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“Hold on tight, this ride is a wild one”

All Time Low - Missing you
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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal, genetically heterogeneous neurodegen-

erative disease characterised by the loss of upper and lower motor neurons. Gene

mutations remain the only proven cause of ALS. While 10% of patients have a family

history (familial ALS; FALS), one third of these patients carry an unidentified causal

mutation. Among the remaining 90% of apparently sporadic patients (sporadic ALS;

SALS), less than 10% carry a known causal mutation. As such, a significant amount

of genetic variation underlying ALS remains to be discovered.

This thesis presents innovative approaches to identify novel genetic causes of ALS

using next-generation sequencing (NGS). This involved the development and appli-

cation of various bioinformatics strategies to whole-exome (WES) and whole-genome

(WGS) sequencing datasets for various patient cohorts including FALS patients, fam-

ilies and ALS-discordant monozygotic twins. Assessment of the prevalence of known

and candidate ALS genes among Australian patients revealed that 39.2% of FALS had

an unidentified causal gene mutation, and identified eight candidate ALS mutations.

Novel ALS gene discovery in four small families identified 19, 11, 16 and 64 candidate

causal mutations in each. Having exhausted the genetic power of these families, an in

silico pipeline was developed to assess the potential pathogenicity of each candidate

mutation. This showed that five, six, one and 11 candidate mutations had a high po-

tential to cause ALS. Gene discovery efforts in a fifth family using WES, WGS and

genetic linkage data failed to identify any candidate mutations, however narrowed the

search to just 14% of the genome. WGS of four ALS-discordant monozygotic twin

sets also failed to identify any de novo mutations underlying disease discordance. This

work expands our understanding of the genetic causes of ALS, and in turn provides

much needed insight for the development of diagnostic and carrier-screening regimes,

as well as relevant models of disease.
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“Quiet people have the loudest minds”

Stephen Hawking

1
Introduction

1.1 General introduction

Amyotrophic lateral sclerosis (ALS; also known as motor neuron disease, MND) is a

fatal, late onset neurodegenerative disease caused by the death of the upper and lower

motor neurons of the motor cortex, brain stem and spinal cord. Patients experience

progressive muscle weakness, wasting and spasticity, eventually losing gross and fine

motor capabilities to the point that they can no longer walk, speak, eat or breathe

unassisted. Within just two to five years of symptom onset, most patients die from

associated respiratory failure. There are no effective treatments for ALS. The only

pharmaceutical approved in Australia for the treatment of ALS is riluzole, which only

extends life by a matter of months. There is a drastic need for the development of

more effective treatments for this devastating disease, which requires the identification

of suitable lifestyle or drug targets. While many lifestyle factors and exposures have

been suggested to cause or influence the onset of ALS, to-date, genetically inherited

mutations remain the only proven cause of the disease. More than 20 genes have been

shown to harbour mutations that cause ALS, and many more genes have been found

to carry genetic variants associated with increased disease-risk. A small proportion of

ALS patients have a family history of disease, while the remaining cases have seemingly

sporadic onset. The majority of the known ALS causal mutations were discovered

1
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by studying ALS families. These families were typically large, and amenable to

classical genetic linkage analysis which facilitated disease gene identification. However,

only two thirds of familial ALS patients carry a known ALS mutation, while this

figure is a mere 10% for sporadic ALS patients. This leaves the cause of ALS in the

majority of patients unsolved. This thesis presents strategies for the discovery of

novel genetic causes of ALS in an era where the common genetic causes of disease

have already been identified. Following the great success of ALS gene hunting in large

ALS families, those ALS families remaining to have their causal mutations identified

are genetically small. The genetic power of these small families for novel disease

gene discovery is markedly decreased, as there is limited availability of DNA samples

caused by the reduced penetrance of their causal mutations. This renders genetic

linkage analysis in these families exceedingly difficult, and in some cases impossible.

Therefore, large-scale whole exome and genome sequencing approaches are required

to identify disease causal mutations in these families. As such, the remaining genetic

causes of ALS lay hidden within such datasets, which are both large and complex,

harbouring not only variants that contribute to the cause or predisposition to ALS,

but also a plethora of benign variation masking the pathogenic culprits. In this thesis,

pipelines have been developed to effectively handle the immense volume of genetic

data generated by whole exome and genome sequencing as part of the search for the

remaining genetic variation contributing to the cause of ALS. The following chapters

detail the use of this genetic data for identifying novel gene variants that cause or are

associated with ALS using candidate gene, family and twin based approaches, and

the extension of these findings to sporadic patients. Each such ALS gene discovery

will broaden the spectrum of known ALS genes, further our understanding of disease

biology, and provide new targets for the development of cell and animal models,

diagnostics and therapeutics.

1.2 What is MND?

Motor neuron disease (MND) is an umbrella term for a group of disorders charac-

terised by the progressive degeneration and eventual death of motor neurons, that

leads to various motor impairments in patients. Motor neuron death involves the

degeneration of motor nerve axons and the destruction of neuromuscular junctions,

causing a breakdown of communication with the muscle fibres innervated by these

axons (Tiryaki and Horak, 2014).
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Motor neurons are responsible for voluntary muscle movement. Those originating

in the motor region of the cerebral cortex are known as the upper motor neurons

(UMNs), and function by transmitting electrical impulses or “messages” to the lower

motor neurons (LMNs) (Kiernan et al., 2011). LMNs originate in the brain stem

(bulbar motor neurons) and innervate muscles involved in movements of the face and

tongue, and control speaking, chewing and swallowing. Those LMNs that originate

in the spinal cord (anterior horn cells) innervate larger limb muscles that control

movements such as walking and writing (Kiernan et al., 2011). Figure 1.1 loosely

depicts these characteristics.

Loss of UMNs leads to muscle spasticity, weakness and brisk deep tendon reflexes,

while LMN loss is generally associated with muscle fasciculation, cramps, wasting

and weakness (Kiernan et al., 2011; Swinnen and Robberecht, 2014; Tiryaki and

Horak, 2014). The two restricted MND phenotypes, primary lateral sclerosis (PLS)

and progressive muscular atrophy (PMA), involve either purely UMNs or LMNs,

respectively. Disease progression rates vary drastically between these two restricted

phenotypes, with some PLS patients living with slowly progressive disease for up to

twenty years, while disease progresses more rapidly for PMA patients with typical

survival at just five years. Progressive bulbar palsy (PBP) occurs when the bulbar

motor neurons are exclusively lost, which may involve either UMNs, LMNs or both

(Al-Chalabi and Hardiman, 2013; Kiernan et al., 2011).

The most common of the MNDs is amyotrophic lateral sclerosis (ALS), which

affects both the upper and lower motor neurons, with symptoms experienced in both

the limbs and bulbar muscles (Al-Chalabi and Hardiman, 2013; Kiernan et al., 2011).

Most ALS patients die within two to five years of first symptom onset, usually as a

result of associated respiratory failure (Huisman et al., 2011). PLS, PMA and PBP

can all progress to ALS, usually within the first few years after onset (Al-Chalabi and

Hardiman, 2013). A visual summary of the various MND types is presented in Figure

1.1.
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Figure 1.1: Subtypes of motor neuron disease. There are four subtypes of MND,
defined by the involvement of either the upper or lower motor neurons, or both, and the
affected musculature. PLS; primary lateral sclerosis, ALS; amyotrophic lateral sclerosis,
PMA; progressive muscular atrophy and PBP; progressive bulbar palsy. Figure adapted
from Tiryaki and Horak (2014).

1.3 Amyotrophic lateral sclerosis

1.3.1 Clinical features

Great variation is observed among ALS patients in terms of age and site of onset, rate

of progression and prognosis (Ravits and La Spada, 2009). Onset of first symptoms

can occur anywhere between the second and ninth decade of life, though is most often

seen between the ages of 50 to 60 years (Swinnen and Robberecht, 2014). In rare

cases, juvenile ALS is seen in patients under 25 years of age (Swinnen and Robberecht,

2014). Patients with a family history of ALS often have a younger age of onset, with a

mean of 46 years, while sporadic patients have a mean age of onset at 56 years (Tiryaki

and Horak, 2014). Most patients experience their first symptoms in the limbs („70%),

while others have bulbar onset („25%) and in rare cases onset occurs in the trunk

(Tiryaki and Horak, 2014). As described in Section 1.2, patients experience a range

of muscular symptoms according to the type of motor neuron involvement (Kiernan

et al., 2011; Swinnen and Robberecht, 2014; Tiryaki and Horak, 2014). Importantly,

a key feature of disease is the progression and spread of these symptoms (Kiernan
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et al., 2011; Swinnen and Robberecht, 2014). Disease progression is generally very

rapid, with 50% of ALS patients dying within 30 months of onset, and a mere 20%

surviving beyond five years. Shorter survival is associated with older age of onset,

bulbar onset, as well as early onset of respiratory symptoms (Pupillo et al., 2014;

Talbot, 2009). Conversely, predominately UMN involvement, younger age of onset

and delayed formal diagnosis predict longer survival (Pupillo et al., 2014; Talbot, 2009).

Many ALS patients also suffer from some form of cognitive impairment, with

the figure estimated to be as high as 50% (Montuschi et al., 2015; Ringholz et al.,

2005). Reports show that 20-25% of ALS patients experience executive impairment,

while 5-10% exhibit non-executive impairments such as language and memory deficits

(Elamin et al., 2013; Montuschi et al., 2015). Most importantly, 10-15% of ALS

patients meet the criteria for co-morbid frontotemporal dementia (FTD). These two

conditions are considered to be a spectrum of neurodegenerative disease, owing to the

significant co-morbidity between the two, as well as their shared genetic basis, and the

similarities between the observed pathologies in affected neurons (Montuschi et al.,

2015; Phukan et al., 2012; Ringholz et al., 2005).

1.3.2 Epidemiology

ALS is classed as a rare disease, with an estimated worldwide incidence of 1-2

individuals per 100,000 (Marin et al., 2017). However, this figure varies significantly

between populations, and is far greater in Europe and North America compared with

Asia (Marin et al., 2017). In Australia the estimated prevalence is 8.7 individuals per

100,000 (MND Australia; www.mndaust.an.au). The cumulative lifetime risk for ALS

is approximately 1 in 300 (Johnston et al., 2006), and it is estimated that by 2040,

there will be 400,000 ALS patients across the world (Blasco et al., 2016). Men are

more commonly affected than women, with a male to female ratio of 1.6 to 1 (Tiryaki

and Horak, 2014), however in familial cases, this ratio approaches 1 to 1 (Brown and

Al-Chalabi, 2017). Approximately 10% of patients have a relative also affected by

ALS (familial ALS; FALS), while the remaining 90% have no apparent family history

of disease (sporadic ALS; SALS) (Brown and Al-Chalabi, 2017).

While there is still no clear consensus in the literature, it has been suggested that

the incidence of ALS has increased in recent decades (Ingre et al., 2015), implicating

environmental influences on the onset of ALS. Patient exposures to different elements,

www.mndaust.an.au
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chemicals or toxins, and participation in particular activities have been investigated as

potentially predisposing individuals to developing ALS, however, to-date, none have

been definitively shown to increase disease-risk.

A range of environmental factors such as pesticides, Beta-methylamino-L-alanine

(BMAA), heavy metals, viruses, physical activity, body mass index, smoking and

military service have been investigated in ALS patients. While many studies have sug-

gested correlations between these factors and the incidence of disease, evidence against

association has just as often been reported. This lack of consistency casts doubt over

the link existing between these factors and disease (reviewed in Bozzoni et al., 2016;

Ingre et al., 2015; Oskarsson et al., 2015; Trojsi et al., 2013). It is exceedingly difficult

to determine which environmental factors are truly associated with disease and which

associations are purely circumstantial (Brown and Al-Chalabi, 2017). This stems

from there being a plethora of possible environmental risk agents, their potential to

interact with each other and with genetic risk factors, as well as a probable biased

representation of patients with a longer disease course presenting at clinics (Brown and

Al-Chalabi, 2017). As such, future studies investigating environmental contributions

to disease-risk need to be expanded to larger cohorts and include patients with a full

range of ALS phenotypes. Further, as these environmental contributions are likely

to interact with genetic ALS risk factors, they may partially explain the phenotypic

variability observed between patients, particularly those carrying identical causal gene

mutations.

1.3.3 Treatment

Despite over 60 molecules having been investigated as ALS drug treatments, there are

still no pharmaceuticals available that markedly improve life expectancy or quality of

life for ALS patients (Petrov et al., 2017). To-date, the most successful pharmaceutical

intervention has been riluzole, an anti-glutamate agent that blocks glutamate related

excitotoxicity through its inactivation of sodium channels (Bryson et al., 1996), though

whether this property underlies its therapeutic action in ALS remains unknown. The

first clinical trial of riluzole began in 1990 and reported marginal improvements to

survival (Bensimon et al., 1994). However, it is widely accepted that the effect of

riluzole is quite modest, slowing disease progression to extend survival by only two to

three months (Miller et al., 2007). More recently, edaravone was approved as an ALS

treatment in the USA. After originally being developed to treat stroke, edaravone was
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trialled in ALS owing to its free-radical scavenging behaviour. The hypothesis was

that the removal of free radicals may have a protective effect on motor neurons, in

accordance with the role of the SOD1 protein in free-radical processing, and the major

role of SOD1 gene mutations in ALS (discussed in Section 1.4.1.1). While edaravone

has been demonstrated to improve patient mobility, its effect on survival remains to

be seen (Abe et al., 2017), and clinical trials suggest that beneficial effects may be

limited to a small subset of patients meeting strict genetic criteria (Kiernan, 2018).

Though we are yet to find a broadly applicable drug treatment for ALS, there are a

number of promising clinical trials in progress, including antisense oligonucleotides

for SOD1 (Miller et al., 2013) and C9orf72 (Donnelly et al., 2013; Riboldi et al., 2014).

As we wait for the development of more effective pharmaceutical interventions

targeting the effectors of disease, ALS patients have the option to use medical

equipment and other strategies to improve their comfort while living with disease.

The best outcomes are seen when a multidisciplinary approach is taken for patient

care. This involves a range of health professionals including specialist neurologists,

nurses, physiotherapists, occupational therapists, neuropsychologists, speech ther-

apists, respiratory physicians and gastroenterologists. By utilising these different

disciplines, symptoms may be alleviated so that patients are able to experience a bet-

ter quality of life than they would otherwise (Kiernan, 2018; Turner and Kiernan, 2015).

1.3.4 Pathology

Death of both the UMNs and LMNs is the defining pathological feature of ALS

(Brown and Al-Chalabi, 2017). As the corticospinal neurons (those UMNs projecting

from cortical regions through the brainstem into the spinal tract) degenerate, their

descending axons in the lateral spinal cord become scarred (sclerosis), and as the

spinal motor neurons die, secondary denervation occurs causing muscle wasting

(amyotrophy) (Taylor et al., 2016).

The hallmark pathological feature of post-mortem ALS patient tissue is the

presence of ubiquitinated protein aggregates, or inclusions, of misfolded proteins in

the affected motor neurons (Forman et al., 2004; Leigh et al., 1989). In most patients,

these protein aggregates contain the transactive response DNA-binding protein 43

(TDP-43). However, TDP-43 is absent from protein inclusions observed in patients

with causal mutations in SOD1 or FUS (discussed in Section 1.4.1). In patients with
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TDP-43 pathology, the TDP-43 protein is typically cleaved, hyperphosphorylated, and

mislocalised to the cytoplasm (Neumann et al., 2006). A number of other proteins

have also been found within these neuronal inclusions, such as ubiquilin 2 (UBQLN2;

Deng et al., 2011), fused in sarcoma (FUS; Neumann et al., 2011) and sequestosome

1 (p62; Taylor et al., 2016), among others. Some patients with TDP-43 pathology

also have additional, unique pathological features. For example, patients carrying a

pathogenic expansion in the C9orf72 gene also have aggregates of dipeptide repeat

proteins in the cerebellum and hippocampus (Brown and Al-Chalabi, 2017). Bunina

bodies, or eosinophilic intraneuronal inclusions, in the remaining lower motor neurons

are considered another hallmark feature of the disease (Okamoto et al., 2008).

1.3.5 Concepts of ALS pathogenesis

Both genetic and phenotypic heterogeneity are abundant among ALS patients, and the

underlying pathological mechanisms of disease remain to be defined. However, there is

a distinct convergence of the molecular processes implicated as playing an important

role in ALS pathogenesis. These include RNA misprocessing, disrupted protein

homeostasis, excitotoxicity, endoplasmic reticulum (ER) stress, Golgi fragmentation,

and mitochondrial dysfunction (Brown and Al-Chalabi, 2017; Taylor et al., 2016;

Therrien et al., 2016). The roles of these processes are not mutually exclusive, thus

there is potential for the interplay between them to contribute to pathogenesis (Brown

and Al-Chalabi, 2017). For example, abnormal RNA-binding proteins have been

found within the protein aggregates seen in affected motor neurons, suggesting that

degradation of RNA-binding proteins is compromised during the pathogenic process

(Ling et al., 2013). Interestingly, many genes harbouring ALS causal mutations have

roles in RNA processing and/or protein homeostasis (discussed in Sections 1.3.5.1 and

1.3.5.2).

1.3.5.1 RNA homeostasis and trafficking

The term RNA processing encompasses a range of different events including regulation

of transcription and translation, pre-mRNA processing and splicing, and RNA

transport. The key commonality underlying these processes is their reliance on

RNA-binding proteins.

The major contribution of RNA processing defects to ALS pathogenesis was first
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realised with the discovery of ALS mutations in two genes, TARDBP (encoding

TDP-43) and FUS, both of which encode RNA-binding proteins. In addition to these

seminal discoveries, other RNA-binding proteins including hnRNPs (Kim et al., 2013),

TAF15 (Couthouis et al., 2011; Ticozzi et al., 2011), EWSR1 (Couthouis et al., 2012),

ANG (Greenway et al., 2006), SETX (Chen et al., 2004) and ATXN2 (Elden et al.,

2010) have also been implicated in ALS, reinforcing the crucial role of aberrant RNA

processing in disease. These proteins have varied roles in gene splicing, microRNA

(miRNA) production and axonal processes (Brown and Al-Chalabi, 2017). However,

the commonalities between these proteins is not limited to their ability to bind RNA.

They also share a propensity to bind other proteins through low complexity prion-like

protein domains, in which most of their ALS causal mutations are located (Brown and

Al-Chalabi, 2017; Kim et al., 2013; Robberecht and Philips, 2013). It appears that

the ALS-linked mutations increase the binding propensity of these domains, causing

self-binding and the formation of protein aggregates (Kim et al., 2013; Robberecht and

Philips, 2013). Aggregates of RNA-binding proteins may also incorporate into stress

granules, which are cytoplasmic complexes containing untranslated RNA transcripts

encoding messenger ribonucleoproteins (Monahan et al., 2016; Protter and Parker,

2016).

The most common known cause of ALS, a hexanucleotide repeat expansion

in C9orf72 (see Section 1.4.1.4), has also been suggested to elicit its pathogenic

effect through RNA-related processes. These hypotheses suggest the underlying

pathogenic mechanism of expanded C9orf72 alleles is mediated by either RNA foci or

dipeptide repeat proteins (DPRs). RNA foci form when antisense expanded C9orf72

transcripts are deposited within the nucleus, and subsequently sequester nuclear

proteins (Zu et al., 2013). DPRs are highly prone to aggregation and are produced by

repeat-associated non-AUG (RAN) translation of the C9orf72 repeat expansion (Ash

et al., 2013; Mori et al., 2013a,b; Zu et al., 2013). A recent study by Kramer et al.

(2018) investigating DPR toxicity found interplay between processes such as nucleo-

cytoplasmic transport, RNA-processing pathways and chromatin modification, which

affected the normal functioning of the ER and proteasome. This finding adds further

support to the interaction between the different molecular processes implicated in ALS.

1.3.5.2 Protein homeostasis

Clearance of damaged, misfolded, aggregated and unnecessary proteins is imperative

to maintain protein homeostasis for proper cellular function (Vilchez et al., 2014).
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The two pathways that are primarily responsible for the degradation of abnormal

proteins are the ubiquitin-proteasome system (UPS) and autophagy (Tanaka and

Matsuda, 2014). Within the UPS, chaperone proteins recognise poly-ubiquitinated

proteins that have been tagged for degradation and transport them to the proteasome

to be unfolded and proteolysed (Finley, 2009). Autophagy is a normal physiological

process dealing with the destruction of damaged proteins. However, it is induced

and upregulated during periods of cellular stress, including ER stress, and in the

presence of protein aggregates. It involves the formation of an autophagosome, which

engulfs the damaged or dysfunctional protein, then fuses with a lysosome to form

an autolysosome in which protein degradation occurs (Tanaka and Matsuda, 2014).

During the human aging process, the efficiency of these systems decline and damaged

proteins are more likely to accumulate (Vilchez et al., 2014).

As described in Section 1.3.4, protein aggregates are a key pathological feature

of ALS. While it remains to be established whether protein aggregates in affected

motor neurons are a cause of or consequence of disease, their presence implicates the

important role of aberrant protein homeostasis in ALS (Therrien et al., 2016). Abnor-

mal protein degradation is further implicated in disease by ALS-linked mutations in

multiple genes encoding proteins that play key roles in protein degradation, including

those involved with the UPS such as UBQLN2 (Deng et al., 2011; Williams et al.,

2012b), OPTN (Maruyama et al., 2010), VCP (Johnson et al., 2010) TBK1 (Cirulli

et al., 2015; Williams et al., 2015), CCNF (Williams et al., 2016b) and SQSTM1

(Fecto et al., 2011), as well as autophagy related genes including CHMP2B (Parkinson

et al., 2006; van Blitterswijk et al., 2012b) and FIG4 (Chow et al., 2009).

1.4 Genetics of ALS

The genetic contribution to ALS was first acknowledged through the observation that

a significant number of patients came from families where other members had also been

diagnosed with ALS. It is generally accepted that approximately 10% of ALS patients

have a family history of disease, and are classified as familial (Renton et al., 2014),

although this figure can range from 5 to 20%, depending on the criteria used to define

familial disease (Al-Chalabi et al., 2017, discussed in Section 1.6.1). The majority of

ALS families show an autosomal dominant Mendelian pattern of inheritance, though

reduced penetrance within families is often observed. The remaining 90% of ALS

patients have no known family history of ALS. However, misclassification of ALS
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patients is quite common, as ascertainment of a complete family history is often not

possible beyond immediate family members. This is compounded by the fact that

FALS and SALS are clinically and pathologically indistinguishable (Andersen and

Al-Chalabi, 2011).

Genetic investigations of ALS patients and families have implicated over 50 genes

in the disease, however the causality of many of these genes is questionable (Taylor

et al., 2016). Table 1.1 summarises those genes that have the strongest evidence

supporting their role in ALS pathogenesis. The genetic heterogeneity of ALS is evident

with at least 25 genes harbouring mutations that cause ALS and a further 12 genes

associated with disease. To-date, these genetic mutations are the only proven cause

of ALS. Among Australian ALS, approximately 60% of FALS patients carry a known

ALS mutation (Paper I, McCann et al., 2017), while this figure is approximately 10%

for sporadic patients (Paper I, McCann et al., 2017, unpublished data). The genes

harbouring mutations that cause ALS have provided the basis for most downstream

ALS research, and have greatly enhanced our understanding of disease pathogenesis.

1.4.1 Familial ALS

Most ALS families carry autosomal dominant mutations that cause ALS, though X-

linked and rare autosomal recessive mutations have also been reported. As a late onset

disease with a highly variable age of onset, some family members who carry a causal

ALS mutation die of other causes before they reach the age at which they may have

developed disease. This means that incomplete penetrance is a common feature of

many ALS family pedigrees.

The first gene to be identified with mutations that cause ALS was the copper/zinc

superoxide dismutase gene, SOD1 (Rosen, 1993). The next major breakthrough came

15 years later with the discovery of pathogenic mutations in TARDBP, which encodes

the RNA-binding protein, TDP-43 (Sreedharan et al., 2008). TDP-43 had previously

been identified as the principle component of the protein aggregates observed in

post-mortem ALS patient motor neurons (Neumann et al., 2006). Soon after,

mutations were identified in the FUS gene that encodes the fused in sarcoma protein,

an RNA-binding protein functionally similar to TDP-43 (Kwiatkowski et al., 2009;

Vance et al., 2009). In 2011, the most common known cause of ALS was identified

as a hexanucleotide repeat expansion in the C9orf72 gene (DeJesus-Hernandez et al.,

2011; Renton et al., 2011). These four genes are the most common known ALS
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Table 1.1: Summary of currently known familial ALS genes.
Gene symbol Gene name Gene locus Inheritance No. of

mutations*
Estimated
% FALS

Discovery Pathway involvment Reference

ALS2 Alsin 2q33.1 AR, juvenile 28 unknown linkage regeneration & motorneuronal death (Hadano et al., 2001)
ANG angiogenin 14q11.2 AD 29 ă1% candidate gene altered DNA/RNA processing (Greenway et al., 2006)
C9orf72 Chromosome 9 open reading

frame 72
9p21.3p13.3 AD 1 40–50% linkage, family NGS altered DNA/RNA processing (DeJesus-Hernandez et al., 2011; Renton et al., 2011)

CCNF Cyclin F 16p13.3 AD N/A ă1% linkage, family NGS cell cycle, protein ubiquitination (Williams et al., 2016b)
CHCHD10 Coiled-coil-helix-coiled-coil-helix

domain containing 10
22q11.23 AD 5 ă1% family NGS mitochondria (Bannwarth et al., 2014)

DCTN1 Dynactin 1 2p13.1 AD 7 N/A candidate gene axonal transport & vesicle trafficking (Puls et al., 2003)
ERBB4 Erb-b2 receptor tyrosine kinase 4 2q34 AD 2 ă1% linkage, family NGS neuregulin-ErbB4 pathway (Takahashi et al., 2013)
FIG4 FIG4 phosphoinositide 5-

phosphatase
6q21 AD 10 unknown candidate gene cell death (Chow et al., 2009)

FUS Fused in sarcoma 16p11.2 AD 80 1–5% candidate gene altered DNA/RNA processing (Kwiatkowski et al., 2009; Vance et al., 2009)
GLE1 GLE1, RNA export mediator 9q34.11 AD 3 unknown family NGS altered DNA/RNA processing (Kaneb et al., 2015)
HNRNPA1 heterogeneous nuclear ribonucle-

oprotein A1
12q13.13 AD 2 unknown candidate gene, family NGS altered DNA/RNA processing (Kim et al., 2013)

MATR3 Matrin 3 5q31.2 AD 4 ă1% family NGS altered DNA/RNA processing (Johnson et al., 2014b)
OPTN Optinuerin 10p15p14 AR, AD 39 ă1% homozygosity mapping protein homeostasis (Maruyama et al., 2010)
PFN1 Profilin 1 17p13.2 AD 12 unknown family NGS cytoskeleton & cellular transport (Wu et al., 2012a)
SETX Senataxin 9q34 AD, juvenile 8 ă1% linkage altered DNA/RNA processing (Chen et al., 2004)
SOD1 superoxide dismutase 1 21q22.1 AD # 185 20% linkage Oxidative stress (Rosen, 1993)
SS18L1 Synovial sarcoma translocation

gene on chr18-like 1
20q13.33 AD, de novo 3 unknown family NGS chromatin remodelling (Chesi et al., 2013)

SQSTM1 Sequestosome 1 5q35 AD 17 N/A candidate gene proteostatic proteins (Fecto et al., 2011)
TAF15 TATA-box binding protein asso-

ciated factor 15
17q11.1q11.2 AD 7 unknown candidate gene altered DNA/RNA processing (Couthouis et al., 2011)

TARDBP TAR DNA binding protein 1p36.2 AD 53 1–5% linkage, candidate gene altered DNA/RNA processing (Sreedharan et al., 2008)
TIA1 T-cell-restricted intracellular

antigen-1
2p13.3 AD ă2% family NGS altered DNA/RNA processing (Mackenzie et al., 2017)

TBK1 TANK-binding kinase 1 12q14.2 AD 18 ă1% NGS burden analysis protein homeostasis (Cirulli et al., 2015; Freischmidt et al., 2015)
UBQLN2 Ubiquilin 2 Xp11 XD 26 ă1% family NGS protein homeostasis (Deng et al., 2011)
VAPB VAMP-associated protein B & C 20q13.3 AD 2 unknown candidate gene axonal transport & vesicle trafficking (Nishimura et al., 2004)
VCP Valosin containing protein 9p13 AD 7 ă1% candidate gene protein homeostasis (Johnson et al., 2010)
Genes associated with ALS
ATXN2 Ataxin 2 12q24 AD 9 N/A candidate gene oxidative stress (Elden et al., 2010)
C21orf2 Chromosome 21 open reading

frame 2
21q22.3 sporadic N/A N/A family NGS association unknown (van Rheenen et al., 2016)

CHMP2B Chromatin modiftying protein 2B 3p11 AD 6 N/A linkage, candidate gene proteostatic proteins (Parkinson et al., 2006)
DAO D-amino-acid oxidase 12q24 AD 2 N/A linkage, candidate gene excitotoxicity (Mitchell et al., 2010)
ELP3 Elongator acetyltransferase com-

plex subunit 3
8p21.1 sporadic 0 N/A mirosatellite, GWAS projection neurons maturation (Simpson et al., 2009)

GPX3-TNIP1 Glutathione peroxidase 3 & TN-
FAIP3 Interacting Protein 1

5q33.1 AD N/A N/A GWAS oxidative damage (Benyamin et al., 2017)

NEFH Neurofilament, heavy polypep-
tide

22q12.2 sporadic 11 N/A candidate gene cytoskeleton & microtubule (Figlewicz et al., 1994)

NEK1 NIMA Related Kinase 1 4q33 - N/A N/A NGS burden analysis cell cycle regulation (Kenna et al., 2016)
P4HB prolyl 4-hydroxylase, beta

polypeptide
17q25.3 - N/A N/A association analysis enzyme (Kwok et al., 2013)

PRPH Peripherin 12q13.12 sporadic 0 N/A candidate gene cytoskeleton (Gros-Louis et al., 2004)
TUBA4A Tubulin, alpha 4A 2q35 - 12 N/A NGS burden analysis cytoskeleton & microtubule (Smith et al., 2014)
UNC13A Protein Unc-13 Homolog A 19p13.11 sporadic 0 N/A association analysis regulates release of neurotransmitters (van Es et al., 2009)
*The ALS Online Genetics Database (ALSoD), 2018 (http://alsod.iop.kcl.ac.uk/; Abel et al., 2013).
# p.D90A mutation is recessive in Scandinavian populations.
Abbreviations: AD, autosomal dominant; AR, autosomal recessive; XD, X-linked dominant; N/A, absent; NGS, next-generation sequencing; and GWAS, genome-wide association study.

http://alsod.iop.kcl.ac.uk/ 
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genes, together accounting for more than 50% of all FALS cases. Consequently, these

genes have formed the basis of most downstream investigations to understand disease

pathogenesis (Renton et al., 2014).

Traditionally, gene discovery in FALS relied heavily on family-based linkage

studies and candidate gene approaches. However, the advent of next-generation

sequencing (NGS) has allowed the collection of genetic data from an unprecedented

number of patients, thus facilitating the identification of dozens more genes causing,

predisposing to, or associated with ALS (Chia et al., 2018). It is however, incredibly

important that new genetic discoveries are given equal scrutiny as those that were

initially reported. Alarmingly, some genetic variants in ALS genes are immediately

deemed pathogenic upon identification in one patient, without rigorous validation

including segregation analysis and/or absence in sufficient numbers of control individu-

als from relevant populations (Al-Chalabi et al., 2017; Andersen and Al-Chalabi, 2011).

1.4.1.1 SOD1

Discovery

In 1991, a collaborative effort used linkage analysis in 18 ALS pedigrees to identify

the first ALS-linked locus on the long arm of chromosome 21 (Siddique et al., 1991).

This led to the investigation of SOD1 as a candidate gene, due to its proximity to the

microsatellite marker that showed the strongest linkage to disease. A genetic screen

of SOD1 revealed 11 missense mutations segregating with ALS in 13 different ALS

families (Rosen, 1993).

ALS mutations

Since the initial report 25 years ago, over 180 different ALS mutations have been

reported in SOD1, almost all of which are missense mutations with an autosomal

dominant pattern of inheritance, though many lack supportive segregation data

(Boylan, 2015; Chio et al., 2008; Dion et al., 2009; Renton et al., 2014; Robberecht

and Philips, 2013; Sreedharan and Brown, 2013). These mutations are found across

most regions of the 153 amino acid SOD1 protein (Taylor et al., 2016). Mutations in

SOD1 account for approximately 12% of familial cases with European ancestry (Paper

I; McCann et al., 2017, Boylan, 2015; Renton et al., 2014) and almost 30% of FALS

patients with Asian ancestry (Hou et al., 2016; Kwon et al., 2012; Nishiyama et al.,

2017). Most SOD1 mutations are highly penetrant, however reduced penetrance has

been observed (Dion et al., 2009). Interestingly, rare recessive SOD1 mutations have
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also been reported, including the p.D90A variant, which was previously considered a

benign polymorphism before being identified in a homozygous state in Scandainavian

ALS patients (Andersen et al., 1996).

Clinical features

Almost all SOD1 patients present with classical ALS, generally with limb onset.

Frontotemporal impairment is exceptionally rare in these patients (Abel et al.,

2012; Andersen and Al-Chalabi, 2011; Boylan, 2015; van Es et al., 2010). However,

phenotypic heterogeneity is common both within and between families, including

variable age and site of onset and disease duration, (Boylan, 2015). For example,

particular SOD1 mutations have been associated with late age of onset (p.I114T,

Paper I; McCann et al., 2017, Al-Chalabi and Hardiman, 2013) and prolonged

(p.D90A, Andersen et al., 1996) or rapid (p.A4V, Cudkowicz et al., 1997) disease

course.

Function and pathology

The SOD1 protein is ubiquitously expressed in all tissue types and has a highly

conserved amino acid sequence across most species (Fridovich, 1995). The main role

of SOD1 is to defend against oxygen free radical toxicity (Saccon et al., 2013). SOD1

forms a homodimer upon binding copper and zinc ions, and functions as a dismutase

by metabolising superoxide radicals to molecular oxygen and hydrogen peroxide

(Saccon et al., 2013).

The pathogenic mechanism by which SOD1 mutations cause ALS is yet to be

established, though it is thought to act through a toxic gain-of-function mechanism

(Andersen and Al-Chalabi, 2011). A range of evidence supports this hypothesis.

Firstly, overexpression of the mutant SOD1 protein in numerous transgenic animal

models results in development of ALS-like phenotypes (Deng et al., 2006; Gurney et al.,

1994; Reaume et al., 1996; Wong et al., 1995). Further, there is no correlation between

a reduction in SOD1 activity and disease severity, based on analysis in patient derived

red blood cell or lymphoblast extracts (Cleveland et al., 1995). Specific mechanisms

proposed to mediate the pathogenesis of SOD1 mutations include excitotoxicity,

oxidative stress, ER stress, mitochondrial dysfunction, axonal transport disruption,

prion-like propagation, and non-cell autonomous toxicity of neuroglia (Hayashi et al.,

2016).

Patients with SOD1 mutations present with a unique pathology of protein
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aggregates in their affected motor neurons that are negative for TDP-43, and instead

carry ubiquitinated cytoplasmic SOD1-positive Lewy-body-like hyaline inclusions

(Al-Chalabi and Hardiman, 2013; Keller et al., 2012; Mackenzie et al., 2007; Shibata

et al., 1996; Tan et al., 2007). This distinct pathology suggests that the mechanism

causing SOD1 -linked ALS is likely different to that underlying the majority of ALS

cases that demonstrate TDP-43 pathology (Andersen and Al-Chalabi, 2011).

1.4.1.2 TARDBP

Discovery

The TARDBP gene encoding TDP-43 was investigated as a candidate ALS gene

following the landmark discovery that TDP-43 is the major constituent of the

ubiquitinated protein inclusions found in the affected motor neurons of most ALS

patients (Neumann et al., 2006). A total of 154 index FALS and 397 SALS patients

were screened for genetic variants in TARDBP, resulting in the identification of

missense variants in two SALS patients, and one FALS patient (Sreedharan et al.,

2008). Segregation of the FALS mutation was established when four additional

affected family members were found to carry an identical variant (Sreedharan et al.,

2008). Subsequently, a genome-wide scan within the extended pedigree confirmed

that genetic linkage of disease was restricted to a genomic region encompassing the

TARDBP gene (Sreedharan et al., 2008). Functional in vitro studies supported the

role of these mutations in ALS pathogenesis by showing increased fragmentation of

mutant TDP-43 compared to wild-type, and further demonstrating that TARDBP

mutations cause neuronal apoptosis (Sreedharan et al., 2008). Soon after, a second

study reported eight additional missense variants in TARDBP, three of which were

found within ALS families and five in sporadic cases (Kabashi et al., 2008).

ALS mutations

At least 40 mutations have been reported in TARDBP among autosomal dominant

ALS families and SALS patients, with the vast majority of these found within the

C-terminal glycine-rich domain (Chen-Plotkin et al., 2010; Lattante et al., 2013;

Robberecht and Philips, 2013; Therrien et al., 2016). Most are missense mutations

(Robberecht and Philips, 2013), however some deletions leading to truncated pro-

teins have been reported (Renton et al., 2014; Solski et al., 2012). It is estimated

that TARDBP mutations account for approximately 3-4% of FALS (Chio et al.,

2012; Kabashi et al., 2008; Lattante et al., 2013), and 0.5-2% of SALS (Boylan,

2015; Chio et al., 2012; Kabashi et al., 2008; Lattante et al., 2013), although
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geographical variation is apparent, such as the high frequency of the p.A382T

mutation in Sardinia (Boylan, 2015; Chio et al., 2011a; Lattante et al., 2013; Renton

et al., 2014). TARDBP mutations have been identified in patients of various ancestries.

Clinical features

Classical ALS with limb onset is generally observed among TARDBP mutation

carriers, with some reports of extended survival compared to SALS patients who are

negative for known ALS mutations. Some rare TARDBP patients have reportedly

experienced symptoms of FTD or Parkinson’s disease (Boylan, 2015; Corcia et al.,

2012; Lattante et al., 2013).

Function and pathology

TDP-43 is an ubiquitously expressed RNA-binding protein, closely resembling the

family of heterogeneous nuclear ribonucleoproteins (hnRNPs). It plays roles in

transcriptional repression and activation, mRNA splicing and nucleo-cytoplasmic

RNA transport (Chen-Plotkin et al., 2010; Wang et al., 2008; Warraich et al., 2010).

The ALS pathogenic mechanism induced by TARDBP mutations is still heavily

debated (Feneberg et al., 2018). A loss of function mechanism is supported by the

development of ALS relevant pathology in full and partial TDP-43 knockdown in

vitro (Schwenk et al., 2016) and in vivo (Schmid et al., 2013; Wu et al., 2012b)

models. For example, TDP-43 knockdown in cell models caused impairments in

RNA-binding capacity and splicing activities (Schwenk et al., 2016), while progressive

motor dysfunction has been induced by selective and ubiquitous silencing of TARDBP

in mice (Wu et al., 2012b) and zebrafish (Schmid et al., 2013), respectively. On

the other hand, mutant TDP-43 overexpression in animals and cell lines has led

to a range of ALS specific changes such as mislocalisation and nuclear clearance

of endogenous TDP-43, phosphorylation of TDP-43 and formation of ubiquitinated

TDP-43 positive aggregates (Igaz et al., 2009; Kabashi et al., 2010; Nonaka et al., 2009).

Though it remains to be seen whether TDP-43 aggregates are a cause or con-

sequence of disease, the underlying mechanism of aggregate formation is certainly

significant for a better understanding of ALS pathogenesis. As discussed in Section

1.3.5.1, the glycine-rich C-terminal domain of TDP-43 is suspected to play an integral

role in the contribution of this protein to ALS pathogenesis. This domain has the

ability to act as a prion-like domain, which may act as a template to induce conversion

of natively folded proteins and cause entrapment and aggregation (Kim et al., 2013;
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Robberecht and Philips, 2013). Induction of aggregate formation by prion-like domains

is further supported by the presence of prion-like domains in other ALS proteins,

including FUS, TAF15, hnRNPA1, hnRNPA2/B1 and EWSR1.

The ALS hallmark TDP-43 positive protein aggregates observed in the cytoplasm

and glia of affected motor neurons (described in Section 1.3.4) are observed in 98% of

all ALS patients, including those with causal mutations in TARDBP (Chen-Plotkin

et al., 2010; Feneberg et al., 2018; Lomen-Hoerth et al., 2002; Van Deerlin et al.,

2008). Further, it has been suggested the TDP-43 positive inclusions may actually be

more abundant in patients with TARDBP mutations compared to other ALS patients

(Van Deerlin et al., 2008).

1.4.1.3 FUS

Discovery

Soon after ALS mutations were identified in TARDBP, two groups independently

investigated FUS as a candidate ALS gene. An ALS-linked locus on the long arm of

chromosome 16 was initially reported by Ruddy et al. (2003), and was further refined to

a genomic region containing 400 genes by Vance et al. (2009). Following investigation

of six candidate genes, a single point mutation was identified in FUS (Vance et al.,

2009). This mutation segregated with disease in all six affected family members. A

further four families also carried this mutation, and two additional FUS mutations

were found within unrelated families and probands (Vance et al., 2009). Kwiatkowski

et al. (2009), used loss of heterozygosity (LOH) mapping in a consanguineous family,

to also link disease to chromosome 16. Subsequent screening of FUS identified a

novel homozygous mutation, while another two FUS mutations were found in two

more families whom also showed genetic linkage to chromosome 16 (Kwiatkowski

et al., 2009). Additional FALS patient screening revealed more novel variation in FUS

and a total of 13 distinct FUS mutations in 17 ALS kindreds (Kwiatkowski et al., 2009).

ALS mutations

To-date, at least 58 mutations in FUS have been identified (Deng et al., 2014;

Lattante et al., 2013). Interestingly, residue 521 of the FUS protein is the most

frequently mutated FUS residue among ALS patients, with five different amino acid

substitutions reported at this position. Similar to TARDBP, the majority of FUS

validated mutations occur in the glycine-rich RNA-binding C-terminal domain of the

protein (Blair et al., 2010; Deng et al., 2014; Renton et al., 2014). While most reported
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FUS mutations are autosomal dominant point mutations (including missense and

splicing), some structural variations have also been reported (Boylan, 2015; Chio et al.,

2009b; Conte et al., 2012; Deng et al., 2014; Lattante et al., 2013; Zou et al., 2013).

Recessive inheritance has also been observed for FUS (Kwiatkowski et al., 2009).

Approximately 4% and 1% of familial and sporadic patients carry a FUS mutation

respectively (Boylan, 2015; Deng et al., 2014; Renton et al., 2014). Interestingly, a

number of FUS mutations have been reported to occur de novo (Chio et al., 2011b;

DeJesus-Hernandez et al., 2010; Zou et al., 2013).

Clinical features

FUS mutations are commonly associated with more aggressive forms of ALS, including

juvenile ALS (Andersen and Al-Chalabi, 2011; Conte et al., 2012; Zou et al., 2013).

FUS mutations are also associated with bulbar onset, early onset and a rapid disease

course (Paper I; McCann et al., 2017, Lattante et al., 2013; Millecamps et al., 2010).

Cognitive impairment is also observed in rare FUS cases (Blair et al., 2010; Deng

et al., 2014; Lattante et al., 2013).

Function and pathology

FUS belongs to the FET protein family of highly conserved RNA-binding proteins

that also includes EWS and TAF15 (Tan and Manley, 2009). FUS is a predominately

nuclear protein, but shuttles between the nucleus and cytoplasm (Zinszner et al.,

1997). It contains multiple protein domains, including an N-terminal transcriptional

activation domain rich in serine, tyrosine, glycine and glutamine (SYGQ); a RNA-

recognition motif (RRM); three arginine glycine glycine repeat regions (RGG1-3);

a zinc-finger motif; and a highly conserved non-classical nuclear localisation signal

domain located in the C-terminus (Deng et al., 2014). FUS targets thousands of RNA

molecules by binding through its RRM domain (Daigle et al., 2013). It plays a role

in RNA transcription, splicing, transport and processing (Boylan, 2015; Deng et al.,

2014; Yang et al., 2010).

FUS mediated toxicity is thought to be related to factors including its propensity

for stress granule formation, its prion-like domain and arginine methylation (Deng

et al., 2014). FUS knockdown mouse models do not show any ALS related abnor-

malities (Kino et al., 2015; Sharma et al., 2016), suggesting that FUS is not acting

through a loss-of-function pathogenic mechanism. However, transgenic mouse models

carrying ALS-linked FUS mutations have been shown to develop progressive motor

neuron degeneration, implicating a toxic gain-of-function (Sharma et al., 2016). The
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toxic activity of mutant FUS is at least in part mediated by its ability to bind RNA,

as deletion of the RRM domain renders the protein incapable of causing neurological

defects (Daigle et al., 2013). Further, mutant FUS is prone to mislocalisation to

the cytoplasm (Dormann et al., 2010), where it is exposed to a unique set of RNA

substrates, potentially leading to toxic interactions. It has also been shown that

mutant FUS has stronger affinity for the survival of motor neuron (SMN) protein

(implicated in spinal muscular atrophy) than wild-type FUS (Chari et al., 2009) and

affects SMN related spliceosome activity (Sun et al., 2015) and transport to axons

(Groen et al., 2013). As described for TARDBP (Section 1.4.1.2), FUS mutants are

also thought to promote aggregation through the prion-like domain of their aberrant

protein products (Kim et al., 2013; Robberecht and Philips, 2013).

Post-mortem studies suggest that motor neuron loss in FUS patients is most

extensive in the spinal cord and brain stem, and less pronounced in the motor cortex

(Deng et al., 2014). Unlike most ALS patients, FUS patients have ubiquitinated pro-

tein aggregates that are negative for TDP-43, though positive for FUS (Kwiatkowski

et al., 2009; Vance et al., 2009). Another interesting observation is the presence of

basophilic inclusions in FUS p.R525L patients, that appear to be absent from other

FUS mutation carriers, though variably observed among other ALS patient subsets

(reviewed by Deng et al., 2014). These observations, together with links between FUS

and stress granules (Vance et al., 2013), suggest that a gain-of-function pathogenic

mechanism is most likely underlying FUS mediated toxicity.

1.4.1.4 C9orf72

Discovery

Between 2007 and 2011, multiple genetic linkage studies of kindreds with inheritance of

ALS, ALS/FTD and FTD identified a locus on the short arm of chromosome 9 (Boxer

et al., 2011; Gijselinck et al., 2010; Le Ber et al., 2009; Luty et al., 2008; Morita et al.,

2006; Pearson et al., 2011; Valdmanis et al., 2007; Vance et al., 2006). Genome-wide

association studies (GWAS) provided further support for this locus (Laaksovirta et al.,

2010; Shatunov et al., 2010; Van Deerlin et al., 2010; van Es et al., 2009). Analysis in

the Finnish population (Laaksovirta et al., 2010) refined the locus to a 232kb linkage

disequilibrium block comprising a 42 SNP risk-haplotype that was later found to be

shared by ALS patients linked to this locus, in populations with European ancestry

(Mok et al., 2012). Two independent groups concurrently reported the identification

of a polymorphic GGGGCC hexanucleotide repeat located between exons 1a and 1b
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of C9orf72 (DeJesus-Hernandez et al., 2011; Renton et al., 2011). The first did so

using deep sequencing of the disease linked region within affected families (Renton

et al., 2011), while the other group conducted haplotype analysis of the intronic region

of C9orf72 in which the expansion was found to lie (DeJesus-Hernandez et al., 2011).

ALS mutations

Expansion of the hexanucleotide repeat in C9orf72 is the most common known

cause of ALS, accounting for up to 40% of FALS cases and 5-10% of SALS patients

with European ancestry (Boylan, 2015; Majounie et al., 2012; Renton et al., 2014),

though it is rare among other patient populations (Majounie et al., 2012; Nishiyama

et al., 2017). Interestingly, SALS patients who carry the expansion also have the

aforementioned 42 SNP risk founder haplotype, suggesting that either some cases are

misclassified FALS patients and/or the mutation is not always completely penetrant

(discussed further in Section 1.6.1). The C9orf72 hexanucleotide repeat is highly

polymorphic, with neurologically normal individuals typically carrying anywhere up

to 20 repeat units (Ng and Tan, 2017), though larger repeats of up to 32 repeat

units have been observed in rare control individuals (Theuns et al., 2014; van der Zee

et al., 2013). Pathogenic repeats cause autosomal dominant inheritance of disease,

and pathogenic alleles are thought to contain more than 30 repeat units (Renton

et al., 2011). However, this number is largely debated, and the number of repeats

required to initiate disease onset remains to be determined (Ng and Tan, 2017).

Importantly, patients with thousands of repeat units have been identified using

Southern blotting (Dols-Icardo et al., 2014). The threshold of 30 repeats is largely

a result of the inability of the repeat primed PCR method (the main technique

routinely used to analyse the expansion) to accurately size expansions larger than

this (Dols-Icardo et al., 2014; Ng and Tan, 2017). Southern blotting techniques have

however detected up to 4,500 repeat units in ALS patients, and data suggest that ALS

patients harbour larger repeat expansions than FTD patients (Dols-Icardo et al., 2014).

Clinical features

Patients carrying the expansion can present with the pure form of either ALS or FTD,

or with co-morbid ALS/FTD (Byrne et al., 2012b; DeJesus-Hernandez et al., 2011;

Majounie et al., 2012; Renton et al., 2011; van Rheenen et al., 2012). Interestingly,

many expansion positive ALS patients also exhibit cognitive deficits, without meeting

the criteria for an FTD diagnosis (Byrne et al., 2012b; van Rheenen et al., 2012). In

rare cases, Parkinson’s and Huntington’s phenotypes are also seen (O’Dowd et al.,

2012; van Rheenen et al., 2012). The disease penetrance of the expansion seems to be
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zero in persons under 35 years of age, reaching 50% penetrance at approximately 60

years, and full penetrance at approximately 85 years (Paper I; McCann et al., 2017

Majounie et al., 2012; Williams et al., 2013). A popular hypothesis is that repeat

expansion size correlates with the phenotypic features of disease including age of

onset, disease progression and presence of cognitive deficits, however as yet there is no

consensus as to whether this is true, as no such correlations have yet been identified

(Dols-Icardo et al., 2014; Gijselinck et al., 2016; Ng and Tan, 2017).

Function and pathology

The C9orf72 protein shows structural similarity to DENN (differentially expressed in

normal and neoplasia) proteins (Burrell et al., 2016). C9orf72 plays roles in nuclear

and endosomal membrane trafficking, actin dynamics and autophagy (Brown and

Al-Chalabi, 2017; Farg et al., 2014; Sivadasan et al., 2016). C9orf72 is transcribed

into three major transcripts, which encode the two protein isoforms, C9orf72 a and b

(Farg et al., 2014). Falling between exons 1a and 1b, the hexanucleotide repeat region

forms part of the functional core promoter, driving expression of all three transcripts

(Gijselinck et al., 2012).

Three major mechanisms have been proposed to underlie the pathogenicity of

hexanucleotide repeat expansions in C9orf72. A gain-of-function toxicity is the

favoured hypothesis, owing to the genetic dominance of the expansions and the

absence of disease in individuals carrying null alleles or missense variants (Taylor

et al., 2016).

Haploinsufficiency of the C9orf72 protein has also been postulated as a mechanism

of action based on observations of reduced levels of C9orf72 mRNA in patient tissues

(Belzil et al., 2013; DeJesus-Hernandez et al., 2011; Gijselinck et al., 2012) as well as

induced pluripotent stem cell derived human motor neurons (Almeida et al., 2013)

and zebrafish (Ciura et al., 2013) models. Reduced expression is likely mediated

through epigenetic mechanisms (Belzil et al., 2013; Gendron et al., 2014). However,

the potential contribution of C9orf72 haploinsufficiency to disease pathogenesis is

unclear, as how the observed reduction in C9orf72 mRNA levels correlate with protein

levels in patients remains unknown (Gendron et al., 2014), while animal models with

reduced C9orf72 expression show variable phenotypes (Burrell et al., 2016; Gendron

et al., 2014; Mizielinska et al., 2014; Taylor et al., 2016).

RNA foci containing both sense (GGGGCC) and antisense (CCCCGG) repeat
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RNA transcripts have been shown to accumulate in neuronal tissue from expansion

carriers (DeJesus-Hernandez et al., 2011). In other neurodegenerative diseases, similar

RNA foci have been shown to cause defects in RNA splicing by sequestration of RNA-

binding proteins to elicit pathogenic effects (La Spada and Taylor, 2010). Further,

RNA-binding proteins with affinity for these repeat sequences have been observed

to co-localise with RNA foci in affected patient tissues (Lee et al., 2013; Xu et al., 2013).

DPRs produced by unconventional translation have also been proposed to mediate

C9orf72 pathogenicity. RAN translation was first observed in spinocerebellar ataxia

type 8, caused by a repeat expansion in ATXN8OS (Zu et al., 2011). This led to the

investigation of RAN translation of expanded GGGGCC repeats in C9orf72, which

revealed RAN translation of both the sense and antisense strand of the expansion in

all six reading frames, facilitating the generation of five distinct DPRs (Mori et al.,

2013b; Zu et al., 2013). In vitro and in vivo evidence indicates that these DPRs are

toxic, forming neuronal cytoplasmic and intranuclear inclusions in affected motor

neurons of the cerebellum, and frontal and temporal lobes (Ash et al., 2013; Gendron

et al., 2013; Mori et al., 2013a,b; Zu et al., 2013). Animal models have demonstrated

that DPR toxicity does appear to induce motor defects (Mizielinska et al., 2014; Ohki

et al., 2017; Swaminathan et al., 2018). It has been demonstrated that the toxicity of

these DPRs is largely attributable to those which contain arginine (Freibaum et al.,

2015; Mizielinska and Isaacs, 2014).

The pathology observed in C9orf72 cases is typical of most ALS patients in that

they carry ubiquitin- and TDP-43-positive protein inclusions (Boylan, 2015; DeJesus-

Hernandez et al., 2011; Mackenzie et al., 2013; Renton et al., 2011). However, many

C9orf72 patients also carry additional star shaped DPR containing protein inclusions

in the cerebellum and frontal and temporal lobes, though these are noticeably absent

from the spinal cord (Boylan, 2015; DeJesus-Hernandez et al., 2011; Mackenzie et al.,

2013; Renton et al., 2011).

1.4.1.5 UBQLN2

Discovery

Deng et al. (2011) identified a five-generation pedigree with 19 ALS patients who

exhibited dominant inheritance of disease, with reduced penetrance in females.

After eliminating known ALS genes, a genome-wide linkage analysis was performed

using autosomal markers but failed to identify a disease-linked locus. Due to the
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observed lack of male-to-male transmission, linkage analysis of the X chromosome

was subsequently conducted, revealing a distinct linkage peak. Detailed mapping

refined the disease-linked locus to a region encompassing 191 protein-encoding genes,

41 of which were sequenced as candidates. This revealed a unique missense mutation

in UBQLN2. Four additional UBQLN2 mutations were subsequently identified

from 188 ALS families negative for known ALS genes and lacking male-to-male

transmission, two of which were supported by segregation, while the other two were

found in probands. Soon after, UBQLN2 mutations were confirmed as a cause of

ALS, when our laboratory used whole-exome sequencing (WES) to identify another

novel missense mutation, present in two multi-generational, apparently unrelated ALS

families (Williams et al., 2012b).

ALS mutations

X-linked dominant mutations in UBQLN2 account for approximately 1% of FALS

patients (Boylan, 2015). At least 16 missense UBQLN2 mutations have been reported

in FALS, SALS and ALS/FTD patients with varied ancestries including Australian,

German, Turkish, Italian, American and French-Canadian (Daoud et al., 2012; Deng

et al., 2011; Fahed et al., 2014; Gellera et al., 2013; Ozoguz et al., 2015; Synofzik et al.,

2012; Williams et al., 2012b). Studies have found UBQLN2 mutations to be absent

from ALS/FTD patient populations from Korea, the Netherlands, France and Ireland

(Kim et al., 2014; McLaughlin et al., 2014; Millecamps et al., 2012; van Doormaal

et al., 2012). Most UBQLN2 mutations identified to-date have been reported within

the proline-rich repeat region of the protein (Deng et al., 2011). Interestingly, a

p.P506S mutation was identified in a large kindred where both males and females

were affected. This family displayed multiple phenotypes including ALS/FTD, spastic

paraplegia, bulbar palsy and multiple sclerosis (Vengoechea et al., 2013).

Clinical features

Most patients with a UBQLN2 mutation have an ALS phenotype, though some do

go on to develop co-morbid FTD or more mild cognitive deficits (Deng et al., 2011;

Renton et al., 2014; Synofzik et al., 2012; Vengoechea et al., 2013; Williams et al.,

2012b). Varied clinical presentation has been observed among UBQLN2 patients,

including earlier onset in male compared to female mutation carriers (Deng et al.,

2011; Williams et al., 2012b). Mutations in this gene generally show quite high disease

penetrance (Williams et al., 2012b).
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Function and pathology

The UBQLN2 protein belongs to the ubiquilin protein family, which is involved in

proteasome-mediated protein degradation. These proteins are characterised by their

ubiquitin-associated (UBA) and ubiquitin-like (UBL) domains that mediate their

degradation activity (Rothenberg et al., 2010). A key function of the UBQLN2 protein

is to recruit autophagosomes to polyubiquitinated aggregates through interactions

involving its UBA domain (Nguyen et al., 2018a). Importantly, within the UBQLN2

protein, this UBA domain sits next to a PXX (proline-X-X aminio acid sequence)

domain, thought to be important for protein-protein interactions (Aitio et al.,

2010; Kleijnen et al., 2000). As previously mentioned, this domain harbours many

disease-causing mutations (Daoud et al., 2012; Gellera et al., 2013; Williams et al.,

2012b).

UBQLN2 mutations are thought to take pathogenic effect through impairment

of the UPS and/or autophagic dysfunction. A study of neuronal cells overexpressing

mutant UBQLN2 showed accumulation of poly-ubiquitinated proteins leading to

inclusion-body formation, and also reduced co-localisation between the UBQLN2

protein and an essential autophagosome-lysosome fusion factor, ATG9/ATG16L1

(Osaka et al., 2016). Mutant forms of UBQLN2 have also been shown to impair

endosomal pathways. A study of a cellular model expressing the ALS mutation

p.E478G, showed inhibition of endosomal vesicle formation and trafficking, and

increased formation of inclusion bodies (Osaka et al., 2015). Further, a rat model

with a p.P497H ALS mutation showed loss of motor neurons and reduced levels of

the early endosome antigen 1, indicating impaired endosomal function, which may

underlie motor neuron loss (Wu et al., 2015).

The TDP-43 positive protein aggregates that are found in the motor neurons

of the majority of ALS patients, including those carrying UBQLN2 mutations, are

also immunoreactive for the UBQLN2 protein (Boylan, 2015; Renton et al., 2014;

Williams et al., 2012b). Williams et al. (2012b) observed compact and skein-like

inclusions in spinal cord tissue from a UBQLN2 mutation carrier, and showed

these inclusions also contained ubiquitin, TDP-43 and FUS. Axonal loss in the

corticospinal tract, loss of anterior horn cells and astrocytosis has also been reported

in post-mortem spinal cord tissue from UBQLN2 mutation carriers (Deng et al., 2011).
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1.4.1.6 Other ALS genes

A number of less common ALS genes have been identified through linkage analysis of

large families, and subsequent candidate gene screening. Such genes include SETX

(Chen et al., 2004), ALS2 (Hadano et al., 2001), DCTN1 (Puls et al., 2003), VAPB

(Nishimura et al., 2004) and ANG (Greenway et al., 2004, 2006). Candidate gene

approaches without linkage analysis in cohorts of smaller ALS kindreds revealed

mutations that cause ALS in FIG4 (Chow et al., 2009), SQSTM1 (Fecto et al., 2011)

and GLE1 (Kaneb et al., 2015).

A rapid rise in the number of genes implicated in the aetiology of ALS was seen

following the widespread adoption of NGS technologies. In fact, this rate is now

so rapid that there appears to be a doubling of the number of reported ALS genes

every four years (Al-Chalabi et al., 2017). Using SNP chip genotyping technology and

homozygosity mapping, the OPTN gene encoding optineurin was found to harbour

autosomal recessive mutations causing ALS in Japanese kindreds (Maruyama et al.,

2010). Family-based studies utilising WES have facilitated the discovery of multiple

ALS genes including VCP (Johnson et al., 2010), PFN1 (Wu et al., 2012a), HNRNP

genes (Kim et al., 2013), MATR3 (Johnson et al., 2014b), CHCHD10 (Bannwarth

et al., 2014), CCNF (Williams et al., 2016b) and TIA1 (Mackenzie et al., 2017). The

family based approach was also successfully employed using whole-genome sequencing

(WGS) to implicate ERBB4 as an ALS gene (Takahashi et al., 2013). More recently,

NGS has been used for gene burden analysis in larger cohorts of familial probands.

Using this strategy, TUBA4A (Smith et al., 2014), TBK1 (Cirulli et al., 2015;

Freischmidt et al., 2015) and NEK1 (Kenna et al., 2016) have been implicated in the

aetiology of ALS.

While this expansion of the ALS gene spectrum is exciting, it is important to note

that mutations in each of these less common ALS genes have been reported in 1% or

less of familial cases, and only rarely in sporadic cases. Nevertheless, many of these

genes cluster together in biological pathways and processes, implicating mechanisms

of disease that may be common to all ALS patients. These pathways include RNA

processing, protein homeostasis and degradation as well as vesicular trafficking

(discussed in Section 1.3.5). As such, these rare mutations offer the opportunity

for the generation of various disease models to investigate the mechanisms that are

widespread in ALS pathogenesis. Gene discovery has provided targets for downstream

research into the cellular and functional defects that contribute to the onset and

progression of ALS. While potential gene therapy or screening may only be of use
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to the patients and families directly affected by these mutations, every ALS patient

that can be treated and every family in which disease can be prevented in the next

generation is of paramount importance to fighting ALS.

1.4.2 Sporadic ALS

Sporadic ALS patients have no known relatives whom have been diagnosed with

ALS, and this often causes the misconception that there is no genetic component

underlying disease in these patients (Taylor et al., 2016). However, there may be

some degree of genetic predisposition underlying SALS. Indeed, many gene mutations

identified in FALS have subsequently been found in SALS, suggesting that some

SALS patients may be familial cases with incomplete penetrance, or may simply have

insufficient family history available for an accurate classification to be determined.

Between 1-3% of sporadic patients carry a mutation in the SOD1 gene (Gamez et al.,

2006), while approximately 5% have an expansion in C9orf72 (Renton et al., 2014).

Rare mutations in other ALS genes including TARDBP, FUS, HNRNPA1, SQSTM1,

VCP, OPTN and PFN1 have also been reported in SALS patients (Taylor et al., 2016).

Heritability studies suggest a genetic component underlies approximately 60% of

sporadic cases (Al-Chalabi et al., 2010; McLaughlin et al., 2015). However, the genetic

architecture potentially contributing to SALS is more complex than the simple auto-

somal dominant inheritance observed in most FALS patients. There may be a small

number of genetic variants, each conferring a moderate disease-risk, with the sum of

risk equating to disease onset (Al-Chalabi et al., 2017). Alternatively, a large number

of common variants may each marginally confer a small disease-risk (Al-Chalabi et al.,

2017). Indeed, a complex combination of rare and common variants may underlie

SALS and still others may also act as modifiers of clinical phenotypes (Al-Chalabi

et al., 2017; Taylor et al., 2016). It is also likely that various environmental factors

interact with genetic variation in order to cause ALS, or influence its progression.

1.4.2.1 Genetic association with disease

GWAS have been a widely adopted strategy for identifying risk loci for a range of

diseases. GWAS is based on the principle of “common disease - common variant”,

whereby the accumulation of small contributions of many common variants results in

disease (Al-Chalabi et al., 2017). Although ALS is not a common disease, the high
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percentage of sporadic cases suggests that isolated mutations of large effect are not the

only cause of ALS, therefore it is likely that common genetic variation may contribute

to disease-risk (Al-Chalabi et al., 2017).

GWAS have provided considerable insight into ALS, most notably by its use in

the identification of the association between ALS and the short arm of chromosome

9, where the pathogenic expansion in C9orf72 was later found (Laaksovirta et al.,

2010; Shatunov et al., 2010; van Es et al., 2009). Known SNPs have also been

reported as risk loci for SALS, with the genes UNC13A (Shatunov et al., 2010; van

Es et al., 2009), C21orf2 (van Rheenen et al., 2016) and GPX3-TNIP1 (Benyamin

et al., 2017) being those supported by the most robust evidence. However, many

other SALS-based GWAS have identified potential risk loci that have failed to be

independently replicated (Renton et al., 2014). It is possible, and even likely, that

many risk variants are population specific, deeming it difficult to obtain sufficient

sample numbers to first identify association and then to replicate the findings

(Al-Chalabi et al., 2017). This highlights a caveat of ALS GWAS studies, which have

largely focused on European-based populations (Al-Chalabi et al., 2017; Renton et al.,

2014). The contribution of any GWAS risk-loci to disease in more ancestrally diverse

cohorts is questionable, and requires further validation (Renton et al., 2014).

A number of GWAS have also been performed to identify phenotype-modifying

variants. Survival has been linked to variation in the genes KIFAP3 (Landers et al.,

2009), EPHA4 (Van Hoecke et al., 2012) and UNC13A (Gaastra et al., 2016), though

these results remain to be replicated (Renton et al., 2014). Looking beyond GWAS,

candidate genes such as textitATXN2 have also been associated with SALS Elden

et al. (2010).

1.4.2.2 Genetic burden

Gene-based burden testing is an increasingly useful approach for identifying genes

involved in disease. In such an analysis, the cumulative frequency of “qualifying

variants” meeting a given criteria is compared between cases and controls, to establish

the burden of variants in a gene (Guo et al., 2016). Qualifying variants (eg. rare non-

synonymous variants) are those that are more likely pathogenic, and can be defined

by various filters, such as minor allele frequency (MAF), functional consequences and

in silico protein predictions (Guo et al., 2016).
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A landmark genetic burden analysis in ALS was reported by Cirulli et al. (2015),

which assessed genetic burden in each of the known ALS genes. No single gene

was found to contribute more than 1% to SALS patients and many genes known to

segregate with disease did not reach significance. Two novel genes, TBK1 and NEK1,

were implicated in SALS, contributing to 0.9% and 0.7% respectively. NEK1 was

also independently identified in another gene based burden analysis, which specifically

implicated the p.R261H variant (Kenna et al., 2016). Additionally, Smith et al. (2014)

found that TUBA4A carried a genetic burden of rare and predicted damaging variants

among SALS patients, second only to SOD1. There have also been reports suggesting

that patients with co-morbid ALS/FTD may also carry a high genetic burden in

known ALS genes (Dols-Icardo et al., 2018).

1.5 Approaches for gene discovery

The widespread adoption of NGS has lead to an explosion of available sequencing data.

As a result, genetic analysis techniques have had to rapidly evolve to effectively utilise

this volume of data. By combining NGS data with the following analysis techniques,

our power for identifying novel disease genes has increased. In the later half of the

twentieth century at the time of the Human Genome Project, linkage analysis and

positional cloning techniques dominated genetic research. Many disease genes were

identified within large families with Mendelian inheritance patterns, including SOD1

in ALS. Today, NGS data is widely used for genetic analysis. WGS, WES and targeted

sequencing are powerful tools for familial disease gene discovery (Ott et al., 2015),

and also represent opportunities to better understand and appreciate common genetic

variation.

1.5.1 Linkage analysis

Genetic recombination occurs when homologous chromosomes participate in random

crossover events to facilitate the exchange of DNA segments. These crossover events

are less likely to separate DNA sequences that lie close together on a chromosome.

The principle of genetic linkage is that DNA sequences in close proximity to each other

are more likely to remain together after these recombination events, and therefore

are more likely to be inherited together (Pulst, 1999; Williams, 2018). Thus, linkage

analysis identifies chromosomal regions that are co-inherited with a phenotype, usually
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disease affection status.

To perform linkage analysis, highly polymorphic genetic markers are required to

trace segregation. Genetic markers used in linkage analysis include microsatellites and

single nucleotide polymorphisms (SNPs). Microsatellites are short tandem repeats,

consisting of a variable number of di-, tri- or tetra-nucleotide repeat units that are

multi-allelic and highly variable between individuals. These properties increase the

likelihood of a heterozygous genotype in any given individual, which means maternal

and paternal alleles can usually be distinguished (Pulst, 1999). Being multi-allelic,

microsatellites are highly informative genetic markers, providing insights into parental

origins (Dewoody and Dewoody, 2005; Pulst, 1999).

SNPs are single nucleotide polymorphisms in the genome that are usually bi-allelic

and common throughout the population. They represent the most common form

of genetic variation and are easily detectable using high-throughput and automated

genotyping (Dewoody and Dewoody, 2005; Ott et al., 2015; Pulst, 1999). While not as

informative as microsatellites, SNPs are useful markers for linkage analysis owing to the

ability to genotype hundreds of thousands of SNPs in many people with high efficiency.

Genome-wide linkage analysis uses microsatellite or SNP markers scattered

throughout the genome to identify those that co-segregate with disease within a

family, and therefore define a chromosomal region linked to disease. When using

microsatellite markers, between 300 and 400 sites, spaced out by an average of 5-15

centimorgans, are typically assessed (Borecki and Province, 2008). When using a

generic SNP micoarray, such as the Infinium CoreExome-24 BeadChip (Illumina),

over 500,000 markers from different genomic regions (missense, nonsense and syn-

onymous exonic variants, as well as intronic splicing or promoter variants), can

be genotyped. As SNP arrays interrogate hundreds of thousands of genomic sites,

and are amenable for use in large cohorts in a high-throughput fashion, they have

become a widely adopted technology (Ott et al., 2015). Genome-wide linkage analysis

is an immensely powerful approach and importantly, is unbiased, in that it does

not rely on any prior hypothesis of the locus responsible for the genetic basis for disease.

Using statistical models, family-based linkage analysis uses a family pedigree and

marker genotypes from informative family members to calculate the likelihood of each

marker co-segregating with disease due to linkage or purely by chance (Altshuler et al.,

2008; Pulst, 1999). The resulting numeric measure for each genetic marker is referred
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to as the logarithm of odds (LOD) score, a concept developed by Morton (1955). For

a marker to reach significance and be considered disease-linked, a LOD score of at

least 3.3 is required (in a genome-wide scan), indicating an odds ratio of greater than

1000:1 that the marker is linked to disease. A LOD score of less than -2 is conversely

evidence against linkage. Markers with intermediate LOD scores remain ambiguous

(Lander and Kruglyak, 1995; Pulst, 1999). In cases where statistically significant

linkage is not met anywhere in the genome for a single pedigree, multiple families

with the same disease can be summed together to strengthen the linkage signal. This

approach is based on the assumption that the same disease locus is common to the

summed families. The genomic region over which the LOD peak lies represents the

disease-linked locus, and sequencing of candidate genes contained within this region

has frequently revealed disease causal mutations. Family-based linkage analysis has

been tremendously successful for diseases showing complete penetrance and autosomal

dominant or recessive Mendelian inheritance, increasing the number of known disease

genes from just 100 in the mid 1980s to over 2,000 by the late 2000s (Altshuler et al.,

2008).

However, there are a number of factors that may confound linkage analysis,

and accounting for these factors is vital to obtain accurate genetic linkage results

(Kruglyak et al., 1996). Incomplete disease penetrance hinders the identification of

genetic linkage, and as previously discussed is a prominent feature of many ALS

pedigrees. To overcome this, parametric linkage analysis can incorporate liability

classes to inform the statistical model of the likelihood that an individual carrying the

causal mutation will be affected by disease at a given age. Liability classes can also

be used to specify the effect of sex on disease state. It is also necessary to provide

expected disease allele frequency to the model, to describe how frequently the disease

allele is likely to be seen in a population (Kruglyak et al., 1996).

1.5.2 Next-generation sequencing (NGS)

Sanger sequencing has dominated genetic research for the last 30 years and remains

the gold standard for validating genetic variants. However, Sanger sequencing is not

amenable to high-throughput applications, such as sequencing many target genes

through large cohorts in parallel (Moller et al., 2015). NGS is an umbrella term for

a number of sequencing approaches, with their underlying commonality being the

sequencing of multiplex libraries containing millions of DNA fragments in a massively
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parallel way, leading to megabases of DNA sequence output (Ng et al., 2009). The

use of these technologies has led to an explosion of available DNA sequence data,

and this has consequently demanded the development of sophisticated bioinformatics

strategies to gain meaning from this data. Standard bioinformatics processing includes

quality control checks, alignment to the reference genome and variant calling. Many

different software tools now exist for each of these processing steps, each with innate

advantages and disadvantages.

NGS technologies and the huge amounts of available genomic data they produce

have changed the scope of genetic research. This is evidenced by a drastic increase in

the volume of genetic discoveries since the widespread adoption of these technologies.

The number of identified disease genes has jumped from approximately 2,000 in 2007

to almost 5,000 in 2017, while numerous disease associated genes, de novo mutations

and oligogenic disease factors have also been uncovered (Fernandez-Marmiesse et al.,

2018). These technologies have also hugely expanded the catalogue of common genetic

variation across the globe, most notably seen in publicly available control databases

such as dbSNP (https://www.ncbi.nlm.nih.gov/SNP/), ExAC (Exome aggregation

consortium, Lek et al., 2016) and gnomAD (Genome aggregation database, Lek et al.,

2016), which are now essential resources for a plethora of medical research applications.

1.5.2.1 Whole-exome sequencing (WES)

The exome refers to the protein-coding regions (exons) of all the genes in the genome,

which equates to approximately 180,000 exons from 20,000 genes, and 35 megabases

of DNA sequence, representing just 1-2% of the human genome (Liu et al., 2015;

Moller et al., 2015). Though this may seem like a small proportion, an estimated 85%

of all identified disease causal mutations lie in protein coding exons (Liu et al., 2015).

Further, the exome represents the best understood genomic region, and therefore the

influence of variation in the exome is most easily interpreted. Compared with WGS,

the amount of data produced by WES provides a more time and cost effective pipeline

(Fernandez-Marmiesse et al., 2018; Lelieveld et al., 2016). Further, following the

widespread adoption of WES in genomic research, established workflows can facilitate

effective and accurate data analysis and management.

Since becoming widely adopted in 2009, WES has significantly contributed to

novel disease gene discoveries, particularly in neurodegenerative disease research

(Liu et al., 2015). In 2010, the first successful applications of WES were reported.

https://www.ncbi.nlm.nih.gov/SNP/
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Four unrelated patients suffering from Miller syndrome underwent WES and control

filtering, resulting in the identification of a single candidate gene, DHODH, which

encodes a pivotal enzyme in the pyrimidine de novo biosynthesis pathway (Ng et al.,

2010b). The mutation was confirmed by Sanger sequencing, and further identified

in three additional patients. In the same year, WES was also employed to discover

disease genes for Kabuki (MLL2 ; Ng et al., 2010a), Schinzel-Giedion (SETBP1 ;

Hoischen et al., 2010), and Sensenbrenner (WDR35 ; Gilissen et al., 2010) syndromes.

WES has proven especially powerful when combined with traditional gene mapping

approaches such as genetic linkage analysis (Liu et al., 2015). In cases where linkage

analysis was able to identify the disease-linked loci, but candidate gene screening

yielded inconclusive results, WES has often been able to reveal the causal mutation.

For instance, the disease locus for spinocerebellar ataxia-22 was mapped to chromo-

some 1p21-q23 in the early 2000s (Chung et al., 2003; Verbeek et al., 2002), however

the causal mutation was not identified until 2012, after WES was used to screen the

disease-linked region (Lee et al., 2012).

In addition to its use in accelerating gene discovery, WES also provides a valuable

diagnostic tool. Recent studies have consistently shown that diagnosis rates for

patients with previously undiagnosed, but suspected genetic conditions, sits at

approximately 25% (Farwell et al., 2015; Gahl et al., 2012; Lee et al., 2014; Sawyer

et al., 2016; Yang et al., 2013, 2014). This figure is estimated to be a 50% improvement

on that previously achieved using traditional Sanger sequencing methods for diagnosis

(Neveling et al., 2013a).

1.5.2.2 Whole-genome sequencing (WGS)

WGS provides an unbiased NGS approach by sequencing the entire human genome

including coding, untranslated, miRNA, promoter, repressor/enhancer, intronic and

intergenic regions (Stranneheim and Wedell, 2016). By covering the entire genome,

WGS offers the opportunity to identify novel disease genes as well as variants that

confer disease-risk or modify a phenotype. Additionally, WGS data can be used to

identify structural variation (SV) such as copy number variants (CNV) and chromo-

somal rearrangements (Liu et al., 2015; Timpson et al., 2018). As such, WGS is an

attractive option for discovering novel genetic aberrations that cause or modify disease.

Until recently, the cost of WGS has been prohibitive. As such, the majority of
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published studies have only reported WGS for individuals or small sample cohorts,

which are often inadequate for family-based disease gene discovery, and certainly for

association-based research. This is compounded by the fact that the amount of data

produced by WGS is far greater than that from WES, meaning that computing power

for analysis is also prohibitive. Though, as was seen with WES, as costs decline and

data storage and analysis strategies evolve, the utility of WGS will continue to spread

with an increase in accessibility (MacArthur et al., 2014).

The comprehensive set of genetic data made available from WGS will be required

to solve many of the remaining genetic conditions. An example illustrating this is a

study by Gilissen et al. (2014), who performed WGS of 50 patients with an intellectual

disability and no genetic diagnosis after microarray and WES analysis. WGS identified

84 de novo single nucleotide coding variants and eight de novo copy number variants

not detected previously, which with further analysis, led to genetic diagnoses in 20

of these patients. This highlights the value added by WGS and its promise to fur-

ther our understanding of genetic conditions beyond what has been achieved with WES.

1.5.2.3 Targeted sequencing

Targeted sequencing is a customisable form of NGS that can be tailored to capture

any region of the genome, whether coding, regulatory or intronic (Voelkerding et al.,

2009). The genomic regions of interest can be captured by a pool of biotinylated

RNA probes, microarrays, or PCR amplification, and subsequently undergo massively

parallel sequencing (Liu et al., 2015). The massive reduction in genomic regions under

examination reduces cost, time, storage and analysis requirements. It also allows far

deeper coverage for each nucleotide of the targeted region, which in turn, minimises

false positive and negative results (Fernandez-Marmiesse et al., 2018).

Most commonly, targeted sequencing has been used to screen for mutations in pan-

els of known disease genes. This is an efficient way to screen genes in conditions with

genetic heterogeneity or those caused by mutations in large genes that are difficult to

PCR amplify and subsequently sequence. It is also useful for screening selected genes

in large patient cohorts. The use of targeted sequencing rather than less biased WES

or unbiased WGS, can reduce the number of incidental findings of mutations causing

other diseases or those of uncertain significance (Liu et al., 2015). Further, the deep se-

quencing coverage afforded by targeted sequencing allows the detection of somatic and

mosaic varinats, and is particularly useful in cancer (Fernandez-Marmiesse et al., 2018).
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1.5.3 Twin studies

Twins have long been used as a tool for uncovering the genetic contribution to pheno-

types. Monozygotic (MZ) twins share 100% of their DNA sequence and are genetically

identical (with the exception of rare somatic or de novo germline mutations). In

comparison, dizygotic (DZ) twins are genetically equivalent to any pair of siblings,

sharing an average of 50% of their DNA sequence (Boomsma, 2013). Both MZ and

DZ twins remove confounding factors such as age, pre- and (partially) post-natal

environment differences. Twin-based heritability studies use these characteristics to

estimate the contribution of genotype to phenotype. That is, phenotypic similarity

between MZ twins and DZ twins is compared to assess environmental influences

(differences between MZ twins) and genetic influences (similarity between MZ twins

vs similarity between DZ twins) (Boomsma, 2013).

More recently, studies of MZ twins discordant for disease used WGS to identify

de novo mutations that might be causing, or protecting against disease. Such studies

identified aneuploidy discrepancies in MZ twins discordant for trisomy 13 (Ramsey

et al., 2012), trisomy 21 (Dahoun et al., 2008) and X and Y chromosome aneuploidies

(Razzaghian et al., 2010). CNV disparity has also been reported for MZ twins

discordant for Parkinson’s disease (Bruder et al., 2008) and congenital heart disease

(Breckpot et al., 2012). Single nucleotide polymorphisms between discordant MZ

twins are rare but have been observed in neurofibromatosis type 1 (Vogt et al., 2011).

1.6 Current state of ALS genetics research

Figure 1.2 provides a summary of the ALS genetic discoveries over the last 25 years.

Linkage analysis facilitated the discovery of many ALS genes including SOD1 (Rosen,

1993), TARDBP (Sreedharan et al., 2008), FUS (Vance et al., 2009), and UBQLN2

(Deng et al., 2011), and was therefore a very powerful and successful tool for gene

discovery. These discoveries were made using large ALS families, and as such, the

causal gene mutations in most large ALS families have now been identified. More

recently, NGS technologies have been instrumental in broadening the genetic spectrum

of ALS with familial disease gene discoveries including VCP (Johnson et al., 2010),

PFN1 (Wu et al., 2012a), HNRNP genes (Kim et al., 2013), MATR3 (Johnson et al.,
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2014b), CHCHD10 (Bannwarth et al., 2014), CCNF (Williams et al., 2016b) and

TIA1 (Mackenzie et al., 2017) and association of ALS with genes such as TUBA4A

(Smith et al., 2014), TBK1 (Cirulli et al., 2015; Freischmidt et al., 2015), C21orf2

(van Rheenen et al., 2016) and NEK1 (Kenna et al., 2016). However, there remain

many genetic causes of ALS to be identified.

Figure 1.2: Gene discovery in ALS over the last 25 years. The number of reported
ALS genes has grown drastically since the discovery of SOD1 mutations in 1993. Circle size
represents the proportion of familial ALS (FALS) patients who carry a mutation in that gene.
Blue circles indicate genes linked only to FALS, red circles indicate those associated only with
sporadic ALS (SALS), and circles half red and half blue represent genes implicated in both
FALS and SALS. The colour of the gene name represents the methodology used for gene
discovery. Genes in bold are those harbouring causal ALS mutations, while those in normal
font have been associated with ALS, as shown in Table 1.1. Figure adapted from Brown and
Al-Chalabi (2017).

ALS is genetically heterogeneous, with over 20 causal and many more associated
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ALS genes identified over the past 25 years. From this, we know that genetic

predisposition plays a major role in the development of ALS and is likely to contribute

to those remaining cases with an unknown cause. However, this heterogeneity also

suggests that the genetic factors causing disease in these remaining patients are

likely complex, and will be challenging to uncover. Of the ALS patients with a

family history of disease, one third carry an unknown causal gene mutation. These

families represent our best opportunity to find genetic variants underlying disease,

as their family history dictates that they possess a strong genetic predisposition to ALS.

1.6.1 Limiting factors for gene discovery in ALS

The remaining “unsolved” ALS families exhibit a number of characteristics that

have hindered studies to identify their causal mutation. First and foremost, the

majority of these families have reduced or incomplete penetrance of disease, where

some mutation carriers do not develop ALS. Similarly, as a late onset disease,

family members carrying ALS causal mutations may die from an unrelated event

before they reach the age at which they would have developed ALS. This causes

pedigrees to show an apparent skipping of generations where no one has developed

disease, though their offspring do. This often means that DNA samples have not

been collected from all informative family members. An obligate mutation carrier

may never donate a DNA sample because there is no apparent need - they are not

affected, and by the time disease develops in the proband, that parent has passed

away, as has their affected parent (the probands grandparent), who appeared to

be a sporadic patient when they presented with disease. Similarly, the variability

in age of onset together with incomplete disease penetrance mean that we cannot

assume unaffected family members (even those of 80-90 years of age) do not carry

the causal mutation. As such, genetic studies are heavily reliant on DNA samples

from affected individuals. This means that genetically speaking, many of these

families are very small as there is often only one, two or three informative DNA

samples available, causing both linkage and segregation analysis to be limited in power.

Heterogeneity is an additional barrier to effective gene discovery. The genetic

heterogeneity of ALS means that linkage analysis in multiple families cannot be easily

combined (as discussed in Section 1.5.1), which would otherwise be useful given the

small nature of the remaining ALS families. There is also phenotypic heterogeneity

including the overlap with FTD, and potentially other neurodegenerative conditions,
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such as other forms of dementia. This too causes limited sample collection from

families with multiple neurodegenerative conditions, as those individuals suffering

from a related cognitive impairment rather than pure ALS may not be deemed

informative. Familial classifications may also go unnoticed in such families.

The highly variable age of onset, incomplete penetrance and phenotypic hetero-

geneity in FALS patients have also led to confusion and discrepancy among clinicians

when classifying familial and sporadic forms of disease, which can leave genetic

research in a state of limbo. No clear consensus exists as to the exact criteria required

to classify a patient as FALS (Al-Chalabi et al., 2017; Byrne et al., 2012a). Patients

that have a first or second degree relative (a parent, sibling, grandparent, aunt, uncle,

niece, nephew or half-sibling) who has also been diagnosed with ALS are invariably

classified as FALS. However, in cases where the closest known relative also diagnosed

with ALS is a third degree or higher, there is debate as to whether this constitutes

FALS or whether the two are sporadic patients. As described in Section 1.3.2, the

prevalence of ALS in Australia is just 8.7/100,000 people. As such, the probability of

two related individuals within the same family both being affected by sporadic disease

is exceptionally unlikely. Further, patients who have a relative affected by FTD should

also be considered familial patients. Section 1.3.2 also described that ALS and FTD

are considered to represent a spectrum of neurodegenerative disease with a shared

genetic basis and pathology. As such, relatives with these conditions most likely have

a common genetic mutation underlying disease.

The highly variable age of onset, incomplete penetrance and heterogeneity seen in

ALS also suggests there may be other factors at play that are “switching on” disease

onset. These could be epigenetic mechanisms impacting disease gene expression such

as a particular DNA methylation pattern or acetylation on a certain histone. The

possibility of this sort of unknown modifier influencing disease onset complicates

disease gene discovery, as these remain unidentified, and therefore cannot be accounted

for in our search for pathogenic gene mutations.

1.6.2 Novel strategies for gene discovery in ALS

While genetic linkage paved the way to the first wave of ALS gene discovery, and NGS

the second wave, we have now reached another pivotal point in ALS gene discovery.

Given the complex nature of the remaining ALS families, conventional techniques used
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in isolation are inadequate for identifying the remaining ALS genes. To circumvent

the challenges faced using these families, innovative strategies using multiple tools and

approaches will be required.

It is becoming increasingly popular to use linkage analysis in combination with NGS

to streamline the gene discovery process (Gazal et al., 2016; Ott et al., 2015). In days

gone by, linkage analysis would identify a disease-linked locus, and a time-consuming

candidate gene approach using Sanger sequencing would ensue. Today, NGS data

can be used in place of Sanger sequencing to rapidly interrogate all candidate genes

falling within the disease-linked region. The complementary approach would be that

candidate causal mutations identified by NGS found to fall outside of disease-linked

regions may be excluded. This approach was successfully applied by our laboratory in

the discovery of the ALS gene CCNF (Williams et al., 2016b). Similarly, GWAS was

used in combination with linkage analysis to identify the chromosome 9 linked ALS

locus, which was subsequently found to harbour the most frequent known cause of

ALS, hexanucleotide repeat expansions in C9orf72 (DeJesus-Hernandez et al., 2011;

Renton et al., 2011).

While NGS data can also be used for linkage analysis (Gazal et al., 2016; Ott

et al., 2015), cost is a prohibitive factor, as only a few individuals may be sequenced.

Thus linkage analysis using NGS data may be underpowered to detect significantly

disease-linked regions. However, this approach can still be very useful for excluding

unlinked genomic regions (Gazal et al., 2016; Ott et al., 2015). The Pedigree Variant

Annotation, Analysis and Search Tool (pVAAST) program has been developed

to facilitate the use of WES or WGS data in a linkage based model (Hu et al.,

2014). Linkage analysis is combined with case-control association data and functional

predictions that form the basis of its predecessor, VAAST (Hu et al., 2014; Yan-

dell et al., 2011), in order to prioritise variants or genes that are associated with disease.

1.7 Project Aims

Gene mutations remain the only proven cause of ALS, some 25 years after the first

ALS gene was identified. During this time, more than 20 new ALS genes have

been uncovered. These genetic discoveries have provided the targets for numerous

downstream research efforts into understanding the pathogenesis of ALS. For example,

animal and cellular models of disease have been developed by introducing these ALS
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causal mutations; molecular pathways disrupted during disease have been identified;

and numerous mechanisms of disease have been proposed. Without the preceding

genetic discoveries, none of these pivotal insights into ALS would have been possible.

These genetic discoveries have not only aided research but have also had a direct

impact on patients and their families. ALS mutations have added to the diagnostic

regimes available for patients, and the pre-symptomatic tests offered to their family

members. Importantly, gene discoveries have also given families the opportunity

to undergo preimplantation genetic diagnosis to prevent future generations from

developing ALS. There are also numerous clinical trials, including gene therapies,

underway which target molecules and pathways implicated in disease either directly

or indirectly by genetic discoveries.

However, almost 90% of patients, including one third of FALS patients, have an

unidentified underlying cause of ALS. The genetic heterogeneity of ALS suggests

there are still many more genetic causes of disease to be uncovered. Studying families

affected by ALS offers the clearest path towards further genetic discoveries, from

which the findings can be extended to larger patient cohorts. The increasing utility of

NGS technologies offers an exciting opportunity for the identification on novel genetic

causes of ALS.

The aim of this project is to identify novel genetic mutations that cause ALS

in Australian families with a history of ALS and to extend these findings to study

patients with apparently sporadic ALS.

Specifically, the aims of this thesis are to:

1. Develop pipelines for handling large cohorts of next-generation sequencing data for

gene discovery in ALS.

2. Investigate known and candidate ALS genes in familial and sporadic ALS patients

to identify novel ALS mutations and/or associated genetic variants. (Paper I,

Manuscript II)

3. Identify novel ALS genes and mutations in families with a history of ALS and in

monozygotic twins discordant for disease. (Manuscript III)
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“The best way to get started is to quit talking and begin doing.”

Walt Disney

2
General subjects and methods

This Chapter describes the methods that form the foundation of data generation in

this project. Next-generation sequencing (NGS) data was analysed throughout all

Chapters of this thesis, and was the main tool used for gene discovery. Both whole

exome (WES) and whole genome (WGS) sequencing have been utilised. WES was

applied to FALS patients for known ALS gene (Chapter 4), candidate ALS gene

(Chapter 5) and family-based gene discovery (Chapter 6) analyses. WGS data has

been utilised for analysis of known (Chapter 4) and candidate (Chapter 5) ALS

genes in SALS patients, family-based gene discovery in a medium-sized ALS family

(Chapter 6) and analysis of ALS-discordant monozygotic twins (Chapter 7). SNP

microarray genotyping was utilised for genetic linkage analysis of a medium-sized ALS

family (Chapter 6), as well as for validation of selected WGS variants generated for

ALS-discordant monozygotic twins (Chapter 7). A range of other genetic strategies

were also employed to validate and evaluate the results obtained from the analysis of

NGS data, including Sanger sequencing, segregation analysis, control genotyping and

in silico assessment tools.

41
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2.1 Subjects and patient cohorts

2.1.1 Patient recruitment and sample collection

The majority of ALS patient samples were collected from two clinics; the Macquarie

Neurology Clinic, directed by Professor Dominic Rowe, and The Molecular Medicine

Laboratory, Concord Hospital, directed by Professor Garth Nicholson. Patients of the

Macquarie Neurology clinic and their family members were recruited to the Macquarie

University Neurodegenerative Disease Biobank for research participation. Additional

samples were also collected from the Australian MND DNA bank, Royal Prince Alfred

Hospital. The vast majority of patients were of European descent, and all patients

were diagnosed with probable or definite ALS according to El Escorial criteria (Brooks

et al., 2000). DNA was extracted from peripheral blood using standard protocols.

Manual protocols were applied to those samples obtained from the Molecular Medicine

Laboratory and the Australian MND DNA bank, while the QIASymphony automated

liquid handling robot and the DSP Midi extraction kit (Qiagen) were utilised for

samples collected from the Macquarie University Neurodegenerative Disease Biobank.

2.1.2 Ethics and consent

Each patient (affected individual) and control individual provided informed written

consent to be involved in genetic research as set out by the Human Research Ethics

Committees of Macquarie University (Approval number 5201600387) and the Sydney

South West Area Health Service (Approval number CH62/6/2011-123-G Nicholson

HREC/11/CRGH/179, Title: Research study into identifying new gene mutations for

motor neuron disease).

2.1.3 Patient cohorts

Various patient cohorts underwent genetic analysis as part of this thesis. A summary

of these cohorts, and the sequencing approaches applied to each, is provided in

Figure 2.1. Some cohorts were only used as part of the development of bioinformatic

processing scripts and pipelines in Chapter 3, and were not directly utilised for genetic

discovery in this thesis.
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Figure 2.1: Patient cohorts and sequencing datasets. (A) Cohorts used in each Chapter of this thesis. Purple lines are used
to indicate the Chapters in which each cohort was used, with diamonds representing the cohorts used in the major genetic analysis
component of a given Chapter. (B) Genetic sequencing techniques applied to ALS patient cohorts. Pink boxes indicate the patient
cohorts directly utilised in the discovery analyses presented in this thesis (Chapters 4 – 7), while black boxes indicate those which
were incidentally analysed as part of some bioinformatics processing pipelines developed in Chapter 3. The arrows indicate the genetic
sequencing technique(s) applied to each cohort. *Informative family members were those that were either ALS patients, obligate mutation
carriers or the “married-in” control parent of an ALS patient. Additional family members were those that were “at-risk” of carrying an
ALS causal mutation, or the “married-in parent” of an “at-risk” individual. Additional family members did not undergo WES or WGS
and were only used for SNP microarray genotyping.
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2.1.3.1 Familial ALS (FALS)

Each family member of a FALS family was classified into one of the four subject groups

described below. Among these subject types, affected individual/patient, obligate

mutation carrier and “married-in” control individuals were considered informative for

family-based genetic analysis. “At-risk” individuals were considered additional family

members.

Affected individual/patient: Diagnosed with ALS. Further, a proband patient

was the first member of their family to present at one of the above clinics, and in

many cases was the only member of their family for whom a DNA sample was available.

Obligate mutation carrier: An individual who must carry the causal gene

mutation. This refers to an unaffected individual who has both a direct ancestor and

direct descendent affected by ALS, and therefore must have inherited, and passed on

the causal gene mutation. This individual may go on to develop ALS later in life,

or may die without ever developing disease. This may be due to the variable age

of disease onset with death due to another cause prior to reaching the age at which

they would have experienced disease onset, or reduced penetrance of the causal gene

mutation.

“Married-in” control: The spouse of a patient or obligate mutation carrier,

who is considered to be unrelated to their partner, as determined by family history.

In many cases, these individuals are also the parent of an ALS patient or “at-risk”

individual.

“At-risk” individual: An individual who is unaffected at the time of recruit-

ment but is “at-risk” of developing ALS (and carrying the causal gene mutation),

based on their descent from an affected individual. These individuals do not have any

affected direct descendants (though these descendants also possibly carry the causal

mutation and may go on to develop disease later in life), and therefore there is no way

to be certain whether they carry the causal mutation or not.
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2.2 Next generation sequencing (NGS)

As described in Chapter 1, Section 1.5.2, NGS is based on massively parallel sequenc-

ing methods used to generate a vast volume of DNA sequence information. Table 2.1

outlines the methods used to generate WES and WGS data using Illumina sequencing

based protocols, for the various cohorts utilised in this thesis. Generation of both

WES and WGS data employed the basic steps of library capture, cluster generation,

sequencing and data processing, as summarised in Figure 2.2, and described in the

following sections. WES data, other than that for family FALSmq28, was generated

prior to commencement of candidature, while all WGS data and FALSmq28 WES

data was generated during candidature.

2.2.1 Generation of raw sequencing data

NGS was performed by sequencing providers, as described in Table 2.1. The general

principles underlying both WES and WGS were largely similar (Figure 2.2). The

major difference was the initial library preparation phase, as shown in Figure 2.2A.

The first step for both WES and WGS was the shearing of genomic DNA (gDNA)

by either mechanical sonication or biological enzymatic digestion, in order to produce

DNA fragments (Metzker, 2010; van Dijk et al., 2014), which were then ligated to

adapter oligonucleotides (Seaby et al., 2016; Zhang, 2014). At this point during WES,

coding sequences were enriched by hybridisation to exome-complementary probes

(Bamshad et al., 2011; Teer and Mullikin, 2010), while for WGS, bead-based size

selection was applied to enrich for fragments 150bp in length. Following this fragment

selection, PCR amplification was performed for WES, as well as in special cases of

WGS where gDNA availability was low.

As depicted in Figure 2.2B, the Illumina (California, United States) bridge-PCR

amplification approach (Illumina, 2017) was employed to generate DNA fragment

clusters, to ensure sufficient sequencing signal was generated. The key component of

this cluster generation was the flow cell, a solid matrix covered in forward and reverse

primers complementary to the adapter sequences added during library preparation.

Upon application of the DNA library to this flow cell, one end of an adapter ligated

DNA fragment bound a primer, while the remaining free end paired with the imme-

diately adjacent opposite primer, in order to adopt a bridge formation (Casals et al.,
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Table 2.1: Details of NGS data generation.
Cohort(s) No.

samples
Genetic
data

Service
provider

Library preparation kit Coverage Average
read

Sequencing platform Quality
control

Alignment Joint
calling

Variant
calling

Annotation* Output file Genetic
discovery

type Exons Mb depth BWA
version

GATK
version

GATK
version

Chapter

FALS 113 WES Macrogen Illumina TruSeq 201,121 64 100X Illumina HiSeq2000 FastQC v0.7.12 v3.4.0 v3.4.0 ANNOVAR 137-sample VCF 4, 5, 6
FALS 24 WES Macrogen AgilentSureSelect AllExon+UTRV5 359,555 75 100X Illumina HiSeq2000 FastQC v0.7.12 v3.4.0 v3.4.0 ANNOVAR 137-sample VCF 4, 5, 6
FALSmq28 3 WES Macrogen AgilentSureSelect AllExon+UTRV5 359,555 75 100X Illumina HiSeq4000 FastQC v0.7.12 N/A v3.4.0 ANNOVAR individual VCF 6

3 WGS Macrogen Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 N/A v3.7 ANNOVAR individual VCF 6
3 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF 6

FALSmq1 3 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF .
FALS147 3 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF .
SALS 628 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF .
FTD 108 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF .
SOD1 families 89 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF .
SALS female twins^ 2 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF 7
SALS male twins^ 2 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF 7
SOD1 female triplets^ 3 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF 7
C9orf72 male twins^ 2 WGS Kinghorn Illumina TruSeq DNA Nano N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF 7
Duplicate samples 7 WGS Kinghorn Illumina TruSeq DNA PCR-Free N/A 3,000 30X Illumina Hiseq X Ten FastQC v0.7.15 v3.7 v3.7 ANNOVAR 850-sample VCF .
Abbreviations: BWA, Burrows Wheeler Aligner; and GATK, Genome Analysis ToolKit.
*Annotation using ANNOVAR software was performed by the candidate for all cohorts except A and B.
^Twin data also underwent alignment and variant calling using Isaac software as described in Chapter 7.
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Figure 2.2: General Illumina sequencing work flow. (A) Library preparation.
DNA was fragmented and ligated with adapter oligonucleotides, and in the case of WES,
enriched for exonic sequences. (B) Cluster amplification. The DNA library was loaded on
and hybridised to the flow cell. Each bound DNA fragment was then amplified to a clonal
cluster through bridge-PCR amplification. (C) Sequencing. Following addition of sequencing
reagents, the sequencing primers bound the adapter sequence to facilitate sequencing. Fluo-
rescent nucleotides were incorporated into the amplification product, causing a corresponding
light emission, which was then imaged. The emission signal from each cluster was used to
determine the identity of the DNA base. The cycle was then repeated up to 150 times to pro-
duce sequence reads of 150bp. (D) Data processing. Raw sequencing reads then underwent
bioinformatic processing for quality control, alignment to the reference sequence and variant
calling.
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2012). Each such fragment then underwent PCR amplification to produce distinct

clonal clusters, leaving the fragments ready for sequencing.

The gold standard Illumina sequencing-by-synthesis chemistry was then applied,

as shown in Figure 2.2C. This involved a proprietary reversible terminator-based

method, which detects single nucleotide bases as they are incorporated as part of the

extension product (Illumina, 2017). Tens of millions clonal clusters were sequenced in

parallel using this method.

