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ABSTRACT

Cloud computing is a rapidly growing paradigm that facilitates the ability for
scalable and distributed graph drawing algorithms. Platforms such as Amazon
Web Services offer virtually unlimited cloud resources in a pay-as-you-go fashion.
Evidently, on demand availability of abundant resources accessible enables large-
scale processing in a cost effective approach. There are numerous open source
systems that provide distributed graph processing platforms. Frameworks such
as Apache Giraph and Spark provide efficient tools for large-scale algorithms.
Boundless cloud facilities create opportunities for optimization methodologies for
improving the efficient use of cloud services while concurrently reducing the over-
all cost. Research projects and business applications have turned towards cloud
distributed processing. The ability to remain within budget constraints while
maximizing execution speeds is of the essence.

Optimizing resource scheduling and provisioning are the underlying fundamental
ways of efficiently maximizing processing times while reducing cost. Distributed
algorithms such as graph drawing require large computational facilities to pro-
cess graphs with millions of edges. In this research project, we aim to examine
and introduce models to efficiently exploit cloud service abundance using graph

drawing algorithms for scheduling and resource provisioning problems.
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Chapter 1

Introduction

The rise in cloud computing platforms such as Amazon Web Services, Microsoft Azure and
Google Cloud have evolved the way data is processed. The readily available abundance of
cloud resources has drastically transformed the potential for developers to innovate their
ideas as it’s no longer required fo have large capital outlays in hardware for computation-
ally intensive processes [5].

Platforms such as Amazon EC2, offer pay-as-you-go resources to facilitate users with eas-
ily accessible computing power without the need of substantial initial funds. With the
flexibility of cloud computing, resources can be hired on a demand basis providing scalable
solutions.

Traditionally, big data processing required the use of powerful processing units that are
costly and time intensive. However, through the use of distributed frameworks it is
possible to utilize large scale distributed processing through the use of machine-clusters.
Frameworks such as Apache Giraph, GraphX and GraphLab provide powerful distributed
algorithms for processing large graph data. With rise in available resources it is possible
to process large graph data in a timely manner. Despite this availability, concerns with
resource over-allocation as well as the cost of hiring machines can create gaps where ef-
ficient resource scheduling techniques can drastically reduce the overall project cost and
resource usage, Thus, optimization factors are a great concern amongst large graph draw-
ing (processing) applications.

Algorithms have been developed to take advantage of distributed hire-as-you-go resources.
However, as the amount of data is ever increasing, new methodologies and algorithmic so-
lutions have been developed. Such algorithms include graph drawing/visualization as well
algorithms based on social and web graph processing. Despite the efficiency of graph pro-
cessing algorithms, resource allocation techniques have been developed to support several
work-sharing techniques through graph partitioning. Further, frameworks such as Apache
Giraph take advantage of resource abundance and efficient resource allocation in order
to process graphs with millions of edges. Graph processing entails the computation of
thousands of tasks through the use of concurrent computations. Factors such as network
communication, resource competition and transmissions between parallel processes can
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affect the overall performance of the mentioned algorithms.

1.1 Project Goal

The goal of this project is to develop efficient resource allocation and scheduling solutions
for graph processing algorithms on the Apache Giraph framework. Specifically we are
aiming to identify methods of optimizing the execution speeds, resource consumption,
and overall costs associated with running these algorithms.

To accomplish this, factors that affect the performance of graph processing algorithms
must be taken into consideration. Once an adequate understanding of such factors has
been procured, we can begin to form techniques that address these factors and improve
the overall efficiency of execution. Graph processing algorithms including graph drawing
and visualization will be conducted as a case study in these experiments. With the con-
clusion of this thesis, improvements on the overall performance of such algorithms will be
achieved.




Chapter 2

Background and Related Work

2.1 Distributed Cloud Processing Models

With the rapid increase in the number of devices globally and with people being con-
nected digitally more than ever before, the amount of data being produced and the need
to store/process it is ever increasing. With these challenges, graphs have become a great
model for displaying and absorbing information from large data-sets.

Initial frameworks such as MapReduce [3] provide a simple programming model for build-
ing scalable parallel algorithms to process large amounts of data on clusters. However,
new frameworks have improved the need to design iterative jobs manually by chaining
multiple MapReduce tasks, as well as Hadoop extensions such as HaLoop [30], Twister
were introduced to optimize the iterative design of MapReduce.

Graph processing platforms based on the Pregel type frameworks such as Pregel, Giraph,
Mizan, GPS, Pregilx based on the (BSP) Bulk Synchronous Parallel system [27] [29] which
uses a vertex centric programming model with computations on vertices being represented
as sequences of supersteps.

Each superstep consists of synchronizations between the nodes participating at superstep
barriers while each vertex has an active or inactive state for each iterations/superstep [15].
Pregel was introduced by Google the first BSP implementation specifically for program-
ming graph algorithms using “think like a vertex” paradigm [15].

Numerous systems have been developed to exploit the optimization benefits of Pregel.
Apache Giraph was implemented in Java to work on top of the infrastructure of Hadoop
framework. Giraph is designed to run processing jobs as map-only jobs on Hadoop and
utilizes the Hadoop HDFS for data input and output. Other BSP based systems such as
Apache Hana focuses not only on graph processing, but also other applications such as
algebra and matrix computations.

Other systems such as GraphLab [9] implemented using C++ which differently from
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Pregel and Giraph and GraphLab depends on shared memory abstraction and the (Gather,
Apply. Scatter) processing model [22]. Alternative graph processing platforms such as
GraphX, GraphChi, PowerGraph all are suitable platforms for conducting further re-
search into graph drawing. Thus, the benefits of each platform have to be taken into
consideration. According to experiments performed [22] it is difficult to determine a
single best platform for graph visualizations. Thus, during

2.2 Introduction to AWS EC2 Performance

Amazon EC2 provides several options of virtual machines that are provided with cus-
tomisable specifications. These virtual machines’ specifications are called instances. Ev-
ery instance comes with its specific configurations, this includes the memory amount,
CPU power and storage. The importance of these configurations is the fact that spe-
cific configurations can be set in order to optimize the cost effectiveness and efficiency.

$1.80
From a first glance, it is clear that - |
’ F $1.40
when using instances form the Amazon i‘”" [[® % ~ P
EC2 platform, the more you pay re- ¥ s100 \ Bt Jarge
sults in better instance configurations. Eso.an SN Pk
. . . \ | “o1.medium
Fu turn, E.!])pllcat-ml]ﬁ-i should theorfetlcall}-‘ g sos0 | N - s
increase in performance proportionally. & soa0 : Scci uiargo
However, this is not necessarily true as e z z T 4
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Runtime (hours)

Figure 2.1: [7] Cost versus performance
comparison for of three applications Mon-
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geous performance. For example it is clear

that m1.large and cl.xlarge provide less op-

timal results despite the fact that its spec-

ifications are superior to ¢l.medium which

shows better performance in terms of cost

and similar execution speeds. Conversely, on middle diagram of Figure 1, the choices
that performed well for the results obtained in the top diagram are not the same. In the
middle diagram of Figure 1, it is clear that cl.xlarge has significantly lead performance
when compared the results in the top diagram of Figure 1. On the third test results. the
Epigenome application (bottom of Figure 1), shows a different Pareto optimality as cir-
cled by the blue set, which shows that cl.xlarge and ¢l.medium perform differently when
compared with Montage and Broadband. From these results the Pareto efficiency effect
demonstrates that better performance of one application through a particular instance
has potentially worse performance when used in a different program. Furthermore, the
study [7] showed that the run-time for different applications may not necessarily improve
linearly despite the cost of hiring resources is significantly increased.

2.3 Hadoop ecosystem

Hadoop is a framework based platform developed to facilitate clond-based applications
on cloud services such as Amazon Web Services for processing large scale cluster based
data processing [19)].

Hadoop a open source implementation allowing large scale input data to be equally dis-
tributed into smaller fragments for easier computation. For this purpose, Hadoop file
system HDFS ( Hadoop Distributed File System) allows the possibility to store data on
the available nodes provided by the system which may include Cloud based solutions such
as Amazon Web Services.

The Hadoop platform ufilizes the MapReduce system for safely processing large amounts
of data. Hadoops’ role further takes into consideration factors such as hardware failures
by providing a recovery mechanisms.

2.3.1 HDFS

HDFS is the core of the Hadoop file system providing storage and transmission of large
data through streams while utilizing the resources available on a commodity hardware in
the cloud.
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Large Input Files

HDFS provides the capability to store large amounts of data, that is in the range of
megabytes and even files over several terabytes.

Streaming Data

HDFS revolves around the simplistic data processing patters that follow the idea of reading
the data many times iteratively while writing the data only once. Once data is copied
from the source, iterative computations are performed upon it.

Commodity Hardware Resources

The high availability of affordable ready-to-use cloud resource provide researcher and de-
velopers to hire large quantities of machines such as Amazon EC2 instances. Despite the
availability of readily accessible computing resources, clusters can accommodate nodes
from tens to thousands of machines [4] [11] [26]. Due to the nature of cloud resources,
the location and durability of the machines especially in application that require long

execution times can bring large clusters to a halt in the event of machines failing.

Despite of this fact, HDFS was designed in such a way that small resource failures do not
interrupt the overall processing of applications. Thus, providing safety barriers for such
events.

Data Latency Access

Data access latency is referred as the time required for data to be accessed by the com-
putational unit from its original storage location.

The HDFS model focuses on throughput of data which may trade-off against latency.
However, HDFS reduces the issue since each computing node views the data set distribu-
tion is aligned. In terms of low-latency scenarios, if the data distribution is not aligned,
all the records in one table will be compared to all other tables which are located on
separate computing nodes.

Large Fragments of Input File

As the amount of input fragments increases, namenodes of the cluster bear the respon-
sibility in regards to storage of file-system mefadeta within memory, thus the amount
of files largely affects computational performance since the amount of memory on each
namenode affects the number of files that can be stored.

