HOW TO DEVELOP AN AUTOMATED SYSTEM TO
MONITOR THE RF CHARACTERISATION OF RADIOS

Nafiz Uddin Chowdury

Bachelor of Engineering
Electronics Engineering

;
lu ’.

MACQUARIE
University

SEYDMEY -AUSTRALIA

Department of Electronic Engineering
Macquarie University

June 05, 2017

Academic Supervisor: Professor Stephen Hanly
Industry Supervisor: John Dalton

ACKNOWLEDGMENTS
I would like to acknowledge the help of my academic supervisor Professor Stephen
Hanly and my industry supervisor John Dalton from RF Technology. This thesis
work is aimed to create and implement an automated testing system at RF

Technology. This concept will be explained throughout my paper.

I would also like to take this opportunity to show gratitude to a key engineer,
Chris Mcknight, from RF Technology for the tremendous support he has given
me starting from answering silly questions to giving me enough time beyond his
busy schedule. I really appreciate for the time and attention he has given me

throughout this project.

STATEMENT OF CANDIDATE

I, Nafiz Uddin Chowdury, declare that this report, submitted as part of the
requirement for the award of Bachelor of Engineering in the Department of
Electronic Engineering, Macquarie University, is entirely my own work unless

otherwise referenced or acknowledged. This document has not been submitted for

qualification or assessment at any other academic institution.

Student’s Name: Nafiz Uddin Chowdury
Student’s Signature: Nafiz Uddin Chowdury

Date: 5 June, 2017

ABSTRACT

A radio frequency (RF) device is a small electronic device that is used to trans-
mit and/or receive electronic signals such as a walkie talkie. It has a base-station
that relays certain electronic signals (i.e. microwaves). It is mainly composed of
two different components. One of them is a receiver end module and the other
is a transmitter module. This paper consists of the work done with the receiver
module and different tests that has been condueted from the instruction manual

provided by RF Technology.

This paper discusses the steps that involve creating a process of automated tests
which are required to configure the receiver module of the RF device. Currently,
these tests are carried out manually and are very time-consuming and prone to
human errors. Therefore, to save time and avoid human errors antomation of
these tests are highly essential. This in turn will give faster and more accurate
results. The following section in this paper discusses the outcome of this project

and highlights the problems and hurdles faced and the solutions devised.

Contents

Acknowledgments iii
Abstract vii
Table of Contents ix
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 Motivations and Challenges 2
1.2 Contributions o v ¢ v @ o s 50 60 0 26 50 58 0 08 50 5800 1a 5 3
1.2.1 Projectoutcomes e 3

1.3 Thesis overview o .o e e e e e e e e 3
ld ProfeCt PIAll « o o o 6 o v 6 6 6 5 g 5 8 50 & b b B B b B b 4
1.5 Project baselinereview 5
1.5.1 Time budget and financial budget review 5

2 Background Theory 7
2.1 Base station and its backgroundo L. 7
2.2 History of instrument automation 8
2.3 Chaptersummary o 0 e e e e e e e e 12

3 Manual test measurements and results 13
3.1 TIA standards and definition L. 13
3.2 Manual test measurements and results 00000000 L. 14
3.2.1 Reference Sensitivity o0 L 0 15

3.2.2 Adjacent Channel Rejection 16

3.2.3 Spurious Rejection, 18

3.24 Imtermodulation Rejection 18

3.3 Chaptersummary oo 20

x CONTENTS

4 Setting up a remote connection 21
4.1 Virtual Box and Linux Lo 21
4.2 Python programming language L 22
4.3 Test instruments and automation 0L L. 22

4.3.1 Remote connection of a signal generator 22
4.3.2 Remote connection of the SINAD meter (Aeroflex) 29
44 Chaptersummary oo 32

5 Automated tests 33
5.1 Reference Sensitivity L. 33
5.2 Adjacent Channel Rejection L. 38
5.3 Spurious Rejection0 L 40
5.4 Intermodulation Rejection 42
5.5 Chapler summary v v v i v e e e e e e e e e e e e 43

6 Conclusion 45
6.1 Test results comparison 45
B.2 ConecluSion . . . o . v o v v i o v v e s s s v ek e s s e e e e e e e 46
6.3 Futurework L 46
6.4 Chapter summary L 46

7 Abbreviations 47

Bibliography 48

Appendix A Consultation Meeting Form 51

Appendix B Codes 53

List of Figures

2.3

3.1
3.2
3.3
3.4
3.5
4.1
4.2
4.3

NN
& e

ot o
s B b~

cn nCmonon L

- o

o
—

Gantt Chart showing the project deliverables b
Base station used at RF Technology [5] 8
The evolution of control system from analogue and pneumatic to electronic

BPEEETE B B in E oG DaE d a E ay UES B0 B ias aRE BaE B 9
Agtandard GPIB cable » oo o o v v min wosn 2 owe s e woam v 10
Test seb-Up. - e e e e e e e e e e 15
Set up for testing adjacent channel rejection 16
Channel spacing between different signals 17
Set up for testing adjacent channel rejection 18
Test setup for inter-modulation rejection 19
Successful remote connection between signal generator and the computer. . 27
Assigning frequency and power and turning on the outputs. 28
Display of signal generator before executing the above code 28
Display of signal generator after the execution of the code. 20
Prologix GPIB-Ethernet controller used to establish a remote connection. . 30
Identifying the IP address of the controller. 30
Output format of SINAD meter in the Linux terminal. 34
Output displayed in the SINAD meter. 35
Code for reference sensitivity., 36
Automated test result for reference sensitivity. 37
Automated test result for adjacent channel rejection 40
Automated test result for spurious rejectiono oL L 41
Automated test result for intermodulation rejection 43
Comparison of manual and antomated test result 45

List of Tables

1.1 Breakdown of the entire project
1.2 Time budget review
4.1 Meaning of bits used in the status event register
4.2 Meaning of bits used in status byte register.
5.1 Status Byte description for Aeroflex L.

xiii

Chapter 1

Introduction

Over the last few decades the telecommunication industry has developed beyond imag-
ination. Since the introduction of electricity, advancements have been made throughout,
starting from telegraphs and now to cell-phones. Cell phones were first introduced to the
public back in 1983 with no features at all. It took 10vears to introduce text messaging
while other features such as internet, camera were introduced much later.

The quality of calls made using a cell-phone or communications done through any
sort of wireless medium (i.e. walkie-talkie) is highly important. Clear, uninterrupted and
smooth voices are desired and the ability to make them as smooth and clear as possible
meets the challenge.

This brings us down to the scope of this project. This project was entirely conducted
at RE Technology whose main work is to design base-stations used in communication
services. RF Technology [6] manufactures and markets radio communication all around
the world. They currently have one branch in Thornleigh, NSW Australia and the other at
Texas, USA. This company was established back in 1989 and since then has manufactured
different types of base-station with different features. Currently RF Technology has two
different tvpes of base-station. They are known as Ultra-High Frequency unit (UHF) which
has a range between 380 MHz and 560 MHz and Very High Frequency unit (VHF) that
operates between 136 MHz and 174 MHz. These two units mainly cover all the channels
that the Australian Government has allocated for public services. RF Technology sells
racdio base station units to NSW Police, Ambulance, Bush Fire and other state teams who
then operate these stations under the allocated frequency.

Base station is a key component for wireless communication and its design and manu-
facture plays a vital role for having clear uninterrupted speech quality. Base stations are
designed and manufactured [5]within RF Technology. Two of its important components
are the two modules that are built into it namely receiver module and the transmitter
module. The receiver modules main work is to pick up any signal that is transmitted by
other base stations. The transmitter is used to transmit signal.

2 Chapter 1. Infroduction

The radios that are used outdoors to communicate can face a lot of interruptions that
can result in poor voice quality and miscommunication. The interruptions can occur for
many reasons such as people using the same channel to communicate or stronger signal
with high amplitude and modulation from a nearbyv channel can weaken the desired signal.
It is inevitable that these base-stations pass rigorous testing in order to be certified and
used in real-life scenarios. This thesis involves working on the tests that a receiver module
of a base station needs to pass in order to be certified and used. The Telecommunication
Industry Association (TIA) has set up certain standard [9] for these tests and RF Technol-
ogy follows them. These tests ensure that a receiver module performs correctly in real-life
situations.

RF Technology performs all the tests as set in the standards by TIA and ensures
the two modules pass them before they are placed into the base-stations and shipped
to different states within Australia and rest of the world. There are four key tests that
are performed on the receiver module. These tests are done manually and can take long
hours to complete. However thev still can fail the standards due to human errors and poor
instrument calibration.

The next few sections and chapters of this doenment discuss in depth the fundamental
process of how we can send remote commands to instruments such as signal generators
and automate these tests so that they are more reliable and less time consuming. More
details, background theory and work are explained in the next few chapters regarding
instrument automation.

1.1 Motivations and Challenges

Instrument automation can help a user to perform the tests on-site or even remotely.
The aim of this project is to setup an automation process to make the tests faster, more
reliable and ensure that it doesnt involve human errors. There are prior works and
documentation regarding instrument automation however it doesnt involve automating
the tests that are performed on the receiver module. This motivated me to work on this
project as I believe this research document will help others in near future when further
work needs to be carried out using instrument automation and base-stations.

However there were quite a few obstacles that were faced in order to complete the
project. Most importantly the hardest part was to establish a remote connection between
a base-station and a signal generator. Python programming was needed and Standard
Commands for Programmable Instrument (SCPI) were also learnt. Capabilities of Virtual
Instrument Software Architecture (VISA) [11]are recognised as it is needed to make sure
SCPI commands perform correctly. Usages of Linux as an operating system were also
required as the signal generators that were used for antomation had Linux system kernel

1.2 Contributions 3

built-in already. In the next few chapters all these problems and their solutions are
discussed in detail to give a clear concept on how this project was finished.

1.2 Contributions

In this section the project outcomes are outlined without much technical details. This
section will also discuss the short and long term impact of the thesis undertaken.

1.2.1 Project outcomes

o A defailed liferature review on background work is provided.

e Virtual Instrument Software Architecture, SCPI commands and its history and
current standards are discussed.

e Detailed explanation on how to set up a remote connection between a signal generator,
signal to noise and distortion (SINAD) meter and a base-station is also provided.

o Nanual tests undertaken for future reference.
e SCPI commands and python scripts for instrument automation are explained.

e Finally automated tests and its results compared to the manual tests.

All the work done in this project contributes directly to the efforts for studying
and exploring possible ways to improve the current status of the reliability of the tests
performed on the receiver module. Furthermore, this paper can serve as a viable and
reliable literature that involves instrument automation using python programming and
SCPL.

1.3 Thesis overview

In this section a brief description of the whole project is outlined. The project plans
and deliverables are outlined in the next section. This project has been supervised by
Professor Stephen Hanly, in the Department of Engineering, Macquarie University and
John Dalton from RF Technology. A regular meeting was set up every fortnight to check
with the current progress of the thesis and discuss any problems encountered. As a result
the project is completed in time and meets the schedule and deliverables set in the project
plan. The consultation meeting attendance form is listed at the end of this document.
The breakdown of this document is as follows:

Chapter 2 provides a thorough literature review and related background theory to this
project. The topics discussed include history of instrument automation, VISA and the
standard commands for programmable instruments (SCPI).

Chapter 3 discuss the mannal tests undertaken and its results.

! Chapter 1. Introduction

Chapter 4 explains how a remote connection is made between signal generators, SINAD
meter and base station using VISA, SCPI and python scripts.

Chapter 5 describes the automated test procedures and compares the result to the mannal
tests.

Finally chapter 6 concludes and summarizes the current thesis work and provides a
discussion for potential future research.

1.4 Project plan

This section provides the Gantt Chart showing the project deliverables.

Table 1.1: Breakdown of the entire project

Name Start Date | End Date
Introduction to project and T
familiarize with all the instruments 2T/02{20LF | O/a3/ 2007
Understanding python, SCPI codes and Linux. 06/03/2017 | 31/03/2017
“ompletion of manual test procedures. 27/03/2017 | 07/04,/2017
Setting up a remote connection e)
for instrument automation. 16042007 | 28042007
Pl‘ogl'??,lll instruments using python scripts 01/05/2017 | 12/05,/2017
in a Linux based system.
Perform automated fests using python scripts and T "
compare test results to manual tests. 15/05/2017 | 26/05/2017
Thesis report review and finalise 29/05/2017 | 02/06/2017
Abstract and poster design 01/06/2017 | 15/06/2017
Presentation and demonstration 01/06/2017 | 19/06/2017

1.5 Project baseline review 5

Mame February March april May June

Introduction ta praject and familiarize
with all the instrumients,

Understanding pythen and linux.

