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ABSTRACT OF THESIS 

 

Subduction zones are sites where subducted materials achieve one of two 

opposing outcomes, either recycling back to the crust or being transferred to the deep 

mantle. The composition of arc magmas, and to a lesser extent the associated 

extensional back-arc basin, reflects the reservoirs that influence the chemical 

composition of arc lavas and subducted materials: the altered oceanic crust, the mantle, 

the overlying crust, and occasionally hotspots. To better understand the complex 

processes occurring in subduction zones, a series of studies investigate the process in 

which subducting elements recycle and interact with various upper mantle components 

and ultimately form into igneous rocks. This investigation takes a multifaceted approach 

to further understand the history and source of magmatism in intra-oceanic arcs, using 

as an example the Tongan arc from inception (subduction) to completion (petrogenesis 

and eruption). Constraining petrogenesis and elemental recycling within the Tonga-

Kermadec Island arc and Lau back-arc basin system is integral to understanding crust-

mantle exchange. The Tonga-Kermadec arc setting is ideal to test the chemical 
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influences imparted on the lavas from a range of dynamic forces because these magmas 

are not contaminated with continental crust. 

This research focuses on magmas associated with the plate tectonic cycle at both 

convergent and divergent plate margins within the Tonga-Kermadec volcanic arc, Lau 

basin, and North Fiji basin system. In order to untangle the intricacies associated with 

constraining the contributions to intra-oceanic arc magmas (Tonga-Kermadec arc) and 

to identify the sources affecting mantle evolution over time in the accompanying back-

arc basins (Lau basin and North Fiji basin), a range of geochemical, 

geothermobarometric, and high and low pressure experimental techniques have been 

applied. This study consists of 1) analyzing and quantifying how elements recycle 

within a subduction zone through the use of Li isotopes; 2) experimentally constraining 

pressure, temperature and water conditions that drive melting and magma generation at 

Late volcano, located on the active volcanic front; and 3) by using the major, trace, 

volatile elements along with radiogenic isotope data to create an intricate and cohesive 

dataset from back-arc samples collected during the 2012 Northern Lau Transit 

Expedition (NoLauTe) of the R/V Southern Surveyor (cruise name: ss2012_v02).  

This study concludes that addition of up to 3.5% sediment is present in the arc 

front lavas and that back-arc lavas equilibrate with the mantle wedge, which may reflect 

a longer slab-to-surface path traversed by the magmas. This study also questions the 

utility of lithium as a possible tracer of recycled material. The (mid-ocean ridge basalt) 

MORB-like lithium isotopic composition of the Tonga-Kermadec lavas suggests that 

the lithium elemental and isotopic characteristics reflect either, or a combination of, 

equilibration with the mantle wedge or sequestration and removal of the heavy Li in the 

system, possibly linked to slab-convergence rate. Pyroxene thermobarometry for the 

subaerial volcano studied (Late) suggests fractional crystallization at 1020-1070 oC at 

0.8-1.8 kbar. A lack of hydrous mineral phases in all of the experiments as well as in the 
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natural rock sample negates the influence of an amphibolite melt. The experimental 

results support shallow crustal (2-6 km) crystal fractionation of basalt that produces an 

evolved magmatic composition. Whereas the lavas from the Lau basin and connecting 

North Fiji basin indicate a primary influence from a wet plume source (Samoa) and 

additional extreme geochemical contributions (high 3He/4He, high 87Sr/86Sr, HIMU: 

high-μ = 238U/204Pb) from the Samoa, Rarotonga, and Rurutu hotspots. For the first 

time, it is possible to map a clear north-south and east-west geochemical gradient in 

87Sr/86Sr across the northern Lau and North Fiji basin: lavas with the most 

geochemically enriched radiogenic isotopic signatures are located to the northeastern 

Lau Basin, while signatures of geochemical enrichment are diminished to the south and 

west away from the Samoan hotspot. 
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(MCDONOUGH & SUN, 1995; TOMASCAK ET AL., 2008). DATA SOURCES FOR ARCS IN 

TABLE 2.1. 32

FIGURE 2.4 DEPTH PROFILE (IN METERS) FOR THE SEDIMENTS ANALYZED IN THIS STUDY 

(DSDP SITE 204) & PUBLISHED DATA FROM DSPD 596 (~1,000 KM EAST) FOR [LI] 

AND Δ7LI (CHAN ET AL., 2006). CORE LOGS (IN METERS) OF DSDP SITE 204 AND 

PUBLISHED DATA OF DSDP 596 (CHAN ET AL., 2006). THE CORE ANALYZED IN THIS 

STUDY (DSDP SITE 204) IS TWICE THE LENGTH OF THE NEARBY DSDP 596 CORE 

(~1,000 KM TO THE EAST). THE MAIN COMPOSITIONAL DIFFERENCE BETWEEN BOTH 

CORES IS THAT DSDP SITE 204 HAS LOUISVILLE VOLCANICLASTIC SEDIMENTS IN THE 

LOWER THIRD OF THE CORE. 38

FIGURE 2.5 Δ7LI ISOTOPIC COMPOSITIONS VERSUS TRADITIONAL TRACERS OF SLAB FLUIDS: 

B/BE, BA/NB, BA/LA, LI/Y (DATA FROM GEORGE ET AL., 2005). THERE IS NO 

PUBLISHED BE DATA FOR THE SEDIMENT IN THIS STUDY. AVERAGE MORB (STAR) IS 

SHOWN ALONG WITH DATA FOR OTHER ARCS FROM THE LITERATURE. SAMPLES 

PLOTTED: ARC (RED SQUARE), BACK-ARC (GREEN TRIANGLE), SEDIMENT (BLUE 

DIAMOND), ALONG WITH BACKGROUND DATA FROM OTHER ARCS (IZU, PANAMA, 

KURILE, SUNDA, ALEUTIAN, MARTINIQUE) (SEE FIG. 2.3 FOR DATA SOURCES). 44

FIGURE 2.6 PLOTS OF δ7LI VERSUS U/TH A FLUID-SENSITIVE INDEX (A) AND TH/CE A 

SEDIMENT-SENSITIVE INDEX (B). THE AVERAGE COMPOSITIONS OF THE DSDP SITE 

204 PELAGIC AND VOLCANICLASTIC SEDIMENTS ARE ALSO SHOWN ALONG WITH 

AVERAGE ESTIMATES FOR DEPLETED MORB MANTLE (DMM) AND ALTERED 
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OCEANIC CRUST (AOC) – DATA FROM ELLIOTT ET AL. (2004), GAO ET AL. (2012), 

KELLEY ET AL. (2003), SALTERS AND STRACKE (2004). 45

FIGURE 2.7 PLOTS OF δ7LI VERSUS (A) 87SR/86SR AND (B) δ11B. BORON DATA FROM 

LEEMAN ET AL. (2017), OTHER SYMBOLS AND DATA SOURCES AS FOR FIG. 2.6. 47

FIGURE 2.8 THREE-COMPONENT MIXING MODEL: BULK SEDIMENT MELT AT 800OC, DMM-

1% AND A DISTILLATION FLUID COMPONENT FROM THE ALTERED OCEANIC CRUST 

(SEE TEXT FOR EXPLANATION) (ELLAM & HAWKESWORTH, 1988; TOMASCAK ET AL., 

2002; SALTERS & STRACKE, 2004; KELLEY ET AL., 2003; GEORGE ET AL., 2005; 

KREINITZ ET AL., 2012). AVERAGE MORB (STAR) IS PLOTTED FOR REFERENCE. THE 

DOTTED BLACK LINE EXTENDING IN THE BOTTOM OF EACH MODEL ILLUSTRATES HOW 

THE MIXING MODELS WOULD CHANGE IF THE PARAMETERS FOR THE AOC Δ7LI 

CHANGED. IN THIS CASE, WE USE THE MIDPOINT FOR THE LARGE Δ7LI RANGE IN AOC 

REPORTED IN BRANT ET AL. (2012), INSTEAD OF THE UPPER LIMIT AS THE ‘FLUID’ 

COMPONENT. 49

FIGURE 2.9 MIXING OF DMM-1% WITH LOCAL BULK SEDIMENTS DSDP SITE 204. Y/LI, A 

SLAB FLUID INDICATOR, IS USED SO THAT MIXING FOLLOWS A STRAIGHT LINE (E.G. 

PLANK 2013). THE TOP MIXING LINE REPRESENTS 3‰ HEAVIER SEDIMENT, WHICH 

ACCOUNTS FOR THE FRACTIONATION THAT MAY OCCUR DURING SLAB DEHYDRATION 

(MARSCHALL ET AL., 2007B). THE AREA BETWEEN THE TWO LINES IS THE MIXING 

FIELD (SEE TEXT). 51

FIGURE 2.10 TWO END-MEMBER COMPONENT MIXING MODEL BETWEEN AVERAGE DMM-

1% (BLACK STAR) AND SEDIMENTS FROM DSDP SITE 204 (BLUE DIAMONDS). THE 

GRADATION OF SMALL DOTS IN THE BACKGROUND REPRESENTS RANDOM MIXING 

RESULTS USING A MONTE CARLO SIMULATION, AND THE BAR TO THE RIGHT OF EACH 

PANEL REPRESENTS THE AMOUNT OF SEDIMENT (%) REQUIRED TO ATTAIN THAT 

VALUE IN THE MONTE CARLO SIMULATION. PANEL A SHOWS MIXING WITH ONLY 
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PELAGIC SEDIMENT COMPONENT AS END-MEMBERS AND PANEL B SHOWS MIXING 

USING THE ENTIRE SEDIMENTARY CORE (PELAGIC + VOLCANICLASTIC) FOR DSDP 

SITE 204. WE ASSUMED ZERO Y FROM THE SUBDUCTING SLAB SEDIMENT BECAUSE Y 

WOULD PROBABLY BE RETAINED IN A GARNET COMPONENT AS SUBDUCTION 

PERSISTS. THE LITHIUM ISOTOPES IN THE TONGA-KERMADEC LAVAS (RED SQUARES) 

CAN MOSTLY BE FORMED BY THE ADDITION OF LESS THAN 3.5% ADDITION OF 

SEDIMENTS FROM DSDP SITE 204. THERE ARE TWO OUTLIERS (MACAULEY AND 

L’ESPERANCE) THAT PLOT OUTSIDE OF THE RANGE SHOWN FOR Y/LI ON THESE PLOTS 

(SEE TABLE 2.1 FOR VALUES). 53

FIGURE 3.1 BATHYMETRIC MAP FOR THE NEFTJ, INDICATING SAMPLE LOCATIONS WITH A 

MAP (INSET) SHOWING THE MAJOR TECTONIC FEATURES OF THE NORTH FIJI BASIN 

AND LAU BASIN. THE WHITE DOTTED LINE IN THE INSET MAP SHOWS THE 

APPROXIMATE LOCATION OF THE EXTINCT VITIAZ ARC AND THE YELLOW DOTTED 

LINE SHOWS THE LOCATION OF THE SOUTH PANDORA RIDGE (SPR), BOTH ARE 

LOCATED TO THE NORTH OF THE NEFTJ (RED). THE SEAFLOOR BATHYMETRY WAS 

MAPPED WITH A MULTIBEAM ECHO SOUNDER KONGSBERG SIMRAD EM300 THAT 

SENDS 30 KHZ FREQUENCY SIGNALS BENEATH THE VESSEL. THESE SIGNALS PRODUCE 

A FAN ARC OF 135 BEAMS WITH A 1° BY 1° RANGE. THE COLORS REPRESENTED IN THE 

BATHYMETRIC MAP ARE INDICATIVE OF DEPTH. DEPTH RANGES FROM ~2700 M 

(BLUE) TO ~1800 M (RED). THE RED DOTS SHOW THE SAMPLES FOR THIS STUDY, WITH 

ONE FURTHER SAMPLE TO THE SOUTH LOCATED OFF THE MAP. 75

FIGURE 3.2 TOTAL ALKALI VERSUS SILICA PLOT SUMMARIZING THE CLASSIFICATIONS OF 

THE ROCKS USED IN THIS STUDY. THE BOUNDARY FOR THE ALKALINE AND 

SUBALKALINE/THOLEIITIC ROCKS IS FROM MACDONALD AND KATSURA (1964). THE 

SYMBOLS ARE DIVIDED BY THEIR RESPECTIVE AREAS AND REMAIN THE SAME FOR ALL 

SUBSEQUENT PLOTS. CIRCLES REPRESENT THE NEFTJ – CALDERA (53 SAMPLES 
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FROM 7 DREDGES WERE ANALYZED FOR MAJORS), SQUARES REPRESENT NEFTJ – S 

ARM (9 SAMPLES FROM 3 DREDGES), AND TRIANGLES REPRESENT NEFTJ – NE ARM 

(14 SAMPLES FROM 2 DREDGES). 83

FIGURE 3.3 CARBON DIOXIDE CONTENT VERSUS WATER, COMPARING STUDIES OF 

VOLATILES IN MAGMAS WITHIN OTHER SETTINGS (HAWAII NORTH ARCH – DIXON ET 

AL., 1997; HAWAII MELT INCLUSION – HAURI, 2002; MORB – LE ROUX, 2006; 

SAMOA – WORKMAN ET AL., 2006; GALAPAGOS – KOLESZAR ET AL., 2009). THE 

SAMPLES FROM THIS STUDY ARE CATEGORIZED INTO THREE GROUPS: NORTHEAST FIJI 

TRIPLE JUNCTION NORTHEAST ARM (NEFTJ – NE ARM), NORTHEAST FIJI TRIPLE 

JUNCTION SOUTH ARM (NEFTJ – S ARM), FIJI – CALDERA (LOCATED IN THE CENTER 

OF THE NEFTJ). 84

FIGURE 3.4 PANEL (A) CARBON DIOXIDE CONTENT VERSUS WATER IS PLOTTED WITH 

CURVES OF CONSTANT PRESSURE, FOR THE ISOBARS (SOLID LINES) AND OPEN SYSTEM 

DEGASSING TRENDS REPORTED IN DIXON & STOLPER (1995) AND NEWMAN & 

LOWENSTERN (2002). THE GREY AREA REPRESENTS THE VAPOR SATURATION 

PRESSURE FOR WHICH THE LAVAS IN THIS STUDY ERUPTED. PANEL (B) RELATIONSHIP 

BETWEEN DEPTH AT WHICH THE LAVAS IN THIS STUDY WERE COLLECTED AND THE 

CALCULATED VAPOR SATURATION PRESSURE (AFTER DIXON, 1997) FOR MIXED 

VOLATILE (H2O-CO2) SYSTEM. GIVEN THE USE OF A DREDGE IN COLLECTING 

SAMPLES THERE IS A DIFFERENCE IN DREDGE DEPTH FROM START TO FINISH 

(EXPRESSED AS THE ERROR BARS). THE ‘1:1 LINE’ REPRESENTS THE THRESHOLD 

BETWEEN SATURATED OR OVERSATURATED (THOSE THAT PLOT ON OR ABOVE THE 

‘1:1 LINE’) AND UNDERSATURATED (THOSE THAT PLOT BELOW THE ‘1:1 LINE’) 

LAVAS AT ANY GIVEN DEPTH OF ERUPTION. THE RANGE IN DEPTH OF COLLECTION 

FOR THE SAMPLES IS ~1,900M TO ~3,000M. THE MAJORITY OF THE ‘FIJI – CALDERA’ 

SAMPLES ARE SATURATED FOR THEIR DEPTH OF ERUPTION VERSUS THE FLANKS OF 
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THE TRIPLE JUNCTION WHICH DO NOT EXHIBIT AS LARGE A RANGE IN SATURATION 

(NEFTJ – NE ARM & NEFTJ – S ARM). 86

FIGURE 3.5 (A) PRIMITIVE MANTLE-NORMALIZED TRACE ELEMENT PATTERNS IN THIS 

STUDY SHOWING FOURTEEN GLASSES FROM THE NEFTJ COMPARED TO A SPAN OF 

PACIFIC AND ATLANTIC MORB. THE SPIDER-GRAM SHOWS TWO COMPOSITIONALLY 

DISTINCT MAGMAS LOCATED IN THE NEFTJ. (B) PRIMITIVE MANTLE-NORMALIZED 

TRACE ELEMENT PATTERNS FOR THE LAVAS ANALYZED IN THIS STUDY (NEFTJ) 

COMPARED TO MORB. PREVIOUSLY PUBLISHED MORB DATA FROM JENNER & 

O’NEILL (2012) ARE COMPARED WITH FOURTEEN GLASSES FROM THIS STUDY. 88

FIGURE 3.6 MGO COMPARED TO (A) WATER, (B) CARBON DIOXIDE, (C) LA/SM, AND (D) 

GD/YB RATIOS IN LAVAS FROM THE NORTH FIJI BASIN. IN ADDITION TO NEW DATA 

FROM THIS STUDY, PREVIOUSLY PUBLISHED VALUES FROM MORB ARE ALSO SHOWN 

(MELSON ET AL., 2002; LE ROUX ET AL., 2006; JENNER & O’NEILL, 2012). SYMBOLS 

FOR THE NEW DATA FROM THE LAVAS IN THIS STUDY ARE THE SAME AS IN FIGURE 

3.2, IN ADDITION TO THE SYMBOL FOR MID-OCEAN RIDGE BASALT (MORB). 90

FIGURE 3.7 87SR/86SR COMPARED TO (LEFT) LA/SM, (RIGHT) GD/YB RATIOS IN LAVAS 

FROM THE NORTH FIJI BASIN. THE SYMBOLS ARE THE SAME FOR BOTH GRAPHS. 91

FIGURE 3.8 PANELS SHOW VARIATIONS IN (A) CARBON DIOXIDE AND NB, (B) WATER AND 

CE, (C) H2O/CE AND MGO IN LAVAS FROM THE NORTH FIJI BASIN. THE LAVAS IN 

THIS STUDY ARE COMPARED TO PREVIOUSLY PUBLISHED VALUES FROM THE OCEAN 

ISLAND BASALTS (OIB) AND MID-OCEAN RIDGE BASALTS (MORB): HAWAII MELT 

INCLUSION (HAURI, 2002), MORB (LE ROUX ET AL., 2006), SAMOA (WORKMAN ET 

AL., 2006), GALAPAGOS (KOLESZAR ET AL., 2009). CIRCLES REPRESENT THE NEFTJ 

– CALDERA (53 SAMPLES FROM 7 DREDGES WERE ANALYZED FOR MAJORS), SQUARES 

REPRESENT NEFTJ – S ARM (9 SAMPLES FROM 3 DREDGES), AND TRIANGLES 

REPRESENT NEFTJ – NE ARM (14 SAMPLES FROM 2 DREDGES). 94
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FIGURE 3.9 PANELS SHOW VARIATIONS IN (A) H2O/CE AND LA/SM, (B) H2O AND GD/YB, 

(C) CO2 AND GD/YB, AND (D) CO2/NB AND LA/SM FOR LAVAS FROM THE NORTH 

FIJI BASIN AND MID-OCEAN RIDGE BASALTS (MORB) (LE ROUX ET AL., 2006). 

CIRCLES REPRESENT THE NEFTJ – CALDERA (53 SAMPLES FROM 7 DREDGES WERE 

ANALYZED FOR MAJORS), SQUARES REPRESENT NEFTJ – S ARM (9 SAMPLES FROM 3 

DREDGES), AND TRIANGLES REPRESENT NEFTJ – NE ARM (14 SAMPLES FROM 2 

DREDGES). WATER DATA PLOT HIGHER THAN THE MORB FIELD, WHILE CARBON 

DIOXIDE DATA PLOTS WITHIN THE MORB FIELD. THE ARROWS IN PANELS (C) & (D)] 

INDICATE THE DEGASSING PATHS OF TWO COMPOSITIONALLY DISTINCT LAVAS 

(REFER TO TEXT). 96

FIGURE 3.10 TWO-STAGE MANTLE MELTING MODELS FOR SPINEL – SPINEL, GARNET – 

GARNET, SPINEL – GARNET STABILITY ZONES. THE PARTITION COEFFICIENTS USED IN 

THE MODELS ARE FOUND IN TABLES 3.2 AND 3.3 ALONG WITH THEIR RESPECTIVE 

SOURCES. THE BLACK LINE IN THE MELT PLOTS IS THE STARTING COMPOSITION 

BEFORE MELTING. 102

FIGURE 3.11 TWO-STAGE MELTING MODELS FROM A PRIMITIVE MANTLE SOURCE (PALME 

& O’NEILL, 2014) FOR SPINEL AND GARNET LHERZOLITES. THE THREE MODELS ARE 

COORDINATED BY SYMBOLS: SPINEL TO GARNET (CIRCLE), SPINEL TO SPINEL 

(SQUARE), GARNET TO GARNET (DIAMOND). TRACE ELEMENT KD’S USED IN THE 

MODELS ARE PRESENTED IN TABLE 3.2. THE INSET GRAPH DEMONSTRATES A 

POSITIVE TREND FOR THE LAVAS IN THE STUDY (NEFTJ), WITH A MORB 

BACKGROUND, THAT OUR MODELS ATTEMPTED TO RECREATE WITH TWO-STAGE 

MELTING. 103

FIGURE 3.12 LA/SM RATIO AS A FUNCTION OF H2O. THIS SHOWS THAT THERE IS A 

MIXTURE OF N-MORB TYPE (LA/SM <1) WITH A MORE ENRICHED SOURCE (LA/SM 

>1). WITH THE EXCEPTION OF AN OUTLIER, THE NEFTJ (NE ARM), THE DATA 
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TRENDS TOWARDS AN INCREASE IN H2O CONCENTRATION AS THE MAGMA SOURCE IS 

ENRICHED. 104

FIGURE 3.13 PLOT SHOWING ND AND SR ISOTOPIC COMPOSITIONS FOR THE LAVAS FROM 

THE NEFTJ ALONG WITH DATA FOR MORB AND SAMOA (WORKMAN ET AL., 2004, 

2006; JACKSON ET AL., 2007, 2010; GALE ET AL., 2013). 105

FIGURE 3.14 SCHEMATIC OF THE SAMOAN HOTSPOT INFILTRATING THE NORTH FIJI BASIN 

IN THE AUSTRALIAN PLATE. ADIABATIC UPWELLING OF A DEPLETED MANTLE MORB 

LEADS TO A HOTSPOT FINGERPRINTING ITS GEOCHEMICAL SIGNATURE UPON MANY OF 

THE LAVAS THAT WOULD OTHERWISE HAVE A DEPLETED SIGNATURE WITHIN BOTH 

THE NORTH FIJI AND LAU BASINS. THIS FINGERPRINT IS RECOGNIZABLE THROUGH 

THE USE OF ISOTOPE, TRACE, AND VOLATILE ELEMENTS. 106

FIGURE 4.1 MAP OF THE STUDY REGION WITH LOCATIONS OF THE SAMPLES FROM THIS 

STUDY. ALSO SHOWN WITH SYMBOLS ARE THE LOCATIONS OF IMPORTANT, 

PREVIOUSLY PUBLISHED DATA REFERENCED IN THE TEXT. HOTSPOT TRACK 

RECONSTRUCTIONS (AND AGES OF THE RESPECTIVE HOTSPOT TRACKS, SHOWN IN 

MILLIONS OF YEARS) ARE BASED ON WESSEL AND KROENKE (2008). 

ABBREVIATIONS: B BAYONNAISE SEAMOUNT, C COMBE SEAMOUNT, W WALLIS ISLAND, 

NELSC NORTHEAST LAU SPREADING CENTER, FRSC FONUALEI RIFT AND SPREADING 

CENTER, MTJ MANGATOLU (KING’S) TRIPLE JUNCTION, N NIUA FO’OU ISLAND, RB 

ROCHAMBEAU BANK, RR ROCHAMBEAU RIFTS, NWLSC NORTHWEST LAU SPREADING 

CENTER, PR PEGGY RIDGE, LETZ LAU EXTENSIONAL TRANSFORM ZONE, CLSC 

CENTRAL LAU SPREADING CENTER, RZ RELAY ZONE, ELSC EASTERN LAU SPREADING 

CENTER, VFR VALU FA RIDGE, F FUTUNA ISLAND, FSC FUTUNA SPREADING CENTER, 

M MANATU SEAMOUNT, SPR SOUTH PANDORA RIDGE, FTJ FIJI TRIPLE JUNCTION. 

BASE MAPS WERE CREATED USING GEOMAPAPP (HTTP://WWW.GEOMAPAPP.ORG) 
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WITH TOPOGRAPHIC AND BATHYMETRIC DATA FROM SRTM_PLUS BECKER ET AL. 

(2009). 120

FIGURE 4.2 SR, ND, HF, AND PB ISOTOPIC RELATIONSHIPS AMONG NEW LAVAS DREDGED 

FROM THE LAU AND NORTH FIJI BASINS, ROTUMA ISLAND AND FIJIAN ISLANDS. THE 

DATA ARE SHOWN TOGETHER WITH DATA FIELDS FOR LAVAS FROM THE SAMOAN 

HOTSPOT, RURUTU HOTSPOT, RAROTONGA HOTSPOT, AND LOUISVILLE HOTSPOT. IN 

ADDITION TO THE NEW DATA, PREVIOUSLY PUBLISHED DATA FROM THE SOUTH 

PANDORA RIDGE (PRICE ET AL. 2014), FIJI TRIPLE JUNCTION (NOHARA ET AL. 1994 

AND PRICE ET AL. 2014), YASAWA-YADUA VOLCANIC ZONE (SHOWN AS 100 KM N 

OF FIJI IN PRICE ET AL. (2014)), ROCHAMBEAU BANK AND RIFTS (LYTLE ET AL. 

(2012); NEBEL AND ARCULUS (2015)) AND THE NORTHEAST LAU BASIN (FALLOON 

AND CRAWFORD (1991); DANYUSHEVSKY ET AL. (1995); FALLOON ET AL. (2007, 

2008); CAULFIELD ET AL. (2012, 2015), AND PRICE ET AL. (2016)) ARE SHOWN AS 

SYMBOLS FOR REFERENCE. MORB IS MID-OCEAN RIDGE BASALT, AND BABB IS 

BACK-ARC BASIN BASALT. THE AVERAGE MORB AND AVERAGE BABB DATA ARE 

FROM GALE ET AL. (2013), EXCEPT FOR PANELS C AND D (BECAUSE SUFFICIENTLY 

PRECISE HF ISOTOPIC DATA ARE NOT AVAILABLE). DATA FOR THE CENTRAL LAU 

SPREADING CENTER (CLSC) FIELD ARE FROM BOESPFLUG ET AL. (1990), LOOCK ET 

AL. (1990), HERGT AND WOODHEAD (2007), PEARCE ET AL. (2007), AND REGELOUS 

ET AL. (2008). RURUTU HOTSPOT DATA, WHICH INCLUDE LAVAS FROM THE YOUNG 

SERIES OF ARAGO SEAMOUNT, THE YOUNG SERIES OF RURUTU ISLAND, MAUKE 

ISLAND, AND ATIU ISLAND, ARE FROM NAKAMURA AND TATSUMOTO (1988), 

CHAUVEL ET AL. (1992, 1997), HAURI AND HART (1993), HEMOND ET AL. (1994), 

WOODHEAD (1996), KOGISO ET AL. (1997), SALTERS AND WHITE (1998), SCHIANO 

ET AL. (2001), LASSITER ET AL. (2003), BONNEVILLE ET AL. (2006), SALTERS ET AL. 

(2011), AND HANYU ET AL. (2011A).  RURUTU SAMPLE 74-394 FROM CHAUVEL ET 
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AL. (1997) IS EXCLUDED FROM THIS FIELD (CHAUVEL ET AL. (1997) IGNORED THIS 

SAMPLE DUE TO ITS UNUSUAL GEOCHEMISTRY, AND WE NOTE THAT IT IS A COBBLE OF 

UNKNOWN ORIGIN). VALUES FOR SAMOAN DATA FIELDS ARE FROM WRIGHT AND 

WHITE (1987), POREDA AND CRAIG (1992), WORKMAN ET AL. (2004), WORKMAN 

AND HART (2005), JACKSON ET AL. (2007A), JACKSON ET AL. (2007B), JACKSON ET 

AL. (2010), SALTERS ET AL. (2011). LOUISVILLE DATA ARE FROM CHENG ET AL. 

(1987), BEIER ET AL. (2011), AND VANDERKLUYSEN ET AL. (2014). LOUISVILLE 

SAMPLES IDENTIFIED AS HIGHLY ALTERED OR VERY HIGHLY ALTERED WERE 

EXCLUDED. UO MAMAE DATA ARE FROM PEARCE ET AL. (2007) AND REGELOUS ET 

AL. (2008). NIUAFO’OU DATA ARE FROM REGELOUS ET AL. (2008) AND TIAN ET AL. 

(2011). FONUALEI RIFT AND SPREADING CENTER (FRSC) DATA ARE FROM ESCRIG 

ET AL. (2012). TONGA ARC DATA ARE FROM HERGT AND WOODHEAD (2007), 

ESCRIG ET AL. (2012), TURNER ET AL. (2012), AND CAULFIELD ET AL. (2012; 2015). 

