VERIFICATION OF MULTI-THREADED C PROGRAMS

Matthew Pigram

Bachelor of Engineering
Computer Engineering

;
lu ’.

MACQUARIE
University

SEYDMEY -AUSTRALIA

Department of Engineering
Macquarie University

November 2016

Supervisor: Assoc. Prof. Franck Cassez
Co-Supervisor: Assoc. Prof. Tony Sloane







ACKNOWLEDGMENTS
Assoe. Prof. Franck Cassez and Assoc. Prof. Tony Sloane for their attentiveness
and advice throughout the course of this project, as well as for their contribu-

tions to Skink and its related libraries in support of my own implementation work.
The other members of the Skink group, Matt Roberts, Pablo Gonzalez De Aledo
and Pongsak Suvanpong, whose prior and ongoing work provides a basis for my
OWIL.

David, for his thoughtful feedback and diligent proof-reading.

Marion, for being my favourite distraction.







STATEMENT OF CANDIDATE

I, Matthew Pigram, declare that this report, submitted as part of the require-
ment for the award of Bachelor of Engineering in the Department of Engineering,
Macquarie University, is entirely my own work unless otherwise referenced or
acknowledged. This document has not been submitted for qualification or assess-

ment at any academic institution.

Student’s Name: Matthew Pigram
Student’s Signature: Matthew Pigram

Date: November 7, 2016







ABSTRACT

Verifving the correctness of a program involves providing a guarantee, in the form
of a logical proof, that the program is free of bugs for all possible inputs. It is
therefore able to provide software developers and users with a much higher degree
of confidence in a program’s ability to perform its job than traditional testing,
due to the fact that it produces certainty rather than empirical evidence of a
program’s partial correctness, something which is especially important when that
program is responsible for large sums of money or human lives. Multi-threaded
programs are able to take advantage of modern multi-core architectures more
effectively than single-threaded programs but introduce challenges both to the
author and the verifier. Concurrent programs are regarded as being more difficult
to write and understand than traditional sequential programs by developers due
to large number of ways in which the multiple threads may interact throughout a
program’s execution. As such, the ability to formally verify this type of software
is perhaps even more valuable than traditional single-threaded programs [19]. For
verification, the combinatorial number of ways in which the operations of each
thread may be interleaved by a non-determinstic scheduler introduces the problem
of state-space explosion. Here, we describe a method for adapting frace abstraction
refinement [15], an existing technique for verification of single-threaded programs
for application to multi-threaded programs in combination with an approach to
reduce the state space of the program based on dynamic partial order reduction
[1]. We apply this method to enable the verification of C programs, building on

the work on this topic by Cassez and Zeigler in [8].







Contents

Acknowledgments
Abstract

Table of Contents
List of Figures

1 Introduction
L1 AIIMS . . . e e e e e
1.2 Our Contributions . . . . . . . . . . o o e e e e e

2 Background and Related Work

20 OVCOMP . - i cocovv i s i s s s ss dssdssdsddsddss bbb
2.2 POSIX Threads . . . . . . . . . . e e
2.3 Trace Abstraction Refinement . . . . .. .. ... .. ... .. ... ...,
2.4 Partial Order Reduction . . . . ... .. ... .. ... ... .. . ...,
2.5 Verification of Concurrent Programs . . . . . . . . . .

2.6 Satisfiability Modulo Theories and Verification . . . . . .. .. .. .. ...

3 From C Programs to Formal Automata Based Abstraction

3.1 Source Program Representation . . . . . ... .. .. ... ... .. ....
3.2 Source Program Transformation . . . .. . .. .. ... ... .. .....
3.3  Automaton Construction . . . . . . ... .. . ... ... .
34 Synchronisation . . . . . . . . . il e e e e e
3.5 Verification . . . . .. L L oL e
36 Reduction . . . . . . - i i it i i i i e s e e e e s

4 Implementation

4.1 Transformation of LLVM IR Source . . . . . . .. ... ... ... . ...,
4.2 Construction of Program Automaton . . .. ... .. ... .........
4.3  Verification Supporting Functionality . . . . . .. .. ... .00 0.
4.4  Reduction of Program Automaton . . . . . .. .. .. ... ... .. ...,

iii
vil
ix

xi

15
17
19
21
23
25
28




x CONTENTS
5 Results 41
5.1 Single-Threaded Programs . - . . .2 v v v voms m ci 4 wei soan 42
5.2 Concurrent Programs . . . . . . ... .. oo 45
5.3 Scala As a Platform For Verification . . ... .. .............. 49
6 Conclusions 53
7 Future Work 55
7.1 Exploration of Partial Order Reduction . . . . .. . ... ... ... .... 55
7.2 Recognising and Handling Thread Creation In Loops . . . . . .. . .. .. 56
7.3 Adapting Program Automata For Functions . . . . ... ... ... .... 56
8 Abbreviations 59
Bibliography 59
A Weekly Meetings Record 65
B Transformed LLVM IR Program and Automaton For Example in Fig.
3.2 67
B.1 Transformed LLVM IR Source Code . . . . . ... . ... ... ....... 67
B.2 Full Concurrent Automaton . . ... ... .. .. oo 69
C BenchExec Results For Sequential Benchmarks 71
C.1 Sequential Skink Simple Set Benchmark Results . . . .. ... .. .. ... 71
C.2 Concurrent Skink Simple Set Benchmark Results . . . . .. ... ... .. 72
C.3 Sequential Skink SV-COMP Loops sum Benchmark Results . . . . . . .. 73
C.4 Concurrent Skink SV-COMP Loops sum Benchmark Results . . . . . . .. T4
D BenchExec Results For Concurrent Benchmarks 75
D.1 Concurrent Skink Simple Concurrency Benchmark Results . . . . . . . .. 75

D.2 Concurrent Skink SV-COMP Concurrency pthread Benchmark Results . . 706




List of Figures

2.1

2:2

3.1
3.2
3.3
34

3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7

an
—

Synchronous Trace Abstraction Refinement Loop Adapted from [5]
Concurrent Trace Abstraction Refinement Loop Adapted from [8] . . . . .
Program Trace To SMT Term Transformation . . .. ... .. ... ....

C Source to Formal Aufomaton Representation . . . . .. . ... ... ..
Example Concurrent C Program Using POSIX Threads . . . . . . . .. ..
Body Of Function f1 in LILVM IR . . . . . . . .. .. .. v v ..
Annotated C Program With Structure Appropriate For Block Trace De-
SCEIPEIOM e & o 0 Gomon Sowess & OO W SOETR DOMON MNETH B ARG RGARE MR W 4
Transformed Body of Function £1 . . . . . . . .. . ...

Control Flow Graphs for each thread in Fig 3.2 . ... ... ... ... ..
Concurrent Automaton For Example Program . . . . . .. .. .. ... ..
Example From Fig. 3.2 Adapted With Synchronisation . . .. ... .. ..
Synchronised Concurrent Automaton For Program in Fig. 3.8 . . . . . ..

Block Diagram of Skink Multi-Threaded Verification Process . . . . .. ..
makeThreadVerifiable Core Functions. . . . . . . . ... . ... .. ...
succ and enabledIn Method Implementations . . . . ... . ... ... ..
IR Trait Implementation . . . . .. . 0 0 o icnn i e e e
blockTrace Attribute Implementation . . . . .. ... ... ... ... ..
DPOR Class Ihterface. -ou oo o vin 5 o v s D o S eais o s & .
arDependent Implementation For Resolving Dependeney Of Two Blocks

PthreadOperation Extractor Object . . . . . .. .. ... .. ... ....

xi

18
20
22
24
26







Chapter 1

Introduction

Providing formal proof of a program’s correctness is a difficult problem, particularly when
it is applied to large or complicated pieces of software which have many inputs and possible
paths of execution. As with an increasing number of things, the level of complexity and
volume of work involved in providing a formal correctness proof for a non-trivial program
mean that this task is better suited to computers than to humans. This gives rise to a
desire to produce algorithmic solutions that can automate the process. The benefits of
proving the correctness of a program, rather than the more usual procedure of testing on
a subset of inputs in order to gain some statistical confidence in a program’s behaviour,
have become increasingly apparent as bugs that traditional methods failed to find have
been uncovered by automated formal verification tools [10].

As multi-core CPU architecture has become more prevalent due to its manifold gains
over traditional single core archifectures so too have multi-threaded programs, which are
best placed to take advantage of the possibility for truly concurrent processing that is
provided by this new hardware. Multi-threaded programs are regarded as being more
difficult to write and understand than traditional single-threaded programs by developers
due to large number of ways in which the multiple threads may interact throughout
a program’s execution. As such, the ability to formally verify this type of software is
perhaps even more valuable than traditional single-threaded programs [19)].

However, the challenges that mutli-threaded programs present to human programmers
apply also to automated formal verification techniques, as the multitude of ways in which
threads may communicate and be executed produces a multiplicative relationship between
the set of paths taken by each thread and the set of values taken by the variables used
by each thread. This leads to an exponential growth in the number of states or paths
that must be explored when seeking to provide a correctness proof for a multi-threaded
program, a problem which is typically referred to as state-space explosion.

1.1 Aims

Our work aims to adapt a well-studied technique for the verification of single-threaded
programs, frace abstraction refinement [15], to deal with multi-threaded programs and

1




2 Chapter 1. Infroduction

to address the problem of state-space explosion through the application of partial order
reduction [1,11,12]. We seek to provide an implementation of this approach for verification
of multi-threaded programs as part of an existing verification tool, Skink! in order to
demonstrate a working example of how it may be applied in the specific case of C programs
using the POSIX thread library. To perform experimental evaluation of our work, the
final aim of the project is to compete in the software verification competition, SV-COMP2,
which will allow our implementation to be benchmarked against other verification tools
in a controlled environment with a large body of tests.

In order to achieve this, the exisfing representation of programs by the trace abstrac-
tion refinement approach must be extended to represent programs with multiple threads
and also to allow for synchronisation between these threads on various events. It is also
necessary to adapt the trace abstraction refinement representation of programs with an
implementation of a partial order reduction algorithm to allow the fewest possible number
of traces to be explored during a program’s verification.

Skink forms an ideal platform for this work for a number of reasons. First, the pres-
ence of an existing codebase provides a large amount of the trace abstraction refinement
machinery which is general to both the single and multi-threaded cases. It also pro-
vides all the necessary code and surrounding libraries for translating and transforming
inputted C code, which often forms a large and burden some part of the implementation
verification tools. Finally, it provides the potential for our implementation to exist as a
feature of a general purpose verification tool, rather than as a stand-alone program which
is designed solely for verification of properties of multi-threaded programs, as was the
case with the three most successful tools that participated the Concurrency category of

SV-COMP 2016 [2].

1.2 Owur Contributions

In this report we present the advantages of using an intermediate representation language
(LLVM IR) rather than the original source language as a basis for verification and describe
a scheme for the dynamic construction of an antomaton which can be to used represent
a synchronised concurrent program under the POSIX threads model. We also discuss
the techniques applied for the synchronisation of the automaton which disallows the ex-
ploration of execution paths which violate the synchronisation semantics of the program
and how existing trace abstraction refinement processes can be adapted to suit our ap-
proach. As an extension of our initial work in verifying concurrent programs we present
an adapted version of the SOURCE-DPOR algorithm defined in [1] for our application
and describe a generic implementation of it. We demonstrate the ability of our automaton
to be used transparently for synchronous and concurrent programs, supporting our claim
that the adaption of trace abstraction refinement for concurrent programs need not harm
its ability to verify synchronous ones. We then provide initial results of our approach

Yhttps:/ /bitbucket.org /inkytonik /skink/
*https:/ /sv-comp.sosy-lab.org/




1.2 Our Contributions 3

being applied successtuly to a subset of the SV-COMP concurrency benchmarks.

A record of my interactions with my supervisor Franck Cassez and the other members
of the Skink group throughont the progress of my work on this topic is provided in
Appendix A.




Chapter 1. Intraduction




Chapter 2

Background and Related Work

2.1 SV-COMP

The International Competition on Software Verification (SV-COMP) is a competition
which allows developers of verification tools for a variety of applications to measure their
success against others, and to provide an opportunity for those involved in software ver-
ification to observe the development of differing approaches as the techniques and their
implementation become more mature.

All the programs used as part of the competition are open source, available on Github!,
and consist of programs which have been contributed by participants in the competition.
At present, the only programs applied as part of the competition are written in C, with
different categories consisting of programs which involve the use of different language
features and libraries, including dynamic memory allocation with malloe, loops, floating
point calculations and also large, real world programs such as device drivers.

Programs within the SV-COMP benchmark corpus are annotated with special purpose
functions® which provide verification tools with a means to recognise error locations within
a program that are being tested for reachability, or to simulate other properties on the
program such as atomicity and non-determinism. These functions are members of the
__VERIFIER family, with a __VERIFIER error function corresponding to an error location
within the control flow of the program.

The concurrency category of SV-COMP contains five sub-categories, all contributed
by different SV-COMP competitors and all relying on the POSIX thread library for their
implementation of coneurrent benchmarks. The primary sub-category targeted as part of
the work described in this report is the base “pthread” category, which includes mostly
simple benchmarks which do not require support for a dynamic memory model (something
which is not currently handled by Skink) but which allow all the basic operations necessary
for dealing with concurrent program verification to be correctly implemented.

In recent years of the SV-COMP concurrency category, the most successful tools have
been those based on sequentialisation [2], which is the process of converting a concurrent

Yhttps://github.com/sosy-lab /sv-benchmarks
2https://sv-comp.sosy-lab.org/2017 /rules.php

o




6 Chapter 2. Background and Related Work

program into an equivalent sequential program and then simulating concurrency by mod-
eling a non-deterministic scheduler in the main function of the program [18,22]. From
here the program can be verified by a sequential bounded model checker, which explores
error paths through the target program with a number of steps up to a bound & and
computes their feasibility in a similar manner to frace abstraction refinement. This is
achieved by mapping the execution to a a logical representation of the trace which can be
analysed by an SMT solver (further background for which can be found in Section 2.6).
The fundamental difference of bounded model checking approaches to our own is that
they do not attempt to verify all possible paths of execution in a program but rather a
reasonable subset (up to an arbitrary bound). If no feasible error path is found that fits
within the bound, then the program is assumed to be correct. This means that bounded
model checking cannot provide a proof of total correctness for a program, but only that
the program is correct within the bounds that were explored.

2.2 POSIX Threads

The POSIX threads (Pthreads) API is a language agnostic framework for the implemen-
tation of concurrent programs defined as part of the POSIX ISO standard and which
provides a simple but powerful set of functions to allow the creation, synchronisation and
destruction of threads. At a higher level POSIX threads define an execution model for
concurrent programs which is the defacto standard for all Unix-like operating systems
and for C systems programming, providing the motivation for their use in the SV-COMP
concurrency category.

In the Pthread model, each new thread within a concurrent program is associated
with a unique pthread. t identifier and is passed a pointer fo a function which it is to
execute and may begin to execute any time after the pthread_create call which initalises
it has returned. Arguments can be passed to the thread’s function via a block of untyped
memory and return values collected by the thread creator by the same means. A single
function may be run by multiple threads within a program and any local variables within
the function will be distinct for each thread. Communication between threads while they
are running is achieved via global variables, which can be of any type admitted in C, with
additional types defined by the Pthread API available for synchronisation.

The Pthreads API provides two types that can be used for synchronisation and a
set of accompanying functions. The pthread mutex_t type provides a mutual exclusion
(mutex) token, which can be used to synchronise access to global variables, and which is
managed with the pthread mutex lock and pthread mutex_unlock functions. Alongside
mutexes are conditions, which can be used as a means for a thread to explicitly “wake”
another thread in the program by signalling a change to a condition. This is achieved
with the use of the pthread cond_t type and the accompanying pthread cond wait and
pthread_cond_signal functions. Asis typical for wait operations in concurrency models,
the pthread_cond_wait function requires the calling thread to be holding a mutex, which
is unlocked when the calling thread is blocked and re-locked when the condition is signaled




2.3 Trace Abstraction Refinement T

and the thread unblocks. This is necessary in order to prevent undefined behaviour when
multiple threads are waiting on the same condition.

The final synchronisation method available in the Pthreads AP1 is pthread_join which
allows for a thread to wait until another thread is completed before resuming, this is most
typically by the main thread to ensure that its child threads are able to complete their
work before the main thread resumes. A thread is eligible to be joined after a call to
pthread_exit has been made on that thread, with the exit status of the thread passed
back to the parent via an untyped block of memory, as with arguments and return values.
A parent thread may also choose to kill a child thread using the pthread_cancel function,
which will cause the thread fo exit if and when it enters a cancellable state.

A number of extensions exist to the standard Pthread API as part of the common
implementation, GNU’s libpthread, but which we choose not to model as part of our
work as they are not used within the SV-COMP benchmark corpus and because their
behaviour cannot be modeled in a platform agnostic fashion.

Although the choice to target Pthreads as the first concurrency model for our ver-
ification was made for us by their use in SV-COMP, the small interface and relatively
well defined semantics of the model makes it well suited for our approach and allows us
to reason staticially about the behaviour of the program quite easily. This is particu-
larly useful when constructing automata which represent concurrent programs using the
Pthread API, something which is discussed in detail in Section 3.4.

