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Abstract

Design and security analysis of symmetric algorithms are amongst the most im-

portant topics in cryptography. This thesis studies cryptanalysis of symmet-

ric algorithms including block ciphers and hash functions. Block ciphers are

symmetric-key encryption algorithms employed in many cryptographic systems

to provide confidentiality of data. In a secure symmetric encryption algorithm,

decryption of the ciphertext should be intractable for parties that do not know

the secret key. However, this should be easy for the party who knows the key.

Cryptographic hashing algorithms, on the other hand, are predominately used for

authentication and integrity verification purposes. Efficient digital signatures are

possible when signatures are generated for the message digests instead of for mes-

sages themselves. In this case, the security of signatures are tied to the collision

resistance of the used hash algorithm.

The thesis provides background material that is necessary to understand the

topics covered in the work. In particular, the first two chapters explain the basic

design structures and describe analytic tools (also called attacks) that are em-

ployed to test the security of cryptographic algorithms. Our contributions, pre-

sented in subsequent chapters, are three-fold. First we consider the lightweight

block cipher LBlock and analyse its resistance against truncated differential at-

tacks. Next we focus our attention on the Feistel networks and analyse them

using the rebound attack. Our approach is illustrated on the Camellia block ci-

pher. The last contribution is an analysis of Grøstel hash function against the

preimage attack.

We employ differential probability distributions to improve the truncated dif-

ferential cryptanalysis and apply key-recovery attacks to the reduced variants of

vii



ABSTRACT

LBlock. Benefiting from the differential distributions, this technique analyses the

security of algorithms with relatively less data compared to other methods.

The truncated differential analysis together with the rebound attack is used to

improve attacks on generalised Feistel-SP networks. Then, we study randomness

of the reduced-round Camellia block cipher. We also examine hash functions

based on Camellia with respect to distinguishing and collision attacks.

Finally, the security of Grøstl hash function is analysed against preimage and

multi-target preimage attacks. We exploit the rebound technique to attack the

reduced-round Grøstl compression function and find preimages and multi-target

preimages for chosen sets of hash values.
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1
Introduction

Information security is the practice of protecting information in the presence of

adversaries, and allows for secure communication between two or more parties.

Cryptography is the basic tool used to design and analyse security protocols in a

communication system. More generally, it is applied to achieve the major security

goals such as confidentiality, data integrity, authentication, and non-repudiation.

Cryptography is ubiquitous in our everyday life. Every time we connect to

the Internet to check a bank account, send/receive an email, or shop online, the

browser uses appropriate cryptographic algorithms on our behalf. It is not just

limited to the online activities. Smart-cards, such as credit cards or identification

tags, use cryptographic techniques to authenticate the owner’s identity. Many

cryptographic algorithms are applied in mobile SIM cards, not only to provide

authentication but also for message integrity and data confidentiality. Therefore,

designing novel cryptographic algorithms is an active research topic. To gain

confidence in the security of these algorithms their analysis is always as important

as their designs.
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INTRODUCTION

Cryptographic Primitives

Low-level cryptographic algorithms which are used to build security systems are

known as cryptographic primitives. Cryptographic primitives are classified into

three following categories [75]:

1. Unkeyed algorithms are keyless primitives, which have been designed with

no secret key. Hash functions and truly random sequence generators are of

this kind.

2. Private-key algorithms, also known as symmetric-key primitives, use a pri-

vate key in their constructions. Private-key algorithms are deployed in

symmetric encryption algorithms, keyed hash functions or message authen-

tication codes, pseudo-random sequences and authentication protocols.

3. Public-key algorithms or asymmetric primitives apply both private and pub-

lic keys. Asymmetric encryption algorithms, identification primitives, and

digital signatures are some applications of public-key cryptography.

Encryption Algorithms

Encryption algorithms, also known as ciphers, are generally used to provide con-

fidentiality and secrecy of information. They are key-dependent transformations

which map the input data (plaintext) to the output data (ciphertext). Ciphers

are asymmetric or symmetric depending to the type of key used. Asymmetric

ciphers use two different keys for encryption and decryption. One key is private

and known to only one party, while the other one is public and available to all

parties. The keys are mathematically related; however knowing the public key, it

is computationally infeasible to derive the private key. Asymmetric ciphers are

widely used in authentication and digital signature protocols.

Symmetric ciphers use a private key often referred to as secret key. The secret

keys for encryption and decryption are identical. All the parties who have access

to the secret key can communicate together securely. Stream ciphers and block

ciphers are different categories of symmetric ciphers.

A stream cipher, shown in Figure 1.1a, encrypts individual elements (typically

bits) of the plaintext message, one at a time, with the corresponding character of

2



the key-stream. The idea of stream ciphers was inspired by the Vernam cipher or

one-time pad (OTP). OTP combines the plaintext bits with a random key-stream

one at a time to generate the ciphertext. However, OTP is not practical as to

encrypt a n-bit message string, we need a random key-stream of the same length

as the message. A stream cipher applies a pseudo-random key-stream usually

generated from a random seed value. The same seed value is used as the key for

the decryption of the ciphertext stream.

Block ciphers follow a different approach to symmetric encryption, see Fig-

ure 1.1b. They are deterministic algorithms which operate on large and fixed-

length blocks of data. Block ciphers are versatile primitives. In addition to

encryption, they are used in the construction of pseudo-random number genera-

tors, stream ciphers, and hash functions. Block ciphers and hash functions are

the main subjects of cryptanalysis in this thesis.

Stream cipher

1

p
0

key

,p
1

,...,p
n-1

1
c
0

,c ,...,c
n-1

plaintext

ciphertext
1

(a)

plaintext
01...n-1

key

n

ciphertext
01...n-1

n

Block cipher

(b)

Figure 1.1: n-bit stream and block ciphers

Block Ciphers

Block ciphers serve as the major component in the design of many cryptographic

protocols. A block cipher is typically an iterative algorithm and can be viewed

as a large key-dependent substitution cipher. It is a bijective transformation

and encrypts every plaintext to a unique ciphertext. In a secure cipher, the

3



INTRODUCTION

ciphertext by itself is supposed to provide as little information about the plaintext

as possible. So, it must be infeasible to recover the plaintext with no knowledge

about the secret key. However, with the secret key one can easily decrypt a

ciphertext, usually by applying the matching decryption algorithm (that runs

the inverse operations in the reverse order), and obtain the right plaintext.

An adversary is able to totally break a block cipher if it is possible to use a

key-recovery attack to find the secret key; or partially break it by finding part of

the plaintext corresponding to a given ciphertext. The attacks on block ciphers

with fixed keys are mainly classified into the following three (note the adversary

knows about the applied encryption algorithm and wants to recover the key or

plaintext):

1. Ciphertext-only : The adversary has access only to a set of ciphertexts.

2. Known-plaintext : Some plaintext-ciphertext pairs are available for the anal-

ysis.

3. Chosen-plaintext : The adversary can choose some plaintexts and their cor-

responding ciphertexts would be available to him.

If a cipher is secure against chosen-plaintext attack, it is also secure against

ciphertext-only and known-plaintext attacks [75]. Chosen-ciphertext and related-

key attacks are two additional hypothetical classes of attacks, still interesting

in the analysis of ciphers. In the chosen-ciphertext attack the adversary is al-

lowed to decrypt some ciphertexts of his own choice. Security under such attack

scenarios is typically needed in application protocols that allow the attacker to

actively inject carefully crafted ciphertexts in the network and observe how they

are handled. In the related-key attack, the adversary can choose some plaintexts

and then have access to the encryption of those plaintexts under two or more

unknown keys with certain relationships.

Hash Functions

A hash function maps an arbitrary-length message into a fixed-length message

digest (a.k.a. hash value). It distributes all the input messages evenly among the

4



possible hash values. Cryptographic hash functions are constructed from one-way

compression functions. A one-way compression function transforms a fixed-length

input to a fixed-length output, in such a way that only knowing the output the

adversary is unable to compute any of the inputs which generate this output. So

it is easy to generate the hash value by a cryptographic hash function, but it is

intractable to determine the original message from a given digest. Hash functions

can be divided into two categories depending on whether or not a secret key is

used in their design:

1. Keyed hash functions are deterministic functions that take two inputs, a

variable-length message and a fixed-length key and generate a fixed-length

output. They also may be referred to as Message Authentication Codes

(MAC).

2. Unkeyed hash functions are deterministic functions that translate an ar-

bitrary message to a fixed-length hash value without using a secret key.

Unkeyed hash functions can be generated based on iterative structures.

Hash functions are employed in many different security protocols. Message

integrity and data authentication are two important applications of hash func-

tions. Suppose a message is transmitted via an insecure channel. Meanwhile

the message digest is transmitted via a secure channel. The recipient calculates

the corresponding hash value for the received message and compares it with the

received digest. If the message has not been changed during the transmission,

the received hash value and the calculated one are equal. One of the prominent

applications of hashing is for generation of short digital signatures for authentica-

tion purposes. Instead of signing the whole message (which could be very long),

the signature is created for its digest obtained by hashing. On the receiving side,

the verification of signature progresses in the following two steps: 1) the (long)

message is first hashed giving the original digest, 2) the digest obtained from the

signature is compared to the original one. If they are equal, the verification is

successful. Otherwise, it fails. Another popular application of hash functions is

in access control systems for password validation. Instead of storing the plain

password, its hash value is stored in the database. Then when a user tries to log

5



INTRODUCTION

in to the system, the hash of the entered password is calculated and compared

with the stored one. The access is granted to the user if both hash values are

equal.

Security Analysis of Symmetric Primitives

Together with efficiency, security is an important property of cryptographic prim-

itives. Cryptanalysis is the science of studying security properties of primitives

and analysing their weaknesses. Every cryptographic algorithm provides a well-

defined collection of security goals. The following list specifies an example collec-

tion of some standard goals for block ciphers and cryptographic hashing.

• Block cipher goals:

– The ciphertext is indistinguishable from a truly random output stream.

– Guessing the secret key is infeasible. This means the probability of

choosing the right key is equal to the probability when the adversary

chooses the key randomly and uniformly from the whole key space.

– Recovering the plaintext from a ciphertext is infeasible.

• Hash function goals:

– The hash value is indistinguishable from a random output value.

– It is computationally impossible to invert a hash function (i.e. one-

wayness or preimage resistance)

– It is computationally impossible to find different messages with the

same hash values (i.e. collision resistance)

Many different techniques are used to analyse symmetric cryptographic algo-

rithms. One way is to consider the whole algorithm as a black-box and try to

solve the problem without any knowledge of the internal design. This analysis

is also known as black-box cryptanalysis. On the contrary, statistical and alge-

braic cryptanalysis exploit some weaknesses in the design of cryptographic prim-

itives. Statistical cryptanalysis (such as linear and differential analysis), stud-

ies the building blocks of the algorithm and examines properties of the low-level

6



Boolean transformations in the design. Algebraic cryptanalysis uses the algebraic

representation of the design components to construct a linear/non-linear system

of equations on the input/output variables. Cryptanalysis of cryptographic al-

gorithms concentrates on the mathematical structures and tries to explore them

to reveal secret elements or break their security properties. It completely ignores

the implementation issues of cryptographic algorithms. However, even if a cryp-

tographic algorithm is secure against cryptanalysis, its implementation may leak

some information about the secret elements. The security analysis of implemen-

tations of cryptographic algorithms is also known as side channel attacks.

Motivation and Significance of This Thesis

Cryptanalysis of symmetric algorithms including block ciphers and hash functions

is the main subject of this thesis. As mentioned earlier, block ciphers and hash

functions are two major primitives which are used in many security protocols

to protect sensitive data from disclosure and unwanted access. Moreover, with

the advance of technology, there is always a need to design new cryptographic

algorithms suitable for the newly available systems and resources. Therefore, it

is always a question that whether these algorithms are secure enough to protect

information. Cryptanalysts always study crypto-algorithms to make sure they

are not vulnerable to the analysis techniques, considering both design and current

available resources.

In this thesis, our aim is to contribute in the development of more secure

cryptographic designs. We pursue this goal by improving the current well-known

cryptanalytical techniques and presenting new methods for the cryptanalysis of

symmetric algorithms.

Thesis Contributions

The thesis is outlined as bellow.

Details on the design of block ciphers and hash functions are described in

Chapter 2. The cryptanalysis techniques applicable to symmetric designs are

also categorised and explained in this chapter.

7



INTRODUCTION

Chapter 3 presents a new technique for the truncated differential analysis of

block ciphers. This analysis benefits from differential distributions of the state

symbols. We introduce our proposed method and show its application on the

lightweight block cipher LBlock. The key-recovery attacks are applied on LBlock

using the truncated differential method and extended by considering the key

schedule. The attack is implemented on a small version of LBlock to verify the

theoretical results.

Chapter 4 includes two parts. In the first part, the rebound attack on the gen-

eralised Feistel-SP networks is described and improved. The presented analysis

can be used to generate known-key and chosen-key distinguishers on block ciphers

under Feistel-SP designs. Moreover, the main application of this method is on the

hashing modes of the Feistel-SP ciphers, or the Feistel-SP hash functions. In the

second part, the Camellia block cipher is analysed using the proposed methods.

The analysis is optimised to attack the Camellia block cipher. The rebound at-

tack on Camellia is implemented to confirm the results. Finally, collision attacks

and distinguishers are also found for the hashing modes of Camellia.

Chapter 5 discusses rebound attacks on the Grøstl hash function and its pre-

decessor Grøstl-0. Grøstl was a dedicated hash function submitted to the SHA-3

competition. The SHA-3 competition was held by NIST to find a new stan-

dard secure hash algorithm. The competition was active during the early years

of this thesis. The preimage security of Grøstl is examined in this chapter and

security bounds are proven for the compression function and the hash function

against multi-target preimage attacks. Then multi-target preimage attacks and

preimages are found for chosen sets of output values for the Grøstl-0 compression

function.
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2
Block Ciphers and Hash Functions

The main topic of the thesis is a study of security of both block ciphers and

hash functions. This chapter introduces the background information necessary to

understand the results obtained. In particular, we introduce different approaches

in the design of these primitive as well as their security requirements. Various

symmetric cryptanalysis methods are also reviewed in this chapter.

2.1 Block Ciphers

Block ciphers are symmetric cryptographic primitives, which are used to provide

confidentiality of information [75]. A secure channel is created between two or

more parties by sharing a secret key. Encryption and decryption are applied on

the plaintext and ciphertext using the same secret key. Having no knowledge

about the secret key, the adversary is not able to obtain the plaintext from the

ciphertext. A block cipher is defined formally as follows:

Definition 2.1. An n-bit block cipher is a mapping E : Fn2 ×Fk2 → Fn2 with block

9
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size n and key size k, such that for each K ∈ Fk2, EK is an invertible mapping

(called the encryption function) from Fn2 to Fn2 . The inverse mapping E−1K is the

decryption function, such that for each x ∈ Fn2 , E−1K (EK(x)) = x.

In 1949, Shannon [96] identified confusion and diffusion as two properties of

a secure cipher operation. Confusion is associated with the dependency of the

ciphertext on the entire secret key bits. So changing even one bit of the key

should change the ciphertext. Diffusion refers to making a complex relationship

between the plaintext and the ciphertext. More precisely, a slight change in

either key or plaintext should change the ciphertext significantly. For example,

flipping one bit of the key or plaintext should result in flipping half the ciphertext

bits on average. This property is referred to as the avalanche effect [32]. If a

block cipher (or even a hash function) does not exhibit a substantial avalanche

effect, it is easier to break the algorithm due to the poor randomisation. In block

ciphers, the designers improve the avalanche effect by providing confusion and

diffusion. Confusion and diffusion are typically implemented by a series of non-

linear transformations (such as substitutions and modular addition), and linear

mappings (such as permutations), respectively.

The modern block ciphers are mostly iterated block ciphers in which there is

a single transformation called the round function. The round function is iterated

many times. For instance, the well-known DES algorithm [34] iterates the round

function 16 times. Usually every round uses a different sub-key derived from the

secret key. To make the cipher invertible, the round function is a bijection on the

round input for each value of the sub-key. Assume an n-bit iterated block cipher

that iterates a round function f for r rounds. The round sub-keys K1, K2, ..., Kr

are generated from the original secret key through the key scheduling process.

Figure 2.1 shows the structure of this iterated block cipher.

There are many different approaches in designing iterated cryptographic al-

gorithms. The following three are the most prominent: substitution-permutation

networks (SPN) [96], Feistel networks [32], and addition-rotation-XOR (ARX)

networks [97] 1. Note that a specific design could be a mixture of the three. For

instance, a Feistel network may use an ARX round function.

1These principles are also used in the design of hash functions

10
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f

f

b b b

f

Plaintext

Ciphertext

K1

K2

Kr

Key
schedule Secret key

Figure 2.1: Iterated block cipher structure

2.1.1 Substitution-Permutation Networks

The idea of iterated block ciphers based on SPN was formulated by Shannon [96].

The round function of SPN consists of a substitution layer followed by a permu-

tation layer. The substitution layer is a non-linear stage which is generated from

small sized substitution boxes (S-boxes). A S-box substitutes a small block of

data with another block, and to be secure, must exhibit the avalanche prop-

erty. To ensure the invertibility of the round function, as well as using the inverse

algorithm for the decryption, the S-boxes must be one-to-one mappings. The per-

mutation layer is a linear transformation and as a result should at least permute

all the bits in the state block. It gets the output of the substitution layer as the

input state and by permuting them feeds them into the different S-boxes in the

next round. The round sub-key is combined with the input of each round using

some group operations, such as XOR or modular addition. Figure 2.2 presents a

sketch of a sample SPN cipher.

To explain the SPN structure, we review the round function of two well-known

block ciphers AES [26] and PRESENT [19]. The Advanced Encryption Standard

(AES) is a standard 128-bit block cipher designed based on the SPN structure.

The round function gets the 128-bit input block as a 4 × 4 matrix of bytes. In

the substitution layer, it uses an 8-bit S-box to substitute each byte. The linear

transformation creating the permutation layer consists of shifts, and a mixing
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Figure 2.2: Sample SPN cipher

operation which combines the 4 bytes in each column of the state. Then a simple

XOR addition combines the state with the round sub-key.

The other example is PRESENT, a 64-bit lightweight block cipher with a

simple SPN structure. The round function firstly combines the 64-bit input state

with the round sub-key by the XOR addition. Then 4-bit identical S-boxes are

applied on every 4 bits, to generate the substitution layer. The permutation layer

is a bitwise permutation which is performed on the whole 64 bits.

2.1.2 Feistel Networks

Feistel network (a.k.a Feistel ciphers) [32] is a symmetric structure used in the

construction of block ciphers and hash functions, named after its designer Horst

Feistel. The Feistel structure splits the block of data into two equal-sized halves.

Note, a modified structure of the Feistel cipher called Unbalanced Feistel cipher,

when the left and right-hand halves are not of equal length.

In a balanced Feistel cipher, the round function is applied to one half using

the round sub-key. Then the output of the round function is combined with the

12
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other half. Later the two halves are swapped to make the input of the next round.

Encryption and decryption in Feistel ciphers is usually identical, just the reversed

order of the round sub-keys is used for the decryption. Hence, the round function

does not have to be invertible.

f

 

 
 

Plaintext

Ciphertext

K0

f

K1

R0L0

f

Kr-1

Lr Rr

Figure 2.3: A basic Feistel cipher

Figure 2.3 shows the basic structure of a Feistel cipher. Suppose f is the

round function, r is the number of rounds, and K0, K2, ..., Kr−1 are the round

sub-keys. The input plaintext is split into two equal-sized halves, (L0, R0). Then

the following pseudo-code shows the basic operations of the cipher:

for i = 0, 1, ..., r − 1 do

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri, Ki)

end for

return (Rr, Lr)

The Data Encryption Standard (DES) [34] is a 64-bit block cipher based on the

Feistel structure. The round function in DES, mixes the sub-key with the input

state using the XOR addition, then it is followed by a substitution-permutation

13
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structure. DES was the encryption standard from 1975 until the late 90s when

it became obvious that it can be broken by an exhaustive attack. Note that this

was the result of a short 56-bit secret key. DES was also extensively analysed.

Although it was theoretically broken using differential and linear cryptanalysis,

its design is still considered as cryptographically sound.

2.1.3 Addition-Rotation-XOR Algorithms

A new design paradigm for symmetric primitives such as, block ciphers and hash

functions, uses three operations: modular addition, rotation and XOR addi-

tion [97, 106]. The crypto-systems built from these operations are called ARX

structures. The round function in an ARX cipher is a combination of these three

operations. These ciphers are very fast and cheap in hardware and software. They

are immune to side-channel attacks which exploit the run time, such as timing

attacks. However, their security against linear and differential cryptanalysis is

still an open question. Threefish is a block cipher with ARX-based round func-

tions, and is the basic structure of the Skein hash function [33]. There are similar

designs to ARX with small alterations. For example TEA [107], and its extended

versions, are ARX-like block ciphers which use shifts instead of rotations.

2.1.4 Modes of Operation

A block cipher encrypts a single fixed-size block of data. To encrypt an arbitrary-

length message by a block cipher, different techniques are used, called modes of

operation. The four most common modes are summarized bellow [75]:

• Electronic CodeBook (ECB): The variable-length message is partitioned into

separate blocks, and encrypted or decrypted separately. The last block may

be padded to get the right block size. However, ECB mode is not a secure

mode of operation. Because identical plaintext blocks always generate the

same ciphertexts under the same key. Also re-ordering the ciphertext blocks

results in re-ordered corresponding plaintexts after decryption.

• Cipher-Block Chaining (CBC): This mode uses an initialisation vector (IV ).