PANELS C AND D INCLUDE A LINE REPRESENTING THE MANTLE ARRAY FROM 

VERVOORT ET AL. (1999) DEFINED AS  ΕHF = 1.33*ΕND + 3.19, WHERE THE ND AND 

HF EPSILON NOTATIONS WERE CALCULATED USING THE CHUR VALUES OF 

143ND/144ND = 0.512638 (HAMILTON ET AL. 1983) AND 176HF/177HF = 0.282772 

(BLICHERT-TOFT AND ALBARÈDE 1997). 138

FIGURE 4.3 SR, ND, HF, AND PB ISOTOPIC RELATIONSHIPS AMONG NEW LAVAS DREDGED 

FROM THE LAU AND NORTH FIJI BASINS. THE DATA AND DATA FIELDS ARE FROM 

REFERENCES PROVIDED IN FIGURE 2. PANELS A-D INCLUDES THE NORTHERN 

HEMISPHERE REFERENCE LINE (NHRL) FROM HART (1984). Δ207PB/204PB AND 

Δ208PB/204PB ARE DEFINED IN BY HART (1984) IN THE FOLLOWING WAY: 

Δ207PB/204PB = 0.1084(207PB/204PB) + 13.491, AND Δ208PB/204PB = 1.209(208PB/204PB) 

+ 15.627. 141
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FIGURE 4.4 HELIUM ISOTOPIC DATA FOR LAVAS IN THIS STUDY PLOTTED AGAINST THEIR 

RESPECTIVE PB-SR-ND-HF ISOTOPIC RATIOS. ABBREVIATIONS: NWLSC NORTHWEST 

LAU SPREADING CENTER; MTJ MANGATOLU TRIPLE JUNCTION; CLSC CENTRAL LAU 

SPREADING CENTER, NIFO NIUAFO’OU. SAMOAN DATA ARE FROM FARLEY ET AL. 

(1992); WORKMAN ET AL. (2004); JACKSON ET AL. (2007A); JACKSON ET AL. 

(2007B); JACKSON ET AL. (2014). ROCHAMBEAU BANK AND RIFTS DATA ARE FROM: 

VOLPE ET AL. (1988); POREDA AND CRAIG (1992); LUPTON ET AL. (2009); TIAN ET 

AL. (2011); HAHM ET AL. (2012); LYTLE ET AL. (2012). THE REMAINING DATA, ALL 

FROM LOCATIONS IN THE LAU AND NORTH FIJI BASINS, ARE FROM: HILTON ET AL. 

(1993); HONDA ET AL. (1993); REGELOUS ET AL. (2008); TIAN ET AL. (2008, 2011); 

HAHM ET AL. (2012), LUPTON ET AL. (2009); LYTLE ET AL. (2012), PRICE ET AL. 

(2014, 2016), NEBEL AND ARCULUS (2015). 144

FIGURE 4.5 MAP SHOWING THE DISTRIBUTION OF NEW AND PREVIOUSLY PUBLISHED 

87SR/86SR FOR LAVAS FROM THE LAU AND NORTH FIJI BASINS. DATA ON ARC LAVAS 

ARE EXCLUDED, BUT DATA FROM YOUNG (<3 MA) FIJIAN OIB ARE INCLUDED. V IS 

VAILULU’U, C IS COMBE BANK, R IS ROTUMA ISLAND, AND A IS ALEXA BANK. THE 

COLOR SCALE FOR 87SR/86SR RANGES FROM BLUE (AT LOW 87SR/86SR) TO RED (AT 

HIGH 87SR/86SR), BUT SATURATES AT 0.705. WE ALSO INCLUDE SAMOAN SR ISOTOPIC 

DATA FOR REFERENCE. STRONTIUM ISOTOPIC DATA FROM THE LAU AND NORTH FIJI 

BASINS ARE FROM: BOESPFLUG ET AL. (1990), DANYUSHEVSKY ET AL. (1995), 

ESCRIG ET AL. (2009; 2012), FALLOON ET AL. (2007; 2008), FALLOON AND 

CRAWFORD (1991), FRETZDORFF ET AL. (2006), HAASE ET AL. (2002; 2009), HERGT 

AND WOODHEAD (2007), JACKSON ET AL. (2010), LOOCK ET AL. (1990), LYTLE ET 

AL. (2012), NOHARA ET AL. (1994), POREDA AND CRAIG (1992), PRICE ET AL. (2014; 

2016), REGELOUS ET AL. (2008), TIAN ET AL. (2008, 2011), VOLPE ET AL. (1988). 

SAMOAN DATA ARE FROM: FARLEY ET AL. (1992), HAURI ET AL. (1993); JACKSON ET 
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AL. (2006; 2007; 2009; 2010; 2014), MATSUDA ET AL. (1984), HOFMANN AND 

WHITE (1982), WORKMAN ET AL. (2004), WRIGHT AND WHITE (1987). THE 3HE/4HE 

(GRAHAM ET AL. 2002) AND 87SR/86SR (GALE ET AL. 2013) AVERAGES FOR MORB 

ARE FROM THE LITERATURE. 150

FIGURE 4.6 MAP OF THE LAU AND NORTH FIJI BASINS SHOWING THE DISTRIBUTION OF 

NEW AND PREVIOUSLY PUBLISHED 3HE/4HE. ALSO INCLUDED IS DATA FROM SAMOA 

(ONLY THE HIGHEST 3HE/4HE FOUND ON EACH SAMOAN ISLAND IS SHOWN). 

PREVIOUSLY PUBLISHES ISOTOPIC DATA FROM THE LAU AND NORTH FIJI BASINS  

ARE FROM POREDA AND CRAIG (1992); HILTON ET AL. (1993); HONDA ET AL. 

(1993); NISHIO ET AL. (1998); WORKMAN ET AL. (2004); JACKSON ET AL. (2007A); 

JACKSON ET AL. (2007B); LUPTON ET AL. (2009); HAHM ET AL. (2012); LUPTON ET 

AL. (2015); PRICE ET AL. (2014). BASE MAPS WERE CREATED USING GEOMAPAPP 

(HTTP://WWW.GEOMAPAPP.ORG) WITH TOPOGRAPHIC AND BATHYMETRIC DATA FROM 

SRTM_PLUS (BECKER ET AL. 2009). 151

FIGURE 4.7 MAPS OF THE LAU AND NORTH FIJI BASINS SHOWING THE RELATIONSHIPS 

BETWEEN HF, PB, SR, AND ND ISOTOPIC DATA OF NEW AND PREVIOUSLY PUBLISHED 

SAMPLES. PANEL A SHOWS THE RELATIONSHIP BETWEEN 87SR/86SR (SIZE) AND 

143ND/144ND (COLOR) AS A FUNCTION OF GEOGRAPHIC LOCATION FOR LAVAS IN THE 

LAU AND NORTH FIJI BASINS AND PANEL B SHOWS THE RELATIONSHIP BETWEEN 

206PB/204PB (SIZE) AND 87SR/86SR (COLOR) IN THE SAME LAVAS. PANEL C SHOWS THE 

RELATIONSHIP BETWEEN 143ND/144ND (COLOR) AND 176HF/177HF (SIZE). ARC DATA 

ARE NOT SHOWN. THE DATA USED IN THESE PANELS ARE FROM: BOESPFLUG ET AL. 

(1990), DANYUSHEVSKY ET AL. (1995), ESCRIG ET AL. (2009, 2012), FALLOON ET 

AL. (2007, 2008), FALLOON AND CRAWFORD (1991), FRETZDORFF ET AL. (2006), 

HAASE ET AL. (2002, 2009), HERGT AND WOODHEAD (2007), JACKSON ET AL. 

(2010), JENNER ET AL. (1987), LOOCK ET AL. (1990), LYTLE ET AL. (2012), NEBEL 
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1 INTRODUCTION 

1.1 General Introduction 

Convergent plate boundaries transport crustal material and their associated 

chemistry into the mantle in the subducting plate. Convergent plate boundaries form 

subduction zones which remove old oceanic crust along with their associated 

components (e.g., sediments) from the Earth’s surface. The density of the lithosphere is 

an integral factor in subduction zone dynamics where a typically older and denser plate 

descends beneath a younger and more buoyant plate. This convergence and subduction 

produce enough force to move the entire plate. Tonga is an end member subduction 

zone with an old cold subducting oceanic plate and active spreading along the Lau back-

arc basin that causes increased convergence along the trench.  

Several physical features are typically produced at subduction zones: a trench 

that is formed by the intersection of the two plates, a volcanic arc which generates most 

of the volcanism, and in many cases within oceanic systems, a back-arc which is an 

extensional feature associated with local faulting and magmatism (Stern, 2002). The 

majority of subduction zones prescribe to this profile with the primary two types of 

convergent margins being oceanic or continental arcs. Oceanic arcs (or intra-oceanic 
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arcs) incorporate two adjacent converging plates with oceanic lithosphere that produce a 

volcanic island arc on the upper plate, whereas continental arcs involve oceanic 

lithosphere that subducts beneath mature continental lithosphere. However, not all 

subduction zones are the same, and when continental crust reaches the subduction zone, 

it begins to terminate subduction. What does remain constant is the production of 

magma along most of the convergent zones. 

As the subducting plate penetrates the Earth’s mantle, it re-equilibrates and 

drags the adjacent mantle with it, causing a pull of the asthenospheric mantle beneath 

the arc towards the top of the subduction channel. Through this process, the cold 

(oceanic) subducting slab introduces aqueous fluids into the mantle which lowers the 

solidus temperature and allows magma production in an area that would otherwise be 

too cold to melt. Components of the subducted material are transferred to the magmas 

through dehydration and partial melting of the downwelling slab. These include volatile 

elements, dehydration and partial melting of pelagic and terrigenous sediments, altered 

oceanic crust and serpentinized oceanic lithosphere. They are recycled to the crust 

through magmas that ascend, recycling their chemical signatures, and either stagnate in 

the crust or erupt at the surface as volcanoes. While similar in many ways, the process 

that magmas undergo to erupt varies, and as a result, their chemistry reflects these 

processes. In general, more evolved rocks are associated with continental arcs, and more 

primitive rocks are found in intra-oceanic arcs. Therefore, magmas generated at intra-

oceanic arcs provide a clearer insight into the subduction zone process because they do 

have continental crust complicating their chemistry. The igneous rocks of Tonga reveal 

an array of extrusive igneous rocks (basalt to dacite). Since the mantle cannot be 

directly sampled, we study these primitive volcanic rocks to constrain the recycling 

processes and to study primitive oceanic arcs by establishing which elements from the 

subducted material are redistributed between crustal and mantle reservoirs. This 
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augments our understanding of the long-term contributions that recycling makes to the 

evolution of mantle and crustal reservoirs on Earth. 

1.1.1 Geochemical characteristics of arc magmas 

Unravelling the inputs and outputs of subduction zones to understand magma 

processes is difficult to study directly, particularly because the composition of arc 

magmas varies from arc to arc. However, through the use of geoanalytical tools, we can 

methodically dissect these complex processes. Arc magmas often have a distinct general 

geochemical signature that allows us to differentiate them from magmatic products in 

other geodynamic environments, such as ocean-island, mid-ocean ridge, and intra-plate 

volcanism (Tatsumi & Eggins, 1995; Gill, 2012). Magmas generated at subduction 

zones are typically identified by 1) high large ion lithophile elements (LILE)/ high field 

strength elements (HFSE) ratios, 2) high light rare earth elements (LREE)/ heavy rare 

earth elements (HREE) ratios (with some exceptions), and 3) enrichment in fluid-

mobile elements relative to mid-ocean ridge basalt (MORB) and ocean-island basalt 

(OIB). Subduction zone magmas also exhibit lower abundances of Ti and the transition 

elements relative to MORB and OIB (Hawkesworth et al., 1991; Manning, 2004; Stern, 

2004; Gill, 2012). These enrichments/depletions may indicate the addition of 

subduction fluid, sediment, altered oceanic crust to the mantle wedge and overlying 

crust, as well as crustal contamination. 

Recognizing these chemical trends is fundamental to understanding crust-mantle 

exchange over time. Demonstrating recycling of crustal material to subduction zone 

magmas has for the most part been determined by proxies for element behavior in the 

inputs versus outputs (Plank & Langmuir, 1993; Plank & Langmuir, 1998; Plank, 

2005). However, the most robust tracer of recycled sediments has been 10Be, a short-

lived cosmogenic nuclide that is strongly enriched in ocean sediments, and which is the 
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only direct proof that subducted sediment melt is present in the mantle wedge (Morris et 

al., 1990; Morris et al., 2002). However, it remains important to characterize intra-

oceanic arcs and their recycled products through the use of other geochemical tools, 

such as the ones presented in this thesis, which include radiogenic isotopes (e.g., Sr, Nd, 

Pb, Hf, He) and more recently stable isotopes like lithium. 

1.1.2 Geochemical characteristics of back-arc basins 

Two significant processes dominate the general chemistry of back-arc basins 

basalts (BABB): 1) variable influence from hydrous fluids in the mantle wedge with 

high LILE/HFSE ratios, and 2) repeated melt extraction which produces basalts 

enriched in incompatible elements (Saunders & Tarney, 1984). The basalts generated in 

the extensional zones are a direct result of the force imparted by slab pull which thins 

the upper plate and leads to decompression melting behind the arc. These magmas 

typically have compositions intermediate between N-MORB and island arc lavas with 

an initial LILE/HFSE ratio that resembles N-MORB. However, as the arc matures, the 

LILE/HFSE ratio evolves towards a transitional type of magma that incorporates 

geochemical signals from both of these sources producing a progressively higher 

LILE/HFSE ratio. Back-arc basin basalts are also enriched in LREE relative to N-

MORB (Fryer et al., 1981, Wood et al., 1981). These BABBs also exhibit enrichment in 

volatile elements, most notably water, which is often physically visible through vesicles 

in the erupted lavas (Garcia et al., 1979; Saal et al., 2002). The presence of water in the 

melting regime stimulates an increased rate of melt production with a lower FeO 

content. Plagioclase crystallization is commonly suppressed in BABB which results in 

high Al2O3 and Na2O and low MgO contents in the more fractionated lavas (Yoder & 

Tilley, 1962; Nicholls & Ringwood, 1973). 
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1.2 Scope of the Thesis 

This work adopts an integrated approach to assess the subducted slab and plume 

source contributions involved at the convergent plate margin within the Tongan arc and 

the zones of extension in the adjacent (Lau and North Fiji) back-arc basins. 

Additionally, it addresses the conditions in which evolved magmas form in an example 

volcano (Late) in the Tongan arc. An extensive range of geochemical methods, isotopic 

systems and petrological observations are combined with an analysis of previous studies 

to achieve a more thorough understanding of the generation and composition of Tongan 

arc magmatic products. 

1.3 An overview of the Tonga-Kermadec arc and Lau Basin 

1.3.1 Geologic setting 

The Tonga-Kermadec island arc forms a nearly uninterrupted, continuous 

volcanic chain that extends 2,800 km from the Taupo Volcanic Zone in the North 

Island, New Zealand, and concludes at the Vitiaz strike-slip fault south of Samoa 

(Fig. 1.1). Present day subduction of the Pacific plate beneath the Australian plate (12-

18 km thick) has continued since the Oligocene (Burns et al., 1973; Ewart et al., 1977; 

Sutherland et al., 2010; Bache et al., 2012). Initiation of a back-arc extensional basin 

formation commenced around 6 Ma, forming the Lau basin that is confined to the west 

by the Lau Ridge and the east by the Tonga arc (Parson and Hawkins, 1994). The 

Louisville Ridge, a seamount chain located on the Pacific plate, has migrated southward 

and has been subducted beneath the Australian plate for the last 4 Ma years (Dupont & 

Herzer, 1985). The Louisville Ridge bisects the arc and splits it into the Tonga segment 

to the north, and the Kermadec segment to the south. The subducting plate dips at an 
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angle of 30o to a depth of ~120-130 km beneath both segments of the Tonga-Kermadec 

arc and afterwards steepens beneath both segments. The convergence rate increases 

northward along the arc from 5 to 24 cm/yr, and the back-arc respectively follows a 

similar trend northward with an extension from 6 to 16 cm/yr (Bevis et al., 1995).  

 

Figure 1.1 Map of Tonga-Kermadec island arc (adapted from Turner & 
Hawkesworth, 1997; and satellite altimetry-derived gravity data from: 
Fernando Martinez & Brian Taylor, University of Hawaii and David 
Sandwell, Scripps Institution of Oceanography), highlighting sample location 
for samples in this study: the arc volcanoes, (Lau Basin) Fonualei Spreading 
Center (FSC), Mangatolu Triple Junction (MTJ) and sediments from DSDP 
Site 204. The dotted red line indicates the area where the map has been 
magnified (right panel) to show in greater detail the samples from the FSC & 
MTJ. The red triangles represent volcanoes along the arc, green circles 
represent the back-arc (FSC & MTJ) and the blue diamond (left panel) on the 
Pacific Plate is the DSDP Site 204. The DSDP Site 596 lies ~1,000 km east of 
DSDP Site 204. Also illustrated are bathymetric contour lines and colors to 
illustrate different aquatic depths (scale for color scheme is the same for both 

A

B
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panels). Black arrows indicate directions and rates of convergence along the 
arc and spreading rates in the Lau Basin back-arc spreading center. 

1.3.2 Petrology and Mineralogy 

The rocks of the Tongan arc vary from basalt to dacite. The phenocrysts in the 

lavas exhibit highly calcic normative and modal plagioclase (An80-89), strongly 

magnesian augite, and hypersthene. Titanomagnetite appears as the rock suite evolves 

towards a higher silica content (in andesites and dacites). Olivine is found only in 

basaltic andesite lavas from Tofua (~Fo90-93) and Kao (and Metis Shoal as xenocrysts; 

Bauer, 1970; Melson et at., 1970; Bryan and Ewart, 1971). The groundmass of the lavas 

varies in mineral proportions; pigeonite is the most common groundmass mineral and is 

typically observed with plagioclase (labradorite-bytownite). Minor groundmass 

material, such as titanomagnetite, minor quartz, and rare K-feldspar in the evolved lavas 

has also been reported. All studies of the Tongan lavas show an absence of amphibole 

as a primary phase, although secondary alteration amphibole has been reported on Eua 

Island; Ewart et al., 1973; Ewart, 1976. 

1.3.3 Geochemical characteristics of Tongan lavas 

The Tongan lavas are low-K tholeiites (Ewart et al., 1973, 1977; Ewart 1976). 

The lavas from the Tongan arc are inferred to have originated by melting of highly 

depleted mantle wedge peridotite. The mantle wedge beneath the Tongan arc is believed 

to be refractory with a depletion in high field strength elements (HFSE) relative to light 

rare earth elements (LREE). This depletion is attributed to varying degrees of back-arc 

melt extraction (Ewart & Hawkesworth, 1987; Woodhead et al., 1993; Ewart et al., 

1994; Caulfield et al., 2008; Cooper et al., 2010). In addition to the geochemical 

signatures derived from the depleted mantle wedge, other signatures influencing the 

overall chemistry of the Tongan lavas have been detected, such as a fluid flux from the 
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altered oceanic crust and melts of sedimentary rocks. The altered oceanic crust fluid, 

which is derived from dehydration of the subducting oceanic crust, is characterized in 

lavas by high large ion lithophile elements (LILE)/ HFSE ratios that decrease southward 

along the arc (Regelous et al., 1997, 2010; Turner et al., 1997). The addition of 

sediment melts in the Tonga-Kermadec arc have been identified using a variety of trace 

element and isotopic signatures, and in particular through the most unambiguous tracer, 

10Be, which has been used to narrow down the sediment flux to 0.25-1% (Plank & 

Langmuir, 1993; Turner et al., 1997; George et al., 2005).  

1.3.4 Geochemical characteristics of Lau back-arc basin 

The Lau Basin samples contain several isotopically distinct hotspot components. 

Firstly, the Samoan hotspot has been suggested to influence the geochemistry of Lau 

Basin lavas, where distinctive high-87Sr/86Sr and high-3He/4He signatures – associated 

with the Samoan plume – have been identified in the Rochambeau Rifts in the northern 

Lau Basin (e.g. Lytle et al., 2012, Lupton et al., 2009, Poreda and Craig, 1992). Also, a 

possible contributor to the geochemical diversity in the southern Lau Basin is the 

Louisville hotspot, which is currently being subducted into the Tonga trench at ~26°S. 

The Louisville hotspot exhibits relatively high 206Pb/204Pb (up to 19.6060; 

Vanderkluysen et al., 2015) and 208Pb/204Pb (up to 39.3695; Beier et al., 2011, when 

considering only fresh lavas) and has been suggested to contribute to the elevated Pb 

isotopic compositions observed in a subset of volcanoes from both the northern (e.g. 

Turner and Hawkesworth, 1998; Ewart et al, 1998) and southern (e.g. Timm et al., 

2013) Tonga arc. Lastly, the subduction of seamounts from the Cook-Austral Volcanic 

Lineament (Falloon et al., 2007; Todd et al., 2009), in particular, volcanoes associated 

with the Rarotonga and Rurutu hotspots, influence the geochemistry of Lau Basin lavas 

(Price et al., 2016). Based on plate reconstructions (Wessel and Kroenke, 2008), the 
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Rarotonga hotspot, which exhibits Enriched Mantle 1 (EM1) isotopic signatures, 

subducted into the northern Tonga Trench. The same plate reconstructions show that the 

Rurutu hotspot, which hosts HIMU signatures, also likely subducted into the 

northernmost Tonga Trench. In conclusion, up to three hotspots originating in the South 

Pacific superswell influence the geochemistry of the northern Lau and North Fiji 

Basins, either by toroidal advection of under-plated plume material (Samoa) or by 

subduction of older portions of hotspot tracks (Rarotonga and Rurutu). 

1.4 An outline of the geochemical approaches in addressing 

chemical recycling, fingerprinting, and magmatic processes in 

intra-oceanic arcs 

1.4.1 Why is lithium of interest to potentially trace recycled material? 

The addition of subducted crustal material to the mantle wedge has been studied 

and refined for many years (e.g., Armstrong, 1971; Elliot et al., 1997; Class et al., 2000; 

Turner et al., 2003). However, the nature and rates of transfer of subducted components 

are still not as constrained in arcs, yet it contains the key essential information for 

understanding and modeling the chemical evolution through wedge dynamics and melt 

generation. U-series isotopes have conventionally been used to trace the fluid movement 

from slab to eruption, providing insight on the mechanism and timing of fluid addition 

(Hawkesworth et al., 1997; Turner et al., 1997; Turner et al., 2003). However, sensitive 

tracers of sediment addition have further broadened the issue of mechanisms and timing 

of processes in subduction zones (Woodhead et al., 2001; Regelous et al., 2010). 

Lithium has gained significant attention as a sensitive tracer of sediment addition 

because of its higher concentrations in sediments and altered oceanic crust due to the 
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interaction with seawater characterised by heavy Li (high 7Li/6Li ratio) (Ryan and 

Langmuir, 1987; Chan & Edmond, 1988; Chan et al., 1992; Moriguti and Nakamura, 

1998). Because Li is moderately incompatible during mantle melting and has a high 

fluid mobility, and strong isotopic fractionation at low temperatures, its potential as a 

powerful tracer of recycled material in the mantle has been highly debated recently 

(e.g., Ryan & Langmuir, 1987; Brenan et al., 1998; Moriguti & Nakamura, 1998; 

Tomascak et al., 2000; Chan et al., 2002; Elliott et al., 2004; Tang et al., 2014). 

1.4.2 What is the role of volatile elements in magmatic processes in the 

Tonga-Kermadec region? 

Volatile elements (in particular water and carbon dioxide) are an essential factor 

in magmatic processes by influencing melting (Asimow & Langmuir, 2003), fractional 

crystallization (Huppert et al., 1982), and degassing (Métrich & Wallace, 2008). 

Volatile elements are incompatible elements that prefer to partition into the liquid when 

melting occurs. They differ from standard lithophile elements as they prefer to be in the 

vapor phase, if present, and are dependent on high pressure to remain dissolved in 

melts. Lithophile elements, in contrast, have traditionally been used to assess the 

fertility of melts at mid-ocean ridges, establishing particular elemental affinities (e.g. 

LREE/HREE ratios) for deeper mantle signatures (e.g. plumes) (Weaver, 1991; 

Halliday et al., 1995). Several studies have improved our ability to constrain the volatile 

content of the mantle (Hirth & Kohlstedt, 1996; Saal et al., 2002; Eiler, 2003; Leeman 

et al., 2017). However, there is still work to be done to fully characterize and understand 

the reservoirs that occupy the upper mantle. 

Lavas from the Samoan hotspot volcanoes span a broad range in H2O (0.63 – 

1.50 wt.%) and CO2 (6 – 233 ppm) contents. The water contents of Samoan lavas 
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exceed the range of MORB (<0.7 wt.%) but do not exceed arc lavas (<8 wt.%) (e.g. 

Grove et al., 2002). Furthermore, it is well documented that the Samoan plume has 

infiltrated into the Lau Basin through an opening in the Pacific plate that originates at 

the northern termination of the Tonga-Kermadec arc (e.g., Giardini & Woodhouse, 

1986; Volpe et al., 1988; Turner & Hawkesworth, 1998; Price et al., 2014). Therefore, 

by analyzing volatile elements, it is possible to examine how far the Samoan source 

extends under the Australian plate. 

1.4.3 What are the geochemical influences related to mantle flow around 

the subducting Pacific slab edge? 

The Tonga Trench – Samoan plume system provides an opportunity to evaluate 

mantle flow in the vicinity of a subducting slab experiencing rapid rollback. The unique 

geochemistry associated with the Samoan plume can be likened to a geochemical dye 

that can be traced as it infiltrates the depleted upper mantle of the Lau and North Fiji 

back-arc basins (e.g., Druken et al., 2014). Tracking the shape and extent of the 

incursion of this Samoan “dye” in the back-arc basins through geochemical analyses of 

lavas in the region can reveal how mantle flows around the nearby down-going Tonga 

slab. Previous studies have used the geochemical signatures associated with the Samoan 

plume (e.g., high 3He/4He and high 87Sr/86Sr) to assess the extent to which the Samoan 

mantle material has infiltrated around the northern edge of the subducting Pacific 

lithosphere (e.g., Volpe et al., 1988; Gill & Whelan, 1989; Poreda & Craig, 1992; 

Wendt et al., 1997; Ewart et al., 1998; Pearce et al., 2007; Tian et al., 2008, 2011; 

Lupton et al., 2009; Hahm et al., 2012; Lytle et al., 2012; Price et al., 2014, 2016; Nebel 

and Arculus, 2015). Conversely, other hotspot tracks in the region (Louisville, Rurutu, 

and Rarotonga), it has been argued, influence the geochemistry of back-arc lavas that 

have erupted in the vicinity of the subducting hotspot tracks (e.g., Turner and 
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Hawkesworth 1998; Falloon et al. 2007; Regelous et al. 2008; Timm et al. 2013; Price 

et al. 2016). 

1.4.4 How do silicic magmas form in intra-oceanic subduction settings? 

Most previous studies have focused on along-arc characterization (Ewart et al., 

1973; Ewart & Hawkesworth, 1987; Gamble et al., 1993; Turner et al., 1997, 2000, 

2009; Turner & Hawkesworth, 1997; Ewart et al., 1998; George et al., 2005; Hergt & 

Woodhead, 2007; Castillo et al., 2009) with specific studies in this region mostly 

focusing on the Taupo volcanic zone or the Kermadec arc (Gamble et al., 1997; Smith 

et al., 2003, 2006, 2009; Haase et al., 2006, 2011, 2014; Cameron et al., 2010; Shane & 

Wright, 2011; Timm et al., 2011; Price et al., 2012). Recently, two studies analyzed 

volcanic islands near Late, Tofua and Fonualei, relative to the Late volcano discussed in 

this study (Caulfield et al., 2012; Turner et al., 2012). Tofua has predominantly erupted 

basaltic andesite lavas, with minor dacitic lavas, whereas the eruptive products of 

Fonualei have mainly been dacitic for the last 165 years, with recorded basaltic andesite 

and andesitic basal flows that underlie the current dacitic flows. The petrogenetic model 

proposed for these two volcanic islands, based on combining linear least-square models 

with mineralogy and major and trace element chemistry, is consistent with the general 

model proposed by Ewart et al. (1973) which suggests that the genesis of evolved lavas 

in the Tongan arc is due to low-pressure fractional crystallization of the parental 

magmas and not a history of partial melting. Yet the origin of felsic magmas in intra-

oceanic arc settings has continued to be constantly debated (Wade et al., 2005; Smith et 

al., 2003, 2008; Brophy, 2008; 2009; Reubi & Blundy, 2009; Caulfield et al., 2012; 

Turner et al., 2012). 
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1.5 Aims of study 

Given the gaps in knowledge defined in the literature review/state of the art, 

several focal questions are addressed in this thesis. The principal lines of investigation 

are: 

I: Examining mass and chemical changes in the inputs to subduction across 

different locations in the subduction zone and how recycling influences the evolution of 

the crustal and mantle composition in the Tonga-Kermadec arc through the use of Li 

isotopes. 

