before, while starting unsupervised learning, the agent uses initial mean

values of the satisfaction degrees and variance values in accordance with the group

of the teacher agent. For instance, assume that an agent starts to learn a plan from

another agent which is a member of the agents with influence. Since, the expected

mean value of the satisfaction degree for this group is above the learning satisfaction

limit, if the plan is not known by the agent, it starts learning the plan. According to

this approach, when learning the new plan, the agent is going to assign the following

initial mean and variance values to that plan: µ = 0.60, σ2 = 0.05.

When the agent starts learning by observation, it observes each action taken

separately. After each action is observed, the learner agent checks if it knows the

observed action. If the observed action is known, it results in a decrease in the mean

value of the satisfaction degree obtained from learning the corresponding plan. If the

observed action is not known, it yields an increase in the satisfaction.

To realise this idea, “reward” (r) and “punish” (p) values are introduced. The

reward is r = 0.20 and punish is p = −0.20 by default. By using these values, after

receiving each action the learner agent recalculates the mean value of the satisfaction

degree. If the action is not known, it is rewarded by multiplying 1 + r and E(µ). If

the action is known, it is punished by multiplying 1 + p and E(µ). The outcome of

the multiplication becomes the new expected mean value of the satisfaction degree.

These calculations continue until either the plan is completely learned or the

expected mean value of the satisfaction degree becomes less than the learning satis-

faction limit (ςl). During the learning process, whenever a satisfaction degree mean

value becomes less than the learning satisfaction limit, the agent stops learning. If the

expected mean value of the satisfaction degree stays above the learning satisfaction

limit until the whole plan is learned, then the last calculated expected mean value

of the satisfaction degree is assigned to the learned plan as its corresponding mean
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value. At the same time, the expected variance value is assigned to the learned plan

as the variance value according to the social context proposed.

This type of learning in the proposed approach is denominated as “S-Learning”

which stands for social learning by satisfaction reinforcement.

4.2.8 Ability to Display Affect

The final issue related with the proposed approach is to simulate the affective aspect

of the intelligence. The proposed approach is put forward to cover many aspects of

intelligent behaviour; therefore, the agent should also be affective. It is because of

the fact that intelligent beings are capable of experiencing and displaying emotions.

In the proposed approach, affect is considered to be post-cognitive by following

Lazarus [141]. According to this point of view, an experience of emotions is based on

a prior cognitive process. As stated by Brewin [38], in this process, the features are

identified, examined and weighted for their contributions.

Maslow [155] also considers emotions as post-cognitive. While explaining the

needs, he states that if the physiological needs are not satisfied, it results in different

emotional states like irritation, pain and discomfort. Hereby, his approach is extended

by stating that the satisfaction or the dissatisfaction of not only physiological needs

but also every need results in feeling different emotions.

While explaining emotions, the approach of Wukmir is adopted. Wukmir [242] pro-

posed that emotions are such a mechanism that they provide information on the de-

gree of favourability of the perceived situation. If the situation seems to be favourable

to the survival of an intelligent being, then the being experiences a positive emotion.

A being experiences a negative emotion, when the situation seems to be unfavourable

for survival of the being.

When the theories of needs are considered, it can be claimed that the survival

of the beings depends on meeting their needs. From this point of view, Wukmir’s
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approach and theories of needs can be combined. According to this proposal, every

need in the hierarchy can be associated with two different emotions. While one of

these emotions is positive, the other one is negative. Whenever a particular need

is adequately satisfied, it results in the generation of a positive emotion; since, it

is favourable for survival. Likewise, if a particular need is not sufficiently satisfied,

it results in a negative emotion. It is because of the fact that when a need is not

satisfied, it is not favourable for survival.

As an example, consider Jack who is hungry. Need for food is one of the existence

needs of all living beings. If Jack can sufficiently meet his need for food, he is going

to feel a positive emotion, content. If Jack cannot sufficiently satisfy this need, he is

going to feel a negative emotion, anxiety.

In the proposed emotion model, the emotions are classified in two levels: basic

emotions and non-basic emotions. The basic emotions are the most primitive or

universal emotions like pain, panic and anxiety. For the purposes of this study, the

other emotions are considered as non-basic emotions such as love and loneliness.

Accordingly, the lowest level which includes the existence needs corresponds to

the basic emotions. For example, if an agent meets its security need, this will result

in the generation of comfort feeling. As long as the agent meets its security need, the

agent is going to feel comfortable. In the ERG approach, the higher level needs are

the existence needs and the growth needs. These needs correspond to the non-basic

emotions. As an example, if an agent meets its affectionate relationship need, it is

going to feel love.

In the frame of these references, it is proposed that emotions emerge when the

needs of intelligent beings are satisfied or dissatisfied. The satisfaction of the needs

results in the positive emotions, while the dissatisfaction of the needs results in the

negative emotions. According to this viewpoint, while the satisfaction of the lower

level needs triggers the primitive emotions; the satisfaction of the higher level needs
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results in the non-basic emotions.

To put the proposed approach into practice, each need is associated with a positive

and a negative emotion. The needs and associated emotions are shown in Table 4.2.

Table 4.2: Needs and Associated Emotions

Associated

Negative Emotion

Needs Associated

Positive Emotion

Existence Needs and Basic Emotions

Pain Survival Ease

Panic Air Relief

Anxiety Water Content

Anxiety Food Content

Irritation Excretion Calmness

Anger Warmth Delight

Anger Sleep Delight

Discontent Sex Pleasure

Discomfort Security Comfort

Despair Health and Well-Being Expectancy

Sadness Stability Elation

Fear Religion Assurance

Relatedness Needs and Social Emotions

Loneliness Affectionate Relationships Love

Loneliness Involvement with Family Love

Envy Involvement with Friends Joy

Envy Involvement with Others Joy

Embarrassment Being Needed Respect

Continued on next page



CHAPTER 4. FOUNDATIONS OF THE PROPOSED APPROACH 118

Table 4.2 – continued from previous page

Associated

Negative Emotion

Needs Associated

Positive Emotion

Embarrassment Recognition Respect

Shame Dignity Pride

Shame Dominance Pride

Growth Needs and Non-Social Emotions

Prejudice Confidence Detachment

Prejudice Independence Detachment

Mystery Achievement Familiarity

Mystery Mastery Familiarity

Confusion Know and Understand Discovery

Confusion Fulfil Potentials Discovery

Incompleteness Transcendence Completion

Incompleteness Wholeness Completion

To establish this table, the needs are mapped the emotions. Ortony and Turner

[175] studied on the basic emotions and established a list of basic emotions from the

literature. Therefore, while mapping the basic emotions, the emotions listed as funda-

mental emotions by Ortony and Turner are adopted. While there is a corresponding

positive emotion for most of the needs, for a few of the needs a corresponding negative

emotion in the list of Ortony and Turner cannot be found. Likewise, while there is a

corresponding negative emotion for most of the needs, for a few of the needs, a cor-

responding positive emotion cannot be found. In such conditions, the corresponding

positive or negative emotion is derived from the present one.
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Although the lists of the basic emotions vary from a researcher to another re-

searcher, it is simply assumed that the emotions mapped to the existence needs are

the basic emotions of intelligent beings. It is because of the fact that whenever an

agent meets the existence needs, they feel these universal emotions independent from

the other factors.

According to this point of view, the other emotions are considered as the non-

basic emotions. Therefore, for the higher level of the needs, the non-basic emotions

are mapped with the needs. When considering ERG, it can easily be observed that

the relatedness needs are external needs, while the growth needs are internal needs.

Pursuing the relatedness needs involves other beings, while pursuing the growth needs

does not involve interaction with the other beings.

Social emotions emerge wholly from the interpersonal concerns. In particular,

social emotions occur only as a result of the encounters with other beings. However,

non-social emotions emerge from the non-social events that do not involve interaction

with other beings [223]. By considering these facts, the relatedness needs are mapped

with the social emotions while the growth needs are mapped with the non-social

emotions. It must be noted that some of the basic emotions can also be classified

as social or non-social emotions. While mapping existence needs, the emotions are

mapped regardless of this situation.

While mapping the social emotions with the relatedness needs, the list of the

emotions established by Hareli and Parkinson is adopted [107]. In their study, Hareli

and Parkinson list several social emotions proposed in the literature. Therefore, these

emotions are mapped to the relatedness needs.

The non-social emotions are adopted from an artificial language called Lojban.

Lojban is a constructed language designed to remove ambiguity from the human

communication [64]. Therefore, the non-social emotions are derived from Lojban

emotions and map them to the growth needs.
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In Table 4.2, the needs employed and associated emotions are listed. The listed

needs are the motives of human-beings. To establish this table, firstly the needs

proposed by Maslow and Alderfer are gathered together and then several emotions

proposed in the literature are mapped with those needs. As it can be seen in the

table, several other emotions are not employed in the proposed approach. But one

can introduce additional needs and associate more emotions with those needs.

In addition to these, Wukmir [242] states that emotions are expressed with a

positive-negative scale and in variable magnitudes. For instance, one can say that “I

feel quite calm”, or “I feel calm” (in positive scale) or “I feel quite anxious”, or “I

feel anxious” (in negative scale). In this frame of reference, Wukmir proposes that all

emotions consist of two components:

1. Quantitative Component: Indicates the magnitude of the emotion.

2. Qualitative Component: Indicates the description of the emotion which deter-

mines the positiveness or negativeness of the emotional sign.

These components can be mapped in accordance with the current proposal as it

can be seen in Figure 4.3. In the figure, the emotions are categorised as positive

and negative. While satisfaction results in a positive emotion, dissatisfaction yields

a negative emotion. In addition, as illustrated in the figure, it is proposed that

the degree of the satisfaction or the dissatisfaction determines the strength of the

emotions.

According to this viewpoint, the emotions are categorised as negative and positive.

Then, they are classified further according to their magnitude. For this purpose, two

types of emotions are proposed as regular and strong emotions. To illustrate this

approach, four different emotion limits are introduced. If a satisfaction obtained is

above or below these limits, it results in the generation of four different types of

emotions as shown below:
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Figure 4.3: Components of Emotions [Adapted from: Wukmir [242]]

1. Strong Positive Emotion Limit: If the satisfaction degree is above this limit, it

results in a strong positive emotion.

2. Positive Emotion Limit: If the satisfaction degree is above this limit, it results

in a regular positive emotion.

3. Negative Emotion Limit: If the satisfaction degree is below this limit, it results

in a regular negative emotion.

4. Strong Negative Emotion Limit: If the satisfaction degree is below this limit, it

results in a strong negative emotion.

These emotions and emotion limits are visually represented in Figure 4.4.

To illustrate the idea, consider five agents who are looking for a house to meet

their security need. Whenever an agent meets its security need, it feels comfort, while

whenever an agent does not meet its security need, it feels discomfort. Assume that

all of those agents found houses in different neighbourhoods. Further assume that

their satisfactions obtained from the houses found are as shown in Table 4.3.
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Figure 4.4: Emotions and Emotion Limits in the Proposed Approach

Table 4.3: Satisfaction Degrees of Agents
Agents Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
Satisfaction Degrees 0,15 0,00 1,00 0,85 0,40

As it can be seen in the table, safety need of the first, fourth and fifth agent is

partially satisfied. The second agent is fully unsatisfied, while the third agent is fully

dissatisfied. For this example, assume that the emotion limits are as follows:

Strong Positive Emotion Limit = 0.90

Positive Emotion Limit = 0.80

Negative Emotion Limit = 0.20

Strong Negative Emotion Limit = 0.10
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According to these limits, the emotions that are felt by these agents can be listed

as follows:

Agent 1 feels regular discomfort; since, Negative Emotion Limit > 0.15 > Strong

Negative Emotion Limit

Agent 2 feels strong discomfort; since, Strong Negative Emotion Limit > 0.00

Agent 3 feels strong comfort; since, 1,00 > Strong Positive Emotion Limit

Agent 4 feels regular comfort; since, Strong Positive Emotion Limit > 0.85 > Posi-

tive Emotion Limit

Agent 5 does not feel any emotions; since, Negative Emotion Limit< 0.40< Positive

Emotion Limit

As stated before, the security need is related to the feeling of comfort and dis-

comfort. Whenever an agent sufficiently meets its security need, it feels comfort. If

an agent cannot sufficiently satisfy its security need, the agent feels discomfort. The

strength of the emotion depends on the satisfaction degree.