The first plaintext block is XORed with IV to make the input block for the

14
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encryption. Later, to encrypt the next plaintext block, ciphertext of the

previous block is used as the new initialisation vector.

• Cipher FeedBack(CFB): The previous ciphertext is encrypted and then

XORed with the plaintext block to make the current ciphertext block. An

IV is encrypted and used for the first message block encryption.

• Output FeedBack (OFB): The IV gets encrypted repeatedly and then XORed

with the plaintext block to create the ciphertext. OFB mode is similar to

CFB mode except the value XORed with the plaintext block is not coming

from the previous ciphertext. There is no need to keep the IV private,

however it must be changed by re-using the secret key.

These four modes of operations are shown in Figure 2.4. Whereas, EK is the

block cipher under the secret key K, pi and ci’s are respectively plaintext and

ciphertext blocks, and IV is the initial vector.
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Figure 2.4: Operation modes in block ciphers

2.1.5 Security Analysis

It has been always believed that the security of a block cipher relies on the secrecy

of the key. If an adversary breaks a block cipher and recovers the secret key, he
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is able to obtain the plaintext from a corresponding ciphertext, and vise versa.

Key-recovery attack is usually the result of a chosen-plaintext analysis. A block

cipher is considered unbroken if all known attacks have time/data complexity

larger than the exhaustive-key search. Nevertheless, the security against key

recovery attack is not sufficient for the security of a block cipher. Sometimes

discovering weaknesses in a cipher design might end up obtaining the whole or

part of the plaintext from a ciphertext.

Another type of cryptanalysis on block ciphers is the related-key attack [10]. In

a related-key attack, the adversary observes the cipher operation under several

different keys with known relations, and then recovers the keys. Although, a

cryptographer may never encrypt plaintexts under some related keys; in modern

protocols the keys are generated by computers which makes the related-key attack

practical. The related-key attack is described in detail in Section 2.3.7.

In addition to the key-recovery attack, an adversary might be able to analyse

a cipher against distinguishing attacks [40]. Distinguishers are one of the weakest

attacks on block ciphers, however they analyse the randomness of the ciphers. An

adversary is able to distinguish a block cipher from a random oracle by querying

both the cipher and the random oracle.

2.2 Hash Functions

A cryptographic hash function is a one-way function employed in many modern

crypto-systems [75]. Mapping arbitrary-length strings to fixed-length strings,

unkeyed hash functions are used for data integrity, digital signatures and password

protections. There is no secret key in the unkeyed hash functions, and they

generate the hash values just by taking a message as the input. Unkeyed hash

functions are of particular interest to this thesis, (from now on hash functions

will refer to unkeyed hash functions).

Definition 2.2. A hash function is a mapping H : {0, 1}∗ → {0, 1}n with n-bit

hash value, such that the inverting process is not easy to achieve.
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2.2 Hash Functions

2.2.1 Security Requirements

In the applications of cryptographic hash functions, the hash value is typically a

fingerprint of the message and guarantees its uniqueness. This is to say that each

message is assigned to a unique hash value. A hash function distributes all finite-

length inputs evenly over the hash values. One-wayness is an important property

of hash functions and indicates computational hardness of the inverse mapping.

A message that hashes to a given hash value, is called the preimage of that hash

value. After all, as a many-to-one function, mapping different messages (i.e.

collisions) to the same hash value is inevitable. However, finding collisions must

be computationally infeasible. The security requirements for a cryptographic

hash function H are listed below [75]:

• Preimage resistance: for every hash value y, it is computationally infeasible

to find a message x such that H(x) = y.

• 2nd-Preimage resistance: for every pre-specified message x, it is computa-

tionally infeasible to find another input message x′ such that x 6= x′ and

H(x) = H(x′).

• Collision resistance: it is computationally infeasible to find any two distinct

input messages x1 6= x2 which hash to the same value, H(x1) = H(x2).

When we say a calculation is computationally infeasible, it is impossible to

achieve using the current algorithms and computing resources. Note, for an n-bit

hash algorithm, the generic attacks find preimage and 2nd-preimage in 2n steps,

while they find collisions after 2n/2 steps (normally a step is equivalent to a single

evaluation of the hash function). Therefore, a hash function is secure if all the

known attacks need more computations than the generic attacks.

2.2.2 Hash Function Construction

The majority of cryptographic hash functions use an iterative process that applies

a compression function. The idea was invented independently by Merkle [77] and

Damg̊ard [30], known as Merkle-Damg̊ard construction (illustrated in Figure 2.5).
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A compression function f maps a longer fixed-size input to a shorter fixed-size

output:

f : {0, 1}l+r → {0, 1}l

The input message is padded and then divided into r-bit message blocks. The

padding process adds extra bits to make the message length a multiple of r.

Sometimes a length-block is also added to show the bit-length of the unpadded

message. The compression function generates an l-bit result, called the chaining

value, by taking an r-bit message block and the l-bit compression result of the

previous message block. An initial value (IV ) is used for the compression of the

first message block. At the end, an optional final transformation g is applied on

the last chaining value to generate the n-bit hash value. When n is equal to l, g

is often the identity mapping. Assume the input message M is partitioned into t

message blocks after the padding. The following is the formal description of the

n-bit iterated hash function H:

H(M) = g(ht)

where, h0 = IV ; hi = f(hi−1,mi), 1 < i ≤ t

IV

b b

m
1

bf
m

2
f f

mt
ht g H(M)h2h1 ht-1

Figure 2.5: Merkle-Damg̊ard construction

In the Merkle-Damg̊ard construction, if the padding includes the length-block,

a collision-resistant compression function results in a collision-resistant hash func-

tion [30, 77]. Adding such a length-block in the padding process is called Merkle-

Damg̊ard strengthening.

In 2007, sponge construction was proposed to design hash functions and

stream ciphers. The sponge construction [8] is a class of algorithms with fi-

nite internal state which produces an arbitrary length output bit stream from

an input bit stream of any length. As Figure 2.6 shows the sponge structure

consists of two phases, the absorbing phase which is followed by the squeezing
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phase. First of all, the message is padded to generate r-bit message blocks. then

the absorbing phase takes the message blocks one-by-one and after XORing with

the first r-bit of the state applies the transformation function f on the state. Af-

ter absorbing the whole message blocks, it is the squeezing phase which extracts

the first r bits of the state as the output block and applies the transformation

function f to generate the new state. The number of iterations for the squeezing

phase depends on the length of the output. Finally the output is truncated to

generate the desired output length.
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Figure 2.6: The sponge construction

Recently, the sponge construction has been used to design several hash func-

tions. From them, Keccack [9] is the winner of the SHA-3 competition and has

been selected as the standard hash function.

Moreover, hash functions can be classified into three following categories based

on their design structures:

• Block-cipher based hash functions : A block cipher is used to build the com-

pression function.

• Dedicated hash functions : A dedicated compression function is designed for

a hash function. The compression function might be based on a simplified

block cipher. MD- and SHA-family of hash functions such as, MD4 [89],
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MD5 [90], SHA-1 [81] and SHA-2 [82] are some examples of dedicated hash

functions.

• Hash functions based on intractable Problems : They are based on difficult

problems such as exponentiation, squaring, knapsack and discrete loga-

rithm [86].

2.2.3 Block-Cipher Based Hash Functions

Block ciphers can be used as the building blocks of hash functions, by serving as

the compression functions. There are many different ways to build a compression

function from a block cipher. Three most common schemes are, Matyas-Meyer-

Oseas, Davies-Meyer, and Miyaguchi-Preneel [75]. In these schemes, an n-bit

block cipher E is used to build an n-bit chaining value hi. Also a feed-forward is

mixed with the output value to make the hash function irreversible and preimage

resistant.

Figure 2.7 shows the structure of these three schemes. In the Matyas-Meyer-

Oseas and Miyaguchi-Preneel schemes, a function g is used to map the previous

chaining value to a key-sized value. This value serves as the key in the encryption

of the current block. In the Davies-Meyer scheme the message block is used as

the key to encrypt the previous chaining value.

h bg

mi

Ei-1

hi

(a) Matyas-Meyer-Oseas
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Figure 2.7: Block-cipher based compression function schemes
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2.3 Cryptanalysis Methods

Cryptanalysis refers to study of cryptographic primitives by evaluating their se-

curity properties. A cryptanalysis usually exploits the weaknesses found in a

primitive design. For example, an attacker might apply a key-recovery attack on

a block cipher by linear analysis. In this section we explain some of the common

techniques for the analysis of block ciphers and hash functions.

2.3.1 Black-Box Analysis

A black-box analysis is an attack that works independently of the crypto-algorithm

internal structure. They use high-level information about a primitive behaviour

such as, the block length and hash size in block ciphers and hash functions, re-

spectively. Black-box attacks provide upper bounds for the complexity of other

cryptanalysis techniques.

The most common black-box analysis is the brute-force search [75]. In the

case of block ciphers the adversary exhaustively tests all the possible keys on a

small number of plaintext-ciphertext pairs to obtain the right key. For example if

the key size in a block cipher is k bits, the brute-force attack (a.k.a. exhaustive-

key search) is on the order of 2k−1 on average. For measuring the complexity

we say the attack takes 2k−1 encryption calculations. Testing just one key, the

probability of picking the right key is 2−k.

The brute-force attack is also used to find preimages and 2nd-preimages for

hash functions. Given an n-bit hash function, the attacker should search 2n

messages to find the preimage of a randomly given hash value. To apply collision

attacks on hash functions, a better black-box method can be used. The method

applies the birthday paradox [101]. The adversary tests random messages and

stores their hash values until he finds two messages with the same hash value.

According to the birthday paradox, for an n-bit random hash function, the first

collision is expected to be found after
√

π
2
2n tests [101], which is approximately

2n/2 hash computations.
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2.3.2 Algebraic Analysis

An adversary launches an algebraic attack on a primitive by constructing a system

of multivariate (typically non-linear) equations from input and output states (and

the key in block ciphers). Then he recovers the unknown variables by solving the

system of equations. For example, he may perform a key-recovery attack on a

block cipher, or a preimage attack on a hash function.

The efficiency of an algebraic attack is defined by the complexity of solving

the system of equations. There are different methods to solve a system of non-

linear equations. One way is linearisation of the system, which is performed by

assigning an independent variable to each non-linear monomial. Linearisation

might fail when there are linear dependencies between polynomials. In this case

the extended versions, XL [22] (i.e. eXtended Linearisation) and XSL [23] (i.e.

eXtended Sparse Linearisation) might successfully solve the system. Another way

to solve a system of equations is based on the computation of Gröbner basis [20].

2.3.3 Linear Analysis

Linear cryptanalysis was discovered by Matsui in 1992 to analyse block ciphers

and led to the cryptanalysis of DES [69, 70, 71]. This cryptanalysis exploits linear

expressions of the input and output bits that occur with very high or very low

probability [43]. Assume X and Y are respectively the input and output vectors,

also A and B are the input and output linear masks. Let p be the probability

that the following expression holds in a selected primitive.

A.X ⊕B.Y = 0

In an ideal primitive the above expression holds with probability 1/2. The de-

viation of the probability p from the random probability 1/2 is called the linear

probability bias, i.e. ε = |p − 1/2|. The linear cryptanalysis is more successful

when using an expression with a higher bias.

High probability linear expressions are generated by considering the proper-

ties of non-linear components, such as S-boxes. When a linear approximation is

developed for a round function, it is possible to concatenate the approximations
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of consecutive rounds together and generate the linear approximation for some

number of rounds, also referred to as linear characteristic. Matsui introduced the

piling-up lemma [70], to construct linear characteristics for a crypto-algorithm.

According to the piling-up lemma, for n independent random binary variables

X1, X2, ..., Xn the probability of the linear approximation generated from con-

catenating these variables is:

P(X1 ⊕X2 ⊕ ...⊕Xn) = 1/2 + 2n−1
n∏
i=1

εi

where Xi represents a linear approximation for round i and εi is its probability

bias.

Linear analysis is used for key-recovery and distinguishing attacks on block

ciphers. The adversary uses the piling-up lemma to generate a highly biased

linear approximation involving only plaintext and the last round input bits of

an iterated block cipher. Then for sample plaintext-ciphertext pairs he guesses

the last-round partial sub-key bits and decrypts the ciphertexts through the final

round. A counter is assigned to each guessed partial sub-key and incremented

when decryption of a ciphertext holds true for the linear expression. The guessed

partial sub-key with higher bias (i.e. its counter deviates larger from half of

the samples) is assumed as the right partial sub-key. This process is continued

to recover all the key bits by decrypting more rounds or checking other linear

approximations. To examine a linear expression with bias ε, the attacker requires

a small multiple of ε−2 known plaintext-ciphertext pairs.

In the case of hash functions, linear analysis might be employed for distin-

guishing attacks. However, the usage of non-linear components in the design of

hash functions usually makes it improbable to find a highly-biased linear expres-

sion.

2.3.4 Differential Analysis

Differential analysis is a powerful technique which is used for the analysis of block

ciphers and hash functions. It basically studies the affect of input differences to

the output differences and exploits the highly probable difference propagations
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through the round function. The differential analysis was discovered in the aca-

demic society by Biham and Shamir in 1990 [11]. However, it was revealed later

that IBM and NSA had been aware of this method since 1974 [21].

The difference usually refers to the XOR difference between a pair. Assume X

and X ′ are two input vectors to a primitive and Y and Y ′ are the corresponding

outputs. The pair of differences (∆X,∆Y ) is called a differential, where ∆X =

X ⊕ X ′ and ∆Y = Y ⊕ Y ′. In an n-bit random permutation, a specific output

difference∆Y occurs from a given input difference∆X with probability 1/2n. The

differential cryptanalysis takes the advantage of differentials with much higher

probabilities than the random case. For an iterated structure, the adversary

examines a sequence of high probability differentials through the rounds, referred

to as a differential characteristic (a.k.a. differential trail) . Assume a differential

trail is a sequence of differentials for r rounds, and the differential probability for

round i is pi, the differential trail probability PD is

PD =
r∏
i=1

pi

A differential trail with a relatively higher probability than random, can be used

to distinguish a primitive from a random permutation.

Linear components, such as XOR addition or rotation, are deterministic trans-

formations. They transform a given difference to a specific output difference with

probability one. On the contrary, a non-linear component (e.g. S-box) is a

probabilistic transformation. To find the differential probabilities a Difference

Distribution Table (DDT) is constructed, which for every given input difference

represents the number of occurrences of every output difference. Probability of

an output difference occurring from a given input difference is calculated from

the DDT.

Differential cryptanalysis is used for key-recovery on block ciphers under a

chosen-plaintext attack. As shown in Figure 2.8, firstly the adversary discovers a

high probable differential trail for r − 1 rounds of a block cipher. Where ∆P is

the plaintext difference and ∆V is the input difference of the last round. Then

partially/fully decrypts the ciphertext pairs C and C ′ through the last round, and

calculates the probability of the desired output difference ∆V , for every candidate
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Figure 2.8: Differential attack on an iterated block cipher

of the final round sub-key SKr. Candidate sub-key with higher probability and

suitably close to the expected probability is taken as the right sub-key. Wrong

sub-key guesses are expected to act as a random guess and achieve the correct

difference with a very low probability [43, 54]. The number of plaintext pairs (or

data) required to mount the attack is proportional to the inverse of the differential

trail probability. If a differential trail for r − 1 rounds occurs with probability

pD, then c/pD plaintext pairs are required for the key-recovery attack (where c is

a small constant) [95].

We use differential cryptanalysis and its extended methods to analyse some

symmetric primitives in this thesis.

2.3.5 Truncated Differential Analysis

Truncated differential analysis [51] was presented by Knudsen as a generalisation

of differential analysis. Unlike the classical differential attack, a truncated differ-

ential does not follow a specific difference between two input plaintexts. Instead,

it considers partially determined differences. For example, a truncated differential
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may predict the differences of only some bits not the full block.

Knudsen explained the truncated differential analysis more clearly by an ex-

ample on a toy cipher called CipherFOUR [53]. CipherFOUR is a 16-bit iterated

SPN-cipher with r rounds. The round function includes four identical 4-bit S-

boxes followed by a bit-wise permutation as shown in Figure 2.9. The S-box

transformation is also shown in Table 2.1.

S S SS

K1

Kr

b
b

Plaintext

Ciphertext

S S SS

b

Figure 2.9: CipherFOUR encryption [53]

Table 2.1: CipherFOUR S-box transformation [53]

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 6 4 C 5 0 7 2 E 1 F 3 D 8 A 9 B

Assume the input difference to the S-box transformation is 0010, the output

difference is either 1, 2, 9 or A. So, the output difference has the form of ∗0 ∗ ∗
with the probability 1. It means we just know the difference of one bit while the

others are not clear.

Now if the input difference to the whole state is 0000 0000 0010 0000 after

one round of encryption the output difference is either 0000 0000 0010 0000,
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0000 0000 0000 0010, 0010 0000 0010 0000 or 0010 0000 0000 0010. After another

round of encryption the output difference has the form of ∗0∗∗ 0000 ∗0∗∗ ∗0∗∗
with probability 1.

Similar to the classical differential analysis, we may follow a truncated differ-

ential trail with a probability less than 1, then use the same technique to recover

the secret key.

2.3.6 Other Differential Analysis Extensions

Differential analysis is extended to several cryptanalysis methods for analysing

symmetric primitives. Bellow are some of the extended differential techniques.

Linear-Differential [58] was introduced by Langford and Hellman as a com-

bination of linear and differential analyses and works based on linear-differential

probabilities. The adversary constructs a highly probable differential trail for

part of the primitive, then generates a largely-biased linear approximation for

the following rounds respecting the output pairs.

Higher-Order Differential [51] is a higher-order variant based on differ-

ences of differences and has an algebraic order. An order d derivative of a function

at d points involves 2d function values. For example, 2nd order derivative of func-

tion f at points α and β is

∆α,βf(x) = f(x)⊕ f(x⊕ α)⊕ f(x⊕ β)⊕ f(x⊕ α⊕ β)

The conventional differential is a 1st order differential. Integral analysis (a.k.a.

square attack) [29] and boomerang attack [104] are some variants of higher order

differentials.

Impossible Differential [12, 13] exploits differentials with zero (or very

low) probabilities. The impossible differential might happen in an intermediate

state of a trail. The idea is based on finding an impossible differential which is

highly probable in a random permutation. For example the output state difference

contains a few bits with non-zero differences. In the key-recovery attacks, the

impossible differential is easily used to eliminate the wrong keys and narrows

down the candidate keys.

27



BLOCK CIPHERS AND HASH FUNCTIONS

Multiple Differential [16] considers a set of differentials. Multiple dif-

ferential is more general than truncated differential because the set of output

differences differs for various input differences. Calculation of data and time

complexity depends on the differential structures and the statistical techniques

used to rank the keys. The input difference structures are typically selected in a

way that more samples are generated from less plaintexts.

2.3.7 Related-Key Attack

In 1993, Biham introduced related-key attack to analyse block ciphers [10]. The

related-key attack violates the key scheduling of a block cipher and shows how

small details can affect security of the cipher. Biham described that the related-

key attack can be used to apply chosen-key attacks on block ciphers in which the

attacker only knows the relation between different sets of keys and does not know

the keys.

Usually, the related-key attack is used as a variation of differential analysis

which applies the related-key differential attack [49]. These attacks accept keys

and plaintexts with specific differences, then investigate the ciphertexts to recover

the key. For example, assume an iterative cipher E with r rounds. This cipher

encrypts a pair of plaintexts with difference ∆P to a pair of values with difference

∆V after application of r−1 rounds, while a pair of keys is used for the encryption

with the difference of ∆K, i.e. E∆K(∆P ) = ∆V after r − 1 rounds. Now the

adversary chooses the plaintexts with the specified difference and encrypts them

for r rounds under the pair of unknown keys, whereas they have the desired

difference. Then, she searches through the possible sub-keys of the last round

to decrypt the ciphertexts while they generate the values with the difference ∆V

after r − 1 rounds. Now she recovers the sub-keys for the last round and can

continue to recover the whole keys.

There are several security protocols which needs their underlying block cipher

to be secure against relater-key attacks. For example, 3GPP (3rd Generation

Partnership Project) is based on confidentiality and integrity schemes, f8 and

f9 [102], that both are based on KASUMI [103] block cipher. The security
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of these schemes depends on the security of KASUMI against related-key at-

tacks [47]. Moreover, McOE-X a varient of McOE, a family of almost foolproof

on-line authenticated encryption schemes, requires the security of its underlying

block cipher against related-key attacks [35].

As well as block ciphers, the related-key analysis can be used to attack hash

functions [49]. They can even be used to apply collision attacks on hash functions.

Assume a hash function is designed based on a block cipher under the Davies-

Meyer scheme. Therefore the message is considered as the key for the underlying

block cipher. In this case, applying the related-key attack on the block cipher,

succeeds to find a pair of messages which are generating the same hash value.
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3
Truncated Differential Analysis of LBlock

Recently the differential cryptanalysis based on probability distribution has at-

tracted a lot of attention in the analysis of block ciphers. These type of attacks

typically require a lower amount of data in comparison to the classical differ-

ential attacks. In this chapter we present a truncated differential analysis of

LBlock and investigate difference distributions of the state nibbles. After finding

a distribution that significantly differs from that of a random permutation, we

use log-likelihood ratio (LLR) statistical test to construct a distinguisher. We

apply the key-recovery attack by exploiting the key-schedule, and concatenating

additional rounds to the beginning and end of the distinguisher. To validate

the analysis we implement the attack on LBlock reduced to 12 rounds. Then

single key and related key attacks are applied to 18 and 21 rounds of LBlock,

respectively.