2.2.2 Data processing

2.2.2.1 Quality control, alignment and variant calling

Standard data processing was also performed by sequencing service providers as

described in Table 2.1. Quality control using proprietary Illumina methodology and

the FastQC program (https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/) was applied to remove or trim low quality raw sequencing reads (FASTQ

format) prior to further processing. Alignment, or mapping, of raw sequencing data

to the reference genome, GRch37 (hg19), was then completed using the Burrows

Wheeler Aligner (BWA) (Li and Durbin, 2009, 2010) or Isaac Aligner (Raczy et al.,

2013). This produced SAM (Sequence Alignment/Map) files, which were converted to

a binary format (BAM), using SAMtools software (Li et al., 2009). These alignment

files were then used to call variants using either the Genome Analysis ToolKit

(GATK; McKenna et al., 2010) or Isaac (Raczy et al., 2013) variant callers. This

processing pipeline produced a variant call file (VCF) for each sample. These VCFs

contained variant specific information including chromosomal location, reference and

alternate nucleotides, alongside quality measurements and genotype data (details

provided in Chapter 3, Section 3.2). Single nucleotide polymorphism (SNP) and small

insertion/deletion (indel) variant calls were ultimately used to assess genetic variation

differences between affected individuals and controls.

2.2.2.2 Variant annotation

Annotation of NGS variant data with biologically meaningful information is imperative

for downstream filtering and interpretation. A number of software programs, including

ANNOVAR (Wang et al., 2010, http://annovar.openbioinformatics.org/en/

latest/) have been developed to integrate information from multiple biological in

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://annovar.openbioinformatics.org/en/latest/
http://annovar.openbioinformatics.org/en/latest/
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silico databases with VCFs. WES (other than that generated for family FALSmq28)

data was annotated by Dr Qiongyi Zhao (University of Queensland), whereas all

other NGS data was annotated by the candidate (using Script 2.1). A summary

of the databases utilised in the ANNOVAR annotation performed by the candidate

is provided in Table 2.2. All variants were annotated with the gene in which each

variant resided within (or was in closest proximity to) and were also assigned to a

genomic functional category, being one of exonic, splicing, ncRNA, UTR5, UTR3,

intronic, upstream, downstream or intergenic. All exonic variants were further

classified as a frameshift insertion, frameshift deletion, frameshift block substitution,

stopgain, stoploss, non-frameshift insertion, non-frameshift deletion, non-frameshift

block substitution, non-synonymous SNV (single nucleotide variant), synonymous

SNV or unknown. The dbNSFP (Database for Non-Synonymous SNPs’ Functional

Predictions; Liu et al., 2011) was utilised to add the predicted functional effect

of each variant, from various protein prediction programs, to the VCF. Additional

information pertaining to the absence/presence and/or minor allele frequency (MAF)

of each variant in control databases (including dbSNP, ExAC and gnomAD; see Table

2.4 for details) was also used in annotation.

Code 2.1: ANNOVAR.sh This script was used to annotate a VCF) with information
from the databases listed in Table 2.2, using the ANNOVAR software tool.

1 #!/bin/sh

2 #

3 # ANNOVAR.sh

4

5 # perform ANNOVAR annotation for EXAMPLE.vcf

6 perl table_annovar.pl EXAMPLE.vcf humandb/ -buildver hg19 -out myanno

-remove -protocol refGene,cytoBand,exac03,gnomad_exome,gnomad_genome,

avsnp147,dbnsfp33a,dbnsfp31a_interpro,esp6500siv2_ea,esp6500siv2_all,

ALL.sites.2015_08,EUR.sites.2015_08,clinvar_20170130 -operation

g,r,f,f,f,f,f,f,f,f,f,f,f -nastring . -vcfinput
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Table 2.2: Databases used for ANNOVAR annotation.
Annotation Description

refGene Closest gene according to RefSeq Gene
cytoBand Giemsa-stained chromosomes bands
exac03 ExAC exomes allele frquency data - from all populations and each individ-

ual population including Non-Finnish Europeans
gnomad exome gnomAD exomes allele frquency data - from all populations and each indi-

vidual population including Non-Finnish Europeans
gnomad genome gnomAD genomes allele frquency data - from all populations and each

individual population including Non-Finnish Europeans
avsnp147 dbSNP147 membership/ID
dbnsfp33a Protein prediction scores from dbNSFP v3.3a
dbnsfp31a interpro Protein domain
esp6500siv2 ea NHLBI-ESP project allele frequency data from European American popu-

lations
esp6500siv2 all NHLBI-ESP project allele frequency data from all populations
ALL.sites.2015 08 1000Genomes allele frequency data from all populations
EUR.sites.2015 08 1000Genomes allele frequency data from European populations
clinvar 20170130 Clinvar classifications

Abbreviations: ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database;
dbNSFP, Database for Non-Synonymous SNPs’ Functional Predictions; and
NHLBI-ESP, National Heart, Lung, and Blood Institute - Exome Sequencing Project.

2.3 Genome-wide SNP microarray genotyping

SNP microarrays are used to genotype hundreds of thousands of common SNPs in

parallel, and are also amenable to high-throughput use with large sample cohorts.

In this project, the Infinium CoreExome-24 BeadChip v1.0 and v1.1 (Illumina)

microarrays were used to genotype a total of 547,644 and 551,839 SNP markers,

respectively. Raw data was generated and processed by service providers as described

in Table 2.3. For each SNP marker, a 50bp oligonucleotide probe complementary to

the site adjacent sequence was immobilised on a solid surface. During the reaction,

fragmented DNA bound the probe, and underwent single-base extension with a

fluorescently labelled nucleotide complementary to the SNP, which caused emission

of the corresponding intensity signal. This signal intensity data was recorded by an

iScan system (Illumina), and was subsequently processed using the GenomeStudio

v2011 (Illumina) genotyping module to genotype each SNP marker independently.
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Table 2.3: Details of SNP microarray genotyping data generation.
Cohort(s) No.

samples
Platfrom Scanner No.

SNP
markers

Genotype calling Marker &
pedigree
cleaning

SNP pruning Output file Genetic
discovery
Chapter

FALSmq28 16 Illumina InfiniumCoreExome-24v1-1 Illumina iScan 551,839 GenomeStudio v2011 PedStats PLINK v1.07 .ped with genotype
data; and ancillary
.map and .dat files

6

SALS female twins 2 Illumina InfiniumCoreExome-24v1-1 Illumina iScan 551,839 GenomeStudio v2011 N/A N/A .idat 7
SALS male twins 2 Illumina InfiniumCoreExome-24v1-1 Illumina iScan 551,839 GenomeStudio v2011 N/A N/A .idat 7
SOD1 female triplets 3 Illumina HumanCoreExome-24v1-0 Illumina iScan 547,644 GenomeStudio v2011 N/A N/A .idat 7
C9orf72 male twins 2 Illumina HumanCoreExome-24v1-0 Illumina iScan 547,644 GenomeStudio v2011 N/A N/A .idat 7
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2.4 NGS variant validation strategies

Each genomic variant identified from genetic analysis of NGS data with the potential

to cause disease either within an ALS family, discordant monozygotic twin pair or

single affected individual (from candidate gene screening), was considered a candidate

mutation (eg. novel, non-synonymous variants). Even following quality control filter-

ing, there remains the potential for any variant identified by NGS to be a sequencing

artefact. Thus the true presence of each candidate mutation within the relevant DNA

sample needed to be confirmed. This was achieved using NGS read visualisation and

Sanger sequencing. Further, to determine the potential of the candidate mutation to

cause disease, its novelty needed to be established by comparison to extensive numbers

of healthy control individuals. Finally, in order to assess the potential pathogenic

nature of a candidate mutation, a variety of additional in silico analyses were employed.

2.4.1 NGS read visualisation with the integrative genomics

viewer

As described above in Section 2.2.2.1, NGS reads were aligned to the reference

sequence during standard bioinformatics processing to facilitate variant calling. The

integrative genomics viewer (IGV, Robinson et al., 2011) was used to visualise all

aligned reads at any given position in the genome, using BAM files. Each candidate

mutation was visually analysed in this way to determine whether there were sufficient

high quality reads to support the variant call. Generally, at least 20% of all reads

at the given position were required to possess the alternate allele to support a

heterozygous variant call, and the majority of these were required to fall within the

middle 90% of the sequence read (ie. not at the 5' or 3' extremity of the read).

2.4.2 Sanger sequencing of candidate mutations and segrega-

tion analysis

Massively parallel sequencing has higher error rates than Sanger sequencing (Pabinger

et al., 2014; Zhang, 2014), and therefore variant validation by Sanger sequencing

remains the gold standard. As such, all candidate mutations underwent Sanger

sequencing, including PCR amplification and Sanger sequencing. Those found to be

absent from affected individuals were false positives, and discarded from analysis.

Similarly, candidate mutations identified in any “married-in” family control individuals
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by Sanger sequencing were also false positive candidate mutations, and discarded as

potentially pathogenic. Sanger sequencing of additional family members whom did not

undergo WES or WGS also allowed the establishment of co-inheritance of candidate

mutations within ALS family pedigrees, further establishing a genotype-phenotype

relationship.

Gene or variant specific primers were designed using either Exon-

Primer (http://ihg.gsf.de/ihg/ExonPrimer.html) or Primer3 Plus (http:

//bioinfo.ut.ee/primer3-0.4.0/), and were synthesised by Sigma Aldrich (NSW,

Australia). MyTaq HS Red Mix (Bioline, London, United Kingdom) was used in all

PCR reactions, and 10X PCR enhancer (Life Technologies, CA, USA) was added when

required. In cases where variants were found within especially repetitive or duplicated

genomic regions, touchdown thermocycling and/or nested PCRs were used. Further,

some indel variants were validated using fragment length analysis of fluorescently

labelled PCR products. Primer sequences, and optimised conditions are provided in

Appendix A.3, Table A.1.

2.4.3 Control genotyping

To determine whether candidate mutations were in fact rare population specific

variants rather than potential pathogenic mutations, or to establish the population

frequency of potentially disease-associated variants, screening of large numbers of

non-related, age- and population-matched control individuals was required.

2.4.3.1 Control database screening

The publicly available NGS control databases listed in Table 2.4 were inspected

through the web browser interface, or by interrogation of VCFs using custom bioin-

formatics pipelines developed in Chapter 3, Section 3.5.3. Where appropriate, when

analysing the ExAC and gnomAD databases, the Non-Finnish European (NFE) subset

of individuals was primarily utilised due to the absence of an Australian European

subset of controls in these databases.

http://ihg.gsf.de/ihg/ExonPrimer.html
http://bioinfo.ut.ee/primer3-0.4.0/
http://bioinfo.ut.ee/primer3-0.4.0/
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Table 2.4: Control databases used in this project.
Control Total number ancestry Total number VCF file Institute Literature Web browser

database of individuals of variants size reference address

ExAC 60,706 Variable 9,362,538 34.1GB Broad

Institute

(Lek et al., 2016) http://exac.broadinstitute.org/

gnomAD

exomes

123,136 Variable 15,014,744 69.64GB Broad

Institute

(Lek et al., 2016) http://gnomad.broadinstitute.org/

gnomAD

genomes

15,496 Variable 4,500,726 19.42GB Broad

Institute

(Lek et al., 2016) http://gnomad.broadinstitute.org/

MGRB 1,144 Australian 39,283,402 1.25TB none https://sgc.garvan.org.au

DACC 967 Australian 1,630,808 1.59GB Diamantina

Institute

none N/A

Abbreviations: ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database;

MGRB, Medical Genome Reference Bank; DACC, Diamantina Australian Control Collection.

2.4.3.2 TaqMan control genotyping

Custom TaqMan genotyping assays (Life Technologies) were designed and applied to

Australian ALS affected individuals and control individuals to determine the frequency

of potentially disease-associated variants. The TaqMan genotyping assay is based

around the distinct fluorescent labelling of two allele specific probes, which are used in

conjunction with a primer pair to amplify and label each allele at a particular genomic

site. Standard thermocycling was performed on the ViiA7 RealTime System (Life

Technologies), which also measured the fluorescence signals generated by each sample.

Viia7 software then processed these signals to plot the fluorescence value for each

sample, and evaluate whether a homozygous wild-type, heterozygote or homozygous

variant genotype was present.

2.5 In silico tools and databases for assessment

In silico assessment of genetic variants can provide various lines of evidence to either

support or refute their potential for pathogenicity. These insights can aid in determin-

ing which candidate mutations have the highest potential to cause ALS, and therefore

warrant further investigation by in vitro or in vivo analyses. Table 2.5 describes

each in silico tool and database utilised in this thesis for assessing the potential

pathogenicity of candidate mutations. The following sections outline how each of these

tools were implemented. In Chapter 6, these tools were used in combination to develop

a pipeline and scoring system to assess potential ALS pathogenicity. This pipeline and

scoring system was validated using known ALS gene mutations, and was subsequently

http://exac.broadinstitute.org/
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
https://sgc.garvan.org.au
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utilised to prioritise which candidate mutations were most likely to cause disease based

on the similarities they showed with known ALS causal mutations. The guidelines for

interpreting sequence variants published by the American College of Medical Genetics

and Genomics (ACMG; Richards et al., 2015), as shown in Appendix A.3.3, were

consulted as part of the development of this pipeline. As such, the rationale for

the relevance of each characteristic to potential pathogenicity is discussed in Chapter 6.

Protein predictions

Protein prediction programs provide information about the likely structural and

functional effect of genetic variation on the encoded protein. As part of this thesis,

eight protein prediction programs were utilised (see Table 2.5 for details). Each

program uses a complex algorithm based on structure and/or conservation to predict

the potential effect of a genetic variant.

Species conservation analysis

The conservation of the amino acid affected by each candidate muta-

tion was analysed across multiple species using three approaches. Firstly,

all available known protein sequences were obtained from HomoloGene

(http://www.ncbi.nlm.nih.gov/homologene), and subsequently aligned using

Clustal Omega v1.2.4 (http://www.ebi.ac.uk/Tools/msa/clustalo; Sievers et al.,

2011). The amino acid of interest was then manually assessed for conservation by

calculating the percentage match of the human residue with the homologous residue

in other species. Lastly, the software packages PhyloP (Pollard et al., 2010) and

PhastCons (Siepel et al., 2005) were accessed through the UCSC (University of

California Santa Cruz) genome browser table utility (https://genome.ucsc.edu), to

score the degree of conservation of each amino acid of interest.

Gene expression

The level of gene expression in the brain was assessed by analysing the gene-

specific graph available from the Human Brain Transcriptome (HBT) website

(http://hbatlas.org/; Kang et al., 2011; Pletikos et al., 2014), and recording the

signal intensity in the cerebellar cortex at the 14th lifetime period (approx. 80 years

of age). Gene expression levels in the spinal cord were assessed using the Genotype-

Tissue Expression Project (GTex) database (https://www.gtexportal.org/home/;

Carithers et al., 2015) and were determined by analysis of the gene expression plot of

interest for the “Brain - Spinal cord (cervical c-1)” tissue type.

http://www.ncbi.nlm.nih.gov/homologene
http://www.ebi.ac.uk/Tools/msa/clustalo
https://genome.ucsc.edu
http://hbatlas.org/; 
https://www.gtexportal.org/home/
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Genic tolerance

Tolerance for genetic variation was assessed for each gene of interest by analysis of

two metrics. Firstly, the residual variation intolerance (RVIS) score and its associated

percentile score (http://genic-intolerance.org/; Petrovski et al., 2013). This

percentile score indicated the percentile of most intolerant human genes within which

the gene of interest fell. Secondly, the ExAC (http://exac.broadinstitute.org/;

Lek et al., 2016) z-score constraint metric for missense variants was utilised, which

indicated the degree of deviation between the number of missense variants observed

in the gene in the ExAC database (among healthy control individuals), compared to

that which was expected based on the size of the gene.

Gene/protein description

A description of each gene of interest was obtained from the GeneCards website

(http://www.genecards.org/) gene summary page.

Prior implications in neurodegenerative disease

The PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) was queried for

the gene (and protein) name and the term “neurodegenerative disease” as follows;

“<gene name> AND neurodegenerative disease”. The number of matching entries

was recorded, as were any publications of interest.

Protein structure

The protein sequence of interest was obtained from the UCSC genome browser

(https://genome.ucsc.edu) and analysed using the SMART web tool (Simple

Modular Architecture Research Tool; http://smart.embl-heidelberg.de/; Letu-

nic et al., 2015) to determine which protein domains were present within the

protein, and to subsequently identify the protein domain in which the genetic

variant of interest fell. To determine whether any post-translational phosphory-

lation sites had been added or removed by the genetic variant of interest, both

the canonical and mutant protein sequences were analysed using NetPhos 2.0

(http://www.cbs.dtu.dk/services/NetPhos-2.0/; Blom et al., 1999). The resul-

tant predicted phosphorylation sites were then compared to determine whether the

variant introduced or removed any predicted phosphorylation sites.

http://genic-intolerance.org/
http://exac.broadinstitute.org/
 http://www.genecards.org/
https://www.ncbi.nlm.nih.gov/pubmed/
https://genome.ucsc.edu
http://smart.embl-heidelberg.de/
http://www.cbs.dtu.dk/services/NetPhos-2.0/; 
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Table 2.5: In silico tools utilised to assess the potential pathogenicity of candidate mutations.
Tool/Database Name Description Scores/Output Website Reference
Protein Predictions
MutationAssessor Functional impact of pro-

tein mutations
Assesses functional impact using evolutionary conser-
vation of the affected residue in protein homologs

Predicted functional (high,
medium), predicted non-functional
(low, neutral)

http://mutationassessor.org/r3/
Reva et al. (2011)

MutationTaster Mutation Taster Uses evolutionary conservation, splice-site changes,
loss of protein features and mRNA expression modi-
fying features to predict function effect

Disease causing or polymorphism http://www.mutationtaster.org/
Schwarz et al. (2014)

Polyphen-2 Polymorphism Phenotyp-
ing v2

Uses species sequence homology to predict the effect
of amino acid substitution on protein function

Probably or possibly damaging or
benign

http://genetics.bwh.harvard.edu/pph2/
Adzhubei et al. (2010)

Pon-P2 Pathogenic-or-Not-
Pipeline

Predicts functional effect based on amino acid fea-
tures, Gene Ontology (GO) annotations and evolu-
tionary conservation

Pathogenic, neutral or unknown
tolerance

http://structure.bmc.lu.se/PON-P2/
Niroula and Vihinen
(2015)

SIFT Sorting Intolerant From
Tolerant

Uses sequence alignment and degree of amino acid
residue conservation between closely related se-
quences to predict functional consequence

Damaging or tolerated http://sift.jcvi.org/
Kumar et al. (2009)

PROVEAN Protein Variation Effect
Analyzer

Employs a generalised approach to assess functional
effect on a protein

Deleterious or neutral http://provean.jcvi.org/index.php
Choi et al. (2012)

SNPs&GO Predicting disease associ-
ated variations using GO
terms

Utilises protein sequence, evolutionary, and func-
tional information (according to GO terms) to make
predictions

Disease or neutral https://snps-and-go.biocomp.unibo.it/snps-and-go/
Calabrese et al. (2009)

CADD Combined Annotation De-
pendent Depletion

Uses annotation information on conservation, func-
tional genomics, transcript position, gene expression
and protein scores

Magnitude of rank score (10=top
10% deleterious, 20=top 1% delete-
rious etc)

http://cadd.gs.washington.edu/info
Kircher et al. (2014)

Species conservation analysis
NCBI homologene National Centre for

Biotechnology Information
homologene tool

System for collectimng homology data for gene sets
from eukaryotic species

Protein sequences from various
species

http://www.ncbi.nlm.nih.gov/homologene

ClustalOmega Multiple sequence align-
ment

Generates alignments between three or more se-
quences

Text file containing aligned se-
quences with residue counts

http://www.ebi.ac.uk/Tools/msa/clustalo
Sievers et al. (2011)

PhyloP Phylogenetic Model Uses a model of neutral evolution and alignment
strategies to calculate conservation or acceleration p-
values

Positive (conserved) or negative
(accelerated)

http://compgen.cshl.edu/phast/index.php
Pollard et al. (2010)

PhastCons Phylogenetic Analysis
with Space/Time models -
Conservation

Computes the probability of a nucleotide belonging
to a conserved element

Between 0-1 with 1 being conserved http://compgen.cshl.edu/phast/index.php
Siepel et al. (2005)

Gene expression analysis
HBT The Human Brain Tran-

scriptome
Public database containing transcriptome data from
the developing and adult human brain

An expressed gene is defined as
one for which expression levels are
greater than six on the log-2 signal
intensity scale

http://hbatlas.org/
Kang et al. (2011);
Pletikos et al. (2014)

GTex Project Genotype-Tissue Expres-
sion Project

Web resource with data for gene expression, regula-
tion and its relationship to genetic variation

Reads per kilobase of transcript per
million (RPKM) values

https://www.gtexportal.org/home/
Carithers et al. (2015)

Genic tolerance
RVIS Residual Variation Intoler-

ance Score
Public database with scores describing tolerance to
genetic variation affecting gene and/or protein func-
tion

Percentage indicating the rank of
intolerance (ie. 10%, top 10% of
most intolerant genes)

http://genic-intolerance.org/
Petrovski et al. (2013)

ExAC Missense contraint metric Constraint metric describing the deviation from the
expected number of missense variants in a gene calcu-
lated using variants found in ExAC control database

Z-score, positive (intolerant to vari-
ation) or negative (tolerant to vari-
ation)

http://exac.broadinstitute.org/
Lek et al. (2016)

Gene/protein description
GeneCards Entrez Gene Summary Summary of the basic behaviour, pathway involve-

ment and/or localisation of the encoded protein
Descriptive text http://www.genecards.org/ N/A

Prior implications in neurodegenerative disease
PubMed PubMed Database for biomedical literature https://www.ncbi.nlm.nih.gov/pubmed/ N/A
Protein structure assessments
SMART Simple Modular Architec-

ture Research Tool
Web resource providing identification and annotation
of protein domains, based on manual curation from
UniProt, Ensembl and STRING

Graphical and tabular representa-
tion of protein domains and the
residues involved in each

http://smart.embl-heidelberg.de/
Letunic et al. (2015)

NetPhos 2.0 NetPhos 2.0 Predicts protein phosphorylation sites based on se-
quence and structure information

Text file indicating residues pre-
dicted to be phosphorylated

http://www.cbs.dtu.dk/services/NetPhos-2.0/
Blom et al. (1999)

Interacting partners
STRING STRING Database of known and predicted protein protein in-

teractions
Graphical and tabular representa-
tion of protein interactors for the
given protein

http://string-db.org/
Szklarczyk et al. (2015)

BioGrid Biological General Repos-
itory for Interaction
Datasets

Curated repository of physical and genetic interac-
tions

Tabular representation of protein
interactors for the given protein

http://thebiogrid.org/
Chatr-Aryamontri et al.
(2015)

Abbreviations: mRNA, messenger RNA; GO, Gene Ontology; ExAC, Exome Aggregation Consortium; and RPKM, Reads per kilobase of transcript per million.

http://mutationassessor.org/r3/
http://www.mutationtaster.org/
http://genetics.bwh.harvard.edu/pph2/
http://structure.bmc.lu.se/PON-P2/
http://sift.jcvi.org/
http://provean.jcvi.org/index.php
https://snps-and-go.biocomp.unibo.it/snps-and-go/
http://cadd.gs.washington.edu/info
http://www.ncbi.nlm.nih.gov/homologene
http://www.ebi.ac.uk/Tools/msa/clustalo
http://compgen.cshl.edu/phast/index.php
http://compgen.cshl.edu/phast/index.php
http://hbatlas.org/
https://www.gtexportal.org/home/
http://genic-intolerance.org/
http://exac.broadinstitute.org/
http://www.genecards.org/
https://www.ncbi.nlm.nih.gov/pubmed/
http://smart.embl-heidelberg.de/
http://www.cbs.dtu.dk/services/NetPhos-2.0/
http://string-db.org/
http://thebiogrid.org/
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“People’s minds aren’t made for problems that large.”

Tyrion Lannister - Game of Thrones, “The Queen’s justice”

3
Development of strategies and pipelines for

analysing NGS data

3.1 Introduction

This Chapter addresses Aim 1 of this thesis; develop pipelines for handling large

cohorts of next-generation sequencing data for gene discovery in ALS. The sheer

magnitude of the data produced by next-generation sequencing (NGS), particularly

whole-genome sequencing (WGS), poses a significant barrier to its effective use

and interpretation. While there are a plethora of bioinformatics tools available to

manipulate variant call files (VCFs), even these encounter difficulties when processing

exceptionally large files, and the major challenge lies in determining how to effec-

tively apply these tools to these large datasets. Therefore, this thesis involved the

development of a range of strategies and pipelines to obtain the most robust and

meaningful results from NGS data. These were developed to both manipulate VCFs

to prepare them for genetic analysis, carry out the genetic analyses themselves and to

also efficiently extract important data from analysed files to interpret their biological

significance.

Whole-exome sequencing (WES) identifies approximately 80,000 variants in each
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individual, while WGS identifies three to four million variants. Each of these variants

has a range of associated variables, relating to genomic location, genotype and se-

quencing quality. When multiplied together, this equates to over 100 megabytes, and

more than one gigabyte being required to represent an individual exome and genome,

respectively. Standard computing systems and softwares are not well equipped to

handle this data, and large volumes of memory are necessary for its storage. This poses

a significant barrier to the effective utilisation of the genetic information contained

within these files.

In order to effectively utilise the genetic information stored in NGS data files,

coding strategies are required, as standard text editing and spreadsheet softwares

cannot handle such large files. As part of this thesis, the UNIX and R environments,

coupled with either bash scripts or R scripts, were implemented to analyse NGS data

files. This Chapter presents a range of strategies and pipelines developed as part of

this project to obtain the most robust and meaningful results from NGS data. The

scripts included in this Chapter were developed for general genetic analysis tasks,

which have been applied throughout the subsequent Chapters of this thesis, and

are also routinely utilised by our research group. Various other scripts have been

developed as part of this project to execute specific components of genetic analyses

for known (Chapter 4), candidate (Chapter 5) or novel (Chapters 6 and 7) ALS gene

identification. Such scripts are presented in the relevant Chapter, and are described

as Custom Scripts.

This Chapter is divided into four sections:

1. The variant call format.

2. Bioinformatics tools and programs used in this project.

3. Development of scripting strategies to achieve vital manipulation of NGS data to

facilitate efficient genetic analysis.

4. Development of complex pipelines to circumvent the difficulties encountered while

handling large NGS datasets.

3.2 Variant call file format

A variant call file (VCF) is a tab-delimited file produced by standard bioinformatics

processing of raw NGS reads (described in Chapter 2, Section 2.2.2.1) which describes

each identified genomic variant (either a single nucleotide variant (SNV), or small

insertion or deletion (indel)). The structure of a VCF is complex, and was designed
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to be interpreted by both computers and people. An example of the VCF format is

shown in Figure 3.1.

Figure 3.1: Example of the VCF (variant call file) format. The top lines consist
of header information. The first header line invariably defines the VCF version, and the last
header line is a classical header line containing descriptions of the contents of each column.
The intervening header lines contain information about the processing and annotation steps
applied to the variant data. Each line in the body of a VCF represents a genomic variant
and details the corresponding meta information in separate columns including chromosome
(CHROM), genomic DNA position (POS), identity (ID; if one exists), reference (REF) and
alternate (ALT) nucleotide alleles. Quality information for each variant is found within
the QUAL and FILTER columns. The INFO column can contain any number of biological
annotation fields from various sources. In some instances, this INFO column can be separated
out to individual columns for each annotation field. The FORMAT column describes what
values are shown in each of the following sample data columns, of which there may be one or
hundreds. Adapted from Danecek et al. (2011).

VCFs form the basis of a plethora of downstream genetic analyses. Typically, a

WES VCF generated for a single person contains approximately 80,000 variants, while

this figure sits in the vicinity of three to four million for WGS. These numbers equate

to file sizes of approximately 125 and 1,500 megabytes for a single whole exome or

genome respectively. Table 3.1 depicts the differences between VCFs generated from

each of these NGS methods. Owing to this large file size, VCFs are not amenable

for use with standard computing systems or programs, therefore specialised tools are

necessary to analyse and manipulate these files.
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Table 3.1: Details of the size of VCFs produced from WES and WGS, in terms
of memory and number of genetic variants.

NGS method Individual sample Cohort*

VCF size No. of variants VCF size No. of variants

WES „125MB „80,000 1.78GB 398,133

WGS „11.5GB „3,500,500 1.05TB 42,544,274

*WES cohort consists of FALS patients and any informative family

members (n=137), and WGS of multiple cohorts (n=850) including SALS patients,

FALS families, SOD1 patients, FTD patients and ALS-discordant MZ twins.

See Chapter 2, Figure 2.1 and Table 2.1 for details.

3.3 Computing and bioinformatics tools used for

NGS data analysis and manipulation

The genetic information contained within VCFs formed the basis of the various genetic

analyses presented throughout this thesis, including annotation, statistical analyses

and variant filtering to identify genetic variants contributing to the cause of ALS.

Numerous bioinformatics tools exist for the interrogation of the genetic data contained

within VCFs, and those used as part of this thesis are described below.

3.3.1 High performance computing cluster

In order to handle the volume of data produced by WGS and the accompanying

memory requirements for processing, access to a high performance-computing cluster

(HPCC) was required. A HPCC is a scalable, data-intensive system which uses

commodity server clusters hardware coupled to system software (Middleton, 2011).

This platform provides a distributed file storage system, a job execution environment,

parallel application processing and programming tools (Middleton, 2011). Various

command line based codes developed in this thesis were executed using the CSIRO

HPCC, Pearcey, to meet the computing demands of the analysis. The Pearcey cluster

system runs Linux, and comprises 230 servers with 128GB memory each, and 16

servers with 512GB memory each.
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3.3.2 Shell scripting

As the most widely adopted operating system, the UNIX programming language was

used to develop various custom shell bash scripts to parse and manipulate text type

files, including VCFs. A number of software tools as shown in Table 3.2 were also

implemented as part of shell scripts using the UNIX environment.

3.3.3 R programming language

R is a programming language designed for statistical computing which provides a suite

of capabilities for data manipulation, calculation and graphical display (R Core Team,

2018). It contains various tools for data analysis, while numerous extension packages

have been developed to meet more specialised analytical needs (R Core Team, 2018).

Bioconductor provides a suite of tools implemented in the R environment for analysing

and interpreting genomic data (Huber et al., 2015). The R packages used in this

project are summarised in Table 3.3.



64
D
e
v
e
l
o
p
m
e
n
t
o
f
st

r
a
t
e
g
ie
s
a
n
d

p
ip
e
l
in
e
s
f
o
r
a
n
a
ly

si
n
g

N
G
S
d
a
t
a

Table 3.2: Software programs utilised in this thesis using the UNIX environment.
Software/Utility Description Scripts utilised Reference
Basic UNIX Basic commands of the UNIX coding

language compatible with all delimited
file types.

2.1, 3.1, 3.2, 3.4, 3.6, 3.7, 3.8, 3.9, 3.10,
A.2.1, A.2.2, A.2.3.2, A.2.6, A.2.12,
A.2.17

N/A

ANNOVAR Software tool designed to utilise various
databases for functional annotation of
genetic variants. Annotations include
gene-, region- and filter-based variant
specific details. See Section 2.2.2.2 for
further details.

2.1, A.2.1 Wang et al. (2010)

BCFTools Program with various tools for the ma-
nipulation of VCFs and their binary
counterpart file type, BCF.

3.6, 3.7, A.2.10, A.2.12 Li (2011)

Merlin Pedigree analysis package. A.2.17 Abecasis et al. (2002)
SnpSift Program with many tools for filtering

and manipulating annotated VCFs.
3.1, 3.4, 3.8, A.2.3.2 Cingolani et al. (2012)

Abbreviations: VCF, variant call file; and BCF binary variant call file.
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Table 3.3: R software packages utilised in this thesis.
Package Version/

release
Availability* Use Scripts used Reference

Basic R 3.5.0 CRAN Statistical computing language. 3.3, 3.5, 3.11, 3.12, 3.13,
3.14, A.2.3.1, A.2.3.2,
A.2.4, A.2.5, A.2.8, A.2.7,
A.2.9, A.2.11, A.2.13,
A.2.14, A.2.15, A.2.16

R Core Team (2018)

data.table 1.11.4 CRAN Data manipulations including subset,
group and join.

A.2.4, A.2.8 Dowle and Srinivasan (2018)

dplyr 0.7.5 CRAN Fast and consistent tool for working
with data frame like objects.

A.2.4, A.2.18 Wickham et al. (2018)

gdata 2.18.0 CRAN Data manipulations inlcuding opera-
tions and conversions.

A.2.7 Warnes et al. (2017)

ggplot2 3.0.0 CRAN Creation of graphics. A.2.18 Wickham (2016)
paramlink 1.1.2 CRAN A suite of tools for analysing pedigrees

with marker data.
A.2.15 Vigeland (2018)

readr 1.1.1 CRAN Fast and friendly way to read rectan-
gular data.

A.2.8, A.2.9 Wickham et al. (2017)

splitstackshape 1.4.4 CRAN Splits concatenated data into separate
cells.

A.2.3.2 Mahto (2017)

stringr 1.3.1 CRAN Character manipulation and pattern
matching.

3.13, A.2.8 Wickham (2018)

VariantAnnotation 1.26.0 Bioconductor Annotation of genetic variants. 3.3, A.2.3.1, A.2.3.2 Obenchain et al. (2014)
WriteXLS 4.0.0 CRAN Creation of Excel (xls and xlsx) files

from dataframe objects.
A.2.4, A.2.5, A.2.8 Schwartz (2015)

Abbreviations: CRAN, The Comprehensive R Archive Network.
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3.4 Development of basic scripts for NGS data

processing, manipulation, and filtering

In order to conduct many downstream genetic analyses, an array of custom scripts

were required to transform NGS data to the desired format for analysis, and sub-

sequently perform data analysis and interpretation. This section outlines the major

issues encountered when conducting genetic analyses on VCF data, and the codes de-

veloped as a solution for each such issue. Here, the most basic forms of these codes

are provided, however, throughout the remainder of this thesis, various combinations

have been utilised to produce files and results most appropriate for the given analysis.

Most scripts were used for both WES and WGS data. The 850-sample WGS VCF (as

described in Chapter 2, Figure 2.1 and Table 2.1) required analysis using the HPCC,

while WES data and largely reduced formats of WGS data were analysed on standard

computing systems.
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3.4.1 Genotype quality filtering

Problem encountered

Numerous variants called by standard NGS processing were found to be sequencing

artefacts following visualisation using the integrative genomics viewer (IGV; Robinson

et al., 2011) and Sanger sequencing validation (see Figure 3.2 for an example).

Genotype quality (GQ) filtering was applied (in hindsight) to subsequent analyses to

reduce the frequency of such false positive variants being carried through analysis as

candidate causal mutations.

Solution implemented

Variants with GQ scores less than 20 across all samples were removed from VCFs

using the SNPSift filter tool, as shown in Custom Script 3.1. This approach was

applied in Chapter 6, Section 6.2.2.1 for WES and WGS data.

Code 3.1: GQfilter VCF.sh This script was developed using the SNPSift tool filter,
and was used to filter a VCF based on genotype quality of the specified samples.

1 #!/bin/sh

2 #

3 # GQfilter_VCF.sh

4

5 # remove any variant with a GQ value less than 20 for these three samples

in the VCF

6 java -jar SnpSift.jar filter ’ ( GEN[0].GQ > 20 ) & ( GEN[1].GQ > 20 ) & (

GEN[2].GQ > 20 ) ’ EXAMPLE.vcf > EXAMPLE_GQfiltered.vcf
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Figure 3.2: Example of a false positive variant call identified using IGV and Sanger sequencing. (A) IGV sequencing
read visualisation. The variant was called as a heterozygous candidate mutation in WES data from three individuals of family FALSmq28
(two affected affected individuals and one obligate mutation carrier). Visualisation in IGV suggested that sufficient reads of each allele
were present for a heterozygote call. (B) Sanger sequencing chromatograms. A non-related control individual and all three family
members underwent Sanger sequencing for this variant, which showed that each had a homozygous wild-type genotype at this position,
as indicated by the single peaks for each sample under the arrow.



3.4 Development of basic scripts for NGS data processing,
manipulation, and filtering 69

3.4.2 Cutting and pasting VCF fields

Problem encountered

Circumstances often arose in which only certain VCF fields (for example AC, allele

counts) were required for examination to conduct an effective analysis, while the

efficiency of analysis would be greatly improved by only processing this smaller data

subset. At times, the fields later needed to be combined back together, or with more

detailed information.

Solution implemented

Three strategies were developed to meet this task. These codes were used interchange-

ably in Chapters 4, 5 and 6.

1) Custom bash scripts. As shown in Custom Script 3.2, the UNIX cut command was

used to extract the columns of interest, and the UNIX paste command was used to

combine these back together, side by side.

Code 3.2: cut paste VCF.sh This script utilised the UNIX cut command to extract
data from a large VCF and create a new file containing a small subset. The UNIX
paste command was then used to join these two subsets back together, horizontally.

1 #!/bin/sh

2 #

3 # cut_paste_VCF.sh

4

5 # Take columns 1-9 for all lines after and including the line starting with

a # symbol of a VCF, and write them to a new file

6 cut -f 1-9 EXAMPLE.vcf | grep -v -P ’^#’ > EXAMPLE_partA.vcf

7

8 # Take columns 836-838 and 842-844 for all lines after and including the

line starting with a # symbol of a VCF, and write them to a new file

9 cut -f 836-838,842-844 EXAMPLE.vcf | grep -v -P ’^#’ > EXAMPLE_partB.vcf

10

11 # Take the two subsets, and join them back together horizontally

12 paste EXAMPLE_partA.vcf EXAMPLE_partB.vcf > EXAMPLE_partsAB.vcf
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2) Custom R code implementing the R package VariantAnnotation from the Bio-

conductor suite. Firstly, the scanVcfHeader command was used to determine which

fields were present in the VCF. These fields were then assigned as filtering parameters

using the ScanVcfParam command. These parameters were then used in conjunction

with the readVcf command to read only these fields into the R environment. This

resulted in an S3 class object, a structure difficult for visual analysis. In order to

obtain a simpler data format, the rowRanges, mcols and info commands were used to

manipulate this object. This process is shown in Custom Script 3.3.

Code 3.3: VCF field.R This script was used to extract one field of INFO data from
a VCF. This example extracts the allele count filed.

1 # VCF_field.R

2

3 # load required R libraries

4 library(VariantAnnotation)

5 library(BiocInstaller)

6

7 # see what fields are present in this VCF

8 scanVcfHeader("EXAMPLE.vcf")

9

10 # define the paramaters on which we want to filter the VCF ie. alternate

allele count

11 AC.param <- ScanVcfParam(info="AC_Adj")

12

13 # read this data into R studio

14 EXAMPLEvcf_AC <- readVcf("EXAMPLE.vcf", "hg19", param=AC.param) # s3 class

object

15

16 # extract the the INFO column (AC and AN) data and genomic ranges

information for each variant and combine

17 EXAMPLEvcf_AC_rowranges <- rowRanges(EXAMPLEvcf_AC)

18 mcols(EXAMPLEvcf_AC_rowranges) <- info(EXAMPLEvcf_AC)

19

20 # make this a data frame

21 EXAMPLEvcf_AC_rowranges_df <- as.data.frame(EXAMPLEvcf_AC_rowranges)
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3) SnpSift. As shown in Custom Script 3.4, the extractFields tool from the SnpSift

program was also used to extract data from specific INFO fields from a VCF, which

were written to a new text file.

Code 3.4: extractFields VCF.sh This script was used to extract the specified fields
from a VCF and write these to a new file. This example extracts the fields for chro-
mosome, position, reference and alternate alleles, and allele counts.

1 #!/bin/sh

2 #

3 # extractFields_VCF.sh

4

5 # extract the chromosome, position, reference allele, alternate allele,

alternate allele count and total allele counts from a VCF

6 java -jar SnpSift.jar extractFields EXAMPLE.vcf CHROM POS ID REF ALT AC NS

> EXAMPLE_FieldsofInterest.txt

For Strategies 2 and 3, a unique variant identifying column in the format of

“chr:position” was added to the resultant file using the R paste command. This

column was then used as part of the R merge command in order to combine VCF fields

together following separation, or to combine files from different sources by matching

the “chr:position” columns. Custom Script 3.5 summarises this process.

Code 3.5: merge.R This script was used to add a variant identifying column to a
VCF R dataframe in the form of “chr:position”. It was also used to merge two R data
frames based on matching the values contained in this identifying column.

1 # merge.R

2

3 # make a new column (chr:position) on the example dataframe, containing the

contents of the CHROM and POS columns, separated by a ":"

4 example$chr.position <- paste(example$CHROM, example$POS, sep = ":")

5

6 # combine two dataframes by matching their values in the columns named

"chr:position"

7 examples_combined <- merge( x=example1, y=example2, by.x="chr.position",

by.y="chr.position", all.x = TRUE )
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3.4.3 VCF comparisons

Problem encountered

When comparing analysis strategies for the same cohort, including ALS-discordant

twins (Chapter 7), comparison of two or more VCFs was often required to determine

the number and/or identity of common or unique variants.

Solution implemented

As shown in Custom Script 3.6, following VCF compression and indexing, the

BCFTools isec command was utilised to create new VCFs of the overlapping (inter-

sect) or unique (complimentary) variants between two or more VCFs.

Code 3.6: isec VCF.sh This script was used to find the intersecting and complemen-
tary variants when comparing two or more VCFs.

1 #!/bin/sh

2 #

3 # isec_VCF.sh

4

5 # compress the VCF

6 bgzip -c EXAMPLE.vcf > EXAMPLE.vcf.gz

7

8 # index the VCF

9 tabix -p vcf EXAMPLE.vcf.gz

10

11 # determine the variants that intersect between two VCFs and those that

compliment each other

12 bcftools isec EXAMPLE1.vcf.gz EXAMPLE2.vcf.gz
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3.4.4 Genomic region subsetting

Problem encountered

In some instances, only particular genomic regions were required for downstream

genetic analysis. Therefore, these regions needed to be extracted from a VCF to a

smaller subset VCF to facilitate efficient analysis. This was necessary to perform

shared variant analysis on only those regions showing genetic linkage with disease in

FALSmq28 (Chapter 6, Section 6.2.2.1), and to determine whether discordant variants

between co-twins fell in confidently callable regions (Chapter 7, Section 7.2.1).

Solution implemented

A BED format-like text file defining the genomic regions to be analysed was written

in a text editor program (example in Appendix A.4, Figure A.1). Using the Custom

Script 3.7, this text file was converted to a UNIX readable format using the dos2unix

command. Following compression and indexing, the BCFTools view command was

used to create a new VCF containing only variants found to fall within the specified

genomic region(s) contained in the text file that was defined by the R option.

Code 3.7: subset regions VCF.sh This script was used to create a subset of a VCF
including only those variants falling within (a) given genomic region(s).

1 #!/bin/sh

2 #

3 # subset_regions_VCF.sh

4

5 # convert the txt file to unix readable format

6 dos2unix -c Mac LOD_positive_regions.txt

7

8 # compress the VCF

9 bgzip -c EXAMPLE.vcf > EXAMPLE.vcf.gz

10

11 # index the VCF

12 tabix -p vcf EXAMPLE.vcf.gz

13

14 # generate a VCF (EXAMPLE_regionsONLY.vcf) that includes only the genomic

regions specified in the file regions.txt

15 bcftools view -o EXAMPLE_regionsONLY.vcf -R regions.txt -Ov -s

patient1,patient2,patient3 EXAMPLE.vcf.gz
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3.4.5 Chromosomal splitting

Problem encountered

When analysing the VCF for the MGRB control dataset (details in Chapter 2, Table

2.4), downstream bioinformatics analysis was slow and tedious given the size of this

VCF. As such, streamlining of downstream analysis required analysis by chromosome.

Solution implemented

The MGRB VCF was divided by chromosome using the SnpSift tool SplitChr to

produce individual VCFs for each of the 22 autosomes, and the X and Y sex chromo-

somes (shown in Custom Script 3.8). Downstream analysis was then run individually

on each chromosome VCF.

Code 3.8: SplitChr VCF.sh This script was used to take a large VCF and create a
single VCF for each chromosome.

1 #!/bin/sh

2 #

3 # SplitChr_VCF.sh

4

5 # split VCF by chromosome

6 java -jar SnpSift.jar SplitChr HugeVCF.vcf.gz
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3.4.6 VCF header

Problem encountered

When using UNIX awk commands to filter variants/lines from VCFs, header infor-

mation was lost. In order to retain meaning of the resultant data, column headers

needed to be reinstated. In special circumstances, such as ANNOVAR annotation,

column headers were added for some fields, but remained missing for sample names.

Solution implemented

The column headers from an original VCF were extracted using the UNIX grep

command. Subsequently, this header information was added back to the top of the

processed VCF using the UNIX cat command, and where necessary, an incomplete

header line was removed using the UNIX sed command. Custom Script 3.9 was

developed for this purpose.

Code 3.9: header VCF.sh This script was used to first create a single line file con-
taining only the column header values from a VCF. This line was then added to the
top of a processed VCF, and where appropriate, an incomplete header line introduced
through processing was removed.

1 #!/bin/sh

2 #

3 # header_VCF.sh

4

5 # Get the column header line from the original VCF by taking the line

starting with the # symbol

6 grep ’^#’ EXAMPLE.vcf > HEADER.vcf

7

8 # Add the header line to the beginning of the annotated VCF

9 cat HEADER.vcf myanno_EXAMPLE.hg19_multianno.vcf >

myanno_EXAMPLE.hg19_multianno_HEADED.vcf

10

11 # Remove the incomplete header line from the annotated VCF

12 sed -e ’2d’ myanno_EXAMPLE.hg19_multianno_HEADED.vcf >

myanno_EXAMPLE.hg19_multianno_FINAL.vcf
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3.4.7 Removing irrelevant variants

Problem encountered

When analysing WGS from just family FALSmq28, variants not called, or that

were homozygous wild-type across all three family members were not interesting

for analysis. Thereby, removal of these variants prior to analysis was necessary to

substantially reduce computing requirements and analysis time.

Solution implemented

In order to remove variants, a UNIX awk approach was utilised to interrogate the

three sample columns of interest to retain only variants that had an alternate allele

call in at least one sample. That is, any variants that were either wild-type or not

called in all three samples were removed. The Custom Script 3.10 was developed for

this purpose.

Code 3.10: filter notcalled homWT VCF.sh This script was used to remove any
variants that had no called genotype or a homozygous wild-type genotype in all three
individuals present in the VCF.

1 #!/bin/sh

2 #

3 # filter_notcalled_homWT_VCF.sh

4

5

6 # remove all variants with no genotype called in all 3 individuals (present

in columns 10-12)

7 awk ’ ! ($10 ~ /^\.\/\.:/ && $11 ~ /^\.\/\.:/ && $12 ~ /^\.\/\.:/) {print

$0}’ EXAMPLE.vcf > EXAMPLE_called.vcf

8

9 # remove all variants with a homozygous WT genotype in all 3 individuals

(present in columns 10-12)

10 awk ’ ! ($10 ~ /^0\/0:/ && $11 ~ /^0\/0:/ && $12 ~ /^0\/0:/) {print $0}’

EXAMPLE_called.vcf > EXAMPLE_called_noWThom.vcf
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3.4.8 Variant filtering

Problem encountered

The most interesting variants were considered to be exonic, non-synonymous variants,

as these affect amino acid sequence and therefore the encoded protein. Therefore, it

was necessary to subset these exonic, non-synonymous variants for further analysis.

This approach could also be extended to any other annotation of interest as required.

Solution implemented

Two R codes were used to retain only those variants that satisfied the set criteria.

The first (Custom Script 3.11) was developed for use with VCFs for which the INFO

column had been tab-delimited, and uses a simple R which command to define the

rows to be retained based on the value of a column, and a second line using the R

subset command to extract those lines from the complete file, while retaining header

information. This version was used for WES and WGS subsets in Chapters 4, 5, 6 and

7. The second (Custom Script 3.12) was developed for use with VCFs where all INFO

data, and therefore annotation data, were confined to a single column. This version

used an R grep command to search within the INFO column, select and subset those

lines containing the given value in that column. This version was used for WGS data

generated from the 850-sample VCF in Chapters 4 and 5. The examples below were

used to search for variants with an exonic function and non-synonymous annotation.

Code 3.11: filter variants anno.R This script was used to remove variants that did
not match the given filtering criteria, by parsing the appropriate annotation column.
This is an example for removing all variants that did not have a non-synonymous
annotation in the exonic function column.

1 # filter_variants_anno.R

2

3 # retain only those variants with a "nonsynonymous" value in the

ExonicFunc.refGene column

4 # this version was used for a VCF with a tab delimited INFO column

5 filter <- which(example$ExonicFunc.refGene == "nonsynonymous")

6 example.filtered <- example[filter,]
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Code 3.12: filter variants info.R This script was used to remove variants that did not
match the given filtering criteria, by parsing the INFO column containing annotation
information. This is an example for removing all variants that did not have a non-
synonymous annotation in the exonic function column.

1 # filter_variants_info.R

2

3 # retain only those variants with a "ExonicFunc.refGene=nonsynonymous"

string in the INFO column

4 # this version was used for a VCF formatted file with a single INFO column

5 examplevcf_nonsynonymous <-

example[grep("ExonicFunc.refGene=nonsynonymous", example$INFO), ]

3.4.9 Extracting variant annotations

Problem encountered

When analysing the 850-sample VCF, or a subset thereof, all the INFO data fell

within a single column, containing up to hundreds of different annotations. As such,

there was a need to efficiently extract the annotation of interest from the column for

one, or many variants under investigation.

Solution implemented

The R command str match from the stringr package was used to achieve this, by

searching for a string of interest within the INFO column, and printing the output.

The example in Custom Script 3.13 outputs the amino acid change for all variants in

the VCF under analysis.

Code 3.13: string match.R This script was used to extract specified annotation in-
formation from the INFO column for all variants in a VCF.

1 # string_match.R

2

3 # load required R libraries

4 library(stringr)

5

6 # What is the amino acid change for each variant?

7 x <- str_match(example$INFO, "AAChange.refGene=(.*?);")

8 x[,2] # this will print the AA change to the R console
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3.4.10 Identifying samples containing a variant

Problem encountered

After filtering, the identity of the individual sample with a given genotype for those

variants that remained under analysis, needed to be determined.

Solution implemented

A function was written in R using the which and grepl commands to find all columns,

and therefore samples, matching the given genotype (Custom Script 3.14).

Code 3.14: which samples.R This R function was used to determine which samples
had (or did not have) a given genotype by outputting the column names of those
columns matching the criteria.

1 # which_samples.R

2

3 # which samples (columns) do not have a homozygous wild-type or uncalled

genotype?

4 which(apply(example[1,], 2, function(x) any(!grepl("0/0|\\./\\.", x))))
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3.5 Pipelines developed and implemented for

custom NGS processing

In order to conduct more complex and specialised processing of NGS data, pipelines

involving multiple bioinformatics processing steps were developed. Frequently, this

involved combining several of the codes described above into a larger pipeline script.

Many such pipelines are presented in the following Chapters to address the specific

needs of the relevant genetic analysis. The following sections detail three pipelines

which were broadly applicable to multiple genetic analyses throughout this thesis, and

within the research program underway in our laboratory.

3.5.1 ANNOVAR annotation of 850-sample WGS VCF

Problem encountered

As detailed in Chapter 2, Section 2.2.2.2, variant annotation is vital for filter-

ing and interpretation of genetic data. Bioinformatics tools such as ANNOVAR

(http://annovar.openbioinformatics.org/en/latest/; Wang et al., 2010) have

largely solved the need for efficient and high throughout annotation. However,

given exceptionally large VCFs, these tools have limitations. Initial attempts to use

standard ANNOVAR codes to annotate the 850-sample VCF, which contains a total

of 42,544,274 distinct variants equating to more than 1TB of data, failed due to the

size of the file.

Solution implemented

In order to annotate the exceptionally large 850-sample VCF, the Custom Script

in Appendix A.2.1 was developed, according to the process described in Figure 3.3.

This involved splitting the original 850-sample VCF, so that the first sample and

associated meta information could be annotated, and pasting this annotated single

sample VCF back together with sample information for all other affected individuals.

Application of this pipeline resulted in an 850-sample VCF successfully annotated

with the databases listed in Chapter 2, Table 2.2.

http://annovar.openbioinformatics.org/en/latest/
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Figure 3.3: Bioinformatic pipeline developed to annotate the 850-sample WGS
VCF. To overcome VCF size, the HPCC was used to execute the following steps to perform
ANNOVAR annotation on the 850-sample WGS VCF. 1) Firstly, the meta information and
the first sample were subset to a smaller, single sample VCF (UNIX cut command), while
the sample information for all other individuals was subset to a separate text file (UNIX
cut command). A column header line was also extracted from the original VCF (UNIX
grep command). 2) The single sample VCF was annotated with ANNOVAR, using standard
ANNOVAR code (Script 2.1). 3) The resultant annotated VCF was then combined with the
sample information for all other individuals using a UNIX paste command. 4) Column header
information was then added back to the resultant annotated file (UNIX cat command). 5)
Finally, the incomplete header line added by ANNOVAR processing was removed (UNIX sed
command).
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3.5.2 Family subsetting from 850-sample WGS VCF

Problem encountered

ALS families present within the 850-sample WGS VCF required separate analysis

pipelines, particularly in the case of family FALSmq28 (Chapter 6, Section 6.2.2.1),

and needed to be separated from all other samples. Additionally, variants that were

uninformative for all family members (i.e. variants not called or homozygous wild-type

in all family members) required removal before efficient shared variant analysis was

possible.

Solution implemented

Families were extracted from the complete 850-sample VCF using the Custom Script in

Appendix A.2.2, which is summarised in Figure 3.4. This resulted in the creation of a

three-sample VCF containing informative variant information for all three FALSmq28

family members utilised for ALS gene discovery in Chapter 6, Section 6.2.2.1.

Figure 3.4: Bioinformatic pipeline developed to subset families from the 850-
sample WGS VCF. To subset three family members from the 850-sample VCF, the UNIX
cut command was used to write the meta information (columns 1-9) and the sample infor-
mation for these three individuals (columns 836-838) to a new file. Variants that were not
called in all three family members were then removed, followed by removal of homozygous
wild-type variants in all three family members, using UNIX awk commands.
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3.5.3 High-throughput analysis using publicly available con-

trol cohorts

Problem encountered

To accurately identify potential ALS causal mutations or disease associated SNPs,

large cohorts of population- and age-matched controls must be screened. This was

imperative to remove common variants as potential causes of ALS (Chapters 4, 5 and

6) and establish relative allele frequencies in the general population (Chapters 4 and

5). In recent years, NGS data from large cohorts of control individuals have been

deposited into various publicly available databases (described in Section 2.4.3, Table

2.4). While invaluable resources, searching these databases for variant information is

primarily facilitated through a web browser, meaning high-throughput screening is

tedious and time consuming.

Solution implemented

In order to conduct high-throughput analysis in control datasets, allele count data were

extracted from the four control databases described in Table 2.4 and combined with

ALS patient VCFs to facilitate downstream comparisons. The VCF for each database

was downloaded, and allele count data were then extracted using one of two Custom

Scripting strategies, being either an R-based pipeline using the VariantAnnotation

package from the Bioconductor suite, (Appendix A.2.3.1, Figure 3.5A), or a SNPSift

pipeline (Appendix A.2.3.2, Figure 3.5B). In both cases, the control allele count data

were subsequently combined with patient data using Custom R Scripts (Appendices

A.2.3.1 and A.2.3.2, Figure 3.5C). The two different approaches were utilised as the

first was developed in the early stages of candidature, before the SNPSift tool utilised

in the second approach had become available. Application of these strategies resulted

in the successful appendage of allele count data from the ExAC, gnomAD, DACC

and MGRB control databases to the 137-sample FALS WES VCF, family WES VCFs

for FALSmq28, FALS15, FALS45, FALSmq2 and FALSmq20 and gene and/or cohort

subsets of the 850-sample WGS VCF. This enabled either variant filtering (Chapters

6, 5, 4) or association analysis (Chapters 4, 5).



84 Development of strategies and pipelines for analysing NGS data

Figure 3.5: Bioinformatic pipeline developed to extract and append control
database allele count data to patient VCFs. Caption provided on next page.
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Figure 3.5: Two different approaches were employed to extract allele count data from con-
trol databases. 1) The first step of both approaches was to use the scanVcfHeader command
to determine which VCF INFO fields were available, and what their associated identifiers
were. A) R-based approach. This was applied for the ExAC, gnomAD exomes, gnomAD
genomes and Diamentina VCFs. The fields of interest, being the alternate allele count (AC)
and total allele count (AN) were defined as parameters using the ScanVcfParam command
(A1). In conjunction with the readVcf command, these parameters were used to read in
just these INFO fields of the control database VCF, and associated meta information (A2).
This resulted in an S3 class object, a structure that is difficult for downstream visualisation.
As such, this object was coerced to a more user friendly table like format (a data frame)
by extracting the row (or INFO field ie. AC and AN) information, using the rowRanges
command, and the meta information, using the mcols command (A3), and combining these
together to make a user friendly data frame object (A4). For simplicity, and to facilitate
downstream matching, a chromosome position column in the format of “chr:position” was
created using the R paste command, to assign this unique identifying value for each variant
(A5). Any redundant information was then removed by deleting unnecessary columns using
the NULL command (A6), resulting in a data frame containing allele count data for each
variant present in the given control database. B) SnpSift approach. This was applied to the
MGRB VCF. The SnpSift extractFields command was used to write the desired meta infor-
mation and allele count INFO fields to a new text file (B1), which was then imported into
R as a data frame (B2), and also had the “chr:position” column added (B3). The dataframe
included all INFO data in a single column, which was split into separate columns using the
cSplit command from the R package splitstackshape (B4). Arithmetic functions were then
applied to add a reference allele count column (B5). Relevant allele count data were com-
bined to a new dataframe using the cbind command (B6), and columns were renamed using
the colnames command (B7). C) Resultant data frames produced by either approach A or B
were then used to append control allele counts to patient VCFs for comparison. After import
to the R environment, the patient file also had the “chr:position” identifying column added
(as described above). Based on matching the values in the “chr:position” column from both
the patient and control data frames, the merge command was used to combine the two data
frames (C1). Allele counts were then coerced to numeric values to facilitate use in arithmetic
and statistical tests using the as.numeric command (C2). The reference allele count for each
variant present in the control database was then added to a new column by subtracting the
AC from the AN (C3). This produced a patient VCF data frame with appended control allele
count data for downstream comparison.
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3.6 Discussion

This Chapter has presented various custom scripting strategies and pipelines required

for genetic analysis of NGS data. These scripts were developed to meet the specific

needs of routine genetic analysis tasks performed in our laboratory for gene discovery

in ALS patient cohorts. Prior to the development of these scripts, NGS data analysis

was a tedious and time consuming process. Now, through implementing these scripting

strategies, NGS data analysis is a streamlined and efficient process in our research team.

Only in hindsight did the need for quality-based filtering of NGS data become

apparent. As seen in Chapter 6, Section 6.3.2 and Chapter 7, Manuscript III,

numerous apparent candidate mutations were identified from NGS based genetic

analysis. However, many of these were found to be false positive variant calls following

Sanger sequencing validation. Not surprisingly, many of these false positive variants

were identified within repetitive or duplicated genomic regions, which are notoriously

difficult to accurately align to the reference genome (to be discussed in Chapter 8,

Section 8.3.3). Further, many were also indel variants, that have a reputation for

being particularly difficult to call, again due to incorrect read alignments (also to

be discussed in Chapter 8, section 8.3.3). These indels were also often found within

the aforementioned troublesome genomic regions, compounding the difficulties in

calling these variants. Fortunately, the rate of identification of such variants could be

substantially reduced by implementing genotype quality filtering. However, use of this

filtering method introduces the potential to remove true variants from analysis. It

was however a necessary step in order to produce a manageable number of candidate

mutations from WGS data, and the likelihood of removing real variants was deemed

to be exceptionally low.

Various strategies for minimising the volume of data under analysis have been

presented in this Chapter. The use of techniques to reduce the number of samples and

variants under analysis allowed for far more efficient downstream analysis, substan-

tially reducing computing power and time requirements. These efforts also removed

a large amount of irrelevant data from specific analysis, and therefore minimised the

number of incidental findings that would have been difficult to interpret, causing

inconclusive identification of variants of uncertain significance.

Extensive custom script writing was required to address specialised genetic analysis

requirements throughout this project. Writing such Custom Scripts demanded a
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significant time investment. First, learning various scripting languages is a lengthy

process, with each having its own intricacies. Even after gaining an understanding of

these languages, using them to write custom scripts to achieve a particular, complex

purpose can often be difficult, especially when factoring in efficiency for use with large

files. The process is largely trial-and-error based and relies on using smaller example

datasets to initially develop a script, before use with larger files. Lines of code are

particularly sensitive, and must be written completely accurately, or they may execute

an entirely different function. Piping of one command to another can also have

drastically different effects based on the order of analysis. Script development can

therefore take weeks to perfect for a single purpose script, and also requires scrupulous

error checking and trialling.

Interestingly, numerous strategies or pipelines utilising different tools can be

employed to achieve the same processing goal. As a rapidly expanding field of study,

and with constant advances in computing capabilities, it is not surprising that the

release of new bioinformatics tools is a common occurrence. For instance, all three

different approaches used for extracting fields from a VCF in Section 3.4.2 successfully

achieved this task, however the intuitive nature of the different methods progressed.

From basic column indexing in UNIX, to more complex field processing in R and

finally to simple field definitions with SNPSift. Such advances in bioinformatics tools

continue to make these analyses more accessible to biologists with minimal coding

expertise.

In conclusion, bioinformatics processing and analysis of NGS data is difficult, and

certainly presents a road block in any NGS study to effective interpretation down-

stream. However, a range of strategies and pipelines were developed in this Chapter

to facilitate the use of this data. While the development of these approaches was time

consuming and tedious, they were imperative for efficient and robust genetic analysis.

As such, these strategies and pipelines have successfully been adopted to carry out

ALS gene discovery in this thesis, and more broadly throughout many more aspects of

the genomic ALS research program in our laboratory.
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“Perhaps I was born with curiosity”

Panic! At The Disco - The Piano Knows Something I Don’t Know

4
Analysis of known ALS genes

4.1 Introduction

This Chapter addresses the first part of Aim 2 of this thesis; to investigate known

ALS genes in familial and sporadic Australian ALS patients to identify known and

novel ALS mutations, and/or associated genetic variants. The purpose of the work in

this Chapter was to assess the prevalence of established and recently reported ALS

gene mutations, or disease associated variants, and identify any novel mutations in

these genes in Australian familial (FALS) and/or sporadic (SALS) ALS patients. To

achieve this, Sanger sequencing, bioinformatics analysis of next-generation sequencing

(NGS) data, and high-throughput TaqMan genotyping was used. These analyses

are presented as a collection of peer-reviewed publications/manuscripts, including

one first author publication, one equal-first author manuscript, and three co-author

publications to which the candidate significantly contributed to by screening ALS

genes.

89
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4.2 Methods

4.2.1 Sanger sequencing

Sanger sequencing of an ALS gene was performed by PCR amplification of genomic

DNA (gDNA) from affected individuals, and subsequent Sanger sequencing. Details

of this process are described in Chapter 2, Section 2.4.1, and primer information can

be found in Appendix A.3, Table A.1.

4.2.2 NGS and bioinformatics analysis

Following the generation of NGS data as described in Chapter 2, Section 2.2, custom

bioinformatics scripts were applied to the resultant variant call files (VCFs) to identify

genetic variants in ALS patient sequencing data. When required, patient cohorts

were extracted from this data using Custom Scripts (either that in Appendix A.2.4 or

A.2.7). Gene screening was then executed using either the Custom Script in Appendix

A.2.4 or A.2.6, for WES or WGS data respectively. Subsequently, any novel non-

synonymous candidate mutations were identified using the Custom Scripts 3.11 or 3.12.

4.2.3 Custom TaqMan genotyping for association analysis

In order to determine whether a known population-based SNP was associated with

Australian SALS, custom TaqMan genotyping was used to ascertain the frequency

of the SNP among affected individuals and unrelated controls. DNA samples from

control individuals collected at the Macquarie University Neurodegenerative Disease

Biobank (n=108; 216 alleles) and the Australian MND DNA bank (n=535; 1070

alleles) were available for manual genotyping. These samples were screened for

identified variants using custom high-throughput genotyping TaqMan assays (Life

Technologies), to facilitate rapid and cost effective genotyping. Specific assay details

are provided in Chapter 2, Section 2.4.3.2. Fisher’s exact testing, with a significance

threshold of 0.05, was then used to compare the number of alternate and wild-type

alleles between affected individuals and controls.
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4.3 Publications/manuscripts

4.3.1 Paper I – Screening and analysis of known ALS genes

ALS is a genetically heterogeneous disease, with at least 25 genes, and numerous

individual mutations within each, known to cause disease (as established in Chapter

1, Section 1.4). It has also been noted that the frequency with which each ALS gene

mutation causes disease differs between populations (discussed in Chapter 1, Section

1.4). In addition to this genetic heterogeneity, significant phenotypic heterogeneity

is also evident amongst ALS patients. The clinical presentation of disease varies

drastically in terms of age and site of onset, as well as rate of disease progression

(discussed in Chapter 1, Sections 1.3.1 and 1.6.1). Particular ALS genes have also

been associated with certain clinical characteristics, such as the predominance of FUS

mutations in juvenile ALS (described in Chapter 1, Section 1.4).

In light of this heterogeneity, we endeavoured to describe the genotype-phenotype

landscape of ALS in Australian FALS for the first time. This included determining the

prevalence of each known ALS gene mutation, and identifying correlations between

mutation status and either age of disease onset or disease duration. Additionally, we

sought to determine the prevalence of pathogenic hexanucleotide repeat expansions in

C9orf72 among Australian SALS patients.

Two-hundred and twelve families, totalling 267 FALS patients, underwent com-

prehensive gene screening. Generally, FALS patients were first screened for the major

ALS genes C9orf72 and SOD1 using repeat primed PCR and Sanger sequencing,

respectively. Those patients negative for both then underwent WES. However, those

FALS cases collected prior to the discovery of the pathogenic expansion of C9orf72 in

2011 were screened for this locus in retrospect.

WES data was screened for any variants in ALS genes using the Custom Script

in Appendix A.2.4, and any non-synonymous mutations were then identified using

the Custom Script 3.11. This analysis showed that 60.8% of Australian FALS

cases were explained by mutations in known ALS genes. Pathogenic expansion

of C9orf72 was evident in 40.6% of FALS, while ALS families harbouring muta-

tions in SOD1 (13.7%), FUS (2.4%), TARDBP (1.9%), UBQLN2 (0.9%), OPTN

(0.5%), TBK1 (0.5%) and CCNF (0.5%) were also identified. Among the nine

distinct SOD1 missense mutations present in our cohort, p.V149G, p.I114T and

p.E101G were most common, whilst p.A5V, the most frequent SOD1 mutation in
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North American, European-based populations (Andersen, 2006), was distinctly absent.

In order to investigate the relationship between age of disease onset or disease

duration with the different ALS mutations, Kaplan-Meier survival analysis was

performed. Subsequently, each of the different mutations were directly compared

in a pair-wise manner using Mantel-Cox log-rank testing. A number of significant

correlations were observed. Among the most interesting were that C9orf72 expansion

carriers were significantly more likely to develop disease later in life; the various

SOD1 mutations showed significant variance in clinical presentation of disease; and

an apparent tendency of the FUS p.R521C mutation to show a more severe disease

course than other non-SOD1 mutations.

Further, since our laboratory’s initial report on the Australian prevalence of

pathogenic expansions in C9orf72 (Williams et al., 2012b), a further 142 apparently

sporadic patients had been recruited for our genetic studies. Initially, three of these

SALS patients were found to carry the expansion, however, two were subsequently

reclassified as familial cases following detailed genealogical analysis. This resulted in

just 1/140 (0.7%) C9orf72 expansion positive newly recruited SALS patients. When

combined with the findings of our previous study (Williams et al., 2012b), just 2.9% of

Australian SALS were found to carry a pathogenic expansion in C9orf72. Importantly,

no phenotypic differences were observed between FALS and SALS expansion carriers,

suggesting all C9orf72 positive SALS may in fact be misclassified FALS patients.
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Supplementary Table S1. The 22 pathogenic mutations identified in 212 Australian ALS 
families.  
 

Gene 
Transcript 
accession 
number 

Nucleotide change Amino acid 
change 

First 
description of 
mutation by 
our laboratory 

C9ORF72 NM_018325 Polymorphic 
g.26724GGGGCC(3_23) NA 21 

SOD1 NM_000454    
  c.19T>G p.C7G This report 

  c.374A>T p.D125V This report 

  c.272A>C p.D91A This report 

  c.302A>G p.E101G This report 

  c.217G>A p.G73S This report 

  c.281G>T p.G94V This report 

  c.131A>G p.H44R This report 

  c.341T>C p.I114T This report 
    c.446T>G p.V149G This report 
FUS NM_004960    
  c.1562G>A p.R521H 20 

  c.1562G>A p.R521C 20 
    c.1561C>A p.R521S This report 
TARDBP NM_007375    
  c.881G>T p.G294V 19 

  c.1009A>G p.M337V 12 

  c.1127G>A p.G376D 18 

    c.1158_1159delAT; 
c.1158_1159insCACCAACC p.S387delinsTNP 18 

OPTN NM_ 001008211    
   c.883G>T p.V295F 25 
UBQLN2  NM_013444    
    c.1460C>T p.T487I 22 
TBK1 NM_013254  

c.1197delC 
 
p.L399fs  

 
24   

CCNF NM_001761  
c.1861A>G 

 
p.S621G 

 
  23 

 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table S2. Age of disease onset. Results of statistical analyses comparing ages 
of disease onset for ALS gene groups and SOD1 variants. Statistically significant comparisons 
are highlighted in grey. 
ALS gene groups (relates to figure 2A)  
Log-rank (Mantel-Cox) test: p<0.0001**** 
Post-hoc Log-rank (Mantel-Cox) pairwise comparisons;  
Bonferroni corrected significance threshold: 0.0033 
Gene 1 Gene 2 Log-rank (Mantel-Cox) p-value 
C9ORF72 SOD1 0.0003** 
C9ORF72 FUS <0.0001*** 
C9ORF72 TARDBP 0.0505 
C9ORF72 UBQLN2 0.0002** 
C9ORF72 
SOD1 

CCNF 
FUS 

0.2780 
0.2108 

SOD1 TARDBP 0.9705 
SOD1 UBQLN2 0.1438 
SOD1 
FUS 

CCNF 
TARDBP 

0.8598 
0.6105 

FUS UBQLN2 0.6922 
FUS 
TARDBP 
TARDBP 
UBQLN2 

CCNF 
UBQLN2 
CCNF 
CCNF 

0.5206 
0.3993 
0.9665 
0.2511 

Sample numbers: C9ORF72, n=222; SOD1, n=158; FUS, n=40 TARDBP, 
n=12; UBQLN2, n=15; CCNF, n=8. 
SOD1 mutations (relates to figure 2D)  
Log-rank (Mantel-Cox) test: p<0.0001**** 
Post-hoc Log-rank (Mantel-Cox) pairwise comparisons;  
Bonferroni corrected significance threshold: 0.005 
Variant 1 Variant 2 Log-rank (Mantel-Cox) p-value 
p.H44R p.E101G 0.9447 
p.H44R p.I114T 0.0207 
p.H44R p.D125V 0.0731 
p.H44R p.V149G 0.5454 
p.E101G p.I114T 0.0003** 
p.E101G p. D125V 0.1259 
p.E101G p.V149G 0.2598 
p.I114T p.D125V 0.6668 
p.I114T p.V149G <0.0001*** 
p.D125V p.V149G 0.0093 
Sample numbers: p.H44R, n=10; p.E101G, n=27; p.I114T, n=69; p.D125V, 
n=6; p.V149G, n=41. 
Other gene mutations (relates to figure 2G)  
Log-rank (Mantel-Cox) test: p=0.0609   
Post-hoc Log-rank (Mantel-Cox) pairwise comparisons;  
Bonferroni corrected significance threshold: 0.008 
Variant 1 Variant 2 Log-rank (Mantel-Cox) p-value 
FUS p.R521C FUS p.R521H 0.0105 
FUS p.R521C TARDBP p.M337V 0.1103 
FUS p.R521C UBQLN2 p.T487I 0.2329 
FUS p.R521H TARDBP p.M337V 0.3982 



FUS p.R521H UBQLN2 p.T487I 0.0965 
TARDBP p.M337V UBQLN2 p.T487I 0.6054 

Sample numbers: FUS p.R521C, n=14; FUS p.R521H, n=24; TARDBP p.M337V, n=8; UBQLN2 
p.T487I, n=15. 
  



 
Supplementary Table S3. Survival and disease duration. Results of statistical analyses 
comparing survival and disease duration for ALS gene groups and SOD1 variants. 
Statistically significant comparisons are highlighted in grey. 
ALS gene groups (relates to figure 2B)  
Log-rank (Mantel-Cox) test: p=0.1572   
Sample numbers: C9ORF72, n=117; SOD1, n=72; FUS, n=26 TARDBP, n=7; 
UBQLN2, n=14; CCNF, n=3. 
SOD1 mutations (relates to figure 2E)  
Log-rank (Mantel-Cox) test: p<0.0001 **** 
Post-hoc Log-rank (Mantel-Cox) pairwise comparisons;  
Bonferroni corrected significance threshold: 0.005 
Variant 1 Variant 2 Log-rank (Mantel-Cox) p-value 
p.H44R p.E101G <0.0001*** 
p.H44R p.I114T 0.0021* 
p.H44R p.D125V 0.0771 
p.H44R p.V149G 0.0847 
p.E101G p.I114T 0.0929 
p.E101G p. D125V <0.0001*** 
p.E101G p.V149G <0.0001*** 
p.I114T p.D125V <0.0001*** 
p.I114T p.V149G 0.0088 
p.D125V p.V149G <0.0001*** 
Sample numbers: p.H44R, n=6; p.E101G, n=14; p.I114T, n=23; p.D125V, 
n=5; p.V149G, n=21. 
Other gene mutations (relates to figure 2H)  
Log-rank (Mantel-Cox) test: p=0.0044**   
Post-hoc Log-rank (Mantel-Cox) pairwise comparisons;  
Bonferroni corrected significance threshold: 0.005 
Variant 1 Variant 2 Log-rank (Mantel-Cox) p-value 
FUS p.R521C FUS p.R521H 0.0051 
FUS p.R521C TARDBP p.M337V 0.008 
FUS p.R521C UBQLN2 p.T487I 0.0053 
FUS p.R521C 
FUS p.R521H 

CCNF p.S621G 
TARDBP p.M337V 

0.0731 
0.0675 

FUS p.R521H UBQLN2 p.T487I 0.1605 
FUS p.R521H 
TARDBP p.M337V 
TARDBP p.M337V 
UBQLN2 p.T487I 

CCNF p.S621G 
UBQLN2 p.T487I 
CCNF p.S621G 
CCNF p.S621G 

0.9621 
0.4316 
0.2562 
0.5806 

Sample numbers: FUS p.R521C, n=9; FUS p.R521H, n=15; TARDBP p.M337V, n=5; UBQLN2 
p.T487I, n=14; CCNF p.S621G, n=3.. 
 
 
 
 
 
 
 
 
 



Supplementary Table S4. Age of disease onset and survival/disease duration. Results of 
statistical analyses comparing ages of disease onset as well as survival and disease duration 
between FUS p.R521C and SOD1 mutations. Statistically significant comparisons are 
highlighted in grey. 
Cumulative penetrance (relates to figure 3A)  
Log-rank (Mantel-Cox) test: p<0.0001**** 
Post-hoc Log-rank (Mantel-Cox) pairwise comparisons;  
Bonferroni corrected significance threshold: 0.003 
Variant 1 Variant 2 Log-rank (Mantel-Cox) p-value 
FUS p.R521C SOD1 p.H44R 0.3845 
FUS p.R521C SOD1 p.E101G 0.3732 
FUS p.R521C SOD1 p.I114T < 0.0001** 
FUS p.R521C SOD1 p.D125V 0.1186 
FUS p.R521C SOD1 p.V149G 0.5501 
Sample numbers: FUS p.R521C, n=14; p.H44R, n=10; p.E101G, n=27; 
p.I114T, n=69; p.D125V, n=6; p.V149G, n=41. 
Survival and disease duration (relates to figure 3B)  
Log-rank (Mantel-Cox) test: p<0.0001**** 
Post-hoc Log-rank (Mantel-Cox) pairwise comparisons;  
Bonferroni corrected significance threshold: 0.003 
Variant 1 Variant 2 Log-rank (Mantel-Cox) p-value 
FUS p.R521C SOD1 p.H44R 0.132 
FUS p.R521C SOD1 p.E101G < 0.0001** 
FUS p.R521C SOD1 p.I114T 0.0267 
FUS p.R521C SOD1 p.D125V < 0.0001** 
FUS p.R521C SOD1 p.V149G 0.6072 

Sample numbers: FUS p.R521C, n=9; SOD1 p.H44R, n=6; SOD1 p.E101G, n=14; SOD1 p.I114T, 
n=23; SOD1 p.D125V, n=5; SOD1 p.V149G, n=21. 
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4.3.2 Manuscript II – Screening and analysis of CHCHD10,

a newly reported ALS/FTD gene

CHCHD10 was first implicated in ALS by Bannwarth et al. (2014). A CHCHD10

c.C176T; p.S59L mutation was identified in a French family with a mitochondrial

DNA instability disorder. Many of the affected members of this family also exhibited

a range of accompanying phenotypes, including symptoms suggestive of ALS and

FTD. This led to genetic screening of CHCHD10 in 21 ALS/FTD kindreds, which

revealed an identical mutation was harboured by a proband of Spanish descent, thus

affirming the pathogenic role of CHCHD10 in ALS/FTD.

Following this initial discovery, mixed reports have surfaced concerning the

contribution of genetic variation in CHCHD10 to the cause of ALS/FTD in different

populations. While many studies have successfully identified CHCHD10 mutations in

ALS/FTD cohorts (Dols-Icardo et al., 2015; Jiao et al., 2016; Johnson et al., 2014a;

Kurzwelly et al., 2015; Muller et al., 2014; Perrone et al., 2017; Zhou et al., 2017),

numerous others have reported their absence (Abdelkarim et al., 2016; Li et al., 2016;

Marroquin et al., 2016; Teyssou et al., 2016; Wong et al., 2015). Interestingly, when

considering these reports, it seems that CHCHD10 mutations may be more frequent

in FTD, or ALS/FTD patients than pure ALS cases. Additionally, some studies

reporting CHCHD10 variants as disease causal mutations have lacked comparison to

large ethnically matched control cohorts (Chaussenot et al., 2014; Ronchi et al., 2015).

Such claims have potentially contributed to an overestimation of the prevalence of

CHCHD10 mutations in ALS/FTD. As such, some studies have suggested that rare

variants in CHCHD10 may confer an increased disease-risk, rather than acting as

ALS/FTD causal mutations (Abdelkarim et al., 2016).

Taken together, this led to the investigation of the prevalence of genetic variation

in CHCHD10 among Australian FALS, SALS and FTD patients. Additionally, we

sought to investigate the pathology observed with the CHCHD10 protein in patient

neurological tissue, as unlike many other ALS genes, this has not yet been reported.

The Custom Scripts in Appendices A.2.4 and A.2.6 were applied to WES data

from FALS cases without a known causal mutation (n=81; including 61 probands),

and WGS data from SALS patients (n=635) and FTD patients (n=108), respectively.

Following analysis for non-synonymous variants using the Custom Scripts 3.11 or

3.12, three CHCHD10 variants previously reported as beling linked to ALS and/or
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FTD were identified. This included p.P34S, p.P80L, and p.P96T, each of which were

present in six and two SALS cases, and one FTD case, respectively. However, all three

variants are also present in multiple control individuals from the gnomAD database.

Further, no novel CHCHD10 mutations were identified. Thus we concluded that

CHCHD10 mutations are not a common cause of disease in the Australian population.

We also investigated whether any SNPs were associated with disease using the

Custom Scripts in Appendices A.2.4 and A.2.9. While no SNPs were found to be

associated with FALS or FTD, the p.P80L and p.P34S variants previously linked to

ALS/FTD showed trends towards over-representation in SALS patients, compared

with gnomAD and DACC controls, respectively. However, both trends were lost upon

Bonferroni correction for multiple-testing. Interestingly, the initial reports of each of

these variants in ALS/FTD had limited comparisons to control cohorts (Chaussenot

et al., 2014; Ronchi et al., 2015), while both have subsequently been reported

in both ALS/FTD patients as well as ancestrally-matched controls (Dobson-Stone

et al., 2015; Wong et al., 2015), suggesting that they may not be true causal mutations.

In addition to the genetic analysis, we also sought to determine the localisation and

expression of the CHCHD10 protein in patient neuronal tissue. Immunohistochemistry

analysis of spinal cord and motor cortex tissues from ALS patients (including those

with pathogenic C9orf72 expansions or SOD1 mutations, and SALS patients without

a causal mutation) showed that CHCHD10 is expressed in motor neurons. While less

CHCHD10 positive motor neurons were observed in patient spinal cord tissue, this

was most likely due to a loss of motor neurons. As was established in Chapter 1,

Section 1.3.4, the protein products encoded by numerous ALS genes have been found

to aggregate as part of the disease hallmark protein inclusions observed in the affected

motor neurons of ALS patients, and many also co-localise with TDP-43. As such, dual

immunoflouresence staining was also completed for the spinal cord and motor cortex

tissues from the aforementioned patients, to determine whether the CHCHD10 and

TDP-43 proteins co-localised. While co-localisation was absent from the the spinal

cord, some co-localisation was apparent in the motor cortex. Additionally, occasional

CHCHD10-positive inclusions were seen in SALS patients.
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ABSTRACT 71 

Objectives 72 

Mutations in the CHCHD10 gene have now been reported in mitochondrial DNA instability 73 

disorder, amyotrophic lateral sclerosis and frontotemporal dementia. To further assess the 74 

role of CHCHD10 in ALS and FTD, we examined CHCHD10 pathology in motor and frontal 75 

cortex, and spinal cord tissues from ALS and FTD patients and controls. We also sought to 76 

determine the prevalence of CHCHD10 mutations in Australian ALS and FTD. 77 

Methods 78 

Immunohistochemistry and immunofluorescence were performed to examine CHCHD10 79 

localisation in spinal cord and motor cortex in a cohort of control and ALS patients, and 80 

frontal cortex in ALS-FTLD and pure FTLD patients. Western blotting was used to 81 

measure CHCHD10 expression in ALS patient motor cortex tissue and in cortex tissue 82 

from an inducible ALS TDP-43 mouse model. Mutation and association analysis of 83 

CHCHD10 was performed by interrogation of whole exome and genome data from 84 

Australian FTD, and familial and sporadic ALS patients, as well as publicly available 85 

control databases. 86 

Results 87 

CHCHD10 showed primarily neuronal expression in spinal cord, motor cortex and frontal 88 

cortex tissues in both control and ALS patients. No significant changes were observed in 89 

CHCHD10 expression between control and ALS patients, but a significant downregulation 90 

of CHCHD10 was observed in the ALS TDP-43 mouse model following severe motor 91 

symptom onset. Three CHCHD10 variants previously linked to ALS/FTD were identified in 92 

Australian ALS and FTD cases and controls. No novel mutations, or variant associations 93 

were identified. 94 

Conclusions 95 

We identified for the first time that CHCHD10 is localised primarily in the neurons of three 96 

central nervous system regions, suggesting a neuron-specific role for CHCHD10. 97 

CHCHD10 protein level changes are not evident in the motor cortex regions of ALS 98 

patient, but significant CHCHD10 reduction may be associated with disease progression in 99 

the ALS TDP-43 mouse model, suggesting potential interactions between CHCHD10 and 100 

TDP-43.  This study also determined that CHCHD10 mutations are not a common cause 101 

of FTD or familial and sporadic ALS in Australia. 102 

 103 

 104 

 105 



INTRODUCTION 106 

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two late-onset 107 

neurodegenerative diseases that are clinically, genetically and pathologically linked, and 108 

are therefore considered to sit along a spectrum of neurodegenerative disease.1 ALS is 109 

characterised by the rapid degeneration of both upper and lower motor neurons, resulting 110 

in progressive muscle weakness, wasting, spasticity and eventual paralysis. Death 111 

generally occurs within two to five years of symptom onset.2 FTD is characterised by 112 

progressive neuronal atrophy in the frontal and temporal cortices, leading to personality 113 

and behavioural changes. Up to 15% of ALS patients are diagnosed with comorbid FTD 114 

(ALS/FTD)1, and 50% will develop some form of cognitive impairment.1 3 In addition to this 115 

clinical overlap, ALS and FTD patients have a shared genetic aetiology, and both are 116 

characterised by the presence of protein aggregates in affected neurons.1 3  117 

 118 

Approximately 10% of ALS patients (familial ALS; FALS) and more than a third of FTD 119 

patients exhibit familial inheritance of disease, with the remaining cases appearing 120 

apparently sporadically.4-6 Both ALS and FTD are genetically heterogeneous diseases, 121 

where many genes with disease-causing mutations have been identified. These include 122 

the ALS-linked gene SOD1, 7 ALS/FTD-linked genes such as TARDBP,8 UBQLN2,9 10 123 

CCNF,11 and a hexanucleotide expansion within C9orf72,12 13 and pure FTD-linked genes 124 

MAPT14 and PGRN15 16. However, only two thirds of FALS, less than 10% of sporadic ALS 125 

(SALS)17 and approximately 50% of familial FTD18 patients carry known mutations, thus a 126 

significant number of genetic contributors to ALS as well as ALS/FTD are yet to be 127 

identified. Both ALS and FTD patients possess ubiquitinated neuronal cytoplasmic 128 

inclusions, which are the distinguishing pathological feature of both conditions19 20. These 129 

inclusions are positive for the TAR DNA binding protein, TDP-43 (encoded by TARDBP) in 130 

approximately 90% of ALS and 45% of FTD cases21 22. Pathological TDP-43 also 131 

undergoes characteristic biochemical changes, including hyperphosphorylation and 132 

cleavage21 23. 133 

 134 

In 2014, Bannwarth et al. 24 identified a novel mutation in the gene encoding the coiled-135 

coil-helix-coiled-coil-helix domain containing 10 protein (CHCHD10) in a French family with 136 

a mitochondrial DNA instability disorder. The affected family members exhibited a range of 137 

accompanying phenotypes, including symptoms suggestive of ALS and FTD. 138 

Subsequently, an ALS/FTD patient from a family of Spanish descent was also found to 139 

carry an identical mutation. Since this initial report, numerous nonsynonymous CHCHD10 140 



variants have been reported in ALS/FTD cohorts.25-33 Some reports suggest that 141 

CHCHD10 mutations are more closely linked to FTD dominant phenotypes than pure ALS. 142 

CHCHD10 mutations have been found to be absent from multiple pure ALS cohorts,34 35 143 

and have appeared at much lower frequencies in ALS patients when compared to 144 

ethnically matched FTD cases.26 35-38 145 

 146 

The function of CHCHD10 is largely unknown, though it is thought to be involved in 147 

mitochondrial organisation by interaction with the mitochondrial contact site and cristae 148 

organizing system (MICOS) protein complex. CHCHD10 interacts with the MIC60 protein 149 

complex (a component of MICOS) that is involved in inner mitochondrial membrane 150 

morphology39. A recent study by Woo et al.40 identified a role for CHCHD10 in 151 

mitochondrial and synaptic integrity by identification of their dysfunction in a 152 

Caenorhabditis elegans CHCHD10 (har-1) knockdown model. Additionally, transfection of 153 

the CHCHD10 ALS/FTD mutations p.Arg15Leu and p.Ser59Leu into mouse primary 154 

neurons also induced abnormal mitochondria morphology, and reduced pre- and post-155 

synaptic integrity, suggesting a loss-of-function toxicity. Interestingly, the study also found 156 

that CHCHD10 formed complexes with TDP-43, which promoted nuclear localisation of the 157 

protein, whereby expression of the ALS/FTD mutant CHCHD10 protein lead to cytoplasmic 158 

mislocalisation and aggregation of TDP-43 that co-localised with mitochondria.40 However, 159 

nucleocytoplasmic translocation of TDP-43 was not observed in ALS patient-derived 160 

fibroblasts carrying a CHCHD10 p.Gly66Val mutation.41 Pathological studies of CHCHD10 161 

in patient tissues are currently limited to the Bannwarth et al.24 study, where patient 162 

muscle and skin fibroblasts from the family with mitochondrial DNA instability disorder, and 163 

a CHCHD10 mutation, were analysed. Mitochondrial fragmentation, crystalloid inclusions 164 

and structural alterations were observed24. To-date, CHCHD10 pathology has not been 165 

investigated in ALS/FTD patient brain and spinal cord tissues. 166 

 167 

This study set out to examine CHCHD10 pathology in ALS, ALS/FTD and FTD patient 168 

frontal cortex, and ALS patient spinal cord and motor cortex tissues. The study also aimed 169 

to determine the prevalence of CHCHD10 mutations, or disease associated variants, in 170 

Australian ALS and FTD cohorts.  171 

 172 

METHODS 173 

Subjects and tissues 174 



Eighty-one FALS patients (including 61 probands), and 628 SALS patients were 175 

ascertained from the Macquarie University Neurodegenerative disease Biobank, Molecular 176 

Medicine Laboratory at Concord Hospital, the Australian MND DNA bank, Royal Prince 177 

Alfred Hospital and the Brain and Mind Centre, University of Sydney. An additional 108 178 

FTD patients were also recruited from the Brain and Mind Centre. All participants were 179 

recruited under informed written consent as approved by the human research ethics 180 

committees of the Sydney South West Area Health Service and Macquarie University, or 181 

Sydney University. Most participants were of European descent and ALS patients were all 182 

clinically diagnosed with ALS based on El Escorial criteria,42 or FTD. Genomic DNA was 183 

extracted from peripheral blood using standard protocols. 184 

 185 

Post-mortem paraffin-embedded human cervical spinal cord, motor cortex and frontal 186 

cortex sections (5µm), and fresh-frozen motor cortex tissue were obtained from the New 187 

South Wales Brain Bank Network and the Sydney Brain Bank. Cervical spinal cord tissues 188 

were available from SALS (n=10), C9orf72 ALS (n=6), SOD1 FALS (n=1), FALS (n=2) 189 

patients, and neurologically normal controls (n=5). Motor cortex tissues included SALS 190 

(n=11), C9orf72 ALS (n=2), SOD1 FALS (n=2) patients and neurologically normal controls 191 

(n=4). Frontal cortex tissues were available from sporadic frontotemporal lobar 192 

degeneration (FTLD)/ALS (n=3), C9orf72 FTLD/ALS (n=3), C9orf72 FTLD (n=3), sporadic 193 

FTLD (n=3) and neurologically normal controls (n=6). All FTLD and FTLD/ALS cases are 194 

characterised by TDP-43 inclusions.  195 

 196 

Mouse cortex tissues were obtained from an established TDP-43 model of ALS (hTDP-197 

43∆NLS).43 44 This model is characterised by ALS pathological features including 198 

accumulation of insoluble and phosphorylated cytoplasmic TDP-43 in the brain and spinal 199 

cord.  200 

 201 

Patient tissue immunohistochemistry and immunofluorescence 202 

Spinal cord, motor cortex and frontal cortex tissue sections underwent 203 

immunohistochemical analysis of CHCHD10. Spinal cord and motor cortex tissues also 204 

underwent dual immunofluorescence analysis of CHCHD10 and pathological 205 

phosphorylated TDP-43 (pTDP43). Tissue sections were pre-heated at 70°C for 30 min, 206 

were deparaffinized with xylene, and rehydrated with a descending series of ethanol 207 

washes. Antigens were retrieved by boiling sections in high pH buffer (pH 9.0, Dako, CA, 208 

USA) for 20 min. For immunohistochemical staining, endogenous peroxidase activity was 209 



blocked using 3% hydrogen peroxide in methanol. Non-specific background was blocked 210 

using 5% normal goat serum (Vector Laboratories, CA, USA) with 0.1% Tween 20 in PBS 211 

for 1 h. Sections were incubated at 4°C overnight with primary antibodies: rabbit polyclonal 212 

anti-CHCHD10 (1:400, Sigma-Aldrich, MO, USA) alone for immunohistochemistry or in 213 

combination with mouse monoclonal anti-TDP-43 phosphorylated Ser409/410 (1:5000; 214 

Cosmo Bio, Japan) for immunofluorescence. 215 

 216 

Sections were incubated at room temperature for 1 h with secondary antibodies: 217 

biotinylated goat anti-rabbit IgG (Vector Laboratories) for immunohistochemical staining 218 

and secondary alexaFluor-488 or 555 conjugated to anti-rabbit or anti-mouse antibodies 219 

(ThermoFisher Scientific, MA, USA) for immunofluorescent staining. For 220 

immunohistochemical staining, the avidin-biotin complex detection system (Vector 221 

Laboratories) with 3,3’-diaminobenzide as chromogen (Dako) was used to detect the 222 

immunoreactive signal. Immunohistochemistry sections were counterstained with 223 

hematoxylin and dehydrated with increasing series of ethanol washes followed by xylene. 224 

Sections were coverslipped using Di-N-Butyle Phthalate in xylene (DPX, Dako) or ProLong 225 

Gold antifade reagent with DAPI (ThermoFisher Scientific) for immunohistochemistry or 226 

immunofluorescence, respectively.  227 

 228 

Visualisation and analysis of tissue sections 229 

Immunohistochemistry sections were visualized using the ZEISS Axio Imager 2 230 

microscope. Complete immunohistochemistry section images were captured using the 231 

Virtual Microscope ScanScope Unit and ScanScope Consol program before being 232 

visualised using the Image Scope program (Leica Biosystems, Germany). 233 

Immunofluorescence sections were imaged with a ZEISS LSM 880 inverted confocal 234 

laser-scanning microscope.  235 

 236 

Generation of protein lysates from motor cortex tissue 237 

Frozen motor cortex tissue was homogenized in 5X volume (µL/mg) of RIPA buffer (50mM 238 

Tris, 150mM NaCl, 1% Triton-X-100, 5mM EDTA, 0.5% sodium deoxycholate, 0.1% SDS, 239 

pH 8.0) containing phosphatase and protease inhibitors (Roche, Switzerland) using a 240 

motor-driven pestle. Homogenates were centrifuged at 124,500 x g for 40 min at 4°C. The 241 

supernatant was collected (RIPA-soluble fraction), and the pellet resuspended in 2X 242 

volume (µL/mg) of urea buffer (7M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, pH 8.5) 243 

containing phosphatase and protease inhibitors. The resuspensions were sonicated, 244 



centrifuged at 124,500 x g for 40 min at 22°C and the supernatant collected. Protein 245 

concentration was determined using the Pierce BCA Protein Assay Kit (ThermoFisher 246 

Scientific). 247 

 248 

Collection of mouse cortex tissues 249 

hTDP-43∆NLS or non-transgenic mice were deeply anesthetised using ketamine/xylazine 250 

and intracardially perfused with 15 ml phosphate-buffered saline followed by 30 min 10% 251 

formalin. Cortex tissues were dissected from four hTDP-43∆NLS mice and four non-252 

transgenic littermates at 2, 4 or 6 weeks off Dox.  253 

  254 

 255 

Western blot analysis  256 

Motor cortex protein lysates were prepared in dH2O with Laemmli sample buffer (Bio-Rad) 257 

and NuPAGE sample reducing agent (ThermoFisher Scientific) and denatured at 70°C for 258 

10 min. Protein lysates were electrophoresed into a 4-15% pre-cast polyacrylamide gel 259 

(Bio-Rad, CA, USA) and transferred to a nitrocellulose membrane using a semi-dry 260 

transfer (Bio-Rad, Trans-Blot Turbo Transfer System). Membranes were blocked in 261 

Odyssey Blocking Buffer in TBS (OBB) (LI-COR Biosciences, NE, USA) for 1 h at room 262 

temperature followed by overnight incubation at 4°C with primary antibodies: CHCHD10 263 

(as above, 1:250), Neuronal Nuclei Antigen (NeuN) mouse monoclonal 1:1000 (Merck, 264 

Germany), TDP-43 rabbit polyclonal 1:2000 (Proteintech) or GAPDH mouse monoclonal 265 

1:5000 (Proteintech). Membranes were then incubated for 1 h at room temperature with 266 

IRDye 680LT donkey anti-rabbit IgG and 800CW donkey anti-mouse IgG, 1:20,000 (LI-267 

COR Biosciences). Antibodies were diluted in OBB with 0.1% Tween 20. Membranes were 268 

visualised using the Odyssey CLx imaging system and bands analysed with the Image 269 

Studio Lite software (LI-COR Biosciences). 270 

 271 

Next-generation sequencing 272 

FALS patients negative for mutations in SOD1 and pathogenic expansions in C9orf72 273 

underwent whole exome sequencing (WES). Briefly, WES was performed at Macrogen Inc 274 

(Seoul, Korea) on the Illumina HiSeq2000 platform using the TruSeq Exome Enrichment 275 

kit (Illumina, CA, USA) or SureSelectXT Human All Exon V5 + UTR kit (Agilent, CA, USA). 276 

Full details of the cohort are described in.17 SALS patients negative for the pathogenic 277 

expansion in C9orf72 and FTD patients negative for mutations in MAPT and the C9orf72 278 

expansion, and two FTD patients with GRN mutations, underwent whole genome 279 



sequencing (WGS) performed on the Illumina HiSeq X Ten platform using the TruSeq 280 

PCR-free library preparation (v2.5) (Kinghorn Centre for Clinical Genomics, Sydney, 281 

Australia). WES and WGS raw data were processed using the Genome Analysis ToolKit, 282 

(GATK, Broad Institute, MA, USA) and the corresponding best practices.45-47 ANNOVAR48 283 

was used for annotation of variant call files (VCFs). 284 

 285 

Genetic analysis 286 

Using UNIX and the R statistical environment, custom bioinformatics analyses were 287 

applied to annotated VCFs to identify all genetic variants present in CHCHD10 288 

(NM_213720). The presence of CHCHD10 variants previously reported as being ALS 289 

and/or FTD-linked was determined (c.44 G>T; p.Arg15Leu, c.100C>T; p.Pro34Ser, 290 

c.176C>T; p.Ser59Leu, c.197G>T; p.Gly66Val and c.239C>T; p.Pro80Leu, c.34C>T; 291 

p.Pro12Ser, c.244C>T; p.Gln82X, c.286C>A; p.Pro96Thr, c.67C>A; p.Pro23Thr, 292 

c.104C>A; p.Ala35Asp, c.64C>T, p.His22Tyr, c.68C>T, p.Pro23Leu, c.95C>A, p.Ala32Asp 293 

and c.170T>A, p.Val57Glu.) Variant alternate allele counts were compared between 294 

patients and unrelated control individuals using fisher’s exact testing. Intergenic, upstream 295 

and downstream variants were not analysed. The p-value significance threshold was 296 

corrected for multiple-testing using Bonferroni corrections based on the number of variants 297 

identified. Patient allele frequencies were compared to three control datasets, the Non-298 

Finnish European (NFE) WGS subset from the Genome Aggregation database 299 

(gnomAD),49 and ethically matched control cohorts from the Medical Genome Reference 300 

Bank (MGRB, n=1144) and the Diamantina Australian Control Collection (DACC, 301 

University of Queensland, n=967). The MGRB and DACC cohorts consist of neurologically 302 

healthy individuals of predominantly Western European descent. Fisher’s exact testing 303 

was not completed on variants absent from the MGRB and DACC data if flanking variants 304 

had low sequence coverage. An average of 15350 alleles was used to calculate p-values 305 

for variants absent in the NFE gnomAD control dataset. 306 

 307 

RESULTS 308 

Subcellular location of CHCHD10 in spinal cord, motor cortex and frontal cortex 309 

We first performed IHC on ALS patient and control spinal cord and motor cortex tissues, 310 

as well as frontal cortex tissues from a small cohort of FTLD and/or ALS patients. In spinal 311 

cord (figure 1, A), CHCHD10 localised primarily in the grey matter region of both patients 312 

and controls. CHCHD10 expression was specifically observed in anterior horn motor 313 

neurons and neuropils and was generally absent from other cell types in both ALS patients 314 



and controls. Less CHCHD10-positive motor neurons were visualised in ALS patient spinal 315 

cord sections compared to controls, likely due to motor neuron loss in ALS patients. A 316 

similar range of cytoplasmic expression was observed in controls and ALS patients with 317 

different genotypes (C9orf72 repeat expansion, SOD1 mutation and SALS with no known 318 

mutations, figure 1, B). In motor cortex and frontal cortex (figure 1, C-E), CHCHD10 319 

showed cytoplasmic expression predominantly in medium and large pyramidal neurons 320 

located in cortical layers II, III and V in both patients and controls. A reduced number of 321 

