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Chapter 1

Executive summary

1.1 Abstract

Banks accredited by their regulator to use the Advanced Internal Ratings Based (A-IRB)
approach are required to provide their own estimates for calculating their minimum credit
capital; these estimates rely on statistical and analytical models to predict Probability of
Default (PD), Loss Given Default (LGD) and Exposure at Default (EAD). This thesis
focusses on estimating EAD for banks granting revolving loans to large corporates and
leverages the Global Credit Data (GCD) database.

This thesis briefly discusses why risk management, particularly credit risk management, is
important for banks and we survey the existing EAD modelling literature which to date
has had less focus than PD and LGD modelling.

Our prosed methodology models both loan balance at default (EAD) and changes in loan
limit at default as random variables, modelling their joint dynamics via a two stage model
— the first stage estimates the probability that limits decrease while the second stage
estimates EAD conditional on changing limits. To the best of our knowledge, our approach
is the first to estimate EAD and changes in loan limit directly for large corporate revolving
facilities using the GCD database.

Our model suggests that the key drivers of EAD include: limit; balance; utilisation; risk
rating; and time to maturity. We also find evidence that banks actively manage limits in
the lead up to default, and that these changes in limits have substantial effects on the
outcomes of realised EAD.

1.2 Project Goals

This project trains a statistical model for estimating Exposure at Default (EAD) for
revolving loan facilities to large corporates. Our approach directly models the joint
dynamics log1o(EAD) and changes in limits, as opposed to the more common approach in
literature and in industry to model “Credit Conversion Factor” (CCF). Our model is
trained using loss data from the Global Credit Data (GCD) consortium. Our model could
be implemented by a large internationally active bank that advances revolving facilities to
large corporate counterparties. The model estimates could be used for risk management
purposes such as: pricing; provisioning; limit management; economic capital; stress testing;
and regulatory capital (subject to the approval by the bank’s regulator).
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1.3 Structure of the Report

This project proceeds as follows. Chapter 2 introduces the concepts of risk, return and
how risk management can help strike the desired balance between the two. We also
provide some background to the “Basel Accords”’, which are regulatory risk management
frameworks to help to provide controls for the risks that banks face. We focus our
discussion on the “Basel II” accord, in particular how it requires statistical and analytical
estimation of key risk management inputs and that one of these is exposure at default
(EAD), the focus of this thesis. Finally, we end by introducing the Global Credit Data
(GCD) reference data set used to train our model.

Chapter 3 contains a literature review and begins first by briefly retouching at a high level
on the regulatory setting for credit risk capital estimation by banks that are accredited to
use the Advanced Internal Ratings Based (A-IRB) approach. We outline the key
terminology used for EAD estimation. This is followed by a summarisation of relevant
available literature that discusses EAD estimation for banks.

Chapter 4, which comprises the bulk of the report, contains our modelling methodology
and results. We discuss the modelling data before and after applying filters, introduce our
proposed methodology, and then present univariate and multivariate analysis that helps
select the important covariates and allows parameter estimation. We next present our final
model and analyse the results by comparing predicted and observed values of logio(EAD).
We also outline the sensitivity of our selected covariates for predicting changes in limits
and estimates of logi1o(EAD). We end the section by discussing the knowledge discovered
while also suggesting avenues for further research.

Finally, the appendices contain details of the univariate, bivariate and multivariate
analysis. We also provide the computer code, in both SAS and R, to fit our final model.
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Chapter 2

Background to Credit Risk

2.1 Introduction

While banks offer many products and services, with individual institutions specialising in
different parts of the value chain (for example, investment banks, commercial banks, and
retail banks), the granting of loans to customers is one of the core services that they
provide (Apostolik et al., 2009). Some examples include issuing of a consumer credit card
to a private individual, or a trade-finance facility for a large corporate client.

The granting of these loans exposes the bank to credit risk, which is defined as:
“the potential loss a bank would suffer if a borrower fails to meets its
obligations" (Apostolik et al., 2009).

Risks that build-up unchecked within either an individual institution or the wider financial
system may cause insolvency of an institution and/or instability in the financial system.
As credit risk is typically the largest risk class a bank faces, it thus attracts significant
attention from bank both: management who wish to run profitable institutions for their
stakeholders; and regulators who aim to achieve over a stable and functioning banking
system so that institutions can fulfil the financial promises they make.

To help incentivise prudently run banks and admonish excessive risk taking, banking
regulators stipulate a minimum level of capital that banks must hold, called “regulatory
capital", and is designed to be risk sensitive. That is, the more risk that a bank chooses to
take on, the higher the minimum level of capital they will be required to hold. Safer banks
whose management decide they should operate more prudently are allowed to hold
additional capital beyond the stipulated minimum if they wish and this is common in
practice. For an example of a regulatory view, the Australian Prudential Regulation
Authority (APRA) who regulate banks in Australia require banks to “maintain adequate
capital ... to act as a buffer against the risk associated with its activities" (APRA, 2015).

In this chapter, we introduce the concept of risk, demonstrating how it is intrinsically
linked to economic returns and how banks make use of the process of risk managemt to
identify, quantify and control risk to reduce their risk profile to within its targeted risk
appetite. We also discuss the regulatory risk management control framework for banks,
which is commonly known as the “Basel Accords”. Our comments largely centre on the
second of the accords (“Basel I1”), focussing on the statistical quantification inputs to
calculate of credit risk-weighted assets. It is estimation of one of these components,
exposure at default (EAD), that is the focus of this thesis. Finally, we also introduce the
Global Credit Data (GCD) reference data set used to train our model.
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2.2 Risk Management

2.2.1 What is Risk

There are a wide variety of slightly differing definitions of “risk”, with no single definition
suitable in all settings. The Oxford English Dictionary (2015) defines risk as “exposure to
the possibility of loss, injury, or other adverse or unwelcome circumstance”.

For a view specific to finance, McNeil et al. (2005) provide two definitions in their book
“Quantitative Risk Management” which are: “any event or action that may adversely
affect an organization’s ability to achieve its objectives and execute its
strategies”, or alternatively “the quantifiable likelihood of loss or less than
expected returns”.

In his book “Value at Risk”, Jorion (2001) states that risk can generally be defined as the
uncertainty of outcomes when compared to expectation. The author further says that the
origins of the word “risk” can be traced from Latin, through the French ‘“risqué” and the
Italian “risco”. The original sense of “risco” is to cut off like a rock, from the Latin “re-*
(back) and “secare” (to cut). Hence the sense of peril to sailors who had to navigate
around the dangers of sharp rocks.

Clearly these above definitions of risk could apply to and effect the outcomes and
continued operation any organisation and not only a bank. Take for example:

e a non-financial corporation, such as a manufacturer, which might suffer a loss of
market share and hence a fall in profits from the effects of entry of a new competitor
to their market;

e a university, which might see its international student enrolments decrease due to a
substantial appreciation of its country’s currency that causes many potential
students to prefer alternate universities in cheaper countries;

e a charity might see its charitable donations it receives decrease during an economic
recession,;

e a large cyclone in Brazil might largely destroy the country’s sugar cane crop for one
year causing world sugar prices to spike temporarily and resulting in Australian
farmers enjoying higher than expected profits.

All of these examples are characterised by outcomes that have deviated to be either better
or worse than expectations.

Given the focus of this thesis is on financial risk management for banks, we will now focus
our discussion and examples from this point on specifically on banks. For instance,
Apostolik et al. (2009) (who also agree that there are multiple definitions of risk) provide
some concrete examples of various risks that a bank may encounter:

e Borrowers may submit payments late or fail altogether to make repayments;
e A depositor may wish their money returned faster than the bank anticipated;

Market interest rates may change and decrease the value of the bank’s loans;

Investments made by the bank may unexpectedly lose value;

Human input errors, frauds, computer systems or natural disasters may lead to losses.
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2.2.2 What is Return, and How is it Related to Risk

Returns are the financial gains that accrue (in the main) from exposure to risk, with
higher returns expected in exchange for taking on and being exposed to higher risk. In
some sense, return is the reward or the incentive for taking on risk. In essence, these
simply describe the adage of “no risk- no return”, a trade-off which is widely accepted in
the business world (Lam, 2003). Crouchy et al. (2006) refer to this as the “conflict of risk
and reward”, whereby in commercial activities, if one wants to achieve a higher rate of
return on average, one often has to assume more risk. For instance, a bank would charge a
higher interest rate for credit card than for a home loan because the home loan is secured
by property and thus lower risk than the unsecured credit card.

In financial theory, risk and return are inextricably linked (Peirson et al., 2002). Lam
(2003) says that both risk and return must always be jointly considered and balanced via
the process of risk management, which entails the key steps of: risk identification, risk
quantification and risk control.

2.2.3 Risk Identification, Quantification and Control

In order to manage risks, they need to be firstly identified, secondly quantified, and thirdly
controlled.

Risk identification techniques (an entire topic in itself) can include the creation of a
taxonomy of all the risks that a bank is exposed to, and result in the capturing these on a
risk register. Banks are exposed to a myriad of individual risks, but the three main classes
they are exposed to (in decreasing order of importance) as defined by Apostolik et al.
(2009) are:

e Credit risk — loss from default of a borrower or counterparty (either in part or in
full), whether due to inability or unwillingness;

e Operational risk — direct or indirect loss from either inadequate or failed internal
processes, people, systems, or natural disasters;

e Market risk — losses from changes in market prices (typically relating to changes in:
interest rates; foreign currency; commodities; or equities).

Assuming that all relevant risks have been identified, focus can shift to their quantification
(the primary topic for this thesis). Jorion (2001) notes that probability theory can be (and
is indeed often) used to help measure risk. Lam (2003) lists seven dimensions of risk
quantification, noting that not all dimensions are relevant for all risks:

e Probability — how likely is the event to occur?

e Exposure — what does the bank stand to lose?

Severity — what loss is likely to be suffered?

Volatility — how uncertain is the future?

Time Horizon — how long will the bank be exposed to the risk?

Correlation — how are the individual risks related to each other?

Capital — how much safety margin should a bank put aside to cover unexpected
losses?
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Once risks have been identified and quantified, appropriate controls need to be
implemented to reduce the risks to a level that is within the bank’s risk appetite.
Chapman (2006) lists four methods for controlling identified risks, noting that a particular
risk can have more than control applied:

e Avoid — cease the activity and remove the exposure to the risk;
e Reduce — reduce the exposure to the risk;
e Retain — decide to accept the exposure to the risk;

e Transfer — obtain indemnity to reduce severity in the event that the risk occurs.

Placing controls on risks that have been successful identified and quantified will typically
result in the reduction rather than the complete elimination in risk. Any left over risk is
known as “residual risk” and a primary outcome of risk management is to reduce the level
of this “residual risk’ to within a tolerable level, known as the bank’s “risk appetite”,
allowing the bank to target and obtain the desired level of return in a controlled manner.
For example, if a bank had identified that the level of risk for a credit card portfolio was
too high for its risk appetite, it could enact one or more of the following controls:

e Avoid the risk, by selling the portfolio to a competitor bank;
e Reduce the risk, by selling less of the product;
e Retain the risk, deciding that it remains well within the bank’s overall risk appetite;

e Transfer the risk, by purchasing a insurance against credit losses from an investment
bank to hedge the risk.

For instance, in order to move this risk to be within the bank’s “risk appetite”, the control
to reduce the monthly growth rate from 10% per month to 5% per month could be
selected. The remaining risk would be the “residual risk”.

2.2.4 The Benefits of Risk Management

The failure by banks to execute appropriate risk management has been brought into sharp
focus after the credit crisis and “Global Financial Crisis" (GFC) of 2007 and 2008, and
showed that when banks mismanage their risks the spill-over can affect not only the
banking industry, but entire economies. The crisis clearly showed that a lack of focus by
banks on risk management, and in particular on credit risk management (the primary risk
that a bank takes on) can ultimately lead to a their financial demise, as evidenced by the
failure and nationalisation of many household-name banks around the world.

While the causes and ramifications of the GFC have been — and will no doubt continue to
be — debated and discussed at length, this thesis will not seek to do so. Instead, it focusses
on estimation using statistical methods of a key quantitative component of credit risk, the
main class of risk a bank faces.

From a theoretical point of view McNeil et al. (2005) state that an important reason for
undertaking risk management is to balance the competing expectations of the bank’s many
stakeholders, including: shareholders; customers; management; regulators; politicians; and
the public at large. They reason that for banks, there is a societal viewpoint and clear
expectation that the banking system should be run smoothly stating that the regulatory
process of Basel Accords has been strongly motivated from the fear of systematic risk that
may spill over (and actually did spill-over during the Global Financial Crisis of 2007 and
2008) from one bank to another bank, industry or even country.
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2.3 The Basel Accords

The genesis of the Basel Accords can be traced back to 1974, when the Central Banks of
the then 10 largest economies of the world represented by the G10 established the Basel
Committee of Banking Supervision (BCBS) with an aim of “setting minimum standards for
the regulation and supervision of banks” (Bank of International Settlements, 2014). The
committee does not create legal regulations, but instead devises supervisory standards and
guidelines that its now nearly 30 member countries are expected to implement in their
local jurisdictions.