This chapter is structured as follows. Lightweight block cipher LBlock is de-

scribed in Section 3.1. Likelihood ratio test which is our distinguishing technique

is explained in Section 3.2. A framework to apply the key-recovery attack using
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the truncated differential distribution, while benefiting the key schedule proper-

ties is introduced in Section 3.3. Section 3.4 discusses the complexity of the attack

and includes the empirical results. Section 3.5 presents a single-key attack on 18

rounds as well as related-key attacks on 20 and 21 rounds of LBlock. Finally, we

conclude this chapter in Section 3.6.

3.1 Lightweight Block Cipher LBlock

With the advent of RFID technology in communication applications, traditional

block ciphers are generally not suitable for resource constrained devices. Lightweight

block ciphers (with smaller block and key size) are a new class of ciphers de-

signed for such environments. Recently there have been a lot of new lightweight

designs, examples include: HIGHT [44], PRESENT [19], PRINTcipher [50], and

LBlock [110].

3.1.1 LBlock Description

LBlock [110] is a lightweight block cipher with a block size of 64 bits and a key

size of 80 bits. The design is a 32-round balanced Feistel where the input block is

divided into two 32-bit halves, denoted the left-hand half (most significant bits)

and the right-hand half (least significant bits).

The structure of LBlock is depicted in Figure 3.1. Since all the state functions

operate on 4 bits, it is convenient to represent the state as a sequence of nibbles

using the following notation x = (x15, . . . , x1, x0).

Each round includes a key addition, where the round sub-keys are 32-bit

values denoted by SK[i]. The round function F consists of a XOR key addition,

a non-linear S-box layer, and a linear permutation layer. The S-box layer applies

8 different S-boxes (si) in parallel. The linear permutation layer simply re-orders

the 8 nibbles in the state. The round function is shown in Figure 3.2.

LBlock uses a key scheduling function to expand the 80 bit master key K into

32 round sub-keys SK[i], each being 32 bits in size. The master key K is stored in

a register, denoted by the sequence of bits k79k78k77k76 . . . k1k0. The key register

K is updated by the scheduling process and every round the 32 most significant
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Figure 3.1: LBlock Feistel structure

Figure 3.2: The round function of LBlock

bits of the current register become the round sub-key. The key scheduling process

is as follows:

SK[1] = [k79k78...k48]

for i = 1, 2, ..., 31 do

1. K ≪ 29

2. [k79k78k77k76] = s9[k79k78k77k76] and [k75k74k73k72] = s8[k75k74k73k72]

3. [k50k49k48k47k46]⊕ [i]2

4. SK[i+ 1] = [k79k78...k48]

end for

where s8 and s9 are two 4-bit S-boxes and [i]2 is the binary representation of i.
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3.1.2 Other Cryptanalyses of LBlock

Similarly to the other lightweight block ciphers, LBlock has attracted a significant

amount of cryptanalysis. For instance, related-key impossible differential attacks

were successfully applied to 21 and 22-round LBlock [63, 79]. A 16-round related-

key truncated differential is exploited to launch an attack on 22-round LBlock

[62]. In [92], a 15-round distinguisher is proposed, allowing an integral attack

for up to 22 rounds. Zero-correlation linear cryptanalysis of 22-round LBlock is

presented in [99]. All the attacks published so far require high amount of memory

and data. A comparison between prior cyptanalyses complexities and our results

is given in Table 3.1.

Table 3.1: Attacks on LBlock

Type of Attack rounds Data Time Reference

Related-key impossible differential 22 268 270 [79]

Related-key differential 22 264.1 267 [62]

Integral 18 262 + 220 memory 236 [110]

Integral 22 261 + 263 memory 270 [92]

Zero-correlation linear 22 260 + 264 memory 279 [99]

Truncated differential 18 223 268.38 Section 3.5.1

Related-key truncated differential 20 227 274.33 Section 3.5.2

Related-key truncated differential 21 230 277.89 Section 3.5.2

3.2 Likelihood Ratio Test

Likelihood ratio test is a statistical test used to compare two distributions and

determines the one which is a special case of the other one. This test also ex-

amine empirical data and decides which distribution the data is following. In

likelihood theory, Kullback-Leibler divergence (or relative entropy) is a measure

that quantifies the difference between two distributions [6, 24].

Definition 3.1. Let P = (p0, p1, . . . , pn) and Q = (q0, q1, . . . , qn) denote two

discrete probability distributions of random variables X and Y , respectively. The
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Kullback-Leibler (KL) divergence between P and Q is defined as follows:

D(P ||Q) =
n∑
i=0

pi · ln(
pi
qi

) (3.1)

As in [24], we use the convention that 0 · log 0
q

= 0 and p · log p
0

=∞.

In the binary hypothesis testing problem, one is given a set of empirical data

x = (x0, x1, . . . , xn) taken from N samples. The empirical probability distribution

is equal to P̂ = (p̂0, p̂1, . . . , p̂n) = 1/N ·(x0, x1, . . . , xn). According to the Neyman-

Pearson Lemma, the log-likelihood ratio is the optimal method for determining

if the sample data belongs to one of two different probability distributions P or

Q [24, 42].

Definition 3.2. The log-likelihood ratio (LLR) is defined as

LLR(P̂ , P,Q) = N
n∑
i=0

p̂i · ln(
pi
qi

) (3.2)

If LLR(P̂ , P,Q) ≥ Θ (Θ is a threshold parameter), the empirical data is

accepted as a sample from the distribution P (rejecting Q as the hypothesis).

Otherwise, P is rejected in favour of Q. In our analysis, we use this to distinguish

between distributions representing the right key and the wrong keys which is

explained in later sections.

3.3 Truncated Differential Analysis

The classical differential analysis typically follows a differential trail and compute

probabilities for known expected differences. In 2012, Albrecht and Leander

explained an all-in-one approach to differential analysis [1]. They find probability

distribution of the output differences (for the whole state) from one (or more)

input difference. In a similar work, multiple differential cryptanalysis using the

LLR and χ2 statistical tests are discussed in [18]. However in [1, 18] the differential

distribution is found for the whole state, which makes the attack possible only

on a cipher with a small block size.
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We follow almost the same idea, however we find the differential distribution of

every nibble at the state. The way we find the truncated differential distribution

in the Markov model, makes our attack possible on the ciphers with larger states

than [1, 18].

The analysis is structured in to the following three phases (Figure 3.3 depicts

the range of each phase):

1. Standard Differential (SD) phase starts from state S0 with a known input

difference α, and follows a standard differential trail through SD-rounds up

to state S1 with specific output difference β.

2. Truncated Differential Distribution (TDD) phase calculates the truncated

differential distribution from input β through TDD-rounds to state S2 with

output Γ . The output Γ here is not a specific difference but a probability

distribution over all possible differences.

3. Partial-Key Recovery (PKR) phase involves partial decryption of the ci-

phertext to determine S2 from the observed output state S3. The difference

in state S2 is measured and compared against the expected distribution Γ .

SDS0 TDDS1 PKRS2 S3

Figure 3.3: The attack model

3.3.1 Standard Differential Phase

The Standard Differential (SD) phase involves finding a high probability differen-

tial characteristic through some number of rounds. The XOR-difference between

two states x and x′ is denoted by α = (α15 . . . α1α0) = (x15⊕x′15, . . . , x1⊕x′1, x0⊕
x′0). Note that αi represents exact difference of 4-bits, hence αi ∈ {0, . . . , 15}.
The differential trail maps a specific input difference α to a specific output dif-

ference β with probability denoted PSD(α→ β).

For example, let the input difference be α = (10000000 00002000). A possible

output difference, after one round, is β = (00000000 10000000). The probability

of this differential is 2−2.
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SD : (10000000 00002000)→ (00000000 10000000) (3.3)

The probability is computed under the assumption that the input values of

S-box s7 are not known. If the inputs to the S-box are known, we can detect (with

probability 1) whether the differential trail is followed. This requires knowledge of

nibble 7 of SK[0]. Conversely, given the values of the state, we can find solutions

to the sub-key SK[0]7 such that the differential trail is followed.

3.3.2 Truncated Differential Distribution Phase

In the classical differential analysis, we determine the probability that the round

function outputs a specific difference given a specific input difference. In this

phase, we model the difference distribution of all possible output differences for

every nibble based on a chosen distribution of input differences. This general-

isation is the fundamental idea behind truncated differential analysis [51] and

all-in-one differential analysis [1].

For nibble i, we denote Ai as the probability distribution over all differential

values of αi. It follows that A = (A . . .AA) can be represented by a two

dimensional matrix with probability distribution of differences for all nibbles.

For example, the following difference distribution matrix states that nibble 0

has difference 15 (with probability 1) and all other nibbles have zero difference

(with probability 1).

A =

(
A . . . A A

)
=



1 1 · · · 1 0

0 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 0

0 0 · · · 0 1


By representing the round update function as a differential transformation

matrix M , we can determine the output differential distribution B from the
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input distribution A. That is, B = M ×A. Assuming a Markov model, we can

determine the output differential distribution after n rounds using B = Mn×A.

A Markov cipher is an iterated cipher when the probability distribution of

round r only depends on the probability distribution of round r − 1. Moreover,

all round keys are independent and uniformly random. It has been proven in [54]

(Theorem 2) that a Feistel cipher with independent round sub-keys is Markov.

Although round sub-keys are not independent in LBlock, our experiments show

that Markov model gives an accurate estimate of probability distribution when

the right-hand half and left-hand half differences are independent. For a limited

number of rounds, the dependencies do not cause an issue and this method serves

as a reasonable model. We calculated differential distributions for at most 10

rounds of LBlock and all distributions have been empirically verified.

Computing Truncated Differential Distribution

The round function consists of two components that affect the probability dis-

tribution, i.e. S-box transformation and XOR addition. Proposition 3.1, de-

scribes probability of differences for each nibble after an S-box transformation,

and Proposition 3.2 shows how XOR addition affects the difference probability

distribution.

Proposition 3.1. For an S-box sn : F4
2 → F4

2 and input difference probability

distribution x = (x0x1 . . . x15), where xi is the probability of difference i for nibble

n, the output difference probability yi after S-box transformation sn is calculated

as

yi =
15∑
j=0

xj ·P(sn(j) = i) (3.4)

Proof. Assume the difference J occurs with probability xJ and 4-bit S-box sn

transfers difference J to difference I with probability P(sn(J) = I). Hence,

difference I happens from input difference J with probability xJ ·P(sn(J) = I).

However, difference I might occur from s-box transformation of the other 15

input differences; therefore output difference I happens with probability yI as

yI =
∑15

j=0 x
j ·P(sn(j) = I). The same way is used to calculate probability yi for

every output difference 0 ≤ i ≤ 15.
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Proposition 3.2. For two input difference probabilities x = (x0x1 . . . x15) and

y = (y0y1 . . . y15), the output XOR-difference probability zi is

zi =
15∑
j=0

xj · yi⊕j (3.5)

Proof. Assume nibble Z is the XOR-addition of nibbles X and Y . Difference J at

nibble X happens with probability xJ ; while, in nibble Y , difference K = I ⊕ J
happens with probability yK . By XORing differences J and K, nibble Z has

difference I with probability zI = xJ · yI⊕J . However, difference I might be the

result of XORing other 15 differences 0 ≤ j ≤ 15 of nibble X with difference k =

I⊕j of nibble Y . Thus, difference I happens with probability zI =
∑15

j=0 x
j ·yI⊕j.

For every difference 0 ≤ i ≤ 15 of nibble Z probability zi is calculated with the

same way.

These propositions allow us to construct the differential transformation matrix

for the round function; and, given an input distribution, obtain the output trun-

cated differential distribution after a number of rounds. Thus, the TDD phase

maps a difference vector β to a distribution matrix Γ . We denote the probability

distribution matrix PTDD(β → Γ ). For example, let the input difference vector

be β = (00000000 10000000):

TDD : (00000000 10000000)→ (Γ15Γ14Γ13Γ12Γ11Γ10Γ9Γ8 Γ7Γ6Γ5Γ4Γ3Γ2Γ1Γ0)

Table 3.2 lists the output truncated differential distribution PTDD(β → Γ ) for

the right-hand half nibbles after 8 rounds of LBlock, calculated using Propositions

3.1 and 3.2.

The analysis is more effective if a differential distribution profile is chosen

in a way that is easiest to distinguish. More specifically, a distribution that

is significantly different from uniformly random. As described in Section 3.2,

KL-divergence is the most accurate way to measure the distance between two

distributions [6]. The last row in Table 3.2 lists the KL-divergence between cal-

culated probability distribution and uniform distribution for every nibble. Here,

U denotes the uniform probability distribution with equal probability PU = 1/16.

Note, from Table 3.2, there are impossible differentials in nibbles 0, 1, 4, 5 and
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Table 3.2: Example truncated differential distribution after 8 rounds.

Diff\Nibble Γ7 Γ6 Γ5 Γ4 Γ3 Γ2 Γ1 Γ0

0 0.0610 0.0654 0.0000 0.0000 0.0667 0.0667 0.0000 0.0000

1 0.0000 0.0592 0.0312 0.0693 0.0625 0.0625 0.0625 0.0645

2 0.0649 0.0620 0.1562 0.0732 0.0626 0.0624 0.0312 0.0635

3 0.0649 0.0619 0.0312 0.0684 0.0623 0.0626 0.0938 0.0649

4 0.0610 0.0608 0.0469 0.0698 0.0620 0.0625 0.0625 0.0654

5 0.0732 0.0646 0.0469 0.0610 0.0626 0.0625 0.0625 0.0664

6 0.0703 0.0657 0.0781 0.0649 0.0622 0.0624 0.1250 0.0654

7 0.0684 0.0604 0.1094 0.0698 0.0625 0.0625 0.0625 0.0688

8 0.0703 0.0588 0.0625 0.0635 0.0617 0.0646 0.0625 0.0649

9 0.0679 0.0663 0.0625 0.0649 0.0618 0.0583 0.0625 0.0757

A 0.0659 0.0627 0.0469 0.0635 0.0623 0.0604 0.0312 0.0659

B 0.0649 0.0626 0.0469 0.0728 0.0619 0.0626 0.0312 0.0684

C 0.0615 0.0615 0.0781 0.0659 0.0621 0.0646 0.0625 0.0649

D 0.0679 0.0634 0.1094 0.0654 0.0619 0.0583 0.0625 0.0728

E 0.0693 0.0591 0.0625 0.0620 0.0626 0.0645 0.1250 0.0630

F 0.0684 0.0656 0.0312 0.0654 0.0623 0.0626 0.0625 0.0654

D(P ||U) 6.59e-2 7.37e-4 1.81e-1 6.59e-2 1.55e-4 5.6e-4 1.46e-1 6.57e-2

7. This is due to the short number of rounds used in the sample and does not

generally occur in longer trails.

3.3.3 Partial Key Recovery Phase

Similar to the classical differential attack, additional rounds are added to the

end of the truncated differential distinguisher. In this analysis, the method for

distinguishing is based on the distance between a differential distribution P and

the uniform distribution U . From the truncated differential distribution table, we

choose one (or more) nibbles with significantly large KL-divergence. This nibble

we term the target nibble and set P equal to the probability distribution for this

nibble. By guessing a subset of the round keys and decrypting ciphertext pairs

through the final rounds, we observe the target nibble differential distribution.

For LBlock, it is not required that the entire sub-key be known to determine

nibbles from previous rounds. For example, we choose nibble 3 (of the right-hand
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half) as the target nibble. Table 3.3 lists the nibbles required to decrypt 3 rounds

and determine nibble 3. The X signifies nibbles that must be calculated in order

to decrypt back to the target nibble. The key bits are determined relative to the

key register at round n− 3.

Table 3.3: Nibbles required to be known for decrypting 3 rounds.

Round Left half nibbles Right half nibbles sub-key nibbles Key bits

n-3 - - - - - - - - - - - - X - - - X - - - - - - - 79-78-77-76
n-2 - - X - - - - - X - - - - - - - - - - - X - - - 34-33-32-31
n-1 - - - - - - X - - - X - X - - - X X - - - - - - 21-20-19-18

17-16-15-14
n X - X - - - - - X X - - - - X - - - - - - - - -

For every partial key guess, we decrypt N ciphertext pairs and count the

frequency of each difference in the target nibble. The difference frequency is

stored in an array of 16 counters c = (c0c1 . . . c15). The corresponding probability

distribution P̂ for this sample is P̂ = 1/N · c which allows us to calculate the

LLR for each key guess. The LLR is used to determine if the observed data most

likely belongs to distribution P or U . If P is chosen in favour of U , the guessed

key is considered a potential solution for the real key. Otherwise, it is discarded.

3.3.4 Combining The Three Phases

We merge the standard differential trail of SD with the truncated differential

distribution of TDD to achieve a differential profile over an extended number of

rounds. Then PKR rounds are added to the end of the trail for the key-recovery

attack. From the key schedule, there is a strong dependency between the sub-key

bits guessed in PKR and the sub-key bits affecting SD. This changes the success

probability PSD. Note there are two S-boxes s8 and s9 used in the key scheduling.

These S-boxes introduce nonlinear relationships between sub-keys, meaning the

PKR key bits are not always directly obtained from SD key bits. We select the SD

and PKR phases in a way such that there are as many common bits as possible

for the key bits used in the PKR and SD phases.

After combining SD and TDD phases, the expected output difference distri-

bution of TDD is updated due to the success probability of each possible SD
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differential output. The probability distribution of differences resulting from the

input difference α can be computed as follows:

PTDD(α→ Γ ) =
∑
i

PSD(α→ βi) ·PTDD(βi → Γ )

= PSD(α→ βj) ·PTDD(βj → Γ )

+
∑
i 6=j

PSD(α→ βi) ·PTDD(βi → Γ ),

(3.6)

where βi are all possible output difference vectors of the SD phase. In Equation

(3.6), βj is the input difference for the truncated differential distribution TDD

that has the most distinguishable profile (highest KL-divergence). Usually, βj

is the difference with the lowest hamming weight. Also, in practice, all other βi

lead to probability distributions that are much closer to uniform (in comparison

to βj). That is,

∑
i 6=j

PSD(α→ βi) ·PTDD(βi → Γ ) ≈ (1−PSD(α→ βj)) ·PU (3.7)

From (3.6) and (3.7), the output probability distribution is approximated by

PTDD(α→ Γ ) ≈ PSD(α→ βj) ·PTDD(βj → Γ ) + (1−PSD(α→ βj)) ·PU

(3.8)

3.3.5 12-Round Example Attack

This section gives details about how the analysis is applied to a 12-round version

of LBlock. We construct a 9-round differential distinguisher by combining the

1-round SD(α → β) (from Equation(3.3)) with 8-round TDD(β → Γ ) (from

Section 3.3.2). Three additional rounds are added for the PKR phase (described

in Section 3.3.3). The entire attack structure is depicted in Figure 3.4.

To cover the general application of the analysis, we choose nibble 3 as the

target nibble for the PKR phase, which does not benefit from the impossible dif-
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3.3 Truncated Differential Analysis

(a) SD phase (b) TDD phase (c) PKR phase

Figure 3.4: 3 phases of the 12-round example attack

ferential. The sub-keys required to decrypt the ciphertext in the PKR phase (i.e.

the underlined sub-key nibbles in Figure 3.4c) include SK[11]7, SK[11]6, SK[10]3

and SK[9]7, a total of 16 unique bits. The sub-key used in SD phase is SK[0]7.

From the key schedule we get

SK[0]7 = ((s−19 (SK[11]7) & 0x7)� 1) | (s−18 (SK[11]6) & 0x1).

Table 3.4 depicts the input key bits to the key scheduling S-boxes s9 and s8 for 12

rounds. The key bits are numbered relative to the round 0 master key register.

It is clear in the table, that key bits in SK[0]7, are guessed in the last round.

Although these bits are in the two most significant nibbles of the key register and

should pass through the inverse S-boxes, their value is known and so the input

bits to the S-boxes. Hence, for a given guess in PKR phase, we determine the

sub-key used in the SD phase with no extra effort.

For a chosen input plaintext pair (with difference α), we say it is a right-

pair if it follows the differential SD. Otherwise, the pair is termed a wrong-pair.

Note that the attacker does not have access to the internal differential states, he
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Table 3.4: Input bits to the key scheduling S-boxes.

Round S-box s9 input bits S-box s8 input bits

0 79-78-77-76 75-74-73-72
1 50-49-48-47 46-45-44-43
2 21-20-19-18 17-16-15-14
3 72-71-70-69 68-67-66-65
4 43-42-41-40 39-38-37-36
5 14-13-12-11 10- 9- 8- 7
6 65-64-63-62 61-60-59-58
7 36-35-34-33 32-31-30-29
8 7- 6- 5- 4 3- 2- 1- 0
9 58-57-56-55 54-53-52-51
10 29-28-27-26 25-24-23-22
11 0-79-78-77 76-75-74-73

only sees the ciphertext pair. For random input pairs, PSD(α → β) = 2−2, and

we expect 1/4 right-pairs on average. Henceforth, we denote the total number

of plaintext pairs Np and the number of right-pairs N . For every guess of key

bits in PKR, we determine SK[0]7 and distinguish right-pairs from wrong-pairs

(with respect to the key guess). By disregarding wrong-pairs we can increase

the probability of the SD phase such that PSD(α → β) = 1. Therefore, from

Equation (3.8), PTDD(α→ Γ ) = PTDD(β → Γ ).

When SK[0]7 is incorrect (due to an incorrect guess in PKR), we mistake a

wrong-pair for a right-pair. This false-positive results in the addition of noise

to the observed probability distribution. The noise is assumed to be uniformly

random, a similar assumption to the Wrong Key Randomization Hypothesis [54]

(explained later). However, this false-positive only occurs for incorrect guesses

and does not affect the correct guess distribution.