Completion of manual test
procedures.

Setting up a remote cennectlon for
instrumant automation.

Program instruments wsing python
sarlpts In a linux based system.

Perform automated tests using python
seripts and compars test rasults to
manual tests.

Thesis report review and finalise

Abstract and poster
deslgn

Prasentation and
demonstration

Figure 1.1: Gantt Chart showing the project deliverables

1.5 Project baseline review

This project was scheduled to be completed between 27th February 2017 and 19th
June 2017. Baseline plan was made to ensure that all available days throughout the entire
semester was utilised including weekends and mid-semester break.

1.5.1 Time budget and financial budget review

The table below shows the number of days spent in completion to the project. It also
provides the percentage of project that has been completed so far. All the activity was
monitored closely to ensure it met the allocated time. As a result no change was made to
complete the project however some of the activity was not entirely completed in its own
allocated time.

Table 1.2: Time budget review

Estimated 112days
work

Completed 97days
work

{/i N

of completion B

This project was initially allocated $ 300 from Macquarie University, Department of
Engineering. However this project was conducted entirely at RF Technology therefore no

6 Chapter 1. Infroduction

financial aid was required at all. The hardware that was used was free to access on site
and software was available to download for free. As a result no purchasing was required at
all.

Chapter 2

Background Theory

This chapter provides a detailed background concerning the instruments used in this
project and how they can be used to set up a remote connection. It covers background re-
search on Virtual Instrument Software Architecture, base stations and Standard Commands
for Programmable Instrument. It also covers research work relevant to this project.

2.1 Base station and its background

This section discusses the role that a base station and its components play in com-
munications system. Base station [5] is important for the user as it permits the usage
of system capabilities that the network operator has to offer. Throughout the ages the
usage of telephones has varied in many ways. This technology was originally initiated as
a mean of communication befween two people over hard-wired lines. At the same time
two-way radios were introduced known as Mobile Radios but they were in the hands of
emergency services and were not made available to the public. They were heavy and had
a high power consumption for which the infrastructure of the Mobile Radios were kept at
a fixed central location which is now known as the Base Station.

8 Chapter 2. Background Theory

Figure 2.1: Base station used at RF Technology [5]

However with the development of modern technology, base-stations now-a-days have
become smaller. much efficient and in most cases portable. This has been possible due to
the sophisticated micro-chip designs and advancements in material science.

The two major components of any base station are its receiver and transmitter module.
Receiver module are designed and built in a way so that it can receive a particular signal
that has the same frequency that it is designed to operate under (typically between 130MHz
and GOOMHz). It also has design features that helps it to filter out any unwanted noise
or signals that can cause distortion within the system. On the other hand a transmitter
module is designed to transmit signals within the same frequency range.

2.2 History of instrument automation

Instrument automation is the main scope of this project as the goal is to create an
automated test system to monitor the RF characterisation of radios. This section describes
the evolution of automation from an early age.

Process control [4]is an engineering discipline that deals with the design, mechanism
and algorithm for maintaining the output of a specific process within a desired range.
During the early days of process control, indicators and valves were often monitored by
someone who had to walk around the test site. The operator had to adjust the valves and
other instruments to obtain desired output by varying the readings of the instruments.
As technology evolved advanced controlling systems were invented and placed into the
test sites. This greatly reduced the amount of time any operator had to spend fixing the

2.2 History of instrimment automation 9

instrument readings to obtain the desired output.

Evolution of process control signalling

Pneumatic era

Set Point ($P)
Process Value (PV) l Control Action
» PID Controller
3-15 psi
“Flow rate ™ 3-15 psi
“Volve position™
._:] L J
Flow Transmitter W— Control valve
Process flow
Electronicera Set Point (5P)
Process Value (PV) l Control Action
PID Controller
4-20 mA Loop 4-20 mA Loop
“Flow rate” “Valve position”™ 1taP
3-15 psl or
£y 0.2-1.0bar
~ :_:. /
. —
Flow Transmitter Process flow Control valve

Figure 2.2: The evolution of control system from analogue and pneumatic to electronic
era.

The automated process is more like a feedback loop as mentioned above. It involves
sending remote commands to signal generators and monitor the output received from it. To
send commands and receive output from the signal generator usage of Virtual Instrument
Software Architecture (VISA) is necessary. VISA is a popular application programming
interface [11] through which a communication medium can be established between test
and measurement instruments (such as signal generators) and the computer so that the
input and output can be monitored. It is an industry standard introduced by many test
and measurement companies such as Keysight, Rohde and Schwarz, National Instruments
ete. The VISA standard provides guidelines over how to communicate through High Speed
LAN Protocol (HiSLIP), Universal Serial Bus (USB) and General Purpose Interface Bus
(GPIB which is also known as IEEE488 bus).

10 Chapter 2. Background Theory

This project has been completed following two of the guidelines mentioned above.
A Hi-SLIP [3]connection was established between the signal generators and a GPIB
connection was made using the SINAD meter. The signal generators used in this project
are manufactured by Rohde and Schwarz and they have all three features to make a
connection using the above standards. The SINAD meter however is manufactured by
Aeroflex and does not have the USB and HiSLIP feature. Therefore, a different approach
(GPIB connection) was necessary to make a suceessful remote connection.

HiSLIP is an IP based protocol that was introduced so that test and measurement
instruments could be operated remotely. HiSLIP is also used via a library that incorporates
VISA application programming interface. However GPIB or IEEE 488 was in market long
before HISLIP was infroduced. In the vear 1960 there was a breakthrough in short-range
communication when Hewlett Packard (HP) introduced the IEEE488 in the form of HP-IB
(interface bus) to communicate with their own manufactured devices such as multimeters
and logic analysers. IEEE stands for Institute of Electrical and Electronics Engineering,.
Soon after ,HP-IB was commonly known to everyone by the name of general purpose
interface bus (GPIB).IEEE has given GPIB [12] its own specification number (488) in
1978 as a result it is commonly known as IEEE488. It was originally created to combine
automated test equipment and had a lot of success during the late 1970s and early 1980s
when it was used in microcomputers as a peripheral bus.

Figure 2.3: A standard GPIB cable

The GPIB bus allows [12]dataflow between the bus at a suitable speed even for the
slowest performing instrument which makes the entire system flexible. This is because
the slowest instrument determines the speed of data transfer. It is possible to connect up
to 15 instruments in total provided that the bus length does not exceed 20meters. Each
instrument has a unique GPIB address between 0 and 30 and the same address cannot
be shared by different instruments. However it is possible to assign an address manually

2.2 History of instrimment automation 11

to each instrument. Despite having so many features there are still some disadvantages.
For example one of the major limitations was that there was no standard format for the
instructions sent across the bus.

To overcome this problem, during the vear 1987, IEEE introduced standard codes,

formats, protocols and common commands and labelled it is IEEE 488.2 [12]. It gave users
basic syntax and conventions for formatting. Finally in the year 1990, standard commands
for programmable instrument (SCPI) were introduced. SCPI [8]followed the IEEE 488.2
standards and had generic commands however it also worked with IEEE 488 standard.
The introduction of SCPI was due to the problems that were arising as there were no
instrument specific commands. As an example any command to control a multimeter or
logic analyser would vary based on its design and manufacturer. Therefore SCPI was
introduced to salve this issue.
Over the years usage of SCPI has improved a lot alongside the development of technology.
Initially it was only designed to work with GPIB but now it can also be used with HiSLIP,
Bluetooth, USB, R5-232 etc. The signal generator used in this project all supports SCPI
version1999.

SCPI commands can be categorized into different groups. However the two most
important command structures are the write and query commands. Write commands
are used to assign any command according to the users preference. Since its a remote
command a user can query the same command to verify the write command that was sent
earlier and check if it is correct or not.

For an example to assign the frequency of a signal generator with 155 MHz the following
SCPI write command is used:
SOUR:FREQ 155 MH=z

To ensure that this command was sent and received successfully by the signal generator
the user can use the following query command:
SOUR:FREQ?

The Linux terminal would then display only a value of 155000000 without any units
showing that the frequency of the signal generator was set to be 155MHz. The allowed
physical quantity units can start from Nano and go all the way up to Giga. However if no
units are provided basic unit is used. SCPI commands are mostly used in an abbreviated
form. SOUR:FREQ actually stands for Source and Frequency where source is the signal
generator and frequency is what the signal generator is set to. However it is entirely up to
the user in which format they wish to use the commands. Just to illustrate if the user
wanted to use the full form they would have typed the code in the following way:
SOURce:FREQuency 155 MHz

Both of the above approach is accepted by any instrument that supports SCPI standard.

12 Chapter 2. Background Theory

Sub-commands (in this case frequency) within the hierarchy (source) are always assigned
with a colon (:). If a user wishes to write multiple commands to an instrument it can be
done in a single string separated by a semicolon. For an example,

SOUR:FREQ 155MHz; SOUR:FM:DEV: 1.5 kHz

This command assigns the signal generator with a frequency of 1556MHZ with a modu-
lated deviation of 1.5 kHz. Structure of a command is also important as it decides how
fast we can get a response back from the signal generator.

SOUR:FM:DEV: 1.5kHz; SOUR:FREQ 155MH=z

The above line would have done the same work as the first one however the response
time would be more. This is slower because it is important to set the frequency first always
then set the internal components such as frequency modulation or amplitude modulation.

2.3 Chapter summary

This chapter gave detailed explanations about the history of base stations, instrument
automation and VISA applications. In the next few chapters usage of SCFI is discussed
more in detail and how the commands can be compiled into a python seript that allows
successful remote connection. Moreover we would also look into the manual test standards
and procedures.

Chapter 3

Manual test measurements and
results

When a cell phone or any wireless communication device is used in real-life scenarios it
is vulnerable to many factors that can affect its performance. It can face disruptions due
to many factors that can result in poor voice quality. Therefore it is highly recommended
that both the receiver and the transmitter module undergo rigorous testing in order to be
certified for correct usage. This section covers the manual test standards and procedures
that a receiver module needs to undergo before it can finally be placed on the base station
for using outdoors.

3.1 TIA standards and definition

Telecommunications Industry Association (TIA) [9]has set some standards known as
the TIA-568. These standards address commercial building cabling for telecommunications
product and services. These standards provide definition, methods of measurement and
performance standards for radio equipment that uses frequency modulation or phase mod-
ulation with a maximum frequency of 1GHz. Based on the standards that are described
in Land Mobile FM or PM Communications Equipment Measurement and Performance
Standards [9]the receiver and transmitter module needs to pass certain tests in order to put
them finally into a base station. The object of the standard is to standardize parameter
titles, definitions, test conditions and methods of measurement to ensure the performance
of equipment and to make a possible and meaningful comparison of the test results made
by different people on different equipment.

In order for a receiver module to be certified and placed into the base station it needs to
undergo and pass four major tests. These tests are important because it comprises of all the
scenarios that can affect its applications. For an example if a signal is transmitted from a
very long distance it can become weak by the time it is picked up by the receiver. Therefore
its ability to pick up weak signals is also an important fact and the test determines how
well it does it compared to the TIA standards. Another example can be its ability to

13

14 Chapter 3. Manual test measurements and results

reject any unwanted signals that might cause distortion or interfere with the wanted signal.
Therefore its ability to tolerate or filter out unwanted signals is also important.

RF Technology [6]performs all the four tests on either a UHF unit or a VHF unit. If
multiple units are manufactured they perform the tests only on one unit from a particular
line of production. This is because the tests are long enough to be completed on each unit
separately. As a result they rely on the design criteria of the units and perform the tests
on only one of them. Therefore if that particular unit passes the tests it can be said the
rest of the units will pass as well because they are designed and manufactured in the same
way and the internal components are same. This is where the scope of this project arises
as why the tests need to be automated. Performing all four tests on each base station is
time consuming. It takes nearly half a day to set up all the instruments and perform the
tests one after another. On top of that the base station is prone to human reading errors
and errors due to poor instrument calibration. Therefore to overcome these factors and
make the process faster instrument automation is necessary which in turn will automate
the tests. Before moving on to the manual test procedures it is important to provide few
related definitions as it will help to understand the test better.

e Standard modulation of an input signal this is the modulation due to an input
signal of 1000 Hz at a level to produce 60% of the maximum permissible frequency
or phase deviation.

e Standard SINAD Standard SINAD is the output of the andio meter with a desired
value of 12dB. It is desired to be 12dB because this is the level where human speech
quality is perfectly andible.

e Standard input signal frequency this is the frequency of the receiver that can vary
depending whether its a UHF or VHF unit.

e Standard input signal level Standard input signal level is -47 dBm.

e Standard input signal this is defined as a RF signal at standard input signal level
with standard input signal frequency at the standard modulation of the input signal.

