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Abstract

Credit-granting institutions lend money to customers, some of which may fail to make
contractual repayments (namely principal, interest and fees) thereby defaulting on their
obligation. Firms employ quantitative credit risk management techniques to estimate and
appropriately control their credit risk, ensuring the firm’s risk profile remains within its
risk appetite, thus contributing to a safely run firm and stability of the wider economy.
Quantitative credit risk management techniques are used to estimate: Probability of Default
(PD); Exposure at Default (EAD); and Loss Given Default (LGD). These are inputs to
calculate expected loss (EL) (for loan-loss provisions required under international accounting
standards (IASB (2014), FASB (2016)), as well unexpected loss (UL) (required by institutions
granted regulatory approval under the Basel Accords (BIS, 2006) to use theAdvanced Internal
Ratings Based (A-IRB) Approach for minimum credit capital).

This thesis focuses on applying survival analysis to quantifying the risk of credit default
used for PD. Institutions already use their own internal data and leverage analytical techniques
to quantify the risk of credit default, so the refinements in this thesis could further assist firms
control their credit risk profile. To be granted regulatory and audit approval, quantitative
credit risk models need to have intuitive drivers and functional form. Therefore regression
approaches are regularly adopted, and while logistic regression is common (Baesens et al.
(2003), Lessmann et al. (2015)), survival models achieve comparable accuracy to logistic
regression but provide additional benefits, such as including censored data and estimations
over multiple time horizons (Bellotti and Crook (2009), Stepanova and Thomas (2002) and
Tong et al. (2012)).

Survival analysis describes studies where subjects are followed in anticipation they en-
counter an event of interest. Originating with Edmund Halley’s life table of human mortality
(1693) and its extension by Daniel Bernoulli (1760) demonstrating the increase in human
survival if the competing risk of small pox were eliminated as a cause of death, survival
analysis spans applications across multiple disciplines, such as biomedical science, industrial
life testing (Kalbfleisch and Prentice, 2002) and finance (Lessmann et al., 2015). Regression
techniques and method of partial likelihood were introduced by David Cox (1972, 1975), and
remain prominent (Hosmer et al., 2008). This model has since been extended, particularly
by Crowley and Hu (1977) to cater for time-varying covariates, and by (for example) Sy and
Taylor (2000) to cater for mixture-cure models.

This thesis explores over three chapters, via two published papers and one manuscript
prepared for publication, computational enhancements to the application of survival anal-
ysis, competing risk analysis, and mixture-cure analysis, to estimating the risk of credit
default. These enhancements are: (1) joint estimation of regression coefficients and baseline
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hazard using constrained maximum likelihood, where the constraint ensures the latter’s non-
negativity; (2) calculation of an asymptotic variance-covariance matrix that allows inferences
to be drawn for regression estimates; (3) improved accuracy of parameters in certain settings
as demonstrated via simulation. Applied to credit risk modelling, the methods in this thesis
provide comparably accurate regression parameters to those obtained using partial likelihood
but with the added benefit of also returning an estimate of a baseline hazard estimate with
relatively low variability along with asymptotic variance estimates for the baseline hazard
and all regression parameters. This further information allows clearer resolution of the shape
and statistical significance of the underlying baseline hazard for the risk of credit default.
For survival analysis and competing risk analysis approaches in this thesis, time-varying co-
variates are included providing additional flexibility of including into the models covariates
whose values change over time.
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1
Introduction

This introduction chapter contains two sections. The first motivates why quantitative

credit risk modelling is important to individual institutions, regulators, the economy and

society. The second outlines existing approaches and their limitations to quantitative credit

risk modelling, and summarises contributions by this thesis addressing these limitations.