II: Investigating the geochemical reservoirs that occupy the upper mantle to 

explain heterogeneities in the North Fiji Basin. 

III: Unraveling the contributions of various geochemical plume signatures to 

constrain the origin of the geochemical signals in the Lau and North Fiji back-arc basin 

lavas and illuminate shallow mantle flow patterns in the region. 

IV: Constraining the depth and pressures at which the geochemically evolved 

arc magmas from Late volcano (in the Tonga-Kermadec arc) were formed by crystal 

fractionation, and establish the fractionating assemblage. 

This thesis consists of four primary chapters, each of which employs 

geochemical tools to understand chemical recycling and magmatic evolution in the 

mantle and crust. As such, each chapter stands on its own for intended submission to 

peer-review to scientific journals. Thus, there is some repetition in introduction and 

summary material, but this is included for completeness. 

 



Elemental Recycling of the Tonga-Kermadec Island Arc System and the associated Lau and North Fiji 
Basins 

 Raul Brens Jr - June 2018 14 

1.6 General introduction to the fieldwork and samples used in the 

thesis collection 

1.6.1 CSIRO Research Voyage 

I undertook field work to collect samples from 47 dredged lavas from 40 dredge 

localities in the Lau and North Fiji Basins during the 2012 cruise of the R/V Southern 

Surveyor, expedition SS_V02; all samples have the prefix NLTD (Northern Lau 

Transect Dredges). Eight prime target areas were successfully mapped in detail with a 

multibeam echo sounder Kongsberg Simrad EM300. Dredged samples were collected 

on the research cruise to provide samples with a high proportion of glass. The dredge 

has a chain bag and trailing buckets which collected large rock samples as well as glass 

chips. The majority of the samples collected are fresh black glass-rimmed pillow and 

sheet flow fragments. However, a subset of samples contained mud that varied in color 

(dark red) in the North East Fiji Triple Junction and (tan) near the Fijian islands. 

The primary aim of this research cruise was to recover fresh volcanic glass 

samples from a ~1,000km-wide transect, ranging from the northeast of the North Fiji 

basin to the northwest of the northern Lau basin. We undertook detailed mapping of the 

tectonic fabric of the boundary between the Pacific and Australian plates around Fiji.  

Appendix A has descriptions of each dredge sample, maps, images, localities, and 

bathymetric map (swath maps) collected in the research cruise. The fresh volcanic glass 

was harvested from all dredge lavas examined here. All of the samples were examined 

for major, trace, volatile and radiogenic isotopes (Hf, Pb, Sr, and Nd).  
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1.6.2 Additional lavas and sediments samples examined in this thesis 

The remaining lavas and sediments analyzed in this thesis have been collected 

from multiple sources. IODP provided the sediments (DSDP 204) investigated in this 

study. A. Price provided the samples from Rotuma Island. J. Gill provided the majority 

of the Fijian samples. S. Turner provided the samples from the Tongan arc. T. Green 

provided samples from Late. 
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2 LITHIUM ISOTOPIC 
COMPOSITION OF THE 
TONGA-KERMADEC ARC 
AND CONSTRAINTS ON 
SUBDUCTION RECYCLING 

Abstract 

I analyzed lithium concentrations [Li] and isotopic compositions of a suite of 

lavas from the Tonga-Kermadec island arc and the Fonualei back-arc spreading center, 

along with a depth profile through the forearc marine sediments from DSDP Site 

204.  The [Li] and δ7Li isotope variations in the subducting sediments greatly exceed 

those observed in the lavas and change systematically with depth and sediment type. Li 

concentration of pelagic sediments from DSDP Site 204 is high (32–133 ppm), and δ7Li 

(+1.2 to +10.2) is low while the underlying volcanogenic sediments encompass an even 

larger [Li] range and extend to higher δ7Li (+7.2 to +14.4). MORB-like Li isotopic 

compositions in many of the Tonga-Kermadec lavas make it difficult to detect 
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contributions from subducted components. The models presented in this study permit 

the addition of up to 3.5% sediment in the arc front lavas whereas lavas from the back-

arc spreading center (δ7Li = +3.0 to +5.0) show no deviation from MORB δ7Li (+4 ± 

2.0). Either much of the heavy δ7Li is removed from the system in the forearc or else 

there is significant Li isotope equilibration with the mantle wedge. Still, the high lithium 

concentration in the mantle creates a barrier in the ability to differentiate the slab Li 

signatures through the MORB-like mantle fingerprint. In the case of the back-arc lavas, 

this may reflect the longer slab-to-surface path which the magmas traverse. 

2.1 Introduction 

Subduction recycles oceanic crust into the mantle. All subducting plates carry 

sediments that are either scraped off to create an accretionary prism or, in many cases, 

subduct with the plate itself. Depending on the quantity of sediment added to the source 

region for the arc magma, the isotopic signatures of these sediments may be observed in 

the erupted lavas, the most unambiguous tracer being 10Be (Morris et al., 1990; Morris 

et al., 2002). Lithium being a light, water-soluble common trace element in rocks, and 

widely evaluated, operates as a potential tracer of subduction zone recycling (Ryan & 

Langmuir, 1987; You et al., 1996, Brenan et al., 1998; Penniston-Dorland et al., 2010; 

Tang et al., 2014). The utility of Li in this regard reflects low-temperature isotopic 

fractionation that occurs during weathering and the uptake of seawater into the altered 

oceanic crust (e.g., Brant et al., 2012; Chan et al. 1992, 2002a; Rudnick et al., 2004; Liu 

& Rudnick, 2011; Liu et al., 2013, 2015).   

Lithium has two stable isotopes 6Li and 7Li that have a ~15% mass difference. 

These isotopes fractionate at low temperatures (<350oC), but equilibrium fractionation 

is minor at higher temperatures with a fractionation factor (αsediment-fluid) <1.011 (Chan et 
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al., 1994). Fractionation factor at higher temperatures (>500oC) causes a minor shift to 

heavier fluid compositions (Wunder et al., 2006). However, while the mantle wedge 

temperatures in subduction zones greatly exceed 350oC some eclogites exhibit low δ7Li 

values (δ7Li down to –22‰) (Marschall et al., 2007b). This has been attributed to 

kinetic fractionation as a result of prograde metamorphism; accordingly, the 

fractionation can be corrected through the addition of up to 3‰ δ7Li (Marschall et al., 

2007a). Thereafter the lithium that is released into the wedge has had a contentious fate.  

Figure 2.1 shows a cross-section of the oceanic crust and upper mantle in an 

idealized subduction zone with ranges in δ7Li based on published values for rocks and 

sediments in the Pacific Ocean and Lau Basin. The accepted δ7Li values for MORB 

range from ~+2.0 to ~+6.0‰ (Elliott et al., 2004; Tomascak et al., 2008). The sediment 

has a range in δ7Li of +1.2 to +14.4‰ (this study) while the altered oceanic crust has a 

range in δ7Li of -10.9 to +20.8‰ (Chan et al., 1994, 2002b; Brant et al., 2012). These 

values are selected for proximity to the arc; we recognize that they are values that do 

span a large range. However, these values are the best representation of the area in both 

literature and analysis.  

A negative δ7Li value for in altered oceanic crust is indicative of loss of Li 

through leaching during low-temperature alteration (Millot et al., 2010; Verney-Carron 

et al., 2011). However, in most cases, there is an increase in lithium, which is attributed 

to the exchange of lithium in seawater (~+31‰) within both the subducted sediments 

and (altered) oceanic crust (Chan & Edmond, 1988). [Li] decreases in the slab as 

dehydration occurs, leading to a variably positive δ7Li signature similar to the bulk solid 

in the fluid released (0 to +15 ‰) (You et al., 1996; Zack et al., 2003; Marschall et al., 

2007a,b). This enriched δ7Li fluid potentially interacts with the subarc mantle imparting 

a sensitive tracer of lithium recycling in subduction zones (Ryan & Langmuir, 1987; 

Brenan et al., 1998; Moriguti & Nakamura, 1998; Tomascak et al., 2000; Tang et al., 
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2014). However, not all studies have reached the same conclusion. For example, 

Tomascak (2002) and Tang et al. (2014) found no correlation between lithium and other 

geochemical tracers of subduction fluids (Kurile, Sunda, Aleutians, and Lesser Antilles 

(Martinique)). Tomascak et al. (2002) also found a lack of difference in δ7Li between 

arc lavas and MORB which they explain as the result of a chromatographic exchange 

with subarc mantle peridotite. In contrast, other studies have found clear evidence for 

sediment-derived lithium isotope signals in the arc lavas (Moriguti & Nakamura, 1998; 

Chan et al., 2002b; Tang et al., 2014). 
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Figure 2.1 A) Cross-section of the Tonga-Kermadec arc illustrating lithium isotope 
systematics. The Fonualei Spreading Center is staggered obliquely from the 
arc front with a minimum distance of 20 km and a maximum distance of 120 
km from the Tofua arc (not shown in illustration). The lithium isotopes for the 
back-arc are consistent with the MORB range along the entire spreading 
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center. Ranges are given for each area because of lithium’s mobility in fluid. 
(Data ranges were compiled from Chan et al., 1994; You et al., 1996; Zack et 
al., 2003; Benton et al., 2004; Elliott et al., 2004; Marschall et al., 2007a,b; 
Tomascak et al., 2008; Vils et al., 2009; Brant et al., 2012.) B) Left panel: Map 
of Tonga-Kermadec island arc (adapted from Turner & Hawkesworth, 1997; 
and satellite altimetry-derived gravity data from: Fernando Martinez & Brian 
Taylor, University of Hawaii and David Sandwell, Scripps Institution of 
Oceanography), highlighting sample location for samples in this study: the arc 
volcanoes, (Lau Basin) Fonualei Spreading Center (FSC), Mangatolu Triple 
Junction (MTJ) and sediments from DSDP Site 204. The dotted red line 
indicates the area where the map has been magnified (right panel) to show in 
greater detail the samples from the FSC & MTJ. The red triangles represent 
volcanoes along the arc, green circles represent the back-arc (FSC & MTJ) 
and the blue diamond (left panel) on the Pacific Plate is the DSDP Site 204. 
The DSDP Site 596 lies ~1,000 km east of DSDP Site 204. Also illustrated are 
bathymetric contour lines and colors to illustrate different aquatic depths 
(scale for color scheme is the same for both panels). Black arrows indicate 
directions and rates of convergence along the arc and spreading rates in the 
Lau Basin back-arc spreading center. 

 

In some arc lavas, lithium isotopes correlate with tracers of slab-derived fluids 

(e.g., Izu, Central America, and Western Anatolia; Moriguti & Nakamura, 1998; Chan 

et al., 2002b; Agostini et al., 2007, respectively) and behave similarly to boron. Boron 

and Li may also be decoupled tracers in arcs, showing a divergent relationship with B 

(e.g., Panama; Tomascak et al., 2000, 2002), irrespective of their similarities in 

enrichment in subducted materials, and correlated patterns of depletion during 

metamorphism in slabs. Alternatively, and most commonly, the lavas do not show any 

correlation with slab fluid tracers (e.g., Kurile, Sunda, Aleutians, and Lesser Antilles 

(Martinique); Tomascak et al., 2002; Tang et al., 2014). Although Tang et al. (2014) 

observed no correlation between Li isotopic composition and slab fluid indicators, they 

were able to detect a light Li isotopic signature derived from subducting sediments. 

Here I present new Li data to investigate mass and chemical changes during 

subduction and the way recycling influences the evolution of the crustal and mantle 
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composition in the Tonga-Kermadec arc. This study aims to improve our understanding 

of element recycling in this arc by assessing whether these subducting slab fluids 

influence the lithium signature in the arc lavas and also whether they impact the lithium 

signal of back-arc lavas. The samples analyzed have been selected for their 

comprehensive geochemical background. Since some marine sediments and altered 

oceanic crust are enriched in 7Li (δ7Li up to ~+14) relative to fresh mid-ocean ridge 

basalt (MORB) (δ7Li +2 to +6) (Chan et al., 1992), one of the aims is to test whether 

lithium isotopes correlate with subduction-related, fluid-sensitive elements as suggested 

in some previous studies (Moriguti & Nakamura, 1998; Chan et al., 2002b). 

2.2 Geologic Setting and Samples 

The 2,800-km long Tonga-Kermadec island arc extends from the Taupo 

Volcanic Zone in New Zealand to the Vitiaz strike-slip fault south of Samoa and results 

from subduction of the Pacific plate beneath the Australian plate (12–18 km thick) 

(Fig. 2.1, Burns et al., 1973; Ewart et al., 1977; Plank & Langmuir, 1998). The arc is 

composed of more than 80 volcanoes, both above and below sea level (Stoffers et al., 

2006; Wright et al., 2006). The Louisville seamount chain, an aseismic ridge, intersects 

the arc, effectively splitting it into the Tonga segment to the north, and the Kermadec 

segment to the south. The subducting Pacific plate is 85–144 Ma old (Billen & Stock, 

2000; Sutherland & Hollis, 2001) based on biostratigraphy of radiolarian chert and 

dating of ferrobasalts near to and from DSDP Holes 595/595A and 596/596A (Fig. 2.1). 

Both the dip of the slab and the convergence rate increase from south to north. The plate 

dips at an angle of 30o to a depth of ~120–130 km beneath both segments of the Tonga-

Kermadec arc and steepens to 55–60o in the Kermadec segment and 43–45o in the 

Tonga segment (Isacks & Barazangi, 1977). The convergence rate along the Kermadec 
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segment is 5 cm/yr, while in the Tonga segment the rate increases to 16–24 cm/yr 

(Bevis et al., 1995). As shown in Figure 2.2, the Tonga-Kermadec lavas consist 

predominantly of low-K basalts, basaltic andesites, andesites and minor dacites (Ewart, 

1976; Ewart et al., 1973, 1977, 1998).  

 

Figure 2.2 Total Alkali Silica (TAS) diagram classifying the arc lavas from the 
Tonga-Kermadec volcanic arc (red squares) and back-arc lavas from the Lau 
Basin back-arc spreading center (FSC & MTJ) (green triangles) (Ewart & 
Hawkesworth, 1987; Ewart et al., 1994; Acland, 1996; Keller et al., 2008; 
Caulfield et al., 2012b).  

 

The composition of the sediments on the Pacific plate are well constrained 

(Burns et al., 1973; Turner et al., 1997; Plank & Langmuir, 1998). Figure 2.4 and Table 

2.1 describe the types of sediments that are found in the southwest portion of the Pacific 

plate, with most being pelagic clays. Close to the Louisville Ridge, these are underlain 

by volcaniclastics derived from this seamount chain. The thickness of sediment 

decreases northwards from 200–70 m (Plank & Langmuir, 1998) and it is thought that 
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the full sediment packet is subducted beneath this arc (Bloomer & Fisher, 1986). Mass 

balance calculations show that only a minor amount (~0.25–1 %) of the pelagic 

sediment is recycled into the lavas (Turner et al., 1997; George et al., 2005). Enrichment 

in 206Pb/204Pb is observed in the volcanoes at the northern end of the arc (Tafahi and 

Niuatoputapu), and this has been interpreted to reflect the incorporation of the 

Louisville Ridge volcaniclastic sediments (Turner et al., 2007; Wendt et al., 1997). 
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Figure 2.3 A) [Li] concentrations versus δ7Li for the three areas of the Tonga-
Kermadec arc analyzed here. Sediment compositions (blue diamonds) are for 
DSDP Site 204 with the DSDP 596 (X-symbols) core samples (Table 2.3). Also 
plotted are average MORB ranges (black star) (McDonough & Sun, 1995; 
Tomascak et al., 2008) along with previously studied arcs (Moriguti & 
Nakamura, 1998; Tomascak et al. 2000; Tomascak et al. 2002; Tang et al., 
2014). SiO2 versus (B) [Li] content and (C) δ7Li for the Tonga-Kermadec 
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System. Black star is the average composition of MORB from (McDonough & 
Sun, 1995; Tomascak et al., 2008). Data sources for arcs in Table 2.1.  

 

Westward of the Tonga-Kermadec arc lies two active back-arc basins, the Havre 

Trough to the south, and the Lau Basin to the north. The rate of spreading increases 

northward, opening in a “V” shape, with a 6 cm/yr spreading rate in the Havre Trough 

increasing northward to a maximum of 16 cm/yr in the upper portion of the Lau Basin 

(Bevis et al., 1995). In the northeastern section of the Lau Basin, the Fonualei Spreading 

Center (FSC) is an active spreading center that is located north of the volcanically active 

island of Fonualei (Keller et al., 2008). This spreading center extends obliquely away 

from the active volcanic front northward to the Mangatolu Triple Junction (MTJ) and is 

punctuated by a series of transform faults that extend into the MTJ (Fig. 2.1).  

The Lau back-arc basin basalts (BABB) range from near MORB-like 

compositions (Hawkins, 1995) when erupted far from the arc, to arc-like compositions 

when erupted close to the arc (Pearce et al., 1995). BABBs, including those erupted 

along the Fonualei Spreading Center and Valu Fa Ridge, show subduction signatures 

that are characterized by enrichment in Large Ion Lithophile Elements (LILE) and 

volatile elements (e.g., they have up to 2.5 wt.% H2O), and show a relative depletion in 

HFSE (Langmuir et al., 2006; Pearce & Stern, 2006; Keller et al., 2008; Caulfield et al., 

2012a). 

The samples analyzed here come from three regions in the Tonga-Kermadec arc: 

1) sediments from the Pacific plate; 2) lavas from the arc, and 3) lavas from a traverse 

along the Fonualei Spreading Center (Fig. 2.1). The sediment samples come from 

DSDP Site 204, on the Pacific Plate near the trench (Fig. 2.4). In total, seven sediments 

were analyzed, and Figure 2.4 illustrates the lithological units, which span a total of 147 

m in length. Unit 1, from which four samples were analyzed, consisted of pelagic clay 
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and ash and dates from the Quaternary to early Miocene or Oligocene (Burns et al., 

1973). The two samples from the top of the clay unit are composed of dark brown clay 

that contains plagioclase (andesine), glass shards, mica, quartz, montmorillonite, zeolite, 

augite, and secondary clay phillipsite (Burns et al., 1973). The two samples from the 

bottom of the clay unit are dark reddish-brown iron-oxide clay composed of 

montmorillonite, potash feldspar, quartz, amorphous iron oxide, glass shards, and some 

authigenic carbonate layers. The bottom two units are composed of volcanogenic 

sediments derived from the Louisville Seamount Chain. Unit 2, from which three 

samples were analyzed, is a tuffaceous sandstone and conglomerate of early Cretaceous 

age. The clasts are composed of glass shards, andesine, calcite, pumice, and andesitic 

and basaltic rock fragments. The matrix is mainly altered ash with secondary minerals 

of epidote, zeolites, calcite, chloritic minerals, serpentine, and amorphous iron oxide 

(Burns et al., 1973). Unit 3, where two samples were analyzed, is a vitric tuff composed 

of basaltic to andesitic glass with pyroxene and feldspar crystals in a glass matrix. 
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Table 2.1 [Li] concentrations and δ7Li values for lavas from the Tonga-Kermadec 
island arc, marine sediments from DSDP Site 204, and lavas from the Lau 
Basin back-arc spreading center (Ewart & Hawkesworth, 1987; Ewart et al., 
1994; Acland, 1996; Regelous et al., 1997; Turner et al., 1997; George et al., 
2005; Keller et al., 2008; Caulfield et al., 2012a,b). 

 

 

SiO2, wt% δ7Li
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Table 2.1 lists the location and rock type of the 21 samples that were analyzed 

from the arc volcanoes and along the Fonualei Spreading Center. The arc lavas range 

from basalt to dacite (Fig. 2.2) and include some pumaceous samples, while the back-

arc lavas are basalt to basaltic andesite. Full petrographic and geochemical data for 

these samples can be found elsewhere (Ewart & Hawkesworth, 1987; Ewart et al., 1994; 

Acland, 1996; Regelous et al., 1997, 2010; Turner et al., 1997, 2009; George et al., 

2005; Keller et al., 2008; Caulfield et al., 2012a,b). 
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Figure 2.4 Depth profile (in meters) for the sediments analyzed in this study 
(DSDP Site 204) & published data from DSPD 596 (~1,000 km east) for [Li] 
and δ7Li (Chan et al., 2006). Core logs (in meters) of DSDP Site 204 and 
published data of DSDP 596 (Chan et al., 2006). The core analyzed in this 
study (DSDP Site 204) is twice the length of the nearby DSDP 596 core (~1,000 
km to the east). The main compositional difference between both cores is that 
DSDP Site 204 has Louisville volcaniclastic sediments in the lower third of the 
core. 

2.3 Analytical Methods 

Whole rocks were pulverized at Macquarie University (Australia), the 

University of Queensland (Australia), Durham University (U.K.), the Open University 

(U.K.), and Florida International University (Miami, Florida USA). Samples (and 

standards) were prepared for Li isotopic analysis at the University of Maryland by 

digesting the powders with a 3:1 mixture of concentrated HF and HNO3 in Savillex® 

screw-top beakers on a hot plate (T~90oC). This was followed by the addition of HNO3 

and HCl, with drying between each stage of acid addition. The residue was then re-

dissolved in 4 N HCl in preparation for chromatographic separation following the 

methods outlined by Rudnick et al. (2004). 

Lithium separation was achieved through ion-exchange chromatography, 

adapted from Moriguti and Nakamura (1998), where four chromatographic columns 

were used. For each column, 1 ml of cation exchange resin of AG50w-X12, 200-400 

mesh (Bio-Rad), was cleaned with HCl and Milli-Q water followed by conditioning, 

chemical separation and sample collection using an eluent mixture of HCl and ethanol. 

The first two columns remove major element cations with 2.5M HCl and subsequently 

0.15M HCl. The third and fourth columns separate Na from Li with 30% ethanol in 

0.5M HCl through a N2 pressurized ion exchange column (Rudnick et al., 2004).  

The samples were analyzed for 6Li and 7Li on a Nu Plasma multi-collector, 

inductively-coupled mass spectrometer (MC-ICP-MS) using faraday cups. Li isotopic 
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compositions were analyzed by bracketing the sample, before and after, with the L-

SVEC standard. The δ7Li value (δ7Li =[[7Li/6Li]sample / [7Li/6Li]standard – 1 x 1000]) is 

expressed as per mil deviations from the L-SVEC standard (Flesch et al., 1973). 

External reproducibility of the isotopic compositions is ≤ ±1.0‰ (2σ) based on repeat 

runs of pure Li standard solutions: in-house standard UMD-1 and international standard 

reference material IRMM-016 (Teng et al., 2006; Liu et al., 2010, 2013). The data for 

these solutions measured over the course of the analyses are provided in Table 2.2. The 

in-house and the international standard reference materials were analyzed at the 

beginning and end of each session and often a third time between runs in which more 

than eight samples were analyzed. 

Table 2.2 Standard values 

 

δ7Li
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Comparing signal intensities for the whole rock with that measured for the 50 

ppb L-SVEC standard and then adjusting for sample weight determined the lithium 

concentrations. These measurements have a 2σ uncertainty of ≤ ±10‰ (Teng et al., 

2006).  

Results for United States Geological Survey (USGS) international rock 

standards BHVO-1, AGV-2 and BCR-2 are reported in Table 2.1. The results are within 

analytical error of the recommended values from the U.S. Geological Survey and within 

the ranges for data that has been published (Gladney & Goode, 1981; Ryan & 

Langmuir, 1987; Govindaraju, 1994; James & Palmer, 2000; Chan & Frey, 2003; 

Rudnick et al., 2004; Bouman et al., 2004; Penniston-Dorland et al., 2012; Shihong et 

al., 2012; Tang et al., 2014; Liu et al., 2015). The only exception is BHVO-1 that 

initially had slightly lower values than the published data (Magna et al., 2004). 

Replicating the analysis produced a value within the accepted range (Shihong et al., 

2012). 

2.4 Results 

Lithium concentrations and δ7Li isotopic values for the lavas are presented in 

Table 2.1. As illustrated in Figure 2.3a, [Li] in the arc lavas range between 2–16 ppm, 

and δ7Li varies from +0.3 to +7.9 (mean = +3.4). [Li] increases with SiO2 (Fig. 2.3b) 

although there are no correlations between SiO2 and δ7Li in the lavas (Fig. 2.3c). The 

concentrations of Li in the back-arc lavas show a much smaller range, between 3–6 

ppm, as do the δ7Li values (+3.0 to +5.0, mean = +3.7).  

Table 2.3 presents a comparison of the new [Li] and δ7Li for sediments from 

DSDP Site 204 with published data from DSDP Site 596. The sediments from DSDP 

Site 204 exhibit a wide range of [Li] from 4 to 165 ppm, and δ7Li values of +1.2 to 
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+14.4 (unweighted mean = +7.4). [Li] and δ7Li in the sediments show no correlation 

with SiO2 (Fig. 2.3), although they do correlate with lithology.  

 

Table 2.3 A comparison of [Li] concentration and Li isotopic composition for 
DSPD Site 204 and published data for DSDP 596 (Chan et al., 2006) along with 
a comprehensive description of the sediments and values for depth. 

 

δ7Li

δ7Li
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2.5 Discussion 

2.5.1 DSDP Site 204 sediment profile 

To constrain the lithium inputs to the Tonga-Kermadec arc, I have analyzed and 

compared the DSDP Site 204 data with published data from DSDP 596, situated around 

1,000 km to the east (Fig. 2.1; Table 2.3). Since it is thought that the full sediment 

packet is subducted beneath this arc (Bloomer & Fisher, 1986), the depth profile on 

Figure 2.4 provides a robust constraint on the lithium budget of the quantity of sediment 

subducted. The bulk composition of the sedimentary sections was determined following 

the method of Plank and Langmuir (1998). I calculate a weighted mean for each 

lithological unit and average each unit proportionally to its mass. Two sets of bulk 

compositions were used in this study, pelagic and pelagic + volcaniclastic. [Li] and δ7Li 

for the weighted bulk sediments of DSDP Site 204 are as follows: pelagic [Li] is 55.8 

ppm and δ7Li = +5.0, whereas pelagic + volcaniclastic [Li] is 54.2 ppm and δ7Li = +6.1. 

At DSDP Site 204, the sediments display an inverse relationship between [Li] 

and δ7Li, with a systematic increase in δ7Li (+1.2 to +14.4) and decrease in [Li] with 

depth (see Table 2.3 and Fig. 2.4). This reflects the sediment type: lithium isotopic 

signatures for pelagic sediments are often lighter than MORB because of Li isotope 

fractionation during weathering, while volcanoclastic sediments can be either lighter or 

heavier than MORB, depending on the style of their alteration (Chan et al., 2006). The 

δ7Li values of pelagic clays for DSDP Site 204 overlap those of fresh MORB, but 

extend to values both lower and higher (+1.2 to +10.2), while the δ7Li of the 

volcanoclastic sediments are higher than fresh MORB (+7.2 to +14.4). This suggests 

that the volcanogenic sediments may have experienced uptake of seawater lithium in 

secondary minerals, much in the way MORB becomes isotopically heavier due to more 
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extensive time-integrated exchange in seafloor weathering (Chan et al., 1992; Bouman 

et al., 2004). The pelagic clays may have a smaller variation in δ7Li than the 

volcanoclastic sediments due to their higher overall concentration of lithium.  

2.5.2 Tracers of slab fluids 

The data show that relatively high δ7Li sediments are being subducted beneath 

the Tonga-Kermadec arc. However, while some of the arc lavas have δ7Li values that 

extend beyond the range MORB to both heavier and lighter extremes, most have 

MORB-like compositions (Elliott et al., 2004; Tomascak et al., 2008). 

Elemental pairs such as B/Be, Ba/La, B/Nb, and Li/Y are strongly fractionated 

between aqueous fluids and residual clinopyroxene and garnet during eclogitisation of 

subducting altered oceanic crust (Kelemen et al., 1993; Brenan et al., 1998; Caciagli et 

al., 2011). In the Tonga-Kermadec lavas, there is no obvious correlation between δ7Li 

and ratios of soluble to insoluble elements (Fig. 2.5). This contrasts with findings in 

both the Central American (Chan et al., 2002b) and Izu arcs (Moriguti & Nakamura, 

1998) where a positive correlation between δ7Li and ratios of soluble elements was 

reported. In contrast, Tomascak et al. (2000) observed an inverse correlation between B 

and Li isotopes in arc lavas from Panama. The observations presented in this study are 

similar to those of Tomascak et al. (2002) for the Kurile, Sunda, and Aleutian arcs, and 

Tang et al. (2014) for the Lesser Antilles arc, where no obvious correlations exist. 
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Figure 2.5 δ7Li isotopic compositions versus traditional tracers of slab fluids: B/Be, 
Ba/Nb, Ba/La, Li/Y (data from George et al., 2005). There is no published Be 
data for the sediment in this study. Average MORB (star) is shown along with 
data for other arcs from the literature. Samples plotted: Arc (red square), 
back-arc (green triangle), sediment (blue diamond), along with background 
data from other arcs (Izu, Panama, Kurile, Sunda, Aleutian, Martinique) (see 
Fig. 2.3 for data sources). 