Another issue related to the affective aspect of intelligence is the effect of the

emotions on intelligent behaviour. In this study, it is proposed that the emotions

have direct influence over the order of the needs. Therefore, except for the existence

needs, in the proposed approach the order of the needs is not fixed. It is proposed

that a strong emotion can change the order of the associated need. In particular,

if a need is strongly satisfied or dissatisfied, it results in a strong emotion. While

the strong positive emotion moves associated need downwards in the hierarchy, the

strong negative emotion moves associated need upwards in the hierarchy.

If a need moves up in the hierarchy, it means that an agent is going to avoid the

conditions associated with that need; since, the agent always pursues the lower level
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needs first. If a need moves down, it is more likely that an agent is going to pursue

that need more frequently.

As an example, we can consider an agent who meets its achievement need. If

its achievement need is strongly satisfied, the agent is going to feel familiarity more

strongly. The more familiarity the agent feels; the more the associated need goes

down. In this way, the agent is going to be more concerned about achievement. The

agent is going to focus more on his works which satisfy its achievement need. In

some extreme conditions, it can be observed that some people only think about their

work and neglect their family and friends. It might be the result of this situation in

which the achievement need became a lower level need than the other needs such as

involvement with family and friends.

This proposal is also in accordance with the approach of Wukmir [242]. He states

that the living organisms need to know if the conditions are useful and favourable

for their survival. He proposes that the emotions are the mechanisms which provide

means to know if a situation is favourable or not. He adds that by the help of the

emotions, the living beings attempt to find favourable situations to survive which pro-

duce positive emotions. Likewise, they refrain from unfavourable states for survival

which produce negative emotions.

The proposed approach provides the means to recreate this mechanism. Whenever

an agent feels strong positive emotion, the associated need moves downward in the

hierarchy. In this manner, an agent is more likely to pursue that need more frequently.

Similarly, a strong negative emotion moves the relevant need upward, so that the agent

can refrain from situations which are not favourable or unsatisfactory.

Moreover, in the proposed approach, the order of relatedness and growth needs

can change. However, the order of existence needs can never change. It is because

of the fact that these needs are significant for the survival of a being. For instance,

a living organism cannot purse the affectionate relationship need before its need for
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food. Without eating food for too long, a living organism cannot survive.

In addition, the proposed approach provides the means to develop agents whose

order of needs are different than those of the others. It can be observed that this

approach provides personality to the agents. Besides, Alderfer [7] also proposes that

the order of needs of beings can be different. The proposed emotion mechanism

integrated with the hierarchy of needs illustrates this idea of Alderfer.

It must be noted that the proposed approach is put forward to simulate not only

human but also animal intelligence. However, it is more likely that animals other

than humans have less complicated needs like air, food, security, involvement, and

so on. Besides, animals are capable of producing emotions as well. Since, they have

lower level needs; they are more likely to feel the basic emotions like pleasure and

pain.

4.3 Intelligence as a Whole

In this section, the key attributes of intelligent beings are summarised. The proposed

approach attempts to cover all of these attributes while developing intelligent agents.

In this subsection, these key attributes are brought together by redefining the term

intelligence.

By utilizing the proposed key concepts, it is proposed that the term intelligence

refers to an abstract notion to express the cognitive processes of autonomous, situated,

flexible, and social entities which can display affect and learn while they perform

activities intentionally that are motivated by their needs.

In this definition, eight attributes are regarded as the key attributes to explain

intelligence. These are autonomy, situatedness, employing motives, intentionality,

flexibility, social ability, learning and ability to display affect. To clarify the proposed

definition of intelligence these terms can be explained as follows:
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Autonomy: Reasoning and decision-making based on perception without direct or

indirect control of other entities.

Situatedness: Existing in an environment in such a way that an entity can affect

its environment by performing certain actions.

Employing Motives: Employing certain motives like needs to be motivated to gen-

erate goals.

Intentionality: Being intentional and acting intentionally.

Flexibility: Performing flexible actions in the boundaries of physical capabilities to

react to the changes in the environment.

Social Ability: Being social in such a way that an entity can communicate and

collaborate with other entities.

Learning: Ability to change attitudes and behaviours by being conscious of percep-

tions, decisions, and actions.

Ability to Display Affect: Being capable of experiencing and displaying emotions.

The first three attributes listed above are nearly the same as those proposed by

Wooldridge and Jennings [240]. In addition, the learning attribute is adopted from

Russell and Norvig [194].

The other attributes are put forward in accordance with the proposed approach.

In particular, these attributes are derived from the core attributes provided in the

literature. It must be noted that the proposed definition of intelligence is put forward

to explain the general intelligence concept. With this respect, it tries to explain the

human, animal and agent intelligence.



Chapter 5

ReCau: Reactive-Causal

Architecture

According to the proposed approach, a general purpose architecture is proposed. This

architecture is called Reactive-Causal Architecture (ReCau). Based on the founda-

tions stated in the previous section, ReCau can be employed to simulate intelligent

beings.

In this section of the study, the details of the Reactive-Causal Architecture are

presented. Initially, the components and the mechanisms of the architecture are

introduced. Afterwards, each layer of the architecture is explained in details. While

explaining each layer, the components and the mechanisms are elaborated upon. In

the last subsection, ReCau is compared with several existing architectures.

5.1 Overall Architecture

The proposed architecture is designed to be in accordance with the framework ex-

plained in the previous section. ReCau can be employed to develop agents which are

127
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highly autonomous, situated, flexible and social. Besides, ReCau agents employ mo-

tives and display affect. ReCau consists of three hierarchical layers: while the lowest

layer is reactive, the highest layer is causal.

Figure 5.1: The Components of the Reactive-Causal Architecture

The reactive layer is in its classical form and it is meant to interface with the
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environment. It controls the perception and the action to monitor the internal and

external conditions. The middle layer has deliberative capabilities such as action

planning and task dispatching. Decision-making and emotion generation occurs in

the causal layer. Each layer is capable of communicating with its neighbouring layer.

The communication between the components and the layers are provided by simple

message passing. The overall structure and the components of the architecture are

shown in Figure 5.1.

As it can be seen in the figure, each layer of ReCau includes different mechanisms

and components. The reactive layer includes a perception controller, an actuator

controller, a filtering mechanism, a motivation activator, and an attention mechanism.

The deliberative layer includes a reinforcement learner, a planner with a plan library,

a manipulator with a belief base, and a dispatcher. The causal layer contains a

decision-making mechanism and an emotion generation mechanism.

In general, a ReCau agent continuously observes the internal and external con-

ditions by its reactive layer. The motivation activator holds the motives which are

the needs of the agent. By the help of these needs, a ReCau agent generates goals to

satisfy its needs. Regarding the goal of the agent, the attention mechanism directs

the controlling components to focus on activities related with its needs. If the ob-

servations are not related with the needs of the agent, they are filtered out. If the

observed conditions are related with the needs then they are sent to the deliberative

layer.

In the deliberative layer, if it is required, reinforcement learning occurs based on

the observations of the agent. According to the conditions observed, the agent learns

plans and deploys them in the plan library. By the help of the plan library, the

planner develops plan alternatives to achieve the goal. After developing these plans,

if required the manipulator initially updates the pro-attitudes of the agent. These

pro-attitudes are stored in the belief base. Along with the belief base, the manipulator
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determines the ameliorated mean values of the satisfaction degrees corresponding to

particular plan alternatives. Besides, the manipulator enables the agent to resolve

conflicts between the other agents.

In the causal layer, the agent makes decisions to select the most appropriate plan

which satisfies its need and goal best. While making decisions, the needs of the

agent provides the means to evaluate plan alternatives. The evaluation metric is the

degree of satisfaction. These satisfaction degrees are obtained by using ameliorated

mean values of satisfaction degrees and variance values. By comparing the degrees of

satisfaction, the agent selects the plan alternative with the highest satisfaction degree.

The selected plan is the intention of the agent. After determining the intention, if

the need of the agent is sufficiently satisfied or not satisfied, the emotion generation

mechanism generates an emotion.

Then the agent sends the intention and the emotion to the deliberative layer.

According to the intention and the emotion, the deliberative layer informs the reactive

layer on which actions are to be taken by its dispatcher. Finally, the agent starts

executing its intention under the guidance of the reactive layer. If the intention is

executed successfully and if an emotion is generated then the agent displays affect in

accordance with the generated emotion. The detailed functions of these components

and mechanisms are explained in the following subsections.

5.2 Reactive Layer

The ReCau architecture enables an agent to continuously observe internal and exter-

nal conditions. In other words, the ReCau agents are able to monitor both external

world and internal state continuously. This function is guided by the perception

controller in the reactive layer. To perform its functions, ReCau requires additional

external components called sensors. Traditionally, these components can be visual,
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auditory, tactile, proprioceptive, taste, or smell sensors.

In addition, another sensor is required to enable a ReCau agent to obsere internal

state. This sensor can be called the meta-controlling sensor being inspired by Sloman

[209]. The sensors that are going to employed must be selected in accordance with

the purpose of the agent design. For example, if you intend to develop a humanoid

robot to simulate human-like intelligence, then you must employ all of these sensors.

The perception controller in ReCau is meant to control these sensors. This com-

ponent receives and processes sensory data continuously. Here, these data correspond

to the conditions of both the external world and the internal state. After receiving

the conditions, the perception controller sends data to the filtering mechanism.

The filtering mechanism is responsible for filtering out sensory data which is not

related to the needs of the agent. Together with the motivation activator, the filtering

mechanism puts condition-action rules into practical use. These condition-action rules

include two sets of rules. The first set of rules is applied to eliminate data which are

not related to the needs of the agent. As stated before, the perception controller

continuously receives conditions and sends them to the filtering mechanism. If these

conditions are not related to the needs of the agent, the filtering mechanism simply

filters out those conditions. Otherwise, the motivation activator generates a goal to

satisfy the corresponding need. Then the filtering mechanism sends the condition,

the corresponding need and the goal to the deliberative layer. The need and the goal

together are called the motive of the agent. The condition sent can also be called the

pre-condition. The flow chart of the motive generation process is shown in Figure

5.2.

To realise this mechanism, each condition is related to a need. These needs and

conditions are to be explicitly defined in the ReCau architecture. While defining

these needs in ReCau, the needs listed in the previous section can be adopted. Even

more needs can be defined in the implementation phase. While defining these needs,
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Figure 5.2: Flowchart of the Motive Generation Process

to put the proposed approach into practice, each need is put in a hierarchical order.

This enables the ReCau agent to distinguish the order of different needs, even if they

are in the same level of the hierarchy. By distinguishing the order of the needs, the

ReCau agent is enabled to pursue the lowest level need first. The entity-relationship

diagram of the hierarchy of needs is shown in Figure 5.3.

As an example, both need for food and need for security is at the same level of ERG

which is existence. However, these needs must also be put in further hierarchical order

in ReCau. For instance, it can be said that the need for food is a lower level need

than the need for security. In this manner, ReCau is able to distinguish different

needs even if they are at the same level of the hierarchy. Assume that a ReCau

agent receives two conditions: the first condition is related to food, while the second

condition is related to security. In such cases, the ReCau agent would try to satisfy

its need for food first; since, the need for food is a lower level need than the security

need.
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Figure 5.3: The Entity-Relationship Diagram of the Hierarchy of Needs

The other function of the filtering mechanism is to notify the motivation activator

on completion of actions. Whenever an action execution is completed, the actuator

controller notifies the perception controller that the execution is completed. Then

the perception controller verifies if the execution is completed. If the execution is

completed, the perception controller warns the filtering mechanism. In accordance

with this warning, the filtering mechanism informs the motivation actuator that the

action has been executed.

The motivation activator generates the goals of an agent. The goals are held in a

queue which includes the goals in a hierarchical order. The hierarchical order of the

goals is determined in accordance with the level of the corresponding need. The goal

related with the lowest level need takes the first order in the queue. The other goals,

which are the goals related to higher order needs, are to be satisfied after the lowest

level need is met. Whenever a need is satisfied, the corresponding goal is removed

from the queue. Then the agent pursues the next goal in the queue.

While the agent is performing actions to satisfy its particular need, it can receive

a condition related to a lower level need than the active need. In such cases, the

agent puts the goal of the corresponding lowest level need in the first order in the

queue. The corresponding lowest level goal and the need become the active motive;
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therefore, the agent starts focusing on it first.

Whenever an active motive is changed, it means that the agent’s active goal has

changed. In such situations, the motivation activator warns the attention mechanism

to focus on the new active goal. Focusing on a new active goal means that the agent

must delay executing the current activity and start executing the new plan related

with the new active goal.