2.3.1 Basel I

The BCBS published “Basel I: the Basel Accord” in 1988 which set out the minimum
capital requirement for banks. It introduced the calculation of risk-weighted assets (RWA),
which was designed to embed a risk-sensitivity into the capital that a bank must hold.
That is, the more a bank increases its risk, the more capital that it will need to hold to
reflect that higher risk that it faces. It also stipulated a minimum capital to risk-weighted
assets ratio of at least 8%.

To undertake these two calculations, assets (loans) are grouped into categories according
to their risk and RWA is to calculated as the multiplication of a specified risk-weight and
the loan size. Table 2.1 below shows an example of this calculation for 5 different loans.
The total exposure is $600, the RWA is calculated as $370, and equation 2.1 shows that
the minimum capital required is $29.60. Risk sensitivity is embedded in RWA calculations,
because a $1 increase in a “loan to a AAA rated bank” will cause RWA to increase by only
20 cents, where as a $1 increase in a “loan to a B+ rated corporate” will cause RWA to
increase by $1.50.

Minumum Capital = 8% x $370 = $29.60 (2.1)
Asset Risk Weight Loan Amount Risk-Weighted Asset
Loan to a AAA Rated Government 0% $100 $0
Loan to a AAA Rated Bank 20% $100 $20
Residential Mortgage 50% $100 $50
Loan to a BBB Rated Corporate 100% $100 $100
Loan to a B+ Rated Corporate 150% $100 $150
Total $600 $370

Table 2.1: Example Calculation of Risk Weighted Assets

Several amendments were made to “Basel I” over time, including consideration of capital
adequacy for market risk in the 1996 “Market Risk Amendment (Bank of International
Settlements, 2014).

2.3.2 Basel II

In 2004 the BCBS released the “Revised Capital Framework”, which is widely known as
“Basel IT”. While it does superscede “Basel I”, it seeks to enhance and build upon it rather
than starting completely afresh. It does this by introducing the concept of “three pillars”
to the risk measurement and management of a bank’s capital adequacy, namely:
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1. Pillar I — minimum capital requirements for credit, operational and market risks,
which strengthened rules from Basel I for calculating RWA.

2. Pillar II — supervisory review of an institution’s internal capital adequacy and
assessment process. It also provides a framework for dealing with other risks a bank
faces, including (for example): systematic risk; liquidity risk; legal risk; pension risk;
concentration risk; and strategic risk.

3. Pillar III — stipulating public disclosure of key risk and financial metrics so that
market discipline can help encourage sound banking practices.

This thesis focusses on credit risk (the largest risk that a bank takes on), so we will now
concentrate on methods for calculating credit risk-weighted assets for use in calculating
capital for a bank as per first pillar of “Basel II”. There are two alternate approaches:

e Standardised — this method largely follows the “Basel I” calculation, and stipulates
exactly what risk weights are to be applied to loans for calculating risk-weighted
assets.

e Internal Ratings Based (IRB) — introduced under “Basel II”, it sets out the
conditions a bank must satisfy in order for their local regulator to approve them to
estimate risk-weighted assets using their own preferred statistical methods and their
own data. IRB accredited banks can either adopt the Foundation (F-IRB) or
Advanced (A-IRB) approach.

Banks anticipate a certain level of credit losses (known as “expected loss”) which is seen as
a cost of doing business. Estimation of expected loss helps inform loan pricing and loan
provisioning. While clearly portfolios with different risk will likely encounter different
levels of expected loss, the estimation and prediction of such losses forms the main basis
for the application of statistical and analytical methods in credit risk modelling.

However this loss experience will likely vary from year to year, depending on the number
and the severity of the losses encountered. Figure 2.1 below is a reproduction of figure 1
from an explanatory note form the Basel Committee for Banking Supervision (Bank of
International Settlements, 2005). It shows a stylisation of annual credit losses over time
that for each year deviate around the central tendency (“expected loss”) of the probability
distribution function of credit losses. Deviations beyond expected loss are called
“unexpected loss” and banks are required to hold regulatory capital to absorb such losses.
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Figure 2.1: Stylisation of Annual Credit Losses. Source: Bank of International Settlements (2005)

Resources that are stored as capital are unable to be re-deployed by the bank for profit
generating activities, so there is a clear incentive to strike a balance between the capital
they hold verses the ability for the bank to withstand a period of large losses. This
trade-off is struck by the selection of a very high confidence level (typically 99.9%) from
the credit loss distribution and capital is held to absorb losses up to this quantile. This
quantile is termed theoretically in the literature as the “Value at Risk” or “VaR” (see for
example Jorion (2001)), and represents the largest loss with 99.9% confidence suffered by
the credit portfolio over a 1-year period. Losses beyond this quantile (also called the VaR
point) will lead to the bank’s insolvency. The relationship between “expected loss”,
“unexpected loss” and the VaR point for the distribution of credit losses are displayed
graphically in figure 2.2 below:

Frequency of loss

Normal cost
of doing

business
covered by
provisioning
and pricing
policies.

Potential
unexpected
loss for which
capital should be
held.

Potential unexpected loss
against which it is judged to be
too expensive to hold capital
against. Unexpected losses of
this extent lead to insolvency.

Expected loss

Unexpected loss

Stress loss

s

v

Potential credit losses

Figure 2.2: Credit Loss Distribution. Source: Yeh et al. (2005)
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Basel II supplied a set of formulas detailing how banks are to estimate “expected loss” and
“unexpected loss”. Banks accredited under the advanced internal ratings based approach
(A-IRB) are allowed to estimate these quantities using their own statistical methods and
data to estimate credit risk components — the key inputs to the regulatory formulas.
Apostolik et al. (2009) defines these risk components as follows:

e “Probability of Default” (PD) — The probability a customer will fail to make full and
timely repayments;

e “Exposure At Default” (EAD) — The expected value of the loan at the time of default;
e “Loss Given Default” (LGD) — The amount of the loss as a percentage of EAD;
e “Maturity (M)” — The remaining life of the loan, in years.

The first moment of the credit loss distribution (“expected loss”) is calcuated as the
product of these three values (Apostolik et al., 2009):

EL= PD xEAD x LGD (2.2)
frequency severity

If one were to assume that individual credit defaults and losses within a portfolio were
independent, then the distribution of the sum of these losses as the portfolio size goes to
infinity would be well approximated by the central limit theorem (Vasicek, 2002). However
credit defaults and losses within a portfolio are correlated meaning that the distribution of
credit losses is characterised by a skewed distribution as demonstrated in figures 2.1 and
2.2 above.

To cater for this correlation, the mathematical construct used in Basel II has its initial
groundings from the Merton model (Merton, 1974), which defines that a firm defaults if its
asset value falls below some critical value (typically but not necessarily related to its debt
and liabilities). This work was extended by Vasicek (2002) to construct the Asymptotic
Single Risk Factor Model, using the following two assumptions:

e the banks holds a large homogeneous portfolio of loans with no excessive
concentrations to any particular loan;

e cach loan, conditional on a given realisation of the common (latent) systematic factor
X, is independent to each other loan. Each loan is thus related to each other loan via
a common correlation (—v/R) to the single common latent factor (X).

Heitfield and Barger (2003) provide a simple explanation of the Vasicek (2002) model.
Obliger i defaults if the (normalised) return on the firm’s assets (signified by Y;) falls
below the standardised default threshold ~;:

Y; =eV1—R—XVR <~ =d YPD;y) (2.3)
Where:
e X :=N(0,1) common (latent) systematic factor, independent of ¢;
e ¢; := N(0,1) idiosyncratic systematic factor, independent of X and €;, j # ¢
e R := common asset correlation

o ~; :=default threshold
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e PD,; :=probability of default for obliger ¢
e ®71(.) := the inverse of the standard normal cumulative density function

While several authors beyond Merton (1974) and Vasicek (2002) (see for example
Rutkowski and Tarca (2014)) discuss the Brownian motion construct underlying equation
2.3, it is worthwhile discussing its intuition. Due to the distributional and independence
assumptions of X and ¢;, the following results are obtained:

e Covar]Y;, X] = —VR (each obliger is correlated to the single common latent factor)
e Covar[Y;, Y| =1
e EV]=0

e CovarlY;,Y;] =0, i # j (obligers are independent to each other)

Using equation 2.2, the conditional expected loss function for exposure ¢ for a given
realisation of X and for an FAD = $1 is:

¢i(x) = PlY; <X =2|.LGD;
= PleiV1— R— XVR < & (PD;)|X = ] x LGD;

-1 )
=P eig(b (PD;)A_X\/E X =z| x LGD;
L l_p
- |
o - YPD;) +zVR « LGD,
i VI—R

&~ Y(PD;) + ®1(0.999)vVR

ci(®71(0.999)) = @ Noe:

X LGZ)Z (2.4)

Equation 2.4 is the quantile that corresponds to the 99.9"" percentile of the credit loss

distribution. That is, its the Value at Risk as discussed in figure 2.2. We can obtain an
expression for the “unexpected loss” by taking away the "expected loss” as per equation 2.2
from the Value at Risk in equation 2.4:

o~ L(PD;) + ®1(0.999)vR
VI—R

UL=a LGD; — PD;.LGD; (2.5)

Finally, we present the entire set of capital formulas as per the Basel II accord. Heitfield
and Barger (2003) note that correlation is “hard wired”, in that its parametrisation is
stipulated to be a function of probability of default and that banks cannot alter its
functional form. The Basel II capital formula also makes an explicit adjustment for
maturities, which again is prescribed to be a function of probability of default.

Correlation (for corporates, banks and sovereign counterparties).

1— 6—50PD _ e_5013[)
Maturity Adjustment
b = [0.11852 — 0.05478.In(PD)]? (2.7)
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Capital Requirement (we derived the portion in the first square brackets in equation 2.5)

[LGD ¢ (Hl_dﬁ) (PD) \/itﬁ (0.999 ) — PD.LGD| x

Risk-Weighted Assets

[1 + 1(A_4;52b.5)b}
(2.8)

RWA = K.12.5.EAD (2.9)

Before we leave this section, we quickly loop back and discuss how the Basel II capital
framework aligns with Lam (2003)’s seven dimensions of risk quantification (see section
2.2.3). Table 2.2 below shows that the Basel II parameters cover off all seven dimensions.

Risk Dimension Lam’s Descriptoin Basel IT Parameter
Probability how likely is the event to occur? PD

Exposure what does the bank stand to lose? EAD

Severity what loss is likely to be suffered? LGD

Volatility how uncertain is the future? UL

Time Horizon how long will the bank be exposed risk? M

Correlatoin how are the individual risks related? R

Capital safety margin to cover unexpected losses? K

Table 2.2: Comparison of Seven Risk Qualification Dimensions of Lam (2003) to the Basel II Risk
Parameters

2.3.3 Basel II1

Finally, in 2010 the BCBS released “Basel I1I”, which revises and strengthens the three
pillars of “Basel II”. Briefly, the three pillars will remain but it introduces several new
ratios (such as a capital conservation buffer, countercyclical capital buffer, leverage ratio,
and minimum liquidity ratio). These, and many other new measures, are to be
implemented over a 5 to 10 year phase-in period beginning from 2013 onwards. As “Basel
III” relates to accounting and financial ratios and not statistical estimation of risk, we will
not consider it any further in this thesis.

2.4 The Global Credit Data (GCD)

To help counter the problem of data paucity for own-estimation of EAD and LGD, the
Global Credit Data (GCD) Consortium was created as a credit data-pooling initiative.
The initiative grew from approximately 10 founding European banks in 2004 to
approximately 47 banks from Europe, Africa, Asia, North America and Australia. The
entire database consists of over 100,000 defaulted facilities representing more than €200b
across all the non-retail Basel Asset Classes spanning 20 year period up to 2015 (Global
Credit Data, 2015).

Member banks who cede their own internal credit data to one more Basel Asset Classes are
availed, via the principle of reciprocity, to receive access to the pooled member data in the
asset classes they ceded to. This “give-to-get" philosophy allows each member bank to

selectively participate in those Basel Asset Classes of most interest to them. All the data is
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anonomised, so neither customers nor contributing banks can be distinguished in the data
returned to members. Member banks cede new or updated data for defaulted facilities
together with a suite of related covariates twice annually (Global Credit Data, 2015).

This thesis will use data of one member bank’s view of the GCD data to train a predictive
model estimating exposure at default.
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Chapter 3

Literature Review

3.1 Regulatory Setting

The Basel Accords, published in various iterations since 1988 by the Bank for International
Settlements, outline the requirements Banks must satisfy to be accredited to use the
Advanced Internal Ratings Based (A-IRB) method to calculate regulatory capital for
credit risk. These requirements include appropriate quantitative estimation of credit risk
components: Probability of Default (PD); Loss Given Default (LGD); and Exposure at
Default (EAD) (BIS, 2006).

The majority of both academic and practitioner attention to date has focussed on the
more readily estimable Probability of Default, and to a lesser extent Loss Given Default,
with relatively less attention paid to Exposure at Default (see Jacobs and Bag (2011),
Financial Conduct Authority (2007), and Brown (2011)). This may in-part be due to the
contingent nature and resulting data paucity of EAD which is estimated using only
defaulted obligors, where as PD uses both defaulted and non-defaulted obligors.