2.3 Trace Abstraction Refinement

Trace abstraction refinement, as introduced by Heizmann et al. in [15] and expounded
upon in [16], is a development of previous countererample-guided abstraction refinement
(CEGAR) techniques, involving an iterative process by which the feasibility of error traces
(ie. paths through a program which lead to an error state) is examined. In this process,
each trace is a word the language accepted by a finite automaton which represents the
control flow graph (CFG) of the program. Like many verification techniques, trace ab-
straction refinement relies on an antomated theorem prover (ATP) to decide the feasibility
of a particular trace but seeks to minimise the number of queries to the ATP. The exis-
tence of ATPs as crucial element of CEGAR verification strategies presents a significant
obstacle to the scalability of these technigues, which trace abstraction refinement seeks
to address by reducing the number of calls made to the ATP and re-using as much of the
ATP work as possible during the verification of a program. Through the exhaustion of all
error traces within a program, trace abstraction refinement produces sound verification
of a program, meaning that if the program is asserted to be correct, then it is must be
correct. This property comes at the expense of completeness, the lack of which means
that trace abstraction refinement is not guaranteed to return a result for all correct input
programs.

The primary technique for achieving a reduction in ATP calls is through the intro-
duction of interpolant automata, which are produced from the antomata representing an




] Chapter 2. Background and Related Work

A:=CFG(P)

L(A) := L(A)\ LUITA())

Is t feasible?

No, let ¢ € £(A)
Yes

Error in P

error in P

Figure 2.1: Synchronous Trace Abstraction Refinement Loop Adapted from [

individual trace to provide using interpolants which are returned as part of the ATP’s
infeasibility proof for a trace. This provides the potential for a single call to the ATP to
remove multiple traces from the trace abstraction of program as part of each refinement
step. The use of trace abstraction also allows for ATP expressions to be produced directly
from program semantics, without any need for translations in terms of the abstraction
used to represent the program. The use of interpolant antomata also provides a degree of
generality to the abstractions used as part of the verification of an individual program, al-
lowing caching of previously computed results from the ATP and further reducing reliance
on ATP calls for common program constructs.

In comparison to predicate abstraction, trace abstraction provides a higher level and
arguably simpler view of a parficular execution path in a program. Trace abstraction
also represents the parent case of predicate abstractions (proven in [15]) as any program
state represented by such an abstraction can be re-constreuted with the appropriate trace
whose execution will result in that particular set of predicates.

Fig. 2.1 shows an example of the trace abstraction refinement process for the single
threaded case described by Heizmann et al., which further exemplifies the intuitive nature
of this approach to verification. Having produced a regular language which accepts traces
that reach an error location in the program’s CFG, we check the feasibility of words in the
language, corresponding to traces in the program, using an ATP. If the trace is infeasible,
we seek to construct an interpolant automaton, which accepts the infeasible trace and
potentially other equivalent traces, and then remove the regular language generated by
this automaton from our original abstraction, completing one iteration of the refinement
process. If we reach a point where our original language is empty, we have proved that
there exists no feasible trace through the program which leads to an error location, and
thus that the program is correct (in the sense that it does not violate any of the predi-
cates that have been annotated within the program). A more complete example of the
refinement process for a simple case is given in [15], with an example more directly related
to our work given later in this thesis.

The fact that trace abstraction requires that each trace to be represented with an
individnal antomaton allows for simple and well defined set theoretic and graph oper-




2.4 Partial Order Reduction 9

ations. This allows transformations to be applied on the program without the need to
determine its semantics. This is distinet in comparison to predicate based abstraction,
which requires additional ATP calls in order to produce a combination of abstractions.

The benefits of the system of abstraction described in [16] also has advantages over
techniques that require the construction of a single monolithic antomaton which relates
directly to the structure of the CFG of the program being verified. As such, such an
approach requires that the structure of the automata representing each trace should map
directly to the structure of the CFG in order to ensure all traces are covered by the
resulting automaton. By doing away with the requirement that an antomaton representing
a trace must directly reflect the structure of the CFG, it is possible to increase the size
of the set of traces which are eliminated with a single ATP call.

By building on the trace abstraction refinement techniques described in [15], we seek
to supplement a state of the art technique for CEGAR based software verification and
allow concurrent programs to be verified as part of a more general verification tool, rather
than one specifically written for that type of program.

2.4 Partial Order Reduction

The foundational work in partial order reduction for verification of concurrent programs
is [12], in which Godefroid specifies a technique for addressing the state-space explosion
problem by introducing several techniques to reduce the number of interleavings of opera-
tions between threads which need to be explored. The term partial order reduction comes
from the notion that it is possible to identify operations on each thread of a multi-threaded
program which are dependent and operations which are independent.

For dependent operations, the order in which these operations are executed is impor-
tant when considering the overall correctness of the program, as different interleavings of
these operations (the scheduling of which is non-deterministic) may cause the program
to behave in different ways. In contrast to this, if two threads are performing purely
independent operations (for example each has its own completely exclusive set of vari-
ables) then all possible interleavings of these operations will result in the same effective
execution of the program.

In [12], Godefroid describes programs in terms of states and traces as the paths
for reaching a particular state in a program. Partial order reduction is applied by
first identifying operations which are regarded as being dependent and then applies a
SelectiveSearch algorithm to remove equivalent interleavings of independent operations
and generate an automaton representing a reduced set of paths of execution through the
threads of the program.

SelectiveSearch as described by Godefroid can be applied with one or both of per-
sistent sets and sleep sets, algorithms for the computation of which are described in [12].
These two sets represent the operations from a particular state which are used to identify
which will produce a non-equivalent interleaving in the case of persistent sets or which
do not need to be explored further, in the case of sleep sets. The primary difference




10 Chapter 2. Background and Related Work

between persistent sets and sleep sets is in how they are computed, with persistent sets
being found statically from the structure of the program being verified. while sleep sets
are computed dvnamically based on the path of the search as it is applied. Godefroid also
describes how these two sets can be combined to achieve the most effective reduction in
interleavings explored.

This technigue for partial order reduction is described as static partial order reduction,
owing to the fact that it is applied as a pre-computation on an input program before
maodel checking is applied and has as its output a trace automaton which is essentially
a transformation of the input program upon which the verification algorithm may then
compute. More recently, a dynamic method for applying partial order reduction to reduce
the state-space of concurrent programs while a model checking algorithm is being applied
is defined in [11] and improved upon in [1].

In [11], an algorithm for dynamic partial order reduction is described, introducing the
notion of backtracking points which provide a means for the program to retrospectively
compute possible traces which maybe have been taken to reach a particular program
state as these states are encountered during the verification of a program. Flanagan and

sodefroid [11] also deseribe the newly defined dynamic partial order reduction algorithm
as being easier to implement in comparison to static partial order reduction as it does not
require static analysis of the program prior to execution. As a byproduet of this lack of
pre-computation, dynamic partial order reduction is able to handle dynamic changes in
the structure of the program (such as the ereation or joining of threads). Dynamic partial
order reduction is also deseribed by Flangan and Godefroid as being complementatry to
the techniques deseribed by Godefroid in [12], including persistent sets and sleep sets.

Abdulla et al. build upon this work in [1], supplementing the original dynamic partial
order reduction algorithm with a new class of sets known as souirce sefs, which effectively
replace the persistent sets and provide a provably minimal set of representative non-
equivalent traces within the program. Additionally, the backtrack points introduced by
Flanagan and Godefroid for the dynamic partial order reduction algorithm in [11] are
replaced by a wake-up free, which is introduced to ensure that traces produced as part of
a backtrack triggered exploration are not redundant (meaning that they will be blocked by
the sleep set). This improved dynamic partial order reduction algorithm is provided with
a correctness and optimality proof, making it the first partial order reduction algorithm
to provide an optimal reduction on the set of representative traces within a concurrent
program.

The implementation of the algorithm described by Abdulla et al. is limited in scope
to specific types of bugs in Erlang programs, and so lacks the generality of our implemen-
tation and also is unable to compete in SV-COMP (which is limited to C programs). It
is also designed with targeted test generation in mind and must be adapted to allow it to
be used for the full exploration of all representative fraces within a program containing
multi-way branches within each thread.

Aside from the improvements to the reduction provided by dynamic partial order
reduction over static partial order reduction, this class of algorithm can be more neatly
adapted for trace abstraction refinement as it removes the need for a large pre-computation




2.5 Verification of Concurrent Programs 11

(and thus for a translation between the trace automaton produced by partial order re-
duction and the language of frace abstractions used by the trace abstraction refinement
loop) and may allow it to be easily composed as part of the trace exploration phase of
the abstraction refinement process.

2.5 Verification of Concurrent Programs

Implementations of partial order reduction techniques for state-space reduction in model
checking based verification tools were initially in tools based on simulated execution of
programs [13,17]. However, abstraction based techniques as have become more popular
in recent years. However developments in abstraction based model checking techniques
has given rise to a number of attempts to combine partial order reduction with these
techniques, including in [8], in which Cassez and Ziegler provide a method for combining
partial order reduction and trace abstraction refinement and which forms the basis for
our approach.

In [8], Cassez and Ziegler provide a theoretical basis for the extension of trace ab-
straction refinement to concurrent programs (deseribed and proven with two threads, but
general for n threads), essentially by representing each individual thread of the program
with its own program automaton. The authors then go on to provide an explanation
of partial order reduction in the context of trace abstraction refinement and develop
an algorithm for trace abstraction refinement of concurrent programs with partial order
reduction. This involves performing the usual trace abstraction refinement loop on a
langnage produced from the reduction of the program threads.

R:= POR(P, x ---x F,)

A=A\ L(IA())
17

No, let t € L(R)N L(A)

g Is t feasible?

Yes

Yes

Error in Py x - -+

Figure 2.2: Concurrent Trace Abstraction Refinement Loop Adapted from [

Fig. 2.2 shows the adapted trace abstraction loop as it is adapted by Cassez and
Ziegler, with the new input to the refinement process being a reduced automaton, i, for
the product of the input threads, as generated by partial order reduction. At each iteration
of the refinment loop, the regular language generated by R is refined by generating a
second antomaton, A, which captures the class of infeasible traces which are accepted by
the interpolant automata produced at each iteration of the loop. A correct program is




12 Chapter 2. Background and Related Work

then one for which the intersection of accepted traces in R and A, the complement of
the refinement automaton. is empty, meaning that there are no error traces remaining in
the reduced automaton which are not accepted by the combined automaton A, accepting
infeasible traces in the input program.

Cassez and Ziegler also provide a simple technique for adding the ability to check
global reachability by introducing a third monitor thread which has a single operation
to an error state which represents a data race. This produces a transformation from
global reachability to local reachability by adding a thread for which the program’s global
variables can be regarded as local. This approach is one which provides the ability of
the verifier to detect some forms of bugs in multi-threaded programs (most notably, data
races) without the need for annotations but, as described by Ziegler in [25], also may
require the user to disable this functionality for certain variables which are intended to
be accessed by multiple threads at once (for example a variable which contains a lock or
mutex).

The implementation provided alongside the techniques described in [8] does not allow
for the verification of arbitrary C programs, as it relies on a custom C-like language which
provides the necessary concurrency primitives. The tool deseribed in [8] also only provides
an implementation of the static partial order reduction algorithm described by Godefroid
in [12], and so does not apply a provably optimal reduction to the concurrent programs
it is seeking to verify. As part of the work conducted in this project, an implementation
of this technique that accepts arbitrary C programs is be provided, as well as potentially
an implementation of Abdulla et al.’s dynamic partial order reduction algorithm.

An example of how this approach can be applied to a simple concurrent program build
in the Cone-Apron langnage is given in [25]. Our own example, applying the results of
Cassez and Ziegler to verify C programs, is described in Chapter 3 of this thesis.

Other approaches to concurrent program verification with partial order reduction in-
clude the one described in [23] by Wachter et al. The technique described in [23] is based
on predicate abstraction refinement, rather than trace abstraction which has a number
of potential drawbacks as described in Section 2.3. There are also a number of imple-
mentation challenges in implementing partial order reduction in concert with predicate
abstraction, which mean that this approach lacks the potential for extension with other
forms of state space reduction.

In [1] Abdulla et al. apply their results in dynamic partial order reduction to provide
a tool for the verification of concurrent Erlang programs. This is the only tool that we
are aware of that has implemented the optimal version of this algorithm as part of a
verification tool, but differs in that it uses partial order reduction in order to generate
minimal interleavings of a dynamic execution of the program for directed testing rather
than for verification as our own application.




2.6 Satisfiability Modulo Theories and Verification 13

2.6 Satisfiability Modulo Theories and Verification

The process of a converting sequence of statements in an imperative program to be con-
verted into a satisfiability problem is at the root of many verification techniques [3, 4, 14]
as a means for determining the feasibility of a path of execution through a program. Sat-
isfiability modulo theories (SMT) have become the most common means of formulating
program traces as a satisfiabilitv problem, due to the manifold advantages that SMT
solvers have at their disposal versus traditional SAT solvers. While the decidability of
SMT is still in NP, ongoing work on improving SMT solvers has made verification tech-
niques which rely on checking satisfiability (sat) or unsatisfiability (unsat) on large SM'T
terms the dominant approach in software verification. This development is supported
a vearly competition similar to SV-COMP (the appropriately named SMT-COMP?) in
which SMT solver implementations are benchmarked against one another.

Trace abstraction refinement relies particularly on SMT solvers to provide not only a
sat decision but also to construct interpolants for the terms that capture the effect of each
step in a trace. This is in order to allow the construction of interpolant automata, which
enable the refinement of multiple equivalent traces in a single iteration of the analysis. As
part of the process of converting a trace in a program into an equivalent SMT term, we
consider the effect of each statement on the state of the program and the statements in
the trace to static single assignment (SSA) form so that each time a variable is assigned
a new name is created for it and that name is used until the variable’s value changes.

Fig. 2.3 shows an example of conversion from a trace in a simple program, highlighted
in green, to the SSA form of the same program, with the index of k, given by the number
after the @ symbol, updating after the initial store and the increment. Fig. 2.3c shows the
complete SMT logical representative for this trace, with the effect of each statement in
the sample program converted to an equivalent SMT statement which captures its effect.
Each assignment becomes an equality assertion, with the conditional statements k > 0
becoming a conditional assertion. With this representation we are able to determine the
feasibility of the candidate error trace by checking the satisifiability of our representation
using an SMT solver such as Z3%.

*hitp://smtcomp.sourceforge.net,/ 2016/
Uhttps://github.com/Z3Prover/z3




14 Chapter 2. Background and Related Work

else

@2 = §@l 4 1;

else

P44

(a) Sample C Program For SMT (b) Sample C Program Converted
Term Conversion To SSA Form

o0 =1 O U e LR e
LI I~ -

(i@1 = 1)A

(k@1 = i@1)A
(k@1 > 0)A

({@2 = i@1 + 1)A
(i@2 > 0)

(c) SMT Term For Feasibil-
ity of Trace in Sample C Pro-
gram

Figure 2.3: Program Trace To SMT Term Transformation




Chapter 3

From C Programs to Formal
Automata Based Abstraction

The sequence of operations applied fo the input program in order to produce our final
representation as a deterministic synchronised thread-product automaton is shown in Fig.
3.1, beginning with the process of applying the Clang C compiler! and opt optimisation
tool® to produce an LINM intermediate representation® program. The program is then
parsed and an abstract syntax tree (AST) representation of it is produced by the Scalal-
LVM library before it is transformed and our formal automaton abstraction is constructed

within Skink.

Clang

ScalalLLVM

Deterministic

LLVM IR
Automaton

C Svuree

Figure 3.1: C Source to Formal Automaton Representation

In this chapter, we extend the typical examples of trace abstraction refinement and
partial order reduction as given in [8,25] to capture some of the advantages of our work.
We also extend the typically more abstract examples with some concrete details — in
keeping with our intention to provide a practicable implementation of this approach. We
begin with an example program, given in Fig. 3.2. This is a program which provides a
simple but non-frivial verification task, as the lack of synchronisation means that there
are a large number of possible interleavings of all operations within the program, many
of which are non-equivalent.

Yhttp:/ felang llvm.org/
2http:/ [Mvm.org/docs/Command Guide fopt.html
http:/ [Mvm.org/docs/LangRef. htm]




16 Chapter 3. From C Programs to Formal Automata Based Abstraction

extern void _VERIFIER error() __attribute__ ({(__noreturn__}};
#include <pthread.h>
int i=l, j=1;

void= fl(veid+ arg)

{
j =i
pthread_exit (NULL) ;

}

voids f2(voids arg)
{
i4+= j;
pthread_exit (NULL);
}

int main{int arge, char ==argv)

{

pthread._t t1, t2;

pthread _ecreate(&tl, NULL, f1, NULL):
pthread _create(&t2, NULL, 2, NULL):

if {1+ ] != 35)

{
ERROR: __VERIFIER_ error () :
1

return 0;
Figure 3.2: Example Conenrrent C Program Using POSIX Threads

In this program, two threads are spawned using the POSIX pthread create library
call, subsequent to which the threads are able to begin execution at any time. It is worth
noting that due to the simplicity of this program and the lack of synchronisation. it is
possible for main to return (and hence for the program to terminate) before either thread
has executed. This potential path does not represent an accepted frace, as it does not
involve reaching the error state which has been annotated in this program. Each thread
accesses two global variables, i and j and adds one to the other, progressing from the first
and second Fibonaecei numbers (1 and 1) and computing the third and fourth into one of
i and j depending on the order of execution, with the final assertion in main checking
that their sum is the fifth fibonacci number. It is worth noting that when considering
permutations of these two statements it appears that all paths of execution in this program
will produce the same result, however this is not the case, as we will explore in the Section

3.1




3.1 Source Program Representation 17

load 132, 132« @i, align 4, !dbg 126

load i32, 132« @j, align 4, !dbg 127

add nsw 132 i, i, ldbg 127

store i32 W5, i32+ @j, align 4, !dbg 27

call void @pthread_exit(iS+ null) #5, 'dbg '28

Figure 3.3: Body Of Function £1 in LLVM IR

3.1 Source Program Representation

In our approach, the representation of the input program on which we compute is provided
by Clang, a C frontend for the LLVM Compiler, which produces LLVM intermediate
representation (IR) code representing the program. This step in the process takes care of
a number of pre-processing steps which are necessary in the current version of Skink (for
example attempting to inline of all function calls which might have been included in the
program) but also provides a number of advantages during the verification process.