As an example it can be considered that an agent talking with its friend. When

the agent feels hunger, it focuses on eating. While focusing on the need for food, it

stops talking with its friends. In other words, the agent postpones talking for a later

time. After satisfying its hunger, the agent can go back and continue talking.

In this context, the attention mechanism enables the agent to focus on meeting the

active motive. While executing certain actions to satisfy a particular need, it keeps

the agent focused on that activity. To do so, it directs controlling mechanisms. While

performing the actions, if the agent’s active goal changes, the attention mechanism

changes the focus of the controllers. In other words, the agent stops executing the

action by warning its actuator and perception controllers. These components start

focusing on the new active goal. To do so, the actuator delays the current action to

continue after finishing the new active goal.

Another important responsibility of the attention mechanism is to notify the mo-

tivation activator to change the order of the needs. As mentioned in the proposed

framework, strong emotions can change the order of the needs. To realise this idea

whenever a strong emotion is generated, the attention mechanism informs the moti-

vation activator to move the corresponding need up or down in the hierarchy. If the

strong emotion is positive, then the corresponding need goes one level down in the

hierarchy. Likewise, if the strong emotion is negative, then the corresponding need

goes one level up in the hierarchy. If the hierarchy of the needs changes, then the

queue which holds the goals in the hierarchical order is also updated accordingly.
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The last component of the reactive layer is the actuator controller. This compo-

nent provides the means to perform actions in the environment. To perform actions,

the ReCau agent requires external components like a body, arms, or just a message

passing mechanism. These additional mechanisms may vary according to the design

purposes of an agent. If the purpose is to develop a humanoid robot, then it is

required to have an actuator such as a body.

The actuator controller guides the execution of the tasks which are dispatched by

the deliberative layer. The dispatcher in the deliberative layer gives detailed actions

related with the intention of the agent to the attention mechanism. Then the attention

mechanism sends the relevant data to the actuator controller. The actuator controller

provides the means to accomplish actions to achieve the intention. The intentions of

the ReCau agent are also held in an ordered queue. The first intention in the queue

is executed first. The other intentions in the queue wait until the corresponding goal

is activated.

5.3 Deliberative Layer

The deliberative layer provides the means for learning, planning, conflict resolution

with other agents, and dispatching the tasks to the components in the lower layer.

The deliberative layer is the slowest layer of the ReCau. It employs the reinforcement

learner, the discrete feasible planner with the plan library, the manipulator with the

belief base and the dispatcher.

Whenever a pre-condition, a goal and a need (i.e. a pre-condition and a motive) are

sent to the deliberative layer, they first reach the reinforcement learner. The learning

types in ReCau are supervised and unsupervised learning. This means that the

ReCau agent can learn in an unsupervised manner by just observing the other agents

or it can learn under supervision by receiving a plan directly from another agent.
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These learning types are realised by reinforcement and the reinforcement learner is

responsible for learning. To explain the functions of the reinforcement learner, first the

planning structure of ReCau should be explained. Therefore, learning types employed

in ReCau is explained later in this section.

The second component in the deliberative layer is the planner. Like in the other

planning approaches, the basic ingredients of the ReCau planning approach are states,

conditions, actions, time, a criterion and a plan. A state space captures all possible

situations that could arise. In ReCau, the state space is defined discretely in such

a way that the state space is defined by state conditions. There are three different

types of state conditions in the ReCau architecture: (1) initial-state conditions, (2)

transition-state conditions, and (3) goal-state conditions.

The pre-conditions sent from the reactive layer are called the initial-state con-

ditions. A state condition is denoted by c corresponding to a Boolean expression

involving one or more state variables. The detailed description of the state conditions

is not given here, but it suffices to say that it will include expressions composed of

Boolean connectives and comparisons such as “x = 1 ∧ y ≤ 10” where x and y are

two of the state variables. Let C represent the set of all Boolean expressions defined

over a given set of state variables ~x.

The planning problem involves starting in an initial-state condition c0 ∈ C and

trying to arrive at a goal-state condition cg ∈ C. In the proposed approach, a ReCau

agent at a given initial-state condition tries to reach the goal-state conditions which

meet its goal to satisfy the corresponding need. The actions which manipulate the

state conditions are selected in a way that tries to achieve a particular goal. In the

ReCau architecture, each action taken results in achieving either a transition-state

condition or a goal-state condition.

Time in ReCau is implicitly modelled by reflecting the fact that actions follow in

succession. The particular notion of time is not important, but the proper sequence of
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actions is maintained. The desired outcome of a plan in terms of the state conditions

and actions is called a criterion. The criterion in our approach is feasibility not

optimality. Regardless of the efficiency, a ReCau agent tries to find plans that lead

to arrival at a goal-state condition that is meeting the goal.

A plan imposes a specific strategy or behaviour on a ReCau agent. The plans

simply specify a sequence of actions to be taken. With this respect, ReCau plans

consist of five major parts: (1) an initial-state condition, (2) actions, (3) a sequence

of actions (4) transition-state conditions, and (5) a goal-state condition. Each plan

corresponds to a particular need and a goal-state condition with a mean value of a

satisfaction degree (µ) and a variance value (σ2). The possible plan trajectories for a

particular scenario are illustrated in Figure 5.4.

Figure 5.4: A Possible Plan Trajectory in ReCau
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To illustrate the basic planning mechanism in ReCau, we adopt the discrete fea-

sible planning model provided by LaValle [140].

Each distinct situation for the world is called a state. The set of all possible

states is called a state space, S. As mentioned above, a state s is discretely defined

through the different combinations of values for the state variables, ~x, such that

s = 〈u1, u2, ..., un〉 where xi = ui for 1 ≤ i ≤ n. The value ui comes from the domain

of the variable xi (for instance, for a Boolean variable the corresponding domain is

the set {true, false}).

By applications of the actions of the ReCau agents, the world (environment) is

transformed. Each action, a, manipulates the values of (some of) the state vari-

ables, xi = ui, so that it yields new values for the state variables, xi = u′i. By

this transformation, the current state, s = 〈u1, u2, ..., un〉, results in a new state,

s′ = 〈u′1, u′2, ..., u′n〉. This transformation of state variables is specified by a transition

function on state conditions, f , by specifying the pre- and post-conditions of the ac-

tions that can be taken. As far as actions are concerned, it is needed to know if an

action can be applied at a given state and what effect it will have on that state.

Let A(c) denote the action space for each condition c, which represents the set

of all actions that could be taken when the condition c is satisfied. Different actions

with the same pre-condition c may naturally have different post-conditions, possibly

resulting in different states. For any given action a ∈ A(c) where c is the pre-condition

of the action a and c′ the post-condition, the state condition transition equation can

be shown as follows:

c′ = f(c, a) (5.1)

The set A of all possible actions (action repertoire) over all conditions can be

defined as shown in Equation 5.2.
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A =
⋃
c∈C

A(c) (5.2)

It must be noted that all conditions are members of the condition space, c ∈ C.

Not all the conditions will necessarily have associated actions.

A ReCau agent comes equipped with an initial action repertoire depending on its

design purpose which can be expanded by reinforcement learning. Note that actions

can be described in a suitable framework based situation calculus such as that of

Reiter’s [189] which is consistent with the adopted model.

The states satisfying a particular need are the ones meeting a particular goal-state

condition, cg, for example, the condition “switch = true” is satisfied by any state

where the light switch (represented by the variable switch) is turned on, regardless

of the values of the remaining state variables. The set of goal states which satisfy a

particular need can be defined as Sg ⊆ S.

In ReCau, the task of the planner is to find a finite sequence of actions to achieve

a goal state s ∈ Sg which meets the given goal-state condition cg from the given

initial-state condition c0. Equipped with this formalism, the model of discrete feasible

planning in ReCau adopted from Lavalle [140] is shown below:

1. A state space S, that is, a finite set of states defined over ~x

2. An initial state condition c0 and a goal state condition cg

3. An initial state set S0 ⊆ S defined by S0 = {s ∈ S | s satisfies c0}

4. A goal state set Sg ⊆ S defined by Sg = {s ∈ S | s satisfies cg}

5. For each condition c ∈ C, a finite action space A(c)

6. A condition transition function f that produces a state condition f(c, a) ∈ C

for every c ∈ C and a ∈ A(c)
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The planner is responsible for developing plans based on the model of discrete

feasible planning. Whenever an initial-state condition is received from the lower

layer, the ReCau agent develops plans by the help of the plan library. The entity

relationship diagram of the plan library is shown in Figure 5.5

Figure 5.5: The Entity-Relationship Diagram of the Plan Library

The planner simply constructs plans by using a depth-first search planning algo-

rithm. A general depth-first search planning algorithm is shown in Algorithm 5.3.

The algorithm starts off from the initial state condition c0 (or equivalently from

any state satisfying c0), and by exploring the pre- and post-conditions of the actions

that can be taken through the condition transition function f , searches a path using

a stack data structure (represented by S) that would lead to the goal-state condition

(or equivalently to any state satisfying cg).

This algorithm is meant to illustrate the generation of only a single path (plan

alternative) by depth-first search. In an implementation of the ReCau architecture,
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Algorithm 5.1 Depth-First Search Planning Algorithm of ReCau

S.Push(c0)
while S 6= ∅ do
c← S.Pop()
Mark c as visited
if c is satisfied by any s ∈ Sg then

return Success
else {c is not satisfied by any s ∈ Sg}

for all a ∈ A(c) do
c′ ← f(c, a)
if c′ not visited then
S.Push(c′)

else {c′ is visited}
Resolve duplicate c′

end if
end for

end if
end while
return Failure

this algorithm may be used to develop all plan alternatives based on a given initial-

state condition. Other search algorithms can also be used if there are additional

requirements and/or constraints.

In the frame of the given explanation on the planning approach adopted in the

architecture, subsequently learning types in ReCau are explained.

Whenever a goal is received by the deliberative layer, the reinforcement learner

first checks if the goal is to “slearn” or “ulearn”. In the ReCau architecture, a goal

can be “slearn” if the ReCau agent receives a plan from another ReCau agent. A

goal can be “ulearn” if a ReCau agent sees that another ReCau agent is executing a

plan. While the “ulearn” means the goal of the agent is to learn in an unsupervised

manner, the “slearn” means the goal of the agent is to learn in a supervised manner.

If the goal is to “slearn”, the ReCau agent starts supervised learning. While

starting supervised learning, the ReCau agent first checks if the received plan is
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completely known. If the plan is known completely, then the ReCau agent stops

learning. Otherwise, the ReCau agent attempts to find the unknown actions in the

received plan and the known actions in the plan are filtered out.

Then the ReCau agent attempts to find the teacher agent’s place in the social

context. The social context of the ReCau agent is explicitly defined in the reinforce-

ment learner. This means that each agent knows the family of itself, the agents who

has influence on itself, the agents who have similarities to it and the other agents.

Accordingly, the learner agent determines the teacher agent’s place in the social con-

text. It must be noted that the social context of each agent can be different from the

other agents.

Afterwards, the ReCau agent writes the unknown actions with their pre- and

post- conditions to the plan library. While writing these actions, the mean value of

the satisfaction degree (µ) and the variance value (σ2) corresponding to the teacher

agent’s place in the social context are assigned to the goal-state condition. For this

purpose, the following social context and the corresponding values can be adopted in

the implementation.

The Family of the Agent: E(µ) = 0.70, E(σ2) = 0.05

The Agents with Influence: E(µ) = 0.60, E(σ2) = 0.05

The Agents with Similarities: E(µ) = 0.50, E(σ2) = 0.10

The Other Agents: E(µ) = 0.40, E(σ2) = 0.10

Within this frame, the flowchart of the supervised learning process is shown in

Figure 5.6.
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Figure 5.6: The Flowchart of the Supervised Learning Process
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If the goal is to “ulearn”, the ReCau agent starts unsupervised learning. When

starting unsupervised learning, to provide reinforcement in this approach, the Re-

Cau first assigns an expected mean value of the satisfaction degree and an expected

variance value to the plan that is going to be learned. These values signify the expec-

tations of the ReCau agent. To do so the ReCau agent considers the teacher agent

in the social context given previously.

As seen in this context, each level corresponds to a mean value of the satisfaction

degree E(µ) and a variance value (E(σ2)). In unsupervised learning these values

are considered as the expected mean value of satisfaction degree and the expected

variance value to the plan that is going to be learned.

After defining the expected values, the ReCau agent learns plans in accordance

with the conditions and the actions observed. The policy maps the state conditions

of the world to the actions that the agent ought to take in those states. To illustrate

reinforcement learning, here the policy is considered as a plan.