 

Many studies have utilized U/Th and Th/Ce ratios as tracers of fluid and 

sediment components in arc lavas (e.g. Turner et al., 1997; Plank and Langmuir, 1998). 

On Fig. 2.6a we plot δ7Li against U/Th as a tracer of fluid contributions from the 

subducting plate. Overall there is a weak positive correlation, but the majority of the 

lavas lie between likely average compositions of the mantle wedge (DMM) and altered 

oceanic crust (AOC) which can have a very large range in δ7Li (Gao et al., 2012). Here 

the Niuatoputapu lava is displaced from the remaining lavas towards the average 

volcaniclastic sediment composition. No correlation is observed when the δ7Li data 

MORB 

MORB ORB

MORB 

MORB 
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from the Tonga-Kermadec lavas is plotted against indices of sediment addition such as 

Th/Ce (Fig. 2.6b) unlike the findings of Moriguti and Nakamura (1998) or Chan et al. 

(2002). The back-arc lavas lie at the low U/Th, low Th/Ce end of the data, consistent 

with lesser overall contributions from the slab (Caulfield et al., 2012a). 

 

Figure 2.6 Plots of δδ7Li versus U/Th a fluid-sensitive index (a) and Th/Ce a 
sediment-sensitive index (b). The average compositions of the DSDP Site 204 
pelagic and volcaniclastic sediments are also shown along with average estimates 
for depleted MORB mantle (DMM) and altered oceanic crust (AOC) – data from 
Elliott et al. (2004), Gao et al. (2012), Kelley et al. (2003), Salters and Stracke 
(2004). 
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On Fig. 2.7 we investigate variations between δ7Li and two other isotope 

systems that tend to be track sub-arc fluid additions since both B and Sr are fluid mobile 

(Brenan et al., 1998). There is no correlation between δ7Li and 87Sr/86Sr though, as in 

Fig. 4a, both the arc front and back-arc lavas generally fall between DMM and AOC 

and the average sediment compositions. Although there is less data, we plot δ7Li versus 

δ11B on Fig. 5b. Once again, there is no correlation though the diagram does highlight 

the unusually light B in the ‘Ata sample that may reflect complex mantle wedge 

circulation caused by the locus of present-day subduction of the Louisville seamounts 

(Leeman et al., 2017). 

The conclusion from Figs. 2.5, 2.6, and 2.7 have to be that there are no trends 

that unambiguously distinguish between sediment and fluid addition as the main control 

on the variations in δ7Li in the Tonga-Kermadec-Lau lavas. It is highly likely that 

diffusive equilibration with non-subduction modified mantle wedge has erased much of 

any putative initial subduction-derived signatures (e.g., Elliott et al., 2004; Tang et al., 

2014; Penniston-Dorland et al., 2012). Nevertheless, some δ7Li signals do appear to 

survive such as that of the Louisville volcaniclastics in the case of the lava from 

Niuatoputapu. Conversely, the lack of an equivalent signal in similar lavas from 

neighboring Tafahi testifies to just how fragile they are in the face of diffusive 

interaction with the wedge.  
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Figure 2.7 Plots of δδ7Li versus (a) 87Sr/86Sr and (b) δ11B. Boron data from 
Leeman et al. (2017), other symbols and data sources as for Fig. 2.6. 

2.5.3 Sediment additions to the mantle wedge 

I compare the Tonga-Kermadec lava data with a three-component mixing model 

between bulk sediment, DMM-1%, and a calculated fluid component from the altered 

oceanic crust in Figure 2.8 (Ellam & Hawkesworth, 1988; Tomascak et al., 2002; 

Kelley et al., 2003; Salters & Stracke, 2004; George et al., 2005; Kreinitz et al., 2012). I 

also plot MORB based on McDonough & Sun (1995) and averaged δ7Li MORB values 

from Tomascak et al. (2008). The three end-members in the numerical model (DMM-
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1%, fluid, and sediment) were based on calculations presented by George et al. (2005) 

for the 10Be budget in these lavas. Briefly, the DMM (Salters & Stracke, 2004) 

component was assumed to have been depleted by 1% batch melt extraction in the back-

arc. This composition was calculated using partition coefficients from Blundy & Wood 

(2003) and assuming a mantle comprising 44% olivine, 41% orthopyroxene, and 14% 

clinopyroxene. The fluid composition calculated was using the altered oceanic crust 

composition from ODP Site 801 (Kelley et al., 2003), a Rayleigh distillation process 

and partition coefficients from Brenan et al. (1995, 1998), Stalder et al. (1998), and 

Fabrizzio et al. (2013). For estimates of δ7Li in AOC, there are two reported values 

from drill cores, one from Brant et al., (2012) and one from Chan et al. (2002b). Both 

have a large range, spanning -10.9 to +14.5 and +1 to +21, respectively. The heavy δ7Li 

from the upper limit of the altered oceanic crust from the East Pacific Rise at +14.5 was 

used because it was the closest location to the Tonga-Kermadec arc for which data exist 

(Brant et al., 2012). However, given the large array in δ7Li reported in Brant et al. 

(2012), and therefore uncertainty in δ7Li values, I illustrate how the mixing models 

change when the parameters for the AOC δ7Li vary by using the midpoint of the δ7Li 

range. I assumed the altered oceanic crust to comprise 28% garnet, 54% clinopyroxene, 

and 18% amphibole (Kelley et al., 2003). The sediment composition used the average 

bulk composition from DSDP Site 204 (the average starting composition for the 

Johnson & Plank (1999) experiments are close to the averages for the sediments used in 

this study) and sediment melt compositions assumed batch melting and used solid/melt 

partition coefficients from Johnson & Plank (1999). I assumed a 20% sediment batch 

melt at 800oC to remain consistent with the model presented by George et al. (2005). 
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Figure 2.8 Three-component mixing model: bulk sediment melt at 800oC, DMM-
1% and a distillation fluid component from the altered oceanic crust (see text 
for explanation) (Ellam & Hawkesworth, 1988; Tomascak et al., 2002; Salters 
& Stracke, 2004; Kelley et al., 2003; George et al., 2005; Kreinitz et al., 2012). 
Average MORB (star) is plotted for reference. The dotted black line extending 
in the bottom of each model illustrates how the mixing models would change if 
the parameters for the AOC δ7Li changed. In this case, we use the midpoint 
for the large δ7Li range in AOC reported in Brant et al. (2012), instead of the 
upper limit as the ‘fluid’ component.
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As shown in Figure 2.8, using the end-member compositions described above, 

most of the Tonga-Kermadec data fall below the area encompassed by a three-

component mixing model. Using the measured pelagic sediment average δ7Li (+ 5.0) 

from this study ignores the possible influence of the underlying volcaniclastic 

sediments. Therefore, I also tested mixing of the weighted sediment, including the 

volcaniclastics (δ7Li = + 6.1). Likewise, mixing models using these values with the two-

other end-member components (AOC fluid and DMM-1%) does not fully reproduce the 

lava array on the element ratio plots. This suggests, if the model is correct, the average 

sediment δ7Li composition must be lower, or the AOC value is too high (Fig. 2.8) 

compared to the ones suggested by Chan et al. (2002b, 2005) and Brant et al. (2012). 

Plank (2013) showed that both Sunda and Nicaragua arc lavas have an inverse 

correlation between Y/Li and average weighted δ7Li (Y/Li is used in lieu of Li/Y so that 

mixing will form linear arrays). These correlations likely reflect binary mixing between 

a subducted sediment component and a mantle source (DMM-1%). In Plank’s (2013) 

models, the sediment values reflect the weighted mean for the reported local sediment 

but are allowed to be up to 3‰ heavier in order to account for fractionation that may 

occur during fluid loss (Marschall et al., 2007b). For example, isotopic fractionation by 

clinopyroxene at temperatures greater than 500oC increases δ7Li by 3‰ (Wunder et al., 

2006). This is also consistent with the findings of Marschall et al. (2007b) during 

repeated experimental dehydration of the subducting oceanic crust. Once the fluid is 

released from the slab, the residual sediment can be up to 3‰ heavier and Plank (2013) 

suggests that this composition is likely to be the entire range that is representative of 

bulk sediment.  

Following Plank (2013), I simulate mixing between DMM-1% (Salters & 

Stracke, 2004) and bulk sediment that has undergone dehydration making it +3‰ 

heavier (+9.1), plus AOC fluid. Figure 2.9 shows the results of this mixing model. We 
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see that the Tonga-Kermadec lavas still plot beneath the calculated mixing array, similar 

to the earlier mixing model presented in this study between DMM-1%, AOC fluid and 

average bulk sediment component (+6.1), which is shown in Figure 2.8.  

 

Figure 2.9 Mixing of DMM-1% with local bulk sediments DSDP Site 204. Y/Li, a 
slab fluid indicator, is used so that mixing follows a straight line (e.g. Plank 
2013). The top mixing line represents 3‰ heavier sediment, which accounts for 
the fractionation that may occur during slab dehydration (Marschall et al., 
2007b). The area between the two lines is the mixing field (see text). 

 

Using the calculated sediment averages from this study hides the full range of 

δ7Li sediment values that could be involved in the mixing. Therefore, in Figure 2.10, I 

show the results of a Monte Carlo simulation that allows randomized, two end-member 

mixing between DMM-1% source ([Li] = 0.7 ppm, [Y] = 4.1 ppm (Salters & Stracke, 

2004), δ7Li = +3.4), and the full range of sediment values for DSDP Site 204 (δ7Li = 

+1.2 to +14.4 and their respective [Li]). The δ7Li value for DMM is an average of the 
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accepted δ7Li range of +2 to +6 (Chan et al., 1992, 2002b; Tomascak et al., 2008). 

Figure 2.10a simulates the addition of the DSDP pelagic sediment compositions alone; 

they are believed to be the main sediment contributor to the lavas (Turner et al., 1997; 

George et al., 2005). This results in a smaller and more restricted range for δ7Li. Figure 

2.10b includes the minimum and maximum values for the sediment compositions of the 

collective units, including the volcaniclastic sediments. Most of the lavas (within error) 

fall inside the area of binary mixing between DMM and the local sediments in both 

models shown in Figure 2.10. The Monte Carlo simulation suggests that the lava array 

can successfully be modeled by the addition of up to 3.5% sediment (Fig. 2.10). 

Although this simple mixing relationship can account for a large portion of the data, 

there are still two outliers (Macauley and L’Esperance). I further address the role of 

fluid in the next section. 
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Figure 2.10 Two end-member component mixing model between average DMM-
1% (black star) and sediments from DSDP Site 204 (blue diamonds). The 
gradation of small dots in the background represents random mixing results 
using a Monte Carlo simulation, and the bar to the right of each panel 
represents the amount of sediment (%) required to attain that value in the 
Monte Carlo simulation. Panel A shows mixing with only pelagic sediment 
component as end-members and Panel B shows mixing using the entire 
sedimentary core (pelagic + volcaniclastic) for DSDP Site 204. We assumed 
zero Y from the subducting slab sediment because Y would probably be 
retained in a garnet component as subduction persists. The lithium isotopes in 
the Tonga-Kermadec lavas (red squares) can mostly be formed by the addition 
of less than 3.5% addition of sediments from DSDP Site 204. There are two 
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outliers (Macauley and L’Esperance) that plot outside of the range shown for 
Y/Li on these plots (see Table 2.1 for values). 

 

2.5.4 Other possible effects on the Li signal 

The majority of the lavas are displaced below the three component-mixing 

arrays in Figure 2.8. Slightly fewer than half of the lavas from the arc front (7 out of 15) 

fall closer to the base of the mixing arrays. There are two potential explanations. The 

first is equilibration of the slab components or arc magmas with the mantle wedge, 

which would contract the lava compositions towards MORB/DMM-1% on Figure 2.8, 

thereby greatly reducing the overall range in lithium isotopes. This would mask the 

effects of Li addition from any fluid/sediment components (cf. George et al., 2005; 

Plank, 2013) Nevertheless, over time, ongoing sediment and fluid addition would 

potentially lead to an overall increase in δ7Li in the mantle wedge. The second 

explanation, advocated by Tomascak et al. (2002), is that heavy Li released from the 

subducting slab becomes sequestered into Mg-silicates in the forearc mantle and 

removed by convection without contributing to the arc lavas. Subsequent additions from 

the slab to the wedge would be correspondingly enriched in light Li, potentially 

explaining the displacement of many of the Tonga-Kermadec lavas to low δ7Li on 

Figure 2.8. To illustrate this, we can use the midpoint (+ 1.8) from Brant et al. (2012) 

for the AOC fluid δ7Li composition. Using this value for AOC fluid, a larger proportion 

of the data fit within the mixing array in a few ratio plots (Th/Ce; Th/La; Li/Y). This 

lighter value can explain some of the data, although this is a very light value for AOC 

fluid and does not satisfy other element ratio plots. In reality, both δ7Li end members, 

along with end-member ratios of slab-fluid indicators (e.g. Ba/Nb & Ba/La) might vary 

and encompass the lava array (Fig. 2.8). 
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2.5.5 The role of Li in crystal fractionation 

There is a possibility of incorporation of low δ7Li components through 

interaction with the crust during differentiation. However, due to the small number of 

samples for each location, the sample set is not ideally suited for this comparison. What 

can be observed through the data present is that, as a moderately incompatible element, 

Li concentrations increase with increasing SiO2 (Fig. 2.3b), but there is no clear 

correlation between δ7Li and SiO2 (Fig. 2.3c). The majority have δ7Li that ranges from 

2.5 to 5.0 ‰ with an average of 3.6 ± 0.7 ‰ that is similar to those reported from other 

arcs (Bouman et al., 2004; Moriguti and Nakamura, 1998; Tang et al., 2014; Tomascak 

et al. 2000, 2002) and overlap with the range for MORB. However, there are three 

notable outliers. For the former two, we replicated the data: Niuatoputapu with δ7Li = 

6.4 and 7.9 ‰, ‘Ata with δ7Li = 1.6 and 1.9 ‰. However, there was insufficient sample 

from the L’Esperance sample to undertake a replicate analysis (δ7Li = 0.3 ‰, see Table 

2.1). Thus, it is possible that the range of δ7Li in this arc may be slightly larger than 

reported elsewhere. 

2.5.6 Subduction geometry 

Arc geometry may play a role in how the δ7Li signal is transferred from the 

slab. For example, a fast convergence rate produces a strong corner flow that may 

advect away the heavy δ7Li signal released from the slab (Tomascak et al., 2002). 

Alternatively, slow convergence rates may promote more direct sampling of subducted 

sediments due to a hotter slab. For example, the Lesser Antilles has a very slow 

convergence rate (~2 cm/yr) (Jordan, 1975) and lavas on Martinique exhibit a lithium 

isotopic signature that is similarly light to the sediments being subducted but they do 

not show any correlation with other indicators of subduction fluids. The particularly 
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slow subduction rate may be a factor explaining why a sediment lithium isotopic 

signature is observed in Martinique yet not in other arcs (Tomascak et al., 2000; 2002). 

These examples point to a potential role of arc geometry and convergence rate in 

moderating the lithium isotope signature in erupted lavas. Returning to the Tonga-

Kermadec arc, its convergence rate spans a much larger range (up to 20 cm/yr) than 

many other arcs and may provide a reason why any recycled lithium signal is muted 

because lithium may have been modified by partitioning into Mg-silicates that are then 

removed from the budget.  

2.5.7 Back-arc lavas from the Fonualei Spreading Center  

The lavas from the Fonualei Spreading Center exhibit arc-like geochemical 

signatures (Caulfield et al., 2012a) yet, like most of the arc front lavas, have δ7Li (+3.0 

to +5.0) that overlap the range of the MORB (+2.0 to +6.0). Conversely, some of the arc 

front lavas have δ7Li < 3 which is not observed in the back-arc. This suggests either that 

there is minimal transfer of Li from the slab beyond the arc front or, alternatively, that 

the increased slab-to-surface transport distance is sufficient to facilitate full 

equilibration of the rising magmas with the mantle wedge.  

2.6 Conclusions 

The analysis of δ7Li in a sediment profile from DSDP Site 204 provides a more 

robust constraint on the lithium budget of sediments subducting beneath the Tonga-

Kermadec Trench, with weighted averages for δ7Li [+5.0 (pelagic) and +6.1 (pelagic + 

volcaniclastic)]. In terms of lithium isotope composition, we do not see a correlation 

with other slab fluid indicators within the Tonga-Kermadec arc or back-arc lavas. This 

makes the lithium isotope composition similar to the Kurile, Sunda, Aleutians, and 
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Lesser Antilles (Martinique) arcs. Only in two arcs, Izu and Central America, have there 

been clear correlations between slab-derived fluid tracers and lithium isotopes.  

The MORB-like lithium isotopic composition of the Tonga-Kermadec lavas 

suggests that the lithium elemental and isotopic characteristics reflect either, or a 

combination of, equilibration with the mantle wedge or sequestration and removal of the 

heavy Li in the system, possibly linked to slab-convergence rate. Bulk sediment mixing 

modeled for this system does not satisfy a majority of the data for the lavas unless I use 

a light AOC of +1.8. Using randomized mixing models with the entire range of 

sediment compositions satisfies most of the lava data and I can quantify the amount of 

sediment required to reproduce the lithium isotopic signatures of the lavas. With this 

result, the lavas from the Tonga-Kermadec arc require up to 3.5% sediment addition to 

reproduce the array observed in the data. Lavas from the Fonualei Spreading Center 

(δ7Li = +3.0 to +5.0) show no variation from the widely-accepted lithium isotopic 

signature range of the MORB (δ7Li = +2.0 to +6.0), suggesting that there is either little 

to no lithium transfer from the slab to the back-arc or complete equilibration with the 

mantle wedge. The fact that δ7Li in a few arc front lavas (+0.3 to +7.2) fall outside the 

range of MORB may be the only remnant signature from subducted components. As 

noted by others, this calls into question the utility of lithium isotopes as straightforward 

tracers of subducted components in arc lavas. 
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3 VOLATILE CONTENTS 
REVEAL MID-OCEAN 
BASALT TAPPING AN OCEAN 
ISLAND MAGMA SOURCE 

Abstract 

The North Fiji Basin (NFB) and the connected Lau Basin are located in a 

complex area of volcanism. The NFB is a back-arc basin (BAB) that is a result of an 

extinct subduction zone, which incorporates the complicated geodynamics of two 

rotating landmasses: Fiji and Vanuatu island arc. Collectively this makes the spreading 

centers of the NFB the highest producing spreading centers on record. Here we present 

volatile concentrations, and major and trace element data for a triple junction spreading 

center in the NFB to show their unique relative enrichment in water when compared to 

other mid-ocean ridge basalts (MORB) around the world. The samples from the NFB 

exhibit a combination of major MORB-like chemical signatures along with high water 

content similar to ocean island basalts (OIB). This observation in geochemistry is unlike 

any other studied MORB or back-arc basin because it is not attributed to a subduction-
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related signature. Our results employ volatile elements (carbon dioxide and water) and 

their constraints, both combined with trace element ratios to indicate a potential wet 

plume source for the observed enrichment in the North Fiji Basin. 

3.1 Introduction 

Volatile elements play a fundamental role in magmatic processes including, but 

not limited to, melting (Asimow & Langmuir, 2003), fractional crystallization (Huppert 

et al., 1982), and degassing (Métrich & Wallace, 2008). Volatile elements are 

incompatible elements that prefer to partition into the liquid when melting occurs. They 

differ from standard lithophile elements as they prefer to be in the vapor phase and are 

dependent on pressure to remain in a dissolved state. Lithophile elements, in contrast, 

have traditionally been used to compare the fertility of a melt within mid-ocean ridges 

establishing certain elemental affinities (e.g. LREE/HREE ratios) for deeper mantle 

signatures (e.g. plumes) (Weaver, 1991; Halliday et al., 1995). Several studies have 

improved our ability to constrain the volatile content of the mantle (Hirth & Kohlstedt, 

1996; Saal et al., 2002; Eiler, 2003). However, there is still work to be done to fully 

characterize and understand the reservoirs that occupy the upper mantle. 

Lavas from the Samoan volcanoes span a broad range in H2O (0.63–1.50 wt.%) 

and CO2 (6–233 ppm) contents. The water contents of Samoan lavas exceed the range 

of MORB (<0.7 wt.%) but do not exceed arc lavas (<8 wt.%) (e.g. Grove et al., 2002). 

OIB water content is comparable to back-arc basin lavas (Newman et al., 2000). 

However, other geochemical characteristics differentiate OIBs, particularly in Samoa, to 

the depleted mantle MORB (DMM) found at back-arc basins. These include highly 

radiogenic 87Sr/86Sr (up to 0.789), low 143Nd/144Nd (down to 0.5125), and lavas highly 

enriched with trace element (Wright & White, 1987; Farley et al., 1992). This distinct 



Chapter 3: Volatile Contents Reveal Mid-Ocean Basalt Tapping an Ocean Island Magma Source 

Raul Brens Jr - June 2018    67 

geochemical signature in the Samoan OIB makes up what is commonly known as 

‘Enriched Mantle 2’ (EM2). The origin of EM2 was initially interpreted as subducted 

oceanic crust and terrigenous sediment that was recycled into the mantle (Weaver, 

1991). More recently, Workman et al. (2004) modified the interpretation by 

highlighting the incorrect Pb isotope compositions, smooth trace element patterns, and 

low 187Os/188Os, high 3He/4He (>8 Ra), to buttress their hypothesis of an ancient (2.5 

Ga) metasomatized oceanic lithosphere subducting and being stored in the deep mantle 

before recycling into the Samoan plume. 

It is well documented that the Samoan plume has infiltrated into the Lau Basin 

through an opening in the Pacific plate that originates at the northern termination of the 

Tonga-Kermadec arc (e.g. Giardini & Woodhouse, 1986; Volpe et al., 1988; Turner & 

Hawkesworth, 1998; Price et al., 2014). Evidence from lavas in the Lau Basin exhibit 

elevated helium and strontium isotopes and decreased neodymium isotopic data; these 

findings have been used to suggest the presence of OIB material within the Lau Basin 

(Macpherson et al., 1998; Shaw et al., 2004). However, as noted by Turner and 

Hawkesworth (1998), it does not affect the arc front lavas. Slightly further westward 

(~1,000 km), in the North Fiji Basin, a lack of abundant data limits our ability to trace 

how far the Samoan plume extends into the North Fiji Basin. Price et al. (2014) employ 

the use of Sr, Nd, and Pb isotopic compositions to illustrate the extent to which the 

Samoan plume extends south-west into the neighboring Lau and North Fiji basins. They 

argue that toroidal flow around the Tonga slab that is a result of rapid rollback leads to 

advected plume material beneath both basins. However, it is uncertain how far south the 

plume material extends. 

Here we reveal upper mantle heterogeneities in the North Fiji Basin (NFB); 

these unusual magmas are volatile-rich and have an ocean island basalt (OIB) signature 

within a back-arc setting. We report an in-depth geochemical study of the Northeast Fiji 
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Triple Junction (NEFTJ), by using a combination of geochemical data: volatile element 

concentrations, major and trace element concentrations, and isotope signatures. The new 

data suggest that the presence of the Samoan plume spans over 1400 km, to at least as 

far as the Northeast Fiji Triple Junction, in the North Fiji Basin. 

3.2 Geological background and sample description 

3.2.1 Geologic Setting 

The North Fiji Basin (NFB) is surrounded by the former Vitiaz subduction zone 

to the north and the New Hebrides Trench to the south and extends into the Hunter 

Fracture Zone. The NFB is a triangular depression that has resulted from two stages: 1) 

the clockwise rotation of the Vanuatu island arc and the counter-clockwise rotation of 

Fiji, which belongs to the remnant Lau-Colville Ridge, and 2) a synchronized opening 

of the Lau Basin (Gill & Gorton, 1975; Falvey, 1978; James & Falvey, 1978; Malahoff 

et al., 1982b; Huchon et al., 1994; Musgrave & Firth, 1999; Hall, 2002). The Vanuatu 

island arc and Fiji began rotating between 5.5–9 Ma (Gill & Gorton, 1975) while 

Malahoff et al. (1982a) constrain it to have commenced between 7–8 Ma. Within this 

dynamic tectonic setting, there has been complex magmatism with varying geochemical 

signatures.  

The NFB has not been as thoroughly geochemically fingerprinted as the 

neighboring Lau Basin. However, three distinctive sources have previously been 

identified and studied in the NFB: 1) Back-arc basin basalt (BABB; defined by Sinton 

& Fryer, 1987) magma type that is enriched in incompatible elements (K, Rb, Zr, Ba), 

relative to N-MORB, 2) Highly depleted N-MORB lavas that have evolved by crystal 

fractionation involving principally olivine and plagioclase, which samples are believed 

to be from the old North Fiji Basin crust (Price et al., 1990), and 3) Transitional basalts, 
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towards E-MORB, that are alkali and incompatible element enriched, relative to N-

MORB (Sinton et al., 1994; Eissen et al., 1994). The above magma types are 

chronologically ordered (oldest – youngest), and as such record the history of the basin. 

The history of the NFB mirrors that of the Lau Basin, which begins as BABB magma, 

where the subducting slab fingerprints onto the magmas. The magma type then changes 

to a depleted MORB-type, and in the case of the North Fiji and Lau Basins, evolves to a 

transitional magma that is affected by diverse mantle sources. In addition, any analyses 

of volatile elements that have been carried out in the NFB have reported <1.5 wt.% H2O 

in the South Pandora Ridge, in the northern part of the NFB, waning to <0.2 wt.% H2O 

in the lavas to the center of the NFB, nearest to the Northeast Fiji Triple Junction 

(Aggrey et al., 1988). Previous studies of the lavas closest to the NEFTJ have been 

characterized as N-MORB, on H2O and trace elements (Aggrey et al., 1988; Sinton et 

al., 1994). 

Samples from the NFB that have been extensively analyzed for major and trace 

elements and isotopic compositions show that the NFB lavas (particularly in the South 

Pandora Ridge) have high 87Sr/86Sr (up to 0.7037), low 143Nd/144Nd (down to 0.51283), 

and 176Hf/177Hf (down to 0.28303) relative to MORB (Sinton et al., 1994; Price et al., 

2014). Additionally, trace element ratios (Ba/Sm, Nb/Zr, LaN/SmN, LaN/LuN) as a 

function of 143Nd/144Nd highlight how the South Pandora Ridge in the NFB plot near or 

in the field for Samoan lavas. However, the two samples analyzed closest to our field of 

study for this paper show no such correlations in the above trace element ratios. The 

only relationship that is observed by Price et al. (2014), for the sample nearest to the 

Northeast Fiji Triple Junction, in a Ba/Nb ratio as a function of 87Sr/86Sr figure, 

whereby it plots in the space between MORB and Samoan lavas. 
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3.2.2 Previous studies of the North Fiji Basin and nearby Lau Basin 

Lavas erupted in back-arc basins globally are characterized by having 

geochemically depleted signatures (e.g. McCulloch & Gamble, 1991; Langmuir et al., 

2006; Pearce & Stern, 2006). However, the Lau Basin is unusual in that it samples 

several isotopically distinct hotspot components. First, the Samoan hotspot has been 

credited with influencing the geochemistry of Lau Basin lavas, where distinctive high-

87Sr/86Sr and high-3He/4He signatures—associated with the Samoan plume—have been 

identified in the Rochambeau Rifts in the northern Lau Basin (e.g., Lytle et al., 2012; 

Lupton et al., 2009; Poreda & Craig, 1992) (Fig. 4.1). The Samoan hotspot track, 

constructed on the >100 Ma Pacific lithosphere, extends west of the Samoan hotspot 

(Fig. 4.1). The hotspot track runs parallel to (and slightly north of) the Vitiaz 

Lineament, a bathymetric low that defines the boundary between the old, thick Pacific 

lithosphere and the young, thin lithosphere of the Lau and North Fiji Basins. Price et al. 

(2014) suggest that there is a keel of under-plated Samoan plume residue, attached to 

the base of the lithosphere, present along the length of the Samoan hotspot, including 

the portion of the hotspot that lies north of the Lau and North Fiji Basins. Price et al. 