These limitations that surround the architecture of HDFS may affect the volume of data
that can be processed, however the limitations of HDFS may only start to show these
pitfalls once files in the billions start being utilized [24].
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2.4 Cluster Resource Scheduling

In order to process scalable graphs, depending on the size of graph data, numerous factors
must be taken accounted for when utlizing specific scheduling algorithms to optimally as-
sign computing resources graph-processing frameworks. These factors include:

e Scalability
o Cost

Execution Time

o Graph Size

In detail, processing application/frameworks are unlikely to be linearly scalable. Thus,
the resource scheduling algorithm must take into consideration algorithmic scalability,
cost and resource capacities. Hadoop based clusters utilize several resource allocation
platforms. YARN, is one of them most widely used resource negotiator for distributing
shared resources within a cluster environment. Currently, Yarn supports several resource
scheduling algorithms. Allocating Amazon EC2 computing resources depends on various
factors listed above [14] [1]. Thus, scheduling algorithms of these resources must consider
the following properties of scheduling algorithms:

Deadline Based

L]

.

Budget Constrained

e Execution Time

L]

Time Constrained

2.4.1 FIFO Queue Based Scheduling

Most frameworks such as the Hadoop ecosystem, utilize First In First Out (FIFO) schedul-
ing which can provide high utilization in a cluster environment which can result in long
response times. This is particularly true when the amount of jobs to be executed is
ontweighing the available computing resources [2]. Since larger jobs can take longer to
complete shorter jobs, the shorter job will have to wait in queue for the longer job to
complete. An alternative scheduling solution which was proposed by Facebook called the
Hadoop Fair Scheduler(HFS) [20] [16]. Its aim is to provide improved data locality by
caleulating the fair share for each job/task. This technique would reduce the overall time
of graph processing especially critical for large graphs.
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2.4.2 Fair Scheduling

Fair Scheduling technique is designed to allocate resources to jobs in a way that overall all
jobs receive a uniform portion of resources over a period of time. This design allows queues
to be arranged in a hierarchical way for dividing resources. The Fair Scheduler utilizes a
queue path which initially allocated resources equally to each queue. Fair Scheduling [10]
guarantees the minimum allocation for queues, however if the resources allocated to a
queue are not being fully used, they are then reallocated.

2.4.3 Express Lane Scheduling

Express lane scheduling can be utilized in conjunction with the Fair Scheduling algorithm
by providing special considerations to short tasks when all applications are oceupied, in
order to provide higher priority to shorter tasks.




Chapter 3

Apache Giraph

In this chapter Apache Giraph framework is introduced through recent literature reviews
as well as an overview of the system model.

3.1 Overview

Apache Giraph is a distributed graph processing framework adapted from the Pregel
egraph processing ideology innovated by Google. Giraph applications are designed to run
on top of the Hadooop ecosystem, which provides a base framework platform for devel-
oping distributed graph processing algorithms.

Apache Giraph utilizes the bulk-synchronous methodology in terms of graphs where verti-
cies communicate with adjacent-connected neighbouring verticies during every superstep.
Each superstep consists of a barrier mechanism where all running workers must complete
their computations prior to the initialization of the next superstep, thus ensuring uniform
progression for each superstep computation.

Giraph further utilizes fault-tolerance capabilities to deal with failures in large cluster en-
vironments. Check-pointing is used for achieving fault-tolerance where the master of the
cluster instructs all workers and detects failures which allows the master to terminated
failed workers.
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3.2 System Model
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Figure 3.1: Partition System Model of Apache Giraph
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3.3 Giraph Concepts
3.3.1 Master

For each running Giraph application, a master node is focused on computational coor-
dination for the worker nodes. Omnce a master node becomes active, the tasks that it
performs include synchronizing all the workers collectively for each superstep.

As each superstep progresses, the master initializes the workers by partitioning graph
data to the available worker nodes through the use of a graph partitioning methodology.
Further, the master node is responsible for executing the compute function code as well
as monitoring the health and status of workers present in the same cluster environment.

3.3.2 Worker

Individual workers are the responsible computing units for processing the graph compo-
nents that have been specifically assigned to a worker by the master. As the application
progresses through each superstep, the worker is responsible for the execution of the com-
pute method for the graph component that has been assigned to that particular worker.
As Giraph uses a fault-tolerate based technigque, each worker is responsible for communi-
cating with the master to ensure that failed workers are terminated from the application
rather than being carried throughout.

3.3.3 Coordinator

Coordination services are ountside the scope of graph processing services such as master
and workers. Coordination services such as Apache Zookeeper. Each Zookeeper ensemble
is a representation of nodes running a coordination service while providing synchroniza-
tion and fault-tolerant configurations necessary for distributed applications. Zookeeper
serves important roles as it provides persistent distribution between node ensuring that
a failed node will be replaced by a healthy available node. This scenario is evident when
choosing a master node, where a chosen node can be re-assigned to another node if the
currently selected node fails.
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Chapter 4

Graph Drawing Algorithms

In this chapter graph drawing algorithms are introduced through recent literature reviews
where concepts in this chapter are further investigated and experiments are performed in
the following chapters.

4.1 Background

Initial frameworks such as MapReduce [?] provide a simple programming model for build-
ing scalable parallel algorithms to process large amounts of data on clusters. However
new frameworks have improved the need to design iterative jobs manually by chaining
multiple MapReduce tasks, as well as Hadoop extensions such as HaLoop [15], Twister [?]
were introduced to optimize the iterative design of MapReduce. Graph processing plat-
forms such as Pregel, Giraph, Mizan, GPS and Pregilx are based on the (BSP) Bulk
Synchronous Parallel system that uses a vertex-centric programming model with com-
putations on vertices being represented as sequences of supersteps. Pregel system was
introduced by Google it’s said to be the first BSP implementation specifically for pro-
gramming graph algorithms using “think like a vertex” paradigm.

Further systems have been developed to exploit the optimization benefits of Pregel.
Apache Giraph was implemented in Java to work on top of the infrastructure of Hadoop
framework. Giraph is designed to run processing jobs as map-only jobs on Hadoop and
utilizes the Hadoop HDFS for data input and output.

BSP based systems such as Apache Hana focuses not only on graph processing but
also other applications such as algebra and matrix computations. Other syvstems such
as GraphLab [9] implemented using C++ which differently from Pregel and Giraph and
GraphLab depends on shared memory abstraction and the (Gather, Apply, Scatter) pro-
cessing model [23]. Several graph processing platforms such as GraphX, GraphChi, Pow-
erGraph all are snitable platforms for conducting further research into graph drawing.

13
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4.1.1 Fruchterman-Reingold: Force Directed Algorithm

Force-directed algorithms have evolved in their design and implementation strategies
have been developed over the years. Fruchterman-Reingold [25] [6] follows the "spring-
embedder” model allowing the drawing of graphs consisting of straight edges where the
uniformity of the length of edges must be consistent. Thus, allowing designs such as
the [28] to follow the forces of a natural svstem where vertices should not be drawn too
closely in order to produce graphs in an aesthetically pleasing manner.

The main eriteria that Fruchterman-Reingold algorithm follows in terms of aestheticism
is to address the following design points.

Spread the verticies uniformly across the visible space.

Reduce the amount of edge crossings for each vertex.

homogeneous lengths of edges, where each edge is scaled appropriately.

e Accommodate drawings to single frames.

The term "forces of nature” represent the design model where edges are replaced
with strings and vertices are represented by rings which are located in a initial po-
sition in the overall graph. Thus, the forces of each spring determine the the new
position of each vertex in its final state.

Despite of several force directed algorithms following a stricter system of laws of
physics such as implementations based on Hooke's law [13], several force-directed
implementations including Fruchterman-Reingold differ in the computation of at-
tractive forces which are only computed in terms of locality, that includes only the
attractive forces between the neighbouring vertices.
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Risk Assessment

Cloud computing aids in the delivery of efficient computing services as a cost ef-
fective solution for on-demand resource requirements. Cloud resources offer a great
economical model for data processing and information handling offering highly at-
tractive solutions.

Despite a shift towards cloud technologies due to affordability and low start-up re-
quirements, leaning towards this solution surfaces potential risk that if undermined
can consequently create colossal damages financially and in terms of information
security.

In this chapter, we elicit potential risks associated with cloud computing, specifically
relating to our research project then further in the chapter mitigation strategies for
dealing with the associated risks will be developed.

5.1 Risk Rating

In determining risks, we follow 1SO 31000 risk management as a universal method-
ology for implementing risk assessment. For risk classification, a risk assessment
matrix developed by the Australian Government - Information Security is utilized
as part of risk rating. the guidelines followed in this chapter as shown in Figure 5.1
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Figure 5.1. Risk Assessment Matrix

In reference to Figure 5.1, the risk matrix likelihood of a risk occurring is a com-
bination of the consequences and the probability of a specific risk from occurring.
Risk are to be labelled as Very Low, Low, Medium, High or Very High based on the
severity.

5.2 Risk Register Plan

In this section, we elicit potential risks involved with cloud computing. Based on
each risk, 10S 31000 risk management methodologies are emploved for categorizing
each risk based on its characteristics.

Table 5.1: A sample long table.