The first advantage of dealing with the program in this form is that it allows us to
make safer assumptions about the atomicity of each operation within our concurrent pro-
gram, allowing correct reasoning about the variety of possible interleavings of operations
belonging to the program’s constituent threads. In LLVM IR each access to a piece of
global state within the program is discrete, meaning we are able to consider all the pos-
sible interleavings of these accesses within non-atomic statements allowing the discovery
of data races. An example of how this may take effect can be seen in Fig. 3.3, which
shows the LLVM IR code for the body of the function £1. These lines of IR code are
equivalent to the statement j += i, but the number of steps involved are demonstrative
of the possibility for interleaving to affect the result of these statements’ execution.

Jonsider the case where lines 1-3 of Fig. 3.3 are executed, before the body of the
second thread (contained in funetion £2) begins and is executed in full. In this case, the
-alues of global variable i will be modified but the local copy of it, used for computing
the sum j += i is unchanged, leading to confusing behaviour. In the case of our example,
this trace will lead to the error location and is an example of a data race which cannot
be captured solely by considering interleavings of the source language statements (ie. by
permuting the ordering of 1 += j and j += i between the two threads).

Another advantage of this approach to representing the input program is the inclusion
in the LLVM IR grammar of the Local and Global non-terminals which are required
when declaring a name in an LLVM IR program. This can be seen in Fig. 3.3, with
global variables 1 and j prefixed with an @ character, while local variables (or in this
case registers) are prefixed with %. The ability to detect the use of global variables
syntactically is important for the verification process, both in terms of how the program
is represented for generating traces and also later for the detection of dependent operations
when attempting to reduce the state-space of the program.

Also useful in the construction of a representation of the input program is the presence
of the Block non-terminal in the LLVM IR grammar, which is a means for grouping a
series of instructions within the program which contain no conditional control flow. This




18 Chapter 3. From C Programs to Formal Automata Based Abstraction

int { = 0Q;

int j = 1;

int k= 0;

while (k < 5)

L
i+=i;
it+=i:
k++:

if (j = 34)

ERROR: ..VERIFIER.error(); // SV-COMP errer location amnmnotati

}

Figure 3.4: Annotated C Program With Structure Appropriate For Block Trace De-
seription

means that instead of viewing the program as a sequence of instructions or even (as
is often done when describing traces from higher level source languages) as a sequence
of statements, we can regard our program as a sequence of blocks which are linked by
conditional or unconditional branches. While this view of a program is not one that is
particularly difficult to generate from any input language, its explicit presence in LLVM
IR means that it can be taken advantage of without introducing any additional complexity
in the translation between our input program’s code and our internal representation.

Viewing our input program as a sequence of blocks first of all allows for a trace in
the program to be described more succinetly than is usually possible examples of trace
abstraction refinement. Take, for example, the program in Fig. 3.4, written in the style
of an SV-COMP benchmark for consistency. Considered at statement level, an example
error trace through this program is given by

i:=0, j:=0, k:=0,i+=j, j+=i, k++, ERROR.

This is the shortest possible trace which this program’s CFG can generate (although
it is obviously infeasible), and each time we wish to describe a different trace through
this program we add three new statements for each iteration through the loop. In our
representation, this program would comprise of three blocks, By from lines 1-3, B, for
the conditional branch on line 4, By for lines 6-8 (the loop body), B, for the conditional
branch on line 10 and E for line 12, the error location. An equivalent trace to the one
previously described can then be given by

By, Bs, Bs, By, E.

This representation scales especially well in comparison to statement level represen-
tations as the size of the program (and subsequently the traces) or complexity of the
program grows. The simplicity lent by this representaton extends not just to how we de-
scribe traces but also the number of necessary states in the antomaton which describes the
behaviour of the program, and therefore in the computation time required to perform the
various operations on the automata which form part of the trace abstraction refinement




3.2 Source Program Transformation 19

process. It also means that although we have very good resolution in terms of the actual
execution of the program (as we may consider interleavings of individual instructions),
our internal representation of the program can still be quite terse even in comparison to
those which only consider the program at the statement level.

3.2 Source Program Transformation

While the block structure used by the LLVM IR grammar is sufficient to allow exploration
of all possible paths of execution through a single-threaded program, it does not allow
sufficient resolution when considering how individual instructions from multiple threads
may be interleaved when a concurrent program is running. An example of a case where
this becomes an issue is shown in Fig. 3.3, the LLVM IR code for line 12 of Fig. 3.2.
In this block of IR code there are three accesses to the global state of the program, in
the form of two loads (from the two global variables i and j) and one store (to global
variable i). The fact that all of these instructions oceur inside the body of the loop with
no branches between them means that within AST of our source program these nine lines
of assembly (along with all of the LLVM debug information which has been elided) exist
inside the same block,

This means that, due to the use of blocks as the primitive element in our internal
representation of the program. it is not possible to insert any instructions from other
threads between the loads and store instructions within this block, leaving us unable to
explore some potentially error creating interleavings within our example program. In
order to allow us to explore these interleavings without the need to consider the entire
program at the instruction level and hence massively increase the size of our CFG, we
transform the program and generate new blocks surrounding every instruction which may
form part of a data race.

For the same reason, it is also necessary to apply the same process to allow interleavings
to oceur between thread primitives such as creation, exit and synchronisation primitives
including wait, join, lock and unlock.

The necessary transformation is achieved, fairlv simply, by processing each block in
each function of a given concurrent program and, wherever we find an instruction which is
dependent on some global state, inserting an unconditional branch immediately following
that instruction to a new block containing the next group of instructions. When an access
to some global state has been performed as the result of taking a branch from such a block
it is then possible for the program automaton to transition to a block belonging to another
thread where a potentially dependent operation is executed. This allows the instruction
level inferleaving of these accesses without the need for every instruction in the program
to be represented within our automaton.

An example of a transformed version of the original LLVM IR source code from Fig.
3.3 is given in Fig. 3.5. In the transformed IR, the initial loads from i and j are separated
into their own blocks, with the store into j grouped with the add instruction which does
not depend on anv global state, but only local registers. The grouping of the global




Q0 =1 3 O b L b

20 Chapter 3. From C Programs to Formal Automata Based Abstraction

i = load 132, 132« @i, align 4, !dbg 126
br label reading . 1. nolabe

_-threading.1.nolabel:
| = load i32, 132+ 4@j

, align 4, 'dbg !'27
br lahel nolabe

--threading .0, nolabel :
» = add nsw i32 %4 . 'dbg 127
store 132 i32« @j, align 4, ldbg 127
br label lakbe

_-threading . nolabel:
call void @ipthread_exit (i8« null) #5 , !dbg 128

Figure 3.5: Transformed Body of Function £1

access instructions with local effect instructions is arbitrary, and we could equivalently
have included the add instruction from lines 9 with the load instruction on line 5.

The use of static single assignment (SSA) form for all registers in LLVM IR, com-
bined with the syntatic reflection of variable scoping (by way of the Global and Local
non-terminals) provides us not only with the ability to reason verv easily about which
instructions (or subsequent to this transformation, blocks) within the input program are
dependent. It also provides a substantial and completely free of charge initial reduction
on the interleavings that must be explored. As we begin with the assumption that any
sequence of instructions which are not separated by branches (a block) can be consid-
ered as one element in a trace of the input program’s execution, we immediately discount
all interleavings of instructions which are contained in separate blocks. As blocks can
sometimes contain instructions which when interleaved do change the result of the pro-
gram’s execution, we are required to transform the input program in order to preserve
the correctness of our assumption, but are still left a substantial reduction.

An example of how this reduction applies can be seen when considering the trans-
formed function body in Fig. 3.5. We know that the thread function £2 may run concur-
rently with £1 and also that the load instruction performed by £2 on i is dependent on
whether that load occurs before or after the store to that variable which oceurs in £1.
However, we also know (in this case by inspection but in a normal case from analysing the
syntax of the IR) that line 9 is not dependent on any other instruction which might be
executed in the program as it refers only to registers which are always local. As such we
can discount any interleaving between this load and all of the instructions on those lines,
and instead consider only the two interleavings where that load precedes or succeeds the
store to i.

As we observed before in the case of the ability of blocks to reduce the size of our
internal representation of the program, this reduction is not a particularly difficult one to
spot or to compute. With other approaches where the internal representation of the tool
produces traces in ferms of individual instructions or statements, this reduction would
not occur until after the program automaton or thread automata have been constructed.
This would be the responsibility of a dedicated reduction algorithm (the role filled by




3.3 Automaton Construction 21

partial order reduction in our approach). In contrast, our approach is able to achieve this
result without any extra computational burden, as a by-product of how we use the LLVM
IR representation of our input program.

3.3 Automaton Construction

The statement level control flow graph (CFG) for each of the three threads in the example
program from Fig. 3.2 are given in Fig. 3.6, with the error location (shown in Fig.
3.2 as the ERROR label) highlighted in red, and the error-free terminating location (the
return statement in main) highlighted in green. Each location in the CFG is annotated
with the line number of the code corresponding to that point in the execution, with
some simplification done to avoid overcomplicating the diagram. In order to consider the
execution of the example program, we must consider concurrent paths through each of
these CFGs.with the synchronisation requirement that £1 and £2 may not begin execution
until their corresponding pthread_create calls have been made. The thread CFGs in Fig.
3.6 can also, with some small modifications, be regarded as thread antomata, as is more
common in the literature [25].

For the sake of readability, the CFGs have been presented with each transition repre-
senting a single statement in the program, rather than branches between blocks, as it is in
our approach. In this section, we consider the construction of an antomaton which allows
the exploration of interleavings of the transtions within these CFGs from a statement
level. However, our approach is general for application to blocks and, as described in in
the previous section, we can consider the blocks in our representation of the program to
be equivalent to the statements that exist between control flow within the CFGs in Fig
3.6.

With the individual CFGs for each thread available by traversing the AST of the
translated LLVM IR input program, we seek to provide an automaton which can be used
to construct a language accepting traces that reach an error location. In the most general
case, a program consisting of two threads running concurrently can be represented by the
product of the two automata representing the threads. This representation however lacks
two features. First, the ability to manage synchronised transitions on each of the threads
(for example one thread waiting to join another or one thread waiting on a lock held by
another), which is fundamental to verification of many of even the simplest benchmark
programs used in SV-COMP. Secondary to this is the fact that a product of thread
antomata is an over-approximation for the true behaviour of concurrent threads, and still
requires some special cases to manage when each thread in the program starts. This is
often represented by the state for each child thread starting in a special inactive state
and then beginning to run when a particular transition is reached in the parent thread’s
automaton.

The state for our automaton consists of two components; the first is a set of thread
locations with each thread identified by a unique integer and its location by the entry
label of the block within that thread’s CFG. The second component of the state is a set




22 Chapter 3. From C Programs to Formal Automata Based Abstraction

prhrcad B81, 62
prhresd_creatsiil, f1)

pthresd_ereats(t?, £2)

(a) CFG For main thread (b) CFG for t1 thread  (c¢) CFG for t2 thread

Figure 3.6: Control Flow Graphs for each thread in Fig 3.2

of synchronisation tokens which are tracked during construction of the automaton. How
these tokens are discoverd and applied is described in Section 3.4. A transition in our
automaton corresponds to a block in one of the program’s threads having been scheduled
in a possible execution, with the label consisting of the unique identifier of the thread
being scheduled and the exit branch which was taken from the block that being exited.

Our approach reduces most of the redundancy in the more general product approach,
constructing the automaton by walking the AST of the source program and applying a
small sub-set of the semantics of a given block to the structure of our automata. By
constructing a single unified automaton from scratch, rather than building individual
thread automata and then taking a product, we are also able to build our automaton “on
the fly”, which provides a number of benefits.

The primary advantage of this dynamic approach for construction of the automaton
is that for large programs we avoid the potentially quite expensive process of exploring
the entire CFG of the program in order fo find all the necessary states and labels for a
fully specified antomata. Instead. our antomata is effectively stateless and refers back to
the source program’s AST to apply transitions. As we explore the accepted traces in our
automata, we will begin to explore the CFG and memoise the transitions which have been
previously computed, but are able to avoid exploring the whole CFG in the case where a
feasible error trace is found during the trace abstraction refinement process.

As the structure of the CFG is discovered dvnamically we have no foreknowledge of
how many threads exist in a program or where they begin, instead we begin with an initial




3.4 Svnchronisation 23

assumption that our program consists of only a single thread with an initial location at
the start of the program’s main function. Each time we apply a label in our antomata,
we inspect the contents of the block that has been scheduled to discover if a thread has
been created at this point (by looking for calls to the POSIX pthread_create function).
If we find a thread creation we add a new entry into the successor state to signify that a
new thread has been spawned, with its location at the start of the function which it will
rum.

As a consequence of the lazy construction of our automaton, if a particular trace
does not encounter creation of a thread (for example because an error location is reached
before the thread is created) then all the states of our automaton for that particular trace
will not contain any reference to the unstarted thread. This property means that while
we must carry a small amount of additional information in our state to account for the
possibility of new threads being created, the additional overhead of our approach when
applied on single-threaded programs is minimal and does not require any pre-computation
to discover that a program is single or multi-threaded — we simply traverse the AST and
expand the number of locations that are recorded as necessary.

Computing the enabled labels and successor for a given state in our machine also
involves a simple inspection of the program source at each of the locations recorded in
the state to discover which branches are available and which new block they will lead to,
which allows us to select the appropriate branch and update our state in order to apply
the selected label.

An example of part of an aufomaton constructed using our approach is given in
Fig. 3.7, based on the three CFGs shown in Fig 3.6. In this example, we begin from
the same starting point as the main CFG in Fig 3.6 and complete the first transition as
normal. After passing the first pthread create transition, we reach a state with two
locations in the program, line 26 in the middle of main and line 9 at the start of £1. From
here, we apply the labels of main in order to follow the shortest path to an accepting state
or a sink state. Following the second pthread_create call, a third element is introduced
into the automaton state, accounting for the position of execution in £2.

The complete transformed LLVM IR program source and the full concurrent automa-
ton for the example program in Fig. 3.2 is given in Appendix B.

3.4 Synchronisation

Having applied the semantics of thread creation to the structure of our automaton we
find that we can generalise this idea of applying the semantics of thread synchronisation
operations to our automaton. This allows us to avoid the need to explore and refine
traces which violate the semantics of synchronisation operations or implementing special
synchronising transitions in our automaton. This is achieved by extending the process
used for detecting thread creation to consider not just the possibility of thread creation
but of all the possible effects of this block on the structure of our automaton.

When applying a label in our automaton, we can compute the effects of the block which




24 Chapter 3. From C Programs to Formal Automata Based Abstraction

pthread ttl, 2

pthread_createitl, f1)

pthread_ereate(i2, £2)

pthread _create(t2, £2)

Figure 3.7: Concurrent Automaton For Example Program

has been scheduled (which we regard as having “run” in our trace), which produces the
out effects for this transition. Similarly, the new block whose location has been added
to the successor state gives us the in effects. The effects of the transition are recorded in
the state by storing a set of synchronisation tokens, corresponding to the value of a token
within our program (a mutex or a condition). For the semantics of the POSIX thread
library, most synchronisation effects occur as out effects, for example if a block contains
a call to pthread mutex lock then the out effect of that block is that the mutex upon
which that function was called is recorded as locked within the synchronisation token set
of the successor state.

In our current model of POSIX threads, the only time in effects are recorded is for
calls to pthread_cond wait. This is due to the fact that this function has two effects on
the synchronisation tokens that exist in the program, on arrival it will release the mutex




3.5 Verification 25

being held while it waits for its condition to become true. This effect is not one which is
applied when the function returns, but rather when the function is initially called. When
the condition which is being waited on becomes true, the function returns and the mutex
which was released is re-taken, constituting the out effect of the function call and the
block in which it resides.

Once we have recorded the values of the synchronisation tokens which have been
encountered at a given state, we can use them to determine which transitions should be
enabled within our automaton from a particular state. For example, if a block contains a
call to pthread mutex_lock on a mutex which we have recorded as having been locked by
another thread previously in the trace, then any transition out of that block should not
be enabled as we know that it will violate the semantics of the POSIX threading library
and so will be infeasible,

By enforcing the semantics of POSIX thread synchronisation operations on the struc-
ture of our antomaton as it is explored, we avoid having to explore traces within the
program which will be obviously infeasible, reducing the size of our automaton and thus
the number of solver calls necessary. This is mostly possible due to the simple and well
defined behaviour of the tokens involved in thread synchronisation but can possibly be
extended to other easily recognisable constructs within the program.