3.4 Complexity Analysis

For every key guessed in the PKR phase, we calculate the LLR between the

observed truncated differential distribution and the expected one. If the LLR is

above some threshold (Θ), we consider the guessed key a candidate for the right
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key. The resulting list of candidate keys are checked for correctness. The attack

is successful if the right key is among the list of candidate keys, we call this the

attack success rate. In [1], the “gain” of the attack is the fraction of wrong keys

ranked above the expected rank of the right key. We extend this concept and

determine the expected number of candidate keys and the effort required to find

the right key among them.

For every input-output difference, the counter for the guessed keys after de-

crypting N pairs of ciphertexts, follows a binomial distribution [27]. So the

distribution of the the guessed key counters for all the possible output differences

is a multinomial distribution [1]. Now, assume R is a random variable for the

LLR of the right candidate. the expected count for the right candidate is defined

by E(R) in Equation (3.9). Likewise, random variable W is defined for the wrong

candidates. The value E(W ) gives the expected count of the wrong candidate,

defined in Equation (3.10).

E(R) = N
∑
i

pi ln(
pi
qi

) (3.9)

E(W ) = N
∑
i

qi ln(
pi
qi

) (3.10)

here N is the number of right-pairs, pi is the probability of getting the difference

i under the right key (which is found in the TDD phase), and qi is the probability

of getting the difference by a wrong key. According to the Wrong Key Ran-

domization Hypothesis [54], difference probabilities after decryption by a wrong

key candidate are distributed as for a random permutation. Our experiments on

LBlock confirm the hypothesis for two or more rounds of decryption.

LLR distribution of the right key is approximated by a normal distribution

with a mean of E(R) and variance of V ar(R) defined in Equation (3.11) [1].

Likewise, the average distribution of the wrong keys, is approximated by another

normal distribution with a mean of E(W ) and variance of V ar(W ), given in

Equation (3.12). Figure 3.5 shows the normal distributions of both right key and

wrong keys LLRs.
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V ar(R) = N

((∑
i

pi

(
ln(

pi
qi

)
)2)
−
(∑

i

piln(
pi
qi

)

)2
)

(3.11)

V ar(W ) = N

((∑
i

qi

(
ln(

pi
qi

)
)2)
−
(∑

i

qiln(
pi
qi

)

)2
)

(3.12)

Figure 3.5: LLR distributions of R and W

To verify the theoretical findings by experiments, we implemented the analysis

on the 12-round example of Section 3.3.5. We ran the analysis 1000 times with

N = 216 right-pairs each, and found the LLR distribution for random variables R

and W . Note in this example we guess 16 key bits in the PKR phase, therefore

there are 216 candidate keys. Fig. 3.6b shows the LLR distribution for the right

key from the experiments. Likewise, Fig. 3.6a shows the average LLR distribution

of all the wrong keys. The theoretical values describing these distributions are,

E(R) = 10.2242, E(W ) = −10.0356, V ar(R) = 20.8225, and V ar(W ) = 19.7064.

Assume random variable X follows a normal distribution N(µ, σ2), where µ

and σ2 are the mean and variance, respectively. According to the cumulative

distribution function (CDF), the probability of the random variable X falling

into the interval [x,∞) is (erf is the error function of the distribution):

P(X ≥ x) =
1

2

(
1− erf

(
x− µ
σ
√

2

))
(3.13)

If Θ represents a threshold for the LLR, P(R ≥ Θ) gives the probability that

the right key LLR is greater than the threshold. Likewise, P(W ≥ Θ) gives the
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(a) Average LLR distribution of the wrong keys

(b) LLR distribution of the right key

(c) Combined diagrams

Figure 3.6: Empirical diagrams of the LLR distributions of the 12-round example

probability of a wrong key LLR greater than the threshold Θ. Both probabilities

are calculated from Equation (3.13). Since E(R) is the mean for the normal

distribution of the expected right key, the right key LLR is higher than E(R)

with probability 1
2
. While P(W ≥ E(R)) gives the probability of a wrong key

being ranked higher than the expected right key. If there are NK key candidates

in the test, Nwk denotes the wrong keys ranked higher than the threshold. The

expected value of Nwk is
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Nwk = NK ·P(W ≥ Θ) (3.14)

The attack success rate for finding the right key is related to the threshold

Θ and N the number of right-pairs (accounting for the SD phase) used in the

attack. By adjusting Θ and N , the attacker is able to find a higher success rate

or a lower Nwk.

In the 12-round example attack, we chooseNp = 218 chosen plaintext/ciphertext

pairs and expect to get N = 216 right-pairs from the SD phase. We ran the ex-

periments 100 times for each chosen threshold. Table 3.5 shows the results for

different success rates by selecting various LLR thresholds. It is clear in Table

3.5 that the experiments confirm the theory.

Table 3.5: 12-round LBlock results for N = 216 right-pairs

Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Empirical P(R ≥ Θ) Average empirical Nwk

2.6189 0.95 0.0021 143 0.94 154.07

5.6610 0.84 0.0002 14 0.87 15.16

7.1821 0.74 5.25e-05 4 0.73 3.68

8.7032 0.63 1.21e-05 0.79 0.61 0.92

10.2242 0.5 2.51e-06 0.16 0.45 0.19

Time complexity of the attacks can be computed in three steps. First step

is complexity of finding the right pairs from known key bits in the SD phase.

Assume bc is the number of common bits between SD and PKR phases, and rSD

is the number of SD rounds where the common key bits are used to pass the

S-boxes. The time complexity of this step respecting one full r-round encryption

is,

CSD = Np 2bc
2 rSD
r

(3.15)

The second step is guessing the remaining PKR key bits (bP is the number

of PKR-key bits), decrypting the tight pairs through rPKR final rounds, and

calculating the LLR distribution for every candidate key. The second step time

complexity (respecting r rounds encryption) is

CPKR = N 2bp
2 rPKR
r

(3.16)
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The complexity of the distinguisher is the sum of the above complexities for

the first two steps. In the final step, after the partial key-recovery, each candidate

key from the previous step should be checked for correctness to do the full key-

recovery. Also the remaining key bits must be found. One naive method is to

guess the remaining unknown key bits by exhaustive search. The time complexity

of this step is

CKR = (Nwk + 1) 280−bP (3.17)

The total time complexity of the key-recovery attack respecting r rounds

encryption is the sum of the complexity of the above three steps (i.e. Equations

(3.15),(3.16) and (3.17))

C = CSD + CPKR + CKR (3.18)

In the 12-round attack, by choosing Np = 218 plaintext pairs (results in 216

right-pairs) the distinguisher complexity is

CSD + CPKR = 218 × 24 × 2

12
+ 216 × 216 × 6

12
w 231

which is about 231 12-round encryptions. However the whole key recovery at-

tack time complexity is C = 231 + 264 w 264 12-round encryptions. Here, the

exhaustive search of the remaining key bits dominates the complexity. There

are more efficient methods for recovering the remaining bits. In cases where the

initial phase is the dominant task, the exhaustive search may be used to guess

the remaining key bits, as it does not significantly increase the total complexity.

3.5 Key-Recovery Attacks on LBlock

3.5.1 Single-Key Attack on 18 Rounds

Fig. 3.7 describes the truncated differential attack on 18-round LBlock. We

divide the 18 rounds into 3 parts to apply the attack. The SD phase takes the

first 4 rounds, the TDD phase is the next 8 rounds, and the PKR phase includes

the 6 final rounds.
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(a) SD phase (b) TDD phase (c) PKR phase

Figure 3.7: Truncated differential attack on 18-round LBlock

The input state of the 4-round SD phase includes 3 nibbles with non-zero

differences in the left-hand half and 5 nibbles with non-zero differences in the

right-hand half as shown in Fig. 3.7a. Through the 4-round standard differential

almost all the differences are cancelled. So the output state has difference zero

in all the nibbles except nibble 7 of the right-hand half. The TDD phase is very

similar to that explained in the 12-round attack. It starts with a low weight state

(with only difference 4 at nibble 7). The truncated differential distribution is

calculated through 8 rounds to get the right-hand half distribution at the output

state. The highest KL-divergence belongs to nibble 5 of the right-hand half, which

is D(P ||Q) = 2.184e − 01. Therefore, nibble 5 is chosen as the target nibble for

the 6-round PKR phase. To find the LLR distribution for the target nibble, the

attacker needs to guess 52 key-bits in the PKR phase.

Observing the SD phase, if the attacker knows the values of 3 sub-key nibbles

SK[0]1, SK[0]2 and SK[0]3, he is able to find the output of the 3 active S-boxes

in the first round with no extra effort. Likewise, by knowing the values of sub-key

nibbles SK[0]6, SK[0]7, SK[1]5 and SK[1]7, he finds the output of 2 active S-

boxes in the second round. Table 3.6 shows the required sub-keys for the attack,
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Table 3.6: Required round Sub-keys for the 18-round attack .

r# Nib 7(s9) Nib 6(s8) Nib 5 Nib 4 Nib 3 Nib 2 Nib 1 Nib 0

0 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

1 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

2 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 79 78 77 76 75 74 73 72 71 70

3 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41

4 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63

6 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34

7 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5

8 7 6 5 4 3 2 1 0 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56

9 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27

10 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 79 78

11 0 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

12 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20

13 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 79 78 77 76 75 74 73 72 71

14 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42

15 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64

17 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35

also it depicts how the key scheduling S-boxes affect the common bits between

SD and PKR guessed keys. Key bits are numbered respecting the first round

key register. Overall, the attacker needs to know the values of 28 key bits in

the PKR phase. These bits are guessed in PKR phase, however going through

the key scheduling process the values of bits 73 and 72 are lost. By re-guessing

these key bits and guessing one more (bit 0), all the required 28 bit values are

revealed for the SD phase. Therefore, the probability of the SD phase is increased

to PSD = 2−4.

As mentioned in Section 3.3.4, difference probability distribution is updated

after combining the SD and TDD phases estimated by Equation (3.8). Proba-

bility distribution of the target nibble 5, is shown in Table 3.7 before and after

combining with the SD phase (PTDD and P∗TDD, respectively).

Adjusting N in Equations (3.9) and (3.10), the attacker finds N = 213 as

the value with the best trade off between success rate and complexity. The

statistical characteristic of the right key and the wrong key distributions are as

follows: E(R) = 6.44, E(W ) = −6.40, V ar(R) = 12.99, and V ar(W ) = 12.71.

51



TRUNCATED DIFFERENTIAL ANALYSIS OF LBLOCK

Table 3.7: Difference probability distribution of the target nibble

Difference 0 1 2 3 4 5 6 7

PTDD 0.000 0.156 0.031 0.093 0.046 0.046 0.015 0.109

P∗TDD 0.058 0.068 0.060 0.064 0.061 0.061 0.059 0.065

Difference 8 9 A B C D E F

PTDD 0.078 0.109 0.031 0.062 0.093 0.031 0.046 0.046

P∗TDD 0.063 0.065 0.060 0.062 0.064 0.060 0.061 0.061

Table 3.8: Analysis results of 18-round LBlock for 223 plaintext pairs

Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Time Complexity

1.043 0.93 0.018 6.62e+14 274.24

2.245 0.87 0.007 2.75e+14 272.99

3.446 0.79 0.002 1.033e+14 271.63

4.647 0.69 0.0009 3.49e+13 270.21

6.449 0.5 0.0001 5.63e+12 268.38

Table 3.8 shows the result on 18-round key-recovery attack with different chosen

thresholds. Note, the number of plaintext pairs includes those satisfying the first

two rounds of the SD phase (i.e. 210). Therefore, we need Np = 213+10 = 223 pairs

of plaintext/ciphertext to apply the attack. If the attacker chooses the threshold

Θ = E(R), the probability that he finds the right key is 50% and the attack

complexity is 268.38.

3.5.2 Related-Key Attacks on 20 and 21 Rounds

The related key truncated differential attack applies to LBlock reduced to 20

and 21 rounds. Considering the key scheduling process, when the key difference

goes through the S-boxes s8 or s9 the output difference is unknown. However,

due to the slow avalanche effect of the key schedule, it takes multiple rounds for

key differences to reach these S-boxes. Therefore, it is easy to find the truncated

difference probability distribution for all the possible key differentials. During the

attack, we test each expected key differential in parallel to determine the correct
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key differential path.

(a) 4-round SD phase (b) 10-round TDD phase (c) 6-round PKR phase

Figure 3.8: Related-key truncated differential attack on 20-round LBlock

The related key attack on 20 rounds consists of a 4-round SD phase, 10-round

TDD, and 6-round PKR phase (see Fig. 3.8). The SD phase starts with 5 non-zero

differences which are all cancelled through the 4 rounds differential trail, hence

finishing with no difference in the output state. The key register at the first round

of TDD phase has difference in just one bit (i.e. the 13th least significant bit). The

key difference does not affect the round sub-keys for two rounds. The truncated

differential distribution is calculated for the 10-round TDD phase. Nibble 5 (of the

output right-hand half) has the highest KL-divergence D(P ||Q) = 2.189429e−03

and is chosen as the target nibble. Finally, 6 final rounds are added as the PKR

phase, requiring 52 key bits be guessed to reach the target nibble. From these

key bits, two sub-key nibbles SK[0]2 and SK[0]4 are determined for the first

round of the SD phase (i.e. 8 common key bits between SD and PKR phases).

Consequently, the input values of the active S-boxes are known in the first round

and the overall probability of the SD phase increases to PSD = 2−6.

Table 3.9, shows the results for the 20-round related key attack with different

success rates. Note that the number of plaintext/ciphertext pairs includes the

amount required to follow the SD phase. Considering the LLR threshold equal to
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the expected value of the right key (E(R)), with 227 chosen plaintexts (N = 223

right-pairs), the complexity of the key recovery attack is 274.33.

Table 3.9: Related-key analysis results on reduced-round LBlock

Specification Θ P(R ≥ Θ) P(W ≥ Θ) Nwk Time Complexity

20 rounds, 1.6798 0.84 0.0183 8.28e+13 275.24

Np = 227 pairs, 3.7397 0.63 0.0029 1.31e+13 274.47

E(R) = 4.7696 4.7696 0.5 0.0010 4.51e+12 274.33

21 rounds, -0.1320 0.74 0.3355 4.83e+16 278.61

Np = 230 pairs, 0.2320 0.63 0.2240 3.23e+16 278.11

E(R) = 0.5962 0.5962 0.5 0.1373 1.98e+16 277.56

The related-key attack is extended to 21 rounds by adding one more round

to the beginning of the SD phase in the above 20-round attack. Fig. 3.9 shows

the SD phase in 21-round attack. The other phases are similar to the ones in the

20-round attack. If the attacker guesses 5 more key bits in the PKR phase (a total

of 57 bits), he finds the 3 sub-key nibbles (SK[0]1, SK[0]2 and SK[0]4) required

to know the values of the active S-boxes in the first SD round. Also, to know

the input values of 2 active S-boxes in the second round sub-key nibbles SK[0]0,

SK[0]5, SK[1]2 and SK[1]4 must be known (total number of 28 common key bits

between SD and PKR phases). By having Np = 230 chosen plaintexts, there are

N = 220 right-pairs for the key-recovery attack. The analysis results of 21 rounds

with different success rates are shown in Table 3.9. Overall, the related-key attack

on 21-round LBlock is possible with Np = 230 chosen plaintext/ciphertext pairs

and 277.56 time complexity, when the attack success rate is 50%.

3.6 Conclusion

In this chapter we presented truncated differential analysis of the lightweight block

cipher LBlock by analysing probability distribution of the truncated differences.

We used LLR statistical test to distinguish and apply key-recovery attacks. The

attack uses a truncated differential distribution that is significantly different from

a random permutation. Candidate sub-keys are guessed over several final rounds
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Figure 3.9: The SD phase of the 21-round related-key attack

and the observed differences are measured against the expected distribution. We

extend the distinguisher by concatenating additional rounds to the beginning

which follow a classical differential characteristic. By exploiting the properties

of the key schedule, we greatly increase the probabilities of differentials passing

through the beginning rounds. We verify the analysis by implementing an exam-

ple attack on 12-round LBlock and provide empirical data confirming the theory.

Finally, we describe single-key and related-key attacks on LBlock reduced to 18

and 21 rounds, respectively. Finding probability distribution of the truncated

differential, our attack can be applied on the ciphers with relatively large block

size.
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4
Rebound Attack on Feistel Networks and

Application to Camellia

Feistel Networks are widely used to construct block ciphers and hash functions.

Feistel structures can be analysed by the rebound attack as a truncated differen-

tial method. The rebound technique is an efficient way to find known-key distin-

guishers on Feistel ciphers and collision attacks on the hash functions. Known-key

distinguishers, proposed by Knudsen and Rijmen [52], detects non-ideal proper-

ties of a random instantiation of a fixed permutation, while the same properties

cannot be observed in a random permutation with the same complexity. In a

separate work, Sasaki and Yasuda present a known-key distinguisher using the

rebound attack on Feistel ciphers with SPN round functions (we call them Feistel-

SP networks) [93].

In this chapter, first we introduce the rebound attack and explain the pre-

liminary concepts. Then we improve the rebound attack on Feistel-SP networks,

where the inbound phase includes 5 rounds. Using the proposed method, we at-
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tack Camellia-128 block cipher and find a distinguisher on the cipher reduced to

11 rounds. Also in the hashing mode, we find 9-round collision and half-collision

attacks, as well as 4-sum distinguishers for 7 and 9 rounds. At the end, we verify

our results on Camellia-128 experimentally.

4.1 Preliminaries

4.1.1 The Rebound Attack

The rebound attack is a truncated differential method proposed by Mendel et.

al. [73] for the analysis of hash functions and block ciphers. They introduced the

rebound analysis on AES-like designs and used it to launch collision attacks on

Grøstl-0 [37] and Whirlpool [7] hash functions. In the rebound attack, the cipher

E is split into three sub-ciphers Ebw, Ein and Efw, where E = Efw ◦ Ein ◦ Ebw.

Then, as shown in Figure 4.1, the attack employs truncated differentials between

the sub-ciphers round transformations in an inside-out approach via the inbound

and outbound phases.

Ebw Ein Efw

inbound outboundoutbound

Figure 4.1: The rebound attack schematic

The inbound phase follows the meet-in-the-middle technique and starts with

low-weight truncated differences on the states on both sides. The truncated dif-

ferences are propagated forward and backward to meet each other in the middle.

This phase is the most expensive part of the analysis and exploits degrees of

freedom to find efficient matches. The solutions of the inbound phase are pairs of

values conforming the inbound phase truncated differential trail. The outbound

phase is the probabilistic part of the attack and extends the truncated differential

of the inbound phase sides in forward and backward directions. Solutions of the

inbound phase are used as the starting points for the outbound phase.
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Assume an AES-like SP cipher with a 16-byte state represented by a 4 × 4

matrix. The linear permutation of this cipher is a maximum distance separable

(MDS) matrix. A MDS matrix [98] is a r × r matrix when its branch number is

r + 1. So if it multiplies by a state with at least one active cell (e.g. non-zero

difference) in the input state, the total number of active cells in the input and

output truncated differences is always greater than or equal to r + 1. Figure 4.2

depicts the inbound phase where each side starts with 4 active bytes. The inbound

phase goal is to find pairs of values that satisfy its truncated differential. We

denote the truncated differential path 4 → 8 → 4. It means 4 active bytes

propagate to a full-active state with 8 non-zero differences and then converge to

4 active bytes. The inbound phase works as follows:

1. The difference distribution table (DDT) is calculated for the 8-bit S-box (or

S-boxes).

2. For all (28− 1)4 w 232 possible differences of state S0, all the corresponding

differences in state S1 are computed and stored in table T .

3. A possible difference at state S3 is chosen and computed backward through

the linear permutation to state S2. Then for each 8-byte difference in table

T the DDT is checked to see if the difference of state S2 can be generated

from either of differences in state S1, if such a differential is found the

corresponding values are considered as a solution for the inbound phase.

Permutation S-box Permutation

S0 S1 S2 S3

Figure 4.2: The inbound phase for an AES-like cipher

The AES S-box transfers a random input difference to a random output dif-

ference with probability of approximately 1/2 and has one solution. Therefore,

looking at all the possible differences of state S0, we find at least one pair of

values which satisfy the difference of state S3. So, we expect to get about 232
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solutions for the inbound phase with 232 pre-computations. Hence, on average ev-

ery solution is found with complexity of O(1) computation. Besides, there are 232

possible differences for the state S3. Thus, totally we can generate 232 · 232 = 264

solutions (pairs of values) for the inbound phase, with 232 computations and 232

states of memory.

4.1.2 Feistel-SP Networks

Figure 4.3a shows a m-round Feistel network with a substitution-permutation

round function, called the Feistel-SP network. The round function consists of

key addition, a S-box layer and then a permutation layer (see Figure 4.3b). We

use the following notations to describe the SP round function:

N : The block length of the cipher (in bits),

n: The word size in bits, equal to the size of the round function (n = N/2).

c: The size of an S-box in bits,

r: The number of S-box sequences, hence r = n/c.

S

b
b
b

K0
L0

Lm Rm

P

R0

S
1

P

K

S
m-1

P

K

(a) Feistel-SP structure (b) A SP round function

Figure 4.3: Feistel-SP Network

The components of the SP round function are typically defined as follows:
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• Key Addition: The round sub-key Ki is added to the round-function input

(usually by the XOR addition).

• S-box layer : This layer consists of r S-boxes working in parallel. Each input

value is substituted with the output value by an S-box transformation. The

S-boxes S1, S2, . . . , Sr may differ from each other. For simplicity, we assume

that the S-box is designed to resist differential and linear cryptanalysis, such

as the AES S-box [26].