ID

Name Description Probability | Impact

Using a single cloud provider can
Provider |create difficulties migrating from

Possible Major

R1 |[Lock-in one provider to another
Sharing of resources can open potential
Resource | to malicious activities by other parties
R2 | sharing accessing the same resources
Having more than one user access the
same resources can jeopardize security
- S if one of the users does not follow safety

access procedures Possible Moderate

Continued on next page
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Table 5.1 — continued from previous page

Probability

Uil

Unlikely Major

Unlikely Medium

Remote

Major

ID | Name Description
Lack of security groups/rules can allow
Security  unwanted users intercept communication
R4 |Groups within resources by accessing them
Access Loss of private keys it used for
R5 | keys ACCessing resources
Local Unsecure storage of private keys can
RG  storage potentially give access to the attacker
It access to a single application 1s
Application|breached, other applications sharing the
R7 breach same resources are potentially at risk
Auto termination features it failed, can
Resource |allow resources to continue operations
K8 [termination increasing unnecessary costs
[ a user does not manually terminate a
cluster or machine, monetary charges
R9  |Automation| will be made despite of usage
lTerminating clusters of resources can
lead to data loss if no backups are
IR10 |Backups available
Fixing the amount of instances in a cluster
| can limit the potential of resource
luster expansion based on resource demand
R11 | size instantly
Loosing processed data backups will
Backup require re-testing the same data again,
R12 | loss which can be costly depending on its size
Resource auto-scaling if not carelully
managed, can lead to over-resource
Auto purchasing increasing cost charges
R13 pealing instantly
Multiple frameworks are utilized for
performing data processing, if one
framework is updated it can halt the
application and redesigning of the
R14 |Updates algorithm may be required
Multiple frameworks are utihzed for
performing data processing, if one
framework is updated results obtained
can be inconsistent with previously
R15 |[Updates 2 collected data

Continued on next page
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Table 5.1 — continued from previous page

Probability

ID | Name Description
As demand grows, the cost of hiring
cloud resources can dramatically increase
Cost especially for long term projects where
R16 [increase changes are more dificult to perform
Tnternet  Loss ol internet access can leave
R17 | access data out of reach
Cloud providers can perform service
outages, leaving he project out of
Service control in terms of data and access fo
R18 joutages resources

Unlikely

Extreme
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5.3 Risk Mitigation Plan

Identifying risks and taking sequential steps to reducing the adversity of risks is a
critical aspect towards project success. In section 5.2, we identified potential risks
that may affect this research project or similar. Each risk has been categorised
based on a risk assessment matrix in accordance to 1SO 31000 and identifying each
risks probability and potential impact on the project.

In this section, we utilize risk management strategies that best apply to each indi-
vidual risk in order to reduce and prevent each risk from occurring. All of the risks
identified in section 5.2 have been developed prior to commencing with the project.
However, as the research project developed, more risks were identified and added to
the Risk Register Plan section.

Four risk management strategies were are considered when applying risk mitigation
plans for each risk. These strategies are as follows:

- Risk acceptance
- Risk avoidance
- Risk limitation

- Risk transference

In table 5.2, risk mitigation strategies are analysed based on each risk. Each risk
identified in section 5.2 is referred to by its Risk 1D.
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Table 5.2: Risk Mitigation

Risk ID | Risk Name Mitigation Plan
For long term projects, it 1s important to
Provider perform local experiments to reduce the need
R1 Lock-in of hiring cloud resources where possible
Limiting cluster resources sharing so each
Resource user has access to instances that are not
R2 sharing being shared.
Ensuring both /all users sharing the same
resource follow the same security access
¥lor procedure such as using kev-pairs instead
R3 access of password-less point of entry
Strict guidelines should be followed when
setting security groups. Guidelines should
Security be followed such as those provided by Amazon
R4 groups Weh Services
Storing private access keys on secured reliable
machines is critical. If the key is lost, access
Access to resources will be denied and regaining access
R5 keys is impossible
I'he location where the key 1s stored within the
Local local machine, must be kept within a secure
RG storage directory where only authorised users can access
All applications being run on a cluster must
follow the same guidelines during setup. That
includes using separate security keys so if one
Application | application is breached, other applications are
R7 breach still inaccessible from the adversary
Termination features within frameworks allow
applications to terminates once a task is
completed. If the application never completes,
the user can overstep the budget. Thus, manual
Resource or automated solutions for ensuring applications
RS termination do not exceed a specified time limit
Each instance/cluster of resources must be
terminated or stopped after it has completed
computations. Further, automated alarm systems
R9 Automation should be utilized to prevent this event
After each run of a application, the processed
data should be downloaded or stored in a safe
R10 Backups cloud space such as Amazon 53 for later retrieval
Anto-scaling should be limited and upper-bounds
Auto should be set to avoid excessive usage beyond
R11 scaling user predetermined settings

Continued on next page
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Table 5.2 — continued from previous page

Risk ID | Risk Name Mitigation Plan
Storage of logs to obtain runtime and other
crucial results from application completion
should be stored in cloud or local based
Backup backup locations such as Amazon S3 or local
R12 loss storage
Auto-scaling should be imited and upper-bounds
Auto should be set to avoid excessive usage beyond
R13 Scaling user predetermined settings
FEach application installation should use the
same framework versions to prevent results data
from being inaccurate. Using configuration files
0 determine versions is a first step to ensuring
to det first step t. g
R14 Updates accurate installations are performed
Framework updates occur regularly, thus hacking-up
previous versions can ensure the application will
perform accurately until the necessary modifications
R15 Updates2 are performed for ensuring application compatibility
[t a project 15 expected to exceed over a span
of years, considering other platforms including
Cost local /offline hardware setup should be taken
R16 increase into consideration
Implementing local installations of the frameworks
{itasnag and applications on local machines must be performed
R17 access in the case of internet access loss
Local and other cloud providers should be considered
Service in the case of the current provider has an outage of
R18 outages service
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Chapter 6

Experiments

6.1 Introduction

Graph drawing algorithms have adapted towards improvements in processing ca-
pabilities and the way we process data. Platforms such as Amazon Web Services,
Microsoft Azure and several cloud processing providers have expanded the scope
of students and researchers to perform larger complex graph processing algorithms
through the utilization of clustered processing units. These machines are readily
available to the users, where machine specifications are highly customisable and op-
timizable for custom processing requirements.

Abundant resources available provide several benefits for graph drawing applications
and more generally distributed processing algorithms. Benefits include low start-up
times as the need for low level hardware configuration is reduced and faulty ma-
chinery is easily replaceable without having an impact on project time lines where
time based constraints are enforced. Further, the cost associated with setting up
the machines is relatively low and affordable especially for low-budget projects or
research grants where the availability of funds is limited.

Despite of the mentioned benefits, drawbacks and resource wastage is a main con-
cern among distributed applications and frameworks.

Resource leaks, or lack of optimization fine-tuning, can lead to increased project
costs in terms of monetary budget as well as potentially elongated processing times
particularly critical when large data sets are being processed. Fine tuning the way
frameworks and algorithm specifically utilize the allocated resources, and through
experimental observations of resource usage patterns, it is possible to obtain trends,
from which data extracted accommodates formulation of models where consequent
applications that perform in a certain pattern may be able to benefit from previ-
ously developed models.
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In this chapter, experiments are conducted to observe resource usage patterns as
well as a critical observation of the effect resource consumption patterns have on
several applications where data size, type and structure may constantly change.
Further, the overall cost effectiveness associated with distributed algorithms and its
effect on project completion are investigated through multiple case studies.
Consequently, through fine tuning, optimization and formulating resource consump-
tion patterns through experimental data, models and methodologies will be investi-
gated and developed to further improve processing speeds and the overall effective-
ness of large seale cloud based distribufed resources.

6.1.1 Resource Allocation - Workers

Resource allocation patterns and optimization experiments conducted in this chap-
ter are conducted through the use of Amazon EC2 machines called instances. Each
instance is a physical machine which has specific resources allocated depending on
the type of machine hired. The machine names and resource specifications are in-
cluded in Appendix A section.

Throughout the experiments, we may refer to machines as 'workers’. Each worker
consists of its individual resources and its considered as a processing unit. For
every instance, it may be possible to have more than one worker, which is highly
dependable on the number of CPU cores on each instance.

6.1.2 Instances - On-demand Pricing

Instances used in the experiments have a particular monetary cost associated with
them. The costs depend on the current market price available at any given time.
However, for consistency purposes all the costs for each instance used in the exper-
iments are included in Appendix A.

6.1.3 Spot-Instance Pricing

Spot instances throngh Amazon Web Services allow price bidding which can reduce
costs of each instance up to 80 % depending on the market forces at any given time.
With increased price reductions, the risk of instance prices being out-bidden can
reallocate the instance resources to the highest bidder causing running applications
to fail in most cases. Thus, spot instances are generally avoided in the following
experiments due to the volatility and the risk of application failure.
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6.1.4 Instance Availability Regions

Prior to instances being purchased, it is possible to select between multiple geo-
graphieal regions where machines are physically located. Each region has several
effects on the hired instances, however, the main distinction being cost.

In all the experiments, the Sydney region instances were used and its prices are
available in Appendix A.

6.2 Optimizing Worker Count

Amazon EC2 clusters facilifate the ability to hire instances of specific configurations.
Graph processing frameworks such as Apache Giraph allow the specification of the
amonnt of workers to be used for each job. A worker is a processing unit where its
main function is to perform computational task on a graph partition through the
compute() method.

Initially, each worker is assigned a fraction of the graph data to be processed. the
master node which oversees the workers in the current job, assigns the input splits
of the overall graph data. Once no inputs split remain unassigned, the master node
signals each worker to continue into the next or initial superstep.

Depending on the graph partitioning strategy, each worker will be assigned with
its specific input split. In theory, the higher the amount of workers, the higher par-
allel computations can oceur. Regardless, several potential bottlenecks can occur in
terms of memory competition, data locality and network communication between
each worker.

Each superstep in a Giraph application represents a iteration of computations from
all workers. More workers may be able to process more data simultaneously, how-
ever, that may not directly reflect in improved execution time of the job.

Individual supersteps are composed of several layers. Firstly, each worker works
independently using its own share of cluster resources while computing the graph
vertices and edges that are part of its own input split.

6.2.1 Worker Resource Scheduling

As demonstrated in Figure 4.1, each workers local computation behaves indepen-
dently, thus, its execufion speed may not necessarily be synchronized with other
workers in the local cluster. In the case of resources being equally distributed
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Barrier Synchronization

between workers correspondingly close execution times may result, especially for
smaller graph data sets. Despite this fact, due to the percentage of graph edge
locality, the execution time can be affected. This case theoretically also applies to
workflows that include more that a single instance as Giraph is unaware of workers
being in the same instance thus treating them similarly when they are distributed
amongst different instances.