3.2 Manual test measurements and results

RF Technology has designed a software called [P Commander. It is used to assign
frequency to the receiver module depending whether its a UHF unit or a VHF unit. The
signal generators used in the tests are all assigned the same frequency as the receiver
module at the start of each test,

This section covers the entire process of how the four different tests are performed on
a UHF unit. The tests are carried out at RF Technology following the TIA standards.
The results of the tests are recorded so that they can me compared to the automated test

3.2 Manual test measurements and results 15

procedures mentioned in chapter 5 of this docuwment. The instruments used for testing the
receiver module are mentioned below:

e Rohde and Schwarz signal generator - SMATO0A.

e Rohde and Schwarz signal generator - SMBI100A.

e Rohde and Schwarz vector signal generator - SMBVI100A.
e Aecroflex digital radio test set 3920B.

More details about this instrument and its features and how it can be controlled
remotely to automate the tests are given in chapter 4 and chapter 5. The four tests that
are required to perform on the receiver module are given below:

e Reference Sensitivity
e Adjacent Channel Rejection
e Spurious Response Rejection

o Inter-modulation rejection

3.2.1 Reference Sensitivity

The reference sensitivity is the level of receiver input signal at a specified frequency
with specified modulation which will result in the standard SINAD at the output of the
receiver.

signal receiver distortion

enerator
g module etie

Figure 3.1: Test set-up

The instruments are set up according to the figure above. The signal generator and
the SINAD meter is connected to the main A.C power supply and the base station with
receiver module is connected to a 12V D.C power supply. In this test only the SMA100A [7]
signal generator is used. The test is carried out by following the methods given below:;

e The instruments are set-up and connected as per figure3.2.1.1.

o A standard input signal (-47dBm) is applied at the receivers input terminal.

16 Chapter 3. Manual test measurements and results

e The reading of SINAD meter is recorder after applying the standard input signal.

e After that the power level of the signal generator is adjusted so that we get a reading
of 12dB from the SINAD meter.

e The value at which we get a reading of 12dB from the SINAD meter is recorded.
This value is the reference sensitivity or Prgp.

After completing the fest the reference sensitivity was found to be -110 dB. The TTA
standard suggests the value should be lower than -108 dB for better performance.

3.2.2 Adjacent Channel Rejection

The adjacent channel rejection is the ability of the signal generator to reject any signals
in the neighbouring channel that can cause distortion. The test setup is given below in
figure 3.2.1.2. The signal generators SMA100A (A) and SMBI100A (B) are used along with
Aeroflex and all of them are connected to the mains A.C. The base station is connected to
a 12V D.C power supply.

signal
generator
B
signal — ’ :
generator A| combining receiver distortion
network module metre

Figure 3.2: Set up for testing adjacent channel rejection

The test is carried out by following the next few steps.
e The instruments are set-up and connected according to the figure.

e A second signal generator, SMB100A (unwanted signal source) is connected to
terminal B of the combining network.

e SMBI100A is kept off by keeping its RF output off.
e In its absence, the standard input signal is applied at terminal A.

e The reference sensitivity is then caleulated nsing the same procedure as the previous
test and the value for which we get an output of 12dB from the SINAD meter is
recorded as Prgp.

3.2 Manual test measurements and results 17

e After recording, Prep, is increased by 3dB. Next the unwanted input signal is applied
at terminal B, modulated with 400HZ at 60% of the maximum permissible frequency
(12.5 kHz) deviation.

e The frequency of SMB100A is then increased by 12.5 kHz and the power level is
adjusted until we got a standard SINAD reading of 12 dB from Aeroflex. This value
was recorded as Prrgn.

o The frequency of SMBI00A is now decreased by 12.5 kHz and the power level is
adjusted until we got a standard SINAD of 12 dB from Aeroflex. This value was
recorded as Prow.

e The adjacent channel rejection is calculated by the following:
Adjacent channel rejection high = Pyrop - Prer
Adjacent channel rejection low = Prow - Prer

The smaller value of the above is the adjacent channel rejection.

wanted signal

unwanted signal unwanted signal

== <=

| |
|

12.5kHz -::hanmalI
spacing

Figure 3.3: Channel spacing between different signals

The Australian government has allocated certain frequency range that can be used by
publie. The channel spacing between two channels operating on different frequency
is 12.5 kHz. Therefore this test checks the ability of the receiver to filter unwanted
signals in the neighbouring channels that might cause distortion. After carrying
out the test the adjacent channel rejection was found to be 62 dB. This means that
the receiver module can tolerate unwanted signals that has a power of maximum
62 dB.However TIA standard suggests that the value should be higher than 60 dB
and the higher the value the better is the ability of the receiver to reject unwanted
signals.

18

Chapter 3. Manual test measurements and results

3.2.3 Spurious Rejection

The spurions response rejection is the ability of a receiver to discard a single unwanted
signal from causing degradation to the reception of a desired signal. The test setup and
all the equipment are same as the previous test.

signal
generator

signal
generator

Al combining
network

receiver
module

The instruments are set up and connected in the same way as the previous test. RF
output of SMB100A is kept off until Prgp was calculated.

e The instruments are connected according to figure 3.2.3.1.
e Pppp is calculated in the same way as the previous tests.

e After that Prep is increased by 3dB and the frequency of SMBI100A is increased by

90 MHz.

e Finally the power of SMBI00A is adjusted until we get a 12 dB output reading from
the SINAD meter. This value is recorded as Pyigy.

The spurious rejection is calculated as

After completing this test, the spurious rejection was found to be 75 dB. According to

distortion
metre

Figure 3.4: Set up for testing adjacent channel rejection

Pyicu — Prer

TIA standards the value should be more than 70 dB and the higher the better.

3.2.4 Intermodulation Rejection

The inter-modulation rejection is the ability of a receiver to discard two unwanted
input signals from eansing distortion to the reception of a desired signal. In the previous

3.2 Manual test measurements and results

19

test we saw how one unwanted signal was discarded. In this test we will see how two equal
signal can be discarded to provide a better performance for the receiver module.

receiver
module

distortion
metre

signal
generator

B
signal A
generator combining

network

Cc
signal
generator

Figure 3.5: Test setup for inter-modulation rejection

The instruments used in this test are same as the previous one with the exception of
another signal generator (C) added. The third signal generator is SMBV100A. All the
test instruments are connected to the mains A.C line and the base-station to a 12V D.C

supply.

e The instruments are sef-up and connected according to figure 3.2.4.1.

o Two signal generators (unwanted signal sources) are connected to terminal B and C

respectively.

® Pppp is caleulated in the same way as the previous tests and by keeping the RF
output of SMBI100A and SMBVI00A turned off.

e [Ppppis then increased by 3 dB.

o SMBI00A (signal generator B) is used to apply an unwanted and unmodulated input
signal at terminal B. The frequency of SMBI100A is made to be 50 kHz more than

the frequency of SMAIT00A.

o Next SMBVI00A is used to apply a signal at terminal C modulated with 400 Hz
and 60% of the permissible frequency deviation. Frequency of SMBVI100A is made
to be 100 kHz more than the frequency of SMAI00A.

e Next the power levels of both the unwanted signal generators are made equal.

20 Chapter 3. Manual test measurements and results

e After that they are both adjusted by keeping the power value equal until we get
a standard SINAD reading of 12 dB from the Aerofllex instrument. The value for
which we get a 12 dB reading is recorded as Pyrap.

e The above steps are repeated by decreasing the frequency of SMB100OA by 50 kHz
and the frequency of SMBV100A by 100 kHz.

e The value for which we get a reading of 12 dB from the SINAD meter is recorded as
Prow.

e The inter-modulation rejection is calculated as follows:
Inter-modulation rejection high = Pyrjon — Prer

According to the TIA standards the inter-modulation rejection should be higher than
79 dB and the higher the better. After completing the above steps the inter-modulation
rejection was found to be 80 dB.

3.3 Chapter summary

In this chapter we discussed the TIA standards and the four major tests that the
receiver module needs to undergo in order to be certified usable in real life scenarios.
Detailed explanation about the fest setup. methods for measurement and results were also
provided so that it can be compared to the antomated test results in Chapter 5 of this
document. In the next chapter we will see two different approaches on how to establish a
remote connection with a signal generator, SINAD meter and how SCPI commands can
be used to assign commands remotely.

Chapter 4

Setting up a remote connection

In this chapter we will discuss how a remote connection is made between the test
instruments (signal generators and SINAD meter) and the computer. We will be focusing
on two approaches. One of them is a remote Ethernet connection between the signal
generators and the computer and the other is a GPIB connection between the SINAD
meter and the computer. A detailed explanation for both the approaches is provided
within the next few sections of this chapter.

4.1 Virtual Box and Linux

The signal generators that were used for this research project are manufactured by
Rohde and Schwarz and the SINAD meter by Aeroflex. By default they have Linux based
system installed within them. For this reason we had to work with a computer that had a
Linux system kernel installed in it. The reason for doing so is because the SCPI commands
(mentioned in chapter 1 and 2) sent to the signal generator or SINAD meter wont be read
by the instruments if it is sent from any other operating system other than Linux. As a
result both the computer and the test instruments needed the same operating system.

Since the computer we used had windows operating system in it we had to find a
way to install Linux on it. After a thorough online research we came across a software
called Virtual Box (VB). A Virtual Box is a software package that can be installed on
any operating system as an application. It allows additional operating system that can be
installed on it and can be run in a virtual environment. [11]

We downloaded the latest free version of Virtual Box designed by Oracle. Since Linux
is open-source, there are heaps of operating system variants such as Debian, Ubuntu etc.
In our project we have used Ubuntu as it is more popular and user-friendly compared
to the other variants. We followed the step-by-step instructions from Oracle on how to
install Ubuntu correctly. The process was fairly simple as we just had to pick the Linux
operating system and Ubuntu from a list of options. Then we had to choose the system
memory size that had to be allocated to the operating system. By following these steps

21

22 Chapter 4. Sefting up a remote connection

Virtual Box created a Linux system kernel with Ubuntu as an operating system variant.

Linux has a command line known as the shell or terminal. It is same as the command
prompt in windows. This is where we can run the python seripts, change directories of
any saved file, import anyv python libraries ete. If there are any errors while carrving out
any commands or python scripts, the detailed error message and the possible reason will
be displayed in the terminal window.

4.2 Python programming language

We needed to understand the python language as it is highly recommended by RF
Technology. Most of their work is done using pvthon programming. As they will be
referring to the automated test seripts in future it is important that they find it easier to
use and change it if necessary.

We installed python as it is free to download from the vendor. Python files have a .py
extension. They can be written and edited in the Linux writing tool known as Gedit. It is
not too hard to learn python if anyone has previous programming language experience.
1t is similar to other languages such as C, C+, C#, Java ete. The loops (for and while)
within a python code are same as any other language. The best part is we can import any
python library from within a script instead of downloading it separately. The few libraries
that we needed for this project are discussed later in this chapter.

4.3 Test instruments and automation

This section discusses in detail regarding how a remote connection was made between
the signal generators and the SINAD meter. A thorough explanation is given about how
each line of SCPI codes generated the output desired even there were two different types
of connection.

The signal generators used throughout this project are manufactured by Rohde and
Schwarz and as mentioned before they all have a Linux operating system. The three signal
generators are R&S SMAL00A, SMB100A and SMBVI00A. They all can be controlled
using the same SCPI codes as they have the same manufacturer however their features are
different as they have different frequency range built-in. For simplicity we will just discuss
the remote connection made using RS SMAT00A in this chapter.

4.3.1 Remote connection of a signal generator

The next step to establish a remote connection is to import few python packages. The
two packages that were imported for the signal generators are Numpy and VISA (Virtual
Instrument Software Architecture). Numpy [13] is the basic package used in Python for

4.3 Test instruments and automation 23

scientific computing. It contains nseful tool for computing linear algebra, Fourier transform
and random numbers. It also contains tools to integrate C/C++ and other codes. To
install Numpy using Linux terminal the following code is used:

sude apt—-get install python—-numpy

Linux terminal would then run this command and install numpy from python libraries.