(2014) argued that rollback of the subducting Pacific Plate, from 4 Ma to the present, 

has induced a long-lived toroidal flow field around the northern edge of the subducting 

Tonga slab: under-plated Samoan plume material is entrained in the toroidal flow field 

and advected southward into the Lau and North Fiji Basins (Price et al., 2014), thus 

explaining the Samoan plume signatures—including high 3He/4He and enriched 

87Sr/86Sr—in the Lau and North Fiji Basins up to 1400 km west of the Samoan hotspot.  
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3.2.3 Sample Description 

The lavas analyzed in this study were collected from the 2012 Northern Lau 

Transit Expedition of the R/V Southern Surveyor (cruise name: ss2012_v02). The 

locations of the samples are indicated in Figure 3.1 and expressed in Table 3.1. Fifteen 

basaltic submarine dredges were collected on the expeditions. The samples are divided 

into three regions: Caldera, S arm, and NE arm. The samples used in this study consist 

of very fresh, unaltered glass, suggesting that they are very young (Johnson & Sinton, 

1990). 
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Table 3.1 Sample information and chemical data for the lavas in this study. NLTD: (39 to 50) are ‘Fiji-Caldera’ samples, (44 to 46) are ‘S. 
arm’ samples, (38 & 48) are ‘NE arm’ samples. There is a 1σσ uncertainty for volatile concentrations. 
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Figure 3.1 Bathymetric map for the NEFTJ, indicating sample locations with a 
map (inset) showing the major tectonic features of the North Fiji Basin and 
Lau Basin. The white dotted line in the inset map shows the approximate 
location of the extinct Vitiaz arc and the yellow dotted line shows the location 
of the South Pandora Ridge (SPR), both are located to the north of the NEFTJ 
(red). The seafloor bathymetry was mapped with a multibeam echo sounder 
Kongsberg Simrad EM300 that sends 30 kHz frequency signals beneath the 
vessel. These signals produce a fan arc of 135 beams with a 1° by 1° range. The 
colors represented in the bathymetric map are indicative of depth. Depth 
ranges from ~2700 m (blue) to ~1800 m (red). The red dots show the samples 
for this study, with one further sample to the south located off the map. 

 

3.2.3.1 Dredges in the Caldera 

Nine samples from seven different dredge locations were recovered around the 

caldera of the NE Fiji Triple Junction. Dredge 39 sampled a mound in the caldera 

SPR
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yielding fresh glassy pillow basalts except for one larger pillow fragment that contained 

low to moderate brown alteration. The basalts contain large (1–3 mm) phenocrysts of 

plagioclase and olivine. Similarly, Dredge 40 sampled a deeper mound nearby. The 

yield included hydrothermal breccias covered in Fe-oxyhydroxides and aphyric basalts 

with moderate to high alteration in which the glasses graduated in colors, from black to 

brown. Dredges 41–43 were sampled from an area named ‘Clapham Junction‘ located 

in the southern part of the caldera. While Dredge 41 samples a lava field, 42 and 43 

sampled the central ridge within the rift to the south of the caldera rim. Dredges 41 and 

42 were similar in yield, containing glassy aphyric pillow basalts with thickly chilled 

margins and low to moderate alteration. Dredge 43 appears slightly more evolved than 

glasses from the same area, containing plagioclase-phyric (<5 mm) glassy pillow 

basalts. Dredges 49 and 50 sampled from the western floor and southeastern wall of the 

caldera. Dredge 49 contained aphyric glassy basalt and Dredge 50 returned a large 

quantity of glass that contained low to no weathering and minimal olivine phenocrysts 

(3 mm).   

3.2.3.2 Dredges in the S arm 

The S arm region of the NE Fiji Triple junction contains three of the dredge sites 

analyzed in this study. Dredge 44 was made on lava plain in the southern section of the 

south arm. This dredge was the furthest south we sampled in the NEFTJ. The rock types 

in this dredge varied from weathered aphyric lava to strongly plagioclase-phyric 

(<10mm) glassy pillow basalts with atypical olivine phenocrysts. There was light to 

moderate Fe-alteration within the rocks and minimal Mn cover. Dredge 45 sampled 

from the lava plain in the middle of the South arm containing plagioclase-olivine-phyric 

glassy pillow basalts. There was low to moderate weathering with the glassy rind 

having a dull luster. Several of the rocks collected in this dredge appeared to be more 
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primitive than the plagioclase-rich ones. We have analyzed both in this study. Dredge 

46, located in the northern section of the S arm, samples a ridge. The rocks are low to 

moderately altered pillow basalts. 

3.2.3.3 Dredges in the NE arm 

Samples were recovered from two dredge locations in the NE arm. Dredge 47 

was made on the ridge in the southern section of the northeast arm. The yield was low 

containing minimal pillow glass fragments with 1-mm Mn crust. We analyzed five 

samples from the glass fragments recovered in Dredge 47. Dredge 48 was made from an 

N-S striking ridge in the southern section of the northeast arm. The yield was composed 

of pillow basalts with low to moderately altered glass rinds and containing plagioclase 

(1–2 mm) and olivine phenocrysts. 

3.3 Analytical techniques 

We measured the volatile content of 15 samples from deeply (~1,900m to 

3,000m) erupted pillow basalts in the North Fiji Basin (see Fig. 3.1). Multiple quenched 

fresh glass chips from the rims of each sample were hand-picked to remove any visible 

alteration products. Larger pieces were put through a hydraulic press, crushed to a 

smaller mountable size and hand-picked. Several glass chips were mounted in an epoxy 

disc for geochemical analysis. 

3.3.1 Major element analyses 

Following sample mounting, the bulk compositional data and high-resolution 

backscattered electron (BSE) images for polished sections were obtained using the FEI 

NOVA NanoSEM 600 scanning electron microscope (SEM), which employs a field 

emission electron source, at the Smithsonian Institution. The SEM operated at 15 keV 
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with a sample current of 2-3nA. The SEM is equipped with a Thermo-Noran energy 

dispersive X-ray analytical system, and data are stored and processed using Thermo-

Scientific Noran System Six software. The System Six software allows for full-

spectrum imaging, in which complete energy-dispersive spectrum is collected and 

stored for each pixel within a map. The bulk composition of each frame (corrected for 

overlap) was determined by summing the compositions for all pixels, summing the 

frame compositions, and normalizing the totals to 100%. The software allows extraction 

of data from irregularly shaped areas so that unwanted pixels (e.g., epoxy and cracks) 

can be eliminated. Spectra were quantified using Gaussian spectrum fitting and Phi-

Rho-Z matrix correction. For this study, two check standards were used, USGS 

reference materials for basaltic glasses: VG-2 (Juan de Fuca Ridge) and VG-A99 

(Hawaii). Both were analyzed as unknowns at the beginning and end of each analytical 

session and again after every nine samples. Each sample was analyzed for major 

elements three times; the averages are reported in Table 3.1. 

3.3.2 Trace element analyses 

Trace element concentrations of the NEFTJ were measured at the Research 

School of Earth Sciences (RSES), Australian National University (ANU), using a 7500S 

Agilent ICP-MS, coupled to a HelEx laser-ablation system. A full description of the 

trace element analyses by laser-ablation ICP-MS is given in the study by Jenner & 

O’Neill (2012). Basaltic reference material BCR-2G (USGS) was run as an unknown 

with NIST SRM 612 for external calibration (preferred values from Norman et al. 

(2004)) in the same analytical session as the NEFTJ samples. The parameters of the 

ICP-MS are: RF power = 1350 W; ablation cell gas flow = 0.3 L min1 He + 0.02 L min1 

H2; auxiliary gas flow = 1.0 L min1Ar; laser energy = 50 55 mJ, linked to an ANU 

HelEX laser-ablation system, which employs a 193-nm wavelength EXCIMER laser 
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(110 (ArF) COMPex, Lambda Physik). The ablation diameter used was 86 μm and a 

laser repetition rate of 5 Hz, with a 187 μm spot for a few elements with low 

abundances. Data were acquired with 20 or 30 s of background measurement, followed 

by between 30 and 40 s of sample ablation (with longer count times for elements with 

low abundances). The ICP-MS was calibrated to low oxide production rates (ThO+/Th+ 

typically <0.4%, measured using NIST SRM 612) and this rate was monitored 

throughout each analytical session. The analysis was undertaken after >30 min after 

each sample change to ensure background counts, and oxide production rates during 

data collection were minimal. This method of analyzing trace elements with LA-ICP-

MS has a long-term (over a minimum of 3 years) RSD (relative standard deviation) as 

determined by replicate measurements of standards (NIST SRM 612 and BCR-2G) of ≤ 

2–4%. 

3.3.3 Volatile element analyses 

Volatile elements and halogens were analyzed on a Cameca nanoSIMS 

(secondary ion mass spectrometer) 50L at the Carnegie Institute for Science Department 

of Terrestrial Magnetism (DTM), following methods outlined by Hauri et al. (2002). 

The propagated uncertainties (1σ) of the final values take into account the uncertainty in 

the blank measurement and the uncertainty on the slope of the DTM calibration line. 

Glass fragments were mounted in epoxy in Al-metal disks and polished. The mounts 

were dried in an oven at 70oC for several days followed by coating in gold (top and 

sides). The mounts were stored in the oven at 70oC between ion probe analytical 

sessions to minimize water adsorption from the laboratory air. 

The samples and standards outgas in an airlock attached to the ion microprobe 

sample chamber, and again when inserted into the sample chamber. Measurements are 

taken at pressure <5×10−9 Torr, sample current 5-10nA, 10 kV, tuned with an imaged 
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field of view of 150 μm diameter on the sample surface, using a large contrast aperture 

at the crossover (400 μm). A 100 μm diameter field aperture is inserted into the image 

plane, and entrance and exit slits are then closed to achieve a mass resolution of 2400. 

The 100 μm field aperture limits the ion optical field of view to an area of 10 μm in 

diameter and gives access to only those ions originating from the central 10 μm of the 

crater. The total time for analysis is 10 min per spot: 5 min pre-sputter period followed 

by the collection of five sets of ratios. The standard used in this study is the San Carlos 

olivine (Mathez & Delaney, 1981; Mackwell & Kohlstedt, 1990). 

3.3.4 Sr and Nd chemical separation and mass spectrometry 

All Sr, and Nd isotopic measurements in this study were done on 200 to 450 mg 

of fresh volcanic glass (for NLTD lavas). Different methods of sample leaching, 

dissolution, column separation and mass spectrometric analysis were used when 

analyzing the NLTD samples (Fall 2012-Spring 2013). These methods are described 

below. 

All samples were acid leached prior to digestion at the Ecole Normale 

Supérieure in Lyon (ENS Lyon). The NLTD glasses were leached using the protocol of 

Blichert-Toft and Albarède (2009), which consists of leaching the glasses with 2 ml 6M 

HCl for 20 minutes at 120° C, followed by 10 minutes of sonication, then another 10 

minutes at 120° C, followed by 5 minutes of sonication and finally 5 more minutes at 

120° C; the HCl is pipetted off and the samples rinsed twice in milliQ H2O. 

Following leaching and rinsing, all samples were dissolved in a 3:1 mixture of 

concentrated double-distilled HF and HNO3 followed by evaporation to dryness after 

digestion for 48 hours at 130° C. Chromatography of the samples in this study were 

done by leaching the attacked samples for 48 hours with concentrated double-distilled 

HF following the methods outlined in Blichert-Toft et al. (1997). The CaMg-fluoride 
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precipitates resulting from the HF leaching step, which contained the Sr and Nd, were 

redissolved in 6M HCl after first fuming them with double-distilled HClO4 to 

decompose the fluorides. 

For the NLTD samples, the fraction hosting Sr and Nd following dissolution and 

leaching out of the Hf at ENS Lyon was transported to Boston University (BU) where 

Sr and Nd for these samples were recovered from the clean wash off the Pb columns 

using 0.7M HBr. Strontium and Nd for the NLTD samples were separated using ion-

exchange chromatography at BU: Sr was separated using Eichrom Sr-spec resin, and Nd 

was separated using a two-step protocol involving Eichrom TRU resin followed by 

Eichrom LN-Spec resin (following methods in Price et al., 2014). 

For all samples, Hf, Pb, Sr, and Nd were separated from the same sample 

dissolutions, thereby minimizing sample consumption and avoiding potential sample 

heterogeneity that could otherwise lead to unwanted isotopic variations. The total 

procedural blanks for Hf, Pb, Sr and Nd of the NLTD samples are < 20 pg, < 30 pg, < 

80 pg and < 35 pg, respectively (Price et al. (2014) and J. Blichert-Toft routine blank 

measurements). The blanks are all negligible relative to the amount of sample of Sr and 

Nd that were analyzed. 

Neptune MC-ICP-MS measured strontium and Nd isotopic compositions for the 

NLTD samples at the Woods Hole Oceanographic Institution (WHOI); the column 

chemistry and mass spectrometry for the NLTD samples were carried out during the 

same analytical sessions as the sample unknowns (and unleached USGS reference 

materials) analyzed in Price et al. (2014). Details on the measurement and standard 

normalization protocols are as follows: 

Strontium. For samples measured by MC-ICP-MS, intensities were measured on 

masses 82 through 88 and corrections for isobaric interferences on masses 87 (Rb), 84 

(Kr) and 86 (Kr) was made offline following the procedures outlined in Jackson and 
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Hart (2006). Isotopic ratios of Sr were corrected for instrumental mass bias relative to 

86Sr/88Sr of 0.1194 using an exponential law. Measured 87Sr/86Sr ratios of the samples 

were corrected for the offset between the measured and preferred 87Sr/86Sr values 

(0.710240; Jackson and Hart, 2006) for SRM 987. The external precision of the 

87Sr/86Sr measurements is estimated to be 15–25 ppm (2σ) (Hart and Blusztajn, 2006). 

Neodymium. For samples measured by MC-ICP-MS on the Thermo-Finnigan 

Neptune at WHOI, Nd isotopic compositions were corrected for instrumental mass 

fractionation relative to 146Nd/144Nd of 0.7219 using an exponential law. The JNdi-1 and 

La Jolla Nd standards were run during each analytical session. The 143Nd/144Nd values 

for JNDi-1 were adapted to the La Jolla 143Nd/144Nd value using a conversion factor of 

1.000503 (Tanaka et al., 2000). When this preferred JNdi-1 value (0.512104; Jackson 

and Carlson, 2012) is adapted to the La Jolla 143Nd/144Nd using a ratio of 1.000530 

(Tanaka et al. 2000), the preferred La Jolla value is 0.511847. The La Jolla and La Jolla-

renormalized JNdi-1 143Nd/144Nd measurements were averaged to give a final La Jolla 

average for the analytical session; measured sample 143Nd/144Nd ratios were corrected 

for the offset between measured and preferred (0.511847) La Jolla 143Nd/144Nd values 

(White and Patchett, 1984). The external precision of the 143Nd/144Nd measurements at 

WHOI is estimated to be 15–25 ppm (2σ) (Hart and Blusztajn, 2006).  

3.4 Results 

3.4.1 Major Element Geochemistry 

A summary of the sample descriptions and chemical data is provided in Table 

3.1. The North Fiji Basin lavas are a combination of alkalic and tholeiitic lavas, with 

SiO2 from 47.7 to 50.6 wt.% and total alkalis (Na2O+K2O) from 2.5 to 4.7 wt.% (Figure 

3.2). The caldera samples span across the alkali tholeiite division. The NE arm samples 
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are all alkali, and the samples from the S arm plot mostly in the tholeiitic field with only 

one sample plotting at the boundary. The lavas have similar major element 

compositions to averaged primitive normal MORB (Melson et al., 2002), except K2O 

and P2O5 that fall below our data. However, these are still within range for observed 

normal MORB.  

 

Figure 3.2 Total alkali versus silica plot summarizing the classifications of the 
rocks used in this study. The boundary for the alkaline and 
subalkaline/tholeiitic rocks is from Macdonald and Katsura (1964). The 
symbols are divided by their respective areas and remain the same for all 
subsequent plots. Circles represent the NEFTJ – Caldera (53 samples from 7 
dredges were analyzed for majors), squares represent NEFTJ – S arm (9 
samples from 3 dredges), and triangles represent NEFTJ – NE arm (14 
samples from 2 dredges). 

3.4.2 Water and carbon dioxide in lavas 

For a back-arc basin so far removed from a subduction zone, the lavas in the 

NFB exhibit a surprisingly large range of volatile elements: H2O (0.16–0.9 wt.%) and 

CO2 (80–359 ppm) (Fig. 3.3). The NFB lavas have volatile levels that exceed the range 

of MORB (< 0.7 wt.% H2O) (Fig. 3.3) and are similar to the OIB arrays of the 

Galapagos and Samoan hotspots. 
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Figure 3.3 Carbon dioxide content versus water, comparing studies of volatiles in 
magmas within other settings (Hawaii North Arch – Dixon et al., 1997; Hawaii 
Melt Inclusion – Hauri, 2002; MORB – le Roux, 2006; Samoa – Workman et 
al., 2006; Galapagos – Koleszar et al., 2009). The samples from this study are 
categorized into three groups: Northeast Fiji Triple Junction Northeast arm 
(NEFTJ – NE arm), Northeast Fiji Triple Junction South arm (NEFTJ – S 
arm), Fiji – Caldera (located in the center of the NEFTJ).  

 

Dissolved volatile elements in magmas exsolve by the formation of bubbles as 

the pressure exerted on the magma decreases. When vapor saturation pressure is equal 

to the hydrostatic pressure and magma ascent is slow, degassing can occur, but, when 

ascent is much faster, vapor saturation pressures increase because the magma does not 

have enough time to degas (Dixon & Stolper, 1995). It is evident that some of these 

samples lie on the ‘1:1 line’ between the depth of sample collection and the vapor 

saturation pressure (Fig. 3.4b). However, the majority of the samples are oversaturated 

in H2O and CO2 vapor. Additionally, there is a minimal distribution of vesicles within 

these rocks (0–5 vol.%), where, if the lavas had been fully exsolved, the vesicles would 
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have been ubiquitous. In Figure 3.4a, the variation of CO2 with no change in H2O 

displays open-system degassing in the magmas; however, an increase in H2O at lower 

pressures suggests incomplete degassing of these saturated magmas upon quenching.  

The solubility of CO2 is much lower than H2O in basaltic magmas (Javoy & 

Pineau, 1991; Dixon et al., 1995; Shishkina et al., 2010). Considering the similarities in 

incompatibility between CO2 and Nb (Saal et al., 2002; Cartigny et al., 2008), a 

correlation between CO2 and Nb would be expected if the magmas were undegassed. 

The CO2/Nb ratio is expected to be between 200 and 400 for undegassed melts; 

however, the NFB has CO2/Nb ratios of <136. There is a lack of correlation between 

CO2/Nb when plotted against MgO (not shown), and the lavas overlap with the MORB 

field. With low CO2/Nb values, open-system degassing for the NEFTJ lavas 

predominantly consists of CO2 in a vapor. Open-system degassing follows the 

decreasing CO2 trend indicated in Figure 3.4a and, at lower pressures, water becomes 

the dominant vapor phase. While the carbon dioxide vapor phase, shows a larger 

distribution relative to water in many of the NFB lavas (Fig. 3.4a), as the degassing 

follows the open-system decompression path there is no decrease in water. Thus, water 

loss (if any) has most likely not been significant and is, therefore, considered negligible.  

The lavas above the 1:1 line in Figure 3.4b have experienced incomplete 

degassing as they quenched rapidly. The dredge depth used in this plot is an average of 

the minimum and maximum dredge depths, meaning that the lavas, which traversed tens 

to hundreds of meters, could have been collected at any point in that range. The average 

dredge depth used may not be accurate for each sample and could explain why the 

NEFTJ (S arm and NE arm) samples are at or below the 1:1 saturation line. The least 

degassed samples are from the shallower (~1990 m deep) dredged caldera lavas and the 

most degassed are the deeper (~2200 – 2600 m deep) dredged S arm and NE arm lavas. 
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However, all of the lavas have sufficiently high saturation pressures that any loss of 

water by degassing is insignificant. 

 

Figure 3.4 Panel (a) Carbon dioxide content versus water is plotted with curves of 
constant pressure, for the isobars (solid lines) and open system degassing 

1:1 lin
e
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trends reported in Dixon & Stolper (1995) and Newman & Lowenstern (2002). 
The grey area represents the vapor saturation pressure for which the lavas in 
this study erupted. Panel (b) Relationship between depth at which the lavas in 
this study were collected and the calculated vapor saturation pressure (after 
Dixon, 1997) for mixed volatile (H2O-CO2) system. Given the use of a dredge in 
collecting samples there is a difference in dredge depth from start to finish 
(expressed as the error bars). The ‘1:1 line’ represents the threshold between 
saturated or oversaturated (those that plot on or above the ‘1:1 line’) and 
undersaturated (those that plot below the ‘1:1 line’) lavas at any given depth of 
eruption. The range in depth of collection for the samples is ~1,900m to 
~3,000m. The majority of the ‘Fiji – Caldera’ samples are saturated for their 
depth of eruption versus the flanks of the triple junction which do not exhibit 
as large a range in saturation (NEFTJ – NE arm & NEFTJ – S arm). 

3.4.3 Trace Element Geochemistry 

The lavas analyzed in this study display a broad range of trace element 

abundances. We illustrate these variations in primitive mantle-normalized plots (spider-

grams) (Figure 3.5). At maximum, the abundances for the lavas vary by nearly an order 

of magnitude for incompatible elements. The shapes of the spider-grams fall into two 

broadly similar patterns, where approximately half of the samples have higher 

concentrations of incompatible elements about the rest of the samples. The two broad 

patterns were observed in all three regions of the NEFTJ, and no systematic difference 

between them appeared to display. However, we continued to separate them by the three 

regions for consistency. 
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Figure 3.5 (A) Primitive mantle-normalized trace element patterns in this study 
showing fourteen glasses from the NEFTJ compared to a span of Pacific and 
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Atlantic MORB. The spider-gram shows two compositionally distinct magmas 
located in the NEFTJ. (B) Primitive mantle-normalized trace element patterns 
for the lavas analyzed in this study (NEFTJ) compared to MORB. Previously 
published MORB data from Jenner & O’Neill (2012) are compared with 
fourteen glasses from this study.  

 

The glasses analyzed in this study have all evolved past clinopyroxene 

saturation. This is evident in the presence of olivine and clinopyroxene in the hand 

samples in addition to the low Mg numbers calculated as: 

Molar percent = 100 x MgO/[MgO+FeO] 

and which span from 54 to 64. La/Sm and Gd/Yb ratios for glasses plot vertically when 

compared against MgO, partially overlapping the MORB field (Fig. 3.6c-d). This 

suggests that the fractionation of olivine, clinopyroxene, and in some cases plagioclase 

has had little to no impact on incompatible element ratios. Therefore, the use of these 

incompatible trace element ratios as a tool to evaluate primary melts is suitable.  
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Figure 3.6 MgO compared to (A) water, (B) carbon dioxide, (C) La/Sm, and (D) 
Gd/Yb ratios in lavas from the North Fiji Basin. In addition to new data from 
this study, previously published values from MORB are also shown (Melson et 
al., 2002; le Roux et al., 2006; Jenner & O’Neill, 2012). Symbols for the new 
data from the lavas in this study are the same as in Figure 3.2, in addition to 
the symbol for mid-ocean ridge basalt (MORB). 

 

La/Sm is used as a proxy for source enrichment. Sr isotope values are presented 

and discussed in depth in the following chapter, although the trends they exhibit are also 

significant to this chapter. The La/Sm values for the lavas in this study range from 1.1 

to 3.8 and steep positive correlation with 87Sr/86Sr. Gd/Yb also correlate with 87Sr/86Sr, 

spanning from 1.2 to 2.4. The Gd/Yb trend is horizontal for the lavas with lower 

87Sr/86Sr values (0.7028 to 0.7031) and a slightly positive trend for the lavas with higher 

87Sr/86Sr (0.7034 to 0.7036). The steepness of the rare earth element slopes suggests 

melting of material that fractionates light from heavy rare earth elements, such as 

melting within the garnet lherzolite stability zone, for very steep slopes, or for lesser 
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slopes, melting within spinel lherzolite stability zone (Hauri et al., 1994; Salters et al., 

2002). Conversely, N-MORB taps a depleted mantle that has undergone polybaric 

mixing and fractionation to create a homogeneous source with a flat rare earth element 

pattern; La/Sm and Gd/Yb are both around 1 (Hofmann, 1988). In the following 

sections, we attempt to distinguish the primary geochemical signals that enable us to 

understand the sources that have contributed to the composition and evolution of the 

mantle beneath the NFB. 

 

Figure 3.7 87Sr/86Sr compared to (left) La/Sm, (right) Gd/Yb ratios in lavas from 
the North Fiji Basin. The symbols are the same for both graphs. 

3.5 Discussion

3.5.1 Implications for magmatic source(s) 

Although the North Fiji Basin is situated in a back-arc basin, plate 

reconstructions have shown that the subducting slab is <1400 km to the east (Price et 

al., 2014). The NFB is a result of rollback of slabs from subduction zones to the east 

and west (Musgrave and Firth, 1999; Hall, 2002), but is not subject to flux from active 

subduction at the Vitiaz trench. The Vitiaz slab has ceased subducting and instead has 

continued to roll back, resulting in a horizontal slab beneath the NFB (Auzende et al., 
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1995; Musgrave and Firth, 1999). The substantial distance from the active trench 

coupled with stagnant tectonics of the area precludes the NFB lavas from having slab 

inputs; this is evident from trace element patterns which show the lack of enrichment in 

fluid mobile elements (i.e. U, Th, and Pb) but a relative enrichment in L-REE relative to 

N-MORB, observed as steep slopes in Figure 3.5. For comparison, the Mariana Trough 

and Lau back-arc basin, which are two of the most comprehensively studied and 

geochemically well-characterized (with the inclusion of volatile elements) back-arc 

basins, have gradational major and trace element compositions that span from island arc 

type to geochemically depleted (N-type) MORB (Pearce et al., 1994; Ewart et al., 1998; 

Newman et al., 2000). A decrease in carbon dioxide, as the lavas degas, along with 

other inherited trace element signatures from the subducting slab such as U, Th, and Pb 

enrichments, are recognized to be an effect of proximity to the active arc (Volpe et al., 

1990; Gribble et al., 1996; Newman et al., 2000). While we do observe some 

similarities in the enrichment of water and carbon dioxide, we cannot discern all the 

geochemical characteristics indicative of a subduction zone influence. This suggests that 

the enrichment of measured volatile elements and light rare earth elements stem from an 

enriched deeper source. This is in contrast to back-arc basin magmas erupting in the 

Eastern Manus Basin and associated with the Mariana and Tonga arc.  

The basalts from the NFB show no variation in MgO when compared to CO2 

and trace element discrimination ratios (Fig. 3.6). The lavas show enrichment in water 

relative to MORB within the same range of MgO (Fig. 3.6a, in blue dotted line). While 

the lavas often plot within MORB fields, the MgO values are too low to be directly 

derived from the mantle. We also observe a slight positive trend between CaO and 

MgO, indicating some fractional crystallization. However, the La/Sm array within a 

localized MgO range suggests that La/Sm ratios in the lavas have not been affected by 

fractional crystallization. Thus, these ratios can be used to link source variations. 
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Geochemically, H2O behaves similarly to light rare earth elements (LREE) 

(Michael, 1995). H2O is traditionally paired with Ce, given its well-studied and 

restricted range in MORB, OIB, and arc lavas (Stolper & Newman, 1994; Michael, 

1995; Dixon & Clague, 2001; Dixon et al., 2002; Simons et al., 2002; Workman et al., 

2006; Ruscitto et al., 2012). We observe a positive correlation in the NFB lavas between 

H2O and Ce, suggesting no water loss (Fig. 3.8b). In addition to a positive correlation, 

the lavas have a similar slope to MORB that plots in a field adjacent to the NFB lavas. 

We also note that the range for the NFB lavas extends further than that of MORB, 

towards a more enriched OIB-like source. There is a lack of correlation between 

H2O/Ce ratios and MgO, except an apparent elevated H2O/Ce range relative to MORB. 
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Figure 3.8 Panels show variations in (A) carbon dioxide and Nb, (B) water and Ce, 
(C) H2O/Ce and MgO in lavas from the North Fiji Basin. The lavas in this 
study are compared to previously published values from the ocean island 
basalts (OIB) and mid-ocean ridge basalts (MORB): Hawaii Melt Inclusion 
(Hauri, 2002), MORB (le Roux et al., 2006), Samoa (Workman et al., 2006), 
Galapagos (Koleszar et al., 2009). Circles represent the NEFTJ – Caldera (53 
samples from 7 dredges were analyzed for majors), squares represent NEFTJ 
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– S arm (9 samples from 3 dredges), and triangles represent NEFTJ – NE arm 
(14 samples from 2 dredges). 

 

As indicators of source enrichment, H2O/Ce display a near horizontal linear 

array when plotted against La/Sm and a positive correlation with Gd/Yb (Fig. 3.9a-b). 

H2O is more incompatible than Ce, with the result that, as the source becomes more 

enriched in incompatible elements, the H2O/Ce ratio also increases (Michael, 1995). 

Moreover, when compared to MORB, the NFB lavas are all enriched in H2O/Ce. La/Sm 

values in the NFB lavas range from 0.9 to 3.8 while Gd/Yb values range from 1.2 to 

2.5. The NFB lavas overlap the MORB range for both La/Sm (~1.1) and Gd/Yb (~1.3) 

(le Roux et al., 2006), although they extend beyond the MORB array. High La/Sm and 

Gd/Yb ratios (>1) are indicators of deeper melting within the stability field of garnet 

lherzolite (Hauri et al., 1994).  