Fig. 3.8 shows an adapted version of our original example from Fig. 3.2 with some
synchronisation added in order to make it a little less buggy. Each thread function has
been modified so that the thread first must lock the mutex m before it is allowed to load,
add and store back into one of i and j, effectively converting making the statements
i += j and j += 1 perfectly atomic, something which we have previously observed was
not the case with our original example. In main two calls to pthread_join have been
added to ensure that both threads must complete their work before we check whether or
not the Fibonaceci sequence has been followed correctly. If we were to attempt to encode
the behaviour of these synchronisation operations as terms and construct refinements for
traces which violate the semantics of a mutex or a join, the structure of the antomaton for
this program would be effectively identical to the one given in Appendix B for our original
example. In contrast, applying our approach of enforcing the semantics of all Pthread
synchronisation operations, we construct the substantially reduced automaton shown in
Fig. 3.9. The most obvious feature which demonstrates the effect of synchronisation is
the existence of only one accepting state in the automaton, as we require that both of the
child threads have terminated before we are able to reach the error checking condition on
line 41.

3.5 Verification

In this section we describe some areas of interest in onr adaptation of the single-threaded
verification process. for a more complete description of trace abstraction refinement see
Section 2.3 and the publications referenced within.

The primary challenges in adapting the existing trace abstraction refinement imple-




26 Chapter 3. From C Programs to Formal Automata Based Abstraction

extern void __VERIFIER_error() __attribute__ ((__noreturn._});
#include <pthread.h>

int i =1, j=1;
pthread_mutex_t m;

void =
fl(void# arg)

pthread_mutex_lock{dam) ;
i = i;
pthread_-mutex._unlock(&m) ;

pthread._exit (NULL) ;
}

void =
f2(void# arg)
{

pthread _mutex_lock{fam) ;
i4+=1];

pthread_-mutex._unlock(&m) ;
pthread_exit (NULL) ;
}

int
main{int arge, char ssargv)

{

pthread_t tl, t2;

pthread_create(f&tl, NULL, fl1, NULL);
pthread_create(&t2, NULL, f2, NULL);

pthread_join(t1l, NULL):
pthread_join(t2, NULL):
if (i +] != 8) {

ERROR: ..VERIFIER_error();

return 0);

Figure 3.8: Example From Fig. 3.2 Adapted With Synchronisation




3.5 Verification 27

Figure 3.9: Synchronised Concurrent Automaton For Program in Fig. 3.8

mentation in Skink to accept our concurrent antomaton were connected to the construc-
tion of SMT terms for a given trace, particularly in the conversion of the names in the
trace into SSA form, and in generating appropriate interpolants for traces which are being
refined.

As the existence of multiple threads within a program introduces the potential for
multiple scopes within a trace, something which is not the case for a program which
contains a single thread running a single function. In order to construct an SSA sequence
of terms to be used to check feasbility of a trace it is necessary to associate a local name
in each term not just with where it oceurs in the sequence of stores but also with which
thread it was executed on. In our approach, this is achieved by associating each thread
in the source program with a namer which is responsible for keeping trace of the index of
a variable’s usage within a trace and also with annotating the name of that variable with
the thread to which it belongs.

For the case of global names, our SSA form should be consistent across all threads to
reflect the fact that modifying the value of a global variable on one thread will affect the
result of that variable in other threads. This is achieved by having all threads share a
single global namer, which is used any time a global name is encountered. From here, we




28 Chapter 3. From C Programs to Formal Automata Based Abstraction

apply the standard scheme for computing the SSA form of a sequence of statements. We
maintain a map of current indices for each variable and then increment the index when
an operation which will modify the value of that variable is encountered.

When applying a refinement to the automaton a concurrent program, the process of
building an interpolant for the rejected trace is complicated by the potential for loops
within a thread to be interleaved with blocks from other threads. This complicates the
detection of loops within a given trace and hence their removal in a refinement as the
blocks that form the iterations of a loop will not necessarily be directly adjacent in a
trace. For a single-threaded program, if we discover a trace of the form

Bl: BQ? Blp B?p Bl: B?r E

then we observe that B, and By must form the body of a loop.

As we know that in a single threaded program that the blocks that form a repeating
pattern in our trace must all be part of a loop, we can capture an arbitrary number of
iterations through any loop by adding a backedge from the end of the first loop iteration
to the beginning. In the case of our example this would constitute an edge from the first
instance of By to the first instance of By, which could capture any number of iterations
through this loop. If adding this edge is successful, ie. if it is actually an interpolant
for our original trace, then we do not need to consider adding any other edges in our
interpolant, as we have already constructed an automaton which can produce this trace
and all other traces which involve iterations through the loop consisting of By and Bs.

In contrast, in the concurrenct case, a we may find a trace of the form

B, s> Beo, 25 Beo, s Beo, - Bar, 1» B, 1, B, 5 Beo, 1, B, », E

with each block now annotated with the identifier of the thread to which it belongs. In
this trace, we observe the same repeating pattern of By, 4y and B, 2y, which consitute a
loop on thread 0. However, due to the presence of By, 1) between two iterations of thread
0's loop, adding a single backedge will not capture all possible cases for this trace, as it
will only capture iterations of the thread 0 loop before the interleaving of B¢y, 4y but not
the iterations which happen afterwards.

The ability of blocks from other threads to interleave with loop iterations means that
selecting backedges to apply when constructing an interpolant automaton is more complex.
We cannot infer any information about the how future iterations of a loop may occur as
we must be able to account for the pattern that makes up a loop in our trace to be
interrupted arbitrarily. This means we must attempt to add backedges for every repeated
pattern of blocks within a trace, allowing us to capture equivalent traces which have
arbitrary numbers of loop iterations with blocks from other threads interleaved.

3.6 Reduction

In our approach we adapt the SOURCE-DPOR algorithm as presented by Abdulla et al.
in [1]. From the empirical results demonstrated in [1] and given the additional compu-
tational expense involved in computing wake-up trees, we have chosen not to adapt the




3.6 Reduction 29

optimal partial order reduction technique. In order to clearly specify our adaptation of
Source-DPOR. we re-define some of the relations required by the algorithm in terms of
our own approach, however in implementation these operations will likely remain generie,
as specified by the original author.

In order to take advantage of the dynamic nature of SOURCE-DPOR and its symmetry
with our approach to constructing the concurrent auntomaton, the exploration process
carried out by the algorithm shares a role within the trace abstraction refinement process
with trace generation. This is achieved, quite straight-forwardly, by adding a check at the
start of the exploration of each state for the accepting status of the state we are in. If
we find an accepting state at any point during the reduction exploration, we will return
the trace that we have explored up until that point as a candidate error trace. This
combination of trace generation with the reduction algorithm means that our reduction
should not be viewed as a process which is taking a large automaton and converting it
into a smaller one by removing equivalent traces, but rather one which traverses a large
automaton with a strategy which allows it to only visit a small subset of the states.

Algorithm 1 Trace Generating Source-DPOR [1]

1: function ExPLORE(T, sleep)
2: if ISFINAL(T .stafe) then return TOTRACE(T)
3: if dp € ENaBLED(T') \sleep then

4 backtrack(T) «+ {p}

5: while 3t € (backtrack(T)\ sleep) do

6: for all r € T s.t. race(t,r) do

7 T « prefix(T,r)

8: tntermediates « NOTDEP(T, r)

0: candidates +— NOPREDECESSOR(T, intermediates) 4+t
10: if candidates N backtrack(T') = 0 then

11: backtrack(T') + backtrack(T') U {(some ¢ € candidates)}
12: sleep’ +— {s € sleep | INDEPENDENT(, s)}

13: EXPLORE(succ(T, 1), sleep’)

14: sleep +— sleep U {t}

Algorithm 1 gives an overview of the adapted algorithm for programs with non-cyclic
auntomaton. The form of SOURCE-DPOR follows that of a depth first search, but instead
of maintaining a stack of all the “to visit” states which have been encountered, we maintain
only a single linear path through the automaton which is being traversed given by a
sequence of pairs of states and transitions, T. The job of managing which state should
be wvisited next is managed by the source set, backirack, which contains all the states
which are yet to be visited when “backtracking” to a particular state. The source set
is constructed lazily, with the source set of a given state able to be updated during
the exploration of another state which further down in the program automaton. This
mechanism of starting the source set of any particular state with only a single transition,




30 Chapter 3. From C Programs to Formal Automata Based Abstraction

and then only adding additional states when a non-equivalent trace is found, is what allows
the SOURCE-DPOR to avoid the exploration of equivalent states within the antomaton.
When all non-equivalent paths through a particular transition have been explored, it is
added to the sleep set, sleep, excluding it from future exploration.

When deciding to explore a particular transition £ from our current state, we enumerate
all past transitions which are in a race with . We define a transition r as being in a race
with ¢ for some trace T, if 7 occured before ¢ in the trace, that the blocks which would be
executed by the two transitions as part of the T are dependent and ¢ was enabled at the
time that r was taken. If this relation holds for two transitions, then we need to explore
the case where the ¢ was taken instead of r. This is achieved by updating the source set
of the trace from which r was applied, given by T".

From here, we compute all of the transitions that were taken between the application
of r and our current trace T that are independent with r. This is given by NOTDEPR(T, )
which requires that the blocks that were executed by the transitions are not dependent
and that they did not occur on the same thread. These transitions, plus our candidate
transition ¢ which was in a race with r are now our candidates for being added to the
source set of 7', We then compute all of the available transitions from within this can-
didate set by taking all the transitions which have no dependent predecessor in the set
NOPREDECESSOR(T"). We note that this set will always include our original candidate ¢
but potentially may also contain some other independent transitions that occured between
T and T.

If there is any transition in our set of candidate source set transitions that are not in
the source set of 7", we add that transition to the set and carry on searching for races.
Once all the races for £ have been explored, we construct the sleep set for our successor
state, given by all the transitions in the sleep set of T which are independent with ¢ and
then explore the successor of T having applied {. Once we have fully explored all of the
traces which include applying ¢ from trace T, we add ¢ to the sleep set for T and check
to see if any new transitions have been added to the source set for T,

For programs containing loops, additional complexity is introduced to the algorithm
due to two issues. First, because we only maintain a record of all of the traces which
form part of our current trace, it is possible to get stuck in a cycle within the program
automaton. We have no way of recognising if a state has been explored previously if it is
not part of our current trace. Alongside this, as the pattern of exploration of the SOURCE-
DPOR traversal is not deterministic there is the possibility of exploring traces which are
equivalent to a member of the class of traces which have been removed by a previous
refinement. A potential remedy for this is to “exhaust” the refinement automaton by
attempting to explore all non-equivalent traces within the refinement automaton. This
can be achieved by preferentially exploring transitions (necessarily backedges) which have
been added by refinement automata before exploring fransitions belonging to the original
program automaton.




Chapter 4

Implementation

As mentioned in Section 1.1, the implementation of our approach is to take place as a
component of the Skink verification tool', a currently closed source project developed
within the Macquarie University Computing department. As such, many components of
the trace abstraction refinement process have been produced by other members of the
Skink project and so their implementation will not be described in detail in this report.

Parse Input Program Transform Input Program Automaton atd Refincment Loop Interpolant Computation
g I g i Ty S T ——
A 3 g P B :
5 ¥ \ i & é 1
2 = £
= £ ] E- g
z 5 1k 4 i
3 z F N E B
. A p \ Vg ., g
CFrontend and LLVAITE and
VMFunc: Refim
TINMFronien] . i o rameREH N TraceRefmement LL VDA o) Trace oy
B skink
. SealalLVAL
. Automat Program i correct Program is not correct

[ MQ Seala SMTLib

Figure 4.1: Block Diagram of Skink Multi-Threaded Verification Process

Fig. 4.1 provides a high level view of the structure of Skink with the main stages of the
verification process listed above each block and the Skink classes which are responsible
for each stage beneath each block. Within them, more fine grained tasks comprising each
stage are noted, with each component coloured based on the library which provides the
bulk of the functionality needed for that task. By inspecting the diagram we can observe
the primary responsibilities of Skink, and most of the components which required imple-
mentation as part of the work described in this report. In this chapter, we describe the
implementation of the program source transformation, concurrent automaton, SMT term

Thittps://bithucket.org /inkytonik /skink
3l




32 Chapter 4. Implementation

generation and adaptations made to the trace refinement and interpolant construction
code.

4.1 Transformation of LLVM IR Source

Following the process introduced in Chapter 3, the first step in the handling of concurrent
programs with our chosen inpuf representation is the insertion of additional branches
inside the LLVM IR Blocks in order to allow interleavings and synchronisation between
thread automata. All of the transformations on LLVM IR source code within Skink are
done at a function level, with the LLVMFunction existing as our internal representation
of an LLVM IR function within Skink. LLVMFunction is essentially a wrapper around an
individual funetion’s AST as provided by the ScalaLLVM library, and provides a number
of methods either for preparing the function for verification and traversing the AST of
that funetion.

LLVMFunction implements the IRFunction trait, which is used within Skink to pro-
vide a generic interface for interacting with the input program’s source representation.
This allows the central components of the trace abstraction refinement implementation to
be de-coupled from a particular input language and also from the various tasks related to
preparing the input program for verification. This design is particularly useful for our ap-
proach, as virtually all the material changes that are necessary to adapt frace abstraction
refinement for concurrent programs exist outside the boundary of the algorithm itself.

The majority of the work for preparing an LLVMFunction for verification occurs inside
makeThreadVerifiable, which is the function responsible for transforming the input pro-
gram by inserting the new blocks that are required for our approach. The two main com-
ponents of the makeThreadVerifiable function are given in Fig. 4.2. At the heart of this
function is the nested function splitOnPredicate which takes a list of MetaInstruction
instances from within a Block and splits them based on a predicate that is applied to each
MetaInstruction. The predicate functions for both global memory access and Pthread
API function calls are contained inside an LLVMHelper object and are constructed using
a pattern match on the LLVM IR AST.

Once a separated list of MetaInstruction instances is acquired, they are re-constructed
into a sequence of blocks, maintaining the same overall semantics as the original source
program but with the addition of several new branches and labels fo allow the necessary
interleaving or synchronisation. This is achieved by iterating backwards over the blocks
in the function, as we need to know the label of the next block in the function in order
to create a branch to it from the previous block.

Similar work is done by the makeErrorsVerifiable function, which adds special labels
before error locations are discovered within the program to allow easier recognition of final
states during trace and SMT term generation. These two functions are composed in order
to produce a new FunctionBody instance, which serves as the new canonical AST for the
LLVMFunction when verification begins.




=1 - B - -

0
2
2T

pist)

31
32

i3
34
15
36
47

39
40

42

4.1 Transformation of LLVM IR Source

33

def splitOnPredicate(
insns : List[Metalnstruetion],

pred

Metalnstruction => Boolean

) & List[List[Metalnstruction]] =
insns.span (pred) match {

case (Nil, Nil) == Nil
case (Mil, access :: remains) => splitOnPredicate{remains, pred) mateh {

remains | pred)

b
def insertBranchOnGlobalAccess(block : Block) : Block = {
val splitBlocks = splitOnPredicate(
block . optMetalnstructions . toList |,
i == !lisThreadPrimitive(i.instruction) && !isGlobalAccess(i.instruction)
)
if (splitBlocks.length <= 1) {
block
} else {

val Ffirst = splitBlocks . head

val rest = splitBlocks.drop(1).dropRight(1})

val last = splitBlocks. last

var label = makeLabelFromPrefix(block.optBlockLabel, "__threading")

insertedBlocks += Block(BlockLabel{label), Vector(), None, last.toVector,
block . metaTerminatorlnstruction)

var blockCount = 0

for (b <= rest.reverse) {
val newLabel = makeLabelFromPrefix(block.optBlockLabel, s"__threading.

blockCount™ )

insertedBlocks 4= Block(BlockLabel { newLabel), Vector(), None, b.toVector,

MetaTerminatorlnstruction |
Branch( Label( Local{label)) ).
Metadata( Vector())

1)

label = newLabel
blockCount += 1

val startBlock = Block(block.optBlockLabel , Vector (), None, first.toVector,
MetaTerminatorInstruction(
Branch ( Label ( Local (label}} ),
Metadata [ Vector () )
))

startBlock

Figure 4.2: makeThreadVerifiable Core Functions

case start :: end => List(access) :: start :: end
caze Nil == List(List(access])
case {remains, Nil} => List(remains)
case (previous, access :: remains) => (previous :4 access) :: splitOnPredicate(




34 Chapter 4. Implementation

4.2 Construction of Program Automaton

The concurrent program automaton is the most substantial addition to Skink that was
necessary for the support of multi-threaded programs and was implemented in the class
LLVMConcurrentAuto. In order to take best advantage of the work already done im-
plementing automata and regular language operations, as well as trace generation, the
implementation of our approach for program automaton construction follows the interface
for a deterministic and complete automaton (DCA) as defined by Franck Cassez’s automat
library?. Adhering to an interface defined within automat also allows our automaton to
plug into the existing trace refinement implementation with little modification required.