Another package that is required to establish a successful remote connection is
PyVISA [14]. This is required because it enables us to control the desired instrument
independent of its interface (i.e Ethernet, GPIB, RS-232). Since we have two different
methods of setting up a remote connection, PyVISA is required. VISA is a standardized
software interface library providing input and output functions to communicate with
instruments. In order to make sure that PyVISA works we need to have a suitable backend.
Rohde and Schwarz have their own VISA library that can be downloaded from their website
for free. PyVISA can work with any bits of VISA libraries but Python and PyVISA needs
to be of same bits. It can be installed through Linux terminal using the following piece of
code:
$ pip install U pyvisa

To check that PyVISA is installed correctly we can create a resource manager. The
following piece of code does the checking:
import wvisa
rm = visa.ResourceManager ()
print (rm.list_resources())

Resource Manager is a class that is stored at rm and it is later called to open the IP
address of the signal generator. The signal generator has a Dynamie Host Configuration
Protocol (DHCP) [2] and a static internet protocol (IP) address. DHCP has a dynamic
address range and can take up any value from 0 to 254. This means the test instrument
can take up any IP address between these values if we assign it to DHCP. However we can
assign any particular IP address by selecting static IP from the control panel of the instru-
ment. RIF Technology has designed its own DHCP network throughout the building. As
a result all the signal generators are assigned to have DHCP starting with 192.168.1.(0-254).

The signal generator has a built-in Ethernet, USB and GPIB interface. A Local Area
Network (LAN) cable is attached to the Ethernet port of the signal generator and the
other end to a switch of the DHCP server that is connected to the buildings network. The
IP address of the instrument can now be found from the control panel of the instrument.
However if a user wants to change it to a static IP it can be done manually using the
configurations on the control panel.

The next step is to talk to the signal generator by sending remote SCPI commands
through a python script. As mentioned earlier python scripts have a .py extension. In

24 Chapter 4. Setting up a remote connection

order to run a file the following command is used:
./filename.py

Linux will then run the file successfully provided there are no errors within the script.
The first line of any python script can have this command: #!/usr/bin/python. This
means Linux is directly asking python to run all the codes that are written below that
line. However it is possible to run a seript without this line and the could would be
python filename.py

Next step is to import the python package numpy and the VISA library using the
following piece of code:
import numpy as np
import wvisa

After that the IP address of the signal generator is mentioned by calling the Resource
Manager. As discussed before the IP address of the signal generator can be found from
the control panel after an Ethernet cable is connected to the signal generator and the
DHCP server switch.,
rm = visa.ResourceManager (Bpy)
my.instrumentl = rm.open.resource (uTCPIP::192.168.1.18::INSTR)

In the above line my _instrument. 1 is the signal generator SMA100A. The VISA Resource
Manager is calling PyVISA so that VISA libraries that were imported before can be used.
TCPIP stands for Transmission Control Protol/Internet Protocol. The IP address is part of
the visa resource string that is used by the programs to identify and control the instrument.

SCPI command structure [8] has a status reporting system. It stores all the information
in registers regarding the current state of the instrument and errors if any occurred. It is
possible to query both of them using certain SCPI commands. There are five different
parts of each status registers and each register has a width of 16bits (0 to 15). Each bit
represents a different meaning in the status reporting system. In this project we only used
two status registers called the status byte register and status event register. The following
two tables give a clear description regarding the meaning of each bits.

4.3 Test instruments and automation 25

Table 4.1: Meaning of bits used in the status event register

Bit Number | Meaning
0 Operation is complete (meaning all commands have been executed
and the event status is updated to bit 1)
1 Not Used
9 Query error (there is a query command that is faulty
and cannot be executed)
3 Device,dependant error (a number between -300 and -399 is shown meaning
there is an,error)
Execution error (meaning the command sent is syntactically
4 correct however it cannot be executed for other reasons
and a number between -200 and -300 is shown)
= Command error (meaning the command sent is undefined
o or syntactically incorrect and a number between -100 and -200 is shown)
) User request (this means that the instrument has exited
; from remote to mannal mode following users request)
7 Power on

The following table shows how the bits were used in status byte register.

Table 4.2: Meaning of bits used in status byte register.

Bit Number | Meaning
0 and 1 Not Used
9 Error queue not empty
(meaning this bit is set whenever there is an error)
3 Questionable status
register (this bit is set if any event oceurs in the status register)
_ Message,available (meaning there is a message in the output that can be
4 read)
5 Error status bit (there is a major error)
6 Status summary bit (meaning
there is a service request)
- Register summary bit (this bit means that the instrument is performing an
action)

Before we go to the last part of this section the following commands needs to be
mentioned and explained:

o *IDN? (Identification) This is a query only command. Onee this command is sent it
returns the identification of the instrument in the format Device name, device type,

26

Chapter 4. Sefting up a remote connection

serial number, firmware version.

e *RST (Reset) Its a setting only and is neither a write nor a query command. It

sets the instrument into a default state.

e *CLS (Clear Status) It clears the current status of the instrument along with all

the outputs.

o *OPC (Operation Complete) This means that operation is complete and it blocks

the status registers until all the commands have been executed.

e *ESR?(Error Status Register) Its a query only command and reads the current

status of the event.

The following piece of code is now used to establish a successful remote connection between
the signal generator and the computer using a python script.

'/usr/bin/python
import numpy as np
import wvisa

rm

= visa.ResourceManager (@py)

my_instrumentl = rm.open.resource (UTCPIP::192.168.1.18::INSTR)
idn = my_instrumentl.gquery (*IDN?)

print (idn)

my_instrumentl.write (*rst; status:preset; =cls)

print my.instrumentl.gquery (*0OPC?)

print my.instrumentl.write (SYST:SERR?)

print my_instrumentl.guery (ESR?)

After executing these remote commands the following output is received in the Linux

terminal showing that the connection was successful.

4.3 Test instruments and automation 27

nafiz@nafiz-VirtualBox: ~/Documents

nafiz@nafiz tualBo d Documents

nafiz@nafiz-VirtualBox:~/Docu 1tsS ./testscriptl.py
Rohde&Schwarz ,5SMA100A,146060.0000k02/112151,3.1.17.3-3.61.102.2

1

<StatusCode.succe

nafiz@nafiz-virtuale

Figure 4.1: Successful remote connection between signal generator and the computer.

From the figure above it can be said that the status registers are not being used (1)
and there is a message available to read(4).

The filename was saved as testscriptl.py in the documents folder. Therefore the current
directory (cd in the above image) was changed at first before executing the file. The
output of the *IDN command is returned as Rohde and Schwarz, jdevice type;. jserial
number; . jfirmware version;. The status byte and status event register bits are shown as
well and the deseription of them are given above in the tables above.

After the connection is successful it is now possible to send SCPI commands to the
generator to do various tasks. A simple code is given below to provide an example.

print my-instrumentl.write (SOUR:FREQ 385 MHz)
print my_instrumentl.query (SOUR:FREQ?)

print my_instrumentl.write (SCUR:POW -47 dBm)
print my_instrumentl.query (SQ0UR:POW?)

print my_instrumentl.write (OUTP ON)

print my_instrumentl.gquery (QUTP?)

print my_instrumentl.write (FM:STAT ON)

print my_instrumentl.query (FM:STAT?)

The above code assigns a frequency of 385MHz and a power of -47dBm to the signal
generator and then turns on the RF output and Modulation.

28

Chapter 4. Setting up a remote connection

nafiz@nafiz-VirtualBox: tsS ./testscriptl.py

Rohde&Schwarz ,SMA188A,1406.06000k02/112151,3.1.17.3-3.01.162.268

StatusCode.success:
StatusCode.success:

F

Lz@nafiz-VirtualBox:

Figure 4.2: Assigning frequency and power and turning on the outputs.

e R OFF | MOD OFF

5.000 000 0Q}:

Al

Mod Gen Maodulation

_config |

[On

i e i ..' ay --. e 5 DS iy : H e i £ & e ©
Figure 4.3: Display of signal generator before executing the above code

4.3 Test instruments and automation 29

Figure 4.4: Display of signal generator after the execution of the code.

4.3.2 Remote connection of the SINAD meter (Aeroflex)

The SINAD meter used in this project is manufactured by Aeroflex and its model
number is 3920B. Unlike the signal generators that have multiple interfaces manufactured
by Rohde and Schwarz, this has only a GPIB interface built in it. As a result the steps to
establish the remote connection were a bit different.

At first a telnet library was required to setup the connection. Telnet is a protocol that
allows user to connect to remote computer known as hosts over a TCP/IP network” [10].
A connection with a telnet server is possible if the computer is running a telnet client
server. After the telnet establishes a connection to the host it is possible to control it
remotely. The telnetlib module in python can implement the telnet protocol. The following
command was used to import the telnet protocol in python.
import telnetlib

If the above code is written in the top of the script pvthon antomatically imports and
implements the telnet protocol [10]. While researching online regarding how to implement
the remote connection using the SINAD meter we came across a pvthon file called nfeli.py
that had to be downloaded from python for free. This file was created so that new users
didnt have to write all the codes that help to implement the telnet protocol. It contains
codes that searches for any GPIB interface available in the network and allows modifying
it. The following command was used to search for the available interfaces

30 Chapter 4. Setting up a remote connection

python nfcli.py -list

Prologix GPIB-Ethernet controller was used to connect one end of the GPIB cable
to the SINAD meter and the other to the controller. The Ethernet port of the controller
was then connected to the DHCP server switch using a LAN cable as a result the IP
address of the controller was found. After downloading the file it was run in Linux terminal
using the code: python nfeli.pyv. Since it was a precompiled seript it didnt have the
#! /usr /bin/python at the top as a result python was put at the beginning of the file name.
After executing the file the GPIB controller was found with its own IP address.

Q";‘-‘
-
o *
qfizzsp -, h%hk
1 Y,

nafiz@nafiz-virtualBox:~/Docl S python nfcli.py --1ist

searching through network interface: ©.0.0.0

Found 1 Prologix GPIB-ETHERNET Controller(s)

Ethernet Address: 08-21-69-81-1A-81

Hardware: 1.1.8.8 Bootloader: 1.2.8.8 Application: 1.6.6.8
Uptime: 34 d 13 hours 29 minutes 32 seconds

Dynamic IP

IP Address: 192.168.1.66 Mask: 255.255.224.0 Gateway:
Mode: Application

nafiz@nafiz-VirtualB

Figure 4.6: Identifying the IP address of the controller.

The Aeroflex 3920B has a default telnet port number of 1234 and a dynamic GPIB
address of 3. After this a python script was made to communicate to the instrument. It
was possible to talk to the signal generator using its own IP address however the SINAD
meter didnt have an Ethernet port. Therefore the IP address of the GPIB controller was
used which then communicated to the SINAD meter that had a GPIB address of 3. As

4.3 Test instruments and automation 31

a reason there was a delay in receiving the output from the SINAD meter. This was
a problem as the telnet connection timed out after few seconds without returning any values.

Therefore, we had to import another python module called time. It basically holds
the telnet connection for a certain amount of time until the output is received from the
SINAD meter. The amount of time is mentioned by the user in the python seript. The
following code was used at the beginning of the script to import time:
import time.

The Prologix controller in this case was set to behave as a controller unlike the computer
in the previous remote connection. This is because the SINAD meter is connected to the
controller through its only available interface. As a result it is thinking that it is connected
to the computer and would accept any SCPI commands sent to it. The SINAD meter
generates an output audio value that is not steady. It fluctuates all the time and for this
reason we needed a SCPI code that would perform an average function on the SINAD
meter. The following code gives an example of how the SINAD meter can give an average
output by using a SCPI code.

:CONFigure:AF:ANALyzer:5INad:AVERage 3

The most widely used abbreviated form is
:CONF :AF : ANAL:SIN:AVER 3

The query command is
FETCh:AF :ANAL :SIN ?

The SINAD is asked to return an audio output by taking an average of 3 readings.
Therefore the python script to communicate with the SINAD meter has the following code:

#!/usr/bin/python

import time

import telnetlib

tn = telnetlib.Telnet (192.168.1.66 , 1234)
tn.write (++mode 1l\n)

tn.write (++auto 1\n)

tn.write (++addr 3\n)

tn.write (*IDN?\n)

tn.write (CONF:AF:ANAL:SIN:AVER 3\n)
tn.write (FETC:AF:ANAL: SIN?\n)

The IP address used in the above code is of the GPIB-Ethernet controller and 1234
is the default telnet port number of Aeroflex. After that it is set to be in the controller

32 Chapter 4. Sefting up a remote connection

mode and GPIB address 3 of the Aeroflex instrument was accessed. The *IDN works the
same way as the signal generator and prints the instrument name, type, serial number ete.