Enrichment of these combined ratios (La/Sm and Gd/Yb) with no measurable 

enrichment in fluid mobile elements challenges the concept of adding a hydrous 

component to the melt through the dehydration of a subduction zone slab. By coupling 

these element ratios with water, it is evident that a plume (less depleted) source is 

responsible for the enriched geochemical signatures we observed. This is consistent 

with recorded observations near the plate boundary much further to the north, where the 

Samoan plume is infiltrating the mantle as a result of tectonic forces in the area (Price et 

al., 2014). 

CO2/Nb, when plotted against La/Sm and Gd/Yb (Fig. 3.9c-d), displays two 

trends: a vertical and a negative correlation. These trends can readily be explained by 

allowing two compositionally different magmas to degas. At one extreme, depleted 

samples at high degrees of partial melting will have a low initial CO2 and, as a result, 

will only lose a fraction of it by degassing. Conversely, an enriched sample with low 
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degrees of partial melt and high initial CO2 will lose most of the initial CO2 upon 

degassing (Javoy et al., 1978). While both lavas have similar CO2, their trace elements 

vary vastly, resulting in the two trends observed in Figure 3.9c-d. If the samples had not 

degassed, a trend between CO2 and Nb would be evident, but does not occur (Fig. 3.8a).  

 

Figure 3.9 Panels show variations in (A) H2O/Ce and La/Sm, (B) H2O and Gd/Yb, 
(C) CO2 and Gd/Yb, and (D) CO2/Nb and La/Sm for lavas from the North Fiji 
Basin and mid-ocean ridge basalts (MORB) (le Roux et al., 2006). Circles 
represent the NEFTJ – Caldera (53 samples from 7 dredges were analyzed for 
majors), squares represent NEFTJ – S arm (9 samples from 3 dredges), and 
triangles represent NEFTJ – NE arm (14 samples from 2 dredges). Water data 
plot higher than the MORB field, while carbon dioxide data plots within the 
MORB field. The arrows in panels (C) & (D)] indicate the degassing paths of 
two compositionally distinct lavas (refer to text). 

 

Continental crust is depleted and exhibits a negative Nb anomaly (Hofmann, 

1997). Conversely, a positive Nb anomaly usually signifies the melting of an enriched 

source. Figure 3.5 illustrates extended trace element abundance spider-grams for the 

NEFTJ. The spider-gram establishes trends for two compositionally distinct magmas. 
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The first, a steep slope showing enrichment in High Field Strength Elements (HFSE), 

Large Ion Lithophile Elements (LILE), and a negative Sr anomaly which represents 

plagioclase fractionation. The second, a shallower slope in the opposite direction, 

indicates melting of a depleted source with depletion in HFSE’s and LILE’s. Both 

compositionally distinct magmas retain positive Nb anomalies and negative Pb, Sr, and 

Tl anomalies that are not characteristic of a slab source (Hofmann, 1997). Additionally, 

a condensed REE spider-gram (Figure 3.5) exhibits the same patterns seen in the 

extended REE spider-gram. The NEFTJ lavas display a REE pattern that is congruent 

with MORB data from Jenner & O’Neill (2012). 

3.5.2 Mantle Melting Models 

We show two stage-melting models in Figure 3.10 for three compositions: 

Spinel – Spinel, Garnet – Garnet, and Spinel – Garnet. The original primitive mantle 

composition was taken from Palme & O’Neill (2014). The transition between spinel 

lherzolite and garnet lherzolite occurs between 18–27 kbar dependent on temperature 

(Klemme & O’Neill, 2000); we used the initial garnet lherzolite source mineral 

proportions from Davis et al. (2009). The primitive mantle was melted by various 

degrees (1–20%) using partition coefficients from the published literature (Table 3.2 

and 3.3) to show how the slope decreases with an increase in the fraction of melting. We 

used a batch melting equation where the composition of the liquid (melt) is calculated: 

 CL/C0 = 1 / [D0 + F(1 – P)] 

(from Shaw, 1970; in Rollinson, 1993). The composition of a trace element in the melt 

(CL) is determined as a function of the original composition (C0), where D0 in the 

equation is the bulk distribution coefficient at onset of melting, F is the weight fraction 

of melt produced (melt/[melt+rock]), and P is the bulk distribution coefficient of 

minerals making up the melt. The second stage melting uses the same previous batch 
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melting equation and partition coefficients. However, we modified both the primitive 

mantle trace element composition to be representative of the residual mantle and the 

initial lherzolite source mineral proportions, from the original Davis et al. (2009) 

lherzolite to a different value (Ol: 55%, Opx: 24%, Cpx: 18%, Gt: 5%), to simulate the 

depletion observed in Figure 3.5. 

 

Table 3.2 Values in trace element modeling, peridotite melting, magma/mantle 
interaction. References for each value are located at the bottom of the Table. 
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Table 3.3 Values in trace element modeling, eclogite melting, magma/mantle 
interaction. References for each value are the same as Table 3.2. 
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Figure 3.10 Two-stage mantle melting models for Spinel – Spinel, Garnet – Garnet, 
Spinel – Garnet stability zones. The partition coefficients used in the models 
are found in Tables 3.2 and 3.3 along with their respective sources. The black 
line in the melt plots is the starting composition before melting. 

 

The residual mantle (residue) was modeled using the batch melting equation 

where the composition of the solid (residue) is calculated: 

 CS/C0 = [1/(1 – F)] x [(1 – PF/D0)1/P] 

(from Shaw, 1970; in Rollinson, 1993). The trace element composition of the solid (or 

residue) (CS) is determined as a function of the original composition (C0), D0 is the bulk 

partition coefficient at onset melting of the residual solid, and P is the bulk distribution 

coefficient of the minerals that make up the melt. 

We show that with a two-stage melting model of a garnet-bearing lherzolite we 

can produce the REE signatures observed in the NEFTJ (Fig. 3.11). By melting low 

degrees (~1%) of an initial lherzolite that has 4% garnet we can reproduce the first steep 

enriched trend seen in Figure 3.5. In addition, the second stage melting of the residual 

mantle requires higher degrees of partial melting (>10%) in order exhibit the steepness 

of the originally depleted REE pattern. While our model includes 5% garnet in the 

second-stage melt of the residual mantle, the composition of the second-stage melt is 

indistinguishable between garnet and spinel lherzolite (Figure 3.11) because of the 

strong overlapping signature from garnet. Conversely, the first stage melting between 

spinel and garnet contain strong opposing signatures. Garnet progresses away from the 

source with a positive slope at ~45% angle where it is a factor of fractionation between 

La/Sm and Gd/Yb, while spinel progresses away from the source at a nearly vertical 

angle and is predominantly controlled by the fractionation of La/Sm. The Gd/Yb trend 

(Figure 3.11) of the natural samples matches the model by having garnet in the source. 

However, the composition of the second stage melt remains ambiguous in the models.  
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Figure 3.11 Two-Stage melting models from a Primitive Mantle source (Palme & 
O’Neill, 2014) for spinel and garnet lherzolites. The three models are 
coordinated by symbols: spinel to garnet (circle), spinel to spinel (square), 
garnet to garnet (diamond). Trace element Kd’s used in the models are 
presented in Table 3.2. The inset graph demonstrates a positive trend for the 
lavas in the study (NEFTJ), with a MORB background, that our models 
attempted to recreate with two-stage melting. 

 

H2O correlates just as well with the degree of melting (Figure 3.12) and provides 

strong evidence that garnet is not the mineral that is controlling the volatile elements in 

the NEFTJ. The volatile elements must, therefore, be hosted in other silicate minerals. 

In addition, a plot (Figure 3.13) showing the relationship between Nd and Sr isotopic 

compositions reveals that there is mixing between a MORB composition and the 

Samoan plume as the lavas plot in the isotopic space between these two end-members 

(Workman et al., 2004, 2006; Jackson et al., 2007, 2010; Gale et al., 2013).
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Figure 3.12 La/Sm ratio as a function of H2O. This shows that there is a mixture of 
N-MORB type (La/Sm <1) with a more enriched source (La/Sm >1). With the 
exception of an outlier, the NEFTJ (NE arm), the data trends towards an 
increase in H2O concentration as the magma source is enriched.  
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Figure 3.13 Plot showing Nd and Sr isotopic compositions for the lavas from the 
NEFTJ along with data for MORB and Samoa (Workman et al., 2004, 2006; 
Jackson et al., 2007, 2010; Gale et al., 2013).  

 

We argue that, with the evidence presented through the major element, trace 

element, and volatile analyses, the observed intrusion of the Samoan plume beneath the 

Australian plate is permeating as far south as the NEFTJ (Fig. 3.14), through a toroidal 

flow or finger-like structures (Turner and Hawkesworth, 1998; Price et al., 2014). The 

Samoan plume melts low degrees of deep, heterogeneously mixed, mantle within a 

garnet-bearing stability field to produce an enriched melt with a depleted residue. The 

second melting of this residue requires a high degree of melting, as shown through our 

models, such as a spreading center, to produce the adequate depleted signature observed 

in the NEFTJ. This two-stage melting is consistent with our trace element modeling and 

MORB

SAMOA
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our conclusion that a depleted mantle enriched with Samoan plume melt generates the 

geochemical signatures for the lavas erupting at the NEFTJ.  

 

Figure 3.14 Schematic of the Samoan hotspot infiltrating the North Fiji Basin in 
the Australian Plate. Adiabatic upwelling of a depleted mantle MORB leads to 
a hotspot fingerprinting its geochemical signature upon many of the lavas that 
would otherwise have a depleted signature within both the North Fiji and Lau 
Basins. This fingerprint is recognizable through the use of isotope, trace, and 
volatile elements. 

3.6 Conclusions 

Here we provide data for major, trace, and volatile element values for a region of 

the North Fiji Basin not studied before. Based on these data, we have found that the 

lavas from the NFB (triple junction) have degassed upon eruption, affecting only the 

carbon dioxide in the lavas. Moreover, we discovered that the water content of these 

lavas exceeds that of MORB, along with enrichment in REEs (La/Sm and Gd/Yb) 

relative to MORB. We explain these geochemical signatures as a result of a mixture of 

melts from variable sources in the mantle. These sources are MORB mixing with an 
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enriched plume (OIB) source in the field of garnet lherzolite stability, followed by 

advection and adiabatic decompression melting within the spreading center. The 

discovery of these magma signatures beneath the NFB is important in understanding the 

heterogeneities of volatile elements in the mantle, in addition to linking deeper mantle 

and subsurface crustal processes. 
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4 GEODYNAMIC
IMPLICATIONS FOR ZONAL 
AND MERIDIONAL ISOTOPIC 
PATTERNS ACROSS THE 
NORTHERN LAU AND NORTH 
FIJI BASINS 

Author’s Preface 

The following chapter is a published journal article in Geochemistry, 

Geophysics, Geosystems, volume 18, issue 3, p 1013-1042 (March 2017). The 

distribution of work is highlighted in a table ‘List of Contributions/Contributors – 

Division of Labor in co-authored articles’ (page iv). I contributed to the concept and 

design of the project. The planning and implementation of the project, where I 

contributed in how the project was going to be executed, analysis and interpretation of 

the data, and writing of the article. The written portion went through various iterations 

in which the people listed in the table contributed. Chapter 3 and Chapter 4 are 
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5 AN EXPERIMENTAL 
APPROACH TO 
UNDERSTANDING THE 
GENESIS OF SILICIC ARC 
MAGMAS: A CASE STUDY 
FROM THE LATE VOLCANO IN 
THE TONGA-KERMADEC ARC 

Abstract 

Late volcano is located slightly north of the center of the Tonga-Kermadec 

island arc. The lavas present on the volcano form the beginning of a trend towards more 

geochemically evolved arc magmas observed in the neighboring volcanoes. Basaltic 

andesite is the dominant type of rock on this volcano, although minor andesitic flows 

have also been observed. The phenocryst assemblages of the basaltic andesite lavas 

from Late are commonly plagioclase ± clinopyroxene ± orthopyroxene. We present new 
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analytical and experimental data to constrain the depth and pressures at which the 

geochemically evolved arc magmas from Late volcano were formed. Data suggest that 

crystal fractionation was the dominant process and this study also identifies the most 

likely fractionating assemblage. Phase relations from the natural samples were 

determined for a basaltic andesite (55.39 wt% SiO2). The mineral phase assemblages 

and the interstitial matrix of the natural basaltic andesites were reproduced 

experimentally under H2O-saturated conditions for all pressures greater than 1atm. The 

phenocryst assemblages in the experiments at high pressures are dominantly garnet ± 

clinopyroxene ± plagioclase (and varying proportions of glass). All of the experiments 

performed at 1atm are anhydrous, with phenocryst assemblages that are commonly 

clinopyroxene ± plagioclase ± ilmenite (and glass). Pyroxene thermobarometry suggests 

crystallization at 1020-1070 oC and depth that, by analogy to neighboring volcanoes, is 

between 0.8-1.8 kbar. 

5.1 Introduction 

Intra-oceanic arc lavas allow us to peer into processes that are occurring deep 

within the Earth but cannot access otherwise. Unlike many continental arcs, the lavas 

that are regularly generated at intra-oceanic arcs have not evolved so strongly and 

therefore represent a more reliable link to mantle processes. However, when an arc 

product does not prescribe to the expectations of mafic lavas production, it becomes a 

matter of much debate resulting in numerous models to explain this result (Wade et al., 

2005; Smith et al., 2006, 2010; Brophy, 2008; Reubi & Blundy, 2009). In particular, 

arguments have focused on the role of fractional crystallization of basaltic magmas in 

contrast to partial melting of lower crustal amphibolites with or without magma-mixing 

(Petford & Gallagher, 2001; Dufek & Bergantz, 2005; Annen et al., 2006). However, 
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fractional crystallization of basalt and partial melting of lower crustal amphibolites can 

be indistinguishable in major element and trace element characteristics of felsic lavas 

(Brophy, 2008). Therefore, understanding how evolved magmas are produced in an 

intra-oceanic arc is the crucial first step in understanding complex subduction zone 

processes. 

Most previous studies of the Tonga-Kermadec arc have focused on along-arc 

characterization (e.g., Ewart et al., 1973; Ewart & Hawkesworth, 1987; Gamble et al., 

1993; Turner et al., 1997, 2000, 2009; Turner & Hawkesworth, 1997; Ewart et al., 1998; 

George et al., 2005; Hergt & Woodhead, 2007; Castillo et al., 2009) with specific 

studies in this region mostly focusing on either the Taupo volcanic zone and the 

Kermadec arc (e.g., Gamble et al, 1997; Smith et al., 2003, 2006, 2009; Haase et al., 

2006, 2011, 2014; Cameron et al., 2010; Shane & Wright, 2011; Timm et al., 2011; 

Price et al., 2012). Recently, two studies analyzed Late’s neighboring volcanic islands, 

Tofua and Fonualei (Caulfield et al., 2012; Turner et al., 2012). Tofua has 

predominantly erupted basaltic andesite lavas, with minor dacitic lavas, whereas the 

eruptive products of Fonualei have mainly been dacitic for the last 165 years, with 

basaltic andesite and andesitic basal flows recorded as underlying the current dacitic 

flows. The petrogenetic model proposed for these two volcanic islands based on 

combining linear least-square models with mineralogy and major and trace element 

chemistry, is consistent with the general model proposed by Ewart et al. (1973) which 

suggests that the genesis of evolved lavas in the Tongan arc is due to low-pressure 

fractional crystallization of the parental magmas. Therefore, these two islands can be 

combined with data from Late allow us to form an evolutionary geochemical array for 

these more evolved lavas in the Tonga-Kermadec island arc. 

In this chapter, we report experimental results on a natural basaltic andesite to 

yield preliminary constraints for an evolved lava within an island arc (Tonga-
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Kermadec) that is better known for some of the most primitive lavas found in oceanic 

island arcs. This principal aim of the study was to recreate the temperature and pressure 

constraints, reported by previous work, in which these rocks are formed and to 

reproduce the phase assemblage observed in the natural sample. Our experiments aim to 

build on the theoretical work of these earlier researchers, although, as discussed in this 

chapter, some unforeseen limitations to this study restricted our ability to produce a 

comprehensive result. However, we will explore the interpretations we can make with 

the experiment results and data. 

5.1.1 Geological setting 

The Tonga-Kermadec island arc stretches from northeast of New Zealand to 

southwest of Samoa. The arc has formed from subduction of the Pacific plate beneath 

the Australian plate with an interruption in volcanism where the Louisville ridge 

subducts midway along the arc. This cessation in volcanism delineates the Tongan 

portion (to the north) and Kermadec portion (to the south) of the Tonga-Kermadec 

island arc.  

Late island is located slightly north of the center of the Tonga Arc on the Tofua 

ridge at around 18.81oS (Fig. 5.1). Late island comprises a small subaerial component 

within the context of a broader submarine volcano. The volcano rises 1500 m from the 

sea floor with a well-defined subaerial, conical volcanic peak reaching 540 m above sea 

level. The island is 6 km in diameter and circular with a 400-m wide and 150-m deep 

summit crater near its center. Small cinder cones occur to the southwest and on the 

northern flanks of the summit. There are two other craters on the island that are 

presumed to be explosion or collapse craters, one of which is filled with a saltwater 

lake. Late has had only two eruptions in recorded history, in 1790 and 1854, both of 

which have produced basaltic andesite and andesite lavas. The surface of the top part of 
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the central cone is covered with glassy spatter material and blocks. The majority of the 

lavas described by Bryan et al. (1972) are basaltic andesite with a younger andesitic 

flow generated from one of the northern cinder cones. 

 

Figure 5.1 Map of the Tonga-Kermadec arc showing the boundary between the 
Australian plate and the Pacific plate. The map shows bathymetry of features 
on the Australian plate, such as the Lau ridge and the Tonga ridge. The 
boundary along the Australian plate and Pacific plate is convergent, with a 
decrease in relative plate motion from north to south. The back-arc, Lau 
basin, is opening in a ‘V’ shape as a result of slab rollback (Bevis et al., 1995). 
The red triangles in the map represent the three volcanoes discussed in this 
study (Late, Fonualei, and Tafahi). The photograph is of Late volcano (right 
panel), the volcano that forms the basis of this study (from Smithsonian 
Institution). 

5.1.2 Geochemical and petrological context of Late 

The lavas from Late volcano, along with two neighboring volcanic islands, 

Tofua (to the south) and Fonualei (to the north), have allowed researchers to study and 
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illustrate magmatic evolution within one of the most primitive intra-oceanic arcs. Late, 

Tofua and Fonualei form an array representing geochemical evolution (with increasing 

SiO2), progressing from basalt to basaltic andesite and ultimately to dacitic lavas (Fig. 

5.2). The lavas erupted on Late, and the neighboring islands of Tofua and Fonualei are 

low-K tholeiites (Ewart et al., 1973, 1977; Ewart 1977). The lavas from the Tongan arc 

are inferred to have originated from highly depleted mantle wedge peridotite. The 

mantle wedge beneath the Tongan arc is believed to be refractory with depletion in 

high-field strength elements (HFSE) relative to light rare earth elements (LREE) 

attributed to varying degrees of back-arc melt extraction (Ewart & Hawkesworth, 1987; 

Woodhead et al., 1993; Ewart et al., 1994; Caulfield et al., 2008; Cooper et al., 2010). In 

addition to the geochemical signatures derived from the depleted mantle wedge, other 

signatures influencing the overall chemistry of the Tongan lavas have been detected, 

particularly a fluid flux from the altered oceanic crust and melts of sedimentary rocks. 

The altered oceanic crust fluid, which is derived from dehydration of the subducting 

oceanic crust, is indicated in lavas by high ratios of large-ion lithophile elements 

(LILE)/HFSE that decrease southward along the arc (Regelous et al., 1997, 2010; 

Turner et al., 1997). The addition of sediment melts in the Tonga-Kermadec arc has 

been identified using a variety of trace element and isotopic signatures, particularly 

through the most unambiguous tracer, 10Be, which can be used to narrow down the 

sediment flux to 0.25-1% (Plank & Langmuir, 1993; Turner et al., 1997; George et al., 

2005). 
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Figure 5.2 Classification of select Tongan volcanism (adapted from Turner et al., 
2012), plotted on a total alkali versus silica (TAS) for sampled Tofua, Fonualei, 
and Late lavas (Ewart, 1973; Caulfield et al., 2012; Turner et al., 2012). The 
cross hairs represent the starting material used in this study. The TAS 
diagram illustrates a gradation in silica content towards a more evolved 
composition in what otherwise would be a primitive end-member intra-oceanic 
arc. 

 

The phenocryst assemblages of the basaltic andesite lavas (53-55 wt% SiO2) 

from Late are commonly plagioclase ± clinopyroxene ± orthopyroxene (Fig. 5.3). The 

groundmass material is primarily quenched glass with plagioclase and coarse 

microcrystals of clinopyroxene. The plagioclase phenocryst compositions for Late are 

all bytownite, ranging in anorthite (84.3–87.8 wt%), albite (11.8–15.4 wt%), and 

orthoclase (0.3–0.5 wt%) proportions with subsidiary augite and pigeonite (Ewart et al., 

1973). 
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Figure 5.3 Petrographic images of natural basaltic andesite samples from Late. 
Since only a powder sample exists for the sample used in this study (Late-1), 
the thin section of Late-2 (pictured above), which is similar in composition and 
mineralogy to Late-1 (Ewart et al., 1973), is used by proxy as a petrographic 
guide to the powdered sampled. Panel (A) shows a macroscopic view of the 
thin section that has been impregnated by epoxy because of a high proportion 
of vesicles. Panel (B) demonstrates a large colorless plagioclase phenocryst 
surrounded by a fine grain matrix of glass, plagioclase, and clinopyroxene 
microlites in plane polarized light while panel (C) shows the same phenocryst 
through cross-polarized light with polysynthetic twinning in first order grey 
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and white. Panel (D) displays a large colorless clinopyroxene phenocryst in the 
center of the image surrounded by a fine-grained matrix of glass, plagioclase, 
and clinopyroxene microlites. Panel (E) exhibits the same clinopyroxene 
phenocryst in cross-polarized light, displaying higher birefringence and second 
order interference colors. 

5.2 Experimental and analytical methods 

5.2.1 Starting material and experimental details 

The starting material (L1) used in our high- and atmospheric-pressure 

experiments was a naturally occurring basaltic andesite from Late. Both this sample and 

volcanic island material have been extensively studied and geochemically characterized 

(Ewart, 1973). This sample also represents the first stage of magmatic evolution that 

culminates in dacitic eruptions on neighboring volcanoes (Tofua and Fonualei) along 

the Tonga-Kermadec arc. 

The material selected for our phase-equilibria experiments is porphyritic lava 

from the Late volcano, with a phenocryst assemblage composed of plagioclase, augite, 

and pigeonite. The matrix (volumetrically ~73%) is predominantly glass with 

microcrystalline plagioclase and clinopyroxene. The bulk rock composition of the 

starting material reported in previous studies (Ewart et al., 1973) was determined by 

electron microprobe analyses of the glass (Table 5.1) in the Geophysical Laboratory at 

the Carnegie Institution of Washington. 

Water content of 5 wt% was added to the capsule once the rock powder was 

inserted (capsule details are explained in the next section). This water content was 

derived from Carmichael (2002), which analyzed the conditions in which a hydrous 

andesitic magma with no trace of hydrous bearing minerals could form. This is further 

explored in the discussion section of this chapter.  
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The rock fragments were cleaned in an ultrasonic bath and initially ground using 

a tungsten carbide ball mill. This powder was then melted at 900 oC using a 1atm 

furnace where the sample was fused in the air in a platinum crucible and quenched by 

dropping into a water bath. The sample was crushed and ground in ethanol using an 

agate mortar and pestle to achieve a fine grain size (~10μm). This powder was further 

dried in an oven at 120 oC. A minimum of two cycles of melting and grinding was 

performed to improve chemical homogeneity. At each interval, a cut of the powder was 

analyzed with a petrographic microscope to confirm a crystal-absent glass. 
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Table 5.1 Composition (wt%) of starting material L1 (basaltic andesite) used in 
this study 

 

5.2.2 High-pressure experiments 

Phase-equilibria experiments were performed at a range of pressures (2.5–25 

kbar) and temperatures (900–1242 oC) using a piston-in technique in a half-inch (1.27 
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cm) Boyd-England (1960) type end-loaded, solid-medium piston cylinder apparatus at 

Macquarie University. The furnace assemblies (1.27 cm in diameter) were composed of 

talc-pyrex outer sleeves and crushable air-fired boron-nitride components (Fig. 5.4). 

Oxygen fugacity within the furnace assembly lies between the Ni-NiO and magnetite-

wüstite buffers (Green, 1976). A friction correction of 10% was applied to the measured 

pressures (Akella, 1973). The precision in pressure measurements is estimated to be 

within 0.5 kbar of the designated value. Temperatures were measured with a Pt-Pt90Rh10 

thermocouple and were automatically controlled by a Leeds & Northrup Electromax V 

single-loop controller. The temperature was maintained within ±2 oC of the initial set 

value. Run durations are presented in Table 5.2, ranging from 1–28 h in the high-

pressure experiments ≥5 kbar and up to 144 h at lower pressures (2.5 kbar). 

Experiments were quenched by manually turning off the single-loop controller while 

maintaining the designated run pressure. 
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Figure 5.4 Cross section of piston cylinder assembly used in experiments.  

 

Experiments were conducted on 20 mg starting mixtures encased in welded 

Ag70Pd30, Cr-Al, or Pt-PtRh capsules (Table 5.2). A micro-syringe, attached to a 

manually operated height adjustable lever, was used to add water to the capsule. The 

capsule was weighed at each interval where material was either added or removed to 

track any potential loss of components.  

After the experiments, the capsule was cleaned and weighed. To check potential 

water loss, the capsule was pierced and placed in the oven at 120 oC for a minimum of 

one hour before re-weighing. The capsules were sectioned longitudinally with a small 

diamond saw, mounted in epoxy, and polished for optical inspection and microprobe 

analysis.

Graphite

Boron
Nitride

Corundum

Al2O3

Talc 
or Salt

Pyrex

1.
25

 in
ch

es
31

.7
6 

m
m

0.
25

 in
ch

es
6.

35
 m

m
0.

5 
in

ch
es

12
.7

0 
m

m

0.
46

 in
ch

es
11

.6
8 

m
m

1 
m

m

Capsule 
Space

0.204 inches
5.0 mm

1.57 mm

0.264 inches
6.70 mm

0.319 inches
8.10 mm

0.393 inches
10.0 mm

0.5 inches
12.68 mm



Elemental Recycling of the Tonga-Kermadec Island Arc System and the associated Lau and North Fiji Basins 

 Raul Brens Jr - June 2018 188 

Table 5.2 Experimental conditions and run products (determined by SEM) 
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5.2.3 One-atmosphere experiments 

One-atmosphere (1-atm) experiments were performed at the Australian National 

University, Canberra. The sample was mixed with polyethylene oxide reagent to form a 

thin paste which was mounted onto 3-5mm diameter palladium wire loops. No issues 

arose with potential Fe loss using the Pd wire loops. The wire loops loaded with the 

sample were lowered into vertical muffle tube furnaces where the samples were 

converted into a silicate glass. Oxygen fugacity was controlled by an upward flow of 

CO:CO2 gas mixture (10,000 SCCM CO2 to 100 SCCM CO) into the furnace by Tylan 

F2800 mass flow controllers. Oxygen fugacity was buffered at NiNiO and calculated as 

outlined in O’Neill and Mavrogenes (2002), with uncertainties estimated to be ±0.05 log 

units. The calculated oxygen fugacity for the samples is reported in Table 5.2. 

Two samples were run adjacent to each other at each temperature interval. The 

experiments were loaded into an already partly-heated furnace (~600 oC) to prevent the 

samples, which were closely spaced on the wire loops, from sticking to each other. 

Once loaded, the CO and CO2 gases were switched on, and the temperature was 

gradually increased by 6 oC at one-minute intervals. The temperature inside the furnace 

was measured by two type B (Pt94Rh6 - Pt70Rh30) thermocouples and was set 10-15 oC 

higher (monitored by Eurotherm controllers) to correct for the placement of the 

thermocouple in the furnace. All samples except one were run over 48 hrs. The samples 

were quenched by releasing the wire loops into a water bath. 

5.2.4 Mineral identification and chemistry 

Minerals and matrix glasses in the experiments were identified using a Zeiss 

EVO MA15 scanning electron microscope with Oxford Instruments Aztec Synergy 
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EDS/EBSD, followed by chemical analyses on a Cameca SX-100 electron microprobe 

at Macquarie University. Glass analyses were obtained using 15-keV accelerating 

voltage, 15-nA beam current, and a defocused beam with the largest possible spot size 

for any given area (30μm). The conditions for mineral analyses were modified to attain 

a focused spot size of 1μm and an operating current of 20-nA. Counting times were 10s 

for peaks and 5s on the background on each side of the peak, and Na and K were 

analyzed first in each measurement to minimize alkali volatilization. Corrections to the 

raw data were made using the ZAF correction procedure of Bence and Albee (1968) 

using the PAP program (Pouchou and Pichoir, 1984). 