CHCHD10 positive large pyramidal cells were seen in patients compared to the controls 322 

(figure 1, C, E). CHCHD10 location did not show a difference between control or ALS 323 

patients with different genotypes (figure 1 D, F). No difference was seen between 324 

ALS/FTLD and FTLD patients in terms of CHCHD10 localisation except that all three FTLD 325 

cases with a C9orf72 repeat expansion showed low to no staining. To confirm the 326 

CHCHD10 location in these cases, additional sections were stained with an extended DAB 327 

incubation time (Supplementary figure 1). CHCHD10 expression was confirmed to be 328 

cytoplasmic in these cases after this staining, however one case still demonstrated low 329 

staining.   330 

 331 

CHCHD10 did not form inclusions or colocalise with pTDP-43 inclusions in the majority of 332 

selected spinal cord and motor cortex tissues, and in all selected frontal cortex tissues 333 

(figure 2). CHCHD10 inclusions were observed in one or two neurons in spinal cord 334 

tissues from three SALS cases and motor cortex tissues from one SALS case 335 

(Supplementary figure 2).  336 

 337 

CHCHD10 expression level in motor cortex 338 

We observed variable levels of IHC staining both within the same case as well as between 339 

individual cases (Supplementary figure 3). Therefore, we sought to quantify CHCHD10 340 

expression in control and patient tissues. Due to unavailability of fresh frozen spinal cord 341 

and frontal cortex tissues, Western blot analysis was conducted on motor cortex tissues 342 

only. 343 

 344 

In motor cortex, CHCHD10 expression levels were examined by Western blot analysis of 345 

fresh frozen tissue lysates. Antibody specificity was confirmed by the presence of a single 346 

band product in line with previous findings24.  Western blot analysis showed variable 347 

CHCHD10 expression between cases (figure 3, A). Since CHCHD10 localised primarily to 348 

the neurons in motor cortex regions, we used a neuronal marker, NeuN, to normalise 349 



CHCHD10 expression levels. No significant changes were observed between control and 350 

ALS cases, except for one SOD1 case which showed significantly higher expression than 351 

the control (figure 3 B, C).  352 

We also examined CHCHD10 expression in an inducible ALS hTDP-43∆NLS transgenic 353 

mouse.44 We examined CHCHD10 protein level in transgenic or littermate non-transgenic 354 

control mice at 2, 4, or 6 weeks after removing suppressive reagent Dox, which 355 

corresponds to mild, medium and sever motor phenotypes. In motor cortex tissues from 356 

mice at six weeks off Dox, CHCHD10 expression is significantly reduced compared to 357 

control mice, but not in two or four week mice (p<0.05). NeuN expression did not show a 358 

significant difference between control and disease mice in any of these three time points 359 

(Supplementary figure 4). 360 

 361 

CHCHD10 variation in ALS and FTD 362 

Analysis of previously reported ALS and/or FTD-linked mutations 363 

Whole exome and whole genome sequencing data was interrogated for the presence of 364 

CHCHD10 variants in FALS and SALS/FTD respectively. Three disease-linked CHCHD10 365 

missense variants (c.100C>T; p.Pro34Ser, c.239C>T; p.Pro80Leu, and c.C286A; 366 

p.Pro96Thr) were present in six and two SALS cases, and one FTD case respectively 367 

(table 1). These three variants were also present in NFE gnomAD and MGRB controls 368 

(table 1). Interestingly, the ALS-linked variant, p.Pro80Leu, was absent from Australian 369 

controls and trended towards an overrepresentation in SALS compared to NFE gnomAD 370 

controls (p=0.03). However this was not significant after Bonferroni correction (as 371 

described below in the following section), nor was the trend replicated in DACC or MGRB 372 

controls (table 1). Additionally, a trend towards an overrepresentation of the ALS-linked 373 

p.Pro34Ser variant was seen in SALS when compared with DACC Australian controls 374 

(p=0.0038). Again, this was not significant after Bonferroni correction (as described below 375 

in the following section), nor was the trend replicated in gnomAD or MGRB control cohorts 376 

(table 1). One known rare nonsynonymous variant (c.T403C; p.Tyr135His, rs145649831) 377 

was also identified in SALS and FALS cases (table 1). No novel CHCHD10 missense 378 

variants were identified. 379 

 380 



Table 1. Nonsynonymous CHCHD10 variants identified in Australian ALS and FTD, and associated allele frequencies in cases and  381 

controls 382 

383 Variant ALS/FTD 
-linked 
variant 

dbSNP ID Cohort AAF GnomAD NFE   DACC   MGRB 

AAF p-value   AAF p-value   AAF p-value 

c.100C>T, 

p.Pro34Ser 
Yes . SALS 0.0048 0.004 0.651  0 0.0038  0.007 0.507 

c.239TC>T, 

p.Pro80Leu 
Yes . SALS 0.0016 0.0002 0.03  0 0.156  0 0.125 

c.286C>A, 

p.Pro96Thr 
Yes rs111677724 FTD 0.0008 0.0008 1  0 0.101  0.0009 0.292 

c.403T>C, 

p.Tyr135His 
No rs145649831 FALS 0.0068 0.0003 0.4219  0.0005 0.1395  0.0009 0.171 

      SALS 0.0016 0.0003 0.065   0.0005 1   0.0009 1 



Association analysis of population-based variants 384 

Among FALS and SALS cases, a total of eight and 27 variants annotated as one of 385 

exonic, 3’UTR or intronic were identified in FALS and SALS cases respectively 386 

(Supplementary table 1). Therefore, the significance thresholds of p<0.00625 (FALS 387 

analysis) and p<0.00185 (SALS analysis) were applied after Bonferroni correction. 388 

Association analysis of population-based CHCHD10 SNPs using Fisher’s exact testing 389 

found no variants to be significantly associated with FALS or FTD (table 1, Supplementary 390 

table 1). One intronic SNP (rs62241575) was significantly associated with SALS compared 391 

to gnomAD NFE controls, however, analysis of Australian controls failed to replicate this 392 

association.  393 

 394 

DISCUSSION 395 

The current study identified CHCHD10 protein pathology in ALS and FTD patient tissues, 396 

and suggests the potential genetic contribution of CHCHD10 in Australian ALS, ALS/FTD 397 

and FTD patients. 398 

 399 

Mitochondrial dysfunction has long been recognised in ALS and FTD patients, however 400 

whether it is a cause or consequence of disease remains unclear. The recent identification 401 

of CHCHD10 mutations in individuals within the ALS-FTD clinical spectrum has for the first 402 

time recognised genetic mutations in a mitochondrial protein as a potential cause of 403 

disease.24 Since this discovery, studies attempting to elucidate the consequence of 404 

potentially pathogenic mutations have largely relied on skin fibroblasts from mutation 405 

carrying patients and overexpression of CHCHD10 mutants in in vitro and in vivo models. 406 

However, histopathological features of CHCHD10 in ALS and FTD cases without a 407 

CHCHD10 mutation have not been fully characterised.  408 

 409 

In this study, we examined CHCHD10 localisation and expression levels in a set of 410 

neurologically normal controls, ALS, ALS/FTLD or FTLD patient post-mortem tissues. We 411 

found that CHCHD10 is primarily expressed in neurons of spinal cord, motor cortex and 412 

frontal cortex regions, and is generally absent from other cell types, such as glial cells, in 413 

both controls and patients. Neuronal mitochondria are highly dynamic organelles that are 414 

specialised in establishing and maintaining membrane excitability, neurotransmission and 415 

plasticity.50 Our results suggest that CHCHD10 may have a neuron-specific role, possibly 416 

to support various neuronal activities as well as maintenance of mitochondrial network 417 

integrity. Furthermore, CHCHD10 mainly localised to the cytoplasm in both control and 418 



patient neurons. Previous studies suggest CHCHD10 is a component of the mitochondria 419 

contact site and cristae organizing system complex.39 Future studies are required to 420 

comprehensively illustrate the precise location of CHCHD10 in human motor neurons. We 421 

also observed CHCHD10 inclusion-like structures in a very small number of cases. It is 422 

unclear whether these inclusions are relevant for ALS pathogenesis. Future work on an 423 

extended cohort is required to determine the biological consequence of these structures. 424 

 425 

While the initial study by Bannwarth et al.24 did not report a significant reduction of 426 

CHCHD10 expression in CHCHD10 mutant patient muscle tissue24 several studies have 427 

since reported decreased CHCHD10 protein levels in CHCHD10 mutation carrying patient 428 

derived fibroblasts and lymphoblasts compared to controls.39 41 51 52 Such results favour the 429 

hypothesis that mutations in CHCHD10 cause neurodegenerative disease via 430 

haploinsufficiency of CHCHD10. We did not observe significant CHCHD10 protein level 431 

changes between control and ALS patient motor cortex tissues, suggesting CHCHD10 432 

protein level changes are not the primary cause of motor neuron death in these tissues. In 433 

contrast, CHCHD10 is downregulated in an inducible ALS TDP-43 transgenic mouse 434 

model (hTDP-43∆NLS). A significant decrease in CHCHD10 protein levels was observed 435 

in mice at six weeks (presence of severe motor symptoms), but not at two (symptom onset 436 

and TDP-43 abnormalities) or four weeks (cortical atrophy and neuromuscular junction 437 

denervation) off the suppressive reagent Dox. This suggests that there may be an 438 

association between CHCHD10 reduction and disease progression.  439 

 440 

It has previously been shown that TDP-43 can physically interact and form complexes with 441 

CHCHD10, while knockdown or expression of mutant CHCHD10 increases the 442 

accumulation of cytoplasmic TDP-43.40 Our findings also clearly demonstrate an 443 

association between CHCHD10 abnormality and TDP-43-induced ALS pathogenesis in a 444 

model that is complimentary to the study by Woo et al., where TDP-43 is in a mutant form 445 

and CHCHD10 in its wild type. It also suggests that CHCHD10 changes may be 446 

downstream of the occurrence of TDP-43 abnormalities. Another interesting point is that all 447 

the ALS and FTLD cases used in study are characterised by TDP-43 pathologies, but yet 448 

CHCHD10 protein levels remain unchanged and CHCHD10 does not co-localise with 449 

pTDP-43 inclusions. Our interpretation is that perhaps CHCHD10 alteration only occurs in 450 

cells with severe TDP-43 pathologies. In our hTDP-43∆NLS mouse model, TDP-43 451 

showed significant biochemical changes such as an increased accumulation in RIPA-452 

insoluble fractions compared to littermate non-transgenic controls.44 In contrast, our ALS 453 



cohort did not show any significant changes in RIPA-insoluble fractions between control 454 

and ALS patients (data not shown). Similarly, a previous study has utilised overexpression 455 

of either or both CHCHD10 and TDP-43 as a model to study the changes of these two 456 

proteins.40 Therefore, in our cohort where both TDP-43 and CHCHD10 are at physiological 457 

levels and TDP-43 biochemical changes are mild, it may not be sufficient to induce 458 

CHCHD10 protein changes. It will be interesting to examine CHCHD10 expression 459 

specifically in neurons with severe TDP-43 pathologies or cases with TDP-43 mutations 460 

versus neurons with no or mild TDP-43 pathologies. Further histopathological studies are 461 

also warranted to identify whether CHCHD10 mislocalises or interacts with TDP-43 in this 462 

hTDP-43∆NLS mouse model.  463 

 464 

We found that three CHCHD10 variants previously reported as ALS and/or FTD-linked  465 

(p.Pro34Ser, p.Pro80Leu, and p.Pro96Thr) were present in our large cohort of ALS and 466 

FTD patients. These variants were also found in control individuals, and their association 467 

with disease was not significant. One known intronic CHCHD10 SNP (rs62241575) was 468 

found to be potentially over-represented in SALS compared with gnomAD NFE controls. 469 

However, this potential risk allele was not replicated using Australian control cohorts, 470 

suggesting its association is to Australian ethnicity rather than ALS. This finding highlights 471 

the critical importance of using ethnically matched control cohorts. Interestingly, we found 472 

that the p.Pro80Leu, variant reported to be pathogenic by Ronchi et al.53, trended to 473 

overrepresentation in SALS patients compared to NFE gnomAD controls, however this too 474 

was lost upon comparisons with Australian control cohorts. Notably, in their initial report, 475 

Ronchi et al.53 identified p.Pro80Leu in two SALS patients and found it to be absent from 476 

the 1000 Genomes and Exome Variant Server control databases and an additional 286 477 

Italian controls. However, this equates to approximately 7,500 control individuals, whereas 478 

here we have utilised data from over 18,000 healthy individuals using the NFE gnomAD 479 

control cohort and two Australian control cohorts, providing far greater power to determine 480 

the novelty, or apparent disease association of genetic variants. The above findings, as 481 

well as results from Dobson-Stone et al. (2015),54 reiterate that screening of large 482 

ethnically matched control cohorts is critical to accurately assess the pathogenicity of 483 

potential disease gene variants. Our results suggest that genetic variation in CHCHD10 is 484 

not a common cause of, or risk factor for, ALS or FTD in Australia. 485 

 486 

Altogether, we reported CHCHD10 location and expression in ALS and FTD post-mortem 487 

tissues for the first time. Our result suggests that CHCHD10 plays roles primarily in 488 



neurons and CHCHD10 abnormality can be found in patients without CHCHD10 mutation. 489 

At this stage, it is not clear whether reduced CHCHD10 levels are the cause or the result 490 

of motor neuron degeneration or mitochondrial cristae dysfunction. Further efforts to 491 

investigate mitochondria cristae changes in ALS post-mortem tissues and ALS mouse 492 

models should provide more insights into its role in ALS pathogenesis. It will also be 493 

interesting to further elucidate the interaction between CHCHD10 and C9orf72 dipeptide 494 

repeats. The impact of the genetic findings reaffirms that while it appears genetic variation 495 

in CHCHD10 does contribute to the aetiology of ALS, it may not always be as an 496 

autosomal dominant cause of disease, and may often be contributing to disease risk 497 

through interactions with a other genetic variations waiting to be uncovered.  498 

 499 
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 523 

FIGURE LEGENDS 524 

Figure 1. IHC staining of CHCHD10 in (A, B) spinal cord, (C, D) motor cortex and (E, F) 525 

frontal cortex in human post-mortem tissues. A, C, E are ScanScope images of the whole 526 

section from one control and one patient from each location, and the zoomed-in view of 527 

the boxed area. B, C, D were neurons from control and patients with different genotypes 528 

taken with Zeiss Axio Imager using a 20x lens. A, C, E showed that in all three locations, 529 

CHCHD10 showed positive staining primarily in the grey matter, and strong 530 

immunoreactivity specifically to the neurons. Reduced numbers of CHCHD10 positive 531 

neurons were seen in all three locations (A, C, E, Boxed area). In all three locations, 532 

CHCHD10 showed primarily cytoplasmic localisation. No significant difference was seen in 533 

terms of subcellular location between control and patients, and between patients with 534 

different genotypes (B, D, E).   535 

 536 

Figure 2. CHCHD10 did not colocalise with TDP-43 inclusions in spinal cord (A), motor 537 

cortex (B) or frontal cortex (C) tissues. TDP-43 inclusions were labelled with an antibody 538 

that is specific to phosphorylated TDP-43 (green) and CHCHD10 was labelled with anti-539 

CHCHD10 antibody (red). Colocalisation between TDP-43 inclusions and CHCHD10 was 540 

not observed in most of the neurons, except for a small number of motor cortex neurons, 541 

where partial colocalisation was evident (B, insets). Images were photographed using a 542 

63X lens. Scale bar: 20μm.  543 

 544 

Figure 3. CHCHD10 showed variable expression in post-mortem motor cortex tissues. (A) 545 

Western blotting of control or ALS motor cortex tissues; (B) Semi-quantification of 546 

CHCHD10 expression normalised NeuN showed variable expression between individual 547 

cases. (C) Semi-quantification data of B was grouped as control and ALS. A decreasing 548 

trend was seen in ALS cases, although the difference is not significant between control 549 

and patient. 550 

 551 

Figure 4. CHCHD10 expression in a mouse model of ALS (rNLS TDP-43 mice). Mouse 552 

brain (cortex) was collected at at pre-symptomatic (2 weeks) and symptomatic (4 & 6 553 

weeks) TDP-43 mice and litter-matched controls (n=4/group) and was immunoblotted with 554 

CHCHD10 antibody. No significant changes in the expression of CHCHD10 was seen at 2 555 

and 4 weeks post-disease onset. In contrst, a significant decrease in the expression of the 556 

CHCHD10 gene was observed at 6 week post-onset in diseased mice compared to 557 



controls.  558 

 559 

Supplementary Figure 1. IHC staining of CHCHD10 in Non-C9orf72 FTD frontal cortex 560 

tissues with long DAB exposure. Frontal cortex sections from three Non-C9orf72 FTD 561 

cases were incubated with DAB for 5 min. While Case 1 and 2 showed increased staining, 562 

Case 3 remained weak.  563 

 564 

Supplementary Figure 2. CHCHD10 (green) formed dense dot inclusion-like structures in 565 

a few neurons from two SALS spinal cord cases and one SALS motor cortex cases.  566 

  567 

Supplementary Figure 3. Examples of variable IHC staining levels within the same case 568 

and in between cases 569 

 570 

Supplementary Figure 4. NeuN staining showed no significant difference between control 571 

and diseased mice at 2, 4 or 6 weeks off-Dox. 572 

 573 
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Figure 1 IHC staining of CHCHD10 in (A, B) spinal cord, (C, D) motor cortex and (E, 

F) frontal cortex in human post-mortem tissues. A, C, E are ScanScope images of 

the whole section from one control and one patient from each location, and the 

zoomed-in view of the boxed area. B, C, D were neurons from control and patients 

with different genotypes taken with Zeiss Axio Imager using a 20x lens. A, C, E 

showed that in all three locations, CHCHD10 showed positive staining primarily in 



the grey matter, and strong immunoreactivity specifically to the neurons. Reduced 

numbers of CHCHD10 positive neurons were seen in all three locations (A, C, E, 

Boxed area). In all three locations, CHCHD10 showed primarily cytoplasmic 

localisation. No significant difference was seen in terms of subcellular location 

between control and patients, and between patients with different genotypes (B, D, 

E).   



 



Figure 2 CHCHD10 did not colocalise with TDP-43 inclusions in spinal cord (A), 

motor cortex (B) or frontal cortex (C) tissues. TDP-43 inclusions were labelled with 

an antibody that is specific to phosphorylated TDP-43 (green) and CHCHD10 was 

labelled with anti-CHCHD10 antibody (red). Colocalisation between TDP-43 

inclusions and CHCHD10 was not observed in most of the neurons, except for a 

small number of motor cortex neurons, where partial colocalisation was evident (B, 

insets). Images were photographed using a 63X lens. Scale bar: 20μm.  

 

 

 

 

 

 
Figure 3 CHCHD10 showed variable expression in post-mortem motor cortex 

tissues. (A) Western blotting of control or ALS motor cortex tissues; (B) Semi-

quantification of CHCHD10 expression normalised NeuN showed variable 

expression between individual cases. (C) Semi-quantification data of B was grouped 

as control and ALS. A decreasing trend was seen in ALS cases, although the 

difference is not significant between control and patient. 



 

Figure 4 CHCHD10 expression in a mouse model of ALS (rNLS TDP-43 mice). 

Mouse brain (cortex) was collected at at pre-symptomatic (2 weeks) and 

symptomatic (4 & 6 weeks) TDP-43 mice and litter-matched controls (n=4/group) 

and was immunoblotted with CHCHD10 antibody. No significant changes in the 

expression of CHCHD10 was seen at 2 and 4 weeks post-disease onset. In contrst, 

a significant decrease in the expression of the CHCHD10 gene was observed at 6 

week post-onset in diseased mice compared to controls.  



 

 

 

 

 

 

 

 

 

 

Supplementary figure 1 IHC staining of CHCHD10 in Non-C9orf72 FTD frontal 

cortex tissues with long DAB exposure. Frontal cortex sections from three Non-

C9orf72 FTD cases were incubated with DAB for 5 min. While Case 1 and 2 showed 

increased staining, Case 3 remained weak.  

 

 

 

 

 

 

 

 



 

Supplementary figure 2 CHCHD10 (green) formed dense dot inclusion-like 

structures in a few neurons from two SALS spinal cord cases and one SALS motor 

cortex cases. 

 



 

Supplementary figure 3 Examples of variable IHC staining levels within the same 

case and in between cases 



 

Supplementary figure 4 NeuN staining showed no significant difference between 

control and diseased mice at 2, 4 or 6 weeks off-Dox. 
 



Table S1 CHCHD10 varaints identified in Australian ALS and FTD, and associated allele frequenes in cases and controls

Variant Function dbSNP ID Cohort AAF AAF p-value AAF p-value AAF p-value
c.*65C>T UTR3 . SALS 0.0008 0 0.076 na na 0.0004 1
c.*53C>T UTR3 rs113889670 SALS 0.0008 0.0001 0.209 na na 0 0.3540
c.*8G>A UTR3 rs372342375 SALS 0.0008 0.0005 0.439 na na 0.0009 1

c.409+27C>G intronic rs140182 SALS 0.8040 0.8292 0.484 0.8410 0.0073 0.8360 0.0185
FALS 0.7570 0.8292 0.493 0.8410 0.4390 0.8360 0.4802

c.410C>T, p.Tyr104Tyr synonymous SNV rs80027270 SALS 0.8050 0.8280 0.524 0.8400 0.0121 0.8350 0.0267
FALS 0.7320 0.8280 0.363 0.8400 0.3143 0.8350 0.3499

c.262-57C>T intronic rs755979336 SALS 0.0016 0.0010 0.371 na na 0.0026 0.7202
c.262-149G>A intronic rs149955095 SALS 0.0199 0.0142 0.119 na na 0.0157 0.3487
c.262-239C>G intronic rs9608181 SALS 0.0901 0.0888 0.877 na na 0.0804 0.3417
c.262-294T>C intronic rs131441 SALS 0.8054 0.8250 0.598 na na 0.8344 0.0337
c.262-341G>C intronic rs6003876 SALS 0.0199 0.0201 1 na na 0.0197 1
c.262-344T>A intronic rs572584379 SALS 0.0024 0.0030 1 na na 0.0026 1
c.262-515T>C intronic rs131442 SALS 0.8118 0.8253 0.710 na na 0.8383 0.0500

c.261+276G>A intronic rs73396548 SALS 0.1396 0.1425 0.835 na na 0.1425 0.8402
c.261+152G>A intronic rs73396549 SALS 0.1380 0.1411 0.834 na na 0.1403 0.8791
c.261+135A>G intronic rs73158728 SALS 0.0016 0.0038 0.325 na na 0.0026 0.7202

c.261+99A>G intronic rs131443 SALS 0.4880 0.5119 0.360 na na 0.5232 0.0490
c.261+73G>A intronic rs80167838 SALS 0.0207 0.0227 0.766 na na 0.0166 0.4288
c.261+11A>G intronic rs131444 SALS 0.8840 0.9040 0.303 0.88 0.7806 0.8960 0.2819

FALS 0.8660 0.9040 0.752 0.88 0.5411 0.8960 0.7949
c.234G>A, p.Ser78Ser synonymous SNV rs111527940 FALS 0.0139 0.0111 0.076 0.0150 1 na na

c.48A>C, p.Pro16Pro synonymous SNV rs179468 FALS 0.7500 0.8906 0.136 na na 0.8911 0.9093
c.20-42T>C intronic rs1023954590 SALS 0.0008 0.00006 0.146 na na 0 0.3540

c.42-118G>C intronic rs113097524 SALS 0.0008 0 0.076 na na 0.0022 0.4330
c.41+46T>G intronic rs62241575 SALS 0.0718 0.0483 0.0003 0.0850 0.5060 0.0752 0.7375

FALS 0.0130 0.0483 0.167 0.0850 0.0151 0.0752 0.1624
c.41+7C>T intronic rs141526972 SALS 0.0016 0.0022 0.237 na na 0.0017 1

FALS 0.0208 0.0484 0.169 na na 0.0017 0.2613
AFF, alternate allele frequency; NFE, Non-Finnish European; DMCC, Diamantia control cohort; MGRB, Medical Genomic reference bank

GnomAD NFE DMCC MGRB
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4.3.3 Co-authored publications

Throughout the course of this project, the candidate was approached by colleagues

and national and international collaborators to assist in the replication phase of SNP

association analyses. To achieve this, high-throughput custom TaqMan genotyping of

the SNP under investigation was performed through a large cohort of Australian SALS

patients and non-related control individuals. Table 4.1 summarises these analyses,

and provides the reference for the resulting publication co-authored by the candidate.
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Table 4.1: Co-authored publications resulting from ALS gene screening of Australian cohorts.
Gene Risk SNP Analysis Summary Publication

C21orf2

(and

MOBP)

rs7508772

and rs616147

Custom TaqMan

genotyping for

774 SALS & 785

non-related con-

trol individuals

Van Rheenen et al. used imputation and mixed-model association analysis

to identify C21orf2 as an ALS risk gene, and additionally identifued MOBP

and SCFD1 as newly associated risk loci. As part of the replication phase

of this study, the candidate performed custom TaqMan genotyping for the

candidate ALS risk SNPs, rs75087725 (C21orf2) and rs616147 (MOBP) in

an Australian cohort of SALS and non-related control individuals. Fisher’s

exact testing suggested there was no association between either SNP and

SALS risk in our cohort. However, when tested using logistic regression and

combined as part of the larger international replication cohort in a meta-

analysis, our collaborators found that the significant association between

each of these SNPs and ALS was replicated. The overall finding of this

study was the identification of C21orf2 as an ALS risk gene.

Paper A1:

Appendix

A.5.1

GPX3-

TNIP1

rs10463311

(rs4958872

as proxy)

and

rs9906189

Custom TaqMan

genotyping for

431 SALS & 567

non-related con-

trol individuals

Benyamin et al. conducted a cross-ethnic meta-analysis genome-wide asso-

ciation study (GWAS) in SALS, and identified the GPX3-TNIP1 locus to be

significantly associated with disease. A gene-based analysis also implicated

GGNBP2 as being associated with disease. As part of the replication phase

of this study, the candidate performed custom TaqMan genotyping. This

was performed for rs4958872 (TNIP1, which was used as a proxy for the

SNP of interest, rs10463311 (GPX3, LD r2=1)) and rs9906189 (GGNBP2).

In our cohort, neither genotyped SNP was associated with disease, how-

ever when combining our proxy data with that from another Australian

cohort, Benyamin et al. found rs10463311 to be significantly associated

with SALS. The overall finding of this study was the identification

of rs10463311 as an ALS risk allele.

Paper A2:

Appendix

A.5.2

HNRNP

genes

rs2588882 Custom TaqMan

genotyping for

160 SALS & 115

non-related con-

trol individuals

Our group set out to investigate the contribution of the HNRNP gene fam-

ily to the genetic and pathological basis of ALS. As part of this study,

HNRNP genes were screened through FALS patients by the candidate, how-

ever no novel mutations were identified. Another aspect of this study found

that two HNRNPA3 SNPs, rs2588882 and rs8470 were over represented in

FALS probands compared to three separate control cohorts. As part of the

replication phase, the candidate performed custom TaqMan genotyping for

rs2588882 in SALS and non-related controls, the results of which suggested

the association was not present in SALS patients. The overall finding of

this study was the rarity of HNRNP gene mutations in Australian

ALS, and the description of a unique hnRNPA3 related protein

pathology in C9orf72 expansion positive ALS patients.

Paper A3:

Appendix

A.5.3
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4.4 Discussion

ALS is a complex disorder and is highly heterogenous, both genetically and pheno-

typically. In order to understand how and why disease develops, it is imperative

that the scope of this heterogeneity is accurately characterised. Interestingly, this

heterogeneity can be partly explained by the known ALS genes and mutations,

where distinct frequency patterns and phenotypic correlations have emerged. For

instance, the frequency with which ALS mutations cause disease can vary significantly

between populations, while particular ALS mutations seem to predispose patients

to a certain phenotypic pattern of disease. This Chapter has presented data that

significantly adds to the scope of our current knowledge of the ALS gene mutation

spectrum. The unique pattern of ALS gene frequencies observed among Australian

patients for established ALS genes (Paper I; Section 4.3.1) and the recently reported

CHCHD10 gene (Manuscript II; Section 4.3.2) have been described. The scope

of ALS risk variants has also been established by analysis of the genes CHCHD10

(Manuscript II; Section 4.3.2), C21orf2 (Paper A1; Appendix A.5.1), MOBP (Paper

A1; Appendix A.5.1), GPX3-TNIP1 (Paper A2; Appendix A.5.2) and hnRNPA3

(Paper A3; Appendix A.5.3). Additionally, further characterisation of the ALS genes

has been provided by description of their correlations with clinical characteristics

(Paper I; Section 4.3.1), as well as the pathology of the CHCHD10 protein in patient

neuronal tissue (Manuscript II; Section 4.3.2).

Though the Australian population are predominately of European ancestry, a

combination of factors such as geographical isolation coupled with migration patterns

and multiculturalism result in a unique genetic background for this population. As

such, it is to be expected that a distinct spectrum of ALS gene mutation frequencies

and associations would be present among Australian patients. While the mutational

frequencies of the established ALS genes in the Australian FALS cohort were found to

be similar to that seen in European-based populations, it is interesting to note that the

SOD1 p.A5V mutation, the most common single point mutation causing ALS in the

North American population (Andersen, 2006), was distinctly absent in our Australian

FALS cohort. Similarly, while mutations in CHCHD10 have consistently been

identified in European populations (Bannwarth et al., 2014; Dols-Icardo et al., 2015;

Kurzwelly et al., 2015; Muller et al., 2014; Perrone et al., 2017), no such mutations

were present in Australian patients. This likely reflects the pattern of migration of

Americans and Europeans to Australia, and is an important consideration for genetic

analysis and screening prioritisations. As such, using the Australian cohort, there
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is mixed ability to replicate international reports of novel causal or associated ALS

genes. To confirm the ancestry of the Australian patient cohort, principal components

analysis will be performed. Unfortunately, this is not yet possible as the computing

capacity required to handle raw data files from the complete ALS patient cohort

(FALS and SALS) is not yet available. When completed, this will shed light on

the extent to which genetic diversity in the Australian population differs to that in

European populations.

The benefits of our findings are multifaceted. From a medical research perspective,

our gene frequency data, together with that from around the world, can be used

to better inform downstream study designs. For instance, when choosing an ALS

mutation as the basis of a novel animal model, one which has been shown to segregate

with disease in multiple families should be chosen in favour of another found to

be present in a single proband patient. This is vital to ensure disease models are

based on mutations with infallible support for pathogenicity, as well as to make these

models relevant for larger numbers of patients. Further, biomarker or therapeutic

studies aimed at mutations that are rare amongst Australian patients may be better

suited for trial in another population. Such genetically informed decisions will ensure

that the most applicable and relevant research studies and clinical trials are performed.

Clinically, our frequency data can be used to prioritise diagnostic gene screening

efforts for Australian ALS patients, which may potentially influence downstream

carrier and/or preimplantation embryonic screening choices. Interestingly, preliminary

data suggest great promise for therapeutic treatments based on genetic predisposition

to disease. A clinical trial for CuATSM in SOD1 patients is underway after having

shown positive effects in mouse models (Hilton et al., 2017; Williams et al., 2016a).

Another clinical trial for lithium carbonate has shown that those patients who carry

an ALS associated SNP in UNC13A show increased survival with treatment, compared

with non-SNP carrier patients (van Eijk et al., 2017). The ways in which particular

ALS mutations correlate with age of onset or disease duration may also have utility

in the clinic. An “at-risk” individual may be influenced by the knowledge that their

family mutation associates with early or late disease onset, and as a result opt in or

out of genetic testing. Further, if a patient can be given an estimated disease duration,

they may be able to make more appropriate and timely decisions about symptom

management and quality of life strategies.



4.4 Discussion 145

The association of known population-based SNPs to disease is becoming increas-

ingly important in our knowledge of the factors that contribute to disease risk. The

high rate of sporadic ALS, and the late onset of disease suggest that there may

be an accumulation of risk factors contributing to the eventual onset of disease

(discussed Chapter 8, Section 8.2.1.6). Identifying known population-based SNPs

that increase the risk of developing disease may become a potentially important ALS

risk assessment tool in the future. Indeed, association testing was critical to the

discovery of the pathogenic expansion in C9orf72 (see Section 1.4.1.4). Interestingly,

Jones et al. (2013) found that one SNP associated with this pathogenic expansion

is also associated with disease in ALS patients negative for the expansion. Future

investigations in our expanded cohort of Australian FALS and SALS patients are

planned to determine whether such an association is reproducible.

As a rare disease, a global effort is required for an accurate characterisation of ALS

genetics. This rarity coupled with the small population size of Australia, causes innate

difficulties in collecting patient sample cohorts of adequate size to perform accurate

assessments of mutation frequencies and associations. Fortunately, long running clinical

collection programs and collaborations have allowed our laboratory to establish such

patient cohorts, which has enabled these unique genetic investigations into Australian

ALS. This has allowed the intricacies of the Australian spectrum of ALS genes to be

better understood, and has also provided crucial insights to population-specific disease

associations.



146 Analysis of known ALS genes



“I don’t need sleep, I need answers”

Sheldon Cooper - The Big Bang Theory

5
Investigation of candidate ALS genes

5.1 Introduction

This Chapter addresses the second part of Aim 2 of this thesis; to investigate

candidate ALS genes in familial and sporadic Australian ALS patients to identify

novel or known ALS mutations and/or associated genetic variants. Its purpose is to

determine whether known and candidate ALS genes contribute to the cause of ALS

among Australian patients.

As was established in Chapter 1, Section 1.4, ALS is an exceptionally genetically

heterogeneous disease, with at least 25 causal genes, and a further 12 disease associated

genes identified to-date. Paper I (Chapter 4, Section 4.3.1) showed that the genetic

landscape of Australian FALS is unique, with 21 distinct mutations in eight different

genes causing disease in this patient population. A noteworthy conclusion of this

paper was that almost 40% of Australian FALS patients did not carry mutations

in the known ALS genes. Unfortunately, most ALS families for whom a mutation

remains to be identified, only have DNA available from the proband, and therefore

family-based linkage or segregation analysis is not possible. However, a strong family

history of disease in these patients suggests that they almost certainly carry a novel,

rare genetic mutation that causes ALS. As such, alternate strategies are necessary to

147
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identify the underlying causal ALS mutation in these FALS patients.

Candidate gene screening strategies have had great success in ALS research.

Drawing on the results of genetic linkage analysis, candidate gene screening ap-

proaches successfully identified the ALS genes FUS (Vance et al., 2009) and UBQLN2

(Deng et al., 2011), among many others (see Chapter 1, Section 1.4.1.6). Further, a

number of ALS genes including, FIG4 (Chow et al., 2009), SQSTM1 (Fecto et al.,

2011), GLE1 (Kaneb et al., 2015), and most notably TARDBP (Sreedharan et al.,

2008), were investigated as candidate genes in ALS families owing to functional evi-

dence suggesting that their encoded protein product was involved in ALS pathogenesis.

There is also a substantial body of evidence supporting a genetic underpinning

to sporadic disease (see Chapter 1, Section 1.4.2). As described, multiple genetic

risk factors have recently been reported in SALS patient cohorts. In addition, a

small proportion of SALS patients are likely to be misclassified FALS patients, for

whom limited family histories are available. Indeed, some SALS patients do carry

known ALS gene mutations, such as those in CCNF, TARDBP, FUS, EWSR1 and

C9orf72 (Couthouis et al., 2012; Sreedharan et al., 2008; Vance et al., 2009; Williams

et al., 2013, 2016b). Though likely rare, novel causal gene mutations in (apparently)

sporadic patients are difficult to identify, and their identification will require alternate

strategies, such as candidate gene screening.

Here, a candidate gene approach was employed to identify novel genetic contribu-

tors to ALS pathogenesis in Australian patients with no known causal gene mutation.

The candidate genes analysed in this Chapter possess evidence suggestive of a role in

ALS from a range of different research strategies including genetics, proteomics and

animal models. The majority of these candidate gene analyses were conducted using

FALS patients with an unknown ALS gene mutation, most of whom were probands.

Some candidate genes were also screened through a large cohort of SALS patients,

which became available in the later stages of this candidature. Two types of genetic

variants were targeted in this Chapter. The first being novel non-synonymous variants

potentially causing ALS (candidate mutations). Secondly, known population-based

SNPs (both rare or common) found in healthy individuals were investigated for their

potential to confer an increased disease-risk or protection against disease, based on

their over- or under- representation in ALS patients, respectively.
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5.2 Subjects and methods

5.2.1 Subjects

Datasets from two patient cohorts were analysed in this Chapter. The first consisted

of whole-exome sequencing (WES) data from 81 Australian FALS affected individual

(including 61 probands) from 69 families, with an unidentified ALS causal mutation.

These affected individuals were previously screened for known ALS genes in Chapter 4,

Paper I (Section 4.3.1) and Manuscript II (Section 4.3.2). Whole-genome sequencing

(WGS) data from 635 Australian SALS affected individuals negative for the C9orf72

hexanucleotide repeat expansion made up the second cohort. Further details of both

cohorts are provided in Chapter 2, Section 2.1.

5.2.2 Pipeline for screening candidate ALS genes and

association analysis

Figure 5.1 describes the bioinformatics pipeline applied to FALS patient WES data

and SALS patient WGS data to identify variants found within a given candidate

gene, and to determine whether any novel causal gene mutations or disease-associated

population-based SNPs were present in either patient cohort. The custom bioinfor-

matics scripts applied were either developed for general NGS-based genetic analysis

as part of Chapter 3, or specifically for candidate gene analysis in this Chapter, as

detailed below.

5.2.2.1 Candidate gene screening in FALS patients with an unidentified

ALS mutation

Firstly, to facilitate association analysis, control allele count data from the ExAC,

DACC and MGRB databases (as described in Chapter 2, Table 2.4) was first appended

to the 137-sample WES VCF (containing data from all FALS affected individuals,

described in Chapter 2, Table 2.1) using the Custom Scripting strategy developed in

Chapter 3, Section 3.5.3. The Custom R markdown Script in Appendix A.2.4 was

developed to perform candidate gene analysis separately for the different cohorts of

FALS affected individuals present within this VCF, particularly the 81 FALS affected

individuals with an unidentified ALS mutation.
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Figure 5.1: Candidate ALS gene analysis workflow. WES data from 81 FALS patients with an unidentified ALS causal
mutation and WGS data from 635 SALS patients were bioinformatically interrogated to identify variants present in a given candidate
ALS gene. Analysis included the identification of novel non-synonymous variants with the potential to cause disease, and association
analysis to identify known population-based SNPs over- or under-represented in ALS patients. Each analysis step was completed using
custom bioinformatics scripts. Those shown in purple were developed for general NGS-based genetic analysis as part of Chapter 3, while
those in pink were specifically developed for use in the current Chapter.
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Following initial import of the complete 137-sample WES VCF, FALS patient

cohorts were subsetted to individual data frames using a subset command. The

ANNOVAR annotation column, “Gene.refGene” was then parsed for a given list of

candidate genes using another subset command and the value matching operator,

%in%. This facilitated extraction of all variants present in the candidate gene(s),

resulting in a data frame consisting of candidate gene(s) variants and their associated

meta and INFO information, as well as sample information for each member of a

given cohort. A series of arithmetic functions were then applied to the data frame in

order to add new columns containing affected individual genotype counts and allele

counts. For each candidate variant with control allele count data available, an R

for-loop function was used to perform Fisher’s exact tests to compare allele counts

from affected individuals with those from the appended control database.

Novel non-synonymous variant analysis

To be considered novel, a variant was required to be present in two or less individuals

from the Non-Finnish European (NFE) cohort from the ExAC (n=60,706 total

individuals; n=33,370 NFE individuals) and gnomAD (n=138,632 total individuals;

n=63,369 NFE individuals) control databases, as well as in the Australian control

databases, DACC (n=967) and MGRB (n=1,144). Variants present in one or two

individuals from a control database were also retained in novel variant analysis as they

were sufficiently rare to potentially represent a technical sequencing/bioinformatic

error, or be present in an asymptomatic ALS patient (discussed in detail in Section

6.4.2.2). The majority of filtering was performed using the Custom Script 3.11.

This included removing variants present in the ExAC, DACC and MGRB control

databases by assessing the value of their respective allele count column. Similarly, only

non-synonymous variants were retained in analysis by evaluating the annotated value

for the “ExonicFunc.refGene” field using this same scripting strategy. Any remaining

variants were screened through the gnomAD control database using the web browser

interface (http://gnomad.broadinstitute.org/).

Where appropriate, visual inspection of the relevant pedigree structure

was carried out to ensure the novel, non-synonymous candidate variant seg-

regated with disease within the family. Each remaining candidate mutation

was assessed for its potential ALS pathogenicity using the in silico pipeline

developed in Chapter 6, Section 6.2.3. Additionally, the Project MinE web

browser (http://databrowser.projectmine.com/), ALS data browser (ALSdb;

http://alsdb.org/) and ALS variant server (AVS; http://als.umassmed.edu/)

http://gnomad.broadinstitute.org/
http://databrowser.projectmine.com/
 http://alsdb.org/
http://als.umassmed.edu/
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were interrogated for each remaining candidate mutation. WGS data from 635

SALS affected individuals (within the 850-sample VCF) and WES/WGS data for

247 FALS affected individuals from dbGAP (database of Genotypes and Phenotypes;

https://www.ncbi.nlm.nih.gov/gap/; dbGaP Study Accession: phs000101.v5.p1)

were also screened for each remaining candidate mutation using Custom Scripts (as

per Appendix A.2.6, and a variation of line 54 of Appendix A.2.4, respectively).

Association testing

To assess whether any known population-based SNP variants in candidate ALS genes

were associated with disease, scripting strategies were developed to compare allele

counts between affected individuals and controls using a Fisher’s Exact test. In the

first instance, FALS affected individual allele counts were compared with those from

the ExAC control database (n=60,706 exomes). Any variants with a p-value<0.05

were considered to be nominally significantly associated with disease following this

analysis.

This FALS dataset included eight families with multiple affected members

(n=20 individuals). To account for family-biased allele counts when determining

associations, a complex Custom Scripting strategy was developed, to carry out

association testing on each possible combination of affected individuals where just

one member of each family was included (Appendix A.2.5). This script tested all

1,152 possible such combinations. Briefly, 1,152 data frames were first set up to

contain sample information for all 1,152 affected individual combinations. Fisher’s

exact tests were then performed using affected individual allele counts calculated

across each data frame. The results were then output to a separate results data

frame in which p-values from each of the 1,152 combinations were presented, and

subsequently visually assessed. A p-value<0.05 was required from each of the

1,152 combinations for the SNP to be considered nominally significantly associated

with disease. SNP variants withstanding both the initial and family-loop analyses

were then validated, by repeating this analysis using the Australian control co-

horts, DACC (n=976 exomes) and MGRB (n=1,144 genomes), in place of those

from ExAC. The 54 candidate genes screened using this strategy are listed in Table 5.1.

Following this baseline analysis, Bonferroni correction was applied to account for

all 741 variants present in the 54 candidate genes. Therefore, the significance of each

variant was reassessed following the about pipeline, though using a p-value threshold

of 6.75ˆ10-5. For replication, Fisher’s Exact testing was repeated for those variants

https://www.ncbi.nlm.nih.gov/gap/
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found to have nominally significant or Bonferroni-corrected significant association

with disease, using the Project MiNE cohort of 4,366 SALS affected individuals and

1,832 control individuals.

5.2.2.2 Candidate gene screening in SALS patients

The 635 SALS affected individuals were among a total of 850 ALS and FTD affected

individuals with data in the 850-sample WGS VCF (described in Chapter 2, Table

2.1). Therefore, initial candidate gene screening was performed on this 850-sample

VCF in its entirety. This was achieved by developing the Custom bash Script A.2.6,

which utilised the UNIX awk command, to search for a candidate gene name in the

INFO column. The R script in Appendix A.2.7, was then applied to the resultant

file to subset the SALS cohort from the resultant 850-sample VCF. Four candidate

genes, CHCHD2, CHCHD3, CHCHD6 and TIA1, were screened though SALS affected

individuals using this pipeline.

Novel non-synonymous variant analysis

In order to determine whether any novel non-synonymous variants were present

in a candidate gene among the 635 SALS affected individuals, the Custom R

Script in Appendix A.2.8 was developed. As was completed for FALS analy-

sis, each remaining candidate mutation was also assessed for its potential ALS

pathogenicity using the in silico pipeline developed as part of Chapter 6, Section

6.2.3, and further screened through the additional ALS patient databases Project

MinE (http://databrowser.projectmine.com/), the ALS data browser (ALSdb;

http://alsdb.org/) and the ALS variant server (AVS: http://als.umassmed.edu/)

using their respective web browsers. Additionally, WES/WGS data for 247 FALS

affected individuals from dbGAP (https://www.ncbi.nlm.nih.gov/gap/; dbGaP

Study Accession: phs000101.v5.p1) were also screened for each remaining candidate

mutation using a Custom Script (as per line 54 of Appendix A.2.4).

Association testing

Association tests to compare allele counts between SALS affected individuals and

controls were performed using a Custom R Script developed here (Appendix A.2.9).

This included Fisher’s exact tests for each variant identified in one of the four

candidate genes using an R for-loop, which compared allele counts between SALS

affected individuals and control individuals from either the complete gnomAD dataset

http://databrowser.projectmine.com/
 http://alsdb.org/
http://als.umassmed.edu/
https://www.ncbi.nlm.nih.gov/gap/
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Table 5.1: Candidate genes screened through FALS WES data.
Candidate gene Evidence justifying gene as an ALS candidate Reference
PURA Protein interacts with ALS mutated FUS proteins Di Salvio et al. (2015)

C21orf2 ALS risk gene van Rheenen et al. (2016)

MOBP ALS associated gene van Rheenen et al. (2016)

SCFD1 ALS associated gene van Rheenen et al. (2016)

SPTBN4 Interrupted by transgene in motor impaired mouse model Kichkin et al. (2017)

GLE1 Recently reported ALS gene Kaneb et al. (2015)

MTHFSD Differentially expressed in TDP-43 mouse model MacNair et al. (2016)

DDX58 Differentially expressed in TDP-43 mouse model MacNair et al. (2016)

CAMTA1 Associated with ALS patient survival Fogh et al. (2016)

HNRNPA3 Related to the hnRNPA1 ALS gene Kim et al. (2013)

EEF1A1 Collaborator proteomics work unpublished data

EEF1A2 Collaborator proteomics work unpublished data

EEF1A3 Collaborator proteomics work unpublished data

EEF1B1 Collaborator proteomics work unpublished data

EEF1B2 Collaborator proteomics work unpublished data

EEF1B3 Collaborator proteomics work unpublished data

EEF1B4 Collaborator proteomics work unpublished data

EEF1D Collaborator proteomics work unpublished data

EEF1E1 Collaborator proteomics work unpublished data

EEF1G Collaborator proteomics work unpublished data

NONO Collaborator proteomics work unpublished data

IKBKG Collaborator proteomics work unpublished data

ANXA11 Collaborator candidate FALS gene unpublished data

ARPP11 Collaborator candidate FALS gene unpublished data

GPX3 SNP associated with increased ALS risk Benyamin et al. (2017)

TNIP1 SNP associated with increased ALS risk Benyamin et al. (2017)

GGNBP2 SNP suggested as ALS risk gene Benyamin et al. (2017)

ABCC2 Conference presentation suggested ALS risk gene H. Kim, ASHG2016

TYBA4A Conference presentation suggested differentially expressed gene K. Belle, ASHG2016

UBA1 SMA gene Ramser et al. (2008)

MTHFR SNP suggested as ALS risk gene Kuhnlein et al. (2011)

KIFAP3 SNP suggested as ALS modifier gene Landers et al. (2009)

BICD2 SMA gene reported in juvenille ALS Peeters et al. (2013)

Neveling et al. (2013b)

Oates et al. (2013)

CHCHD10 Recently reported ALS gene Bannwarth et al. (2014)

CHCHD1 Gene family member of CHCHD10 N/A

CHCHD2 Gene family member of CHCHD10 N/A

CHCHD3 Gene family member of CHCHD10 N/A

CHCHD4 Gene family member of CHCHD10 N/A

CHCHD5 Gene family member of CHCHD10 N/A

CHCHD6 Gene family member of CHCHD10 N/A

CHCHD7 Gene family member of CHCHD10 N/A

PINK1 Parkinson’s disease gene Valente et al. (2004)

PARKIN Parkinson’s disease gene Matsumine et al. (1997)

Kitada et al. (1998)

CNR1 Endocannabinoid system implicated in neurodegeneration Pasquarelli et al. (2017)

CNR2 Endocannabinoid system implicated in neurodegeneration Pasquarelli et al. (2017)

FAAH Endocannabinoid system implicated in neurodegeneration Pasquarelli et al. (2017)

MGLL Endocannabinoid system implicated in neurodegeneration Pasquarelli et al. (2017)

DAGLA Endocannabinoid system implicated in neurodegeneration Pasquarelli et al. (2017)

DAGLB Endocannabinoid system implicated in neurodegeneration Pasquarelli et al. (2017)

NAPEPLD Endocannabinoid system implicated in neurodegeneration Pasquarelli et al. (2017)

KCND3 SNPs associated with PMA unpublished data

CDT1 ALS gene substrate identified by collaborator unpublished data

TIA1 Recently reported ALS gene Mackenzie et al. (2017)

KIF5A Recently reported ALS gene Nicolas (2018)

Abbreviations: SMA, Spinal muscular atrophy; and PMA, Progressive muscular atrophy.
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(n=123,136 exomes and 15,496 genomes), the gnomAD NFE subset (n=55,860 exomes

and 7,509 genomes) or MGRB controls (n=1,144 genomes).

Following this baseline analysis, Bonferroni correction was applied to the p-value

threshold of 0.05 for all 9,616 variants identified in WGS data across the four candidate

genes screened through SALS. Re-analysis thus employed a significance threshold of

p<5.20ˆ10-6. For replication, Fisher’s Exact testing was repeated for those variants

found to have a nominally significant or Bonferroni-corrected significant association

with disease, using the Project MiNE cohort of 4,366 SALS affected individuals and

1,832 control individuals.

5.3 Results

5.3.1 Novel non-synonymous candidate mutations

Table 5.2 provides a summary of the nine novel non-synonymous variants identified

across the 54 candidate genes screened through 81 FALS affected individuals with an

unidentified causal mutation, and the four candidate ALS genes screened through 635

SALS affected individuals. Of these nine candidate mutations, seven were identified

in a single proband FALS patient; and therefore segregation with disease could not be

established. Sanger sequencing confirmed all but one of these candidate mutations to

be present in the respective patient DNA sample. The FALS affected individuals with

candidate mutations in EEFD1 and DAGLB underwent WES using whole-genome

amplified (WGA) DNA samples, as insufficient quantities of non-amplified DNA were

available for WES from these individuals. Sanger sequencing was performed on this

WGA sample only for the EEFD1 affected individual. An additional, non-amplified

gDNA sample was available for the DAGLB affected individual, therefore Sanger

sequencing was performed for both the amplified and non-amplified affected individual

DNA samples. Sanger sequencing showed that while the DAGLB candidate mutation

was present in the WGA DNA sample, it was in fact absent from the non-amplified

gDNA sample. The two remaining candidate mutations were additional novel non-

synonymous TIA1 variants identified in one SALS affected individual each. Sanger

sequencing validated both of these candidate SALS mutations within their respective

patient DNA samples. Figure 5.2 shows an example chromatogram obtained from

Sanger sequencing.



156 Investigation of candidate ALS genes

Figure 5.2: Sequencing chromatogram for DAGLB candidate mutation. The
candidate mutation, DAGLB c.1516G>A; p.E506K, identified in a FALS proband patient
from WES data was not validated by Sanger sequencing. The whole-genome amplified (WGA)
DNA sample used for WES showed an inconclusive genotype upon Sanger sequencing vali-
dation, as seen in the sequencing chromatogram in the top panel. While a double peak is
present, the wild-type allele peak height is consistent with that seen in the control sample
(bottom panel), therefore this is an inconclusive genotype. However, the non-amplified DNA
sample clearly has a single wild-type allele peak indicating a conclusive homozygous wild-type
genotype (middle panel), which matches the control individual in the bottom panel.

In silico assessment of potential pathogenicity suggested that DAGLB p.E506K

and TIA1 candidate mutations p.A254G and p.P294L (identified in a FALS and SALS

affected individual respectively) showed the most functional similarity to known ALS

mutations, suggesting these were the more likely candidate mutations to be causing

ALS in this cohort. The results of the in silico assessment of potential pathogenicity

are presented in Appendix A.4. Additionally, the TIA1 p.A254G variant was also

present in a single affected individual in the Project MinE database, while all other

candidate mutations were absent from all additional ALS patient cohorts.

5.3.2 ALS-associated SNP variants

A total of 79 known population-based SNPs present in ExAC showed nominal

statistical evidence of association with disease (p<0.05) when comparing allele counts

between 81 FALS affected individuals (with an unidentified ALS mutation) and

60,706 ExAC control individuals. The results of Fisher’s Exact testing are provided in

Appendix A.3, Table A.3.3.1. After performing analysis to remove family bias as per
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Table 5.2: Novel non-synonymous variants identified in candidate genes among FALS and SALS patients.
Gene Cohort Transcript CHROM POS cDNA Amino acid Direct Assessment of Control Present in additional

accession position change sequencing pathogenicity score* database result ALS patient cohorts?
SPTBN4 FALS NM 020971 19 41072150 c.6221G>C p.R2074P Validated 3.5574 - medium priority Absent no
EEF1D FALS NM 001960 8 144661974 c.834C>A p.F278L Validated 4.3154 - medium priority Absent no
ABCC2 FALS NM 000392 10 101590549 c.2824G>A p.D942N Validated 0.5 - low priority Absent no
ABCC2 FALS NM 000392 10 101595991 c.3558T>A p.N1186K Validated 2.8 - medium priority Absent
MTHFR FALS NM 005957 1 11852346 c.1621G>C p.V541L Validated 4.3108 - medium priority Absent no
DAGLB FALS NM 139179 7 6452495 c.1516G>A p.E506K NOT present 6.5378 - high priority Present in one

Latino individual
no

TIA1 FALS NM 022037 2 70442597 c.761C>G p.A254G validated 7.1308 - high priority Present in two SEA
individuals

Project MinE (AC=1)

TIA1 SALS NM 022037 2 70441601 c.881C>T p.P294L validated 5.0308 - high priority Absent no
TIA1 SALS NM 022037 2 70457950 c.160C>A p.H54N validated 4.5308 - medium priority Absent no
Abbreviations: SEA; South East Asian; and AC. allele count.
*See Chapter 6, Section 6.2.3 for details of the pipeline for assessment of potential ALS pathogenicity.
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Custom Script A.2.5, the association with disease remained nominally significant for

53 SNPs. Upon validation using Australian control cohorts, only 15 of these 53 SNPs

showed nominally significant evidence of association with disease. Of these 15, seven

were over-, and eight under-represented in FALS affected individuals (summarised in

Table 5.3).

Re-analysis of association testing results from FALS using the Bonferroni corrected

p-value of 6.5ˆ10-5, found that just seven SNP variants were significantly associated

with FALS compared to ExAC controls (see Appendix A.3, Table A.3.3.1). Five of

these seven SNPs were found to be the result of family bias (using Custom Script

A.2.5). The two SNPs which withstood family bias testing (highlighted in Appendix

A.3, Table A.3.3.1) were found to be Australian-associated variants after repeating

testing with population-matched control cohorts. Therefore, no population-based

SNPs were found to be significantly associated with FALS after Bonferroni correction.

Among 635 SALS affected individuals, 16 population-based SNPs within the

four candidate genes (CHCHD2, CHCHD3, CHCHD6 and TIA1 ) showed baseline

statistical evidence of association with disease (p<0.05) when compared to 63,369

gnomAD controls of NFE descent (Appendix A.3, Table A.3.3.2). Of these asso-

ciations, just two were replicated using Australian controls. An exonic CHCHD3

variant was under-represented in SALS affected individuals while an intronic TIA1

variant was over-represented in SALS affected individuals (Table 5.3). Using the

Bonferroni corrected p-value of 5.20ˆ10-6, just two SNPs met significance compared

to gnomAD NFE controls, however this significance was lost in each case when using

Australian controls from MGRB. As such, no population-based SNPs were found to

be significantly associated with SALS after Bonferroni correction.

Those SNPs in Table 5.3, shown to have baseline association with FALS or SALS

(p<0.05), had Fisher’s exact testing repeated using Project MiNE SALS affected indi-

viduals and control individuals. Results are presented in Appendix A.3, Table A.3.3.3.

Just two variants, in NEK1 (rs200161705) and CNR2 (rs2501432), retained base-

line significance (p<0.05) in this replication cohort. While the NEK1 variant was

over-represented in both affected individual cohorts, the CNR2 variant was under-

represented in our Australian FALS cohort, though over-represented in the Project

MiNE SALS cohort.
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Table 5.3: Candidate gene SNPs potentially associated with ALS.
Patient ExAC/ DACC MGRB Potential Replicated

Gene CHROM POS rs ID Cohort* MAF /gnomAD MAF# MAF disease in
MAF risk or Project

protective MiNE?^
allele?

SPTBN4 19 41060616 rs2242131 FALS 0.08 0.22 0.15 0.17 protective no
SPTBN4 19 41071552 . FALS 0.03 0.00 0.21 0.00 risk no
C21orf2 21 45750145 rs11552066 FALS 0.02 0.16 0.11 0.12 protective no
C21orf2 21 45759045 rs11870 FALS 0.09 0.34 0.50 0.22 protective no
NEK1 4 170506525 rs200161705 FALS 0.02 0.00 0.00 0.00 risk yes
EEF1A2 20 62124459 rs12480745 FALS 0.13 0.26 0.31 0.27 protective no
EEF1A1 6 74227940 rs11556677 FALS 0.08 0.17 0.24 0.00 protective no
BICD2 9 95483066 . FALS 0.01 0.00 0.00 0.00 risk no
BICD2 9 95526977 . FALS 0.03 0.00 0.00 0.00 risk no
CHCHD6 3 126676314 rs145020754 FALS 0.01 0.00 0.00 0.00 risk no
CNR2 1 24201357 rs4649124 FALS 0.45 0.62 0.57 0.58 protective no
CNR2 1 24201919 rs2502992 FALS 0.45 0.62 0.56 0.58 protective no
CNR2 1 24201920 rs2501432 FALS 0.45 0.62 0.57 0.58 protective yes
DAGLA 11 61507041 . FALS 0.01 0.00 0.00 0.00 risk no
KIF5A 12 57963020 rs181688415 FALS 0.04 0.01 0.02 0.01 risk no
CHCHD3 7 132719349 rs78193687 SALS 0.06 0.07 N/A 0.08 protective no
TIA1 2 70463334 rs78928004 SALS 0.00 0.00 N/A 0.02 risk no
Refer to Appendix A.3, Tables A.3.3.1 and A.3.3.2 for p-value results comparing patient allele counts to each control cohort.
*FALS: 81 FALS patients from 69 families with an unidentified mutation; SALS: 635 SALS patients.
#N/A: intronic variant not covered in WES data available for DACC controls.
^ Refer to Appendix A.3, Tables A.3.3.3 for p-value results.
Abbreviations: ExAC, Exome Aggregation Consortium; MGRB, Medical Genome Reference Bank.
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5.4 Discussion

Among the 54 candidate ALS genes (Table 5.1) analysed in this Chapter, eight

candidate mutations and 17 potentially disease-associated variants were identified.

Further, an efficient pipeline was established for screening candidate genes in Aus-

tralian FALS and SALS. As most of our FALS cohort included probands, and the

SALS patients had no known relatives affected by ALS, there was little opportunity

to analyse segregation of the novel non-synonymous candidate mutations. To support

a pathogenic role of these candidate mutations, identification of additional unrelated

patients with the identical, or other novel candidate mutations in the same gene, will

be required. Given that the majority of known ALS gene mutations are found in

less than 1% of patients, it is likely that a novel mutation would have a similar, or

even lower frequency. As such, analysis of thousands of unrelated patients would be

required to obtain adequate support for a causal role of one of these candidate ALS

mutations, which is not possible in the Australian patient cohort alone. In an effort to

gain such support, additional ALS patient cohorts including Project MiNE, the ALS

database and the ALS variant server were accessed and screened for the candidate

mutations. Unfortunately, this strategy only supported a causal role for one candidate

mutation in TIA1 (as discussed below).

The eight validated, novel non-synonymous variants identified in known ALS genes

in FALS and SALS patients represent candidate ALS mutations. If any relatives of a

proband who carries one of these candidate mutations, develops ALS in the future,

they will be screened for the candidate mutation to establish if it segregates with

disease (as described in Chapter 6). Further, newly recruited FALS probands and

SALS patients will also be screened for these variants, or other candidate mutations

in the same genes. This extends to a complete screen of all 54 candidate genes in the

635 SALS patient cohort. Unfortunately, as this cohort was ascertained in the lat-

ter stages of candidature, candidate gene screening was only possible for just four genes.

In silico assessment of potential pathogenicity suggested that three of the nine

novel non-synonymous variants identified in NGS data, prior to validation, showed

substantial functional similarity with known ALS genes. This suggested that these

variants had the strongest potential to be causal ALS mutations. Two of these, which

were both validated by Sanger sequencing, resided in the TIA1 gene. This gene is a

strong ALS candidate gene, as an RNA binding-protein with strong genetic support

from FALS analysis and burden testing (Mackenzie et al., 2017). Further, functional
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evidence supports a role for the mutated TIA1 protein in increasing the rate of

phase transition, delaying stress granule disassembly and promoting accumulation of

TDP-43 containing stress granules (Mackenzie et al., 2017). The in silico assessment

of pathogenicity performed in this Chapter, showed that TIA1 is highly expressed

in both the brain and spinal cord, and has an average level of tolerance for genetic

variation. Further, four novel non-synonymous TIA1 variants have been identified

in four individual Chinese SALS patients (Gu et al., 2018; Yuan et al., 2018; Zhang

et al., 2018), adding further support to the causality of TIA1 mutations in ALS.

Together, this suggests that the candidate mutations in TIA1 may cause ALS.

However, only one of the candidate mutations, TIA1 p.A254G, was consistently

predicted to be damaging by protein prediction programs. This variant also showed

evidence of conservation across species, suggesting a conserved evolutionary role.

Notably, this same candidate mutation was identified in a FALS proband as well as a

SALS patient from the Project MinE database. Therefore, of the two high priority

candidate mutations identified in TIA1, p.A254G showed the strongest evidence for

a causal role in ALS. It must be noted that two individuals of South East Asian

descent form the gnomAD control database were also observed to carry this variant.

However, this equates to a rare MAF of just 8.13ˆ10-6 across all ancestries, and

6.50ˆ10-5 in South East Asian individuals. It is possible that these individuals may

go on to develop disease. As such, this candidate causal mutation showed mixed

evidence for a role in the pathogenesis of ALS and further investigations are warranted.

The third candidate mutation that showed the most functional similarity to the

known ALS gene mutations using the in silico pipeline was found in DAGLB. However,

Sanger sequencing revealed that this variant was actually a false positive identification.

Interestingly, the DNA sample used for WES of this FALS patient underwent WGA.

Sanger sequencing of the WGA sample showed an inconclusive genotype, while that

using the original, non-amplified sample showed a homozygous wild-type genotype

(Figure 5.2). This highlights the pitfalls of WGA, as it has potential to introduce

genetic variation to patient DNA samples. This stresses the importance of validating

variants by Sanger sequencing, and caution when interpreting sequencing data derived

from WGA DNA samples. Unfortunately, the second patient for whom WES data

was generated from a WGA DNA sample did not have a non-amplified DNA sample

available, and the candidate mutation identified in this patient (EEF1D p.F278L)

remains to be fully validated. Chapter 8, Section 8.3.3 will provide a detailed

discussion of artefacts in NGS data, including those arising from PCR amplification.
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Both rare and common known population-based SNPs were tested for associ-

ation with disease in FALS and SALS patients. The hypothesis was that known

population-based SNPs in candidate ALS genes may confer disease-risk, or be in

linkage disequilibrium with a nearby risk allele. In the case of FALS, risk alleles of

strong effect could, in part, explain the reduced penetrance of disease within some

families. In contrast, it is likely that analysis of SALS cohorts would reveal SNPs that

confer a smaller disease-risk. Alternatively, population-based SNPs under-represented

in patients may confer protection against the development of ALS.

In the current study, two approaches to significance were utilised when assessing

association of population-based SNPs with ALS. The first was to simply use a

standard significance threshold of p<0.05. Secondly, a Bonferroni correction was

applied to account for multiple testing of all SNP variants identified by candidate

gene screening in the given dataset, be it WES data from FALS with an unknown

mutation (n genes=54; n total SNPs=741) or WGS data from SALS (n genes=4;

n total SNPs=9,616). Application of the stricter, corrected significance threshold

discarded any SNPs as being significantly associated with ALS in either cohort.

Given the nature of the analysis conducted here, a variety of different correction

factors could have been chosen. As each candidate gene was screened and analysed as

the evidence arose to implicate that gene in ALS, a correction factor accounting for

the number of SNPs found within each gene in isolation may have been applied. As

the number of SNPs identified in each gene varied greatly, such a corrected significance

threshold would also have varied substantially for each gene when considered in

isolation. Additionally, when screening sets of candidate genes, such as the seven

Endocannabinoid system genes, this approach would arguably require correction for

all SNPs identified across all of these genes. However, this would have resulted in

even greater inconsistencies between the significance thresholds utilised for each of the

54 candidate genes analysed here. As such, Bonferroni correction for each gene was

deemed too biased. Additionally, for those genes screened in both FALS and SALS,

inconsistent significance thresholds would need to have been applied for the same gene

in the two cohorts, as the FALS WES data identified far fewer variants annotated to

each gene than SALS WGS data. Alternatively, correction could have considered only

coding variants, or only those with control allele count data available. Again, these

factors would have caused further inconsistencies between FALS WES and SALS WGS

data, and between analyses of the same gene in the same ALS patient cohort but using

different control cohorts, respectively. Given that Bonferroni correction removed all
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significance, and analysis in this Chapter was completed on a gene-by-gene basis, with

no a priori hypothesis, population-based SNPs with a p-value<0.05 were cautiously

considered as potential disease-associated SNPs.

Association testing in FALS was complicated by the fact that the FALS cohort

included some families with multiple affected individuals. As such, the inheritance of

a SNP within a family may artificially inflate the allele frequency within this patient

cohort. To overcome this limitation, an additional association testing strategy was

incorporated into the FALS association testing regime, to determine whether an

apparent association was an artefact of family bias. This was achieved by including

a single member of each family, in turn, and repeating the statistical analysis. In

order for an association to be considered significant, the p-value from each possible

patient combination was required to reach the significance threshold. This strategy

provided confidence that any statistically significant association was not merely an

artefact of the family bias effect. Indeed, we found that 34.6% of nominally signifi-

cantly FALS-associated SNPs were attributable to such family bias, highlighting the

importance of accounting for this confounding variable in genetic association analyses.

Unrecognised familial relationships within a patient cohort are likely to introduce a

level of bias to any genetic association study. It is possible that many reported ALS

associated variants are artefacts of distant family relationships, which may underlie

the failure to replicate some genetic association studies in ALS. Unfortunately, by

including only a single member of each family, the statistical power of the association

analysis was reduced. Ideally, to retain maximal statistical power while avoiding the

introduction of family bias, this analysis would have accounted for relatedness between

individuals within the cohort. To do so, a baseline degree of relatedness between a

comparably sized cohort of ancestrally matched, unrelated individuals would need to

be established. However, such an analysis would require access to individual level

genotype data from such a control cohort, which was not available within the time

constraints of this candidature.

In addition to accounting for family bias, this study also sought to account for bias

due to ancestry. As discussed in Chapter 4, the Australian population has a diverse

ethnic background, and therefore is likely to possess a unique genetic architecture.

Association analysis was therefore repeated using two separate Australian control

cohorts (DACC and MGRB). Both cohorts are relatively small (consisting of 967

and 1,144 individuals respectively) when compared with the international control

databases ExAC and gnomAD (each consisting of tens of thousands of individuals).
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For this reason, the discovery phase of association analysis was conducted using the

larger, international cohorts to increase statistical power, while the Australian cohorts

were used for validation purposes. Our analyses showed that 71.7% of (non-family

biased) FALS associated SNPs, and 87.5% of SALS associated SNPs, were not

replicated using Australian control cohorts. This suggests that these associations may

be reflective of ancestry rather than disease state. This highlights the paramount

importance of ensuring patient and control cohorts are derived from the same

population. Accordingly, it is important to note that the gnomAD controls of NFE

descent were used in the SALS association analyses, as this was the most abundant

ancestral background among the Australian ALS patient cohort. Yet still, this control

cohort showed numerous allele frequency differences to Australian-based control

cohorts. The case may be that the failure to replicate these variant associations was

simply due to random sample variation causing allele frequency differences between

the control cohorts. A potential method to determine whether allele frequencies were

influenced by Australian ancestry, would be to compare the control datasets in a

pseudo case-control association analysis, to determine whether the Australian control

cohorts could be distinguished from the mixed ancestry and European cohorts, as well

as from each other. It must also be noted that the use of multiple control cohorts

in itself introduces an increased burden of multiple testing. As such, the significance

thresholds utilised here may be too lenient, therefore these results must be treated

with caution.

The statistical power of the association analyses presented in this chapter are quite

small. This a result of the availability of small sample sizes of the case cohorts, being

just 81, 61 and 635 for FALS, FALS proband and SALS patients, respectively. The

sample size of the control cohort also contributes to the degree of statistical power, thus

the association analyses using the ExAC or gnomAD control databases had superior

power to those analyses using the smaller Australian control cohorts from MGRB and

DACC. In addition to sample size, statistical power is further influenced by a variety

of factors including disease prevalence, risk-allele frequency, linkage disequilibrium and

the inheritance model the risk allele(s) (ie. additive, dominant, multiplicative) and

risk-allele effect size (Hong and Park, 2012). Given that allele frequency and linkage

disequilibrium values are unique to each SNP, and the uncertainty of the inheritance

model and effect size of ALS risk-alleles (and the potential of these to also be unique

to each risk-allele), it was not possible to perform formal power calculations. As

such, rather than actually identifying real ALS risk-alleles, our approach acts as a

tool for identifying potentially interesting risk-alleles that warrant detailed analysis
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for association with ALS in larger patient cohorts, under various assumptions around

inheritance models and effect sizes.

Seventeen SNPs were considered as being nominally significantly associated with

disease in the FALS and SALS cohorts (p<0.05), and implicate the presence of risk

alleles in 12 different genes. The Australian sample cohorts (81 FALS and 635 SALS)

were relatively small, though the unique genetic background of this population provides

a rare resource for investigating ALS-associated variants. Replication of these results

using the Project MiNE case-control cohort supported the over-representation of the

NEK1 rs200161705 SNP in ALS patients compared with controls, suggesting this

variant may be an interesting ALS risk allele. Interestingly, the CNR2 rs2501432 was

under-represented in Australian FALS compared with control individuals from ExAC,

DACC and MGRB, however in the Project MiNE case-control cohort, this variant

showed significant over-representation in SALS patients compared with controls.

While this result may simply represent a false positive finding in either one or both

of the case cohorts, it is possible that it may reflect a difference between the genetic

architecture of FALS and SALS. Alternatively, it may indicate that some sort of

complex population stratification effect is at play, in that this variant does contribute

to ALS phenotypes, but its effect is dependent on interactions with other genetic

variants. That is, on an Australian-based genetic background, this variant may confer

protection against ALS, while on a European-based genetic background this variant

may increase the risk for ALS. Together, these association results warrant further

investigations of these variants in larger cohorts with more diverse genetic backgrounds.
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“You can’t just give up, is that what a dinosaur would do?”

Joey Tribbiani - Friends

6
Novel disease gene discovery in ALS families

6.1 Introduction

This Chapter addresses the first part of Aim 3 of this project; to identify novel

ALS genes and mutations in families with a history of ALS. The analyses presented

here centre around five ALS families (FALSmq28, FALS15, FALS45, FALSmq2 and

FALSmq20), each exhibiting reduced disease penetrance. DNA samples were available

from just two or three informative members from each family, meaning that these fam-

ilies have limited genetic power. These small families are not amenable to traditional

linkage analysis methods alone, in contrast to those larger ALS families that were

utilised by our laboratory to discover the known ALS genes TARDBP (Sreedharan

et al., 2008), UBQLN2 (Deng et al., 2011) and CCNF (Williams et al., 2016b).

A combination of next-generation sequencing (NGS), bioinformatic analysis, and

genome-wide linkage analysis was employed to identify a list of candidate mutations in

each of the five families. A multi-faceted in silico pipeline was developed to functionally

characterise each candidate mutation in order to assess its potential pathogenicity, rel-

evance to ALS, and ultimately prioritise those warranting downstream in vitro analysis.

167
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6.1.1 ALS gene discovery and disease aetiology

Genetic discoveries in ALS over the past 25 years have laid the foundation for the

majority of our current understanding of the disease biology underlying ALS. As

established in Chapter 1, Section 1.4, at least 25 genes have been found to harbour

ALS causal mutations. These genes, both in isolation and collectively, have served

to highlight the role of specific molecular pathways and mechanisms contributing to

ALS pathogenesis. Thus, ALS gene discoveries have also provided the targets for

downstream research into the pathogenic underpinnings of disease.

The critical links between the wider biology of ALS and the genetic causes of

disease have been evident since the first discovery of causal mutations in SOD1 (Rosen,

1993). Soon after this genetic discovery, the SOD1 protein was identified within

protein aggregates found in affected motor neurons in patient tissue (Shibata et al.,

1996). The discovery of SOD1 mutations in ALS also lead to the first indication of

the role oxidative stress plays in ALS pathogenesis. Later, following the identification

of the TDP-43 protein as a major constituent of hallmark ubiquitinated neuronal

cytoplasmic inclusions (Arai et al., 2006; Neumann et al., 2006), causal mutations

in the gene encoding this protein, TARDBP, were identified in familial and sporadic

ALS cases (Sreedharan et al., 2008). This again demonstrated a critical link between

ALS genetics and understanding the pathogenesis of disease, and was among the first

clues to implicate the role of RNA-binding proteins and RNA-processing pathways

in ALS. Other ALS genes including FUS and UBQLN2 have continued to inform

our understanding of ALS pathogenesis, having also been found within the hallmark

protein inclusions (Deng et al., 2011; Neumann et al., 2011). As the number of

ALS genes has grown, numerous genes have clustered together to implicate common

molecular pathways in ALS, most notably RNA-processing and protein homeostasis

(discussed in Chapter 1, Section 1.3.5). Further, most animal and cell models of ALS

have been developed through the introduction of known ALS gene mutations.

Known ALS gene mutations account for approximately 60% of Australian FALS,

leaving almost 40% of these FALS cases to be solved (Paper I, McCann et al., 2017).

Additionally, just 5% of SALS patients harbour a known ALS mutation (Renton et al.,

2014). Therefore, the cause of disease in over 90% of ALS patients remains unknown,

meaning that numerous genetic mutations/perturbations that cause or contribute to

ALS are yet to be discovered. Each novel ALS gene discovery will provide a new

opportunity to further our knowledge and understanding of the biology underlying

disease, as has been achieved for those ALS genes already identified. The identification
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of novel ALS genes from family studies will benefit both FALS and SALS patients

alike, through an increased understanding of disease aetiology.

6.1.2 Approach to novel disease gene discovery

As established in Chapter 1, Section 1.5.2, the wide-spread adoption of NGS tech-

nologies, particularly whole exome- (WES) and whole-genome (WGS) sequencing, has

facilitated substantial growth in the number of identified disease genes for ALS and

many other hereditary conditions. The majority of this success can be attributed to

the application of family-based filtering strategies to NGS datasets, namely segregation

analysis and filtering of common population-based variants. The effectiveness of this

approach has been further enhanced when coupled with traditional genetic linkage

analysis techniques in large families. Indeed, our laboratory successfully applied this

strategy to identify novel ALS genes including CCNF (Additional Paper I; Williams

et al., 2016b) and UBQLN2 (Williams et al., 2012a). These studies used large ALS

families with multiple affected individuals over several generations, together with

unaffected “married-in” spouses and/or parents, providing sufficient genetic power for

effective segregation and genetic linkage analysis. However, limited sample availability

from the unsolved ALS families limits the application of these analyses (discussed

in Chapter 1, Section 1.6.1). In cases where segregation analysis is applied to just

two first-degree relatives (i.e. relatives whom share an average of 50% of their DNA

sequence), a long list of shared variants (ie. variants identical by descent), or candidate

mutations, is expected. In the absence of genetic data from additional informative

family members, alternative strategies are required to elucidate the causal mutation

in such small ALS families.

A number of commonalities are evident among the known causal ALS gene

mutations, on both a gene and variant level. These include a range of biological and

genetic characteristics (discussed in Chapter 2, Section 2.5). Many of these can be

assessed using in silico tools or databases (see Table 2.5). Therefore, as part of this

Chapter, an in silico strategy was developed to assess the potential pathogenicity of

a given candidate mutation in an ALS family, utilising these characteristics together

with their associated in silico tools. This approach was used to prioritise candidate

mutations with the highest potential pathogenicity in each family.
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6.2 Methods

6.2.1 ALS families

All available family members from families FALSmq28, FALS15, FALS45, FALSmq2

and FALSmq20 were recruited and had their DNA samples collected according to

Chapter 2, Section 2.1.1. Each individual also provided informed written consent

according to Chapter 2, Section 2.1.2. Pedigrees are provided in Figures 6.1 – 6.5.

Each family member was classified as either an ALS affected individual/patient,

obligate mutation carrier, “married-in” control or “at-risk” individual as described in

Chapter 2, Section 2.1.3.1. Among these subject types, affected individual/patient,

obligate mutation carrier and “married-in” control parent of an affected individual

were all considered informative for family-based genetic analysis.

DNA was available from multiple informative members from the five ALS families

studied here. Each family was negative for known ALS gene mutations. Individuals

from families FALS15, FALS45, FALSmq2 and FALSmq20 underwent known ALS

gene screening as part of Paper I (Chapter 4, Section 4.3.1). FALSmq28 patients were

recruited after publication of this article, however they too underwent known ALS

gene screening following identical protocols.

Table 6.1 describes the DNA sequencing data available for each family to facilitate

novel gene discovery. Detailed methodology for each technology type are provided in

Chapter 2.

Table 6.1: Summary of available data from multi-generation families.
Number of DNA samples available Available datasets

Affected Obligate

mutation

carriers

“Married-in”

controls#

“At-risk”

individuals

WES WGS SNP

microarray

genotypes

FALSmq28* 2 1 2 11 yes yes yes

FALS15 1 1 0 0 yes . .

FALS45 2 0 0 0 yes . .

FALSmq2 1 1 0 0 yes . .

FALSmq20 2 0 0 0 yes . .

*Only the three mutation carriers (i.e. affected and obligate mutation carriers) from FALSmq28

underwent WES and WGS, while all family members underwent SNP genotyping.

# All “married-in” control individuals were the unaffected parent of an ALS patient.
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FALSmq28

FALSmq28 is a six-generation family, in which two male individuals were both diag-

nosed with ALS. These two affected individuals were second cousins. DNA from both

affected individuals, and the mother of one affected individual (an obligate mutation

carrier), each underwent WES and WGS. These three informative individuals, and an

additional 11 “at-risk” family members and two “married-in” controls also underwent

SNP genotyping for genome-wide linkage analysis. The pedigree for this family is

provided in Figure 6.1.

Clinical information

Both affected individuals had classical ALS with no evidence of FTD. The proband

had bulbar onset at 51 years of age, having presented with slurred speech. He was

formally diagnosed with ALS 11 months later at 52 years of age. After a disease

duration of 58 months, the proband passed away at 56 years of age. The second

affected individual also displayed his first symptoms at 51 years, though with spinal

onset and symptoms in his left leg. He too was formally diagnosed at 52 years, and is

currently alive at 55 years of age, having lived with disease for 48 months.
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Figure 6.1: Pedigree of family FALSmq28. FALSmq28 is a six-generation family with a history of classic ALS. Females are
indicated by circles, males by squares. Filled symbols indicate individuals affected by ALS. Symbols containing a small filled circle
indicate obligate mutation carriers, unaffected by ALS. A diagonal strikethrough indicates a deceased individual. Pink coloured symbols
indicate individuals with DNA samples available, and all of these individuals underwent SNP microarray genotyping. Individuals marked
with purple stars underwent WES and WGS. The black arrow represents the family proband.



6.2 Methods 173

FALS15

FALS15 is a four-generation family from which a male proband and his first cousin-

once-removed were both diagnosed with ALS. WES was performed for the proband

and his mother, an obligate mutation carrier. The pedigree for this family is provided

in Figure 6.2.

Clinical information

Limited clinical details were available from this family. Both affected individuals were

diagnosed with classical ALS with no evidence of FTD. The proband presented with

bulbar symptoms at 58 years of age.

Figure 6.2: Pedigree of family FALS15. FALS15 is a four-generation family with
a history of classic ALS. Females are indicated by circles, males by squares. Filled symbols
indicate individuals affected by ALS. Symbols containing a small filled circle indicate obligate
mutation carriers, unaffected by ALS. A diagonal strikethrough indicates a deceased individ-
ual. Pink coloured symbols indicate individuals with DNA samples available. Individuals
marked with purple stars underwent WES. The black arrow represents the family proband.

FALS45

FALS45 is a four-generation family consisting of a male proband whose father was

also affected by ALS. WES was carried out for the proband and his mother, who was

a “married-in” control. The pedigree for this family is provided in Figure 6.3.
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Clinical information

Limited clinical details were available from this family. Both affected individuals were

diagnosed with classical ALS with no evidence of FTD.

Figure 6.3: Pedigree of family FALS45. FALS45 is a four-generation family with a
history of classic ALS. Females are indicated by circles, males by squares. Filled symbols in-
dicate individuals affected by ALS. A diagonal strikethrough indicates a deceased individual.
Pink coloured symbols indicate individuals with DNA samples available. Individuals marked
with purple stars underwent WES. The black arrow represents the family proband.

FALSmq2

FALSmq2 is a four-generation family. The male proband affected individual had

a maternal uncle who was also diagnosed with ALS. WES was performed for the

proband and his mother, who was an obligate mutation carrier. The pedigree for this

family is provided in Figure 6.4.

Clinical information

A history of classical ALS with no evidence of FTD was reported for this family. The

proband presented with an affected right arm at 50 years of age, and was formally

diagnosed with ALS six months later. This affected individual died at 54 years of age,

51 months after diagnosis.
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Figure 6.4: Pedigree of family FALSmq2. FALSmq2 is a four-generation family with
a history of classic ALS. Females are indicated by circles, males by squares. Symbols contain-
ing a small filled circle indicate obligate mutation carriers, unaffected by ALS. A diagonal
strikethrough indicates a deceased individual. Pink coloured symbols indicate individuals
with DNA samples available. Individuals marked with purple stars underwent WES. The
black arrow represents the family proband.

FALSmq20

FALSmq20 is a four-generation family. A male proband patient and his mother

were both diagnosed as ALS patients. WES was performed for both affected family

members. The pedigree for this family is provided in Figure 6.5.

Clinical information

The proband presented with symptoms in the right arm at 40 years of age, while his

mother experienced bulbar onset at 75 years of age. Both received formal diagnoses

after approximately two years. The affected mother of the proband also displayed

symptoms of dementia. The proband was alive at the time of analysis and has lived

with ALS for 143 months, however his mother died at 78 years of age after a disease

course of just under 46 months.
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Figure 6.5: Pedigree of family FALSmq20. FALSmq20 is a four-generation family
with a history of classic ALS. Females are indicated by circles, males by squares. Filled
symbols indicate individuals affected by ALS. A diagonal strikethrough indicates a deceased
individual. Pink coloured symbols indicate individuals with DNA samples available. Indi-
viduals marked with purple stars underwent WES. The black arrow represents the family
proband.

6.2.2 Identifying candidate ALS causal mutations in each

family

In order to identify the ALS causal gene mutation in each family, a custom family

analysis approach was employed. The families described above represent two different

family types. Firstly, a medium-sized family with three informative, and 13 additional

DNA samples available (FALSmq28), and secondly, smaller families with just two

informative DNA samples available from a parent-offspring pair (FALS15, FALS45,

FALSmq2 and FALSmq20). The basic shared variant and filtering analysis pipeline

applied to both family types is described in Table 6.2. Briefly, NGS data from each

family was filtered to identify genetic variants shared by all affected and obligate

mutation carrying family members, and absent from any “married-in” control individ-

uals (ie. variants identical by descent). These variants were then visually inspected

using NGS read data to confirm the nucleotide identity of the SNP call. Any variants

found to have an incorrect nucleotide identity were corrected, and also had their control
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Table 6.2: Basic steps of family-based analysis pipeline for gene discovery.

Analysis Step Description

Relevant Section or Custom Script

Small families FALSmq28 FALSmq28

- WES - WES - WGS

Original NGS VCF VCF(s) containing WES or WGS data for individual family members Section 2.2 Section 2.2 Section 2.2

Generate family VCF VCF containing all family members, and only called variants with an

alternate allele present in at least one affected family member

Script A.2.10 Script A.2.12 Section 3.5.2

ANNOVAR annotation Append bioloogical annotations for each variant Section 2.2.2.2 Section 2.2.2.2 Section 2.2.2.2

Custom family analysis Retain all variants shared by affected individuals (and obligate carri-

ers) and remove any variants present in unaffected “married-in” control

individuals
Script A.2.11 Script A.2.13 Script A.2.14

First-tier filtering

Remove common variants in the general population, using dbSNP,

1000Genomes, ExAC and/or gnomAD NFE MAF>0.0001

Remove non-coding variants (using Func.refGene annotations)

Remove synonymous variants (using ExonicFunc.refGene annotations)

First-tier validation
Visualise WES reads using IGV to confirm genotype calls Section 2.4.1 Section 2.4.1 Section 2.4.1

Ammend ExAC/gnomAD MAF and AC for variants with incorrect allele

calls

N/A N/A N/A

Second-tier filtering
Remove less common variants in the general population (i.e. variants

with AC>2 across ExAC and gnomAD)

Section

3.5.3 &

Script

3.11

Section

3.5.3 &

Script

3.11

Section

3.5.3 &

Script

3.12

Remove less common variants in the Asutralian population (i.e. variants

with AC>2 across ExAC, gnomAD, DACC and MGRB )

Second-tier validation Confirm variant is present in each affected family member, and/or absent

from any “married-in” controls

Section 2.4.2 Section 2.4.2 Section 2.4.2

Abbreviations: VCF, variant call file; ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; NFE, Non-Finnish Europeans;

MAF, minor allele frequency; IGV, Integrative Genomics Viewer; AC, allele count; and MGRB, Medical Genome Reference Bank.
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database values (ie. minor allele frequency: MAF and alternate allele count: AC)

corrected. All variants were then filtered to remove any common, rare, or Australian

population-based variants. Any remaining variants were then validated using Sanger

sequencing to confirm their presence in affected individual DNA samples, and absence

from “married-in” control DNA samples. The following sections provide specific

details of these analysis steps, which varied slightly between the two different family

types due to the availability of family samples (and consequently sequencing data),

and control database versions at the time of analysis.

6.2.2.1 FALSmq28

As described above, WES, WGS and SNP microarray genotype data were available for

FALSmq28 (Table 6.1). Pedigree analysis showed male-to-male transmission, therefore

an autosomal inheritance model was assumed. However, the dominant inheritance of

disease was inconclusive, thus both dominant and recessive inheritance (and therefore

both heterozygous and homozygous variants) were considered. However, where a

conclusive disease model was required, an autosomal dominant inheritance model was

assumed.

A combination of NGS shared variant analysis and SNP microarray genome-wide

linkage analysis was employed for novel disease gene discovery in FALSmq28. NGS data

processing and filtering was achieved using Custom Scripts developed as part of this

thesis as described in Table 6.2 (with each being provided in the Appendix). Figure 6.6

outlines the analysis pipeline for this family, which consisted of three complementary

analysis strategies as described below, each of which was applied separately to the

WES and WGS datasets generated for this family. The initial analysis phase (Analysis

1; 6.6A) considered only coding variants. Genome-wide linkage analysis (as described

below) then followed. The results of genetic linkage analysis were subsequently used to

refine the genomic regions included in NGS shared variant analysis. Analysis phases 2

and 3 were restricted to genomic regions with logarithm of odds (LOD) scores >0 and

>-2, respectively. The Custom Script 3.7 was used to extract these regions from the

complete family VCF prior to standard filtering, similar to Analysis 1. Both Analyses 2

and 3 considered variants falling within all functional classes of the genome other than

intronic and intergenic regions. Analysis 3 also employed three additional filtering steps

to reduce the variants under analysis to a manageable number. Quality filtering was

applied prior to basic family-based filtering to remove any variants with a genotype

quality (GQ) score <20 in WES or WGS data from all three informative
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Figure 6.6: Novel gene discovery analysis pipeline for family FALSmq28. Overview of the analysis, filtering and validation
steps applied to NGS data from the medium-sized family FALSmq28 to identify the causal ALS mutation in this family. A) Analysis 1.
A traditional shared variant analysis approach was employed to identify coding candidate mutations. Additional steps and amendments
were then applied to Analysis 1, to perform extended shared variant analysis. B) Analysis 2. This analysis included genomic regions
showing the strongest evidence of linkage to disease (i.e. genomic regions with LOD scores >0 from genome-wide linkage analysis) and
included all coding or regulatory variants falling within these regions. C) Analysis 3. This analysis included any genomic regions possibly
linked to disease (i.e. genomic regions with LOD scores >-2 from genome-wide linkage analysis), high quality variants (those with a
GQ>20 in all family members) and included all coding or regulatory variants falling within these regions.
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family members (using the Custom Script 3.1). Secondly, Australian variants present

in the MGRB database were removed (as described for Australian variant filtering in

Table 6.2) prior to first-tier validation, in order to reduce the variants requiring visual

inspection. Thirdly, any variants which had already been excluded by Analysis 1 or 2

were also removed before further filtering steps were applied.

Genome-wide linkage analysis

Raw data from SNP microarrays were processed according to Chapter 2, Section

2.3 by the service provider, Macrogen (Korea). The service provider also completed

consistency and integrity checks for the output files using PedStats (Wigginton and

Abecasis, 2005), and SNP pruning for those variants with a MAF<0.001 or in strong

linkage disequilibrium. The data received from the service provider included a ped file

containing family information and genotype data (example in Appendix A.4, Figure

A.2), a dat file describing the structure of the ped file (example in Appendix A.4,

Figure A.3) and a map file defining the chromosomal location of each SNP marker

(example in Appendix A.4, Figure A.4).

The ped file was first amended to assign the correct affection status and append

liability classes (described in Table 6.3) for each family member, using the Custom R

Script in Appendix A.2.15. The ped, dat and map files were then separated out for

each chromosome, to facilitate linkage analysis by chromosome, using the Custom R

Script in Appendix A.2.16.

Genome-wide parametric linkage analysis was performed using Merlin software

(Version 1.1; Abecasis et al., 2002). This assumed an autosomal dominant disease

model with a disease allele frequency of 0.0001, and liability classes for age-dependent

penetrance as shown in Table 6.3 (specified using the model file shown in Appendix

A.4, Figure A.5). Linkage analysis was then completed separately for each chromosome

using the Custom Script in Appendix A.2.17. This script utilised options to specify

equal allele frequencies, reduce memory requirements and output results in a tabular

format. Analysis and plotting of LOD score results was completed using R and the

ggplot2 package (using the Custom Script in Appendix A.2.18).
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Table 6.3: Liability classes for linkage analysis, based on the age-dependent
penetrance of ALS.

Age group (years) <30 31 - 40 41 - 50 51 - 60 61 - 70 70+
Heterozygote penetrance 0.01 0.3 0.5 0.7 0.85 0.9
Homozygote penetrance 0.01 0.3 0.5 0.7 0.85 0.9

Distribution of variants across the genomic functional classes

In order to determine how the variants identified by WES and WGS were dis-

tributed across the different functional classes of the genome, the Custom Script

in Appendix A.2.19 was developed. This was applied to both general functional

classes (downstream, exonic, exonic;splicing, intergenic, intronic, ncRNA exonic,

ncRNA exonic;splicing, ncRNA intronic, ncRNA intronic;splicing, splicing, upstream,

upstream;downstream, UTR3; UTR5) and exonic functional classes (frameshift

deletion, frameshift insertion, nonframeshift deletion, nonframeshift insertion, non-

synonymous SNV, stopgain, stoploss, synonymous SNV, unknown), for both WES

and WGS sequencing datasets.

6.2.2.2 Small families

As described above, WES data was available for two informative family members from

each of the families FALS15, FALS45, FALSmq2 and FALSmq20. Though limited

clinical data was available for the ancestors of each proband patient, pedigree analysis

showed no evidence of consanguineous unions or a lack of male-to-male transmission

in any family. Additionally, relatedness analysis using KING (v2.1; Manichaikul

et al., 2010) has previously shown the relationship coefficients between relatives are as

expected, meaning that no underlying consanguinity exists in these families (unpub-

lished data). As such, an autosomal dominant model of inheritance was assumed for

each family. The analysis pipeline applied to each of these four families is provided in

Figure 6.7. The Custom Script in Appendix A.2.11 was used for bioinformatic filtering.
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Figure 6.7: Small family novel gene discovery analysis pipeline. Overview of the
analysis, filtering and validation steps applied to families FALS15, FALS45, FALSmq2, and
FALSmq20 for novel disease gene discovery.
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6.2.3 Assessment of potential for ALS pathogenicity using in

silico tools

Following family analysis and filtering, each candidate mutation was functionally

characterised and assessed for potential ALS pathogenicity using a combination of in

silico tools. This included evaluation of gene specific characteristics such as expression

levels and tolerance for genetic variation, as well as variant specific characteristics

relating to predicted functional consequences and conservation across species (details

provided in Chapter 2, Section 2.5, Table 2.5).

Based on the results of these in silico assessments, a scoring system was developed

to rank all candidate mutations from each family according to their apparent potential

for ALS pathogenicity. Table 6.4 describes this scoring system. In order to validate

the scoring system, it was applied to the 11 causal ALS point mutations present in our

FALS patient cohort (as established in Paper I, Chapter 4, Section 4.3.1) and three

common population-based SNP variants.

Genic xtolerance formula explained

The formula devised to score genic tolerance was based on two metrics, RVIS percentile

scores and ExAC missense z-scores. Therefore, these two metrics were each assessed as

a separate component of the genic tolerance formula, with these two components then

being added together to obtain an overall genic tolerance score. Genic tolerance has

consistently been reported as a better predictor of pathogenicity compared with gene

expression, protein predictions and amino acid conservation across species (MacArthur

et al., 2014; Petrovski et al., 2013; Richards et al., 2015). As such, as part of the in

silico scoring system developed here, genic tolerance was weighted more highly than

the other characteristics. Specifically, genic tolerance contributed to four points of the

overall in silcio assessment of pathogenicity score while all other characteristics each

contributed two points of the overall score. The RVIS percentile scores and ExAC

missense z-scores contributed equally to the genic tolerance score, and thus each

contributed two points to this score.

RVIS scores assess whether a gene has more or less common functional variation

relative to what is expected, given its level of neutral variation (Petrovski et al., 2013).

Across the genome, these scores have a normal distribution. The RVIS percentile

score (http://genic-intolerance.org/; Petrovski et al., 2013) was chosen as it

was relative across all known human genes, was always positive (ranging from zero

http://genic-intolerance.org/
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to 100), and therefore would not produce a negative score. As this represented

the percentile of most intolerant genes the gene of interest fell within (i.e. the

smaller the percentile value, the more intolerant the gene) the inverse value was

used to score more intolerant genes more highly. The inverse value was then multi-

plied by two so that the RVIS metric contributed two of the four genic tolerance points.

The ExAC missense z-scores were calculated by comparing the number of expected

missense variants (based on the size of the gene) to the number of observed missense

variants for each gene in the complete ExAC control dataset and represents the

number of standard deviations the observed value was from the expected value

(http://exac.broadinstitute.org/; Lek et al., 2016). Negative z-scores indicated

more variants than expected (increased tolerance), and positive z-scores indicated less

variants than expected (decreased tolerance). This model assumed a normal distribu-

tion, thus 99.994% of all observed values will fall within four standard deviations of

the expected value. Therefore, the z-scores were divided by four to obtain a relative

metric. Again, this value was multiplied by two so that the ExAC missense constraint

score contributed to two of the four genic tolerance points. However, ExAC missense

scores across the genome range from -8.64 to 13.88, therefore negative scores and

scores greater than 2 were possible. To account for this in the scoring system presented

here, score thresholding was applied. That is, any negative values were corrected

to zero, so that genic intolerance did not mask scores from the other characteristics

in the overall pathogenicity assessment score, and any scores greater than two were

rounded down to two, to avoid inflation of the overall pathogenicity assessment score

purely based on genic intolerance.

6.2.4 Additional evidence supporting potential pathogenicity

In silico analyses

Additional gene/variant characteristics were analysed as complementary traits to

further support or refute the potential pathogenicity of each candidate mutation. This

included gene/protein descriptions, known links to neurodegenerative disease, protein

structure, protein interacting partners and the addition/removal of post-translational

phosphorylation sites (details provided in Chapter 2, Section 2.5, Table 2.5).