4.4 Chapter summary

In this chapter we saw how two different approaches were used to connect the two
different test instruments. For the signal generator, all the necessary libraries and how
to download/import and install them were mentioned. Detailed explanation about the
status registers and bits were given. Examples of simple SCPI commands to were given to
remotely set the frequency and power of the signal generator.

For the SINAD meter the two libraries and telnet protocol was also discussed. Moreover
how the GPIB-Ethernet controller was used to control the instrument was also mentioned.
Simple SCPI commands were also included to provide an understanding of average readings.
In the next chapter we will see how the two methods discussed above can be combined
together and create an automated test process that were manually done in Chapter 3.

Chapter 5

Automated tests

In the previous chapter we discussed how it was possible to establish a remote connection
between the test instruments. Two different connections were made a GPIB connection
and a HiSLIP connection. In this chapter we will discuss how the remote commands can
be compiled together using python programming and automate the tests that we did in
chapter 3.

5.1 Reference Sensitivity

In this test we used the signal generator SMA100A and the Aeroflex as the SINAD
meter. As mentioned in chapter 4, Aeroflex was connected using a GPIB and the signal
generator using Ethernet. The frequency of the receiver module was assigned by the IP
commander and the same frequency was assigned to the signal generator. The instruments
were connected to the A.C' mains whereas the base station was connected to the 12V D.C
supply. These tests were carried out using a UHF unit which had a frequency of 155 MHz.
The standard input signal of -47 dBm was applied using the following piece of code:

print my_instrumentl.write (SOUR:POW -47 dBm)

To ensure that the command was executed successfully a query command was sent as
well.

print my_instrumentl.guery (SOUR:POW?)
The output was -47 dBm in the display of SMAI100A. The RF output and modulation

output was turned on using the following remote command:

print my_instrumentl.write (OUTP ON) RF ocutput
print my_instrumentl.write (FM:STAT ON) modulation output

33

34 Chapter 5. Automated tests

The next step was to change the power level until we got an output of 12 dB from the
SINAD meter. Before the code is given it is important to describe few terms that were
used to automate these tests.

Since we are expecting a returned value of 12 dB from the SINAD meter a lower limit
of 11 dB and an upper limit of 13 dB were created. This is because the SINAD meter
does not give a steady reading as mentioned before. The code was made in such a way
that we would get an average value from the SINAD meter and also if it had any value
between 11 dB and 13 dB the code would exit the loop to give the power reading.

From the manual test it is known that the SINAD would return a value of 12 dB
for reference sensitivity of -110 dB. As a result a step function was created. The signal
generator was asked to start the readings from -117 dB in steps of 1 until it got to a value
for which the SINAD was 12dB.

As mentioned earlier it takes time to receive readings from the Aeroflex because it
was controlled by Prologix using a GPIB cable and the Prologix was connected to the
computer through Ethernet. The SCPI commands was first sent to Prologix which would
then send it to Aeroflex to perform actions. The output is received in the same process as
a result there is a delay. Therefore, there is a high possibility that the signal generator
would update its reading before the SINAD meter updated. As a result, we had to import
the time library in python to implement a wait statement so that the audio value gets up-
dated hefore the signal generator. The SINAD meter returns output in the following format:

nafiz@nafiz-virtualBox:~/Docune
telnet> open 192.168.1.66 1234
Trylng 192.168.1.66...
Connected to 192.168.1.66.

Escape character is 'A]".
CONF:AF:ANAL:SIN:AVER 3
FETC:AF:ANAL:SIN?
0,0,3,43.95,0.03

Figure 5.1: Output format of SINAD meter in the Linux terminal.

5.1 Reference Sensitivity 35

Figure 5.2: Output displayed in the SINAD meter.

The output is displayed in the terminal as a string in the format status byte, fail byte,
average count, average, we. The output in the example above returns a string of 0, 0, 3,
43.95, 0.

This means that the status byte is valid (0) and all limits are checked and passed (0),
average connt is 3 and the output of the SINAD metre is 43.95 dB. WC represents worst
case which is () meaning the commands were executed without any error. The full table
that explains each bits of status byte [1] and fail byte are given below:

The code to read the audio value is given below:
line = tn.read.untill (\n, 30)
audio.val = float (line.split(,)I[3])

36 Chapter 5. Automated tests

Table 5.1: Status Byte description for Aeroflex

Status Byte Bit number | Fail byte

Valid 0 All limits checked and passed
Invalid 1 Not used

Settling 2 Average lower failed limit
Not used 3 Not used

Inaccurate 4 Not used

Not used 5 Not used

Settling and inaccurate] Not used

Settling, inaccurate and invalid | 7 Not used

Not used 8 Worst case lower failed limit

The above code means that the connection needs to wait at least 30seconds before it is
timed out or until a new line of code is generated (\n represents a new line). Since we are
getting decimal values float is used. Moreover the output of the SINAD meter is the 4th
value in the string. Therefore the above command splits all the commas and accesses the
4th value in the string and returns the output.

The code to carry out reference sensitivity is now given below:

line = tn.read_until{"\n",30)
s##print line
audio_val = float(line.split(",")[3])

lower = 11

upper = 13
signal_power = -117
step = 1

def get_signal_power{audio_val, step, upper, lower, signal_power, tn, my_instrumenti):

while audio val<lower or audio_wval>upper:
Af audlo_val<lower:

| signal_power += step
elif avdio_valsupper:

signal_power -= step

my_instrunentl.write("SOUR:PON "+str(signal_power)+" dBm”) #changing the signal power value
time.sleep(1) #to make sure audio value is updated before reading
tn.write{ “FETC:AF: AMAL :SIN?\n")
1ine = tn.read_until({"\n",638)
print line
audio_val = float(line.split(', ')[2])
#audio_val = (tn.read_until('\n', 18)).split(",')[3)#updating the avdio value to the latest value
print signal_power

print “done”

return signal_power

signal_power = get_signal_power(audio_val, step, upper, lower, signal_power, tn, my_instrument1l)

Figure 5.3: Code for reference sensitivity.

The signal power is defined as a function becanse from the manual tests we have seen
that reference sensitivity is always measured at the start of each test. Therefore it is

5.1 Reference Sensitivity 37

casier to leave it as a function so that it can be called later. The audio value, step, upper,
lower, signal power, tn and my_instrument1 are all stored as a variable within the function
so that when it is edited, the value will get updated automatically throughout the code
wherever it is used.

All the parameters are defined before the function is declared. A simple while loop
is used to check the current signal power and audio value. If the audio value is lower
than 11 dB the signal power is increased by steps of 1 and if it is higher than 13 dB the
power is decreased by steps of 1. The power value updates antomatically in the display of
SMA100A and a 1second delay is made to make sure that the audio value gets updated
hefore reading the signal power. This loop continues until an average floating point value
of the SINAD meter is found between 11 dB and 13 dB.

The full code for this test is provided in the appendix section at the end of this
document. After carrving out this experiment the reference sensitivity was found to be
-112 dB. The figure below shows the final output after the execution of the code.

(17, <StatusCode.success: 0>)

-117
©,0,3,4.75,0.00
-116
0,0,3,5.79,0.00
=115
0,0,3,9.40,0.00
-114
®,6,3,9.31,0.00
-113
©,0,3,12.64,0.00

Figure 5.4: Automated test result for reference sensitivity.

38 Chapter 5. Automated tests

5.2 Adjacent Channel Rejection

Two signal generators SMALIOOA and SMB100A were used in this test along with
Aeroflex. Both the generators are assigned a frequency of 155 MHz using the same code
mentioned above. The RF output of SMB100A is kept off by using the following code:

print my_.instrument2.write (OUTP OFF)

SMB100A is modulated with 400 Hz and 60% of the permissible frequency using the
following code:

print my_instrument2.write (SOUR:FM:DEV 1.5 kHz)
print my_instrument2.write (SOUR:LFC:FREQ 400 Hz)

The above code sets the FM deviation to be 1.5kHz and the LF frequency to be 400
Hz. The code to turn on the RF output and increase and decrease the frequency by 12.5
kHz respectively is given below:

print my_instrument2.write (OUTP ON)
print my_instrument2.write (SOUR:FREQ 155.0125 MH=z)
print my_instrument2.write (SOUR:FREQ 154.9875 MHz)

The short code for the automated test is given below:

p-ref = signal_power

signal_power + = 3 # increase wanted signal power by 3 db
interfere power = p.ref + 75

def get_interfere power (audio_val, step, upper, lower, signal_power,
tn, my-instrument2, my-instrument3=None):

while audic_val<lower or audio_val>upper:

if audico.wal<lower:

signal_power - = step
elif audio-val>upper:
signal_ power + = step

my_instrument2.write ("SOUR:POW "+str(signal power)+" dBm")

changing the signal power value

if my-instrument3:

my_instrument3.write ("SOUR:POW "+str (signal_power)+" dBm") changing
the signal power wvalue

time.sleep(l) to make sure audio value is updated before reading

5.2 Adjacent Channel Rejection 39

tn.write("FETC:AF:ANAL:SIN?\H")

line = tn.readuntil {("\n", 30)

print line

audio.val = float (line.split(’,")[31])
print signal_power

At start Prgp is calculated using the same procedure as the previous test. Then 3
dB is added to Prer. After completing the manual test the adjacent channel rejection
was found to be 62 dB. Therefore, we know that we are looking at a value around that.
As a resulf the interfere power (power of SMB100A) was increased by 75 dB. By doing
this the time required to complete the test would be less as the loop will now have less
values to work with. The same function is used by making two changes. Since SNIB100A
is an interferer the function name is changed and SMBVI100A is included as a variable so
that this function can be called when we are working with a test that needs SMBVI100A.
However it doesnt affect the code because nothing is assigned to SMBVI00A.

A simple while loop is used which checks the current status of the audio value. If it is
less than 11 dB it decreases the signal power by steps of 1 and if it is more than 13 dB it
increases the power by steps of 1. The RF output is now turned on of SMBI00OA and the
frequency is increased and decreased by using the codes in the previous page. The signal
generator now updates its values each time until the SINAD meter gets a reading that
is between 11 dB and 13dB. This step is repeated for both the high and low frequency.
After that the adjacent channel rejection is calculated using the following code:

p_-high =get_interfere_power (audioc_val, step,upper, lower,

interfere power,tn,my_instrument?2)

p-low =get_interfere_power (audio.val, step,upper, lower,
interfere_power, tn,my_instrument2)

rejection_high = p_high - p_ref

rejection_low = p_low - p_ref

rejection = rejection.high if rejection.high < rejection_low else
rejection_low

print rejection

The full code for this test script is provided in the appendix section at the end of this
document. After running this seript the adjacent channel rejection was found to be 65 dB.

40 Chapter 5. Automated tests

.00

.00

.00

.00

.00

.00

.00

.00

.00

Figure 5.5: Automated test result for adjacent channel rejection

5.3 Spurious Rejection

In this test SMAIT00A and SMB100A are assigned the same frequency as that of the
signal generator. The codes are same as before. Reference sensitivity, Prpp is calculated
in the same way as done in the first automated test. After that Prgpr is increased by 3
dB and the frequency of SMBI00A is increased by 90 MHz. After this the RF output of
SMBI00A is turned on. The signal generator then adjusts its power level until the SINAD
meter gives a reading between 11 dB and 13 dB. The level at which the SINAD gives the
desired value is recorded as Pyoy. After that the spurious response is calculated using
the following code:

rejecticon.high = p.high - p.ref

print rejecticn

The short code for the above test is given below:

p-ref = signal_power

signal_ power += 3 # 1ncrease wanted signal power by 3 db

5.3 Spurious Rejection 41

interfere power = pref + 75

my_instrumentl.write ("SOUR:POW "+str (signal power)+" dBm")
my_instrumentl.query ("SOUR:POW?")

def get_interfere_power (audio_val, step, upper, lower, signal_power,
tn, my_-instrument2, my.instrument3=None):

while audio_val<lower or audio_val>upper:

if audio_val<lower:

signal_power -= step

elif audio_val>upper:

signal_power += step

my_instrument2.write ("SOUR:POW "+str(signal_power)+" dBm")} changing
the signal power value

if my_instrument3:

my_instrument3.write ("SOUR:POW "+str(signal _power)+" dBm") changing
the signal power value

time.sleep(l) to make sure audio value is updated before reading
tn.write ("FETC:AF:ANAL:SIN?\n")

line = tn.readuntil("\n",10)

print line

audio.val = float (line.split(’,’)[3])

print signal_power

print "done"

return signal_power

The full code for this test is given in the appendix section at the end of this document.
After completing the manual test the spurious rejection was found to be 75 dB. The
interfere power is made to be 75dB more than the Pgrgp. This is beeause the test will be
faster as we know we are looking for a value around 75 dB.