5.3 Experimental results 

5.3.1 Run products 

Experimental conditions and phase assemblages are presented in Table 5.2. 

Phases present include quenched glass, garnet, clinopyroxene, orthopyroxene, 

plagioclase, and accessory Ti-magnetite. Where present, garnet crystals populate large 

areas given their relatively large crystal size (Fig. 5.5a-d). All of the experiments 

nucleated crystals, except for the experiments with conditions at [1-atm, 1242 oC] and 

[5 kbar, 1020 oC], these are above the liquidus. Figure 5.6 illustrates the phases present 

in the experiments. The garnet nucleated at higher temperatures and pressures (e.g., [25 

kbar, 1200 oC], [20 kbar, 1150 oC], [15 kbar, 1060 oC], [10 kbar, 940 oC], [10 kbar, 900 

oC]). Clinopyroxene was present in all the runs at 5 kbar and higher, while plagioclase 

was only observed in one high-pressure sample [5 kbar, 900 oC]. However, Figure 5.5b 

shows the presence of plagioclase at high-pressure [10 kbar, 980 oC], but this sample 

had only 2 wt% H2O and therefore is not included in the phase diagram presented. 



Chapter 5: An experimental approach to understanding the genesis of silicic arc magmas: A case study from 
the Late volcano in the Tonga-Kermadec arc 

Raul Brens Jr - June 2018    193

 

Figure 5.5 Backscattered electron images of mineral assemblages at various P-T 
conditions. (A) 10 kbar, 940 oC, 5 wt% H2O; (B) 10 kbar, 980 oC, 2wt% H2O; 
(C) 25 kbar, 1160 oC, 5wt% H2O; (D) 15 kbar, 1060 oC, 5wt% H2O. Crystal 
phases present are large crystals of garnet relative to the smaller 
clinopyroxene and plagioclase crystals. The groundmass is predominantly 
glass with microcrystals of plagioclase and clinopyroxene. Panel (b) represents 
the only sample that nucleated all three the minerals (garnet, clinopyroxene, 
plagioclase). However, Panel (b) not only being near the cotectic, only had 2 
wt% H2O, which appears to have allowed the conditions for large phenocrysts 
to nucleate. 
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Figure 5.6 Stability fields for garnet, clinopyroxene, and plagioclase in the 
temperature range for magma generation within intra-oceanic arcs with the 
addition of 5 wt% H2O or no addition of H2O (anhydrous). The limit of 5 wt% 
H2O solubility is 1.3 kbar for water saturation of andesite (Eggler, 1972). The 
phase diagram shows that at higher pressures: (1) garnet stability at 10kbar 
increases with decreasing temperatures, (2) clinopyroxene is represented 
throughout all the phase boundaries, (3) plagioclase enters at low pressure and 
low temperatures. While the anhydrous one-atmosphere experiments show 
that the melting temperatures for plagioclase and clinopyroxene increase.
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and no observed phenocrysts, suggesting that the run was slightly above the garnet-

stability region. 

One experiment was performed with 2 wt% H2O. This sample was crystal-rich, 

and there was a low glass yield. This run contains mostly glass, plagioclase, and 

clinopyroxene crystals. It is close to the garnet-in boundary because the garnet crystals 

were smaller than the garnet in any of the other samples. This suggests that water may 

have affected nucleation by increasing the number of nucleation sites. 

The 1-atm experiments each yielded two experiments at each set temperature. 

Both beads in the experiments were prepared and handled the same way. The 

experiments ([1-atm, 1242 oC], [1-atm, 1196 oC], [1-atm, 1177 oC]) were near the 

liquidus which made it difficult to discern crystal nucleation. Moreover, these samples 

were heavily fractured through the quenching process, making it difficult to distinguish 

crystals from fractures, particularly at the smaller scale. I etched these samples to 

expose the crystals in the samples. Etching the samples revealed that [1-atm, 1242 oC] 

was above the liquidus and [1-atm, 1196 oC] and [1-atm, 1177 oC] were close to the 

liquidus. However, the latter two contained microcrystals of plagioclase.  

The lower temperature 1-atm runs [1120 oC], [1117 oC], [1099 oC], and 

[1180 oC] all contain larger crystals of plagioclase, glass, and small crystals of 

clinopyroxene. This is because, for plagioclase, the number of nuclei is small and the 

growth rate is high, resulting in larger phenocrysts. The accessory mineral found in the 

1-atm runs is ilmenite, which nucleated at the lowest temperatures (below 1099 oC) run 

for experiments [1-atm, 1099 oC] and [1-atm, 1080 oC]. The run products in the 2.5 kbar 

range were a combination of glass, plagioclase, clinopyroxene, orthopyroxene, and 

either ilmenite or magnetite as accessory phases.  
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5.3.2 Mineral chemistry 

For each experimental run, the individual phases (listed in Table 5.2) were 

analyzed and reported in Tables 5.3 through 5.6. Ewart et al. (1973) found two types of 

pyroxene compositions in the natural rocks, augite (cpx) and hypersthene (opx). 

Clinopyroxene compositions for the experiments are Wo12 – 48 – En20 – 55 – Fs12 – 35. The 

pyroxenes that nucleated in our experiments varied slightly in composition (Fig. 5.7a). 

Most of the pyroxenes were augite; however, in two experiments diopside and 

hedenbergite formed. Moreover, I averaged three analyses for the experimental run at [5 

kbar, 900 oC] which is included in the tables, yet we note that the chemical analyses for 

that sample showed crossing grain boundaries and did not return an accurate analysis of 

the clinopyroxene in this sample. Plagioclase phenocrysts in the natural sample are 

extremely calcic bytownite (An84–89) that plot near the anorthite-bytownite boundary 

(Ewart et al., 1973). The plagioclase phenocrysts in the experiments are less calcic than 

the natural sample but still plot in the bytownite region (Fig. 5.7b). Plagioclase 

compositions are An72 – 78 – Ab21 – 26 – Or0.5 – 1.8. 
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   Table 5.3 Melt compositions (wt%) 
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Table 5.4 Clinopyroxene compositions (wt%) 
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      Table 5.5 Plagioclase compositions (wt%) 
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Figure 5.7 (A) Pyroxene compositions in mole percent for a range of natural and 
experimental run products from Late volcano. The dotted line denotes the 
boundary between clinopyroxene and orthopyroxene. Wo, Di, Hd, En, and Fs 
denote pyroxene end-members: wollastonite, diopside, hedenbergite, enstatite, 
and ferrosillite. (B) Plagioclase compositions in mole percent for a range of 
plagioclase phenocrysts analyzed in the natural and experimental run 
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products from Late. The ternary diagram illustrates the variation in 
plagioclase between Anorthite-Albite-Orthoclase (An-Ab-Or). 

5.3.3 Phase relations of L1 

To understand fully the stability fields for the phases present in the experiments, 

the experimental results (Table 5.1) were used to construct a P-T phase diagram (Fig. 

5.6), which depicts the stability fields for garnet, clinopyroxene, and plagioclase. The 

phase diagram contains the experiments conducted with 5 wt% H2O at ≥5 kbar and 

anhydrous 1-atm experiments within the temperature range for magma generation 

within intra-oceanic arcs. According to Eggler (1972), the maximum pressure for 

saturation with 5 wt% H2O in andesites is 1.3 kbar. The P-T phase diagram illustrates 

that garnet stability increases at lower pressures as the temperature of the magma 

decreases (i.e., at higher temperatures garnet is confined to higher pressures). 

Clinopyroxene was found in all of the hydrated experiments, and it was the only 

observed phase found at the liquidus. Plagioclase enters at 5 kbar and 900 oC in the P-T 

diagram. 

The anhydrous 1-atm experiments have a liquidus that is shifted to slightly 

above 1200 oC. At 1196 oC plagioclase appears and at 1120 oC clinopyroxene 

(pigeonite) enter (Fig. 5.6). An accessory phase mineral (Ti-ilmenite) is observed at 

1099 oC. Two duplicate beads, with the same starting material, were each hanging on 

the 1-atm experiment loop. The run products for both were often similar regarding 

phases present, except for sample B26-14 (at 1117 oC), which had crystals form in only 

one of the beads; however, the run was replicated at the same temperature (sample B26-

12). 
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Figure 5.8 Quadrilateral diagram adapted from Lindsley and Andersen (1983) 
showing compositions of natural coexisting clinopyroxenes and 
orthopyroxenes within the Late-1 lavas (Ewart et al., 1973). Di, Hd, En, and Fs 
denote pyroxene end-members: diopside, hedenbergite, enstatite, and 
ferrosilite. The pyroxenes plot slightly above the 1000 oC temperature curve. 

5.3.4 Attainment of Equilibrium 

Previous studies show that the duration for which the experiments ran was 

sufficient to achieve equilibrium in melts and mineral assemblages (Green, 1972; 

Green, 1976; Nicholls & Harris, 1980). Above 1100 oC, the time required to produce 

equilibrium is 1-4 h, below 1100 oC needed greater than 6-12 h, and below 950 oC 
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greater than 12 h is sufficient. Additionally, the equilibrium between the phases and the 

melt is indicated by the homogeneity of the mineral phases.  

5.3.5 Use of limited data 

Only limited data could be collected due to issues with the analytical facilities. 

This meant that not all of the run products and phases were able to be analysed for 

major elements. The successful experiments were analyzed for mineral phases and 

scanned for back-scattered electron images. In some cases, such as samples M10-47 and 

M10-60, the analyses overlapped a microcrystal resulting in a mixture of glass and 

mineral, these analyses have been excluded. Furthermore, variability in Fe is observed 

as a direct result of a small number of analyses, FeO totals increase as the number of 

analysis decrease. This probably also has to do with minimal overlapping in 

microcrystals. However, the lack of further analysis does not allow for a conclusive 

result. As an outcome of the limited data, the foundation of this study became to 

positively identify the phases in its experiments and their interpretation concerning the 

depth of crystallization beneath Late. 

5.4 Discussion 

5.4.1 Island-arc magmas: evidence for hot, wet, and shallow melt 

generation 

Ewart et al. (1973) inferred that the crystallization of Tongan magmas had 

occurred at ≤2 kbar in pressure. This inference was made using experimental and 

mineralogical constraints of high alumina basalt in water saturated conditions (Yoder & 

Tilley, 1962), and the olivine tholeiite water in undersaturated conditions (Holloway & 
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Burnham, 1972). Ewart (1976) also estimated temperatures for the crystallization of the 

Tongan basaltic andesites, using various geothermometers to calculate the temperature 

of the Tongan basaltic andesites, resulting in estimates for: (1) pyroxene equilibration 

(990-1150 oC), (2) initial eruptive quenching (1008-1124 oC), and (3) plagioclase 

liquidus temperatures at 1 bar (1210-1277 oC). 

Naturally coexisting augite and pigeonite pyroxenes in the sample from Late 

(L1) were used to constrain the estimated temperature of crystallization following the 

method used by Lindsley and Andersen (1983) (Fig. 5.8). The projection on Figure 5.8a 

is on a 1-atm quadrilateral and generates a temperature of ~1020 oC. If we use the 5 

kbar quadrilateral (Fig. 5.8b), it produces a higher temperature of ~1075 oC. This figure 

is consistent with the calculated values attained by other studies (Ewart et al., 1973; 

Ewart, 1976; Caulfield et al., 2012; Turner et al., 2012). Ewart et al. (1973) inferred 

through the use of linear least-squares models, mineralogy, and major and trace element 

chemistry, which more evolved lavas from the Tongan arc are the product of fractional 

crystallization of basalt andesite magmas at low pressure (≤2 kbar). Ewart (1976) 

further refined the model by combining temperature estimates with experimental data to 

infer crystallization in water-saturated conditions at pressures <2 kbar. Recent studies of 

Tofua and Fonualei have utilized geothermometry to constrain the temperatures of the 

evolved lavas on the respective islands to 950-1200 oC for Tofua, and a smaller range of 

1000-1100 oC for Fonualei (Caulfield et al., 2012; Turner et al., 2012). 

Water and carbon dioxide (H2O and CO2) contents for lavas from Tofua have 

been reported by Cooper (2009) as yielding a maximum H2O content of 4.16 wt% and a 

maximum CO2 content of 350 ppm. Using the H2O-CO2-melt solution model 

(VolatileCalc) of Newman and Lowenstern (2002), saturation curves were calculated by 

Cooper (2009) to show that a degassing trend occurred between the pressures of 0.5-2 

kbar. Caulfield et al. (2012) elaborated by highlighting the incremental changes of water 
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at a consistent carbon dioxide range, inferring magmatic ponding. This is supported by 

Spilliaert et al. (2006) who concluded, from melt inclusion data, deep CO2 flushing 

followed by dehydration of the magma. Thus, magma was being stored at a shallow 

depth (<5 km) and the predominance of crystallization, occurring as the magma 

ascends, is driven by the loss of volatile elements. 

A comparison of the Late lavas to Paricutin andesites (located in Mexico; 

Eggler, 1972) shows that saturation with 5 wt% H2O occurs up to ~1.5 kbar. The 

Paricutin andesites are similar to the Late basaltic andesites except for being less calcic 

and more alkali and silica-rich. The liquidus of Late occurs at a lower temperature than 

at Paricutin (~1050oC at 5 kbar increasing to 1205oC at 1-atm) (Eggler, 1972). 

Moreover, Ewart et al. (1977) postulated that the absence of amphibole and olivine and 

the preponderance of highly calcic plagioclase in the lavas meant that the magmas had 

less water and were only water saturated at pressures <0.5 kbar. Therefore, if the lavas 

from Late have similar water contents to the neighboring volcanoes, then it supports the 

models featuring shallow crustal fractional crystallization suggested by both Caulfield 

et al. (2012) and Turner et al. (2012). 

5.4.2 Partial melting of amphibole versus fractional crystallization 

Amphibole is notably absent from the lavas from Late and the neighboring 

volcanoes that erupted evolved lavas to the north (Fonualei) and the south (Tofua). 

However, given the number of publications addressing the role of fractional 

crystallization and amphibole in generating silicic magmas in intra-oceanic arcs (Wade 

et al., 2005; Smith et al., 2006, 2010; Brophy, 2008, 2009; Reubi & Blundy, 2009, 

Caulfield et al., 2012; Turner et al., 2012), this section will explore this topic in the light 

of the experimental data from Late. 
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Davidson et al. (2012) explored a means by which to differentiate mineral 

control (amphibole and clinopyroxene versus garnet) and sediment melting on REE 

partitioning, by employing Dy/Dy*. The equation is calculated as: 

Dy/Dy* = DyN / LaN
4/13 YbN

9/13 

(Davidson et al. 2012) where DyN, LaN, and YbN are the chondrite-normalized values of 

Dy, La, and Yb, respectively. The normalization constants I use are from Nakamura 

(1974). Using Dy/Dy*, as a representative middle rare earth element, and Dy/Yb allows 

discrimination of amphibole and clinopyroxene from garnet fractionation by measuring 

the concavity of the REE pattern. The effects of minerals such as olivine, 

clinopyroxene, amphibole, garnet, and plagioclase on the REE patterns are expressed in 

Dy/Dy*-Dy/Yb, illustrated in Figure 5.9; however, Davidson et al. (2012) argued that 

olivine and plagioclase do not present significant effects on the concavity of the REE 

pattern and that clinopyroxene, amphibole, and garnet were the primary minerals 

accountable as the controls. Amphibole (and to a lesser extent clinopyroxene) have the 

most significant effect on both Dy/Dy* and Dy/Yb, which leads to a positive slope 

“step-down” feature away from the MORB field. A garnet influence (batch partial 

melting and fractional crystallization) only affects Dy/Yb, displayed on the Dy/Dy*-

Dy/Yb figure as a horizontal array away from the MORB field and in the opposite 

direction to amphibole and clinopyroxene. Both trends are distinguishable features of 

the control these three minerals have on the REE pattern. Figure 5.9 illustrates general 

arc characteristics of depleted and enriched lavas derived from variably enriched 

MORB sources. Moreover, Figure 5.9 demonstrates the “step-down” feature ubiquitous 

in arcs which Davidson et al. (2012) suggest is controlled by amphibole or 

clinopyroxene fractionation. The lavas from Late plot in a similar step-down manner as 

the lavas from other arcs around the world. This trend supported the hypothesis made by 

Davidson et al. (2007, 2012) that amphibole has an important influence on the 
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formation of these lavas. However, given that there is no amphibole present in the 

natural samples these studies could not preclude the role that clinopyroxene may play in 

controlling arc differentiation trends. 

 

Figure 5.9 Variation of Dy/Dy* and Dy/Yb (from Davidson et al., 2012), showing 
general differences among arcs. Dy/Dy*, a representative middle rare earth 
element, and DY/Yb allows discrimination of amphibole and clinopyroxene 
from garnet fractionation by measuring the concavity of the REE pattern. The 
lavas from Late (red symbols) plot within the Tonga-Kermadec field in a ‘step-
down’ feature which suggests fractionation from amphibole and/or 
clinopyroxene. The fields show variable degrees of source LREE depletion and 
LREE enrichment. However, amphibole remains absent from all studies and 
investigations in the Tongan arc and Late volcano. 
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Studies have highlighted several factors that delineate the presence of amphibole 

in intermediate magmas: the source region, the stability of amphibole in water-

undersaturated melts, and the amount of water affecting the temperature of the partial 

melt (Eggler, 1972; Foden and Green, 1992; Ghiroso, 1999). A study of the possible 

ascent path for an andesitic magma from the Colima volcano (Carmichael, 2002) in 

Mexico addressed the conditions in which a hydrous magma with no trace of hydrous-

bearing minerals could form. The fate in the direction of magma ascent is dependent on 

the temperature and initial water content of the magma. Water-undersaturated (< 6 wt% 

H2O) magmas at temperatures above 950oC ascend, losing water, through the liquidus, 

circumventing the amphibole stability field, to a P-T region where anhydrous minerals 

precipitate (olivine, pyroxene, and plagioclase) (Carmichael, 2002). Therefore, the Late 

magmas are constrained by conditions where they are either too hot to crystallize 

amphibole or when the temperatures become suitable for amphibole nucleation, water 

will have already been lost from the magma through fractional crystallization processes, 

further preventing amphibole crystallization. None of the experiments from Late 

produced amphibole, suggesting that water remained undersaturated in the experiments; 

however, it is possible that the water content of the experiments is either lower or higher 

than natural conditions, particularly because water for Late has been taken by proxy 

from neighboring volcanoes (Cooper, 2010). Additionally, higher calcic plagioclase 

crystallizes at lower temperatures as a cause of higher water contents, which is observed 

in the plagioclase from the natural sample (Fig. 5.7b). Conversely, the experiments 

produced less calcic plagioclase which suggests that the water content in the 

experiments was lower than in the natural sample. 

Both fractional crystallization and partial melting of lower crustal amphibolite 

can lead to similar major and trace element characteristics in felsic magmas; however, 

constraints have been proposed to highlight the presence of amphibole. A decrease in 
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Dy/Yb ratios as the magma evolves (Fig. 5.10a) has been suggested to be a clear 

indicator of the presence of amphibole as the fractionating phase (Davidson et al., 

2007). However, the Late lavas plot on a horizontal array (with a slope for the linear 

trendline of -0.0308) indicating that amphibole is not present in the fractionation of their 

magmas. Furthermore, models proposed by Brophy (2008) to discriminate between the 

effects of fractional crystallization and amphibolite partial melting require lavas that are 

influenced by amphibolite melting to display a horizontal or negative array. By contrast, 

the Late lavas (Fig. 5.10bc) demonstrate a positive array as they follow the shallow 

crustal (low-P) fractionation trend.  
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Figure 5.10 Variation of Dy/Yb, La, and Yb vs SiO2 for the Late volcanic rocks 
(red symbols) along with vectors calculated by (A) Davidson et al. (2007) for 
fractionation in heavy rare earth elements by garnet, gabbroic fractionation, 
or amphibole (B & C) and by Brophy (2008) for low-P and high-P crustal 
fractional crystallization or amphibolite partial melting. (A) Late volcanic 
samples plot flat along the gabbroic fractionation vector and (B) follow the 
low-P (lower crustal) fractional crystallization trend. 

 

Models produced by Ewart et al. (1973), Caulfield et al. (2012), and Turner et al. 

(2012) have shown that the magmas from the Tongan arc have undergone low-pressure 
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fractional crystallization from mafic parental magmas. Furthermore, a recent study 

(Adam et al., 2016) on the phase equilibria of the crystal phases present (plagioclase, 

orthopyroxene, and diopside) plots bulk rock data from the Tonga-Kermadec arc on a 

CaAl2O4-silica-forsterite projection (Fig. 5.11). Adam et al. (2016) demonstrate magma 

evolution by fractional crystallization that is driven by water loss from magmas as they 

ascend to shallow (low pressure) depths. The phase equilibria in conjunction with the 

barometry for phenocrysts (0.8-1.8 kbar) in the Tongan lavas (Ewart et al., 1973; 

Caulfield et al., 2012) show that the melts fractionated along at the same low-pressure 

cotectic. 

 

Figure 5.11 Compositional data for Tongan volcanic rocks projected within the 
CaAl2O4-silica-forsterite system, together with diopside-saturated liquidus 
relations for matching low-alkali melts (from Adam et al., 2016). Data for Late 
volcanic rocks: Ewart et al. (1973). Data for liquidus relations: Baker & 
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Eggler (1987), Moore & Carmichael (1988), Draper and Johnson (1992), 
Grove et al., (2003).  

 

The available phase equilibria experiments for the Late volcano suffice to nullify 

an origin by high-pressure crystallization or a partial melting origin. The absence of 

amphibole in the Late samples and in reported observations along the arc (Baker et al., 

1971; Bryan et al., 1972; Ewart et al., 1973, 1977; Ewart & Hawkesworth, 1987; 

Caulfield et al., 2012; Turner et al. 2012), along with the evidence presented in this 

section, supports the assertion made in other studies that amphibole does not play a role 

in the fractionation of these magmas (Ewart et al., 1973; Caulfield et al., 2012; Turner et 

al., 2012). 

5.4.3 Future work 

The conclusions made in this study support current models. The limitations of 

the experimental apparatus mean that we could not reach the low pressures necessary to 

produce a definitive result at the low pressures inferred by geochemical modeling. 

Further work in constraining P-T conditions for evolved lavas in the Tonga-Kermadec 

arc will need to conduct successful experiments that can reliably maintain pressures of 

<2.5 kbar. Utilizing a rapid-quench TZM apparatus is the way to accurately generate 

experiments at those lower (<2.5 kbar) pressures. These apparatuses are currently being 

constructed at the Australia National University, with completion not expected until late 

next year.  

5.5 Conclusions 

The Late volcanic rocks are neither the most primitive nor the most fractionated 

rocks in the Tonga-Kermadec arc. However, when compared to the neighboring 
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volcanoes, together they form an array that spans from primitive to more evolved rocks. 

The experiments performed on Late-1 provide us with a unique window into the 

evolution of these intra-oceanic arc magmas. The experiments conducted in this study 

support the previous studies which negate the existence of amphibole (and subsequently 

a derivation by partial melting of lower crustal amphibolite). Furthermore, the 

experiments in this study show that the P-T stability field for Late is in a shallower 

crust. The magmatic evolution of Late has been one of fractional crystallization 

propelled by water loss from magmas as they ascend to shallow (low pressure) depths. 

The phase equilibria in conjunction with the barometry for phenocrysts (0.8-1.8 kbar) in 

the Tongan lavas show that the melts equilibrated at the same low-pressure cotectic 

through fractional crystallization. 
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6 CONCLUSION 

The research presented in this thesis looks at numerous factors that affect the 

output of volcanic rocks in subduction zones. Chapter 2 begins with an analysis of 

lithium isotopes and how they are transferred from input to output in the Tonga-

Kermadec arc. Chapter 3 employs trace and volatile elements to understand the 

geochemical reservoirs that occupy the upper mantle to explain heterogeneities in the 

North Fiji basin. Chapter 4 aims to constrain the nature of the various geochemical 

plume signatures to constrain the origin of the geochemical signals in the Lau and North 

Fiji basin by mapping mantle flow patterns through the use of various geochemical 

tools. In Chapter 5, I return to the arc front to constrain the depth and temperature in 

which the evolved lavas from Late volcano formed. This final chapter provides a 

summary of the ideas presented in this thesis and reflects on the current understanding 

of Tongan volcanics and the scope for further work. 

6.1 Summary of lithium isotopes 

I have undertaken a reconnaissance study of Li isotopes in the oceanic Tonga-

Kermadec arc and Lau back-arc as well as the sediment profile at DSDP Site 204. Like 

many arc lavas, the range in δ7Li appears to have been muted by diffusive equilibration 
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with ambient mantle. Nevertheless, lava from Niuatoputapu Island appears to carry a 

signature from the subducting Louisville volcaniclastic sediments. Lavas from ‘Ata and 

L’Esperance Islands have unusually low δ7Li of unknown origin. The remaining arc 

front and back-arc lavas show results of δ7Li = 3.6 ± 0.7 ‰. Modelled δ7Li – Y/Li 

relationships require 1-3% bulk sediment addition to explain the range in observed 

ratios. This is an order of magnitude higher than required by Th-Nd-Be isotope 

systematics, suggesting an important role for fluid addition of Li from both the 

subducting sediments and altered oceanic crust beneath this arc – back-arc system. 

6.2 Summary of volatile content beneath the North Fiji basin 

The samples from the NFB exhibit a combination of major MORB-like chemical 

signatures along with high water content similar to ocean island basalts (OIB). This 

observation in geochemistry is unlike any other studied MORB or back-arc basin 

because it is not attributed to a subduction-related signature. Our results employ volatile 

elements (carbon dioxide and water) and their constraints, both combined with trace 

element ratios, to indicate a potential wet plume source for the observed enrichment in 

the North Fiji Basin. I have found that the lavas from the NFB (triple junction) have 

degassed upon eruption, affecting only the carbon dioxide in the lavas. Moreover, I 

discovered that the water content of these lavas exceeds that of MORB and displays 

enrichment in REEs (La/Sm and Gd/Yb) relative to MORB. These geochemical 

signatures result from a mixture of melts from variable sources in the mantle. These 

sources are MORB mixed with an enriched plume (OIB) source in the field of garnet 

lherzolite stability, followed by advection and adiabatic decompression melting within 

the spreading center. 
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6.3 Summary of shallow mantle flow beneath the Lau and North 

Fiji basins 

Firstly, we find that strong zonal and meridional geochemical patterns exist 

within the region which can be explained by the incorporation of three different Pacific 

hotspots via different processes over the past 4 Ma. Secondly, we found that the 

incorporation of under-plated Samoan mantle material via toroidal flow around the 

subducting Pacific Plate is a process that has probably occurred over the past ~4 Ma. 

Stronger Samoan geochemical signatures are seen in the eastern Lau Basin compared to 

the northern North Fiji Basin as the younger, hotter, and less viscous Samoan under-

plated material located in the east is more easily entrained than the older, colder, more 

viscous under-plated Samoan material to the north of the North Fiji Basin to the west. 

Thirdly, the weaker signals of geochemical enrichment observed in the western regions 

of the back-arc basins compared to the eastern regions may be due to longer periods of 

mixing with depleted ambient back-arc basin mantle, which will serve to more severely 

attenuate entrained Samoan hotspot signatures in the west. Fourthly, a plate 

reconstruction suggests that, although the subduction of the Rarotonga Hotspot track by 

~2 Ma can help to explain strong 87Sr/86Sr in lavas in the Lau Basin, only Samoan 

under-plated material can account for the enriched geochemical signatures in the North 

Fiji Basin. Fifthly, we also found that the most radiogenic Sr (EM) and Pb (HIMU) 

isotopic compositions in the Lau and North Fiji Basin lavas are limited to the 

northeastern Lau Basin and are likely to be related to the recent initiation of subduction 

of the Rurutu and Rarotonga hotspot tracks beneath the northeast Lau Basin, as well as 

enhanced entrainment of younger, hotter, under-plated Samoan plume material. Lastly, 

we found that north-south gradients in both the Lau and North Fiji Basins are most 

enriched in the northern portions of the basin and become more depleted southward. 
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6.4 Summary of origin of silicic volcanism in Tonga 

The experiments conducted in this study support previous studies which negate 

the existence of amphibole (and subsequently a derivation by partial melting of lower 

crustal amphibolite). Furthermore, the experiments in this study also show that the P-T 

stability field for Late is in a shallower crust. The magmatic evolution of Late has been 

one of fractional crystallization propelled by water loss from magmas as they ascend to 

shallow (low pressure) depths. The phase equilibria in conjunction with the barometry 

for phenocrysts (0.8-1.8 kbar) in the Tongan lavas show that the melts equilibrated at 

the same low-pressure cotectic through fractional crystallization. 
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A. CSIRO RESEARCH VOYAGE (SS2012_V02): NORTHERN 
LAU TRANSIT EXPEDITION (NOLAUTE) 

 

Figure 1 Voyage Track 

 

Figure 2 Location of dredges 
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Table  1 Dredge locations and sample description 
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Figure 3 Schematic outline of the individual areas mapped with the Kongsberg 
EM300 30kHz multibeam sonar during ss2012_v02 (NoLauTe). 
Abbreviations: NEFT, Northeast Fiji Triple Junction; Fi1, Fiji One; Fi2, Fiji 
Two (Seahorse); WCVZ, West Cikobia Volcanic Zone; FSC, Futuna Spreading 
Center; FCZ, Futuna Central Zone; FSZ, Futuna South Zone. 
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Figure 4 Bathymetric (swath) maps of the field areas samples in the northern Lau 
and North Fiji basins. The seafloor bathymetry was mapped with a multibeam 
echo sounder Kongsberg Simrad EM300 that sends 30 kHz frequency signals 
beneath the vessel. These signals produce a fan arc of 135 beams with a 1° by 
1° range. The colors represented in the bathymetric map are indicative of 
depth. Depth ranges from ~2700 m (blue) to ~1800 m (red). The red dots show 
the samples collected and analyzed for this thesis; some samples are located off 
the maps. 
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Table 2 Major, trace, and volatile element data for the samples dredged from the Lau and North Fiji Basin
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Figure 5 Photos of the research cruise ss2012_v02 (NoLauTe) (A) R/V Southern 
Surveyor. (B) Dredge which consisted of a mesh net and two trailing buckets. 
(C) Dredge hauls on the ship deck. (D) Sifting through the samples separating 
out the fresh volcanic glass. (E) Categorizing the samples and picking fresh 
glasses for geochemical analyses. (F) The samples recovered from the research 
cruise were a mixture of aphyric or porphyritic basalts with volcanic glass 
rinds. The visible phenocrysts were plagioclase. 