• Permutation layer : The linear diffusion is introduced to output sequences

of the S-boxes. This layer mixes values and multiplies the input value by

an r × r matrix P over Fc2. We make the assumption that P is a (MDS)

matrix, so its branch number is r + 1.

Note that the assumptions on S and P are not necessary. For example, Whirlpool [7]

adopts a more biased S-box than AES, however Lamberger et. al. [56] showed

that the rebound attack for Whirlpool can work similarly to AES. Additionally,

the Camellia permutation matrix is not MDS, but we show later that our attack

can be applied on this cipher with some modifications.

4.2 Related Work

Knudsen and Rijmen proposed the known-key distinguishers on block ciphers [52].

They applied their attack on a reduced AES, as well as a 7-round Feistel cipher.

Known-key distinguishers examine the randomness of a cipher when the key is

known to the adversary. It is clear that if the adversary cannot find a distinguisher

for a block cipher when the key is known, he definitely is not able to find any

distinguisher when the key is secret. Studying known-key (or chosen-key) attacks

is also important when the cipher is used as a building block of a hash function.

In a hash function which is based on a block cipher, the key of the cipher is no

longer private and is usually a random constant.

Later many researches have analysed block ciphers against known-key attacks.

The known-key analysis of AES and Rijndael [26] with larger block size was stud-

ied in [80, 91]. The rebound attack was used to generate known-key distinguishers
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on 8-round AES in [39]. In [84], the known-key and chosen-key attacks by the

rebound technique were applied on the well-known block ciphers, Crypton [61],

SAFER++ [68] and Square [28].

4.2.1 Known-key Attacks on Feistel-SP Ciphers

The rebound attack on generalised Feistel-SP ciphers is described in [93]. This

attack is used to generate known-key distinguishers on Feistel-SP ciphers. Also

if the cipher is used to build a hash function in the Matyas-Meyer-Oseas or

Miyaguchi-Preneel modes, collision and half-collision attacks are possible by this

technique. In [93] a rebound attack is introduced firstly on Feistel-SP ciphers

with a 3-round inbound phase. Then it is extended to a 5-round inbound phase.

The basic attack is shown in Figure 4.4, where the inbound phase consists of 3

rounds and the outbound phase includes 6 rounds (3 rounds in each forward and

backward sides).
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(a) Backward outbound
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(b) 3-round inbound
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(c) Forward outbound

Figure 4.4: Basic 9-round rebound attack on Feistel-SP networks

Henceforth, we denote a pair of differences for the left and the right hand

halves as (∆L, ∆R). The following notations are used to determine the truncated

difference of a state or each half:

∆0: A non-active state where all the differences are equal to zero.

∆1: A state with only one byte with non-zero difference.

∆F: A full-active state where all the bytes have non-zero differences.

62



4.2 Related Work

The 3-round inbound phase is the first step of the basic 9-round rebound

attack, which is shown in Figure 4.4b. The inbound phase starts with the trun-

cated difference (∆1, ∆0) and after 3 rounds ends with the truncated difference

(∆0, ∆1). To find the solutions of the inbound phase, the attacker first needs to

prepare DDT of the S-boxes. Then for all 2c possible differences in state #A, the

4th round permutation is applied and all the possible output differences are stored

in table T . Now for every 2c possible differences of state #B, the 5th round in-

verse permutation is applied and the corresponding full-active state is computed.

By the help of the pre-computed DDT, a match is found between the difference

coming from the state #B on one side of the S-boxes in round 5, and the table T

entries on the other side. At this stage, the differences and their corresponding

pairs of values are found for the bold red lines in Figure 4.4b. However, to make

sure of having difference ∆0 on the sides of the inbound phase, the difference

at position #C must be equal to the difference at #A. Therefore, the attacker

checks if for every difference at #A, the possible pair of values results in the same

difference at state #C through the broken blue lines in Figure 4.4b. After this

second match, the attacher expects to find a solution for the inbound phase with

r.22c computations and r.22c memory for table T . The outbound phase of the

9-round attack, propagates the solutions of the inbound phase 3 rounds forward

and 3 rounds backward with probability 1. Although, at the first glance it seems

the input and output truncated differences are fully active, which cover all the

possible input/output differences. Closer look at the second round of both back-

ward and forward outbound phases reveals that the right half input and left half

output difference has only 2c possible differences each. Because they both are the

result of a permutation layer applied on a state with difference ∆1, so after the

permutation there are only 2c possible differences for each.

The 9-round rebound attack can be used to generate a known-key distinguisher

when 2c+n input differentials with the form of (P (∆1), ∆F) generate 2c+n output

differentials with the form of (P (∆1), ∆F). The rebound attack works better

than the generic birthday attack if the complexity of the attack is less than the

generic one, which is r.22c < 2(n−c)/2. Therefore the following condition has to be

met:

c <
n− 2 log2 r

5
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The 3-round inbound phase is extended to 5 rounds in [93], depicted in

Figure 4.5. Similar to the 3-round inbound phase, the attack starts with pre-

computing DDTs for the S-boxes. Then for all the possible differences of state

#A, it finds differences at #B that they match at the S-box layer of round 2

(the bold lines in the figure). Difference of state #A′ is equal to #A, so exactly

the same calculation is used to find a match over the S-box layer at round 4.

Then the value of state #C is found from the values and differences found for

#A and #A′, indicated by the broken lines in the figure. Finally the consistency

of differences at state #A and #A′ is checked and the solutions of the inbound

phase are found. Similar to the 3-round inbound phase, the complexity of the

5-round inbound phase is r.22c time and r.22c memory. In Section 4.3 we improve

the 5-round inbound phase and find a solution for the inbound phase with 2c time

complexity (square root of the complexity from [93]).
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Figure 4.5: The 5-round inbound phase
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4.3 Improved Rebound Attack on Feistel-SP Net-

works

In this section, we propose a new 5-round inbound phase where every solution

is found with 2c computations. The 5-round inbound phase is divided into four

following sub-phases:

1. First inbound phase: A pair of values is obtained which follows the differ-

ential path of the 1st and 2nd rounds. Overall, 2c solutions are generated.

2. Second inbound phase: Similar to the first inbound phase, a pair of values

is computed for the 4th and 5th inbound rounds.

3. Merging phase: All possible solutions of the first and second inbound phases

are combined in the 3rd inbound round, in a way that they cancel each other

differences at the 3rd round.

4. Validity check phase: Regarding the active byte, the difference of the last

round is checked.

The core of the improvement is the merging phase, in which we combine the

results of the first and second inbound phases so that the n-bit match condition

at the 3rd round is always satisfied. More precisely, the merging phase first

chooses a solution of the 1st inbound phase from 2c candidates. Then, it only

chooses solutions of the second inbound phase which satisfy the n-bit condition

(i.e. result in difference zero after the XOR addition). Finally, the validity check

at the 5th inbound round investigates the condition on the difference of the active

byte. The success probability of the validity check is 2−c. By iterating this phase

for 2c candidates of the first inbound phase, we will succeed with a negligible cost.

4.3.1 The Attack Procedure

For simplicity, we first assume that all S-boxes are identical and the parameters

r and c satisfy c ≥ r + 1. The S-box is also assumed to be designed to resist the

differential cryptanalysis like the ones in AES or Camellia. The attack procedure

is illustrated in Figure 4.6. The first inbound phase is denoted by the bold red
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lines, and the second inbound phase by blue. Also, the merging and the validity

check phases are depicted by the broken green and yellow lines, respectively.

Instead of the permutation P in the 3rd round, we apply an inverse permutation

P−1 to the input of the right hand half, and a permutation P to the output of

the right hand half in round 3. It is clear this change does not affect the result

of the Feistel network.
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Figure 4.6: Improved 5-round inbound phase

The attack procedure is explained bellow (the pseudo-code is given in Algo-

rithm 1):

First inbound phase (Steps 1 to 11 in Algorithm 1): Choose a difference at

state #A (i.e. ∆#A), and compute P (∆#A), which is an input to the S-box

layer in the 2nd inbound round. Then, choose all the possible differences at

#B (i.e. ∆#B) such that the differential propagation through the active

S-box in the first inbound round have solutions, it means ∃x : S(x) ⊕
S(x ⊕∆#B) = ∆#A. The number of such ∆#Bs is approximately 2c−1.

For 2c−1 choices of ∆#B, compute P−1(∆#B), which is an output of the
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S-box layer in the 2nd round. Check if all the S-boxes in the 2nd round

have solutions. If the check succeeds, for each of the possible solutions,

compute the corresponding pairs of values at state #B (by applying P

on the solutions of the 2nd round S-boxes ) and store them in table T1.

Moreover, compute the corresponding pairs of values at state #E at the

right hand half input of the 3rd round (by applying the 3rd round sub-key

addition and then P−1), and store them in table T1, as well. Table T1 is

expected to have 2c−1 entries.

Second inbound phase (Steps 12 to 13 in Algorithm 1): Set the same differ-

ence at state #A′ as the difference at #A (i.e. ∆#A′ ← ∆#A). Similar

to the first inbound phase, compute 2c−1 solutions of the last two inbound

rounds and store the resulting pairs of values at #E in table T2.

Merging phase (Steps 14 to 18 in Algorithm 1): For 2c−1 solutions of the first

two inbound rounds stored in T1 and all solutions of the active S-box in the

1st round at state #D (2 solutions on average), do as follows. Regarding

only the active byte, compute the value up to the state #C. If the computed

value at state #E matches one of the entries in T2, fix the solution for the

last two rounds to this value. Go to the validity check with this value.

Validity check phase (Steps 19 to 21 in Algorithm 1): Regarding only the

active byte, compute the value up to the output of the active S-box in the

5th round (#F ). If the computed difference matches ∆#A′, the pair of

values is a valid solution. Otherwise, go back to the merging phase.

4.3.2 Complexity Evaluation

Complexity of the first inbound phase is 2c 1-round computations and 2c−1 states

of memory (for table T1). There are 2c−1 pairs of values for state #B in the

second round, for every one of them 2 solutions are obtained for the active S-box

in the first inbound round. Overall, the first inbound phase produces 2c solutions

with the cost of 2c computations. The evaluation for the second inbound phase

is exactly the same. The merging phase repeats for 2c trials (from table T1).
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Algorithm 1 Improved 5-Round inbound phase

Require: DDTs for all the S-boxes
Ensure: A pair of values satisfying the truncated differential path of the inbound

phase
1: Choose a difference at #A (i.e. ∆#A), and compute P (∆#A).
2: Choose all differences at #B (i.e. ∆#Bs) such that ∃x : S(x)⊕S(x⊕∆#B) =
∆#A. {The number of such ∆#B is approximately 2c−1}.

3: for 2c−1 choices of ∆#B do
4: Compute P−1(∆#B).
5: if all the S-boxes in the 2nd round have solutions then
6: for each possible pair of solution X and X ′ (before the S-box) do
7: Store the corresponding pair of values at #B, i.e.

< P (S(X)), P (S(X ′)) >, in table T1[#B]
8: Store the corresponding pair of values at #E, i.e.

< P−1(X ⊕Ki+1), P
−1(X ′⊕Ki+1) >, in table T1[#E] {T1 is expected

to have 2c−1 entries}.
9: end for

10: end if
11: end for
12: Set ∆#A′ ← ∆#A.
13: Compute 2c−1 solutions of the last two inbound rounds (similar to the first

two inbound rounds) and store them in T2[#B] and their corresponding pairs
of values at state #E in table T2[#E].

14: for each < X,X ′ > in T1[#E] do
15: for each solution of the active S-box at #D {2 solutions on average} do
16: Compute the pair of values < Y, Y ′ > at state #C, only for the active

byte {with the help of the corresponding pair of values in T1[#B]}.
17: if < X ⊕ Y,X ′ ⊕ Y ′ > exists in T2[#E] then
18: Fix the solution for the last two rounds to this value
19: Compute the pair of values up to #F , the output of the active S-box

in the 5th round {using the corresponding pair of values in T2[#B]}.
20: if the computed difference matches ∆#A′ then
21: return the pair of values as a solution of the inbound phase.
22: end if
23: end if
24: end for
25: end for

The match at state #E succeeds with probability 2−c. However, considering 2c

solutions stored in T2, we expect to find one match for each trial. Then, the results
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are computed up to state #F for the validity check. The success probability

of the validity check is 2−c. Since the merging phase is iterated 2c times, we

expect to find one solution after the validity check. The merging phase and the

validity check together require 2c 5-round computations. Finally, one solution of

the inbound phase is computed with 2c 1-round + 2c 1-round + 2c 5-round =

2c 7-round computations. Note that the DDT is pre-computed and stored in

memory before the attack. So, overall, if all the S-boxes are different the attacker

needs almost r.22c states of memory, otherwise 22c memory is enough.

At the beginning of Section 4.3.1 we assumed c ≥ r + 1. However, the attack

can also be applied to other cases with minor changes. Where c = r, in the first

inbound phase (also the second inbound phase), there are only 2c−1 = 2r−1 pairs

to examine. While the match for the 2nd round S-box is possible with probability

2−r. Therefore, there are not enough degrees of freedom to find a match for the

S-box. However, the problem can be solved by running the first inbound phase for

two different ∆#A. Hence, we can find a pair of values satisfying the first inbound

phase differential with the complexity of 2c computations (the same complexity

as before). Also, in some of the other cases where c < r, we are still able to mount

the attack. For example assume r = 2c. Here we consider every two S-boxes as a

big S-box with the size of 2c. Now the new parameters are C = 2c and R = r/2.

It means we activate two symbols rather than one everywhere we had difference

∆1 (e.g. state #A). This gives us enough degrees of freedom to find a match of

differences over the S-box layers in the first and second inbound phases. In this

case, a pair of solutions are found for the inbound phase with 2C = 22c time and

memory complexity.

4.3.3 Distinguishing Attacks

The 5-round inbound phase can be used to find known-key distinguishers on

Feistel-SP ciphers up to 11 rounds. The inbound phase includes the 5 middle

rounds while the outbound phase consists of 3 backward and forward rounds

similar to Figures 4.4a and 4.4c, respectively. The 11-round truncated differential
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path is as follows:

backward outbound:(P (∆1), ∆F)→ (∆1, P (∆1))→ (∆0, ∆1)→ (∆1, ∆0)

5-round inbound:(∆1, ∆0)→ (∆F, ∆1)→ (∆0, ∆F)

→ (∆F, ∆0)→ (∆1, ∆F)→ (∆0, ∆1)

forward outbound:(∆0, ∆1)→ (∆1, ∆0)→ (P (∆1), ∆1)→ (P (∆1), ∆F)

The solution of the inbound phase follows the outbound truncated differential

with probability 1. It allows us to find a pair of plaintexts whose difference is

(P (∆1), ∆F) and a pair of ciphertexts with the difference (P (∆1), ∆F). The

complexity of the attack depends only on the complexity of the inbound phase,

which is 2c time and 22c memory. For example, assume a 128-bit Feistel-SP cipher

with the following parameters: N = 128, n = 64, c = 8 and r = 8, where the

S-boxes are identical. Our known-key distinguisher on 11 rounds is successful

with 28 time and 216 memory.

4.3.4 Attacks on the Hashing Modes

Recall from Chapter 2 (Section 2.2.3) block ciphers can be used to build hash

functions. In this section, we examine security of the hash functions which are

built from Feistel-SP ciphers according to the Matyas-Meyer-Oseas or Miyaguchi-

Preneel schemes. Given a block cipher EK with a key K, the compression function

in the Matyas-Meyer-Oseas scheme computes hi by hi = Ehi−1
(Mi)⊕Mi for the

message Mi and the previous chaining value hi−1. While the Miyaguchi-Preneel

scheme computes hi by hi = Ehi−1
(Mi)⊕Mi⊕hi−1. When we apply the rebound

attack on the compression function, the chaining value hi−1 is assumed a fixed

constant, which is the key for the block cipher. Therefore, the differential attack

on both the Matyas-Meyer-Oseas and Miyaguchi-Preneel schemes acts similarly,

because there is no difference in the key (i.e. hi−1).
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9-round Collision Attack

To apply the collision attacks, the attacker has to repeat the inbound phase to

generate more than one starting point for the outbound phase. Then he finds a

collision by cancelling the plaintext difference with the ciphertext difference. We

use the 5-round inbound phase explained in Section 4.3.1 to mount a collision

attack on 9 rounds of a Feistel-SP based compression function. The outbound

phase consists of 2 forward and 2 backward rounds (see Figure 4.7).
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Figure 4.7: The outbound phase of the 9-round collision attack

The truncated differential path for the whole 9 rounds is as follows:

2-round backward outbound:(∆1, P (∆1))→ (∆0, ∆1)→ (∆1, ∆0)

5-round inbound:(∆1, ∆0)→ (∆F, ∆1)→ (∆0, ∆F)

→ (∆F, ∆0)→ (∆1, ∆F)→ (∆0, ∆1)

2-round forward outbound:(∆0, ∆1)→ (∆1, ∆0)→ (∆1, P (∆1))

The input truncated difference is (∆1, P (∆1)) and so the output difference.

After the feed-forward operation on the cipher (to generate the compression func-

tion) the input and the output differences are XORed. Therefore, if we find the

same differential for the input and the output, they cancel each other and the

compression function output difference will be zero. Hence, the pair of values

conforming to the input differential makes a collision for the compression func-

tion. The left-hand half differentials (i.e. ∆1) cancel each other with probability
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2−c. The right-hand half differences are fully-active differences, which both are

the result of transferring a state with the difference ∆1 through the linear trans-

formation P (i.e. P (∆1)). So for cancelling these differences it is enough to find

a match for the states with the difference ∆1 before the P transformation. The

match is found with probability 2−c. Thus, the probability of finding the same

differences for the input and the output is 2−2c. To find at least one collision the

attacker has to repeat the inbound phase 22c times, whereas the inbound phase

complexity is 2c computations (and 22c memory). Overall, the collision attack

on the 9-round compression function is successful by 23c computations and 22c

memory.

11-round Half-Collision Attack

The 11-round distinguisher, described in Section 4.3.3, can be easily used to

generate a half-collision attack on the hashing mode. The input and output

differences are of the form of (P (∆1), ∆F). The left-hand half difference is full-

active and finding a match for this half has a very low probability. However, the

right-hand half difference is the result of the linear transformation P on a state

with difference ∆1, so a match is found for this half with probability 2−c. Hence,

using the 5-round inbound phase starting points, a collision for the left-hand half

of the compression function is found with the complexity of 22c computations and

22c memory. Note that the generic attack complexity for finding half-collision is

2N/4 computations in an N-bit ideal compression function. For example, for a

compression function built from a Feistel-SP cipher with parameters, N = 128,

n = 64, c = 8 and r = 8, the generic complexity of finding a half-collision is 232.

While, our attack complexity is 216 time and 216 memory.

4-Sum Distinguishers

A k-sum is a type of zero-sum distinguisher, where the XOR addition of the k

messages’ outputs is zero. A special form of k-sum is the 4-sum distinguisher. A

4-sum distinguisher on a compression function F , finds four messages x1, x2, x3

and x4 such that F (x1)⊕ F (x2)⊕ F (x3)⊕ F (x4) = 0. According to the theory,

4-sum messages can be found by 2N/4 computations, for an N -bit algorithm.
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However, the birthday attack is the best known practical generic attack so far,

which finds 4-sums after 2N/3 computations [105]. The 4-sum distinguishers can

be used to form boomerang attacks on hash functions [48, 55]. Moreover, they are

used in different applications such as the attack on a random oracle instantiation

in [59], and the attack on a signature scheme in [105].

We explain here that the 11-round rebound attack of Section 4.3.3 can be

used to form a 4-sum distinguisher on the full state of the compression function.

In the 11-round rebound attack, each solution of the inbound phase produces a

pair of inputs (and their corresponding outputs) with the truncated difference of

(P (∆1), ∆F). Let the pair of values< x1, x2 > be a solution of the inbound phase,

and < y1, y2 > be the corresponding output pair after the feed-forward. Then,

y1 ⊕ y2 = (P (∆1), ∆F) (i.e. ((P (∆1), ∆F) ⊕ (P (∆1), ∆F) = (P (∆1), ∆F))).

After running the inbound phase one more time, another pair of values < x′1, x
′
2 >

is found, where its corresponding output pair is < y′1, y
′
2 >. The 4-sum of these

input values is the second-order difference (y1 ⊕ y2) ⊕ (y′1 ⊕ y′2), and it becomes

zero if y1⊕ y2 = y′1⊕ y′2. Since y1⊕ y2 takes 2c+n possibilities, using the birthday

paradox, the 4-sum distinguisher can be generated with 2(c+n)/2 solutions of the

inbound phase.

4.4 Application to Camellia-128

In this section, we use the proposed method on generic Feistel-SP ciphers to

attack Camellia [3]. Camellia is not a plain Feistel-SP cipher; because the P

operation is not MDS, and there are FL and whitening layers in the design. So,

the attack needs several modifications to succeed. We evaluate Camellia which

includes FL and whitening layers, with the key size of 128 bits.

Most of the analysis on Camellia do not consider FL-layer and the whitening

layer in their evaluations. For Example, the impossible differential attack is used

in [67] to attack 12 rounds of Camellia-128. From those who consider the FL-

layer, the impossible differential attacks are applied on 10 rounds of Camellia-128

in [60, 64, 65]. An impossible differential attack on Camellia-128 reduced to 11

rounds is presented in [5]. Also, the meet-in-the middle attack is used to attack 10

rounds of Camellia-128 in [66]. Table 4.1 shows the complexity of the attacks on
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Camellia-128 including our results. Note that we mostly attack Camellia on the

hashing mode. While, the other key-recovery attacks do not indicate a collision

attack on the hashing mode faster than the birthday attack.