To realise this idea, “reward” (r) and “punish” (p) values are introduced. The

reward is r = 0.20 and punish is p = −0.20 by default. By using these values, after

receiving each action the learner agent recalculates the expected mean value of the

satisfaction. If the action is not known, it is rewarded by multiplying 1 + r and E(µ).

If the action is known, it is punished by multiplying 1 + p and E(µ). The outcome of

the multiplication becomes the new expected mean value of the satisfaction degree.

This process continues for each action observed until either the agent reaches to

a goal-state condition or the expected mean value of the satisfaction degree becomes

less than 0.40 which is the learning satisfaction limit (ς2l ). If the agent reaches to

the goal-state conditions the last calculated expected mean value of the satisfaction

is written as the mean value of the satisfaction degree of the goal-state condition. If

the mean value of the satisfaction becomes less than the learning satisfaction limit,

the ReCau agent stops the learning process.
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Within this framework, the flowchart of the supervised learning process can be

shown in Figure 5.7.

The actions learned by using these types of learning can be put in practice by the

agent later on; since, the reinforcement learner learns plans and deploys them in the

plan library.

In summary, if the goal sent from the reactive layer is related to learning, then

the agent starts learning. Otherwise, it develops plan alternatives which meet the

goal received by the planner. Then the pre-condition, the fully developed plan alter-

natives with the mean values of the satisfaction degrees and variance values and the

corresponding need and goal are sent to the manipulator.

The responsibilities of the manipulator are to update conditional pro-attitudes,

judge alternatives and resolve conflicts between other agents by using the belief base.

The conditional pro-attitudes that may include pro-attitudes like obligations, likes,

dislikes are explained in terms of beliefs; therefore, they are stored in the belief base.

When the manipulator receives a pre-condition, if it is required, the conditional

pro-attitudes are changed in the belief base. Some pre-conditions require taking some

actions but at the same time they may result in changing the pro-attitudes of the

agent due to changing conditions. Therefore, the pro-attitudes are changed by the

manipulator whenever required.

After making changes in the pro-attitudes, the manipulator simply checks the

post-conditions of each plan alternative to see if there is an associated conditional pro-

attitude. Whenever the manipulator finds a conditional belief (i.e., a conditional pro-

attitude) associated with a post-condition, it analyses the impact of the conditional

belief on that plan alternative.
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Figure 5.7: The Flowchart of the UnSupervised Learning Process
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To realise this impact, each conditional pro-attitude has a certain impact factor

(ψ). These impact factors can be positive or negative values. While a positive impact

factor increases the mean values of satisfaction degrees, a negative impact factor

decreases the mean values of satisfaction degrees. In the ReCau architecture, the

impact factors are real numbers between −1 and 1. The factor value of 0 signifies no

influence, while the value 1 and −1 signifies the strongest influence.

By using these impact factors, the manipulator simply recalculates the correspond-

ing mean values of the satisfaction degrees of the plan alternatives. The recalculated

mean values are called the ameliorated mean values of the satisfaction degrees (µ̃).

They are calculated as shown in Equation 5.3.

µ̃ =

 1 if µ+ (µ× ψ) ≥ 1

µ+ (µ× ψ) if 0 ≤ µ+ (µ× ψ) < 1
(5.3)

After finding the ameliorated mean values of the satisfaction degrees, these values

are assigned to the corresponding plan alternatives as their new mean values of the

satisfaction degrees (µ = µ̃).

Afterwards, all of the plan alternatives with their corresponding mean values and

variance values and the corresponding need are sent to the causal layer.

The last responsibility of the manipulator is to enable an agent to collaborate

on pursuing common needs by resolving conflicts with other agents. When several

ReCau agents have common needs, they will adjust unless they have contradicting

pro-attitudes like beliefs, likes, dislikes and obligations. A ReCau agent is harmonious

with other ReCau agents while trying to satisfy their common, non-conflicting needs.

The negotiation process is managed by the manipulator to collaborate on common

needs. When an agent suggests a plan to a ReCau agent to collaborate on pursuing a

common need, the ReCau agent tends to accept the plan alternative if it does not have

contradicting pro-attitudes. If the ReCau agent has contradicting pro-attitudes, then
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it offers its plan alternative. If the other agent insists on its own plan alternative

by providing additional conditional pro-attitudes, the ReCau agent considers this

additional conditional pro-attitude. In other words, the ReCau agent first checks if

the new conditional pro-attitude has a stronger influence and then adjusts itself to

collaborate.

The decision-making process is managed by the causal layer. Whenever the delib-

erative layer generates plan alternatives, it sends the plan alternatives to the causal

layer. In particular, the agent sends plan alternatives with the mean values of the

satisfaction degrees and the variance value and the corresponding need to the causal

layer. The decision is made in the causal layer and the intention is determined by

selecting one plan among the received plan alternatives. In this layer, an emotion is

also determined.

After determining both the emotion and the intention, they are sent back to the

deliberative layer specifically to the dispatcher. The function of the dispatcher is to

assign tasks to the components in the reactive layer. To assign those tasks, according

to the intention (i.e., the selected plan) and the emotion, the dispatcher obtains the

details of the plans from the plan library. In the plan library, each action is described

explicitly in such a way that each action corresponds to certain components.

Moreover, in ReCau, the emotions are also kinds of plans; therefore, they are held

in the plan library. To realise the affect display, the plan library also contains fully

developed action sequences related with regular and strong emotions. In accordance

with the emotion and the intention of the agent, tasks are formed by the dispatcher.

Finally, these tasks are sent to the attention mechanism to direct the corresponding

components for execution.
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5.4 Causal Layer

The decision-making process and emotion generation process are managed by the

causal layer. Whenever the deliberative layer generates plan alternatives, it sends

them to the causal layer. In particular, a ReCau agent sends the plan alternatives

with the mean values of the satisfaction degrees and the variance values and the

corresponding need to the causal layer. This data first reaches the decision-making

mechanism.

The decision-making mechanism uses these values to determine the satisfaction

degrees for each plan alternative. Here the aim is to obtain satisfaction degrees (ς).

These satisfaction degrees are normally distributed random values that are generated

by using the corresponding mean values of the satisfaction degrees and the variance

values of the plan alternatives. In this manner, it is aimed to provide action flexibility

(or a semi-autonomous action capability) to a ReCau agent.

To obtain satisfaction degrees, first the polar technique is applied. The polar

technique is a modified form of the Box-Muller method [32]. The polar technique is

shown in Algorithm 5.4.

Algorithm 5.2 Polar Technique Algorithm
repeat
U1 ⇐ iid U ∼ [0, 1]
U2 ⇐ iid U ∼ [0, 1]
V1 ⇐ 2× U1 − 1
V2 ⇐ 2× U2 − 1
W ⇐ V 2

1 + V 2
2

until W < 1
Y ⇐

√
−2× ln(W ) /W

ρ1 ⇐ Y × V1
ρ2 ⇐ Y × V2

By using this algorithm, initially two independent and identically distributed (iid)

uniform random variables (U1 and U2) are generated. Then these uniform random
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variables are transformed into two normally distributed random numbers (ρ1 and ρ2).

These are independent and identically distributed (iid) and normally distributed with

the mean value of 0 and standard deviation of 1 (ρ1 and ρ2 are iid N ∼ (0, 1)).

After obtaining two normally distributed random numbers, we use one of them to

calculate a satisfaction degree (ς). The formula for calculating satisfaction degrees is

shown in Equation 5.4.

ς =


1 if ρ1 × σ + µ ≥ 1

ρ1 × σ + µ if 0 < ρ1 × σ + µ < 1

0 if 0 ≥ ρ1 × σ + µ

(5.4)

In this formula, µ is the mean value of the satisfaction degree and σ is the standard

deviation. The standard deviation is found by the formula given in Equation 5.5.

σ =
√
ς (5.5)

As stated previously, each plan alternative corresponds to a different mean value

of the satisfaction degrees and different variance values. Therefore, for each plan

alternative a different satisfaction degree is to be calculated.

By applying the polar method and calculating the satisfaction degrees for each

plan alternative, the ReCau agent selects the most satisfactory alternative. The

most satisfactory plan alternative is the one with the highest satisfaction degree. By

selecting one plan among all the received plan alternatives, the agent determines its

intention. In other words, the agent makes decision by selecting one of the plan

alternatives. The selected plan alternative becomes the intention of the agent.

After determining the intention, the next task is to generate an emotion. Each

action taken does not guarantee emotion generation. If the satisfaction degree is above

or below a certain limit, the emotion generation mechanism generates an emotion in



CHAPTER 5. RECAU: REACTIVE-CAUSAL ARCHITECTURE 151

Table 5.1: Default Emotion Limit Values
Strong Positive Emotion Limit 0.90
Positive Emotion Limit 0.80
Negative Emotion Limit 0.20
Strong Negative Emotion Limit 0.10

accordance with the received need. In the ReCau architecture, if the satisfaction

degree is above the positive emotion limit, it generates a regular positive emotion.

If the satisfaction degree is above the strong positive emotion limit, it generates

a strong positive emotion. Likewise, there are the negative emotion limit and the

strong negative emotion limit. If the satisfaction degree is lower than these limits,

the negative emotions are generated.

The default emotion limits in ReCau is given in Table 5.1.

To realise emotion generation in ReCau, in the emotion generation mechanism

each need is associated with a positive emotion, a strong positive emotion, a nega-

tive emotion and a strong negative emotion. The entity-relationship diagram of the

emotions is shown in Figure 5.8.

Figure 5.8: The Entity-Relationship Diagram of the Emotions

Whenever a need is sufficiently satisfied or inadequately satisfied, the correspond-

ing emotion is generated. In the implementation of the ReCau, the needs and the

emotions provided in the previous section can be adopted. It must be noted that,

more needs and emotions can be introduced in the implementation.

After determining both the emotion and the intention, they are sent back to the
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deliberative layer, specifically, to the dispatcher.

5.5 Comparison with Existing Architectures

In this section of the study, the proposed architecture ReCau is compared with sev-

eral existing architectures. The most distinctive attributes of ReCau are employing

motives and displaying affect. Therefore, ReCau is only compared with existing ar-

chitectures which employ motives and/or display affect.

The first architecture that is compared with ReCau is Tok [23]. This architecture

is developed to provide affect display and social behaviour capabilities to an agent.

The Tok architecture provides the means to show a goal directed behaviour. However,

it does not employ any motives to generate goals. The emotions that are available

in the Tok architecture are mostly limited with basic emotions like fear and anger.

However, ReCau employs motives and more complex emotions. In addition, Tok does

not adopt any learning approaches.

The other architecture that is compared with ReCau is MPA [24]. MPA is an

instance of PRS with enhanced features. PRS is the most commonly adopted hybrid

architecture employing the belief, desire and intention approach like ReCau. PRS and

ReCau employ a plan library and include explicit representations of beliefs, desires,

and intentions. The plan library in both architectures contains a set of plans. In PRS,

the set of plans can be activated in a goal- or data- driven fashion. In ReCau, the set

of plans can be activated in a motivation driven fashion which means that while trying

to satisfy a certain need, the plans are activated to make decision. With this respect,

a ReCau agent is driven by its needs. This provides a higher level of autonomy. One

another important difference between these architectures is that ReCau enables an

agent to simulate emotional states.

The first enhanced feature of MPA is the busyness filter. This filter checks the
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load on the planner and filters out goals if the planner is busy. ReCau also has a

filtering mechanism which enables the planner to focus on only one issue at a time

and reduces the load of the planner. The filtering mechanism in ReCau also allows

the system to work in accordance with resource boundedness by filtering out data

irrelevant to the needs of an agent.

MPA has a management process to provide meta-management controls. This

process decides actions that are going to be performed next in good computational

time. For this purpose, the management process controls every lower level action.

ReCau has no such layer. But the motivation activator provides the same efficiency

without introducing an additional layer. Finally, like PRS, MPA does not support

the generation of emotions.

Another architecture that has similarities with ReCau is Motivated Agency [172].

In MA, motives are used to generate motivated goals. According to this architec-

ture, firstly the agents pursue goals with a higher motivation level. The motivation

generation structure of Motivated Agency architecture is an instance of ideas of Wal-

ter B. Cannon [45]. However, ReCau adopts the theories of needs. The motives in

Motivated Agency are not explicitly defined. However, ReCau agents try to satisfy

explicitly defined lower level needs first. Moreover, being driven by needs is realised

by only employing a motivation activator. Unlike ReCau, Motivated Agency does

not simulate affect display.