In this section of the experiment, we will discover the impact of multiple worker
per instance model, by observing the execution time of a connected components
algorithm part of a graph drawing application for Apache Giraph.

Processors

Local computation I I I I I I

Figure 6.1: [21] BSP Workflow model

6.2.2 Graph Execution Flow

The Apache Giraph framework uses a synchronization barrier system to ensure all
workers increment into the next graph processing iteration. The Barrier works by
holding each worker from continuing into the next iteration until all workers in the
job workflow have completed the execution as shown in Figure 4.1. After all vertices
have voted to halt, thus signalling that no messages are left to be transferred. Prior
to the continuation into the next superstep, all workers must have completed their

Superstep
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computation of all edges and vertices. The next superstep will initialize if-and-only-
if all workers have communicated their superstep completion to the master node.

Despite of the Synchronization barrier serving as a system for synchronizing workers,
depending on the graph locality and the level of graph input splits being balanced
between each worker, not all workers may complete execution at the same time.
As the amount of workers increases per instance, the probability for individual work-
ers to complete computation for each superstep equally in a measurement of time
may increase the overall execution time. Specifically, having more than one worker
per instance may increase the probability of workers completing their execution at
different times versus a single worker per instance which would result in a single
execution with no other workers potentially taking longer to complete.

Thus, in this section of the experiment we will investigate if the amount of work-
ers bears any significance to the completion time of each worker within a single
superstep of the job workflow.

6.2.3 Workflow Processing Usage

As workers are added to an instance, the CPU usage may be an indicator of resource
usage and competition between workers of individual instances. During the scenario
of multiple workers per instance being allocated with specific fragments of processing
power, the overall CPU usage will indicate the total time of all workers combined
spent on map and reduce tasks for the particular workflow,
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6.3 Introduction - Resource Provisioning and Schedul-
ing

Resource provisioning and allocating resources in distributed cloud environments
correlates with the overall performance and cost of applications in clustered re-
sources. As the number of machines utilized in a cluster rises, the likelihood of re-
source usage patterns increases. Moreover, the possibilities for optimizing resource
sharing at application and task level presents potential for further improvement.

6.3.1 Resource Provisioning Model

Understanding the fundamental model of resource provisioning is an essential com-
ponent towards optimization of graph processing algorithms where algorithmic op-
timization has been exhausted.

Running graph drawing applications through frameworks such as Apache Giraph,
firstly requires several underlying frameworks and resource management frameworks
allowing for efficient allocation and distribution of homogenized resources in a clus-
ter.

In the experiments conducted throughout this chapter, Apache Hadoop Yarn (Yet
Another Resource Negotiator) framework is used as a case study. The reasoning
behind the chosen application is due to the wide variety of applications and the
ability to support most of the latest scientific and graph processing frameworks. In
Figure 5.2 an overall view of resource allocation is illustrated.

In the experiments, the aim is to generalize resource consumption patterns which
are not specific to individual frameworks and methodologies. Consequently, the use
of specific resource management and graph drawing frameworks are utilized as a
case study for conducting the experiments.
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Figure 6.2: YARN resource provisioning model

Client

In Figure 5.2, the client represents the user that wants to submit a specific applica-
tion. The user is able to submit the application directly to the Resource Manager.

Resource Manager

Resource Manager serves as an intermediary between the user and overall manage-
ment of applications while managing the overall cluster resources.

It has access to all applications that are in queune, running and failed. Nonetheless,
the Resource Manager’s main objective is the management of cluster resources and
determining the application that will receive a portion of cluster resources.

The logical computations performed to select the next application to receive a por-
tion or all of the resources is determined through a scheduler. Consequently, based
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on the scheduling methodology an application(s) is chosen.

The Resource Manager allows incoming resource requests if-and-only-if the applica-
tion has been accepted. Succeeding application acceptance, the following step for
the Resource Manager grants or denies resources for the accepted applications with
the Application Master.

Application Master

The role of Application Master is to perform resource requests and perform nego-
tiations with the Resource Master. Each individual request is composed of require-
ments such as the following:

— Specific quantities of CPU cores
— Amount of memory

— Hardware rack-name/location (depending on configuration).

“oncluding successful resource provisioning between Application Master and
Resource Manager, the Application Master requests the Node Manager to
initiate application tasks. Further roles performed by the Application master
include:

— Continuous resource negotiation
— Local resource allocation
— Management of task scheduling

— Task execution.

Node Manager

The focal responsibility of Node Manager is to initiate application tasks through
the utilization of resources available within the container. The tasks run by
Node Manager are not framework specific, however in our experiments ap-
plication tasks are represented by graph processing tasks within the Apache
Giraph framework. Conclusively, Node Manager observes and tracks resource
usage for individual containers and terminates containers if resource consump-
tion exceeds the specified limit or in the case of a user request to terminate a
container.
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6.4 Resource Provisioning Models

6.4.1 Introduction

Efficient Resource provisioning is of significant importance in relation to uti-
lizing the available resources to accomplish maximized return on investment.
As cloud resources become evidently abundant, under-allocation and over al-
location equal to wastage in terms of monetary cost, computational times and
can impact successful completion of a specific application.

The following attributes are the essential components required to form con-
clusive optimization improvements towards resource provisioning:

— Memory available in a cluster of instances
— Lower bound resource requirements

— Size of data

— Data attributes

— Cost constraints

= Time constraints

= Memory allocated for resource management.

6.4.2 Objective

In this experiment, the aim is to observe resource consumption patterns for
graph drawing algorithms and consequently derive a mathematical model for
approximating an lower-bound resource usage such that the application is able
to complete its computation whilst using an approximated minimum amount
of resources.

Due to the nature of graph drawing algorithms, the foremost resource usage
that is to be analysed is memory. The derived models should be applicable
to similar frameworks that may have similar trends in resource consumption
patterns.

Firstly, a broad based model is to be produced with the aim of increasing
the scope of its applicability to graph processing and scientific applications.
Furthermore, as a case study, experiments will be conducted on a graph draw-
ing framework/application called Gila which is a Apache Giraph framework
hased application, while YARN will be employed as part of the cluster resource
management.
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6.4.3 Tools Required

In order to conduct this experiment, the following tools and data will be used.
Access to Amazon Web Services
Sufficient funds to purchase a cluster of 1 to 20 instances of r3. Xlarge instance
type

The cost of r3.Xlarge can be found in Appendix Al. Note: The cost of
instances may change however the pricing used in the following experiments
has been included in Appendix Al
Graph data sets with the following properties

Graphs with different amounts of vertices and edges

Graphs of different composure, example synthetic and real
20 r3.Xlarge Memory optimized instances

Access to open source frameworks such as:
Apache Giraph
Gila
Hadoop
YARN
Git
Apache ZooKeeper

Maven

6.4.4 Procedure

One of main occurring issues associated with running graph drawing algo-
rithms is determining the lower bound of memory required for the task to
complete successfully. As part of the experiment, graph drawing applications
through Apache Giraph and Gila are to be tested by recording the minimum
amount of resources required for task completion. Ensuing, the test is to be
replicated across multiple cluster sizes combined with numerous graph data of
a range starting from 10,000 edges. Conclusively, from the collected data on
graph resource consumption patterns, a model is to be developed for approx-
imating the lower bound of resource requirements.
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6.5 Pareto Optimality

6.5.1 Introduction - Pareto Optimality

Pareto Optimality is the notion of resource allocation where two parties or
items cannot benefit one entity without making another entity worse off [18].
The notion of Pareto optimality is to assess multiple available options where
selecting to improve one option it will lead to the worsening of another.

6.5.2 Introduction - Weak Pareto Optimality

In the context of cloud computing, having two conflicting entities where there
is no such scenario or possibility that both cases are better off without another
entity being worse-off can benefit from Pareto optimality analysis [17]. Thus,
in the case of conflicting entities, it may be possible to improve one entity by
a specified ratio while another entity is worse off by a lower ratio which can
be considered as Pareto improvement.

Pareto efficiency does not factor fairness where depending on the user choice,
if a desired item can gain at the loss of another. it can be considered as a
Pareto improvement.

6.5.3 Introduction - Pareto Frontier

Restricting the number of possible options to only Pareto sets of choices allows
the user or entity to shift between Pareto efficient options where a trade-off
can be made within [12]. Pareto optimal solutions can also be categorized as
Pareto Frontier solutions.

6.5.4 Performance vs. Cost

In terms of distributed cloud computing, Pareto efficiency can play a crucial
role when evaluating options and trade-offs between performance and cost. In
most cases, it may not be possible to have an improvement of performance and
cost without any loss. Thus, if both entities cannot gain without any trade-off,
Pareto optimality can be a valuable tool for making an optimal decision based
on user needs.

Values included in the Pareto Frontier include points where it is not strictly
dominated by another point. Points not included in the Pareto Frontier are set
of points where they are strictly dominated by one or more points. Example:

F1(A) < £(C) < f2(A). (6.1)
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Where: - f1 is cost.
- 2 is performance.




Chapter 7

Results

In Chapter 4, experimental analysis of computational optimality of resource
allocation is proposed for testing. In this chapter, experiment results will be
analysed. The experiments were undertaken using a cluster setup through
Amazon Web Services.

7.1 Computational Units

In this section, we display the results obtained from analysing cluster and
algorithmic behaviour. As a case study, connected components algorithm
is analysed as part of a graph drawing algorithm GiLA implemented in the
Apache Giraph framework.

7.1.1 Cluster Performance

In figure 5.1, we test running the algorithm on a graph data set “add32” which
has the following graph properties:

- Amount of vertices 4,960

- Amount of edges 9,462

The cluster configuration as a benchmark includes one master node and
a core node which facilitates the workers. As the number of workers
is increased, the execution time increased linearly. Due to the nature
of Apache Giraph, each instance mapper can be utilized as a separate
worker, where each worker is assigned an input partition for computa-
tion.

Results show that the amount of workers increases linearly as we add
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more workers. In the experiment, a m3.xlarge instance was ufilized for
both master and compute nodes.