Table 4.1: Complexity of the attacks on Camellia-128 and its hashing modes

Target Type of Attack rounds Time Reference

Impossible differential 10 2123.5 [60]

Impossible differential 10 2118 [65]

Block cipher Impossible differential 10 2120 [64]

Impossible differential 11 2123.8 [5]

Meet-in-the-middle 11 2121.5 [66]

Chosen-key distinguisher 11 216 Section 4.4.2

Hash function 4-sum 7 232 Section 4.4.3

4-sum 9 240 Section 4.4.3

Compression function Collision 9 248 Section 4.4.3

Half-collision 9 216 Section 4.4.3

4.4.1 Camellia Description

Camellia [3] is a Japanese block cipher designed by NTT and Mitsubishi Electric

Corporation, and was specified as an international standard by different organ-

isations such as, ISO/IEC [46], NESSIE [83], and CRYPTREC [25]. Camellia

supports three key sizes; 128, 192, and 256 bits, and the block size is always 128

bits. Here we only explain the version with 128-bit key, referred to as Camellia-

128.

The 128-bit master key K is used to generate eighteen 64-bit round sub-keys

k1, . . . , k18, four 64-bit whitening sub-keys kw1, . . . , kw4, and four 64-bit sub-keys

kl1, . . . , kl4 for the FL layer. The 128-bit input plaintext M splits into two

halves for the Feistel structure. Lr and Rr (0 ≤ r ≤ 18) are the 64-bit left and

right halves of the state in round r. After the input whitening operation the

input state (L0, R0) is computed as, L0‖R0 ← M ⊕ (kw1‖kw2). Also, there is

an output whitening layer which applies the XOR addition with the sub-keys

kw3‖kw4 to the output state. The round function F is iterated for 18 rounds,

74



4.4 Application to Camellia-128

while FL and FL−1 are applied to the state every 6 rounds. The block cipher

operation is formalized as follows:

L0‖R0 ←M ⊕ (kw1‖kw2)

for i = 1, 2, ..., 18 do

Lr = Rr−1 ⊕ F (Lr−1, kr)

Rr = Lr−1

if r = 6 or r = 12 then

Lr = FL(Lr, klr/3−1)

Rr = FL−1(Rr, klr/3)

end if

end for

L18‖R18 ← (L18‖R18)⊕ (kw3‖kw4)

Key Schedule

Here we give a brief description of the key schedule where the key size is 128 bits

(the details are explained in Appendix A). The key schedule takes 128-bit master

key K as the input and generates 128-bit register KA. To compute KA, K is

encrypted through 2 rounds of Camellia (the sub-keys are pre-specified constants),

then the output value is XORed with K and again encrypted 2 rounds. The 64-

bit required sub-keys are generated from K and KA. It is worth to mention that

for the known-key attacks, sub-keys are given as constants, thus the key schedule

process does not change the results. We explain later for chosen-key attacks, the

sub-keys are chosen in a way that they conform to the key-schedule.

Round Function

The round function F uses the SPN structure and consists of a sub-key addition

followed by a S-box layer and a permutation layer (as shown in Figure 4.8). 4

different S-boxes are used in the S-box layer which are designed to be resistant

against differential and linear cryptanalysis. The DDTs for these S-boxes have

the same property as the one for AES. The permutation layer applies a linear

function P on the outputs of the S-boxes. Let z1‖z2‖ · · · ‖z8 be the 64-bit output
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of the S-box layer. The output of the P function, z′1‖z′2‖ · · · ‖z′8, is computed as

follows:

z′1 = z1 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8, z′2 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z7 ⊕ z8,

z′3 = z1 ⊕ z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8, z′4 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,

z′5 = z1 ⊕ z2 ⊕ z6 ⊕ z7 ⊕ z8, z′6 = z2 ⊕ z3 ⊕ z5 ⊕ z7 ⊕ z8,

z′7 = z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8, z′8 = z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7.

Note the branch number of P is 5, so it is not a MDS transformation. Al-

though it does not satisfy the assumption that we made for Feistel-SP ciphers in

Section 4.1.2, we show later how with some changes we can apply the attack on

Camellia.

Figure 4.8: Camellia round function F [3]

FL and FL−1 Functions

The FL function takes a 64-bit value XL‖XR and a 64-bit sub-key klL‖klR as the

input and produces a 64-bit output value YL‖YR by the following computations:

YR =
(
(XL ∩ klL) ≪ 1

)
⊕XR, YL = (YR ∪ klR)⊕XL.
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where ∩, ∪, and ≪ 1 are the logical AND, OR, and a left rotation by 1 bit,

respectively.

The FL−1 function is designed such that FL−1(FL(x, k), k) = x. So if the 64-

bit value YL‖YR is the input to FL−1, the output XL‖XR is generated as follows

(with the same sub-key):

XL = (YR ∪ klR)⊕ YL, XR =
(
(XL ∩ klL) ≪ 1

)
⊕ YR.

4.4.2 The Rebound Attack on Camellia-128

In this section, the known-key and chosen-key attacks on Camellia-128 block ci-

pher are described. The chosen-key distinguisher was firstly proposed by Biryukov

and Nikolić [15], and later discussed in many other works [14, 31, 84]. These dis-

tinguishers are able to choose the key value. The attacker may choose sub-keys

separately, however the chosen sub-keys must follow the key schedule of the ci-

pher. An important application of chosen-key attacks is for the compression

functions designed based on block ciphers. Attacking a compression function, the

adversary can choose the initial value of his own choice, which corresponds to the

key in the block cipher.

First we explain how we modify the proposed technique to attack Camellia,

regarding the small branch number of P transformation and the existence of FL

and FL−1 functions.

Dealing with the Small Branch Number of P

The P function in Camellia maps an 8-byte value to another 8-byte value linearly.

To apply the rebound attack we have assumed that the Feistel-SP cipher uses

a MDS permutation. However the permutation in Camellia is not MDS. The

problem occurs when we want to find a match between two full-active states over

a S-box. More precisely, if we start with differences of form ∆1 at positions #A

and #B (in Figure 4.6), and propagate them through P and P−1 functions, we

might not get similar active positions before and after the S-box. To overcome

this problem, the position of the active bytes has to be chosen carefully. The
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following conditions on active byte positions must be met to keep the consistency

with the other part of the inbound phase differential path:

1. Active byte positions for #A and #B must be identical. So, the match of

differences can be found in Step 2 of Algorithm 1.

2. The active byte positions of P (∆#A) and P−1(∆#B) must be identical.

Thus, the match of differences can be found in Step 5 of Algorithm 1. Note

that it is not necessary to activate all the bytes in the states.

No single active byte position, satisfy the second condition. We solve the

problem by activating two bytes at states #A and #B. There are
(
8
2

)
= 28

possibilities for the position of two active bytes. Table 4.2 determines which two

positions meet the above conditions. There are eight possible pair of positions for

the active bytes. We choose positions 5th and 7th and activate these bytes instead

of just one at states #A and #B. Hereafter, we use the notation ∆10100000 to

represent that only 5th and 7th bytes have non-zero differences.

Table 4.2: How two different active byte positions satisfy the conditions

0th 1st 2nd 3rd 4th 5th 6th 7th
0th × √ × × × × ×
1st × √ × × × ×

2nd × × × × ×
3rd × × × ×
4th

√ √ √
5th

√ √
6th

√

Dealing with FL and FL−1 Functions

In a differential path FL and FL−1 are applied every 6 rounds to the state and

propagate the difference of each half state. Therefore, they cannot be inside the

inbound phase. We choose the starting round of our attacks in a way that these

functions are placed immediately after the inbound phase. The output difference

of both 3-round and 5-round inbound phase is of the form of (∆0, ∆10100000).

Where the left-hand difference ∆0 goes to the FL function and the right-hand
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different ∆10100000 goes to FL−1. It is obvious that ∆0 results in ∆0 through

FL function. Hence, we need to examine the right-hand differential propagation

through FL−1.

(a) Known-key scheme (b) Chosen-key scheme

Figure 4.9: Truncated differential propagation through FL−1

Both known-key and chosen-key distinguishers aim to keep the number of ac-

tive bytes low. Figure 4.9 shows the truncated differential propagation through

FL−1. In the known-key setting, in order to prevent the difference from propagat-

ing through 1-bit left rotation (i.e. ≪ 1 operation), we should avoid activating

the most significant bit (MSB) in each active byte. This reduces the degrees of

freedom at the time of selecting differences (we have enough freedom to proceed

in our attacks, though). Also instead we may apply the attack on a weak set

of the keys while not avoiding the difference at the MSB of the active bytes. If

in the key kliL the MSB of each byte corresponding to the active byte is 0, the

logical AND between the key and the state results in difference 0. So the 1-bit

left rotation does not propagate the difference to another byte. Such weak keys

exist with probability 2−2, and the number of weak keys is 2128−2 = 2126. This

idea helps us in the chosen key scheme, where the distinguisher chooses the key

value. Choosing one sub-key value is trivially done with complexity 1 for any

key value. This is because kli is a part of K or KA. If it is a part of K, the

distinguisher directly chooses the value. If it is a part of KA, the distinguisher

firstly chooses KA and then inverts it to K through the key schedule.
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The 11-round Distinguisher

The 5-round inbound phase (explained in Section 4.3.1) is used to generate a

chosen-key distinguisher on Camellia-128 reduced to 11 rounds. As mentioned

above, we need to activate 2 S-boxes to manage the permutation layer, which

is similar to having a big S-box of size 2c = 16 bits. Hence, one solution of the

inbound phase is obtained by 216 computations and 218 (i.e. 4×216) memory. The

5-round inbound phase can be followed by 3-round backward and 3-round forward

outbound phases with probability one. The 11-round truncated differential path

is,

3-round backward outbound:

(P (∆2), ∆F)→ (∆2, P (∆2))→ (∆0, ∆2)
FL−layer−−−−−→ (∆0, ∆2)→ (∆2, ∆0)

5-round inbound:

(∆2, ∆0)→ (∆F, ∆2)→ (∆0, ∆F)→ (∆F, ∆0)→ (∆2, ∆F)→ (∆0, ∆2)

3-round forward outbound:

(∆0, ∆2)
FL−layer−−−−−→ (∆0, ∆2)→ (∆2, ∆0)→ (P (∆2), ∆2)→ (P (∆2), ∆F)

For simplicity we use ∆2 to show the 2-byte active differences at positions 5 and 7.

In addition to the immediate FL-layer after the inbound phase, the distinguisher

should control another FL-layer in the backward outbound phase. The FL-layer

is placed after one backward outbound round. The form of the difference going

to the inverse of this layer is (∆0, ∆10100000). Therefore, we need to analyze

the differential propagation of (FL−1)−1(∆10100000), which is equivalent to

FL(∆10100000). As Figure 4.10 shows, the analysis is similar to the above

where the difference goes to FL−1.

Therefore, if the distinguisher chooses the values of 2 active bytes of the

sub-key equal to zero, the form of the output difference does not change from

∆10100000. For this reason, the distinguisher needs to control two bytes of kli,

which is a part of either K or KA. To make the both FL-layers work as expected,

the distinguisher needs to fix two bytes of kl1 and kl4 to zero. From the key
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Figure 4.10: Chosen-key truncated differential propagation through FL

schedule (see Appendix A) we know that kl1 is the left 64 bits of (KA ≪ 30),

and kl4 is the right 64 bits of (K ≪ 77). Therefore, it is necessary to control

two bytes of KA and two bytes of the master key K. So, we fix the determined

2 bytes of K to zero and set the others randomely; then check if the expected

two bytes in KA are also valued by zero. The success probability of this event

is 2−16. We implemented the chosen-key search procedure, and confirmed that

such keys are generated with approximately 216 key schedule computations. The

complexity of the 11-round chosen-key distinguisher on Camellia-128 depends

on the complexity of the inbound phase. Therefore, it is successful with 216

computations and requires 218 memory.

4.4.3 Attacks on the Camellia-128 Hashing Modes

The rebound attacks on the hashing mode rely on 3-round and 5-round inbound

phases. The 3-round inbound phase for Camellia is based on the one presented

in [93]. However, we need to activate 2 S-boxes for Camellia (instead of 1), also

we apply some optimizations to make the attack complexity 2c, while the one

proposed in [93] needs 22c computations.

Optimized 3-Round Inbound Phase

Figure 4.11 depicts the 3-round inbound phase for Camellia. Since the permuta-

tion of the Camellia round function is not MDS, we need to activate two S-boxes
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at state #A and #B and then match over the second round S-box.

Figure 4.11: 3-round inbound phase for Camellia

To find the solutions of the 3-round inbound phase, first the attacker chooses

the differences of state #A and #B in a way that they match over the S-box

layer of the 2nd round. After finding a match, the corresponding pair of values

is found for the 2nd round (displayed by the bold red line in the figure). So, the

deferences are known at states #A and #A′, but the values are not clear. Then,

the attacker searches for the value of each active byte at state #A that satisfies

the difference of the same byte position at state #A′ (the broken blue line in the

figure). The attacker finds the values of each byte one at a time. Algorithm 2

describes the attack procedure. Steps 1 to 7 finds the differences for states #A,

#A′ and #B. Then finds the values for the active bytes just for the 2nd round,

which is shown by the bold red line in the figure. Complexity of these steps are

28 computations all together. Steps 8 to 14 compute the values for byte 5 at

states #A and #A′, which requires 27 1-byte computations. The same method

is used from Step 15 to 20 to find the pair of values at byte 7, with 27 1-byte

computations. Finally a pair of values is found for the 3-round inbound phase

with 28 computations (we need about 218 state of memory to keep DDTs of all

the S-boxes). Note that once a solution is found, at Step 21, we can generate up

to 248 pairs of values with no extra effort and just by choosing different values

for the six non-active bytes.
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Algorithm 2 Optimized 3-Round inbound phase for Camellia-128

Require: DDTs for all the S-boxes
Ensure: A pair of values satisfying the truncated differential path of the inbound

phase
1: for 28 differences at #A (i.e. ∆#A){If it is a known-key attack, activating

the MSB must be avoided} do
2: Compute P (∆#A)
3: Choose a difference at #B (i.e. ∆#Bs) and compute P−1(∆#B) {If it is

a known-key attack, activating the MSB must be avoided}
4: if all the S-boxes in the 2nd round have solutions then
5: compute the corresponding pair of values for the whole state before and

after the S-box at the 2nd round {i.e. the red line in Figure 4.11}
6: end if
7: end for
8: Set ∆#A′ ← ∆#A.
9: for All 27 possible pair of values for the 5th byte at #A do

10: Compute the pair of values only for the 5th byte up to state #A′.
11: if the difference of the pair of values at byte 5 is equal to ∆#A′ then
12: Fix the pair of values for the 5th byte in the whole 3 rounds
13: end if
14: end for
{do the same for byte 7}

15: for All 27 possible pair of values for the 7th byte at #A do
16: Compute the pair of values only for the 7th byte up to state #A′.
17: if the difference of the pair of values at byte 7 is equal to ∆#A′ then
18: Fix the pair of values for the 7th byte in the whole 3 rounds
19: end if
20: end for
21: Choose random values for 6 non-active bytes at #A and #A′ {These values

can take any random values. So they are used to increase the degrees of
freedom by producing more solutions for the inbound phase, if required}

22: return the pair of values as a solution for the inbound phase

4-Sum Distinguishers

The known-key distinguisher is used to find a 4-sum distinguisher on the hash

function built based on the Camellia-128 block cipher. The hash function is

reduced to 7 rounds including the FL-layer. We use the 3-round inbound phase

as the core of the 7-round trail, while the FL-layer is placed exactly after the
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inbound phase. Two backward and two forward rounds propagate the inbound

phase differential as,

2-round backward outbound:(∆2, P (∆2))→ (∆0, ∆2)→ (∆2, ∆0)

3-round inbound:(∆2, ∆0)→ (∆F, ∆2)→ (∆2, ∆F)→ (∆0, ∆2)

2-round forward outbound:(∆0, ∆2)
FL−layer−−−−−→ (∆0, ∆4)→ (∆4, ∆0)→ (∆4, P (∆4))

As shown in Figure 4.9a FL−1 propagates the input difference ∆10100000 to

∆10101010, for simplicity we use the notation ∆4 to show this difference with

4 active bytes. In the hashing mode, the output is the result of the feed-forward,

which its difference is
(
∆2⊕∆4, P (∆2)⊕P (∆4)

)
. This difference is in the space

of (∆4, P (∆4)). We explained in Section 4.3.4 that if the output differences of

two pair of massages collide, they form a 4-sum. Hence, we should find a collision

between 8 bytes (i.e. 4 bytes to match ∆4, and 4 bytes for P (∆4)). So, the

4-sum distinguisher should generate at least 2(4+4)×8/2 = 232 pairs which are

following the differential path to find 4 messages that sum up to zero. Note that

as mentioned in Section 4.3.4, the best known attack is the birthday paradox

which finds 4-sum with 2128/3 w 242.6 computations.

The chosen-key distinguisher is also used to form a 4-sum distinguisher on

9 rounds of the compression function. The 3-round inbound phase is followed 3

rounds forward and backward while the FL-layer is applied on the output of the

inbound phase. The 9-round differential trail is as follows:

3-round backward outbound:(P (∆2), ∆F)→ (∆2, P (∆2))→ (∆0, ∆2)→ (∆2, ∆0)

3-round inbound:(∆2, ∆0)→ (∆F, ∆2)→ (∆2, ∆F)→ (∆0, ∆2)

3-round forward outbound:(∆0, ∆2)
FL−layer−−−−−→ (∆0, ∆2)

→ (∆2, ∆0)→ (P (∆2), ∆2)→ (P (∆2), ∆F)

The output difference is of the form of (P (∆2), ∆F). So, the 4-sum distinguisher

needs to generate 2(2+8)×8/2 = 240 pairs of values to succeed. This complexity is

still less than the best known birthday attack.

84



4.4 Application to Camellia-128

Collision Attacks

The 9-round chosen-key differential path that we use above to generate the 4-

sum distinguisher, can be the path for a half-collision attack on the compression

function. We just find collisions for the left-hand half of the state. The output

difference of the left-hand half is ∆2 and we want to cancel it by the feed-forward

which has the same two active bytes. The probability of having the same dif-

ference in the output and the feed-forward is 2−16. Therefore, by generating 216

solutions for the inbound phase we are able to find a collision. Note that the

inbound phase needs 218 states of memory, as well.

We can find a collision attack on the whole state using the 5-round inbound

phase (i.e. used for the 11-round chosen-key distinguisher in Section 4.4.2). We

follow the inbound phase 2 rounds backward and then 2 rounds forward as bellow,

2-round backward outbound:

(∆2, P (∆2))→ (∆0, ∆2)
FL−layer−−−−−→ (∆0, ∆2)→ (∆2, ∆0)

5-round inbound:

(∆2, ∆0)→ (∆F, ∆2)→ (∆0, ∆F)→ (∆F, ∆0)→ (∆2, ∆F)→ (∆0, ∆2)

2-round forward outbound:

(∆0, ∆2)
FL−layer−−−−−→ (∆0, ∆2)→ (∆2, ∆0)→ (∆2, P (∆2))

So, if the feed-forward cancels the output difference of the whole state, with

the difference (∆2, P (∆2)), we find a collision for 9 rounds of the compression

function. These differences cancel each other with the probability of 2−(2+2)×8 =

2−32. Thus we need to generate 232 solutions for the inbound phase to get a

collision. However, each solution of the inbound phase is generated after 216

computations and needs 218 states of memory. Therefore, overall a collision is

found after 248 computations and 218 memory.
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4.4.4 Experiments and Generated Data

To verify the attacks, we implemented the chosen-key 5-round inbound phase.

First of all, a valid key is chosen in a way that the FL-layers before and after

the inbound phase do not propagate the differences to more bytes. By the ex-

periments, we find a key with this property as expected after 216 computations

on average. Then, the chosen keys are used to find solutions of the new 5-round

inbound phase. We implemented the 5-round inbound phase as explained in Al-

gorithm 1. We find most of the solutions in less than 28 computations in our

experiments. This interesting observation indicates that the real complexity of

the attack is smaller than the theoretical estimate (i.e. 216 computations). Ta-

ble 4.3 shows some sample solutions that we have found by the experiments.

Table 4.3: Sample solutions of the 5-round inbound phase for Camellia-128 (in
hexadecimal format)

Left value L Left difference ∆L Right value R Right difference ∆R

Input BD403C2B535BBA20 3800100000000000 EC24733F6E3CF494 0000000000000000

Output 3B4A548FB81FEB7E 0000000000000000 8F2E46DA8E05B6AA 2D001C0000000000

Chosen key: 0A4294A1CC26E3FE50EB806F005C818

Input 2F76D7BDB6D247F3 C100690000000000 1687F396523AF59D 0000000000000000

Output 83C827D878A9A6B8 0000000000000000 986EFFF44190697D B2008F0000000000

Chosen key: 95E3387988B2DD056E556A03E8065052

Input F73E7FD82B7F8963 4500860000000000 2A53B729FFADF353 0000000000000000

Output 9BBC3A1527ABFD70 0000000000000000 735C0A12250854DA 9800F10000000000

Chosen key: F90C1C05F009F136FC84540210006077

Input 97BB49870767052B F7004A0000000000 B74F131532BBDA46 0000000000000000

Output 7602FC9D42E5E6D3 0000000000000000 6C98EED9141FB49E 8500190000000000

Chosen key: 791C72399212333DDCF4A6041000682F

Input EBADF14A23994789 B5002B0000000000 6BD5743F3BE0C424 0000000000000000

Output A1B653F0331053E 0000000000000000 D39426289D088187 9000020000000000

Chosen key: F2D4C755AB60712256070301C803002C
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4.5 Conclusion

In this chapter, we have first revisited the known-key attacks on generic Feistel-

SP ciphers using the rebound attack. Our main contribution is a new 5-round

inbound phase, which improves the efficiency of the attack. So, it can be employed

to attack a cipher reduced to a high number of rounds.