1.1 Motivations - Quantitative Credit Risk Management

1.1.1 Background and Motivations

Fundamentally credit-granting institutions engage in three core activities: (1) accepting

and safeguarding customer deposits; (2) making payments on behalf of customers; and (3)

granting credit to customers. While the primary activity amongst these is granting credit,

some customers may fail to repay in a timely manner monies they contractually owe (namely

principal, interest and fees), thereby defaulting on their obligation. This exposes the institution

to credit risk, which Apostolik et al. (2009) defines as: “the potential loss a bank would
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suffer if a borrower fails to meets its obligations".

The term “credit” is the activity of lending money. The term “risk” is broader with no

single definition appropriate in all settings. The OED (2020) defines risk as “exposure to

the possibility of loss, injury, or other adverse or unwelcome circumstance”. McNeil et al.

(2005) provides two definitions specifically for quantitative finance which are: “any event or

action that may adversely affect an organization’s ability to achieve its objectives and exe-

cute its strategies”, or alternatively “the quantifiable likelihood of loss or less than expected

returns”. Jorion (2006) similarly states risk can generally be defined as the “...uncertainty of

outcomes when compared to expectation”, outlining the word “risk”originates from Latin,

through the French “risqué” and the Italian “risco”. The sense of “risco” is to cut off like a

rock, from the Latin “re-” (back) and “secare” (to cut), demonstrating the sense of peril to

sailors of sharp rocks.

Despite this, Crouchy et al. (2006) outline effective management risk does not (neces-

sarily) equate to risk avoidance, identifying the “conflict of risk and reward” where higher

economic returns (on average) are expected to be earned from higher risk exposure. Lam

(2003) describes three steps for effective risk management: (1) risk identification; (2) risk

quantification; and (3) risk control. Lam (2003) continues by stating this allows relevant

risks to be clearly assessed, objectivity quantified, and appropriately controlled via one or

more of: (1) risk avoidance; (2) risk reduction; (3) risk retention; and/or (4) risk transfer.

The aim is that any left-over risk, called “residual risk”, is lowered to a tolerable level given

the institutions “risk appetite”, allowing tailoring of a targeted risk-return profile. This thesis

focusses on refining and improving risk quantification methods for a specifically identified

risk, the risk of credit default. Credit-granting institutions already actively deploy quantitative

methods to quantify the risk of credit default, and could use refinements and improvements

in this thesis to further assist them control their credit default risk profile.

Risks that build-up unchecked (from one or more of poor identification, quantification

or control) within individual institutions or wider financial system may lead to insolvency

of an institution and/or financial system instability. Credit risk is the largest risk credit-

granting institutions face (Apostolik et al., 2009), thereby attracting significant attention

from both: (1) management who wish to operate profitably on behalf of their stakeholders by
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maintaining strong capitalisation and adequate provisions for credit losses; and (2) regulators

who aim to achieve a stable, competitive and functioning banking system so institutions fulfil

financial promises they make. It is therefore important credit risk is measured properly and

appropriately by each credit-granting institution. In Australian, the Australian Prudential

Regulation Authority (APRA) supervises all authorised deposit-taking institutions (banks,

building societies and credit unions) with a mission to “...ensure that in all reasonable

circumstances, financial promises made by institutions we supervise are met within a

stable, efficient and competitive financial system” (APRA, 2020).

For further perspective and motivation why credit risk management is important, consider

that total loans and advances in Australia as at July 2020 stood at $2.8 trillion across all 127

licensed Authorised Deposit-Taking Institutions (APRA, 2020). This exceeds Australia’s

Gross Domestic Product of $1.9 trillion for year ending December 2019 (ABS, 2020), which

represents the total value added over a twelve-month period across all economic activitywithin

the entire Australian economy. On top of this, concentration risks exist in the Australian

banking sector, as these 127 Authorised Deposit-Taking Institutions comprise few large

and many small firms. The four largest comprise over 75% of all loans and advances,

the seven largest over 81%, and the 20 largest over 96% (APRA, 2020). Further, home

loans dominate lending for these largest seven lenders, as per Figure 1.1. The Global