The DCA interface is relatively lightweight, with only four of the methods, enabledIn,
succ, isFinal and getInit actually necessary to implement in order to produce a reg-
ular language of accepted traces. The state of our automaton is represented by a case
class, LLVMState, which has two components, threadLecs, a Map[Int -> String] which
records the name of the current block in each thread, and syncTokens, a Map [String ->
Bool] used to record the state of the mutexes and conditions that have been encountered
within the program. The labels of our automaton are another case class, Choice. with
two fields, threadId an integer which identifies the thread that a label is being applied
on and branchId for the index of the branch which is being taken. Choice is part of the
generic interface shared by all source programs and is also used to construct the Trace
objects which the trace abstraction refinement loop computes on. The implementation of
traversal methods succ and enabledIn is shown in Fig. 4.3.

As described in Section 3.3, the fundamental process behind the construction of the
program automaton is a traversal of the AST of each function which is active in the
program at any given time, with an initial starting location at the first block in main.
The primary method used for detecting enabled transitions and computing the successor
for a state and transition pair is nextBlocks, which computes a set of (Int, String)
tuples corresponding to the thread identifier and block name of all the blocks which
can be reached from the current state. nextBlocks iterates over each location in the
state’s threadLocs map and performs a patfern match on the terminator instruction of
the block corresponding with the state's locations. It is also responsible for applying
the synchronisation semantics based on the synchronisation tokens in the current state,
which is achieved by filtering the initial set of locations for blocks which are blocked using
the method isBlocked. As nextBlocks is often re-computed for the same state during a
traversal, it has been implemented as a Kiama® attribute to take advantage of the caching
functionality provided by the Attribution class.

isBlocked is implemented by filtering the block for instructions which involve calls to
Pthread API functions, before applying an extractor which takes the useful information
from calls which may block the thread which that block oceupies. The most complicated
case for isBlocked comes in the form of pthread_join, due to the first argument of
the function being a value rather than a poinfer as is the case for most other Pthread

https: / /bitbucket.org/franck44 /automat /
*https:/ /bitbucket.org /inkytonik /kiama




-0 - R ]

4.2 Construction of Program Automaton 35

def sucec(state : LLVMState, label : (.'I]U'l('{?) : LLVMState = {
val threadld = label.threadld
val branchld = label. branchld

val (., newBlock) = nextBlocks(state). filter(.._.1 = threadld)(branchld)
var newThreadLoes = state ., threadLoes + (threadld —> newBlock)

val block = ir.getBlockByName(threadld , state.threadLocs.get(threadld).get)
threadCreationEffects (block) match {
case Some((newThreadld, newBlockName)) => newThreadLocs = newThreadLocs 4 (
newThreadld —> newBlockName )
case _ =3

}

var newSyncTokens = outSyncEffects({block, state.syncTokens)
newSyncTokens = inSyncEffects(ir,getBlockByName [ threadld , newBlock) , newSyneTokens)

LLVMState ( newThreadLocs , newSyncTokens)

t
def enabledIn(state : LLVMState) : Set|Choice] = {
val buf = new ListBuffer [Choice]
for ((threadld, branches) <— nextBlocks(state).groupBy(_._1)) {
for (branchld <= 0 to branches.length = 1) {
buf += Choice({threadld , branchld)
i
buf. toSet
t

Figure 4.3: succ and enabledIn Method Implementations

functions. This means that the pthread_t variable which the join is targeting will not
be part of the call to pthread_join, but rather will be loaded into a register and then
the register will be passed to the join function. Currently, this is handled by assuming
that the load from the pthread_t identifier will occur immediately before the call to
pthread_join. This assumption has held for all of the synchronised programs that we
have encountered so far, but it is not difficult to construct a counter-example for which
this approach won't work. In the long term, applying a scheme similar to that which is
used for indexing names within function ASTs (see Section 4.3) would allow for a more
robust lookup of thread identifier names.

Once a successor block has been found by applying an enabled label, the effects of
the newly selected block are applied. First, the block which is being transitioned out of,
ie. the one which has been “executed” in our model, is examined for thread creation.
This check is performed by the threadCreationEffects method, which uses pattern
matching to extract the name of the pthread_t identifier and the function which will be
executed by the thread. If a new thread is discovered, the seenThreads map is checked
to ensure we are not creating a new threadld for a previously encountered thread (due
to transitioning out of the same block from a different state). If this thread hasn’t been
encountered before, it is added to the LLVMIR functionIds map, which keeps track of




36 Chapter 4. Implementation

which LLVMFunction applies to a given thread identifier. Finally, the threadCount of
LLVMConcurrentAuto is bumped and used as the identifier for the new thread.

If a new thread is discovered, it is applied to the threadLocs map of the updated
state. Following this, the synchronisation effects of the transition are computed, begin-
ning with outSyncEffects which computs the synchronisation effects of the block being
transitioned out of. outSyncEffects relies on an extractor defined in LLVMHelper which
is used to match extract the useful information from calls to Pthread API functions. This
method handles initialisation of mutexes and conditions, the locking and unlocking of
mutexes and the signalling of conditions. It is also used to handle the more complicated
behaviour of pthread_cond wait which has an out effect of locking the mutex that it had
previously released. Following outSyncEffects, inSyncEffects applies the in effect of
pthread_cond_wait prior to the thread being blocked, unlocking the mutex argument if
the condition is currently false.

4.3 Verification Supporting Functionality

Adapting the existing implementation of trace abstraction refinement and its supporting
operations was invalved lifting the interface through which the program source and ver-
ification algorithm interacted from a function level to a program level. This is due to
the previous sequential model used by Skink being cenired around verifying an individual
IRFunction. As a result, the IRFunction trait has been deleted from the ir package,
with the only interface between the verification package and ir being via the trait IR,
representing the source of a complete program. The source for the IR trait is given in
Fig. 4.4.

The two main avenues of interaction between the source program and the trace ab-
straction refinement implementation are via the automaton representing the program,
which is provided via the dca field of the IR trait and the traceToTerms method, which
constructs an SMT term capturing the effects of a trace when it is projected back onto the
source program. Term generation for an accepted trace begins with the construction of
a BlockTrace, consisting of the sequence of blocks which are encountered when applying
the trace to our source program. The BlockTrace is used to allow the effects of each
statement in a trace to be converted to SSA form and then be encapsulated in an SMT
term. The concurrent Skink method for constructiong a BlockTrace was adapted from
the original synchonous version written by Tony Sloane. It iterates over each choice in the
trace and computes a successor based on the Choice found at that location in the trace.
The successor for each block given a particular choice is computed using the pre-existing
nextBlock method of the LLVMFunction class. As it is possible for a trace to span over
multiple functions, a map is used to store the current position of each thread after each
transition as been applied. As with nextBlocks, blockTrace is implemented as an at-
tribute to take advantage of the Kiama’s caching functionality as it is a fundamental
operation at multiple stages of the trace refinement process.

Having constructed a BlockTrace, term generation is managed by the LLVMTermBuilder




22

[=R-N- I - N R

4.3 Verification Supporting Functionality 37

trait IR {

def execute() : (String, Int)

def funetions : Vector [IRFunction]

def name : String

def show : String

def dea : DetAuto[., Choice]

def traceToTerms(trace : Trace) : Seq|TypedTerm|BoolTerm, Term]]

def traceToSteps(failTrace : FailureTrace) : Seq[Step]

def traceToRepetitions (trace : Trace) : Seq[Seq[Int]]

def traceBlockEffect (trace : Trace, index : Int, choice : Int) : (Ty|)e(1Terl|1|Buc}]Term,
Term], Map[String, Int])

def checkPost{pre : TypedTerm|BoolTerm, Term], trace : Trace, index : Int, choice

lazy wal

Choice, post : TypedTerm|[BoolTerm, Term]) {implicit solver
ExtendedSMTLIB2Interpreter) : Try|[Boolean]

Figure 4.4: IR Trait Implementation

blockTrace : Trace == BlockTrace =

attr {

case trace =>
import scala.collection. mutable. ListBuffer

var threadBlocks = Map[Int , Block]()
val blocks = new ListBuffer [Block]()
for (¢ <— trace.choices) {
val threadFn = dca.getFunctionByld (c.threadld). get
val currBlock = threadBlocks. get{c.threadld) match {
case Some(block) == block
case None == threadFn.function . functionBody . blocks (0)

threadBlocks = threadBlocks — c.threadld
threadFn. nextBlock (curtBlock , ¢.branchld) mateh {
case Some( block) => threadBlocks = threadBlocks 4 (c¢.threadld ->
block )
case None =» // There’s ne next block, panic
}
assert (threadBlocks, get (c. threadld ). get != currBlock)
blocks += currBlock

BlockTrace ( blocks . toList , trace)

Figure 4.5: blockTrace Attribute Implementation




38 Chapter 4. Implementation

class, also originally written by Tony Sloane and mostly unchanged from its original im-
plementation. The crucial difference between the sequential and concurrent Skink imple-
mentations for this phase of verification is in how the SSA conversion is managed. Each
LLVMTermBuilder instance composes with a class implementing the LLVMNamer trait,
which provides an interface allowing for the term builder to query the index and unique
name of a variable nse somewhere within a Block. As detailed in Section 3.5, in a concur-
rent program SSA conversion must be unique within a single thread, as a store to a local
variable named k in £1 should not affect the index of k in 2, but the indexes of global
variables should be consistent across all threads. This means that a single LLVMNamer
cannot manage the indexing of variables for all threads, and rather each function has
its own namer, an instance of LLVMFunctionNamer, and a BlockTrace which contains
only the blocks which are executed on that thread. In order to allow the global variable
stores and loads to propagate across all threads, each LLVMFunctionNamer composes with
an LLVMGlobalNamer, a singleton that is used any time a thread interacts with a global
variable.

In order to keep track of when the index for a variable should be incremented, the
BlockTrace for each function is converted into a tree with the Kiama tree relations
functionality used to create a chain which allows an appropriately updated version of the
map to be accessed for any node in the tree. When the use of a variable is found within
the BlockTrace undergoing term generation, that use can be looked up in the Kiama
decorated tree and the appropriate version of the index map for that point in the tree can
be found. The namer also leverages the ScalaLLVM analysis module in order fo resolve
array lookups. Similar to the situation with pthread.join arguments, array lookups are
performed via a special function with LLVM IR, getelementptr, which is used to find
a pointer based on a memory address, type and index to an array. However when the
item from within an array is accessed, the address of that item will first be loaded into a
register before the store or load instruction is applied. This means that in order to detect
array accesses, we need to be able to look back through the AST to determine if a regiter
was set as the result of a getelementptr instruction. As this is an operation applied to
an AST, each LLVMFunctionNamer is responsible for its own array lookup resolution.

The traceToSteps method is used as part of the witness generation module, using
the BlockTrace for a trace to construct a sequence of steps which contain information
about how a trace projects back onto the original source (C, not LLVM IR) program. This
element relies on ScalaLLVM’s analyser module again to allow us to extract information
about where in the original C program a particular instruction came from, which facilitates
the construction of a witness trace. Some work has been done to adapt witness generation
for concurrent programs, but the expected behaviour of concurrent program witnesses in
SV-COMP is not currently very well defined and so the main target for multi-threaded
Skink is to maintain parity with sequential Skink’s witness generation for single-threaded
Programs.

The methods traceToBlockEffect, traceToRepetitions and checkPost are used
in the construction of interpolant automata with checkPost and traceToBlockEffect
mostly unchanged from the original sequential versions. traceToRepetitions is the




ok W b =

4.4 Reduction of Program Antomaton 39

case class DI’()RI 5, L |[
autoToExplore : DetAuto| 5, L ],
processOf : L == Int,
independent : Seq| L | == ( Int, Int ) => Boolean

Figure 4.6: DPOR Class Interface

method used to detect patterns of repeated blocks within a trace which represent a loop
in our program automaton that we may be able to capture with an interpolant automaton.
This method was adapted to ensure that the patterns that were detect were occuring on a
single thread by prepending the block names that were identified as part of the converted
trace with the identifier of the thread nupon which they oceurred.

4.4 Reduction of Program Automaton

Our approach involves aligning the reduction traversal defined in SOURCE-DPOR with
the trace generation phase of our verification process. As such, dynamic partial order
reduction will effectively replace the search for an accepted trace within the automat
implementation of formal languages, previously used within our refinement loop. As
with the previous trace discoverv traversal however, dynamic partial order reduction is
a generic concept, and so our adaptation, TRACE GENERATING SOURCE-DPOR, is
impemented as a component of automat, with an interface which allows the antomaton
which is undergoing reduction to provide a means for the dependence of labels within it
to be determined.

The interface for DPOR (as implemented by Franck Cassez in automat) is shown in
Fig 4.6 and shows the signature of the two methods which need to be provided by the
automaton which is being traversed. The function independent provides a sequence of
labels which can be used to re-construct the state of the automaton over the course of
the trace and hence the equivalent source program statements. In the case of Skink, this
corresponds to the standard process of projecting a trace onto the source program to
produce a BlockTrace. The pair (Int, Int) then provides a pair of indices of labels
within the trace, which can be mapped back to the two blocks which have been or would
be executed as a result of the labels being applied. With two blocks available, determining
their dependence can be achieved via a call to the function areDependent, which inspects
the contents of each instruction call on each block and determines if the two blocks have
stored to the same global variable or loaded and stored from the same global variable.

With this function defined, as well as the ability to map a label within the antomaton
to a particular process (or thread, in our parlance), the class DPOR is able to compute the
NOTDEP and NOPREDECESSOR sets described in Section 3.6, and also to decide if two
labels in the automaton are in a race. The EXPLORE function which forms the main body
of Algorithm 1 is implemented as a recursive function, with the source set for each trace
stored as a mutable map, allowing the call at the top of the stack to modify the source




o«

Ll =00 = s I B

[~

40 Chapter 4. Implementation

def areDependent(a : Block, b : Block) : Boolean = {
def globalAccessNames(block : Block) : (Set[String], Set[String]) =

block. optMetalnstructions .map( .. instruetion ). foldLeft ({ Set [ String](), Set[String

1)1 o
case ((1, s}, Load(_, _, _, _, Named(Global(n)), )} == (1 + n, s)
case ((1, s}, Store(., -, -, -, Named(Global(n)), -}) = (1, & + n)
case ((1, s}, .} => (l, &}
}
val (aStores, aloads) = globalAccessNames(a)
val (bStores, bLoads) = globalAccessNames(b)

I{({aStores & bStores).isEmpty && (aStores & bLoads).isEmpty && (aLoads & bStores).
isEmpty )

Figure 4.7: arDependent lmplementation For Resolving Dependency Of Two Blocks

set for previous calls. This enables the process by which non-equivalent interleavings are
added to the traversal of previous states.

Fig. 4.7 shows the implementation of the function areDependent which is used to
determine the dependency of two blocks based on their interactions with the global vari-
ables of a program. This function, contained in the LLVMHelper object, is used within a
method defined on the LLVMConcurrenthAuto class that can be passed to the DPOR class in
automat for use in generating traces from a reduced traversal of the program automaton.
When its implementation is finalised the DPOR object that is used to construct the reduced
set of representative traces will take the place of the automat defined Lang class within
Skink’s trace refinement implementation, and can be thought of as a reduced formal lan-
guage which only accepts a single representative trace (or due to our implementation of
the non-optimal algorithm, a small number of traces) for each equivalence class within
the program automaton.

When an initial working version of the DPOR class for acyclic automaton with only linear
refinement has been completed, we can begin fo consider how our implementation can
be further developed to track and attempt to exhaust the interpolant antomata defined
labels within the refined program auntomaton during each trace generation round, as well
as a means for detecting and avoiding previously unfolded traces.




Chapter 5

Results

At the time of writing, an implementation of the process of constructing a formal automa-
ton representation of a multi-threaded C program has been implemented within Skink.
Further work has begun on implementation of the Source-DPOR algorithm as a generic
reduced language generator within antomat. Using our implementation of the approach
described in Chapter 3, we are able to demonstrate equivalence with the previous, syn-
chronous version of Skink, as well as to verify a multi-threaded C programs with some
constraints applied to the complexity and operations used within the program.

With the SV-COMP submission deadline being the 7th of December, one month
after the submission date of this report, our work to complete an implementation of
Source-DPOR and to introduce support for additional functionality needed for successful
participation in the SV-COMP concurrency category is on track for completion in time to
meet our stated aim of competing in SV-COMP 2017. In order to prepare our implemen-
tation for SV-COMP and to demonstrate its ability to function within the competition
environment, the benchmarking tool BenchExec' has been used to run and measure all
of the benchmark programs which are described in this chapter.

All benchmarks listed in this chapter were run on a Ubuntu 16.04 LTS virtual machine
with a 3.3Ghz quad core i5 CPU. We note the likely differency in execution time of
benchmarks on our host to those which are achieved as part of SV-COMP due to the
substantially smaller amount of memory and single core assigned to each verification
task. All benchmarks were limited to 500MB of ram (as compared to the 15GB available
in SV-COMP) with the timeout for all benchmarks except our own concurrency set fixed
at 500 seconds to allow benchmarks to be repeated quickly during development and to
allow us to observe the variation in run-time of each benchmark program across multiple
rUuns.

Mhitps://github.com/sosy-lab /benchexee

41




42 Chapter 5. Results

5.1 Single-Threaded Programs

One of the primary advantages that we sought to demonstrate with the implementation of
our approach in Skink was the ability of our concurrent antomaton and surrounding ver-
fication supporting functionality to replicate the results of the existing sequential Skink
implementation, allowing a single version of the tool to used for all types of programs
within SV-COMP and beyond. As the both the concwrrent and sequential implementa-
tions are under ongoing development prior to the 2017 SV-COMP submission date, rather
than benchmark against a set of large SV-COMP categories, we use a set of simple bench-
marks which demonstrate all the basic program constructs which are supported by Skink
at present. The benchmark set, Skink Simple, is used by the devlopers as represenati-
tives of SV-COMP programs and consists of eleven benchmark programs which have been
handwritten or adapted from existing SV-COMP benchmarks to serve as a quickly appli-
cable system test suite for use in ongoing work on the development of Skink’s sequential
implementation.