Additional ALS patient cohort screening

Various other national and international ALS patient cohorts were also examined for the

http://exac.broadinstitute.org/
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presence of each candidate mutation. All such cohorts consisted of individuals of Eu-

ropean ancestry, in accordance with the ancestry of the Australian ALS families under

analysis. These cohorts included our in-house WES dataset from FALS affected individ-

uals with an unidentified ALS mutation (n=81; 61 probands), and WGS dataset from

635 SALS affected individuals (within the 850-sample VCF). Further, WES/WGS data

was obtained from dbGAP (https://www.ncbi.nlm.nih.gov/gap/) for 247 FALS af-

fected individuals (dbGaP Study Accession: phs000101.v5.p1). These three datasets

were screened using Custom R Scripts (Appendices A.2.4, A.2.6 and a variation of

line 54 of Appendix A.2.4, respectively). Three publicly available datasets were also

screened using their web browser interfaces. These were Project MiNE (n=4,366 SALS

WGS; http://databrowser.projectmine.com/), the ALS data browser (ALSdb;

n=2,800 FALS and SALS WES; http://alsdb.org/) and the ALS variant server

(AVS; n=1,138 FALS and 277 SALS WES; http://als.umassmed.edu/).

https://www.ncbi.nlm.nih.gov/gap/
http://databrowser.projectmine.com/
http://alsdb.org/
http://als.umassmed.edu/
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Table 6.4: In silico scoring system for assessment of potential pathogenicity.
Assessment In silico database/-

tool*

In silico database/tools result conven-

tions

Scoring Scored out of

(totalling 10)

Gene expression in

the brain and spinal

cord

HBT (brain) No expression <6; low expression 6-8;

medium-high expression 8+

High-med expression in the brain and spinal

cord=2/2, high-med expression in either the

brain or spinal cord=1/2, low expression in

the brain and SC=1/2, no expression in the

brain and SC=0/2

2

GTex (spinal cord) No expression <5 RPKM; low expression

5-10 RPKM; medium-high expression 10+

RPKM

In silico protein

prediction programs

MutationAssessor Functional (high/medium), non-functional

(low/neutral)

Based on the percentage of in silico

programs returning a potential pathogenic

prediction result; <40%=0; 40-60%=0.5,

60-75%=1 , 75-85%=1.5, 85-100%=2

2

MutationTaster Disease causing or polymorphism

Polyphen-2 Probably or possibly damaging, or benign

Pon-P2 Pathogenic, neutral or unknown

SIFT Damaging or tolerated

PROVEAN Deleterious or neutral

SNPs&GO Disease or neutral

CADD Magnitude of rank score (10=top 10% dele-

terious, 20=top 1% deleterious etc)

Conservation of the

affected amino acid

across species

Validated protein

sequences obtained

form NCBI Homolo-

gene, and aligned

using ClustalOmega

The identity of the affected residue was com-

pared between humans and all other species,

the number of species with the same residue

at the corresponding position were consid-

ered positive. The total number of species

with protein sequence data available, and the

percentage of positive species was recorded

Homologene/ClustalOmega scoring

No. 100% 75-99% 50-74% <50%

species

n<4 0.6 0.4 0.2 0

n=5-6 0.8 0.6 0.4 0

ně7 1 0.8 0.6 0

2

PhyloP Conserved residues have positive scores Conserved = 0.5

Phastcons Conserved residues have scores >0.5 Conserved = 0.5

Geneic tolerance
RVIS The RVIS percentile score indicates that the

gene is amongst that percentage of most vari-

ation intolerant human genes

(((100-RVIS%)/100)*2) + (((ExAC

constraint z-score)/4) x 2) (If this value is

negative score as 0)

4

ExAC missence con-

straint z-score

Positive z-scores indicate intolerance to vari-

ation

*Refer to Chapter 2, Section 2.5, Table 2.5 for details of each database/tool.
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6.3 Results

6.3.1 In silico pipeline for assessment of potential ALS

pathogenicity - proof of principle

The in silico pipeline and scoring system was applied to 11 known ALS mutations, and

three common SNPs to validate its ability to assess potential for ALS pathogenicity,

and to determine scoring thresholds. A clear distinction in scores between the two

categories was observed, with known ALS mutation scores ranging from 4.80 to 8.01,

and common SNP scores ranging from 1.16 to 2.10. Results are summarised in Table

6.5, and detailed in Appendix A.3.4, Table A.3. Analysis of these scores determined

that the threshold for a non-synonymous variant to have a high potential for ALS

pathogenicity was a score of five, while the threshold for low potential for ALS

pathogenicity was a score of two.
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Table 6.5: In silico assessment of known ALS mutations.
Variant type Gene Amino acid Gene Protein Conservation Genic Total score

change expression predictons tolerance (out of 10)
Known ALS mutation SOD1 p.I114T 2 2 1.8 2.2142 8.0142
Known ALS mutation SOD1 p.E101G 2 1 0.5 2.2142 5.7142
Known ALS mutation SOD1 p.V149G 2 2 1.8 2.2142 8.0142
Known ALS mutation FUS p.R521C 2 1 1.6 3.1336 7.7336
Known ALS mutation FUS p.R521H 2 0.5 1.6 3.1336 7.2336
Known ALS mutation FUS p.R521S 2 1 1.6 3.1336 7.7336
Known ALS mutation TARDBP p.G294V 2 0 1.6 3.6166 7.2166
Known ALS mutation TARDBP p.M337V 2 0.5 1.8 3.6166 7.9166
Known ALS mutation TARDBP p.G376D 2 0 1.4 3.6166 7.0166
Known ALS mutation UBQLN2 p.T487I 2 0 1.4 2.2074 5.6074
Known ALS mutation CCNF p.S621G 0.5 0.5 1.8 1.9966 4.7966
Common SNP TMA16 p.I176T 1 0 0 0.1566 1.1566
Common SNP OR4C3 p.S100F 0.5 0.5 1.1 0 2.1
Common SNP MAP2K3 p.S39P 0.5 0 0.9 0.6468 2.0468
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6.3.2 Novel gene discovery in FALSmq28

WES and WGS datasets were successfully generated for the two affected, and one

obligate mutation carrier family members of FALSmq28. SNP array genotyping data

was also generated for these three individuals, as well as the 11 additional “at-risk”

and two “married-in” family members.

Over 42-fold more variants were detected using WGS compared to WES in

FALSmq28. However, performing variant filtering steps substantially reduced this

ratio until more coding candidate mutations were identified by WES compared to

WGS in Analysis 1 (prior to Sanger sequencing validation). Prior to any variant

filtering, WGS also initially detected „23% more exonic variants (41,774 vs 33,803)

including „21% more non-synonymous variants (18,849 vs 15,528) compared with

WES. Figure 6.8 provides a summary of the genomic functional classifications of

the variants identified by each sequencing technology across the three members of

FALSmq28 (prior to filtering). Interestingly, the vast majority (>99%) of variants

detected by WES were shared by all three family members across the three analysis

pipelines, however for WGS data this Figure was less than half („35-40%) (Table 6.6).

The three complementary family-based filtering pipelines that were applied to

FALSmq28 WES or WGS data, which considered either the complete exome/genome

or genomic regions with LOD scores >0 or >-2 respectively, each produced a distinct

list of candidate mutations. Importantly, both autosomal dominant and recessive

disease models (and therefore both heterozygous and homozygous variants) were

considered in each, as the inheritance pattern in this family was ambiguous. Table

6.6 summarises the sequential reduction of the number of candidate mutations

withstanding each filtering step in each of these six pipelines. Importantly, of the 29

candidate mutations identified in FALSmq28 by bioinformatic filtering of NGS data

across all six pipelines, just one withstood validation by Sanger sequencing.

Classical family-based analysis of both WES and WGS data failed to identify any

validated coding candidate mutations in FALSmq28. Genome-wide linkage analysis

of this family subsequently excluded „86.64% (2,802,514,406bp) of the genome as

disease-linked, with LOD scores <-2. Of the remaining „13.36% (432,315,594bp)

of the genome possibly linked to disease in this family, just „2.26% (73,123,343bp)

showed LOD scores >0. The highest LOD score of 1.1924 was found on chromosome

18. Figure 6.9 illustrates the LOD score results obtained from linkage analysis across

the genome.
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When considering all genomic regions other than intergenic or intronic, family-

based analysis identified just one validated homozygous candidate mutation, upstream

of the gene MIR512, which fell within a non-excluded linkage region (Analysis 3).

The details of this genomic variant are provided in Table 6.7. However, Sanger

sequencing of seven non-related controls showed this variant was also present in five of

these control individuals, in both a heterozygous (n=3) and homozygous (n=2) state

(Figure 6.10).
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Figure 6.8: Stacked bar charts showing the distribution of FALSmq28 WES and WGS variants across genomic
functional classes. (A) Variant distribution between the major genomic functional classes. (B) Exonic variant distribution between
the exonic functional classes.
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Table 6.6: Filtering results of family-based analysis of family FALSmq28.

Step Description of remaining variants Number of variants remaining

WES WGS

Analysis 1 Analysis 2 Analysis 3 Analysis 1 Analysis 2 Analysis 3

Traditional LOD>0 LOD>-2 Traditional LOD>0 LOD>-2

Family VCF Total variants across all family members 183,991 7,799,575

Linkage analysis Potentially disease-linked . 5,478 28,130 . 184,908 995,846

Quality filtering GQ>20 . . 10,143 . . 821,052

Custom family analysis Shared variants 182,408 5,448 10,129 2,792,679 66,371 341,055

First-tier filtering Absent from dbSNP147 and/or gnomAD NFE

MAF<0.0001

3,252 119 59 413,262 10,091 41,481

Coding (and regulatory) 229 43 16 278 287 2,763

Amino acid (and regulatory element) altering 170 . . 255 . .

Special filtering MGRB AC<2 . . . . . 134

Variants filtered in analysis 1 or 2 removed . . 10 . . 109

First-tier validation Correct variant calls 30 11 2 210 235 100

Second-tier filtering gnomAD and ExAC AC<2 20 8 0 19 22 12

MGRB and Project MiNE controls AC<2 15 1 0 3 2 9

Second-tier validation Validated by Sanger sequencing 0 0 0 0 0 1

Abbreviations: GQ, genotype quality; Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; NFE, Non-Finnish Europeans;

MAF, minor allele frequency; MGRB, Medical Genome Reference Bank; and AC, allele count.



6
.3

R
e
su

lt
s

193

Figure 6.9: Results of genetic linkage analysis of FALSmq28. The genetic distance across each chromosome is presented on
the x-axis, and LOD scores are shown on the y-axis. The numbers in the grey boxes indicate the relevant chromosome. Each chromosome
is represented by a different line colour. Peaks falling below LOD -2 represent genomic regions excluded as disease-linked.
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Table 6.7: Details of the FALSmq28 candidate mutation.
Gene.refGene MIR512-1 ;MIR512-2

Func.refGene upstream

gDNA alteration g.19:54169255C>A

Family genotype homozygous

ExAC absent

gnomAD 38 heterozygotes of African descent

DACC absent

MGRB absent

Australian controls - two homozygotes

Sanger sequencing three heterozygotes

two wild-type

Figure 6.10: Chromatograms of the FALSmq28 MIR512 candidate mutation.
The FALSmq28 homozygous candidate mutation MIR512 g.19:54169255C>A identified in
WGS data was screened through all three informative FALSmq28 family memebers and seven
unrelated control individuals. The arrows indicate the corresponding nucleotide base in each
individual.
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6.3.3 Novel gene discovery in small ALS families

The sequential reduction in the number of variants withstanding family-based filtering

and validation in FALS15, FALS45, FALSmq2 and FALSmq20 are summarised in a

step-wise manner in Table 6.8. Bioinformatics filtering in each family narrowed the

search for their disease causal mutation to less than 0.7% of their exome variants.

Custom family analysis found an average of 48.09% of variants to be candidate causal

mutations, with common variant filtering removing an average of 98.69% of these

from analysis. Among the remaining candidate variants, an average of 25.79% fell in

protein-coding regions, though only 61.84% of these altered the amino acid sequence.

Alarmingly, 40.68% of these had an incorrect alternate allele call from bioinformatics

processing, and were thus removed as candidate variants. Refined filtering for less

common population-based SNPs reduced the number of variants by a further 43.45%.

Finally, 6.83% of bioinformatically filtered variants were found to be sequencing

artefacts upon Sanger sequencing validation. Due to cost and time constraints,

only the top ten FALSmq20 candidate mutations (according to in silico scoring as

described below) were validated by Sanger sequencing, all of which were confirmed

in both affected individuals from this family. Using updated control databases for

common variant filtering, one candidate variant was found to be a rare benign SNP,

and was removed from analysis. Altogether, this analysis identified a total of 20, 11, 16

and 64 candidate mutations in each of FALS15, FALS45, FALSmq2 and FALSmq20,

respectively. The remaining candidate mutations for each family are summarised in

Tables 6.9, 6.10, 6.11 and 6.12.

Of these candidate mutations, five, six, one and 11 from each family were assessed

as having a high potential pathogenicity using the in silico pipeline developed

here. Detailed results of this in silico assessment of pathogenicity are presented

in Appendix A.3.4, Tables A.5, A.6, A.7 and A.8. Figures 6.11 and 6.12 show

examples of the graphical outputs obtained from the Human Brain Transcriptome

(HBT; http://hbatlas.org/; Kang et al., 2011; Pletikos et al., 2014) (used to

assess gene expression in the brain) and multiple protein sequence alignment using

NCBI homologene (http://www.ncbi.nlm.nih.gov/homologene) and Clustal Omega

v1.2.4 (http://www.ebi.ac.uk/Tools/msa/clustalo; Sievers et al., 2011) (used to

assess amino acid conservation across species), respectively. The supportive in silico

data collected for each remaining candidate mutation is presented in Appendix A.3.5,

Tables A.9, A.10, A.11 and A.12.

http://hbatlas.org/; 
http://www.ncbi.nlm.nih.gov/homologene
http://www.ebi.ac.uk/Tools/msa/clustalo
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Table 6.8: Filtering results of family-based analysis of families FALS15, FALS45, FALSmq2 and FALSmq20.
Step Description of remaining variants Number of variants remaining

FALS15 FALS45 FALSmq2 FALSmq20

Family VCF Total variants across family members 90,418 95,285 97,409 93,065

Custom family analysis Shared variants 55,583 16,384 62,298 46,280

First-tier filtering Absent from dbSNP129, dbSNP142, 1000Genomes and/or
ExAC NFE MAF<0.0001

465 453 376 479

Coding 103 84 99 173
Amino acid altering 52 55 66 112

First-tier validation Correct variant calls 27 32 35 83

Second-tier filtering ExAC NFE AC<2 25 25 25 74
ExAC NFE, DACC and MGRB AC<2 21 25 22 74
ExAC NFE, DACC, MGRB and gnomAD NFE AC<2 20 14 17 64

Second-tier validation Validated 20 11 16 64

Updated filtering MGRB and Project MiNE controls AC<2 19 11 16 64*

Abbreviations: Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; NFE, Non-Finnish Europeans;
MAF, minor allele frequency; MGRB, Medical Genome Reference Bank; and AC, allele count.
*Only top 10 candidate mutations from FALSmq20 underwent PCR and Sanger sequencing validation.
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Table 6.9: FAL15 candidate mutations.
Gene Accession cDNA Amino acid Control Presence in other Total score Priority Priority

number change change databases* ALS cohorts* (out of 10) category Ranking

CLCN4 NM 001830 c.T2003C p.I668T absent absent 8 high 1

MTSS1L NM 138383 c.G376A p.A126T gnomAD/ExAC (AC=1 NFE) Project MinE - SALS (AC=1) 6.8546 high 2

SCN4A NM 000334 c.C673T p.R225W gnomAD (FILTERED; AC=6; 4 NFE) absent 6.3414 high 3

LRRN2 NM 006338 c.T587C p.I196T absent absent 6.0844 high 4

SUPV3L1 NM 003171 c.C502G p.Q168E absent absent 5.683 high 5

HOXD3 NM 006898 c.A746G p.Y249C gnomAD (FILTERED; AC=1 other) absent 4.7454 medium 6

FAM171A1 NM 001010924 c.A1553G p.H518R gnomAD/ExAC (AC=1 NFE) absent 4.5454 medium 7

SP1 NM 003109 c.G433A p.A145T gnomAD (AC=1 NFE) absent 4.089 medium 8

MAPKAPK3 NM 004635 c.A1103G p.K368R absent absent 3.98 medium 9

SIM1 NM 005068 c.G2198T p.G733V absent absent 3.8374 medium 10

ZNF385B NM 152520 c.C1303T p.P435S absent absent 3.6654 medium 11

TYMP NM 001953 c.C733G p.Q245E absent absent 2.935 medium 12

TNS2 NM 015319 c.C2975T p.S992L gnomAD (AC=1 NFE) absent 2.5 medium 13

NECAB3 NM 031231 c.G608T p.R203L absent absent 2.485 medium 14

ZNF425 NM 001001661 c.G1271C p.R424P absent absent 1.9028 low 15

CEP295 NM 033395 c.A5120T p.N1707I absent absent 1 low 16

ZNF497 NM 198458 c.A68G p.K23R absent absent 0.6 low 17

ZNF497 NM 198458 c.T65G p.V22G absent absent 0.6 low 18

RNF133 NM 139175 c.G281A p.R94Q gnomAD (AC=1 SEA) absent 0 low 19

Abbreviations: Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; NFE, Non-Finnish Europeans;

MGRB, Medical Genome Reference Bank; and AC, allele count.
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Table 6.10: FAL45 candidate mutations.
Gene Accession cDNA Amino acid Control Other ALS Total score Priority Priority

number change change databases* cohorts* (out of 10) category Ranking

SCCPDH NM 016002 c.G766T p.V256L gnomAD/ExAC (AC=2

NFE)

Project MinE - SALS

(AC=1)

6.7012 high 1

GDPD1 NM 182569 c.C661A p.P221T gnomAD (AC=1 NFE) 850 WGS VCF - SOD1

FALS (AC=1)

6.1664 high 2

SPATA2 NM 006038 c.G616A p.G206S gnomAD/ExAC

(AC=5; 2 NFE)

absent 5.778 high 3

KRT85 NM 002283 c.T13C p.S5P gnomAD (AC=1 NFE) 850 WGS VCF - SALS

(AC=1)

5.7774 high 4

GABRG3 NM 033223 c.C707T p.S236F absent absent 5.3252 high 5

GRIN2D NM 000836 c.G430T p.V144L absent absent 5.295 high 6

HIST1H3G NM 003534 c.C115T p.P39S gnomAD/ExAC

(AC=3; 1 NFE)

absent 4.7026 medium 7

PIGZ NM 025163 c.T180A p.D60E gnomAD (AC=1 NFE);

MGRB (AC=1)

absent 4.3976 medium 8

NPBWR1 NM 005285 c.C754G p.L252V gnomAD/ExAC (AC=1

NFE)

absent 3.4708 medium 9

ORM1 NM 000607 c.G414T p.K138N absent absent 1.9974 low 10

ZNF132 NM 003433 c.G1363A p.G455R gnomAD/ExAC

(AC=5; 1 NFE)

absent 1.7342 low 11

Abbreviations: Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; NFE, Non-Finnish Europeans;

MGRB, Medical Genome Reference Bank; and AC, allele count.
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Table 6.11: FALmq2 candidate mutations.

Gene Accession cDNA Amino acid Control Presence in

other

Total score Priority Priority

number change change databases* ALS co-

horts*

(out of 10) category Ranking

STRN4 NM 013403 c.T1086A p.D362E MiNE controls (AC=1);

ExAC (AC=1 NFE)

absent 5.8334 high 1

EHBP1 NM 001142614 c.A1856T p.Q619L gnomAD (AC=1

Latino)

absent 4.2856 medium 2

ZFHX2 NM 033400 c.1694 1695delCCinsGAC p.T565Rfs*19 absent absent 4.1 medium 3

CHRNA2 NM 000742 c.G1231C p.E411Q gnomAD (FILTERED;

AC=1 NFE)

absent 3.2016 medium 4

TUSC5 NM 172367 c.G424A p.A142T gonmAD/ExAC

(AC=3; 2NFE)

absent 2.6 medium 5

EMP2 NM 001424 c.T368G p.I123S gnomAD (AC=1 NFE) absent 2.4064 medium 6

DPH6 NM 080650 c.A655G p.I219V absent absent 2.325 medium 7

ALPK1 NM 025144 c.G2935A p.D979N gnomAD /ExAC

(AC=1 NFE)

absent 2.2 medium 8

P2RY2 NM 002564 c.T46C p.W16R absent absent 1.8528 low 9

SLC25A21 NM 030631 c.C442T p.P148S DACC (AC=1) absent 1.6484 low 10

PCDHB11 NM 018931 c.T2275A p.S759T absent absent 1.514 low 11

CFH NM 000186 c.C1262G p.A421G absent absent 1.1726 low 12

FANCC NM 000136 c.C591G p.D197E gnomAD (AC=1 NFE) 850 WGS VCF - SALS

(AC=1)

1 low 13

ANKRD18B NM 001244752 c.T1766G p.L589R absent absent 0.6 low 14

CFAP47 NM 173695 c.G96T p.Q32H gnomAD/ExAC (AC=1

NFE)

absent 0.5 low 15

CFAP47 NM 173695 c.G97C p.D33H gnomAD/ExAC (AC=1

NFE)

absent 0.5 low 16

Abbreviations: Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; NFE, Non-Finnish Europeans;

MGRB, Medical Genome Reference Bank; and AC, allele count.



20
0

N
o
v
e
l
d
is
e
a
se

g
e
n
e
d
is
c
o
v
e
r
y
in

A
L
S
fa

m
il
ie
s

Table 6.12: FALmq20 candidate mutations.

Gene Accession cDNA Amino

acid

Control Presence in

other

Total score Priority Priority

number change change databases* ALS co-

horts*

(out of 10) category Ranking

RASGRF1 NM 002891 c.C101G p.S34W absent absent 9.4 high 1

NCOR2 NM 006312 c.G6437A p.R2146Q gnomAD (AC=2

African)

absent 8.6286 high 2

TAZ NM 000116 c.C29G p.P10R absent absent 7.2258 high 3

HIC2 NM 015094 c.C1577T p.T526M gnomAD/ExAC

(AC=9; 1 NFE)

Project MiNE (AC=1);

ALSdb (AC=1)

6.403 high 4

CRIM1 NM 016441 c.G2980A p.G994R absent absent 5.8614 high 5

SLC35A4 NM 080670 c.T853C p.C285R gnomAD/ExAC (AC=1

NFE)

absent 5.6842 high 6

ELFN2 NM 052906 c.C907T p.H303Y gnomAD (AC=1 NFE) absent 5.5134 high 7

POU2F2 NM 002698 c.C245T p.P82L gnomAD/ExAC

(AC=4; 2 NFE)

absent 5.4848 high 8

DNAJC4 NM 005528 c.C292T p.Q98X absent absent 5.4694 high 9

NUDC NM 006600 c.G609C p.Q203H absent absent 5.386 high 10

SLC24A2 NM 020344 c.G856A p.V286I absent absent 5.0904 high 11

MAP1A NM 002373 c.A1082G p.K361R absent absent 4.8578 medium 12

CSMD3 NM 052900 c.C7415G p.P2472R gnomAD (AC=2; 0

NFE)

AVS SALS (AC=1) 4.793 medium 13

OPRK1 NM 000912 c.G542C p.C181S absent absent 4.646 medium 14

SOX15 NM 006942 c.G356A p.R119Q gnomAD/ExAC

(FILTERED; AC=2; 1

NFE); MGRB (AC=1)

absent 4.55 medium 15

COL3A1 NM 000090 c.C2638A p.L880I absent absent 4.4482 medium 16

TSN NM 001261401 c.C394T p.R132C gnomAD (AC=1

Latino)

absent 4.3992 medium 17

SARAF NM 016127 c.A127G p.K43E gnomAD (AC=1 NFE) absent 4.3794 medium 18

MIEF1 NM 019008 c.C107T p.A36V gnomAD (AC=1 other) absent 4.3568 medium 19

TMEM199 NM 152464 c.C41G p.A14G absent absent 4.2592 medium 20
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ENPP5 NM 021572 c.C725T p.T242M gnomAD/ExAC

(AC=5; 2 NFE)

absent 4.1986 medium 21

TSSK4 NM 174944 c.G613A p.A205T gnomAD (AC=1 NFE);

Project MiNE controls

(AC=1)

absent 4.196 medium 22

SLC7A14 NM 020949 c.G2152A p.E718K absent absent 4.1402 medium 23

SLC7A14 NM 020949 c.A2144G p.E715G absent absent 4.1402 medium 24

TTN NM 003319 c.G55441A p.A18481T gnomAD/ExAC (AC=1

NFE)

absent 4 medium 25

LHX1 NM 005568 c.C970G p.L324V gnomAD/ExAC (AC=1

NFE)

absent 3.9798 medium 26

E2F8 NM 024680 c.A293C p.H98P Project MiNE controls

(AC=1)

absent 3.933 medium 27

ECE2 NM 014693 c.G580A p.G194S absent absent 3.5382 medium 28

IRX6 NM 024335 c.A383G p.E128G gnomAD (AC=1 other) absent 3.4784 medium 29

REG3G NM 198448 c.T311A p.I104N absent Project MiNE (AC=1) 3.4 medium 30

ALDH3B1 unknown g.chr11:67786087A>G unknown gnomAD (AC=1 NFE) absent 3.295 medium 31

DNAJC13 NM 015268 c.A3829G p.K1277E absent Project MiNE (AC=1) 3.2046 medium 32

MARVELD2 NM 001038603 c.A1361G p.E454G absent absent 3.0764 medium 33

BAHCC1 unknown g.chr17:79428542G>A unknown gnomAD/ExAC

(FILTERED; AC=5

NFE)

absent 3 medium 34

USP53 NM 019050 c.G1817A p.S606N absent absent 2.8878 medium 35

RDH12 NM 152443 c.C112T p.P38S gnomAD (AC=1 SEA) absent 2.8512 medium 36

OR4Q3 NM 172194 c.T134C p.I45T absent absent 2.8482 medium 37

OR2K2 NM 205859 c.C713T p.S238F gnomAD/ExAC (AC=2

NFE)

absent 2.8 medium 38

RSRP1 NM 020317 c.C809G p.A270G absent absent 2.7962 medium 39

ABHD15 NM 198147 c.G121A p.A41T absent absent 2.7086 medium 40

FCHSD1 NM 033449 c.G2012A p.R671H gnomAD/ExAC

(AC=3; 1 NFE)

absent 2.6492 medium 41

OR4D9 NM 001004711 c.T220C p.S74P absent absent 2.1 medium 42
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s HR NM 005144 c.G1745A p.R582Q gnomAD (AC=2 NFE) absent 1.9738 high 43

KIF26A NM 015656 c.G181A p.G61S gnomAD (AC=1 NFE) Project MiNE (AC=1) 1.6 low 44

PNMAL2 NM 020709 c.A676T p.T226S absent absent 1.6 low 45

LMTK3 NM 001080434 c.C1922T p.P641L gnomAD (AC=2

African)

absent 1.6 low 46

FCGBP NM 003890 c.C11948T p.P3983L gnomAD/ExAC

(AC=6; 2 NFE)

absent 1.5 low 47

MGAM NM 004668 c.T2389C p.W797R gnomAD/ExAC (AC=2

SEA)

absent 1.5 low 48

MRPS28 NM 014018 c.A191C p.Q64P gnomAD (AC=5; 1

NFE)

absent 1.3072 low 49

ERVV-1 NM 152473 c.A1169T p.Y390F absent absent 1.1 low 50

MROH5 unknown g.chr8:142480784G>C unknown gnomAD/ExAC

(AC=3; 1 NFE)

absent 1.0052 low 51

SLC22A24 NM 001136506 c.G1154A p.C385Y gnomAD (AC=1

Latino)

absent 1 low 52

MXRA5 NM 015419 c.G7747A p.D2583N gnomAD/ExAC

(AC=4; 2 NFE)

absent 1 low 53

CGREF1 NM 006569 c.G937A p.V313M gnomAD/ExAC

(AC=3; 2 NFE)

absent 0.889 low 54

FASTKD2 NM 014929 c.G458A p.R153H gnomAD/ExAC

(AC=8; 2 NFE)

absent 0.724 low 55

PLEKHG4B NM 052909 c.G1615T p.A539S absent absent 0.6778 low 56

FANCA NM 000135 c.T3901C p.S1301P gnomAD/ExAC

(AC=3; 0 NFE);

Project MiNE controls

(AC=1)

Project MiNE (AC=1) 0.6 low 57

LOC79999 NM 001291904 c.A192C p.Q64H absent absent 0.5 low 58

DNAH11 NM 001277115 c.C5375T p.P1792L Project MiNE controls

(AC=1)

absent 0.5 low 59

PLEKHG4B NM 052909 c.G1510A p.V504M gnomAD/ExAC

(AC=17; 2 NFE)

absent 0.4778 low 60

LIPF NM 004190 c.G79A p.G27R absent absent 0.2798 low 61

MUC16 NM 024690 c.G7073A p.R2358Q gnomAD (AC=1 other) absent 0.2 low 62

CEP295 NM 033395 c.A4471G p.K1491E gnomAD (AC=1 NFE) absent 0 low 63

KRTAP29-1 NM 001257309 c.T410A p.M137K absent absent 0 low 64

Abbreviations: Exome Aggregation Consortium; gnomAD, Genome Aggregation Database; NFE, Non-Finnish Europeans;

MGRB, Medical Genome Reference Bank; and AC, allele count.
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Figure 6.11: Examples of HBT gene expression graphs used in the in silico
pipeline for assessment of potential ALS pathogenicity. (A) Example of HBT gene
expression graph for the high priority candidate mutation SCCPDH p.V256L, ranked first of
11 in FALS45, showing high gene expression. (B) Example of HBT gene expression graph for
the low priority candidate mutation LIPF p.G37R, ranked 62 of 64 in FALSmq20, showing
low gene expression.
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Figure 6.12: Examples of multiple sequence alignment used in the in silico
pipeline to assess potential pathogenicity. (A) Example of multiple sequence alignment
for the high priority candidate mutation SCCPDH p.V256L, ranked first of 11 in FALS45,
showing high species conservation. (B) Example of multiple sequence alignment for the low
priority candidate mutation LIPF p.G37R, ranked 62 of 64 in FALSmq20, showing low species
conservation. The residue substituted for by a candidate mutation is highlighted in green.
Red denotes a residue matching the wild-type human residue.
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6.4 Discussion

In this Chapter, a list of candidate gene mutations have been identified for each of five

Australian ALS families that are negative for all known ALS genes. This was achieved

by employing custom family-based analysis pipelines utilising combinations of WES,

WGS, bioinformatics, genetic linkage and validation strategies. For small families

that have many candidate mutations after genetic filtering, an in silico pipeline was

also developed to assess the potential ALS pathogenicity of those protein-altering

candidate mutations using various tools and databases. This pipeline was successfully

applied to prioritise and rank the list of candidate mutations from each small family.

Family-based analysis of WES data from the families FALS15, FALS45, FALSmq2

and FALSmq20 identified 19, 11, 16 and 64 candidate mutations, respectively, from an

initial „80,000 variants in each family. Application of the in silico pipeline implicated

just five, six, one and 11 of these as having a high potential for ALS pathogenicity, one

of which is likely to be causing ALS in each family. Top scoring variants are suitable

for downstream in vitro studies to further elucidate their potential contribution to

ALS pathogenesis. While no single nucleotide level candidate mutation was identified

in FALSmq28, genome-wide linkage analysis substantially narrowed the search for

the ALS causal mutation to less than 14% of the genome, highlighting the immense

benefits of including this technique in family-based WGS studies.

6.4.1 Novel gene discovery in ALS

As described previously, the major genetic discoveries in ALS have resulted from

combining the power of genome-wide linkage analysis and NGS. Our research group

has successfully applied this approach (including the bioinformatic pipelines described

in this Chapter) to identify novel ALS mutations in TARDBP (Sreedharan et al.,

2008), UBQLN2 (Williams et al., 2012b), TBK1 (Williams et al., 2015) and CCNF

(Williams et al., 2016b). As such, the cause of disease in all large Australian ALS

families has been identified. However, this leaves the majority of the smaller, and

therefore more challenging, families to be solved. The five families analysed in this

Chapter represent typical such families. These families possess various characteristics

which hinder traditional disease gene mapping approaches (as established in Chapter

1, Section 1.6.1). This is primarily due to limited sample availability, caused by the

late and highly variable age of disease onset of ALS, and/or reduced penetrance of

causal mutations. Furthermore, the high degree of genetic heterogeneity in ALS,

and the fact that many causal mutations are rare, dictates that each family must be
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considered in isolation, because searching for mutations (or genes) shared in multiple

families may discard causal mutations. This also extends to linkage analysis, as results

from multiple families cannot be combined unless they carry mutations in the same

gene. The low incidence of disease, particularly the familial form, also complicates

replication efforts. Indeed, it is possible that some of the unidentified ALS muta-

tions are in fact private mutations, largely restricted to a single family. To establish

the causality of such rare mutations using genetics alone would be exceedingly difficult.

6.4.2 The NGS family-based pipeline

The core of the gene discovery pipeline applied here was the bioinformatic filter-

ing of NGS data generated from the informative members of each ALS family,

to reduce the number of candidate mutations. The pivotal steps of this pipeline

involved custom family-based segregation analysis (ie. identifying variants identi-

cal by descent), bioinformatics filtration of population-based variants and variant

validation. Each of these steps plays a critical role in disease gene discovery. The

intricacies of segregation analysis and common variant filtering are discussed in the

following sections, while variant validation will be discussed in Chapter 8, Section 8.3.3.

6.4.2.1 Segregation analysis

Segregation analysis using NGS data formed the basis for novel gene discovery in

all five ALS families analysed in this Chapter. To identify variants identical by

descent, Custom Scripts were applied to WES or WGS data to extract all nucleotide

level variants which were shared by all affected (or obligate mutation carrier) family

members and absent from any “married-in” control individuals. This is based on the

principle that a rare pathogenic genetic mutation is being inherited within each family.

Unfortunately, given the limited sample availability in the ALS families analysed

here, the power of segregation analysis was diminished. Additional affected family

members, or informative “married-in” controls, would allow higher order comparisons

to increase stringency and reduce the number of shared variants (or, variants identical

by descent). The close relationships between the sequenced family members also

contributed to the large number of shared variants identified. In each of FALS15,

FALS45, FALSmq2 and FALSmq20, the two available family members were first

degree parent-offspring pairs, meaning each pair shared 50% of their DNA sequence.

In contrast, the two ALS patients in FALSmq28 were second cousins, sharing an
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average of just 3.13% of their genetic information. While we would expect that this

would lead to a far smaller number of shared variants in FALSmq28 compared to the

parent-offspring pair families, this is not reflected in our results. However, the inflation

in the number of shared variants in FALSmq28 is attributable to our consideration of

both autosomal dominant and recessive disease models, rather than just the autosomal

dominant model adopted in all other families.

Various bioinformatics tools are available to perform shared variant analysis.

These include commands in the BCFtools (Li, 2011) and VCFtools (Danecek et al.,

2011) programs, as well as commercial programs such as Ingenuity Variant Analysis

(Qiagen). Here, custom bioinformatics scripts were written using R. This was the

preferred method as it allowed a great deal of customisation, and also enabled data

visualisation. Firstly, this allowed the same basic scripting strategy for WES data from

the small families to be applied to both WES and WGS data analysis in FALSmq28.

R scripting also allowed each filtering step to be completed separately, so that the

reduction in variant numbers could be attributed to each specific filter. The flexibility

also facilitated different combinations of filtering steps to be performed seamlessly. By

using the RStudio graphical interface, it was possible to visually observe the effect of

each filtering step on the number of variants present in the VCF.

6.4.2.2 Common variant filtering

As was established in Chapter 2, Section 2.4.3, rigorous control filtering is a crucial

step for the removal of benign variants from analysis, and establishing the novelty of

candidate mutations. A benign classification for a genetic variant is strongly supported

by an allele frequency in the control population which is greater than that expected

for the disease mutation, while an allele frequency greater than 5% is considered

standalone support for a benign classification (Richards et al., 2015). In this Chapter,

various control databases were utilised for control variant filtering. There were some

differences between the control databases utilised for filtering of the small families

compared with FALSmq28. This was necessary as FALSmq28 underwent NGS data

generation, bioinformatic processing and annotation at a separate and later stage than

the other families. With the continual expansion of control databases to include more

individuals, updated filtering was also required.

Common variants were defined as those which were present in one of the well-

established control databases of dbSNP (including versions dbSNP129, dbSNP142
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and dbSNP147) (Sherry et al., 2001) or 1000Genomes (Auton et al., 2015). While

there is considerable overlap between the genetic variants reported in these databases,

a substantial number of low frequency variants are reported in just one database.

This is likely attributable to sample size and/or filtering criteria. As such, it is

necessary to utilise the catalogue of variation from the combination of these control

databases to comprehensively filter for non-damaging genetic variants. The dbSNP

database is a central repository for small genetic variants (SNPs or small indels),

which are each reviewed based on a number of evidence criteria. The 1000Genomes

database contains a catalogue of genomic variants assessed to have a MAF>0.01

among 1,092 healthy individuals. These databases are widely accepted to represent

the catalogue of common benign small genetic variants. VCFs are commonly anno-

tated to include whether a variant is reported by each of these control databases,

as was achieved here using ANNOVAR. As such, a filter was employed to remove

any variants present in these databases as part of the novel gene discovery pipeline

described here, with the intention of removing population-based benign genetic

variants. However, this approach is not perfect, as these control databases are

known to contain rare pathogenic variants. For instance, the ALS mutation FUS

p.N63S is reported by both dbSNP134 (as well as all subsequent dbSNP releases) and

1000Genomes. However, these filters were necessary to reduce the number of variants

under analysis to a manageable number. Additionally, the known ALS mutations

present in these databases, as well as all known ALS genes, had already been screened

in these families, and the likelihood of removing any novel pathogenic variants was low.

In addition to these more established databases, two more recently curated

international control databases were interrogated, being ExAC and gnomAD (Table

2.4). The ExAC database is an aggregate of WES data from 60,706 healthy, unrelated

individuals sequenced as part of a variety of case-control and population studies.

gnomAD is an expansion of ExAC, containing the majority of the WES data from

its predecessor as well as additional WES and WGS data, to total 123,136 WES and

15,496 WGS sequences. The ExAC and gnomAD databases also contain a number

of pathogenic mutations, including the ALS mutations SOD1 p.I114T and TARDBP

p.M337V. Fortunately, when utilising these the ExAC and gnomAD databases in the

filtering pipeline, the number of variants under analysis had reached a manageable

number. Therefore, rather than simply filtering variants based on membership to these

databases, a more conservative approach utilising MAF and allele count thresholds

was applied. The MAF threshold of 0.0001 was set based upon the frequency with

which the aforementioned SOD1 and TARDBP mutations were observed in the ExAC
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and gnomAD databases. The allele count threshold was set at two for this same reason.

Most pathogenic mutations found within these control databases cause late onset

diseases. Participants included in these databases are labelled as “healthy control

individuals” as they are disease-free at the time of recruitment. However, in the

absence of follow-up clinical consultations, it is never known whether any of these

individuals go on to develop disease later in life. Therefore, it is necessary to exercise

caution with any variants reported in only one or two database individuals. Adding

to this, clinical data is not readily available from participants for ethical reasons.

Therefore, individuals may be included in a sub-study as a control, but may not be an

appropriate control for our purposes. For example, an individual may have cognitive

decline, and while this would not exclude them as a control for diabetes research,

they would not ordinarily be included as a control in studies of ALS. Further, most

variants reported in these databases have not been validated by Sanger sequencing,

therefore some may be sequencing artefacts. Together, this reinforces the necessity

for conservative approaches to common variant filtering to avoid the removal of

pathogenic mutations.

Population-stratification is another important consideration in variant filtering.

As established in Chapter 1, Section 1.4, particular ALS mutations cluster in

patients of certain ancestral backgrounds. Additionally, the drastic effect of using

population-matched controls was discussed in Chapter 5. Therefore, in addition to the

international control databases, two control databases of healthy Australians, DACC

and MGRB (detailed in Table 2.4), were also utilised. Importantly, when utilising

gnomAD and ExAC, filtering was based on non-Finnish Europeans (NFE) control

individuals, as this cohort has the most similar ancestral background to the Australian

families analysed in this Chapter.

6.4.2.3 Genome-wide linkage analysis

Given the availability of numerous additional family members in FALSmq28, genome-

wide parametric linkage analysis was performed. However, linkage analysis in this

family using the currently available samples had insufficient power to identify any

genomic region significantly linked to disease (LOD>3.3). This is attributable to the

low availability of genotyping data from informative affected or obligate mutation

carrying individuals (just three), and the high number of “at-risk” family members.

These “at-risk” family members introduced a large degree of ambiguity. To combat
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this, we employed liability classes based on age-dependent disease penetrance. These

acted to inform the statistical model of the likelihood that an “at-risk” family member

carrying the disease causal mutation would be affected by disease at their current

age. However, these liability classes also carry a degree of uncertainty. As has been

extensively described, highly variable age of disease onset and mutation penetrance

levels are observed among ALS s, and further, the different ALS gene mutations have

been observed to associate with varying ages of onset (as shown in Paper I, Chapter

4, Section 4.3.1). Together, these variances dictate that unique liability classes are

likely to apply to each ALS mutation, and even each ALS family. As such, the

averaged age-dependent penetrance liability classes employed here may not reflect the

age-dependent penetrance of the ALS causal mutation in this family.

6.4.3 In silico pipeline for candidate mutation prioritisation

After having exhausted the genetic power of the four small families, long lists of

candidate mutations remained. The causal mutation in these families may remain

elusive until sufficient numbers of additional family members present with ALS, which

may take decades. As such, alternate strategies are required to characterise genetically

identified lists of candidate mutations, in order to prioritise which are most likely

to cause disease. An in silico pipeline and associated scoring system was developed

as part of this Chapter in order to achieve this goal in a consistent and unbiased

manner. Additionally, our laboratory also has an in vitro pipeline in place to assess

the functional characteristics of candidate mutations. The in silico pipeline developed

here acts as a complementary tool to prioritise those candidate mutations most suited

to in vitro analysis.

The in silico scoring system incorporated four characteristics including, gene

expression, protein predictions, species conservation and genic tolerance. These char-

acteristics were chosen owing to their correlations with known ALS gene mutations. In

addition, the in silico tools used to assess each characteristic returned numeric values

indicating a specific result which was not open to subjective interpretation by the end

user. Further, each result could easily be converted to a numeric score to facilitate a

straightforward scoring system, and subsequent rank.

Gene expression

Disease causal mutations must be expressed in tissue types affected by disease.



6.4 Discussion 211

Therefore, we hypothesise that causal ALS mutations affect genes encoding proteins

that are expressed in the brain and spinal cord. However, it remains possible that a

gain-of-function mutation may cause a protein to be expressed in a different tissue

type. Here, gene expression was assessed in the cerebellar cortex and spinal cord,

which each contain motor neurons, and are affected in ALS patients. Both databases

used here (HBT and GTex) are intended as reference resources and contain good

quality expression data. However, the HBT provides data on age-related expression

levels, while GTex provides a single age-averaged expression value. As such, expression

was assessed at approximately 80 years of age (at which point the majority of ALS

patients would have already presented with disease) in the cerebellar cortex, though

expression in the spinal cord was an age-averaged value.

Protein prediction programs

Numerous protein prediction programs are available, each of which utilise a different

algorithm and combination of gene and/or protein characteristics to predict the

effect of a sequence variant. The characteristics assessed by these programs often

include evolutionary conservation, location and context within the protein, and/or the

biochemical consequence of the amino acid alteration (Richards et al., 2015). As such,

each has its own strengths and weaknesses. Generally, these programs are 60-80%

accurate for known pathogenic missense mutations (Thusberg et al., 2011), and most

underperform for mutations with midler effects (Choi et al., 2012). To account for

their differences and inaccuracies, it is considered prudent to utilise multiple prediction

tools (MacArthur et al., 2014; Richards et al., 2015). Eight different programs were

utilised during this project and multiple pathogenic predictions were required when

prioritising the potential effect of a candidate variant.

Amino acid conservation across species

Protein residues that are conserved across species indicate that the amino acid is

evolutionarily important and is likely to play an important role in protein structure,

function and/or binding. Therefore, alterations to highly conserved amino acids are

likely to have a detrimental effect on the protein. In turn, mutations affecting highly

conserved residues are more likely to be pathogenic. This pathogenic effect may be

from a toxic gain-of-function mechanism, or a loss-of-function mechanism that inhibits

the effective functioning or binding of the protein.

Each of the three approaches used to assess amino acid conservation varied in

complexity. The first was a simple manual approach that directly assessed whether
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the substituted amino acid was shared by multiple species. Second, the PhastCons

metric was calculated using a statistical model to identify conserved protein sequences

by comparison of 18 different species including vertebrates, insects, bacteria and

fungi (Siepel et al., 2005). Finally, the PhyloP metric utilised four statistical tests

to assess both amino acid conservation and the rate of change across 36 mammalian

species (Pollard et al., 2010). The conservation results of these approaches showed

considerable variation. By incorporating the results of these different approaches, it

was intended that the conservation score used in the in silico pipeline would provide

a broad representation of the conservation of a candidate mutation affected residue

across species.

Genic tolerance to variation

The natural variation of a gene is a measure of the frequency of neutral protein-

altering sequence variants present in that gene. Genes that have high levels of natural

variation (those containing many genetic variants) are said to have a higher tolerance

for sequence changes without a negative effect on protein function. Conversely, genes

that have low natural variation (few variants) are intolerant to variation, and therefore

are constrained, indicating a crucial biological role, and low adaptability to variation.

Human genic tolerance is considered to be a better predictor of pathogenicity

than conservation across species (Richards et al., 2015), protein prediction tools are

imperfect (Thusberg et al., 2011), and gene expression may be altered by variation.

Further, most known ALS genes have a low tolerance for variation. As such, genic

tolerance was weighted more highly than any other characteristic as part of the in

silico scoring system, being scored out of four, whereas the other characteristics were

each scored out of two. Two different database scores were used to assess the genic

tolerance of genes containing candidate mutations to avoid bias present in either

database. The RVIS metrics consider all common functional variation, while the ExAC

missense constraint score only accounts for missense variants. The overwhelming

majority of known ALS causal mutations are non-synonymous/missense in nature,

however other genetic variation has been reported to cause disease, including small

indels as well as the pathogenic expansion in C9orf72. As such, while the tolerance

of a gene for missense variants was most relevant when assessing non-synonymous

candidate mutations, more generalised genic tolerance (still including tolerance to

non-synonymous/missense variants) of a gene could not be discounted. Therefore, the

use of these two databases should strike a good balance by primarily reflecting genic

tolerance for missense mutations, and to a lesser extent that for other genetic variant
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types.

Proof of principle

When applied to known ALS mutations and common benign variants, the in silico

pipeline for assessment of potential pathogenicity showed a clear distinction in scores

between the two categories (Table 6.5). This suggests that the pipeline can successfully

distinguish between pathogenic ALS gene mutations and benign variation. Low scores

of „2 were consistently generated for known benign variants and therefore setting

the threshold for low priority variants at two was straight forward. Interestingly, we

observed a greater variation between scores for the known ALS mutations. SOD1

mutations scored considerably higher than less common ALS genes such as CCNF and

UBQLN2. This could reflect why reduced penetrance is more commonly observed in

families carrying these mutations, compared with highly penetrant SOD1 mutations.

Nonetheless, the scores of all ALS mutations were far greater than any benign variant.

The threshold for high priority variants was set at five, as this was the closest

round number to the CCNF score of „4.8, and exercised caution to not overstate

the potential for pathogenicity. Those variants falling between these thresholds

were classed as medium priority, as they exhibited some characteristics suggestive

of pathogenic potential, but also some characteristics compatible with benign variation.

The proof-of-principle studies suggest that the scoring system developed here

is a highly useful tool to aid in the selection of candidate mutations that warrant

downstream in vitro or in vivo analysis for pathogenicity. Nevertheless, as more

affected family members are recruited, or control samples screened, ongoing filtering

may remove top ranked in silico candidates. As such, it is imperative that this scoring

system is used as an adjunct tool to support genetic findings and guide downstream

research, but cannot be used in place of additional genetic analysis as more family

members are recruited. The re-identification of identical, or novel candidate mutations

in the same gene in additional families and/or sporadic patients will also provide

strong support for a causal role.

6.4.4 ALS families and their candidate mutations

6.4.4.1 FALS15

A total of 19 candidate mutations were identified in family FALS15. Five of these

variants were classified as having a high potential for ALS pathogenicity following in
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silico prioritisation. CLCN4 p.I886T had the strongest support of these 19, with a

score of eight (out of ten) using the in silico pipeline, and was also completely absent

from all control databases. Interestingly, CLCN4 is located on the X chromosome. As

there is no male-to-male transmission evident in this pedigree, the pattern of inheri-

tance of ALS in this family is compatible with the possibility of a dominant X-linked

mutation. Indeed, the known ALS gene UBQLN2 is a dominant X-linked gene (see

Chapter 1, Section 1.4.1.5). As such, CLCN4 may be another X-linked ALS gene.

While the physiological role of this chloride channel gene remains largely unknown, it

is likely to facilitate the transport of ions across intracellular membranes (Veeramah

et al., 2013). The in silico assessment of potential pathogenicity applied here showed

that CLCN4 was highly intolerant to genetic variation and highly expressed in both

brain and spinal cord. Additionly, mutations in CLCN4 have been implicated as

a cause of intellectual disability (Hu et al., 2016; Palmer et al., 2018), and have

also been suggested as a potential cause of Epilepsy (Veeramah et al., 2013). While

these conditions are not neurodegenerative, they do affect neuronal tissue, suggesting

that alteration of CLCN4 has a detrimental effect on this ALS relevant tissue type.

Combined, this supports the potential for CLCN4 p.I886T to cause ALS in this family.

The other four high priority candidates in FALS15 were all autosomal, heterozygous

variants in both the proband and his obligate mutation carrier mother. Each resides

on a separate chromosome. Of these four variants, the SCN4A variant may be a rare

variant present in the general population. While the SCN4A gene showed a moderate

level of intolerance to variation, this particular variant was present in six control

individuals in gnomAD, including four NFE individuals, though it was filtered from the

database as a low quality variant call. However, in the WES data from the two FALS15

family members, this variant had a high quality score (GQ=99) and was validated by

Sanger sequencing. Without validation of the variant calls in the gnomAD controls,

it is impossible to confirm whether this variant is actually a rare population-based

variant. Interestingly, the fifth ranked candidate mutation SUPV3L1 p.Q168E, is an

attractive candidate as this gene encodes a DNA- and RNA- binding protein (like sev-

eral other ALS genes) that is known to interact with HNRNPA1, a known ALS protein.

6.4.4.2 FALS45

Eleven candidate mutations were identified in family FALS45, of which six were

determined by the in silico pipeline to have a high potential for ALS pathogenicity.

The top ranked candidate was SCCPDH p.V256L with a score of 6.7 (out of 10).
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Little is known about the function of the protein encoded by SCCPDH. However,

given that SCCPDH was highly expressed in the brain and spinal cord, it is likely

to have a role in the nervous system. As such, in vitro and in vivo analyses will

be necessary to elucidate its potential effect on neuronal functions, and its potential

contribution to ALS.

The high priority candidate, GRIN2D p.V144L, was absent from all databases

and was shown to be highly intolerant to variation. Its encoded protein is a subunit

of the N-methyl-D-aspartate (NMDA) receptor, an ionotropic glutamate receptor.

NMDA receptors facilitate synaptic transmission and have been shown to have crucial

roles in brain development, memory formation, synaptic plasticity and neurotoxicity

(Laube et al., 1997; Nakanishi, 1992; Olney, 1990). NMDA receptors, and GRIN2D

specifically, have previously been linked to neurodegenerative disease. In Alzheimer’s

disease, NDMA receptor regulation and activation has been implicated in disease-

related synaptic dysfunction (reviewed in Mota et al., 2014). In Parkinson’s disease,

NMDA receptors have been found to be more abundant in the striatum of patients

compared to controls (Weihmuller et al., 1992), while GRIN2D expression is increased

in peripheral blood samples from patients compared with controls (Liu et al., 2016).

Taken together, GRIN2D p.V144L is a strong candidate mutation in FALS45.

Four of the six high-priority candidate mutations (including the top ranked

SCCPDH p.V256L) were also present in either one or two individuals from a control

database. Three of these four (again, including SCCPDH p.V256L) were also found

in another ALS patient, in addition to the control individuals. While it is possible

that the controls harbouring any of these candidate mutations may go on to develop

ALS, or that the variant call may be a sequencing artefact in the control databases

(due to lack of validation), it is probable that these are actually rare variants in the

population. This is further supported by the fact that each of the relevant genes has

an average level of genic tolerance and therefore has the potential to adapt to this

variation without adverse consequences.

Of all eleven candidate mutations, the bottom ranked ZNF132 had the most

ALS-relevant known gene function, as a nucleic acid binding protein. However, as this

candidate mutation is present in five gnomAD/ExAC control individuals (albeit that

only one is from the NFE population), coupled with a lack of any other supportive

evidence, it is unlikely to cause ALS in this family.
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6.4.4.3 FALSmq2

Among the 16 candidate mutations identified in family FALSmq2, just one, STRN4

p.D362E, was assessed to have a high potential for ALS pathogenicity. However, this

variant was present in one control individual in the Project MinE database. Little

is known about the encoded protein, STRN4, other than that it binds calmodulin.

Calmodulin is a ubiquitous and highly abundant protein with hundreds of protein

targets and is involved in numerous cellular functions. In the absence of additional

genetic data, in vitro studies would be required to shed light on the potential

involvement of STRN4 in the cause of ALS.

Interestingly, the ZFHX2 p.T565Rfs*19 candidate mutation, ranked third by in

silico scoring, is a zinc finger homeobox protein involved in nucleic acid binding.

Initially, this variant was reported as a single nucleotide variant by the bioinformatic

pipeline but was found to cause a frameshift upon direct validation. The ZFHX2

protein is 2,572 amino acids long and this frameshift was predicted to cause nonsense

mediated decay of the mRNA, using MutationTaster2 (Schwarz et al., 2014). This

may lead to haploinsufficiency, and possibly a loss-of-function for the ZFHX2 protein.

Other than MutationTaster2, all other protein prediction programs utilised here

were limited to missense substitutions or stop-gain mutations, and therefore were

unable to score this frameshift candidate mutation. The nonsense mediated decay

prediction by MutationTaster2 together with the lack of compatibility with the other

prediction programs led to an assignment of a full score of two points for the protein

prediction criteria for this candidate mutation. Unfortunately, no data was available

for genic tolerance and therefore a score of zero was assigned for this characteristic.

Additionally, the amino acid conservation score was applied to the single residue

at which the frameshift occurred, however as over 80% of the protein was affected,

this may not be a true representation of the lack of conservation introduced by

this candidate. As such, an incomplete in silico assessment of pathogenicity was

completed for this candidate mutation, which may have artificially reduced its score

and associated ranking.

6.4.4.4 FALSmq20

Sixty-four candidate mutations were identified for family FALSmq20. In silico

assessment showed that eleven candidate mutations had a high potential for ALS

pathogenicity. The top ranked candidate, RASGRF1 p.S34W, scored very highly at



6.4 Discussion 217

9.4 (out of 10) and was completely absent from all screened control cohorts. The gene

is extremely intolerant to variation, highly expressed in neuronal tissue and relatively

well conserved. The encoded protein is a Guanine nucleotide exchange factor, which

activates the RAS protein and is primarily expressed in adult neurons. It is involved

in regulating cellular processes such as cell proliferation and differentiation. While

RASGRF1 is a known disease gene in myopia, it has also been linked to neurode-

generation. A RASGRF1 knockout mouse model showed significant differential

expression of genes related to neurodegenerative processes affecting memory and

learning pathways (Fernandez-Medarde et al., 2007). Further, a RASGRF1 genetic

variant has also been associated with increased memory performance in humans

(Barman et al., 2014). While these are not motor deficits, these links with memory

formation may indicate a role in neurodegeneration. Taken together, this supports

further assessment of RASGRF1 in this family.

6.4.4.5 FALSmq28

While no candidate mutations in coding sequence were identified in either WES or

WGS data from family FALSmq28 (Analysis 1), it was possible to exclude „86% of

the genome as being linked to ALS in this family using genome-wide linkage analysis.

A total of 41 genomic regions totalling „73 Mb remain as potentially harbouring the

ALS causal mutation. However, the highest LOD score was just 1.1924, therefore

no genomic region was significantly linked to disease in FALSmq28. Family-based

analysis of genomic regions that were not excluded by linkage analysis failed to identify

any candidate mutations. Nevertheless, by reducing the search for the ALS causal

mutation in FALSmq28 to just „14% of the genome, the scope of genetic analysis in

this family has been substantially reduced by these efforts.

It must be noted that the genetic linkage analysis model used here assumed an

autosomal dominant inheritance pattern of disease. However, recessive inheritance

cannot be excluded, nor can the possibility that the patients are two sporadic cases.

If we consider this familial disease, autosomal inheritance is evident because there was

male-to-male transmission of the disease allele. While it is not clear that dominant

inheritance is at play in this family, the vast majority of ALS gene mutations show

autosomal dominant inheritance, with recessive mutations rarely observed. Given

the low prevalence of ALS, recessive ALS mutations are generally only seen in

consanguineous families. No evidence of consanguinity was apparent in FALSmq28,

particularly between the parents of the ALS patients. The inheritance pattern is
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compatible with an autosomal dominant mutation with incomplete disease penetrance,

which is a common feature of ALS families. As such, it was deemed reasonable to

apply an autosomal dominant inheritance model as part of genetic linkage analysis.

Interestingly, over 99% of the variants identified by WES in FALSmq28 were

shared by all three family members, while this figure was just 35-40% using WGS

data. It is likely that this result reflects the increased conservation of coding regions

compared with non-coding regions, particularly intergenic regions that account for

„56% of WGS variants in this family. Additionally, the increased sequencing coverage

of WES (100X) compared with WGS (30X) led to higher confidence variant calls in

the WES data set. The increased proportion of false positive variant calls in the WGS

dataset would therefore have reduced the proportion of shared variants.

Alarmingly, Sanger sequencing validation of WES- or WGS-derived candidate

mutations in this family showed 16 of 16, and 13 of 14 to be false positive variant

identifications. Notably, one of these false positive variants was identified by both

WES and WGS. All false positive variants were identified within genomic regions

that were highly repetitive and/or duplicated. Chapter 8, Section 8.3.3 will discuss

the issue of NGS false positive variant calls in detail. The candidate mutations

identified by the two sequencing technologies (that were subsequently found to be

sequencing artefacts) showed minimal overlap, with just a single regulatory variant

from Analysis 2 being called from both WES and WGS data, though it too was later

found to be a sequencing artefact. This suggests that unique factors cause different

artefacts between the two technologies. These factors are likely related to the library

preparation/capture phase, as the sequencing and bioinformatics pipelines applied

to each of the WES and WGS datasets were the same. As such, the false positive

candidate mutation identified by both WES and WGS is likely to be an artefact of

the sequencing chemistry, or the bioinformatics processing algorithms. In Chapter 8,

Section 8.3, in particular Section 8.3.1, the advantages and disadvantages of WES and

WGS will be discussed in detail.

Sequencing validation also revealed that the single WGS-derived candidate muta-

tion that withstood bioinformatic filtering in family FALSmq28, a homozygous variant

upstream of MIR512, was actually a population-based variant. Sanger sequencing

of seven unrelated Australian controls showed three had a homozygous genotype

identical to that seen in the affected and obligate mutation carriers from FALSmq28,

while two more control individuals carried the variant in a heterozygote state. This
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variant was also present as a high quality, heterozygous variant in WGS data from

38 individuals of African descent in the gnomAD control database. It was however

absent from all WES data from control databases, as it falls well outside of the exome.

Additionally, 497 heterozygous and 293 homozygous individuals were identified

with high quality WGS genotypes among 850 Australian ALS/FTD patients in the

850-sample VCF (described in Chapter 2, Section 2.1.3). Together, these findings

indicate this is a common population-based variant. Indeed, it has also been added

to the most recent release of dbSNP (dbSNP150) that was not available during the

analysis phase of this candidature. Further, it is possible that the frequency of this

variant is under-represented in WGS control databases. Both gnomAD and MGRB

(from which this variant is absent) report a 2bp insertion (including the alternate

A allele) at this same position, as a heterozygous and homozygous variant with a

MAF>0.4. Given that no validation data is available from either database, and

the innate differences between NGS variant calling tools, it is possible that some of

these variant calls are incorrect (to be discussed further in Chapter 8, Section 8.3 ,

particularly Section 8.3.2), and actually represent the single base variant reported here.

We have exhausted all avenues to identify nucleotide level candidate mutations

in this family with the existing datasets. If such a variant is causing ALS in

FALSmq28, the only possibilities are that the causal mutation was masked by a

sequencing artefact of WES and/or WGS, is a low quality variant that was filtered

in Analysis 3, or that it has been reported in a control database in three or more

individuals (see Section 6.4.2.2 above for an explanation of why such a mutation

would be in a control database). If a sequencing artefact has masked the causal

ALS mutation from analysis in FALSmq28, this may be explained by the mutation

falling in a region not captured or covered by WES or WGS, inadequate coverage

or an incorrect variant call caused by bioinformatics processing. Chapter 8, Section

8.3.3 will provide an indepth discussion of the possible sources of NGS sequencing

artefacts. Alternatively, ALS is being caused by a different mutation type in this

family, such as a structural variant (SV) (such as a copy number variant (CNV)), that

has not been captured by WGS or WES. In Chapter 8, Section 8.5 we will discuss

the planned investigation of CNVs and SVs as a cause of ALS, including in FALSmq28.
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“'The thing about growing up with Fred and George,' said Ginny

thoughtfully, 'is that you sort of start thinking anything’s possible if

you’ve got enough nerve.'”

JK Rowling - Harry Potter and the Half Blood Prince

7
Searching for genetic differences between

ALS-discordant monozygotic twins

7.1 Introduction

This Chapter addresses the second part of Aim 3 of this thesis; to identify novel ALS

genes and mutations in monozygotic twins discordant for disease. Monozygotic twins

that are discordant for ALS offer a rare opportunity to identify potential genetic,

epigenetic or environmental factors that underlie disease discordance. ALS-discordant

monozygotic twin/triplet sets (both familial and sporadic) were screened for de novo

mutations that may underlie the onset or variable penetrance of ALS. As part of

this project, DNA samples were available from three monozygotic twin pairs, and

one monozygotic triplet set, each of which consisted of one ALS patient and their

unaffected co-twin/triplets. Two twin pairs consisted of one SALS patient and their

unaffected co-twin. The triplet set and the other twin pair were from families with

a history of ALS, carrying a SOD1 mutation and C9orf72 expansion, respectively.

While all three triplets and both twins carried their respective family mutations,

just one of each set had developed ALS at the time of analysis. This cohort of

ALS-discordant monozygotic twins represented a unique resource for uncovering novel

genetic factors contributing to ALS pathogenesis.

221
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Monozygotic (MZ) twins result from a single fertilisation event where one zygote

has split into two embryos, so that both twins have an identical genetic code. On the

other hand, dizygotic (DZ) twins develop from two separate ova, each of which has

been fertilised by a distinct sperm cell, and are thus like any other pair of siblings,

sharing an average 50% of their DNA sequence. Beyond these genetic characteristics,

both MZ and DZ twins share their age, pre-natal environment, and in most cases,

where twins have been raised together, partially share their post-natal environment.

Owing to these characteristics, twins have long been utilised in heritability studies to

estimate the contribution of genetics to a phenotypic trait. That is, the phenotypic

differences between MZ twins should be attributable to distinct environmental factors,

whereas those between DZ twins may be caused by either genetic or environmental

factors, or a combination of both (Boomsma, 2013). As such, the extent of phenotypic

similarity between MZ twins compared to that of DZ twins reflects the degree of

genetic influence over a trait.

As technology has advanced, the utility of twin studies in other areas of research

has also become apparent. This is particularly true for disease-discordant MZ twin

pairs, in which one co-twin is affected by disease, while the other remains unaffected.

Such twin pairs have emerged as a unique resource to identify molecular factors

contributing to the cause of disease in the absence of confounding genetic variation

(Zwijnenburg et al., 2010). This approach has been utilised across the “omics”

research space, including as part of genomic, epigenomic, transcriptomic, proteomic

and metabolomic studies (van Dongen et al., 2012).

While MZ twins are considered to be genetically identical, there exists the possi-

bility that de novo mutations may distinguish one co-twin from the other. Indeed,

early post-zygotic de novo mutations have been found to substantially contribute

to the aggregate of all de novo mutations present within an individual, at a rate of

0.04-0.34ˆ10-8 (Dal et al., 2014). As such, early post-zygotic de novo mutations may

underlie disease discordance in MZ twins. Disease-discordant twins have undergone

comparisons using NGS data to identify such disease causal de novo mutations for

Van der Woude syndrome (Kondo et al., 2002), Schizophrenia (Castellani et al., 2017;

Reble et al., 2017), Neurofibromatosis type 1 (Vogt et al., 2011) and Frontotemporal

dysplasia (Robertson et al., 2006). In Van der Woude syndrome, Kondo et al. (2002)

identified a de novo IRF6 mutation in a disease-discordant MZ twin pair and went

on to identify IRF6 mutations in 45 families with the same condition and in 13
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additional families with the closely related condition, Popliteal pterygium syndrome,

to confirm that IRF6 mutations are a major cause of these syndromes. Thus, there

exists exciting potential for disease-discordant twin studies to identify novel, and

widely applicable, causes of disease.

Given the current difficulties in identifying the remaining ALS genes, gene discovery

approaches using ALS-discordant MZ twins offer an alternative approach to identify

novel causes of ALS. Further, de novo mutations have previously been implicated in

ALS. Chesi et al. (2013) conducted a screen of 47 SALS trios (SALS affected patients

and their unaffected parents) to identify 25 novel missense de novo mutations in

patients, and subsequently implicate SS18L1/CREST as a novel ALS gene. This

suggests that other de novo mutations may also be contributing to the cause of ALS,

and that their identification may lead to a better appreciation of the genetic spectrum

of disease. The high heritability estimates for all forms of ALS (Al-Chalabi et al., 2010;

McLaughlin et al., 2015) also suggest it is possible that post-zygotic de novo mutations

between MZ twins may be a cause of disease discordance. De novo mutations may

also modify the onset or phenotypic presentation of ALS between co-twins and

thereby implicate genes or other loci that contribute to phenotypic variability among

ALS patients (as described in Chapter 1, Sections 1.3.1 and 1.6.1). Indeed, such

phenotypic modifier variants have been identified for conditions such as Duchenne

muscular dystrophy (Bello et al., 2016) and Huntington’s disease (Beanovi et al., 2015).

The manuscripts presented in this Chapter utilised the ALS-discordant MZ twin

approach to search for novel genetic causes of ALS. This includes a first-author

manuscript that describes whole-genome sequencing (WGS) analysis together with

extensive validation and bioinformatics strategies, to search for nucleotide level de

novo mutations between co-twins/triplets that may underlie disease discordance, and

represent novel ALS genes. Additionally, a co-authored manuscript describes an inves-

tigation of the epigenetic and transcriptomic profiles of these ALS-discordant twin sets.
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7.2 Manuscripts

7.2.1 Manuscript III – Identifying de novo variants between

ALS-discordant monozygotic twins

The study presented in Manuscript III sought to utilise the disease-discordant MZ

twin model to identify novel genetic causes or modifiers of ALS. It was hypothesised

that the affected individual in each twin pair discordant for SALS may harbour a de

novo mutation that caused disease. On the other hand, it was hypothesised that the

affected individual in each twin/triplet set that was discordant for FALS may carry

genetic variants that modify the phenotypic manifestation of disease (i.e. early or late

onset) given that both the affected and unaffected co-twins/triplets carried known

ALS causal mutations.

In order to identify such genetic contributors to disease, WGS was performed for

all co-twins/triplets. Analysis focused on nucleotide level variation, given that all but

two of the hundreds of known ALS gene mutations are either SNP or indel variants.

Rather than solely focusing on the exome, both coding and non-coding regions were

considered, as disease modifying variants may affect important non-coding regulatory

regions that influence gene expression.

The code in Appendix A.2.20 was applied to WGS data from each twin/triplet

pair to identify discordant variants (high confidence variants with a genotype that

differed between co-twins/triplets). This analysis identified tens of thousands of

discordant variants between each pair of affected and unaffected co-twins/triplets.

This was startling, given that all twin/triplet sets were previously shown to be MZ

using SNP microarrays and microsatellite genotyping (performed by the candidate

during Master of Research candidature). For the triplet set, the affected triplet was

separately compared to each unaffected triplet.

Three independent validation strategies were then applied to determine whether

the putative discordant variants were truly present between co-twins/triplets. First,

24 putative discordant variants were randomly selected to undergo direct DNA

sequencing for validation (as per Chapter 2, Section 2.4.2). This found that all

24 putative discordant variants were actually concordant between co-twins/triplets,

suggesting that all were not truly discordant. The second validation approach utilised

SNP microarray genotype data (generated as per Chapter 2, Section 2.3). This
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analysis involved 1) combining all the putative discordant variants identified for

each twin/triplet pair, 2) identifying any database SNPs (rsID variants) among the

putative discordant variants, 3) identifying which of these had been genotyped using

the microarray and 4) extracting and comparing genotype data for each twin/triplet

pair for each of these variants. The Custom Script in Appendix A.2.21 and the script

in Appendix A.2.22 were developed and applied for this purpose. This analysis found

that of the 81 putative discordant variants (across all twin/triplet pairs) for which SNP

microarray genotype data was available, all had concordant SNP microarray genotypes

between co-twins/triplets, again suggesting that all were not truly discordant. Lastly,

re-sequencing of the genome was performed for one twin set as a replicate analysis.

Discordant variants were identified from this new WGS data set, again using the

code in Appendix A.2.20. The Custom Script 3.6 was then applied to the putative

discordant variants identified from each of the two WGS datasets for this twin set, to

identify any shared discordant variants. While 18,599 and 3,543 putative discordant

variants were identified in the original and re-sequenced WGS datasets, none were

common to both datasets. This suggested that all putative discordant variants

identified using WGS in this twin pair, were in fact artefacts of the WGS process

rather than true discordant variants. Due to cost restraints, re-sequencing was not

possible for the other twin/triplet sets.

Given the high false discovery rate of putative discordant variants from WGS,

bioinformatics processing, namely alignment and variant calling, of the original raw

WGS data (from all four twin/triplet pairs), was repeated using three additional

processing pipelines in an attempt to identify any true de novo mutations between

co-twins/triplets. These pipelines were applied by two separate service providers, and

employed different versions of the Burrows Wheeler Alignment (Li and Durbin, 2009,

2010) and Genome Analysis ToolKit (McKenna et al., 2010) (BWA-GATK) tools

originally used for raw WGS data processing, and two different versions of the Isaac

alignment and variant calling software (Raczy et al., 2013). For each twin/triplet

pair, each of the four processed datasets was analysed for discordant variants, again

using the code in Appendix A.2.20. This resulted in four lists of putative discordant

variants for each twin/triplet pair, which were then intersected using the Custom

Script 3.6, to identify variants that overlapped between the pipelines. The Custom

Script in Appendix A.2.24 was applied to generate Venn diagrams and identify any

overlap of the four putative discordant variant sets for each twin/triplet pair. No

putative discordant variants in any twin/triplet pair were shared by all four pipelines.

However, three of the four pipelines did show a small overlap of between 0.03-3.2% of
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putative discordant variants for each twin set.

To evaluate the likelihood that these overlapping variants were truly discordant,

the Custom Script 3.7 was applied to determine whether overlapping variants were

from confidently “callable” genomic regions. Confidently “callable” regions were

previously defined according to extensive replication and comparison of WGS data

for a single individual across five sequencing platforms, seven alignment tools and

three variant calling tools (Zook et al., 2014). The analysis here showed that all

putative discordant variants overlapping between processing pipelines fell outside of

the confidently “callable” genome, and were unreliable variant identifications. It was

thus concluded that WGS had not detected any post-zygotic, nucleotide level de novo

mutations that caused or modified the presentation of ALS in these four twin/triplet

sets.

The Custom Script in Appendix A.2.23 was used to determine the distribution

of putative discordant variants between SNP and indel variant types. This showed

that while the number of SNP and indel putative discordant variants identified by the

BWA-GATK pipelines were proportionally as expected given their abundance in the

genome („79% and „21%, Mullaney et al., 2010), indel variants were over-represented

among the putative discordant variants identified by the Isaac pipelines, accounting

for more than 90%. This suggests that Isaac processing may be less reliable for

calling indel variants than GATK. Further, the distribution of putative discordant

variants across the functional classes of the genome was determined using a variation

of the Custom Script in Appendix A.2.19. Unsurprisingly, this showed that „80% of

putative discordant variants were intergenic or intronic variants, and less than 1% fell

within coding regions.
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Abstract 51 

Background 52 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, that 53 

causes progressive muscle weakness, wasting and spasticity, leading to the 54 

loss of the ability to walk, speak and eventually, breathe. To-date, the only 55 

proven causes of ALS are gene mutations. Considerable phenotypic variation 56 

is evident between ALS patients, including those that carry identical causal 57 

gene mutations. Disease discordant monozygotic twins provide a unique 58 

opportunity to study phenotypic variation. Somatic de novo variants may exist 59 

between discordant co-twins that act as causal ALS mutations or phenotypic 60 

modifiers. Whole genome sequencing (WGS) was performed in three 61 

Australian monozygotic twin sets and one monozygotic triplet set, all 62 

discordant for ALS, in order to identify discordant variants that represent 63 

somatic de novo mutations between co-twins/triplets. One monozygotic triplet 64 

set carried a pathogenic SOD1 p.I114T mutation, and one monozygotic twin 65 

set harboured a pathogenic C9orf72 hexanucleotide repeat expansion. 66 

Results 67 

Initial WGS analysis suggested that tens of thousands of discordant variants 68 

existed between co-twins/triplets, but failure to validate selected variants 69 

indicated that these were artefacts of WGS. To successfully identify bona fide 70 

discordant variants within a twin set, four independent bioinformatic data 71 

processing pipelines were applied to the raw sequence read data to remove 72 

false discordant variants. Intersection of the discordant variants from each of 73 

the four processed datasets showed that >98% of putative discordant variants 74 

were only present in one dataset and were therefore artefacts of 75 
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bioinformatics processing. The remaining <2% of putative discordant variants 76 

were present in genomic regions that are notoriously enriched for sequencing 77 

artefacts, and were thus uninformative. 78 

Conclusions 79 

No bona fide somatic de novo mutations were identified in peripheral blood-80 

derived WGS data from any of the four Australian ALS discordant MZ 81 

twin/triplet sets. Striking discrepancies were observed between the different 82 

bioinformatics processing pipelines that were applied to the WGS data, which 83 

highlights the importance of independent validation of variants identified by 84 

WGS. 85 

 86 
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Background 101 

Amyotrophic lateral sclerosis (ALS; also known as motor neuron disease, 102 

MND), is a fatal late onset, rapidly progressive neurodegenerative disease 103 

characterised by degeneration of both the upper and lower motor neurons. 104 

Patients experience progressive muscle weakness, wasting and spasticity 105 

leading to loss of the ability to walk, speak, eat and eventually breathe. Most 106 

patients die from respiratory failure within just two to five years from symptom 107 

onset. Ten percent of ALS patients have a family history of disease (familial 108 

ALS; FALS), while the remaining 90% of cases occur seemingly sporadically 109 

(sporadic ALS; SALS). To date, there is no effective treatment for ALS, and 110 

little is known about disease pathogenesis. Gene mutations are the only 111 

proven cause of ALS. Missense mutations in SOD1 and a pathogenic repeat 112 

expansion in C9orf72 are the two most common genetic causes of Australian 113 

ALS accounting for more than 50% of FALS and <5% of SALS [1, 2]. 114 

 115 

Genetic and phenotypic heterogeneity is observed amongst ALS patients. A 116 

highly variable disease course is apparent among patients in terms of age and 117 

site of onset, and disease progression. The onset of classical ALS can range 118 

from the second to ninth decade of life [3], while the site of onset may be in 119 

any limb, the bulbar musculature, and in rare cases the trunk [4]. Comorbidity 120 

with frontotemporal dementia (FTD) is observed in ~20% of ALS patients [5-121 

7]. Further, ALS may progress rapidly or slowly, so that disease duration may 122 

be 3 months to over 10 years [3]. Phenotypic variation is also apparent 123 

between patients with identical causal gene mutations, including those within 124 

the same ALS family. The rate of ALS discordance may be as high as 90% in 125 
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monozygotic (MZ) twins [8-11]. This suggests that modifying factors may be 126 

contributing to the variable ALS phenotype.  127 

    128 

MZ twins facilitate powerful study design in genetic research. Since MZ twins 129 

arise from a single zygote they theoretically share an identical set of genetic 130 

information in all cells. Studies of twin pairs, whether MZ or dizygotic (DZ; 131 

arising from two separate zygotes), can avoid confounding factors such as 132 

age, early development and environmental exposure. The phenotypic 133 

concordance between MZ and DZ twin sets has been utilised extensively in 134 

heritability studies to estimate the extent of the genetic contribution to a trait 135 

[12]. In ALS, heritability studies in twins have estimated that 60% of sporadic 136 

disease risk is attributable to genetic factors [10]. The utility of twin studies 137 

has grown with advances in next-generation sequencing (NGS) technologies 138 

[13]. In particular, the identification of molecular differences between disease 139 

discordant MZ twins has emerged as an exciting avenue for the discovery of 140 

novel disease causing or modifying factors [14].  141 

 142 

While MZ twins are assumed to be genetically identical, early post-zygotic 143 

mutations have been found to contribute a substantial proportion of de novo 144 

mutations found within an individual, albeit at a low rate of 0.04-0.34x10−8, 145 

representing between one and ten de novo mutations per individual [15]. Such 146 

early post-zygotic de novo mutations may underlie disease discordance 147 

between MZ twins. For example, single nucleotide de novo mutations have 148 

been implicated in MZ twins discordant for Van der Woude syndrome [16], 149 
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Schizophrenia [17, 18], Neurofibromatosis type 1 [19] and Frontotemporal 150 

dysplasia [20].  151 

 152 

Each ALS discordant MZ twin pair provides a unique opportunity to discover a 153 

potential novel molecular cause or modifier of disease. De novo mutations in 154 

ALS discordant MZ twins may be a cause of disease or affect the presentation 155 

of clinical characteristics. In the current study, we performed whole genome 156 

sequencing (WGS) of three MZ twin sets and one MZ triplet set discordant for 157 

ALS, to seek discordant variants that represent de novo somatic mutations 158 

contributing to the aetiology of ALS. While no disease-associated de novo 159 

mutations were identified, the analyses revealed a startling number of false 160 

positive discordant variants likely sequencing artefacts, in the WGS data. This 161 

prompted an extended analysis that involved the comparison of discordant 162 

variants that were identified using four simultaneous but independent 163 

bioinformatics processing pipelines for the WGS data. This supported the 164 

absence of informative discordant variants between co-twins/triplets, but also 165 

highlighted the abundance of sequence artefacts introduced to WGS datasets 166 

by bioinformatics processing pipelines.  167 

 168 

Results 169 

Monozygotic twins and triplets discordant for ALS 170 

Four Australian twin/triplet sets were discordant for ALS, whereby one 171 

twin/triplet had ALS and their co-twin/triplets were unaffected by disease 172 

(pedigrees provided in Fig. 1). Zygosity testing using existing SNP (single 173 

nucleotide polymorphism) microarrays confirmed all twin/triplet sets were 174 
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monozygotic. Two sets had a family history of ALS.  Each of the triplet set 175 

harboured a SOD1 p.I114T mutation, while each of a twin set harboured a 176 

pathogenic C9orf72 hexanucleotide repeat expansion. Clinical details of each 177 

twin/triplet set are provided in Table 1. 178 

 179 

Table 1. Clinical details of the ALS discordant twin/triplet sets. 180 

MZ  set ALS Status Sex Mutation 
Age 
of 
onset 

Duration 
(months) 

Female 
SOD1 
triplet 
set 

FALS ALS F SOD1 
p.I114T 50 Unknown 

 Asymptomatic F SOD1 
p.I114T 

  

 Asymptomatic F SOD1 
p.I114T 

  
       
Male 
C9orf72 
twin set 

FALS ALS M C9orf72 
HRE 52 36 

 Asymptomatic M C9orf72   
HRE        

Female 
SALS 
twin set  

SALS ALS F  42.7 
Alive at 

51 
months 

 Unaffected F    
       
Male 
SALS 
twin set 

SALS ALS M  78.5 28.4 

  Unaffected M       

HRE: hexanucleotide repeat expansion   
 181 

Whole genome sequencing of ALS discordant twins identified 182 

thousands of false positive de novo (discordant) mutations 183 

All four twin/triplet sets underwent WGS. One twin set underwent re-184 

sequencing of the identical DNA sample at a second sequencing provider as 185 
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a validation step. Sequencing quality metrics are provided in Table 2 and are 186 

similar across all samples. 187 

 188 

Table 2. Whole genome sequencing raw data quality metrics.  189 

MZ set Status Sequencing 
provider^ 

Sequencing 
prep 

Sequencing 
yield 
(bases) 

Throughput 
mean depth 

Female 
SOD1 
triplet 
set 

ALS KCCG Illumina 
PCR-free 113,635 39.8 

Asymptomatic KCCG Illumina 
PCR-free 124,116 43.4 

Asymptomatic KCCG Illumina 
PCR-free 144,546 41.9 

Male 
C9orf72 
twin set 

ALS KCCG Illumina 
Nano 142,824  50.0  

Asymptomatic KCCG Illumina 
Nano 146,824  51.4  

Female 
SALS 
twin 
set* 

ALS KCCG Illumina 
PCR-free 140,312 49.1 

Unaffected KCCG Illumina 
PCR-free 144,896 50.7  

Male 
SALS 
twin set 

ALS KCCG Illumina 
PCR-free 145,652  41.7  

Unaffected KCCG Illumina 
PCR-free 152,581 41.5 

Female 
SALS 
twin 
set* 

ALS Macrogen Illumina 
PCR-free 147,209 51.5  

Unaffected Macrogen Illumina 
PCR-free 149,775 52.4 

*Identical DNA samples were sequenced twice at two different sequencing 
providers 
^KCCG, Kinghorn Centre for Clinical Genomics (Sydney, Australia);  
Macrogen (Seoul, Korea) 

 190 

Discordant variants were defined as genomic sites with a called genotype and 191 

a coverage score greater than 30, at which the genotype call differed between 192 

the ALS affected co-twin/triplet and their unaffected co-twin/triplet. Variant call 193 

files (VCFs) processed using the genome analysis toolkit (GATK) and the 194 
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associated best practices [21] (according to pipeline 1, Table 3) were utilised 195 

to identify discordant variants. A two-sample VCF for each twin/triplet pair was 196 

subsetted from a large 850-sample joint-called VCF, containing data from the 197 

11 twin/triplets under analysis as well as an additional 839 Australian ALS and 198 

FTD patients. Custom python scripts were then applied to identify discordant 199 

variants from the two-sample VCF for each twin/triplet pair. Importantly, when 200 

considering the SOD1 triplet set, discordant variants were identified for each 201 

of the two possible pairings of the affected triplet with an unaffected triplet. 202 

That is, triplet analysis A compared the affected triplet with one unaffected 203 

triplet, and triplet analysis B compared the affected triplet to the alternate 204 

unaffected triplet. 205 

 206 

Table 3. Details of the bioinformatics processing pipelines applied to raw 207 

WGS data. 208 

 209 

Comparison of WGS data between the ALS affected co-twin/triplet and their 210 

unaffected co-twin/triplet identified the following number of discordant variants 211 

Process  
Sequencing provider 1   Sequencing provider 2 

Pipeline 1 Pipeline 2  Pipeline 3 Pipeline 4 
Software Version  Software Version    Software Version  Software Version  

Aligner  BWA 
mem  v0.7.15 Isaac 

Aligner 
00776.15 
.01.27 

 BWA 
mem  v0.7.10  Isaac 

Aligner  
v01.15.02 
.08  

Variant 
Caller  

GATK 
Haplotype 
Caller  

v3.7 
Isaac 
Variant 
Caller 

starka- 
2.1.4.2 

 
GATK 
Haplotype 
Caller  

v3.4  
Isaac 
Variant 
Caller 

v2.0.13  

Merge 
per 
sample 
gVCFs 

GATK 
Combine 
GVCFs 

v3.7 
GATK 
Combine 
GVCFs 

v3.7  N/A N/A N/A N/A 

Genotype 
all 
samples 

GATK 
Genotype 
GVCFs  

v3.7 
GATK 
Genotype 
GVCFs  

v3.7   N/A N/A N/A N/A 
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within a twin/triplet set: 12,240 (SOD1 triplet pair A), 14,097 (SOD1 triplet pair 212 

B), 55,132 (C9orf72 twins), 18,599 (female SALS twins), and 30,994 (male 213 

SALS twins). Over 87% of these discordant variants were identified in 214 

intergenic or intronic regions, with less than 1% were found in exonic regions. 215 

The distribution of discordant variants between the various genomic functional 216 

classes (exonic, intergenic, intronic, non-coding RNA, (ncRNA), splicing, 217 

upstream/downstream and untranslated region (UTR)) is depicted in Figure 218 

S1 (see Additional file 1). 219 

 220 

Failure to validate discordant variants suggested the majority are 221 

sequencing artefacts 222 

As the number of discordant variants identified from WGS data was 223 

significantly greater than expected, given the known de novo mutation rate 224 

(typically one to ten per individual), we sought to validate a subset of 225 

discordant variants across all five twin/triplet pairs using existing SNP 226 

microarrays and direct Sanger sequencing. For one twin set, this was 227 

extended to re-sequencing of the genome using the same DNA samples used 228 

in the first round of WGS. 229 

 230 

Eighty-one putative discordant variants identified across the five twin/triplet 231 

pairs had been previously genotyped using SNP microarrays. Genotype 232 

assessment of these variants showed that all had concordant SNP microarray 233 

genotypes between co-twins/triplets, strongly suggesting that all 81 putative 234 

discordant variants were false (i.e. not discordant). Similarly, Sanger 235 

sequencing of 24 selected putative discordant variants across the twin/triplet 236 
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sets also showed genotype concordance between co-twins/triplets. Re-237 

sequencing of the genome of the female SALS twin set, at a different 238 

sequencing provider but using the same library preparation method, 239 

sequencing instrument, and variant identification pipeline as used in the first 240 

round of WGS, identified 3,543 discordant variants. However, there was no 241 

overlap between this set of discordant variants and that identified in the first 242 

round of WGS. Therefore, re-sequencing of the genome failed to validate any 243 

of the original 18,599 discordant variants in this twin pair.  244 

 245 

Three independent validation methods failed to confirm any de novo mutation. 246 

It is therefore likely that all putative discordant variants are sequencing errors 247 

or artefacts. 248 

 249 

Comparison of four bioinformatic data processing pipelines showed low 250 

concordance when identifying discordant variants 251 

To ensure a comprehensive search for real de novo mutations, three 252 

additional bioinformatic data processing pipelines were implemented on the 253 

raw WGS sequencing data (pipelines 2, 3 and 4 as described in Table 3). The 254 

discordant variants identified by each pipeline were overlapped for each 255 

twin/triplet pair, to identify those most likely to represent real de novo 256 

mutations. Pipelines 1 and 2 were performed by sequencing provider 1, and 257 

pipelines 3 and 4 were performed by sequencing provider 2. Pipelines 1 and 3 258 

each utilised different versions of the Burrows Wheeler Aligner (BWA) [22, 23] 259 

and GATK variant calling [21] (BWA-GATK), while pipelines 2 and 4 utilised 260 

different version of Isaac [24] alignment and variant calling. Pipelines 1 and 2 261 
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(implemented by sequencing provider 1) utilised two-sample VCFs that 262 

originated from the aforementioned 850-sample joint-called VCF for the 263 

identification of discordant variants, whereas pipelines 3 and 4 (implemented 264 

by sequencing provider 2) used two-sample VCFs that were not joint-called. 265 

Pipelines 3 and 4 applied a PASS filter prior to discordant variant 266 

identification, while the PASS filter was applied to pipelines 1 and 2 following 267 

discordant variant identification.  268 

 269 

The number of discordant variants identified between ALS affected patients 270 

and their unaffected co-twin/triplet varied substantially between the four 271 

datasets (using different alignment and variant calling tools) as shown in 272 

Table 4.  273 

 274 

Table 4. Summary of the discordant variants identified by each bioinformatic 275 

processing pipeline for each twin/triplet pair. 276 

    Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 
Female 
SOD1 
triplet     
set 

Pairing 
A 

12,240                                                         
(9,054 SNPs & 
3,186 indels) 

33,430                                                         
(2,506 SNPs & 
30,924 indels) 

1,947                                                         
(1,493 SNPs & 

454 indels) 

635                                                         
(68 SNPs &      
567 indels) 

Pairing 
B 

14,097                                                         
(9,929 SNPs & 
4,168 indels) 

15,577                                                         
(1,452 SNPs & 
14,125 indels) 

2,010                                                         
(1,534 SNPs & 

476 indels) 

1,088                                                         
(106 SNPs &.   

982 indels) 
Male C9orf72               
twin set 

55,132                                                         
(18,759 SNPs & 
36,373 indels) 

157,012                                                         
(3,284 SNPs & 
153,729 indels) 

6,358                                                         
(2,604 SNPs & 
3,754 indels) 

7,441                                                         
(201 SNPs & 
7,240 indels) 

Female SALS              
twin set  

18,599                                                         
(14,160 SNPs & 

4,439 indels) 

37,226                                                        
(2,804 SNPs & 
34,422 indels) 

1,976                                                         
(1,496 SNPs & 

480 indels) 

1,833                                                         
(74 SNPs &    
1,759 indels) 

Male SALS               
twin set  

30,994                                                         
(21,926 SNPs & 

9,068 indels) 

22,755                                                         
(3,411 SNPs & 
19,344 indels) 

2,646                                                         
(1,925 SNPs & 

721 indels) 

2,480                                                         
(126 SNPs & 
2,354 indels) 

 277 
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Many more discordant variants were identified from data processed by 278 

sequencing provider 1 (pipelines 1 and 2) compared to sequencing provider 2 279 

(pipelines 3 and 4).  280 

 281 

Inconsistent distribution of discordant variants between SNP and indel 282 

variant types 283 

Over 90% of the discordant variants identified by the Isaac based pipelines 284 

(pipelines 2 and 4) were insertion/deletion (indel) variants. In contrast, indels 285 

accounted for 20-30% of discordant variants in the BWA-GATK based 286 

pipelines (pipelines 1 and 3) in all twin/triplet pairs other than the C9orf72 287 

twins. The C9orf72 twins underwent Illumina nano-prep WGS, while all other 288 

samples underwent PCR-free WGS. For this twin pair, 50-60% of discordant 289 

variants identified from BWA-GATK processed datasets were indels. 290 

 291 

The majority of discordant variants are found in intergenic regions 292 

The majority (~52-69%) of discordant variants identified using all four 293 

processed WGS datasets were intergenic. Intronic variants were the next 294 

most abundant (~15-40%), followed by ncRNA (~6-12%) variants. For all four 295 

processing pipelines, less than 1% of discordant variants were exonic. 296 

Supplementary Figure 1 provides a breakdown of the distribution of 297 

discordant variants between the different genomic functional regions. 298 

 299 

Limited overlap of discordant variant datasets  300 

Limited overlap was observed between the discordant variant datasets 301 

identified using the four bioinformatics processing pipelines. The discordant 302 
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variants identified using pipeline 1 were unique, in that they showed no 303 

overlap with the discordant variants identified by any other pipeline (i.e. 304 

overlap was observed between pipelines 2, 3 and 4, but not with 1). The 305 

shared discordant variants that were identified by pipelines 2, 3 and 4 306 

represented 0.03-3.2% of the total discordant variants from each pipeline. The 307 

Isaac pipelines (pipelines 2 and 4) provided the most shared discordant 308 

variants. Fig. 2 provides a visual summary of the overlap of the discordant 309 

variant datasets identified by the four pipelines for each twin/triplet pair. For all 310 

pairs other than the C9orf72 twins, 58.3% of discordant variants shared by 311 

pipelines 2,3 and 4 were SNP variants, and 41.7% were indel variants. For 312 

the C9orf72 twins, 9.9% were SNPs and 90.1% were indels. Comparison of 313 

the two Isaac pipelines (pipelines 2 and 4) showed that 94.9% of shared 314 

discordant variants were indels.   315 

 316 

Putative discordant variants lie in genomic regions that were sequenced 317 

with low confidence  318 

The sequencing platform used here is known to provide low confidence 319 

sequence for some genomic regions including those of low complexity. Zook 320 

et al. [25] determined the regions of the genome that are reliably “callable”. 321 

Here, all putative discordant variants that were identified by pipelines 2, 3 and 322 

4 were shown to fall outside the reliably “callable” genome, as did all 323 

discordant variants identified by multiple bioinformatics processing pipelines.  324 

 325 

Results summary 326 
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In summary, no discordant variants were identified by all four processing 327 

pipelines. Pipelines 2 and 4, both of which employed Isaac alignment and 328 

variant calling tools, showed the most overlapping discordant variant datasets. 329 

Notably, pipeline 1, which utilised a newer version of GATK, showed no 330 

concordance with other processing pipelines. Of the shared discordant 331 

variants from the three other pipelines, all fell within genomic regions that are 332 

known to provide low confidence WGS data. For the two SOD1 triplet 333 

pairings, putative discordant variants shared by pipelines 2, 3 and 4 (pairing 334 

A, n=4 and pair B, n=12) showed no overlap. Therefore, no informative 335 

discordant de novo mutations were identified between ALS discordant 336 

twins/triplets. 337 

 338 

Discussion  339 

No de novo mutations were identified in WGS data that might explain the 340 

disease discordance in four sets of MZ twins/triplets. This result is consistent 341 

with the extremely low mutation rate of early post-zygotic at  just 0.04-342 

0.34x10−8 [15]. Therefore, it is expected that only rare cases of disease 343 

discordant MZ twins will be explained by de novo mutations. Indeed, others 344 

have also failed to identify de novo mutations that cause SALS discordance 345 

between MZ twins [9], suggesting that de novo mutations between ALS 346 

discordant MZ twins are rare. Similarly, the search for de novo mutations in 347 

MZ twins discordant for other disorders including Chron’s disease [26], 348 

Nonsyndromic Cleft Lip and Palate [27], Multiple Sclerosis [28] and Systemic 349 

Lupus Erythematosus [29] have also been unsuccessful. The absence of de 350 
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novo mutations may be explained by technical downfalls of WGS or 351 

alternative mechanisms underlying the disease discordance. 352 

 353 

Other possible mechanisms that may underlie disease discordance in MZ 354 

twins include more complex structural variants (SVs) such as copy number 355 

variants (CNVs), epigenetic modifications, environmental exposure, or a 356 

combination thereof.  CNVs are of particular interest for ALS, as the most 357 

common known cause of disease, pathogenic expansion of the GGGGCC 358 

hexanucleotide repeat unit in C9orf72 [30, 31], is a type of CNV. Also, 359 

intermediate length CNVs in the ATXN2 gene have been associated with 360 

increased disease risk [32], further implicating a role of CNVs in the aetiology 361 

of ALS. Other neurodegenerative conditions are also known to be caused by 362 

CNVs, including the spinocerebellar ataxias [33-35], Kennedy’s disease [36] 363 

and Huntington’s disease [37].  364 

 365 

Epigenetic modifications are potential contributors to the aetiology of ALS. 366 

Differential global DNA methylation levels [38, 39] as well as specific 367 

differentially methylated sites [39, 40] having been identified between ALS 368 

patients and controls. For example, Meltz Steinberg et al. [9] determined that 369 

five ALS discordant twin pairs had no genetic discordance but were later 370 

found to have significantly different DNA methylation patterns, with 371 

accelerated epigenetic aging in affected co-twins [41]. Epigenetic 372 

modifications may result from the effects of various environmental exposures 373 

[42], including those that have been variably associated with ALS risk [43-46]. 374 

Epigenetic modifications may represent the intermediary mechanism that links 375 
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environmental factors to pathogenic disease mechanisms. Given the shared 376 

genetic background, the ALS discordant MZ twins provide an opportunity to 377 

decipher the environmental contributions to ALS onset, and their potential link 378 

with epigenetic changes.  379 

 380 

It is possible that a de novo mutation that caused disease discordance 381 

evaded detection by the WGS strategy used here. Inadequate coverage of the 382 

genome may have seen a region that harbours a de novo variant not 383 

sequenced, or with an insufficient number of mapped reads. Alternatively, 384 

sequencing artefacts introduced during library preparation, sequencing or 385 

bioinformatics processing may have masked a true de novo mutation. Given 386 

that discordant variant identification relied on the comparison of WGS data 387 

from two individuals, inadequate coverage or sequencing artefacts in either 388 

individual could have prevented identification of a true de novo mutation.   389 

 390 

In order to remove sequencing artefacts that were introduced by 391 

bioinformatics processing, four distinct pipelines were employed that used 392 

different alignment and variant calling tools. This found that over 98% of 393 

discordant variants were uniquely identified by a single pipeline, suggesting 394 

that the overwhelming majority of discordant variants were artefacts 395 

introduced by bioinformatics processing. Further, the discordant variants that 396 

were identified by multiple pipelines all fell within genomic regions that are 397 

notorious for providing sequencing artefacts in WGS data. As such, even if 398 

these discordant variants were truly represented in the raw sequencing data, 399 
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they were likely to be sequencing artefacts introduced by errors that arose 400 

during library preparation or sequencing.  401 

 402 

Comparisons between the four bioinformatics pipelines revealed that pipeline 403 

1 identified a completely distinct set of discordant variants for each twin pair, 404 

in that no putative discordant variants identified by pipeline 1 were identified 405 

by any of the other three pipelines. Most interestingly, no discordant variants 406 

were shared by pipelines 1 and 3, which both employed BWA and GATK 407 

processing tools, albeit different versions. This likely reflects differences in the 408 

algorithms used by updated versions of these tools. This highlights the 409 

caution required when comparing datasets generated using different 410 

alignment and variant calling tools (including updated versions) such that 411 

variant identifications between such datasets may not be comparable.  412 

 413 

The comparisons here also highlighted important characteristics of indel 414 

variant calls. For the three twin/triplet sets that underwent PCR-free WGS, the 415 

discordant variants identified using the BWA-GATK processed datasets 416 

(pipelines 1 and 3) consisted of ~20-30% indels, which is comparable to the 417 

general abundance of indels across the genome at 21% [47]. However, for the 418 

Isaac processed datasets (pipelines 2 and 4), indels accounted for more than 419 

90% of discordant variants. As these discordant variants are likely to 420 

represent sequencing artefacts, this demonstrates the superior utility of GATK 421 

in calling indel variants, as has been reported elsewhere [48, 49]. Indels were 422 

also more abundant among the discordant variants identified for the C9orf72 423 

twin pair, representing ~50-60% of BWA-GATK discordant variants and 99% 424 
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of Isaac discordant variants. WGS for this twin pair included Nano library 425 

preparation, which included a PCR amplification step that may have 426 

introduced more indel errors than single nucleotide errors to sequencing 427 

templates, as reported by others [50]. This was further supported by the fact 428 

that indels accounted for 90.1% of discordant variant identifications shared by 429 

pipelines 2, 3 and 4 (n=233) for this twin set. For the other four twin/triplet 430 

pairs, indels accounted for just 41.6% (total n=36) of discordant variants 431 

shared by these three pipelines. 432 

 433 

All putative discordant variants that were identified by multiple processing 434 

pipelines fell within genomic regions that are notoriously difficult to accurately 435 

sequence by the WGS strategy used here. The 10% of the genome that 436 

harbours highly repetitive sequences, or duplicated genomic elements, has 437 

consistently been reported to be the source of abundant false positive variant 438 

calls from WGS [25, 51-53]. Therefore, putative discordant variants that were 439 

identified in these regions are also likely to represent sequencing artefacts, 440 

and were therefore not informative.  441 

 442 

Conclusions 443 

While no real de novo mutations were identified in ALS discordant MZ co-444 

twins/triplets, our analyses highlighted the abundance of sequencing artefacts 445 

present in WGS datasets, particularly in difficult to sequence genomic regions, 446 

and the substantial differences between alignment and variant calling 447 

pipelines. Future analyses will need to increase sequencing coverage and 448 

depth, and consider alternative mechanisms of disease onset including 449 
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epigenetic modifications and/or environmental exposure. Further, we 450 

recommend the use of PCR-free WGS wherever possible, and the application 451 

of at least two bioinformatic processing pipelines employing different software 452 

tools in order to increase the confidence of all variant identifications. 453 

  454 

Materials and Methods 455 

Twins and triplets 456 

Three twin sets and one triplet set (described in Table 1; pedigrees provided 457 

in Fig. 1) were ascertained from the Molecular Medicine Laboratory at 458 

Concord Hospital and the Macquarie University Neurodegenerative Diseases 459 

Biobank. All individuals were recruited under informed written consent as 460 

approved by the human research ethics committees of Macquarie University 461 

and Sydney South West Area Health Service. All participants were of 462 

European descent and the affected co-twin/triplet were clinically diagnosed 463 

with ALS based on El Escorial criteria [54]. Genomic DNA was extracted from 464 

peripheral blood using standard protocols.  465 

 466 

All twins were tested for zygosity using existing SNP genotyping data. SNP 467 

genotyping was performed for all four twin sets using either the 468 

InfiniumCoreExome-24 v1.0 (SOD1 triplets and C9orf72 twins) or v1.1 (both 469 

female and male SALS twin pairs) microarray. Raw data was processed using 470 

GenomeStudio2011 (Illumina) using standard pipelines. All twins/triplets were 471 

also screened for known major ALS genes as described by McCann et al. [1]. 472 

 473 

Generation of whole genome sequence data and raw data processing 474 
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DNA samples underwent library preparation using the TruSeq PCR free 475 

library preparation kit (Illumina, v2.5), except in the case of the C9orf72 twin 476 

set, for whom the TruSeq DNA Nano kit was used (Illumina). Prepared 477 

libraries underwent multiplex 150bp paired-end sequencing on an Illumina 478 

HiSeq X Ten instrument (Kinghorn Centre for Clinical Genomics, Sydney, 479 

Australia). Four separate bioinformatic processing pipelines were applied to 480 

raw WGS data, as detailed in Table 3. Two pipelines utilised each of BWA-481 

GATK and Isaac tools. Pipeline 1 was applied in the initial analysis, while the 482 

three other pipelines were applied in the extended analysis. 483 

 484 

Discordant variant identification 485 

Discordant variants were defined as genomic sites with a called genotype and 486 

a coverage score greater than 30, at which the genotype call differed between 487 

the ALS affected co-twin/triplet and their unaffected co-twin/triplet. Custom 488 

python scripts were run on a two-sample VCF for each twin/triplet pair, to 489 

identify variants that were discordant within a twin/triplet pair. When 490 

considering pipelines 1 and 2 (Table 3), the two-sample VCFs originated from 491 

a larger, joint-called multi-sample VCF totalling 850 individuals. The two-492 

sample VCFs analysed by pipelines 3 and 4 (Table 3) were not joint-called. 493 

Analysis of the triplet set was separated into two triplet pairings. That is, triplet 494 

analysis A compared the affected triplet with one unaffected triplet, and triplet 495 

analysis B compared the affected triplet to the alternate unaffected triplet. 496 

 497 

Comparisons of discordant variants 498 
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The BCFTools [55] isec command was used to compare VCFs of discordant 499 

variants between the four different processing pipelines, triplet pairings A and 500 

B, as well as those identified by the original WGS and re-sequencing of the 501 

female SALS twin set. 502 

 503 

Annotation and distribution of discordant variants  504 

Discordant variant VCFs were annotated for RefSeq genes and genomic 505 

functional regions using ANNOVAR [56], and were annotated for variant types 506 

using the SNPSift [57] varType tool. The distribution of discordant variants 507 

between the different genomic functional classes (exonic, intergenic, intronic, 508 

ncRNA, splicing, upstream/downstream and UTR), and variant types (SNP 509 

and indel), were determined using custom R and bash scripts, respectively. 510 

 511 

Variant validation 512 

PCR sequencing  513 

Custom primers were designed for each assessed discordant variant with at 514 

least 150bp of flanking sequence. Genomic positions, primer sequences and 515 

amplification conditions are available on request. Direct sequencing of 516 

amplified fragments was performed using Big-Dye terminator sequencing 517 

(v3.1, Applied Biosystems). Sequencing primers were generally the same as 518 

amplification primers, however in case of poor sequencing chromatograms, 519 

internal sequencing primers were required. In some cases, fragment length 520 

analysis was utilised to validate indel variants. This was performed using 521 

FAM-labelled forward primers in PCR reactions, and subsequent capillary 522 
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electrophoresis of amplified products on an ABI 3730XL sequencer 523 

(Macrogen, Korea). 524 

 525 

SNP microarray genotyping   526 

SNP genotyping data was generated as described above for zygosity testing. 527 

Custom bash and R scripts were used to determine the identity of any WGS 528 

discordant variants, from any twin set, that were genotyped by the 529 

InfiniumCoreExome-24 v1.0/v1.1 microarrays. The associated genotype data 530 

for these SNPs was then extracted and manually analysed in R to determine 531 

any discordance within twin/triplet pairs. 532 

 533 

Repeat whole genome sequencing 534 

WGS was repeated for the female SALS twin set by Macrogen (Korea). 535 

Libraries were prepared using TruSeq PCR free (Illumina) kits and 150bp 536 

paired-end sequencing was performed on an Illumina Hiseq Xten instrument. 537 

The raw data was processed by Macrogen using Isaac [24] and the 538 

corresponding best practices. Discordant variants were identified using the 539 

same methods as described above. The BCFtools [55] isec command was 540 

used to compare the discordant variants identified using the original and re-541 

sequenced WGS data for this twin pair. 542 

 543 

Genomic location of discordant variants 544 

To determine whether discordant variants fell within reliably callable regions of 545 

the genome, the BCFTools [55] view command was used in conjunction with 546 

the regions file option. Confidently callable regions were defined as those 547 
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reported by Zook et al. [25], the genomic coordinates for which were obtained 548 

from [58]. 549 

 550 
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Figure legends 599 

Fig 1. ALS discordant twin/triplet set pedigrees. Pedigrees for four sets of ALS 600 

discordant twins/triplets, with gene mutations indicated. Circles represent 601 

females and squares represent males. Filled shapes indicate ALS, open 602 

shapes with a dot indicate unaffected mutation carriers and open shapes are 603 

unaffected non-carriers. Horizontal lines between twins/triplets indicate 604 

monozygosity. 605 

 606 

Fig 2. Overlap of discordant variants identified by four different bioinformatics 607 

processing pipelines, for each twin/triplet pair. Venn diagrams of the 608 

discordant variants identified by the four different bioinformatics processing 609 

pipelines described in Table 3. The letters A, B, C and D correspond to 610 

pipelines 1, 2, 3 and 4, respectively. 611 

 612 

Additional files 613 

Additional file 1. Supplementary information. Figure S1. Distribution of 614 

discordant variants between the different genomic functional regions.  615 

Stacked bar charts illustrating the distribution of discordant variants between 616 

the different genomic functional regions (exonic, intergenic, intronic, non-617 

coding RNA (ncRNA), splicing, upstream/downstream and untranslated region 618 

(UTR)). (PDF 3.7MB) 619 
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Fig 1. ALS discordant twin/triplet set pedigrees. Pedigrees for four sets of ALS discordant 

twins/triplets, with gene mutations indicated. Circles represent females and squares represent 

males. Filled shapes indicate ALS, open shapes with a dot indicate unaffected mutation carriers 

and open shapes are unaffected non-carriers. Horizontal lines between twins/triplets indicate 

monozygosity. 