Financial Crisis of 2008 demonstrated the knock-on effect of how the failure of individual

institutions (via either nationalisation, bankruptcy, or consolidation) led to the ensuing spread

of systematic instability in the wider financial system and ultimately protracted recessions in

many economies. Thus clear measurement and understanding of the risk of credit default,

particularly for home loans, are important for an individual institutions, financial system

stability, economies and ultimately society.
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Figure 1.1: Loans and Advances for Australia’s Seven Largest Lenders (as at August 2020,
Source: APRA (2020))

1.1.2 Expected Loss (EL) and Unexpected Loss (UL)

Institutions manage their loan portfolio anticipating some non-zero amount of credit

losses, called “expected loss” (EL), which is viewed as a cost of doing business. Institu-

tions estimate expected loss and accordingly set prices charged to customers and hold on

their balance sheet an asset called a loan-loss provision in anticipation the expected losses

materialise. The loss experience institutions encounter inevitably varies year-to-year from

that anticipated, with losses greater than the expected loss called the “unexpected loss” (UL).

Institutions estimate this unexpected loss and accordingly hold capital as a buffer to absorb

these should they occur. The link between the variability of losses over time, and how the

variation beyond the expected loss results in unexpected loss are demonstrated in figure 1.2.
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Figure 1.2: Relationship Between Expected Loss and Unexpected Loss.
Source:BIS (2005)

As a scarce resource, infinite capital cannot be held to absorb losses the institution may

make in every eventuality. Therefore a trade-off is struck by selecting a very high confidence

level (prescribed as 99.9% under the Basel Accords (BIS, 2006)) from the credit loss dis-

tribution for which capital will be held. This is the credit “Value at Risk” or “VaR” (see

for example Jorion (2006)), representing the largest loss with 99.9% confidence that can be

weathered by the institutions over a 1-year period. Losses beyond this VaR point will lead

to the institution’s insolvency. The relationship between “expected loss”, “unexpected loss”

and the VaR point are displayed in figure 1.3.

Figure 1.3: Credit Loss Distribution. Source: Yeh et al. (2005)
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1.1.3 Credit Risk Components - PD, EAD, LGD

Components of “expected loss” are

• “Probability of Default” (PD) – The probability a customer will fail to make full and

timely contractual repayments and default (this is the risk of credit default);

• “Exposure At Default” (EAD) – The expected value of the loan at the time of default;

• “LossGivenDefault” (LGD) –The amount the institutionwill likely lose if the customer

defaults, as a percentage of EAD.

This thesis focuses on quantitative estimation of PD. See for example Thackham and Ma

(2019) and Tong et al. (2013) for example background on EAD and LGD respectively.

“Expected loss” is calculated as the product of frequency of credit default (PD) and the

severity of loss for defaulted loans (EAD times LGD) (Apostolik et al., 2009):

E L = PD︸︷︷︸
frequency

× E AD × LGD︸          ︷︷          ︸
severity

. (1.1)

"Unexpected loss" is calculated using the Vasicek (2002) Asymptotic Single Risk Factor

Model prescribed in the Basel Accords (BIS, 2006)

UL =

[
Φ

(√
1

1 − R
Φ
−1(PD) +

√
R

1 − R
Φ
−1(0.999)

)
− PD

]
× dE AD × dLGD (1.2)

where R represents the correlation between each loan and a common latent factor, and dLGD

and dEAD are the LGD associated with an economic downturn. See for example Rutkowski

and Tarca (2015) which discuss the Brownian motion construct using a single-factor copula

underlying equation (1.2).