Despite this, quantitative EAD estimation is becoming a more active research area and is
receiving larger focus by regulators and in industry, and this section briefly covers some of
the related literature. We start with the definition from the Bank for International
Settlements, who define EAD as:
“.. the expected gross exposure of the facility upon default of the
obligor" (BIS, 2006).

3.2 Terminology

For accounting purposes, a loan granted to a customer is split into two parts. The balance
drawn by the customer (that is, funds the customer has already withdrawn from their loan
account) which is a receivable the bank is owed by the customer and is thus an asset on
the bank’s balance sheet. This is known as the “on balance sheet” exposure. The
remaining limit that is not yet drawn down (that is, funds the customer is still entitled to
withdraw later on but has not yet done so) is not yet a receivable the bank is owed by the
customer. This is known as the “off balance sheet” exposure. As a quick concrete example,
suppose a bank grants a loan to a customer for $100 but the customer choose to draw only
$15. Here, the “on balance sheet” amount is $15 and the “off balance sheet” amount is
(3100 - $15) = $85.

The Basel Accords introduce the concept of a Credit Conversion Factor (CCF), defined as
the proportion of the remaining limit (ie: the “off balance sheet” exposure) that will likely
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be drawn-down in the event of a default (see paragraph paragraph 310 in BIS (2006)).

Thus the Exposure at Default (EAD) can be estimated by summing the drawn balance
plus the CCF multiplied by the remaining limit. This is demonstrated formulaically in
figure 3.1 below:

Proportion of remaining limit remaining limit

on balance sheet off balance sheet

This same relationship between EAD and CCF is graphically in 3.1 below:

EAD — Balance

CCF = —
i /‘leltjalance
& /

EAD (Bu) L _off balance
sheet
Balance (B:) -
on balance
sheet
- > Time
Today (t) Default (tq)

Figure 3.1: Stylisation of Credit Conversion Factor Calculation

The motivation for CCF stems from the hypothesis that a facility that defaults sometime
in the future would be expected to have an EAD of at least the balance today, plus some
“conversion" of the unused limit (Taplin et al., 2007). Note that A-IRB accredited banks
are not required to use CCF in order to estimate EAD (Taplin et al., 2007). In addition,
regulators in the UK (Financial Conduct Authority, 2014) and in Continental Europe
(Committee of European Banking Supervisors, 2006) will allow, in appropriate
circumstances, the use of own EAD estimates that do not rely on conversion factors.
However the use of conversion factors for the Standardised Approach (BIS, 2006) means
that the substantial majority of EAD literature to date focusses on its estimation.

At the very least, a key benefit of directly modelling EAD rather than indirectly via a
conversion factor would be avoidance of strong non-unimodality and extreme values in
empirical distributions of CCF. For example we reproduce in figure 3.2 below figure 1 from
Brown (2011). The extreme values, as well (in this case) strong bi-modality are clearly
visible.
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Figure 3.2: Distribution of or Credit Cards CCF. Source: Figure 1 From Brown (2011)

There also appears to be no universally agreed terminology for conversion factors, with
some authors preferring to use the term “Loan Equivalent Factor" (LEQ) for what the
Basel Accord defines as CCF. We prefer to use CCF to be inkeeping with Basel Accord,
but highlight where we encounter inconsistency in terminology and provide details of the
underlying calculation for clarity.

The definition of EAD embodies a facility level estimation, which may be why several
authors choose to focus only one or a few facility types. Accordingly, this project focusses
on estimating EAD for “Continent Credit Lines” or “Revolving Facilities”, which
Investopedia (2015) defines as:

“An arrangement between a financial institution, usually a bank, and

a customer that establishes a mazximum loan balance that the bank

will permit the borrower to maintain. The borrower can draw down

on the line of credit at any time, as long as he or she does not

exceed the maximum set in the agreement” .

3.3 Literature Review

While the area of quantitative EAD estimation is a developing research area, there are
several interesting and informative contributions by authors to date. A key recurring
theme in almost all the literature surveyed is the preferred focus on modelling CCF (or
some other conversion factor) as the response variable rather than choosing to model EAD
as the response variable. There is also no clear agreement between different authors in how
to deal with empirical values of CCF outside the sensible range of [0,1]. Authors typically
also find that CCF are strongly bimodal with modes at 0 and 1. Common approaches to
this problem are to either Winsorize or truncate the data.

A good place to start is with Taplin et al. (2007) who use the term CCF as per our
definition in figure 3.1 above. They strongly argue that CCF is not universally appropriate,
and demonstrate clear deficiencies both numerically for calculating CCF when balances are
nearly fully drawn as well as conceptually for estimates of CCF greater than one.

The authors show that for 0 < CCF < 1 implies that EAD cannot be greater than the
limit, stating that this is both an empirically unreasonable restriction as many datasets
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(including the one they use in their paper) which have a substantial number of empirical
CCFs outside this range. It also does not make intuitive sense, as an EAD greater than the
limit is typically a condition of default.

The authors also show that CCF > 1 has several undesirable properties. The first is that
for accounts that have Balance > Limit, EAD will be estimated to be smaller than both
balance and the limit. For example, using equation 3.1:

e Suppose: Balance = 1.5, Limit =1 and CCF = 1.5

e Then: FAD =1.5+1.5 x (1 —1.5) = 0.75, which is smaller than the balance and the
limit.

The second undesirable property is that as the balance increases, the estimate EAD (and
thus the risk) decreases. For example, again using equation 3.1, suppose we have two loans,
one undrawn with a balance of 0 and one fully drawn with the balance equal to the limit:

e Loan A is undrawn : Balanceg =0, Limit4 =1 and CCF = 1.5
e Loan B is fully drawn: Balancep =1, Limitg =1 and CCF = 1.5

e Then: FAD4 = 1.5 and FADp = 1, which suggests that the fully drawn loan is
lower risk.

The third undesirable property is the numerical instability when the denominator in the
CCF calculation is close to zero, and that CCF becomes undefined when the denominator
equals zero. These situations occur when the balance and the limit are either
approximately equal or equal respectively.

The paper suggest two alternate model parametrisations, both of which model
EAD/Limit, but retain balance as the only explanatory covariate in the models. They fit
their models using business credit card data from the Bank of Western Australia
(BankWest, which is now wholly owned by Commonwealth Bank of Australia).

A critique by Moral (2006) from the Central Bank of Spain (Banco de Espana) provides a
review of several methodologies. The author begins by defining two factors for estimating
EAD: an alternate definition Credit Conversion Factor (CCF) and a definition of Loan
Equivalent (LEQ) that aligns the Basel Accord definition of CCF as per figure 3.1 above.

The author goes on to critically observe that because CCF estimation typically adopt a
regression-based approach that the inherently assumed symmetric loss function may not
appropriately penalise uncertainty. They also re-iterate the common credit risk
terminology regarding observational periods of: “Fixed Time Horizon", “Cohort
Approach", and “Variable Time Horizon". They discusses the advantages and
disadvantages of each, and state that banks typical use of the first two methods may not
account for all relevant information due to their conventional focus on a reference date.
Moral suggests that, at a minimum, the following risk drivers are considered for modelling:
facility type; covenants; limit; balance; utilisation; time to default; rating class; facility
status; and macroeconomic indicators.

With regard to truncation, Moral states “[t/he common practice of [truncating] the realised
CCF factors to [0, 1] is not justified and, in general, it is not possible to conclude ex ante
if the associated CCF estimates are biased in a conservative manner". We have seen
several papers which we mention below that either truncate or Winsorize CCF values
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outside [0,1], and agree strongly that such treatment in inappropriate without also
estimating the degree of bias induced.

A paper by Jacobs (2010) begins by setting out clearly the mathematical equations for
Loan Equivalent (LEQ), Credit Conversion Factor (CCF) and EAD Factor (EADF).
Again, the author’s definition in their paper for LEQ is the one that actually aligns with
the Basel Accord of CCF as per figure 3.1 above.

The paper details results of the modelling CCF using GLM regression techniques and finds
that credit rating and utilisation have the strongest predictive power, while other
important factors include: leverage; liquidity; debt cushion; along with mild evidence of
counter-cyclicality. The author also discusses the lack of empirical evidence that CCF are
bounded between 0% and 100%, and describes as “ad-hoc" the methods (such as
Winsorizing, capping, and flooring) that are typically employed for dealing with values
outside this range and suggests more “enlightened" methodologies could include robust
statistics and quantile regression. Models are estimated using Moody’s Ultimate Recovery
Database (MURD) and make the key assumption that balance, limit and EAD are
identically equal at the point of default.

Araten and Jacobs (2001) investigate a dataset of 408 defaulted revolving credit lines from
JPMorganChase & Co. They define LEQ as “...the portion of a credit line’s undrawn
commitment that is likely to be drawn down by the borrower in the event of default", which
is consistent with our definition of CCF in figure 3.1. For their analysis, they truncate
CCF values at 0, and find that the resulting distribution is strongly bi-modal, with modes
at 0% and 100%. They empirically find that the two main drivers of CCF is credit quality
and time to maturity, but go on to opine that other common sense covariates could
include: tenor of commitment; nature of obligor’s business; access to commercial paper
market; usage; size; commitment level; facility type; and borrower domicile. The final
reported model is:

CCF = 48.36 — 3.49 x FaciltyGrade + 10.87 x TimeT oDe fault (3.2)

Jimeénez et al. (2009) obtain a census of 20 years of data for corporate revolving lines from
the Spanish Credit Registry. This data provides a unique view for EAD estimation, as it
includes both defaulted and non-defaulted facilities where all other studies (that we know
of) estimate models only on defaulted facilities. Rather than using CCF or EAD, their
analysis uses utilisation as the response (but their paper presents results in terms of LEQ),
and again this aligns with the Basel Accord Definition of CCF):

Bal
Utilisation = ——2"%C (3.3)
Limit

Their model is able to detect utilisation increases up to 5 years prior to default, depending
on whether firms have previously defaulted as an explanatory covariate in their regression.
In addition, they also find that commitment size, collateralisation and maturity are key
drivers of utilisation. Figure 3.3 below reproduces figure 2 from Jimeénez et al. (2009) and
shows that years to default is a very powerful covariate.
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Figure 3.3: Average CCF for Defaulted Credit Lines. Source: Figure 2 from Jiménez et al. (2009)

Brown (2011) begins by saying that “to date very little model development and validation
has been reported on the estimation of EAD". The paper estimates several competing
models for CCF, which is defined in the paper identically as our definition of CCF in 3.1
above. Several models are built using credit data from a UK financial institution from
2001 to 2004, and include an OLS regression, and various logit and cumulative logit
models that rely on partitioning CCF. The identified statistically significant variables
include: utilisation; limit; limit minus balance; time-to-default; credit rating; average days
delinquent in past six months. Another retail study by Qi (2009) focussing instead on
United States retail credit card data finds that “...borrowers are more active than lenders
in the ’race to default’". Finally, a study by Agarwal et al. (2006) on retail home equity
lines of credit (HELOC) in the United States also find that borrowers with deteriorating
credit quality increase their utilization.

A presentation by Leow and Crook (2013) at the 2013 Credit Scoring & Credit Control
Conference provides a clear explanation of how risk components fit into regulatory capital
calculation as well as noting that EAD is routinely estimated using LEQ and include its
mathematical definition. They define LEQ as per the Basel Accord’s definition of CCF (as
per our definition in figure 3.1), but also define an alternate “CCFEF” as the ratio of EAD to
balance (ie: the scaling factor applied to the observed balance today to obtain an EAD in
the future). Their final model uses neither “CCF” (such defined by the authors) nor CCF
from the Base Accord, but instead estimates a two-step mixture model to directly estimate
customer-level EAD for UK retail credit card data as per equation 3.4 below. The author’s
model employs a repeated measures design using a random effect to to cater for
hierarchical correlation and is thus general enough to not only estimate EAD but also loan
balance at any time up to default.

The final estimate of EAD relies on 3 models: (1) a predicted probability that balance is
grater than limit at the time of default; (2) a panel model with subject-level random-effect
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to estimate limit at default; and (3) a panel model with subject-level random-effect for the
balance at default.

~ ~ ~

Bjt = [P(Bjt > Lit) x Lit] + [(1 — P(Bit > Lit)) X B] (3.4)

Where :

Bj; = model estimate for EAD for i** account
B;; = balance at time t for i** account

A

L;; = limit at time t for the i*" account

The presentation contains a histogram of % on slide 7, and we supply a copy in figure

3.4 below. While the ratio is trimmed at values of % < 3 and is not used for their

model, our data (see figure 3.5) for revolving credit lines to large corporates bares a
striking resemblance.

Extent of balances with reference to credit limit, at time of default
for balllim < 3
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Figure 3.4: 24lance Rop Credit Cards. Source: Slide 7 Leow and Crook (2013)
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Figure 3.5: % for GCD Large Corporate Revolving Credit Lines
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A presentation by Tong et al. (2015) at the 2015 Credit Scoring & Credit Control
Conference compares several models for estimating EAD for retail credit cards. The
presentation shows that models that have CCF as the response variable perform better for
accounts with usage below 90% while models that have CCF as the response variable
perform better for usage above 90%. In order to compare their models, the authors
truncate their sample data to have values of CCF in the range [0,1].