 

 



 
 

Fig 2. Venn diagrams of the overlap of variants identified by the four different bioinformatics 

processing pipelines. The top panel shows the overlap of all variants identified across all 11 

twins/triplets. The lower panels show the overlap of discordant variants identified for each 

twin/triplet pair, as described in Table 3. The letters A, B, C and D correspond to pipelines 1, 2, 3 

and 4, respectively. 
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Figure S1. Distribution of discordant variants between the different genomic functional 

regions.  Stacked bar charts illustrating the distribution of discordant variants between 

the different genomic functional regions.of exonic, intergenic, intronic, non-coding RNA 

(ncRNA), splicing, upstream/downstream and untranslated region (UTR). 
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Searching for genetic differences between ALS-discordant

monozygotic twins

7.2.2 Co-authored Manuscript A4 – Epigenetic and

transcriptomic analysis of ALS-discordant monozygotic

twin/triplet pairs

In addition to genomic variants, a screen was performed for epigenetic modifications

that may contribute to disease discordance between ALS-discordant MZ twin/triplet

pairs. The study described in Manuscript A4 (Appendix A.5.4) aimed to characterise

DNA methylation and transcriptomic profile differences between ALS patients and

their unaffected co-twins/triplets. The hypothesis was that epigenetic modifications

and/or differential gene expression may act to modify the phenotypic presentation

of ALS between disease-discordant co-twins/triplets. Epigenetic modifications are

dynamic and include DNA methylation, histone acetylation and chromatin modelling,

among others. Epigenetic modification of gene expression has been proposed as

the mechanism by which the exposure to environmental risk factors can influence

the molecular mechanism of disease. In part, the rationale behind an epigenetic

contribution to ALS stems from the accumulation of these marks over time, which fits

well with the late onset of disease and phenotypic variability between patients.

Here, ALS affected co-twins were shown to have significantly increased epigenetic

ages compared to their unaffected co-twin, which supports the findings of a similar

study perfromed by Young et al. (2017). A total of 59 differentially methylated

sites were identified across all four twin/triplet sets. Two of these sites, in the genes

C8orf46 and RAD9B, also showed significant differential methylation in a case-control

cohort of 650 SALS patients and 539 control individuals. Unfortunately, the set

of 59 differentially methylated probes did not have sufficient power to discriminate

between ALS affected and unaffected co-twins/triplets, or SALS patients and controls.

Analysis of within-twin-set differential methylation identified two probes and 13

genes that showed differential methylation in more than one disease-discordant twin

set, that may represent potential risk or modifier markers of ALS. Interestingly,

transcriptomic analysis showed that two genes previously implicated in ALS, CCNF

and CCS, were downregulated in the ALS affected twin/triplet compared with their

unaffected co-twin/triplet. The integration of methylomic and transcriptomic profiling

data highlighted twelve genes that were both differentially methylated and expressed.

This study implicated an epigenetic contribution to disease in the ALS-discordant

twins/triplet sets. It is likely that in the broader ALS patient population, and possibly

within these twin sets, that these epigenetic modifiers act together with environmental

risk factors and genetic variation to influence the onset and/or progression of disease.
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7.3 Discussion

In this Chapter, the utility of ALS-discordant monozygotic twins has been explored

for the identification of nucleotide level variation or epigenetic and transcriptomic

alterations that contribute to the aetiology of ALS. While the genomic investigation

was unsuccessful in identifying novel genetic causes or modifiers of ALS, this was not

altogether surprising. The post-zygotic de novo mutation rate is low at just 0.04-

0.34ˆ10-8 (Dal et al., 2014), and many others have also failed to identify nucleotide

level variation between disease-discordant MZ twins. This includes investigations of

diseases such as Crohn’s disease (Petersen et al., 2014), non-syndromic cleft lip and

palate (Mansilla et al., 2005), multiple sclerosis (Baranzini et al., 2010) and systemic

lupus erythematosus (Furukawa et al., 2013). Most notably, Meltz Steinberg et al.

(2015), conducted a similar study to that reported in Manuscript III, in which five

SALS twin pairs underwent WGS for discordant variant identification. They too were

unable to identify any nucleotide level variation explaining disease discordance.

Though we were unable to identify any de novo nucleotide mutations contributing

to the aetiology of ALS in these four discordant twin/triplet sets, it is possible that our

analysis was underpowered to detect such mutations. This could be the result of tissue

specificity or inadequate WGS coverage. As sequencing was performed using DNA

derived from peripheral blood, and ALS affects neuronal tissue, a somatic mutation

that occurred further down the cell lineage may have been missed. Indeed, it has

been reported that substantial genetic variation exists between different tissue types

(O’Huallachain et al., 2012), and as such, it may be that a disease causing or modifying

mutation may be confined to the disease-affected tissue. Even if neuronal tissue was

available for sequencing, it is likely that such a mutation would still be missed, as

many somatic mutations are only present in a very small number of cells, causing

these to go undetected using standard coverage WGS (Ye et al., 2013). Additionally,
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it has been suggested that 100X sequencing is necessary to achieve 100% coverage of

the human genome, so that at least 20 reads are mapped to each nucleotide position

(Meienberg et al., 2016). Here we have used 30X sequencing, which while commonly

employed and accepted to strike an acceptable balance between cost and sensitivity

(Lohmann and Klein, 2014), may be inadequate to detect rare variants or those falling

in difficult to sequence genomic regions. Further, variants in highly polymorphic and

low complexity genomic regions are not well represented by NGS read data (Li, 2014;

Tian et al., 2016; Weisenfeld et al., 2014), therefore de novo mutations in such regions

may not have been detected here.

The large number of apparently discordant variants initially identified between

ALS-discordant co-twins/triplets using WGS is in fact consistent with other twin

studies. For example, Illumina WGS of two MZ twin pairs by Ye et al. (2013) identified

approximately 30,000 discordant variants in each pair, while Complete Genomics

sequencing identified approximately 14,000. They found that most of these discordant

variants were sequencing platform artefacts, as the intersection of discordant variants

identified by the two platforms was just 13 and 17, of which just eight were validated

by Sanger sequencing. In another study, WES of nine monozygotic twin pairs

identified a total of almost 7,000 discordant variants, which were all later found to

be artefacts (Zhang et al., 2016). Given the scope of WES to WGS, these discordant

variant numbers are comparable to those identified in Manuscript III and by Ye et al.

(2013) using WGS.

Validation efforts suggested that the discordant variants identified here were also

largely artefacts. After using SNP microarrays and gold standard Sanger sequencing to

directly validate individual genotypes, and failing to validate a single variant as truly

discordant, it was concluded that the majority of the putative discordant variants were

artefacts of the WGS pipeline. Given the impracticality of directly sequencing tens of

thousands of variants, WGS was repeated for one twin pair, however cost constraints

prevented this validation approach in all twin/triplet sets. Failure to replicate a single

putative discordant variant in the new WGS dataset affirmed the likelihood that all

discordant variants between MZ twins/triplet pairs represented artefacts of the WGS

pipeline.

In an effort to use various bioinformatics processing pipelines to identify true

de novo mutations, it was shown that over 98% of all putative discordant variants

were identified by just one of the four processing pipelines, strongly implicating
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these variants as sequencing artefacts introduced by bioinformatics processing.

Unfortunately, due to time constraints of this candidature, Sanger sequencing of

the overlapping variants was not possible, however this validation will be completed

prior to submission of Manuscript III for publication. As an alternate approach to

assess the likelihood that the overlapping variants were truly discordant between ALS

affected and unaffected co-twins/triplets, the genomic context of each was determined.

This showed that all overlapping discordant variants fell outside of the confidently

“callable” genome (as defined by Zook et al. (2014)), and rather fell within the 10%

of the genome which is notoriously difficult to accurately genotype and enriched

for sequencing artefacts (discussed further in Chapter 8, Section 8.3.3 Laurie et al.,

2016; Telenti et al., 2016; Weisenfeld et al., 2014; Zook et al., 2014). This suggested

that these overlapping putative discordant variants were also most likely sequencing

artefacts rather than true de novo mutations.

It was expected that far better concordance would be apparent between the

discordant variants identified by pipelines 1 and 3, and pipelines 2 and 4, as the

same basic alignment and variant calling tools were shared by these pipelines, being

BWA-GATK and Isaac, respectively. However, the most notable difference between

the number of discordant variants identified between the four different processing

pipelines was that datasets processed by service provider 1 reported between six- and

52-fold more discordant variants than those processed by service provider 2. This

increase is likely attributable to two major factors. Firstly, the inconsistencies in

applying the PASS filter to WGS data. Service provider 1 did not apply the PASS

filter in their processing pipelines (1 and 2), while service provider 2 (pipelines 3 and

4) did. This therefore increased the number of low quality variants (and therefore

sequencing artefacts) in pipelines 1 and 2, and subsequently the number of putative

discordant variants identified by analysis of these datasets. In an effort to rectify

this inconsistency, the PASS filter was applied to the discordant variants identified

by pipelines 1 and 2, however this failed to substantially reduce discordant variant

identifications. This is attributable to the fact that when retrospectively applying

the PASS filter, only one co-twin/triplet was required to possess a PASS annotation,

while when applying the PASS filter prior to discordant variant identification, both

co-twin/triplets were required to possess a PASS annotation, which substantially

increased filtering stringency. Secondly, the differences between the joint-calling

methodology applied by the two service providers is likely to have contributed to

this discrepancy, as multiple-sample calling is well established to increase specificity

and the number of variant calls, but incidentally may also increase the number of
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false positive variant calls (Liu et al., 2013). Given that the dataset processed by

service provider 1 was joint-called using a cohort totalling 850 samples, and that by

service provider two was not joint-called, an inflation of false positive variants in data

processed by service provider 1 is to be expected.

Indels are notoriously difficult to call (Pabinger et al., 2014), as evidenced by very

low concordance between indel calls between various variant calling tools (O’Rawe

et al., 2013). Therefore, we would expect that there would be an over-representation

of indels among the discordant variant calls. It has been reported that indels account

for approximately 21% of nucleotide level variants, while SNPs make up the balance

(Mullaney et al., 2010). Surprisingly, this ratio is reflected by the discordant variants

reported by the BWA-GATK processed datasets. However, the Isaac processed

datasets report up to >90% of discordant variants as indels. These results likely reflect

the difficulties encountered by Isaac in calling indel variants, and the superior ability

of GATK to call these variant types, which has been reported previously (Field et al.,

2015; Hwang et al., 2015).

While we have established that the vast majority of discordant variants between

ALS-discordant co-twins/triplets were attributable to errors introduced by bioinfor-

matics processing, it is important to note that as a multi-component process, WGS

artefacts may have been introduced at any point of the WGS pipeline. In addition

to bioinformatic errors, WGS artefacts may also result from PCR amplification or

sequencing errors. A detailed discussion of sequencing artefacts will be provided in

Chapter 8, Section 8.3.3. Therefore, the discordant variants identified by multiple

processing pipelines may actually be artefacts introduced by alternate sources of error

in the WGS pipeline. It is also possible that sequencing artefacts may have masked

the identification of true de novo mutations between co-twins/triplets, by introduc-

ing concordant genotypes. However, the likelihood of such an event is exceptionally low.

Across all four processing pipelines, the C9orf72 twin pair had between two and

10-fold more discordant variants than any other twin/triplet pair. This is to be

expected, as this pair underwent PCR amplification prior to WGS, while all other

samples did not. PCR amplification is notorious for introducing sequencing artefacts

(Aird et al., 2011; Brockman et al., 2008; Li, 2014; Meienberg et al., 2016). Genomic

regions of high GC content, and those with poly(A) stretches or AT dinucleotide

repeats are frequently incorrectly amplified due to polymerase errors (Aird et al.,

2011; Brockman et al., 2008; Meienberg et al., 2016). Additionally, PCR amplification
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can introduce allele bias, as multiple reads originating from a single template fragment

may be produced by sequencing, which can lead to errors in variant calling statistics

(Pabinger et al., 2014). As such, it may be that a substantial proportion of the

233 discordant variants in this twin pair, consistently identified by three of the four

variant callers, were truly present in the template sequence, but were indeed artefacts

introduced by PCR amplification. Gold standard Sanger sequencing of the original

co-twin DNA samples and WGS template library would be required to determine

whether this was indeed the case.

As no nucleotide level variants were identified as contributors to the cause or

differential presentation of ALS in these MZ co-twins/triplets in Manuscript III, other

molecular perturbations may be responsible for disease discordance. These include,

structural variants (SVs) such as copy number variants (CNVs) and repeat expan-

sions, epigenetic modifications such as DNA methylation or histone modifications, or

environmental exposures. It is possible that a combination and/or accumulation of

these factors is required to trigger disease onset, as is suggested by the multi-step

hypothesis (Al-Chalabi et al., 2014; Chio et al., 2018) discussed in Chapter 8, Section

8.2.1.6.

Structural variants, particularly repeat expansions and CNVs, represent a likely

alternative genetic alteration to underlie disease discordance between ALS-discordant

co-twins/triplets. The disease-discordant MZ twin model has previously had success

in identifying pathogenic SVs (Dahoun et al., 2008; Ramsey et al., 2012; Razzaghian

et al., 2010), including CNVs and repeat expansions (Breckpot et al., 2012; Bruder

et al., 2008). Repeat expansions, which are in essence a type of CNV, have been

implicated as contributing to the aetiology of ALS, with pathogenic expansion of a

hexanucleotide repeat unit in the C9orf72 gene being the most common known cause

of disease (DeJesus-Hernandez et al., 2011; Renton et al., 2011), and intermediate

length ATXN2 expansions having been shown to increase ALS-risk (Elden et al., 2010).

Chapter 8, Section 8.2.1.4 will provide a discussion of the potential broader role of

repeat expansions and CNVs in ALS pathogenesis. The planned investigation of CNVs

in ALS, including within these twin/triplet sets, is discussed in Chapter 8, Section 8.5.4.

The epigenetic differences identified between co-twins in Manuscript A4 highlighted

the involvement of epigenetic and gene expression mechanisms in ALS. However it

remains to be seen whether these changes are a cause or consequence of disease. The

most robust finding of this manuscript was that of accelerated epigenetic aging of the
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ALS affected co-twin/triplet, which has also been demonstrated by previous studies

(Young et al., 2017; Zhang et al., 2016). As a degenerative disease, age is a major ALS

risk and prognostic factor (Chio et al., 2009a) and increased DNA methylation age

has been associated with increased mortality (Christiansen et al., 2016). The analyses

presented in Manuscript A4 did not find any changes in global DNA methylation

levels, in contrast to other studies (Chestnut et al., 2011; Figueroa-Romero et al.,

2012). The identification of decreased expression for the ALS gene CCNF in a SALS

patient compared to his unaffected co-twin is also very interesting. It has previously

been shown that mutations in CCNF cause ALS (Williams et al., 2016b), and that

there is a significant burden of protein-altering variants in this gene among SALS cases

(Williams et al., 2016b). It is yet to be determined whether CCNF mutations lead to

a loss- or gain-of-function, but the findings presented in Manuscript A4 suggest that

reduced CCNF expression may play a role in the presentation of ALS.

This epigenetics data suggests that gene expression is an important factor in disease

discordance between these four ALS-discordant MZ twin/triplet sets. Therefore, de

novo mutations that lie within regulatory regions and have potential to impact gene

expression, may have a functional effect on disease phenotypes. Large SVs are also

likely to affect regulatory sequences, impacting gene expression that may contribute

to disease discordance between MZ co-twins/triplets. Indeed, SVs have often been

reported as having regulatory functions (Weckselblatt and Rudd, 2015). Together,

this supports a more thorough investigation of non-coding regulatory regions in the

aetiology of ALS. Ideally, this would involve high coverage WGS and in-depth analysis

of SVs.

The lack of discordant de novo mutations (Manuscript III), together with ev-

idence of epigenetic differences (Manuscript A4) between the four ALS-discordant

monozygotic twin/triplet sets suggests that environmental risk factors may have

played a role in triggering the onset or progression of ALS in these cases. As

described in Chapter 1, Section 1.3.2, a variety of environmental factors have been

proposed to increase the risk of developing ALS. However, these associations are

often not supported by follow-up studies. As epigenetic modifications are thought

to reflect many environmental exposures, the case may be that a complex interplay

between environment, epigenetics, genetics and/or other unknown factors may

trigger the onset of ALS. The effects of epigenetic modifications instigated by

environmental exposure may also be influenced by genotype, and therefore vary

between individuals. This could explain why an association between an environmental



7.3 Discussion 273

factor and disease in a given population is not replicated in other populations with

different ancestral backgrounds. The identical genetic background of MZ twins

provides an excellent opportunity to investigate environmental factors influencing

the onset or progression of ALS, and the epigenetic changes induced by such exposures.
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“If I can live through this, I can do anything.”

Fallout Boy - Champion

8
Discussion

8.1 Summary of results

This thesis has presented a comprehensive investigation into the genetic basis of

Australian ALS using next-generation sequencing (NGS) data. Numerous novel

bioinformatics pipelines were established to effectively analyse and utilise the plethora

of genetic information produced by whole-exome (WES) and whole-genome (WGS)

sequencing. Application of these strategies, together with various traditional genetic

analysis techniques, has furthered our understanding of the genetic spectrum of

Australian ALS. Analysis of Australian ALS families showed that 60.8% carry

mutations in known ALS genes (Figure 8.1). The recently reported ALS genes,

CHCHD10, C21orf2, GPX3-TNIP1 and the hnRNP genes were also assessed, however

none were shown to contribute to the cause of ALS amongst Australian patients. A

screen for 54 candidate ALS genes in the Australian patient population identified

eight candidate ALS mutations, and 17 candidate variants potentially associated with

ALS as disease-risk or protective alleles.

This project also sought to identify novel ALS causal gene mutations in familial

ALS. Using WES and WGS data, together with custom bioinformatics strategies

and a custom in silico variant prioritisation approach, substantial progress was made

275



276 Discussion

towards identifying the causal gene mutation in five small ALS families. Four of

these families now have short lists of candidate ALS mutations, with strong evidence

supporting a causal role for just five, six, one and 11 of these, from an initial pool

of more than 90,000 genetic variants in each family. While no nucleotide level

mutations were identified in the fifth family, the combination of linkage analysis with

next-generation sequencing facilitated the exclusion of „86.64% of the genome from

harbouring the unidentified causal mutation. Analysis of this family successfully

excluded numerous potential candidate mutations, thereby providing vital guidance to

future studies to investigate alternate types of genetic variation, including structural

variants, as a cause of disease in this family. Similarly, the search for novel ALS genes

using WGS data from disease-discordant monozygotic (MZ) twins/triplets suggested

that, in peripheral blood, no somatic de novo nucleotide level variants were responsible

for disease in the affected co-twin/triplet. While this is a negative result, it is highly

informative in that it removes early post-zygotic nucleotide level variation as a cause

of disease onset in these ALS-discordant twin/triplet sets, so that other causes of

disease discordance may be explored.

Figure 8.1: The genetic landscape of Australian familial ALS. Eight genes were
found to harbour ALS causal mutations in the Australian FALS cohort of 212 families,
accounting for 60.8% of this cohort. Paper I, Section 4.3.1.
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8.2 Gene discovery in ALS

ALS is a genetically and phenotypically heterogeneous disease. The data presented

in Chapters 4 – 6 demonstrated the immense genetic heterogeneity of ALS, while

investigations of the correlations between clinical phenotypes and the known ALS

gene mutations in Paper I (Chapter 4, Section 4.3.1) highlighted the phenotypic

heterogeneity of disease. Twenty-one distinct mutations, from eight different genes

were found to cause disease amongst Australian FALS patients in Paper I (Chapter

4, Section 4.3.1) accounting for 60.8% of the 212 family cohort. Therefore, a large

portion of the genetic aetiology of FALS remains to be identified. The genetic

landscape of disease is likely to be far greater than the 25 known ALS genes identified

to date. This is supported by data presented in this thesis, where the search for

ALS causal mutations in five unsolved ALS families (Chapter 6) identified a unique

list of candidate mutations for each family. This suggests that the remaining causal

familial ALS mutations are likely to be extremely rare variants, perhaps even

private to their respective families. Further, candidate gene screening (Chapter 5)

identified eight unique candidate mutations in six different genes, each found in a sin-

gle patient. Combined, these factors act to contribute to the heterogenic nature of ALS.

The reduced penetrance seen in ALS families is a considerable barrier to solving the

genetic basis of the remaining 39.2% of Australian ALS families with unknown causal

mutations. Inherently, families with a history of ALS and reduced disease penetrance

will have less affected family members, and therefore fewer informative DNA samples

available for genetic interrogation. This is evidenced by the high proportion of families

in the Australian cohort for which DNA samples are only available from the proband

patient, or two to three genetically informative family members, including the five

families analysed in Chapter 6. In all but one of these five families, traditional

genetic linkage analysis was not effective due to the limited availability of DNA

samples. Genetic linkage analysis has played an instrumental role in disease gene

discovery for over two decades, and in the absence of the genetic mapping information

provided by linkage analysis, disease gene discovery is at a considerable disadvantage.

Therefore, alternative approaches are necessary to identify ALS causal mutations in

these families. While NGS, and particularly WES, has facilitated the discovery of

many disease genes, this approach also has limited power when analysing very small

families.

Complex statistical tools have recently been developed that seek to apply modified
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linkage strategies to NGS datasets. The Pedigree Variant Annotation, Analysis and

Search Tool (pVAAST) employs a sequence based model to perform both gene- and

variant-based linkage analysis using NGS data from families affected by disease (Hu

et al., 2014). The results of linkage analysis are then combined with functional

predictions and rare variant case-control association testing, to rank variants based

on their likelihood of pathogenicity (Hu et al., 2014). While the authors report that

pVAAST is robust to incomplete penetrance and locus heterogeneity (Hu et al., 2014),

validation trials of pVAAST performed during this candidature using WES data from

Australian families carrying known pathogenic UBQLN2 and CCNF mutations failed

to identify these as top-ranked disease genes (data not shown). This suggested that the

pVAAST tool was not appropriate for use in small- to medium-sized ALS families with

incomplete penetrance, and therefore this avenue of analysis was not further pursued.

To successfully and robustly identify disease causal mutations in complex diseases

such as ALS, statistical models will need to account for disease prevalence, disease

penetrance, natural genic variation and mutation rates (MacArthur et al., 2014).

To-date, no such models are available, and substantial methodological development

will be required for these to be established (MacArthur et al., 2014).

Increasingly, there is a general acceptance that a genetic underpinning exists for

some, if not all, sporadic ALS cases (Al-Chalabi et al., 2017). Indeed, some SALS

patients have been found to harbour causal mutations in known ALS genes, including

C9orf72, TARDBP, FUS, SOD1, EWSR1, CCNF and TIA1 (Couthouis et al., 2012;

Gu et al., 2018; Sreedharan et al., 2008; van Blitterswijk et al., 2012a; Vance et al.,

2009; Williams et al., 2013, 2016b; Yuan et al., 2018; Zhang et al., 2018). In Chapter

4, the prevalence of pathogenic hexanucleotide repeat expansions of C9orf72 was

found to be 2.9% in Australian SALS, while two novel candidate mutations were

identified in two separate SALS patients in the TIA1 gene as part of Chapter 5.

Gene mutations causing disease in ALS families with reduced disease penetrance may

represent mutations of medium to strong effect, therefore such mutations may also be

implicated in the cause of disease in some apparently sporadic patients.

Three different approaches to ALS gene discovery were employed during this

project including, candidate gene screening, family-based analysis and analysis of

disease-discordant MZ twins/triplets. Each of these approaches have innate advantages

and disadvantages. Candidate gene screening is an efficient approach for utilising

otherwise uninformative (for gene discovery purposes) data from FALS probands and

SALS patients. However, unless replicated in additional cohorts, the pathogenicity
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of identified candidate gene mutations or associated variants remains ambiguous.

Family-based analysis offers the most robust approach to ALS gene discovery, however

the small size of the families used in this project resulted in lists of candidate

mutations, and further, the genetic heterogeneity of ALS prevented pooling of family

data for disease gene discovery. Lastly, genomic comparisons between ALS-discordant

MZ twins is a straight forward and potentially compelling avenue for disease gene

discovery. Unfortunately, the disease-discordant monozygotic twin model has a low

success rate (Baranzini et al., 2010; Furukawa et al., 2013; Mansilla et al., 2005;

Meltz Steinberg et al., 2015; Petersen et al., 2014), given the extremely low frequency

of post-zygotic somatic mutations.

8.2.1 Beyond Mendelian disease

While the vast majority of known ALS causal mutations identified to-date are nu-

cleotide level protein-altering variants, the most common cause of disease (hexanu-

cleotide repeat expansion of a GGGGCC repeat in the first intron of C9orf72 ) is a

non-coding structural variant. Together with the difficulties encountered by gene dis-

covery efforts in the unsolved ALS families, and the lack of known causes of sporadic

disease, this suggests that it is probable that other types of genetic mechanisms may

cause ALS. The following sections will provide an overview of such possible genetic

mechanisms that may be acting to cause ALS.

8.2.1.1 Oligogenics

Oligogenic inheritance refers to a small number of gene variants acting together to

influence a particular phenotype. It represents an intermediary between classical

monogenic Mendelian inheritance and complex polygenic inheritance, in which pheno-

type is determined by one or many gene variants, respectively. The most compelling

data supporting an oligogenic basis of ALS was reported by van Blitterswijk et al.

(2012a), who identified that five of 97 FALS families carried mutations in two

ALS genes (defined as C9orf72, SOD1, FUS, TARDBP or ANG). Indeed, our own

laboratory has also reported two ALS families carrying both a pathogenic expansion

of C9orf72, and a gene mutation in ANG (Williams et al., 2013).

With the widespread adoption of NGS technologies, reports of an oligogenic basis

of ALS or ALS/FTD have become more frequent (Keogh et al., 2018; Zou et al.,

2017). Apparent oligogenic inheritance in ALS is most frequently reported for patients
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carrying a C9orf72 expansion, the most common known cause of ALS (Nguyen et al.,

2018b; Zou et al., 2017). This is interesting given that the C9orf72 expansion can

cause either ALS, FTD or co-morbid disease, thus the influence of additional genetic

variation may contribute to the phenotypic manifestation of disease (van Blitterswijk

et al., 2012a). Observations by Nguyen et al. (2018b) support this notion, in that

patients with a C9orf72 expansion as well as a mutation in one of the ALS genes FUS,

OPTN, ANG or SOD1, invariably presented with pure ALS, while those with a GRN

mutation always presented with pure FTD. Further, many ANG mutations have also

been reported in an oligogenic state with a more common ALS gene (van Blitterswijk

et al., 2012a). This may reflect that ANG mutations require oligogenic inheritance with

another ALS mutation to cause disease, rather than eliciting a sufficient effect to cause

disease in isolation. Further, following the report of NEK1 as an ALS gene due to an

increased burden of loss-of-function variants in this gene among patients (Kenna et al.,

2016), Nguyen et al. (2018c) found that over 50% of NEK1 carriers had an additional

mutation in another ALS gene, suggesting a potential oligogenic role for NEK1 in ALS.

Keogh et al. (2018) reported that 19 of 244 ALS/FTD patients carried more than

one variant in an ALS/FTD gene. Eleven of these 19 patients carried a known, or

likely pathogenic mutation, and the additional variant in each of these patients was

assessed to be benign or likely benign based on the American College of Medical

Genetics and Genomics (ACMG; Richards et al., 2015) guidelines. The other eight

of these 19 oligogenic cases carried two or more benign/likely benign variants in

ALS/FTD genes. Such benign assessments cast doubt over the actual contribution of

such variants to the cause of disease. Application of pathogenicity assessment criteria

to the variants identified by the aforementioned studies would be worthwhile, as it

may weaken the support for an oligogenic basis of ALS. Alternatively, additional ALS

gene variants may be acting as phenotypic modifiers of disease rather than causal

mutations (Therrien et al., 2016). While there is certainly cause to consider the

possibility of an oligogenic basis of ALS, further evidence will be required to determine

the extent to which this mechanism contributes to ALS pathogenesis.

The families presented in Chapter 6, as well as the families of the probands

in Chapter 5 show reduced disease penetrance that could in part be explained by

an oligogenic disease model. Additionally, as each of the four small families from

Chapter 6 had lists of candidate mutations, it is possible that more than one of these

genetic variants are interacting to cause disease. Given that in three of these four

families, multiple candidate mutations were assessed as having a high potential for
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pathogenicity using the in silico pipeline, this scenario is plausible.

8.2.1.2 Risk genes

As discussed in Chapter 1, Section 1.4.2, the predominance of sporadic disease and

high heritability estimates for all forms of ALS suggest that genetic variants of small

to moderate effect may contribute to the risk of developing SALS. While genome-wide

association studies (GWAS) have previously had limited success in SALS (Renton

et al., 2014), more recently, meta-analyses of GWAS data have identified multiple loci

as robustly associated with SALS. These include variants in the genes C21orf2 and

GPX3-TNIP1, which were genotyped through Australian SALS and control cohorts

in Chapter 4 as part of Papers A1 and A2 (Appendices A.5.1 and A.5.2). These loci

however did not show association with disease within the Australian population. This

is likely attributable to either the smaller sample size of the Australian replication

cohort, or the unique genetic landscape of ALS in the Australian patient population

(as discussed in Chapters 4 and 5).

The work by van Rheenen et al. (2016) (Paper A1; Appendix A.5.1) also identified

MOBP and SCFD1 as ALS risk genes, and showed that SALS has a complex genetic

architecture with a SNP-based heritability of 8.5%. Rare variants were shown to make

a substantial contribution to this heritability, which goes some way to explaining why

GWAS (which is based on the principle of “common variant – common disease”) has

had limited success in identifying risk alleles in SALS cohorts. Further, association

analysis was instrumental in the discovery of the pathogenic expansion of C9orf72

as the most common known cause of ALS (Laaksovirta et al., 2010; Shatunov et al.,

2010; van Es et al., 2009). As such, it may be that association-based analyses will also

be required to identify other novel ALS causal mutations.

Another possibility is that polygenic inheritance is at play in SALS. Polygenic

inheritance refers to instances where a phenotype is mediated by the cumulative effect

of numerous genetic variants (Torkamani et al., 2018). Polygenic risk scores have

recently emerged as a way of assessing the level of susceptibility an individual has to

developing disease, given their genomic profile (Torkamani et al., 2018). Polygenic

risk scores for most diseases, including ALS and other neurodegenerative diseases, are

likely to be influenced by both rare and common genetic variants (Ibanez et al., 2019;

Torkamani et al., 2018). Indeed, polygenic risk scores have previously been described

for ALS, as well as FTD and Alzhiemers disease (Hagenaars et al., 2018). With
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the increasing availability of NGS data from ALS patients, and the accompanying

expansion of patient cohorts with WGS data, polygenic risk scores will be refined and

consolidated.

8.2.1.3 Genetic burden

Genetic burden analysis compares the cumulative frequency of qualifying variants

(which may be defined based on any criteria, such as non-synonymous variants)

in a gene between cases and controls, to determine whether that gene carries a

significant burden of genetic variation. The growing availability of NGS data from

large cohorts is now making genetic burden analysis possible in ALS, as described

in Chapter 1, Section 1.4.2.2. Numerous ALS genes have been implicated through

genetic burden testing including TUBA4A (Smith et al., 2014), TBK1 (Cirulli et al.,

2015; Freischmidt et al., 2015) and NEK1 (Cirulli et al., 2015; Kenna et al., 2016).

Many of these genes have subsequently been found to carry ALS causal mutations,

including a study by our own laboratory identifying a novel TBK1 mutation (Williams

et al., 2015). Further, the novel ALS gene CCNF, discovered by our research team,

was also found to have a genetic burden in SALS compared with controls (Williams

et al., 2016b). This demonstrates the potential for genetic burden to contribute to the

cause of ALS, and to implicate novel genes in the cause of ALS. As the availability of

NGS datasets from ALS patients grows, such genetic burden-based studies are likely

to facilitate the discovery of more novel ALS genes.

8.2.1.4 Structural variation

Structural variants (SVs) are genetic alterations affecting chromosome structure

and involve large sections of DNA. Various types of SVs have been reported, and

include inversions, translocations and genomic imbalances, namely large insertions

or deletions, as well as copy number variants (CNVs) and repeat expansions. SVs

can arise from errors during cell division or incorrect DNA repair at any point

of the cell cycle, including in post-zygotic cells, and often occur in repetitive and

duplicated genomic regions (Weckselblatt and Rudd, 2015). The consequences of

SVs can vary greatly depending on their genomic location, with many thought to

play a regulatory role in gene expression, while any SV that disrupts a gene severely

compromises transcription (Weckselblatt and Rudd, 2015). SVs have been associated

with numerous developmental disorders (Weckselblatt and Rudd, 2015) and have also
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been implicated as a cause or phenotypic modifier of a number of neurodegenerative

diseases (reviewed in Lee and Lupski, 2006). Repeat expansions are a known cause

of neurodegenerative conditions including several spinocerebellar ataxias (Banfi et al.,

1994; Orr et al., 1993; Pulst et al., 1996), Kennedy’s disease (La Spada et al., 1991)

and Huntington’s disease (1993). Importantly, the most common known cause of ALS,

expansion of C9orf72, is a repeat expansion, a type of CNV. While full expansion

of a repeat expansion in ATXN2 causes spinocerebellar ataxia type 2 (Pulst et al.,

1996), intermediate lengths of this repeat expansion have also been associated with

increased risk of developing ALS (Elden et al., 2010). As such, there is compelling

evidence to further investigate the contribution of novel repeat expansions or CNVs

to ALS. Unrecognised repeat expansions or CNVs may underlie the cause of ALS in a

proportion of the 40% of FALS with unknown mutations, and may also contribute to

disease onset or progression in SALS patients. Further, other structural variants such

as translocations or inversions, have also been implicated in diseases such as Duchenne

muscular dystrophy (Oshima et al., 2009), and may also contribute to ALS.

8.2.1.5 Epigenetics

Epigenetic mechanisms, which act to regulate gene expression, include DNA methy-

lation, histone modifications and chromatin remodelling. They exert their influence

on processes such as DNA replication and repair, as well as RNA transcription and

chromatin formation, which ultimately control downstream protein translation (Belzil

et al., 2016). Epigenetic signatures are dynamic and change over time (Feil and Fraga,

2011; Handel et al., 2010). As such, an accumulation of epigenetic alterations over a

lifetime fits well with the late and variable age of onset of ALS (Belzil et al., 2016).

Epigenetic patterns have also been shown to be altered in response to aging and

various environmental exposures (reviewed in Feil and Fraga, 2011). As noted in

Chapter 1, Section 1.3.2, many environmental factors have been suggested to increase

the risk of ALS. Therefore epigenetic alterations may provide the crucial link between

environmental exposure and the onset of disease, or the phenotypic heterogeneity

observed between ALS patients (including relatives with identical causal mutations)

(Belzil et al., 2016). To fully elucidate the causes of ALS (particularly SALS), both

genetic and environmental components, and therefore epigenetic modification, will

need to be considered.

Though still a relatively new area of research, a number of studies support an

epigenetic contribution to ALS. To-date, DNA methylation is the best understood
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and therefore most researched epigenetic mechanism. DNA methylation is upregu-

lated in the promoter region of pathogenic C9orf72 expansion alleles (Belzil et al.,

2014; Xi et al., 2013), as well as the expanded hexanucleotide repeat region itself

(Xi et al., 2015). Comparisons between neurological tissue from SALS patients

and neurologically normal individuals have also identified differentially methylated

genomic regions (Figueroa-Romero et al., 2012; Morahan et al., 2009) and global

DNA methylation increases in SALS patients (Chestnut et al., 2011; Figueroa-Romero

et al., 2012). Recently, our own laboratory identified epigenetic changes between

disease-discordant MZ co-twins (Manuscript A4, Appendix A.5.4). Most compelling

was the identification of accelerated epigenetic aging in the ALS affected co-twin,

which has also reported by Young et al. (2017). Together, these findings support a

role for epigenetic modification in regulating the onset and/or progression of ALS.

8.2.1.6 The multi-step hypothesis of ALS

It is generally accepted that ALS is a complex disease that results from the interplay

between genetic and environmental factors. Recently, it was postulated that ALS is a

multi-step process in which several sequential events (or steps) are required to trigger

the onset of disease. An accumulation of effects that cause disease is supported by

the late and highly variable age of onset in ALS patients. The statistical model for

the multi-step process is based on a linear relationship between the log values for the

age of onset and incidence of disease (Armitage and Doll, 1954). Initially, such a

relationship was reported by Al-Chalabi et al. (2014) among 6,274 ALS patients (both

FALS and SALS cases) which suggested that an average of six steps were required to

initiate the onset of disease. Subsequently, the hypothesis that ALS causal mutations

account for multiple steps was explored by Chio et al. (2018), which is strongly

suggested by the lower age of onset observed in FALS patients compared with SALS.

This analysis showed that SOD1 mutations effectively accounted for four of the six

steps, while pathogenic expansion of C9orf72 and TARDBP mutations contributed

three and two steps respectively.

This also supports the idea that common ALS genes such as SOD1, C9orf72 and

TARDBP elicit a large effect on the mechanism of disease, but gene mutations in

families with reduced penetrance are likely to have smaller effects, and account for

fewer steps in this multi-step process. This was also reflected by data from the in

silico pipeline for assessment of potential pathogenicity, where highly penetrant SOD1

mutations scored higher than less penetrant ALS mutations such as UBQLN2 and
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CCNF. The multi-step process hypothesis is also consistent with an oligogenic basis

of disease, where multiple ALS gene mutations may each account for more than one

step of the multi-step process.

The remaining steps of this model are likely to be environmental exposures, many

of which have previously been suggested as associated with ALS (See Chapter 1,

Section 1.3.2). Given that genetic predisposition to ALS appears to account for

multiple steps, and fewer environmental exposures will be needed to trigger disease

onset in mutation-carrying patients, future studies should investigate environmental

risk factors in genetically predisposed ALS patients (Chio et al., 2018). This can

also be extended to the investigation of epigenetic contributions to disease, as was

discussed above in Section 8.2.1.5.

8.3 Next-generation sequencing

NGS data were used for all genetic investigations conducted in this project. Such

datasets are an asset for genetic research, and the utility of NGS data has been

demonstrated throughout this project. NGS data have facilitated investigations of

known and candidate ALS genes, as well as novel gene discovery in ALS families and

disease-discordant MZ twins. However, these analyses have also highlighted many of

the pitfalls of NGS data, and the necessary considerations for accurate NGS analysis.

Chapter 3 highlighted the bioinformatic barriers to effective NGS analysis, and

presented numerous custom strategies that were developed to overcome such barriers.

While the benefits of NGS-based approaches to genetic discovery far outweigh the

drawbacks, it is vital that scrupulous validation, interpretation and caution are applied

when working with these datasets. The following sections will discuss vital points

that must be considered in NGS analyses that have been highlighted throughout this

thesis.

8.3.1 WES vs WGS

Many factors should be taken into account when deciding to choose whole-exome

or whole-genome sequencing. These include cost, the purpose of sequencing, data

quality and bioinformatics burden. When NGS first became available, sequencing

costs were extremely high and WGS was prohibitively expensive. Today, the price gap
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between WES and WGS sequencing continues to narrow, and WGS is expected to

eventually become more economical by avoiding the cost of targeted exome capture.

However, the costs associated with computing performance are not declining in-line

with sequencing costs, thus limiting the accessibility of WGS (Laurie et al., 2016).

As part of this thesis, both WES and WGS were utilised for genetic analysis

of ALS patient cohorts. These comparative analyses highlighted the vast increase

in genetic sequence information produced by WGS compared with WES. WGS

identifies at least ten-fold more variants than WES (Gilissen et al., 2014). This

increase in data volume has implications for both the storage and analysis of genetic

data. In this project, WES data was able to be stored on standard storage devices,

however WGS data required specialised storage solutions using large shared-memory

systems. Similarly, while bioinformatic scripting strategies for WES were readily

performed using standard desktop computing systems, this was not possible when

analysing WGS data, and high-performance computing systems were required. This

was also reflected by the process of ANNOVAR annotation, which was seamlessly

performed for WES data, but required the development of a custom scripting

strategy for WGS data (Chapter 3, Section 3.5.1). Further, the exome has far

fewer repetitive sequences and is more highly conserved compared with non-coding

regions (Meynert et al., 2014), meaning that many more variants are identified per

kilobase of DNA sequence in WGS than WES. Many repetitive and low complexity

genomic regions targeted only by WGS are more prone to sequencing errors and

the likelihood of false variant identification (discussed in detail below in Section

8.3.3). Therefore, analysis and interpretation of these regions is far more com-

plicated than that of coding regions. Consequently, when deciding between WES

and WGS, the value and purpose of sequencing non-coding regions must be considered.

While the exome accounts for less than „2% of the genome, these coding regions

harbour 85% of known disease causing mutations (Liu et al., 2015). As such, WES is

a popular, cost effective choice as a first-line approach to identify disease mutations

(Bamshad et al., 2011), with the added advantage of avoiding complex bioinformatics

analyses. Indeed, as part of this project, WES was used for novel ALS gene discovery

in FALS. However, the abundance of known disease mutations in the exome may

simply reflect that it has been far more extensively studied than other genomic regions.

WGS has greater uniformity of coverage across the genome than WES has across

the exome (Belkadi et al., 2015; Lelieveld et al., 2015; Meynert et al., 2014), which
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contributes to the increased SNP sensitivity of WGS (Meynert et al., 2013). WGS

also obtains better uniform coverage in GC-rich regions and this is increased further

with PCR-free WGS (Meienberg et al., 2016). Since exome-capture probes are

complementary for reference alleles, wild-type sequences may be overrepresented

in raw read data from WES, and potentially mask heterozygous SNPs (Meynert

et al., 2013). This bias dictates that approximately three-fold more read depth is

required to obtain accurate genotyping data from WES than WGS (Lelieveld et al.,

2015; Meynert et al., 2014). Uniform coverage also allows WGS to detect more com-

plex genetic aberrations such as structural variation (including copy number variation).

Reports have shown that 10-19% of the exome may not be adequately covered by

WES (Liu et al., 2015), and the false positive rate in coding regions is also higher for

WES than WGS (Belkadi et al., 2015). WGS and WES do show high concordance

(98.03-99.46%) for genotypes at polymorphic SNPs, with discordant sites generally

reported as heterozygous by WGS and homozygous by WES (Belkadi et al., 2015;

Laurie et al., 2016; Meynert et al., 2014). However, concordance between indel calls is

much lower at 65.76%-84.85% (Laurie et al., 2016). Interestingly, the total proportion

of false positive indels called in WES and WGS data is similar, at 44% and 46%

respectively (Belkadi et al., 2015). This reflects the difficulties in detecting indels using

short read NGS sequencing, and the need for improved strategies for indel detection

and calling.

Another important consideration when choosing between WES and WGS is variant

interpretation. Coding variation is well characterised, and clear cause and effect

relationships can often be established. Therefore, biologically meaningful conclusions

are more readily reached when studying coding regions. Conversely, little is known

about the non-coding regions of the genome. Intergenic regions, which contribute to

the majority of genomic sequences are poorly understood, and were once referred to as

“junk DNA”. While these regions are known to contain regulatory elements which do

contribute to function and phenotype (as described in Section 8.3.4), any mutations

identified here are less likely to be linked to informative biological functions, and are

of little utility until bioinformatic tools and cell-based assays are developed to better

understand their contribution to disease. The interpretation of non-coding variation

will be further discussed in Section 8.3.4.
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8.3.2 Bioinformatics processing

Bioinformatic analysis is arguably the most important component of an NGS work-

flow. In order to gain meaningful insights from NGS data, robust bioinformatic

analysis strategies are required. These include the standard processing steps of

sequence alignment, variant calling and annotation, as well as project-specific genetic

analysis and filtering. Various analysis strategies have been developed and presented

throughout this thesis. Most notably, in Chapter 3, numerous scripting strategies

were developed to address common requirements for NGS data analysis, while more

specialised scripting strategies were developed as part of Chapters 4 – 7 to perform

project-specific genetic analyses.

Processing of raw NGS data is now largely standardised, and includes quality

control, read alignment and variant calling. Quality control of NGS data is an integral

step of the NGS workflow, to ensure reliable downstream results (Pabinger et al.,

2014). Base calling errors, poorly defined indels, poor quality reads and adapter

contamination all hinder sequencing quality and reliability (Dai et al., 2010). NGS

platforms are also susceptible to instrument and chemistry failures, and such mishaps

are not uncommon (Pabinger et al., 2014). Trimming and removal of low quality

sequencing reads is based on a number of key metrics including base quality scores,

nucleotide distributions, Kmer length, N content and GC bias (Cox et al., 2010;

Pabinger et al., 2014).

Various data processing software tools are available for read alignment and variant

calling, to transform raw NGS read data into meaningful genetic variant data. Each

of these tools has its own strengths and weaknesses based on parameters such as error

rate, alignment speed, memory, sensitivity and accuracy (Li et al., 2015). As part of

this project, the Burrows Wheeler Aligner (BWA) (Li and Durbin, 2009, 2010) and

the Genome Analysis ToolKit (GATK) variant caller (McKenna et al., 2010) were

employed. These tools are adopted as part of the GATK best practices (McKenna

et al., 2010), which are generally regarded as the gold-standard processing pipeline,

and have consistently been reported as top performing tools of choice (Hwang et al.,

2015; Liu et al., 2013; Mielczarek and Szyda, 2016). In Chapter 7, NGS processing

was also performed using the Isaac alignment and variant calling pipeline that is

optimised for processing speed (Raczy et al., 2013). However, the Isaac pipeline has

not been widely adopted, as evidenced by its absence from many studies comparing

alignment and variant calling tools (Hwang et al., 2015; Laurie et al., 2016; Liu et al.,

2013; Mielczarek and Szyda, 2016; Pirooznia et al., 2014; Yu and Sun, 2013). Studies
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comparing various alignment and variant calling tools suggest that the BWA-GATK

pipeline is favourable for routine application in NGS-based studies, though to obtain

a high confidence variant call set, the results of various pipelines should be overlapped

(Hwang et al., 2015; Liu et al., 2013; Mielczarek and Szyda, 2016; O’Rawe et al., 2013).

ANNOVAR (Wang et al., 2010) was chosen for annotation due to its ease of ap-

plication and incorporation of information from a wide range of applicable databases.

The RefSeq annotations provided by ANNOVAR are desirable for their compatibility

with the tools available on the UCSC web browser (https://genome.ucsc.edu/),

which was used extensively for genomic reference information as well as primer design.

The integration of control database information from dbSNP, 1000Genomes, ExAC

and gnomAD was also highly useful to facilitate variant filtering in Chapters 5 and

6. The ability of ANNOVAR to incorporate results from in silico protein prediction

tools using the Database for Non-Synonymous Snps’ Functional Predictions (dbNSFP,

Liu et al., 2011) was also valuable, as these predictions were utilised as part of the in

silico pipeline developed in Chapter 6 to assess the potential ALS pathogenicity of

candidate mutations. Additionally, the tab-delimited output format was also a useful

feature to increase the ease of variant visualisation and filtering.

8.3.3 Sequencing artefacts

Despite an accuracy rate of more than 99.9%, the massively high-throughput nature

of NGS inevitably produces thousands of sequencing errors (Fernandez-Marmiesse

et al., 2018; Lohmann and Klein, 2014). With the increasingly widespread use of

NGS technologies in genetic discovery as well as in the clinic for genetic diagnosis,

understanding the sources of sequencing artefacts is vitally important. While NGS

is generally perceived as a single technology, it must be remembered that it consists

of three distinct modules including library preparation, sequencing and bioinformatic

processing (Daber et al., 2013). Each of these modules is prone to error, and therefore,

sequencing artefacts can be introduced at any stage of the NGS pipeline. Sequencing

artefacts can be false positive (an introduced, incorrect sequence variant) or false

negative (a real variant that has not been detected) variant calls. To validate variants

identified by either WES or WGS, Sanger sequencing was performed for each candidate

mutation identified in this project using patient DNA samples, PCR amplification and

Sanger sequencing. This validation revealed that false positive sequencing artefacts

were abundant across the NGS datasets utilised throughout this thesis. While the

https://genome.ucsc.edu/
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exact source of many of these artefacts cannot be determined without replication

of NGS data generation, it is expected that a large proportion of artefacts resulted

from bioinformatics processing, as was seen for the discordant variants identified

between co-twins/triplets in WGS data (Paper III, Chapter 7). Unfortunately, Sanger

sequencing validation is only able to detect false positive variants in NGS data, as

false negative variants are never identified and thus never validated (Daber et al.,

2013). Section 8.3.3 will provide an overview of the potential sources of error leading

to the introduction of sequencing artefacts.

Throughout this thesis, more sequencing artefacts were identified in WGS data

compared to WES data. In Chapters 5 and 6, Sanger sequencing of candidate gene

variants showed that 20 of 85 variants („23.5%) from WES data, and 13 of 16 variants

(„81.25%) from WGS data, were false positives. Additionally, in Chapter 7, tens of

thousands of discordant variants were identified between ALS-discordant MZ twin

pairs using WGS data, all of which were concluded to be sequencing artefacts following

extensive validation. The increased abundance of sequencing artefacts in WGS data

compared with WES data can be attributed to a combination of factors. These include

the increased scale of sequencing, the low complexity of many non-coding genomic

regions, and lower average sequencing coverage of the WGS data (30X) in contrast to

WES data (100X). Each of these factors will be discussed in further detail below in

Section 8.3.3.

Interestingly, when WES data from FALSmq28 is removed from the above figures,

the number of WES candidate mutations found to be false positives was reduced to

just five of 85 („5.88%). The increased number of false positive variants in the WES

data from FALSmq28 is likely due to the fact that the raw WES data for the three

members of this family underwent single-sample variant calling, while all other WES

data (n=137) underwent joint variant calling. Multi-sample calling has been shown to

improve both the sensitivity and accuracy of variant calls (Liu et al., 2013), therefore

the FALSmq28 WES false positive variants are likely attributable to a reduction in

these metrics. A proportion of the sequencing artefacts in FALSmq28 WES may

also be attributable to errors during library preparation or sequencing (as discussed

below), as this sequencing data was also generated separately to any other dataset.

Up to 90% of the genome can be confidently genotyped (Laurie et al., 2016; Telenti

et al., 2016; Weisenfeld et al., 2014; Zook et al., 2014), with a false discovery rate of

just 0.0008 for variant identifications (Telenti et al., 2016). However, the remaining
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10% is almost impossible to accurately genotype using current technology (Laurie

et al., 2016; Telenti et al., 2016; Weisenfeld et al., 2014; Zook et al., 2014). This

portion of the genome consists of low complexity, repetitive or duplicated genomic

regions (such as paralogues, pseudogenes, transposable elements, tandem repeats,

segmental duplications and complex rearrangements), or regions with large structural

variants (Li, 2014; Linderman et al., 2014; Weisenfeld et al., 2014; Yu and Sun, 2013;

Zheng and Grice, 2016). Sequencing artefacts arising in these regions are attributable

to a number of factors, most notably amplification and sequencing issues caused by

high GC-content, as well as difficulties encountered by alignment and variant calling

tools. The following sections provide further details of the sources of NGS errors, and

though these factors are most relevant for these difficult to sequence regions, they also

cause sequencing errors in other genomic regions, albeit at a much lower rate.

8.3.3.1 Sources of sequencing artefacts

Library preparation

Whole-genome amplification (WGA) applies PCR to a genomic DNA sample for

which an insufficient quantity of DNA is available. In Chapter 5, a novel candidate

gene variant in DAGLB was identified in WES data generated from a patient DNA

sample that had previously undergone WGA. Fortunately, this patient also had a

small amount of non-amplified DNA available. Sanger sequencing showed that while

this candidate mutation was present in the WGA DNA sample, it was absent from

the non-amplified DNA sample. Therefore, it was deemed a PCR artefact. Further,

this candidate mutation showed a high potential for ALS pathogenicity using the in

silico pipeline. This result demonstrates the potential for WGA, and PCR in general,

to introduce errors to NGS data, and highlights that such errors have the potential to

exhibit characteristics suggestive of a pathogenic nature. Therefore, any NGS data

generated from WGA samples must be treated with caution.

The introduction of mutations during WGA are similar to PCR errors. Indeed,

PCR amplification prior to NGS sequencing has been shown to drastically increase

sequencing error rates by introducing sequencing template base errors (Li, 2014).

This was indeed the case in Chapter 7, where the one twin set that underwent

PCR amplification during WGS library preparation showed up to 10-fold more

discordant variants (later concluded to be sequencing artefacts) than any of the three

twin/triplet sets that underwent PCR-free WGS. PCR base incorporation errors may

be polymerase-derived errors, particularly those in poly-A or poly-T runs (Brockman
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et al., 2008; Li, 2014). Sequencing template bias in amplified libraries may also be

introduced by PCR, due to annealing difficulties in GC-rich regions (Aird et al.,

2011), or higher affinity for particular alleles at polymorphic sites, which in turn affect

downstream variant calls (Yu and Sun, 2013). PCR amplification prior to NGS is

however necessary to increase the availability of sequencing templates in some cir-

cumstances, particularly for WES after exome capture where just „2% of the genome

is captured, leaving very small quantities DNA available to act as sequencing templates.

In addition to PCR artefacts, library preparation is error prone due to the

creation of chimeric templates from adapter sequences that have not been properly

cleaved, adapter/primer dimers or biases, 3' capture bias or the inclusion of adapter

sequences in sequencing templates (Kircher et al., 2011; Robasky et al., 2014; Yu and

Sun, 2013). Such errors may create contaminant or incorrect sequences, or introduce

coverage biases, which may result in the misrepresentation of the true genetic sequence.

Sequencing

During the sequencing phase of NGS, multiple factors may cause incorrect base

incorporation or base calling, leading to flawed sequencing reads. Sufficient sequencing

cluster intensity is vital for correct base calling, though this intensity can be reduced

by inadequate extension product growth during bridge amplification, inefficient

hybridisation of sequencing primers, or degraded fluorophores (Kircher et al., 2011; Yu

and Sun, 2013). Signal intensity may also be diminished, or incorrect, if sequence read

synthesis from the individual template copies belonging to the same sequencing cluster

becomes de-synchronised (Nielsen et al., 2011). Such de-synchronisation is amplified

in each subsequent sequencing cycle, and therefore base calling becomes less accurate

in later cycles (Nielsen et al., 2011). Contaminant sequence reads may result if

molecules such as chemistry crystals, dust or lint particles are recognised as sequencing

clusters by the sequencing instrument (Kircher et al., 2011). Such sequencing read

errors have downstream complications, causing misalignment and incorrect variant

calls during bioinformatics processing (Robasky et al., 2014). Low complexity regions

suffer from the added difficulties that their repetitive nature and high GC-content

cause sequencing fidelity errors, and are therefore generally sequenced at very low

read depths (Meynert et al., 2014).

Bioinformatics processing

Errors arising from the bioinformatics processing of raw NGS sequencing reads were

investigated in Chapter 7. Extensive validation efforts, together with the application
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of multiple processing pipelines, suggested that the discordant variants identified

between co-twins/triplets were most likely artefacts of bioinformatics processing.

These findings reflect the high level of discordance in variant calls between different

alignment and variant calling tools (Bao et al., 2011; Hwang et al., 2015; Laurie

et al., 2016; Li, 2014; Liu et al., 2013; Mielczarek and Szyda, 2016; O’Rawe et al.,

2013; Tian et al., 2016; Yu and Sun, 2013). Therefore, sequencing artefacts arising

from the bioinformatics processing of NGS data are a common feature of NGS datasets.

The majority of errors introduced by bioinformatics processing tools are found in

the 10% of the genome that is notoriously difficult to genotype (GC-rich sequences

and repetitive and duplicated elements) (Laurie et al., 2016; Weisenfeld et al., 2014).

Alignment is particularly difficult in these regions, as due to their short length,

alignment tools may incorrectly map a sequence read to two or more reference genome

locations that have highly similar sequence identity (Li, 2014; Linderman et al., 2014;

Weisenfeld et al., 2014; Zheng and Grice, 2016). Such reads are either discarded or

aligned to the “best match” genomic region. This results in regions with insufficient

read coverage and/or dubious alignments, both of which lead to incorrect variant

calls (Fernandez-Marmiesse et al., 2018; Laurie et al., 2016; Li, 2014; Linderman

et al., 2014; Weisenfeld et al., 2014; Zheng and Grice, 2016). Further, alignment is

also difficult in genomic regions where the individual’s sequence deviates from the

reference genome, such as those regions with many SNPs in close proximity (Nielsen

et al., 2011; Reinert et al., 2015; Tian et al., 2016). Additionally, variant callers have

also been shown to be better at calling dbSNP variants than novel variants (O’Rawe

et al., 2013; Yu and Sun, 2013). Both alignment and variant calling tools are far more

reliable for the remaining 90% of the genome, with concordance between different

tools for these regions in the vicinity of 90% for SNPs and 60% for indels (Hwang

et al., 2015; Laurie et al., 2016; Linderman et al., 2014; Popitsch et al., 2017).

Read depth

Read depth is a critical factor in NGS, as higher coverage leads to more accurate

variant calling, and low coverage data can lead to incorrect variant identification

(Linderman et al., 2014). It is also important to note that coverage is not uniform

across the genome, with some regions being sequenced more readily than others, so

that a sequencing coverage of 30X indicates the average number of reads mapped to

any position across the genome, rather than the minimum number of reads mapped

to every position. A 30X sequencing coverage, as used here for WGS, equates to most

sites being covered by at least 10 reads (Lohmann and Klein, 2014), however some
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sites may not be covered by any reads. This non-uniformity extends to allele coverage,

so that one allele may be sequenced more times than the other, reflecting a false allelic

distribution, which may result in incorrect variant calls (Lohmann and Klein, 2014).

Estimates suggest that a minimum coverage depth of 33-50X (i.e. minimum coverage

at each site, not average coverage across the genome) is required to detect all SNPs

and small indels using WGS (Ajay et al., 2011; Bentley et al., 2008), however due to

the difficulties associated with identifying larger indels, a much higher coverage will

be necessary to identify these in NGS data.

8.3.3.2 Sequencing artefacts and Sanger sequencing validation

The majority of NGS variants that were found to be sequencing artefacts after Sanger

sequencing in this project were located in low complexity, repetitive or duplicated

genomic regions. In addition to impacting NGS accuracy, these characteristics also

complicate primer design for PCR. Over 15,000 pseudogenes have been been identified

in the human genome (Cunningham et al., 2015). Therefore, primers targeting these

elements are likely to amplify numerous regions across the genome. This was found to

be the case when designing primers for candidate mutations falling in low complexity,

repetitive or duplicated regions. To combat this difficulty, approaches to increase

specificity were employed. These included designing primer pairs to incorporate SNP

variants, as well as using touch-down thermocycling conditions and nested PCR.

In many cases, nested PCRs were required to obtain a single PCR product. This

approach first involved the amplification of a 700-1000bp genomic region flanking the

target variant. This long PCR product was then used as a template for a subsequent

reaction targeting a smaller, more specific region of interest, which would otherwise

amplify numerous loci from a genomic DNA sample. Even when such approaches

were utilised, many PCR products targeting indel variants produced poor quality

Sanger sequencing data. In these cases, a fragment length analysis approach was

employed to resolve the size of the product, to confirm the presence or absence of the

indel variant. All variants directly sequenced using nested PCRs or fragment length

analysis were found to be false positive variants, demonstrating the high error rates of

NGS in low complexity genomic regions. Further, Sanger sequencing showed that all

24 indel candidate mutations from FALSmq28 were false positive variants, reiterating

the difficulties encountered by NGS in accurately identifying indel variants.
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8.3.3.3 Additional considerations for dealing with sequencing artefacts

In order to avoid sequencing artefacts, some studies have suggested that filters should

be applied to remove the 10% of the genome that cannot be reliably genotyped,

or more simply, remove genomic regions of low complexity (Popitsch et al., 2017).

However, such filtering approaches may also discard important variant calls. Other

studies have instead suggested that overlapping the variant call sets from multiple

variant calling tools will increase specificity, and produce a high confidence set of

variants (Li, 2014; Liu et al., 2013; Popitsch et al., 2017). In Chapter 7, these

approaches were combined to conclude that no reliable discordant variants had been

identified between ALS-discordant co-twins/triplets.

Regardless of whether a region is difficult to sequence or not, single nucleotide

variant (SNV) calls are more reliable than those for indels (Laurie et al., 2016;

O’Rawe et al., 2013). Indels are notoriously difficult to identify using NGS, with

reports showing that only „50% of indels identified by WES and WGS can be

validated by Sanger sequencing (Belkadi et al., 2015). Indeed, many of the NGS indel

variants identified throughout this project were not validated by Sanger sequencing

(as described above in Section 8.3.3.2), or the position of the NGS indel variant was

called inconsistently. The difficulty in aligning sequencing reads containing indels to

the reference genome means that indels are often mapped incorrectly (Daber et al.,

2013; Li, 2014; Pabinger et al., 2014). Sequencing reads that contain large indels are

frequently discarded from bioinformatics processing, leading to false negative variant

calls (Daber et al., 2013; Pabinger et al., 2014). Indels are also more susceptible to

replication errors than SNVs (Li, 2014).

False negatives are not detectable without repeating NGS. It is possible that a

mutation that caused ALS may not have been detected with the NGS strategy used

in this project. This may be the case in FALSmq28 in Chapter 6, where no candidate

mutations remained after family-based analysis and Sanger sequencing validation, or

in the twin pairs described in Chapter 7 where no somatic de novo mutations were

identified between ALS-discordant co-twins/triplets.

8.3.4 Assessment of variant pathogenicity

An unprecedented amount of genetic variation has been uncovered using NGS

technologies, and this can often lead to many candidate mutations from gene discovery
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projects, as shown in this thesis. Interpreting the biological relevance of variants is

now a major bottleneck in disease gene discovery (Lohmann and Klein, 2014). Many

variants identified by NGS may be predicted to play a role in disease, a problem that

has been labelled the “narrative potential” of the human genome (Goldstein et al.,

2013). For example, after sequencing 10,000 individuals, Telenti et al. (2016) showed

that an average of more than 8,000 novel variants were present in single human

genome. Many interactions may be identified that link novel variants, or affected

proteins, with known disease-linked proteins or mechanisms, though whether these

truly contribute to disease pathogenesis cannot be established without appropriate in

vitro and in vivo modelling. The scale of this task is typically beyond the scope of

current functional assays, particularly when considering non-coding variants.

While NGS approaches have facilitated many gene discoveries, there have been

instances where the claimed pathogenicity of genetic variants has been called into

question. This reflects the difficulty in assessing and interpreting the pathogenicity

of variants identified by NGS. In fact, systemic reviews suggest that up to 27% of

variants reported as disease-linked mutations have later been revealed to be benign

polymorphisms present in population controls, or to have insufficient evidence to be

labelled as pathogenic (Xue et al., 2012). Some family studies, and studies of proband

or sporadic patient cohorts have labelled variants as pathogenic based solely on the

observation that they fall within a known disease gene or disease related gene. A

prime example is SOD1, where over 180 putative pathogenic mutations have been

reported across the 462 nucleotides of the coding sequence, many of which have been

reported in a single case without supportive segregation or replication data. As genetic

discoveries are translated to the clinic to improve diagnostics and treatment decisions

for patients (Quintans et al., 2014; Richards et al., 2015), inaccurate assignment

of pathogenicity can have severe consequences for patients, by initiating incorrect

prognostic, therapeutic or reproductive advice (MacArthur et al., 2014). Therefore,

accurate assignment of pathogenicity is crucial for effective translation of genetic

discoveries into the clinic. From a research perspective, resources may also be wasted

by supporting research programs that are based on false assignments of pathogenicity,

with misallocation of resources for studies targeting genetic variants, or proteins, that

lack adequate evidence for their role in disease (MacArthur et al., 2014).

Clear guidelines are required for assessing variant pathogenicity and prioritisation.

MacArthur et al. (2014) and Richards et al. (2015) separately reviewed this from

a research and clinical perspective, respectively. Both included discussions of the
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evidence required from genetic and functional sources to implicate a variant as being

a pathogenic mutation (MacArthur et al., 2014; Quintans et al., 2014; Richards et al.,

2015). Foremost in family-based studies is segregation of a candidate mutation with

disease within a family (where possible), which may be complemented by the presence

of identical or additional novel mutations within the same gene in other families or

patient cohorts. Absence of the variant from large numbers of population controls

is also necessary for genetic confidence of variant pathogenicity (MacArthur et al.,

2014; Richards et al., 2015). Functional characteristics of both the gene and variant

should also support the pathogenicity of a variant (MacArthur et al., 2014; Richards

et al., 2015). This functional data can be gathered using in silico, in vitro and in

vivo approaches. As part of this thesis, the genetic evidence available to implicate a

variant in disease has been extensively scrutinised. Additionally, an in silico pipeline

was developed to assess the potential pathogenicity of candidate mutations based

on functional characteristics, in order to prioritise those most suited for functional

assessment using in vitro and in vivo models.

8.3.4.1 In silico pipeline for assessment of variant pathogenicity

The pipeline presented in Chapter 6 incorporated a range of gene and variant level

functional characteristics to prioritise candidate mutations within each ALS family.

Analysis of amino acid conservation across species and prediction of damaging protein

effects have been reported as vital tools to assess variant pathogenicity (MacArthur

et al., 2014; Richards et al., 2015). High evolutionary conservation suggests the

integral importance of an amino acid residue, implying that divergence would lead to

detrimental changes in protein function. Protein prediction programs generally utilise

sequence homology and/or protein structure information to predict the likelihood

that variant is damaging (Frousios et al., 2013) and thereby potentially pathogenic

(MacArthur et al., 2014; Quintans et al., 2014). Gene expression levels in the disease

affected tissue may also implicate genes that are more likely to be relevant to pathology

(MacArthur et al., 2014). Finally, the natural abundance of variation within a gene

has been reported as a good indicator of how well a gene will tolerate protein-altering

variation without significant detrimental functional effects (MacArthur et al., 2014).

It has been argued that data from multiple in silico tools that assess the same

characteristic can be interpreted as a single piece of evidence (MacArthur et al.,

2014; Richards et al., 2015). While various tools that assess the same characteristic

have substantial underlying similarities, each utilises a unique algorithm and set of
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parameters to calculate their result (MacArthur et al., 2014; Pabinger et al., 2014;

Richards et al., 2015). As such, the outputs from these tools are not always in

agreement, and some tools perform better for particular types of variants or genes

(Richards et al., 2015). Multiple tools and/or databases were used to assess each of

the four characteristics incorporated as part of the in silico pipeline presented here, in

order to ensure that a general representation of each characteristic was reported, and

to avoid biases introduced by any individual tool.

The potential pathogenicity of 110 coding candidate mutations (identified by

genetic analysis across the four small families analysed in Chapter 6) was assessed

using the in silico pipeline developed here. This prioritised candidate mutations and

determined which were most suited for downstream in vitro functional analysis. While

the in silico approach cannot definitively prove the causality of a gene mutation, the

findings of these analyses can be a great asset in determining the most likely cause

and mechanism of disease within a family, and can be informative for other researchers

who have made similar observations.

8.3.4.2 Non-coding variant interpretation

Non-synonymous variants can be assessed to predict downstream effects on protein

structure and function, and potential pathogenicity, using the numerous in silico

tools as described above (MacArthur et al., 2014). In contrast, non-coding variants

identified by WGS present a new challenge as our understanding of their functional

consequence is in its infancy. As non-coding regions account for more than 98% of the

genome, millions of non-coding variants are present within each individual’s genome.

This was demonstrated in family FALSmq28, where over 10 million non-coding

variants were identified by WGS for the three sequenced family members.

Many non-coding variants have regulatory roles that affect gene splicing and

expression, yet the knowledge available in this space is still quite limited. Promoter

variants may impact transcription, enhancer variants may affect transcription factor

binding motifs, intronic and untranslated region variants can affect messenger RNA

by altering stability or splicing patterns, and other non-coding variants may alter

various classes of RNA molecules including long non-coding RNAs, microRNAs and

small nucleolar RNAs (Zhu et al., 2017).

A number of resources for interpreting non-coding variation are beginning
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to emerge. These include databases such as the Encyclopedia of DNA El-

ements (ENCODE) (Dunham et al., 2012) and the Roadmap Epigenomics

Consortium (Kundaje et al., 2015), both of which provide data to assess the

potential contribution of a genomic region to regulatory processes. Other pre-

diction tools for non-coding variants including CADD (The Combined Annota-

tion Dependent Depletion; http://cadd.gs.washington.edu/; Kircher et al.,

2014), DANN (The Deleterious Annotation of genetic variants using Neural

Networks tool Quang et al., 2015), GWAVA (The Genome-wide annotation of

variants; https://www.sanger.ac.uk/sanger/StatGen_Gwava; Ritchie et al.,

2014), FATHMM-MKL (Functional Analysis through Hidden Markov Models;

http://fathmm.biocompute.org.uk/; Rogers et al., 2018; Shihab et al., 2015)

and LINSIGHT (linear INSIGHT; https://github.com/CshlSiepelLab/LINSIGHT;

Huang et al., 2017) are also available.

8.4 Important considerations for disease gene dis-

covery using NGS datasets

As established above, while NGS provides an exciting opportunity to identify novel ge-

netic factors underlying disease, there is an alarming potential for incorrect conclusions

to be drawn from such studies. This may arise from the incorrect removal of disease

causal variants during variant filtering, or incorrect assignment of pathogenicity to

benign variants. Complex genetic diseases continue to pose challenges for genetic study

design. Further, while large scale databases represent rich resources to aid genetic anal-

yses, they too must be treated with caution. As such, various points must considered

when evaluating the results of NGS-based studies, as discussed in the following sections.

8.4.1 Limitations of family-based analysis

The development of formal genome-wide statistical models may be required to differ-

entiate between variants causing disease and those implicated by chance (MacArthur

et al., 2014). Such models need to account for disease prevalence, disease penetrance,

natural genic variation and mutation rates (MacArthur et al., 2014). While such

models have been developed for identifying disease-associated variants in GWAS,

no comparable models are yet available for monogenic diseases (MacArthur et al.,

2014). For many diseases, including ALS, the patient sample sizes necessary to reach

http:// cadd.gs.washington.edu/
https://www. sanger.ac.uk/sanger/StatGen_Gwava
http://fathmm.biocompute.org.uk/
https://github.com/CshlSiepelLab/LINSIGHT
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statistical significance will require large international collaboration (MacArthur et al.,

2014). However, for extremely rare variants or “private” mutations limited to a single

family, significance may never be attained (MacArthur et al., 2014).

Failure to call a pathogenic variant following NGS will also confound segregation

analysis. If this “missed” pathogenic variant lies close to another rare variant, the

latter may be mistaken as a potential causal variant rather than merely a linked allele

(Fernandez-Marmiesse et al., 2018; MacArthur et al., 2014). As such, segregation

alone may not be sufficient to establish pathogenicity (MacArthur et al., 2014). This

is relevant for WES data, where many variants go undetected. To overcome this issue,

comprehensive haplotyping of the region found to carry a candidate mutation in an

extended pedigree would be necessary.

8.4.2 International databases of next-generation sequencing

datasets

The generation of NGS sequencing data from thousands of individuals across the

world presents an exciting opportunity to further our understanding of the genetic

variation underlying human disease and phenotypic traits. Databases of NGS data

from control cohorts provide an invaluable resource for filtering benign genetic

variation. Over 150,000,000 SNVs across the genome have been reported in dbSNP,

while over 10,000,000 coding variants can be found in the ExAC database. This

staggering amount of genetic sequencing data provides great power for genetic analysis.

While the established control databases have limitations (as discussed in Chapter

6), they are highly informative for many modern genetic research applications. The

control databases were integral components of genetic analysis presented in this thesis.

Without these databases, control screening would have been too costly and time

consuming to screen all candidate gene mutations and would have been limited to far

fewer control individuals than are available in the online databases.

Caution must however always be applied when utilising aggregated control

databases. Many of the variants reported in these databases have not been validated

by Sanger sequencing, and therefore may be sequencing artefacts. The collaborative

nature of many of these databases also means that individual DNA samples have

been sequenced with a variety of sequencing platforms and processed using various
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bioinformatics pipelines. As has been discussed above in Section 8.3.3, the three

distinct modules of the NGS pipeline can each introduce a plethora of sequencing

artefacts. Without uniform protocols applied across all samples within NGS databases,

variant frequency biases associated with distinct protocols may exist within these

databases, which may confound association analyses.

Additional methods may also be required to address population stratification of

rare variants, as these show stronger geographical clustering compared with common

variants (Mathieson and McVean, 2012; O’Connor et al., 2013). Indeed, as part of this

thesis, the effect of population stratification was an important consideration in genetic

analyses. In Chapter 4, it was demonstrated that the genetic landscape of Australian

FALS and SALS is unique when compared to other primarily Caucasian-based

populations. This was highlighted when the most common SOD1 mutation in North

America, p.A5V, was found to be absent from Australian FALS. Similarly, just „3%

of Australian SALS was attributable to the C9orf72 expansion compared with 7-10%

in other European based SALS populations. The results of SNP association testing in

Chapters 4 and 5 showed discordance when using international control cohorts from

ExAC and gnomAD, compared with Australian controls from DACC and MGRB

cohorts. These SNP association results were also inconsistently replicated using the

Project MiNE cohort of ALS patients and controls, which is primarily derived from

European populations. Finally, in Chapter 6, variant filtering with Australian controls

resulted in a substantial reduction in candidate mutations, even following filtering

using large international cohorts. These findings highlight the importance of using

controls with the same genetic background as the disease cohort.

8.5 Ongoing and future work

The ultimate goal is to identify novel genetic causes of ALS among Australian patients.

The work presented in this thesis represents significant progress towards this goal.

Known and candidate ALS gene analysis in Australian patients demonstrated the

unique genetic landscape of Australian FALS, and further identified eight candidate

gene mutations potentially causing ALS, and 17 potentially disease-associated candi-

date gene variants. Novel gene discovery efforts substantially narrowed the search for

the ALS causal mutation in each of five Australian ALS families, with just a handful

of strong candidate mutations present in each, and highlighted the potential for

more complex genetic variants to underlie ALS in families and disease-discordant MZ
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twins. Numerous bioinformatic scripting strategies were developed by the candidate to

perform this genetic analysis of NGS data, which can also be applied to future datasets.

8.5.1 Familial ALS

The FALS candidate gene screening strategy that was developed throughout this

thesis will continue to be applied to Australian FALS patients to identify novel genetic

causes of ALS. Novel family-based gene discovery efforts will also continue. This will

include performing updated filtering of population-based variants from the lists of

candidate mutations for each family analysed in this thesis. Additionally, this will

include family-based analysis of newly recruited families with multiple informative

individuals available. Where a sufficient number of family members have DNA

samples available, this analysis will incorporate genome-wide linkage analysis. For

families where a compelling candidate ALS gene mutation is identified, international

FALS cohorts will be interrogated for mutations in this candidate gene. Further, any

newly reported ALS genes will be screened through the full Australian FALS cohort

to establish their contribution to Australian FALS.

8.5.1.1 In vitro and in vivo assessment of pathogenicity

Given that the genetic power of the four small families has been exhausted, alternative

strategies are necessary to implicate the pathogenic mutations. As part of the

research program in our laboratory, high priority candidate mutations (as assessed

using the in silico pipeline presented in this thesis) will be assessed for potential

ALS pathogenicity using an established functional analysis pipeline. These analyses

will characterise a number of ALS relevant phenotypes at the cellular level. For

example, expression constructs can be generated for each candidate gene in parallel

with the wild-type gene as a control construct. Cell lines transfected with these

constructs will be used to determine the toxicity and cellular localisation of candidate

mutant proteins. A cell death assay, analysed by flow cytometry, can assess the

toxicity of the mutant gene and the cellular localisation determined by fluorescent

visualisation of the proteins. Further, the candidate constructs can be co-transfected

with TDP-43, the primary constituent of the disease hallmark protein aggregates.

This would identify any potential pathological interactions between candidate mutant

proteins and TDP-43 that may signify disease relevant pathology. Histopathological

characterisation of candidate proteins in patient neuronal tissues can assess their
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expression in motor neurons including any colocalisation with known ALS proteins

and hallmark pathological features.

Candidate mutations with compelling support for pathogenicity from genetic, in

silico and in vitro analyses can be modelled using in vivo strategies. For example,

zebrafish and mice have been successfully used to develop ALS models (reviewed in

Picher-Martel et al., 2016; Van Damme et al., 2017). Facilities for the development of

these models are in place as part of the the multidisciplinary Macquarie University

Centre for motor neuron disease research. Animal models can provide strong evidence

to support, or refute, the role of a candidate mutation in motor neuron death. These

models may also be useful in longer-term pre-clinical studies.

8.5.2 FALSmq28

A variety of research strategies may be considered to seek the identity of the ALS

causal mutation in family FALSmq28. Moving forward, all family-based analysis will

focus on non-excluded linkage regions. Given the plethora of sequencing artefacts

identified by WGS throughout this thesis, WGS can be repeated to a greater depth or

with a different sequencing platform. The re-sequenced WGS data can be compared to,

or combined with the original WGS data, in order to remove any artefacts introduced

by the library preparation or sequencing phases of WGS. Analysis can also commence

to identify any repeat expansions, CNVs, or other SVs, that may cause disease using

the strategy discussed in Section 8.5.4.

8.5.3 Sporadic ALS

As was established in section 1.4.2, there exists a significant amount of evidence

implicating genetic variation in the cause of SALS (Al-Chalabi and Hardiman, 2013;

Andersen and Al-Chalabi, 2011). Increasingly large SALS WGS datasets offer a

unique opportunity to identify novel ALS genes of small to modest effect using

association-based approaches. During the later stages of this candidature, WGS

from 635 Australian SALS patients became available for analysis. Unfortunately,

due to time constraints, genetic analysis of SALS in this thesis was limited to four

candidate genes (CHCHD2, CHCHD3, CHCHD6 and TIA1 ), and the known ALS

gene CHCHD10. Future analyses may include a comprehensive ALS gene screen,

similar to that carried out for FALS in Paper I (Chapter 4, Section 4.3.1), as well as



304 Discussion

candidate ALS gene screening. Repeat expansions and CNVs will also be investigated

as a cause of SALS as discussed below in Section 8.5.4.

8.5.3.1 Rare variant combinations and their association with disease-risk

and variable phenotypes

The missing heritability in current SALS genetic studies, and the complex, heteroge-

neous nature of ALS, point to numerous potential genetic and/or environmental factors

that contribute to development of SALS. A search can commence for combinations

of rare SNPs that associate with 1) the presence or absence of ALS (i.e. disease

risk), 2) disease duration and 3) age of onset, using WGS data and associated clinical

information. This can be achieved by applying statistical software programs such

as those based on Limitless Arity Multiple Testing (LAMP), a p-value correction

technique for combinations of multiple markers (Terada et al., 2013). This approach

may be extended beyond rare SNPs, to also investigate non-synonymous SNPs, rare

non-synonymous SNPs and CNVs.

Disease-risk SNP combinations

A GWAS-based approach can be applied to identify combinations of rare SNPs

associated with SALS, using the LAMPLINK software (Terada et al., 2016), which

incorporates the LAMP methodology with the widely used GWAS software, PLINK.

This approach requires a case-control analysis. Control WGS data from MGRB and

Project MinE, each containing over 1000 control individuals, would be suitable for

this analysis.

Prognostic SNP combinations

This analysis would use a LAMP approach optimised for survival analysis with

log-rank testing (Relator et al., 2018), and involve a discovery and validation stage

using SALS patient WGS data only. Patients with disease durations that place them

in the top 10% of longest or shortest survivors in the cohort can be stratified, and

WGS data from these two patient subsets used to identify combinations of SNPs that

associate with slowly or rapidly progressive disease. These SNP combinations can then

be interrogated in WGS data from the remaining 80% of patients, to assess whether

disease duration may be predicted using this model. A similar strategy can also

be applied to identify SNP combinations that influence the age of disease onset in SALS.
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8.5.4 Copy number variation in ALS

Copy number variants (CNVs) are structural variants where the number of copies of

a DNA segment varies. CNVs are a common feature of the human genome and a

great source of genetic variation (Zhang et al., 2009). While the majority of known

ALS mutations are nucleotide level coding mutations, the most common known cause

of disease, the pathogenic expansion of an intronic hexanucleotide repeat C9orf72, is

arepeat expansion, a type of CNV. Repeat expansions have also been identified as

a cause of other neurodegenerative conditions including the spinocerebellar ataxias

(Banfi et al., 1994; Orr et al., 1993; Pulst et al., 1996), Kennedy’s disease (La Spada

et al., 1991) and Huntington’s disease (1993). Additionally, intermediate length repeat

expansions in ATXN2 have also been associated with increased disease-risk for ALS

(Elden et al., 2010). Therefore, together with the recent difficulties of identifying

novel nucleotide level mutations, this suggests that repeat expansions or other types of

CNVs may play a pathogenic role in ALS. Unrecognised CNVs may underlie the cause

of ALS in a proportion of the 40% of FALS with unknown mutations, and may also

contribute to disease onset or progression in SALS patients. Further, other structural

variants such as translocations or inversions, have also been implicated in diseases

such as Duchenne muscular dystrophy (Oshima et al., 2009), and may also contribute

to ALS.

CNVs have been understudied in ALS WGS studies, largely because of the lim-

itations of existing software to identify CNVs on a genome-wide scale. Nevertheless,

existing programs such as CNVnator (Abyzov et al., 2011) and Lumpy (Layer et al.,

2014) could be used to seek CNVs in families, FALS probands, SALS patients and

disease-discordant MZ twins. Each of these programs utilises different properties

of raw WGS read data to determine the presence of a CNV. The MetaSV program

(Mohiyuddin et al., 2015) can be used to overlap the CNVs identified by each program,

to create a set of higher confidence CNV calls for each individual. The exome hidden

Markov model (XHHM) program (Fromer et al., 2012) offers a means of CNV analysis

with WES data, although the identification of CNVs from WES is less reliable than

that from WGS.

In ALS families, including FALSmq28, shared variant analysis could be applied to

the CNV data to identify those CNVs that segregate with disease. Where applicable,

this analysis would be limited to non-excluded linkage regions. The CNVs identified

from SALS and FALS proband data can be assessed for their frequency, and whether

any affect known ALS genes. Discordant CNVs may also be identified among
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ALS-discordant MZ twin/triplet sets. Possible pathogenic CNVs can be filtered to

discard any that are present within control datasets, including in-house and publicly

available control cohorts before validating remaining CNVs. Any CNVs identified with

compelling pathogenic potential can also be screened in extended patient cohorts.

8.6 Concluding remarks

In the 25 years since SOD1 was discovered as the first known ALS gene, many advances

have been made in our understanding of the genetic aetiology underlying ALS, with

mutations in over 20 genes reported to cause disease. The strategies to identify ALS

genes have also undergone many changes during this time. Earlier studies focussed

on the analysis of large families using traditional genetic techniques such as genetic

linkage analysis. Today, most of the ALS families with an unknown causal mutation

are small and not amenable to traditional gentic linkage analysis, and are therefore

analysed using next-generation sequencing strategies. Though the genetic discoveries

in ALS to-date have provided significant advances in our understanding of disease

pathogenesis, much is yet to be understood of the pathogenic mechanisms underlying

ALS. Ongoing genetic discoveries offer a means of unravelling these mechanisms.

With the cause of disease yet to be identified in almost 40% of Australian FALS

and over 90% of Australian SALS patients, many more mutations and genetic risk

factors are yet to be discovered. The analyses presented in this thesis have made

substantial progress towards identifying unknown genetic factors in ALS. The current

genetic landscape of Australian familial ALS has been established, and the search for

the ALS causal mutation in each of five Australian ALS families has been substantially

narrowed, with just a handful of strong candidate mutations present in each. These

results highlight the genetic heterogeneity of ALS, and the difficulties faced by ALS

gene discovery research efforts. By shedding light on the complex nature of ALS

genetics, the data generated here will provide vital guidance for the refinement of

novel ALS gene discovery strategies moving forward.

The genetic analyses and biological insights into ALS presented in this thesis were

made possible by the development of numerous bioinformatic scripting strategies.

These strategies will continue to be utilised in the search for novel genetic causes of ALS

using NGS data from established and expanding familial and sporadic patient cohorts.
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Such NGS datasets are rich resources that will facilitate the identification of novel ge-

netic causes of disease, and in turn allow the expansion of the genetic spectrum of ALS.

Novel ALS gene discoveries will continue to be vital resources to enhance our

understanding of the mechanisms underlying disease pathogenesis. These novel gene

mutations will form the basis of in vitro and in vivo models of disease, which will

be required to not only decipher the intricate processes leading to disease onset and

progression, but to also develop and test novel therapies. Novel gene discoveries will

also have direct utility in the clinic by enabling diagnostic testing, carrier-testing

and preimplantation genetic diagnosis. With no effective treatment or cure available

for ALS, these genetic discoveries will give hope to patients and families affected by

disease, that there is a future without ALS.
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A.2 Bioinformatics scripts

This section presents the complex bioinformatic scripts that were developed and/or

used for genetics analysis of next-generation sequencing data as part of this thesis.

A.2.1 ANNOVAR annotation of the 850-sample WGS VCF

This code was used to subset annotate the 850-sample WGS VCF using with the

information described in Table 2.2 using ANNOVAR software.

1 #!/bin/sh -e

2 #

3 # VCF850_ANNOVAR.sh

4

5 #script to annotate full 850 WGS VCF

6

7 # run code from directory containing annovar .pl scripts

8 cd /datastore/mcc549/annovar

9

10 # make a new VCF with only meta data and sample 1 information

11 cut -f 1-10 complete.vcf | grep -v -P ’^#’ > sample1.vcf

12

13 # make a text file with sample information for all samples in columns 11-854

14 cut -f 11-859 complete.vcf | grep -v -P ’^#’ > samples11_854.vcf

15

16 # run annovar sample 1 VCF

17 ./table_annovar.pl sample1.vcf humandb/ -buildver hg19 -out sample1_myanno

-remove -protocol refGene,cytoBand,exac03,gnomad_exome,gnomad_genome,

avsnp147,dbnsfp33a,dbnsfp31a_interpro,esp6500siv2_ea,esp6500siv2_all,

ALL.sites.2015_08,EUR.sites.2015_08,clinvar_20170130 -operation

g,r,f,f,f,f,f,f,f,f,f,f,f -nastring . -vcfinput

18

19 # paste everything back together

20 paste sample1_myanno.hg19_multianno.vcf samples11_854.vcf >

ALLsamples_myanno.hg19_multianno.vcf

21

22 # make the header

23 grep ’^#’ complete.vcf > header.vcf

24

25 # add the header back in
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26 cat header.vcf ALLsamples_myanno.hg19_multianno.vcf >

ALLsamplesHEADED_myanno.hg19_multianno.vcf

27

28 # remove incomplete header

29 sed -e ’2d’ foo ALLsamplesHEADED_myanno.hg19_multianno.vcf >

ALLsamplesFINAL_myanno.hg19_multianno.vcf
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A.2.2 Family subsetting and removal of wild-type and un-

called variants

This code was used to subset an ALS family, FALSmq28, from the complete 850-

sample WGS VCF, and subsequently remove variants which were uniformly not called

or homozygous wild-type in all three family members.

1 #!/bin/sh

2 #

3 # VCF850_family_subsetting.sh

4

5 # Take columns 1-9 for all lines after and including the line starting with

a # symbol of a VCF, and write them to a new file

6 cut -f 1-9,836-838 EXAMPLE.vcf | grep -v -P ’^#’ > EXAMPLE_subset.vcf

7

8 # This script removes variants from 3-sample VCF that are either not called

or homozygous widtype in all 3 individuals

9

10 # remove all variants with no genotype called in all 3 individuals (present

in columns 10-12)

11 awk ’ ! ($10 ~ /^\.\/\.:/ && $11 ~ /^\.\/\.:/ && $12 ~ /^\.\/\.:/) {print

$0}’ EXAMPLE.vcf > EXAMPLE_called.vcf

12

13 # remove all variants with a homozygous WT genotype in all 3 individuals

(present in columns 10-12)

14 awk ’ ! ($10 ~ /^0\/0:/ && $11 ~ /^0\/0:/ && $12 ~ /^0\/0:/) {print $0}’

EXAMPLE_called.vcf > EXAMPLE_called_noWThom.vcf
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A.2.3 Extracting allele count data from control database

VCFs

These scripts were used to extract allele count data from very large control databases

and append this data to patient VCFs for downstream comparisons. The R version

was used for ExAC, gnomAD and Diamantina, and the SNPSift version was used for

MGRB.

A.2.3.1 R version

1 # control_database_allele_count_data_Rversion.R

2

3 # This code is for extracting allele count data from a very large control

database VCF and appending this data to patient VCFs for downstream

comparisons with ALS patients

4 # As an example, the ExAC control database VCF is used here

5

6 # load required R libraries

7 library(VariantAnnotation)

8 library(BiocInstaller)

9

10 # see what fields are present in this VCF

11 scanVcfHeader("/Volumes/Emilly\ 1TB/ExAC.r0.3.1.sites.vep.vcf")

12

13 # define the paramaters on which we want to filter the vcf file

14 AC.adj.param <- ScanVcfParam(info="AC_Adj") # corrected alternate allele

count

15 AN.adj.param <- ScanVcfParam(info="AN_Adj") # corrected total allele count

16

17

18 # load total allele counts (AN) and alt allele counts (AC) for all variants

present in the control db VCF

19 raw.exac.AC.adj. <- readVcf("/Volumes/Emilly\

1TB/ExAC.r0.3.1.sites.vep.vcf", "hg19", param=AC.adj.param) # s3 class

object

20 raw.exac.AN.adj. <- readVcf("/Volumes/Emilly\

1TB/ExAC.r0.3.1.sites.vep.vcf", "hg19", param=AN.adj.param) # s3 class

object

21
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22 # extract the the INFO column (AC and AN) data and genomic ranges

information for each variant and combine

23 row.ranges.AC.adj <- rowRanges(raw.exac.AC.adj.)

24 mcols(row.ranges.AC.adj) <- info(raw.exac.AC.adj.)

25 row.ranges.AN.adj <- rowRanges(raw.exac.AN.adj.)

26 mcols(row.ranges.AN.adj) <- info(raw.exac.AN.adj.)

27

28 # make these data frames

29 df.exac.AC.adj <- as.data.frame(row.ranges.AC.adj)

30 df.exac.AN.adj <- as.data.frame(row.ranges.AN.adj)

31

32 # add chr.position column as an identifying column

33 df.exac.AC.adj$chr.position <- paste(df.exac.AC.adj$seqnames,

df.exac.AC.adj$start, sep = ":")

34 df.exac.AN.adj$chr.position <- paste(df.exac.AN.adj$seqnames,

df.exac.AN.adj$start, sep = ":")

35

36 # remove any unnecessary rows

37 row.names(df.exac.AC.adj) <- NULL

38 df.exac.AC.adj$seqnames <- NULL

39 df.exac.AC.adj$start <- NULL

40 df.exac.AC.adj$end <- NULL

41 df.exac.AC.adj$width <- NULL

42 df.exac.AC.adj$strand <- NULL

43

44 row.names(df.exac.AN.adj) <- NULL

45 df.exac.AN.adj$seqnames <- NULL

46 df.exac.AN.adj$start <- NULL

47 df.exac.AN.adj$end <- NULL

48 df.exac.AN.adj$width <- NULL

49 df.exac.AN.adj$strand <- NULL

50

51 # bring in annotated file of patient samples

52 patients <- read.delim("/Volumes/Personal//Bioinformatics/Files to work

with/Brisbane_MND.Kelly.hg19_multianno.xls")

53

54 # add a chr:position column to the patients dataframe

55 patients$chr.position <- paste(patients$Chr, patients$Start, sep = ":")

56
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57 # get rid of the "chr" so merging can occur

58 patients$chr.position <- sub("chr", "", patients$chr.position , perl=T)

59

60 # merge control db allele count data frames on to the end of the patients

data frame matching on chr:position

61 patients <- merge( x=patients, y=df.exac.AN.adj, by.x="chr.position",

by.y="chr.position", all.x = TRUE )

62 patients <- merge( x=patients, y=df.exac.AC.adj, by.x="chr.position",

by.y="chr.position", all.x = TRUE )

63

64 # reorder variants back to ascending, by Chr and Start

65 patients <- patients[ order(patients$Chr, patients$Start), ]

66

67 # make allele counts numeric (default to character class which cannot be

used for arithmetic or statistics downstream)

68 patients$AN_Adj <- as.numeric(patients$AN_Adj)

69 patients$AC_Adj <- sub("c\\S+", "x", patients$AC_Adj, perl=T)

70 patients$AC_Adj <- as.numeric(patients$AC_Adj)

71

72 # make a new column with control db ref allele counts calculated from AN -

AC

73 patients$ref.allele.exac <- patients$AN_Adj-patients$AC_Adj

74

75 # rename exac allele count columns with more intuitive names

76 names(patients)[names(patients)=="AN_Adj"] <- "total.allele.exac"

77 names(patients)[names(patients)=="AC_Adj"] <- "alt.allele.exac"

78

79 # now save as an R object so we can use it elsewhere

80 save(patients, file = "FALS_WES_EXAC.RObject")
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A.2.3.2 SNPSift version

1 # control_database_allele_count_data_SNPSiftversion.R

2

3 # This code is for extracting allele count data from a very large control

database VCF and appending this data to patient VCFs for downstream

comparisons with ALS patients

4 # As an example, the MGRB control database VCF is used here

5

6 # load required R libraries

7 library(VariantAnnotation)

8 library(BiocInstaller)

9 library(splitstackshape)

10

11 # see what fields are present in this VCF

12 scanVcfHeader("/Volumes/Emilly\ 1TB/MGRB.vcf")

13

14 # Use SNPSift in UNIX to extract meta and allele count information -

extractFields_VCF.sh

15

16 # bring in MGRB allele count data

17 MGRB <- read.delim("MGRB_allele_data.txt")

18

19 # add a chr:position column to the patients dataframe

20 MGRB$chr.position <- paste(MGRB$Chr, MGRB$Start, sep = ":")

21

22 # split INFO columns

23 MGRB_df <- cSplit(MGRB, c("ALT", "AC", "AF"), sep=",", type.convert=TRUE)

24

25 # create total allele count column

26 MGRB_df$AN <- 2*(MGRB_df$NS)

27

28 # create REF allele count column

29 MGRB_df$AR <- MGRB_df$AN-MGRB_df$AC_1

30

31 # subset allele count data for ease of merging downstream

32 MGRB_df_small <- cbind(MGRB_df$exact.position, MGRB_df$AN, MGRB_df$AR,

MGRB_df$AC_1)

33



320 Appendix

34 # rename columns

35 colnames(MGRB_df_small) <- c("exact.position", "AN_welderly",

"AR_welderly", "AC_welderly")

36

37 # bring in annotated file of patient samples

38 patients <- read.delim("/Volumes/Personal//Bioinformatics/Files to work

with/Brisbane_MND.Kelly.hg19_multianno.xls")

39

40 # add a chr:position column to the patients dataframe

41 patients$chr.position <- paste(patients$Chr, patients$Start, sep = ":")

42

43 # get rid of the "chr" so merging can occur

44 patients$chr.position <- sub("chr", "", patients$chr.position , perl=T)

45

46 # merge MGRB allele count data frames on to the end of the patients data

frame matching on chr:position

47 patients <- merge( x=patients, y=MGRB_df_small, by.x="chr.position",

by.y="chr.position", all.x = TRUE )

48

49 # reorder variants back to ascending, by Chr and Start

50 patients <- patients[ order(patients$Chr, patients$Start), ]

51

52 # make allele counts numeric (default to character class which cannot be

used for arithmetic or statistics downstream)

53 patients$AN_welderly <- as.numeric(AN_welderly)

54 patients$AN_welderly <- as.numeric(AR_welderly)

55 patients$AN__welderly <- as.numeric(AC_welderly)

56

57 # now save as an R object so we can use it elsewhere

58 save(patients, file = "FALS_WES_MGRB.RObject")
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A.2.4 Candidate gene searching and association analysis in

FALS WES data

This R markdown code was used to identify variants in candidate ALS genes among

WES data from different cohorts of FALS patients/family members, and perform asso-

ciation testing on known SNPs using allele count data from patients and ExAC controls

(or MGRB or Diamantina controls).