1.1.4 Probability of Default (PD)

Institutions approved by their regulator to use the Advanced Internal Ratings Based (A-

IRB) Approach for their minimum credit capital requirement under the Basel Accords (BIS,

2006) can employ advanced modelling techniques trained on their own data to estimate PD,

EAD and dLGD necessary as inputs to equation (1.2). Institutions also employ advanced



1.1 Motivations - Quantitative Credit Risk Management 7

modelling techniques to estimate PD, EAD and LGD as inputs to equation (1.1) required

under international accounting standards (IASB (2014), FASB (2016)). Models to estimate

customer default find further additional uses inwider riskmanagement applications, covering:

loan underwriting (which customers to lend to); loan pricing (howmuch to charge customers);

risk appetite (how many loans to write and which types of customers to write them to);

and profit analysis (how much profit was actually earned from loans that were written)

(Siddiqi, 2005). Institutions that poorlymanage risksmay face heightened regulatory scrutiny,

increased cost of funding, or even being wound-up – each of these put in jeopardy the

ability of an institution to keep its financial promises. Therefore accurate estimates that

dynamically explain the risk of credit default are critical to an institution’s quantitative credit

risk management.

1.1.5 Estimating Credit Default using Survival Analysis

For models estimating the risk of credit default to meet internal and external approval,

model drivers and functional form need to be intuitive and explainable. Consequently

regression models are often employed with the preferred approach being logistic regression

(Baesens et al. (2003), Lessmann et al. (2015). Multiple studies (see for example Bellotti and

Crook (2009), Stepanova and Thomas (2002)) outline that while both logistic regression and

survival analysis achieve comparable accuracy, Tong et al. (2012) details key advantages of

survival analysis, being: (1) inclusion of censored data (logistic regression removes partially

observed data); and (2) ready production of default probabilities over any desired time period

(logistic regression predicts only over a single fixed timer period).

Survival analysis are statistical techniques to model the length of time until an event

occurs. Subjects are followed in anticipation they encounter an event, with these techniques

applicable in fields like medicine, industrial life testing and finance (Kalbfleisch and Prentice

(2002), Lessmann et al. (2015)). Survival analysis provides an intuitive modelling approach

using available covariates to help explain variation in time to event, also known as “sur-

vival time” (Hosmer et al., 2008). Chief amongst these techniques is the semi-parametric

Cox model (1972, 1975), which introduced the seminal approach of partial likelihood for

regression coefficient estimation and remains a popular technique (Ren and Zhou, 2011).
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Model extensions include catering for time varying covariates (Crowley and Hu, 1977) and

mixture-cure semi-parametric Cox models (Sy and Taylor, 2000).

Narain (1992) first introduced survival analysis to estimating the risk of credit default,

with many more authors since (see for example Bellotti and Crook (2009)) outlining how

the semi-parametric Cox model is an applicable technique to estimate the the risk of credit

default. Credit-granting institutions sell loans to customers, with these customers entering

a contractual obligation to repay all monies owed, specifically principal, interest and fees.

Examples are credit cards and home loan mortgages granted to individuals, and corporate

loans granted to businesses. Some customers fail to repay in accordance with their agreed

credit contract and thereby default on their obligations. In this setting, institutions follow

their customers in anticipation of a default event occurring, allowing the “survival” to be

statistically modelled, where the meaning of “survival” involves the time until a credit

default. This is exemplified in Figure 1.4 below in a stylisation of the survival function for

the risk of credit default.

Figure 1.4: Stylised Example of the Application of Survival Analysis to Credit Default
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1.2 Aims and Contributions

1.2.1 Existing Approaches and Limitations

Estimating the risk of credit default is critically intertwined with the competing risk a cus-

tomer fully repays their loan while also having key predictive drivers with values that change

over time (Wycinka, 2019). Logistic regression cannot incorporate non-binary outcomes

but could be substituted for multinomial regression. Further, while logistic regression can

incorporate panel data for drivers that change over time, Hayden and Porath (2011) point out

credit default modelling practitioners typically ignore the dynamic pattern of the covariates

and simply fit the model assuming cross-sectional data. Erlenmaier (2011) describes this as

the “cohort method” which observes the number of customers at the beginning of each period

(usually a year) and the number of customers that default during the ensuing year. Tong et al.

(2012) outlines how, for example, a three-year loan to a single customer would then give rise

to three separate records in the data but the drivers whose values change over time potentially

are different for each three records. A consequence of ignoring the panel data structure when

fitting a cross-sectional logistic regressions are that variance estimates may be incorrect.