A Masters thesis by Mantel (2012) models CCF for facilities to large corporates using the
GCD data. The analysis focusses on four facility types (revolvers, term loans, letters of
credit, and working capital) for facilities with values of CCF less than 80%. For all four
facility types the selected covariates in the OLS regression are size, utilisation and their
interaction, however each model obtain different numerical parameter estimates. The
author also finds (similar to Jacobs (2010)) some evidence of cylicality in CCF estimates.

For an alternate view, some authors (for example: Araten and Jacobs (2001), Loukoianova
et al. (2013), Jacobs and Bag (2012)) recognise that obligors with a contingent credit line
hold a put option to draw funds up to a specified limit from the bank, and in particular
Jacobs and Bag (2012) outline a framework to price such an option. Sufi (2009) recognises
this as a moral hazard problem, which is mitigated by banks posing strict covenants.
Jacobs and Bag (2011) state that contingent facilities typically contain material adverse
change (MAC) clause, which in effect means the factliy is unconditionally cancellable by
the issuing institution. Finally, Witzany (2011) models EAD using default intensities by
introducing a default density function g(s), and g(s)As is the probability that default
happens during the time interval[s, s + As].

3.4 Proposed Model

Given the identified shortcomings of modelling exposure at default indirectly via CCF
(both conceptually and numerically) our model will be designed directly estimate EAD.
We will train our model using loss data from the Global Credit Data (GCD) consortium
focussing on revolving facilitates issued to large corporates. With time constraints of only
15 weeks to compete this thesis, we will focus on building one model, and leave testing our
chosen model against other competing models as an element of future research.

Credit loss data for large corporate bank loans is notoriously difficult to assemble, given
that this type of lending by its nature is low risk and thus results in low levels of defaults
and losses. It is for this precise reason that the 47 member banks of the GCD consortium
compile and (anonymously) share their respective loss data to provide the basis for a
critical mass of data to statistically estimate EAD. It is also for this same reason (of data
paucity) that we will deliberate choose to use all available large corporate data for
revolving facilities rather than retaining a holdout dataset to test our final chosen model
against. We will however validate our model using a non-parametric bootstrap
cross-validation technique to help give some comfort that the parameter estimates are
stable. We also suggest a practical process to potentially validate the model on GCD
consortium data that becomes available in the future, but we also leave this as a
suggestion for future research.

Our model could be implemented by a large internationally active bank that advances
revolving facilities to large corporate counterparties, and its estimates used for risk
management purposes such as: pricing; provisioning; limit management; economic capital;
stress testing; and regulatory capital (subject to the bank’s regulator).
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Chapter 4

Statistical Modelling

4.1 Data, Filtering and Sampling

4.1.1 Original Data

The data used in this thesis is that of one member bank of the GCD consortium,
containing approximately 10,000 defaulted faculties. Due to the extremely sensitive nature
of this data, we are only allowed to display some brief summary statistics of both the
unfiltered and filtered data. Table 4.1 shows the reference dataset by facility type before
the application of filters. The results show revolvers are the most common facility type.

Exposure at Default (€Millions)

Facility Type N Sum Min P25 Median P75 Max

Revolver 3,415 19,933 0.0000 0.0193 0.5720 4.1667  573.2030
Term Loan 3,333 25,340 0.0000 0.1534 1.1345  5.5544  475.5688
Other 2,797 8,094  0.0000 0.0048 0.1020 0.9548  752.8469

OVERALL 9,545 53,366 0.0000 0.0297 0.4383 3.5312 752.8469

Table 4.1: Summary of Reference Data Set by Facility Type

We focus our analysis on revolvers, and table 4.2 shows the distribution by geography.

Exposure at Default (€Millions)

Geography N Sum Min P25 Median P75 Max
Europe 2,026 9,037  0.0000 0.0050 0.3947  2.9064  329.9214
North America 693 6,791  0.0000 0.0347 0.8087 9.7087  573.2030
Asia 349 1,193  0.0000 0.1891  0.7648  3.8265  100.4712
Australia/N7Z 183 1,257  0.0000 0.0247  0.2395  3.2744 95.7402
Other 164 1,655  0.0000 0.1709  2.3137  7.1778  184.9302

OVERALL 3,415 19,933 0.0000 0.0193 0.5720 4.1667 573.2030

Table 4.2: Summary of Revolvers in Reference Data Set by Geography

4.1.2 Data Filtering and Preprocessing

Araten and Jacobs (2001) state that "[t/he importance of carefully screening and cleaning
data cannot be overemphasized”. With this in mind, we apply some brief filters as per table
4.3 that remove some observations. These relate to removal of facilities that are not to large
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corporates (for example: banks, sovereigns and specialised lending) as well as the removal
of small limits at and small EAD.

Filter Reason Count Percent (%)
Exclude Not large Corporate 398 11.63
Exclude Limit <€500 640 18.74
Exclude EAD <€500 233 6.82
Include Modelling Dataset 2,144 62.81
TOTAL 3,415 100.00

Table 4.3: Filters Applied

The final modelling dataset consists of 2,144 defaulted revolving facilities to large
corporates that pass the identified filters.

4.1.3 The Decision to Not Retain a Holdout Sample

For construction of this model, we have decided not to retain a hold-out sample. Given
that our methodology (as outlined in section 4.2) requires splitting the modelling dataset
of 2,144 observations into two segments of 1,445 and 699 respectively, retaining a holdout
sample may have lead to some explanatory covariates not having sufficient volume. For
example, some categorical covariates have less than 100 observations in a given category,
and thining this further may have caused such a covariate to not be selected in our model.
This data paucity for large corporate credit risk modelling is a key challenge for such
modelling problems and is indeed one of the motivating factors behind the formation of
the GCD.

Further, while such measure are out-of-scope for our modelling exercise, there are alternate
means that one could undertake to back test our model. GCD data is updated
semi-annually and there are three sources from which additional data is added to the
database. (Note that our dataset includes resolved defaults up to September 2014).

1. additional resolved defaults from prior to September 2014 that existing members
provide beyond those already resolved defaults that they have previously ceded;

2. additional resolved defaults from after September 2014 that existing members will
provide in the future.

3. additional resolved defaults from brand new members joining GCD for the first
time.

In our experience, credit risk model development activities — which can include modelling,
documentation, policy alignment and internal /external approval — can take up to 12
months to complete. This time frame would conceivably allow enough additional data from
an updated GCD release as outlined above to undertake both in-time and out-of-time back
testing for this model.

4.2 Methodology

4.2.1 Model Methodology

Several authors, (including Araten and Jacobs (2001), Jacobs (2010) , Qi (2009), Agarwal
et al. (2006), Mantel (2012))recognise there are two separate counter-acting dynamics
driving EAD in the lead-up to a customer default:
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1. Banks will seek to manage (up or down) the available limit for a financially
distressed customer

2. A financially distressed customer will seek to draw up the remaining funds to the
limit to attempt to stave off insolvency

This “arm-wrestle" is depicted in a highly stylised example below in figure 4.1 below. At
some time “t" prior to default, the loan balance By is below the limit L;. For a customer
that does eventually default at time “tq”, as this time approaches the customer begins to
draw up their balance towards the limit while the bank, which has been monitoring its
customer closely noticing the increase risk of default, manages the limit (typically) down.
At the time of default the loan balance has increased from Bt to Byg while the limit has
decreased from L; to Liq .

Jacobs (2010) identifies this as an adverse selection problem in the context of revolving
facilities, where if a borrower’s fortunes improve their ability to pay-down or negotiate
better pricing increases; however if a borrower’s fortunes decline, there is an incentive to
draw down the unused proportion of the commitment.

Stylisation of Limits and Balances

A
L,
l Banks seek to manage
down the limit
o Le,
L=
? B, :
g_ Obligors seek to
] B, draw up to the limit
| |
1 1 >
t Time d
Figure 4.1: Stylisation of Limits and Balances for a Distressed Bank Customer
Where:
t = one year prior to time of default (tq)
B; =: balance at time t
L; =: limit at time t
tq —: time of default

Biq =: balance at default =: EAD
Liq =: limit at default

Note that this is a stylised example to highlight the joint dynamics of balance and limit,
and it is not necessary that:
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e Limits will always decrease in the lead-up to default;
e Balances will always increase in the lead-up to default; and
e Balances are always less than the limits.

In any event, there are clearly two dynamics at play so to model this duality we propose a
two stage model. The first stage will capture whether or not the bank has decreased the
limit, while the second stage will model the EAD conditional on whether the bank lowers
the limit or not. The schematic in figure 4.2 below shows the construct of our model,
detailing how the “stage one” logistic model is trained using all the observations while the
“stage two” models are trained using observations for where there is a decrease in limits
(finite mixture model) or observations for where the limit stays the same or increase
(ordinary least squares model). Table 4.9 in the next section details how the model is
applied for either testing or implementation purposes.

Stage 1
Logistic Model
(Model for Changes :
. .. (all observations)
in Loan Limit)
|
| |
Stage 2 Finite Mixture Model Ordinary Least Squares
(Model for EAD) (decrease in limit) (increase or same limit)

Figure 4.2: Schematic of Our Two-Stage Model

This model construct is similar to Leow and Crook (2013), however a key difference for our
design is that it estimates separate models to explain the dynamics of the limits and
balances. That is, the first stage focuses specifically on changes in the limit and the second
stage focusses on conditional distribution of the balance given the change in limit. The
Leow and Crook (2013) model estimates the probability of the balance being above the
limit at default, and then estimates one model each for the balance and limit at default
(see equation 3.4).

Because EAD is highly skewed (see table 4.2) we transform it using a logarithm of base 10.
Let:

Y; = logio(Buy)  i=1,..,2,144 (4.1)

We define the random that describes changes in the limit from time “¢” at observation to
time “t4” at default, where for our data (¢4 - t)=12 months. Let:

R o— { 0 ,if { Lia; / L+; < 1}, with probability 1-p;

1 ,if{ L, / Ly > 1}, with probability p; 1=1.,2145 (4.2)
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We investigate a model of the joint behaviour of R; (for changes in limit) and Y; (for
values of log1o(FAD)). Assume that there is a matrix X of covariates that are observed at
time “t” along with these random variables that allows us to partition the joint density
function conditional on X as follows:

[y, milX) = fyilri, X).p(ri|X) 1=1,...,2,144 (4.3)

We can formulate the conditional marginal distribution of Y;|X by summing over the
values of R;:

1
F@ilX) =" flyilri = 5,X).p(ri = 1X)  i=1,..,2,144 (4.4)
7=0

We can now formulate the conditional expectation of Y;|X by integrating over the domain
of Y; and using equation 4.4:

E[Y[X] = / I wilX).d
1

/ 5.5 Flilr, X).p(ri/X) dy

r=0
=/ y.f (yilri = 0,X).p(r; = OIX)-dy+/0 y.f(yilri = 1, X).p(r; = 1|1X).dy

— E[Yj|R; = 0,X].P[R; = 0|X] + E[Y;|R; = 1, X].P[R; = 1|X]
i=1,..2,144 (4.5)

For the stage one model, we estimate P[R; = 1|X] using a logistic regression (Nelder and
Wedderburn, 1972):

R; ~ Bernouli(p;) (4.6)
With:
G(pi) = w a (4.7)
Thus:
E[R; = 1|w;,a] = pi = G~} (w] a) (4.8)
Where:

e G(.)=logit link function
e w,=tuple of explanatory covariates

e (o—sensitivities to covariates

For the stage two model, we estimate E[Y;|R; = 0,X] and E[Y;|R; = 1,X]. In the next
section (see 4.2.2), we demonstrate that an ordinary lease squares model (OLS) and finite
mixture model (FMM) respectively fit well these conditional distributions of logio(EAD).
Let:

Fi(ilzj,0,5) be the pdf of the random variable {Y;|R; = j, z;;} (4.9)
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Thus:
Bl jlz;;,0:5] = i (4.10)
Where:
° gij:tuple of explanatory covariates for component j=0,1
e 0;;—sensitivities to covariates

Note that the matrix of covariates X can be defined to be the tuples of covariate from the
stage one and stage two models. We can also define ¢ as the sensitivities to the
covariates. Let:

o X = {w;,z;0,2; }; and
i Q ={a, 00,01}

Thus with the introduction of these sensitivities, we can re-write equation 4.4 as follows:

—_

fyilX, ¢) = ij(bi@z‘jaﬁz‘j) x P[R; = jlw;, ] (4.11)
j=0

Finally, after estimating é, predicted values of the mean for Y;|X are given by:

E[YQ\X, é%] =(1-E[R; = 1‘wivé])XE[ﬁ,0|£iOin0]+E[Ri = 1|Mi,Q]XE[Yi,1|£i17Qz‘1] (4.12)

4.2.2 Distribution of Response Variables

In this section we explore response distributions for the changes in limit R; , and the
conditional distribution of EAD given changes in limit Y;|R; = j. Figure 4.3 below displays
the distribution of changes in limits in the modelling dataset, showing that 33% of
facilities had their limits decreased between time “t” and time “td”, while 67% had limits
remain the same or increased over the same period.