1 ---

2 title: "FALS_WES_candidate_gene_analysis.Rmd"

3 output: html_document

4 ---

5

6 # This code searches all MQ exome data (and subsets thereof), appended with

ExAC allele counts, for a given set of genes, and then ouputs all

variants identified in MQ exome data for this gene across all samples,

tallies genotypes and allele frequencies and perfroms a Fishers exact

test comparing allele frequencies between ExAC controls and MQ patients

for each variant.

7

8 Preface i. Load required packages and setting directories

9 ‘‘‘{r install.libraries, cache=FALSE}

10 library(BiocInstaller)

11 library(WriteXLS)

12 library(dplyr)

13 library(data.table)

14 ‘‘‘

15

16 ‘‘‘{r set.directories, cache=FALSE}

17 data="/Volumes/Personal/Bioinformatics/Candidate\ gene\ hunting\ in\

R/Candidate_gene_hunting/Raw\ data"

18 directory="/Volumes/Personal/Bioinformatics/Candidate\ gene\ hunting\ in\

R/Candidate_gene_hunting/QC\ and\ analysis"

19

20 #source="/Volumes/Personal/Bioinformatics/Candidate\ gene\ hunting\ in\

R/Candidate_gene_hunting/functions"

21 ‘‘‘

22

23 # Preface ii. Importing files and getting them ready to work with

24 ‘‘‘{r import.files, cache=TRUE}
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25

26 setwd(directory)

27

28 # import and view annotated file of all samples with exac allele counts

29 load("/Volumes/Personal/Bioinformatics/Candidate\ gene\ hunting\ in\

R/Candidate_gene_hunting/QC\ and\

analysis/all.samples.all.annotated.variants.RObject")

30 View(all.samples.all.annotated.variants)

31 ‘‘‘

32

33 # Section 1. Search for known ALS gene variants

34 ‘‘‘{r known.genes, cache=FALSE}

35 # look for variants in the known ALS genes and pull out all associtaed info

(ie. the entire row for eacch variant of the candidate gene)

36

37 ## first define known genes

38 ### ALSOD ALS genes and CCNF

39 x <- c("SOD1", "ALS2", "ALS3", "SETX", "SPG11", "FUS", "ALS7", "VAPB",

"ANG", "TARDBP", "FIG4", "OPTN", "ATXN2", "VCP", "UBQLN2", "SIGMAR1",

"CHMP2B", "PFN1", "ERBB4", "HNRNPA1", "MATR3", "CHCHD10", "C9orf72",

"UNC13A", "DAO", "DCTN1", "NEFH", "PRPH", "SQSTM1", "TAF15", "SPAST",

"ELP3", "LMNB1", "CCNF")

40

41 #### run all known ALS genes through all samples and output a file

containing all ALS gene variants

42 ALS.gene.variants <- subset(all.samples.all.annotated.variants,

Gene.refGene %in% x)

43

44 ## first define known genes

45 ### ALSOD other genes
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46 y <- c("APEX1", "APOE", "AR", "CCS", "CNTF", "CYP2D6", "ALAD", "DYNC1H1",

"CHGB", "GLE1", "TBK1", "ITPR2", "GRN", "LIPC", "NT5C1A", "ZFP64",

"DISC1", "SLC39A11", "ZNF746", "FGGY", "DPP6", "LUM", "RNF19A", "SOX5",

"OMA1", "GRB14", "PON2", "PON3", "SLC1A2", "SMN1", "SMN2", "SNCG",

"SUSD1", "B4GALT6", "OGG1", "AGT", "C1orf27", "VPS54", "FEZF2", "DOC2B",

"CNTN6", "PSEN1", "PVR", "SOD2", "SPG7", "VDR", "VEGFA", "RBMS1",

"CSNK1G3", "BCL11B", "NETO1", "CDH22", "DIAPH3", "GARS", "HEXA", "HFE",

"KIFAP3", "LIF", "LOX", "MAOB", "MAPT", "MT-ND2", "NAIP", "CRYM",

"SYT9", "CRIM1", "SCN7A", "EFEMP1", "KDR", "CDH13", "PON1", "CNTN4",

"SELL", "EWSR1", "PARK7", "HNRNPA2B1", "NIPA1", "SEMA6A", "ZNF512B",

"RNASE2", "PLEKHG5", "BCL6", "RAMP3", "SS18L1", "PCP4", "CST3", "EPHA4",

"ARHGEF28", "TRPM7", "SARM1", "CX3CR1", "TUBA4A", "SYNE")

47

48 #### run all other ALSOD genes through all samples and output a file

containing all other ALSOD gene variants

49 ALS.associated.gene.variants <- subset(all.samples.all.annotated.variants,

Gene.refGene %in% y)

50 ‘‘‘

51

52 # Section 2. Patient cohort subsetting

53 ‘‘‘{r subset.exomes, cache=TRUE}

54 # subet combined exomes to patient cohorts

55

56 ## define coloumn/sample names of patients to be excluded (-c(...)) or

included (c(...))

57 ### FALS with an unidentified ALS mutation

58 unknown.mut <- subset(all.samples.all.annotated.variants, , -c(X10.000094,

X10.000094.2015, X10.020768, X10.040672, X10.971251, X10.971251.2015,

X119.020807, X119.050471, X119.050612, X119.960341, X13.080638,

X13.090339, X13.A188, X13.A203, X13.A217, X14.950280, X147.020183,

X166.000485, X171.030781, X187.050743, X187.100285, X187.960560,

X194.060051, X270.090391, X285.100287, X291.100225, X304.100786,

X32.940107, X32.940634, X32.A269, X45.040247, X45.040542, X5.100248,

X5.970585, X5.A124, X51.A348, X6.010076, X6.A135, X67.040088,

X67.960247, X73.100120, X73.100121, X73.940147, X77.040435, X77.940361,

X77.950083, X82.940727, X86.030814, X86.950057, X86.950164, X86.950165,

X92.950426, X92.950427, X92.950430, MQ130084, mq1.MQ140002))

59

60 ### All FALS patients and obligate carriers
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61 aff.ob <- subset(all.samples.all.annotated.variants, , -c(X10.020768,

X10.040672, X119.050612, X147.020183, X166.000485, X187.100285,

X194.060051, X45.040247, X45.040542, X51.A348, X73.940147, X92.950427,

mq1.MQ140002))

62

63 ### All FALS with a pathogenic expansion in C9orf72 (identified by repeat

primed PCR after WES)

64 C9.pos <- subset(all.samples.all.annotated.variants, , c(1:68, X119.020807,

X119.050471, X119.960341, X13.080638, X13.090339, X13.A188, X13.A203,

X13.A217, X187.050743, X187.960560, X291.100225, X32.940107, X32.940634,

X32.A269, X6.010076, X6.A135, X67.040088, X67.960247, X73.100120,

X73.100121, X77.040435, X77.940361, X77.950083, X86.030814, X86.950057,

X86.950164, X86.950165, X92.950426, X92.950427, X92.950430, 206:208))

65 ‘‘‘

66

67 # Section 3. Search for candidate ALS gene variants

68 ‘‘‘ {r candidate.genes, cache=FALSE}

69 # look for variants in the candidate genes and pull out all associtaed info

(ie. the entire row for eacch variant of the candidate gene)

70 # this will be performed in each patient cohort subset of exomes

(unknown.mut, aff.ob, C9.pos)

71

72 ## first define cadidate genes

73 ### for example (actual code contains each candidate gene search set and

the date analysis was performed)

74 z <- c("PURA", "NEK1", "C21orf2", "MOBP", "SCFD1", "SPTBN4")

75

76 #### run all other ALSOD genes through all samples and output a file

containing all other ALSOD gene variants

77 all.candidate.gene.variants <- subset(all.samples.all.annotated.variants,

Gene.refGene %in% z)

78 unknown.mut.candidate.gene.variants <- subset(unknown.mut, Gene.refGene

%in% z)

79 aff.ob.candidate.gene.variants <- subset(aff.ob, Gene.refGene %in% z)

80 C9.pos.candidate.gene.variants <- subset(C9.pos, Gene.refGene %in% z)

81 ‘‘‘

82

83 # Section 4. Genotype counting

84 ‘‘‘{r genotype.counting, cache=FALSE}
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85 # add columns containing counts of how many patients have the given

genotype for each variant

86 ## All FALS WES data

87 all.candidate.gene.variants$No.hom_patients <-

apply(all.candidate.gene.variants[,69:205], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )

88 all.candidate.gene.variants$No.het_patients <-

apply(all.candidate.gene.variants[,69:205], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) )

89 all.candidate.gene.variants$No.WT_patients <-

apply(all.candidate.gene.variants[,69:205], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )

90

91 ## unknown.mut FALS patient cohort subset

92 unknown.mut.candidate.gene.variants$No.hom_patients <-

apply(unknown.mut.candidate.gene.variants[,69:149], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )

93 unknown.mut.candidate.gene.variants$No.het_patients <-

apply(unknown.mut.candidate.gene.variants[,69:149], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) )

94 unknown.mut.candidate.gene.variants$No.WT_patients <-

apply(unknown.mut.candidate.gene.variants[,69:149], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )

95

96 ## aff.ob FALS patient cohort subset

97 aff.ob.candidate.gene.variants$No.hom_patients <-

apply(aff.ob.candidate.gene.variants[,69:192], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )

98 aff.ob.candidate.gene.variants$No.het_patients <-

apply(aff.ob.candidate.gene.variants[,69:192], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) )

99 aff.ob.candidate.gene.variants$No.WT_patients <-

apply(aff.ob.candidate.gene.variants[,69:192], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )

100

101 ## C9.pos FALS patient cohort subset

102 C9.pos.candidate.gene.variants$No.hom_patients <-

apply(C9.pos.candidate.gene.variants[,69:98], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )
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103 C9.pos.candidate.gene.variants$No.het_patients <-

apply(C9.pos.candidate.gene.variants[,69:98], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) )

104 C9.pos.candidate.gene.variants$No.WT_patients <-

apply(C9.pos.candidate.gene.variants[,69:98], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )

105 ‘‘‘

106

107 # Section 5. Allele counting

108 ‘‘‘{r allele.counting, cache=FALSE}

109 # Calculate patient allele counts for each variant based on the genotype

columns, and add allele count columns

110 ## All FALS WES data

111 all.candidate.gene.variants$Patient_alt_allele_count <- (

2*(apply(all.candidate.gene.variants[,69:205], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )) +

apply(all.candidate.gene.variants[,69:205], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ) )

112 all.candidate.gene.variants$Patient_ref_allele_count <- (

2*(apply(all.candidate.gene.variants[,69:205], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )) +

apply(all.candidate.gene.variants[,69:205], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ) )

113 all.candidate.gene.variants$Patient_total_allele_count <-

all.candidate.gene.variants$Patient_alt_allele_count +

all.candidate.gene.variants$Patient_ref_allele_count

114

115 ## unknown.mut FALS patient cohort subset

116 unknown.mut.candidate.gene.variants$Patient_alt_allele_count <- (

2*(apply(unknown.mut.candidate.gene.variants[,69:149], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )) +

apply(unknown.mut.candidate.gene.variants[,69:149], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ) )

117 unknown.mut.candidate.gene.variants$Patient_ref_allele_count <- (

2*(apply(unknown.mut.candidate.gene.variants[,69:149], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )) +

apply(unknown.mut.candidate.gene.variants[,69:149], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ) )
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118 unknown.mut.candidate.gene.variants$Total_Patient_allele_count <-

unknown.mut.candidate.gene.variants$Patient_ref_allele_count +

unknown.mut.candidate.gene.variants$Patient_alt_allele_count

119

120 ## aff.ob FALS patient cohort subset

121 aff.ob.candidate.gene.variants$Patient_alt_allele_count <- (

2*(apply(aff.ob.candidate.gene.variants[,69:192], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )) +

apply(aff.ob.candidate.gene.variants[,69:192], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ) )

122 aff.ob.candidate.gene.variants$Patient_ref_allele_count <- (

2*(apply(aff.ob.candidate.gene.variants[,69:192], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )) +

apply(aff.ob.candidate.gene.variants[,69:192], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ) )

123 aff.ob.candidate.gene.variants$Total_Patient_allele_count <-

aff.ob.candidate.gene.variants$Patient_ref_allele_count +

aff.ob.candidate.gene.variants$Patient_alt_allele_count

124

125 ## C9.pos FALS patient cohort subset

126 C9.pos.candidate.gene.variants$Patient_alt_allele_count <- (

2*(apply(C9.pos.candidate.gene.variants[,69:98], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )) +

apply(C9.pos.candidate.gene.variants[,69:98], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ) )

127 C9.pos.candidate.gene.variants$Patient_ref_allele_count <- (

2*(apply(C9.pos.candidate.gene.variants[,69:98], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )) +

apply(C9.pos.candidate.gene.variants[,69:98], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ) )

128 C9.pos.candidate.gene.variants$Total_Patient_allele_count <-

C9.pos.candidate.gene.variants$Patient_ref_allele_count +

C9.pos.candidate.gene.variants$Patient_alt_allele_count

129 ‘‘‘

130

131 # Section 6. Association testing

132 ‘‘‘{r fishers.exact, cache=FALSE}

133 # Perform Fisher’s exact testing comparing patient and ExAC allele counts,

and add a new column containing the resultant p-value
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134 ## All FALS WES data

135 res <- NULL

136 for (i in 1:nrow(all.candidate.gene.variants)){

137 table <- matrix(c(all.candidate.gene.variants[i,213],

all.candidate.gene.variants[i,212],

all.candidate.gene.variants[i,208],

all.candidate.gene.variants[i,207]), ncol = 2, byrow = TRUE)

138 # if any NA occurs in your table save an error in p else run the fisher

test

139 if(any(is.na(table))) p <- "error" else p <- fisher.test(table)$p.value

140 # save all p values in a vector

141 res <- c(res,p)

142 }

143 all.candidate.gene.variants$fishers <- res

144

145

146 ## unknown.mut FALS patient cohort subset

147 res <- NULL

148 for (i in 1:nrow(unknown.mut.candidate.gene.variants)){

149 table <- matrix(c(unknown.mut.candidate.gene.variants[i,157],

unknown.mut.candidate.gene.variants[i,156],

unknown.mut.candidate.gene.variants[i,152],

unknown.mut.candidate.gene.variants[i,151]), ncol = 2, byrow = TRUE)

150 # if any NA occurs in your table save an error in p else run the fisher

test

151 if(any(is.na(table))) p <- "error" else p <- fisher.test(table)$p.value

152 # save all p values in a vector

153 res <- c(res,p)

154 }

155 unknown.mut.candidate.gene.variants$fishers <- res

156

157

158 ## aff.ob FALS patient cohort subset

159 res <- NULL

160 for (i in 1:nrow(aff.ob.candidate.gene.variants)){

161 table <- matrix(c(aff.ob.candidate.gene.variants[i,200],

aff.ob.candidate.gene.variants[i,199],

aff.ob.candidate.gene.variants[i,195],

aff.ob.candidate.gene.variants[i,194]), ncol = 2, byrow = TRUE)
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162 # if any NA occurs in your table save an error in p else run the fisher

test

163 if(any(is.na(table))) p <- "error" else p <- fisher.test(table)$p.value

164 # save all p values in a vector

165 res <- c(res,p)

166 }

167 aff.ob.candidate.gene.variants$fishers <- res

168

169

170 ## C9.pos FALS patient cohort subset

171 res <- NULL

172 for (i in 1:nrow(C9.pos.candidate.gene.variants)){

173 table <- matrix(c(C9.pos.candidate.gene.variants[i,106],

C9.pos.candidate.gene.variants[i,105],

C9.pos.candidate.gene.variants[i,101],

C9.pos.candidate.gene.variants[i,100]), ncol = 2, byrow = TRUE)

174 # if any NA occurs in your table save an error in p else run the fisher

test

175 if(any(is.na(table))) p <- "error" else p <- fisher.test(table)$p.value

176 # save all p values in a vector

177 res <- c(res,p)

178 }

179 C9.pos.candidate.gene.variants$fishers <- res

180 ‘‘‘
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A.2.5 Association analysis for all possible family combinations

in FALS WES data

This script was used to perform association testing for a single SNP using Fisher’s

exact testing for each possible combination including a single member of each family

with an unknown ALS causal mutation.

1 # FALS_assoc_SNP_family_loop.R

2

3 # This script takes a candidate gene variant found to be associated with

disease in all 81 FALS individuals with an unknown ALS mutation

(identified using FALS_WES_candidate_gene_analysis.Rmd), and performs

fisher’s exact testing for all possible combinations of FALS individuals

with an unknown ALS mutation where only a single member of each FALS

family is included

4

5 # subset the the associated variant from the candidate gene dataframe

6 ## for example, 12:57969016

7 candidate.variant <- subset(unknown.mut.candidate.gene.variants,

chr.position == "12:57969016")

8

9 # delete patient genotype and allele counts calculated from all unknown

exomes

10 # (which includes multiple individuals from some families)

11 candidate.variant$No.hom_patients <- NULL

12 candidate.variant$No.het_patients <- NULL

13 candidate.variant$No.WT_patients <- NULL

14 candidate.variant$Patient_alt_allele_count <- NULL

15 candidate.variant$Patient_ref_allele_count <- NULL

16 candidate.variant$Total_Patient_allele_count <- NULL

17 candidate.variant$fishers <- NULL

18

19 # append the family identifiers for each sample to the END of the dataframe

20 df <- as.data.frame(c(candidate.variant, "FALS100", "FALS101", "FALS115",

"FALS116", "FALS117", "FALS122", "FALS136", "FALS143", "FALS145",

"FALS147", "FALS147", "FALS15", "FALS15", "FALS151", "FALS153",

"FALS154", "FALS158", "FALS159", "FALS162", "FALS172","FALS175",

"FALS176", "FALS180", "FALS181", "FALS184", "FALS185", "FALS196",

"FALS199", "FALS205", "FALS206", "FALS206", "FALS206", "FALS206",

"FALS215","FALS239", "FALS245", "FALS251", "FALS280", "FALS283",
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21 "FALS29", "FALS292", "FALS292", "FALS294", "FALS296", "FALS300", "FALS302",

"FALS303", "FALS305", "FALS307", "FALS314", "FALS318", "FALS321",

"FALS326", "FALS328", "FALS40", "FALS42", "FALS45", "FALS63", "FALS71",

"FALS79", "FALS8", "FALS8", "FALS8", "FALS93", "mq21", "mq20", "mq2",

"mq4", "mq15", "mq12", "mq13", "mq22", "mq14", "mq17", "mq18", "mq19",

"mq1", "mq1", "mq1", "mq2", "mq20"))

22

23 # reorder the df so that ExAC allele counts are ahead of our sample and

family information

24 df <- df[ ,c(1:68,150:152,69:149,153:233)]

25

26 # ensure df is in character format

27 df[] <- lapply(df, as.character)

28

29 # find the postions of each family identifier data and assign to

appropriate variables

30 # for those families with muliple individuals, there will be multiple

positions

31 FALS100.var <- which(df =="FALS100")

32 FALS101.var <- which(df =="FALS101")

33 FALS115.var <- which(df =="FALS115")

34 FALS116.var <- which(df =="FALS116")

35 FALS117.var <- which(df =="FALS117")

36 FALS122.var <- which(df =="FALS122")

37 FALS136.var <- which(df =="FALS136")

38 FALS143.var <- which(df =="FALS143")

39 FALS145.var <- which(df =="FALS145")

40 FALS147.var <- which(df =="FALS147")

41 FALS15.var <- which(df =="FALS15")

42 FALS151.var <- which(df =="FALS151")

43 FALS153.var <- which(df =="FALS153")

44 FALS154.var <- which(df =="FALS154")

45 FALS158.var <- which(df =="FALS158")

46 FALS159.var <- which(df =="FALS159")

47 FALS162.var <- which(df =="FALS162")

48 FALS172.var <- which(df =="FALS172")

49 FALS175.var <- which(df =="FALS175")

50 FALS176.var <- which(df =="FALS176")

51 FALS180.var <- which(df =="FALS180")
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52 FALS181.var <- which(df =="FALS181")

53 FALS184.var <- which(df =="FALS184")

54 FALS185.var <- which(df =="FALS185")

55 FALS196.var <- which(df =="FALS196")

56 FALS199.var <- which(df =="FALS199")

57 FALS205.var <- which(df =="FALS205")

58 FALS206.var <- which(df =="FALS206")

59 FALS215.var <- which(df =="FALS215")

60 FALS239.var <- which(df =="FALS239")

61 FALS245.var <- which(df =="FALS245")

62 FALS251.var <- which(df =="FALS251")

63 FALS280.var <- which(df =="FALS280")

64 FALS283.var <- which(df =="FALS283")

65 FALS29.var <- which(df =="FALS29")

66 FALS292.var <- which(df =="FALS292")

67 FALS294.var <- which(df =="FALS294")

68 FALS296.var <- which(df =="FALS296")

69 FALS300.var <- which(df =="FALS300")

70 FALS302.var <- which(df =="FALS302")

71 FALS303.var <- which(df =="FALS303")

72 FALS305.var <- which(df =="FALS305")

73 FALS307.var <- which(df =="FALS307")

74 FALS314.var <- which(df =="FALS314")

75 FALS318.var <- which(df =="FALS318")

76 FALS321.var <- which(df =="FALS321")

77 FALS326.var <- which(df =="FALS326")

78 FALS328.var <- which(df =="FALS328")

79 FALS40.var <- which(df =="FALS40")

80 FALS42.var <- which(df =="FALS42")

81 FALS45.var <- which(df =="FALS45")

82 FALS63.var <- which(df =="FALS63")

83 FALS71.var <- which(df =="FALS71")

84 FALS79.var <- which(df =="FALS79")

85 FALS8.var <- which(df =="FALS8")

86 FALS93.var <- which(df =="FALS93")

87 mq21.var <- which(df =="mq21")

88 mq20.var <- which(df =="mq20")

89 mq2.var <- which(df =="mq2")

90 mq4.var <- which(df =="mq4")
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91 mq15.var <- which(df =="mq15")

92 mq12.var <- which(df =="mq12")

93 mq13.var <- which(df =="mq13")

94 mq22.var <- which(df =="mq22")

95 mq14.var <- which(df =="mq14")

96 mq17.var <- which(df =="mq17")

97 mq18.var <- which(df =="mq18")

98 mq19.var <- which(df =="mq19")

99 mq1.var <- which(df =="mq1")

100

101 # get all possible position combinations including one of each family

identifier

102 family.combinations <- expand.grid(FALS100.var, FALS101.var, FALS115.var,

FALS116.var, FALS117.var, FALS122.var, FALS136.var, FALS143.var,

FALS145.var, FALS147.var, FALS15.var, FALS151.var, FALS153.var,

FALS154.var, FALS158.var, FALS159.var, FALS162.var, FALS172.var,

FALS175.var, FALS176.var, FALS180.var, FALS181.var, FALS184.var,

FALS185.var, FALS196.var, FALS199.var, FALS205.var, FALS206.var,

FALS215.var, FALS239.var, FALS245.var, FALS251.var, FALS280.var,

FALS283.var, FALS29.var, FALS292.var, FALS294.var, FALS296.var,

FALS300.var, FALS302.var, FALS303.var, FALS305.var, FALS307.var,

FALS314.var, FALS318.var, FALS321.var, FALS326.var, FALS328.var,

FALS40.var, FALS42.var, FALS45.var, FALS63.var, FALS71.var, FALS79.var,

FALS8.var, FALS93.var, mq21.var, mq20.var, mq2.var, mq4.var, mq15.var,

mq12.var, mq13.var, mq22.var, mq14.var, mq17.var, mq18.var, mq19.var,

mq1.var)

103

104 # provide correct names

105 names(family.combinations) <- c("FALS100", "FALS101", "FALS115", "FALS116",

"FALS117", "FALS122", "FALS136", "FALS143", "FALS145", "FALS147",

"FALS15", "FALS151", "FALS153", "FALS154", "FALS158", "FALS159",

"FALS162", "FALS172","FALS175", "FALS176", "FALS180", "FALS181",

"FALS184", "FALS185", "FALS196", "FALS199", "FALS205", "FALS206",

"FALS215", "FALS239", "FALS245", "FALS251", "FALS280", "FALS283",

"FALS29", "FALS292", "FALS294", "FALS296", "FALS300", "FALS302",

"FALS303", "FALS305", "FALS307", "FALS314", "FALS318", "FALS321",

"FALS326", "FALS328", "FALS40", "FALS42", "FALS45", "FALS63", "FALS71",

"FALS79", "FALS8", "FALS93", "mq21", "mq20", "mq2", "mq4", "mq15",

"mq12", "mq13", "mq22", "mq14", "mq17", "mq18", "mq19", "mq1")
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106

107 # create a results data frame

108 df.combinations <- as.data.frame(matrix(NA,ncol = 215, nrow =

nrow(family.combinations)))

109

110 # name the variables (columns) in the results dataframe

111 names(df.combinations) <- c("chr.position", "Chr", "Start", "End", "Ref",

"Alt", "Func.refGene", "Gene.refGene", "GeneDetail.refGene",

"ExonicFunc.refGene", "AAChange.refGene", "gerp..elem",

"phastConsElements46way", "genomicSuperDups", "ExAC_ALL", "ExAC_AFR",

"ExAC_AMR", "ExAC_EAS", "ExAC_FIN", "ExAC_NFE", "ExAC_OTH", "ExAC_SAS",

"esp6500si_all", "esp6500si_aa", "esp6500si_ea", "X1000g2014oct_all",

"X1000g2014oct_eur", "X1000g2014oct_amr", "X1000g2014oct_asn",

"X1000g2014oct_afr", "snp129", "avsnp142", "clinvar_20150330", "avsift",

"SIFT_score", "SIFT_pred", "Polyphen2_HDIV_score",

"Polyphen2_HDIV_pred", "Polyphen2_HVAR_score", "Polyphen2_HVAR_pred",

"LRT_score", "LRT_pred", "MutationTaster_score", "MutationTaster_pred",

"MutationAssessor_score", "MutationAssessor_pred", "FATHMM_score",

"FATHMM_pred", "RadialSVM_score", "RadialSVM_pred", "LR_score",

"LR_pred", "VEST3_score", "CADD_raw", "CADD_phred", "GERP.._RS",

"phyloP46way_placental", "phyloP100way_vertebrate",

"SiPhy_29way_logOdds", "CHROM", "POS", "ID", "REF", "ALT", "QUAL",

"FILTER", "INFO", "FORMAT", "total.allele.exac", "alt.allele.exac",

"ref.allele.exac",

112 "FALS100.sample.pos", "FALS100.result",

113 "FALS101.sample.pos", "FALS101.result",

114 "FALS115.sample.pos", "FALS115.result",

115 "FALS116.sample.pos", "FALS116.result",

116 "FALS117.sample.pos", "FALS117.result",

117 "FALS122.sample.pos", "FALS122.result",

118 "FALS136.sample.pos", "FALS136.result",

119 "FALS143.sample.pos", "FALS143.result",

120 "FALS145.sample.pos", "FALS145.result",

121 "FALS147.sample.pos", "FALS147.result",

122 "FALS15.sample.pos", "FALS15.result",

123 "FALS151.sample.pos", "FALS151.result",

124 "FALS153.sample.pos", "FALS153.result",

125 "FALS154.sample.pos", "FALS154.result",

126 "FALS158.sample.pos", "FALS158.result",
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127 "FALS159.sample.pos", "FALS159.result",

128 "FALS162.sample.pos", "FALS162.result",

129 "FALS172.sample.pos", "FALS172.result",

130 "FALS175.sample.pos", "FALS175.result",

131 "FALS176.sample.pos", "FALS176.result",

132 "FALS180.sample.pos", "FALS180.result",

133 "FALS181.sample.pos", "FALS181.result",

134 "FALS184.sample.pos", "FALS184.result",

135 "FALS185.sample.pos", "FALS185.result",

136 "FALS196.sample.pos", "FALS196.result",

137 "FALS199.sample.pos", "FALS199.result",

138 "FALS205.sample.pos", "FALS205.result",

139 "FALS206.sample.pos", "FALS206.result",

140 "FALS215.sample.pos", "FALS215.result",

141 "FALS239.sample.pos", "FALS239.result",

142 "FALS245.sample.pos", "FALS245.result",

143 "FALS251.sample.pos", "FALS251.result",

144 "FALS280.sample.pos", "FALS280.result",

145 "FALS283.sample.pos", "FALS283.result",

146 "FALS29.sample.pos", "FALS29.result",

147 "FALS292.sample.pos", "FALS292.result",

148 "FALS294.sample.pos", "FALS294.result",

149 "FALS296.sample.pos", "FALS296.result",

150 "FALS300.sample.pos", "FALS300.result",

151 "FALS302.sample.pos", "FALS302.result",

152 "FALS303.sample.pos", "FALS303.result",

153 "FALS305.sample.pos", "FALS305.result",

154 "FALS307.sample.pos", "FALS307.result",

155 "FALS314.sample.pos", "FALS314.result",

156 "FALS318.sample.pos", "FALS318.result",

157 "FALS321.sample.pos", "FALS321.result",

158 "FALS326.sample.pos", "FALS326.result",

159 "FALS328.sample.pos", "FALS328.result",

160 "FALS40.sample.pos", "FALS40.result",

161 "FALS42.sample.pos", "FALS42.result",

162 "FALS45.sample.pos", "FALS45.result",

163 "FALS63.sample.pos", "FALS63.result",

164 "FALS71.sample.pos", "FALS71.result",

165 "FALS79.sample.pos", "FALS79.result",
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166 "FALS8.sample.pos", "FALS8.result",

167 "FALS93.sample.pos", "FALS93.result",

168 "mq21.sample.pos", "mq21.result",

169 "mq20.sample.pos", "mq20.result",

170 "mq2.sample.pos", "mq2.result",

171 "mq4.sample.pos", "mq4.result",

172 "mq15.sample.pos", "mq15.result",

173 "mq12.sample.pos", "mq12.result",

174 "mq13.sample.pos", "mq13.result",

175 "mq22.sample.pos", "mq22.result",

176 "mq14.sample.pos", "mq14.result",

177 "mq17.sample.pos", "mq17.result",

178 "mq18.sample.pos", "mq18.result",

179 "mq19.sample.pos", "mq19.result",

180 "mq1.sample.pos", "mq1.result",

181 "patient.WT","patient.het","patient.hom",

182 "patient.ref.count","patient.alt.count",

183 "fishers")

184

185 # copy in common data (common to each combination (row) ie chr position,

exac allele counts etc)

186 df.combinations[,1:71] <- df[,1:71]

187

188 # setup variables based on combination data

189 for(i in 1:nrow(family.combinations)){

190 df.combinations[i,c(72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96,

98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124,

126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152,

154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,

182, 184, 186, 188, 190, 192, 194, 196, 198, 200, 202, 204, 206, 208)]

<- family.combinations[i,]

191 # -81 to correct for the position of the results not the ’family type’

data (number of family numbers appended at beginning)

192 e.cycle.results <- as.numeric(family.combinations[i,] -81)

193 df.combinations[i,c(73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97,

99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125,

127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153,

155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181,

183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209)]
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194 <- df[e.cycle.results] }

195

196 # count patient genotypes

197 df.combinations$patient.WT <- apply(df.combinations[,c(73, 75, 77, 79, 81,

83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,

115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141,

143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169,

171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197,

199, 201, 203, 205, 207, 209)], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )

198 df.combinations$patient.het <- apply(df.combinations[,c(73, 75, 77, 79, 81,

83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,

115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141,

143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169,

171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197,

199, 201, 203, 205, 207, 209)], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) )

199 df.combinations$patient.hom <- apply(df.combinations[,c(73, 75, 77, 79, 81,

83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,

115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141,

143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169,

171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197,

199, 201, 203, 205, 207, 209)], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )

200

201 # count patient alleles

202 df.combinations$patient.ref.count <- ( 2*(apply(df.combinations[,c(73, 75,

77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109,

111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137,

139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165,

167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193,

195, 197, 199, 201, 203, 205, 207, 209)], 1, function(u)

203 length(which(grepl("0/0",u))==TRUE) )) + apply(df.combinations[,c(73, 75,

77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107,

109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135,

137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163,

165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191,

193, 195, 197, 199, 201, 203, 205, 207, 209)], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ))
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204 df.combinations$patient.alt.count <- ( 2*(apply(df.combinations[,c(73, 75,

77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109,

111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137,

139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165,

167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193,

195, 197, 199, 201, 203, 205, 207, 209)], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )) + apply(df.combinations[,c(73,

75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107,

109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135,

137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163,

165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191,

193, 195, 197, 199, 201, 203, 205, 207, 209)], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) ))

205

206 # perform fishers exact tests

207 res <- NULL

208 for (i in 1:nrow(df.combinations)){

209 table <- matrix(as.numeric(c(df.combinations[i, 71], df.combinations[i,

70], df.combinations[i, 213], df.combinations[i, 214])), ncol = 2,

byrow = TRUE)

210 # if any NA occurs in your table save an error in p else run the fisher

test

211 if(any(is.na(table))) p <- "error" else p <- fisher.test(table)$p.value

212 # save all p values in a vector

213 res <- c(res,p)

214 }

215 df.combinations$fishers <- res

216

217 # add the results to the results dataframe set up eariler

218 df.combinations.results <-

as.data.frame(cbind(1:nrow(df.combinations),df.combinations$fishers))

219 names(df.combinations.results) <- c("combo","fishers")
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A.2.6 Candidate gene screening of the 850-sample WGS VCF

This script was used to parse the 850-sample WGS VCF for variants in any given gene,

output these to a new file and add the appropriate column header information.

1 #!/bin/sh

2 #

3 # 850VCF_gene_search.sh

4

5 # this code is for looking a specified gene in the 850VCF

6

7 # navigate to directory

8 cd /datastore/d/MND_Genomes/mcc549/candidate_genes

9

10 # define 850VCF

11 VCF850=/datastore/mcc549/annovar/myanno_ALS_Cohort.vqsr.vcf

12

13 # define gene name to be search for

14 GENE=CHCHD10

15

16 # define output file names

17 OUT1="$GENE"_"variants.vcf"

18 OUT2="$GENE"_"variants_headed.vcf"

19 OUT3="$GENE"_"variants_headed.txt"

20

21 # perform gene search

22 awk -v NAME="$GENE" ’$8 ~ NAME { print $0 }’ $VCF850 > $OUT1

23

24 # Add header

25 #head -140 $VCF850 > myanno_ALS_Cohort.vqsr_header.vcf #only need to do

this once

26 cat myanno_ALS_Cohort.vqsr_header.vcf $OUT1 > $OUT2

27 sed ’1,139d’ $OUT2 > $OUT3
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A.2.7 WGS cohort subsetting

This script was written by Ingrid Tarr and later modified by the candidate, and was

used to subset the different cohorts from the 850-sample VCF after application of the

Script A.2.6.

1 # WGS_gene_search_cohort_subsetting.R

2

3 # this code is for subsetting WGS gene search results into distinct cohorts

for downstream analysis

4

5 # change project code MINE to SALS

6 # write script to get the list of IDs for whatever project code (or combo

of codes) and use

7 # that to pull out the matching variant results, given a variant file

8

9 library(gdata)

10 setwd("/Volumes/data_FMHS/Restrict/Blair

Group/Genetics/WGS_gene_searches/QC_and_analysis")

11

12 # this is the file that has the IDs and project code

13 full <- read.xls("/Volumes/data_FMHS/Restrict/Blair\

Group/Genetics/Project\

MiNE/Manifests/Master_manifest-850sequenced.xlsx", header = T, sheet =

1, stringsAsFactors = F, nrow = 1000)

14

15 # sample ID and Blair experiment code are the columns of interest

16 table(full$Blair.experiment.code)

17

18 SALS <- full[full$Blair.experiment.code == "SALS", "SampleID"]

19 FTD <- full[full$Blair.experiment.code == "FTD", "SampleID"]

20 FALS <- full[full$Blair.experiment.code == "FALS", "SampleID"]

21 SOD1 <- full[full$Blair.experiment.code == "SOD1", "SampleID"]

22 twin <- full[full$Blair.experiment.code == "Twin", "SampleID"]

23 twin_sod1 <- full[full$Blair.experiment.code == "Twin-SOD1", "SampleID"]

24

25 # change file path to variant file ## this needs to be updated each time

26 gene <- read.delim("/Volumes/data_FMHS/Restrict/Blair\

Group/Genetics/WGS_gene_searches/raw_data/HPC_resultant_txt/
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27 GENE_variants_headed.txt", header = T, skip = 0, sep =

"\t")

28

29 # if there are still some samples referred to as WIL..... then these two

lines should replace them with the MQIDs

30 # if there aren’t then it won’t run these two lines

31 matchup <- if(length(grep("WIL", colnames(gene))) > 0){

32 read.xls("/Volumes/data_FMHS/Restrict/Blair\ Group/Genetics/Project\

MiNE/WIL\ ID\ conversion.xlsx", header = T, stringsAsFactors = F,

col.names = c("tube", "mq", "wil", "manifest", "full_tube_id",

"fastQ"))

33 }

34 colnames(gene)[grep("WIL", colnames(gene))] <- if(length(grep("WIL",

colnames(gene))) > 0){

35 as.character(matchup[match(colnames(gene)[grep("WIL", colnames(gene))],

matchup$wil), "mq"])

36 }

37

38 # tidying of the MQIDs in the variant data for matching

39 colnames(gene)[grep("MQ160198", colnames(gene))] <- "12-MQ160198"

40 colnames(gene) <- gsub("[[:punct:]]", "-", colnames(gene))

41 colnames(gene) <- gsub("^X", "", colnames(gene))

42

43 # create a new data frame with the variant info for the group of interest:

44 #dat <- gene[, c(rep(T, 9), colnames(gene)[10:ncol(gene)] %in% SALS)]

45 SALS.gene <- gene[, c(rep(T, 9), colnames(gene)[10:ncol(gene)] %in% SALS)]

46 FTD.gene <- gene[, c(rep(T, 9), colnames(gene)[10:ncol(gene)] %in% FTD)]

47 # can also pull out combined data for groups as shown here:

48 # dat <- variant[, c(rep(T, 9), colnames(variant)[10:ncol(variant)] %in%

c(SALS, FALS)]

49

50 # when saving, change the filepath

51 #write.csv(dat, "./dat.csv")

52 write.csv(SALS.gene, file = "SALS_gene_WGS_search.csv", row.names = FALSE)

53 write.csv(FTD.gene, file = "FTD_gene_WGS_search.csv", row.names = FALSE)
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A.2.8 Novel nonsynonymous variant analysis of SALS WGS

candidate gene screening results

This script was used to identify novel non-synonymous variants in a candidate gene

among SALS patient WGS data, after application of the Scripts A.2.6 and A.2.7.

1 # WGS_gene_search_novel_nonsyn_analysis.R

2

3 # this code is for looking for novel variants in WGS gene search results in

SALS and FTD patients

4

5 setwd("/Volumes/data_FMHS/Restrict/Blair

Group/Genetics/WGS_gene_searches/QC_and_analysis/GENE")

6

7 library(stringr)

8 library(data.table)

9 library(WriteXLS)

10 library(readr)

11

12 # import data

13 SALS.gene <- read.csv("SALS_GENE_WGS_search.csv")

14

15 ##### novel nonsynonymous variant analysis #####

16

17 # subset nonsynonymous

18 SALS.gene.nonsynonymous <-

SALS.gene[grep("ExonicFunc.refGene=nonsynonymous", SALS.gene$INFO), ]

19

20 # Are any novel?

21 SALS.gene.nonsynonymous.novel <-

SALS.gene.nonsynonymous[grep("ExAC_ALL=\\.",

SALS.gene.nonsynonymous$INFO), ]

22 SALS.gene.nonsynonymous.novel <-

SALS.gene.nonsynonymous.novel[grep("gnomAD_exome_ALL=\\.",

SALS.gene.nonsynonymous.novel$INFO), ]

23 SALS.gene.nonsynonymous.novel <-

SALS.gene.nonsynonymous.novel[grep("gnomAD_genome_ALL=\\.",

SALS.gene.nonsynonymous.novel$INFO), ]
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24 SALS.gene.nonsynonymous.novel <-

SALS.gene.nonsynonymous.novel[grep("avsnp147=\\.",

SALS.gene.nonsynonymous.novel$INFO), ]

25

26 # What are the variants?

27 x <- str_match(SALS.gene.nonsynonymous.novel$INFO,

"AAChange.refGene=(.*?);")

28 x[,2] # this will print the AA change to the R console

29

30 # who are they in? ## ensure you do this for each line in your

candidate.nonsynonymous.novel dataframe

31 which(apply(SALS.gene.nonsynonymous.novel[1,], 2, function(x)

any(!grepl("0/0|\\./\\.", x))))

32 which(apply(SALS.gene.nonsynonymous.novel[2,], 2, function(x)

any(!grepl("0/0|\\./\\.", x))))
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A.2.9 Association analysis of SALS WGS candidate gene

screening results

This script was used to identify any SNPs over or under represented among SALS

patient WGS data compared with gnomAD and MGRB control individuals, after ap-

plication of the scripts A.2.6 and A.2.7.

1 # WGS_gene_search_assoc_analysis.R

2

3 # this code is for looking for associated variants in WGS gene search

results in SALS and FTD patients

4

5 setwd("/Volumes/data_FMHS/Restrict/Blair\

Group/Genetics/WGS_gene_searches/QC_and_analysis/TIA1")

6

7 ### data import ###

8

9 library(readr)

10

11 # import data

12 SALS.gene <- read_csv("/Volumes/data_FMHS/Restrict/Blair\

Group/Genetics/WGS_gene_searches/QC_and_analysis/TIA1/SALS_gene_WGS_

search.csv", col_types = cols(X1 = col_skip()))

13

14 # import allele counts from gnomAD # both means genomes and exomes

15 load("/Volumes/data_FMHS/Restrict/Blair\

Group/Genetics/WGS_gene_searches/raw_data/gnomAD_data/gnomAD_allele_

count_data_ALL_15-11-17.RObject")

16 load("/Volumes/data_FMHS/Restrict/Blair\

Group/Genetics/WGS_gene_searches/raw_data/gnomAD_data/gnomAD_allele_

count_data_NFE_15-11-17.RObject")

17

18 # import allele counts from welderly

19 load("/Volumes/data_FMHS/Restrict/Blair\

Group/Genetics/WGS_gene_searches/raw_data/welderly_data/welderly_

biallelic_small.Rdata")

20 load("/Volumes/data_FMHS/Restrict/Blair\

Group/Genetics/WGS_gene_searches/raw_data/welderly_data/welderly_

multiallelic_small.Rdata")

21
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22

23 ### genotype and allele counting ###

24

25 # Count how many patients are hom, het and WT

26 SALS.gene$No.hom_patients <- apply(SALS.gene[,10:637], 1, function(u)

length(which(grepl("1/1",u))==TRUE) )

27 SALS.gene$No.het_patients <- apply(SALS.gene[,10:637], 1, function(u)

length(which(grepl("0/1|1/0",u))==TRUE) )

28 SALS.gene$No.WT_patients <- apply(SALS.gene[,10:637], 1, function(u)

length(which(grepl("0/0",u))==TRUE) )

29

30 # Calculate the number of ref at alt alleles among the patiennts

31 SALS.gene$No.total_alleles <- (2*(SALS.gene$No.hom_patients) +

2*(SALS.gene$No.het_patients) + 2*(SALS.gene$No.WT_patients))

32 SALS.gene$No.ref_alleles <- (1*(SALS.gene$No.het_patients) +

2*(SALS.gene$No.WT_patients))

33 SALS.gene$No.alt_alleles <- (2*(SALS.gene$No.hom_patients) +

1*(SALS.gene$No.het_patients))

34

35 # add exact.position column for merging

36 SALS.gene$exact.position <- paste(SALS.gene$‘-CHROM‘, SALS.gene$POS, sep =

":")

37

38

39 ### association testing with gnomAD ###

40

41 # appened gnomAD ALL and NFE (non-Finnish European) allele counts

42 SALS.gene.gnomAD <- merge(SALS.gene, gnomAD.allele.count.data.ALL.both, by

= "exact.position", all.x = TRUE)

43 SALS.gene.gnomAD <- merge(SALS.gene.gnomAD,

gnomAD.allele.count.data.NFE.both, by = "exact.position", all.x = TRUE)

44

45 # correct column classes

46 SALS.gene.gnomAD$gnomAD_both_ALL_total_allele_count <-

as.numeric(as.character(SALS.gene.gnomAD$gnomAD_both_ALL_total

_allele_count))

47 SALS.gene.gnomAD$gnomAD_both_ALL_ref_allele_count <-

as.numeric(as.character(SALS.gene.gnomAD$gnomAD_both_ALL_ref

_allele_count))



346 Appendix

48 SALS.gene.gnomAD$gnomAD_both_ALL_alt_allele_count <-

as.numeric(as.character(SALS.gene.gnomAD$gnomAD_both_ALL_alt

_allele_count))

49 SALS.gene.gnomAD$gnomAD_both_NFE_total_allele_count <-

as.numeric(as.character(SALS.gene.gnomAD$gnomAD_both_NFE_total

_allele_count))

50 SALS.gene.gnomAD$gnomAD_both_NFE_ref_allele_count <-

as.numeric(as.character(SALS.gene.gnomAD$gnomAD_both_NFE_ref

_allele_count))

51 SALS.gene.gnomAD$gnomAD_both_NFE_alt_allele_count<-

as.numeric(as.character(SALS.gene.gnomAD$gnomAD_both_NFE_alt

_allele_count))

52

53 # carry out fishers exact testing using allele counts from patients and ALL

gnomAD controls to test for association

54 res <- NULL

55 for (i in 1:nrow(SALS.gene.gnomAD)){

56 table <- matrix(c(SALS.gene.gnomAD[i,643], SALS.gene.gnomAD[i,644],

SALS.gene.gnomAD[i,646], SALS.gene.gnomAD[i,647]), ncol = 2, byrow =

TRUE)

57 # if any NA occurs in your table save an error in p else run the fisher

test

58 if(any(is.na(table))) p <- "error" else p <- fisher.test(table)$p.value

59 # save all p values in a vector

60 res <- c(res,p)

61 }

62 SALS.gene.gnomAD$fishers.ALL <- res

63

64 # carry out fishers exact testing using allele counts from patients and NFE

gnomAD controls to test for association

65 res <- NULL

66 for (i in 1:nrow(SALS.gene.gnomAD)){

67 table <- matrix(c(SALS.gene.gnomAD[i,643], SALS.gene.gnomAD[i,644],

SALS.gene.gnomAD[i,649], SALS.gene.gnomAD[i,650]), ncol = 2, byrow =

TRUE)

68 # if any NA occurs in your table save an error in p else run the fisher

test

69 if(any(is.na(table))) p <- "error" else p <- fisher.test(table)$p.value

70 # save all p values in a vector
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71 res <- c(res,p)

72 }

73 SALS.gene.gnomAD$fishers.NFE <- res

74

75

76 ### association testing with welderly ###

77

78 # appened welderly allele counts

79 SALS.gene.welderly <- merge(SALS.gene, welderly_biallelic_small, by =

"exact.position", all.x = TRUE)

80 SALS.gene.welderly <- merge(SALS.gene.welderly,

welderly_multiallelic_small, by = "exact.position", all.x = TRUE)

81

82 # correct column classes

83 SALS.gene.welderly$AN_welderly <-

as.numeric(as.character(SALS.gene.welderly$AN_welderly))

84 SALS.gene.welderly$AR_welderly <-

as.numeric(as.character(SALS.gene.welderly$AR_welderly))

85 SALS.gene.welderly$AC_welderly <-

as.numeric(as.character(SALS.gene.welderly$AC_welderly))

86

87 # check for multiallelic variants in welderly

88 # which rows? # what are there exact positions?

89 which(SALS.gene.welderly$welderly_multiallelic_flag == "multiallelic")

90 x <- SALS.gene.welderly[which(SALS.gene.welderly$welderly_multiallelic_flag

== "multiallelic"), ]

91 x$exact.position

92

93 # carry out fishers exact testing using allele counts from patients and

welderly controls to test for association

94 res <- NULL

95 for (i in 1:nrow(SALS.gene.welderly)){

96 table <- matrix(c(SALS.gene.welderly[i,643], SALS.gene.welderly[i,644],

SALS.gene.welderly[i,646], SALS.gene.welderly[i,647]), ncol = 2, byrow

= TRUE)

97 # if any NA occurs in your table save an error in p else run the fisher

test

98 if(any(is.na(table))) p <- "error" else p <- fisher.test(table)$p.value

99 # save all p values in a vector
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100 res <- c(res,p)

101 }

102 SALS.gene.welderly$fishers.welderly <- res

103

104 # create smaler dataframes for manual analysis

105 SALS.gene.gnomAD.small <- cbind(SALS.gene.gnomAD[,1:10],

SALS.gene.gnomAD[,639:652])

106 write.csv(SALS.gene.gnomAD.small, file = "SALS_TIA1_gnomAD_small.csv")

107

108 SALS.gene.welderly.small <- cbind(SALS.gene.welderly[,1:10],

SALS.gene.welderly[,639:649])

109 write.csv(SALS.gene.welderly.small, file =

"SALS_TIA1_welderly_results_small.csv")

110

111 SALS.gene.gnomAD.association <- cbind(SALS.gene.gnomAD[,1:10],

SALS.gene.gnomAD[,639:650], SALS.gene.welderly[,645:647],

SALS.gene.gnomAD[,651:652], SALS.gene.welderly[,648:649])

112 write.csv(SALS.gene.gnomAD.association, file =

"SALS_TIA1_gnomAD_welderly_association_small.csv")
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A.2.10 Creation of family WES VCFs

This script was written by Kelly Williams and later modified by the candidate, and

was used to create a WES VCF for each family with multiple informative individuals

present in the 137-sample WES VCF.

1 #!/bin/sh

2

3 # split.files.all.families.sh

4

5 # generate family vcfs that exclude sites without a called a genotype and

only include sites that have an alternate allele present

6 bcftools view -o ../QC\ and\ analysis/FALS15/FALS15.called.SNPs.vcf -Ov -c1

-U -s 15-A210,15-A211 Brisbane_MND.Kelly.hg19_multianno.vcf

7 bcftools view -o ../QC\ and\ analysis/FALS45/FALS45.called.SNPs.vcf -Ov -c1

-U -s 45-040247,45-A334 Brisbane_MND.Kelly.hg19_multianno.vcf

8 bcftools view -o ../QC\ and\ analysis/FALSmq2/FALSmq2.called.SNPs.vcf -Ov

-c1 -U -s mq2-MQ140023,MQ130016 Brisbane_MND.Kelly.hg19_multianno.vcf

9 bcftools view -o ../QC\ and\ analysis/FALSmq20/FALSmq20.called.SNPs.vcf -Ov

-c1 -U -s mq20-MQ140178,MQ130004 Brisbane_MND.Kelly.hg19_multianno.vcf

10

11 # create txt files with only column headers for ease of analysis

12 sed ’s/#CHROM/CHROM/g’ FALS15.called.SNPs.vcf >

FALS15.called.SNPs.header.txt

13 sed ’s/#CHROM/CHROM/g’ FALS45.called.SNPs.vcf >

FALS45.called.SNPs.header.txt

14 sed ’s/#CHROM/CHROM/g’ FALSmq2.called.SNPs.vcf >

FALSmq2.called.SNPs.header.txt

15 sed ’s/#CHROM/CHROM/g’ FALSmq20.called.SNPs.vcf >

FALSmq20.called.SNPs.header.txt
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A.2.11 WES shared variant analysis for small families

This Rmarkdown code was co-written by the candidate with Kelly Williams and was

used to identify a list of shared variants in each small family. It first identified all

shared variants present among all affected members or a family and/or absent from

any “married-in” control individuals, and then removed any shared variants that did

not meet filtering criteria.

1 ---

2 title: "small_families_exome_shared_variants.Rmd"

3 output: html_document

4 ---

5

6 # This code identifies shared variants in each small ALS family and filters

the resulting shared variants for population-based variants and

non-protein-altering variants

7

8 # Set up

9 ‘‘‘{r setup}

10 # define working directory

11 directory <- "/Volumes/Research/MND/Ian Blair Group/Genetics/Exome

relatedness PLINK/QC and analysis"

12

13 # generate an annotated RObject - ONLY DO ONCE

14 annot.vcf <- read.delim("/Volumes/Research/MND/Ian Blair

Group/Genetics/Exome relatedness PLINK/Raw

data/Brisbane_MND.Kelly.hg19_multianno.xls")

15 annot.vcf$exact.position <- paste(annot.vcf$Chr, annot.vcf$Start, sep = ":")

16 setwd(directory)

17 save(annot.vcf, file="Annotated_full_vcf.RObject")

18

19 ‘‘‘

20

21 #Load the family data into R

22 ‘‘‘{r load.all.families}

23

24 setwd(directory)

25

26 # note these have been generated using bcftools -

"split.files.all.families.sh"
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27

28 FALS15.called.SNPs <- read.table("/Volumes/Research/MND/Ian Blair

Group/Genetics/Exome relatedness PLINK/QC and

analysis/FALS15/FALS15.called.SNPs.header.txt", header=TRUE, quote="\"")

29 FALS45.called.SNPs <- read.table("/Volumes/Research/MND/Ian Blair

Group/Genetics/Exome relatedness PLINK/QC and

analysis/FALS45/FALS45.called.SNPs.header.txt", header=TRUE, quote="\"")

30 FALSmq2.called.SNPs <- read.table("/Volumes/Research/MND/Ian Blair

Group/Genetics/Exome relatedness PLINK/QC and

analysis/FALSmq2/FALSmq2.called.SNPs.header.txt", header=TRUE,

quote="\"")

31 FALSmq20.called.SNPs <- read.table("/Volumes/Research/MND/Ian Blair

Group/Genetics/Exome relatedness PLINK/QC and

analysis/FALSmq20/FALSmq20.called.SNPs.header.txt", header=TRUE,

quote="\"")

32

33 load("Annotated_full_vcf.RObject")

34 annot.info <- annot.vcf[,c(1:58,205)]

35

36 ‘‘‘

37

38 ##FALS15 analysis##

39 ‘‘‘{r affected.only.fals15}

40

41 setwd(directory)

42

43 # retain SNPs that are present in both individuals (as homozygous or

heterozygous)

44 FALS15.shared.SNPs <-

FALS15.called.SNPs[Reduce(‘&‘,lapply(FALS15.called.SNPs[10:11],

function(x) grepl("0/1|1/0|1/1", x))),]

45

46 # generate a location column for merging purposes

47 FALS15.shared.SNPs$exact.position <- paste(FALS15.shared.SNPs$CHROM,

FALS15.shared.SNPs$POS, sep = ":")

48

49 # merge the files so you have annotated variants for filtering

50 # note that you really only want to merge the "info" columns
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51 FALS15.annotated.shared.SNPs <- merge(FALS15.shared.SNPs, annot.info,

by="exact.position", all.x=TRUE)

52

53 ### filtering shared variants ###

54 # perform filtering steps to get final number of novel shared exonic SNPs

55 # keep only variants with an annotation

56 filter1 <- which(FALS15.annotated.shared.SNPs$snp129 == ".") # remove

dbSNP129

57 filtered.SNPs <- FALS15.annotated.shared.SNPs[filter1,]

58 filter2 <- which(filtered.SNPs$X1000g2014oct_all == ".") # remove 1000

Genomes

59 filtered.SNPs <- filtered.SNPs[filter2,]

60 filter3 <- which(filtered.SNPs$ExonicFunc.refGene != ".") # remove

non-coding

61 filtered.SNPs <- filtered.SNPs[filter3,]

62 filter4 <- which(filtered.SNPs$avsnp142 == ".") # remove dbSNP142

63 filtered.SNPs <- filtered.SNPs[filter4,]

64 filter5 <- which(filtered.SNPs$ExonicFunc.refGene != "synonymous SNV") #

remove synonymous

65 filtered.SNPs <- filtered.SNPs[filter5,]

66 FALS15.filtered.novel.shared.SNPs <- filtered.SNPs # shared variants

67

68 # export to csv

69 write.table(FALS15.filtered.novel.shared.SNPs, "FALS15.variants.txt", eol =

"\r", quote=FALSE, sep="\t", row.names=FALSE)

70

71 ‘‘‘

72

73 ##FALS45 analysis##

74 ‘‘‘{r affected.only.fals45}

75

76 setwd(directory)

77

78 # retain SNPs that are present in all 4 individuals (as homozygous or

heterozygous)

79 FALS45.shared.SNPs <-

FALS45.called.SNPs[Reduce(‘&‘,lapply(FALS45.called.SNPs[12:12],

function(x) grepl("0/1|1/0|1/1", x))),]

80
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81 # remove SNPs that are present in the control sample

82 control <- which(colnames(FALS45.shared.SNPs) == "X45.040542")

83 FALS45.SNPs.no.control <-

FALS45.shared.SNPs[Reduce(‘|‘,lapply(FALS45.shared.SNPs[control],

function(x) grepl("\\.\\/\\.|0/0", x))),]

84

85 # generate a location column for merging purposes

86 FALS45.SNPs.no.control$exact.position <-

paste(FALS45.SNPs.no.control$CHROM, FALS45.SNPs.no.control$POS, sep =

":")

87

88 # merge the files so you have annotated variants for filtering

89 # note that you really only want to merge the "info" columns

90 FALS45.annotated.shared.SNPs <- merge(FALS45.SNPs.no.control, annot.info,

by="exact.position", all.x=TRUE)

91

92

93 ### filtering shared variants ###

94 # perform filtering steps to get final number of novel shared exonic SNPs

95 # keep only variants with an annotation

96 filter1 <- which(FALS45.annotated.shared.SNPs$snp129 == ".") # remove

dbSNP129

97 filtered.SNPs <- FALS45.annotated.shared.SNPs[filter1,]

98 filter2 <- which(filtered.SNPs$X1000g2014oct_all == ".") # remove 1000

Genomes

99 filtered.SNPs <- filtered.SNPs[filter2,]

100 filter3 <- which(filtered.SNPs$ExonicFunc.refGene != ".") # remove

non-coding

101 filtered.SNPs <- filtered.SNPs[filter3,]

102 filter4 <- which(filtered.SNPs$avsnp142 == ".") # remove dbSNP142

103 filtered.SNPs <- filtered.SNPs[filter4,]

104 filter5 <- which(filtered.SNPs$ExonicFunc.refGene != "synonymous SNV") #

remove synonymous

105 filtered.SNPs <- filtered.SNPs[filter5,]

106 FALS15.filtered.novel.shared.SNPs <- filtered.SNPs # shared variants

107

108 #export to csv

109 write.table(FALS45.filtered.novel.shared.SNPs, "FALS45.variants.txt", eol =

"\r", quote=FALSE, sep="\t", row.names=FALSE)
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110

111 ‘‘‘

112

113 ##FALSmq2 analysis##

114 ‘‘‘{r affected.only.falsmq2}

115

116 setwd(directory)

117

118 # retain SNPs that are present in both individuals (as homozygous or

heterozygous)

119 FALSmq2.shared.SNPs <-

FALSmq2.called.SNPs[Reduce(‘&‘,lapply(FALSmq2.called.SNPs[10:11],

function(x) grepl("0/1|1/0|1/1", x))),]

120

121 # generate a location column for merging purposes

122 FALSmq2.shared.SNPs$exact.position <- paste(FALSmq2.shared.SNPs$CHROM,

FALSmq2.shared.SNPs$POS, sep = ":")

123

124 # merge the files so you have annotated variants for filtering

125 # note that you really only want to merge the "info" columns

126 FALSmq2.annotated.shared.SNPs <- merge(FALSmq2.shared.SNPs, annot.info,

by="exact.position", all.x=TRUE)

127

128 ### filtering shared variants ###

129 # perform filtering steps to get final number of novel shared exonic SNPs

130 # keep only variants with an annotation

131 filter1 <- which(FALSmq2.annotated.shared.SNPs$snp129 == ".") # remove

dbSNP129

132 filtered.SNPs <- FALSmq2.annotated.shared.SNPs[filter1,]

133 filter2 <- which(filtered.SNPs$X1000g2014oct_all == ".") # remove 1000

Genomes

134 filtered.SNPs <- filtered.SNPs[filter2,]

135 filter3 <- which(filtered.SNPs$ExonicFunc.refGene != ".") # remove

non-coding

136 filtered.SNPs <- filtered.SNPs[filter3,]

137 filter4 <- which(filtered.SNPs$avsnp142 == ".") # remove dbSNP142

138 filtered.SNPs <- filtered.SNPs[filter4,]

139 filter5 <- which(filtered.SNPs$ExonicFunc.refGene != "synonymous SNV") #

remove synonymous
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140 filtered.SNPs <- filtered.SNPs[filter5,]

141 FALS15.filtered.novel.shared.SNPs <- filtered.SNPs # shared variants

142

143 #export to csv

144 write.table(FALSmq2.filtered.novel.shared.SNPs, "FALSmq2.variants.txt", eol

= "\r", quote=FALSE, sep="\t", row.names=FALSE)

145

146 ‘‘‘

147

148 ##FALSmq20 analysis##

149 ‘‘‘{r affected.only.falsmq20}

150

151 setwd(directory)

152

153 # retain SNPs that are present in all 4 individuals (as homozygous or

heterozygous)

154 FALSmq20.shared.SNPs <-

FALSmq20.called.SNPs[Reduce(‘&‘,lapply(FALSmq20.called.SNPs[10:11],

function(x) grepl("0/1|1/0|1/1", x))),]

155

156 # generate a location column for merging purposes

157 FALSmq20.shared.SNPs$exact.position <- paste(FALSmq20.shared.SNPs$CHROM,

FALSmq20.shared.SNPs$POS, sep = ":")

158

159 # merge the files so you have annotated variants for filtering

160 # note that you really only want to merge the "info" columns

161 FALSmq20.annotated.shared.SNPs <- merge(FALSmq20.shared.SNPs, annot.info,

by="exact.position", all.x=TRUE)

162

163 ### filtering shared variants ###

164 # perform filtering steps to get final number of novel shared exonic SNPs

165 # keep only variants with an annotation

166 filter1 <- which(FALSmq20.annotated.shared.SNPs$snp129 == ".") # remove

dbSNP129

167 filtered.SNPs <- FALSmq20.annotated.shared.SNPs[filter1,]

168 filter2 <- which(filtered.SNPs$X1000g2014oct_all == ".") # remove 1000

Genomes

169 filtered.SNPs <- filtered.SNPs[filter2,]
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170 filter3 <- which(filtered.SNPs$ExonicFunc.refGene != ".") # remove

non-coding

171 filtered.SNPs <- filtered.SNPs[filter3,]

172 filter4 <- which(filtered.SNPs$avsnp142 == ".") # remove dbSNP142

173 filtered.SNPs <- filtered.SNPs[filter4,]

174 filter5 <- which(filtered.SNPs$ExonicFunc.refGene != "synonymous SNV") #

remove synonymous

175 filtered.SNPs <- filtered.SNPs[filter5,]

176 FALS15.filtered.novel.shared.SNPs <- filtered.SNPs # shared variants

177

178 #export to csv

179 write.table(FALSmq20.filtered.novel.shared.SNPs, "FALSmq20.variants.txt",

eol = "\r", quote=FALSE, sep="\t", row.names=FALSE)

180

181 ‘‘‘
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A.2.12 Combining WES VCFs for family FALSmq28

This script was used to combine the three single-sample WES VCFs for the informative

family members from FALSmq28.

1 #!/bin/sh

2

3 # mq28_combine_vcfs.sh

4

5 # this code is for creating a combined vcf for the 3 individauls from

FALSmq28 who were exome sequenced at Macrogen

6

7 # line count each individual file

8 cd /Users/emccann/Desktop/FALSmq28_exomes/Raw\ data

9 wc -l ./mq28-MQ150214/mq28-MQ150214.final.vcf

10 wc -l ./mq28-MQ150267/mq28-MQ150267.final.vcf

11 wc -l ./mq28-MQ150303/mq28-MQ150303.final.vcf

12

13 # bgzip these vcf files so we can merge them with bcftools

14 cd /Users/emccann/Desktop/FALSmq28_exomes/QC\ and\ analysis

15 bgzip -c ../Raw\ data/mq28-MQ150214/mq28-MQ150214.final.vcf >

mq28-MQ150214.final.vcf.gz

16 bgzip -c ../Raw\ data/mq28-MQ150267/mq28-MQ150267.final.vcf >

mq28-MQ150267.final.vcf.gz

17 bgzip -c ../Raw\ data/mq28-MQ150303/mq28-MQ150303.final.vcf >

mq28-MQ150303.final.vcf.gz

18

19 # index these vcf files so we can merge them with bcftools

20 tabix -p vcf mq28-MQ150214.final.vcf.gz

21 tabix -p vcf mq28-MQ150267.final.vcf.gz

22 tabix -p vcf mq28-MQ150303.final.vcf.gz

23

24 # merge individual vcf to create a combined vcf file

25 cd /Users/emccann/Desktop/FALSmq28_exomes/QC\ and\ analysis

26 bcftools merge mq28-MQ150214.final.vcf.gz mq28-MQ150267.final.vcf.gz

mq28-MQ150303.final.vcf.gz > FALSmq28.final.vcf.gz

27

28 # decompress the combined vcf file

29 bgzip -d FALSmq28.final.vcf.gz

30



358 Appendix

31 # generate a family vcf that excludes sites without a called a genotype

32 bcftools view -o FALSmq28.final.called.vcf -Ov -U -s

mq28-MQ150214,mq28-MQ150267,mq28-MQ150303 FALSmq28.final.vcf

33

34 # generate vcfs that only have an alternate allele present

35 bcftools view -o FALSmq28.final.called.SNPs.vcf -Ov -c1 -U -s

mq28-MQ150214,mq28-MQ150267,mq28-MQ150303 FALSmq28.final.called.vcf
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A.2.13 WES shared variant analysis for family FALSmq28

This script was used to identify a list of shared variants in FALSmq28. It first identi-

fied all shared variants present among both affected family members and the obligate

mutation carrier, and then removed any shared variants that did not meet filtering

criteria.

1 # mq28_exome_shared_variants.R

2

3 # This script is for shared variant analysis of exome sequencing data from

FALSmq28

4

5 # first import the tab delimited ANNOVAR annotated combined VCF

6 mq28 <- read.csv("/Users/emccann/Desktop/FALSmq28_exomes/QC\ and\

analysis/FALSmq28exomes_anno.hg19_multianno_headed.csv", header = TRUE,

sep = ",") # 185 703 lines

7

8 # set working directory

9 setwd("~/Desktop/FALSmq28_exomes/QC and analysis")

10

11 # Start shared variant analysis

12 ## note: FALSmq28 has 2 affected patients and an obligate carrier - there

are no married in controls

13

14 # retain SNPs that are present in all 4 individuals (as homozygous or

heterozygous)

15 mq28.shared.SNPs.alt1 <- mq28[Reduce(‘&‘,lapply(mq28[126:128], function(x)

grepl("0/1|1/0|1/1|1/2|2/1|1/3|3/1|1/4|4/1|\\.\\/\\.", x))),] # 182 851

lines

16 mq28.shared.SNPs.alt2 <- mq28[Reduce(‘&‘,lapply(mq28[126:128], function(x)

grepl("0/2|2/0|2/2|2/1|1/2|2/3|3/2|2/4|4/2|\\.\\/\\.", x))),] # 388 lines

17 mq28.shared.SNPs.alt3 <- mq28[Reduce(‘&‘,lapply(mq28[126:128], function(x)

grepl("0/3|3/0|3/3|3/1|1/3|3/2|2/3|3/4|4/3|\\.\\/\\.", x))),] # 0 lines

18 mq28.shared.SNPs.alt4 <- mq28[Reduce(‘&‘,lapply(mq28[126:128], function(x)

grepl("0/4|4/0|4/4|4/1|1/4|4/2|2/4|4/3|3/4|\\.\\/\\.", x))),] # 0 lines

19 mq28.shared.SNPs.ALL <- rbind(mq28.shared.SNPs.alt1, mq28.shared.SNPs.alt2,

mq28.shared.SNPs.alt3, mq28.shared.SNPs.alt4)

20

21 # generate a location column for merging purposes
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22 mq28.shared.SNPs.ALL$exact.position <- paste(mq28.shared.SNPs.ALL$CHROM,

mq28.shared.SNPs.ALL$POS, sep = ":")

23 # get rid of the "chr"

24 mq28.shared.SNPs.ALL$exact.position <- sub("chr", "",

mq28.shared.SNPs.ALL$exact.position , perl=T)

25

26 ### filtering shared variants ###

27 # perform filtering steps to get final number of novel shared exonic SNPs

28 # keep only variants with an annotation

29 filter1 <- which(mq28.shared.SNPs.ALL$avsnp147 == ".") # remove dbSNP147

30 filtered.SNPs <- mq28.shared.SNPs.ALL[filter1,] # 3 378 lines

31 # remove variants with no exonic function

32 filter2 <- which(filtered.SNPs$Func.refGene == "exonic")

33 filtered.SNPs <- filtered.SNPs[filter2,] # 230 variants

34 # remove synonymous variants

35 filter3 <- which(filtered.SNPs$ExonicFunc.refGene != "synonymous SNV")

36 filtered.SNPs <- filtered.SNPs[filter3,] # 171 variants

37

38 # merge remaining variants with gnomAD.vcf.data for further filtering in

excel

39 load("/Users/emccann/Desktop/FALSmq28_exomes/Raw\

data/gnomAD_genomes.vcf.data.RObject")

40 load("/Users/emccann/Desktop/FALSmq28_exomes/Raw\

data/gnomAD_exomes_vcf_data.RObject")

41 filtered.SNPs <- merge(filtered.SNPs, gnomAD.genomes.vcf.data, by =

"exact.position", all.x = TRUE)

42 filtered.SNPs <- merge(filtered.SNPs, gnomAD.exomes.vcf.data, by =

"exact.position", all.x = TRUE)

43

44 x <- filtered.SNPs

45

46 # export to csv to use in excel

47 write.table(x, "FALSmq28_exome_shared_variants.txt", quote=FALSE, sep="\t",

row.names=FALSE, eol = "\r")
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A.2.14 WGS shared variant analysis for family FALSmq28

This script was used to identify a list of shared variants in FALSmq28. It first identi-

fied all shared variants present among both affected family members and the obligate

mutation carrier, and then removed any shared variants that did not meet filtering

criteria.

1 ---

2 title: "mq28_exome_shared_variants.Rmd"

3 output: html_document

4 ---

5

6 # This code identifies shared variants in FALSmq28 and filters the

resulting shared variants for population-based variants and

non-protein-altering variants

7

8 ‘‘‘{r setup, include=FALSE}

9 knitr::opts_chunk$set(echo = TRUE)

10 ‘‘‘

11

12 ## Set the working directory

13

14 ‘‘‘{r directories}

15 setwd("~/Desktop/WGS_shared_variant_analysis/QC and analysis")

16 ‘‘‘

17

18 ###### Analysis 1 ######

19

20 ## Load family data into R

21 ## annotated family WES or WGS VCF - either complete (analysis 1),

containing regions with LOD>0 (analysis 2) or

22 ## containing regions with LOD>-2 and variants with GQ>20 (analysis 3)

23 ‘‘‘{r load.vcf}

24 FALSmq28 <- read.delim("~/Desktop/WGS_shared_variant_analysis/Raw\

data/Filter_first/FALSmq28_anno.hg19_multianno_headed.txt", header =

TRUE, sep = "\t")

25 ‘‘‘

26

27 ## Shared variant analysis and first-tier filtering

28 ‘‘‘{r sharedVariants}
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29

30 # generate a location column for merging purposes

31 FALSmq28$exact.position <- paste(FALSmq28$CHROM, FALSmq28$POS, sep = ":")

32

33 # retain SNPs that are present in all 3 individuals (as homozygous or

heterozygous)

34 FALSmq28.shared.SNPs.alt1 <- FALSmq28[Reduce(‘&‘,lapply(FALSmq28[126:128],

function(x)

grepl("0/1|1/0|1/1|1/2|2/1|1/3|3/1|1/4|4/1|1/5|5/1|1/6|6/1|\\.\\/\\.",

x))),] # 3361529 variants

35 FALSmq28.shared.SNPs.alt2 <- FALSmq28[Reduce(‘&‘,lapply(FALSmq28[126:128],

function(x)

grepl("0/2|2/0|2/2|2/1|1/2|2/3|3/2|2/4|4/2|2/5|5/2|2/6|6/2|\\.\\/\\.",

x))),] # 251193 variants

36 FALSmq28.shared.SNPs.alt3 <- FALSmq28[Reduce(‘&‘,lapply(FALSmq28[126:128],

function(x)

grepl("0/3|3/0|3/3|3/1|1/3|3/2|2/3|3/4|4/3|3/5|5/3|3/6|6/3|\\.\\/\\.",

x))),] # 66939 variants

37 FALSmq28.shared.SNPs.alt4 <- FALSmq28[Reduce(‘&‘,lapply(FALSmq28[126:128],

function(x)

grepl("0/4|4/0|4/4|4/1|1/4|4/2|2/4|4/3|3/4|4/5|5/4|4/6|6/4|\\.\\/\\.",

x))),] # 24723 variants

38 FALSmq28.shared.SNPs.alt5 <- FALSmq28[Reduce(‘&‘,lapply(FALSmq28[126:128],

function(x)

grepl("0/5|5/0|5/5|5/1|1/5|5/2|2/5|5/3|3/5|5/4|4/5|5/6|6/5|\\.\\/\\.",

x))),] # 9841 variants

39 FALSmq28.shared.SNPs.alt6 <- FALSmq28[Reduce(‘&‘,lapply(FALSmq28[126:128],

function(x)

grepl("0/6|6/0|6/6|6/1|1/6|6/2|2/6|6/3|3/6|6/4|4/6|6/5|5/6|\\.\\/\\.",

x))),] # 4704 variants

40 FALSmq28.shared.SNPs.ALL <- rbind(FALSmq28.shared.SNPs.alt1,

FALSmq28.shared.SNPs.alt2, FALSmq28.shared.SNPs.alt3,

FALSmq28.shared.SNPs.alt4, FALSmq28.shared.SNPs.alt5,

FALSmq28.shared.SNPs.alt6) # 3718299 annotations

41

42 length(unique(FALSmq28.shared.SNPs.ALL$exact.position)) # 2792679 variants

43

44 ### filtering shared variants ###

45 # perform filtering steps to get final number of novel shared SNPs
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46 # different variations and combinations of these steps were applied in the

different analysis pipelines

47 # remove known SNPs from dbSNP147

48 filter1 <- which(FALSmq28.shared.SNPs.ALL$avsnp147 == ".") # remove dbSNP147

49 filtered.SNPs <- FALSmq28.shared.SNPs.ALL[filter1,]

50 length(unique(filtered.SNPs$exact.position)) # number of unique variants

51 # remove variants with no exonic function

52 filter2 <- which(filtered.SNPs$Func.refGene == "exonic")

53 filtered.SNPs <- filtered.SNPs[filter2,]

54 length(unique(filtered.SNPs$exact.position)) # number of unique variants

55 # remove synonymous variants

56 filter3 <- which(filtered.SNPs$ExonicFunc.refGene != "synonymous SNV")

57 filtered.SNPs <- filtered.SNPs[filter3,]

58 length(unique(filtered.SNPs$exact.position)) # number of unique variants

59 # remove intronic and intergenic variants

60 filter4 <- which(filtered.exome.SNPs$Func.refGene != "intronic")

61 filtered.exome.SNPs <- filtered.exome.SNPs[filter4,]

62 filter5 <- which(filtered.exome.SNPs$Func.refGene != "intergenic")

63 filtered.exome.SNPs <- filtered.exome.SNPs[filter5,]

64 filter6 <- which(filtered.exome.SNPs$Func.refGene != "ncRNA_intronic")

65 filtered.exome.SNPs <- filtered.exome.SNPs[filter6,]

66

67 # merge remaining variants with gnomAD.vcf.data for further filtering in

excel

68 load("/Users/emilymccann/Desktop/WGS_shared_variant_analysis/QC\ and\

analysis/gnomAD.genomes.vcf.data.RObject")

69 load("/Users/emilymccann/Desktop/WGS_shared_variant_analysis/QC\ and\

analysis/gnomAD_exomes_vcf_data.RObject")

70 filtered.SNPs <- merge(filtered.SNPs, gnomAD.genomes.vcf.data, by =

"exact.position", all.x = TRUE)

71 filtered.SNPs <- merge(filtered.SNPs, gnomAD.exomes.vcf.data, by =

"exact.position", all.x = TRUE)

72

73 x <- filtered.SNPs

74

75 # export to csv to use in excel

76 write.table(x, "FALSmq28_shared_variants.txt", quote=FALSE, sep="\t",

row.names=FALSE, eol = "\r")

77 ‘‘‘
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A.2.15 File preparation for genetic linkage analysis of

FALSmq28 in Merlin

This script was used to edit ped, dat and map files for FALSmq28 to prepare these for

genetic linkage analysis using Merlin.

1 # mq28_setup_linkage.R

2

3 # this code is for carrying out linkage analysis of FALSmq28

4

5 # First install the paramlink package

6 install.packages("paramlink")

7

8 # Now load the paramlink package

9 library("paramlink")

10

11 # Set working directory

12 setwd("/Volumes/Personal/Bioinformatics/Linkage/QC and analysis")

13

14 # Load data

15 mq28.ped <- read.table("/Volumes/Personal/Bioinformatics/Linkage/Raw\

data/mq28/test.ped")

16 mq28.merlin.ped <- read.table("/Volumes/GEORGE/merlin-1.1.2\

copy/mq28_raw_files/mq28_w_liability.ped")

17

18 # Make mq28 ped into linkdat object

19 x <- linkdat(mq28.ped)

20

21 # let’s have a look at the pedogree

22 plot(x, available=TRUE)

23

24 # so we can see a few errors... the obligates are marked as unaffected and

the "unknown" is not who it should be...

25 ## We need to fix the "aff" column 5 to reflect the proper statuses of

these individuals

26 mq28.ped[1, 6] <- 1

27 mq28.ped[2, 6] <- 2

28 mq28.ped[3, 6] <- 1

29 mq28.ped[4, 6] <- 2

30 mq28.ped[5, 6] <- 2
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31 mq28.ped[6, 6] <- 1

32 mq28.ped[7, 6] <- 2

33 mq28.ped[8, 6] <- 0

34 mq28.ped[9, 6] <- 0

35 mq28.ped[10, 6] <- 0

36 mq28.ped[11, 6] <- 1

37 mq28.ped[12, 6] <- 0

38 mq28.ped[13, 6] <- 0

39 mq28.ped[14, 6] <- 2

40 mq28.ped[15, 6] <- 1

41 mq28.ped[16, 6] <- 0

42 mq28.ped[17, 6] <- 0

43 mq28.ped[18, 6] <- 2

44 mq28.ped[19, 6] <- 1

45 mq28.ped[20, 6] <- 2

46 mq28.ped[21, 6] <- 1

47 mq28.ped[22, 6] <- 0

48 mq28.ped[23, 6] <- 0

49 mq28.ped[24, 6] <- 0

50 mq28.ped[25, 6] <- 0

51

52 ## Make mq28.ped back into a linkdat object

53 x = linkdat(mq28.ped)

54

55 ## let’s look at the pedigree again to see if it looks right now

56 plot(x, available=TRUE )

57 summary(x)

58 ### Excellent! It is now correct

59

60 ## Now, let’s add the liability classes

61 mq28.ped$liability_class <- c(0, 1, 0, 6, 1, 0, 5, 6, 6, 6, 0, 3, 4, 4, 0,

1, 2, 6, 0, 4, 0, 4, 4, 4, 4)

62 x2 = as.data.frame(mq28.ped)

63 write.table(x2, file = "mq28_w_liability_new.txt", sep = "\t", col.names =

FALSE, row.names = FALSE)

64

65 # save this work as files we can use in merlin

66 write.linkdat(x, prefix="mq28", what=c("ped", "map", "dat", "freq",

"model"), merlin=TRUE)
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A.2.16 Splitting FALSmq28 genetic linkage analysis files by

chromosome

This script was used to split the files created in section A.2.15 by chromosome, to

facilitate running genetic linkage analysis using Merlin for each chromosome separately.

1 # mq28_split_linkage_files.R

2

3 # this code leads on from file_preparation_for_imputing_genotypes.R and is

for the purposes of making ped map and dat files to conduct linkage

analysis in merlin separately for each chr

4

5 setwd("/Volumes/Personal/Bioinformatics/Linkage/QC and

analysis/Linkage_by_chr")

6

7 # combine chr ped files with libability class column

8 FALSmq28_chr1.ped2 <- cbind(FALSmq28_chr1.ped, ped[,79895])

9 FALSmq28_chr2.ped2 <- cbind(FALSmq28_chr2.ped, ped[,79895])

10 FALSmq28_chr3.ped2 <- cbind(FALSmq28_chr3.ped, ped[,79895])

11 FALSmq28_chr4.ped2 <- cbind(FALSmq28_chr4.ped, ped[,79895])

12 FALSmq28_chr5.ped2 <- cbind(FALSmq28_chr5.ped, ped[,79895])

13 FALSmq28_chr6.ped2 <- cbind(FALSmq28_chr6.ped, ped[,79895])

14 FALSmq28_chr7.ped2 <- cbind(FALSmq28_chr7.ped, ped[,79895])

15 FALSmq28_chr8.ped2 <- cbind(FALSmq28_chr8.ped, ped[,79895])

16 FALSmq28_chr9.ped2 <- cbind(FALSmq28_chr9.ped, ped[,79895])

17 FALSmq28_chr10.ped2 <- cbind(FALSmq28_chr10.ped, ped[,79895])

18 FALSmq28_chr11.ped2 <- cbind(FALSmq28_chr11.ped, ped[,79895])

19 FALSmq28_chr12.ped2 <- cbind(FALSmq28_chr12.ped, ped[,79895])

20 FALSmq28_chr13.ped2 <- cbind(FALSmq28_chr13.ped, ped[,79895])

21 FALSmq28_chr14.ped2 <- cbind(FALSmq28_chr14.ped, ped[,79895])

22 FALSmq28_chr15.ped2 <- cbind(FALSmq28_chr15.ped, ped[,79895])

23 FALSmq28_chr16.ped2 <- cbind(FALSmq28_chr16.ped, ped[,79895])

24 FALSmq28_chr17.ped2 <- cbind(FALSmq28_chr17.ped, ped[,79895])

25 FALSmq28_chr18.ped2 <- cbind(FALSmq28_chr18.ped, ped[,79895])

26 FALSmq28_chr19.ped2 <- cbind(FALSmq28_chr19.ped, ped[,79895])

27 FALSmq28_chr20.ped2 <- cbind(FALSmq28_chr20.ped, ped[,79895])

28 FALSmq28_chr21.ped2 <- cbind(FALSmq28_chr21.ped, ped[,79895])

29 FALSmq28_chr22.ped2 <- cbind(FALSmq28_chr22.ped, ped[,79895])

30 FALSmq28_chr23.ped2 <- cbind(FALSmq28_chr23.ped, ped[,79895])

31
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32 # Write these to file

33 write.table(FALSmq28_chr1.ped2, file = "FALSmq28_chr1.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

34 write.table(FALSmq28_chr2.ped2, file = "FALSmq28_chr2.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

35 write.table(FALSmq28_chr3.ped2, file = "FALSmq28_chr3.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

36 write.table(FALSmq28_chr4.ped2, file = "FALSmq28_chr4.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

37 write.table(FALSmq28_chr5.ped2, file = "FALSmq28_chr5.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

38 write.table(FALSmq28_chr6.ped2, file = "FALSmq28_chr6.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

39 write.table(FALSmq28_chr7.ped2, file = "FALSmq28_chr7.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

40 write.table(FALSmq28_chr8.ped2, file = "FALSmq28_chr8.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

41 write.table(FALSmq28_chr9.ped2, file = "FALSmq28_chr9.ped.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

42 write.table(FALSmq28_chr10.ped2, file = "FALSmq28_chr10.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

43 write.table(FALSmq28_chr11.ped2, file = "FALSmq28_chr11.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

44 write.table(FALSmq28_chr12.ped2, file = "FALSmq28_chr12.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

45 write.table(FALSmq28_chr13.ped2, file = "FALSmq28_chr13.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

46 write.table(FALSmq28_chr14.ped2, file = "FALSmq28_chr14.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

47 write.table(FALSmq28_chr15.ped2, file = "FALSmq28_chr15.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

48 write.table(FALSmq28_chr16.ped2, file = "FALSmq28_chr16.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

49 write.table(FALSmq28_chr17.ped2, file = "FALSmq28_chr17.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

50 write.table(FALSmq28_chr18.ped2, file = "FALSmq28_chr18.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

51 write.table(FALSmq28_chr19.ped2, file = "FALSmq28_chr19.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)
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52 write.table(FALSmq28_chr20.ped2, file = "FALSmq28_chr20.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

53 write.table(FALSmq28_chr21.ped2, file = "FALSmq28_chr21.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

54 write.table(FALSmq28_chr22.ped2, file = "FALSmq28_chr22.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

55 write.table(FALSmq28_chr23.ped2, file = "FALSmq28_chr23.ped.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

56

57 # redo the simple version of the map files

58 map <-

read.table("/Users/emccann/Desktop/merlin-1.1.2/mq28_raw_files/test.map")

59

60 #subset map file by chromosome

61 FALSmq28_chr1.map <- map[which(map$V1 == "1") ,]

62 FALSmq28_chr2.map <- map[which(map$V1 == "2") ,]

63 FALSmq28_chr3.map <- map[which(map$V1 == "3") ,]

64 FALSmq28_chr4.map <- map[which(map$V1 == "4") ,]

65 FALSmq28_chr5.map <- map[which(map$V1 == "5") ,]

66 FALSmq28_chr6.map <- map[which(map$V1 == "6") ,]

67 FALSmq28_chr7.map <- map[which(map$V1 == "7") ,]

68 FALSmq28_chr8.map <- map[which(map$V1 == "8") ,]

69 FALSmq28_chr9.map <- map[which(map$V1 == "9") ,]

70 FALSmq28_chr10.map <- map[which(map$V1 == "10") ,]

71 FALSmq28_chr11.map <- map[which(map$V1 == "11") ,]

72 FALSmq28_chr12.map <- map[which(map$V1 == "12") ,]

73 FALSmq28_chr13.map <- map[which(map$V1 == "13") ,]

74 FALSmq28_chr14.map <- map[which(map$V1 == "14") ,]

75 FALSmq28_chr15.map <- map[which(map$V1 == "15") ,]

76 FALSmq28_chr16.map <- map[which(map$V1 == "16") ,]

77 FALSmq28_chr17.map <- map[which(map$V1 == "17") ,]

78 FALSmq28_chr18.map <- map[which(map$V1 == "18") ,]

79 FALSmq28_chr19.map <- map[which(map$V1 == "19") ,]

80 FALSmq28_chr20.map <- map[which(map$V1 == "20") ,]

81 FALSmq28_chr21.map <- map[which(map$V1 == "21") ,]

82 FALSmq28_chr22.map <- map[which(map$V1 == "22") ,]

83 FALSmq28_chr23.map <- map[which(map$V1 == "23") ,]

84

85 # write these to file
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86 write.table(FALSmq28_chr1.map, file = "FALSmq28_chr1.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

87 write.table(FALSmq28_chr2.map, file = "FALSmq28_chr2.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

88 write.table(FALSmq28_chr3.map, file = "FALSmq28_chr3.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

89 write.table(FALSmq28_chr4.map, file = "FALSmq28_chr4.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

90 write.table(FALSmq28_chr5.map, file = "FALSmq28_chr5.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

91 write.table(FALSmq28_chr6.map, file = "FALSmq28_chr6.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

92 write.table(FALSmq28_chr7.map, file = "FALSmq28_chr7.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

93 write.table(FALSmq28_chr8.map, file = "FALSmq28_chr8.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

94 write.table(FALSmq28_chr9.map, file = "FALSmq28_chr9.map.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

95 write.table(FALSmq28_chr10.map, file = "FALSmq28_chr10.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

96 write.table(FALSmq28_chr11.map, file = "FALSmq28_chr11.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

97 write.table(FALSmq28_chr12.map, file = "FALSmq28_chr12.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

98 write.table(FALSmq28_chr13.map, file = "FALSmq28_chr13.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

99 write.table(FALSmq28_chr14.map, file = "FALSmq28_chr14.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

100 write.table(FALSmq28_chr15.map, file = "FALSmq28_chr15.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

101 write.table(FALSmq28_chr16.map, file = "FALSmq28_chr16.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

102 write.table(FALSmq28_chr17.map, file = "FALSmq28_chr17.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

103 write.table(FALSmq28_chr18.map, file = "FALSmq28_chr18.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

104 write.table(FALSmq28_chr19.map, file = "FALSmq28_chr19.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)
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105 write.table(FALSmq28_chr20.map, file = "FALSmq28_chr20.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

106 write.table(FALSmq28_chr21.map, file = "FALSmq28_chr21.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

107 write.table(FALSmq28_chr22.map, file = "FALSmq28_chr22.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

108 write.table(FALSmq28_chr23.map, file = "FALSmq28_chr23.map.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

109

110 # redo do dat files

111 dat <-

read.table("/Users/emccann/Desktop/merlin-1.1.2/mq28_raw_files/test.dat")

112

113 # using number of markers belonging to each chromosome worked out above -

"# how many markers belong to each chromosome?"

114 # subset dat file based on these numbers

115 FALSmq28_chr1.dat <- rbind(dat[1, ], dat[2:3158, ], dat[39946, ],

dat[39947, ])

116 FALSmq28_chr2.dat <- rbind(dat[1, ], dat[3159:6271, ], dat[39946, ],

dat[39947, ])

117 FALSmq28_chr3.dat <- rbind(dat[1, ], dat[6272:8846, ], dat[39946, ],

dat[39947, ])

118 FALSmq28_chr4.dat <- rbind(dat[1, ], dat[8847:11328, ], dat[39946, ],

dat[39947, ])

119 FALSmq28_chr5.dat <- rbind(dat[1, ], dat[11329:13651, ], dat[39946, ],

dat[39947, ])

120 FALSmq28_chr6.dat <- rbind(dat[1, ], dat[13652:16285, ], dat[39946, ],

dat[39947, ])

121 FALSmq28_chr7.dat <- rbind(dat[1, ], dat[16286:18529, ], dat[39946, ],

dat[39947, ])

122 FALSmq28_chr8.dat <- rbind(dat[1, ], dat[18530:20531, ], dat[39946, ],

dat[39947, ])

123 FALSmq28_chr9.dat <- rbind(dat[1, ], dat[20532:22344, ], dat[39946, ],

dat[39947, ])

124 FALSmq28_chr10.dat <- rbind(dat[1, ], dat[22345:24336, ], dat[39946, ],

dat[39947, ])

125 FALSmq28_chr11.dat <- rbind(dat[1, ], dat[24337:26204, ], dat[39946, ],

dat[39947, ])
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126 FALSmq28_chr12.dat <- rbind(dat[1, ], dat[26205:28087, ], dat[39946, ],

dat[39947, ])

127 FALSmq28_chr13.dat <- rbind(dat[1, ], dat[28088:29483, ], dat[39946, ],

dat[39947, ])

128 FALSmq28_chr14.dat <- rbind(dat[1, ], dat[29484:30738, ], dat[39946, ],

dat[39947, ])

129 FALSmq28_chr15.dat <- rbind(dat[1, ], dat[30739:31871, ], dat[39946, ],

dat[39947, ])

130 FALSmq28_chr16.dat <- rbind(dat[1, ], dat[31872:33201, ], dat[39946, ],

dat[39947, ])

131 FALSmq28_chr17.dat <- rbind(dat[1, ], dat[33202:34450, ], dat[39946, ],

dat[39947, ])

132 FALSmq28_chr18.dat <- rbind(dat[1, ], dat[34451:35617, ], dat[39946, ],

dat[39947, ])

133 FALSmq28_chr19.dat <- rbind(dat[1, ], dat[35618:36643, ], dat[39946, ],

dat[39947, ])

134 FALSmq28_chr20.dat <- rbind(dat[1, ], dat[36644:37618, ], dat[39946, ],

dat[39947, ])

135 FALSmq28_chr21.dat <- rbind(dat[1, ], dat[37619:38267, ], dat[39946, ],

dat[39947, ])

136 FALSmq28_chr22.dat <- rbind(dat[1, ], dat[38268:38912, ], dat[39946, ],

dat[39947, ])

137 FALSmq28_chr23.dat <- rbind(dat[1, ], dat[38913:39945, ], dat[39946, ],

dat[39947, ])

138

139 # write these to file

140 write.table(FALSmq28_chr1.dat, file = "FALSmq28_chr1.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

141 write.table(FALSmq28_chr2.dat, file = "FALSmq28_chr2.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

142 write.table(FALSmq28_chr3.dat, file = "FALSmq28_chr3.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

143 write.table(FALSmq28_chr4.dat, file = "FALSmq28_chr4.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

144 write.table(FALSmq28_chr5.dat, file = "FALSmq28_chr5.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

145 write.table(FALSmq28_chr6.dat, file = "FALSmq28_chr6.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)
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146 write.table(FALSmq28_chr7.dat, file = "FALSmq28_chr7.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

147 write.table(FALSmq28_chr8.dat, file = "FALSmq28_chr8.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

148 write.table(FALSmq28_chr9.dat, file = "FALSmq28_chr9.dat.txt", sep = "\t",

col.names = FALSE, row.names = FALSE)

149 write.table(FALSmq28_chr10.dat, file = "FALSmq28_chr10.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

150 write.table(FALSmq28_chr11.dat, file = "FALSmq28_chr11.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

151 write.table(FALSmq28_chr12.dat, file = "FALSmq28_chr12.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

152 write.table(FALSmq28_chr13.dat, file = "FALSmq28_chr13.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

153 write.table(FALSmq28_chr14.dat, file = "FALSmq28_chr14.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

154 write.table(FALSmq28_chr15.dat, file = "FALSmq28_chr15.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

155 write.table(FALSmq28_chr16.dat, file = "FALSmq28_chr16.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

156 write.table(FALSmq28_chr17.dat, file = "FALSmq28_chr17.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

157 write.table(FALSmq28_chr18.dat, file = "FALSmq28_chr18.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

158 write.table(FALSmq28_chr19.dat, file = "FALSmq28_chr19.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

159 write.table(FALSmq28_chr20.dat, file = "FALSmq28_chr20.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

160 write.table(FALSmq28_chr21.dat, file = "FALSmq28_chr21.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

161 write.table(FALSmq28_chr22.dat, file = "FALSmq28_chr22.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)

162 write.table(FALSmq28_chr23.dat, file = "FALSmq28_chr23.dat.txt", sep =

"\t", col.names = FALSE, row.names = FALSE)
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A.2.17 Running genome-wide linkage analyis using Merlin

software

This script was used to run linkage analysis using Merlin software for family FALSmq28,

for each chromosome.

1 #!/bin/bash

2

3 # merlin_FALSmq28_chr1.sh

4

5 ###

6 #script to run linkage analysis on FALSmq28 chr1

7 ###

8

9 ## set the working directory

10 cd /datastore/mcc549/FALSmq28_linkage

11

12 # load the merlin module

13 module load merlin/1.1.2

14

15 # change the destination of the temporary files generated by merlin

16 export TMPDIR=$JOBDIR

17

18 # run merlin

19 merlin -d ./chr1/FALSmq28_chr1.dat -p ./chr1/FALSmq28_chr1.ped -m

./chr1/FALSmq28_chr1.map --model parametric_new.model --bits 50 -fe

--simwalk2 --swap --prefix chr1_merlin_out --pdf --tabulate
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A.2.18 Analysis and plotting of results from genetic linkage

analysis of FALSmq28

This script was used to analyse and plot the LOD score results from genetic linkage

analysis of family FALSmq28 using Merlin.

1 # mq28_merlin_result_analysis.R

2

3 # this code is for analysing the results of merlin parametric linkage

analysis for mq28

4

5 #laod required pacakges

6 library(dplyr)

7 library(ggplot2)

8

9 # first set the working directory

10 setwd("/Volumes/Personal/Bioinformatics/Linkage/QC and analysis")

11

12 # load the SNP chip annotation file from macrogen

13 annotation <- read.delim("/Volumes/Personal/Bioinformatics/Linkage/Raw\

data/170123-InfiniumCoreExome-24_v1.1_Gene_annotation.txt")

14 View(annotation)

15 dim(annotation)

16 ##[1] 551839 9

17

18 # load the merlin parametric linkage analysis results table for mq28

19 mq28.result <- read.delim("/Volumes/Personal/Bioinformatics/Linkage/Raw\

data/merlin_results/mq28_merlin-parametric.tbl")

20 View(mq28.result)

21 dim(mq28.result)

22 ##[1] 39944 7

23

24 # merge by marker name

25 mq28.result.w.annotation <- merge(mq28.result, annotation, by.x = "LABEL",

by.y = "Name", all.x = TRUE)

26 dim(mq28.result.w.annotation)

27 ##[1] 39944 15

28 View(mq28.result.w.annotation)

29

30 # sort by LOD score (descending)
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31 mq28.result.w.annotation.ordered <-

mq28.result.w.annotation[with(mq28.result.w.annotation, order(-LOD)), ]

32 View(mq28.result.w.annotation.ordered)

33 #subset the highest LOD scores

34 toptop.LOD <- subset(mq28.result.w.annotation.ordered,

mq28.result.w.annotation.ordered$LOD > 1)

35 View(toptop.LOD)

36 colnames(toptop.LOD)

37 toptop.LOD$MODEL <- NULL

38 toptop.LOD$POS <- NULL

39 toptop.LOD$ALPHA <- NULL

40 toptop.LOD$HLOD <- NULL

41 toptop.LOD$Chr <- NULL

42 toptop.LOD$Genetic.Dist <- NULL

43 toptop.LOD$Mutation.s. <- NULL

44 View(toptop.LOD)

45 toptop.LOD <- toptop.LOD[c(1,2, 4, 3, 5:8)]

46 View(toptop.LOD)

47 write.csv(toptop.LOD, file = "top.LOD.csv")

48

49 # sort by Chr and Genetic.Dist

50 mq28.result.w.annotation$CHR <- as.character(mq28.result.w.annotation$CHR)

51 mq28.result.w.annotation$CHR <- as.numeric(mq28.result.w.annotation$CHR)

52 mq28.result.w.annotation.by.CHR <-

mq28.result.w.annotation[with(mq28.result.w.annotation, order(CHR,

Genetic.Dist)), ]

53 View(mq28.result.w.annotation.by.CHR)

54

55 # make a pretty graph

56

57 # make a new data frame to make our graph with

58 graph.data <- select(mq28.result.w.annotation.by.CHR, CHR, Genetic.Dist,

MapInfo, LOD)

59 graph.data$chromosome <- graph.data$CHR

60 graph.data$chromosome <- as.character(graph.data$chromosome)

61 graph.data$chromosome <- as.factor(graph.data$chromosome)

62 View(graph.data)

63

64 # plot lod scores
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65 ggplot(graph.data, aes(Genetic.Dist, colour = chromosome)) +

66 geom_line(aes(y = LOD)) +

67 facet_grid(~CHR, scales = "fixed", space = "free_x") +

68 theme_bw() +

69 theme(panel.spacing.x=unit(0, "lines")) +

70 geom_hline(yintercept=0) +

71 geom_hline(yintercept=1) +

72 theme(legend.position="none") +

73 scale_size_area(max_size = max(graph.data$LOD))
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A.2.19 Functional distribution of WES and WGS variants

from FALSmq28

This script was used to determine how the variants identified in FALSmq28 from WES

or WGS data were distirbuted across the functional classes of the genome, and create

stacked bar charts to reflect this distribution.

1 # mq28_func_class.R

2

3 # this script is to evaluate the number of mq28 variants falling into the

different genomic functional categories from WES and WGS data

4

5 # load required packages

6 library(readr)

7 library(dplyr)

8 library(ggplot2)

9 library(data.table)

10

11 # set working directory

12 setwd("/Volumes/data_FMHS/Restrict/Blair Group/Emily/FALSmq28/Func.refGene")

13

14 # first import the tab delimited ANNOVAR annotated combined family VCF

15 mq28 <- read_delim("FALSmq28exomes_anno.hg19_multianno.txt", delim = "\t")

# 185 703 lines

16

17 # tally classes

18 WES_Func.refGene_table <- as.data.frame(tally(group_by(mq28, Func.refGene)))

19

20 # calculate proportions

21 WES_Func.refGene_table$portion <-

((WES_Func.refGene_table$n)/(sum(WES_Func.refGene_table$n)))

22

23 # calculate percents

24 WES_Func.refGene_table$percent <- WES_Func.refGene_table$portion*100

25

26 # round off percents

27 WES_Func.refGene_table$percent_rounded <-

round(WES_Func.refGene_table$percent, digits = 3)

28

29 # make stacked bar chart
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30 x <- ggplot(WES_Func.refGene_table, aes(x = "", y = percent, fill =

Func.refGene)) +

31 geom_col(width = 1) + # width = 1 gets rid of the circle in the middle

32 coord_polar("y") +

33 theme_void()

34 ggsave(filename = "mq28_WES_Func.refGene_piechart.png", plot=x, device =

"png", dpi = 600, units = "cm", height = 20, width = 20)

35

36 # repeat for ExonicFunc.refGene

37 # repeat for WGS
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A.2.20 Identifying discordant variants between co-twins in

WGS data

This Python script was written by Denis Bauer and edited by Natalie Twine, and was

used to identify discordant variants between monozygotic twin pairs form a two-sample

WGS VCF.