The naming scheme of the programs follows that which is used in SV-COMP, with
the name of the program, for example array-hard, suffixed with the correctness of the
program (true for correct, false for incorrect) and the property which is being checked
(which in all cases for our benchmarks is the reachability of an error assertion call). The
benchmark programs used are:

e array-hard_true-unreach-call.c This program tests two of the more advanced
features that are currently implemented in Skink, consisting of a main method which
declares an array of 10 integers and then a for loop which iterates over the first five
indexes of the array and assigns them to the value of their index. An assertion then
checks that the final location in the array that was assigned at index 4 is equal to
4. Proving the correctness of this program requires us to construct an interpolant
automaton for the loop which precludes us from exploring infeasible error traces
which iterate through the loop more than the fixed number which is given in the
program. It also requires that we compute postconditions on the effect of array
look-ups, something which is non-trivial in Skink for reasons described in Section
4.3.

e array-sequence_true-unreach-call.c Similar to the previous program but with-
out a loop or the need for interpolants, this is a simple benchmark for Skink’s ability
to correctly handle loads and stores with a local array of integers.

e eca-like_false-unreach-call.c In this benchmark an infinite while loop is run which
checks the value of two variables initialised with _VERIFIER nondet_int and if a
condition is met branches to an error location. Although this test involves a loop,
the existence of a feasible error trace within it means that interpolants are not
strictly necessarv and passing this benchmark requires only correct modeling of
__VERIFIER nondet_int and the simple control flow statements in the program.




5.1 Single-Threacded Programs 43

¢ multiple-error-calls_false-unreach-call.c As with the previous benchmark, this
is a test for simple control flow constructs with a program with two error locations (as
the program contains both a call to __VERIFIER error and __VERIRIFER_assert).

e simple-fuction_false-unreach-call.c As no version of Skink currently supports
function calls, this benchmark checks that a simple function is correctly inlined and
that the control flow is correctly explored, leading to the discovery of a feasible error
trace.

s simple-fuction_true-unreach-call.c An alternate version of the previous pro-
gram, a change to the __VERIFIER assert call inside the simple function changes
the benchmark from being incorrect to correct.

e simple-if_false-unreach-call.c Similar to the simple function benchmark, this pro-
gram contains a conditional statement which if true results in a call to __VERIFIER_ error.

e simple-if_true-unreach-call.c An alternate version of the previous program, a
change to the condition inside the if statement changes the benchmark from being
incorrect to correct.

s simple-loop-array_true-unreach-call.c Another arrays and loops benchmark,
this program creates an array of 10 integers and runs a while loopawhich assigns
each position in the array to the value of its index. Again, this requires the correct
computation of an interpolant for the while loop to avoid exploration of an infinite
number of traces through this loop and also the correct resolution of SMT terms for
array lookups.

s simple-loop_false-unreach-call.c This program contains a simple loop that runs
while a nondeterministic integer is greater than zero and decrements the integer at
each iteration of the loop. As it is an incorrect program, there is no need for an
interpolant as we will terminate as soon as a fesible error trace is discovered.

e test-interpolant-franck_true-unreach-call.c The most complicated interpolant
computations of any benchmark in the set, this program introduces two variables
x and y and runs a loop which depends on the value of x but modifies the value
of both variables. After the loop terminates. a condifion is asserted which depends
on y. Computing an interpolant on this program is slightly more involved than the
array benchmarks, as the number of iterations through the loop can affect the truth
of the final assertion, although the loop bound ensures that it is not violated.

The results of benchmarking both sequential and concurrent Skink on the Skink-
Simple benchmark set are given in Table 5.1. First, we note that both sequential and
concurrent Skink are able to find the correct result for all 11 benchmarks in the suite,
and that the overall time taken and memory usage for each benchmark is comparable
between the two implementations. There is a small apparent overhead in the concurrent
implementation, with an overall additional runtime of 3.8 seconds for the full suite, or




44 Chapter 5. Results

Table 5.1: Single-Threaded Benchmark results

Sediiiil Conelirreit Skik - -
Benchmark Mams Resuk | CPU Tiwe () | Mem, Usage (ME) | Resubt | CPU Time (8] | Mem, Usage (MB) | 3 CPU Tioe (=) | & Men, Usage (MB]
gy 1 o enll e Toas 16T (5] T FITY [E3] EX] <16
el ralle Tos T Tz T | oot L] Tk -
Fabe |55 1) False |55 [F5] [Tow gLl
Falser £ [1E] False 142 15 54 24
Fabw | 551 [} False | 600 T .11 3
T | 531 15 T | 055 1] AL i
Faln | 555 113 False 450 [T+ (X 1]
Tow | 400 [15] i [EE] (X5 10
rampk-koogr arra T X [15] Trwe | 002 (&) T I
vtk ks Fabe  [506 (1] Fae [ T01 1] [ -z
[ERT e e T, enchrall: || 501 153 Thwe | ot 13 [ Y
| AT |5 B8] [T R T B3 -G

a 7.5% increase over the time taken by the sequential implementation. Possible reasons
for this time difference include the additional transformation steps which are applied
(althongh without any effect in the case of these single threaded programs) to the source
program’s LLVM IR and the additional overhead created by the construction of the local
and global LLVMNamer instances which are used for term generation. Observations from
repeated runs of the benchmarks on both versions of Skink imply that this time difference
is consistent across most of the benchmarks in the suite, and does not appear to be
connected to a particular feature of any of the benchmark programs. It should also be
noted that small differences in execution time, in the region of £10% are likely due to
fluctnations resources availability on the host machine, as the benchmarks were not run
in a closed system and were sharing a CPU core with the operating system and other
programs on the host. The full BenchExec generated reports for both the sequential and
concurrent Skink runs of the Simple Skink set are provided in Appendix C.

On larger sequential benchmarks, like those in the loops category of SV-COMP, the
trade-offs between our program automaton and the representation used in the sequential
version of Skink become less obvious, with no consistent winner in cpu time or memory
usage. Fig 5.2 provides a comparison of the results between the sequential and concurrent
implementations of Skink for a small subset of the SV-COMP loops category, taking all
of the programs that involve computing a sum with a loop. As we make no claims about
improvements to the correctness of our concurrent implementation over the synchronous
version, the cases where one or both of the tools returns an incorrect result are not
considered in our comparison, and is potentially due to a difference in the interpolant
automaton construction strategy used by the version of sequential Skink that was used.

One of the clear features of the successful results is that the difference in performance
between the two implementations does not appear to be a function of the size of the
program, but is likely more sensitive to the structure of the program and the interpolant
automaton construction strategy applied by the two versions. We note however that in
all the cases that sequential Skink is able to attain the correct result for, our concurrent
implementation can achieve the same result with similar CPU time and memory consump-
tion — in keeping with our expectation that the equivalence of the two approaches over
sequential programs generalises for more complicated examples. The BenchExec output
for the sum benchmarks for both the sequential and concurrent Skink implementations
are available in Appendix C.




5.2 Concurrent Programs 45

Table 5.2: SV-COMP Loops sum Benchmark Results

Sonpmentlal Skink Comrurrent Skink
[Menchmark Same | Fesult | CPL Lime (3] | Mem, Usge (MB] | Tesak | CPO Time ix) | Men. Csage (805) | & CPO Tioe i8] | 5 Mem, sage (M0] |
Tl aaLiu EE) IE o N ) Imn E]

-3 242 [EX] (1] [
(2] Fabr B Tr 13
[T [ (] [ [
T I i [

Fals: HA Fabur e -5

Tru 192 Fade e} [

Trae ) True: L] 21

True Tirue f) 1Lim
] Fabe |1 i i

CET T T T A -5ET

5.2 Concurrent Programs

The benchmarks which are nused as part of SV-COMP typically test a number of pieces
of concurrent functionality in concert with one another. During development, we defined
a series of our own simple and more targeted benchmarks which allow us to both test
our implemenetation and observe how our approach handles the various building blocks
of a full multi-threaded program. The results we present have been produced without the
application of a reduction algorithm to the traces explored by the refinement process and
s0 in some cases required a large number of iterations to terminate as all of equivalent
interleavings of concurrent blocks were explored.

As with the Skink-Simple benchmark set, our own multi-threaded benchmarks, Skink-
Concurrency, follow the SV-COMP naming scheme to allow BenchExec to detect whether
the result returned by Skink is the expected one or not. Our concurrent benchmarks
consist of:

s concurrent-loop_true-unreach-call.c This program is a simple benchmark for
the effect of a loop which runs concurrently with the main thread. The body of the
child thread assigns 5 to global variable a and runs a loop which iterates 10 times
but which does not effect the value of a. In the body of main, a check is made on
a > 5 and, if it succeeds, __VERIFIER error is called. While it is therefore possible
to compute an interpolant for the loop inside the body of the child thread which
captures the effect of any number of iterations, the potential for the loop to be
interrupted by interleaved blocks from main means that without a reduction there
are a large number of interleavings which we need to discover and construct the
interpolants for, using the scheme described in Section 3.5.

* concurrent-loop_false-unreach-call.c A modified version of the previous pro-
gram but with a change to the condition in main to introduce a feasible error trace
into the program. While this is a program which contains an error location and so
not all paths of execution need to be explored, there are still a large number of pos-
sible interleavings of the blocks from main and the blocks that constitute the loop
inside the child thread which mean that discovery of a feasible error trace without
reduction is a substantial computation.

s sync-concurrent-loop_true-unreach-call.c A modification of the original concurrent-
loop program which uses a join in the main thread, converting the loop in the child




46

Chapter 5. Results

thread info an effectively synchronous trace, as it cannot be interleaved with any
instruction from main.

fib-threads_false-unreach-call.c This is the example program shown in Fig. 3.2,
which constitutes two threads intended to cooperate to construct Fibonacei num-
bers. The two global variables i and j with 1 added to j in one thread and j added
to i in the other. If the two threads interleave in the ideal way, the final value of 1 +
j should be 5, the sixth Fibonacci number. However, as there is no synchronisation
constraint on when main checks the value of 1 + j, there are many feasible error
traces in this program, the most obvious being the one where neither thread begins
to execute before main checks the error condition.

fib-threads_true-unreach-call.c A modification of the previous program to relax
the condition on i + j inorder to account for any of the possible orders of execution
for the program. Although the condition has been relaxed, proving this program
correct still necessitates exploring every possible interleaving of the load and store
instructions on each thread with one another and the condition in main and so
without reduction represents a substantial verification task.

sync-fib-threads_true-unreach-call.c A further modification of the original Fi-
bonacci threads program, show in Fig. 3.8, which introduces the use of a mutex and
joins to enforce the atomicity of the += operator in each thread and to ensure that
main does not check the condition on the value of 1 + j until both threads have
terminated. The use of synchronisation operations substantially reduces the size of
automaton which needs to be explored, even without the use of partial order reduc-
tion, and makes this program substantially faster than the unsynchronised versions
to verify.

simple-threads_false-unreach-call.c A simple test which performs an assignment
from one global variable into another in two concurrent threads and contains a check
inmain on the value of their sum. Similar to the Fibonacel programs but the use of a
direct assignment rather than addition reduces the size of the AST and the number
of potential interleavings within the program. As with the incorrect Fibonacci
program, although the existence of a feasible error trace in the program means we
do not need to explore all error paths, the number of error traces that exist in the
unreduced program means that finding a counter-example is non-trivial.

simple-threads_true-unreach-call.c The previous program modified to accept
all possible results for the sum i + j, requiring all error traces within the program
to be explored.

sync-threads_true-unreach-call.c A benchmark for synchronisation operations,
this program uses all of the Pthread API synchronisation types and functions that
are supported within Skink. A global variable num is initialised as 0., along with a
pthread mutex_t, m, and a pthread_cond._t, five, which are used to synchronise




5.2 Concurrent Programs 47

Table 5.3: Skink Concurrency Set Benchmarks

Benchmark Name (s) Result | CPU Time (s) | Memory Usage (MB)
concurrent-loop_true-unreach-call.c True 5583 507
concurrent-loop_false-unreach-call.c False 5.34 500
syne-concurrent-loop_true-unreach-call.c | True 6.25 250
fib-threads_false-unreach-call.c False 4.73 203
fib-threads_true-unreach-call.c True 3842 a07
syne-fib-threads_true-unreach-call.c True 27.2 488
simple-threads_false-unreach-call.c False 4.67 177
simple-threads_true-unreach-call.c True 2249 157
sync-threads_true-unreach-call.c True 18.9 500
sync-threads_false-unreach-call.c False 4.72 210
Total 10/10 | 11746 3474

the two threads. The mufex m is used to ensure the two threads cannot interleave
one another, with the condition five used to enforce an ordering on the two threads.
In main, the two threads are joined by the main thread to ensure that both have
terminated before the error condition is checked. In the first thread, the value of num
is set to 5 and then the condition five is signalled, allowing the second thread to
unblock and sef num to 10 once the mutex m is released by the first thread. After the
two threas have made their assignment and terminated, main checks that the value
of num is 10. While this program has more lines of code than any other benchmark in
our set, the enforcement of the synchronisation semantics on the program antomaton
mean that the number of error traces that need to be explored is quite small.

Table 5.3 shows the results of verification the Skink Concurrency set. As expected,
the use of of partial order reduction exploring all possible interleavings of the thread
interactions in the fib-threads and simple-threads benchmarks in order to prove cor-
rectness for the true cases is an expensive process, requiring thousands of iterations of the
refinement loop. Also demonstrated by these results is the effect of applying the seman-
ties of synchronisation to our program automaton, with the synchronised version of the
fib-threads and concurrent-loop programs able to be proven correct in substantially
less time than the equivalent unsynchronised programs. Overall the results from our local
benchmark are indicative of the value of partial order reduction. The three programs
which took the most time to verify all represent good case studies for our implementation
of SOurRCE-DPOR.

Table 5.4 shows the results of running our eurrent implementation of Skink against the
pthread sub-category of SV-COMP’s concurrency category, which contains the simplest
concurrent programs which are available for verification within SV-COMP. The results of
achieved for these benchmarks are demonstrative of the two significant missing features
in the current implementation of Skink. Somewhat surprisingly, our lack of an implemen-
tation of partial order reduction is not at fanlt for any of the failures from this set of
benchmarks, but rather a lack of support for the creation of threads within loops using




48 Chapter 5. Results

Table 5.4: SV-COMP Concurrency pthread Set Benchmarks

Benchmark Name (s) CPU Time (s) | Memory Usage (MB)
bigshot_*.c

fib_bench_*.c
indexer_true-unreach-call.c
quene_ok_*.c
sigma_false-unreach-call.c
singleton_false-unreach-call.c
stack_*.c

stateful(1 false-unreach-call.c
stateful(1_true-unreach-call.c
twostage_3_false-unreach-call.c
sync0l_true-unreach-call.c

an array of pthread_t identifiers (such as in the stack, queue and sigma benchmarks)
and dynamic memory allocation (used in bigshot). The remaining unsolved group of
benchmarks, fib-bench, represent a set which would likely benefit somewhat from partial
order reduction but which still require the exploration of a huge number of non-equivalent
traces as the two threads operate exclusively on global data and each interleaving has the
potential to produce a different final result.

Rather than run these benchmarks against other SV-COMP concurreny category com-
petitors locally, we direct the reader to the results from SV-COMP 2016° to gain an
understanding of how our results compare to other similar tools. We note that all of
the tools which were able to successfully verify the fib_bench_true cases are based on
bounded model checking (such as Lazy-CSEQ and MU-CSEQ [18,22]) or, as in the case
of CIVL [24], verify specific safety properties, which in neither case are able to provide a
guarantee of correctness. In contrast, Impara, a tool which impelements predicate abstrac-
tion refinement, an approach which shares the soundness of trace abstraction refinement
and thus which must explore all non-equivalent traces in a program, timed out on all of
the fib_bench programs.

One encouraging aspect of our results so far is that we have been able to successfuly
verify programs which were only handled in SV-COMP 2016 by bounded model checking
tools which do not produce a proof of correctness. The gap between what bounded
approaches to verification and those which seek to prove provide a guarantee of partial
correctness is clear though, with the programs which Skink is able to verify correctness
of in a number minutes taking the most successful sequentialisation based tools a matter
of seconds. The full results for both the Skink-Concurrency and SV-COMP concurrency
benchmark sets, as produced by BenchExec, are given in Appendix D.

https:/ /sv-comp.sosy- lab.or results,/results-verihed / Concurrency.table, htm
https p.sosy-lab.org/2016 1 1 ified /C: v.table.html




5.3 Seala As a Platform For Verification 49

5.3 Scala As a Platform For Verification

As well as demonstrating the ability of our approach to successfuly verify concurrent
programs, our work on the implementation of the necessary functionality to support
our approach in Secala is demonstrative of the value of a number of language features
in this type of work. Skink forms an interesting case study in the application of work
by Tony Sloane and his collaborators on the use of Secala as a platform for working
with embedded domain specific langnages (DSLs) [20, 21], as it relies heavily on the
embedded DSLs implemented within its surrounding libraries. At the centre of most
of the implementation work described in this report are interactions with the AST of
the source LLVM IR program as constructed by ScalaLLVM?®, supported by the sbt-
rats!! parser generator and the Kiama language processing framework”®. The ability to
arbitrarily traverse and fransform our source program as a tree defined by our own LLVM
IR DSL and compute relations on nodes within our AST using Kiama allows for code
surrounding the construction of our automaton to be expressive and easy to write. The
pretty printing functionality generated by sbt-rats! is also invaluable for debugging.