Distribution of Limit Changes Between Observation and Default
100%

80%

67%

60%

Percent

40%
33%

20%

Limit Decrease Limit Same or Increase
Limit Changes

Figure 4.3: Distribution of Limit Changes Between Observation and Default
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Figure 4.4(a) shows the distribution of Y;|R; = 0 for facilities that have a limit decrease
between observation and default. This distribution is clearly bimodal, and we model this
using a finite mixture model of two Gaussian distributions. Figure 4.4(b) shows the
distribution of Y;|R; = 1 for facilities that have a limit increase between observation and
default. This distribution is clearly uni-modal, and we model this using an ordinary least
squares model.

Distribution and Estimated Density for log10_B_td Distribution and Estimated Density for log10_B_td
With Estimated Component Densities

2 Mixture
1: Normal(4.54,0.5) —
2: Normal(6.46,0.36) 15

Percent

Percent
=

N

. |1 .

276 3.26 376 4.26 476 526 5.76 6.26 6.76 7.26 7.76 B.26 272 322 372 422 472 6522 672 622 672 722 772 822 B72
Log 10 EAD Log 10 EAD

(a) EAD Distribution for Decrease Limit (b) EAD Distribution for Same or Increase Limit
Figure 4.4: Distribution of Log 10 EAD Conditional on Changes in Limit
Figure 4.5 compares the empirical cumulative distributions of EAD when the limits
decrease (Y;|R; = 0) to when they are the same/increase (Y;|R; = 1). The p-value for the

Kolmogorov-Smirnov Two-Sample Test is shown in table 4.4 and rejects the
null-hypothesis that the two empirical CDF’s come from the same distribution.

Empirical Distribution for log10_B_td

Proportion

Pr=Ksa 00013
4 ] 8
Log 10 EAD

Limits Limit Same or Increase

Limit Decrease

Figure 4.5: Comparison of Empirical Cumulative Distribution for EAD

Critical Value Pr >Critical Value (upper tail)
1.92 0.0013

Table 4.4: Results of Kolmogorov-Smirnov Two-Sample Test

Continuing from equation 4.11, we now write down the pdf for Y;|R; = j, which is the
distribution of logio(EAD) conditional on changes in limits. Equation 4.13 is the pdf of a
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two component Gaussian mixture model (McLachlan and Peel, 2004), and equation 4.14 is
the pdf of a Gaussian distribution (Nelder and Wedderburn, 1972).

2
11 1(yi — pra)®\
z.0,0.0) = —_ e =1,...,699 4.13
fO(yZ‘£ZO7f@O) ;ﬂk\/ﬂak exp (2 0_’% ; 2 ) ) ( )
L1 (1w
fiyilzir, 0;) = Tor o P <21021 yi=1,..,1,445 (4.14)

4.2.3 Univariate Analysis

The GCD database contains a wide variety of additional covariates beyond realised EAD
and LGD outcomes. Some of these covariates are either not relevant for revolving facilities
to large corporates or are not mandatory for ceding banks to supply. After removing
variables that are either not relevant or not populated sufficiently, we are left with 14
candidate covariates. We also create an addition macroeconomic covariate based on World
Bank’s GDP Growth (WorldBank, 2015) by defining the year in which a facility defaulted
as either: “downturn” when GDP growth is below 2%; or “expansion” when GDP growth is
above 4%. We note that this definition is arbitrary, however this is simply a place-holder
for the inclusion of a more elaborate macroeconomic model that would explain the
sensitivity of EAD to the state of the macroeconomic cycle. Figure 4.6 demonstrates this
by high lighting downturn as red and expansion as green while leaving “average” times
uncoloured.

Annual World GDP Growth Rates
World Bank Data

Annual World GDP Growth Rate

1990 1995 2000 2005 2010
Calendar Year

Annual GDP Growth O Downturn O Expansion

Recessionary (red) and Expansionary (green) Periods Are Highlighted

Figure 4.6: Growth Rate in Annual World Gross Domestic Product

The final shortlist of 15 covariates are displayed in table 4.5 below.
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Entity (6) Facility (8) Macroeconomic (1)
Jurisdiction (strong/weak) Limit Economic State
Public/Private Company Zero Balance

Leveraged Finance Deal Utilisation
Lender Risk Rating Syndication
Operating Company Guarantee/Collateral

Number of Loans Time to Maturity
Seniority

Loan Currency

Table 4.5: List of Candidate Variables or Modelling

Appendix A details the univariate analysis for each of the 15 variables in table 4.5. For
each variable we show both:

e the distribution of limit changes (R;, for use in the stage one logistic regression
model);

e the distribution of logio(FAD) (Yi|R; = j) conditional on changes in the limit (for
use in the stage two regressions)

To test the predictiveness of the covariates, we calculate a set of statistics and p-values
from single variable regressions. For the stage one logistic regression, we calculate the
following statistics which are routinely used to assess the univariate predictiveness of
covariates in credit risk and show results in table B.1 in appendix B:

e Weight of Evidence (WoE) — a concept originally published in 1950 by the World War
IT codebreaker 1.J. Good (Good (1950) and Good (1983)). Anderson (2007) explans
that WoE converts the risk associated with a particular choice onto a linear scale
that is easier for the human mind to assess. Higher values or WoE represent higher
probability of an event occurring.

o Information Value (which is also known as the Kullback divergence measure), measures
the difference between two distributions (Anderson, 2007). Siddiqi (2006) suggests
covariates with values over 0.02 are likely to be predictive.

e Gini Co-efficient — a measure of separation, usually used to assess income disparties,
but used in credit scoring to assess predictive power (Anderson, 2007). Higher values
represent stronger predictiveness.

e Area Under the ROC Curve (AUC) — a measure related to the Gini Co-efficient which
measures the area under the Receiver Operator Characteristic curve (Anderson, 2007).
Higher values represent stronger predictiveness.

For the stage two models, we asses each covariate’s predictiveness by estimating each
individually in an OLS regressions. The overall significance of each covariate in the
regressions, as per the p-value, is shown in appendix B. Table B.2 display results for
individual regressions against logio(EAD) for limits remaining the same/increasing while
and table B.3 display results for individual regressions against logio(EAD) for limits
decreasing.

The results from univariate analysis show that most of the 15 candidate covariates are
predictive, so we maintain them all as candidates in the next section for multivariate
analysis.
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4.2.4 Multivariate Model for Limit

We estimate the logistic regression for the stage one model as per equation 4.2 using
PROC LOGISTIC in SAS/STAT 9.3. The target is the limit remaining the same or
increasing between observation and default (R; = 1) and we conduct step-wise variable
selection with the threshold for entry to the model of 0.1 and a threshold to stay in the
model of 0.2. The selected covariates, together with their Wald Chi-square statistics and
p-values, are displayed in table 4.6 below. Table C.1 in appendix C details the parameter
estimates or the logistic regression along with the significance of each effect.

Effect DF Wald Chi-Square Pr >ChiSq
Jurisdiction 1 17.0542 <.0001
Leveraged Finance Deal 1 5.8627 0.0155
Lender Risk Rating 2 44.1402 <.0001
Operating Company 1 6.3277 0.0119
Number of Loans 2 12.8799 0.0016
Log 10 Limit 1 18.5775 <.0001
Zero balance 1 39.5674 <.0001
Syndication 1 3.7305 0.0534
Guarantee/Collateral 1 16.222 <.0001
Seniority 2 36.8339 <.0001
Economic State 2 11.7407 0.0028

Table 4.6: Covariates Obtained via Stepwise Selection for Stage One Logistic Regression

Figure 4.7 below shows the Receiver Operator Characteristic (ROC) curve and the area
under the ROC curve of 0.7018. This suggests that the model has a high degree of
predictive power in explaining movements in the facility limits.

ROC Curve for Model
Area Under the Curve = 0.7018

Sensitivity
o
w
o

0.00

0.00 025 0.50 075 1.00
1 - Specificity

Figure 4.7: Receiver Operator Characteristic (ROC) Curve for Stage One Model

4.2.5 Multivariate Model for EAD Given Limit Same/Increase

There are two regressions for the stage two model, as outlined previously in equations
4.13 and 4.14. We use an OLS regression to explain EAD for facilities where the limit
remains the same or increases. We undertake stepwise variable selection using PROC
GLMSELECT from SAS/STAT 9.3 using a threshold for entry to the model of 0.1 and a
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threshold to stay in the model of 0.2. The selected effects are then used in PROC
GENMOD from SAS/STAT 9.3 and the resulting Wald Chi-square statistics and p-values
are displayed in table 4.7 below. Table C.2 in appendix C details the parameter estimates
for the OLS regression along with the significance of each effect.

Efect DF Wald Chi-Square Pr >ChiSq
Lender Risk Rating 2 8.19 0.0166
Logl0 Limit 1 2959.49 <.0001
Zero Balance 1 15.87 <.0001
Syndication 1 8.15 0.0043
Logl10 Months to maturity 1 4.71 0.0299

Table 4.7: Covariates Obtained via Stepwise Selection for Stage Two OLS Regression

4.2.6 Multivariate Model for EAD Given Limit Decrease

The second regression for the stage two model is a finite mixture model (FMM). We
implement this using PROC FMM in SAS/STAT 9.3, but the procedure does not have any
automatic variable selection. Thus we undertake variable selection manually beginning
with the most significant variables identified from univariate analysis and applying
judgement. For a mixture model it is not as straight forward to provide overall p-values for
the selected covariates, so instead we provide a simple list of these covariates in table 4.8.
Tables C.3, C.3 and C.5 in appendix C detail the parameter estimates and the significance
of the effects in each of the two components and the probability model of the FMM.

Component Parameter

1 Logl0 Limit

1 Zero Balance

1 Lender Risk Rating

2 Logl0 Limit

2 Leveraged Finance Deal

Probability Loan Currency
Probability Logl0 Time to Maturity
Probability Operating

Probability Economic State

Table 4.8: Covariates Selected via Judgement for Stage Two FMM Regression

4.3 Results

4.3.1 Calculating the Model’s Fitted Values
To assess the fit of the final model, we calculate predicted values (E[Y;|X, ¢]) as per 4.12.

This involves calculating for all ¢ = 1, ...,2, 144 the following three quantities:

e F[R; = 1|w;, &] (from the stage one logistic regression);
e E[Yj|z;,0,] (from the stage two OLS model); and

e E[Yi|z;,0,] (from the stage two finite mixture model).
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The parameter estimates &, Qﬂ, and Qi() are detailed in tables C.1, C.2, C.3, C.4 and C.5 in
appendix C. Table 4.9 below details an example of calculating the overall fitted values.

A B C AxB + (1-A)xC
Observation E[R; = lw;,&] E[Yi|z;,0,] E[Yi|a;, 0, E[Y;|X, ¢]
Number Logistic OLS FMM Overall
1 0.88619 6.23810 6.05794 6.21760
2 0.67780 6.42065 6.09012 6.31416
3 0.71576 6.28705 5.84054 6.16013
4 0.80943 7.19365 7.03536 7.16348
5 0.64664 7.03440 6.78268 6.94545
2,144 0.45082 6.58330 6.35719 6.45913

Table 4.9: Calculation of Fitted Values

4.3.2 Model Diagnostics

In this section we assess the quality of the model’s predictions of logig(EAD) by
comparing observed values to predicted values.

Figure 4.8 compares a histogram of observed (top) and predicted (lower) logio(EAD) with
overlaid kernel density estimate. Figure 4.9 compares the kernel density estimates from the
two panels in figure 4.8 overlaid together on the same axis. These two graphs show there is
a reasonably high level of predictive power by the model, as displayed by the similarity in
histograms and kernel density estimates.

Histogram of Observed and Predicted Log10 EAD
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Figure 4.8: Histogram of Observed (Top) and Predicted (Lower) Logl0 EAD
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Kernel Density Estimates of Observed and Predicted Log10 EAD
0.4
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Figure 4.9: Kernel Density Estimates of Observed and Predicted Logl0 EAD

Figure 4.10 shows a scatter plot of predicted vs observed log1o(FAD) and figure 4.11
compares the empirical cumulative density functions for predicted vs observed
logio(EFAD). Table 4.10 shows p-value for the Kolmogorov-Smirnov Two-Sample Test that
compares whether the predicted and observed empirical CDF’s come from the same
distribution. The test fails to reject this null-hypothesis, and we conclude that the
observed and predicted values come from the same distribution.

Scatterplot of Observed and Predicted Log10 EAD

Predicted Log10 EAD

4 [ 8
Observed Log10 EAD

< Data 45 Degree Line

Figure 4.10: Scatterplot of Observed and Predicted Logl0 EAD

41411889: Mark Thackham (2015) Page 37 of 77



STAT825 Project: Modelling Exposure at Default

Empirical Distribution for Value
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Proportion
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Figure 4.11: Cumulative Distribution Functions of Observed and Predicted Logl0 EAD

Critical Value Pr >Critical Value (upper tail)
1.1 0.1781

Table 4.10: Results of Kolmogorov-Smirnov Two-Sample Test for Observed vs Predicted

The below two figures analyse the residuals between the observed and predicted values.