CMattie is another architecture that enables an agent to display emotional states

[158]. CMattie learns more complex emotions from its experiences. It pursues goals

reinforced by the emotional valence. The approach adopted in CMattie is different

form classic reinforcement in which a positive or negative valence is provided through

feedback. CMattie architecture enables an agent to pursue the greatest pleasure

and avoid displeasure. ReCau also has a similar mechanism to pursue favourable

situations while refraining from unsatisfactory situations. The most distinguishing



CHAPTER 5. RECAU: REACTIVE-CAUSAL ARCHITECTURE 154

difference between these architectures is that ReCau employs motives to generate

goals.

Another architecture that adopts emotional reasoning is Èmile. Èmile adopts

social learning theory like ReCau. However, it does not employ motives. Èmile

agents are capable of recognising the plans of other Èmile agents. Like ReCau, the

planning approach adopted in Èmile is not effective.

Another architecture that is compared with ReCau is H-Cogaff [211, 210]. Both

architectures employ reactive and deliberative layers. But the upper most layers are

significantly different. The highest layer of H-Cogaff is a meta-management layer

which controls and monitors the reactive and deliberative layers. In ReCau, there is

no such controlling layer. The upper most layer of ReCau is the causal layer which

supports decision-making and emotion generation.

In H-Cogaff some motives are introduced to provide a filter to focus attention.

In this architecture, the attention mechanism selects motivators to attend to. Sim-

ilarly, a ReCau agent filters observed data according to its needs. Moreover, these

needs also provide the means to focus attention. While performing similar activities,

the underlying mechanisms are totally different in these architectures. Moreover, in

ReCau motives are explicitly defined as needs.

The major difference between H-Cogaff and ReCau is related with emotion gen-

eration. H-Cogaff distinguishes emotions in three categories: primary, secondary and

tertiary emotions. Besides, each emotion type is related with one layer of the archi-

tecture. However, emotions in ReCau are related to the satisfaction/dissatisfaction

of needs. By following ERG, ReCau employs three levels of needs. Accordingly, the

existence needs correspond to basic emotions, while relatedness and growth needs cor-

respond to non-basic emotions. In addition to this, the relatedness needs correspond

to social emotions, while growth needs correspond to non-social emotions.

EMAI is another architecture that is capable of affective decision-making [18]. It
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makes decisions through emotional appraisal. Based on their emotianl states, EMAI

agents can change their behaviour. It also includes a motivational drive generation

component to motivate an agent emotionally. This architecture does not support the

development of social agents and does not employ motives.

Even though there are significant differences, CLARION has many similarities

with ReCau. Both architectures adopt reinforcement learning. However, a CLARION

agent learns from its experiences, while a ReCau agent learns from other agents by

adopting social learning theory.

These two architectures enable agents to be driven by their needs. CLARION

offers two different types of drives: primary drives and secondary drives. When

explaining primary drives, CLARION employs the hierarchy of needs. Moreover,

CLARION employs derived drives called secondary drives. These drives that can

change over time are acquired in the process of satisfying primary drives [216]. Instead

of this approach, ReCau adopts the ERG model which solves the overlapping problem

in the hierarchy of needs. Another difference is that ReCau explains emotions as the

result of satisfaction or dissatisfaction of needs. However, CLARION does not address

this aspect of intelligence.

Another architecture that enables agents to show emotionally influenced behaviour

is COGNITIVA. Similar to ReCau, COGNITIVA has reactive and deliberative layers.

Besides, COGNITIVA includes a social layer to show social behaviour [117]. Social

capabilities of ReCau are introduced without an additional layer. Instead of social

layer, ReCau contains a causal layer. Even though, COGNITIVA does not employ any

learning approaches and motives, it supports the development of believable agents.

When compared to LMRB, ReCau covers nearly all of the cognitive processes

listed by Wang et. al. [233]. However, ReCau has only three layers. ReCau does

not support a few higher cognitive processes like creation. However, ReCau can still

generate human-like intelligent behaviour even if it is not inspired from the structure
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of the human brain.

The model of perceptual processes proposed by Wang [232] are similar to the pro-

cesses adopted in ReCau. ReCau also categorises emotions as positive and negative.

It hierarchically lists emotions as regular and strong emotions. However, in ReCau ba-

sic emotions are not associated with more complicated emotions. In ReCau emotions

are associated with the hierarchy of needs. According to Wang’s model motivation is

triggered by an emotion or external stimulus. In ReCau, motivation is triggered by

an external or internal stimulus not by an emotion. ReCau is motivation/need driven

and only strong emotions have effect on the order of needs in the hierarchy.

When compared to AAS [231], ReCau agents are motivation driven not goal

driven. Driven by the needs, external and internal stimulus triggers a ReCau agent

to generate goals which are associated with its needs.

Last but not the least important issue is related with the flexibility attribute. All

of the architectures discussed here are capable of performing certain actions. In their

current form, these architectures consider an agent more like an individual system.

Most of these architectures do not focus on cooperation among agents. However,

ReCau attempts to enable cooperation with other ReCau agents to pursue common

needs. For this purpose, ReCau agents are capable of resolving conflicts between

them.



Chapter 6

Simulation Studies

In this chapter, two simulation studies are presented to illustrate the proposed ar-

chitecture. The reactive and deliberative layers of the ReCau are in their classical

form. The most distinctive layer of the architecture is the causal layer. Therefore, the

simulations are performed to demonstrate the features of the causal layer. The first

simulation is performed to illustrate the action flexibility provided by ReCau. The

second simulation called the radar task is performed to illustrate the decision-making

mechanism of the architecture in more detail.

6.1 Simulation of Action Flexibility

To illustrate action flexibility in ReCau, three simple experiments are performed. In

these experiments, an agent named Jack is considered. Jack is supposed to go to

work every day. Assume that to go to the work the agent has two plan alternatives:

(1) Take a bus to work or (2) Drive to work. Further assume that the satisfaction of

driving his car to the work is higher than that of taking a bus. To illustrate these

plan alternatives in ReCau, it is needed to define two plan alternatives:

• Plan 1: Take a bus to work

157
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• Plan 2: Drive the car to work

It must be noted that in ReCau, the plans consist of a sequence of actions. There-

fore, whenever flexibility in selecting a plan alternative is provided, it means that

action flexibility is also provided to an agent.

While defining plan alternatives in ReCau, the mean values of satisfaction degrees

and the variance values to each plan alternative are assigned separately. Since the

agent’s satisfaction of driving the car is higher, the mean value of the satisfaction

degree for Plan 1 is defined to be higher than that of Plan 2. Assume that these

values are defined as follows:

• Plan 1: (µ1 = 0.80) and (σ2
1 = 0.05)

• Plan 2: (µ2 = 0.60) and (σ2
1 = 0.05)

Further assume that there are no conditional pro-attitudes associated with these

plan alternatives; therefore, the ameliorated mean values are equal to the mean values

(i.e. µ1 = µ̃1 = 0.80 and µ1 = µ̃2 = 0.60).

By applying Algorithm 5.4 and Equation 5.4 by using the mean values of the

satisfaction degrees and the variance values above, 1, 000 satisfaction degrees (ς) are

generated for the plan alternatives separately. In other words, it is attempted to

understand how the agent Jack behaves when he goes to work. To understand it, the

state in which the agent needs to go to work 1, 000 times is generated. Probability

density functions (pdf) of these generated satisfaction degrees of the plan alternatives

are shown in Figure 6.1.

As it can be seen in Figure 6.1, if the agent comes across with the state in which

he needs to go to work, he tends to drive to work; since, the probability density

functions intersect around ς = 0.70. If the satisfaction obtained from the first plan

alternative becomes lower than 0.70, the agent might unpredictably select the second

plan alternative. In such cases, the agent takes the bus to work.
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Figure 6.1: The Plot of the Probability Density Functions of Jack’s Satisfaction
Degrees in Experiment 1

As stated by Agre, even if agents have several different plan alternatives, most

of the everyday activities are routine [5]. Therefore, in most cases they do not show

unpredictable behaviours. In ReCau, variance values assigned to the plan alternatives

provide means to support the ideas of Agre. The routine activities are activities such

that they show too little variations. Therefore, for the given example if the variance

value of the first plan alternative is reduced to σ2
1 = 0.005 while the other values

remains the same (i.e. µ1 = µ̃1 = 0.80, µ2 = µ̃2 = 0.60 and σ2
2 = 0.05), then the first

plan alternative would become a routine activity. In Figure 6.2, the results of the

second experiment are shown. In the second experiment only variance value of the

first plan is reduced while the other values remained the same.

As it can be seen in the figure, two pdfs do not intersect with each other and

the satisfaction obtained from driving to work is always higher than taking the bus.

Therefore, the agent will always drive to work routinely. In other words, Plan 1 has

became a routine activity.

Although everyday activities are mostly routine, in some cases the agents can

choose not to do their routine activities and to do alternative activities due to changing

conditions. For instance, assume that the agent Jack goes to work with his car
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Figure 6.2: The Plot of the Probability Density Functions of Jack’s Satisfaction
Degrees in Experiment 2

routinely. But one day, he may choose to go to work by bus due to heavy weather

conditions. If the agent believes that there is a heavy snow, then his satisfaction

obtained from driving the car would reduce. Therefore, the agent would choose to go

to work by bus.

To illustrate such situations in the proposed approach, conditional pro-attitudes

are employed. For this case, assume that the pro-attitude of Jack is “There is a heavy

snow.” In other words, the agent believes that there is a heavy snow. As stated

before, in the proposed approach such pro-attitudes have an impact over associated

plan alternatives. For this instance, this pro-attitude has an impact over the first

plan alternative.

To illustrate this idea, the impact factors (ψ) are assigned to the conditional

pro-attitudes. For the given example, assume that ψ = −0.80 is assigned to the con-

ditional pro-attitude “There is a heavy snow.”. Since this pro-attitude is associated

with the first plan alternative, it is needed to calculate the ameliorated mean value of

the satisfaction degree of plan alternative 1 by applying Equation 5.3. Then the ame-

liorated mean value is obtained as µ̃1 = 0.16. The ameliorated mean value for plan

alternative 2 remains the same; since, there are no other associated pro-attitudes.
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Then the ameliorated mean value of the satisfaction degree is assigned as the new

mean value of the satisfaction degree of the plan 1 µ1 = µ̃1 = 0.16. Once again while

the other values remain the same (µ2 = 0.60, σ2
2 = 0.005 and σ2

2 = 0.05), Algorithm

5.4 and Equation 5.4 can be applied to generate the satisfaction degrees for 1, 000

times. The probability density functions of the third experiment is shown in Figure

6.3.

Figure 6.3: The Plot of the Probability Density Functions of Jack’s Satisfaction
Degrees in Experiment 3

As it can be seen in the figure, the routine activity became less satisfactory.

Therefore, as long as the pro-attitude “There is a heavy snow” remains true, the

agent takes the bus to work. Whenever the snow stops, the pro-attitude becomes

false; therefore, the mean value of the satisfaction degree for the first plan alternative

goes back to µ1 = 0.80. In other words, the agent would continue his routine activity

by driving his car to work.
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6.2 Radar Task Simulation

Radar task simulation is based on an organisational decision-making scenario. This

simulation is undertaken to illustrate the decision-making mechanism of the Reactive-

Causal Architecture. This simulation is undertaken by many other existing architec-

tures; therefore, it provides the means to compare ReCau with some of those existing

architectures. In this section, the radar task is described first. Then the former radar

task simulation studies are reviewed. Then, the results of the radar task simulation

obtained by employing ReCau agents are given. Finally, the results of the radar task

simulation are evaluated.

6.2.1 The Description of the Radar Task

In the field of organisational research many researchers focused on determinants of

organisational performance. For this purpose, organisational theorists attempted to

develop various formalisms to predict behaviour. Several formal models are developed

by using mathematics, simulation, expert systems and formal logic. Those models

help researchers to provide information on organisational behaviour, determine errors

and gaps in verbal theories, and determine if theoretical propositions are consistent

[48].

Carley et. al. [48] explain organisational performance as a function of the task

performed. A typical task is a classification choice task in which decision makers

gather information, classify it and make a decision based on the classified information.

In the field of organisational design, many researchers adopted the radar task in order

to determine the impact of cognition and design on organisational performance. In

this task organisational performance is characterised as accuracy.