Execution Time (seconds)

Execution Time vs. Amount of Workers

=b=Execution Time vs.
Amount of Workers

2 3 4 5
Amount Of Workers per Instance

Figure 7.1: Computational Performance of Compute Units

7.1.2 Graph Locality

During the experiment, we gathered information in regards to graph
partitioning locality. In this context, we refer to graph locality as the
percentage of edges that are local to a worker as shown in Figure 5.2.
As input data is partitioned, each worker is assigned a fraction of the
graph. Vertices located in worker 1, may have incoming/outgoing edges
that are connected to a vertex located on any worker (2, n-1] , where n is
the amount of workers available on a single core instance. Consequently,
more messages are required to be transmitted through the network.

The argument stays true when referring to a single instance rather than
adding additional workers to multiple instances. Since more workers per
instance increases additional resource competition, the underlying rea-
son is due to resource of a instance being fragmented as each worker
requires its own JVM, further increasing overall execution times.
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Worker Count vs. Input Locality
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Figure 7.2: Edge Locality as the number of workers increase

7.1.3 CPU Usage and Written Data

More workers per instance increases the chance of delays since all work-
ers must complete their computations before going to the next superstep.

From our analysis, the most optimal worker count in terms of CPU
execition times and number of bytes written is to use a single worker

per instance.

In diagram 5.3, CPU usage increases in synchrony with rise in
number of workers

CPU times increases since more time is required for processing as
well as writing files to local system, thus the amount of workers
impacts the bytes written amount super-linearly

Performance improvements while the number of workers is one
worker per instance

Increasing workers per instance, requires more JVMs to be launched,
hence utilizing necessary heap memory.
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Still, adding more instances improves execution time.

Figure 5.4 exhibits the bytes written in proportion to the amount of
workers per instance. As the worker count per instance increases,
resources will be exploited for writing data to local files and each
workers resources are not allocated optimally.

CPU usage vs. Worker Count
o
File: Number of Bytes Written
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Worker Count per Instance

Figure 7.3: CPU usage as worker count  Figure 7.4: Bytes written as workers are
is increased increased per instance
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7.1.4 Synchronization Barrier Delay

Increased workers per instance increases the chance of delays since
all workers must complete their computations before going to the
next superstep.

On a test case, we were able to observe that despite a balanced
input split, the workers were initialized at the same time. Even so,
their finish time varied with minor differences on a single superstep
as show in Table 5.1. The test performed on table 1, includes a
cluster with a master node and a single node. Five workers were
instantiated simulfaneously. As shown, worker 2 took longer to
complete execution which results on the other workers waiting at
the synchronization barrier as shown in Figure 4.1 before any of
the workers can proceed to the next superstep.

Instance Used Worker 1D Seconds To Complete Execution
mJ.xlarge 0 18
mJ.xlarge 1 18
m3.xlarge 2 23
m3.xlarge 3 18
mJ.xlarge 4 18

Table 7.1: Worker run-time for a single superstep
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[
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7.2 Resource Provisioning Models

Resource provisioning and obtaining a lower bound of the resources
required for running a distributed graph algorithm on a homoge-
neous resource cluster, involves multiple stages of computations
before specific amounts of resources are determined.

In order to allocate a specific resource portion for a job/task, the
following pivotal characteristics must be taken into consideration:

Total memory available in a cluster, that is the combined memory
from each machine hired combined

The lower bound resource requirements for a task to complete suc-
cessfully

Size of the data being used

Attributes of data being tested. Example, synthetic random graphs,
real graphs, social graphs, network graphs or any other specific
type of data being used. NOTE: Data can apply to scientific work-
flow tasks or similar data used in scientific workflow algorithms

Cost based constraints

Deadline based constraints, referring to the time it takes for a job
to finish.

7.2.1 Container Allocation per Instance

The number of containers that can be allocated to a specific in-
stance is dependable on several factors. Firstly, the amount of
memory available, number of CPU cores and storage can impact
the number of containers that can be allocated per instance. De-
pending on the mentioned factors, it is possible to determine the
maximum amount of containers that can be allocated per instance.
Conclusively, each container functions as a “worker” meaning that
its main role in graph processing jobs is to perform computations.
Hence, a container can be referred to more generally as a “worker”.
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Cluster composition - Instance A, Band C.

Instance B
Task Container
Instance A

Task Container
Task Conftainer
Task Container Ut Containey
Task Container

Instance C

Task Container

Task Container

Figure 7.5: Cluster composition of instances/workers
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As demonstrated in Figure 6.5, it is assumed that instance A, B
and C are of identical resource specifications. However, instance
A, B and C have multiple configurations where instance C has
one container/worker. Conversely, instance A is composed of four
smaller sized containers. Depending on the composition of the
algorithm, it may be beneficial to use a single worker/container
per instance, however increasing the number of containers /workers
reduces the computations required at the cost of reduce portions
of computing resources.

Thus, finding the maximum amount of containers/workers per
cluster can be found using the following model representing a
broader general use. Further in this chapter we test this model
against a graph drawing application as a case study.

Winee = min[C x 2, (7.1)

M min ]
Where:

- W is the maximum mumber of workers/containers that can be al-
located in a cluster.

- My is the lower bound amount of memory to be allocated for
each container/worker in a cluster. Note: each data set is likely
to require different minimum amounts of memory, specifically of
importance with algorithms that are memory intensive. The lower
bound is calculated for the case study in the next subsection.

- C is the total amount of cores available in the cluster.

- R is the ram available in the cluster. R is calculate using the fol-
lowing equation:

R=1Ixr (7.2)
Where:
- I is the number of instances in the cluster.

- r is the amount of memory available in each instance.




7.2 Resource Provisioning Models 43

]

]

7.2.2 Case Study: Lower Bound Memory Con-
sumption Pattern

Uncovering the data resource footprint widens the scope of poten-
tial resource savings by utilizing a minimal portion of resources
within a cluster. Through the analysis of the lower bound memory
allocation pattern, in most cases a pattern is likely to emerge al-
lowing consequent applications to pre-set the amount of resources
for each data set based on its attributes and characteristics.

Running graphs of sizes from 10,000 edges up to 2,000,000 edges,
resource consumption patterns start to emerge. From the data,
mapping the results to an equation that allows potentially predict-
ing the lower bound of memory requirement. However, the benefits
of reducing resource usage increases completion time. Detailed, the
advantages and disadvantages of using lower bound memory are as
follows:

Advantages:
A significant reduction of resource usage

Freeing up resource portions for other applications or scientific
workflows

Allows concurrent processing of multiple data sets. Example: draw-
ing multiple graphs

Ability to launch and successfully complete jobs with minimal re-
source requirements.

Disadvantages:

Completion time increases. Not optimal for time constrained based
jobs/tasks

Despite lower resource consumption patterns, overall cost increases.
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Figure 7.6: Lower Bound resource consumption based on edges.

As shown in Figure 6.6, it is observed that a pattern emerges on the
minimum memory requirement for a job to complete successfully.
The graph data tested consists of synthetic randomly generated
graphs of the same degree.

Despite the pattern, the identical procedure was undertaken and
we compared the results of similar as well as the same graphs based
on the amount of vertices. The properties of the instances used in
this experiment are as follows:

ST iy Storage
Model CPUv Memory (GB) SSD(GB)
r3-Xlarge 0 18 1x32

Table 7.2: Lower bound test: Instance specifications.
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Figure 7.7: Lower Bound resource consumption based on vertices.

In Figure 6.7, the results of graph drawing resource consumption
patterns are compared to the results based on Figure 6.6. From
the results, the use of edges and verticies as a data characteristic
shows similar results.

Based on the following data, the formulated representation of the
results can be formulated by the following equation:

Mypin=4FE —6x X +1 (7.3)
Where:

- My, is the lower bound amount of memory to be allocated for
each container/worker in a cluster. Note: each data set is likely
to require different minimum amounts of memory, specifically of
importance with algorithms that are memory intensive. The lower
bound is calculated for the case study in the next subsection.

- X is the amount of edges in the graph data set.

- E is the variable exponent.
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Computing the maximum amount of containers

The model for computing the maximum amount of containers,/workers

was generally infroduced by the equation 6.1.

Winas = min[C x 2, W

-'hrmin ]
After computing the lower bound of memory required to success-
fully perform a graph drawing task, it is now possible to calculate
the maximum potential amonnt of containers/workers. Below in
table 1.1, several data points are calculated and compared to the
results obtained by testing synthetic graphs using equation 6.3 in
order to compute the variable M, .

(;'mph Approximated minimum amount | Actual amount required
Size(Edges)

10,000 1.04 1

50,000 1.2 1.2

100,000 1.4 1.4

Table 7.3: Lower bound test: Instance specifications.

- Pre-allocated resources, example: Memos

Following the computation of My, it is possible to caleulate the
maximum amount of workers possible using the equation in 6.4.

7.3 Minimum Amount of Workers Model

In the section 6.2, the maximum amount of containers that is feasi-
ble within each instance of a cluster is computed while concurrently
incorporating the lower bound resource consumption. In this sec-
tion, results and a model is introduced for computing the minimum
amount of workers required to complete a job/task. Finding the
minimum amount of workers required allows portions of a resource
cluster to be freed up for nuse by other applications such as sei-
entific workflows or running several concurrent graph processing
applications.

A common trend amongst cluster environments is accessibility. A
user who may be sharing a cluster environment has to take into
consideration possible portions of resources being pre-allocated.
Factors such as the following need to be taken into factor:
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- Total available resources including:
- vCPU
- Memory
- Storage
- 1/0
Below a model is suggested for computing the minimum amount
of workers required for a job/task to complete successfully.
H-5
*'hrmr'n

F =
Wein =

Where:

- R is the ram available in the cluster. R is caleulate using the fol-
lowing equation:

R=1Ixr (7.6)
Where:
- I is the number of instances in the cluster.
- 1 is the amount of memory available in each instance.
- S is the the amount of memory pre-allocated within the cluster.

- Myin is the lower bound amount of memory to be allocated for
each container/worker in a cluster. The computation of M,;, is
demonstrated in section 6.2.2 in this chapter.