For these reasons, survival analysis is gaining popularity in credit risk modelling, with

competing risk semi-parametric Cox Model and mixture-cure semi-parametric Cox Model

being conventional approaches. However partial likelihood involved in parameter estimation

of these models has two shortcomings: (1) the baseline hazard is not estimated, so calculating

probabilities requires a further estimation step; and (2) a covariancematrix for both regression

coefficients and the baseline hazard is not readily produced. This thesis adds to the available

literature by addressing these computational aspects of the semi-parametric Cox model and

testing these via both extensive simulations as well as estimating models to predict credit

default for home loans. These enhancements are important in applied credit risk modelling

as they provide a clear functional form of how risk drivers impact the risk of credit default

and produce asymptotic correct variance estimates for all model parameters.
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1.2.2 Summary of Contributions - 2 Publications, 1 Manuscript

This thesis is arranged by starting with a literature review in Chapter 2 that introduces

the semi-parametric Cox model outlining how the model can be applied to explain the risk

of credit default. The three subsequent chapters embody the research of this thesis. Chapter

3 is a published paper (Thackham and Ma, 2020a) that extends the work of Ma et al. (2014)

to estimate the semi-parametric Cox model with time-varying covariates using maximum

likelihood. Chapter 4 is a published paper (Thackham andMa, 2020b) that extends Thackham

and Ma (2020a) and Ma et al. (2014) to estimate competing risk semi-parametric Cox model

with time-varying covariates. Works in chapters 3 and 4 both employ maximum likelihood

with constrained optimisation to jointly estimate regression coefficients and baseline hazard,

where the constraint ensures the baseline hazard non-negativity. Not only does including

time varying covariates open up a richer vein of potential covariates, but their inclusion is

also important for modelling the risk of credit default as estimates need to be flexible enough

to take into account changes in the risk profile of customer behaviour over time. Examples

of such variables usually considered are: (1) episodes of recent customer delinquency; and

(2) up-to-date valuations of collateral and loan balances as measured via the loan-to-value

ratio. These variables by design change over time so therefore cannot be captured simply as

baseline covariates. Both chapters 3 and 4 prove the asymptotic properties of the estimators.

Additionally, work in chapter 4 specifically incorporates competing risk of early loan closure

and the work goes on to estimate the expected number of defaults at one-year intervals

over the ten years of observed data. Chapter 5 is a manuscript submitted in consideration

for publication that extends the work of Ma et al. (2014) to estimate the mixture-cure semi-

parametric Coxmodel usingmaximum likelihoodwith constrained optimisation. Thework in

chapter 5 jointly estimates parameters by maximising a likelihood function, with asymptotic

variances for all model parameters readily returned and available for drawing inferences.

All the methods in chapters 3, 4 and 5 are implemented in R (with code included in the

appendix of this thesis), allowing them to be demonstrated via a comprehensive simulation

exercise. When applied to a real-world credit risk dataset, the methods clearly produce

intuitive parameter estimates of key drivers of credit default, covering baseline covariates

(such as product type and customer age) as well as key time-varying covariates (such as

dynamic loan-to-value ratio and recent delinquency behaviour). Additionally, the methods
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estimate the baseline hazards and associated asymptotic variance. This allows confirmation

in the given data of the "humped-hazard", a previously reported feature (see for example Im

et al. (2012) and Bellotti and Crook (2013)), whereby the risk of credit default begins lower,

rises to a peak, before falling again afterwards.



2
Literature Review

This literature review chapter contains four sections. The first introduces survival data and

survival analysis in the context for modelling the risk of credit default. The second is a more

detailed literature review of the models explored in-depth in chapters 3, 4 and 5, focussing

on the semi-parametric Cox model (1972, 1975). The third is a literature review specifically

focussed on application of survival analysis to credit default modelling. Starting with Narain

(1992) who introduced survival analysis to credit risk modelling, the section canvasses

subsequent contributions by numerous authors, with a focus on those adopting time-varying

covariates, competing risk approaches and mixture-cure approaches. The fourth describes

the structure of the remaining chapters of this thesis.