In the radar task, the agents try to determine whether a blip on a radar screen is

a hostile plane, a civilian plane, or a flock of geese. Originally, there are two types
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of radar tasks. The first one is static and the second one is dynamic radar task. In

the static version of the task, the aircrafts do not move on the radar screen. In the

dynamic radar task, the aircrafts move and the analysts may examine the aircraft

for several times [147]. In the present study, the static version of the radar task is

adopted. Therefore, the static radar task is explained below.

In this task, there is a single aircraft in the airspace at a given time. The aircrafts

are uniquely characterized by nine different characteristics (features). The list of

these features are shown in Table 6.1.

In the radar task simulations each of the above characteristics can take on one of

three values (low = 1, medium = 2, or high = 3). A number of agents must determine

whether an aircraft observed is friendly (1), neutral (2), or hostile (3). The number

of possible aircrafts is 19,683 which is the number of different unique combinations

of the features (39).

A task environment can either be biased or unbiased. If the possible outcomes

of the task are not equally likely, it is said that the task environment is biased. If

approximately one third of the aircrafts are hostile and one third of the aircrafts are

friendly, then the environment is said to be unbiased. Lin and Carley [146] state that

biased tasks are less complex; since, a particular solution is preponderate.

The true state of an aircraft is determined by adding the values of the above 9

features. In an unbiased environment, if the sum is less than 17, then the true state

of the aircraft is friendly. If the sum is greater than 19, then the true state of the

aircraft is hostile. Otherwise, the aircraft’s true state is neutral. The true state of

the aircraft is not known before making the decision [146].
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Table 6.1: The Features of an Aircraft [Source: Lin and

Carley [147]]

Name Range Categorisation of Criticality

Low Medium High

Speed 200-800 miles/hour 200-400 401-600 601-800

Direction 0-30 degrees 21-30 11-20 0-10

Range 1-60 miles 41-60 21-40 1-20

Altitude 5,000-50,000 feet 35k-50k 20k-35k 5k-20k

Angle (-10)-(10) degrees (4)-(10) (-3)-(3) (-10)-(-4)

Corridor Status 0(in), 1(edge), 2(out) 0 1 2

Identification

0(Friendly Military),

1(Civilian), 0 1 2

2(Unknown Military)

Size 0-150 feet 100-150 50-100 0-50

Radar Emition Type

0(Weather),

1(None), 0 1 2

2(Weapon)

The responsibility of the organisation is to scan the air space and make a decision

as to the nature of the aircraft. Some of the agents (the analysts of the organisa-

tion) have access to information on the aircraft related to its features. Based on

this information, the agents make decision and develop a recommendation whether

they think the aircraft is friendly, neutral, or hostile. The recommendations are pro-

cessed or combined in accordance with the organisational structure. The types of
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organisational structures are as follows [147]:

• Team with Voting: In this type of an organisational structure, each analyst has

an equal vote. Each analyst examines information and makes a decision. This

decision is considered as the vote of the analyst. The organisational decision is

made by the majority vote. This structure is illustrated in Figure 6.4.

Figure 6.4: Organisational Structure of Team with Voting [Source: Lin and Carley
[146]]

• Team with Manager: In this structure, each analyst reports its decision to a

single manager. Like the team with voting, analysts examine information and

recommend a solution. Based on these recommendations, the manager makes an

organisational decision. The Team with Manager structure is shown in Figure

6.5.

• Hierarchy: In the hierarchical structure, each analyst reports to its middle-level

manager and the middle-level managers report to the top-level manager. The

analysts examine information and make recommendations. Then the middle-

level managers analyse the recommendations from their subordinates and make

a recommendation to the top-level manager. Based on the middle-level man-

agers’ recommendations, the top-level manager makes organisational decision.

This structure is illustrated in Figure 6.6.
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Figure 6.5: Organisational Structure of Team with Manager [Source: Lin and Carley
[146]]

Figure 6.6: Organisational Structure of Hierarchy [Source: Lin and Carley [146]]

• Matrix: This structure is also a hierarchical structure. However, in this struc-

ture, each analyst reports to two middle level managers. Each analyst examines

information and makes a recommendation. By examining the recommendations

of their subordinates, the middle-level managers make a decision and report to

the top-level manager. Top-level manager makes an organisational decision

based on the recommendations of the middle-level managers. The matrix struc-

ture is shown in Figure 6.7.

As illustrated in the above figures, in the radar task simulations, each structure
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Figure 6.7: Organisational Structure of Matrix [Source: Lin and Carley [146]]

consists of nine analysts. As it can be seen, some structures also include middle

and/or top-level managers.

Within an organisation, there are also resource access structures. These structures

determine the distribution of information to the analysts. Each analyst may have

access to particular characteristics. There are four different types of resource access

structures:

• Segregated: In such a structure, each agent has access to only one task compo-

nent. This structure is illustrated in Figure 6.8.

Figure 6.8: Segregated Resource Access Structure [Source: Lin and Carley [146]]

• Overlapped: In this structure, each agent has access to two task components,
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while each task component is accessible by only two analysts. Overlapped re-

source access structure is shown in Figure 6.9.

Figure 6.9: Overlapped Resource Access Structure [Source: Lin and Carley [146]]

• Blocked: In this type of structure, each agent has access to three task compo-

nents. Three analysts have access to the exact same three task components.

If these three analysts are in a hierarchical organisational structure, then they

report to the same manager. This structure is illustrated in Figure 6.10.

Figure 6.10: Blocked Resource Access Structure [Source: Lin and Carley [146]]

• Distributed: In this structure, each agent has access to three task components.

No two analysts see the same set of task components. If these analysts are in

a hierarchy or a matrix, then the manager would have indirect access to all the

task components. Distributed resource access structure is shown in Figure 6.11.

By utilizing these structures, the radar task simulations are performed to deter-

mine the relative impact of cognition and design on organisational performance. If
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Figure 6.11: Distributed Resource Access Structure [Source: Lin and Carley [146]]

the true state of the aircraft is the same with the final decision of the organisation

then the decision is correct. For a set of problems, the percentage of the correct

decisions of those problems determines the performance of the organisation.

A number of radar task simulations are performed by adopting these organisational

structures and resource access structures. In the following subsection the former radar

task simulations are explained.

6.2.2 Former Radar Task Simulations

By implementing the radar task simulations, researchers attempt to analyse organisa-

tional performance. For this purpose, researchers use computational models, human

experiments and archived data. These analyses can be performed at a micro (small

group) and/or a macro (organisational) level. In the micro level studies, a hierarchy

has a single tier. In other words, the hierarchy includes only one manager and 9

subordinates. In the macro level studies, a hierarchy may be multi-tier structure [48].

In the present study, only micro level studies are considered.

Carley et. al. [48] are the first researchers who studied the radar task simulations

at the micro level. They adopted two resource access structures: the distributed
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structure and the blocked structure. At the same time, they adopted two organisa-

tional structures: team and hierarchy. They implemented the simulation in such a

way that the organisations faced the same set of 30 tasks in the same order with the

same organisational design while the agent models varied. In the first 30 tasks, the

agents received feedback. For the second 30 tasks, the agents did not receive any

feedback.

In their analysis, they performed a series of experiments which included compu-

tational models and humans. These are:

1. CORP-ELM,

2. CORP-P-ELM,

3. CORP-SOP,

4. Radar-SOAR, and

5. Human.

By using above artificial agents and humans, they aimed to compare their be-

haviour. These models vary in complexity and realism. CORP-SOP is the simplest

model while the most complex agents are humans. Radar-SOAR agents are less

complex than humans while they are more realistic than CORP models [48].

CORP is a computational framework which is a simulated testbed. This testbed

is designed to enable the researchers to compare the performance of organisations

with different settings. CORP models are artificial organisations consisting adaptive

agents with task specific abilities [47].

The difference in CORP models is related to their decision making mechanism.

CORP-SOP agents make decisions by following standard operating procedures pro-

vided by the organisation. CORP-ELM agents make decisions under the guidance
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of their own personal experience. CORP-P-ELM agents make decisions by guessing

based on a probabilistic estimate of the obtained answers through their own experi-

ence [48].

SOAR agents are more complex artificial entities. They are based on the SOAR

architecture which attempts to mimic general intelligence. Radar-SOAR is a com-

posite simulation system, specifically designed for the radar task. It provides a way

to compare and contrast the performance of SOAR agents on the radar task [49].

Carley et. al. [48] used four different organisational designs in their simulations:

1. A team with voting organisational structure and a blocked resource access,

2. A team with voting organisational structure and a distributed resource access,

3. A hierarchy with a single supervisor organisational structure and a blocked

resource access, and

4. A hierarchy with a single supervisor organisational structure and a distributed

resource access.

In all of these settings, there were nine subordinated (personnel) who obtain and

analyse information. As stated before, in their experiment they used the same 60

tasks. The results of the radar task simulation performed by Carley et. al. [48] are

shown in Table 6.2.

All of the results shown in this subsection are performance percentage. According

to these results, the agent models performed better than humans in all team situa-

tions. Humans showed better performance than CORP-ELM and CORP-P-ELM in

the hierarchy. In the distributed resource access structure humans performed bet-

ter. However, CORP-P-ELM and Radar-SOAR performed better while the resource

access is blocked. The other agent models, performed better in the distributed re-

source access like humans. CORP-P-ELM performed the worst in the hierarchy, while
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humans performed worst in the team with voting. The results indicate that the per-

formance in a different organisational setting depends on the type of the employed

agent.

Table 6.2: Radar Task Simulation Results of Carley et.

al. [Source: [48]]

Agent Organisational Design

Team Hierarchy

Blocked Distributed Blocked Distributed

CORP-ELM 88.3 85.0 45.0 50.0

CORP-P-ELM 78.3 71.7 40.0 36.7

CORP-SOP 81.7 85.0 81.7 85.0

Radar-SOAR 73.3 63.3 63.3 53.3

Human 50.0 56.7 46.7 55.0

Sun and Naveh [219] criticised these experiments stating that the agent models are

being fairly simplistic. They stated that the intelligence level of these agents including

SOAR was rather low. They added that learning was not complex enough to mimic

human cognition. Based on these critiques they performed the same simulation by

adopting a cognitive architecture called CLARION.

In their simulations, Sun and Naveh used the same organisational setting while

employing the same number of agents. They replaced the agents with CLARION

agents. Then they chose 100 tasks randomly. In these settings, they performed a

number of simulations. The first simulation was a docking simulation in an abstract
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sense. They run the simulation for 4, 000 cycles to match the human data. The

results of this experiment and previous human data are shown in Table 6.3.

Table 6.3: Radar Task Simulation Results of Sun and

Naveh [Source: [219]]

Agent Organisational Design

Team Hierarchy

Blocked Distributed Blocked Distributed

Human 50.0 56.7 46.7 55.00

CLARION 53.2 59.3 45.0 49.4

All of the above results are performance percentage. According to these results,

CLARION achieved the best performance match with human data.

In the second simulation they performed, they increased the number of cycles to

20, 000. By this experiment, they proved that performance can be improved in the

long run by the contribution of the learning approach adopted in CLARION. They

criticised the original simulations being the result of limited training.

Their findings indicated that a team organisation using distributed access achieves

a high level of performance quickly then the learning process slows down and the

performance does not increase much. Contrary to this, a team with blocked access

starts out slowly. However, it reaches the distributed access’ performance in the long

run. In the hierarchy, they stressed that learning is slower and more erratic; since,

two layers of agents are being trained. They indicated that when a hierarchy in a

blocked access, the performance is worse; since, there is very little learning.
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In their third simulation, they varied a number of cognitive parameters and ob-

served their effect on the performance. With this simulation, they confirmed the

effects of the organisation structure and the resource access structure. Besides, they

found that the interaction of the organisation structure and the resource access struc-

ture with the length of training was significant. In addition, they found no significant

interaction between the learning rates with the organisational settings.

In their last two simulations, they introduced individual differences in the agents.

Firstly they replaced one of the CLARION agents with a weaker agent. Then they

performed simulation in a hierarchy with distributed resource access. Under these

settings, the performance of the organisation dropped by only three to four per-

cent. They concluded that the hierarchies are flexible enough to deal with a single

weak performer. Secondly, they employed CLARION agents with a different learning

rate. They found that the hierarchy performed better than team with voting. They

claimed that supervisors could take individual differences into account by learning

from experiences.

6.2.3 ReCau: The Radar Task Simulation

In the literature, the radar task is chosen to analyse interaction between design and

cognition for several reasons. The most important reasons are that the radar task is

inspired from a real world problem and widely examined. The other reason is that the

task is a specific and well defined task. Thirdly, the true decision can be known and

feedback can be provided. Fourth, multiple agents can be employed in a distributed

environment so that the agents can work on different aspects of the task. Fifth, the

task has a limited number of cases; therefore, mathematical techniques can be used

to evaluate agent performance. The last but not the least important reason is that

the task can be expanded further by including other factors.