7.4 Maximum Resource Provisioning

Utilizing the minimum portion of resources available presents nu-
merous benefits such as the ability to share cluster resource with
other concurrently running applications. However, in the scenario
where cluster resources are solely dedicated to a single individ-
ual application, then it is necessary to determine the maximum
amount of resources that can be allocated towards an application.

Having the ability to determine the minimum amount as shown
in the previous section, and, calculating the maximum amount of
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resources that can be allocated, can help the user to quickly deter-
mine if the application will be able to run using available resources.
In order to allocate the maximum amount of memory available, the
following equation can be used.

R

Mor = max[ M. ”—]

(7.7)

Where:

- Mpax the maximum amount of memory that can be allocated for
each container.

- Myin 18 the lower bound amount of memory to be allocated for
each container/worker in a cluster, The computation of M, is
demonstrated in section 6.2.2 in this chapter.

- Winax is the maximum amount of containers/workers.

- R is the ram awvailable in the cluster. R is calculate using the fol-
lowing equation:

R=1xr (7.8)
Where:
- I is the number of instances in the cluster.

- r is the amount of memory available in each instance.
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7.5 Pareto Optimality

Pareto optimality facilitates clear trade-off consequences based on
two entities such as cost and performance in-order to select priority-
based options where one entity might be preferred over another
dependant user scenario.

7.5.1 Cost Distribution - Pareto Chart

To evaluate efficient instance types for utilization in a cluster, it
is paramount that a cost comparison between multiple instance
choices is conducted. Firstly, the cost distribution between in-
stance types is analysed. In the experiments conducted, only mem-
ory optimized instance types were used. Due to the nature of graph
drawing applications being memory intensive in our experiments.
In this experiment, the results shown in Figure 6.8 focus solely on
r3 type instances as they optimized in terms of memory. Despite

Cost Distribution - Pareto Chart
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Figure 7.8: Cost only distribution - Pareto chart.

the linear equal distribution in terms of cost singly does not di-
rectly reflect a correlation in terms of performance output.

The ratio and relationship between cost and performance must be
weighted as two unrelated entities in order to display the relation-
ship between cost and performance in order to analyse and perform
trade-off within the Pareto Frontier.
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Model CPUv Memory(GB) ;;‘B’E(gfﬁ}
r3-large 2 15.25 1x32
ri-xlarge 1 30.5 1x80
ri-2xlarge 8 61 1x160
r3-dxlarge 16 122 1x320
ri-8xlarge 32 244 2x320

Table 7.4: Lower bound test: R3 Instance specifications.

The cause of a linear distribution of cost for r3 instances is justified
by the resources quantities provided by each instance as shown in
Table 6.4. In this occasion, r3 instances follow a clear trend in cost
to memory provided ratio, meaning that the price for r3.2xlarge
amounts to 50% of that offered by r3.4xlarge.

7.5.2 Application Cost - Graph Drawing

In this section, we consider an application to be a set of data A
where each data set consists of edges and vertices. Further, we con-
sider multiple resource types i’ within the Amazon Web Services
where each resource type offers a different price for the amount of
resources it provides. The amount of memory is represented by:
< 1, T2, T3y oo , T =

The cost associated to each resource type is represented by:

Oy, CoyCayies 30

The resource considered is memory for simplicity purposes and
the framework used as a case study, GILA and a graph drawing
algorithm that is memory intensive in its nature. However, the
resource is interchangeable and can be applied to other frameworks
and algorithms in a cloud resource distributed environment.

In our results, only homogeneous resource clusters were considered
where the compute workers/containers are allocated with equal
resource (uantities, especially necessary for the case study due
to Apache Giraphs framework synchronization barrier favouring
homogeneous distributions as demonstrated in section 6.1.4. The
resources utilized in the results consider clond based resources.
namely Amazon EC2 on-demand instances.
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7.6 Resource Computation Model

From the experiments conduced it is assumed that for a applica-
tion A consisting of supersteps a (individual compute tasks) each
supersteps within the application.

Each individual superstep consists of a completion time ratio T,
denoted by the following:

gz :rlfr:!uf/T:‘r

T

T, (7.9)

Where:

- T, Is the average completion time ration of a task to memory
allocated for that task, if-and-only-if the tasks completion speed
varies

- Tiotar Is the total time taken to complete all tasks
- T}, Is the number of tasks in the application

- I is the memory available/used.
Similarly, we compute the cost associated with running a superstep
by considering the time taken to run the application as well as the
number of tasks within the application and the memory allocated
to the application by using the following equation:

Ciotat = To x Ty, x C,, (7.10)

=
Where:
- Clorar 18 the cost associated with running k amount of tasks.

- C,,, The cost associate with hiring resource of type m.

An important observation is fo note is the cost associate with run-
ning applications.

In the scenario when the total running time of all tasks combined
Cliotar 18 less than 60 minutes, then the cost of running that specific
application will amount to the same cost since Amazon Web Ser-
vices costs are calculated on an hourly basis. Thus, meaning that
if a application runtime completes while Ty < €., then the total
cost will still incur the full price for that hour. However, a good
indication of the ration of the cos based on runtime may indicate
that the resource type being used may not be necessary as well as
open possibilities for sharing the resource that may not be used to
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run multiple applications can be of benefit.

Furthermore, the model does not take into consideration of start-
up times which for large cluster on AWS may take any time from
seconds to a few minutes depending on cluster instance availability
as well as the amount of instances being hired.

User interactions such as set-up and application installation were
excluded from the results as it is difficult to obtain a specific
amount of time that the user may take for miscellaneous activi-
ties such as application installation and uploading of datasets.

7.7 Cost and Performance Constraints

In this section, the results of the analysis between cost and perfor-
mance for multiple variations of resources with varying quantities
are analysed through the use of Pareto Frontier. Further, the re-
sults obtained we show a model of choosing the best resource type
based on user requirements and preferences.

Firstly, in this experiment multiple resource types from AWS EC2
are analysed for their performance as well as cost.

Due to the relationship of cost and performance, in the scenario
where both entities are improved without a trade-off is the most
optimal solution considering that the choice offers the most im-
provement in both entities.

However, performance and cost in our results show that increas-
ing performance by purchasing a higher resource amount directly
affects cost.

Thus, the use of Pareto Frontier allows the elimination of inef-
fective possibilities while selecting only the options where a fair
trade-off occurs. Firstly, finding the Pareto Frontier Algorithm 1
was implemented to perform the computations.
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Algorithm 1: Pareto Frontier Sets
input: F {c, p} (pairs of all sets of points)
output: PF (c, p)
begin

sort F: \\ascending

let ¢ := Ccheapest ;

add F; to PF;

while (p > c)

if Fipy> Fo) then
add F to PF;
letc:=p;
goto res;

else

| break;

end if;

end while;

end begin;

Finding the Pareto Frontier, Algorithm 1 is utilised. Firstly the
data obtained from testing a set of data across multiple AWS EC2
instance tyvpes to obtain performance(run time) as well as the cost
associated with the computation. Tested instances included T, M,
C and R. However, the results focused on rd instances due to their
optimization in terms of memory. These results can be replicated
in terms of CPU. However graph drawing algorithms such as Gila
used through Apache Giraph is memory intensive.

Model CPUy Memory(GB) ;;%‘(‘g’m
ri-large 2 15.25 1x32
r3-xlarge 4 30.5 1x80
ri3-2xlarge 5 61 1x160
rd-dxlarge 16 122 1320
r3-8xlarge 32 244 2x320

Table 7.5: R3 Instance specifications.
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In Figure 6.8, the data point in black represent the Pareto frontier
computed through algorithm 1 in terms of cost and completion

time. However, the data points in red, were excluded from the
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Figure 7.9: Pareto frontier for Gila graph drawing framework

- The red data points either exceeded a safe limit of completion time,
or error incurred such as lack of memory and the inability to per-
form all the necessary computations. Noticeably, the data points
Py, Py, Py, represent the following instance r3-xlarge, r3.2xlarge
and r3-dxlarge respectively.

Model CPUy Memory(GB) EQ‘B‘E‘%‘BJ
r3-xlarge 4 30.5 1x80
r3-2xlarge 8 61 1x160
r3-dxlarge 16 122 1x320

Table 7.6: R3 Instance specifications.
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Instances r3-x8large, offered double the resource capacity, however
the performance was worse-off when compared to the productivity
of r3-dxlarge. Thus, despite the amount of resource for r3-8xlarge
being doubled, the cost increased while performance shows worse-
off when compared to r3-dxlarge.

7.7.1 User optimization selection

In Figure 6.9 Pareto Frontier includes only points P where P values
correspond to instance types.
User based optimization requires priori of specific optimization
fargets, thus requiring user speciality on the subject as well as
the difficulty to obtain an accurate objective may be challenging.
However, the problem and optional choices can be simplified by
providing ways to select a specific goal based on one parameter
such as cost or performance. Furthermore, we suggest a simple
model as shown in equation (6.11) that selects the most dominant
value in terms of performance. Consequently, the instance type
with the best performance is associated with a trade-off in terms
of cost.
The set of choices is limited prior to user decision making through
Pareto frontier. Only Pareto Frontier solutions are take into con-
sideration throughout the following equations.
With a objective choice from the user, once the appropriate time
or performance value has been chosen, the value point (cost, per-
formance) that results from the equation is used to match with a
corresponding instance type.
For example: If a user choice is to optimize the application in terms
of performance, equation (6.11) is used to obtain the option from
the Pareto frontier with the cheapest cost. Thus, in that scenario,
P, point from Figure 6.9 would be selected which corresponds to
r3-xlarge.

Timei, = min {F(p)}

Y¥peF

(7.11)
st. Cost = \}1‘1;1:;.‘{17'((:}}

Where:
- Time is the run time of a particular application.

- F is the set of optimal Pareto Frontier choices.
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Conversely from the previous optimization technique, the user may
prefer a cost based constrain where the cost is the main priority.
Similarly, equation (6.12) selects the minimum value in terms of
cost. The minimum cost is similarly to (6.11) incurs a loss in terms
of performance(running time).