SMBI100A keeps on updating its power value until an output value between 11 dB
and 13 dB is found from the SINAD meter. After the execution of the code the spurious
rejection was found to be 77 dB. The final output that was received at the terminal is
given below:

.37
9,0,3,12.96,0.00

-36
done

Figure 5.6: Automated test result for spurious rejection

42 Chapter 5. Automated tests

5.4 Intermodulation Rejection

In this test all the three signal generators are used. Same frequency is assigned to all
the generators. The reference sensitivity, Prep is calculated in the same way as before.
The RF output is kept off for SMB100A and SMBVI100A. Prep is then increased by 3 dB.
The frequency of SMB100A is increased by 50 kHz and the frequency of SMBV100A is
increased by 100 kHz. The RF output is now furned on for both. The next few lines of

code does the same thing,

print
print
print
print
print
print
print
print
print
print
print

my_instrument2
my_-instrument?2

my_instrument3.
my_instrument3.
my_instrument3.
my_instrument3.
write ("SOUR:
.write ("OUTP
write ("SOUR:
.write ("SOUR:
write ("SOQUR:

my_instrument?2
my_instrument2

my_instrument3.

my-instrument3
my_instrument3

.write ("SOUR:
Wwrite ("OUTP
write ("SOUR:
write ("SOUR:
write ("SOUR:

write ("OUTP

FREQ 155
ON"™)

FREQ 155
FM:DEV 1
LFQ:FREQ
OoN"™)

FREQ 154
ON™)

FREQ 154
FM:DEV 1
LFO:FREQ

.05 MHz")

.1 MHz")
.5 kHz")
400 Hz")

.95 MHz")
.9 MHz")

+2 kHz")
400 Hz)

The signal generators are made equal by using the following code:

p-high =
t—nf

get_interfere power (audio_val,
my_instrument2, my_instrument3)

step, upper, lower, interfere_power,

Prow is calculated in the same way as above after decreasing the frequency.

p-low =
tn,

get_interfere_power (audio.val,
my_instrument2, my_instrument3)

step, upper, lower, interfere_power,

Intermodulation rejection is now calculated using the following code:

rejection_high = p_high - p_ref
rejection_low = p_.low - p.ref

rejection = rejection.high if rejection.high < rejection.low else
rejectiocn_low
rejection = p_high - p_ref

print rejection

5.5 Chapter summary 43

print "done"

The complete code for this test is given in the appendix at the end of this document.
After executing the complete code the intermodulation rejection was found to be 81 dB.
The figure below shows the final output received in the terminal.

0,0,3,13.42,0.00
-37
©,0,3,14.08,0.00
-36
0,0,3,13.83,0.00
-35

0,0,3,12.97,0.00
-34

Figure 5.7: Automated test result for intermodulation rejection

5.5 Chapter summary

This chapter covered more detailed codes on how the tests were automated. The
process was fairly simple as each line of instruction in the manual test procedures can
be written in the form of SCPI commands. Including the previous chapter, the entire
automation process is described starting from making different remote connections, SCPI
commands to control instruments remotely and python seripts with compiled SCPI codes.

In the next and final chapter we will conclude by comparing the results between the
manual and automated tests. An extension of this project for future work is also mentioned.
At the end all the complete codes are provided in the Appendix and a bibliography is
provided to acknowledge the research papers used in this document.

44

Chapter 5. Automated tests

Chapter 6

Conclusion

This chapter gives a general overview about the work that has been done thronghount
the project. It also shows the comparison of test results between manual and antomated
processes. Furthermore it provides a section that discusses how this thesis work can be
used for future work on extensions of this project.

6.1 Test results comparison

In chapter 3 we followed the TTA standards to complete the measurements for four
tests manually. The results were recorded for future reference. In chapter 5 we completed
the automated tests and the results were recorded as well. The table below is used to
show a comparison between these two methods and TIA recommendations

Name of test Manual result Automated result TIA standard

Reference sensitivity -110 dB -112 dB -108 dB and lower the
better

Adjacent Channel 62 dB 65d8 60 dB and higher the

Rejection better

Spurious Rejection 75dB 77 dB 70 dB and higher the
better

Intermedulation 80dB 81dB 79 dB and higher the

Rejection better

Figure 6.1: Comparison of manual and automated test result

Based on the TIA standards and according to the figure above it can be said the
antomated tests produced a slightly better result than the manual tests.

46 Chapier 6. Conelnsion

6.2 Conclusion

The aim of this project was to develop an antomated test system to monitor the
RF characterisation of radios. In order to accomplish that instrument automation was
necessary. We looked into two different methods on how to establish a remote connection.
Detailed explanation about VISA libraries and different python module was also discussed.
Moreover how to install Linux virtually in a windows machine was also mentioned.

Each chapter gave detailed explanation regarding all the requirements mentioned above.
At the end the results were compared to give a clear picture why instrument automation
was necessary. It can be said that automated tests produced a better and more reliable
result compared to the manual tests. Therefore, we can say that the objective of this
project was met. Howewver, many things can be implemented and improved regarding this
project and these are outlined in the next section.

6.3 Future work

According to the TIA standard both the receiver module and the transmitter module
need to undergo rigorous testing in order to be certified for usage. This project discussed
how the tests for receiver module can be automated. In an extension to this project,
someone can work on how to automate the tests for the transmitter module. This research
paper can be served as a proper guideline to accomplish that task.

The IP address of the signal generators are found after it is connected to a DHCP server
switch using an Ethernet cable. However the IP address will change if the cable is moved
from one port to the other. To solve this issue a similar python seript such as nfeli.py can
he made which will provide the IP address just by running the script. As a result the
user wont have to manually identify the IP address of the signal generator using the display.

Another thing that can be changed is the way we assign frequency. Instead of assigning
the same frequency to each generator individually, it can be stored as a functions variable.
Therefore whenever we want to increase or decrease it, the function can be called and the
variable can be updated. This will result in a shorter and faster script and a faster test
process.

6.4 Chapter summary

In this chapter we summarized each stage of the project and how we met the project
goal. The test results were compared and it was found that antomated tests produced
more reliable answers. In addition to that future extensions of this project and areas that
can be improved are also mentioned.

Chapter 7

Abbreviations

RF
UHF
VHF
TIA
SCPI
VISA
SINAD
HiSLIP
TCP
P
DHCP
GPIB
IEEE
FM
AM

Radio Frequency

Ultra High Frequency

Very High Frequency

Telecommunication Industry Association
Standard Commands for Programmable Instrument
Virtual Instrument Software Architecture

Signal to Noise and Distortion

High Speed Lan Interface Protocol

Transmission Control Protocol

[nternet Protocol

Dynamic Host Control Protacol

General Purpose Interface Bus

[nstitute of Electrical and Electronics Engineering
Frequency modulation

Amplitude modulation

47

48

Chapter 7. Abhreviations

Bibliography

(1]
2]
(3l

(4]

[8

(9]

[10]
1]

[12]

[13]
[14]

“Aeroflex.” [Ounline]. Awailable: http://ats.aeroflex.com/radio-test-sets/
land-mobile-radio-products /3920b-series-analog-and-digital-radio-test- platform

“Dynamic Host Control Protocol.” [Online]. Available: http://whatismyipaddress.
com/dhep

“High Speed LAN Interface Protocol.” [Online]. Awailable: https://pyvisa.
readthedocs.io/en /stable/

“Process control.” [Online]. Available: https://en.wikipedia.org/wiki/Process_control

“RF Technology ; Base station.” [Online|. Available: http://www.rftechnology.com.
an/rf_fsprod.html

“RF Techuology ; Introduction.” [Online]. Available: http://www.rftechnology.com.
aun/

“Rohde and Schwarz.” [Online]. Available: https: //cdn.

rohde-schwarz.com,/ pws/dl_downloads/d]l_common_library /d]l_mamuals /gh_1/s/
sma/SMA100A _OperatingManual_en_14. pdf

“Standard Commands for Programmable Instrument.” [On-
line]. Available: http://www.radio-electronics.com/info/t_and_m/
scpi-standard-commands-for-programmable-instrumentation /basies-tutorial.php

“Telecommunication Industry Association.” [Online]. Available: https://en.wikipedia.
org/wiki/TIA/EIA-568

“Telnet.” [Online]. Available: https://kb.in.edu/d/aayd

“Virtual Instrument Software Architecture.” [Online|. Available: http://www.tek.
com /support/faqs/what-visa

“What is GPIB.” [Online]. Available: https://www.electronics-notes.com/articles/
test-methods/gpib-ieee-488-bus/what-is-gpib-ieeed88.php

“What is numpy.” [Online]. Available: www.numpy.org

“What is PyVISA.” [Online]. Available: https://pyvisa.readthedocs.io/en/stable/

49

BIBLIOGRAPHY

Appendix A

Consultation Meeting Form

5l

Consultation Meetings Attendance Form

Week Date Comments Student’s Supervisor’s
(if applicable) Signature Signature

] 9 HQ_ Introduekion oA RF | OL_/ %

(5[" ’Bn W™kio i T Nﬁ(dﬂw/ \%ﬁ_ﬂ,,ﬂ&

P-‘ﬂ'leﬂ,

\'\

i d v [t | L)

U I O F

=

"y et LR
b
g

097 :'i!‘;’:tf‘;z?f“ o opieas MJ /4%1/‘/"/@/

CL At "“Ji’t nae s

| pls ”d*dw’ i 2

ol R
BT Tek g4 o dvehon +0 inGrvel Nﬁéﬂ”ﬁ /Z//élﬁ,‘rk‘"

21> d Lo to use flew

— |oF ook | Honval fods Moy oty | -

l@f’-‘l . rfmtfutg,ﬁc) d ’) IMZ’C__,.-#
— 3 ‘L AU f. o,V)Aé»l a\,.;{-ﬂ

T | b & ok e [\(//{ ==

re {,DL Z oJl 4 o to~ate J?ﬂ“ N e
o uf?_;’“ \ft"}"ﬂ‘) / O{ %%

LF ol .Mw*w“-a’ torth /J
K35 L‘ omp'ﬂzﬁol dj

Scanned by CamScanner

Appendix B
Codes

53

1. Complete code that automates Reference Sensitivity

#!'/usr/bin/python

import time

import numpy as np
import telnetlib
import wvisa

rm = visa.ResourceManager ('@8py')

my_instrumentl = rm.open resource(u'TCPIPZ::192.168.1.18::INSTR'}
idn = my_instrumentl.gquery('*IDN2')}

print (idn)

my instrumentl.write("*rst; s set; *cls")

print my instrumentl.query("* Block until operation is

complete

print my instrumentl.write("SYST:SERR?")

print my instrumentl.query("*ESR?") # status register
print my instrumentl.write("SOUR:FREQ 155 MHz")

print my instrumentl.gquery("SOUR:FREQ?")

print my instrumentl.write("SOUR:POW -47 dBm")

print my instrumentl.guery("SOUR:POW?2")

print my instrumentl.write("QUTP ON")

print my instrumentl.gquery("COUTP?")

print my instrumentl.write("FM:STAT ON")

tn = telnetlib.Telnet("192.168.1.66", "™1234")
tn.write("++mode 1%n")

tn.write ("++auto 1h\n")

tn.write("++addr 3\n")

tn.write ("*IDNZ\n")

tn.write ("CONF:AF:ANAL:SIN:AVER 3\n")
tn.write ("CONF:AF:ANAL:SIN:AVER?\n")

tn.write ("FETC:AF:ANAL:SINZ\n")

line = tn.read until("\n", 30)

audio val = float(line.split(',"')[3])
lower = 11

upper = 13

signal power = =117

step = 1

def get_signal power(audio_wval, step, upper, lower, signal power,
tn, my instrumentl):
while audio val<lower or audio_ val>upper:
if audio_wval<lower:
signal_power += step

elif audio_val>upper:
signal power -= step

my instrumentl.write("SOUR:POW "+str({signal power)+" dBm")
#changing the signal power value

time.sleep(l) #tc make sure audic value is updated before
reading

tn.write("FETC:AF:ANAL:SIN?\n")

line = tn.read until("\n",30)

audio val = float(line.split(',"'}[3])

print signal power

print "done"