Beside these reasons, in the present study the radar task is chosen in order to
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evaluate the decision-making mechanism of ReCau. The decision-making mechanism

is the most significant component of the architecture. In the present study, several

simulations are performed to test the decision-making mechanism. These simulations

are implemented by using Java programming language.

In this dissertation study, the same organisational settings with the former studies

are implemented. These settings are as follows:

1. Setting 1: Team with voting organisational structure and blocked resource ac-

cess

2. Setting 2: Team with voting organisational structure and distributed resource

access

3. Setting 3: Hierarchy with a single manager organisational structure and blocked

resource access

4. Setting 4: Hierarchy with a single manager organisational structure and dis-

tributed resource access

In these settings, the same tasks are performed by ReCau agents. The most

important difference between previous studies and this study is that the former studies

chose a set of problems. They performed simulations for the chosen set of problems.

In the present study, all of the tasks are generated randomly to realise a real unbiased

environment. To achieve this aim, the features of each aircraft are generated randomly

and independently from each other. The other difference is that in the present study

the length of the simulation is higher.

Initially, a docking simulation is performed while the organisational structure is

the team with voting while the resource access structure is blocked. By performing a

docking simulation, cognitive parameters are adjusted to match human data. Then

the same cognitive parameters are used in the other three settings.
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Table 6.4: The Docking Simulation Results

Replication Team Hierarchy

Blocked Distributed Blocked Distributed

1 52.45 53.68 42.345 42.63

2 53.49 53.67 42.995 43.02

3 52.935 54.03 42.345 42.7

4 52.765 53.515 42.545 43.07

5 52.61 53.915 42.535 42.615

6 53.17 53.16 42.665 42.63

7 53.165 53.245 42.17 43.86

8 53.365 53.81 42.225 42.97

9 52.995 53.545 42.82 42.64

10 53.61 53.325 43.19 42.715

Average Performance 53.0555 53.5895 42.5835 42.885

Mean Values

0.65, 0.65, 0.65, 0.65,

0.70, 0.70, 0.70, 0.70,

0.75 0.75 0.75 0.75

Variance Value 0.085 0.085 0.085 0.085

The length (cycle) of the simulation is set to 20, 000 and then the simulation is

run for 10 times for each setting separately. The results of the docking simulation are

shown in Table 6.4. The results shown in the table are performance percentage.
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Table 6.5: The Simulation Results when Variance is Re-

duced

Variable Organisational Design

Team Hierarchy

Blocked Distributed Blocked Distributed

Average Performance 59.2075 61.04 49.679 50.879

Mean Values

0.65, 0.65, 0.65, 0.65,

0.70, 0.70, 0.70, 0.70,

0.75 0.75 0.75 0.75

Variance Value 0.05 0.05 0.05 0.05

Average Performance 75.5565 72.2895 72.3165 76.5915

Mean Values

0.65, 0.65, 0.65, 0.65,

0.70, 0.70, 0.70, 0.70,

0.75 0.75 0.75 0.75

Variance Value 0.01 0.01 0.01 0.01

The cognitive parameters of ReCau provide very high flexibility. To illustrate

this aspect of ReCau, in the following experiments the variance value in the decision-

making mechanism is reduced to low levels (0.05 and 0.01). The same length, number

of replications, settings and mean values are used in these simulations. The results

of these simulations are shown in Table 6.5. In this table, only the overall average

performance percentages are shown.

As it can be seen in the table, while the variance value is reduced, the performance

of the organisation is increasing. The highest performance is achieved in a hierarchy

with distributed resource access.
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In the following simulation, the difference between the mean values is increased.

The results are shown in Table 6.6. In these simulations, the variance value is once

again set to 0.085.

Table 6.6: The Simulation Results when Difference be-

tween Mean Values is Increased

Variable Organisational Design

Team Hierarchy

Blocked Distributed Blocked Distributed

Average Performance 61.5195 63.5035 52.77 54.356

Mean Values

0.60, 0.60, 0.60, 0.60,

0.70, 0.70, 0.70, 0.70,

0.80 0.80 0.80 0.80

Variance Value 0.085 0.085 0.085 0.085

Average Performance 70.263 70.5555 64.2985 68.7015

Mean Values

0.50, 0.50, 0.50, 0.50,

0.70, 0.70, 0.70, 0.70,

0.90 0.90 0.90 0.90

Variance Value 0.085 0.085 0.085 0.085

As it can be seen, while the variance value is constant, if the difference between

mean values is increased, the performance increases. However, in the previous sim-

ulation, better performance is observed. The detailed evaluation of the radar task

simulation can be found in the following subsection.
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6.2.4 The Evaluation of the Radar Task Simulation

In this dissertation study, the radar task simulation is undertaken to illustrate and

evaluate the decision-making mechanism of ReCau. For this purpose, the radar task

simulations are performed by varying cognitive parameters in the decision-making

mechanism of ReCau.

In the Table 6.7, the simulation results of the existing architectures and the dock-

ing simulation results of ReCau are shown together to compare the results.

Table 6.7: Comparison of Docking Simulation Results

Agent Organisational Design

Team Hierarchy

Blocked Distributed Blocked Distributed

CORP-ELM 88.3 85.00 45.00 50.00

CORP-P-ELM 78.3 71.7 40.0 36.7

CORP-SOP 81.7 85.0 81.7 85.0

Radar-SOAR 73.3 63.3 63.3 53.3

CLARION 53.2 59.3 45.0 49.4

ReCau 53.1 53.6 42.6 42.9

Human 50.0 56.7 46.7 55.0

Even though the same settings are adopted in all of these simulations, it must be

noted that there are significant differences between these simulations. Above table is

given to show the performance of all studies together to show the relative performance

of ReCau.
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As it can be seen in the table, the performance of the ReCau agents matches the

human data well. A better match in this task means a closer performance percentage

to human data. ReCau performance best matches human data in a team with voting

organisational structure. It is because of the fact that the docking simulation is

performed in this setting to determine cognitive parameters which can match human

data. Then those cognitive parameters are used in the other three settings.

The performance of the CLARION agents also matches human data well. Es-

pecially, in the first three setting, the performance percentage difference between

CLARION, ReCau and humans is around 3 percent. However, the performance of

CLARION agents matches human data better in hierarchy with distributed resource

access structure.

The performance pattern of ReCau agents also matches human data. As it can be

seen, in the distributed resource access structures the ReCau performs slightly better.

It is the same for human data. Humans also perform better in the distributed resource

access structures. Humans and the ReCau agents show the highest performance in a

team with distributed resource access structure. They show the lowest performance

in a hierarchy with blocked resource access structure.

From these results, it can be deduced that the distributed resource access struc-

ture has positive impact over performance. Except for CORP-SOP agents, the per-

formance of all agents is higher in a team. Therefore, it can be asserted that the

agents including the ReCau agents perform better in a team.

In ReCau simulations, the learning approach proposed by ReCau is not imple-

mented; since, social learning is not an appropriate approach to adopt in this type

of a task. Under this setting, the findings support the results of Sun and Naveh

[219]. They stated that very little learning takes place in a hierarchy with blocked

access. The results of ReCau simulations confirm this finding; since, the performance

of ReCau agents matches human data well without employing any learning approach.
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The most significant performance difference between human data and the Re-

Cau agents is observed in hierarchy with distributed resource access structure. The

performance of the CLARION agents matches better in this setting. These results

indicate that the learning is more effective in a hierarchy with distributed resource

access structure.

Carley et. al. [48] state that at the micro levels, the same predictive performance

accuracy with human data can be achieved by more cognitively accurate models. In

the light of this fact, the findings of the docking simulation of ReCau indicate that

the decision-making mechanism proposed along with ReCau is highly realistic.

When the cognitive parameters in the decision-making mechanism of ReCau are

varied, higher performance percentages are achieved. Even though, the performance

percentages of ReCau cannot go as high as CORP models, it still holds promise to

perform like humans in this type of choice tasks.

The simulation results of ReCau also reveal interesting results regarding to the

organisational theory. The performance percentages of ReCau agents confirm the

results of Carley et. al. [48] who stated that the agent cognition interacting with

organisational design affects organisational performance.

The results indicate that the organisational structure has more significant effect

on performance than the resource access structure. In the docking simulation, the

performance of ReCau agents is significantly different in different organisational struc-

tures. However, there is no significant performance difference while the agents are in

the same organisational structure and the resource access structure is different.



Chapter 7

Discussion and Conclusion

Intelligent agent technologies are central to Artificial Intelligence research to simu-

late intelligent behaviour on computers. In the literature, most commonly approved

attributes of intelligent agents are situatedness, autonomy and flexibility with social

capabilities. Agent and cognitive architectures provide the means to satisfy those

attributes to develop agents.

One of the major objectives in intelligent agent technologies is to develop be-

lievable agents. In order to be believable an agent should not only be situated,

autonomous and flexible but also should be capable of displaying affect. In addition,

believable agents should have a stronger sense of autonomy. To achieve stronger au-

tonomy, agent architectures should enable an agent to be driven by their motives and

learn from their experiences.

Believable agents should also have a realistic decision-making mechanism. The

actions performed by the agents are determined through the decision-making pro-

cess. The performance of the decision-making mechanism also has significant effect

over the success of believable agents. Therefore, believable agents should have realis-

tic decision-making mechanisms. Along with these properties, believable agents are

essential to develop real-life like simulated environments.

182



CHAPTER 7. DISCUSSION AND CONCLUSION 183

7.1 The Summary of The Contributions

The intentional notion, on which the theories of agents are based, provides a good

infrastructure. However, the intentional notion cannot explain the emergence of in-

telligent behaviour. Moreover, due to the rationality assumption of the intentional

notion, some behaviours of intelligent beings cannot be explained by the intentional

notion.

To overcome these shortcomings, by this research study the intentional notion

and the theories of needs are merged. In this manner, it is attempted to explain

the behaviours of intelligent entities by the combination of these two approaches.

Instead of the rationality assumption, it is claimed that the most basic assumption of

intelligence simulation is causality. In this context, intelligent entities observe their

internal state and the environment. The observations can be considered as the cause,

while the actions performed based on those observations can be considered as the

effect. In this process, the needs are the nexus which provides a metric measure to

select among alternative plans.

While addressing these issues, it is attempted to develop a general approach to

simulate intelligent behaviour. According to the proposed approach, the term in-

telligence is defined as an abstract notion to express the cognitive processes of au-

tonomous, situated, flexible, and social entities which can display affect and learn

while they perform activities intentionally that are motivated by their needs.

By extending the theory of needs, in the proposed approach, emotions are at-

tempted to be explained as a result of the satisfaction or dissatisfaction of the needs.

Accordingly, a sufficient satisfaction of needs results in positive emotions while an

insufficient satisfaction of needs results in negative emotions. Furthermore, in the

proposed approach, if a need is strongly satisfied or dissatisfied, it results in stronger

emotions. Stronger emotions can change the order of needs in the hierarchy. In this
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respect, the order of the needs is not fixed. Except for the existence needs, the order

of needs can change. While a strong positive emotion moves the corresponding need

downwards in the hierarchy, a strong negative emotion moves the associated need

upwards in the hierarchy.

Even though this approach does not explain all aspects of effects of emotions on

intelligence, it still explains a part of it. If a need moves up in the hierarchy, it

means that an agent is going to avoid the conditions associated with that need. If a

need moves down, it is more likely that the agent is going to pursue that need more

frequently; since, in some sense the need gains priority. This means that the agent

tends to pursue more favourable situations.

In addition, the proposed approach puts social learning theory into practice. Social

learning theory explains how people learn from each other. This theory is adopted

in order to provide a higher sense of autonomy to agents. While adopting social

learning theory, reinforcement learning is used. Reinforcement is provided by the

expected satisfaction which is consistent with the theory of needs.

In accordance with the proposed approach, an agent architecture is proposed. The

architecture is called Reactive-Causal Architecture (ReCau). ReCau is meant to be

a general purpose architecture that can be employed to develop believable intelligent

agents to simulate either human or animal intelligence. To the best of our knowledge,

ReCau is the first architecture incorporating all of the core attributes of believable

agents together.

7.2 An Overall Evaluation of ReCau

In general, a ReCau agent is driven by pre-determined needs which provide a higher

level of autonomy. ReCau includes a filtering mechanism which enables the planner to

focus on only meeting one need at a time. The filtering mechanism also provides the
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means for resource boundedness by eliminating irrelevant data. By the motivation

activator, a ReCau agent is enabled to focus on its lower level needs first.