Notably, the minimum cost based optimization in terms of Pareto
frontier refers to the extreme end point on the Pareto Frontier
graph.

C Stynin = i Ffe
08 vlell*!li_{ (c)}

(7.12)
s.t. Time = min {F(p)}
Y¥pe F

Utilizing a lowest cost optimization technique may offer the most
optimal solution in terms of cost. Using this approach provides
the most cost effective solution, however it may not be suitable for
other optimization needs that the user may have. Such scenario
may include projects based on a limited fixed budget amount. Let
budget refer to €, referring to a user budget choice.

Through equation (6.12) the optimization focuses on the most
cost effective solution. However a fixed budget which is common
amongst research projects and grants, a user may prefer to se-
lect the best instance/resource option that is within the specified
budget ;. Assuming the priori includes the value of C,, using
equation (6.13), it is possible to obtain the best instance in terms
of cost from the Pareto frontier choices F, such that the maximum
value obtained is the largest value in set F smaller than C,.

Costpaz = J{n:ﬁ.};{f‘((}} &t Cp < Costyin (7.13)

Noting the results from the Pareto Frontier solution, in reference
to points P1, P2andP3 if the user chosen budget ', < P1, then
the equation (6.13) would suggest P2 assuming that C, > P2,
is true, then P2 is the selected instance option referring to a r3-
2xlarge instance. Conclusively, it would result on the budget being
underutilized by a cost fraction loss of:

Costioss = Cy — Pk, (7.14)

Where Pk refers to P2 in the mentioned scenario. Despite of lack of
optimality, this is case specific since AWS EC2 instances resources
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may not be customizable, specifically in terms of memory. How-
ever, for storage and CPU intensive applications AWS offers ex-
tensive customizability as well as the ability to control /O speeds.
The benefits accumulate further when more machines are tested
against the Pareto optimality. The use of the mentioned mod-
els extends to self-hosted distributed computing hardware as more
optimal options can be found for the Pareto Frontier by improv-
ing customizability. Further, all the choices chosen through the
use of the above equations leads to a Pareto efficient choice, how-
ever in terms of cost budget customizability the result is a efficient
Pareto choice with a potential underutilization of cost in terms of
Clost,ee. Thus, on cost based budgets, optimality is dependant on
the available number of resources as well as the variety of resource
which has a correlation with the number of optimal Pareto Frontier
solutions.

7.8 Case study: Pareto optimization

In section 6.7, Pareto Frontier and cost/performance trade-off op-
timization models are introduced. In this section, experimental
results of a graph drawing application are demonstrated. Firstly,
this experiment focused on a graph data with the same amount of
verticies and edges while graph degree remains constant with the
graphs used in section 6.7 for consistency purposes. Further, fol-
lowing equation (6.12) for performance based optimization. Thus,
this experiment seeks the most optimal solution in terms of per-
formance disregarding cost.

From the use of equation (6.12), we obtain Py as the optimal in-
stance type. where P; refers to instance r3.dxlarge as shown in
table 6.7. Non-optimal instances are disregarded from table 6.7.

Model Reference Memory(GB) Eg%?g‘%)
ri-xlarge P 30.5 1x80
r3-2xlarge Py G1 1x160
ri-dxlarge By 122 1x320

Table 7.7: Pareto Frontier instance choices

Further, using r3.dxlarge, cluster optimization through resource
=] [ = bl (=]
provisioning using equation (6.1) for optimizing the maximum amount
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of workers in the cluster. Furthermore, we compare initial results
obtained prior to any optimization as shown in Figure 6.10.

Where:

Initial results refers to the runtime of the same graph ran with no
optimization technique applied on a r3.xlarge instance.

Pareto Optimized shows runtime reduction after selecting an op-
timized instance type r3.4xlarge.

Pareto Optimized + Worker Optimization refers to runtime ob-
tained by using an optimal instance from the Pareto Frontier ad-
ditionally to adjusting the number of workers within the cluster
based on techniques introduced in section 6.1.
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7.10: Optimization level for a 1 million edge graph
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7.9 Case Study: Cluster Performance
Analysis

Cluster performance behaviours are dependant on numerous fac-
tors that can affect the outcome and efficiency of running large
scale application on cloud distributed resources such as Amazon
Web Services. In this section, we analyse cluster behaviours based
on performance optimization techniques developed throughout the
previous sections. As a case study, graph drawing algorithms(Gila)
were used on a distributed framework Apache Giraph. Firstly, ex-
perimental results based on running clusters with multiple amounts
of instances are recorded in table 6.7. for numerous graph data of
various sizes are tested.

Graph Name | Cluster Size Edges Runtime(sec)
add32 10 10,500 46

grund 10 17,427 5l
com-Amazon | 10 925,872 248
comDBLP 10 1,049,866 452
roadnetPA 10 1,541,514 328

Table 7.8: Real Graph data sets 10 r3.xlarge instances

Graph Name | Cluster Size Edges Runtime(sec)
add32 15 10,500 G4

grund 15 17,427 67
com-Amazon | 15 925,872 201
comDBLP 15 1,049,866 369
roadnetPA 15 1,541,514 274

Table 7.9: Real Graph data sets 15 r3.xlarge instances
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Graph Name | Cluster Size | Edges Runtime(sec)
add32 20 10,500 67
grund 20 17,427 GY
com-Amazon | 20 925,872 173
comDBLP 20) 1,049,866 360
roadnetPA 20 1,541,514 260
Table 7.10: Real Graph data sets 20 r3.xlarge instances
Table 6.8 shows the results of the same graphs tested previously,
however the cluster configuration is changed to accommodate more
instances. In all the the results in tables 6.7 to 6.9, each instance is
allocated a single worker, thus maximizing the resource and reduc-
ing the number of overall graph partitions. Consequently reducing
the number of verticies migration during each superstep and in-
creasing locality of edges within each compute() unit. In order
to analyse the effect of cluster, from table 6.7 to 6.9 we analyse
scalability based on graph data size in terms of vertices and edges.
80 l5&.
70 T 70
60 T B0
50 50
an ® Cluster Size 40  Cluster Site
a0 4  Rurtimefs) 20 # Runtimel(s)
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add32 graph performance

grund graph perlnrm.unoé

(a) Performance of add32 with 10,500 edges

(b) Performance of grund with 17427 edges
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Diagrams (a) and (b) both show decrease in performance as cluster
size increases where performance in runtime is expected to improve.
However, despite the slight reduction in performance is assignable
to the fact that cluster size ranges from 10 to 20. Each machine
requires its own JVM as well as edge locality and migrations be-
tween each instance/worker affects runtime significantly impacting
graphs with small amount of edges, that is graphs under 50,000
edges.
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{c) Performance of com-DBLP with 1,049,866 edges

Conversely, the number of edges directly correlates with cluster
performance. The number of instances in a cluster reduces the
overall runtime as illustrated in diagram (c¢) and (d) where the
number of edges are approximately 1 million. In terms of scalabil-
ity, the number of machines from 10 to 20 shows scalable perfor-
mance gain as the number of edges increase as shown in diagram

(e).

(d) Performance of com-Amazon with 925,872 edges




62

Chapter 7. Results
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(e} Cluster performance: graphs from 10 thousand to 1 million edges

The importance of cluster scalability is especially critical with
larger graphs. Conclusively, it may prove difficult selecting be-
tween cluster sizes and configurations. However, it is crucial user
choices are curated on the basis of performance.

Computing performance level of a cluster composition can deter-
mine the scalability of resources in terms of execution speed. Per-
formance level for a cluster composition can be formulated by the
following equation:

yon

7.15
I'wxT ( )

PE:

Where:
- V., is the amount of vertices in the graph.
- E, is the amount of edges in the graph.
- I is the number of machines in the cluster.

- T is the time taken by the application to complete.
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Utilizing equation (6.15), a diagram illustration shows the change
in performance level increases as the number of workers is in-
creased. The benefits of calculating performance level of a cluster,
allows the user to observe how a certain data set behaves in mul-
tiple cluster compositions. Consequently, if multiple graph data
sets of similar attributes are to be processed, selecting a cluster
size based on performance level may improve overall performance.
In figure 6.10, performance index improves as the amount of in-
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Figure 7.11: Performance level of graph road-Net with 1.5 million edges

stances improves from 10 > 15 > 20. Performance level improve-
ment is considered as performance level in Figure 6.10 approaches
0. Conclusively, performance level is an indicator of cluster per-
formance in terms of runtime without factoring cost increases as
hiring more machines increases overall running cost. The trade-off
between cost and performance has been analysed in section 6.7.
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Chapter 8

Discussion

In the previous chapters we have presented the research conducted
in this project. Here, we discuss the results obtained based on the
introduced methodologies developed throughout this project and
its implications in various areas of distributed cloud resource provi-
sioning. We begin by discussing the importance of curated resource
provisioning and scenarios where the methodologies developed in
this project may assist in selective decision making. Additionally,
we discuss how Pareto optimality and the introduced models as-
sist by filtering optimal solutions reducing the number of solutions
that the user is presented with.

8.1 Instance Worker Optimization

In section 6.1 we discussed the correlation between the number of
workers per instance within a cluster. Firstly, the results showed
that an increase in the amount of workers has an impact on execu-
tion speeds. The results showed that using one worker per instance
results in better execution speeds regardless of algorithm.
Intuitively, increasing the number of workers reduces the work-
load for each worker in terms of computation, this is due to the
fact of graph partitioning being split across each worker for a bal-
anced distributed system. As the number of workers increase, the
percentage of graph locality decreases. With a decrease in edge
locality, the number of migrations after each superstep(iteration)
increases to produce a balanced partitioning of the graph. Fur-
thermore, the reduction is edge locality between workers was not
necessarily the underlying reason for such runtime increase.
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The main factor of worker count correlating to increased runtime
is due to resource competifion between each worker as they com-
pete for the same resources within an instance. Furthermore, each
worker is launched within its own container as a virtual machine
where auxiliary system support applications are launched further
reducing the amount of resources available for computational re-
quirements, Resource competition decreases as resource availabil-
ity increases on each instance to the point where increasing the
number of workers creates benefits including runtime reduction.