Then we have applied the rebound attack on the block cipher Camellia where

the key size is 128 bits. We have had to modify the technique to attack Camellia

since it is not a plain Feistel. We have managed to find a chosen-key distin-

guisher on the block cipher reduced to 11 rounds with 216 computations. Hash

functions are one of the applications of block ciphers. Hence, we have exam-

ined the security of the hash functions based on Camellia-128, which are built

in Matyas-Meyer-Oseas or Miyaguchi-Preneel modes. As a result, we have used

the optimised 3-round inbound phase to generate 4-sum distinguishers on the 7-

round hash function and the 9-round compression function, as well as mounting

a 9-round half-collision attack. The time complexity of these attacks are respec-

tively, 232, 240 and 216 computations. Moreover, we have used the proposed

5-round inbound phase to find a collision attack on 9 rounds of the compression

function with the computational complexity of 248.

We have confirmed the results for the chosen-key scheme by computer simula-

tions. Also, by implementing the presented 5-round inbound phase for Camellia-

128, we have found many solutions for this phase even with less computations

than expected.
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5
Preimage Analysis of Grøstl Hash

Function

In response to advances in cryptanalysis and new collision attacks to the MD-

family of hash functions, the US National Institute for Standards and Technol-

ogy (NIST) announced a competition aiming at choosing a new stronger crypto-

graphic hash algorithm standard in 2007. The competition called SHA-3 attracted

more than 56 submissions (which 52 have advanced to round 1). In December

2010, NIST selected five finalists. They were BLAKE [4], Grøstl [37], JH [108],

Keccak [9] and Skein [33]. From the finalists, the Keccak algorithm has emerged

as the winner and became the new SHA-3 hash algorithm.

In our cryptanalysis we consider Grøstl, one of the five finalists, and analyse

its security. Grøstl is an iterated hash function and its compression function uses

two large distinct (fixed-key) AES-like permutations. There are two versions of

this algorithm. The original algorithm is referred to as Grøstl-0 [37]. Grøstl [38]

is a tweaked version which was proposed to the final round of the competition.
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In this chapter, we first explain some related work and preliminary concepts.

Then we derive security bounds for the Grøstl compression function and the

hash function against (multi-target) preimage attacks in the ideal permutation

model and simultaneously correct the previous proof used to obtain bounds for the

preimage resistance security. Then considering the Grøstl-0 compression function

and using the previous approach to build the internal differential trail between

two almost similar looking permutations, we present chosen preimage and multi-

target preimage attacks. Consequently, we show chosen-multi-target preimage

attacks for up to 8 out of 10 rounds of the compression function and chosen-

preimage attack on the 6-round compression function.

5.1 A Short Description of Grøstl

Here we describe the 256-bit Grøstl-0 hash function [37] which is the main subject

of our analysis. Grøstl-0 takes an input message M and splits the padded message

into equal length 512-bit blocksm1...mt. The initial value IV is defined as the 512-

bit representation of size of the hash value (i.e. 256 bits) which in hexadecimal

is 00 00 . . . 01 00. Note that IV has only one non-zero byte. Each block is

processed by iterating a 512-bit compression function f . At any iteration i, the

compression function is defined by

f(hi−1,mi) = P (hi−1 ⊕mi)⊕Q(mi)⊕ hi−1 = hi (5.1)

where hi−1 and hi are the respective 512-bit input and output chaining values

of f and h0 = IV ; P and Q are 512-bit 10-round permutations. The 512-bit

output value ht of the final compression function is processed by using an output

transformation described by trunc256(P (ht) ⊕ ht) where the operation trunc256

discards all except the last 256 bits of P (ht)⊕ ht, to produce a hash value of 256

bits. An abstract view of 256-bit Grøstl-0 is illustrated in Figure 5.1. Often, in

our analysis, we denote the pair (hi−1,mi) with (h,m) and hi with h′.

The permutations P and Q update an 8 × 8 state of 64 bytes for 10 rounds.

These transformations are similar to that of AES and are described below. For

every round ri, 0 ≤ i ≤ 9:
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(a) The hash function

(b) The compression function

Figure 5.1: The abstract view of 256-bit Grøstl-0

• AddRoundConstant (AC) is the XOR operation of distinct one byte con-

stants to the 8 × 8 internal states of P and Q. For P , this constant is a

round number i which is XORed to the 1st byte of the internal state. For

Q, the constant is i ⊕ 0xff which is XORed to the 8th byte of the internal

state. The permutations P and Q differ only in this step.

• SubBytes (SB) is the substitution layer which applies the AES S-box to

each byte of the 8× 8 state of P and Q.

• ShiftBytes (SH) rotates the bytes of the jth row of a state by j positions to

the left, where j = 0, . . . , 7.

• MixBytes (MB) is the linear diffusion layer in which each column of the

state is multiplied with a constant 8× 8 circulant MDS matrix.

State S at the round ri of the compression function is updated by a round trans-

formation defined by MCi ◦ SHi ◦ SBi ◦ ACi(S) where i ∈ {0, . . . , 9}.
Extensive analysis of Grøstl-0 and its building blocks [39, 45, 72, 73, 74, 85, 94]

has motivated the designers to tweak it by making its permutations to look more

distinct. Hence, the tweaked hash function is secure against some attacks that

apply to Grøstl-0 due to the usage of almost similar permutations. The tweak

change the ShiftBytes values for the permutation Q while P is kept the same. The
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new left rotation vector is [1, 3, 5, 7, 0, 2, 4, 6], for example the 3rd raw is rotated

to the left by 5 bytes. The other difference between Grøstl and Grøstl-0 is the

AddRoundConstant layer. In Grøstl-0 this layer changes different single bytes in

P and Q; while in Grøstl it adds different constant to the first row in P and to

the last row in Q, also complements the other bytes in Q.

5.2 Related Work

The analytical results on Grøstl-0 mostly have employed the rebound cryptanal-

ysis [72, 73] and its extensions such as Super-Sbox attack [39, 74] and non-full-

active Super-Sbox attack [94] to launch collision attacks for the reduced round

compression function or hash function [45]. Also the rebound attack is used

to find distinguishers for the compression function [39, 57, 85] and permuta-

tions [39, 72, 85]. When the permutations are assumed ideal, an l-bit compres-

sion function of Grøstl-0 was proved to have a 2l/2 security against preimage

attacks [36, 37] which is also applicable to Grøstl. Grøstl-0 with n-bit hash value

has a claimed security of 2n against preimage attacks [37]. The first analysis of

Grøstl with respect to preimage resistance security was done by Wu et. al. [109].

They used meet-in-the-middle technique to apply pseudo preimage attack on 5-

round Grøstl-256 with the time complexity of 2244.85 and 2230.13 memory. Later,

pseudo preimage attacks and pseudo 2nd-preimage attacks were applied on up

to 6 rounds of the 256-bit Grøstl-0 in [111]. However, it is interesting to see

whether the similar looking permutations in Grøstl-0 can be further exploited

to mount preimage attacks or their variants on the compression function and

the hash function. Later we address this problem by analysing 256-bit Grøstl-0

compression function. Table 5.1 compares our result with the previous preimage

attacks applied on 256-bit Grøstl-0.

5.2.1 Super-Sbox Analysis

The Super-Sbox analysis [39, 74] is an improved variant of the rebound technique

(was explained in Chapter 4, Section 4.1.1) to solve the inbound phase of two

consecutive rounds covering two S-box layers. For Grøstl-0, instead of checking
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Table 5.1: Preimage attacks on 256-bit Grøstl-0

Target Type of Attack Rounds Time Memory Reference

Hash function pseudo preimage 5 2244 2230 [109]

Hash function pseudo preimage 5 2239 2240 [111]

Hash function pseudo preimage 6 2253 2253 [111]

Hash function pseudo 2nd-preimage 6 2251 2252 [111]

Compression Function chosen-28-target preimage 6 2120 264 Sec. 5.4.2

Compression Function chosen-222-target preimage 7 2120 264 Sec. 5.4.2

Compression Function chosen-2136-target preimage 8 2120 264 Sec. 5.4.2

Compression Function chosen preimage 6 2128 264 Sec. 5.4.3

each S-box for a valid differential as in the basic rebound attack, eight parallel 64-

bit S-boxes, called Super-Sboxes, are checked. Figure 5.2 illustrates the inbound

phase for a sample differential trail of the permutation P or Q in the 256-bit

Grøstl-0. In this sample, the inbound phase starts from the state SSH1 before

MixBytes of the 1st round and ends at the end of round 3 (i.e the state SMB
3 ).

The first Super-Sbox is highlighted in the figure. In the differential analysis,

Figure 5.2: Super-Sbox cryptanalysis of the Grøstl-0 permutations

two adjacent ShiftBytes and SubBytes transformations in the first round of the

inbound phase can be commuted without changing the final result. Therefore, 8

parallel SubBytes (which is one column of the state), followed by one MixBytes

and another 8 parallel SubBytes create one Super-Sbox. AddConstant can be

ignored as it does not change the differences. In Figure 5.2, every column at state

SSH2 is the input to one 64-bit Super-Sbox and overall there are 8 independent

64-bit Super-Sboxes. Although, the differential distribution table (DDT) for the

Super-Sbox includes 2128 entries; by fixing the input and output differences of

the Super-Sbox, the adversary can check all 264 input values to see if the input

difference maps to the output difference.
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The inbound phase illustrated in Figure 5.2 is analysed as follows:

1. For all 264 differences at state SMB
3 , the adversary computes backward

through MixBytes MB3 and ShiftBytes SH3 to state SSB3 , then stores the

resulting 264 differences for each column in list L1.

2. He chooses a random difference at state SSH1 and computes the difference

forward to state SSH2 . Each column at state SSH2 is the input to one Super-

Sbox. For each Super-Sbox at state SSH2 , he connects the input and output

differences as follows:

(a) For the selected Super-Sbox (column) at state SSH2 , he tries all 264 pos-

sible pairs of values and calculates the output value of SB2. Therefore,

he finds totally 264 possible differences and corresponding pairs of val-

ues for the column at state SSB2 .

(b) He computes forward to state SSB3 through MixBytes MB2 and Sub-

Bytes SB3, and finds 264 differences and corresponding pairs of values

as the output of the Super-Sbox, then stores them in list L2.

(c) The adversary finds a match between differences at list L1 and corre-

sponding differences and pairs of values at list L2. Each list has 264

entries and he must match 64 bits (with the probability 2−64). Thus,

he finds 264 × 264 × 2−64 = 264 solutions for each Super-Sbox.

3. Since all Super-Sboxes are independent, he finds 264 solutions for each

Super-Sbox at the state SSB3 and subsequently for the whole state with

the time complexity of 264 computations and 264 memory. Hence, the time

complexity of finding each solution is of O(1) on average.

Note that an attacker can still choose 264 differences for the state SSH1 and repeat

the inbound phase to find more solutions (pairs of values and differences). In

total, he can obtain up to 2128 pairs that satisfy the truncated differential path

of the inbound phase and they serve as the starting points for the probabilistic

outbound phase. The memory complexity for any number of applications of the

inbound phase is 264.
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5.2.2 Internal Differential Analysis of Grøstl-0

Peyrin [85] observes that when a cryptographic function is built upon parallel

components that are similar then it may be possible to construct a differential

trail which spans between these components and such a trail is called the internal

differential trail. Since the parallel permutations P and Q in the 256-bit Grøstl-0

differ in only one byte of the AddConstant layer, internal differentials can be

constructed for the compression function as illustrated in Figure 5.3.

Figure 5.3: The internal differentials for Grøstl-0 compression function

The differences between P and Q of Grøstl-0 compression function can be

traced as follows: Let A and B be the input states for P and Q respectively.

The input difference of the internal differential trail is given by ∆IN = A ⊕ B

and its output difference by ∆OUT = P (A) ⊕ Q(B). Therefore, at any iteration

i of the compression function f , we can note that h = A ⊕ B, m = B and

h′ = P (A) ⊕ Q(B) ⊕ A ⊕ B = ∆OUT ⊕ ∆IN . The pair (A,B) = (h ⊕m, m) is

a valid pair conforming to the internal differential trail. Peyrin combines the in-

ternal differentials with the Super-Sbox cryptanalysis to distinguish full Grøstl-0

compression function from the same compression function based on ideal per-

mutations P and Q and mounts a collision attack on the 5-round compression

function. The internal differential strategy has been extended by Ideguchi et

al. [45] to find collisions for the Grøstl-0 hash function reduced to 5 and 6 rounds.

So far, the internal differential analysis has been used to find distinguishers

and collision attacks [45, 85]. However, in this chapter we exploit the properties

that are weaker than preimage resistance to show chosen-multi-target-preimage

attacks on the reduced Grøstl-0 compression function.
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5.2.3 Multi-Target Preimage Attack

In a preimage attack on an n-bit hash function H, given a hash value y, an ad-

versary should find a message M such that H(M) = y in less than 2n evaluations

of H. Similarly, in a preimage attack on a l-bit compression function f , given an

output y, the adversary should find an input chaining value and message block

pair (h,m) such that f(h,m) = y. The idea of multi-target (aka one-of-many)

preimage attacks on hash functions was first proposed by Merkle [78]. In this

attack on an n-bit hash function H, the attacker aims to find a preimage for

one of the K specified hash values in less than 2n/K evaluations of H [78, 88].

Similarly, on a l-bit compression function f the task is to find a pair (h,m) which

hits one of K specified outputs of f in less than 2l/K evaluations of f .

An interesting application of the multi-target preimage attack is when an

attacker has access to a password file containing user names and the corresponding

hashes of the passwords, so he can find the password of one of the users by

attacking these hash values. As noted in [87], security against these attacks is

also necessary in applications that combine the hash trees [76] and digital time-

stamps such as in the RFC standard of Evidence Record Syntax [100]. The

multi-target preimage attack is used in the cryptanalysis of hash functions to

find second preimages [2] for some popular hash function construction modes

such as Merkle-Damg̊ard. It is also used to find preimages for the reduced round

SHA-256 and SHA-512 [41].

In a slightly different setting, an attacker may show the existence of a set of

outputs for either a hash functionH or a compression function f where a preimage

can be found for one of the outputs in the set. We call attacks in this setting

chosen-multi-target preimage attacks or chosen-K-target preimage attacks for an

output set of size K.
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5.3 The Generic Security of Grøstl Against

Multi-Target Preimage Attacks

5.3.1 Security Bounds for the Compression Function

It has been proved in [36, Proposition 2], that for a l-bit compression function

with two parallel permutations (such as Grøstl), an adversary find a preimage

with the advantage of at most q2/2l when he makes at most q queries to these

permutations and their inverses. Hence, the complexity of a preimage attack on

Grøstl compression function is about 2l/2 which is also the claimed security bound

in [37].

We remark that the security proof in [36] which led to the above result is not

completely accurate. Because it assumes for an input query to a permutation,

the output is chosen uniformly random from the space of {0, 1}l. This proof does

not take into consideration that P and Q are permutations and the queries are

made to the same permutations. Assume, P has been queried i times by inputs

α1, . . . , αi, returning values β1 = P (α1), . . . , βi = P (αi), the response for the next

query α is not among the previous responses β1, . . . , βi. Thus, the returned value

β = P (α) is uniformly random over 2l− i values (i.e all values except β1, . . . , βi).

Considering this improvement we extend the analysis to the security of the

construction against K-target preimage attacks. In Theorem 5.1, we prove that

for an adversary who makes q queries to the permutations, the success probability

of a preimage attack on l-bit Grøstl compression function is upper bounded by
(q2+q)

2l
, where q2 + q ≤ 2l (under the assumption that the permutations P and

Q are ideal). This proof is more accurate compared to the one in [36]. Also,

Theorem 5.1 shows that the success probability of a K-target preimage attack on

Grøstl compression function after q queries is upper bounded by K · (q2+q)
2l

, where

q2 + q ≤ 2l. Therefore, an adversary must make at least 2l/2/
√
K queries to find

a preimage of one of the K targets.

Theorem 5.1. Consider an l-bit Grøstl compression function based on ideal per-

mutations P and Q. For a computationally unbounded adversary A making at

most q queries to the permutations P and Q and their inverses, the advantage to

find a preimage for Grøstl compression function is upper bounded by (q2+q)
2l

where
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q2 + q ≤ 2l. When A is supplied with K-target hash values, the advantage to

find a preimage for one of these hash values is upper bounded by K · (q2+q)
2l

where

q2 + q ≤ 2l.

Proof. Let x be the value which we desire to find its preimage for the Grøstl

compression function. Hence, we need to find α, α′ (i.e. inputs of P and Q,

respectively) such that x⊕P (α)⊕α⊕Q(α′)⊕α′ = 0. Suppose that A has made

two sets of queries as follows:

1. A total of i1 queries to P , P−1 oracles and stored the input/output pairs

(αj, βj = P (αj)), 1 ≤ j ≤ i1 for these i1 queries in list L1.

2. A total of i2 queries to Q, Q−1 oracles and stored the input/output pairs

(α′j, β
′
j = Q(α′j)), 1 ≤ j ≤ i2 for these i2 queries in list L2.

Now we claim that the probability that the next query of A results in a preimage

is upper bounded by

pnext ≤
{
i2/(2

l − i1) if the next query is to P or P−1

i1/(2
l − i2) if the next query is to Q or Q−1

The justification for the first bound is as follows: Suppose that A’s next query

is to P by the value α, where α is not equal to one of the αj’s already in the list

L1. The returned value β = P (α) is chosen uniformly random from the set of all

2l − i1 (l-bit strings which are not equal to one of the βj values in L1). In order

to find a preimage, β must be such that for a j ∈ {1, ..., i2},

x⊕ β ⊕ α⊕Q(α′j)⊕ α′j = 0 (5.2)

However, for each value of j, there is at most one value of β such that Equa-

tion (5.2) is satisfied. Therefore, there are at most i2 “good” values of β that

produce a preimage, and since β is chosen uniformly among 2l−i1 possible values,

the probability of β being “good” is at most i2/(2
l− i1) (as in the bound above).

A similar argument applies to P−1 queries and a symmetric argument applies for

queries made to Q or Q−1 giving the bound i1/(2
l − i2).

We conclude that if A has been made totally i1+i2 = q−1 queries to all oracles,

then the next qth query provides a preimage with probability pq ≤ q/(2l−q), since
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both bounds for pnext above are below this value. Therefore, the probability of a

preimage being found in any of q queries is at most

ppreimage ≤
∑

i=1,...,q

pq ≤
∑

j=1,...,q

j/(2l − j) ≤ q2/(2l − q) ≤ q2 + q/2l (5.3)

iff q2 + q ≤ 2l. This result is very close to the one claimed in [36].

Now assume that A is challenged with K = 2sK target hash values, of which

it needs to find a preimage for one of them. Equivalently, A has to find a preim-

age to a subset of (l − sK) output bits of the compression function. Therefore,

Equation (5.2) can be modified to only look at the equality on these l−sK output

bits. Let l-bit state of Grøstl is viewed as a byte oriented b × b matrix, that is

l = b×b×8 bits with matrix indices 1, . . . c (where c = b×b). Now Equation (5.2)

can be modified as follows: Let Z denote the subset of {1, . . . , c} corresponding

to the indices of (l−sK)/8 bytes in the b×b matrix (i.e. the size of Z is (l−sK)/8

bytes). For an b × b byte variable x, let (x)Z denote the restriction of x to the

bytes in indices contained in Z. Then the modified Equation (5.2) is:

(x)Z ⊕ (β)Z ⊕ (α)Z ⊕ (Q(α′j))Z ⊕ (α′j)Z = 0 (5.4)

This equation determines (β)Z uniquely, once x, α, α′k and Q(α′k) are de-

termined. Since the values of α and β are still l bits long, for each value of

j = 1, ..., i2, there are at most K = 2sK “good” values of β that satisfy Equa-

tion (5.4). Totally, there are at most i2 ·K “good” βs for all values of j. Hence,

the bounds for pnext, and the final result in Equation (5.3) gets multiplied by K.

Therefore, the advantage of A to find a preimage for one among K = 2sK target

hash values is at most K.(q2 + q)/2l.

The above analysis is also applicable for Grøstl-0 as permutations are assumed

ideal, and the security bound derived for Grøstl compression function in Theo-

rem 5.1 does not depend on the details of P and Q permutations. Note that, it

is reasonable to use the above bound (i.e. 2l/2/
√
K) for the generic security of

the construction against chosen-K-target preimage attacks.
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5.3.2 Security Bounds for the Hash Function

Suppose a chosen-K-target preimage attack on the 2n-bit Grøstl compression

function extends to a K∗-target preimage attack on the n-bit hash function. We

prove in Theorem 5.2 that a preimage for one of K∗ hash values of Grøstl hash

function is found with a probability less than q.2n·K
22n−(K+s−1) + (q2+q)·K

22n
, where q is the

number of queries and q2 +q ≤ 22n. The probability q.2n·K
22n−(K+s−1) is approximately

upper bounded by q.K/2n when K + q is much smaller than 22n. Therefore, the

total success probability is less than q·K
2n

+ (q2+q)·K
22n

. The first term dominates

the second term, so the adversary has to make at least 2n/K queries to find

a preimage of one of the K∗ target hash values. Note that permutations are

assumed ideal and the analysis is independent of the internal permutations of P

and Q, so this analysis is also valid for the Grøstl-0 hash function.