1 #discandfilter3.py

2

3 import sys,argparse

4

5 parser = argparse.ArgumentParser()

6 parser.add_argument(’-i’, dest=’fileIN’, help=’The input fastq file’)

7 parser.add_argument(’-o’, dest=’fileOUT’, help=’The output VCF file’)

8 parser.add_argument(’-l’, dest=’locprivate’, action=’store_true’,

help=’location cannot be discordant in other Twins’)

9 parser.add_argument(’-g’, dest=’gtprivate’, action=’store_true’, help=’One

of the discordant GT must not be seen in the other Twins’)

10 parser.add_argument(’-c’, dest=’coverage’, type=int, help=’Coverage at

which to accept the GT’)

11 parser.add_argument(’-m’, dest=’macrogen’, action=’store_true’,

help=’Macrogen’)

12

13 args = parser.parse_args()

14 print args

15 fileOUT=open(args.fileOUT,"w")

16 hashname={}

17

18 # Get properties of the GT entry for individual <count>

19 # returns [Genotype,Depth], e.g. [1/1,65]

20 def getProp(stringline,count):

21 stringline=stringline.strip()

22 arr=stringline.split("\t")

23 if arr[count].split(":")[0]=="./." or arr[count].split(":")[0]==".":

24 return[0,0]

25 else:

26 gt=arr[count].split(":")[0]

27 dp=arr[count].split(":")[2]

28 if dp==".":

29 dp=0
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30 return[gt,dp]

31

32 # Get the genotypes from the other Twin individuals in the file

33 # returns Set(Genotypes), e.g. (1/1,./.,0/0)

34 def genotypelist(stringline, count):

35 stringline=stringline.strip()

36 arr=stringline.split("\t")

37 othergt=[]

38 for i in range(9,len(arr)):

39 if i == count:

40 continue

41 othergt.append(arr[i].split(":")[0])

42 return set(othergt)

43

44 # datastructure indivating the Twin pairs and their location in the VCF

filed

45 # it also has a counter variable that gets incremented if this pair had a

46 # discordant variant

47 #pairs=[["151002_FR07935773","151002_FR07935774",0,"set3"],

48 #["151002_FR07935768","151002_FR07935769",0,"set1"],

49 #["151002_FR07935770","151002_FR07935772",0,"set2"],

50 #["160215_FR07935864","160215_FR07935865",0,"set4"]]

51

52 #pairs=[["160215_FR07935864","151002_FR07935768",0,"set1"],

53 #["160215_FR07935865","151002_FR07935772",0,"set2"],

54 #["151002_FR07935769","151002_FR07935770",0,"set3"],

55 #["151002_FR07935773","151002_FR07935774",0,"set4"]]

56

57 #set 1 (triplet pair 1) - sets 1,2,3,4 that were run in previous analysis -

set 5 new

58 #pairs=[["WIL1636A1","WIL907A2",0,"set1"],

59 #["WIL1636A2","WIL907A6",0,"set2"], #triplet pair 1

60 #["WIL907A3","WIL907A4",0,"set3"],

61 #["WIL908A1","WIL908A2",0,"set4"],

62 #["MQ160057","MQ160059",0,"set5"]]

63

64 #set 2 (triplet pair 2) - sets 1,3,4 same as previous analysis - set2 is

alternate triplet pair - set 5 new

65 pairs=[["WIL1636A1","WIL907A2",0,"set1"],
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66 ["WIL1636A2","130-990370",0,"set2"], #triplet pair 2

67 ["WIL907A3","WIL907A4",0,"set3"],

68 ["WIL908A1","WIL908A2",0,"set4"],

69 ["MQ160057","MQ160059",0,"set5"]]

70

71 if (args.macrogen):

72 print("Macrogen")

73 ############

74 # Macrogen

75 ############

76 pairs=[["mqX-MQ150099","mqX-MQ150189",0,"set1"]]

77

78 # Main function

79 for i in open(args.fileIN):

80 i=i.strip()

81 if i[0:6]=="#CHROM":

82 c=0

83 for n in i.split("\t")[9::]:

84 hashname[n.split(".")[0]]=c+9

85 c+=1

86 fileOUT.write("##INFO=<ID=discordant,Number=1,Type=String,

87 Description=\"Discordant setID\">\n")

88 fileOUT.write(i+"\n")

89 continue

90

91 if i[0]=="#":

92 fileOUT.write(i+"\n")

93 continue

94

95 discordant=[]

96

97 # iterate through Twins

98 for p in range(0,len(pairs)):

99

100 # Get genotype and depth

101 p1=getProp(i,hashname[pairs[p][0]])

102 p2=getProp(i,hashname[pairs[p][1]])

103
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104 # Find out if it is discordant: 1) GT were called for both 2) GT

differ 3) Coverage above <coverage>

105 if ((p1[0]!=0 and p2[0]!=0) and (p1[0]!=p2[0]) and

(int(p1[1])>args.coverage and int(p2[1])>args.coverage)):

106 # print "%i %i %s" % (hashname[pairs[p][0]],

hashname[pairs[p][1]], i)

107 if (not(args.gtprivate) or (not(p1[0] in

genotypelist(i,hashname[pairs[p][0]])) or not(p2[0] in

genotypelist(i,hashname[pairs[p][1]])))):

108 discordant.append(p)

109 # if (((p1[0] in genotypelist(i,hashname[pairs[p][0]])) or (p2[0]

in genotypelist(i,hashname[pairs[p][1]])))):

110 # print "non priv"

111 # die

112

113 # if this line had at least one discordant pair print it

114 if len(discordant)>0:

115

116 # if they need to be private to the Twin pair do not print

117 if args.locprivate and len(discordant)>1:

118 continue

119

120 d=[]

121 for x in discordant:

122 d.append(pairs[x][3]+"_"+pairs[x][0]+"_"+pairs[x][1]) #prep

string

123 pairs[x][2]+=1 # count

124

125 arr=i.split("\t")

126 arr[7]+=";discordant="+",".join(d)

127 fileOUT.write("\t".join(arr)+"\n")

128

129 for i in pairs:

130 print " | ".join(map(str,i))

131

132 # Close files

133 fileOUT.close()
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A.2.21 Identifying WGS discordant variants also genotyped

by a SNP microarray

This script was used to determine which variants that had been identified as discordant

between monozygotic co-twins using WGS data, had also been genotyped using the

Illumina Infinium CoreExome-24 BeadChip v1.0 or v1.1 microarray.

1 #!/bin/sh -e

2

3 # twin_disc_variant_validation_SNPchip.sh

4

5 # This code is for determine whether any discordant variants identified

between co-twins/triplets had also been genotyped by the microarray, and

to subsequently extract and compare the associated genotypes.

6

7 # set working directory

8 cd /Volumes/twin_discordant_variants

9

10 # bgzip the VCFs so we can merge them with bcftools

11 bgzip -c ./set1/WIL1636A1_WIL907A2.vqsr.vep.vcf >

./set1/WIL1636A1_WIL907A2.vqsr.vep.vcf.gz

12 bgzip -c ./set1/WIL1636A1_WIL907A2L.vqsr.vep.vcf >

./set1/WIL1636A1_WIL907A2L.vqsr.vep.vcf.gz

13 bgzip -c ./set1/WIL1636A1_WIL907A2LG.vqsr.vep.vcf >

./set1/WIL1636A1_WIL907A2LG.vqsr.vep.vcf.gz

14

15 bgzip -c ./set2/WIL1636A2_WIL907A6.vqsr.vep.vcf >

./set2/WIL1636A2_WIL907A6.vqsr.vep.vcf.gz

16 bgzip -c ./set2/WIL1636A2_WIL907A6L.vqsr.vep.vcf >

./set2/WIL1636A2_WIL907A6L.vqsr.vep.vcf.gz

17 bgzip -c ./set2/WIL1636A2_WIL907A6LG.vqsr.vep.vcf >

./set2/WIL1636A2_WIL907A6LG.vqsr.vep.vcf.gz

18

19 bgzip -c ./set3/WIL907A3_WIL907A4.vqsr.vep.vcf >

./set3/WIL907A3_WIL907A4.vqsr.vep.vcf.gz

20 bgzip -c ./set3/WIL907A3_WIL907A4L.vqsr.vep.vcf >

./set3/WIL907A3_WIL907A4L.vqsr.vep.vcf.gz

21 bgzip -c ./set3/WIL907A3_WIL907A4LG.vqsr.vep.vcf >

./set3/WIL907A3_WIL907A4LG.vqsr.vep.vcf.gz

22
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23 bgzip -c ./set4/WIL908A1_WIL908A2.vqsr.vep.vcf >

./set4/WIL908A1_WIL908A2.vqsr.vep.vcf.gz

24 bgzip -c ./set4/WIL908A1_WIL908A2L.vqsr.vep.vcf >

./set4/WIL908A1_WIL908A2L.vqsr.vep.vcf.gz

25 bgzip -c ./set4/WIL908A1_WIL908A2LG.vqsr.vep.vcf >

./set4/WIL908A1_WIL908A2LG.vqsr.vep.vcf.gz

26

27 bgzip -c ./set5/MQ160057_MQ160059.vqsr.vep.vcf >

./set5/MQ160057_MQ160059.vqsr.vep.vcf.gz

28 bgzip -c ./set5/MQ160057_MQ160059L.vqsr.vep.vcf >

./set5/MQ160057_MQ160059L.vqsr.vep.vcf.gz

29 bgzip -c ./set5/MQ160057_MQ160059LG.vqsr.vep.vcf >

./set5/MQ160057_MQ160059LG.vqsr.vep.vcf.gz

30

31 # index these VCFs so we can merge them with bcftools

32 tabix -p vcf ./set1/WIL1636A1_WIL907A2.vqsr.vep.vcf.gz

33 tabix -p vcf ./set1/WIL1636A1_WIL907A2L.vqsr.vep.vcf.gz

34 tabix -p vcf ./set1/WIL1636A1_WIL907A2LG.vqsr.vep.vcf.gz

35

36 tabix -p vcf ./set2/WIL1636A2_WIL907A6.vqsr.vep.vcf.gz

37 tabix -p vcf ./set2/WIL1636A2_WIL907A6L.vqsr.vep.vcf.gz

38 tabix -p vcf ./set2/WIL1636A2_WIL907A6LG.vqsr.vep.vcf.gz

39

40 tabix -p vcf ./set3/WIL907A3_WIL907A4.vqsr.vep.vcf.gz

41 tabix -p vcf ./set3/WIL907A3_WIL907A4L.vqsr.vep.vcf.gz

42 tabix -p vcf ./set3/WIL907A3_WIL907A4LG.vqsr.vep.vcf.gz

43

44 tabix -p vcf ./set4/WIL908A1_WIL908A2.vqsr.vep.vcf.gz

45 tabix -p vcf ./set4/WIL908A1_WIL908A2L.vqsr.vep.vcf.gz

46 tabix -p vcf ./set4/WIL908A1_WIL908A2LG.vqsr.vep.vcf.gz

47

48 tabix -p vcf ./set5/MQ160057_MQ160059.vqsr.vep.vcf.gz

49 tabix -p vcf ./set5/MQ160057_MQ160059L.vqsr.vep.vcf.gz

50 tabix -p vcf ./set5/MQ160057_MQ160059LG.vqsr.vep.vcf.gz

51

52

53 # merge discordant variant VCFs from each twin/triplet pair to create a

combined VCF for all discordant variants across twin sets
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54 bcftools merge ./set1/WIL1636A1_WIL907A2.vqsr.vep.vcf.gz

./set2/WIL1636A2_WIL907A6.vqsr.vep.vcf.gz

./set3/WIL907A3_WIL907A4.vqsr.vep.vcf.gz

./set4/WIL908A1_WIL908A2.vqsr.vep.vcf.gz

./set5/MQ160057_MQ160059.vqsr.vep.vcf.gz >

AllTwinSets_discordant.vqsr.vep.vcf.gz

55

56 #subset rsID variants

57 bcftools view -Ov -i’ID!="."’ AllTwinSets_discordant_variants.vqsr.vep.vcf

> AllTwinSets_discordant_variants_rsID_only.vqsr.vep.vcf

A.2.22 Extracting SNP microarray genotypes for WGS-

derived discordant variants

This script was written by Kelly Williams and was used to extract the SNP microarray

genotype data for all tiwns/triplets, for the 81 putative discordant variants identified

by WGS data that had been genotyped using the Illumina Infinium CoreExome-24

BeadChip v1.0 or v1.1 microarray.

1 # twin_disc_variant_validation_SNPchip.R

2

3 # identifying discordant SNPs in existing Illumina Infinium CoreExome-24

chips

4 # written by Kelly Williams

5

6 discordantRSID <- read.csv("~/Downloads/discordantRSID.csv")

7 SNPfile <- read.delim("~/Downloads/SNPfile.txt")

8 InfiniumCoreExome.24_v1.1_Gene_annotation <-

read.delim("~/Downloads/170123-InfiniumCoreExome-24_v1.1_Gene_annotation.

txt")

9 AllTwinSets_discordant_analysis1_analysis2.vqsr.vep <-

read.table("~/Downloads/AllTwinSets_discordant_analysis1_analysis2.vqsr.

vep.vcf", quote="\"")

10 HumanCoreExome.24v1.0_A_annotated <-

read.delim("~/Downloads/HumanCoreExome-24v1-0_A_annotated.txt")

11

12

13 which(SNPfile$Name %in% discordantRSID$ID)

14 which(InfiniumCoreExome.24_v1.1_Gene_annotation$Name %in% discordantRSID$ID)
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15 length(which(SNPfile$Name %in% discordantRSID$ID))

16

17 x <-

InfiniumCoreExome.24_v1.1_Gene_annotation[which(InfiniumCoreExome.24_v1.1

_Gene_annotation$Name %in% discordantRSID$ID),]

18 y <- SNPfile[which(SNPfile$Name %in% discordantRSID$ID),]

19

20 SNPfile$location <- paste(SNPfile$Chr,":",SNPfile$Position, sep = "")

21 InfiniumCoreExome.24_v1.1_Gene_annotation$location <-

paste(InfiniumCoreExome.24_v1.1_Gene_annotation$Chr,":",

InfiniumCoreExome.24_v1.1_Gene_annotation$MapInfo, sep = "")

22 discordantRSID$location <-

paste(discordantRSID$CHROM,":",discordantRSID$POS, sep = "")

23 AllTwinSets_discordant_analysis1_analysis2.vqsr.vep$location <-

paste(AllTwinSets_discordant_analysis1_analysis2.vqsr.vep$V1,":",

AllTwinSets_discordant_analysis1_analysis2.vqsr.vep$V2, sep = "")

24

25 length(which(InfiniumCoreExome.24_v1.1_Gene_annotation$location %in%

discordantRSID$location))

26

27 z <- InfiniumCoreExome.24_v1.1_Gene_annotation[which(InfiniumCoreExome.

24_v1.1_Gene_annotation$location %in% discordantRSID$location),]

28

29 discordant_positions <-

as.vector(AllTwinSets_discordant_analysis1_analysis2.vqsr.vep$location)

30

31 length(which(InfiniumCoreExome.24_v1.1_Gene_annotation$location %in%

discordant_positions))

32

33 w <- InfiniumCoreExome.24_v1.1_Gene_annotation[which(InfiniumCoreExome.

24_v1.1_Gene_annotation$location %in% discordant_positions),]

34 v <- SNPfile[which(SNPfile$location %in% discordant_positions),]

35

36 #doublechecking

37 which(AllTwinSets_discordant_analysis1_analysis2.vqsr.vep$V3 ==

"variant.67526")

38

39 #write files

40 setwd("~/Desktop")
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41 write.csv(v, "Discordant_SNPs_on_CoreExome.csv", quote = FALSE, row.names =

FALSE)

42 write.csv(w, "Discordant_SNPs_on_CoreExome_annotated.csv", quote = FALSE,

row.names = FALSE)

43

44 #import full data to subset out twins

45 samples <-

read.csv("~/Desktop/MWAS_GWAS_WGS_master_sample_sheet_all_data-IT_5-2-18

.csv")

46 twins <- samples[-which(samples$Twin.code.deidentified == ""),]

47

48 #remove PSP twins and control twins that were not WGS

49 twins <- twins[-which(twins$MQ.UniqueID == "gleher11945"),]

50 twins <- twins[-which(twins$MQ.UniqueID == "glewal11945"),]

51 twins <- twins[-which(twins$MQ.UniqueID == "gilfle21969"),]

52 twins <- twins[-which(twins$MQ.UniqueID == "gorsuz21969"),]

53

54 #generate list for Ruqian to extract the twins from the rest of the data

and generate a genotype file

55 twin_Ruqian <- twins[,c(1,4:6,67:74)]

56 twin_Ruqian <- twin_Ruqian[-which(twin_Ruqian$HumanCoreExome.24v1.0_A ==

""),]

57 write.csv(twin_Ruqian, "twin_list_for_genotypes.csv", quote = FALSE,

row.names = FALSE)

58

59 #Ruqian has pulled out all genotypes for the twins using Illumina’s Genome

Studio

60 # Import and then subset based on the discordant SNPs

61 alltwinMatched1 <-

read.csv("~/Downloads/twinsGtype/alltwinsSignal/alltwinMatched1.txt",

sep="")

62 alltwinMatched2 <-

read.delim("~/Downloads/twinsGtype/alltwinsSignal/alltwinMatched2.txt")

63 alltwinMatched1_2 <-

read.table("~/Downloads/twinsGtype/alltwinsSignal/alltwin1.txt",

quote="\"", comment.char="")

64

65 alltwin1 <- merge(x = alltwinMatched1_2, y = alltwinMatched1, by.x = "V2",

by.y = "SampleID")
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66 alltwin1 <- merge(x = alltwin1, y = twins[,c(4:6)], by.x = "V1", by.y =

"Sample.ID", all.x = TRUE)

67 alltwin1$inputID <- paste("sample.",alltwin1$V2,sep = "")

68

69 #use terminal

70 #paste sample.1000377 sample.1000378 sample.1000380 sample.1000381

sample.1000382 sample.1000383 sample.1000384 sample.1000385

sample.1000386 sample.1000387 sample.1000391 sample.1000392

sample.1000397 sample.1000398 sample.1000400 sample.1000401

sample.1000402 sample.1000403 sample.1000405 sample.1000406

sample.1000407 sample.1000408 sample.1000409 sample.1000410

sample.1000411 sample.1000412 sample.1000413 sample.1000414 sample.130

sample.130_R1 sample.130_R2 sample.6 sample.6_R1 sample.6_R3 >

combined.txt

71

72 all.genotypes <-

read.delim("~/Downloads/twinsGtype/alltwinsSignal/combined.txt")

73 all.genotypes$location <-

paste(all.genotypes$Chr,":",all.genotypes$Position, sep = "")

74 genotypes.subset <- all.genotypes[which(all.genotypes$location %in%

discordant_positions),]

75

76 #change any not called (NC) to NA

77 genotypes.subset[ genotypes.subset == "NC" ] <- NA

78

79 row.names(genotypes.subset) <- genotypes.subset$Name

80

81 #get rid of duplicate columns

82 genotypes.subset <- genotypes.subset[, -grep("Name",

colnames(genotypes.subset))]

83 genotypes.subset <- genotypes.subset[, -grep("Allele.",

colnames(genotypes.subset))]

84 genotypes.subset <- genotypes.subset[, -grep("Chr.",

colnames(genotypes.subset))]

85 genotypes.subset <- genotypes.subset[, -grep("Position.",

colnames(genotypes.subset))]

86 genotypes.subset <- genotypes.subset[, -grep("Log.R.",

colnames(genotypes.subset))]

87
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88 genotypes.subset <- as.data.frame(t(genotypes.subset[,-c(1:2,37)]))

89 #genotypes.subset <- as.data.frame(genotypes.subset[,-c(1:2,37)])

90

91 genotypes.subset$sample <- rownames(genotypes.subset)

92 genotypes.subset$sample <- gsub("X","",genotypes.subset$sample)

93 genotypes.subset$sample <- gsub(".GType","",genotypes.subset$sample)

94

95 a <- merge(x = genotypes.subset, y = alltwin1, by.x = "sample", by.y =

"V2", all.x = TRUE)

96

97 # inspect data manually
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A.2.23 Determining the distribution of discordant variants

bewteen SNP and indel variant types

This script was used to first annotate each discordant variant (indentified from each

twin set, and from each processed dataset) as a SNP or indel using SNPSift, and

subsequently count the number of lines containing each annotation, to determine the

distribution of discordant variants across these variant types.

1 #!/bin/sh

2

3 # variant_type_count.sh

4

5 # must run in SnpEff folder

6 # run for all disc twin VCFs

7

8 # annotate with variant type using SNPSift VarType

9 java -jar SnpSift.jar varType

/full_path/set1_discordant_variants.vqsr.vep.vcf.vartype.vcf >

/full_path/set1_discordant_variants_VARTYPEanno.vqsr.vep.vcf.vartype.vcf

10

11 # extract variant type annotation column to separate text file

12 java -jar SnpSift.jar extractFields

/full_path/set1_discordant_variants_VARTYPEanno.vqsr.vep.vcf.vartype.vcf

VARTYPE > /full_path/set1_VARTYPE.txt

13

14 # count number of lines containing the given variant type ie. SNP and INS

or DEL

15 grep -c SNP

/full_path/set1_discordant_variants_VARTYPEanno.vqsr.vep.vcf.vartype.vcf

16 grep -c "INS\|DEL"

/full_path/set1_discordant_variants_VARTYPEanno.vqsr.vep.vcf.vartype.vcf
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A.2.24 Creating Venn diagrams of discordant variants from

the four bioinformatics processing pipelines

This R script was used to generate Venn diagrams for the discordant variants identified

by each of the four processing pipelines, for each twin pair.

1 # venn_diagrams.R

2

3 # This script is for creating Venn diagrams for the discordant variants

identified between ALS discordant MZ co-twins from WGS using different

bioinformatics processing

4

5 library(VennDiagram)

6

7 #set working directory

8 setwd("/full_path/Four_processed_discordant_variants/twins_WGS_R_project")

9

10 ##################

11 ### twin set 1 ###

12 ##################

13 # Reference four-set diagram

14 venn.plot <- draw.quad.venn(

15 area1 = 18599,

16 area2 = 37226,

17 area3 = 1976,

18 area4 = 1833,

19 n12 = 0,

20 n13 = 0,

21 n14 = 0,

22 n23 = 124,

23 n24 = 251,

24 n34 = 38,

25 n123 = 0,

26 n124 = 0,

27 n134 = 0,

28 n234 = 8,

29 n1234 = 0,

30 category = c("A", "B", "C", "D"),

31 fill = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF"),

32 lty = "dashed",
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33 cex = 2,

34 cat.cex = 2,

35 cat.col = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF")

36 )

37 grid.draw(venn.plot);

38 grid.newpage();

39 png(filename = "set1_venn.png", width = 10, height = 10, units = "cm", res

= 600)

40 grid.draw(venn.plot)

41 dev.off()

42

43 ###################

44 ### twin set 2A ###

45 ###################

46 # Reference four-set diagram

47 venn.plot <- draw.quad.venn(

48 area1 = 12240,

49 area2 = 33430,

50 area3 = 1947,

51 area4 = 635,

52 n12 = 0,

53 n13 = 0,

54 n14 = 0,

55 n23 = 150,

56 n24 = 107,

57 n34 = 38,

58 n123 = 0,

59 n124 = 0,

60 n134 = 0,

61 n234 = 12,

62 n1234 = 0,

63 category = c("A", "B", "C", "D"),

64 fill = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF"),

65 lty = "dashed",

66 cex = 2,

67 cat.cex = 2,

68 cat.col = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF")

69 )

70 grid.draw(venn.plot);
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71 grid.newpage();

72 png(filename = "set2A_venn.png", width = 10, height = 10, units = "cm", res

= 600)

73 grid.draw(venn.plot)

74 dev.off()

75

76 ###################

77 ### twin set 2B ###

78 ###################

79 # Reference four-set diagram

80 venn.plot <- draw.quad.venn(

81 area1 = 14097,

82 area2 = 15577,

83 area3 = 2010,

84 area4 = 1088,

85 n12 = 0,

86 n13 = 0,

87 n14 = 0,

88 n23 = 66,

89 n24 = 84,

90 n34 = 49,

91 n123 = 0,

92 n124 = 0,

93 n134 = 0,

94 n234 = 4,

95 n1234 = 0,

96 category = c("A", "B", "C", "D"),

97 fill = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF"),

98 lty = "dashed",

99 cex = 2,

100 cat.cex = 2,

101 cat.col = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF")

102 )

103 grid.draw(venn.plot);

104 grid.newpage();

105 png(filename = "set2B_venn.png", width = 10, height = 10, units = "cm", res

= 600)

106 grid.draw(venn.plot)

107 dev.off()
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108

109 ##################

110 ### twin set 4 ###

111 ##################

112 # Reference four-set diagram

113 venn.plot <- draw.quad.venn(

114 area1 = 55132,

115 area2 = 157012,

116 area3 = 6358,

117 area4 = 7441,

118 n12 = 0,

119 n13 = 0,

120 n14 = 0,

121 n23 = 954,

122 n24 = 2371,

123 n34 = 458,

124 n123 = 0,

125 n124 = 0,

126 n134 = 0,

127 n234 = 263,

128 n1234 = 0,

129 category = c("A", "B", "C", "D"),

130 fill = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF"),

131 lty = "dashed",

132 cex = 2,

133 cat.cex = 2,

134 cat.col = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF")

135 )

136 grid.draw(venn.plot);

137 grid.newpage();

138 png(filename = "set4_venn.png", width = 10, height = 10, units = "cm", res

= 600)

139 grid.draw(venn.plot)

140 dev.off()

141

142 ##################

143 ### twin set 5 ###

144 ##################

145 # Reference four-set diagram
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146 venn.plot <- draw.quad.venn(

147 area1 = 30994,

148 area2 = 22755,

149 area3 = 2646,

150 area4 = 2480,

151 n12 = 0,

152 n13 = 0,

153 n14 = 0,

154 n23 = 110,

155 n24 = 268,

156 n34 = 75,

157 n123 = 0,

158 n124 = 0,

159 n134 = 0,

160 n234 = 12,

161 n1234 = 0,

162 category = c("A", "B", "C", "D"),

163 fill = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF"),

164 lty = "dashed",

165 cex = 2,

166 cat.cex = 2,

167 cat.col = c("#009292", "#FFB6DB", "#B66DFF", "#6DB6FF")

168 )

169 grid.draw(venn.plot);

170 grid.newpage();

171 png(filename = "set5_venn.png", width = 10, height = 10, units = "cm", res

= 600)

172 grid.draw(venn.plot)

173 dev.off()
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A.3 Additional tables

A.3.1 Primer details

The following table contains details of each primer set designed and utilised as part of

this thesis. Deatils include primer sequences, product sizes, optimised PCR conditions,

type of sequencing performed on PCR products and the purpose of each primer set.
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Table A.1: Primer details

Primer Sequence PCR Optimised PCR Ta Sequencing Purpose

Name product conditions*

size

SOD1 Ex1 NewF ATTGGTTTGGGGCCAGAG 408 Touchdown PCR thermocycling 64 Sanger ALS gene

SOD1 Ex1 NewR TGACTCAGCACTTGGGCAC

SOD1 Ex2 NewF GTCAGCCTGGGATTTGGAC 355 Touchdown PCR thermocycling; 64 Sanger ALS gene

SOD1 Ex2 NewR CGACAGAGCAAGACCCTTTC and PCR enhancer

SOD1 Ex3 NewF CAGAAGTCGTGATGCAGGTC 313 Standard 61 Sanger ALS gene

SOD1 Ex3 NewR CAGCAAGTTCAAAAGCAAAGG

SOD1 Ex4 NewF GACGTGAAGCCTTGTTTGAAG 418 Touchdown PCR thermocycling 59 Sanger ALS gene

SOD1 Ex4 NewR AATTGTCCAATAAAATTGCTTTT

SOD1 Ex5 NewF TTCATTTAGACAGCAACACTTACC 572 Standard 60 Sanger ALS gene

SOD1 Ex5 NewR CAAAATACAGGTCATTGAAACAGAC

C9orf72 FAM F 6-FAM-AGTCGCTAGAGGCGAAAGC „300 50ng DNA; 0.2mM deazoGTP; 70 Fragment ALS gene

C9orf72 A TACGCATCCCAGTTTGAGACG 1M Betaine; DMSO; length

C9orf72 R TACGCATCCCAGTTTGAGACGGGGG Touchdown PCR thermocycling analysis

CCGGGGCCGGGGCCGGGG

EEF1D Ex8 F gagcgagtcccagagtgaac 299 Standard 65 Sanger Proband candidate

EEF1D Ex8 R aggatgactgtgtgggaacag

SPTBN4 Ex30 F CAGGGGAACAGCCATTG 197 Standard 65 Sanger Proband candidate

SPTBN4 Ex30 R TATAGAGCCATGGGTGTGGG

ABCC2 Ex21 F AGTGACTGTGACATCTGCTTGC 303 Standard 62 Sanger Proband candidate

ABCC2 Ex21 R TGTAAGTATGCGTTCAATTTTCAC

ABCC2 Ex25 F AAAGGAGGAAGATGGTGGATG 336 Standard 64 Sanger Proband candidate

ABCC2 Ex25 R CCCACCGCTAATATCAAACATATAG

MTHFR Ex10 F ACCTTAGGTGTCTGCGAAAGG 238 Standard 61 Sanger Proband candidate

MTHFR Ex10 R gctaggtgctgggtgtttg

DAGLB Ex12 13 M13 F CTTTCATGGAAGCCCTTGTG 359 Standard 64 Sanger Proband candidate

DAGLB Ex12 13 M13 R CCTCTCCACAGGATCTCAGGG

TIA1 Ex3 F TCCATTCATTCTCCATGGCCTGA 539 Standard 63 Sanger Proband candidate

TIA1 Ex3 R GAGTTTGAGACCAGTCTGGCT

TIA1 Ex11 F TTGTTTTGGCTAAGAATTTGTGG 345 Standard 63 Sanger Proband candidate

TIA1 Ex11 R TTACGCTTTACATAAGAGGCCC

TIA1 Ex10 F CAAGTTGCCCCAGAACTACAAG 451 Standard 63 Sanger Proband candidate

TIA1 Ex10 R CAATCCATGAAACACCATTCTG

CLCN4 Ex12 F GGGATTCTAGATGGTGTGTGTG 392 Standard 64 Sanger FALS15

CLCN4 Ex12 R CCTCCACAttcttcagggc

SCN4A Ex5 F TCTGTCCTACCACCCACCC 232 Standard & PCR enhancer 63 Sanger FALS15

SCN4A Ex5 R ACACTGAGTCAGGTTCCAGGC

MTSS1L Ex5 F GCAGTTCACCAAgtgagtgg 284 Standard & PCR enhancer 66 Sanger FALS15

MTSS1L Ex5 R TGTACTctgcagaaggggagag

SUPV3L1 Ex4 F agctactgtgcccagAGAGGAC 321 Standard 64 Sanger FALS15

SUPV3L1 Ex4 R TAATGACCACGAATCATCCAAG

LRRN2 p.I196T F TCTCAACCACAACCAGCTCTAC 178 Standard 58 Sanger FALS15

LRRN2 p.I196T R GTCCAGGATGGCATCTACCTT

SPEG p.P674R F GTACCCCAGACCTTGGAGAAG 160 Standard 64 Sanger FALS15

SPEG p.P674R R tacCGAGCTCAGGGGAGGT

FAM171A1 Ex8 F TGCTCTCACAGCCTTTATTTGA 184 Standard 64 Sanger FALS15

FAM171A1 Ex8 R GACGTAGGTCTCTCGAGGTGAT

HOXD3 Ex3 F TGGTGGAATTGGAAAAGGAAT 152 Standard 58 Sanger FALS15



398
A
p
p
e
n
d
ix

HOXD3 Ex3 R CTTGGCCTTCTGGTCCTTCT

MAPKAPK3 Ex11 F TGGTTCCTAAGGTCAGTACATCC 276 Standard 64 Sanger FALS15

MAPKAPK3 Ex11 R GGCCTGAGCACATTTCAGTC

SIM1 Ex11 F ACCACCCTACTGTCTCTCCAAA 209 Standard 64 Sanger FALS15

SIM1 Ex11 R AGATGTTCCCTTGTGTCCTTGT

TYMP Ex6 F AACTCTCCCAAGAAGCTCCAG 243 Standard 64 Sanger FALS15

TYMP Ex6 R AGGGGTGAAGGGTAGGCTG

SP1 p.A145T F GCTACCCCTACCTCAAAGGAAC 163 Standard 64 Sanger FALS15

SP1 p.A145T R TAGGCATCACTCCAGGTAGTCC

ZNF385B Ex10 F TTATGAAAAGATGCCTGTGGTG 359 Standard 62 Sanger FALS15

ZNF385B Ex10 R TGAATCCTTGTGGCTTTCTTTC

NECAB3 Ex7 F agtcctcggccctgtgag 244 Standard 63 Sanger FALS15

NECAB3 Ex7 R atgaagtgaggggcagtgaag

CEP295 p.N1707I F GTGATCCCAGGGTTTCAAGATA 185 Standard 64 Sanger FALS15

CEP295 p.N1707I R TGCAATGCTGTTTGTCTCTGTA

TNS2 p.S992L F CTAGCCCAGTCTCTCCGACCT 189 Standard 64 Sanger FALS15

TNS2 p.S992L R GAGTGAGGGGAGACCCATCT

ZNF425 p.R424P F AGATTAAGCTGGACGAGCACAT 179 Standard 61 Sanger FALS15

ZNF425 p.R424P R CATGGCGTTCCTCCAGAAG

ZNF497 Ex3 pt1 F ggtacttgccttttctctcctg 183 Standard 64 Sanger FALS15

ZNF497 Ex3 pt1 R AACCTCCGTGGAGTTTTCC

RNF133 p.R94Q F GGAGTTATAGTGCCACCAGAGG 232 Standard 58 Sanger FALS15

RNF133 p.R94Q R CATCTTCAAATGCCTGATGAAA

GDPD1 Ex7 F TGTCTTGGGAAATACTGAGAGTTG 335 Standard 64 Sanger FALS45

GDPD1 Ex7 R TGGAAATCACTACAGAAATCTCTTC

GPX7 Ex1 F CCTGCGGAGGGAACGAG 380 Standard & PCR enhancer 66 Sanger FALS45

GPX7 Ex1 R GTCCTCGGAGCCACACC

SCCPDH Ex7 F GCTTATTCAGACATTTACCAGCC 256 Standard 64 Sanger FALS45

SCCPDH Ex7 R CCCACACTGAATAGAAAGAGGAAC

PVRL3 Ex2 F gatagttacacagggggtcagg 473 Standard 64 Sanger FALS45

PVRL3 Ex2 R tcttcaccactatcaccaaaataca

GABRG3 Ex6 F GGCCTAAAAGTTTAACTCCTAACTCC 362 Standard 64 Sanger FALS45

GABRG3 Ex6 R CACTTATGTATCATGGTTGCCC

ARAP3 p.G330A F tcttataaaatctggggcagga 168 Standard 64 Sanger FALS45

ARAP3 p.G330A R TGATGACCTGGAACTTGTTGTC

KRT85 p.S5P F gctttccactccttttatgcag 219 Standard 64 Sanger FALS45

KRT85 p.S5P R AGCTGAGCAGGAGCTGAAGTT

DMWD p.G425S F CTTTGACCCCTACACCACAAG 228 Standard 64 Sanger FALS45

DMWD p.G425S R TAGAGCACGTCTTCAGTGAGGT

LZTFL1 Ex2 F atctagcagtctcgaccacaGG 315 Standard 64 Sanger FALS45

LZTFL1 Ex2 R ATTGTCTGGCCTCTGCTATGG

SLC22A5 Ex8 F TTTGTTTTGCTCTCAATAGCTG 313 Standard 62 Sanger FALS45

SLC22A5 Ex8 R AAGCCAGTTAGTACTTCCATCCC

GRIN2D p.V144L F CCCATCCTCGACTTCCTGT 245 Standard & PCR enhancer 65 Sanger FALS45

GRIN2D p.V144L R ctaagccctgcctaccatctg

SPATA2 p.G206S F CAAGTGAAGGACAAGGGCTACT 239 Standard 64 Sanger FALS45

SPATA2 p.G206S R CAGTAGCTGTCATAGGCATCCA

HIST1H3G p.P39S F AGACTGCACGCAAGTCCAC 168 Standard 64 Sanger FALS45

HIST1H3G p.P39S R GCAGCTCAGTCGACTTCTGATA

PIGZ Ex2 F TGACAGATCCATTTTCAGTTTG 391 Standard 64 Sanger FALS45

PIGZ Ex2 R TACCCAGACATGCTACTCCCTC

NPBWR1 p.L252V F GTCCTCTATACCACCCTGCTGT 224 Standard 65 Sanger FALS45
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NPBWR1 p.L252V R AGGCTGGTGATGAAGTAGGAGA

ASXL2 p.A796T F CTGGAGCACAACTACAGCAAAC 197 Standard 64 Sanger FALS45

ASXL2 p.A796T R AGAAGGTGCTTTCTCCTGTCTG

ORM1 p.K138N F CTAGGCCTCCTCACCTGTAAGA 195 Standard 64 Sanger FALS45

ORM1 p.K138N R gcatgcctacCATAGACAGACA

ZNF132 p.G455R F AACAATAACTCCAACCTTGCTCA 225 Standard 64 Sanger FALS45

ZNF132 p.G455R R ATAAGGCCTTTGCCCAGTATGT

CROCC p.A382S F CCTACGGCTGGCAGAGAG 227 Standard & PCR enhancer 60 Sanger FALS45

CROCC p.A382S R TCTCCCCAACTCTCCAGTTTTA

FHAD1 Ex15 F GGTAAACAAATGGGGAAAGACTC 298 Standard 64 Sanger FALS45

FHAD1 Ex15 R CTCAATTTCCCATAGAAAAGGC

STRN4 Ex8 F ACCTATGCCAGACTGGGTTG 240 Standard & PCR enhancer 54 Sanger FALSmq2

STRN4 Ex8 R CAGCTCTGCAGCCTCCC

LZTR1 Ex14 F GTGAGGTGCCTAACCGCC 343 Standard & PCR enhancer 66 Sanger FALSmq2

LZTR1 Ex14 R atcagtaaggcagggctgg

EHBP1 p.Q654L F TTGGAGAGTCAGAAAGTGAGCA 179 Standard 64 Sanger FALSmq2

EHBP1 p.Q654L R TGCTTGGGTTGAATCTGTATTG

EMP2 Ex5 F GTCTTCAACTCTGGCCGTATG 511 Standard 60 Sanger FALSmq2

EMP2 Ex5 R GCAGTTCTGAATACCAGCCTTC

EXOC3L1 Ex7 F tcagatccctgctacattcctt 243 Standard 64 Sanger FALSmq2

EXOC3L1 Ex7 R aaagcctccctccttcctct

TUSC5 Ex2 F AAGCTGACCCACAGCCTTC 255 Standard 62 Sanger FALSmq2

TUSC5 Ex2 R GGTACACCCTTGAGCAGTCC

DPH6 Ex7 F gctgtctaattttaaacttctttcttg 210 Standard 57 Sanger FALSmq2

DPH6 Ex7 R tgttcagttgcttccatcactt

CHRNA2 p.E411Q F CCTCTTATCACTGGCTGGAGAG 192 Standard & PCR enhancer 63 Sanger FALSmq2

CHRNA2 p.E411Q R ATAGCAGCAGCTCACCCTCCT

FAM205A p.K1282N F GGGGAGAAGTAAGACGGAGAAG 140 Standard 64 Sanger FALSmq2

FAM205A p.K1282N R AGCCAGGTTGTCTGGAGTGTAG

P2RY2 p.W16R F cattctcaaggttccagagctt 250 Standard 64 Sanger FALSmq2

P2RY2 p.W16R R CACGTACTTGAAGTCCTCGTTG

ALPK1 p.D979N F CTGAATTCCAGTGGGAGTTCTT 187 Standard 64 Sanger FALSmq2

ALPK1 p.D979N R tacTATGTGCTCGGTGGAGTTG

SLC25A21 Ex7 F GCTTGAAGGGAAGTTAATACGG 345 Standard 64 Sanger FALSmq2

SLC25A21 Ex7 R cagcacagtgaccaggacag

ZFHX2 p.T565S F GCTGTGACGTCTGCAACTACTC 225 Standard & PCR enhancer 61 Sanger FALSmq2

ZFHX2 p.T565S R GGTTACGGGAGATGTTTGTCTC

CFH p.A421G F tcattgttatggtccttagGAAA 189 Standard 58 Sanger FALSmq2

CFH p.A421G R GATGCATCTGGGAGTAGGAGAC

PCDHB11 p.S759T F CTTTCCCAGAGCTACCAGTACG 150 Standard 58 Sanger FALSmq2

PCDHB11 p.S759T R TCCAAAGCTATTTCGAAAGGTG

PCNXL4 p.I576V F TAGTATGCTTACCCGCAGAGTG 171 Standard 58 Sanger FALSmq2

PCNXL4 p.I576V R CTTTGTCCTTGGCAATTTCTTC

FANCC Ex7 F TGTCCTTAATTATGCATGGCTC 304 Standard 64 Sanger FALSmq2

FANCC Ex7 R TCGTACAGTCTTTCCAACACAC

ANKRD18B p.L589R F TAGAGGATGCTCGTAAGGAAGG 247 Standard 64 Sanger FALSmq2

ANKRD18B p.L589R R cgttcaacatatagccacaatga

CHDC2 Ex3 pt1 F aatacgtgaatgcatgttttgc 168 Standard 58 Sanger FALSmq2

CHDC2 Ex3 pt1 R GCATCATTGAATTTGCTAGTGG

CHRNA2 M13FP p.E411Q F CTGAAGCTCAGCCCCTCTTAT 245 Standard & PCR enhancer 61 Sanger FALSmq2

CHRNA2 M13R-pUC p.E411Q R ATGTAGTGCACACCTTCCAGTG

ZFHX2 M13FP p.T565S F GCTGTGACGTCTGCAACTACTC 225 Standard & PCR enhancer 58 Sanger FALSmq2
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ZFHX2 M13R-pUC p.T565S R GGTTACGGGAGATGTTTGTCTC

RASGRF1 Ex1 F CGAGCGCCAGAGAGAGG 476 Standard 64 Sanger FALSmq20

RASGRF1 Ex1 R AGTAGAGGGGCCAAAGTTCAAG

CRIM1 Ex17 F caggctatcaatcaatgaattgtg 403 Standard 57 Sanger FALSmq20

CRIM1 Ex17 R TCCAATACAATCCACTAAGCAAG

HR Ex5 F AGCAAGTGCGGAGgtgag 396 Standard 64 Sanger FALSmq20

HR Ex5 R tcttctgaggttgccttaggtc

TAZ Ex1 F AGTCAGGGGCCAGTGTCTC 279 Standard & PCR enhancer 66 Sanger FALSmq20

TAZ Ex1 R ccaccctaagtcccacctc

NCOR2 Ex43 F CCCCAGAAGGTTCTGTCAGG 328 Standard & PCR enhancer 66 Sanger FALSmq20

NCOR2 Ex43 R CAGCTCTGAGGCAGGCAG

DNAJC4 Ex4 F ctctctggccttctgaggagt 413 Standard 64 Sanger FALSmq20

DNAJC4 Ex4 R agggacattgtggaaatgagac

SOX15 p.R119Q F CAAGATGCACAACTCCGAGA 208 Standard 64 Sanger FALSmq20

SOX15 p.R119Q R CAGGTTGCCTCTTCCCTGT

HIC2 p.T526M F AGGAAGAGCTGTTCATCAAGGA 233 Standard 64 Sanger FALSmq20

HIC2 p.T526M R CGTGAACATTTTGCCACAGAT

ATP1B2 Ex7 F ctagaccctgcactgctcctc 234 Standard 64 Sanger FALSmq20

ATP1B2 Ex7 R GAGCATCCACAGGAGAGAGATG

POU2F2 Ex5 F ACAGGTGGGCATTCTCTCTG 254 Standard 64 Sanger FALSmq20

POU2F2 Ex5 R CTAGCCCTGTAACAGATGAGGG

MUC6 mq28 m13 F GTACAGGAACCCCACCAATG 300 Standard 58 Sanger FALSmq28

MUC6 mq28 m13 R AGGATGTTGCAGTGACAGGAC

GXYLT1 Ex5 mq28 m13 F ACGACCAGTTGATGATATTTGG 186 Standard 62 Sanger FALSmq28

GXYLT1 Ex5 mq28 m13 R TTCCTTCTCATTCGAGTCATGTT

GXYLT1 Ex1 mq28 m13 F CTGCGGGTGAGGAACTTG 439 Standard + enhancer 64 Sanger FALSmq28

GXYLT1 Ex1 mq28 m13 R GAAAGACGCGGGAGACG

MUC16 Ex55 mq28 m13 F ccttctaccacacccctatgac 187 Standard 62 Sanger FALSmq28

MUC16 Ex55 mq28 m13 R agaagggaagcaggtcaaact

MUC3A Ex2 mq28 m13 F CTACTTCTCCCACCAGCACTGT 236 Standard 65 Sanger FALSmq28

MUC3A Ex2 mq28 m13 R ACTGTGTGAGGTGACTGTGGAG

IQCE mq28 m13 F GTGTTGCATCTGGTGTCTGG 244 Standard 62 Sanger FALSmq28

IQCE mq28 m13 R TCTAAGGCTCTTCCTCTTGACG

HRNR Ex3 mq28 m13 F CAGGAGGGATCTAGCACAGG 150 Standard 62 Sanger FALSmq28

HRNR Ex3 mq28 m13 R GCTGGAAGAGTGCCCAGA

FRMPD2 Ex27 mq28 m13 F aaatctaacagtgaatcttggtttttc 227 Standard 62 Sanger FALSmq28

FRMPD2 Ex27 mq28 m13 R cactgaacctatctacaaccctcttag

PABPC3 Ex1 mq28 m13 F ATGAAGATGCACAGAAAGCTGTAG 206 Standard 62 Sanger FALSmq28

PABPC3 Ex1 mq28 m13 R ACGTTCATCATCAATACCATCATC

GAGE gDNA mq28 m13 F CTTGACCTGCTGGGCTCAAGCG 3161 Standard 64 Sanger FALSmq28

GAGE gDNA mq28 m13 R ACCAGTCAAGGGTTCTTGGATA

GAGE Ex mq28 m13 F aaatatgagttggcgaggaaga 165 Standard 64 Sanger FALSmq28

GAGE Ex mq28 m13 R cacactaatgcaacgacgctat

ZCCHC24 mq28 m13 F TTCCATCTGCAGAATCACTTTG 437 Standard 64 Sanger FALSmq28

ZCCHC24 mq28 m13 R GACTGAAAGTGGGAGAGGTGAC

TFCP2 mq28 m13 F TTGTTGGGATTACAGGCATAAG 224 Standard 62 Sanger FALSmq28

TFCP2 mq28 m13 R GGAGGAGACGTATCTGGTTGTC

TRIM69 mq28 m13 F TGAGATCAGCCTAGGCAACATA 445 Standard 62 Sanger FALSmq28

TRIM69 mq28 m13 R CTGGCGTTTACACACTAGATGC

FAM210A mq28 m13 F CTCCAGTCTGGGAGAGAGAGAG 242 Standard 62 Sanger FALSmq28

FAM210A mq28 m13 R ATGGAGACTGCTAACTCCTTGG

BAGE mq28 m13 F CAGTGGGAGAAGGGTAAAGAGA 176 Standard 62 Sanger FALSmq28
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BAGE mq28 m13 R TTCCTCTGGCCACACTTTCTAT

RAB28 mq28 m13 F GCTTTTGTTCCCACTTCAATGT 216 Standard 62 Sanger FALSmq28

RAB28 mq28 m13 R CCTGCCTTTCTACCTCTTCTCA

OSTF1 mq28 m13 F AAATGAATTGTTCCCACCTTTG 226 Standard 62 Sanger FALSmq28

OSTF1 mq28 m13 R CCCTTGAAAAATCCATTCAAAA

SPRY3 mq28 m13 F TGATATGGACTGCATCTGCTTT 262 Standard + enhancer 58 Sanger FALSmq28

SPRY3 mq28 m13 R GCTAAGCAGGAAACACCCTCTA

DDX11L16 gDNA mq28 m13 F AACTACATGCAGGAACAGCAAA 224 Standard 62 Sanger FALSmq28

DDX11L16 gDNA mq28 m13 R CCCACCAGCAATGTCTAGGAGT

DNM1P41 mq28 m13 F GTGGGCATGTGTGTGAGTGTGT 4000 Standard 64 Sanger FALSmq28

DNM1P41 mq28 m13 R GTATTTGCCAAGTTTTCTTAGA

DNM1P41 mq28 m13 F AAACACATCCCTCCTCTTCTCA 317 Standard 64 Sanger FALSmq28

DNM1P41 mq28 m13 R GACTGATTCCCAGTGCTAGAGG

AKR1C2 mq28 F GGGCAGGACATCGAAGATATCA 594 Standard 68 Sanger FALSmq28

AKR1C2 mq28 R AAACTTGCTGGGATGCCTATCA

SLCO1C1 mq28 F AGCTCTGTTTCTCTGCAACTGA 520 Standard 68 Sanger FALSmq28

SLCO1C1 mq28 R TCACTAGGGTGGTCTCTGTCTT

CES1P1 mq28 F GGGCTTTTCTGATCTCTCCCAA 536 Standard 68 Sanger FALSmq28

CES1P1 mq28 R CGCTATCCGTTATCGAGCCATA

ERVV-2 mq28 F TGACTTTGGAAAAGGAGGTGCT 565 Standard 68 Sanger FALSmq28

ERVV-2 mq28 R AGAGAAGTGCTGACTGTCTGTG

MIR512 mq28 F CAAACACACCCAGCTGAGTTTTAA 513 Standard 58 Sanger FALSmq28

MIR512 mq28 R CCCAGCCTGAATAACACCTTTTAC

LINC01410 mq29 F ACTAAGTGCATTCCTGGACCTG 564 Standard 68 Sanger FALSmq28

LINC01410 mq29 R TTGTCTGTCCTCTGCACATCTC

MIR4477 mq30 F CTCTGAAAATCTCAGGGCCCTT 623 Standard 68 Sanger FALSmq28

MIR4477 mq30 R TCTCCATCTAAGCTTCTGGGGA

CES1P1 new mq28 F AGCTTGAAATCCTGGAACGCTA 536 Standard 63 Sanger FALSmq28

CES1P1 new mq28 R CTTCAGAAGGACTCACCCCAAG

MIR4477 new mq28 FAM F FAM-CTGGGCAACAAGAGTGAAACTA 180 Standard 63 Fragment length FALSmq28

MIR4477 new mq28 R CATCTAAGCTTCTGGGGAGCTA analysis

PALM3 Ex6 p.E279G F AGACAGGAAGGGAGCTGGTAG 185 Standard 69 Sanger Female SALS twins

PALM3 Ex6 p.E279G R AAGCTGCTGCCTCTAATCTCTC

ZNF681 Ex4 p.K469K F TTCATACCAGAGAGAAACTCAATG 654 Standard 62 Sanger Female SALS twins

ZNF681 Ex4 p.K469K R GTTTTGAGGATCGATAGAAAGC

TYRO3 Ex17 p.V715delinsVWAFG F AAGGCTGACTCTCTCCCTCAAT 248 Standard 68 Sanger Female SALS twins

TYRO3 Ex17 p.V715delinsVWAFG R TAAAGGTCTGCTCTCACACTCG

ZNF571 Ex4 p.F447Y F GGGAAAGCCTTTATTTCTAATTCT 206 Standard 61 Sanger Female SALS twins

ZNF571 Ex4 p.F447Y R TGTTGAGTAAGATATGCAACACGA

KMT2C Ex16 p.S902S F CAGAATGTTGACTTTTCCCAATC 220 Standard 63 Sanger Female SALS twins

KMT2C Ex16 p.S902S R AACTTGCTATGAGATTTTCATCATT

CATSPER2 Ex11 p.E437fs F GGAGCTAGTCAACAAAGGGAAA 170 Standard 64 Sanger Female SALS twins

CATSPER2 Ex11 p.E437fs R GAAGAGGATGTGGAGGAGACAC

FNDC7 Ex6 p.L312L F AAGATGCGAAGAAAATCTCCTG 384 Standard 66 Sanger Female SALS twins

FNDC7 Ex6 p.L312L R AATAGGTGATCCATTCTGCTGC

ZNF718 Ex2 p.I11V F gataattccagtcagccccata 160 Standard 66 Sanger Female SALS twins

ZNF718 Ex2 p.I11V R gGTCCAGACATTTCCACTCTTC

ZNF771 Ex3 p.T86T F cgctaagggctgacctatcc 213 Standard + enhancer 61 Sanger Female SALS twins

ZNF771 Ex3 p.T86T R GTCAGCGCCGACTTCTGT

FLG2 Twin set set2 F GAATCCATAGTTCCTGAGAGACATG 527 Standard 66 Sanger SOD1 triplets

FLG2 Twin set set2 R GATTGAGAATGTCCACTGGTATCTC

PSPC1 N450S F CTCCTCCAATGATGGGTATGAA 236 Standard 61 Sanger SOD1 triplets
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PSPC1 N450S R TGCCAAAACAAATGATACCAAA

POTEB2 E249Q F AGAAGGAAGCGACCAAATTTTA 395 Standard 64 Sanger SOD1 triplets

POTEB2 E249Q R CTTTATGTTGCCCAGTCCAAAT

PRAMEF36P SOD1triplets F CTCACTGTCATCATTGGTCCAT 176 Standard 67 Sanger SOD1 triplets

PRAMEF36P SOD1triplets R ACATGCAAATTCAAGGCTAGGT

LOC390705 SOD1triplets F ATATTTGGGATCCTGCTGAGG 212 Standard 64 Sanger SOD1 triplets

LOC390705 SOD1triplets R TATTTCCTTTTCCACCATACGC

MIR4436A SOD1triplets new F FAM-GATGGATCTTTCCCAACTTCTG 323 Standard 63 Fragment length SOD1 triplets

MIR4436A SOD1triplets new R AAATTTCAAACCCCCAAAAAGT analysis

SMOC2 SOD1triplets new F FAM-AGGCTTGCCTATAAATGAGGTG 673 Standard 61 Fragment length SOD1 triplets

SMOC2 SOD1triplets new R CCTATTCAGGCCAACCTACAAC analysis

OR1L3 SOD1triplets new F FAM-GCTACAACCTCCACCTCCCACC 293 Standard 71 Fragment length SOD1 triplets

OR1L3 SOD1triplets new R CGGGGCGGCTGGCTGGGCAGAGG analysis

OR2T2 V320fs F CAACCCACTCATCTACAGCTTG Standard 68 Sanger C9orf72 twins

OR2T2 V320fs R GTTTGCGCTAGTCCTTGCTAGT

C5orf60 K100N F CCATCTCCTGCTTTCCAGATTA Standard 64 Sanger C9orf72 twins

C5orf60 K100N R ACTTCACAAAGCTCTGCCTACC

VPS52 87 88del F CCCCAAAAGGAAAAACAACA Standard 61 Sanger C9orf72 twins

VPS52 87 88del R CCCTCTGCTGGAGGATACAA

SPATA31C1 M154T F GACTTTGGTCAGCTCTCTGGTC Standard 68 Sanger C9orf72 twins

SPATA31C1 M154T R AGTTGAAGATGCACCAGGTTTT

AHNAK 2384 2386del F GATGCTGACATGCCAGAAGTAG Standard 64 Sanger C9orf72 twins

AHNAK 2384 2386del R CCTTCCAATTTGGGAACATCTA

PHC1 Q434delinsQQQ F TGGACGAAGTGATGTCCAAG Standard 68 Sanger C9orf72 twins

PHC1 Q434delinsQQQ R AGTAGGTGGGACCTGTGGTG

SCAF1 S827F F ACAGGGACAGAGATAGGGACAG Standard 66 Sanger C9orf72 twins

SCAF1 S827F R GACCTTTTTCCTGGTCTTGGAT

*Touchdown PCR: thermocycling conditions in which the annealing temperature decreases 2 degrees each cycle, after the first 10 cycles.

Standard: standard PCR reaction conditions included MyTaq HS Red mix, milliQ water, 10mM forward and reverse primers and 20ng DNA.
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A.3.2

A.3.3 ACMG guidelines for interpreting sequence variants

The following table outlines the ACMG recommended guideline for interpreting the

pathogenic nature of sequencing variants. These guiudelines were consulted as part

of the development of the in silico assessment of pathogenicity pipeline presented in

Chapter 6. Obtained from Richards et al. (2015).
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A.3.3.1 FALS-associated candidate gene variants

The following table provides details of all population-based SNPs found to be associated

with FALS compared with ExAC control individuals. Details include allele counts

in the patient and control cohorts, and the p-value results of Fisher’s exact testing

comparing patients to the various control cohorts. The two SNPs which are highlighted

represent those which withstood family bias testing after applying Bonferroni correction

to the p-value threshold, however both subsequently failed replication using Australian

control cohorts.



Potential 
Fisher's Family biased Fisher's Family biased Fisher's Family biased disease-risk or 
p-value result? p-value result? p-value result? protective allele?

SCFD1 14 31099738 rs229150 0.346 106 56 0.433 68857 52493 2.629E-02 yes . . . . . . . . . . protective family biased
SPTBN4 19 40978640 rs73931308 0.092 129 13 0.206 65606 17054 3.661E-04 no 0.151 1446 258 6.305E-02 . 0.156 1932 356 4.004E-02 yes protective family and/or population biased
SPTBN4 19 41018832 rs814533 0.075 124 10 0.176 4211 901 1.137E-03 no 0.000 1920 0 1.010E-12 no 0.106 2035 241 3.080E-01 . protective conflicting population results absent from one Aust. Control cohort
SPTBN4 19 41060616 rs2242131 0.082 134 12 0.217 20394 5654 1.890E-05 no 0.149 1036 182 3.213E-02 no 0.170 1899 389 3.884E-03 no protective disease associated
SPTBN4 19 41071552 . 0.027 144 4 0.003 18827 51 8.812E-04 no 0.208 1531 401 5.160E-10 no 0.000 2288 0 1.310E-05 no risk disease associated absent from one Aust. Control cohort
C21orf2 21 45750145 rs11552066 0.025 119 3 0.156 53959 9991 4.060E-06 no 0.112 215 27 3.991E-03 no 0.120 2014 274 3.761E-04 no protective disease associated
C21orf2 21 45750346 rs2070573 0.130 40 6 0.347 10719 5707 1.598E-03 no 0.206 54 14 3.288E-01 . 0.219 1786 502 2.046E-01 . protective population biased
C21orf2 21 45759045 rs11870 0.091 120 12 0.342 9451 4905 2.990E-11 no 0.500 4 4 6.193E-03 no 0.222 1781 507 1.784E-04 no protective disease associated
NEK1 4 170428331 rs6855803 0.203 126 32 0.308 17749 7917 4.158E-03 yes . . . . . . . . . . protective family biased
NEK1 4 170506525 rs200161705 0.025 158 4 0.002 0 0 6.207E-04 no 0.004 1926 8 1.041E-02 no 0.003 2280 8 5.996E-03 no risk disease associated
DDX58 9 32481339 rs61752945 0.037 156 6 0.009 119973 1079 3.566E-03 yes . . . . . . . . . . risk family biased
DDX58 9 32500832 rs72710678 0.031 157 5 0.009 120167 1137 1.904E-02 no 0.024 1887 47 5.948E-01 . 0.020 2242 46 3.832E-01 yes risk population biased
EEF1A2 20 62124459 rs12480745 0.133 104 16 0.258 12443 4325 1.516E-03 no 0.312 919 417 1.600E-05 no 0.267 1676 612 8.529E-04 no protective disease associated
EEF1A2 20 62126185 rs310617 0.667 46 92 0.571 50722 67506 2.505E-02 yes . . . . . . . . . . risk family biased
EEF1A1 6 74227940 rs11556677 0.080 149 13 0.170 0 0 1.545E-03 no 0.238 1474 460 6.770E-07 no 0.000 2288 0 2.910E-16 no protective disease associated absent from one Aust. Control cohort
EEF1D 8 144662353 rs1062391 0.615 57 91 0.511 58399 61119 1.336E-02 no 0.626 724 1210 7.922E-01 . 0.653 793 1495 3.736E-01 yes risk population biased
EEF1D 8 144671922 rs3812448 0.836 24 122 0.760 26221 83105 3.267E-02 yes . . . . . . . . . . risk family biased
ANXA11 10 81917463 . 0.006 159 1 0.000 121234 4 6.573E-03 no 0.000 1920 0 7.692E-02 . 0.000 2288 0 6.536E-02 . risk population biased absent from both Aust. Control cohort
ANXA11 10 81921715 rs146222704 0.014 146 2 0.000 119952 34 9.239E-04 no 0.001 1931 1 1.439E-02 no 0.000 2288 0 3.668E-03 yes risk conflicting population family results absent from one Aust. Control cohort
ANXA11 10 81921810 rs2304410 0.092 138 14 0.155 94298 17280 3.243E-02 yes . . . . . . . . . . protective family biased
ANXA11 10 81926702 rs1049550 0.434 86 66 0.309 0 0 1.119E-03 no 0.427 1109 825 8.651E-01 . 0.425 1315 973 8.656E-01 . risk population biased
ANXA11 10 81926718 rs2228427 0.092 138 14 0.177 70596 15140 5.307E-03 yes . . . . . . . . . . protective family biased
ANXA11 10 81926750 rs34332933 0.092 138 14 0.175 52786 11178 5.279E-03 yes . . . . . . . . . . protective family biased
ANXA11 10 81930787 . 0.008 131 1 0.000 11196 2 3.455E-02 yes . . . . . . . . . . risk family biased
GGNBP2 17 34935878 rs2074103 0.519 78 84 0.392 73526 47394 1.222E-03 yes . . . . . . . . . . risk family biased
GGNBP2 17 34941864 . 0.006 161 1 0.000 121156 2 4.001E-03 no 0.000 1920 0 7.781E-02 . 0.000 2288 0 6.612E-02 . risk population biased absent from both Aust. Control cohort
GGNBP2 17 34942595 rs1106908 0.519 78 84 0.392 72963 47035 1.222E-03 yes . . . . . . . . . . risk family biased
GGNBP2 17 34943719 rs3744593 0.534 68 78 0.397 72342 47700 9.166E-04 yes . . . . . . . . . . risk family biased
GPX3 5 150406437 rs869976 0.006 161 1 0.042 113232 4994 1.654E-02 no 0.010 1915 19 1.000E+00 . 0.007 2272 16 1.000E+00 . protective population biased absent from both Aust. Control cohort
GPX3 5 150407456 rs8177447 0.736 38 106 0.832 0 0 3.517E-03 yes . . . . . . . . . . protective family biased
TNIP1 5 150439921 rs200236985 0.006 161 1 0.000 121341 17 2.373E-02 no 0.000 1920 0 7.781E-02 . 0.001 2286 2 1.856E-01 yes risk population biased absent from one Aust. Control cohort
TNIP1 5 150443266 . 0.006 157 1 0.000 121362 12 1.677E-02 no 0.000 1920 0 7.603E-02 . 0.000 2287 1 1.250E-01 yes risk population biased absent from one Aust. Control cohort
ABCC2 10 101569997 rs17222639 0.074 150 12 0.031 113618 3648 5.050E-03 yes . . . . . . . . . . risk family biased
ABCC2 10 101577125 . 0.006 161 1 0.000 121344 2 3.994E-03 no 0.000 1920 0 7.781E-02 . 0.000 2288 0 6.612E-02 . risk population biased absent from both Aust. Control cohort
ABCC2 10 101590619 rs41318031 0.006 161 1 0.036 115388 4270 3.318E-02 yes . . . . . . . . . . protective family biased
ABCC2 10 101604207 rs3740066 0.420 94 68 0.342 0 0 3.857E-02 yes . . . . . . . . . . risk family biased
UBA1 X 47062534 rs2070169 0.117 143 19 0.183 71538 16075 3.216E-02 yes . . . . . . . . . . protective family biased
MTHFR 1 11848139 rs11559040 0.149 126 22 0.237 9151 2839 1.107E-02 yes . . . . . . . . . . protective family biased
BICD2 9 95480120 rs142140690 0.006 157 1 0.000 120163 7 1.046E-02 no 0.000 1920 0 7.603E-02 . 0.000 2288 0 6.460E-02 . risk population biased absent from both Aust. Control cohort
BICD2 9 95483066 . 0.013 158 2 0.000 113773 37 1.403E-03 no 0.001 1933 1 1.654E-02 no 0.001 2285 3 3.724E-02 no risk disease associated
BICD2 9 95526977 . 0.034 141 5 0.003 46235 161 1.869E-04 no 0.000 1920 0 1.650E-06 no 0.000 2288 0 7.280E-07 no risk disease associated absent from both Aust. Control cohort
CHCHD1 10 75542163 rs139732935 0.006 157 1 0.000 121177 1 2.603E-03 no 0.000 1920 0 7.603E-02 0 0.000 2288 0 6.460E-02 yes risk population biased absent from one Aust. Control cohort
CHCHD5 2 113346480 rs41278942 0.160 126 24 0.097 107661 11623 1.795E-02 yes . . . . . . . . . . risk family biased
CHCHD6 3 126676314 rs145020754 0.014 146 2 0.002 76642 168 4.278E-02 no 0.002 1893 3 4.504E-02 no 0.001 2285 3 3.247E-02 no risk disease associated
PINK1 1 20960230 rs45530340 0.113 126 16 0.225 9876 2868 7.904E-04 no 0.000 1920 0 1.130E-19 no 0.200 1827 457 8.734E-03 yes protective conflicting population family results absent from one Aust. Control cohort
PINK1 1 20977000 rs1043424 0.383 100 62 0.297 85221 36071 2.011E-02 no 0.266 1418 514 1.823E-03 yes 0.276 1656 632 5.003E-03 no risk conflicting population family results
PINK1 1 20977107 . 0.006 161 1 0.000 121325 3 5.323E-03 no 0.000 1920 0 7.781E-02 . 0.000 2288 0 6.612E-02 . risk population biased absent from both Aust. Control cohort
CNR2 1 24200983 rs2229583 0.481 84 78 0.620 43846 71560 3.489E-04 no 0.566 838 1094 3.948E-02 no 0.583 955 1333 1.347E-02 yes protective conflicting population family results
CNR2 1 24201109 rs2229580 0.481 84 78 0.619 46251 75147 4.626E-04 no 0.567 836 1096 3.920E-02 no 0.583 955 1333 1.347E-02 yes protective conflicting population family results
CNR2 1 24201262 rs2502993 0.459 80 68 0.619 46225 75111 8.870E-05 no 0.569 833 1099 1.247E-02 no 0.583 955 1333 4.490E-03 yes protective conflicting population family results
CNR2 1 24201357 rs4649124 0.447 84 68 0.618 46187 74839 2.480E-05 no 0.568 835 1097 4.979E-03 no 0.583 955 1333 1.252E-03 no protective disease associated
CNR2 1 24201448 rs3003336 0.481 81 75 0.619 45725 74331 4.976E-04 no 0.570 830 1102 3.563E-02 no 0.583 955 1333 1.499E-02 yes protective conflicting population family results
CNR2 1 24201643 rs2501431 0.475 83 75 0.620 45979 74967 2.805E-04 no 0.569 832 1100 2.416E-02 no 0.583 955 1333 9.706E-03 yes protective conflicting population family results
CNR2 1 24201919 rs2502992 0.449 86 70 0.618 46161 74775 2.190E-05 no 0.565 841 1091 5.632E-03 no 0.583 955 1333 1.406E-03 no protective disease associated
CNR2 1 24201920 rs2501432 0.449 86 70 0.618 46192 74778 2.200E-05 no 0.565 840 1092 5.597E-03 no 0.583 955 1333 1.406E-03 no protective disease associated
FAAH 1 46860237 rs72890727 0.254 106 36 0.350 480 258 2.581E-02 yes . . . . . . . . . . protective family biased
FAAH 1 46871039 rs200731801 0.013 152 2 0.002 120942 202 2.806E-02 yes . . . . . . . . . . risk family biased
FAAH 1 46871409 rs114795065 0.013 148 2 0.001 119485 111 9.005E-03 no 0.004 1902 8 1.614E-01 . 0.002 2284 4 4.789E-02 no risk conflicting population results
FAAH 1 46871746 rs41305628 0.066 142 10 0.032 117391 3909 3.302E-02 yes . . . . . . . . . . risk family biased
DAGLA 11 61496352 . 0.006 153 1 0.000 119903 3 5.121E-03 no 0.000 1920 0 7.425E-02 . 0.000 2288 0 6.306E-02 . risk population biased absent from both Aust. Control cohort
DAGLA 11 61504644 . 0.007 147 1 0.000 121298 2 3.651E-03 yes . . . . . . . . . . risk family biased
DAGLA 11 61507041 . 0.014 146 2 0.000 120850 2 8.900E-06 no 0.000 1920 0 5.090E-03 no 0.000 2288 0 3.668E-03 no risk disease associated absent from both Aust. Control cohort
MGLL 3 127540635 rs11538698 0.074 150 12 0.031 117068 3684 4.342E-03 no 0.047 1843 91 1.296E-01 . 0.032 2214 74 1.216E-02 yes risk population and/or family biased
CNR1 6 88853635 rs1049353 0.297 111 47 0.214 95470 25926 1.472E-02 yes . . . . . . . . . . risk family biased
DAGLB 7 6449794 rs139753251 0.027 146 4 0.008 77435 649 3.762E-02 yes . . . . . . . . . . risk family biased
DAGLB 7 6456319 rs1055430 0.095 134 14 0.042 114862 5032 5.732E-03 no 0.062 1773 117 1.182E-01 . 0.061 2149 139 1.131E-01 . risk population biased
DAGLB 7 6461348 rs836514 0.101 133 15 0.175 94932 20156 1.684E-02 yes . . . . . . . . . . protective family biased
DAGLB 7 6461424 rs836515 0.006 157 1 0.035 116199 4165 4.753E-02 yes . . . . . . . . . . protective family biased
NAPEPLD 7 102743893 rs3181009 0.994 1 157 0.959 4913 116259 2.355E-02 no 0.999 1 1927 1.458E-01 . 0.998 5 2283 3.304E-01 . risk population biased
KCND3 1 112524680 rs17215423 0.047 141 7 0.014 0 0 5.119E-03 yes . . . . . . . . . . risk family biased
CDT1 16 88872122 . 0.014 146 2 0.000 0 0 3.850E-04 no 0.000 1920 0 5.090E-03 no 0.000 2288 0 3.668E-03 yes risk conflicting population family results absent from both Aust. Control cohort
CDT1 16 88872176 rs145319641 0.007 149 1 0.000 0 0 8.731E-03 no 0.000 1920 0 7.246E-02 . 0.000 2288 0 6.153E-02 . risk population biased absent from both Aust. Control cohort
CDT1 16 88872511 rs510862 0.750 37 111 0.818 18771 84557 4.182E-02 no 0.774 407 1395 5.405E-01 . 0.785 493 1795 3.545E-01 . protective population biased
CDT1 16 88872542 rs3218722 0.041 142 6 0.130 47922 7130 4.958E-04 no 0.045 1713 81 1.000E+00 . 0.059 2152 136 4.673E-01 yes protective population biased absent from one Aust. Control cohort
CDT1 16 88873729 . 0.007 147 1 0.000 116192 20 2.638E-02 no 0.000 1920 0 7.157E-02 . 0.000 2288 0 6.076E-02 . risk population biased absent from both Aust. Control cohort
CDT1 16 88873738 rs200199040 0.007 147 1 0.000 116434 10 1.388E-02 no 0.000 1920 0 7.157E-02 . 0.000 2288 0 6.076E-02 . risk population biased absent from both Aust. Control cohort
CDT1 16 88874632 rs572275 0.349 95 51 0.474 0 0 2.741E-03 no 0.346 1207 639 9.283E-01 . 0.352 1482 806 1.000E+00 . protective population biased absent from one Aust. Control cohort
KIF5A 12 57963020 rs181688415 0.037 156 6 0.008 120111 981 2.240E-03 no 0.017 1902 32 6.785E-02 no 0.014 2256 32 3.596E-02 no risk disease associated
KIF5A 12 57969016 rs144382702 0.006 157 1 0.000 112105 17 2.503E-02 no 0.000 1920 0 7.603E-02 . 0.000 2288 0 6.460E-02 . risk population biased absent from both Aust. Control cohort

Alt AC

FALS  patients

MAF Alt ACRef AC MAF Ref AC Alt AC MAF

ExAC control comparison Diamantina control comparison MGRB control comparison
Association conclusion NotesAlt ACRef ACMAF Ref ACrs IDPOSCHROMGene
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A.3.3.2 SALS-associated candidate gene variants

The following table provides details of all population-based SNPs found to be associated

with SALS compared with gnomAD NFE control individuals. Details include allele

counts in the patient and control cohorts, and the p-value results of Fisher’s exact

testing comparing patients to the various control cohorts.



Potential 
Fisher's Fisher's Fisher's disease-risk or 
p-value p-value p-value protective allele?

CHCHD2 7 56171871 rs374406633 intronic 0.001 1255 1 0.000 123318 4 4.940E-02 NA NA NA NA 0.000 2288 0 3.544E-01 risk population biased
CHCHD3 7 132481193 . intronic 0.001 1255 1 0.000 125680 0 9.895E-03 NA NA NA NA 0.000 2288 0 3.544E-01 risk population biased
CHCHD3 7 132570458 . exonic 0.001 1255 1 0.000 125691 3 3.899E-02 0.000 1920 0 3.955E-01 0.000 2288 0 3.544E-01 risk population biased
CHCHD3 7 132719349 rs78193687 intronic 0.059 1182 74 0.075 112609 9093 3.501E-02 NA NA NA NA 0.079 2107 181 2.948E-02 protective disease associated
CHCHD3 7 132719440 . intronic 0.001 1255 1 0.000 125927 3 3.892E-02 NA NA NA NA 0.000 2288 0 3.544E-01 risk population biased
CHCHD6 3 126423125 rs200230339 UTR5 0.001 1253 1 0.000 117353 1 2.103E-02 NA NA NA NA 0.000 2288 0 3.540E-01 risk population biased
CHCHD6 3 126423136 rs200360858 UTR5 0.001 1253 1 0.000 116601 1 2.117E-02 NA NA NA NA 0.000 2288 0 3.540E-01 risk population biased
CHCHD6 3 126445926 . exonic 0.001 1253 1 0.000 126576 0 9.810E-03 0.000 1920 0 3.951E-01 0.000 2288 0 3.540E-01 risk population biased
CHCHD6 3 126449513 . intronic 0.001 1253 1 0.000 123539 1 2.000E-02 NA NA NA NA 0.000 2288 0 3.540E-01 risk population biased
CHCHD6 3 126633636 rs199708316 intronic 0.001 1253 1 0.000 121474 0 1.022E-02 NA NA NA NA 0.000 2288 0 3.540E-01 risk population biased
CHCHD6 3 126676329 rs77373684 exonic 0.001 1253 1 0.000 117544 0 1.056E-02 0.000 1920 0 3.951E-01 0.000 2288 0 3.540E-01 risk population biased
CHCHD6 3 126676337 . exonic 0.001 1253 1 0.000 113086 0 1.097E-02 0.000 1920 0 3.951E-01 0.000 2288 0 3.540E-01 risk population biased
TIA1 2 70451784 rs76438450 intronic 0.002 1253 3 0.000 117011 3 2.330E-05 NA NA NA NA 0.004 2279 9 5.567E-01 risk population biased
TIA1 2 70463168 . intronic 0.001 1255 1 0.038 60623 2395 1.410E-19 NA NA NA NA 0.000 2288 0 3.544E-01 protective population biased
TIA1 2 70463334 rs78928004 intronic 0.002 1254 2 0.000 48398 8 2.513E-02 NA NA NA NA 0.019 2245 43 1.020E-06 risk disease associated
TIA1 2 70475680 rs141564047 UTR5 0.002 1254 2 0.247 45939 15095 1.130E-148 NA NA NA NA 0.000 2288 0 1.255E-01 protective population biased

MGRB control comparisonDiamantina control comparison

MAF Ref AC Alt ACMAF Ref AC Alt AC Association conclusionMAF Ref AC Alt AC MAF Ref AC Alt ACGene CHROM POS rs ID
SALS  patients

Gene function
gnomAD NFE control comparison
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A.3.3.3 Replication of Fisher’s exact testing using Project MiNE cohort

The following table provides details and results of Fisher’s Exact testing in the Project

MiNE case-control cohort for those variants found to be associated with disease in

Australian FALS or SALS (Table 5.3).
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Table A.2: Replication of association testing in the Project MiNE case-control cohort.

Gene CHROM POS rsID Project MiNE cases Project MiNE control Fisher’s Exact

Ref allele count Alt allele count Ref allele count Alt allele count p-vlaue

SPTBN4 19 41060616 rs2242131 0 0 0 0 no data available

SPTBN4 19 41071552 . 0 0 0 0 no data available

C21orf2 21 45750145 rs11552066 7729 1003 3251 413 7.57024E-01

C21orf2 21 45759045 rs11870 6903 1827 2863 801 2.47828E-01

NEK1 4 170506525 rs200161705 8664 68 3651 13 6.84479E-03

EEF1A2 20 62124459 rs12480745 6257 2471 2651 1013 4.56730E-01

EEF1A1 6 74227940 rs11556677 0 0 0 0 no data available

BICD2 9 95483066 . 8723 9 3658 6 3.99739E-01

BICD2 9 95526977 . 8706 0 3655 1 2.95745E-01

CHCHD6 3 126676314 rs145020754 8719 13 3651 11 1.13736E-01

CNR2 1 24201357 rs4649124 0 0 0 0 no data available

CNR2 1 24201919 rs2502992 0 0 0 0 no data available

CNR2 1 24201920 rs2501432 4936 3792 2195 1467 5.28027E-04

DAGLA 11 61507041 . 0 0 0 0 no data available

KIF5A 12 57963020 rs181688415 8634 98 3608 56 7.50365E-02

CHCHD3 7 132719349 rs78193687 8080 650 3377 287 4.56661E-01

TIA1 2 70463334 rs78928004 8725 7 3660 4 7.41571E-01
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A.3.4 In silico assessment of pathogenicity results

The following tables describe the results obtained from application of the in silico

pipeline for assessment of potential ALS pathogenicity.
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Table A.3: In silico assessment of pathogenicity results - proof of principle.
Variant type Gene Amino acid Gene expression Protein predictons Conservation Genic Tolerance Total score

change Brain Spinal cord Score No.

damaging

predictions

Score NCBI and

ClustalOmega

PhyloP PhasCons Score RVIS ExAC

constraint

Z score

Score (out of 10)

Known ALS mutation SOD1 p.I114T 9 110.245 2 8/8 2 12/16 7.42246 1 1.8 -0.08 (47.79%) 2.34 2.2142 8.0142

Known ALS mutation SOD1 p.E101G 9 110.245 2 5/7 1 7/16 0.871835 0 0.5 -0.08 (47.79%) 2.34 2.2142 5.7142

Known ALS mutation SOD1 p.V149G 9 110.245 2 7/7 2 14/16 7.39868 1 1.8 -0.08 (47.79%) 2.34 2.2142 8.0142

Known ALS mutation FUS p.R521C 11.5 56.582 2 5/7 1 4/4 2.6095 1 1.6 -1 (8.32%) 2.6 3.1336 7.7336

Known ALS mutation FUS p.R521H 11.5 56.582 2 3/7 0.5 4/4 4.07511 1 1.6 -1 (8.32%) 2.6 3.1336 7.2336

Known ALS mutation FUS p.R521S 11.5 56.582 2 5/7 1 4/4 2.6095 1 1.6 -1 (8.32%) 2.6 3.1336 7.7336

Known ALS mutation TARDBP p.G294V 10 30.101 2 2/7 0 5/6 4.56656 1 1.6 -0.38 (27.42%) 4.33 3.6166 7.2166

Known ALS mutation TARDBP p.M337V 10 30.101 2 3/7 0.5 6/6 8.91094 1 1.8 -0.38 (27.42%) 4.33 3.6166 7.9166

Known ALS mutation TARDBP p.G376D 10 30.101 2 2/7 0 4/6 6.85943 1 1.4 -0.38 (27.42%) 4.33 3.6166 7.0166

Known ALS mutation UBQLN2 p.T487I 10.5 13.089 2 0/7 0 3/6 1.65513 0.913386 1.4 -0.36 (28.63%) 1.56 2.2074 5.6074

Known ALS mutation CCNF p.S621G 5.5 0.401 0.5 4/7 0.5 5/5 6.86126 1 1.8 -1.22 (5.67%) 0.22 1.9966 4.7966

Common SNP TMA16 p.I176T no result 10.44 1 1/7 0 2/6 -0.498984 0 0 0.7 (85.42%) -0.27 0.1566 1.1566

Common SNP OR4C3 p.S100F 6 0 0.5 4/7 0.5 2/2 2.06728 0 1.1 -0.07 (48.69%) -5.59 0 2.1

Common SNP MAP2K3 p.S39P 5.5 7.65 0.5 2/7 0 3/5 1.876 0 0.9 0.11 (61.91%) -0.23 0.6468 2.0468
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Table A.4: In silico assessment of pathogenicity results - proband candidate mutations.
Gene Amino acid Gene expression Protein predictons Conservation Genic Tolerance Total score Priority

change Brain Spinal

cord

Score No.

damaging

predictions

Score NCBI

alignment

PhyloP PhasCons Score RVIS ExAC

constraint

Z score

Score (out of 10) category

SPTBN4 p.R2074P 6 1.773 0.5 2 of 7 0 3 of 3 1 0.11811 1.1 60.71 0.85 1.9574 3.5574 medium

EEF1D p.F278L 5 24.12 1 5 of 7 1 7 of 7 4.20623 1 2 2.13 absent 0.3154 4.3154 medium

ABCC2 p.D942N 4 0.097 0 0 of 8 0 2 of 6 0.279496 0 0.5 73.73 -0.42 0 0.5 low

ABCC2 p.N1186K 4 0.097 0 6 of 7 2 5 of 6 -0.0699685 0.755906 1.1 90.09 -2.48 0 3.1 medium

MTHFR p.V541L 6.5 2.151 0.5 3 of 7 0.5 7 of 10 7.15759 1 1.6 90.09 -2.48 1.2108 3.8108 medium

DAGLB p.E506K 8 4.649 1 6 of 7 2 4 of 6 5 1 1.4 55.86 1.51 1.6378 6.0378 high

TIA1 p.A254G 9 33.9 2 7 of 7 2 5 of 7 9.422 1 1.6 69.21 1.83 1.5308 7.1308 high

TIA1 p.P294L 9 33.9 2 3 of 7 0.5 3 of 7 6.88494 1 1 69.21 1.83 1.5308 5.0308 high

TIA1 p.H54N 9 33.9 2 2 of 7 0 3 of 7 7.1629 1 1 69.21 1.83 1.5308 4.5308 medium
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Table A.5: In silico assessment of pathogenicity results - FALS15 candidate mutations.
Gene Amino acid Gene expression Protein predictons Conservation Genic Tolerance Total score Priority Priority

change Brain Spinal

cord

Score No.

damaging

predictions

Score NCBI

alignment

PhyloP PhasCons Score RVIS ExAC

constraint

Z score

Score (out of 10) category Ranking

CLCN4 p.I668T 9.5 11.236 2 5/7 1 4/9 7.82206 1 1 -1.09 (7.05%) 4.7 4 8 high 1

MTSS1L p.A126T 10.5 93.487 2 5/8 1 9/9 5.7758 1 2 -1.55 (3.27%) -0.16 1.8546 6.8546 high 2

SCN4A p.R225W 4.5 0 0 8/8 2 9/9 5.21017 1 2 -0.75 (13.68%) 1.23 2.3414 6.3414 high 3

LRRN2 p.I196T 7 0.848 0.5 7/8 2 2/3 9.32553 1 1.2 -0.28 (33.53%) 2.11 2.3844 6.0844 high 6

SUPV3L1 p.Q168E 8.5 4.718 1 3/7 0.5 10/13 7.72159 1 1.8 -0.98 (8.85%) 1.12 2.383 5.683 high 5

HOXD3 p.Y249C 3.5 1.391 0 6/8 1 8/8 7.41859 1 2 0.11 (61.73%) 1.96 1.7454 4.7454 medium 7

FAM171A1 p.H518R N/A 56.38 1 1/8 0 6/9 3.02023 1 1.2 -1.32 (4.73%) 0.88 2.3454 4.5454 medium 4

SP1 p.A145T 7 5.094 1.5 0/8 0 2/8 0.367055 0.0393701 0.5 -0.93 (9.55%) 0.56 2.089 4.089 medium 11

MAPKAPK3 p.K368R 6.5 3.804 0.5 2/7 0 10/12 6.67572 1 1.8 -0.25 (35.75%) 0.79 1.68 3.98 medium 8

SIM1 p.G733V 4.5 0 0 2/7 0 9/9 3.81394 1 2 -0.82 (11.88%) 0.15 1.8374 3.8374 medium 9

ZNF385B p.P435S 7.5 0.318 0.5 3/7 0.5 8/9 3.21503 1 1.8 0.11 (61.73%) 0.2 0.8654 3.6654 medium 12

TYMP p.Q245E 5.5 9.537 0.5 1/7 0 4/5 3.61484 1 1.6 no result 1.67 0.835 2.935 medium 10

TNS2 p.S992L 7.5 28.767 1.5 2/7 0 no data 3.75447 0.661417 1 no result no result 0 2.5 medium 15

NECAB3 p.R203L 8.5 4.44 1 1/7 0 4/7 0.301457 0.00787402 1.1 no result 0.77 0.385 2.485 medium 13

ZNF425 p.R424P 5 0.871 0 3/6 0.5 2/2 -1.26231 0 0.6 -0.33 (30.86%) -1.16 0.8028 1.9028 low 16

CEP295 p.N1707I N/A 1.349 0 4/6 0.5 no data 1.44461 0.299213 0.5 no result no result 0 1 low 14

ZNF497 p.K23R 5 1.01 0 1/8 0 1/1 -0.276772 0 0.6 no result no result 0 0.6 low 17

ZNF497 p.V22G 5 1.01 0 1/8 0 1/1 -1.66251 0 0.6 no result no result 0 0.6 low 18

RNF133 p.R94Q 3.5 0 0 3/8 0 2/6 -0.879315 0 0 0.75 (86.65%) -1.7 0 0 low 19
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Table A.6: In silico assessment of pathogenicity results - FALS45 candidate mutations.
Gene Amino acid Gene expression Protein predictons Conservation Genic Tolerance Total score Priority Priority

change Brain Spinal

cord

Score No.

damaging

predictions

Score NCBI

alignment

PhyloP PhasCons Score RVIS ExAC

constraint

Z score

Score (out of 10) category Ranking

SCCPDH p.V256L 9 64.063 2 6/7 2 9/10 8.086 1 1.8 0.26 (70.44%) 0.62 0.9012 6.7012 high 1

GDPD1 p.P221T 7 1.627 0.5 6/7 2 5/5 7.18455 1 1.8 -0.19 (39.68%) 1.32 1.8664 6.1664 high 2

SPATA2 p.G206S 7.5 11.257 1.5 4/7 0.5 5/5 3.29511 0.992126 1.8 -0.86 (10.85%) 0.39 1.978 5.778 high 3

KRT85 p.S5P 4.5 0 0 6/7 2 4/4 0.714032 0.779528 1.6 -0.46 (23.63%) 1.3 2.1774 5.7774 high 4

GABRG3 p.S236F 9 0.023 1 3/7 0.5 6/7 5.50611 1 1.8 -0.09 (46.74%) 1.92 2.0252 5.3252 high 5

GRIN2D p.V144L 5.5 0.382 0 3/7 0.5 2/4 2.48446 1 1.2 no result 7.19 3.595 5.295 high 6

HIST1H3G p.P39S 4 0 0 3/5 0.5 10/10 9.50198 1 2 -0.27 (33.97%) 1.48 2.2026 4.7026 medium 7

PIGZ p.D60E 7.5 2.146 0.5 5/6 1.5 7/7 2.16102 1 2 0.29 (71.62%) -0.34 0.3976 4.3976 medium 8

NPBWR1 p.L252V 6 0 0.5 4/8 0.5 3/4 0.902835 0.574803 1.4 0.46 (78.46%) 1.28 1.0708 3.4708 medium 9

ORM1 p.K138N 3 0.077 0 1/8 0 3/4 0.000732283 0 0.9 0.22 (68.13%) 0.92 1.0974 1.9974 low 10

ZNF132 p.G455R 5.5 0.981 0 4/7 0.5 4/4 0.115315 0 1.1 -0.42 (25.79%) -2.7 0.1342 1.7342 low 11
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Table A.7: In silico assessment of pathogenicity results - FALSmq2 candidate mutations.
Gene Amino acid Gene expression Protein predictons Conservation Genic Tolerance Total score Priority Priority

change Brain Spinal

cord

Score No.

damaging

predictions

Score NCBI

alignment

PhyloP PhasCons Score RVIS ExAC

constraint

Z score

Score (out of 10) category Ranking

STRN4 p.D362E 9.5 9.816 1.5 2/8 0 2/2 -0.130677 0.905512 1.1 -1.29 (5.08%) 2.67 3.2334 5.8334 high 1

EHBP1 p.Q619L 9 5.389 1.5 4/8 0.5 1/2 3.15914 1 1.2 -0.08 (47.22%) 0.06 1.0856 4.2856 medium 2

ZFHX2 p.T565Rfs*19 6.5 0.618 0.5 1/7 2 2/2 1.71576 1 1.6 no result no result 0 4.1 medium 3

CHRNA2 p.E411Q 6 0.079 0.5 1/8 0 3/6 0.00603937 0 0.9 -0.75 (13.67%) 0.15 1.8016 3.2016 medium 4

TUSC5 p.A142T 4 0 0 6/8 1 4/4 5.73009 1 1.6 1.26 (93.53%) -0.82 0 2.6 medium 5

EMP2 p.I123S 7.5 3.061 0.5 1/8 0 2/6 8.74517 0.952756 1 -0.36 (28.93%) -1.03 0.9064 2.4064 medium 6

DPH6 p.I219V 7 0.746 0.5 3/8 0 8/10 5.67361 1 1.8 no reuslt 0.05 0.025 2.325 medium 7

ALPK1 p.D979N 4.5 0.897 0 5/8 1 1/2 6.49267 1 1.2 1.46 (95.18%) -1 0 2.2 medium 8

P2RY2 p.W16R 4.5 0.118 0 1/7 0 3/4 0.0520709 0 0.9 0.67 (84.61%) 1.29 0.9528 1.8528 low 9

SLC25A21 p.P148S 3.5 0.119 0 4/7 0.5 4/9 9.477 1 1 0.73 (86.08%) -0.26 0.1484 1.6484 low 10

PCDHB11 p.S759T 6.5 0.103 0.5 0/8 0 2/2 -0.182402 0 0.6 1.01 (90.8%) 0.46 0.414 1.514 low 11

CFH p.A421G 5.5 4.697 0 1/8 0 0/7 0.678087 0.0551181 0.5 0.52 (80.37%) 0.56 0.6726 1.1726 low 12

FANCC p.D197E 4.5 0.718 0 0/8 0 0/5 1.1996 0.929134 1 0.35 (74.58%) -1.15 0 1 low 13

ANKRD18B p.L589R N/A 0.122 0 0/5 0 2/2 -0.271079 0 0.6 no result -1.5 0 0.6 low 14

CFAP47 p.Q32H 4.5 0 0 0/7 0 1/3 0.00774016 0 0.5 no reuslt -0.15 0 0.5 low 15

CFAP47 p.D33H 4.5 0 0 3/7 0.5 1/3 -0.372622 0 0 no reuslt -0.15 0 0.5 low 16



41
6

A
p
p
e
n
d
ix

Table A.8: In silico assessment of pathogenicity results - FALSmq20 candidate mutations.
Gene Amino acid Gene expression Protein predictons Conservation Genic Tolerance Total score Priority Priority

change Brain Spinal

cord

Score No.

damaging

predictions

Score NCBI

alignment

PhyloP PhasCons Score RVIS ExAC

constraint

Z score

Score (out of 10) category Ranking

RASGRF1 p.S34W 10 14.725 2 7/7 2 3/4 6.71334 1 1.4 -1.41 (4.14%) 5.31 4 9.4 high 1

NCOR2 p.R2146Q 8.5 11.999 2 6/7 2 3/3 3.41813 0.992126 1.6 -2.6 (0.82%) 2.09 3.0286 8.6286 high 2

TAZ p.P10R 6.5 11.914 1.5 8/8 2 9/11 6.45269 1 1.8 0.08 (59.76%) 2.242 1.9258 7.2258 high 3

HIC2 p.T526M 4.5 0.598 0 6/7 2 4/4 5.96104 1 1.6 -0.4 (26.85%) 2.68 2.803 6.403 high 4

CRIM1 p.G994R 9 4.965 1 6/8 1 3/3 7.842 1 1.6 -1.1 (6.93%) 0.8 2.2614 5.8614 high 5

SLC35A4 p.C285R 9 10.109 2 7/7 2 3/5 5.65961 1 1.4 0.37 (75.29%) -0.42 0.2842 5.6842 high 6

ELFN2 p.H303Y no result 1.45 0 1/8 0 5/9 1.96453 0.937008 1.6 -1.84 (2.08%) 3.91 3.9134 5.5134 high 7

POU2F2 p.P82L 5.5 0.794 0 5/7 1 6/7 2.7842 0.992126 1.8 -0.54 (20.26%) 2.18 2.6848 5.4848 high 8

DNAJC4 p.Q98X 7 19.902 1.5 2/2 2 2/4 2.38284 0.952756 1.2 0.06 (58.53%) -0.12 0.7694 5.4694 high 9

NUDC p.Q203H 6 28.734 1.5 5/7 1 4/10 4.53506 1 1 -0.52 (21.2%) 0.62 1.886 5.386 high 10

SLC24A2 p.V286I 11.5 12.11 2 2/7 0 5/5 3.16146 1 1.8 -0.51 (21.73%) -0.55 1.2904 5.0904 high 11

MAP1A p.K361R 11.5 32.237 2 4/8 0.5 7/7 9.06497 1 2 1.16 (92.61%) 0.42 0.3578 4.8578 medium 12

CSMD3 p.P2472R 7.5 0.284 0.5 3/7 0.5 6/7 3.38616 1 1.8 -3.49 (0.35%) no result 1.993 4.793 medium 13

OPRK1 p.C181S 6.5 0.04 0.5 5/7 1 3/4 2.34697 1 1.4 -0.29 (33.2%) 0.82 1.746 4.646 medium 14

SOX15 p.R119Q 5 2.373 0 7/8 2 4/4 1.75934 0.968504 1.6 no result 1.9 0.95 4.55 medium 15

COL3A1 p.L880I 5 0.836 0 3/8 0 4/4 0.719346 0.811024 1.6 -0.23 (36.34%) 3.15 2.8482 4.4482 medium 16

TSN p.R132C 7.5 13.714 1.5 2/5 0.5 no result -0.727189 0.0866142 0 -0.08 (47.79%) 2.71 2.3992 4.3992 medium 17

SARAF p.K43E 11.5 137.715 2 1/7 0 2/4 3.06345 1 1.2 -0.4 (26.53%) -0.58 1.1794 4.3794 medium 18

MIEF1 p.A36V 7 3.151 0.5 5/7 1 5/5 7.28213 1 1.8 0.42 (77.16%) 1.2 1.0568 4.3568 medium 19

TMEM199 p.A14G 8 4.177 1 5/8 1 5/6 3.86296 0.992126 1.6 0.37 (75.29%) 0.33 0.6592 4.2592 medium 20

ENPP5 p.T242M 9.5 2.63 1 5/7 1 4/4 6.17759 1 1.6 0.18 (66.07%) -0.16 0.5986 4.1986 medium 21

TSSK4 p.A205T 4.5 0.663 0 7/8 2 4/5 3.96716 1 1.6 0.44 (77.7%) 0.3 0.596 4.196 medium 22

SLC7A14 p.E718K 8.5 4.24 1 1/8 0 3/4 5.48799 1 1.4 -1.08 (7.24%) -0.23 1.7402 4.1402 medium 23

SLC7A14 p.E715G 8.5 4.24 1 2/8 0 3/4 4.37809 1 1.4 -1.08 (7.24%) -0.23 1.7402 4.1402 medium 24

TTN p.A18481T 4.5 0.127 0 6/7 2 7/7 7.71909 1 2 2.17 (98.04%) -5.48 0 4 medium 25

LHX1 p.L324V 5 0.251 0 2/7 0 7/7 0.756756 0.204724 1.5 0.15 (64.51%) 3.54 2.4798 3.9798 medium 26

E2F8 p.H98P 4.5 0 0 3/7 0.5 6/8 3.00849 0.992126 1.8 -0.77 (13.1%) -0.21 1.633 3.933 medium 27

ECE2 p.G194S 2 2.313 0 2/7 0 3/5 2.63561 1 1.6 -0.87 (10.59%) 0.3 1.9382 3.5382 medium 28

IRX6 p.E128G 5 0.043 0 4/8 0.5 4/5 8.47239 1 1.6 -0.75 (13.58%) -0.7 1.3784 3.4784 medium 29

REG3G p.I104N 4 0 0 7/8 2 3/4 1.90645 1 1.4 0.55 (81.38%) -1.4 0 3.4 medium 30
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ALDH3B1 unknown 5 3.171 0 1/1 2 no result 6.99356 1 1 no result 0.59 0.295 3.295 medium 31

DNAJC13 p.K1277E 8.5 3.601 1 3/8 0 2/6 9.32576 1 1 0.17 (65.77%) 1.04 1.2046 3.2046 medium 32

MARVELD2 p.E454G no result 0.338 0 6/8 1 2/4 6.63418 1 1.2 -0.35 (29.43%) -1.07 0.8764 3.0764 medium 33

BAHCC1 unknown 7 no result 0.5 5/6 1.5 no result 2.36606 0.992126 1 no result no result 0 3 medium 34

USP53 p.S606N 6 4.215 0.5 4/8 0.5 6/6 5.93234 1 1.8 0.83 (88.11%) -0.3 0.0878 2.8878 medium 35

RDH12 p.P38S 5.5 0.118 0 1/8 0 2/9 1.12308 1 1 -0.65 (16.44%) 0.36 1.8512 2.8512 medium 36

OR4Q3 p.I45T no result 0 0 5/8 1 3/3 3.67212 0.84252 1.6 0.8 (87.59%) no result 0.2482 2.8482 medium 37

OR2K2 p.S238F 4.5 0.395 0 6/8 1 6/6 2.70683 0.984252 1.8 0.33 (73.61%) -1.25 0 2.8 medium 38

RSRP1 p.A270G 7.5 19.82 1.5 0/8 0 no result -0.199386 0 0 0.91 (89.44%) 2.17 1.2962 2.7962 medium 39

ABHD15 p.A41T 5.5 1.508 0 1/7 0 1/3 0.033685 0 0.5 -0.25 (36.07%) 1.86 2.2086 2.7086 medium 40

FCHSD1 p.R671H 5.5 3.365 0 4/8 0.5 3/3 3.78759 0.992126 1.6 0.23 (68.54%) -0.16 0.5492 2.6492 medium 41

OR4D9 p.S74P 3.5 0 0 5/8 1 3/3 0.219362 0 1.1 1.66 (96.28%) -1.33 0 2.1 medium 42

HR p.R582Q 7.5 3.681 0.5 1/8 0 3/4 0.997157 0.976378 1.4 1.24 (93.31%) -0.12 0.0738 1.9738 low 43

KIF26A p.G61S 4.5 0.411 0 1/8 0 4/5 0.367575 0.661417 1.6 no result -1.21 0 1.6 low 44

PNMAL2 p.T226S no result 5.203 0.5 3/7 0.5 5/6 -0.0650551 0.0157323 0.6 no result no result 0 1.6 low 45

LMTK3 p.P641L no result 2.587 0 3/7 0.5 4/5 2.2099 0.244094 1.1 no result no result 0 1.6 low 46