The proposed approach adopts ERG theory in the light of the theory of needs. Like

it is proposed in the original study, lower level needs are attempted to be satisfied first

by ReCau agents. By following ERG, while developing ReCau agents, the order of the

needs of each agent can be designed to be different. According to the ERG theory

different levels of needs can be pursued simultaneously. However, in the proposed

architecture, the needs cannot be pursued simultaneously. This may be considered in

future work.

In ReCau, some other issues like emotion generation are purely based on Maslow’s

ideas. The emotion generation structure of the approach is inspired from Maslow

who stated that if the lowest level needs are not satisfied, people would feel negative

primitive emotions.

Another important issue is that while developing a ReCau agent, it is not necessary

to incorporate all of the needs defined by Maslow. According to its design purposes,

one can choose some of those needs and implement them accordingly. However, if one

adopts the whole of Maslow’s hierarchy, a ReCau agent would have more human-like

intelligence.

The performance obstacles of the ReCau are related with the deliberative layer.

The deliberative layer of ReCau contains slow components like a planner and a learner.

In particular, the planner in ReCau is a discrete feasible planner; therefore, it may

slow down the performance of ReCau agents. However, the ReCau architecture is

put forward to realise the ideas presented in the proposed approach. Therefore, the

architecture is not meant to be an efficient one at this stage.

When considering radar task simulation undertaken by ReCau agents, it can be

said that the performance of the ReCau agents matches human data well. Especially,

in the first three settings, the performance percentage difference between ReCau
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agents and humans is around 3 per cent. These similarities between humans and

ReCau agents imply that the original simulations are the result of limited training.

It is due to the fact that no learning approach is adopted by ReCau agents. However,

the performance of ReCau agents do not match human data well in a hierarchy with

distributed resource access structure. It can be said that learning is effective in the last

setting. Additionally, the performance pattern of ReCau agents also matches human

data; therefore, it can be stated that ReCau provides highly realistic decision-making

mechanism.

In a recent study, Sun [217] presented his opinion on essential motivational rep-

resentations necessary for a comprehensive computational cognitive architecture. In

particular, he presented important criteria that agents must meet. These criteria

are sustainability, purposefulness, focus and adaptivity. These criteria are explained

below:

• Sustainability: An agent must be capable of satisfying its existence needs like

hunger and thirst.

• Purposefulness: An agent must choose its actions in accordance with some

criteria which should enhance the sustainability of the agent.

• Focus: An agent must be able to focus its activities. It should be in accordance

with its purposes. In addition, the agent should be able to stop pursuing its

activities, temporarily or permanently, or whenever a more urgent need arises.

• Adaptivity: An agent must be able to adapt its behaviour through learning. It

should enable the agent to improve its purposefulness, sustainability, and focus.

During the implementation phase of ReCau, if all of the needs listed by Maslow

are adapted, ReCau agents are capable of satisfying their existence needs. ReCau

agents choose among alternative plans in accordance with the expected satisfaction
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obtained by undertaking the corresponding actions. Therefore, the satisfaction of

needs provides a criterion to choose their actions. The filtering mechanism of ReCau,

enables ReCau agents to focus only on activities which are relevant to their needs.

The needs of ReCau agents are ordered in a hierarchy which provides the means to

direct its focus on more urgent needs. Finally, ReCau agents are capable of learning

socially which allows them to adapt their behaviours in the future actions. Therefore,

ReCau agents are capable of meeting the criteria proposed by Sun.

Last but not the least considerable issue related with existing agent and cognitive

architectures is that they employ a probabilistic approach to provide a means to

select amongst alternative plans. But this approach lacks in explaining the effect of

the motives on the decision-making process. This is because satisfaction is a metric

measure in this process, not a probabilistic event.

In ReCau, satisfaction degrees are normally distributed random numbers coming

from certain mean and variance values. As a result, the proposed approach provides

a degree of randomness in the process which in turn explains human intelligent be-

haviour. Therefore, the decision-making mechanism of ReCau simulates the human

behaviour better.

7.3 Further Research Directions

In its current form, Reactive-Causal Architecture provides a good infrastructure for

believable agents. However, in the future a number of improvements can be made.

In the future, hierarchical and/or the non-linear planning approaches can be

adopted to increase the efficiency of ReCau. In its current form, search is highly

complex. A hierarchical planning approach can help reducing the complexity of the

search. Non-linear planning approaches can provide a partial ordering of the plans.

In this manner, search time can be reduced.
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The type of learning adapted in ReCau is based on the theories of social learning.

In addition to this type of learning, an approach to enable the ReCau agents to learn

from their mistakes can be incorporated. For this purpose, Q-learning can be adapted

in the near future.

Adapting the Q-learning approach in ReCau can facilitate the development and

implementation of applications. After implementing the Q-learning approach, the

radar task simulation may be undertaken again. In this manner, a better explanation

on the effect of learning on organisational design can be obtained.

In the ReCau architecture, second central moment (variance) is used. Instead of

variance, standard deviation might have been used; since, the variance is the positive

square root of standard deviation. There are also higher central moments like skew-

ness and kurtosis. Skewness is a measure of the lopsidedness of the distribution. If

the tail of the distribution is heavier on the left, then it can be said that distribution

is skewed to the left. This type of skewness is called negative skewness. A distribu-

tion skewed to the right have positive skewness. The fourth central moment called

kurtosis is a measure of whether the distribution is tall and skinny or short and squat

[65].

In the reviewed literature, there is no cognitive agent architecture that adopts

higher order moments in the decision-making mechanism. In the long term, higher

central moments can be considered to be adopted in the decision-making mechanism of

ReCau. In particular, it is possible that human satisfaction on some plan alternatives

might be skewed to the left or right. If that is the case, it may be worthwhile to adopt

higher central moments in ReCau.

In the last decade, there is a growing interest in uncertainty. Researchers state

that it is important to incorporate a model to represent and reason under uncertainty

to apply agents in real world domains. For this purpose, there are some models like

Graded BDI which extends Belief, Desire, Intention approach [50]. In the future,
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ReCau can be extended further to work under uncertainty by adopting approaches

like Graded BDI.

The potential applications of ReCau in domains such as social simulation, embed-

ded systems and entertainment computing can be envisioned. In the future, imple-

mentations of ReCau in these domains can be pursued.

In particular, ReCau with its realistic decision-making mechanism provides a good

model for agent-based simulations. By employing ReCau, several agent-based social

simulations can be performed. As in the radar task, agent-based social simulations

can help understanding the underlying organisational theory.

After further increasing the efficiency of planning approach adopted in ReCau, it

can be employed in embedded systems. ReCau can be employed to perform a few

dedicated functions with real-time computing constraints. It must be noted that, to

meet real-time computing constraints, the efficiency of the discrete feasible planner

must be improved. Since ReCau achieves high levels of performance in the radar

task, it can also be used in applications which require human expertise such as air

traffic control systems. In an air traffic control system, the radars include one or

more embedded systems of their own. ReCau can be adopted to be employed in such

radars.

ReCau with its social learning capability can also be employed in entertainment

computing applications. Recently, massively multiplayer online games like World of

Warcraft have become very popular in the leisure industry. Such games include real

players interacting with each other and non-player characters. In order to be a realistic

application, these games require non-player characters that are capable of showing

human-like intelligence. These types of characters can be realised by adopting ReCau.

The social learning capability of ReCau can help non-player characters to adopt

behaviours of the real players. Especially, this capability can enhance the realism of

first person shooter games. In the games like Quake, Half Life and Counter Strike,
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no matter how hard the game setting is, human players can develop strategies to

overcome non-player characters. Social learning can help non-human characters to

learn the strategies developed by humans.

7.4 Concluding Remarks

In the ReCau architecture, ERG theory is adopted to explain motives. By following

ERG, needs of the each agent can be ordered differently. This enables agents to have

different personalities somehow. Moreover, a ReCau agent is also capable of affect

display. Under the light of the Maslow’s explanations, emotions are explained as a

result of the satisfaction or the dissatisfaction of needs.

In the contemporary literature, many researchers have studied the effects of emo-

tions on the decision-making process. The proposed- approach extends the theories

of needs to explain this aspect of intelligence. It is proposed that stronger emotions

can change the order of the associated needs. If a particular need is strongly satis-

fied or dissatisfied, it results in a strong emotion. While a strong positive emotion

moves associated need downwards in the hierarchy, a strong negative emotion moves

associated need upwards.

The causal layer works in accordance with the causality principle. The decision-

making and the emotion generation mechanisms operate under the cause and effect

concept. The decision-making and the emotion generation mechanisms use needs as a

nexus which provides the means to select among alternatives. Instead of probabilities,

the causal layer employs random number generation mechanisms to provide a measure

for selecting among alternatives.

By providing a degree of randomness in the decision-making process of the archi-

tecture, ReCau holds promise to simulate human intelligent behaviour better; since,

it provides an enhanced action flexibility. The approach employed in ReCau provides
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flexibility in such a way that the behaviours of agents cannot be predicted while

supporting routine activities.

Apart from this merit of the decision-making mechanism of ReCau, it also supports

the development of believable agents. The radar task simulation results indicate that

ReCau provides a very good human cognition model. To develop realistic believable

agents, one of the most important features is a realistic decision-making mechanism;

since, it determines the actions taken.

By varying the cognitive parameters in the decision-making mechanism, ReCau

agents can achieve high performance in the radar task. In the future, by adopting

an appropriate learning approach to learn from mistakes, ReCau agents can achieve

better performance.

In conclusion, ReCau is meant to be general purpose architecture. It is the first

intelligent agent architecture incorporating strong autonomy, flexibility, situatedness

and affect display attributes all together. ReCau can be employed to develop believ-

able intelligent agents with its highly realistic decision-making mechanism in many

real-world domains of interest.
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Glosarry

3APL An Abstract Agent Programming Language

AAS Autonomous Agent Systems

ABCL Actor-Based Concurrent Language

ACL Agent Communication Languages

ACT-R Adaptive Control of Thought Rational

AI Artificial Intelligence

AIS Adaptive Intelligent System

ANA Agent Network Architecture

AOR Agent-Object-Relationship

A-Team Asynchronous Team

AUTODRIVE Agens in a Simulated Driving World

BICA Brain Inspired Cognitive Architecture

BDI Blief, Desire, Intention

CBR Case-Based Reasoning

CHREST CHunk Hierarchy and REtrieval Structures
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CLARION Connectionist Learning with Adaptive Rule Induction ON-

line

CMattie Conscious Mattie

CogAff Cognition and Affect

CORP A Computational Framework

DAI Distributed Artificial Intelligence

DARPA Defence Advanced Research Projects Agency

DAS Distributed Asynchronous Scheduler

dMARS Distributed Multi-Agent Reasoning System

EPAM Elementary Perceiver and Memorizer

EPIC Executive-Process/Interactive Controls

ERE Entropy Reduction Engine

ERG Existence, Relatedness and Growth

FA/C Functionally Accurate Model

FIPA Foundation for Intelligent Physical Agents

FORR FOr the Right Reasons

GLAIR Grounded Layered Architecture with Integrated Reasoning

GWT Global Workspace Theory

H-CogAff An Instance of CogAff Architecture Scheme

IA Intelligent Agent

IPA Foundation for Intelligent Physical Agents

IRMA Intelligent Resource-Bounded Machine Architecture

JADE Java Agent Development Framework

KIF Knowledge Interchange Format

KQML Knowledge Query and Manipulation Language

LISP LISt Processing
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LEABRA Local, Error-driven and Associative, Biologically Realistic Al-

gorithm

LRMB A Layered Reference Model of the Brain

MA Motivated Agency

MAS Multi-Agent System

MAS-SOC Multi-Agent Simulation for the SOCial sciences

MEA Means-Ends Analysis

MPA Motive Processing Architecture

NMRAA New Millennium Remote Agent Architecture

PDDL Planning Domain Definition Language

pdf Probability Density Function

PoB Patterns of Behaviour

PRS Procedural Reasoning System

RAA Rational Agent Architecture

ReCau Reactive-Causal Architecture

RCS Real-Time Control System

SAC Source of Activation Confusion

SAL Synthesis of ACT-R and Leabra

SOAR State, Operator and Result

SRI Stanford Research Institute

STRIPS STanford Research Institute Problem Solver

SUO-KIF Standard Upper Ontology Knowledge Interchange Format
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