Theorem 5.2. Consider an n-bit Grøstl hash function with the compression func-

tion f based on the ideal permutations P and Q, and output transformation OT

as OT (x)= truncn(P (x)⊕x). Let Y be a set of the compression function outputs

which are selected independently of P and Q, and Y ∗ is the target hash value set

such that Y ∗ = {OT (x) : x ∈ Y }. The probability of finding a preimage of one of

the elements of Y ∗ is upper bounded by q.2n·K
22n−(K+s−1) + (q2+q)·K

22n
, where q2 + q ≤ 22n

(Note that K∗ and K are respectively the number of elements of the sets Y ∗ and

Y ).

Proof. Let x be the preimage for one of the hash targets in set Y ∗. We can split

the results into two independent cases as follows:

• Case I : x is the preimage of one of the targets in set Y ∗ such that f(x) ∈ Y .

• Case II : x is the preimage of one of the targets in set Y ∗ such that f(x) /∈ Y .

The success probability of finding x as the preimage of one of the targets in

Y ∗ is P (case I) + P (case II). We know from Theorem 5.1 that P (case I) ≤
(q2 + q) · K/22n. Assume there exists a query number s to P or to P−1 that

(z∗s , P (z∗s)) denotes the input and output of P for the sth query, and z1, ..., zK

denote the elements of Y . From case II we get i ∈ {1, ..., K} such that:

z∗s /∈ Y and truncn(P (z∗s)⊕ z∗s) = truncn(P (zi)⊕ zi) (5.5)
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Let us consider the case that the sth query is a query to P (Note that the case

when it is a query to P−1 is similar). Given any fixed values for z∗s , zi and P (zi),

there are 2n values of P (z∗s) ∈ {0, 1}2n that satisfy Equation (5.5). Since there are

K possible values for i, there are at most 2n ·K “bad” values of P (z∗s) that satisfy

Equation (5.5) for some i. We call the set of “bad” P (z∗s) values Bads. Now, if

the values of P (zr), r = 1, ..., K, and P (z∗r ), r = 1, ..., s−1, are already fixed, the

value of P (z∗s) is uniformly random in a set of size 22n − (K + s − 1), which is

returned as the answer to the adversary’s sth query z∗s . Therefore, the probability

that P (z∗s) ∈ Bads is at most ps = |Bads|
22n−(K+s−1) ≤ 2n·K

22n−(K+s−1) . Taking a union

over all possible s = 1, ..., q, we obtain that P (case II) ≤ ∑
s=1,...,q

ps ≤ q·2n·K
22n−(K+q)

.

Hence, the success probability of finding preimage of one of the elements of Y ∗

is (i.e. P (case I) +P (case II)) is upper bounded by (q2+q)·K
22n

+ q.2n·K
22n−(K+s−1) , where

q2 + q ≤ 22n.

5.4 Attacks on Grøstl-0 Compression Function

In this section, we analyse reduced round variants of the 256-bit Grøstl-0 com-

pression function against chosen-multi-target preimage attacks. In our attacks

on the considered design variants, we show the existence of sets of K-target out-

puts where it is possible to find a preimage for at least one of the targets in

each of these sets. The complexity of our attacks are less than the generic at-

tack complexity obtained in Section 5.3.1, when the permutations are assumed

ideal. We apply the idea of internal differences between similar looking permuta-

tions to build internal differential trails and find chosen-multi-target preimages.

These trails are built by using Super-Sbox cryptanalytical technique. We can

find chosen-multi-target preimages for up to 8 rounds of the compression func-

tion. In some cases, chosen-multi-target preimage attacks can be converted to

chosen-preimage attacks on the compression function. Consequently, we show

a chosen-preimage attack on 6-round compression function. By controlling the

initial state of the compression function and forcing it to be the initial value (IV )

of the hash function, the chosen-preimage attack is found for up to 5 rounds of

the compression function. Our results are summarized in Table 5.2, note that the

memory complexity for all the attacks is 264.
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Table 5.2: Summary of the results on 256-bit Grøstl-0 compression function

Attack Targets Rounds Time Generic Section

complexity complexity Section

28 6 2120 2252 5.4.2

264 6 264 2224 5.4.2

Chosen-multi- 222 7 2120 2245 5.4.2

target preimage 278 7 264 2217 5.4.2

2136 8 2120 2188 5.4.2

2192 8 264 2160 5.4.2

Chosen preimage 1 5 (h = IV ) 2144 2256 5.4.3

1 6 2128 2256 5.4.3

5.4.1 Abstract View of the Attacks

In our attacks, we build internal differential trails between the permutations P

and Q using Super-Sbox technique, such that the complexity of a chosen-K-target

preimage attack is less than 2l/2/
√
K. An internal difference is the difference

between P and Q. The size of K is influenced by the factors such as the number

of attackable rounds, the number of solutions obtained from the inbound phase

of the Super-Sbox analysis and the amount of control we would like to exert at

the input state of the compression function. Recall from Section 5.2.2, if A and

B are inputs to the permutations P and Q, the compression function following

the internal differential trail can be described as f(h,m) = h′ = ∆IN ⊕ ∆OUT

where ∆IN = A⊕B and ∆OUT = P (A)⊕ P (B).

Once the internal differential trail is built for a possible number of rounds, we

take all possible outputs of this trail as the K-chosen-target set. Then we can find

a preimage (h,m) for one of the K targets as follows. Since A ⊕ B = ∆IN = h,

when we extend the difference between the pair of values that satisfy the inbound

phase in the backward trail of the outbound phase, we eventually end up with a

pair of values (A,B) with the difference h. Note that the message block m = B

(i.e. the input value to permutation Q). By computing the forward trail of the

outbound phase with the solution which satisfies both the inbound and outbound

phases, we end up hitting at least one of the K target values. A matched target
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value is defined by h′ = ∆IN ⊕ ∆OUT . Thus, we have found the pair (h,m) =

(∆IN , B) which hits one of the chosen-K-target values. If more than one solution

satisfies the internal differential trail then we can find preimages for more than

one K target outputs.

Note that the target value set is independent of P , Q and the input values.

Therefore these attacks are distinct from the trivial scenarios where one can com-

pute a set of hash values for some arbitrary messages and later show a preimage

for one of the hash values.

5.4.2 Chosen-Multi-Target Preimage Attacks

Attacks on 6-Round Compression Function

Figure 5.4 shows the truncated internal differential trail for 6-round compression

function where A and B are the inputs to the permutations P and Q and their

difference A⊕B is the input chaining value h for the compression function.

In our trails, we use the labels controlled and uncontrolled values to refer to

the actual values of the states. Controlled values are known to the adversary

from the beginning of the attack. For example in Figure 5.4, at the state h′ there

are 56 controlled bytes and their values are fixed to zero. On the other hand,

values of uncontrolled bytes are not known until the completion of the attack.

Assume set K is the target set which has 264 512-bit values. Every element of K

consists of only 8 uncontrolled bytes at the positions shown in the state h′. The

application of Super-Sbox attack on these 6 rounds finds the preimage (h,m) of

the compression function for a h′ ∈ K.

The attack works as follows:

• The inbound phase starts at the state after SH1 and ends before SB4 (it

is illustrated by the dashed lines in Figure 5.4). This phase is solved by

the application of the Super-Sbox analysis, and provides up to 2128 starting

points for the outbound phase. The complexity of this phase is 264 pre-

computations and 264 memory.

• The outbound phase
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Figure 5.4: 6-round internal differential trail with 264 targets

1. Use the starting points of the inbound phase to compute forward from

the state before SB4 to SOUT . This part is satisfied with the probabil-

ity of 2−64. Because, the 8 7→ 2 bytes difference propagation through

MB4 is successful with the probability of 2−48 and two bytes differences

are cancelled by AC5 with the probability of 2−16.

2. Use the corresponding starting point of the pair satisfying Step 1 and

work backward from the state before MB1 to the input state SIN .

This step has a success probability of one.

3. The XOR addition of the input difference h at state SIN and the output

difference at SOUT is h′, which is one of the 264 target output values

of the compression function.
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4. The pair of values that obtains the difference at SIN are the inputs of

P and Q, their difference is the input chaining value h and the input

value of Q is the message block m. Thus, we found the pair (h,m) for

an output chaining value h′ which is one of the target outputs.

The time complexity of the attack is 264 computations due to the outbound

phase and requires 264 memory for the inbound phase. This is much less than the

generic complexity of 2224 to find a preimage for one among 264 target compression

function outputs.

Figure 5.5: 6-round internal differential trail with 28 targets

Another 6-round internal differential trail is illustrated in Figure 5.5 where

it has 28 targets. Similar to the previous 6-round attack, the inbound phase

has at most 2128 solutions as the starting points of the outbound phase. The

inbound phase needs 264 states of memory. The outbound phase is successful
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with the probability of 2−120. The probabilistic transformations of the outbound

phase are, the 8 7→ 2 difference propagation through MB4 (i.e. 2−48), two bytes

difference cancellation by AC5 (i.e. 2−16), and the 8 7→ 1 difference propagation

through the inverse MB0 (i.e. 2−56). So, the complexity of the chosen-28-target

preimage attack is 2120 time and 264 memory. The generic complexity of a 28-

target preimage attack is 2252.

Attacks on 7 and 8 Rounds of the Compression Function

The internal differential trail of Figure 5.4 can be extended to 7 and 8 rounds as

shown in Figure 5.6.

Figure 5.6a illustrates the addition of one round to the 6-round trail of Fig-

ure 5.4. The 7-round trail is used for the 278-target preimage attack on the

7-round compression function with no extra cost, as the internal differentials of

7th round hold with the probability of one. The input differences coming from the

final round constants are known and the S-boxes are the AES sbox. Therefore,

for each active input difference we get 127 possible output differences through

SB6. Totally, there are about 214 possible differences going to the MixBytes in

the final round. MB6 is a linear transformation which maps 2-byte differences

to 16-byte differences. Hence, for all 214 possible differences in the state before

MB6, 214 differences are generated for the state after MB6. Since for every value

among 264 possibilities in h, there are 214 values in the final state, there are up to

278 possibilities for the state h′. This attack finds the chosen-278-target preimage

with 264 time complexity and 264 memory, while the generic attack needs 2217

computations.

The 7-round trail of Figure 5.6a is extended by one more round and obtains

an 8-round trail as shown in Figure 5.6b. Again the 8th round probability is

one. Here MB7 propagates the state of 16 non-zero differences to a full active

state. However, due to the linearity of MB7, there are 2128 possible values for

the full active state. Since, there are 264 possibilities for h, there are totally 2192

possible values for h′ and hence 2192 targets for the compression function. The

complexity of the chosen-2192-target preimage is 264 time and 264 memory. The

generic complexity of this attack is 2160 computations.
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(a) 7-round internal differential trail for 278 targets

(b) 8-round internal differential trail for 2192 targets

Figure 5.6: Extension of the internal differential trail of Figure 5.4

Similarly, the 6-round internal differential trail of Figure 5.5 is also extended

to 7 (see Figure 5.7a) and 8-round (see Figure 5.7b) internal differential trails to

apply respectively 222 and 2136-target preimage attacks on the 256-bit Grøstl-0

compression function. Note that both extensions follow the outbound phase of 6-

round internal differential trail of Figure 5.5 with probability one. Therefore, the

complexity of the 222-target preimage attack on 7-round compression function as

well as the 2136-target preimage attack on 8 rounds are 2120 time and 264 memory.
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(a) 7-round internal differential trail for 222 targets

(b) 8-round internal differential trail for 2136 targets

Figure 5.7: Extension of the internal differential trail of Figure 5.5

5.4.3 Chosen Preimage Attacks

In the preimage attack on a compression function f , the attacker who knows

the specific output h′ of f aims to find a pair (h,m) such that f(h,m) = h′.

It is possible to convert a chosen-multi-target preimage attack on a compression

function to the chosen-preimage attack if there is sufficient degrees of freedom

available from the inbound phase of the attack. We can achieve this by using the

freedom to repeat the inbound phase and therefore the multi-target attack itself

until we hit all the compression function output targets.
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Chosen Preimage Attacks on 6 Rounds

We convert the 264- and 28-target preimage attacks on the 6-round compression

function described above (by Figures 5.4 and 5.5, respectively) to chosen-preimage

attacks. By repeating 28 times the former and 264 times the latter we aim to find

preimages for the whole elements of the target sets. In both attacks the overall

complexity is 2128 time and 264 memory.

Chosen Preimage Attacks on 5 Rounds Where h = IV

Figure 5.8 illustrates a 5-round internal differential trail which exerts control over

the input chaining value h and makes it equal to IV of 256-bit Grøstl-0. There

are 264 targets for this attack. Note that these targets have a fixed non-zero byte

same as the only non-zero byte of IV of 256-bit Grøstl-0 at the same position.

Figure 5.8: 5-round internal differential trail with 264 targets
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The inbound phase of the attack starts at the 10-byte active state before

MB1 and ends at the 8-byte active state before SB4. For a difference chosen at

the state before MB1 the inbound phase results in 264 pairs of values with 264

time and 264 memory complexity. Overall, the inbound phase can produce up to

264+80 = 2144 pairs of values as the starting points for the outbound phase.

The forward trail of the outbound phase holds with the probability one. In

the backward trail, at first the inverse AC1 cancels 2 active bytes in the first

column of the state before SB1 with the probability of 2−16. The 8 7→ 2 active

byte propagation through the inverse MB0 has the success probability of 2−48.

Finally, with 2−8 probability, the active byte in the first column before SB0 is

cancelled and with the probability of 2−8 the active byte of the input state SIN can

be forced to be equal to the non-zero byte in IV . Overall, the success probability

of the outbound phase is 2−80. Therefore, an adversary finds one of the 264 targets

with the total complexity of 280 computations and 264 memory. By repeating this

part 264 times, the adversary expects to find the preimage of all the 264 targets.

The time complexity of the attack is 2144 while it needs 264 memory. Note that

the inbound phase of the internal differential trail of Figure 5.8 starts with 10

active bytes and ends with 8 active bytes on the other side. Using the method

described in Section 5.2.1 there are 2144 solutions for the inbound phase. Thus,

there are enough freedom to find all the preimages.

5.5 Conclusion

Grøstl-0 was one of the hash algorithms submitted to the NIST SHA-3 com-

petition and selected as a finalist. In the final round of the competition, the

design was tweaked (i.e. called Grøstl from then) to make two almost identical

underlying permutations behave differently. In this chapter, we have corrected

the previous security proof for the preimage resistance of the compression func-

tion and proved that the generic complexity of K-target preimage attack on the

l-bit Grøstl compression function is at least 2l/2/
√
K . Also we have proved that

a chosen-K-target preimage attack on the Grøstl-0 compression function is ex-

tended to a K∗-target preimage attack on the hash function with at least 2n/K

queries.
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5.5 Conclusion

Then we have employed the internal differential trails combined by the super-

sbox analysis on the compression function of Grøstl-0 to present chosen-multi-

target preimage attacks for up to 8 rounds, and chosen-preimage attacks on 5

and 6 rounds of the compression function. These attacks do not apply to the

compression function of Grøstl as distinct permutations in Grøstl completely

prevent the application of internal differentials even for few rounds.
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6
Conclusion

Design and analysis of symmetric algorithms, such as block ciphers and hash

functions, have recently attracted many cryptographic researches. In this thesis

we have explored different types of block ciphers and hash functions and their

analytical methods. Consequently, we have been able to present new techniques

for the cryptanalysis of well-known algorithms including LBlock, Camellia and

Grøstl. Our results are summarised bellow.

Truncated Differential Analysis

The truncated differential analysis presented in this thesis concentrates on dif-

ferential probability distribution rather than on a small collection of fixed differ-

ences. This analysis can be applied to the cryptanalysis of symmetric algorithms

and requires less data to launch an attack than the classical differential attack.

We have presented a new framework for the analysis of LBlock lightweight block

cipher using the truncated differential analysis. Taking advantage of the LBlock

key schedule, we are able to extend the attack and combine it with the fixed
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differential at the beginning of the truncated differential trail. We have used the

LLR statistical test and KL-divergence as the distinguishing tools. Computer im-

plementation and experiments confirm our theoretical results and observations.

Finally, we have applied the key-recovery attack on LBlock reduced to 18 rounds

and the related-key attack on 21 rounds, where the former requires only 223 and

the latter 230 plaintext/ciphertext pairs to succeed. The efficiency of these attacks

is better than the generic exhaustive search attacks.

Rebound Attack on Feistel Networks

The known-key and chosen-key attacks analyse the security of block ciphers where

the adversary knows the key or can choose it himself. These attacks are impor-

tant when the cipher is used to build a hash function. We have reviewed the

known-key (and chosen-key) attacks on Feistel-SP networks by the rebound at-

tack, and improved the previous results. Using the proposed method, we have

analysed Camellia block cipher. A chosen-key distinguisher has been presented for

Camellia-128 reduced to 11 rounds with 216 computations complexity. We have

implemented the attack and the experiments confirm the theory. The rebound

attack has been optimised to attack the hashing modes of Camellia-128. The

hash function is built based on the Matyas-Meyer-Oseas or Miyaguchi-Preneel

schemes. Thus, we apply collision attacks and 4-sum distinguishers on up to 9

rounds of the compression function.

Grøstl Preimage Analysis

Grøstl was a finalist in the NIST SHA-3 hash function competition. Grøstl is

a tweaked variant of its predecessor Grøstl-0, a second round SHA-3 candidate

which was selected as the finalist. We have corrected the security proof for the

preimage resistance of any compression function which is built based on two

parallel permutations, such as Grøstl. Accordingly, the security bounds against

the multi-target preimage attacks have been proven for the Grøstl compression

function and the hash function. These security bounds are applicable to any

Grøstl-like design. Then, we have analysed the security of the Grøstl compression

function, reduced to up to 8 rounds, against multi-target preimage attacks for
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chosen target sets. We have used internal differential and Super-Sbox analysis

techniques to mount the attacks. Consequently, it is possible to find preimage

attacks on up to 6 rounds of the compression function for specified sets of output

values.

Future Work

The truncated differential distribution analysis is a new type of differential crypt-

analysis. Using the probability distribution of the differences for individual state

symbols is the advantage of this technique over the other differential distribution

analyses which find the probability distribution for the whole state. Therefore,

the truncated differential distribution analysis is applicable to block ciphers with

relatively large states. However, the way the differential distribution table is built

is a challenge in ciphers which imply dependencies between the symbols. A di-

rection for future research could be computing the differential distribution table

taking into account the dependencies. Also, the way we extended the truncated

differential analysis, by taking the advantage of the LBlock key schedule, can

be used for the analysis of other designs. Moreover, it is possible to combine

the probability distribution of differences with other statistical attacks such as

the linear cryptanalysis and rotational analysis. For example, the differential

probability distribution is applied together with linear cryptanalysis in [17].

The rebound attack is a very popular method for the analysis of hash func-

tions. The attacks we presented for the analysis of Camellia and Grøstl can be

applied to other hash functions and block ciphers. Furthermore, the multi-target

preimage attacks on the 256-bit Grøstl can be easily extended to the 512-bit

variant. It may be possible to reformulate the rebound attack on the Feistel-SP

networks, so that it can be applied to the other Feistel networks where the round

function is of a different kind, such as ARX.
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A
Camellia-128 Key Schedule

The key schedule of Camellia is explained in [3] for all the key sizes. In Camellia-

128, the 128-bit master key K is used to generate 18 round sub-keys, and 8

supplementary sub-keys for the whitening and FL layers. The key K is encrypted

by 2 rounds of Camellia and then get mixed with itself. Then the result is again

encrypted by another 2 rounds. The output is named KA. Figure A.1 describes

the procedure of producing KA from K. The constant sub-keys Σi, 1 ≤ i ≤ 4 are

used for the encryption, as illustrated in Table A.1.

Table A.1: The key-schedule constant sub-keys

Sigma1 0xA09E667F3BCC908B

Sigma2 0xB67AE8584CAA73B2

Sigma3 0xC6EF372FE94F82BE

Sigma4 0x54FF53A5F1D36F1C

The 64-bit round sub-keys k1, k2, . . . , k18, whitening keys kw1, . . . , kw4, and

FL-layer sub-keys kl1, . . . , kl4 are all generated by rotating K and KA and taking

the left or the right half of them. Table A.2 shows how the sub-keys are generated.
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Figure A.1: Camellia-128 key schedule [3]
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Table A.2: Sub-keys for Camellia-128

Type Sub-key Value

Whitening key kw1 (K ≪ 0)L
kw2 (K ≪ 0)R
k1 (KA ≪ 0)L
k2 (KA ≪ 0)R

Round key k3 (K ≪ 15)L
k4 (K ≪ 15)R
k5 (KA ≪ 15)L
k6 (KA ≪ 15)R

FL kl1 (KA ≪ 30)L
FL−1 kl2 (KA ≪ 30)R

k7 (K ≪ 45)L
k8 (K ≪ 45)R

Round key k9 (KA ≪ 45)L
k10 (K ≪ 60)R
k11 (KA ≪ 60)L
k12 (KA ≪ 60)R

FL kl3 (K ≪ 77)L
FL−1 kl4 (K ≪ 77)R

k13 (K ≪ 94)L
k14 (K ≪ 94)R

Round key k15 (KA ≪ 94)L
k16 (KA ≪ 94)R
k17 (K ≪ 111)L
k18 (K ≪ 111)R

Whitening key kw3 (KA ≪ 111)L
kw4 (KA ≪ 111)R
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che. Sponge Functions, 2007. Available at http://www.csrc.nist.

gov/pki/HashWorkshop/Public_Comments/2007_May.html(Accessed on

08/05/2014).

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Ass-
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