FCGBP p.P3983L 5 0.594 0 5/8 1 1/8 0.608126 0 0.5 no result no result 0 1.5 low 47

MGAM p.W797R 4 0.07 0 5/7 1 1/4 0.334512 0.275591 0.5 2.36 (98.45%) -2.46 0 1.5 low 48

MRPS28 p.Q64P 5.5 8.613 0.5 1/7 0 2/4 -0.0563071 0.850394 0.7 0.9 (89.39%) -0.21 0.1072 1.3072 low 49

ERVV-1 p.Y390F no result 0 0 1/3 0 2/2 0.326157 0.497386 1.1 no result no result 0 1.1 low 50

MROH5 unknown 5 0 0 0/3 0 no result 2.04943 0.724409 1 4.38 (99.74%) no result 0.0052 1.0052 low 51

SLC22A24 p.C385Y 4 0 0 0/7 0 0/3 1.13282 0.992126 1 no result -1.84 0 1 low 52

MXRA5 p.D2583N 4.5 0.129 0 2/8 0 2/6 3.14629 0.992126 1 1.57 (95.68%) -1.92 0 1 low 53

CGREF1 p.V313M 7 1.269 0.5 2/8 0 0/3 -0.291882 0.00787402 0 0.44 (77.8%) -0.11 0.389 0.889 low 54

FASTKD2 p.R153H 7 2.961 0.5 2/8 0 0/3 -0.736362 0 0 0.87 (88.8%) 0 0.224 0.724 low 55

PLEKHG4B p.A539S 5 0 0 0/8 0 2/3 -0.774732 0.00787402 0.2 -0.1 (45.61%) -1.22 0.4778 0.6778 low 56

FANCA p.S1301P 4.5 0.231 0 0/8 0 4/5 -1.6082 0 0.6 -0.1 (45.67%) -5.81 0 0.6 low 57

LOC79999 p.Q64H no result no result 0 1/2 0.5 no result -0.0487402 0 0 no result no result 0 0.5 low 58

DNAH11 p.P1792L 4 0 0 1/8 0 0/4 0.999811 0 0.5 no result no result 0 0.5 low 59

PLEKHG4B p.V504M 5 0 0 0/8 0 1/3 -0.329898 0 0 -0.1 (45.61%) -1.22 0.4778 0.4778 low 60

LIPF p.G27R 4 0.021 0 0/8 0 2/6 -1.20017 0 0 0.51 (80.01%) -0.24 0.2798 0.2798 low 61

MUC16 p.R2358Q no result 0 0 0/7 0 1/2 -2.02506 0 0.2 29.75 (100%) no result 0 0.2 low 62

CEP295 p.K1491E no result 1.349 0 0/8 0 2/5 -0.562929 0 0 5.12 (99.83%) -0.17 0 0 low 63

KRTAP29-1 p.M137K no result 0 0 0/6 0 1/3 -0.544693 0 0 no result no result 0 0 low 64
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A.3.5 Supportive in silico data collected for family candidate

mutations

The following tables contain supporrtive in silico data collected for the candidate mu-

tations (and the gene in which they reside) identified in families FALS15, FALS45,

FALSmq2 and FALSmq20.
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Table A.9: Data to support the potential pathogenicity of each candidate mutation from FALS15.
Gene Amino Gene GeneCards PubMed ALS linked SMART Changes to

acid name description matches with protein domain NetPhos2.0

change neurodegenerative interacting phosphorylation

disease partners sites

CLCN4 p.I668T Chloride Voltage-Gated Channel

4

Voltage-dependent chloride channel genes none none unknown region no change

MTSS1L p.A126T Metastasis Suppressor 1-Like Associated with actin binding and cytoskeletal

adaptor activity

none FUS Coiled coil do-

main

no change

SCN4A p.R225W Sodium Voltage-Gated Channel

Alpha Subunit 4

Member of the sodium channel alpha subunit gene

family. Responsible for the generation and propa-

gation of action potentials in neurons and muscle

none none Transmembrane

helix region

no change

LRRN2 p.I196T Leucine Rich Repeat Neuronal 2 Leucine-rich repeat protein, showing homology

with cell-adhesion molecules or as signal transduc-

tion receptors

1 none Leucine rich re-

peat domain

no change

SUPV3L1 p.Q168E Suv3 Like RNA Helicase Associated with RNA binding and RNA binding none HNRNPA1 unknwon region no change

HOXD3 p.Y249C Homeobox D3 Homeobox protein; conserved transcription factor none none HOX Home-

odomain

no change

FAM171A1 p.H518R Family With Sequence Similarity

171 Member A1

None available none none unknwon region no change

SP1 p.A145T Sp1 Transcription Factor Zinc finger transcription factor 41 PURA,

SFPQ

unknwon region no change

MAPKAPK3 p.K368R MAPK-Activated Protein Kinase

3

Mitogen-activated protein (MAP) kinase none none unknwon region S373 added

SIM1 p.G733V Single-Minded Family BHLH

Transcription Factor 1

Potentially involved in abnormal developmental

processes

3 no result unknwon region no change

ZNF385B p.P435S Zinc Finger Protein 385B Associated with nucleic acid binding and p53 bind-

ing

none none low complexity no change

TYMP p.Q245E Thymidine Phosphorylase Promotes angiogenesis none none unknwon region no change

TNS2 p.S992L Tensin 2 Tensin protein that binds to actin filaments and

participates in signaling pathways. Regulates cell

migration

none none low complexity S992 and S994

removed

NECAB3 p.R203L N-Terminal EF-Hand Calcium

Binding Protein 3

May regulate amyloid precursor protein

metabolism and beta-amyloid generation

none none low complexity S205 removed

ZNF425 p.R424P Zinc Finger Protein 425 Associted with nucleic acid binding none none Zinc finger no change

CEP295 p.N1707I Centrosomal Protein 295 Mediates centriole-to-centrosome conversion dur-

ing late mitosis

none none unknwon region no change

ZNF497 p.K23R Zinc Finger Protein 497 Potentially involved in transcriptional regulation none none unknwon region no change

ZNF497 p.V22G Zinc Finger Protein 497 Potentially involved in transcriptional regulation none none unknwon region no change

RNF133 p.R94Q Ring Finger Protein 133 RING finger protein none no result unknown region no change
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Table A.10: Data to support the potential pathogenicity of each candidate mutation from FALS45.
Gene Amino Gene GeneCards PubMed ALS linked SMART Changes to

acid name description matches with protein domain NetPhos2.0

change neurodegenerative interacting phosphorylation

disease partners sites

SCCPDH p.V256L Saccharopine Dehydrogenase

(Putative)

Associated with oxidoreductase activity none SQSTM1, UBC unknwon S254 removed

GDPD1 p.P221T Glycerophosphodiester Phospho-

diesterase Domain Containing 1

Catalyses the hydrolysis of deacylated glyc-

erophospholipids to glycerol

none UBC transmembrane

region

T221 added

SPATA2 p.G206S Spermatogenesis Associated 2 None available none none unknwon S206 added

KRT85 p.S5P Keratin 85 Keratin protein none UBC unknwon no change

GABRG3 p.S236F Gamma-Aminobutyric Acid

Type A Receptor Gamma3

Subunit

Gamma subunit of gamma-aminobutyric acid

(GABA) receptor; the major inhibitory neuro-

transmitter in the brain

1 none unknwon S236 and T235

removed

GRIN2D p.V144L Glutamate Ionotropic Receptor

NMDA Type Subunit 2D

Subunit of the N-methyl-D-aspartate (NMDA) re-

ceptor

2 VCP unknwon no change

HIST1H3G p.P39S Histone Cluster 1 H3 Family

Member G

Replication-dependent histone which belongs to

the H3 family of histones

none none Histone H3 S87 added

PIGZ p.D60E Phosphatidylinositol Glycan An-

chor Biosynthesis Class Z

Involved in glycosylphosphatidylinositol (GPI) an-

chor biosynthesis

none none unknwon no change

NPBWR1 p.L252V Neuropeptides B/W Receptor 1 Associated with Peptide ligand-binding receptors

and Signaling by GPCR

none none transmembrane

region

T250 added

ORM1 p.K138N Orosomucoid 1 Plasma protein which increases in response to in-

flammation

1 none unknwon S143 removed

ZNF132 p.G455R Zinc Finger Protein 132 Associated with nucleic acid binding and tran-

scription factor activity, sequence-specific DNA

binding

none none unknwon no change
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Table A.11: Data to support the potential pathogenicity of each candidate mutation from FALSmq2.
Gene Amino Gene GeneCards PubMed ALS linked SMART Changes to

acid name description matches with protein domain NetPhos2.0

change neurodegenerative interacting phosphorylation

disease partners sites

STRN4 p.D362E Striatin 4 Involved in calmodulin binding none DCTN1,

EEF1A1,

NONO

unknown region No change

EHBP1 p.Q619L EH Domain Binding Protein 1 Eps15 homology domain binding proteinwith a po-

tential role in endocytic trafficking

none none unknown region No change

ZFHX2 p.T565Rfs*19 Zinc Finger Homeobox 2 Zinc Finger homeobox protein associated with nu-

cleic acid binding and actin binding

none none uknown region S565 added

CHRNA2 p.E411Q Cholinergic Receptor Nicotinic

Alpha 2 Subunit

Alpha subunit of a cotinic acetylcholine receptor

(muscle and neuronal receptor)

4 none low complexity

region

S406 removed

TUSC5 p.A142T Tumor Suppressor Candidate 5 Associated with Accommodative Esotropia and

Chiasmal Syndrome

none none unknown region T142 added

EMP2 p.I123S Epithelial Membrane Protein 2) Tetraspan protein which regulates cell membrane

composition

4 none unknown region S138 added

DPH6 p.I219V Diphthamine Biosynthesis 6 Involved in transport to the Golgi Apparatus 1 none unknown region No change

ALPK1 p.D979N Alpha Kinase 1 An alpha kinase protein none none unknown region No change

P2RY2 p.W16R Purinergic Purinergic Receptor

P2Y2

A P2 receptor involved in proliferation, apoptosis

and inflammation

5 none unknown region No change

SLC25A21 p.P148S Solute Carrier Family 25 Member

21

Mitochondrial carrier transporting oxodicarboxy-

lates

1 FBXO6 unknown region No change

PCDHB11 p.S759T Protocadherin Beta 11 Neural cadherin-like cell adhesion protein, integral

to the plasma membrane

none none unknown region No change

CFH p.A421G Complement Factor H Involved in the regulation of complement activa-

tion

23 none CCP (comple-

ment control

protein)

No change

FANCC p.D197E FA Complementation Group C Member of the Fanconi anemia complementation

group C

1 CDK1 unknown region No change

ANKRD18B p.L589R Ankyrin Repeat Domain 18B Associated with nucleotide binding none none Coiled coil re-

gion

S1277 removed

CFAP47 p.Q32H Cilia And Flagella Associated

Protein 47

None available none none unknown region Y31 removed

CFAP47 p.D33H Cilia And Flagella Associated

Protein 47

None available none none unknown region Y31 removed
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Table A.12: Data to support the potential pathogenicity of each candidate mutation from FALSmq20.
Gene Amino Gene GeneCards PubMed ALS linked SMART Changes to

acid name description matches with protein domain NetPhos2.0

change neurodegenerative interacting phosphorylation

disease partners sites

RASGRF1 p.S34W Ras Protein Specific Guanine Nu-

cleotide Releasing Factor 1

Guanine nucleotide exchange factor; stimulates

the dissociation of GDP from RAS protein

9 none Pleckstrin ho-

mology domain

no change

NCOR2 p.R2146Q Nuclear Receptor Corepressor 2 Mediates transcriptional silencing of certain target

genes

3 none unknown region no change

TAZ p.P10R Tafazzin Highly expressed in cardiac and skeletal muscle;

associated with various cardiac related diseases

4 none unknown region no change

HIC2 p.T526M Hypermethylated In Cancer 2 Associated with C-terminus binding 1 none Zinc finger do-

main

no change

CRIM1 p.G994R Cysteine Rich Transmembrane

BMP Regulator 1

Transmembrane protein; may play a role in tissue

development

none none unknown region no change

SLC35A4 p.C285R Solute Carrier Family 35 Member

A4

Associated with sugar:proton symporter activity none none Transmembrane

region

no change

ELFN2 p.H303Y Extracellular Leucine Rich Re-

peat And Fibronectin Type III

Domain Containing 2)

Associated with phosphatase binding and protein

phosphatase inhibitor activity

none UBC Fibronectin type

3 domain

Y303 added

POU2F2 p.P82L POU Class 2 Homeobox 2 Homeobox-containing transcription factor of the

POU domain family

none none low complexity

region

no change

DNAJC4 p.Q98X DnaJ Heat Shock Protein Family

(Hsp40) Member C4

Associated with unfolded protein binding none none unknown region no sequnce re-

sult

NUDC p.Q203H Nuclear Distribution C, Dynein

Complex Regulator

Involved in spindle formation during mitosis and

in microtubule organisation during cytokinesis

1 SOD1 and

VPS29

unknown region no change

SLC24A2 p.V286I Solute Carrier Family 24 Member

2

Transporter protein belonging to the calcium/ca-

tion antiporter superfamily

none none unknown region no change

MAP1A p.K361R Microtubule Associated Protein

1A

Thought to be involved in microtubule assembly;

expression almost exclusively in the brain

15 none Coiled coil do-

main

no change

CSMD3 p.P2472R CUB And Sushi Multiple Do-

mains 3

Associated with Benign Adult Familial Myoclonic

Epilepsy and Trichorhinophalangeal Syndrome

none UBC Complement

control protein

module

Y2475 removed

OPRK1 p.C181S Opioid Receptor Kappa 1 Opioid receptor 1 none Transmembrane

region

no change

SOX15 p.R119Q SRY-Box 15 Member of the SOX (SRY-related HMG-box) fam-

ily of transcription factors involved in the regula-

tion of embryonic development and in the deter-

mination of the cell fate

none none unknown region no change

COL3A1 p.L880I Collagen Type III Alpha 1 Chain A fibrillar collagen found in extensible connective

tissues

1 none low complexity

region

no change

TSN p.R132C Translin DNA-binding protein involved in chromosomal

translocations

3 VPS29 unknown region no change

SARAF p.K43E Store-Operated Calcium Entry

Associated Regulatory Factor

None available none UBC unknown region no change

MIEF1 p.A36V Mitochondrial Elongation Factor

1

associated with identical protein binding and ADP

binding

1 UBQLN1 Transmembrane

region

no change

TMEM199 p.A14G Transmembrane Protein 199 Localise to the endoplasmic reticulum (ER)-Golgi

intermediate compartment and coat protein com-

plex I

none none unknown region no change
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ENPP5 p.T242M Ectonucleotide Pyrophos-

phatase/Phosphodiesterase 5

(Putative)

Type-I transmembrane glycoprotein; may play a

role in neuronal cell communications

none none unknown region T242 removed

TSSK4 p.A205T Testis Specific Serine Kinase 4 Member of the testis-specific serine/threonine ki-

nase family, may be involved in involved in sper-

matogenesis

none none Catalytic do-

main

no change

SLC7A14 p.E718K Solute Carrier Family 7 Member

14

Primarily expressed in skin, neural tissue, and pri-

mary endothelial cells; predicted to mediate lyso-

somal uptake of cationic amino acids

1 none unknown region no change

SLC7A14 p.E715G Solute Carrier Family 7 Member

14

Primarily expressed in skin, neural tissue, and pri-

mary endothelial cells; predicted to mediate lyso-

somal uptake of cationic amino acids

1 none unknown region no change

TTN p.A18481T Titin A large protein; abundant striated muscle 9 SQSTM1 Fibronectin type

3 domain

T24978 added

LHX1 p.L324V LIM Homeobox 1 Transcription factor important for the develop-

ment of the renal and urogenital systems

none none low complexity

region

S320 removed;

T322 added

E2F8 p.H98P E2F Transcription Factor 8 Regulates gene expression during the cell cycle none EWSR1 unknown region no change

ECE2 p.G194S Endothelin Converting Enzyme 2 Membrane-bound zinc-dependent metalloprotease 1none UBC Transmembrane

region

no change

IRX6 p.E128G Iroquois Homeobox 6 Associated with sequence-specific DNA binding none none unknown region no change

REG3G p.I104N Regenerating Family Member 3

Gamma

Antimicrobial lectin protein 1 none C-type lectin

/carbohydrate-

recognition

domain

S100 added

ALDH3B1 unknown Aldehyde Dehydrogenase 3 Fam-

ily Member B1

Oxidises long-chain fatty aldehydes; may play a

role in protection from oxidative stress

none none no result no sequnce re-

sult

DNAJC13 p.K1277E DnaJ Heat Shock Protein Family

(Hsp40) Member C13

Plays a role in clathrin-mediated endocytosis,may

also be involved in post-endocytic transport mech-

anisms

1none none unknown region no change

MARVELD2 p.E454G MARVEL Domain Containing 2 Helps establish epithelial barriers none none unknown region Y458 removed

BAHCC1 unknown BAH Domain And Coiled-Coil

Containing 1

Associated with chromatin binding none none no result no sequnce re-

sult

USP53 p.S606N Ubiquitin Specific Peptidase 53 Associated with thiol-dependent ubiquitinyl hy-

drolase activity

1 none low complexity

region

no change

RDH12 p.P38S Retinol Dehydrogenase 12 NADPH-dependent retinal reductase; involved in

the metabolism of short-chain aldehydes

12 UBC unknown region S38 added

OR4Q3 p.I45T Olfactory Receptor Family 4 Sub-

family Q Member 3

Olfactory receptor; involved in the neuronal re-

sponse that triggers the perception of smell

none none Transmembrane

region

no change

OR2K2 p.S238F Olfactory Receptor Family 2 Sub-

family K Member 2

Olfactory receptor; involved in the neuronal re-

sponse that triggers the perception of smell

none none Transmembrane

region

S238 removed

RSRP1 p.A270G Arginine And Serine Rich Protein

1

None available none none low complexity

region

no change

ABHD15 p.A41T Abhydrolase Domain Containing

15

Associated with hydrolase activity none none low complexity

region

T41 added

FCHSD1 p.R671H FCH And Double SH3 Domains 1 None available none none low complexity

region

no change

OR4D9 p.S74P Olfactory Receptor Family 4 Sub-

family D Member 9

Olfactory receptor; involved in the neuronal re-

sponse that triggers the perception of smell

none none unknown region no change
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HR p.R582Q HR, Lysine Demethylase And Nu-

clear Receptor Corepressor

Transcriptional corepressor of multiple nuclear re-

ceptors involved in hair growth

3 none low complexity

region

no change

KIF26A p.G61S Kinesin Family Member 26A Involved in Platelet activation, signaling and ag-

gregation and Vesicle-mediated transport

none none unknown region no change

PNMAL2 p.T226S Paraneoplastic Ma Antigen Fam-

ily Like 2

None available none none unknown region no change

LMTK3 p.P641L Lemur Tyrosine Kinase 3 Assocoaited with transferase activity, transferring

phosphorus-containing groups and protein tyrosine

kinase activity

none none low complexity

region

no change

FCGBP p.P3983L Fc Fragment Of IgG Binding Pro-

tein

None available none none unknown region no change

MGAM p.W797R Maltase-Glucoamylase Maltase-glucoamylase which plays a role in the fi-

nal steps of digestion of starch

none none unknown region no change

MRPS28 p.Q64P Mitochondrial Ribosomal Protein

S28

Mitochondrial ribosomal protein none none unknown region no change

ERVV-1 p.Y390F Endogenous Retrovirus Group V

Member 1, Envelope

Part of a human endogenous retrovirus (HERV)

family of proteins; important in reproduction

none none unknown region no change

MROH5 unknown Maestro Heat Like Repeat Family

Member 5

Associated with binding none none no result no sequnce re-

sult

SLC22A24 p.C385Y Solute Carrier Family 22 Member

24

Transmembrane protein; involved in transport or-

ganic ions across cell membranes

none EWSR1 Transmembrane

region

no change

MXRA5 p.D2583N Matrix Remodeling Associated 5 Matrix-remodelling associated protein none none Immunoglobulin

C-2 type domain

no change

CGREF1 p.V313M Cell Growth Regulator With EF-

Hand Domain 1

Associated with calcium ion binding none none unknown region no change

FASTKD2 p.R153H FAST Kinase Domains 2 May play a role in mitochondrial apoptosis 3 HNRNPA1 unknown region S155 removed

PLEKHG4B p.A539S Pleckstrin Homology And

RhoGEF Domain Containing

G4B

Associated with Rho guanyl-nucleotide exchange

factor activity

none none unknown region no change

FANCA p.S1301P FA Complementation Group A Member of the Fanconi anemia complementation

group A

1 CDK1 unknown region S1301 removed

LOC79999 p.Q64H Uncharacterised LOC79999 None available none none no result no sequnce re-

sult

DNAH11 p.P1792L Dynein Axonemal Heavy Chain

11

Microtubule-dependent motor ATPase; reportedly

involved in the movement of respiratory cilia

none none low complexity

region

no change

PLEKHG4B p.V504M Pleckstrin Homology And

RhoGEF Domain Containing

G4B

Associated with Rho guanyl-nucleotide exchange

factor activity

none none unknown region no change

LIPF p.G27R Lipase F, Gastric Type Hydrolyses the ester bonds of triglycerides as part

of digestion of dietary triglycerides

none none unknown region no change

MUC16 p.R2358Q Mucin 16, Cell Surface Associ-

ated

Associated with Ovarian Cancer and Childhood

Ovarian Cancer

none UBC unknown region T2360 removed

CEP295 p.K1491E Centrosomal Protein 295 None available none none unknown region no change

KRTAP29-1 p.M137K Keratin Associated Protein 29-1 None available none none unknown region no change
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A.4 Additional figures

Figure A.1: Regions file example.Example of the tab-delimited file used to define the
genomic regions to be subset using BCFTools.

Figure A.2: Example of a ped file used for linkage analysis using Merlin soft-
ware. Each line represents an individual member of the family (pedigree). The first six
columns define relevant details about the individual. From one to six, each column defines
the individual’s family membership, individual ID, mother’s ID, father’s ID, sex (1=male,
2=female) and affected status (1=unaffected control, 2=affected, 0=at-risk/unknown). The
final column indicates the liability class of each individual (according to Table 6.3). The
intervening columns each represent the identity of one allele of a SNP marker (1=A, 2=C,
3=G, 4=T, 0=unknown), in pairs.
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Figure A.3: Example of a dat file used for linkage analysis using Merlin soft-
ware. Each line defines the identity of a column in the corresponding ped file, following the
first five basic (invariable) ped file columns. Column one indicates the data type (A=affection
status, M=marker, C=Covariate), while column two acts as a label for the column.

Figure A.4: Example of a map file used for linkage analysis using Merlin soft-
ware. Each line reprsents a marker, and the columns one to three indicate chromosome,
marker name (corresponding to the label in the dat file) and position (genetic distance).
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Figure A.5: File used to specify the disease model for parametric linkage anal-
ysis using Merlin. The first line defines the model, which is based on unknwon affection
status and a disease allele frequency of 0.0001. The following lines define the liability classes
for the likelihood of an individual carrying 0, 1 or 2 disease alleles.
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A.5 Co-authored publications presented in this

thesis

The following publications were co-authored by the candidate. Papers A1-A3 are

presented in Chapter 4, and Paper A4 is presented in Chapter 7.

A.5.1 Paper A1

A.5.2 Paper A2

A.5.3 Paper A3

A.5.4 Paper A4
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For people of European ancestry, the lifetime risk of amyo-
trophic lateral sclerosis (ALS) is 0.3–0.5%1, 2, with peak age
of onset of 58–63 years3, and median survival of 2–4 years4.

Investigations of families with multiple affected individuals have
led to the identification of mutations that segregate with disease
in a number of genes, including SOD1, C9orf72, TARDBP, FUS
and TBK15, 6. However, about 90% of cases5 (‘sporadic ALS’
(sALS)) present with sparse or no family history. Nonetheless,
genome-wide association studies (GWAS) have provided direct
evidence of a genetic contribution to sALS, with estimates that
~8.5%7 of variance in liability is tagged by common single-
nucleotide polymorphisms (SNPs). Currently, only a small
proportion of this variation (0.2% of variance in liability)7 is
accounted for by the six common loci (C9orf72, UNC13A,
SARM1, MOBP, SCFD1, C21orf2) identified as significant based
on association analysis of 12,577 cases and 23,475 controls7. The
SNP-heritability estimate implies that more risk loci will be
detected with increasing sample size, as found for other complex
genetic diseases8. Whole-exome sequencing (WES) studies,
designed to identify genes enriched for rare variants, have also
been conducted for sALS. The largest study, comprising 2,874
cases and 6,405 controls, identified TBK1 as a novel ALS
risk gene6, with GWAS support for association of common loci
(p= 6.6 × 10−8)7. Rare variant burden analysis in a WES of 1,022
index familial cases identified p.Arg261His in NEK1 as an ALS
associated variant, and follow-up in large samples suggest that
this variant together with NEK1 loss of function mutations
account for ~3% of ALS cases9.
To date, the largest genetic studies for ALS are in the subjects

of European ancestry, but common variants associated with
disease are likely to be ancient and shared across ethnicities.
Given sufficient power, cross-ethnic genetic studies can aid fine
mapping of disease loci, exploiting differences in allele frequency
and linkage disequilibrium (LD). In China, the lifetime risk of
ALS is estimated to be lower (0.1%)1 and its mean age of onset
is estimated to be a few years earlier than in Europe4, 10.
High penetrance mutations in known ALS genes identified
in Europeans have been detected in Chinese cases11, but the
frequency of the C9orf72 expansion is much lower (0.3%)12

than in Europeans (frequency 7%)5, and it may have arisen on a
different haplotype background12.

In a cross-ethnic meta-analysis of the largest GWAS for ALS in
Europeans7, together with a new Chinese data set, we identify
the GPX3-TNIP1 locus to be significantly associated with ALS
(p= 1.3 × 10−8). This association is replicated in two independent
Australian cohorts with a combined p-value of 1.7 × 10−3.
Previous studies indicate functional relevance of both GPX3 and
TNIP113–18. The identification of this locus contributes to a better
understanding of the genetic aetiology of ALS.

Results
Genome-wide association analysis. We conduct a genome-wide
(GW) association analysis in a Chinese sample of 1,234 sALS
cases and 2,850 controls (Supplementary Table 1 and Supple-
mentary Figs 1−3). The genomic inflation factor λGC of 1.02 and
λ1000 of 1.01 showed no evidence for inflation in test statistics.
The combined effects of all common genetic variants on ALS
liability (SNP-heritability) estimated from the Chinese GWAS
data is 15.1% (SE): 4%; p= 9.5 × 10−5) using GCTA-GREML19

and 15.0% (SE: 3.5%) using LD score regression20 (intercept 1.0,
which also shows no evidence of population stratification).
Given the SE, these estimates are not different from the estimate
of 8.5% (SE 0.5%) from European data7. Partitioning of the
SNP-heritability by chromosome showed a significant positive
correlation with chromosome length (Supplementary Fig. 4a)
consistent with a polygenic architecture. Based on minor allele
frequency (MAF) bin, the SNP-heritability was attributed to SNPs
across the MAF range, but SEs per bin were large (Supplementary
Fig. 4b); similar analyses based on European data suggested
that less common SNPs tagged more variation than other MAF
classes7.

No individual SNPs passed the GW significant p value
threshold of 5 × 10−8, and none of the significant SNPs reported
in the European7 GWAS replicated in our samples (p> 0.05). We
also checked for the associations of two GW significant SNPs in
previous GWAS of Chinese cohort of ALS patients21. However,
we could not replicate the association in that study. We note that
despite evidence for population stratification, principal compo-
nents derived from SNP data of the previous study were not
included as covariates in their association analysis. The p values
for rs6703183 and rs8141797 are 0.07 and 0.12 in our Chinese
samples and 0.66 and 0.94 in European GWAS results,
respectively. Direction of effect sign tests (Supplementary Table 2)
and polygenic risk scoring analyses (Supplementary Fig. 5)
provided no conclusive evidence of shared risk loci (Nagelkerke’s
R2 = 0.002; p= 0.01). These results are not unexpected given the
size of our sample and effect sizes estimated in Europeans. The
Chinese GWAS sample had 80% power to identify common
genetic variants of genotype relative risk of 1.4 and 1.8 for risk
allele frequency of 0.2 and 0.05, respectively, at the GW threshold
of significance p= 5 × 10−8.

Meta-analysis. Meta-analysis of our results with those of the
European7 GWAS identified a new GW significant locus at
chromosome 5p33.1 (rs10463311, risk allele C, odds ratio (OR)
1.11 95% confidence interval (CI): 1.06–1.14, plogistic= 2.9 × 10−8;
plmm= 1.3 × 10−8) spanning the genes GPX3 and TNIP1 (Figs. 1
and 2; Table 1; Supplementary Data 1) for which the risk allele is
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more common in Chinese than in Europeans (0.46 vs. 0.25). The
association result was replicated in an independent Australian
sample (145 cases, 116 controls, OR= 1.66; 95% CI: 1.16–2.38;
p= 5.8 × 10−3) and had the same direction of effect in a second
Australian sample (431 cases, 567 controls, OR= 1.22; 95% CI:
1.00–1.48; p= 6.2 × 10−2), giving a combined replication OR of
1.32 (95% CI: 1.11–1.58; p= 1.7 × 10−3) (Table 1).

Functional relevance of GPX3 and TNIP1. Both GPX3 and
TNIP1 are genes that could have functional relevance for ALS.
The protein glutathione peroxidase 3 (GPX3), is an antioxidant
molecule functionally related to superoxide dismutase 1
(SOD1)13; many SOD1 single-nucleotide variants are pathogenic
for ALS. In a mass spectrometric screen of sera of SOD1H46R

rats compared to their wild-type (WT) controls in the pre-
symptomatic stage (12 weeks of age) of ALS, Gpx3 was
detected as one of the two significant results (1.3-fold increase in
expression)14. In the same study, Gpx3 expression was

significantly lower (0.74 fold, p= 0.009) compared to WT
controls by disease end stage, a finding which was replicated in
blood sera of sporadic ALS cases (n= 18) and controls (n= 35)
(GPX3 0.41-fold lower, p= 0.008)14. Both GPX3 and TNIP1 are
functionally associated with NF-κB, the master regulator of
inflammation17, 19, with upregulation of NF-κB associated with
death of motor neurones15. Protein–protein interaction analysis18

links GPX3 to SOD1 and TNIP1 to OPTN, and OPTN also
harbours mutations associated with familial ALS5. TNIP1 is
associated with a wide range of immune disorders22, 23, although
our most associated SNP (rs10463311) is not in LD with
specific SNPs associated with these disorders24. We investigated
differential expression of GPX3 and TNIP1 between ALS patients
and controls, but given small sample sizes, the results were not
conclusive (Supplementary Note 1, Supplementary Table 3,
Supplementary Fig. 6). In a pleiotropy informed analysis25

applied to the European GWAS summary statistics7, rs10463311
was identified as an ALS-associated SNP, providing additional,
albeit not fully independent, support for this locus.

Meta analysis
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Table 1 Association analysis results between rs10463311 spanning GPX3-TNIP1 and ALS across cohorts

Cohort N cases N cont Freq cases Freq cont OR 95% CI plogistic
European2 12,577 23,475 0.27 0.24 1.11 1.07–1.15 8.5 × 10−7

Chinese 1,234 2,850 0.48 0.45 1.14 1.03–1.26 6.8 × 10−3

Meta-analysis 1.11 1.07–1.15 2.4 × 10−8

Replication
Australian #1 145 116 0.32 0.22 1.66 1.16–2.38 5.8 × 10−3

Australian #2 431 567 0.27 0.24 1.22 1.00–1.48 6.2 × 10−2

Combined 576 683 0.29 0.23 1.32 1.11–1.58 1.7 × 10−3

Cont, control; OR, odds ratio. The allele frequency is for the C allele. Note that the European results show the raw allele frequencies across cohorts, with the OR calculated from logistic regression that
includes covariates
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Gene-based association analysis. No genes were significantly
associated with ALS from gene-based association analysis
implemented in fastBAT26 of Chinese data (based on Bonferroni
correction for ~18,000 autosomal genes, significance declared at
2.8 × 10−6), but meta-analysed results (Supplementary Table 4)
identified multiple genes (reflecting LD and overlapping gene
boundaries) at the previously reported chromosome 5, 9, 14 and
17 GWAS loci. Two new loci on Chromosome 17 (17q12
and 17q21.2) were also significant (minimum genic p= 3.3 × 10−7

and 1.2 × 10−7, respectively). The former locus was also supported
by summary statistic-based Mendelian randomization (SMR)
analysis27 that combines the disease–SNP association with gene
expression–SNP association results and has GW significance
threshold of pSMR< 8.4 × 10−6) (Supplementary Fig. 7; Supple-
mentary Data 2), with most significant association for GGNBP2
(European only pSMR= 4.6 × 10−6; meta-analysis pSMR= 9.8 × 10−6).
The two replication samples did not provide support for the
GGNBP2 SNP implicated from the SMR analysis (Supplementary
Table 5); larger sample sizes are needed to confirm the association
and to provide evidence to exclude ZNHIT3 (pSMR= 3.1 × 10−5)
or MYO19 (pSMR= 2.2 × 10−4) as contributing to the association
in this region. Gene-set pathway analysis implemented in
MAGMA and applied to the Chinese/European meta-analysis
results did not find any ALS significant pathways that passed
multiple testing correction (Supplementary Table 6).

Discussion
In summary, using a cross-ethnic design we identify association
of the GPX3-TNIP1 locus with ALS. This locus was identified by
combining GWAS results from our Chinese data with the largest
European GWAS data7 and replicated in independent Australian
samples. In addition, GGNBP2 was identified using gene-based
analysis and SMR analysis, although further replication is needed
to confirm this result. The discovery of a novel risk locus sig-
nificantly advances our understanding of ALS aetiology.

Methods
Chinese ALS cases and controls. The samples comprised 1,324 ALS cases and
3,115 controls. ALS cases were recruited from the Department of Neurology, the
Peking University Third Hospital (Beijing, China) from 2003 to 2013. The cases
were diagnosed by a neurologist specializing in ALS using the revised El Escorial
criteria28. The controls are individuals who attended the Peking University Third
Hospital, Peking University Sixth Hospital or Shanghai Changzheng Hospital
(Shanghai) with no medical or family history of neurological disorders. All cases
and controls are of Chinese origin from Mainland China and provided written
informed consent for the study. The sample collections were approved by the ethics
committees at the respective hospitals12. The study is compliant with the Guidance
of the Ministry of Science and Technology (MOST) for the Review and Approval of
Human Genetic Resources. Analyses conducted at the University of Queensland
were approved by the University human research ethics committee.

Australian replication cohort 1. ALS cases were recruited from the Royal Brisbane
& Women’s Hospital (RBWH), Brisbane, Queensland and the Macquarie Uni-
versity Multidisciplinary Motor Neurone Disease Clinic29, New South Wales. The
cases (N= 159) were diagnosed using the revised El Escorial criteria10. The controls
are healthy individuals (N= 132), sourced from 4 different sites, RBWH (27
individuals), Neurology at Macquarie University, Sydney (25 individuals), the
Older Australian Twin Study (OATS)30 comprising 90 monozygotic (MZ) twin
pairs recruited in Brisbane (QIMR Berghofer Medical Research Institute (QIMR))
and Sydney (University of New South Wales (UNSW)) and Melbourne (University
of Melbourne (UM)). The OATS study recruits MZ twins aged ≥65 years and were
chosen for this study because the Discovery sample controls were younger than
Discovery sample cases. Twin pair data helped in quality control checks but only
one twin from each pair was used in analyses. The subjects provided written
informed consent for the study. The study was approved by the RBWH31, QIMR,
UNSW, UM, University of Queensland and Macquarie University Research Ethics
Committees.

Australian replication cohort 2. Patients and controls were ascertained from
Macquarie University Multidisciplinary Motor Neurone Disease and Neurology
Clinics, Sydney and from the Australian MND DNA bank. Patients were diagnosed

with definite or probable ALS according to the revised El Escorial criteria. Patients
with a family history for ALS were excluded. Control subjects were healthy
individuals free of neuromuscular diseases. DNA from 471 cases and 586 controls
were available for genotyping. The subjects provided written informed consent for
the study. The study was approved by Macquarie University Research Ethics
Committee.

DNA extraction. In the Chinese cohort, genomic DNA was extracted from whole
blood using the DNA Extraction Kit (Beijing Aide Lai Biotechnology Co. Ltd.,
Beijing, China). In the Australian replication cohorts, the majority of DNA was
extracted from fresh whole blood using manual extraction protocols, except for
90% (118 out of 131) of UNSW/UM control samples, where DNA was extracted
from frozen whole blood or lymphocytes using an automated purification system,
Qiagen Autopure LS (Qiagen, Valencia, CA, USA).

Genome-wide association study. We performed GW genotyping in the discovery
cohort using the Illumina HumanOmni ZhongHua-8 v1.0 and v1.1 arrays. These
arrays contain 900,015 (v1.0) and 894,517 (v1.1) variants, respectively. Before
testing for the association between each variant and disease status, we carried out
quality control (QC) steps to identify and exclude poor quality samples and genetic
variants. We excluded individuals based on the following QC filters: (i) genotyping
call rate <99% (134 individuals); (ii) sex mismatch between genotype and clinical
information (6 individuals); (iii) ancestry outliers (6 SDs from HapMap-CHB
means of PC1 and PC2; 30 individuals); and (iv) duplicated or related individuals
(genetic relationship matrix >0.05; 195 individuals). We excluded genetic variants
based on the following criteria: (i) low genotype call rate <99%; (ii) MAF <1%;
(iii) deviation from Hardy–Weinberg equilibrium p < 10−6; and (iv) differential
missingness in genotypes between cases and controls (p < 10−6). After these QC
steps, 1,234 cases and 2,850 controls with genotypic information from 753,038
markers remained for the subsequent analyses.

We imputed unobserved genotypes into the 1000 Genomes Project Phase 1 v3
(all ethnicities) using samples and markers that passed QC. We implemented a
two-step process, i.e., haplotyping using HAPI-UR32 and imputation using
IMPUTE33. We imputed 38,033,906 SNPs, but after QC (i.e., excluding markers
with MAF <0.01, imputation quality score <0.80 and HWE p< 10−6), 6,613,544
SNPs were available for analysis.

Validation sample genotyping. The first validation sample was genotyped on the
Illumina Human Core Exome Array. QC and imputation followed the same
pipeline as for the Chinese samples. After QC, 145 cases and 116 controls were
available for analysis. For the second validation sample, SNPs were genotyped
via Taqman assay such that the reaction mix included 1.0 μl of genomic DNA
(10 ng/μl), 0.25 μl Custom TaqMan genotyping assay 20× (Life Technologies),
2.5 μl TaqMan SNP genotyping MasterMix 2X (Life Technologies) and 6.25 μl
MilliQ. The thermocycler program included 30 s at 60 °C, 10 min at 95 °C, followed
by 40 cycles of 15 s at 95 °C and 1min at 60 °C and a final step of 30 s at 60 °C.
Fluorescent signals were analysed on a Viia7 Real-Time PCR System and genotypes
were determined by allelic discrimination using the Viia7 Real-Time PCR System
Software (Life Technologies). Genotype calling rates were 94% for rs4958872
(LD r2= 1 proxy for rs10463311) and 91% for rs9906189. After QC, 431 cases and
567 controls were available for analysis.

Genetic association analysis. The association analysis between genetic variants
and disease was conducted using a linear mixed model framework implemented in
GCTA (mlma-loco)34. To compare the results, we also used a logistic regression
model by fitting five principal components as covariates. Genomic inflation factor
was calculated as the median of Chi-square test statistics divided by its expected
value (0.455).

Gene-based analysis. To test for the association between a set of variants within a
gene (±50 kb) and ALS, we used GCTA-fastBAT26 with SNP association analysis
p values as input. This test complements SNP–disease association analysis,
identifying genes that may show evidence for independent associations that
individually have not achieved association significance. For Chinese data analysis,
we used our own GWAS data as the reference to calculate LD and ARIC samples
(dbGAP accession phs000090.v1.p1) for the European sample.

Whole-genome estimation analysis. Genomic relationship matrix (GRM)
restricted maximum likelihood (GREML) analysis using GCTA19, 35, 36 was used to
estimate the total contribution of common genetic variants on the liability of ALS
or SNP-heritability. This analysis fits all SNPs simultaneously in a mixed model
linear framework to estimate the proportion of variance in disease liability
explained by all SNPs. To avoid bias, for example, due to common environmental
factors, we excluded related individuals based on GRM values >0.05. Lifetime
disease risk of 0.002 was used in the conversion of the estimate to the liability
scale37 (compared to 0.0025 used in the European conversion, although the results
are robust to these choices). LD-score regression20 was applied to GWAS summary
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statistics as an alternative method to estimate the contribution of common genetic
variants to variation in the liability of ALS.

Genetic overlap analysis. We considered estimation of the genetic correlation
between ALS risk in Europeans and Chinese, using popcorn38 (the cross-ethnicity
LDscore regression method), but calculated39 that the relatively small sample size
for the Chinese cohort would generate an unacceptably large SE. Instead we used
polygenic risk scoring (PRS) to investigate the genetic relationship between ALS in
the two ethnicities. PRS were estimated for all Chinese cases and controls as the
sum of risk alleles weighted by the log OR of association estimated in the European
GWAS. Eight PRS were constructed for each individual using independent SNPs
(based on SNPs pruned (r2< 0.25 in 200-kb window) that are significant at p value
thresholds of 0.001, 0.005, 0.01, 0.05, 0.10, 0.25, 0.5 and 1. We also constructed a
PRS using all SNPs without pruning for LD because of the difference in allele
frequencies and LD between ethnicities. Association between the case–control
status and PRS was evaluated by logistic regression. Binomial sign tests were also
used to evaluate evidence of overlap in signal between Chinese and European
association statistics.

Meta-analysis. Inverse variance meta-analysis was conducted between the largest
GWAS for ALS in European7 and our Chinese GWAS results using METAL40.

In silico functional analyses. To help interpret biological function of the
SNP– and gene–ALS associations, gene-set pathway analyses were performed using
MAGMA41; this method was selected based on results of a method comparison
study42. Gene-set pathway analyses aim to identify sets of biological pathways that
are relevant to disease based on a set of disease-associated variants42.We also
conducted SMR analysis27 that combines the GWAS summary statistics with gene
expression association results. Here we used gene expression from blood43 as this is
currently the largest gene expression quantitative trait loci data set. The SMR test
identifies pleiotropic association of a variant that affects both the expression level of
a gene and the trait. The SMR-HEIDI test attempts to determine whether the effect
of the disease-associated gene on gene expression reflects a single causal variant,
thus prioritizing loci for functional follow-up studies.

Data availability. GWAS summary statistics results and gene expression data are
available from http://cnsgenomics.com/data/benyamin_et_al_2017_nc/
BenyaminEtAl_NatComm_Data.zip.
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 2 

Abstract  3 

 4 

Background 5 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the 6 

loss of upper and lower motor neurons. ALS exhibits high phenotypic variability including 7 

age and site of onset, and disease duration. Gene mutations, which account for a small 8 

proportion of cases, can also show variable penetrance. Together, this strongly implicates 9 

modifying factors including those that impact gene expression.  10 

Disease discordant monozygotic (MZ) twins/triplets provide a unique opportunity to 11 

uncover epigenetic and transcriptomic factors that may modify a phenotype and avoid 12 

confounding factors such as genetic variation and early developmental environment. A cohort 13 

of Australian monozygotic twins (n=3 pairs) and triplets (n=1 set) were recruited that are 14 

discordant for ALS and represent sporadic ALS and the two most common types of familial 15 

ALS, linked to C9orf72 and SOD1. We sought to identify longitudinally consistent 16 

modifying factors by examining whole blood-derived differential DNA methylation and gene 17 

expression.  18 

Results 19 

Longitudinal differentially methylated genes were mostly unique to a single twin/triplet set, 20 

yet a small group of genes were differentially methylated across twin/triplet sets and showed 21 

differential expression profiles. Two of these genes, RAD9B and C8orf46, showed significant 22 

differential methylation in a validation cohort of >1000 ALS cases and controls (p = 2.5E-5 23 

and p = 0.049 respectively). Combined longitudinal methylation-transcription analysis within 24 



 4 

a single twin set implicated CCNF, DPP6, RAMP3, and CCS, which have been previously 1 

associated with ALS. 2 

Gene Ontology analysis of longitudinal transcriptome data implicated up to 8-fold 3 

enrichment (FE) of genes associated with immune function pathways (p = 1.4E-4) and under-4 

representation of transcription and protein modification genes (FE = 0.2, p = 0.01) in 5 

sporadic ALS. DNA methylation indicated that increased methylation age is a signature of 6 

ALS in older patients (p = 1.3E-5).  7 

Conclusions  8 

Analysis of cytosine methylation and mRNA transcription in ALS-discordant monozygotic 9 

twins/triplets identified consistent longitudinal differential DNA methylation and gene 10 

expression. Validation of these changes in a large Australian sporadic ALS suggest a broader 11 

role in ALS. Differentially methylated and expressed genes and their functional pathways 12 

may contribute to variable disease penetrance and offer targets for therapeutic development.  13 

 14 

 15 

 16 

Background 17 

 18 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the 19 

rapidly progressive loss of the upper and lower motor neurons.  Disease onset commonly 20 

occurs in middle to late age [1] and typically results in death within three to five years. 21 

Existing treatments are of limited effect, and despite intensive effort, the pathogenic 22 

mechanisms underlying disease are still poorly understood. A recognised family history 23 



 5 

(familial ALS) is seen in approximately 10% of cases while the remainder are considered 1 

sporadic [2]. The familial and sporadic forms of the disease are clinically and pathologically 2 

indistinguishable [3].To date, the only proven cause of ALS are gene mutations leading to 3 

motor neuron death. Pathogenic repeat expansions in the C9orf72 gene and missense 4 

mutations in the SOD1 gene are the most frequent known causes of ALS worldwide, yet no 5 

cause has been identified for the majority of patients (>80%, [4]). Even in those individuals 6 

with a proven causal gene mutation, inter- and intra-familial phenotypic heterogeneity is 7 

commonly observed [5, 6]. Age of disease onset may vary by more than 60 years and disease 8 

duration may be measured in months or in decades. Affected individuals, particularly those 9 

with a C9orf72 repeat expansion, may present with ALS or frontotemporal dementia (FTD), 10 

or a mixed phenotype. Causal mutations may show incomplete penetrance [5] and indeed 11 

monozygotic twins are more commonly discordant for ALS than concordant [7]. Taken 12 

together, this phenotypic variability suggests a significant contribution from modifying 13 

factors in disease manifestation.  14 

Epigenetic and transcriptional profiling have implicated differential DNA methylation 15 

and/or gene expression in ALS. C9orf72 has been shown to have increased methylation [8, 9] 16 

and decreased transcription [10, 11] in ALS/FTD patients with the pathogenic repeat 17 

expansion. Other major ALS genes, however, including SOD1, FUS and TARDBP, are 18 

generally unmethylated and show no differences between patients and controls [12-14]. 19 

Nevertheless, changes in expression of some ALS genes is apparent in sporadic disease [15]. 20 

Whole methylome and transcriptome studies in spinal cord and blood tissue have found 21 

global changes [12, 16, 17] and implicated various genes, pathways and several overlapping 22 

themes including changes that affect immune response [16, 18, 19] and cellular transport [20, 23 

21].  24 



 6 

Disease discordant monozygotic (MZ) twins hold great potential for studies that seek 1 

to identify epigenetic and transcriptomic factors that modify the phenotype of complex 2 

human diseases. Identical twin studies can account for confounding factors such as genetic 3 

variation and the early development environment. Such studies have informed understanding 4 

of phenotypic variation in Parkinson’s disease [22], Alzheimer’s disease[23], systemic lupus 5 

erythematosus[24], and depression [25], among others. Previous DNA methylation studies of 6 

known causal ALS genes in ALS-discordant MZ twins found no aberrant methylation 7 

between twins [26, 27], while twin-based methylome-wide studies suggested a different 8 

epigenetic age in affected twins [27, 28] and identified potentially altered GABA signalling 9 

[27] and immune response [29]. Nevertheless, further studies are required because the 10 

differentially methylated sites implicated in initial screens have often failed to be validated in 11 

targeted studies using bisulphite pyrosequencing [28]. Similarly, candidate molecular 12 

pathways have shown limited overlap between twin sets [27] and changes in methylation are 13 

yet to be linked to changes in transcription. It remains unclear which of the observed 14 

differences in either DNA methylation or gene expression reflect ALS discordance between 15 

co-twins. It is also unclear whether these differences in DNA methylation correlate with 16 

differential gene expression on a transcriptome-wide scale. 17 

In this study, we undertook comprehensive methylome- and transcriptome-wide 18 

analysis of a longitudinal ALS-discordant cohort comprising MZ triplets and twins, 19 

representing the three most common types of ALS, C9orf72-linked ALS, SOD1-linked ALS 20 

and sporadic ALS. We analysed methylome- and transcriptome-wide data, independently and 21 

in combination, in an attempt to identify disease-relevant methylation changes and their 22 

downstream impact. Co-twin analyses indicated a significant interaction effect between age 23 

and disease status on DNA methylation age, with older twins showing a consistent difference 24 

between ALS-affected and unaffected co-twins in a longitudinal series. Furthermore, we 25 



 7 

identified several genes likely to contribute to ALS through integration of longitudinal twin 1 

genome-wide DNA methylation and transcription data, further assessed in a large sporadic 2 

ALS case-control cohort.  3 

 4 

Results 5 

 6 

ALS-discordant and control twin/triplet sets 7 

Clinical and sample information for the three discordant MZ twin sets, one discordant MZ 8 

triplet set and two control twin sets are included in table 1. Pedigrees and extended pedigrees 9 

are shown in figure 1. All individuals with ALS have been screened for causal mutations in 10 

known ALS genes. The FALS twin set has a pathogenic hexanucleotide repeat expansion in 11 

C9orf72. The FALS triplet set harbours a SOD1 p.I114T mutation.  12 

 13 

Table 1. Twin cohort details 14 

MZ set ALS Status Se

x 

Mutatio

n 

Age 

of 

onset 

Age at 

samplin

gA 

Duration 

(months) 

450K 

samples 

(n)B 

RNA-

Seq 

samples 

(n) 

EpiTYPE

R samples 

(n) 

Female  

SALS 

twin set  

SALS ALS F  42.7 43.5 - 

45.1 

Alive at 

51 months 

8 (+1) - - 

 Unaffected F   43.9 - 

45.1 

 8 (+1)  - - 

Male 

SALS 

twin set 

SALS ALS M  78.5 79.8 - 

80.2 

28.4 3 (+1) 3 - 

 Unaffected M   79.8 - 

80.2 

 3 (+1) 3 - 



 8 

C9orf7

2 twin 

set 

FALS ALS M C9orf72 

HRE 

52 54.1 36 1 - 1 

 Asymptomatic M C9orf72 

HRE 

 54.3 – 

55 

 2 - 2 

SOD1 

triplet 

set 

FALS ALS F SOD1 

p.I114T 

50 50.3 Unknown 1 - 1 

 Asymptomatic F SOD1 

p.I114T 

 50.3  1 - 1 

 Asymptomatic F SOD1 

p.I114T 

 50.3  1 - 1 

Control 

twin set 

1 

NA Control F  NA 46.1 NA 1 - - 

 Control F 46.1 1 -  

Control 

twin set 

2 

NA Control M  NA 36.8 NA - - 1 

 Control M 31.8 - 

43.0C 

  3C 

HRE: hexanucleotide repeat expansion 1 

A Presence of an age range indicates longitudinal samples were collected 2 

B Number of technical replicates during blood collection indicated in brackets 3 

C Middle sample matched to co-twin 4 

 5 

Targeted analysis of methylation in mutation-known MZ sets 6 

 7 

To assess whether differential methylation of the C9orf72 or SOD1 CpG islands were 8 

associated with the disease discordance we observe in the C9orf72 twin set and SOD1 9 

triplets, we investigated the status of CpG methylation of the C9orf72 and SOD1 CpG 10 

islands. To perform a high-density, targeted analysis, we used EpiTYPER, with additional 11 



 9 

support from a number of Infinium HumanMethylation450K CpG sites present in the same 1 

region. Due to the small sample sizes available, results are descriptive only. 2 

 3 

SOD1 methylation in the SOD1 MZ triplet set shows a consistent methylation pattern 4 

We used EpiTYPER to quantify methylation of the upstream SOD1 CpG island 5 

encompassing the SOD1 promoter region and exon 1 in the discordant MZ triplets carrying 6 

the SOD1 p.I114T mutation and a pair of control twins from another SOD1 p.I114T family 7 

that were negative for SOD1 mutation. Additionally, five SOD1 CpG sites present in the 8 

Infinium HumanMethylation450K data set were located within the CpG island (fig. 2A). 9 

Neither the 23 CpG units within the CpG island, nor the five 450K SOD1 CpG sites, showed 10 

any consistent methylation differences between ALS affected and ALS unaffected MZ 11 

triplets, nor control twins. (fig. 2A). 12 

 13 

No differences were observed in C9orf72 methylation in the C9orf72 MZ twin set 14 

The quantitative methylation status of two CpG islands associated with C9orf72 was 15 

determined using EpiTYPER. The amplicons covered the entirety of both CpG islands, the 16 

promoter region and adjacent intronic/intergenic regions. The intronic pathogenic 17 

(GGGGCC)n repeat expansion (indicated with a black diamond in fig. 2B) is flanked by the 18 

two CpG islands. In the disease discordant FALS twin set harbouring a C9orf72 expansion, 19 

methylation across 28 CpG sites measured by the EpiTYPER assay are highly concordant 20 

and generally unmethylated (fig. 2B). Similarly, in the four 450K probes associated with 21 

C9orf72, none of the CpG sites show a clear difference in methylation between the co-twins 22 

(fig. 2B). 23 

 24 

 25 



 10 

Whole methylome analysis of disease discordant MZ twins/triplets 1 

 2 

Co-twin/triplet differences in DNA methylation age reflects an age-dependant effect 3 

Horvath’s [30] DNA methylation age algorithm was used to determine epigenetic age from 4 

the methylation signature of each twin/triplet sample in table 1. We tested the association of 5 

methylation age with disease status and chronological age in a mixed model while controlling 6 

for sex. The effect of disease status on methylation age was found to be highly dependent 7 

upon chronological age (p=1.3E-5, fig. 3A). Briefly, with increasing age, asymptomatic co-8 

twins were estimated to have a younger epigenetic age than their ALS-affected twin. This 9 

result was most evident in the approximately 20-year difference in methylation age between 10 

twins in the oldest disease discordant twin set of this cohort (fig. 3A). 11 

 12 

Global methylation and cell type proportions do not show any effect of disease status 13 

Global methylation was calculated as the mean methylation across all Infinium 14 

HumanMethylation450K CpG sites passing data processing (n=386,183). No significant 15 

effect of disease on global methylation was found when controlling for sex and age at sample 16 

collection (p=0.08, fig. 3B). To better reflect influence on transcription, CpG sites were 17 

classified according to CpG density: high density CpG islands, intermediate density in 18 

islands, island shores, and low CpG density. Mean methylation within each of these four 19 

levels of CpG density does not show any effect of disease status (HC, p=0.93; IC, p=0.99; 20 

ICshore, p=0.82; LC, p=0.093, fig. S2). 21 

Blood cell proportions for each twin/triplet sample were estimated using Houseman et 22 

al.’s algorithm [31] and the six cell types were assessed for association with disease status. 23 

Disease status did not have a significant effect on any of the cell types when controlling for 24 

age at sample collection and sex (all p > 0.2, fig. 3C). 25 



 11 

 1 

Differentially methylated probes were identified across discordant MZ twins/triplets 2 

Statistical significance and the magnitude of pairwise methylation differences were combined 3 

to detect differentially methylated probes in discordant MZ twin studies. 59 probes were 4 

identified as differentially methylated across twin/triplet sets (full list in table S5, 9 top-5 

ranked probes shown in fig. 4A). All 59 probes were used for hierarchical clustering and 6 

PCA of the longitudinal MZ cohort to investigate the presence of a disease signature. Both 7 

hierarchical clustering and PCA did not indicate that samples cluster by disease status, but 8 

rather approximately by twin set and individual, where longitudinal samples were available 9 

(fig. 4B, C).  10 

The 59 probes were subsequently investigated in our large case-control 450K methylation 11 

validation data set. After FDR correction, 2 of the 59 probes showed significantly differential 12 

methylation between cases and controls when controlling for age and sex (RAD9B, 13 

cg00278366, p = 2.5E-5: C8orf46, cg15444185, p = 0.049, fig 4D, full results for all 59 14 

CpGs in table S6). As observed in the MZ cohort, hierarchical clustering and PCA of this 15 

probe list in the case-control cohort does not indicate any power to discriminate between 16 

ALS and control samples (fig. 4E, F).  17 

 18 

Differentially methylated probes identified within discordant MZ twin/triplet sets 19 

implicates new genes and existing ALS genes 20 

Given the clinical heterogeneity in our twin/triplet cohort, within-twin-set differential 21 

methylation was also investigated. Using a threshold of a difference in β-methylation ≥ 0.25 22 

between co-twins or the affected triplet and the mean of the unaffected triplets, we identified 23 

0 DMPs in female SALS twins, 6 in C9orf72 twins, 58 in SOD1 triplets, 2,689 in male 24 

SALS, and 29 in control twins (fig. S3A-E). Up to 11 probes were annotated per gene in the 25 



 12 

male SALS twin list of DMPs, for a total of 1829 genes identified. The 506 genes to which 1 

multiple male SALS twin probes annotate are given in table S7, which includes two genes 2 

previously associated with ALS, DPP6 (Dipeptidyl Peptidase Like 6) and RAMP3 (Receptor 3 

Activity Modifying Protein 3) (fig. 5A). No other discordant twin/triplet set had multiple 4 

probes annotated to the same gene. Across all discordant twin/triplet sets, 2 probes (fig. 5B) 5 

and 13 genes (BDKRB2, CHRD, DYSF, HOXD11, IRX4, ISL1, JOSD1, mir_544, NKX2-5, 6 

NXN, OTX1, POU4F2, RFX4, fig. 5C) were identified in multiple sets. None of these probes 7 

or genes were also identified in the control twin set. Each of the male SALS twins’ DMPs, 8 

C9orf72 twins’ DMPs and SOD1 triplets’ DMPs showed minimal overlap with the control 9 

twins DMPs (5, 1, and 1 DMPs, respectively, fig. 5B, table S8). Similarly, minimal 10 

overlapping genes-annotated-to-DMPs were identified between the control and discordant 11 

twins/triplets, with 9, 1, and 1 genes respectively (fig. 5C, table S8). 12 

 13 

Transcriptome-wide analysis of disease discordant MZ siblings 14 

 15 

Differentially expressed genes within male SALS twins implicates immune function and 16 

cell signalling functional pathways in sporadic ALS 17 

 18 

Using limma voom to detect genes differentially expressed between male SALS twins while 19 

controlling for repeated sampling, we identified 4179 genes as significant following FDR 20 

correction (p < 0.05). Of these, 750 genes also had a fold change of 1.5 or greater (fig 6A, top 21 

genes shown in fig 6C, full list in table S9). Notably, CCNF and CCS, both known ALS 22 

genes, were identified as significantly downregulated in the ALS twin compared to their 23 

unaffected co-twin (CCNF: logFC = 0.70, t = 3.99, FDR = 0.027; CCS: logFC = 0.70, t = 24 

6.42, FDR = 0.008, figure 6B). Gene Ontology (GO) analysis of these 750 genes identified 25 



 13 

74 terms significantly enriched in this list. Over-representation of genes was seen in 25 terms 1 

associated with immune function and cell signalling, while there was an under-representation 2 

of genes associated with 45 terms, largely related to transcription and protein modification 3 

(fig. 7, table S10). 4 

 5 

Validation of twin differentially expressed genes in a case-control cohort  6 

  7 

Within the validation data set of SALS and controls, 379 of the 750 genes identified in the 8 

male SALS twins were present. When analysed with limma while controlling for sex, 213 of 9 

the 379 genes were differentially expressed between cases and controls, yet none also showed 10 

a minimum fold change of 1.5 (top 8 of 213 genes shown in fig. 8A, 213 genes in table S11). 11 

CCNF was not present in the case-control data set, while CCS was not validated (log FC = 12 

0.13, t = 1.99, FDR = 0.075). Hierarchical clustering and PCA of the 379 genes did not 13 

identify clusters representing disease status (fig. 8B, C).  14 

  15 

Integration of genome-wide methylation and transcriptome data sets   16 

To increase the likelihood of detecting biologically meaningful disease-related alterations, 17 

RNA-Seq and Infinium HumanMethylation450K data sets were combined for the male SALS 18 

twins.  19 

  20 

Shared overlap between RNA-Seq and Infinium HumanMethylation450K data sets  21 

Of 506 genes having at least one differentially methylated CpG probe annotated to them in 22 

the male SALS twins, 123 are also identified in the entire post-processing RNA-Seq data set 23 

of 13718 genes. Conversely, of the 750 genes present in our top DEG list, 642 also have at 24 



 14 

least one CpG probe mapped to the same gene in the full post-processing 450K set of 24073 1 

genes.  2 

  3 

Integration  4 

The 123 genes identified as differentially methylated in the male SALS twins and present in 5 

the full gene expression data set, and the 642 genes found to be differentially expressed in the 6 

same twins and to have one or more CpGs in the full 450K methylation dataset, were 7 

compared. Of these, 12 genes (C11orf49, CD8A, COL7A1, EOMES, GATA6, GZMM, 8 

HOXA4, KANK3, OLIG2, QPRT, SMPD3, SNED1) were present in both gene lists (fig. 9A-9 

C).  10 

 11 

Discussion 12 

Using a longitudinal cohort of MZ twins and triplets that are discordant for ALS, have 13 

conducted both a targeted and genome-wide DNA methylation study in conjunction with a 14 

matched sample transcriptomic study. Our cohort is representative of the clinical 15 

heterogeneity (age of disease onset, disease duration) frequently observed in ALS cohorts. 16 

We have shown that DNA methylation age is the most consistently altered epigenetic 17 

signature in ALS. In addition, we observed a higher frequency of unique peripheral blood 18 

methylation changes within twin/triplet sets compared to shared methylation changes across 19 

twin/triplet sets. However, combined analysis of peripheral blood methylation and 20 

transcription detected ALS-relevant changes. These data suggest that the epigenetic and 21 

transcriptomic landscape of ALS may be highly complex with numerous small perturbations 22 

and various pathways, only some of which are common, contributing to disease. 23 

 24 



 15 

Epigenetic age was significantly associated with disease in an age-dependent manner, such 1 

that affected twins/triplets have an older DNA methylation age than their unaffected co-2 

twins/-triplets while no such effect was observed in young discordant twins. A clear and 3 

consistent difference was apparent between the oldest twins in the study, and to a lesser 4 

extent, within both middle-aged twin/triplet sets. This pattern of increased methylation age in 5 

ALS affected twins is consistent with previous studies [27, 28]. Increased DNA methylation 6 

age has been linked to increased mortality [32] and age has been shown to be a major risk 7 

and prognostic factor for ALS [33]. Our results also reflect a contribution of ageing to disease 8 

risk. Methylation age has also been previously linked to age of onset in ALS patients with a 9 

C9orf72 repeat expansion [34], while we observed a similar phenomenon in our sporadic 10 

ALS twin sets, with a much greater between-co-twin difference in DNA methylation age in 11 

our late onset twin set compared to our early onset twin set. Further investigation in extended 12 

ALS cohorts, specifically mutation-known FALS and SALS would be worthwhile to confirm 13 

the contribution of increased DNA methylation age to ALS.  14 

 15 

When assessing genome-wide DNA methylation using a magnitude and statistical ranking 16 

method, we identified 59 probes differentially methylated in all ALS twins/triplets compared 17 

to their unaffected co-twin/-triplets. These 59 probes were selected from high CpG density 18 

regions of the genome, therefore considered biologically relevant as they are more likely to 19 

affect gene expression. Annotation of the probes to the closest gene transcription site and 20 

subsequent gene ontology analysis implicated developmental processes. However, clustering 21 

of these 59 DMPs were unable to discriminate between affected and healthy twins, or 22 

sporadic cases and controls. Yet, two of these probes were validated as significantly 23 

differentially methylated in the case-control analysis. C8orf46’s Xenopus homolog vexin is 24 

involved in neurogenesis and highly expressed in the brain [35], while RAD9B responds to 25 
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DNA damage by moving to the nucleus and contributes to control of the cell cycle [36]. 1 

There is a growing body of evidence that DNA damage response is a significant factor in 2 

ALS [37]. 3 

 4 

We conducted within-twin/triplet-set comparisons to show the SOD1 triplet set, C9orf72 twin 5 

set and the male SALS twin set each have a moderate number of probes with large 6 

differences in methylation (6, 58, and 2689 probes respectively with |Db| ≥0.25). In contrast, 7 

the female SALS twin set showed highly consistent methylation across all >386,000 probes 8 

(max |Db| = 0.11). It is noteworthy that our four twin sets represent two distinct genetic forms 9 

of disease (SOD1 and C9orf72), along with two cases at extreme ends of the clinical 10 

spectrum of sporadic ALS, suggesting again that there may be various epigenetic pathways 11 

impacting the phenotype. Some proportion of the observed differences unique to a twin set 12 

may result from epigenetic drift [38], especially as the greatest number of unique 13 

differentially methylated probes was identified in the oldest twin set and the least in the 14 

youngest twin set. It is therefore likely that disease, as well as age, is contributing to the 15 

differential methylation observed. Nevertheless, we identified multiple differentially 16 

methylated probes annotated to two genes previously associated with ALS, DPP6 [39] and 17 

RAMP3 [40] in our oldest twin set, the male SALS twins. DPP6 was the first gene to be 18 

associated with sporadic ALS [41]. It has roles regulating dendritic excitability [38], with 19 

membrane hyperexcitability observed in ALS [42, 43]. It has also been associated with 20 

multiple sclerosis [44] and spinal muscular atrophy [45], and as such is worthy of further 21 

investigation in broader ALS.  22 

 23 

Analysis of gene expression in a subset of our disease discordant MZ cohort, the male SALS 24 

twins, found 750 differentially expressed genes. 379 of these were tested in our validation 25 
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sporadic case-control cohort, and 213 were confirmed. Gene Ontology analysis implicated 1 

primarily upregulation of the immune system, which has been previously identified as 2 

dysregulated in ALS [16, 18, 19, 29]. Interestingly, CCNF and CCS were downregulated in 3 

the ALS-affected twin. CCNF has been identified as a causal ALS and FTD gene in several 4 

international cohorts [46]. While transient overexpression has been shown to have deleterious 5 

effects in CCNF zebrafish models [47], this is the first report of altered CCNF mRNA 6 

expression in ALS. CCS has been previously linked to SOD1 in its implication in ALS [48]. 7 

Little is known about the effects of altered expression of CCS in ALS, but its overexpression 8 

in the G93A-SOD1 ALS mouse model has been linked to accelerated neurological deficits 9 

and worsened mitochondrial pathology [49]. It is interesting that we observed lower 10 

expression in the ALS twin than their unaffected co-twin, given that overexpression has been 11 

linked to disease in both genes. It was an unfortunate limitation of this study that neither gene 12 

featured in our post-processing HumanMethylation450K dataset, and that so few of the genes 13 

identified had data available in our case-control data set. As such, it would be worthwhile to 14 

further investigate disease-dependent expression of the remaining 371 genes. 15 

 16 

Comparison of transcriptional and DNA methylation changes in ALS-discordant twin/triplet 17 

set(s) indicated that despite many genes being present in only one data set, there remained 18 

overlap between the two. Of the 750 differentially expressed genes identified in the male 19 

SALS twins, 642 had any methylation data available, while of the 506 genes to which 20 

multiple of the 1366 differentially methylated probes annotated, only 123 were also 21 

represented in our gene expression data. When we compared these 642 expression-derived 22 

genes and 123 methylation-derived genes, we identified twelve genes: C11orf49, CD8A, 23 

COL7A1, EOMES, GATA6, GZMM, HOXA4, KANK3, OLIG2, QPRT, SMPD3, SNED1. 24 

Notably, ALS genes identified as DMPs in the male SALS twin set, RAMP3 and DPP6, were 25 
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not present in the post-processing male SALS twins RNA-Seq data set. C8orf46 and RAD9B 1 

were identified across all twin sets to have a single probe differentially methylated, which 2 

was validated in our sporadic case-control cohort, however, neither gene was present in our 3 

RNA-Seq data set. While CCNF and CCS were differentially expressed in the male SALS 4 

twins, neither gene was present in the methylation dataset. 5 

While none of the twelve genes have previously been directly linked to ALS, some indirect 6 

links exist. COL7A1, as part of the collagen gene family, is related to COL6A1, which has 7 

been linked to neurodegeneration through impaired autophagy and induction of apoptosis 8 

[50]. Additionally, collagen has also been identified as a significant gene ontology term in 9 

analysis of DNA methylation in sporadic ALS [13]. GZMM, granzyme M, is 1 of 4 gene 10 

products from the granzyme family. Granzymes A and B are elevated in ALS serum, with 11 

granzyme B correlated to ALS severity [51]. Granzyme B has been further implicated in 12 

inducing apoptosis in human ALS motor neurons [52]. SMPD3, neutral Sphingomyelinase II, 13 

is associated with apoptosis and cell cycle regulation, which have been previously linked to 14 

ALS [53, 54]. KANK3 has been suggested as a possible gene contributing to an ALS-linked 15 

region on chromosome 17 [55]. QPRT is involved in the kynurenine pathway, which has 16 

been implicated in ALS [56]. 17 

These twelve genes, identified when combining DNA methylation and gene expression data, 18 

may thus contribute to disease, and warrant further investigation. 19 

 20 

Assessment of global methylation and blood cell composition showed no difference between 21 

ALS and healthy co-twins. Although a lack of global changes in methylation is consistent 22 

with five other sets of ALS-discordant twins [27], not all studies agree [12, 16, 17]. It is also 23 

interesting that blood cell composition, as determined from whole blood methylation, was not 24 

found to vary between affected and unaffected twins, given that upregulation of the immune 25 
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system and changes in white blood cell populations have previously been demonstrated in 1 

ALS [57, 58]. This lack of effect in white blood cell estimates may be partly attributable to 2 

shared genetic background [59, 60], although a prior study reported differing methylation-3 

derived cell proportion estimates in one ALS-discordant twin pair [29].   4 

 5 

High-density quantitative targeted analysis of the C9orf72 and SOD1 gene-associated CpG 6 

islands and gene promotors did not identify any differences in methylation status between 7 

ALS-discordant MZ twins/triplets carrying mutations in these genes. The general consistency 8 

observed in SOD1 methylation between carriers of SOD1 mutations suggests DNA 9 

methylation of the SOD1 promoter itself is not likely to be a major mechanism contributing 10 

to differences in penetrance in SOD1-linked ALS, in line with previous reports[12].   11 

Methylation of C9orf72 was low in a twin set carrying the C9orf72 repeat expansion. 12 

Methylation of the C9orf72 promoter and/or the repeat expansion has been reported in the 13 

brain and blood of repeat expansion carriers [8, 11, 61-65], in some cases with similar low 14 

levels of methylation as that observed here. Interestingly, neither of the two prior C9orf72 15 

twin studies, one ALS concordant and one discordant, detected methylation of C9orf72 [26, 16 

66], suggesting that C9orf72 methylation is just one part of the epigenetic story in ALS. 17 

 18 

 19 

Conclusion 20 

 21 

In conclusion, our disease-discordant twin study, utilising longitudinal samples throughout 22 

disease progression, demonstrated significant association of DNA methylation age with 23 

disease in an age dependent manner. We have also identified an important set of DMPs and 24 

DEGs, and associated functional pathways, that may be involved in either ALS pathogenesis 25 
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or protection from disease. These genes and pathways offer potential targets for future 1 

therapeutic treatment for ALS patients. 2 

 3 

 4 

Methods 5 

  6 

Participants 7 

The cohort of 1806 total participants used in this study is summarised below. Samples from 8 

ALS patients, family members, and unrelated controls were obtained from the Macquarie 9 

University Neurodegenerative Diseases Biobank, Molecular Medicine Laboratory at Concord 10 

Hospital, and the Australian MND DNA bank. All individuals were recruited under informed 11 

written consent as approved by the human research ethics committees of Macquarie 12 

University and Sydney South West Area Health Service. Most participants were of European 13 

descent and patients were clinically diagnosed with definite or probable ALS based on El 14 

Escorial criteria [67]. Genomic DNA was extracted from peripheral blood using standard 15 

protocols. RNA was extracted from peripheral blood with the QIAsymphony PAXgene blood 16 

RNA kit (Qiagen, Hilden, Germany). 17 

 18 

Twin/triplet cohort 19 

Three ALS discordant monozygotic twin pairs, one ALS discordant MZ triplet set and two 20 

control MZ twin pairs were included in this study (fig. 1 and table 1). Monozygosity for each 21 

twin/triplet set was confirmed using STR fragment analysis and/or SNP microarrays. 22 

Longitudinal samples were available from two twin sets (male and female sporadic ALS 23 

(SALS) twin sets in fig. 1). The four discordant twin/triplet sets had previously undergone 24 
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mutation analysis for known ALS genes and whole genome analysis for novel and/or rare de 1 

novo variants.  2 

 3 

Data processing and validation cohorts 4 

Additional samples were used in this study for data processing (Illumina HumanMethylation 5 

450K, EpiTYPER methylation assays, and RNA-Seq) and for validation of significant 6 

findings (Illumina HumanMethylation 450K assay and RNA-Seq).  7 

For quality control and processing of the EpiTYPER data, 279 samples with C9orf72 8 

EpiTYPER data (158 familial ALS/FTD samples, 56 asymptomatic samples (individuals 9 

harbouring a causal gene mutation but currently unaffected), and 65 control samples), and 10 

261 samples with SOD1 EpiTYPER data (123 familial ALS, 65 asymptomatic, and 73 11 

control samples) were used. 12 

For the Infinium HumanMethylation 450K BeadChip, 1658 samples were used in data 13 

processing and normalisation. This comprised 889 individuals with sporadic or familial ALS, 14 

92 asymptomatic and 668 controls. The familial ALS and asymptomatic cases largely overlap 15 

with the EpiTYPER cohort. The validation subset comprised 650 sporadic ALS individuals 16 

and 539 unrelated controls.  17 

One hundred and ninety samples were used for data processing and normalisation of the 18 

RNA-Seq data, comprising 114 individuals with ALS (99 sporadic ALS, 15 familial ALS) 19 

and 76 unrelated controls. The validation subset comprised of 96 sporadic cases and 96 20 

controls. The majority of the 96 validation sporadic ALS cases were also present in the 21 

HumanMethylation 450K BeadChip SALS validation cohort.  22 

Demographic characteristics between cases and controls in validation cohorts were assessed 23 

with t-tests for age and χ2 tests for sex. 24 

 25 



 22 

Methylation assays and data processing 1 

 2 

All quality control and data processing steps were carried out in R v 3.4.4 [68]. 3 

 4 

EpiTYPER assay  5 

Custom EpiTYPER assays (Sequenom, San Diego, USA) were used to quantify CpG 6 

methylation of 56 and 39 CpG units respectively of the two gene-associated CpG islands for 7 

C9orf72 and the gene-associated CpG island upstream of SOD1. EpiTYPER uses base-8 

specific cleavage of bisulphite-converted DNA and matrix-assisted laser 9 

desorption/ionization time-of-flight mass spectrometry (MADL-TOF MS) to quantify DNA 10 

methylation [69]. Primers for overlapping amplicons were designed with Sequenom’s 11 

EpiDesigner software to target the CpG island regions, and therefore the promoter regions, as 12 

shown in fig. S1. Primer and assay details are available in table S1. Samples were assayed in 13 

one or two batches, and either in duplicate or as singletons (table S1). Sample processing was 14 

performed by Agena Bioscience (Brisbane, Queensland, Australia). As each gene assay was 15 

run across several plates of samples, the highly methylated DNA control was used to 16 

calculate the between-plate coefficient of variation, determined to be 4.9% and 2.3% for 17 

SOD1 and C9orf72 plates, respectively. CpG methylation was quantified as the percentage of 18 

methylated cytosines for each CpG unit, where CpG units consist of one or more CpG sites. 19 

For units with multiple CpG sites, methylation percentages were normalised by averaging 20 

across the number of sites.  21 

 22 

EpiTYPER data processing 23 

EpiTYPER data processing was adapted from a previously established method [70]. Twin 24 

samples were processed together with the full familial cohorts to leverage the increased 25 
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sample size. In brief, CpG units that failed to meet assay reliability standards were discarded 1 

and samples in duplicate were averaged for the remaining CpG units. Given the relatively 2 

small number of CpG units remaining after removal of those determined to be unreliable and 3 

the relatively high failure rate of samples and units, a two-step sample / unit filtering process 4 

was used. First, failed samples, with ≥ 90% of CpG unit readings missing, were removed, 5 

followed by CpG units which were missing data for ≥ 90% of samples. Second, samples with 6 

a low detection success (missing data for ≥ 15% of units) were removed, and the same 7 

threshold applied to remove CpG units with low detection success (units missing data for ≥ 8 

15% of samples). Finally, any remaining missing values were imputed with the mean for that 9 

unit. Following data processing and filtering, 28 of 56 and 23 of 39 CpG units (for C9orf72 10 

and SOD1, respectively) remained for analysis. 11 

 12 

Infinium Human Methylation 450K v1.2  BeadChip array  13 

Genome-wide methylation was investigated using the Infinium HumanMethylation 450K 14 

v1.2 BeadChip (Illumina, San Diego, USA). This microarray provides qualitative 15 

methylation values for approximately 480,000 CpG sites distributed throughout the genome. 16 

Bisulphite-converted DNA was hybridised to the Infinium HumanMethylation 450K 17 

BeadChip.  Fluorescence imaging of the BeadChip using an Illumina HiScan SQ scanner 18 

successfully generated raw Intensity Data files (.idat) for all samples. 19 

 20 

450K data processing 21 

Data processing of the .idat files was adapted from the method presented by [71]. Twin 22 

samples were processed together with the full cohort to leverage larger sample sizes. All 23 

default settings were used except where otherwise specified. In brief, samples with less than 24 

99% of CpGs detected were removed. shinyMethyl (v. 1.12.0, [72]) was used to visually 25 
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identify possible outliers, with confirmation of sex queries using RnBeads (v. 1.0.0., [73]). 1 

Samples with any possibility of incorrect identification were removed. Data were normalised 2 

with the dasen function from wateRmelon (v. 1.20.3, [74]). Probes that had failed to be 3 

detected (threshold p > 0.05) with the minfi (v. 1.22.1, [75]) function detectionP were 4 

removed (n=10,270 probes). Normalised data were submitted to Horvath’s DNAm age 5 

calculator [30]. Samples that did not strongly correlate (r < 0.85) with the DNAm age results 6 

gold standard were removed. Leveraging technical replicate/duplicate samples (n=30), both 7 

1) in the form of multiple blood collections at the same time and resulting independent DNA 8 

extractions (technical replicates) and 2) multiple aliquots of single DNA extractions 9 

(duplicates), a custom filtering step was included to identify and remove highly variable 10 

probes. Any probe identified to have multiple pairs of technical replicate or duplicate samples 11 

with differences greater than three standard deviations from the probe’s mean difference was 12 

discarded (n=38,697). Of the remaining probes, any known to cross hybridise, be located on 13 

sex chromosomes, or bind to SNPs, were removed (n=50,362) [76].  14 

 Following raw data processing, quantitative CpG methylation values for 1,215 15 

samples (including 34 twin samples from table 1 and 1,179 case/control validation cohort 16 

samples outlined in table S2) and 386,183 probes remained for analysis and validation.  17 

Comparison of the case-control validation cohort (table S2) showed that sex (χ2(1, n = 1179) = 18 

33.8, p < 0.01) and age (t1174 = 4.20, p < 0.01) were significantly different between ALS 19 

cases and controls. 20 

 21 

 22 

Analysis of methylation data 23 

 24 

All statistical analyses were carried out in R v. 3.4.4 [68].  25 



 25 

 1 

Gene-specific targeted methylation analysis of SOD1 and C9orf72 in the FALS 2 

twin/triplet sets 3 

Methylation of SOD1 or C9orf72, as quantified by both EpiTYPER and 450K assays, was 4 

visualised in the relevant monozygotic disease discordant twin/triplets. Four and five 450K 5 

CpGs were available in the post processing data set in the targeted region of C9orf72 6 

(cg05990720, cg11613875, cg14363787, cg23074747) and SOD1 (cg16086310, cg17253939, 7 

cg18126791, cg19948014, cg26893544), respectively. Since only one twin set and one triplet 8 

set are available in our cohort for each respective variant, results are descriptive only. 9 

 10 

Observed differences in DNA methylation age, blood cell composition and global 11 

methylation within a twin/triplet set 12 

DNA methylation age was determined from 450K methylation data using the method of 13 

Horvath [30].  14 

Blood cell proportions in whole blood derived methylation was estimated from 450K 15 

methylation data with the minfi implementation of Houseman et al.’s [31] algorithm.    16 

Global methylation levels were determined as the mean methylation estimate across 17 

all post-processing 450K CpG sites per sample. CpG sites were also divided into one of four 18 

categories based on HIL CpG classes [77] and the mean methylation for each was calculated.  19 

 20 

Methylome-wide analysis in MZ sets to identify differentially methylated probes 21 

The list of differentially methylated probes (DMP) across all MZ sets was identified using a 22 

ranked magnitude-significance method [78]. In brief, statistical significance per CpG site was 23 

determined using a paired t-test on methylation M-values, using the per-patient mean of 24 

longitudinal samples and unaffected triplets. The magnitude of the difference in methylation 25 



 26 

was calculated as the mean difference in β-methylation between co-twins. Both methods were 1 

used to rank all CpGs, and a final ranked list was determined from the mean of these two 2 

ranking methods. Top DMPs were the subset of all CpG probes that met the following two 3 

criteria, 1) they were in high CpG density regions of the genome and 2) the ranked list of 4 

high-density probes was truncated immediately prior to the first probe to show a difference in 5 

the direction of change across the four discordant MZ sets. The ability of these probes to 6 

discriminate between ALS and healthy individuals was assessed by hierarchical clustering of 7 

all twin/triplet sets. 8 

Within-twin/triplet set DMPs were also identified. A CpG probe was considered to be 9 

differentially methylated within a twin/triplet set where there was an absolute difference in β-10 

methylation ≥ 0.25 between the affected twin and their unaffected co-twin/triplet. 11 

 12 

Validation of identified twin DMPs in a sporadic ALS cohort 13 

Twin/triplet DMPs were validated in the larger sporadic case-control cohort. Differences 14 

between cases and controls for each of the identified probes were analysed, along with the 15 

ability of the DMP list to cluster cases and controls separately. 16 

 17 

Gene expression 18 

 19 

RNA sequencing 20 

Raw sequencing reads in fastq format were generated for male SALS twins (based on 21 

longitudinal sample availability) and the sporadic case-control validation cohort as outlined 22 

in table S3. 23 

 24 

RNA-Seq data processing 25 



 27 

The quality of raw sequencing reads was evaluated using fastQC (v 0.11.7 [79]) for both 1 

datasets. Trimming and alignment was performed as outlined in table 1 using either 2 

Trimmomatic (v. 0.36 [80]) or Cutadapt (version 1.8.1, [81]) and HISAT2 (v2.0.5 82]). 3 

All subsequent data processing and analysis was completed in R (v. 3.4.4), using 4 

BioConductor packages edgeR v. 3.18.1 [83] and limma v. 3.32.10 [84]. A standard edgeR 5 

TMM normalisation and filtering pipeline was used in data processing, with only those genes 6 

where expression was greater than 0.3 counts per million in a minimum of 3 samples (male 7 

SALS twins) or 2 counts per million in a minimum of 75 samples (case-control cohort) 8 

retained for analysis, which is equivalent to approximately 12-15 raw counts in the smallest 9 

library size for each dataset. For the male SALS twins RNA-Seq data, of the 27,685 human 10 

genes present in the per-gene read counts generated by HTSeq [85], 13,718 genes remained 11 

following raw data processing using edgeR [83]. Whereas in the case-control cohort, of the 12 

23,368 human genes present in the per-gene read counts generated by HTSeq [85], 7,354 13 

genes remained following raw data processing using edgeR [83]. 14 

MDS (multi-dimensional scaling) indicated the presence of three outliers in the case-15 

control cohort, 1 control and 2 SALS samples. All three were removed and final clinical 16 

details for the cohort can be found in table S4. Comparison of the RNA-Seq case-control 17 

validation cohort (table S4) showed that there were no significant differences in age 18 

(t157.9=1.74, p=0.08) between the ALS cases and controls, but a difference was observed in 19 

sex between cases and controls (χ2(1, n = 165)=6.5, p=0.01). 20 

 21 

Differentially expressed genes in MZ twins 22 

To identify differentially expressed genes (DEGs) using the paired longitudinal RNA-Seq 23 

samples from the ALS-discordant male SALS twins (table 2), read count data was analysed 24 

using limma [84], including model terms for longitudinal sample collection and disease 25 
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status. Voom [86] transformation was applied prior to modelling. Multiple testing correction 1 

using the BH-FDR method [87] was applied to the full list of post-processing genes. 2 

 3 

Validation of twin DEGs in a sporadic cohort 4 

Genes identified in twin analyses were investigated for an effect of disease in the full case-5 

control cohort with limma, including sex as a covariate. Data were voom transformed, given 6 

the highly variable library sizes. Multiple testing corrections using the BH-FDR method was 7 

applied only on the subset of genes identified as differentially expressed in twins. 8 

Hierarchical clustering of the expression of these DEGs in the case-control cohort was 9 

assessed. 10 

 11 

 12 

Combined methylation and expression analysis 13 

 14 

Intersect of top CpGs and genes 15 

To identify genes most likely to be altered in disease, results from independent analysis of 16 

genome-wide methylation and expression data sets were integrated. Longitudinal RNA-Seq 17 

data is only available for one male SALS twin set, therefore we first identified the overlap 18 

between top DEGs and the genes annotated to the most differentially methylated probes 19 

within that twin set. We extended this analysis by overlapping the same list of DEGs with the 20 

genes annotated to the top differentially methylated probes across all combined twin sets.  21 

 22 

 23 

Gene Ontology analysis  24 
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Gene Ontology enrichment analysis [88, 89] for biological processes was applied to the genes 1 

identified as differentially expressed in male SALS twins. The gene list was analysed with 2 

PANTHER overrepresentation tests (GO Ontology database release 2018-08-09, [90]). 3 

Enrichment was tested relative to all genes detected in the appropriate post-processing data 4 

set. Fisher’s exact test with FDR correction was used. 5 

 6 

Statistics 7 

All analyses were carried out in R (v. 3.4.4) [68]. Linear mixed effects models were used to 8 

analyse DNAm age, blood cell type proportions and global mean M-methylation. Modelling 9 

was carried out using the lmer function in the package lme4 (v. 1.1.14, [91]) for DNAm age 10 

and mean methylation, while a mixed effects beta regression for cell type proportions was 11 

applied with the glmmTMB function from the glmmTMB package (v. 0.2.2.0, [92]). Blood 12 

cell type proportions were increased by 0.001 to all estimates to avoid taking the log of zero. 13 

All mixed models assessed the effect of disease status while controlling for age at sample 14 

collection and sex. When analysing DNAm age, the interaction of disease and age at 15 

collection was also tested. Random effects were introduced for repeated sampling within co-16 

twins, and a random intercept per twin/triplet set. When modelling cell types, due to 17 

convergence issues, the random slope for repeated sampling was dropped, leaving random 18 

intercepts for each co-twin and twin set. Likelihood ratio tests were used to determine 19 

significance of model terms. 20 

Linear models were used for case-control validation of probes identified in the MZ cohort, 21 

with the same fixed effect terms of age at sample collection and sex as described for mixed 22 

models. 23 
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Hierarchical clustering utilised the package cluster (v. 2.0.6), with Manhattan distance and 1 

ward clustering methods for 450K data [93], and Spearman correlation distance and average 2 

linkage clustering for log-transformed RNA-Seq count data [94].  3 

Where appropriate, technical replicates are shown as means with error bars indicating 4 

standard deviation (unless otherwise stated). 5 

 6 
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 1 

Legends 2 

 3 

Fig 1. ALS-discordant twin/triplet set pedigrees  4 

Pedigrees for four sets of ALS-discordant twins/triplets, with gene mutations indicated. 5 

Circles represent females and squares represent males. Filled shapes indicate ALS, open 6 

shapes with a dot indicate mutation carriers and open shapes are unaffected non-carriers. 7 

Horizontal lines between twins/triplets indicate monozygosity. 8 

 9 

Fig 2. Neither C9orf72 nor SOD1 are differentially methylated between mutation-positive 10 

ALS-discordant twins/triplets 11 

(A) Methylation of the CpG island spanning the promoter region and exon 1 of SOD1 does 12 

not show differential methylation between an ALS-affected triplet and unaffected co-triplets, 13 

concordant for SOD1 p.I114T. Methylation status was determined using both EpiTYPER 14 

(bottom) and 450K (middle) assays. The relative location of targeted CpG islands (CGI) and 15 

exon 1 are indicated for both genes (A and B, top).  (B) Methylation of the C9orf72 promoter 16 

region / expansion flanking CpG islands are not differentially methylated between ALS-17 

discordant co-twins that carry the C9orf72 hexanucleotide repeat expansion in either 18 

EpiTYPER (bottom) or 450K data sets (middle). Transcript variants (T1, T2, and T3) and the 19 

position of the repeat expansion (black diamond) relative to exon 1 are shown for C9orf72 20 

(B, top). 21 

 22 

Fig. 3. DNA methylation age, but neither global mean methylation nor cell composition, 23 

varies between ALS-discordant twins/triplets 24 
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(A) DNA methylation age was more discrepant between ALS discordant twins with 1 

increasing chronological age (p = 1.3E-5), with greater DNAm aging in affected 2 

twins/triplets than their unaffected co-twin/-triplets, when controlling for age and sex. (B) 3 

Mean methylation across 386183 CpG sites found no significant difference in global 4 

methylation between ALS-affected and unaffected co-twins/-triplets when controlling for age 5 

and sex (p = 0.08). Proportions of six white blood cell types over time were estimated for 6 

ALS-affected and unaffected twins/triplets (C). Proportions for each cell type were not 7 

significantly associated with disease status of twin/triplet samples when controlling for age 8 

and sex (CD4+ T cells, p = 0.77; CD8+ T cells, p = 0.24; Monocytes, p = 0.60; B cells, p = 9 

0.21; Natural killer cells, p = 0.52; granulocytes, p = 0.63). 10 

 11 

Fig 4. Top DMPs identified and validated in MZ and case-control cohorts don’t cluster by 12 

disease 13 

(A) Of 59 DMPs found across all discordant twin sets, these 9 were top ranked for the 14 

combination of statistical significantly differences between affected and unaffected co-twins/-15 

triplets and the magnitude of differences across twin/triplet sets. Per twin/triplet set 16 

differences are shown, with the ALS-affected sibling as the reference. Gene annotation and 17 

CpG name are indicated as gene::cpg. Control twins are shown in grey, with the same 18 

directionality as the discordant twins to facilitate comparison of the magnitude of the 19 

difference in methylation. Bar colour indicates hypomethylation of the ALS-affected twin 20 

(orange) or hypermethylation of the affected twin/triplet (blue) relative to their unaffected co-21 

twin/-triplets. (B) The 59 DMPs identified across discordant twin/triplet sets were used to 22 

cluster the samples in the MZ cohort. Overall, methylation was similar across samples for 23 

most DMPs, and samples did not cluster by disease, nor perfectly by twin/triplet set. (C) 24 

Principal Components Analysis (PCA) across discordant twin/triplet sets using the same 59 25 
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DMPs also showed that samples did not cluster by disease, but approximately by individual 1 

for those where longitudinal samples were available. (D) Of the 59 DMPs identified across 2 

discordant twin/triplet sets, two were significantly different between cases and controls in a 3 

large cohort (n SALS = 646, n controls = 533). Both cg15444185, annotated to C8orf46, and 4 

cg00278366, annotated to RAD9B, were hypomethylated in SALS samples (cg15444185, β = 5 

-0.06, adjusted p = 0.049; cg00278366, β= -0.0771, adjusted p = 2.5E-5) when controlling for 6 

age and sex. (E) The top 59 DMPs identified across all discordant twin set do not cluster by 7 

disease status in a sporadic case control cohort. (F) PCA also demonstrates that these top 59 8 

twin DMPs do not cluster by disease status in a sporadic case control cohort. 9 

 10 

Fig 5. Most differentially methylated probes (DMPs) per twin set were unique to one twin set 11 

including known ALS genes 12 

DMPs within a twin/triplet set were those with a difference in β-methylation ≥ 0.25. (A) 13 

Within the male SALS twin set, two probes were identified which annotated to DPP6, and 14 

two additional probes annotated to RAMP3. Multiple data points per person at each probe 15 

indicate longitudinal sampling. For collection times with duplicate samples per person, points 16 

represent the mean at that time, with the standard deviation indicated with a line. (B-C) 17 

Generally, DMPs were unique to a twin set, while no differences in methylation (> 0.25) 18 

were detected in the female SALS twins. (B) The number of DMPs within a twin set varied 19 

from < 10 in C9orf72 twins to > 2500 male SALS twins (fig. S3B,D). Only two of these 20 

DMPs were found in multiple discordant twin sets. Each of the male SALS twins, SOD1 21 

triplets and C9orf72 twins showed overlap with the control twins. (C) Within each of the 22 

three discordant twin sets and the control twin set DMP lists, multiple probes annotated to the 23 

same gene. When comparing these genes rather than individual probes, more shared genes 24 
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were identified between discordant sets, with 13 genes containing a probe considered 1 

differentially methylated in multiple discordant twin/triplet sets.  2 

 3 

Fig 6. Genes that showed consistent longitudinal differential expression in SALS twins 4 

included known ALS genes 5 

(A) Seven hundred and fifty genes were identified as differentially expressed with a 6 

minimum fold change of 1.5 (vertical lines) and significant FDR-corrected p-value 7 

(horizontal line) in the male SALS twins. (B) Expression of two previously reported ALS 8 

genes, CCNF and CCS, identified as differentially expressed in male SALS twins. Gene 9 

expression is shown for all three collections in each twin. (C) Expression of the top 8 genes 10 

(as ranked by limma) are shown for all three collections of the male SALS twins.  11 

 12 

Fig 7. Significantly enriched Gene Ontology (GO) terms implicate enrichment of immune 13 

function in the ALS co-twin. 14 

GO analysis of the 750 longitudinally differentially expressed genes from the male SALS 15 

twins identified 74 significantly enriched biological processes or pathways, shown on the y-16 

axis of the graph. Adjusted p-value (using FDR method) is indicated by the height of the 17 

columns on the graph (x-axis). Log2 fold enrichment (logFoldEnrichment) of GO biological 18 

process is indicated by depth of colour, and direction of gene representation (red = over-19 

representation in affected co-twin, blue = over-representation in affected co-twin). Results 20 

demonstrate over-representation of genes associated with immune function and cell 21 

signalling, and under-representation of genes largely related to transcription and protein 22 

modification. 23 

 24 

Fig 8. DEGs identified in male SALS twin are validated in a case-control cohort 25 
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Of the 750 DEGs identified in the male SALS twins, only 379 genes were present in the 1 

sporadic case-control cohort. (A) Two hundred and thirteen of these were validated as 2 

differentially expressed between SALS and controls when controlling for sex (table S7) and 3 

the top 8 are shown here. (B) Hierarchical clustering of the sporadic ALS and control cohort 4 

by these 379 genes did not identify disease-based clusters. (C) Principal Components 5 

Analysis (PCA) of the sporadic ALS and control cohort by these 379 genes also did not 6 

identify disease-based clusters. 7 

 8 

Fig. 9. Twelve overlapping genes were identified in the male SALS twins DMPs and DEGs. 9 

(A) While 506 genes were identified as having multiple probes with a difference in β-10 

methylation  (≥ 0.25) between the ALS-discordant male SALS twins, only 123 of these genes 11 

were present in the matching RNA-Seq data. 642 of 750 genes identified as differentially 12 

expressed were present in the matching DNA methylation data. Twelve of these genes were 13 

both differentially expressed and differentially methylated (C11orf49, CD8A, COL7A1, 14 

EOMES, GATA6, GZMM, HOXA4, KANK3, OLIG2, QPRT, SMPD3, SNED1). (B) On the 15 

HumanMethylation 450K beadchip, multiple CpG probes are annotated to each gene. 16 

Methylation of all probes annotated to each of the twelve overlapping genes is highly 17 

consistent within each co-twin. Distance from the transcription start site in base pairs is 18 

shown on the x axis. Multiple data points per person at each probe indicate longitudinal 19 

sampling. Duplicate collections within a time point are shown as the mean with the standard 20 

deviation indicated by a line. (C) Longitudinal expression of the 12 shared genes, (C11orf49, 21 

CD8A, COL7A1, EOMES, GATA6, GZMM, HOXA4, KANK3, OLIG2, QPRT, SMPD3, 22 

SNED1), is consistently different between ALS discordant male SALS co-twins over time. 23 

 24 

Additional files 25 
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Additional file 1: (PDF) Supplementary Figures S1-S3.  1 

 2 

Additional file 2: (PDF) Supplementary Tables S1-S4. Table S1: EpiTYPER assay details. 3 

Table S2. Post-filtering clinical summary of Infinium HumanMethylation450K case-control 4 

validation cohort. Table S3. RNA sequencing and processing summary for longitudinal male 5 

SALS twins and case-control cohort. Table S4. Post-filtering clinical summary of RNA-Seq 6 

case-control validation cohort. 7 

 8 

Additional file 3: (CSV) Supplementary Table S5: 59 DMPs identified across all discordant 9 

twin sets. Twin set columns show the difference in methylation between co-twins/-triplets as 10 

ALS – unaffected. Control twins are shown with the absolute difference in methylation. Delta 11 

beta: Mean difference across ALS-discordant twin. Magnitude rank: rank of the probe 12 

according to Db. Final rank: mean of magnitude and t-test p-value ranks. Gene: gene name 13 

corresponding to closest transcription start site to the given probe. TSS distance: distance in 14 

base pairs to the closest transcription start site. 15 

 16 

Additional file 4: (XLSX) Supplementary Table S6. Validation statistics for top 59 twin-17 

DMPs in sporadic case control cohort.Gene: gene name corresponding to closest transcription 18 

start site to the given probe. Adjusted R2, F statistic, F numerator DF, F denominator DF, F 19 

p-value: model summary statistics. Adjusted p-value: FDR adjusted p values for ‘Disease’ 20 

coefficient across all 59 probes tested. 21 

 22 

Additional file 5. Supplementary Table S7. Genes associated with multiple DMPs 23 

identified in the male SALS twins.  24 
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Gene: gene name corresponding to closest transcription start site to the given probe. TSS 1 

distance: distance in base pairs to the closest transcription start site. Methylation difference: 2 

mean difference in beta methylation between male SALS twins, ALS – unaffected. 3 

 4 

Additional file 6. Supplementary Table S8. Overlap between discordant and control twin 5 

sets in genes/probes. Gene: gene name corresponding to closest transcription start site to the 6 

given probe. TSS distance: distance in base pairs to the closest transcription start site. Twin 7 

set columns show the difference in methylation between co-twins/-triplets as ALS – 8 

unaffected. Control twins are shown with the absolute difference in methylation. Only 9 

differences greater than the threshold of 0.25 are shown. 10 

 11 

Additional file 7. Supplementary Table S9. Differentially expressed genes identified in 12 

male SALS twins. Log2 fold change: estimated log2 fold change corresponding to the effect 13 

of disease status. Adjusted p-value: BH-FDR adjusted p-values. Log odds: log-odds that the 14 

gene is differentially expressed. 15 

 16 

Additional file 8. Supplementary Table S10. Significantly enriched Gene Ontology (GO) 17 

terms for 750 differentially expressed genes identified in male SALS twins. Fold 18 

enrichment >1 reflects over-representation of a GO biological process term in the affected co-19 

twin and fold enrichment <1 reflects under-representation of a GO biological process term in 20 

the affected co-twin. N genes: number of genes associated with each term. FDR: Multiple 21 

testing adjustment of p-values using FDR method.  22 

 23 

Additional file 9. Supplementary Table S11. Statistical summary of the validation of 40 24 

twin-DEGs in a case-control cohort. Log2 fold change: estimated log2 fold change 25 
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corresponding to the effect of disease status. Adjusted p-value: BH-FDR adjusted p-values. 1 

Log odds: log-odds that the gene is differentially expressed 2 
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