We also observe the power of Scala pattern matching and extractors as they apply
to our representation of LLVM IR, with all of our interactions with the source program
during the analysis reducing to a pattern match on a function’s AST. The best example
of this is found when computing the effects of a block on the synchronisation tokens of
a successor state, which involves inspecting the context of the block for calls to a large
number of different Pthread API functions. Each Call instruction in LLVM IR contains a
number of arguments, most of which aren’t useful when attempting to identify the name
and arguments of a particular function call, so in order to hide some of this unnecessary
information, we introduce an extractor which allows us to pattern match on an LLVM IR
instruction if it is a call to a function with a specific name, or alternatively to allow us to
collect the arguments of a function call with a name that matches the one we supplied to
the pattern match.

The source for the PthreadOperation extractor used to collect information about
Pthread synchronisation function calls is given in Fig. 5.1. The number of arguments
that are to be expected and whether or not we are interested in returning their value
depends on which synchronisation function is called, with the name and arguments of
the function call collected by the GlobalFunctionCallWithArgs extractor and the name
of each argument extracted by ValueArgName. The number of potential cases involved
makes this quite an involved pattern match but the number of ignored fields in each
pattern match is massive improvement over matching directly on the LLVM IR AST.
Also as expected, the expressiveness and readability of this quite complicated pattern
match is a substantial improvement over the type of code would be required to achieve
the same collection of information using an if/else construct.

Also used by Skink and taking advantage of the appropriateness of Scala for hosting

*hitps:/ /bitbucket.org /inkytonik /scalallvin
https:/ /bitbucket.org /inkytonik /sbht-rats
""hltp.-::g‘fl)ilhm:k(-t org/inkytonik [kiama




L= e = R L N

FoNE U R =

o

16
17

19

20

29

50 Chapter 5. Results

object PthreadOperation {
def unapplySeq(insn : Metalnstruction) : Option[Seq[String]] =
insn match {

case GlobalFunctionCallWithArgs (callName ,
Vector( ValueArgName | Global (syneToken) ) )
} if List(
"pthread_mutex_lock",
"pthread_mutex_unlock",
"pthread_cond_signal"

}.contains(callName) ==
Some( List (callName , syncToken))

case GlobalFunctionCallWithArgs (callName ,
Vector( Value ArgName [ Global (syncToken ) ) )
} if callName == "pthread_cond_condition"” =>»
Some( List (ecallName , syncToken))

case GlobalFunctionCallWithArgs (callName ,
Vector({ Value ArgName ( Global (syncToken ) ) |

} if List("pthread_mutex_init", "pthread_cond_init").contains{callName)

=
Some( List (callName , syncToken))
case GlobalFunctionCallWithArgs(callName ,
Vector({ ValueArgName ( Global (syncToken ) ),
ValueArgName({ Named( Global { returnMutex ) ) )
} if callName == "pthread_cond_wait" =>
Some( List (callName , syncToken, returnMutex))
case GlobalFunctionCallWithArgs (callName ,
Vector ( ValueArgName( Global (syncToken ) ) |

=)
} if callName == "pthread_jein" =>
Some( List (callName , thread NameRegister))
case _ =>

Mone

Figure 5.1: PthreadOperation Extractor Object




5.3 Seala As a Platform For Verification 51

embedded DSLs is MQ-Scala-SMTLib%, used by Skink to construct a logical representation
of a trace and then for interactions with an SMTLib compliant solver to compute the
feasibility of the trace. As with ScalaLLVM, MQ-Scala-SMTLib introduces a family of
types and operators which allows the construction of each SMT term to resemble the
real logical syntax of an SMT propositional logic statement and leverages the generated
pretty-printing of sbt-rats! to improve the debugging environment for term generation

within Skink.

Shttps://bitbucket.org /franck44 /mq-scala-smtlib




Chapter 5. Results




Chapter 6

Conclusions

The goal of our work was to re-explore the method introduced by Cassez and Ziegler in [8]
to adapt trace abstraction refinement based verification for concurrent programs and to
produce an approach which is able to apply this verification technique to multi-threaded
C programs in the SV-COMP coneurrency category. An approach for applying partial
order reduction to our program representation, as introduced in [8] was also explored,
with the possibility of improving on the prior work by applyving a more effective reduction
algorithm, defined in [1]. It was on this basis that our approach was derived and described
in Chapter 3.

We described in Section 3.1 the process undertaken to transform a source C program
via Clang and LLVM into an intermediate representation which, once parsed by a lan-
suage processing library ScalaLLVM, can be transformed to allow interleavings of the
blocks comprising the CFG of each function in the program to be explored. It was ob-
served that our approach of using LLVM IR as a representation of our source program
during verification provides a number of advantages over statement level representations,
as it allows instruction level resolution of global memory access. This is necessary for
correct modeling of atomicity within our analysis, but through its grouping of sequences
of instructions in blocks, can still provide a succinet means for representing a particular
path of execution within a program.

In order to represent the synchronised product of the thread automata in a concurrent
program, a scheme for dynamically generating the structure of an antomaton which rep-
resents the control How for the complete concurrent program was introduced in Section
3.3. This is acheived by traversing the AST of the source program in order to discover
available branches from a given thread and block which become the labels for our repre-
sentation. The location of the most recently encountered block for each thread comprises
the state of the automaton. We detailed the means by which new thread creation can
be discovered by inspecting the svntax of blocks being “executed” within a particular
path of execution in our program, and also the method for detecting and applying the
synchronisation operations and tokens provided by the Pthread APIL

To achieve reduction of our program automaton without losing the benefits of its dy-
namic construction, we adapted SOURCE-DPOR algorithm introduced by Abdulla et al.

"

53




b4 Chapter 6. Conelusions

in [1]. This is deseribed in Section 3.6 and further an explanation of its fundamental oper-
ations in the context of our approach, with the ongoing implementation of this adaptation
described in Section 4.4.

In Chapter 4 we recounted details of the implementation of our approach as a fork of
the existing trace abstraction refinement tool, Skink. This includes an explanation of how
the previous structure within the tool was adapted as well as new functionality which was
added as part of Skink’s LLVM package and also within the external library automat to
support the verification of concurrent programs.

In our results we provided an overview of how our implementation performs in com-
parison to the previous sequential implementation of trace abstraction refinement which
existed in Skink over a set of simple sequential benchmarks. This was supplemented by
a small subset of more difficult benchmarks from the SV-COMP loops category. Having
demonstrated the abilites of our program automaton in sequential cases, we next showed
its performance on a set of our own concurrent benchmarks and in particular its ability to
perform well on programs which employ Pthread synchronisation functionality, due to the
enforcement of the semantics of Pthread synchronisation on the struction of the automa-
ton. As a preview to our ongoing work in preparing our implementation for the upcoming
SV-COMP 2017, we provided the results from running our implementation against the
SV-COMP concurrency pthread eategorv, and commented on the current shortecomings
of our implementation and how they effect our results on the pthread benchmarks.

Finally, we discussed the role of Skink as a case study for the application of software
language engineering techniques within Scala. This included the ways in which our im-
plementation took advantage of the language features and surrounding tools in order to
allow succinet and expressive interactions with the source program representation from
ScalaLLVM as well as with the SMT term construction provided by MQ-Scala-SMTLib.




Chapter 7
Future Work

7.1 Exploration of Partial Order Reduction

Although we have discovered that a large number of the benchmarks in the SV-COMP
concurrency category would not benefit significantly from partial order reduction, the
ability to explore a minimal or near-minimal set of representative traces in every program
encountered remains a valuable feature for Skink as a verification tool. Our immediate
plans for partial order reduction in Skink revolve around completing our generic implemen-
tation of the TRACE-GENERATING SOURCE-DPOR algorithm described in Section 3.6
and the supporting operations within Skink, before benchmarking the resulting reduction
against our previous, un-reduced representation.

Following this supplementing our simplified approach with the wake-up tree data struc-
ture described in [1] will allow us to explore the trade-off between producing a provably
minimal set of representative traces and the increased computation time and memory
consumption required to manage the additional data structure.

Another avenue of exploration for the partial order reduction method used in Skink
comes in the form of a new technique described by Chatterjee et al. in [9], which defines
a new means of defining equivalence on traces within a program. Termed observafional
equivalence it is distinet from Mazurkiewicz equivalence which is used by all of the partial
order reduction algorithms described in Section 2.4. Using this new means of considering
equivalence, the authors introduce a new dynamic partial order reduction algorithm, DC-
DPOR, which is shown experimentally to produce a substantial improvement in reduction
over the original dynamic partial order reduction algorithm introduced by Flanagan and
Godefroid in [11].

o
o




56 Chapter 7. Fuiure Work

7.2 Recognising and Handling Thread Creation In
Loops

As recognised in Section 5.2, limited by of our current implementation of concurrent ver-
ification in Skink is our ability to recognise and handle calls to Pthread library functions,
particularly pthread_create. In the short term, the most straightforward approach to
overcoming this limitation appears to be to apply loop unrolling, a technique which is
very common amongst bounded model checking tools. It can be quite easily applied as an
initial step in the compilation of our source program from C into LLVM IR, alongside the
inlining of functions. By un-rolling the loops containing calls to Pthread function calls,
it will be possible to distinguish between a call which is being re-visited due to existing
within a loop and a call that is being re-visited at a different location within a trace. It
also makes it possible to statically determine the identifier used as an argument to each
Pthread API call, which is necessary for the application of our approach for enforcing
synchronisation semantics on the program automaton.

Going forward, we can apply a similar technique as we have done for synchronisation.
We will attempt to detect the structure of the loop which contains calls to Pthread API
functions and use our knowledge of the variable’s counter or bounds in order to keep track
of which identifier is being used as an argument to the function being called within the
loop. A prior means of identifying important values within a source program’s syntax and
tracking them as part of the trace exploration, rather than via refinement, is described
by Cassez et al. in [6] where it was nsed to handle programs with loops for which an
interpolant could not be discovered.

7.3 Adapting Program Automata For Functions

One of the potential extensions for our AST traversal approach for the construction of
our program automaton is to support non-inlined function calls. The general scheme
would be to recognise function calls in a similar fashion as we do for calls to Pthread
API functions, but instead of applving our model of the entire function call’s effect on
the structure of our automaton, we apply the semantics of the call instruction itself and
jump from the current location to the first block of the function which was called. There
are some non-trivial issues surrounding this adaptation of our existing machine, including
the problem of mapping between the actual and formal arguments of the function during
term generation, the propagation of return values and the recording of where in the source
program each function should return to.

This approach lacks some of the power of one previously described technique for mod-
eling function calls in trace refinement in [7]. It requires the effect of a function call to be
re-computed every time a new trace containing that function call is explored, rather than
re-using a previously computed summary of the pre and post-conditions of the function.
It is however, a fairly flexible approach, and requires almost no changes to the refine-
ment algorithm itself as the ultimate output of our automaton is just a trace to an error




7.3 Adapting Program Automata For Functions

location.







Chapter 8

Abbreviations

API
AST
ATP
CEGAR
CFG
CPU
DCA
IR
NFA
POR
SMT
S8A
TAR

Application Programming Interface
Abstract Syntax Tree

Automated Theorem Prover
Counter-Example Guided Abstraction Refinement
Control Flow Graph

Central Processing Unit

Deterministic and Complete Automata
Intermediate Representation
Non-deterministic Finite Automata
Partial Order Reduction

Satisfiability Modulo Theories

Static Single Assignment

Trace Abstraction Refinement

59




60

Chapter 8. Abhreviations




Bibliography

(1]

(2]

(3]

(4]

(6]

[7]

(8]

P. Abdulla, 5. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic partial order
reduction,” in Proceedings of the fist ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL "14.  New York, NY, USA: ACM,
2014, pp. 373-384. [Online|. Available: http://doi.acm.org/10.1145/2535838.2535845

D. Beyer, “Reliable and reproducible competition results with benchexec and
witnesses report on sv-comp 2016." in Proceedings of the 22Nd International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
- Volume 9636. New York, NY, USA: Springer-Verlag New York, Inc., 2016, pp.
887-904. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-49674-9_55

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded model
checking.” 2003.

N. Bjorner and L. de Moura, “Applications of smt solvers to program verification,”
in Notes for the Summer School on Formal Technigues. Springer, 2014,

F. Cassez. “Automated software verification.” [Online]. Awailable:  http:
/ [science.mq.edu.an /~feassez /software-verif.html

F. Cassez, T. Matsuoka, E. Pierzchalski, and N. Smyth, “Perentie: Modular
trace refinement and selective value tracking - (competition contribution),”
in Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings, 2015, pp. 439-442. [Online]. Available:
http://dx.doi.org/10.1007 /978-3-662-46681-0_39

F. Cassez, C. Miiller, and K. Burnett, “Summary-based inter-procedural analysis
via modular trace refinement,” in 2fth International Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS 2014,
December 15-17, 2014, New Delhi, India, 2014, pp. 545-556. [Online]. Available:
http://dx.doi.org/10.4230/LIPIes. FSTTCS.2014.545

F. Cassez and F. Ziegler, “Verification of concurrent programs using trace
abstraction refinement,” in Logic for Programming, Artificial Intelligence, and

61




62

BIBLIOGRAPHY

[9]

[10]

[11]

2]

(13]

(4]

[15]

[16]

[17]

Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji, November
24-28, 2015, Proceedings, ser. Lecture Notes in Computer Science, vol. 9450.
Springer, 2015, B - International Conferences, pp. 233-248. [Online]. Available:
http:/ /dx.doi.org/10.1007 /978-3-662-48899-7_17

K. Chatterjee, A. Pavlogiannis, N. Sinha, and K. Vaidya, “Data-centric dynamic
partial order reduction,” 2016.

S. de Gouw, J. Rot, F. 5. de Boer, R. Bubel, and R. Hihnle, “OpenJDK'’s
java.utils.collection.sort() is broken: The good, the bad and the worst case,”
in Computer Aided Verification. Springer Science + Business Media, 2015, pp.
273-289. [Online]. Available: http://dx.doi.org/10.1007 /978-3-319-21690-4_16

C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for model checking
software,” in Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL '05. New York, NY, USA: ACM,
2005, pp. 110-121. [Online]. Available: http://doi.acm.org/10.1145/1040305.1040315

P. Godefroid, Ed., Partial-Order Methods for the Verification of Concurrent Systems.
Springer Berlin Heidelberg, 1996. [Online]. Available: http://dx.doi.org/10.1007/
3-540-60761-7

P. Godefroid, “Software model checking: The Verisoft approach,” Form.
Methods Syst. Des., vol. 26, no. 2, pp. 77-101, Mar. 2005. [Online]. Available:
http:/ /dx.doi.org/10.1007 /s10703-005-1489-x

M. Heizmann, J. Christ, D. Dietsch, E. Ermis, J. Hoenicke, M. Lindenmann,
A. Nutz, C. Schilling, and A. Podelski, “Ultimate antomizer with smtinterpol -
(competition contribution),” in Tools and Algorithms for the Construction and
Analysis of Systeins - 19th International Conference, TACAS 2013, Held as Part of
the Euwropean Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings, 2013, pp. 641-643. [Online]. Available:
http:/ /dx.doi.org/10.1007 /978-3-642-36742-7_53

M. Heizmann, J. Hoenicke, and A. Podelski, “Refinement of trace abstraction,” in
Static Analysis. Springer Science + Business Media, 2009, pp. 69-85. [Online].
Awailable: http://dx.doi.org/10.1007/978-3-642-03237-0_7

M. Heizmann, “Software model checking for people who love automata.,” in
Computer Aided Verification. Springer Science + Business Media, 2013, pp. 36-52.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-39799-8 2

G. J. Holzmann and D. Bosnacki, “Multi-core model checking with SPIN.”
in 2007 IEEE International Parallel and Distributed Processing Symposium.
Institute of Electrical & Electronies Engineers (IEEE), 2007. [Online]. Available:
http:/ /dx.doi.org/10.1109/IPDPS.2007.370410




BIBLIOGRAPHY 63

[18] O. Inverso, T. Nguyen, E. Tomasco, B. Fischer, S. L. Torre, and G. Parlato,
“Lazy-cseq  1.0:(competition contribution),” October 2015. [Online]. Available:
http://eprints.soton.ac.uk/387010/

[19] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp. 33-42, May
2006. [Online]. Available: http://dx.doi.org/10.1109/MC.2006.180

[20] A. M. Sloane, “Lightweight language processing in kiama.” in GTTSE, 2009, pp.
408-425.