Figure 4.12 shows a histogram of residuals and there appears to be on average a slight
over-estimation bias of our model. These features are also visible in the box plot of the
residuals in 4.13.

Distribution of FinalResid

Percent
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Residual (Observed - Predicted)

Figure 4.12: Histogram of Residuals
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Boxplot of Residuals
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Figure 4.13: Boxplot of Residuals

In order to validate our model, we undertake a 1,000 sample cross validation. This
involves, for each of the 1,000 random samples, re-estimating the final model on a random
70% of the data and validating on the remaining 30%. We then calculate the mean-square
error from each of the j = 1 to 1,000 samples of 30% validation sets as follows:

Nj
MSE; = Z (yi—75)? N;=size of j" CV sample (4.15)

i=1
Figure 4.14 below shows the histogram of the 1,000 samples of 30% validation sets. The
green vertical line represents the average of the 1,000 MSE and the vertical red line
represents the MSE from the model development. The closeness of the green and red
vertical lines, together with the narrow dispersion of cross-validated MSE suggest that the
mode has not been overfit.
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Histogram of Mean Square Error for 1,000 Cross-Validation Simulations
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Figure 4.14: Histogram of Mean Square Error for 10,000 Cross Validation Simulations

4.3.3 Results and Interpretation

The analysis above gives a high degree of confidence that our model fits our observed data
well. This is evidenced by the graphical and statistical tests that show that predicted and

observed values are close. The cross-validation analysis also shows evidence that the model
has not been overfit.

Our model suggests that the major drivers of EAD include:
e limit;
e utilisation;
e risk rating; and
e time to maturity.

While we also find evidence other significant variables, the list above represent the primary
drivers. This list also generally agrees with other authors work that we have reviewed. We
also find evidence that banks manage limits in the lead up to default, and that these
changes in limits have substantial effects on the outcomes of EAD.

All the parameter estimates for our model are tabulated in appendix C, however tables
4.11, 4.12 and 4.13 detail the effects our model’s covariates and their effect of an increase
in limits and an increase in EAD respectively.
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The Facility has a Greater Chance
of a Limit Increase if it has the
Following Features

Weak jurisdictions
Leveraged deals
Non-rated borrowers
Holding companies
More loans
Lower limit
Lower utilisation
Syndicated Deals
No Guarantee or collateral
Senior debt
Expansion (and to a lesser extent Recession)

Table 4.11: Drivers of an Increase in the Limit

Conditional on a Limit Increase
the Facility Will Have a Higher EAD
if it has the Following Features

Non-rated borrowers
Higher limit
Higher utilisation
Non-syndicated deals
Longer time to maturity

Table 4.12: Drivers of EAD, Conditional on a Limit Increase

Conditional on a Limit Decrease
the Facility Will Have a Higher EAD
if it has the Following Features

Higher limit
Higher utilisation
Non-rated borrowers
Syndicated deals
Currency other than EUR or USD
Longer time to maturity
Holding company
Expansion (and to a lesser extent Recession)

Table 4.13: Drivers of EAD, Conditional on a Limit Decrease

4.4 Conclusion and Discussion

4.4.1 Knowledge Discovered

Suitable risk management is vital for the survival and continued solvency of any business,
and banks are no different. The events during the “Global Financial Crisis” (GFC) of 2007
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and 2008 highlights some of the potential impacts when banks don’t manage their risks
appropriately and showed that the interdependencies inherent in the financial system
meant the effects spread quickly to other industries and can affect entire economies.

With the advent of “Basel Accords” from the late 1980’s onwards and its focus on
estimating risk-based capital requirements, the quantification of risks that a bank faces
(and in particular credit risk associated with the granting of loans which is typically the
largest of its risks) requires the application of advanced analytics and statistical methods
to help determine risk components. For lending to large corporates, where an individual
bank’s internal empirical data may be too thin to reliably estimate these, internationally
active banks have formed consortia to pool data (such as the GCD) to assist informing
these estimates.

This project has trained a statistical model to estimate the Exposure at Default (EAD) for
large corporate counterparties to banks who are granted revolving facilities using one
member bank’s view of the GCD data. Apostolik et al. (2009). defines EAD as “[t/he
potential loss a bank would suffer if a borrower fails to meets its obligations”. EAD is a key
input parameter to not only estimation of regulatory credit capital that a bank’s regulator
stipulates it must hold in recognition for the risks it takes on when granting loans but also
for other internal risk management purpose such as: economic capital; pricing;
risk-adjusted return on capital (RAROC) calculations of profitability; stress testing; bad
debt forecasting; loan loss provisioning and limit management.

Both academic and practitioner research in the area of EAD estimation is becoming a more
attractive research topic, but there has been less focus on EAD to date than for the more
readily estimable risk components Probability of Default (PD) and Loss Given Default
(LGD). While the majority of existing authors estimate EAD indirectly via the Credit
Conversion Factor (CCF) that is popularised in the Base Accord’s standardised approach
to credit risk capital, this may change in times to come. For example, several authors
(such as Taplin et al. (2007)) point to the conceptual and numerical difficulties estimating
CCF, and further the United Kingdom regulator the Financial Conduct Authority (2014)
is now willing to consider own estimation of EAD rather than own estimation of CCF for
advanced internal ratings based accreditation (A-IRB) approach to credit risk capital.

Our model has adopted such an approach by directly estimating EAD conditional on
changes in limit, and despite this, our results largely agree with respect to key findings and
main drivers from previous authors whose models predict alternate responses (mainly
CCF). We find like other authors that that key drivers of EAD include: limit; balance;
utilisation; risk rating; and time to maturity. Initial analysis (not contained in this report)
did show facility type to be a key driver, and because of this our analysis chose to focus
solely on revolving credit lines. We also find evidence of the “race to default” identified by
Qi (2009) and Mantel (2012) and what Sufi (2009) identifies as a moral hazard problem.
This describes the tendency for financially distressed customers to draw down remaining
available funds and for banks to respond by managing limits.

Beyond the above concordance with existing research, we add to the literature in several
key ways. First, we develop a model that directly estimates EAD conditional on changes in
limit rather than like many of the existing papers that model alternate measures (such as
CCF). Second, our model explicitly considers both the balance and (changes in) the limit
as random variables and we adopt our methodology appropriately by constructing a two
stage model — the first stage estimates the probability that limits decrease while the second
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stage estimates EAD conditional on changing limits. Third, we leverage the GCD database
to estimate our model, and to the best of our knowledge this is only the second masters
project or thesis regarding EAD estimation undertaken using this data. Fourth, our model
shows good predictive power between model estimates and observed EAD. Finally, similar
to Mantel (2012) and Jacobs (2010) we identify some evidence of relation between EAD
and the state of the economy.

4.4.2 Limitations and Further Research

There are several avenues how our work could be extended. The first of which would be to
extend the modelling to other facility types, such as term loans. Whether certain
modelling aspects and parameterisations would carry over directly would need
investigation but evidence from other researchers suggest that facility type is a key driver
of EAD. A second enhancement would be the modelling of limits as a continuous response,
rather than the dichotomous response adopted for our model. The third extension would
be to conduct model back testing using both an in-time and out-of-time hold-out sample.
Our choice not to undertake such testing is outlined in our paper and relates to the
thinness of data for some covariates. We do however go on to propose that the frequent
updating of GCD data via new defaults from existing members as well as the joining of
new members to the consortium could provide the necessary holdout data to validate this
model. The fourth and final extension would be to compare our model to other model
constructs typically seen in practice. This would likely include comparison to models that
indirectly estimate EAD via CCF.
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Appendix A

This appendix details the univariate analysis for the 15 candidate covariates, with one
paged focussing on each variable in turn. The first graph and table on each page detail the
univariate predictive power of the random variable defining changes in the limit (R;), while
the remaining graphs show the conditional distribution of logo(EFAD) conditional in
changes in the limit (the random variable Y;|R; = j). Tables B.1, B.2 and B.3 collate our
findings for each variable.
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Jurisdiction

Distribution of Class for Jurisdiction

100%

80%

60% |

Percent

40% -

20% -

a) Regular by Weak
Jurisdiction

Class W LimitDecrease B Limit Same orIncrease

Figure A.1: Distribution of Limit Changes for Jurisdiction

Jurisdiction N Decrease Same/Increase Percent WoE v Gini AUC
Regular 1,906 1,252 654 89%  -0.077

Weak 238 193 45 11% 0.730

TOTAL 2,144 1,445 699 100% 0.056 0.069 0.535

Table A.1: Summary Table for Jurisdiction
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Figure A.2: Distribution of Log 10 EAD Conditional on Changes in Limit for Jurisdiction
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Public or Private Indicator
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Figure A.3: Distribution of Limit Changes for Public/Private Indicator

Public/Private N Decrease Same/Increase Percent WoE v Gini  AUC

Private/SPV 1,248 847 401 58% 0.022

Public 241 170 71 11% 0.147

Missing 655 428 227 31% -0.092
TOTAL 2,144 1,445 699 100% 0.005 0.037 0.518

Table A.2: Summary Table for Public or Private Indicator

Limit Decrease Limit Same or Increase
125 |
16 - | \\
/ \ = 10,0 z
g B 5
10 = 7.5 x =
g g
o 5.0 - o
5 @ @
25|
0 0.0
— 126 -
15 |
|| |
74 ™ 10.0 /"‘\,‘i
e 10 7 = T 7.5 =
= I = I
& = & 50 =
. |
25|
0 0.0
150 - 125
12.5 - e 10.0 -
100 | o= -
= 75— =
7.5 2 2
=] 5.0 - s
50 S S
25 25|
0.0 0.0
T T T T T T T T T T
2 4 3 8 0 2 4 3 8 0
Logl0_EAD Logl0_EAD

Kernel Kernel

Figure A.4: Distribution of Log 10 EAD Conditional on Changes in Limit for Public/Private
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Leveraged Deal Indicator

Distribution of Class for Leveraged_Deal
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Figure A.5: Distribution of Limit Changes for Leveraged Deal Indicator

Leveraged Deal N Decrease Same/Increase  Percent  WoE v Gini  AUC

No 2,048 1,368 680 96% -0.027
Yes 96 7 19 4% 0.673
TOTAL 2,144 1,445 699 100% 0.018 0.026 0.513

Table A.3: Summary Table for Leveraged Deal Indicator

Limit Decrease Limit Same or Increase
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Figure A.6: Distribution of Log 10 EAD Conditional on Changes in Limit for Leveraged Deals
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Lender Risk Rating

Distribution of Class for Lender_Risk_Rating
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Figure A.7: Distribution of Limit Changes for Lender Risk Rating

Risk Rating N Decrease Same/Increase Percent WoE IV Gini  AUC

Missing 1,524 950 574 1%  -0.222
Rated 392 301 91 18%  0.470
Not Rated 228 194 34 11%  1.015
TOTAL 2,144 1,445 699 100% 0.160 0.171 0.586

Table A.4: Summary Table for Lender Risk Rating

Limit Decrease Limit Same or Increase
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Figure A.8: Distribution of Log 10 EAD Conditional on Changes in Limit for Risk Rating
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Operating or Holding Company Indicator

Distribution of Class for Operating_Holding_Co
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Figure A.9: Distribution of Limit Changes for Operating/Holding Company Indicator

Op/Hold Co N Decrease Same/Increase Percent WoE IV Gini  AUC

Yes 1,163 781 382 54% -0.011
No/Missing 981 664 317 46% 0.013
TOTAL 2,144 1,445 699 100% 0.000 0.006 0.503

Table A.5: Summary Table for Operating or Holding Company Indicator

Limit Decrease Limit Same or Increase
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Figure A.10: Distribution of Log 10 EAD Conditional on Changes in Limit for Op/Hold Co
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Number of Loans

Distribution of Class for NumLoans
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Figure A.11: Distribution of Limit Changes for Number of Loans

Number Loans N Decrease Same/Increase Percent WoE v Gini  AUC
1 619 367 252 29% -0.350
2 443 297 146 21% -0.016
3 1,082 781 301 50% 0.227
TOTAL 2,144 1,445 699 100% 0.062 0.131 0.565
Table A.6: Summary Table for Number of Loans
Limit Decrease Limit Same or Increase
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Figure A.12: Distribution of Log 10 EAD Conditional on Changes in Limit for Number of Loans
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Log 10 Limit

Distribution of Class for Log10_Limit
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Figure A.13: Distribution of Limit Changes for Log 10 Limit

Log 10 Limit N Decrease Same/Increase Percent ~WoE v Gini  AUC

[2.2, to 4.9) 410 292 118 19%  0.180
[4.9, to 5.6) 378 255 123 18%  0.003
[5.6, to 6.3) 489 354 135 23%  0.238
6.3, t0 6.9) 459 298 161 21%  -0.111
6.9, t0 9.1) 408 246 162 19%  -0.308
TOTAL 2,144 1,445 699 100% 0.040 0.111 0.556

Table A.7: Summary Table for Log 10 Limit

Limit Decrease Limit Same or Increase
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Figure A.14: Distribution of Log 10 EAD Conditional on Changes in Limit for Logl0 Limit