8.2 Consumption Patterns

Throughout this project, whilst testing and executing graph draw-
ing applications as well as graph processing algorithms, one of the
major issues highlighted was determining the amount of memory
required for successfully completing a graph drawing. In section
6.2, we analyse the lower bound of resource consumption footprint
of graphs in terms of verticies and edges. Through the data col-
lected, we formulated a method of determining the lower bound
of memory required to successfully run a graph drawing job. The
importance of acquiring a lower bound even at approximate levels,
reduces the chances of resource under allocation.

Special factors need to be taken into consideration, including the
type of graph attributes such as graph degree and the ratio of ver-
ticies to edges.

The benefits of eliciting requirements in terms of resources ben-
efits future computations, as optimization techniques are applied.
Scenarios that would benefit from consumption pattern and graph
footprint analysis would include data that is constantly changing
with graph degree and other graph attributes remaining constant.
Further applications that benefit include scientific workflow en-
sembles, where consumption patterns can be discovered in terms
of application tasks due fo their data attributes remaining im-
mutable.

8.3 Provisioning Models

As resource patterns are encapsulated, allocating resources based
on availability is a critical function. During our research, we intro-
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duced methodologies of curating resource allocation based on clus-
ter circumstances and resource availability. Benefits of such anal-
vsis provides a certain sequential calculation of optimizing cluster
resources based on factors that dynamically change in distributed
cloud computing. Such factors include:

Instance types

Cluster composition, homogeneous vs heterogeneous resource coms-
positions

Instance availability (Specific to Amazon where regions can affect
cost and availability).

8.4 Pareto Optimality

In regards to resource allocation in cloud environments, several
conflicting incomparable entities rise. Performance and cost in
most cases require a trade-off. Enhancing performance conse-
quently requires a more expensive cluster composition. Conversely,
cheaper objectives result in decrease in performance. The use of
Pareto optimality and Pareto Frontier analysis provides clear in-
sight into the underlying truth of options available to the user.

Through section 6.5, We infroduce several ways of optimising the
selection of options based on user objectives. Since user objec-
tives are difficult to obtain, and, possible user requirements are dy-
namic in terms of customizability, it is critical that the introduced
methodologies target the problem of optimal choices based on user
requirements. Through Pareto Frontier analysis, we demonstrated
that it is possible to obtain a set of optimal solutions that lead
to an increase in performance or cost, depending on user require-
ments.

Common scenarios where the need to select the most optimal op-
fion amongst multiple choices with a limited and specific budget
can include research projects where grants are allocated. In such
cases, where research grants or business budgets are set and un-
changeable, selecting the most optimal resources in terms of per-
formance without exceeding the budget is critical to the projects
success.

Our results through case studies demonstrated that through the
use of Pareto Frontier filtering, as well as the introduced models
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for maximizing resource allocation, performance improvements up
to 30% can be achieved, which in a long term project with hun-
dreds to thousands of tasks, will consequently lead to reduction of
the budget required or enhancement of execution speeds for appli-
cations in distributed cloud environments.
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Conclusions

The goal of this project was to assess resource provisioning pat-
terns for cloud based distributed computing though graph drawing
applications and determining models for optimal resource alloca-
fion.

Through our research, we discovered the lack of precise models for
allocating resources based on data footprints. To satisfy this, we
conducted experiments to elicit graph resource usage footprints.
Through the use of the models based on gathered data, we were
able fo successtully complete multiple applications without re-
source under allocation issues.

Moreover, additional models were introduced that provide efficient
resource allocation based on multiple nser objectives.

In this chapter, we conclude with the research conducted through-
out this project by examining the objectives accomplished.

A literature review was conducted based on recent research in dis-
fributed cloud computing in order to understand the fundamental
concepts required for conducting this project. Further background
research was gathered in the field of graph processing, more specif-
ically with a focus on distributed graph drawing.

In the following chapters, experimental and risk assessment strate-
gies were conduced for maximizing project success and handling
potential risks that may have risen during the experiments. Con-
cluding risk assessment, experiments were designed in incremental
stages for improving resource provisioning and designing schedul-
ing solutions.

From the initial experiments, we concluded results and introduced
models for resource allocation problems through case studies in
graph drawing applications. It was discovered that the need for
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precise allocation models are required for preventing issues in re-
gards to over or lack of resource consumptions. Through visual-
ization of resource consumption patterns of graph processing algo-
rithms, we developed several optimization models and techniques
for assisting users of cloud resources to make optimal decisions in
terms of resource selection for maximal objective reach. Through
optimization techniques and introduced models, we demonstrated
the ability to increase performance in terms of cost and perfor-
mance.
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Future Work

Based on the data collected in graph resource consumption pat-
terns, future work may include the expansion of experiments to-
wards scientific workflow applications where data patterns can be
used for curated resource allocation. Expanding the introduced
models to apply fo a wider scope of distributed applications would
also provide margin for future research.

10.1 Design and Implementation

Further enhancement and implementation of a framework that uses
numerous data sampling techniques for eliciting application be-
haviours based on data input, consequently, reducing the need for
user priori, increasing the accuracy of application resource con-
sumption predictability.

10.2 Resource Consumption Sampling

Implementation and design of resource consumption sampling au-
tomation to reduce user priori to determine data properties and
attributes. Alternatively, data sampling can be used to elicit re-
source consumption based on input data rather than pre-computed
approximations. Performing sampling techniques, reduces possible
user error during calculation and approximation stages.
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Abbreviations

AWS Amazon Web Services

EC2 Elastic Compute

HDFS Hadoop Distributed File System
BSP Bulk Synchronous Parallel

JVM Java Virtual Machine
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Chapter 12

Definitions

Instance A physical machine which consists of multiple resources
such as Memory and CPU.
Worker A processing unit capable of performing computations

on behalf of a Application/Algorithm.

EC2 Region A Chosen geographical region where the physical instances
are hosted

Cluster A collection of resources from multiple machines hired
on demand

=]
en
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Appendix A

A.1 Instance Pricing - Sydney Region

In the table below, the all the prices have been included. The prices
listed have been used for experimental calculations and modelling,.
For experiment replication and further research, the prices for EC2
instances may change frequently.

b |
=1
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Instance Type 0s Cost per Hour
t2 nano Linux $0.01
t2 micro Linux $0.02
t2 small Linux $0.04
t2 medium Linux $0.08
t2 large Linux $0.16
m4 large Linux $0.168
md xlarge Linux $0.336
m4 2xlarge Linux $0.673
md dxlarge Linux $1.345
m4 10xlarge Linux $3.363
m4 16xlarge Linux $5.381
m3 medium Linux $0.093
m3 large Linux $0.186
m3 xlarge Linux $0.372
m3 2xlarge Linux $0.745
cd large Linux $0.137
cd xlarge Linux $0.275
cd 2xlarge Linux $0.549
cd dxlarge Linux $1.097
cd 8xlarge Linux $2.195
¢ large Linux $0.132
c3 xlarge Linux $0.265
¢ 2xlarge Linux $0.529
¢ dxlarge Linux $1.058
¢ 8xlarge Linux $2.117
g2 2xlarge Linux $0.898
22 8xlarge Linux $3.592
x1 l6xlarge Linux $9.671
x1 32xlarge Linux $19.341
3 large Linux $0.2
3 xlarge Linux $0.399
r3 2xlarge Linux $0.798
r3 dxlarge Linux $1.596
r3 8xlarge Linux $3.192
i2 xlarge Linux $1.018
i2 2xlarge Linux $2.035
i2 dxlarge Linux $4.07
12 8xlarge Linux $8.14
d2 xlarge Linux $0.87
d2 2xlarge Linux $1.74
d2 dxlarge Linux $3.48
d2 8xlarge Linux $6.96

Table A.1: Amazon Instance prices - Sydney Region
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A.2 Instance Resource Specifications

Throughout the experiments, various instance types were used.
Each instance type has a specified amount of resources. However
the resources available for each type are subject to change, thus,
in the table A.2 instance properties are recorded.

Model CPUv Memory(GB) gts%’(‘g"m
ri3-large 2 15.25 1x32
ri-xlarge 4 30.5 1x80
r3-2xlarge 8 61 1x160
ri-dxlarge 16 122 1x320
ri-8xlarge 32 244 2x320

Table A.2: R3 Instance specifications.
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Appendix B

B.1 Graph Layout Visualization

In this section, we produce multiple layout algorithms that we
analysed during the research phase of this project. The layouts
displayed in this section represent the same graph with various
eraph visualization layouts,
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{a) Graph layout: Circular
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(b) Graph layout: Contraction
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(c) Graph layout: Force Atlas
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(d) Graph layout: Fruchterman Reingold
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(e} Graph layout: OpenQurd
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(f) Graph layout: Radial Axis
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(h) Graph layout: Yifan Hu Proportional
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C.1 Consultation Meetings
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Consultation Meetings Attendance Form

Week Date Comments Student’s Supervisor's
(if applicable) Signatur Signature
bR/l Pegiect lecckoff z z ﬁ 0/\_-
2 12 72/ 16 bgq.:RM ﬂrf(\)c’-c}q Afé'u:f‘ ‘ﬂ/’ C ,4\\/
77 2418/ f)e;.‘j,t IQG*&I&ILQ{‘:; /M (-@' C/\/
S 1%20/e /i Pegeess Regscd M ﬁ'(ﬁ e
7 |15 gie | Sk el | def 1) AL
g ¢ /19/16 @ﬂ%/g;cc/m’v@k dud. .\_'9 0 A
? _f't/|r)/'ir, :ﬂo{lk"‘c, t Clvoutlel M {/] (“ &
R SV [ B ey
1) 264/ Comelusions Q ’7(\/\ =

Figure C.1: Consultation meetings
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