2. Complete code for adjacent channel rejection

#'/usr/bin/python

import time

import numpy as np
import telnetlib
import wvisa

rm = visa.ResourceManager ('@py"')

my_instrumentl = rm.open_resource(u'TCPIP2::192.168.1.18::INSTR'}
idn = my_instrumentl.query('*IDN2'}

print(idn)

my_instrumentl.write("*rst; status:preset; *cls")

print my instrumentl.query("*CPC?") # Block until operation is
complete

print my instrumentl.write("SYST:SERR?")

print my instrumentl.gquery("*ESR?") # status register

print my instrumentl.write("SOUR:FREQ 155 MHz")

print my instrumentl.guery("SCOUR:FREQ?")

print my instrumentl.write("SOUR:POW -47 dBm")

print my instrumentl.guery("SOUR:POW2")

print my instrumentl.write("OUTP ON")

print my instrumentl.guery("OUTP?")

print my instrumentl.write("FM:STAT ON")

my_instrument2 = rm.open_resource{u'TCPIP2::192.168.1.64::INSTR'}
idn = my instrument2.query('*IDNZ")}

print(idn)

my instrumentZ.write("*rst; status:preset; *cls")

print my instrument2.gquery("*OPC?") # Block until operation is
complete

print my instrument2.write("SYST:SERR?")

print my instrument2.guery("*ESR?") # status register

print my instrument2.write("SOUR:FREQ 155 MHz")

print my instrument2.query("SOUR:FREQ?")

print my_instrumentE.write{”SOUR:?OW -47 dBm")
print my instrument2.guery ("SOUR:POW?2")

print my instrument2.write("SOUR:FM:DEV 1.5 kHz")
print my instrument2.guery("SCOUR:FM:DEV?2"}

print my instrument2.write("SOUR:LFO:FREQ 400Hz")
#print my instrument2.write("OUTP OFF")

#print my instrument2.gquery{"OUTP?")

print my instrument2.write("FM:STAT ON")

print my_instrumentE.write{”POW:ALC:STAT ON")
print my instrument2.query("POW:ALC:STAT?")

tn = telnetlib.Telnet(™192.168.1.66", "1234")
tn.write("++mode 1\n")

tn.write("++auto 1\n")

tn.write("++addr 3\n")

tn.write ("*IDNZ\n")

tn.write ("CONF:AF:ANAL:SIN:AVER 3\n")
tn.write ("CONF:AF:ANAL:SIN:AVERZ\n")

tn.write ("FETC:AF:ANAL:SIN?\n")

line = tn.read until(™\n",10)
print line
audio_val = float(line.split(',")[3])

lower = 11

upper = 13
signal_power = -117
step = 1

def get_signal power(audio_wval, step, upper, lower, signal power,
tn, my instrumentl):
while audio val<lower or audio_val>upper:
if audic_val<lower:
signal power += step
elif audio val>upper:
signal_power -= step
my_instrumentl.writei"SOUR:POW “+strlsignal_power}+" dBm")
#changing the signal power wvalue
time.sleep(l) #to make sure audioc value i=s updated before
reading
tn.write("FETC:AF:ANAL:SIN?\n")
line = tn.read until("\n",10)
print line
audio_val = float(line.split(',")[3])}

print signal power
print "done"
return signal power

#starting adjacent channel

signal power = get signal power(audio val, step, upper, lower,
signal_power, tn, my_instrumentl)

p ref = signal power

signal power += 3 # increase wanted signal power by 3 db
interfere power = p ref + 75

my instrumentl.write("SOUR:POW "+str(signal power)+" dBm")
my_instrumentl.query("SOUR:POWZ")

def get interfere power(audioc wval, step, upper, lower, signal power,

tn, my instrument2, my_instrument3=None):
while audio_val<lower or audio_wval>upper:
if audio_wval<lower:
signal_power -= step
elif audio_val>upper:
signal power += step
my instrument2.write("SOUR:POW "+str(signal power)+" dBm")
#changing the signal power value
if my instrument3:
my_instrument3.write ("SOUR:POW "+str(signal_power)+"
dBm") #changing the signal power wvalue
time.sleepil) #to make sure audio value is updated before
reading
tn.write{("FETC:AF:ANAL:SINZ\n")
line = tn.read_until("\n", 20)
print line
audia_val = float(line.split (', "} [3])
print signal_power
print "done™
return signal power

#measuring p_ high

print my instrumentZ.write("SOUR:FREQ 155.0125 MHz"}

print my instrument2.guery("SOUR:FREQZ")

print my instrumentZ.write("OUTP ON") #turning on RF output
print my instrument2.gquery("OUTP2?")

p_high = get_interfere powerlaudio_wal, step, upper, lower,
interfere power, tn, my instrument2)

fmeasuring p_low

print my_instrumentE.write{”SOUR:?REQ 154.9875 MHz")

print my instrument2.guery("SOUR:FREQ?"}

p low = get interfere power(audic val, step, upper, lower,
interfere power, tn, my instrument2)

#measuring rejection

rejection_high = p_high - p_ref
rejection low = p_low - p_ref

rejection = rejection high if rejection high < rejection low else
rejection low

print rejection
print "done™

3, Complete code for Spurious Rejection

#!/usr/bin/python

import time

import numpy as np
import telnetlib
import wvisa

rm = visa.ResourceManager ('@8py')

my_instrumentl = rm.open resource(u'TCPIPZ2::192.168.1.18::INSTR'}
idn = my_instrumentl.query('*IDN2')

print(idn)

my_instrumentl.write("*rst; status:preset; *cls")

print my instrumentl.query("*COPC?") # Block until operation is
complete

print my instrumentl.write("SYST:SERR?")

print my instrumentl.query("*ESR?") # status register
print my instrumentl.write("SOUR:FREQ 155 MHz")
print my instrumentl.gquery("SOUR:FREQ?")

print my instrumentl.write("SOUR:POW -47 dBm")
print my instrumentl.gquery("SCOUR:POWZ")

print my instrumentl.write("QUTP ON")

print my instrumentl.query("OUTP?")

print my instrumentl.write("FM:STAT ON")

print my_instrumentl.write[”POW:ALC:STAT ON"™)
print my instrumentl.query("POW:ALC:STAT?")

my_instrument2 = rm.open_ resource (u'TCPIP2::192.168.1.64::INSTR')
idn = my instrument2.gquery('*IDN?'}

print(idn)

my instrument2.write("*rst; status:preset; *cls")

print my instrument2.guery("*OPC?") # Block until operation is
complete

print my instrument2.write("SYST:SERR?")

print my instrumentZ.guery("*ESR?") # status register

print my instrument2.write("SOUR:FREQ 155 MHz")

print my instrument2.gquery("SOUR:FREQ?")

print my instrument2.write ("SOUR:POW -47 dBm")

print my instrument?.gquery("SOUR:POW2?")

print my_instrumentE.write{”SOUR:EM:DEV 1.5 kHz")

print my instrument2.query("SOUR:FM:DEV2"]}

print my_instrumentZ.write("SOUR:LFO:FREQ 400Hz")

#print my instrument2.write("OUTP OFF")

#print my instrument2.query("OUTP?")

print my instrument2.write("FM:STAT ON")

print my instrument2.write("POW:ALC:STAT ON")

print my instrument2.query("POW:ALC:STAT?")

tn = telnetlib.Telnet("192.168.1.66", "1234")
tn.write("++mode 1\n")

tn.write("++auto 14n")

tn.write ("++addr 3\n")

tn.write("*IDNZ\n")

tn.write ("CONF:AF:ANAL:SIN:AVER 3\n")
tn.write ("CONF:AF:ANAL:SIN:AVER?\n")

tn.write ("FETC:AF:ANAL:SIN?\n")

line = tn.read_until("\n", 30)
audio_val = float(line.split(',")I[3])
lower = 11

upper = 13
signal power = =117
step = 1

def get _signal power(audio wval, step, upper, lower, signal power,
tn, my instrumentl):
while audio_val<lower or audio_val>upper:
if audio_wval<lower:
signal_power += step
elif audio_val>upper:
signal_ power -= step
my instrumentl.write("SOUR:POW "+str(signal power)+" dBm")
fichanging the signal power wvalue
time.sleepil) #to make sure audic value is updated before
reading

tn.write("FETC :AF:ANAL:SINZ\R")
line = tn.read until("\n",30)
print line
audio val = float(line.split(','}[3]}
print signal power
print "done"
return signal power

#starting spurious rejecticn

signal power = get signal power(audio val, step, upper, lower,
signal_power, tn, my_instrumentl)

p ref = signal power

signal power += 3 # increase wanted signal power by 3 db
interfere power = p_ref + 75
my_instrumentl.write("SOUR:POW "+str(signal_power)+" dBm")

my_instrumentl.query("SOUR:POW2")

def get_interfere power(audio_val, step, upper, lower, signal_ power,
tn, my instrument2, my instrument3=None):
while audio_val<lower or audio val>upper:
if audio_val<lower:
signal power -= step
elif audio val>upper:
signal_power += step
my_instrumentE.writet"SOUR:POW “+strlsignal_power}+" dBm™)
#changing the signal power value
if my_instrument3:
my_instrumentB.writet"SOUR:POW "+5tri5ignal_power}+“
dBm") #changing the signal power wvalue
time.sleep(l) #to make sure audic value is updated before
reading
tn.write("FETC:AF:ANAL:SINZ?\n")
line = tn.read_until("\n",10)
print line
audic val = float(line.split(',"'}[3])
print signal_power
print "done™
return signal_power

for p_high

print my instrument2.write("SOUR:FREQ 244.99 MHz")

print my instrument2.query("SOUR:FREQ?")

print my instrument2.write("OUTP ON")

print my instrument2.query("OUTP2")

p _high = get interfere power(audio wval, step, upper, lower,
interfere power, tn, my_instrumentZ)

rejection = p high - p ref
print rejecticn
print "“done"

4., Complete code for intermodulation rejection

#1/usr/bin/python

import time

import numpy as np
import telnetlib
import visa

rm = visa.RescurceManager|('@py"')

my_instrumentl = rm.open_resouzce{u'TCPIP2::192.168.1.18::INSTR'}
idn = my_ instrumentl.query('*IDNZ?'")}

print(idn)

my_instrumentl.write{"*rst; status:preset; *cls")

print my instrumentl.query("*OPC?"}) # Block until operation is
complete

print my instrumentl.write("SYST:SERR?")

print my instrumentl.gquery("*ESR?") # status register
print my instrumentl.write("SOUR:FREQ 155 MHz")

print my instrumentl.gquery("SCUR:FREQ?")

print my_ instrumentl.write("SOUR:POW -47 dBm")

print my instrumentl.gquery("SOUR:POW2")

print my instrumentl.write("OUTP ON")

print my instrumentl.query("OUTP2?")

print my_instrumentl.write{”FM:STAT ON™)

my_instrumentZ = rm.open_resaurce{u'TCPIP2::192.168.1.64::INSTR'}
idn = my instrument2.query('*IDN2')

print (idn)

my instrumentZ.write("*rst; status:preset; *cls")

print my instrumentZ.guery("*OPC?") # Block until operation is
complete

print my instrument2.write("SYST:SERRZ")

print my instrumentZ.guery("*ESR?") # status register

print my_instrumentE.write{”SOUR:FREQ 155 MHz")

print my instrument2.gquery ("SOUR:FREQ?")

print my instrument2.write("SOUR:POW -47 dBm")

print my instrument2.query("SOUR:POWZ")

print my instrument2.write ("OUTF OFF")

print my instrument2.guery("OUTP2I")

print my instrument2.write("FM:STAT ON")
print my_instrumentE.write{”POW:ALC:STAT ON")
print my instrument2.query("POW:ALC:STAT?")

my instrument3 = rm.open resource(u'TCPIP2::192.168.1.43::INSTR")
idn = my instrument2.guery('*IDN2'}

print(idn)

my instrument3.write("*rst; status:preset; *cls")

print my instrument3.query("*OPC?") # Block until operation is
complete

print my instrument3.write("SYST:SERR?")

print my instrument3.query("*ESR?") # status register

print my instrument3.write("SOUR:FREQ 155 MHz")

print my_instrument3.guery("SOUR:FREQ?")