41411889: Mark Thackham (2015) Page 51 of 77



STATS825 Project: Modelling Exposure at Default

Zero Balance Indicator

Distribution of Class for ZeroBalance
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Figure A.15: Distribution of Limit Changes for Zero Balance Indicator

Zero Balance N Decrease Same/Increase Percent WoE v Gini  AUC

Pos Balance 1,745 1,137 608 81% -0.100
Zero Balance 399 308 91 19% 0.493
TOTAL 2,144 1,445 699 100% 0.049 0.083 0.541

Table A.8: Summary Table for Zero Balance Indicator

Limit Decrease Limit Same or Increase
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Figure A.16: Distribution of Log 10 EAD Conditional on Changes in Limit for Zero Balance
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Utilisation

Distribution of Class for Utilisation
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Figure A.17: Distribution of Limit Changes for Utilisation

Utilisation N Decrease Same/Increase Percent  WoE v Gini  AUC

Zero 399 308 91 19% 0.493

1-99% 712 403 309 33% -0.461

100% 1,033 734 299 48% 0.172
TOTAL 2,144 1,445 699 100% 0.130 0.188 0.594

Table A.9: Summary Table for Utilisation

Limit Decrease Limit Same or Increase
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Figure A.18: Distribution of Log 10 EAD Conditional on Changes in Limit for Utilisation
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Syndicated Deal Indicator

Distribution of Class for Syndicated
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Figure A.19: Distribution of Limit Changes for Syndicated Deal Indicator

Syndicated N Decrease Same/Increase Percent ~WoE IV Gini  AUC

No 2,018 1,362 656 94% 0.004
Yes 126 83 43 6% -0.069
TOTAL 2,144 1,445 699 100% 0.000 0.004 0.502

Table A.10: Summary Table for Syndicated Deal Indicator

Limit Decrease Limit Same or Increase
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Figure A.20: Distribution of Log 10 EAD Conditional on Changes in Limit for Syndicated Indicator
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Guarantee /

Figure A.21:

Collateral Indicator

Distribution of Class for Guarantee_Collateral
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b) Gtee andior CIl

Distribution of Limit Changes for Guarantee/Collateral Indicator

Support N Decrease Same/Increase Percent  WoE v Gini
No support 1,060 781 279 49% 0.303
Gtee and/or Cll 1,084 664 420 51%  -0.268
TOTAL 2,144 1,445 699 100% 0.081 0.141
Table A.11: Summary Table for Guarantee/Collateral Indicator
Limit Decrease Limit Same or Increase
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Figure A.22: Distribution of Log 10 EAD Conditional on Changes in Limit for Gtee/Collateral
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Months to Maturity

Distribution of Class for Months_to_Maturity
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Figure A.23: Distribution of Limit Changes for Months to Maturity

Maturity N Decrease Same/Increase Percent WoE InfoValue Gini AUC
No Maturity 733 514 219 34% 0.127

[0-6] 125 44 81 6% -1.336

(6-12] 121 65 56 6% -0.577

(12-36] 573 401 172 27% 0.120

(36,+] 592 421 171 28% 0.175

TOTAL 2,144 1,445 699 100% 0.152  0.132 0.566

Table A.12: Summary Table for Months to Maturity

Limit Decrease Limit Same or Increase
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Figure A.24: Distribution of Log 10 EAD Conditional on Changes in Limit for Maturity
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Seniority
Distribution of Class for Seniority
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Figure A.25: Distribution of Limit Changes for Seniority
Seniority N Decrease Same/Increase Percent WoE InfoValue Gini AUC
Super Senior 208 169 39 10% 0.740
Pari-Passu 1,765 1,178 587 82% -0.030
Sub/Junior/Eq 171 98 73 8% -0.432
TOTAL 2,144 1,445 699 100% 0.062 0.089 0.545
Table A.13: Summary Table for Seniority
Limit Decrease Limit Same or Increase
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Figure A.26: Distribution of Log 10 EAD Conditional on Changes in Limit for Seniority
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Jurisdiction

Distribution of Class for Currency
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Figure A.27: Distribution of Limit Changes for Loan Currency

Currency N Decrease Same/Increase Percent WoE InfoValue Gini  AUC

USD 374 236 138 17% -0.190
EUR 817 943 274 38% -0.042
Other 953 666 287 44% 0.116
TOTAL 2,144 1,445 699 100% 0.013 0.060 0.530

Table A.14: Summary Table for Loan Currency

Limit Decrease Limit Same or Increase
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Figure A.28: Distribution of Log 10 EAD Conditional on Changes in Limit for Loan Currency
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Economic State

Distribution of Class for Economic_State
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Figure A.29: Distribution of Limit Changes for Economic State

State N Decrease Same/Increase Percent WoE InfoValue Gini  AUC
Downturn 1,007 702 305 47% 0.107
Average 919 584 335 43%  -0.170
Expansion 218 159 59 10% 0.265
TOTAL 2,144 1,445 699 100% 0.025 0.082 0.541

Table A.15: Summary Table for Economic State

Limit Decrease Limit Same or Increase
20 - ] 125
15| 7‘4’\ _ 10.0 ’c;/ _
& 7.5 7 B &
10+ E E
o 50 o
T w w
5+ | 25—
0 __.-Fr——‘lé 00
- ] 125 - L
125 —
— L i —
100 - L T~— N 100 _//\L
[t} / [t}
; - \ 5 .. 5
2 75 © g | ©
2 2 2 2
I << B - <<
o 50— = o 5.0 =y
25 25
0.0 0.0
15 - — 15 - -
L]
10 o - g 10 1] g
- ™ & &
/] g g
5 5
} / ’ B | ’
0 ’7 0
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10

Logl0_EAD Logl0_EAD

Kernel

Kernel

Figure A.30: Distribution of Log 10 EAD Conditional on Changes in Limit for Economic State
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Appendix B

Effect on Keeping Limit the

Covariate . v Gini  AUC

Same or Increasing
C e Weak jurisdictions are more

Jurisdiction likely to be granted a limit increase 0-056 0.0690.535

Public/Private Company No obvious risk signal 0.005 0.037 0.518

Leveraged Finance Deal Leveraged deals mo.re.llkely 0.018 0.026 0.513
to be granted a limit increase
Facilities to unrated companies

Lender Risk Rating are more likely to be granted a limit 0.160 0.171 0.586
increase

Operating Company No obvious risk signal 0.000 0.006 0.503
Counterparties with more facilites

Number of Loans are more likely to be granted a limit 0.063 0.136 0.568
increase
Facilities with a lower limit are

Limit more likely to be granted a limit 0.04 0.111 0.556
increase
Completely undrawn facilities are

Zero Balance more likely to be granted a limit 0.049 0.083 0.541
increase
Facilities either fully undrawn or

Utilisation fully undrawn are more likely to 0.13  0.188 0.594
be granted a limit increase

Syndication No obvious risk signal 0.000 0.004 0.502
Non-supported facilities are

Guarantee/Collateral more likely to be granted a 0.081 0.141 0.571
limit increase
Facilities with longer maturity

Time to Maturity are more likely to be granted a 0.152 0.132 0.566
limit increase

Seniority Senior facilities are more likely 0.062 0.089 0.545
to be granted a limit increase

Loan Currency Other currencies are more likely 0.013 0.060 0.530
to be granted a limit increase

Economic State Downturn or Expansions are more 0.025 0.082 0.541

likely to be granted a limit increase

Table B.1: Summary of Univariate Analysis for Changes in Limit
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Covariate Effect on EAD, Given Limit the Same/Increase p-Value
Jurisdiction Strong jurisdictions have higher EAD 0.0204
Public/Private Company No obvious risk signal <.0001
Leveraged Finance Deal No obvious risk signal 0.0013
Lender Risk Rating Unrated borrowers have lower EAD <.0001
Operating/Holding Company No obvious risk signal <.0001
Number of Loans Reversal in graphs and single regression 0.0018
Limit Higher limit have higher EAD <.0001
Zero Balance No obvious risk signal 0.8981
Utilisation Reversal in graphs and single regression 0.0168
Syndication Syndicated deals have higher EAD <.0001
Guarantee/Collateral No obvious risk signal 0.8316
Time to Maturity Loans with longer maturity have higher EAD <.0001
Seniority Reversal in graphs and single regression <.0001
Loan Currency USD and EUR have higher EAD <.0001
Economic State Downturn have higher EAD <.0001

Table B.2: Summary of Univariate Analysis for EAD Given Limits Same or Increase

Covariate Effect on EAD, Given Limit Decrease P-Value
Jurisdiction Strong jurisdictions have higher EAD 0.0003
Public/Private Company No obvious risk signal <.0001
Leveraged Finance Deal Leverage deals have higer EAD 0.0051
Lender Risk Rating No obvious risk signal 0.0006
Operating/Holding Company Operating companies have higher EAD 0.0004
Number of Loans Reversal in graphs and single regression <.0001
Limit Higher limit have higher EAD <.0001
Zero Balance Accounts with zero balance have higher EAD <.0001
Utilisation Accounts with lower utilisation have higher EAD  <.0001
Syndication Syndicated deals have higher EAD <.0001
Guarantee/Collateral No obvious risk signal 0.6255
Time to Maturity Loans with longer maturity have higher EAD <.0001
Seniority Junior loans have higher EAD 0.0052
Loan Currency USD and EUR have higher EAD <.0001
Economic State Downturn have higher EAD <.0001

Table B.3: Summary of Univariate Analysis for EAD Given Limits Decrease
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Appendix C

Logistic Regression

Table C.1 displays the parameter estimates from the stage one logistic regression model.

Parameter Level DF Estimate Std Err Wald Pr >ChiSq
Intercept 1 1.7976  0.3531 25.9112 <.0001
Jurisdiction Weak 1 0.763  0.1848 17.0542 <.0001
Leveraged Finance Deal Yes 1 0.6703  0.2768  5.8627 0.0155
Lender Risk Rating Rated 1 0.6855 0.144 22.6482 <.0001
Lender Risk Rating Not Rated 1 1.1029  0.2093  27.767 <.0001
Operating Company No/Missing 1 0.2766 0.11  6.3277 0.0119
Number of Loans 1 1 -0.3817 0.115 11.0184 0.0009
Number of Loans 2 1 -0.00394  0.1319  0.0009 0.9761
Log 10 Limit 1 -0.2229  0.0517 18.5775 <.0001
Zero balance Zero Balance 1 0.9063  0.1441 39.5674 <.0001
Syndication Yes 1 0.4184 0.2166  3.7305 0.0534
Guarantee/Collateral Yes 1 -0.4159  0.1033  16.222 <.0001
Seniority Super Senior 1 1.2112  0.1997 36.77 <.0001
Seniority Sub/Junr/Eq 1 0.0167 0.184  0.0082 0.9278
Economic State Average 1 -0.3178  0.1081  8.6387 0.0033
Economic State Expansion 1 0.141  0.1778  0.6293 0.4276

Table C.1: Parameter Estimates for Stage One Logistic Regression Model

Ordinary Least Squares

Table C.2 displays the parameter estimates from the stage two OLS regression model.

Parameter Level DF Estimate Std Err Wald Pr >ChiSq
Intercept 1 0.2601  0.0554 22.04 <.0001
Lender Risk Rating Rated 1 -0.0101 0.025 0.16 0.6869
Lender Risk Rating Not Rated 1 0.0829  0.0316 6.91 0.0086
Logl0 Limit 1 0.9506  0.0096 9758.21 <.0001
Zero Balance Zero Balance 1 -0.1037 0.026 15.95 <.0001
Syndication Yes 1 -0.1233  0.0431 8.18 0.0042
Logl0 Months to Maturity 1 0.0312  0.0144 4.72 0.0298

Table C.2: Parameter Estimates for Stage Two OLS Regression Model
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Finite Mixture Model

Table C.3, C.4 and C.5 displays the parameter estimates from the stage two FMM
regression model.