[21] A. M. Sloane, F. Cassez, and S. Buckley, “The sbt-rats parser generator plugin for
scala (tool paper),” in Proceedings of the 2016 Tth ACM SIGPLAN Symposium on
Scala, ser. SCALA 2016. New York, NY, USA: ACM, 2016, pp. 110-113. [Online].
Available: http://doi.acm.org/10.1145/2998392.3001580

[22] E. Tomasco, T. Nguyen, O. Inverso, B. Fischer, S. L. Torre, and G. Parlato,
“Mu-cseq 0.4: individual memory location unwindings: (competition contribution),”
April 2016. [Online]. Available: http://eprints.soton.ac.uk/386736/

[23] B. Wachter, D. Kroening, and J. Ouaknine, “Verifving multi-threaded software
with impact,” in 2013 Formal Methods in Computer-Aided Design. Institute
of Electrical & Electronics Engineers (IEEE), oct 2013. [Online]. Available:
http://dx.doi.org/10.1109/FMCAD.2013.6679412

[24] M. Zheng, J. G. Edenhofner, Z. Luo, M. J. Gerrard, M. S. Rogers, M. B. Dwyer,
and S. F. Siegel, “CIVL: applying a general concurrency verification framework to
¢/pthreads programs (competition contribution),” in Tools and Algorithms for the
Construction and Analysis of Systems - 22nd International Conference, TACAS 2016,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Findhoven, The Netherlands, April 2-8, 2016, Proceedings, 2016, pp.
908-911. [Online]. Available: http://dx.doi.org/10.1007/978-3-662-49674-9_57

[25] F. Ziegler, “Verification of concurrent programs via partial-order reduction and trace
refinement.” Master’s thesis, University of Augsburg, 2014.




64

BIBLIOGRAPHY




Appendix A

Weekly Meetings Record

Consultation Meetings A Farm

Week | Dale | Comments Student's Sapervisor's

i applicable Sigaature Sigpagre
15f4 | S cuk Jf-
T Wl (e | X
SO0 [Gn iy [ | o€
MENRZTEI VSR
L | M Sl |- | R
L& U] e [ g | };{
|3 R | shereb [~ | X
G| \Olie | S cede | g P
I'LCP‘ lf_alrl\" Ikh"e M l}p_\. | .——1}\! |
W | 2o | Shoak raby |~ | K
NENESTEC AR




66

Chapter A. Weekly Meetings Record




Appendix B

Transformed LLVM IR Program and
Automaton For Example in Fig. 3.2

B.1 Transformed LLVM IR Source Code

type { i64 . [48 x i8] }

obal i32 1, align 4
global 132 1, align 4

define i8+ Wil(i8= #0 |

alloca iB=, align 8
alloca iBe=, align 8

store iBww ligm B
call c metadata iBew metadata 123, metadata !24) ., !dbg !25
align 4, !dbg !'26
br labe
tdbg 129
eall we ead.exit(i8+ mull) #4 , !ldbg 128
unreachable , !dbg 128
--threading . 0.
add naw
store §32
br label
a=threading.1. nolabel:
load 32, i32= @ align 4, !dbg 127
br label
iBw WI2{i8« #0 |
alloca iBe, align 8
alloca iBe, align &
store ife iBwe align 8
i metadata 130, metadata !'24) , !dbg !31

I ] ]
lign 4, !dbg

1 woid Gllve
load 32,

br label
iBs, iBww Tdbg '35
1dbg 136

——threading . abel :
call wvoid

" ldbg 134
hable , !dbg

igs mull) #d

——threading.0.nolabel
add nsw tdbg 133
Lo i32 132 L align 4, !nllng. 133

67




56

&7

GE
G
6l

62
63
2]
G5
(i
6T
63
[

1000

101

102
103
104
105
106G,
107

68 Chapter B. Transformed LLVM IR Program and Automaton For Example in Fig. 3.2

—-threading .

load

label

store
iE2
warid

iBes

store
call
store

v
call
dbg

label

by
br label
ret 132 0,

-=threading.

1d naw 32

mp

—-threading.l. nelabel:

I.nolabel

i32, i3Ze Gi, align 4, ldbg 133
iBew #0 {
kS
8
8

Wllvm . metadata 136,
metadata 38,

metadata 140,

pdata iGde metadata !45

i32
T

Gd =

Idbg 18§

ldbg 159
nolabel :

ne (32
label

align 4, !dbg 151

= load 32, i - M align 4, !dbg 149
br label th
—-threading .2. nolabel:
= call i32 Gptl (iGd=
Tdbg 148
br label
--grror.ll:
eall d [...) VERIFIER.error () #4 , ldbg I5T
unreachable , !dbg 157

metadata 124) Idbg 137

metadata !124) . !dbg 139

metadata '124) . ldbg !44

metadata 124) . 1dbg !46
null , iB« {(iS«)s @Gf1 . i8s null) #5
null , iBs (iS)s @f2, i&s null) #5




B.2 Full Concurrent Automaton

69

B.2 Full Concurrent Automaton




70 Chapter B. Transformed LLVM IR Program and Automaton For Example in Fig. 3.2




Appendix C

BenchExec Results For Sequential

Benchmarks

C.1 Sequential Skink Simple Set Benchmark Results

Tool skink
Limits timelimit: 500 5, memlimit: 500 ME, CPU core limit: 1
Host matt-VirtualBox
05 Linux 4.4.0-45-generic x86_64
System CPU: Intel Core i5-2500K CPU @ 3.30GHz, cores: 1, frequency: 3300 MHz; RAM: 4144 MB
Date of execution 2016-11-06 07:36:39 AEDT
Run set skink17
P —— status cputime (s} walltime (s) memlsage
eca-like_false-unreach-call.c "-1|'-.:=1rr-ﬂ:|'} 464 5.32] 155451392
jmultiple-error-calls_false-unreach-call.e "Lalz.udren;l'} 3.69 n 142540800
simple-function_false-unreach-call.c false(reach) 388 39 139976704
simple-if_false-urreach-call.c false(reach) 3,63 3.65 117796864
simple-loop_false-unreach=call.c false(reach) 5.51 5.54 147958480
array-hard_true-unreach-call.c true 3 | 5.2 146645088)
array-sequence_true-unreach-call.c true 383 3.88) 116453376
s fmple-function_true-unreach-call.e true 404 a.08 142163968
2 fmple-1f rrus-unresch-call.e true 5.77] 5.79) 149065728
3 il -loop-array_trut-wireach-call. true 5,46 549 149057534
test-interpolant-franck_true-unresch-call.c true 514 5.1g] 147510656]
peegrass/esaple; status cputime (s) walltime (s) memlsage
total tasks 1 50.8 51.7 1555054592
local summary - 50.5 53.1 -
correct results 11 50.8 51.7] 1555054552
correct true & 29.4 29.6 851300352
correct false 5 213 2.1 703754240
incarrect results 0 - - -
incorrect true 0 - - -
incorrect false 0 = 5 =
score (11 tasks, max score: 17) 17 - - -
Run set skink17




T2

Chapter C. BenchExec Results For Sequential Benchmarks

C.2 Concurrent Skink Simple Set Benchmark Re-

sults
Tool skink
Limits timelimit: 500 s, memlimit: 500 MB, CPU core limit: 1
Host matt-virtualBox
05 Linux 4.4.0-45-generic x86_64
System CPU: Intel Core i5-2500K CPU @ 3.30GHz, cores: 1, frequency: 3300 MHz; RAM: 4144 MB]
Date of execution 2016-11-06 07:34:50 AEDT
JRun set skink17
peagrass /sisple; status cputime (s) walltime (s) memUsage
eca-like_false-unreach-cal false(reach) 4,04 4.08 139194 368]
lnultiple-error-calls_false-unreach-call.c false({reach) 5.03 5.04) 118235138
simple-function_false-unreach-call.c false(reach) 4.1 .35 121675776
simple-1f false-unresch-call.c false(reach) 4.23 4.42] 141963264
simple-loop_false-unreach-call.c false{reach) 5.20) 5.40) 145956364
array-hard_true-unreach-call.c Irue 607 635 147771392
array-sequence_true-unreach-call.c true 4.21 4.30] 142446592
simple-function_trus-unreach-call.c true 443 4,45 1226137601
simple-if _true-unreach-call.c true E.10 812 150147072
simpleslocp=array_truesunreach=call.c true 5.74 5,94 146456576
erpolant-franck_true-unreach-call. true 5.35 5.44] 116322304
prograns /stanles status cputime (s) walltime (s) memisage
total tasks 11 54.6) S6.4 1452783104]
local summary - 54.2 57.9 -
correct results 11 54.8) 56.4 1492783104
correct true ) 31.9) 32.6 825?’5?696'
correct false 5 22.7] 23.8 667025408]
incorrect results 0 - - -
incarrect trug 0 = = =
incorrect false 0 - - -
score (11 tasks, max score: 17) 17 . - =

Run set

skink17




C.3 Sequential Skink SV-COMP Loops sum Benchmark Results

73

C.3 Sequential Skink SV-COMP Loops sum Bench-

mark Results

Taol skink
Limits timelimit: 500 s, memlimit: 2000 MB, CPU core limit: 1
Host matt-Virtual Box
05 Linux 4.4.0-45-generic xB6_&4
System [CPU: Intel Core i5-2500K CPL @ 3.30GHz, cores: 3, frequency: 3300 MHz; RAM: 4144 MB|
Date of execution 2016-11-07 14:35:13 AEDT
Rum set skink17
.. Deapbai TRTLE 1y -banchmarie /o slatus cputime (s) walltime (s) memUsage
suml_bugd2_false- unresch-call_trus-tersinstion.i true 268 268 513441792
sumd)_bughl sim@l_bugdl bas#.casd_Talse-unseach-call_triss-teralaartion.d true 8.0 280 415476320
sumdl_falsc-unreach-call_true-terminetion. i true 140 140 514757568
sundd_false-unresch-call_true-tersiration.i timeaut 616 EL 532422528
3 _falze-unreach-call_trus-tersiration.d [ 26 237 422580224
sum_prray_falie-wnreach-coll.d falselreach) 245 249 ATGH0E2176
sunil]l_troe-unreach-call_true-tersination.i frug 9,92 9.95 G060
sunbl_tru LT 245 245 417132544
3wt -call_true-tersination.d trug 631 6.35 2ITFHAGH
sun_arr rue-wnreach- cal timeout 560 501 561672192
o webenchmarke ¢ floope slaus cputime (s} walltime {s) memUsage
total tasks 10 1710 1530 4357969388
local summary - 452 1710 -
correct results 4 E5..5] B5.7 13ETRE9264)
correct true 3 4. 7] 40.8 511577088
correct false 1 24.8 49 ATENB2176)
incorrect results 4 488 488 1866235304
incorrect true 4 AES 466 186635904
Incorrect false 0 - - -
store (10 tasks, max scorg: 14) 121 - - -
Run set skink17




T4 Chapter C. BenchExec Results For Sequential Benchmarks

C.4 Concurrent Skink SV-COMP Loops sum Bench-
mark Results

Tool skink
Lirmits timelimit: 500 5, memlimit: 2000 MB, CPU core Bmit 1
Hast matt-VirtualBox
05 Linux 4.8.0-45-generic k86 64
Systenm CPL: Tntel Core i5-2500K CPL & 3.30GHZ, cores: 3, frequency: 3300 MHz; RAM: 4144 ME
Date of execution 2016-11-07 13:48:19 AEDT
Run set skink17
e slatus cputime (s} waalltirme (5] mamLsage
cumal_bugad_false-unreach-call_true-termination.i falzefreach) 8.5 BAT ASATIASG0
sumy_buges_susen_bugdl base.case Talse-unresch-call true-tersination. i Erue 242 243 434085760
2 e _t cunreach: call_trug-terminstion, i Talse{reach) 125 125 52009359
cuman_falze-unreach-call_true-termination. i timeout 617 531 674579830
sumiss_false-unresch-call_true-termination. i true 234 235 474062548
2um_srray_folig-wrrgech-cell.i flalsefreach) 1.8 1.8 FaIE0032
cumdn_trus-unreach-call_true-termination. trug 10.5 105 317638048
suminn_true-unre _false-TerminaTion. i true 265 26 431972224
sumdt_trum-wnreach-call_true-termination.i trug 2.3 £33 250634784
sum_array true-unrssch-call. 4 trug 176 178 508100803
S b cimarics /€ Flaces, Slalis Cputime (5) walltirme (5] o Lisage
total tasks 10 1110 1030 4603596800
local summary - 449 1180 =
Correct results 7 447 447 2970468352
correct trug 4 221 21 15B8465664
correct false 3 226 226 1382002688
ingorrect results 2 47.6) 47.8 958148608
incorrect true 2 476 47.8 G58143508)
Incorrect false 0 = - -
score (10 tasks, max score: 14) 53 = = =
Run set skinki?




Appendix D

BenchExec Results For Concurrent

Benchmarks

D.1 Concurrent Skink Simple Concurrency Bench-

mark Results

Tool skink
Limits timelimit: 10000 s, memlimit: 500 MB, CPU core limit: 1
Host matt-VirtualBox
05 Linux 4.4.0-45-generic x86_64
System CPU: Intel Core i5-2500K CPU @ 3.30GHz, cores: 3, frequency: 3300 MHz; RAM: 4144 MB|
Date of execution 2016-11-07 13:30:47 AEDT
Run set skink17
prograns congurrascy status cputime (s) walltime (s) memlsage
concurrent-leop_false-unresch-call.c false{reach) 5.5 5.37] 224477184
fib-threads_false-unreach-call.c false{reach) 4.73) 4.75) 203280384
=imple-threads_false-unreach-call e false{reach) A48T A7 176502144
sync=thresds_felse-unreach-call.c false{reach) 4.7 4.74 207307712
eenzurrent-loap _true-unrench-call. e Lrug SEEZ 5584 SO7232256)
fib-threads_trus-unresch-call.c true 3842 3842 455529584
true 2249 2281 SO5413632)
true 7.2 .2 ARIOG29TE
truge 18.9 19.0 41359769
Lrue 6,25 6,28 250421248
& — status cputime (s) walltime (s) memUsage
total tasks 10 11746 11748 3474825216
local summary - 11746 11748 =
correct results 10 11746 11748 3474825214
correct true 3 11726 11726 2660257792
correct false 4 19.5 19.6 814567424]
incorrect resulls 0 - - -
incarrect true 0 = = -
incarrect false 0 - - -
score (10 tasks, max score: 16) 16 - - =
Run set skink17

=]
o




76 Chapter D. BenchExec Results For Concurrent Benchmarks

D.2 Concurrent Skink SV-COMP Concurrency pthread
Benchmark Results

Tool skink
Limits timelimit: 500 s. memlimit: 500 MB, CPU core limit: 1
Host mati-VirtualBox
05 Linux 4.4.0-45-generic x36_t4
System CPU: Intel Core i5-2500K CPU @ 3.30GHz cores: 1, frequency: 3300 MHz; RAM: 4144 M|
Date of execution 2016-11-06 15:54:57 AEDT
Run set skink17
Jus-banhma s i plhresd status cputime (s) walltime (s) memUsage
bigshot_p_false-unresach-call.i 4.51 4.54) 147380176
#ib_beach_false-unreach-call.i timeout SO0 500 452385440
fib_bench_longer false-unreach-call.i timeout 50 500 AG12E0704
#ib_bench_longest_false-unreach-call, i timeout 5001 500 499738240
lanyvAl_false-uaresch-call. i false(reach) 10.6 10.6 167981055
queue_false-unreach-call.i 10.7 10.7 234576224
queue_longer_false-unreach-call.d 10.8 10.8 253280256
queve_longest_false-unreach-call.i 10.8 10.8 250281934
reorder_2, ce-unreach-call.i 1 8.57] 8.60 199667712
regrdar_5_false-unresch-¢all.i 10.0 10.1 201595935
sigma_false-unreach-call.i 5.24] 5.37) 154045464
singleton_false-unreach-call. i 5.35 5.37 152203264
stack_false-unreach-call.i A0 7.03 192663552
stack_longer_false-unreach-call.i 7.11 7.15 138411904
SthCk_longest_false-unresch-¢all.d 765 7.70 192081
statefuldl false-unreach-call.i false{reach) 5.9 5.07] 157835264
twostage_3_falsc-unreach-call. i 20.4 20.5 454030457
bigshot_s2_true-unreach-call.i 4.17] 4,19 146112
bigshot_s_trus-unreach-call.i 4.28] 4.30 4560923520
Fib_bench_longer_true-unresch-call.dl timeout 500 500 430234432
fib_bench_longest_true-unreach-call.i timeout S0 SO0 432912640
Fib_bench_true-unreach-call. i timeout SO0 500 434330404
indexe e-unreach-call.i timeaut £ 00 495851454
gueus_ok_longer_trus-unreach-call.i 8.78 B.80 224038912
AUEUE_OK_longest_trué-unrasch-call. i 2.85] 2.04 210242405
queue_ok_true-unreach-call.i C-.C;I 9.1 22 254
stack_longer_true-unreach-call. i 6.7 6,85 158654464
stack_longest_true-unreach-call.i 6,96 7.00 190472192
stack_trus-unreach-call.i 718 7.2 138968384
STATAFULOL_trus-unrasch-call.d trug 121 132 430908720
sync@l_true-unreach-call.i true 403 406 430998720
Jose-benchadras /e plheesd status cputime (5) walltime (s) membsage
[total tasks 31 4214 4194 6865502208
local summary - 3914 4310 -
correct results 4 551 555 1325813760
correct true 2 535 538 999957440
correct false 2 16.5 16.6 325816320
incorrect results 0 - - -
incorrect rue 0 - - -
incorract false 0 - - -
score (31 tasks, max score: 45) 6 - = =
rRun sel skinki?




	Matt Pigram Verification Of Multi-Threaded C Programs
	by Matthew Pigram