print my instrument3.write("SOUR:POW -47 dBm")

print my instrument3.query("SCOUR:POWZ")

print my instrument3.write("SOUR:FM:DEV 1.5 kHz")

print my instrument3.guery("SOUR:FM:DEV2"}

print my instrument3.write("SOUR:LFO:FREQ 400Hz")

print my instrument3.write("OUTP OFF")

print my instrument3.query("OUTP2?")

print my instrument3.write("FM:STAT ON")

print my instrument3.write("POW:ALC:STAT ON")

print my instrument3.query("POW:ALC:STAT?")

tn = telnetlib.Telnet("192.168.1.66", "1234")
tn.write ("++mode 1%n")

tn.write("++auto 1\n")

tn.write("++addr 3%\n")

tn.write ("*IDNZ\n")

tn.write ("CONF:AF:ANAL:SIN:AVER 3\n")
tn.write ("CONF:AF:ANAL:SIN:AVER?\n")

tn.write ("FETC:AF:ANAL:SIN?\n")

line = tn.read until({"™\n", 30)

audio val = float(line.split(',"')[3])
lower = 11

upper = 13

signal power = -117

step = 1

def get_signal power(audio_wval, step, upper, lower, signal power,
tn, my instrumentl):
while audio_val<lower or audioc_val>upper:
if audic val<lower:
signal power += step
elif audio val>upper:
signal power -= step
my instrumentl.write("SOUR:POW "+str(signal power)+" dBm")
#changing the signal power value
time.=sleep(l) #to make sure audic value i= updated before
reading
tn.write{("FETC:AF:ANAL:SINZ\n")
line = tn.read_until("\n",30)
print line
audio_val = float(line.split(','}[3]}
print signal power
print "done"
return signal_power

fistarting intermodulation

signal power = get signal power(audio val, step, upper, lower,
signal_power, tn, my_instrumentl)

p ref = signal power

signal power += 3 #increasing p_ref by 3 dB.

interfere power = p_ref + 75

my_instrumentl.write{"SOUR:PON "+strtsignal_p0wer]+" dBm")

def get_interfere power(audio_val, step, upper, lower, signal_ power,
tn, my instrument2, my instrument3=None):
while audio_val<lower or audio_val>upper:
if audio_wval<lower:
signal power -= step
elif audio_val>upper:
signal_ power += step
my_instrumentE.writet"SOUR:POW “+strlsignal_power}+" dBm™)
#changing the signal power value

if my_instrument3:
my_instrumentS.write{"SOUR:POW "+strtsignal_power]+" dBm'")

time.sleep(l) #to make sure audic value is updated before
reading

tn.write{"FETC:AF:ANAL:SINZ\n")

line = tn.read until("\n",30)

print line

audio val = float(line.split(',"'}[3]}

print signal power

print "done"
return signal power

for p high

print my instrument2.write("SOUR:FREQ 155.05 MHz")-increasing
frequency

print my instrument2.guery("SOUR:FREQ?")

print my_instrumentE.write{"OUTP ON™)

print my instrument2.query("OUTP?")

print my_ instrument3.write("SOUR:FREQ 155.1 MHz")

print my instrument3.query("SOUR:FREQ?")

print my instrument3.write ("SOUR:FM:DEV 1.5 kHz")-modulation at 60%
print my_instrument3.guery("SOUR:FM:DEV?2"}

print my instrument3.write("SOUR:LFO:FREQ 400Hz")

print my instrument3.write("OUTP ON")

print my_instrument3.guery("QUTP2")

p _high = get interfere power(audio wval, step, upper, lower,
interfere power, tn, my instrument2, my_instrument3)

##for p_low

print my instrument2.write("SOUR:FREQ 154.95 MHz")—-decreasing
frequency

print my instrument2.guery("SOUR:FREQ?")

print my instrument2.write("OUTP ON")

print my instrument2.query ("OUTPZ?")

print my instrument3.write("SOUR:FREQ 154.9 MHz")
print my instrument3.guery("SOUR:FREQ?")

print my instrument3.write("SOUR:FM:DEV 1.5 kHz")
print my instrument3.guery("SOUR:FM:DEV?2"}

print my instrument3.write("SOUR:LFO:FREQ 400Hz")
print my instrument3.write("OUTP ON")

print my instrument3.query("OUTP2?")

p_low = get_interfere power({audio_val, step, upper, lower,
interfere power, tn, my instrument2, my_instrument3)

rejection_high = p_high - p ref
rejection low = p low - p ref

rejection = rejection high if rejection high < rejection low else
rejection_low

rejection = p high - p ref

print rejecticn

print "done"

5. Complete code for nfcli.py

import getopt

import socket

import sys

import os

import platform

from nfutil import *
from enumip import *

def usage():

print
print "Usage: nfcli --list --eth addr=ADDR --ip type=TYPE --
ip_addr=IP, --netmask=MASK, --gateway=GW"

print "Search and configure Prologix GPIB-ETHEERNET

Controllers.”

print "--help : display this help"

print "--list : search for controllers"

print "--eth _addr=ADDR : configure controller with Ethernet
address ADDR"

print "--ip type=TYPE : set controller ip address type to TYPE
(\"static\" or \"dhcp\")"

print "--ip addr=IP : set ller address to IP"

print "--netmask=MASK : set ller network mask to MASK"

print "--gateway=GW : set controller default gateway to GW"

def enumlp():

if platform.system() in ('Windows', 'Microsoft'

Jiz
return socket.gethostby:ame_ex(socket.gethostname[}][2];

return enumIpUnix()

def ValidateNetParams(ip_str, mask_str, gw_str)

try:
ip = socket.inet aton(ip str)
except: - -
print "IP address is invalid."
return False

try:
mask = socket.inet_ aton(mask_str}

except:
print "Network mask is invalid."™
return False

EEY:
gw = socket.inet_aton(gw _str)
except:
print "Gateway address is invalid."
return False

Validate network mask

Convert to integer from byte array

mask = struct.unpack("!L", mask) [0]

4 Exclude restricted masks

if {(mask == 0) or (mask == OxFFFFFFFF):
print "Network mask is invalid."
return Fals

Exclude non-left-contiguous masks
if (((mask + (mask & -mask})) & OxFFFFFFFF) =

print "Network mask is not contiguous."

(=]

return False

Validate gateway address

octetl = ord{gw[0])

Conwvert to integer from byte array
gw = struct.unpack("!'L", gw) [0]

Exclude restricted addresses
0.0.0.0 is walid
if ((gw != 0) and ((octetl == 0) or (octetl == 127) or (octetl
223¥))=
print "Gateway address is invalid."

return False

Validate IP address

octetl = ord({ip[0])

Convert to integer from byte array
ip = struct.unpack("'L", ip) [0]

Exclude restricted addresses

W

if ((octetl == 0} or [(occtetl == 127) or (octetl > 223)):

print "IP address is invalid."

return Fals

Exclude subnet

if {((ip & ~ma
print "IP address is invalid."
return Fals

Exclude subnet broa
if ((ip & ~mask) == (
print "IP address is inwvalid.'

return False

return True

#def ValidateAddress(address):

if address is None:

return False

o1

try:
for item in parts:
if not 0 <= intiitem) <= 255:

return False

except:

IS T T TS

return False

m
1

i return True

def main():

invalid args = False
showhelp = Fals
search = False

ip type = None
ip_addr = None

netmask = MNone

gateway = None
eth addr = MNone

try:
opts, args = getopt.getoptsys.arg

1, "'y ["help',
'list', 'eth _addr=', 'ip type=', 'ip addr=', 'netmask=',
'gateway="])
except getopt.GetoptErrcr, err:
print strierr)

sys.exit(l)

Check for unparsed parameters
if len{args) != 0O:
usage ()

sys.exit(1)

for o, a in opts:
if o == "--help":
showhelp = True
elif o == "==1list":
search = True

== "—-ip type:

type = a

elif o == "——ip_addr":
ip_addr = a

elif o == "—--netmask":
ne = a

elif ¢ == "==gateway":

gateway = a

if (len(opts) == 0) or (showhelp):

if search:

if not eth addr is None:

print "--list and --eth_addr are not compatible.’
invalid args = True

if not ip type is None:
print "--list and --ip type are not compatible."
invalid args = True

if not ip_addr is None:
print "--list and --ip addr are not compatible."
invalid args = True

if not netmask is None:

print "--list and --netmask are not compatible."

invalid _args = True
if not gateway is None:
print "--list and --gateway are not compatible."
invalid args = True
else:

try:
eth addr = eth addr.strip().replace(":", "").replace("-
Y MY
eth_addr = eth_add:.de:ode('hex'}
except:
print "Invalid Ethernet address."
sys.exit(l)
if len(eth_addr) != 6:
print "Invalid Ethernet address."
sys.exit(l)
if ip type in ["Static", "static"]:
ip type = NF_IP STATIC
elif ip_type in ["Dynamic", "dynamic", "Dhcp", "dhcp"]:
ip_type = NF_IP DYNAMIC
else:
print "--ip type must be 'static' or 'dhcp'."

sys.exit(l)

TATIC:

9y]

if ip_type == NF_IF

if not ValidateNetParams(ip_addr, netmask, gateway):
invalid args = True

if not ValidateIP{ip addr):
print "Invalid, or no, IP address specified."
invalid _args = True
if not ValidatelP(netmask):
print "Invalid, or no, netmask specified."
invalid args = True
if not ValidateIP{gateway):
print "Invalid, or no, gateway address specified."
invalid args = True
else:
if ip_addr is None:
ip addr = "0.0.0.0"
else:

print "--ip addr not allowed when --ip type=dhcp."

invalid args = True
if netmask is None:
netmask = "0.0.0.0"

else:
print "--netmask not allowed when --ip type=dhcp."
invalid args = True

if gateway is Ncne:

gateway = "0.0.0.0"
else:
print "--gateway not allowed when --ip type=dhcp."
invalid args = True
if inwvalid args:
sys.ekIL{lﬁ

global seq
sys.stdout = os.f

iplist = enumIpi):
if len(iplist) == 0:
=

no IP address."

print "Host ha

sys.exit(l)

for ip in iplist:
print "Searching through network interface:", ip

w

= socket.socket (sock _INET, socket.SOCK_DGRAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
.setsockopt{socket.S50L_SOCKET, socket.SO_BROADCAST, 1)

m

port = 0

tey:
s.bindl((ip, port))

except socket.error, e:
print "Bind error on send socket:", e
sys.exit (1)

port = s.getsockname() [1]

r = socket.socket(socket.AF_INET, socket.SOCK _DGRAM)
r.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

r.setblocking(l)
ti

imeout (0.100])

r.bind(('', peort))

except socket.error, e:
print "Bind error on receive socket:", e
sys.exit (1)

d = Discover(s, r)

print

for k in d:
dlk]["host_ip"'] = ip
devices[k] = d[k]

s.closel)
r.close()

if search:
print
print "Found", len(devices), "Prologix GPIB-ETHERNET
Controller(s)."
for key in devices:

PrintDetails(devices [key])

print

of Prologix GPIB-

print "Updating network se J
ETHERNET Controller", FormatEthAddr(eth addr)

device = devices[eth addr]

if (device['ip type'] == NF_IP STATIC) or (ip_type
NF_IP STATIC):
socket.S0OCK_DGRAM)
.setsockopt(socket.SOL SOCKET, socket.SO REUSEADDR,

socket.socket (socket.AF INET,

n

1)

s.setsockopt(socket.SOL _SOCKET, socket.S50 BROADCAST,
1}

port = 0
try:

s.bind((device('host_ip'], port))
except socket.error, e:

print "Bind error on send socket:", e

sys.exit(l)

port = s.getsockname () [1

socket.SOCK DGRAM)
r.set

1)

r.setblocking(l)
r.settimecut (0.1

00)

try:
r.bind(('"', port))
pt socket.error, e:
int "Bind error on receive socket:", e
sys.exit(1)

result = Assignment(s, r, eth addr, ip type,

if len{result) == 0:

print "MNetwork settings update failed."

else
if == NF_SUCCESS:
settings updated
successfully."
else:
print "Network settings update failed."
else:
print "Prologix GPIB-ETHERNET Controller",
FormatEthAddr({eth addr), "already configured DHCP. "

print "Prologix GPIB-ETHERNET Controller™,

FormatEthAddr{eth_addr), "not found.

if name == " main ":
main()

	Electronics_43429882_Nafiz_Chowdury
	by Nafiz Uddin Chowdury