Component Parameter Level Estimate Std Err z Value Pr >|z]
1 Intercept -0.06629  0.04311 -1.54  0.1241
1 Log10 Limit 1.0065 0.005389  186.79 <.0001
1 Zero Balance Yes -0.02976  0.01531 -1.94  0.0519
1 Zero Balance No 0 . . .
1 Lender Risk Rating Missing -0.0449  0.02253 -1.99  0.0463
1 Lender Risk Rating Rated -0.03853 0.0252 -1.53  0.1262
1 Lender Risk Rating Not Rated 0 .
1 Variance 0.007296  0.00129

Table C.3: Parameter Estimates for First Normal Component Stage Two FMM Regression

Component Parameter Level Estimate Std Err z Value Pr >|z|
2 Intercept 0.07318  0.2546 0.29  0.7737
2 Logl0 Limit 0.9262 0.03026 30.61  <.0001
2 Syndication No -0.2972  0.1521 -1.95  0.0507
2 Syndication Yes 0 .
2 Variance 0.2625 0.02171
Table C.4: Parameter Estimates for Second Normal Component Stage Two FMM Regression

Component Parameter Level Estimate Std Err 2z Value Pr >|z
Probability Intercept 0.6042 0.395 1.53 0.1261
Probability Loan Currency USD -0.4075  0.3211 -1.27  0.2044
Probability Loan Currency EUR -0.5418  0.2543 -2.13  0.0331
Probability Loan Currency Other 0 . . .
Probability Logl0 Time to Maturity 0.9217  0.1679 549 <.0001
Probability Operating Company Yes -0.7968  0.2258 -3.53  0.0004
Probability Operating Company No 0 . . .
Probability Economic State Downturn -0.2241  0.3939 -0.57  0.5693
Probability Economic State Average -0.7277 0.385 -1.89  0.0587
Probability Economic State Expansion 0

Table C.5: Parameter Estimates for Probability Component Stage Two FMM Regression
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Appendix D

The following SAS code, written in v9.3 (TS1M1), will refit the final model.
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* kK ;
* kK

*kx Name : 04 Balance Models.sas

* kK

*** Date: 24/09/2015

* kK

*** Author: MT

* koK

*** Purpose: Fit the final models;

* kK

**% Step 1: Locations;

**%* Step 2: Separate the modelling data into high and low;

**%* Step 3: Estimate the OLS model;

**%* Step 4: Fit FMM to decrease in limits;

**%* Step 5: Chosen dummy logistic regression from stepwise selection;
**%* Step 6: Score the final predicted model;

* k x

* Kk Kk ;
* kK

*** Step 1: Locations;
LIBNAME output "c:\output";

***Qutput destination;
ODS LISTING CLOSE;
ODS HTML;

* Kk Kk

*** Step 2: Separate the modelling data into high and low;
DATA high low;

SET output.loanTable?2;

IF Flag L td div L t3='b) (L td / L t)>=1' THEN OUTPUT high;
IF Flag L td div L t3='a) (L td / L t)< 1' THEN OUTPUT low;
RUN;

* Kk Kk

* Kk Kk

*** Step 3: Estimate the OLS model;
PROC GENMOD DATA=high NAMELEN=32 PLOTS=NONE;

/*Classing for categorical variables*/

CLASS

Lender_Borrower_Risk_Rating4(REF='1) Missing')
Syndicated Indicator2 (REF='a) No')
Flag B t(REF='a) Pos Balance')

/ PARAM=REF;

/*Linear predictor*/

MODEL 1logl0 B td =

logl0 L t

logl0 MonthsToMaturity?
Syndicated Indicator2

Lender Borrower Risk Rating4
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Flag B t
/ DIST=NORMAL LINK=IDENTITY TYPE3;

/*Model output for scoring*/
STORE ModelScoring;

* Kk k

*** Step 4: Fit FMM to decrease in limits;
PROC FMM DATA=low NOITPRINT NAMELEN=32 PARMSTYLE=LABEL;

/*Classing for categorical variables*/
CLASS

Flag B t

Lender Borrower Risk Rating4
Syndicated Indicator2

Loan_ Currency2
Operating Company Indicator3
EconomicState;

/*First normal mixing component linear predictor*/
MODEL logl0O B td=

logl0 L t

Flag B t

Lender Borrower Risk Ratingd

/DIST=NORMAL;

/*Second normal mixing component linear predictor*/
MODEL logl0 B td=logl0 L t

Syndicated Indicator2

/DIST=NORMAL ;

/*Probability model*/
PROBMODEL

Loan Currency2

1logl0 MonthsToMaturity7
Operating Company Indicator3
EconomicState;

/*Model output for scoring*/
ODS OUTPUT ParameterEstimates=ParameterEstimates MixingProbs=MixingProbs;

RUN;

*** Prepare for scoring;
DATA ParameterEstimates?2;

/*Allocate the length of some variables*/
ATTRIB Parameter Effect LENGTH=$1000;

/*Combine the parameter */

SET ParameterEstimates

(KEEP=ModelNo Parameter Effect Estimat
WHERE= (Parameter~='Variance') IN=a)
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MixingProbs (KEEP= Parameter Effect Estimate
WHERE= (Parameter~='Variance') IN=Db);

/*Assign probability model as model 3*/
IF b THEN ModelNo=3;

/*tailor the Estimate and Parameter variables*/
Estimate2=SUM (INPUT (Estimate, 8.6),0);
Parameter2=Parameter;
Parameter2=LEFT (TRANWRD (Parameter, COMPRESS (Effect), "'"));

/*Combine Effect and Estimate to create linear predictors*/

ATTRIB linpred LENGTH=$1000;

IF Effect='Intercept' THEN linpred=Estimate2;

ELSE IF Effect

IN('logl0 L t','"logl0 MonthsToMaturity7','logl0 L t sq') THEN
linpred=COMPRESS (Effect || '*' || Estimate2);

ELSE linpred='(' || COMPRESS(Effect) || '="' || TRIM(Parameter2) || '") * '
| | COMPRESS (Estimate?2) ;

/*Finalise labels and drop unnecessary variables*/
ATTRIB ALL LABEL='"';
DROP Parameter Estimate;

RUN;

/*Create the 3 linear predicors*/
DATA ParameterEstimates3;

/*Allocat the length of linear predictors*/
ATTRIB Run_linpred LENGTH=$1000;
RETAIN Run linpred;

SET ParameterEstimates2;
/*Create linear predictor for each of the 3 models*/

BY ModelNo;
IF FIRST.ModelNo THEN Run linpred=linpred;

ELSE Run linpred=TRIM(LEFT (Run linpred)) || '+' || linpred;

IF LAST.ModelNo THEN CALL SYMPUT (COMPRESS ('linpred'||ModelNo),Run linpred);
RUN;
B — e e

* K x

*** Step 5: Chosen dummy logistic regression from stepwise selection;
PROC LOGISTIC DATA=output.loantable2 PLOT=ROC NAMELEN=32;

/*Classing for categorical variables*/

CLASS

Fitch RR Group2 (REF='a) Regular')

Leveraged Finance_ Indicator3(REF='a) No')
Lender Borrower Risk Rating4 (REF='1l) Missing')
Operating Company Indicator3 (REF='a) Yes')
Flag NumLoans3 (REF='c) 3+"')
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Flag B t(REF='a) Pos Balance')

Syndicated Indicator2 (REF='a) No')
Guarantee or Collateral2(REF='a) No support')
Seniority Code3 (REF='b) Pari-Passu')
EconomicState (REF='a) Downturn')

/PARAM=REF';

/*Linear predictor*/

MODEL Num L td div L t3(EVENT='1l') =
logl0 L t

Fitch RR Group2

Leveraged Finance Indicator3
Lender Borrower Risk Rating4
Operating Company Indicator3
Flag NumLoans3

Flag B t

Syndicated Indicator2
Guarantee or Collateral?2
Seniority Code3
EconomicState

/BINWIDTH=0;

/*Model output for scoring*/
OUTPUT OUT=scoredModel PREDICTED=Phat;
RUN;

*** Step 6: Score the final predeicted model;

*** Score the high model;
PROC PLM source=sasuser.model?2;

SCORE DATA=scoredModel OUT=scoredModel?2;
RUN;

*** Score the low model;
DATA scoredModel3;
SET scoredModel?2;

/*Linear predictors for the FMM*/
logl0 L t sg=loglO0 L t*loglO L t;
linpredl=&linPredl;
linpred2=&linPred?2;
linpred3=&linPred3;

pi=EXP (linpred3) / (1+EXP (linpred3)) ;
PredLow=pi*linpredl + (1-pi)*linpred2;

*** Predicted and residuals;
ATTRIB FinalPred LABEL='Predicted Value';
ATTRIB FinalResid LABEL='Residual (Observed - Predicted)';
FinalPred=PredLow * (1-Phat) + Predicted*Phat;
FinalResid=1logl0 B td-FinalPred;

RUN;

* Kk Kk

41411889: Mark Thackham (2015) Page 69 of 77



STATS825 Project: Modelling Exposure at Default

Appendix E

The following R code will refit the final model.

Details of R Version:

R version 3.2.2 (2015-08-14) — "Fire Safety"

Copyright (C) 2015 The R Foundation for Statistical Computing
Platform: x86 64-w64-mingw32/x64 (64-bit)

Details of R Packages:
base (version 3.2.2)
dplyr (version 0.4.3)
flexmix (version 2.3-13)
sas7bdat (version 0.5)
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#
#

# Name: 04 Balance Models.R

#

# Date: 24/09/2015

#

# Author: MT

#

# Purpose:Fit the final models

#

# Step 1: Packages and Locations

# Step 2: Separate the modelling data into high and low

# Step 3: Estimate the OLS model

# Step 4: Fit FMM to decrease in limits

# Step 5: Chosen dummy logistic regression from stepwise selection
# Step 6: Score the final predicted model

#

#

#

# Step 1: Packages and Locations

# Packages
library(flexmix)
library(sas7bdat)
library(dplyr)

# Location

outputLocation='C:/Users/Mark/Google Drive/Uni/Sem6/STAT825/01 SAS Code/02 Output'
#

#

# Step 2: Separate the modelling data into high and low

# Read the data
loantable2=read.sas7bdat(paste(outputLocation,'/loanTable2.sas7bdat',sep=""))

# Variables to keep

AllVars=c(
'Num_L_td_div_L_t3',
'DA_LOAN_ID',
'Fitch_RR_Group?2',
'Leveraged_Finance_Indicator3’,
'Operating_Company_Indicator3',
'Syndicated_Indicator2’,
'Guarantee_or_Collateral2’,
'log10_MonthsToMaturity7"',
'Seniority_Code3',
'Loan_Currency?2’,
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'Lender_Borrower_Risk_Rating4',
'Debt_Senior_Percentage3’,
'logl0_L_t',

'Flag_B_t',

'EconomicState’)

# High

high=subset(loantable2,
Flag_L_td_div_L t3=='b) (L_td / L_t)>=1",
select=c('log10_B_td',AllVars))

# Low
low=subset(loantable2,
Flag_L_td_div_L t3=="a)(L_td /L _t)<1')

H.
H

#

# Step 3: Estimate the OLS model

# OLS Model variables

OlsVars=c('log10_L_t',
'log10_MonthsToMaturity7',
'Syndicated_Indicator2’,
'Lender_Borrower_Risk_Rating4"',
'Flag_B_t')

# OLS model
formula=paste('log10_B_td',paste(OlsVars,collapse="+"),sep=""")
fit=lm(data=high, formula=formula)
coefsTable=data.frame(summary(fit)Scoefficients)
View(coefsTable)

View(anova(fit))

View(summary(fit)Scoefficients)

logLik(fit)

extractAIC(fit, k=2)

H

#
# Step 4: Fit FMM to decrease in limits

# Components

Model.sel = FLXMRgImfix(nested = list(formula = ¢( ~ log10_L_t+
Flag_B_t+
Lender_Borrower_Risk_Rating4,

~logl0_L_t+
Syndicated_Indicator2),
k=c(1,1)))
# Probability model
Conc.sel = FLXPmultinom(~ Loan_Currency2+
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log10_MonthsToMaturity7+
Operating_Company_Indicator3+
EconomicState)

# Fit the finite mixture model
fmm=flexmix(log10_B_td~1,
data=low,
model=Model.sel,
concomitant=Conc.sel)
rfmm <-refit(fmm)

# View the results
summary(rfmm)
rfmm@concomitant
AIC(fmm)

BIC(fmm)
fmm@IogLik*-2

#

#

# Step 5: Chosen dummy logistic regression from stepwise selection

# Variables for logistic regression

LogisticVars=c('logl0_L_t',
'Fitch_RR_Group?2',
'Leveraged_Finance_Indicator3',
'Lender_Borrower_Risk_Rating4',
'Operating_Company_Indicator3',
'Flag_NumLoans3',
'Flag_B_t',
'Syndicated_Indicator2’,
'Guarantee_or_Collateral2’,
'Seniority_Code3',
'EconomicState’)

# Logistic regression formula
logisticFormula=paste('Num_L_td_div_L_t3',paste(LogisticVars,collapse='+"),sep='"~")

#Logistic regression

logistic=glm(formula=logisticFormula,
family=binomial(link="logit"),
data=loantable2)

#

# Step 6: Score the final predicted model

# Score the Ols
ols.linpred=data.frame(ols.linpred=predict(fit,loantable2))
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View(ols.linpred)

# Score the fmm
fmm.scored.linpred=predict(fmm,loantable2)
fmm.scored.prior=data.frame(prior(fmm,loantable2))
rownames(fmm.scored.prior)=NULL

# Score the logistic regression

logistic.logit=data.frame(logistic.logit=predict(logistic,loantable2))

logistic.prob=logistic.logit %>%
mutate(logistic.prob=exp(logistic.logit)/(1+exp(logistic.logit)))

# Collate the final scored dataset

scored=data.frame(loantable2,
ols.linpred,
fmm.scored.linpred,
fmm.scored.prior,
logistic.prob)

# Calculate the final fitted values
scored2=scored %>%
mutate(fmm.scored.linpred.overall=Comp.1*X1 + Comp.2*X2) %>%
mutate(predicted= ols.linpred*logistic.prob +
fmm.scored.linpred.overall*(1-logistic.prob))
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