F



Elemental Recycling of the Tonga-Kermadec Island Arc System and the associated Lau and North Fiji 
Basins 

 Raul Brens Jr - June 2018 248 

 



Chapter 7: Appendices 

Raul Brens Jr - June 2018    249

B. LITHIUM ISOTOPE VARIATIONS IN TONGA-KERMADEC ARC 
– LAU BACK-ARC LAVAS AND DSDP SITE 204 SEDIMENTS 

Author’s Preface 

The following manuscript is the lithium manuscript that has been submitted for 

peer-review. It is included in my appendix because it has been re-written in a format for 

a shorter journal article and differs in content included for discussion. Here we show 

that lava from one island does appear to carry a signature from the subducting sediment, 

while most of the other lithium signatures from the other lavas in the arc have 

equilibrated in the mantle. 

Abstract 

The relatively compatible but fluid-mobile nature of Li and its fractionation in 

low-temperature environments has long fostered the possibility that Li isotopes might 

provide a complementary or new tracer of subducted materials in arc lavas. The Tonga-

Kermadec arc – Lau back-arc provides an end-member of subduction zones with the 

coldest thermal structure on Earth. Here we report Li isotope data for 14 lavas from the 

arc front and 7 back-arc lavas as well as 12 pelagic and volcaniclastic sediments along a 

profile through the sedimentary sequence at DSDP site 204. The arc and back-arc lavas 

range from basalts to dacites in composition with SiO2 = 48.3-65.3 wt. % over which Li 

concentrations increase from 2 to 16 ppm. The majority have δ7Li that ranges from 2.5 

to 5.0 ‰ with an average of 3.6 ± 0.7 ‰, similar to that reported from other arcs. The 

pelagic sediments have variable Li concentrations (33-133 ppm), and δ7Li that ranges 

from 1.2 to 10.2 ‰ whilst the volcaniclastic sediments have an even greater range of Li 

concentrations (3.6 to 165 ppm) and generally higher δ7Li values (8-14 ‰). Lava from 

Niuatoputapu at the northern end of the arc seems to show a clear contribution from the 

volcaniclastics. However, fluid versus sediment signatures are not readily distinguished 

for most of the lavas, and sediment mass-balance models require an order of magnitude 
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more sediment than previous estimates based on Th-Nd-Be isotopes. This is taken as 

evidence that fluids provide a significant proportion of the total Li budget in the lavas 

from the subducting sediments and altered oceanic crust. We infer that subsequent 

diffusive equilibration overprints much of this signature with the ambient mantle 

wedge. 

 

Keywords: Li isotopes; Tonga-Kermadec arc; Lau back-arc; recycling; 

sediment profile  
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1. INTRODUCTION 

Subduction recycles altered oceanic crust and overlying sediments into the 

mantle, and there is much interest in the extent to which these components influence the 

composition of arc lavas and mantle that may much later be sampled at mid-ocean 

ridges and oceanic islands. Lithium is a light, fluid-mobile trace element that has also 

been widely evaluated as potential tracer of subduction zone recycling (Brenan et al., 

1998; Elliott et al., 2004; Penniston-Dorland et al., 2012; Ryan and Langmuir, 1987; 

Tang et al., 2014; You et al., 1996). The utility of Li in this regard reflects low 

temperature isotopic fractionation that occurs during weathering and the uptake of 

seawater into sediments and the altered oceanic crust (e.g., Brant et al., 2012; Chan et 

al. 1992; Gao et al., 2012; Liu et al., 2013, 2015; Rudnick et al., 2004; Liu and Rudnick, 

2011). Accordingly, Li isotope variations in mid-ocean ridge basalts have been taken as 

evidence for long-term “pollution” of the mantle by subducted components (Elliott et 

al., 2006). Given this variation, it is surprising that studies of arc lavas have frequently 

been frustrated by the lack of clear Li isotope signatures of subducted components and 

the ubiquitous range of δ7Li = 3-4 being widely attributed to diffusive interaction 

between rising melts and the mantle wedge (e.g., Elliott et al., 2004; Penniston-Dorland 

et al., 2012; Tang et al., 2014). Nevertheless, some workers have found evidence for 

sediment-derived lithium isotope signals in arc lavas (Chan et al., 2002; Moriguti and 

Nakamura, 1998; Tang et al., 2014). 

In light of these on-going investigations, we present here Li concentration and 

isotope data from well-characterised samples from the oceanic Tonga-Kermadec arc and 

Lau back-arc as well as the sediment profile at DSDP Site 204 (Fig. 1). This arc 

encompasses the largest variation in subduction rates (24 to 6 cm/yr) worldwide (Bevis 

et al., 1995) and affords the opportunity to provide new insights into the debates 

outlined above because it erupts lavas which carry (1) a strong trace element (e.g. high 
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Ba/Th, U/Th) fluid signature (Ewart et al., 1998; Turner et al., 2003), (2) very low 

HFSE concentrations indicative of a depleted wedge that is highly sensitive to slab 

contributions (Ewart et al, 1998; Turner et al., 1997), (3) 226Ra evidence for rapid melt 

transport (Turner et al., 2000), (4) 10Be evidence for pelagic sediment addition (George 

et al, 2005), and (5) a unique tracer of subducted sediment in the Louisville 

volocaniclastics (Regelous et al., 1997; Turner et al, 1997). The back-arc lavas from the 

Fonualei Spreading Centre, the Mangatolo Triple Junction and Niuafo’ou offer a 

contrast to the arc front lavas as sediment- and fluid-related signatures become 

increasingly muted and the melting regime changes from fluid-fluxed to decompression 

dominated (Caulfield et al., 2012). 
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Fig. 1 Map of the Tonga-Kermadec arc – Lau back-arc region showing the 
localities of the samples analysed. Also shown are the DSDP Sites 204 and 596. 
VFSC – Valu Fa Spreading Centre, ELSC – Eastern Lau Spreading Centre, 
FSC – Fonualei Spreading Centre, MTJ – Mangatolo Triple Junction. 

 

2. GEOLOGICAL SETTING AND SAMPLE DETAILS 

The 2,800-km long Tonga-Kermadec island arc extends from the Taupo 

Volcanic Zone in New Zealand to the Vitiaz strike-slip fault south of Samoa and results 

from subduction of the Pacific plate beneath the Australian plate (Fig. 1). The arc is 

composed of more than 80 volcanoes, both above and below sea level (Stoffers et al., 
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2006; Wright et al., 2006). The Louisville seamount chain, an aseismic ridge, intersects 

the arc, effectively splitting it into the Tonga segment to the north, and the Kermadec 

segment to the south. The subducting Pacific plate is 85-144 Ma old (Billen and Stock, 

2000; Sutherland and Hollis, 2001) based on biostratigraphy of radiolarian chert and 

dating of ferrobasalts near to and from DSDP Holes 595/595A and 596/596A (Fig. 1). 

Both the dip of the slab and the convergence rate increase from south to north. The plate 

dips at an angle of 30o to a depth of ~120-130 km beneath both segments of the Tonga-

Kermadec arc and steepens to 55-60o in the Kermadec segment and 43-45o in the Tonga 

segment (Isacks and Barazangi, 1977). Convergence rate along the Kermadec segment 

is 5 cm/yr, while in the Tonga segment the rate increases to 16-24 cm/yr (Bevis et al., 

1995). The Tonga-Kermadec lavas consist predominantly of low-K basalts, basaltic 

andesites, andesites and minor dacites (see Ewart et al., 1998 for a summary). 

 The composition of the sediments on the Pacific plate are well constrained and 

dominated by pelagic clays (Burns et al., 1973; Plank and Langmuir, 1998; Turner et 

al., 1997). Close to the Louisville Ridge, these are underlain by volcaniclastics derived 

from this seamount chain. The thickness of sediment decreases northwards from 200 – 

70 m (Plank and Langmuir, 1998) and it is thought that the full sediment packet is 

subducted beneath this arc (Bloomer and Fisher, 1986). Mass balance calculations show 

that only a minor amount (~ 0.25-1 %) of the pelagic sediment is recycled into the lavas 

(George et al., 2005; Turner et al., 1997). Enrichment in 206Pb/204Pb is observed in the 

volcanoes at the northern end of the arc (Tafahi and Niuatoputapu), and this has been 

interpreted to reflect the incorporation of the Louisville Ridge volcaniclastic sediments 

(Regelous et al., 2010; Turner et al., 2007; Wendt et al., 1997). 

Westward of the Tonga-Kermadec arc lies two active back-arc basins, the Havre 

Trough to the south, and the Lau Basin to the north (Fig. 1). The rate of spreading 

increases northward from 6 cm/yr the Havre Trough to 16 cm/yr in the northern Lau 
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Basin (Bevis et al., 1995). In the northeast section of the Lau Basin, the Fonualei 

Spreading Center (FSC) is an active spreading center that extends obliquely away from 

the active volcanic front northward to the Mangatolu Triple Junction (MTJ) and is 

punctuated by a series of transform faults that extend into the MTJ (Fig. 1). The Lau 

back-arc basin basalts (BABB) range from near MORB-like compositions (Hawkins, 

1995) when erupted far from the arc, to arc-like compositions when erupted close to the 

arc (Pearce et al., 1995). BABB, such as those erupted along the Fonualei Spreading 

Center and Valu Fa Ridge, show subduction signatures that are characterized by 

enrichment in LILE, volatile elements (e.g., they have up to 2.5 wt.% H2O), and show 

depletion in HFSE (Caulfield et al., 2012; Keller et al., 2008; Langmuir et al., 2006; 

Pearce and Stern, 2006). 

The arc lavas analyzed range from basalt to dacite in composition and include 

some pumaceous samples, while the back-arc lavas are basalt to basaltic andesite in 

composition. Full petrographic and geochemical data for these samples can be found 

elsewhere (Acland, 1996; Caulfield et al., 2012; Ewart and Hawkesworth, 1987; Ewart 

et al., 1998; George et al., 2005; Keller et al., 2008; Leeman et al., 2017; Turner et al., 

1997, 2000; 2009). The sediments samples come from DSDP Site 204 which has been 

subdivided into three units (Burns et al., 1973). Unit 1 is comprised of pelagic clay and 

ash and dates from the Quaternary to early Miocene or Oligocene. Two samples 

analysed from the top of the clay unit are composed of dark brown clay that contains 

plagioclase (andesine), glass shards, mica, quartz, montmorillonite, zeolite, augite, and 

secondary clay phillipsite. Two samples from the bottom of the clay unit are dark 

reddish-brown iron-oxide clay composed of montmorillonite, potash feldspar, quartz, 

amorphous iron oxide, glass shards, and some authigenic carbonate layers. The bottom 

two units are comprised of volcanogenic sediments derived from the Louisville 

Seamount Chain. Unit 2, from which three samples were analyzed, is a tuffaceous 
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sandstone and conglomerate of early Cretaceous age. The clasts are composed of glass 

shards, andesine, calcite, pumice, and andesitic and basaltic rock fragments. The matrix 

is mainly altered ash with secondary minerals of epidote, zeolites, calcite, chloritic 

minerals, serpentine, and amorphous iron oxide. Unit 3, from which two samples were 

analyzed, is a vitric tuff composed of basaltic to andesitic glass with pyroxene and 

feldspar crystals in a glass matrix. 

 

3. ANALYTICAL METHODS 

The samples analysed were splits of powders for which major and trace element, 

and radiogenic isotope data have been reported previously (Turner et al., 1997; Ewart et 

al., 1998; Keller et al., 2008; Caulfield et al., 2012). Both samples and standards were 

prepared for Li isotopic analysis at the University of Maryland by digesting the powders 

with a 3:1 mixture of concentrated HF and HNO3 in Savillex® screw top beakers on a 

hot plate (T~ 120 oC). This was followed by addition of concentrated HNO3 and HCl, 

with drying between each stage of acid addition. The residue was then re-dissolved in 4 

N HCl in preparation for chromatographic separation. 

Lithium separation was achieved through ion-exchange chromatography, adapted 

from Moriguti and Nakamura (1998), where four chromatographic columns were used. 

For each column, 1 ml of cation exchange resin of AG50w-X12, 200-400 mesh (Bio-

Rad) was cleaned with HCl and Milli-Q water followed by conditioning, chemical 

separation and sample collection using an eluent mixture of HCl and ethanol. The first 

two columns remove major element cations with 2.5M HCl and subsequently 0.15M 

HCl. The third and fourth columns separate Na from Li with 30% ethanol in 0.5M HCl 

through a N2 pressurized ion exchange column (Rudnick et al., 2004).  

The samples were analyzed for 6Li and 7Li on a Nu Plasma multi-collector 

inductively coupled mass spectrometer (MC-ICP-MS) using faraday cups. Li isotopic 
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compositions were analyzed by bracketing the sample, before and after, with the L-

SVEC standard. The δ7Li value (δ7Li =[[7Li/6Li]sample / [7Li/6Li]standard – 1 x 1000]) is 

expressed as per mil deviations from the L-SVEC standard (Flesch et al., 1973). 

External reproducibility of the isotopic compositions is ≤ ±1.0 ‰ (2σ) based on repeat 

runs of pure Li standard solutions: in-house standard UMD-1 (δ7Li = 0.10 ‰, n = 5) and 

international standard reference material IRMM-016 (δ7Li = 55.14 ‰, n = 5) (Liu et al., 

2010, 2013; Teng et al., 2006). The in-house and the international standard reference 

materials were analyzed at the beginning and end of each session and often a third time 

between runs in which more than eight samples were analyzed. 

Comparing signal intensities for the whole rock with that measured for the 50 ppb 

L-SVEC standard and then adjusting for sample weight determined lithium 

concentrations. These measurements have a 2σ uncertainty of ≤ 10‰ (Teng et al., 

2006). Results for USGS international rock standards BHVO-1, AGV-2, and BCR-2 are 

reported in Table 1. The results are within analytical error of the recommended values 

from the U.S. Geological Survey and within the ranges for published data (Bouman et 

al., 2004; Chan and Frey, 2003; Gladney and Goode, 1981; Govindaraju, 1994; James 

and Palmer, 2000; Liu et al., 2015; Penniston-Dorland et al., 2012; Ryan and Langmuir, 

1987; Rudnick et al., 2004; Shihong et al., 2012; Tang et al., 2014). The only exception 

is BHVO-1 that initially had slightly lower values than published data (Magna et al., 

2004). Replicating the analysis produced a value within the accepted range (Tian et al., 

2012). 
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4. RESULTS 

The new lava results are presented in Table 1. The lavas range from basalts to 

dacites in composition with SiO2 = 48.3-65.3 wt. % (Caulfield et al., 2012; Ewart et al., 

1998; Keller et al., 2008; Turner et al., 1997). They have Li concentrations that range 

δ
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from 2 to 16 ppm and overlap the global arc array on Fig. 2a. As a moderately 

incompatible element Li concentrations increase with increasing SiO2 (Fig. 2a) but there 

is no clear correlation between δ7Li and SiO2 (Fig.2b). The majority have δ7Li that 

ranges from 2.5 to 5.0 ‰ with an average of 3.6 ± 0.7 ‰ that is similar to those 

reported from other arcs (Bouman et al., 2004; Moriguti and Nakamura, 1998; Tang et 

al., 2014; Tomascak et al. 2000, 2002). However, there are three notable outliers. For 

the former two we replicated the data: Niuatoputapu with δ7Li = 6.4 and 7.9 ‰, ‘Ata 

with δ7Li = 1.6 and 1.9 ‰. However, there was insufficient sample from the 

L’Esperance sample to undertake a replicate analysis (δ7Li = 0.3 ‰, see Table 1). Thus, 

it is possible that the range of δ7Li in this arc may be slightly larger than reported 

elsewhere (see Fig. 2b and discussion below). The back-arc lavas cluster at the low Li, 

low SiO2 end of the arrays on Fig. 2a and overlap the median δ7Li ratio of the arc lavas 

(Fig. 2b). 
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Fig. 2. Plots of Li concentration (a) and δδ7Li (b) versus SiO2 for Tonga-Kermadec-
Lau lavas. The average compositions of the DSDP Site 204 pelagic and 
volcaniclastic sediments are also shown. Small grey circles are literature data 
for lavas from other arcs (Moriguti and Nakamura, 1998; Tang et al., 2014; 
Tomascak et al. 2000, 2002). 

 

The sediment profile at DSDP site 204 is presented in Table 2 and consists of ~ 

100 m of pelagic sediments underlain by volcaniclastic sediments from the Louisville 

seamount chain (Burns et al., 1973). The pelagic sediments have quite variable Li 

concentrations (33-133 ppm) and δ7Li that ranges from 1.2 to 10.2 ‰ (Fig. 3) similar to 

equivalent pelagic sediments analysed by Chan et al. (2006) from DSDP Site 596 

further to the east of the trench (see Fig. 1). The volcaniclastic sediments have an even 
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greater range of Li concentrations (3.6 to 165 ppm) and generally heavier δ7Li values 

(8-14 ‰). Overall the range is similar to that reported previously for a wide range of 

marine sediments (Chan et al., 2006) and the average δ7Li values are higher than that 

inferred for the depleted mantle (e.g. Elliott et al., 2004). 

 

 

δ
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Fig. 3. Profiles of Li concentration (a) and δδ7Li (b) versus depth in the subducting 
sediment sequence. The crosses are DSDP Site 204 data from Table 2 and the 
grey circles are pelagic sediments from DSDP Site 596 (Chan et al., 2006). Note 
that the Louisville volcaniclastic sediments of Units 2 and 3 at Site 204, that 
include some of the highest Li concentrations and δ7Li values, are not present 
at Site 596. (c) Plot of δ7Li ‰ versus southern Latitude. The occurrence of 
some elevated values at the northern end of the arc may reflect addition of a 
Louisville volcaniclastic component to the source of the lavas here (Regelous et 
al., 1997; Turner et al., 1997). 
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5. DISCUSSION 

In the following sub-sections, we first assess the possible significance of the 

outlier lavas and then explore possible links to independent tracers of subducted 

components.  

 

5.1. Lava and sediment data in terms of global distribution and outliers 

As shown in Fig. 2, the lavas broadly overlap the global array in terms of both 

Li concentrations and δ7Li. Within this broad overlap, the elevated δ7Li ratio of the 

Niuatoputapu lava could be explained by addition of a Louisville volcaniclastic 

component at ~ 4 Ma (Regelous et al., 1997; Turner et al., 1997), though it is unclear 

why an equivalent signature is not observed in the Tafahi lava since both carry the 

elevated 206Pb/204Pb Louisville signature. The low δ7Li ratio from the ‘Ata sample 

seems to reflect the odd isotopic signature of lavas from this island in general (Ewart et 

al., 1998; Leeman et al., 2017). Finally, the very low δ7Li ratio from the L’Esperance 

lava may reflect alteration since this sample has a chemical index of alteration (CIA) = 

64 (Nesbitt and Young, 1982). As noted above the sediments become broadly heavier in 

δ7Li with increasing depth in the profile and are on the higher end of sediment values 

globally. 

 

5.2. Controls on Li isotopic composition 

Many studies have utilized U/Th and Th/Ce ratios as tracers of fluid and 

sediment components in arc lavas (e.g. Turner et al., 1997; Plank and Langmuir, 1998). 

On Fig. 4a we plot δ7Li against U/Th as a tracer of fluid contributions from the 

subducting plate. Overall there is a weak positive correlation, but the majority of the 

lavas lie between likely average compositions of the mantle wedge (DMM) and altered 

oceanic crust (AOC) which can have a very large range in δ7Li (Gao et al., 2012). Here 



Elemental Recycling of the Tonga-Kermadec Island Arc System and the associated Lau and North Fiji 
Basins 

Raul Brens Jr - June 2018264 

the Niuatoputapu lava is clearly displaced from the remaining lavas towards the average 

volcaniclastic sediment composition. No correlation is observed when the δ7Li data 

from the Togna-Kermadec lavas is plotted against indices of sediment addition such as 

Th/Ce (Fig. 4b) unlike the findings of Moriguti and Nakamura (1998) or Chan et al. 

(2002). The back-arc lavas lie at the low U/Th, low Th/Ce end of the data, consistent 

with lesser overall contributions from the slab (Caulfield et al., 2012). 

Fig. 4. Plots of δδ7Li versus U/Th a fluid-sensitive index (a) and Th/Ce a sediment-
sensitive index (b). The average compositions of the DSDP Site 204 pelagic and 
volcaniclastic sediments are also shown along with average estimates for 
depleted MORB mantle (DMM) and altered oceanic crust (AOC) – data from 
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Elliott et al. (2004), Gao et al. (2012), Kelley et al. (2003), Salters and Stracke 
(2004). 

 
On Fig. 5 we investigate variations between δ7Li and two other isotope systems 

that tend to be track sub-arc fluid additions since both B and Sr are fluid mobile (Brenan 

et al., 1998). There is no correlation between δ7Li and 87Sr/86Sr though, as in Fig. 4a, 

both the arc front and back-arc lavas generally fall between DMM and AOC and the 

average sediment compositions. Although there is less data, we plot δ7Li versus δ11B on 

Fig. 5b. Once again, there is no correlation though the diagram does highlight the 

unusually light B in the ‘Ata sample that may reflect complex mantle wedge circulation 

caused by the locus of present-day subduction of the Louisville seamounts (Leeman et 

al., 2017). 

The conclusion from Figs. 4 and 5 (and similar diagrams not shown) has to be 

that there are no trends that unambiguously distinguish between sediment and fluid 

addition as the main control on the variations in δ7Li in the Tonga-Kermadec-Lau lavas. 

It is highly likely that diffusive equilibration with non-subduction modified mantle 

wedge has erased much of any putative initial subduction-derived signatures (e.g., 

Elliott et al., 2004; Tang et al., 2014; Penniston-Dorland et al., 2012). Nevertheless, 

some δ7Li signals do appear to survive such as that of the Louisville volcaniclastics in 

the case of the lava from Niuatoputapu. Conversely, the lack of an equivalent signal in 

similar lavas from neighboring Tafahi testifies to just how fragile they are in the face of 

diffusive interaction with the wedge.  
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Fig. 5. Plots of δδ7Li versus (a) 87Sr/86Sr and (b) δ11B. Boron data from Leeman et al. 
(2017), other symbols and data sources as for Fig. 4. 

 

5.3. Quantification of sediment mixing 

As an end-member model, we assessed the likelihood that all of the δ7Li – Y/Li 

variation reflects bulk sediment addition on Fig. 6. This shows the results of a Monte 

Carlo simulation involving bulk sediment addition to a depleted mantle wedge allowing 

the full range of sediment compositions from Table 2 to be involved. Given the range in 

δ7Li in the local sediments, it is an unsurprising outcome that the resultant envelope of 

solutions encompasses the full variation observed in the lavas (see Fig. 6). However, the 
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implied amounts of sediment addition required (1-3%) exceed, by almost an order of 

magnitude, those estimated (0.1-0.5%) on the basis of Th-Nd-Be isotopes (Turner et al., 

1997; George et al., 2005). This is best explained by the enrichment of Li (Brenan et al., 

1998) where the implication that fluid addition of Li must have played a significant role 

in controlling the Li isotope variations. Though we accept that three-component models 

will necessarily be non-unique, Leeman et al. (2017) have recently argued that, because 

the Tonga slab lies at the cold end of the global thermal structure spectrum (Syracuse et 

al. 2010), fluid addition (from both sediments and AOC) may be the principal means of 

slab-derived elemental transport beneath this arc. Certainly, the relationships on Figs. 4 

and 5 are consistent with such models from the Li isotope perspective. Further 

development of this will require better knowledge of when and at what temperatures 

fluids are driven off the sediments and AOC in the Tonga slab. 

 

Fig. 6. Plot of δδ7Li versus Y/Li to appraise the ability of addition of bulk sediment 
addition to a depleted mantle source (DMM-1%) explain the range of δ7Li in 
the Tonga-Kermadec-Lau lavas. The gradation of coloured dots in the 
background represent random mixing results using a Monte Carlo simulation, 
the bar to the right of each panel represents the amount of sediment (%) 
required to attain that value in the simulation (small coloured circles are 
sediment analysed that fall within the Monte Carlo envelope). The DMM-1% 
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source has Li = 0.7 ppm, Y = 4.1 ppm and δ7Li = +3.4 ‰. See text for 
discussion. 

 

6. CONCLUSIONS 

We have undertaken a reconnaissance study of Li isotopes in the oceanic Tonga-

Kermadec arc and Lau back-arc as well as the sediment profile at DSDP Site 204. Like 

many arc lavas, the range in δ7Li appears to have been muted by diffusive equilibration 

with ambient mantle. Nevertheless, lava from Niuatoputapu Island appears to carry a 

signature from the subducting Louisville volcaniclastic sediments. Lavas from ‘Ata and 

L’Esperance Islands have unusually low δ7Li of unknown origin. For the remaining arc 

front and back-arc lavas, δ7Li = 3.6 ± 0.7 ‰. Modelled δ7Li – Y/Li relationships require 

1-3% bulk sediment addition to explain the range in observed ratios. This is an order of 

magnitude higher than required by Th-Nd-Be isotope systematics suggesting an 

important role for fluid addition of Li from both the subducting sediments and altered 

oceanic crust beneath this arc – back-arc system. 
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C. SUPPORTING INFORMATION FOR LAU AND NORTH FIJI 
BASINS 

Introduction  

In Figure S1 we show a silica versus total alkali plot, with subdivisions for different 

rock classifications based on Le Bas et al. (1986), that includes the new Rotuman and 

Fijian lavas in this study. In Figure S2 we show primitive mantle-normalized trace 

element patterns for the Fijian and Rotuman lavas in this study. 

 
 

Figure S1. Silica versus total alkali plot, with subdivisions for different rock 

classifications based on Le Bas et al. (1986). The alkali-tholeiite line is from Macdonald 

and Katsura (1964). Previous published major element data for Fijian OIB looked at in 

this study are from Gill and Whelan (1989) and Pearce et al. (2007). The one Fijian lava 

with a + represents the Type II lava (WQ7b), while all other Fijian lavas are Type I (see 

section 3.3.7 of the paper for more information). The dark grey field represents 

previously published Fijian OIB major element data for lavas not studied here and are 

from Gill (1984). The light grey field represents previously published Rotuma major 
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element data for lavas not studied here and are from Price et al. (1990). 

 

Figure S2. Primitive mantle-normalized trace element patterns for the lavas examined 

in this and previous studies. Panel A shows new data from Rotuma Island lavas, panel B 

shows new data from young Fijian lavas, and panel C shows lavas previously published 

A.

B.

C.

B.B

C

New Rotuma ICP
Trace Element Data

New FOIB ICP
Trace Element Data

Previously Publ.
FOIB ICP
Trace Element Data
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young (FOIB) Fijian lavas (Pearce et al (2007)). Average Upolu, which was calculated 

from Upolu shield data with MgO > 6.5 wt. %, is shown on all plots in black. All plots 

also show average MORB (mid-ocean ridge basalt) and average BABB (backarc basin 

basalt) from Gale et al. (2013) and are plotted as light and dark grey, respectively. The 

primitive mantle composition is from McDonough and Sun (1995).  
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D. DATA FOR LATE EXPERIMENTS 
Introduction 

The follow sub-section contains the data acquired for the Late experiments at pressure 

and one-atmopheric. The data in red have been omitted from the results in Chapter 5.
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