2.1 Background - Survival Data and Survival Analysis

This section details how credit default data can be analysed using the semi-parametric

Cox models explored in this thesis. It details survival data must unambiguously define three
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elements: (1) an origin; (2) a time scale, and (3) an event(s) of interest. Uninformative

right-censoring is introduced. It also introduces applications of semi-parametric Cox model

investigated in this thesis: (1) single-event survival analysis; (2) competing risk survival

analysis; and (3) mixture-cure survival analysis.

2.1.1 Survival Data

Survival analysis observes subjects spanning time until an event occurs. Cox and Oakes

(1984) state survival data requires three elements:

1. Time origin, when the subject became at risk of an event;

2. Time scale, measuring the passage of time (days, weeks, months, years); and

3. Event, or set of events, clearly defined.

A credit-granting institution that writes a loan faces the risk the customer does not make

contractual repayments, thereby defaulting. In this case:

1. the event is credit default;

2. the time origin begins when the loan contract starts; and

3. the time scale is months since start of the loan contract.

Censoring, a type of missingness common in survival data (Klein and Moeschberger, 2003),

arises when an event for a subject is only known to have occurred during a specified period

rather than being precisely known. Censoring needs careful consideration otherwise the

results may be biased (Sterne et al., 2009). Three types of censoring which can vary between

subjects are:

• Right – subject remains at risk of an event at a certain point. This is further split:

– Type I – random drop-out and/or administrative closure of the study.

– Type II – study closes when a fixed number of subjects encounter an event.

• Left – subject experienced an event prior to entrance to the study.

• Interval – subject experienced event during a known interval, but the precise time is

unknown.
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Klein and Moeschberger (2003) state censoring is often random (referred to as “non-

informative”) type I right censoring. This assumes right-censoring times are independent of

survival times, so that for each subject there is a right censoring time and the survival time

is observed if and only if the survival time is less than the censoring time. If the survival

time is greater than the censoring time, then the subject has left the study without having an

event of interest observed and the time for this subject is recorded as as the censoring time.

While there are approaches to cater for complex censoring, given that right-censoring is in

practice the type most commonly encountered modelling the risk of credit default, this thesis

considers only right-censoring. Future research could include extension to (for example)

informative right censoring and interval censoring.

Truncation is a deliberate sample design choice which determines which subjects enter

the study. In credit risk, left truncation (also called “delayed entry”) arises when customers

enter the study after a period of delay from the origin (Kalbfleisch and Prentice, 2002). This

is not in scope for this thesis, but does represent an avenue of future research.

2.1.2 Survival Analysis

This thesis explores three applications of the semi-parametric Cox model to analyse credit

default: (1) single-event analysis; (2) competing risk analysis; and (3) mixture-cure analysis.

All three study the same random variable (time to event) and share similar input data structure

(requiring an origin, scale and event(s)). These three applications of the semi-parametric

Cox model studied in this thesis are:

1. Semi-parametric Cox Model – assumes all customers default if followed for sufficient

length of time, and customers not observed to default are assumed to be uninformatively

right-censored. See Figure (2.1).

2. Semi-parametric Cause-Specific Cox Model with Competing Risks – assumes all cus-

tomers will undergo at most one of either default or repayment (known the competing

risks) and when they do so all the remaining risks are impossible to encounter there

after. Further customers not observed to either default or repay are assumed to be

uninformatively right-censored. See Figure (2.2).

3. Semi-parametric mixture-cure Cox Model – assumes some fraction of customers are
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susceptible to credit default, and customers not observed to default are assumed to

be either from the non-susceptible population or uninformatively right-censored. See

Figure (2.3).

Figure 2.1: Semi-Parametric Cox Model Applied to Credit Default Risk

Figure 2.2: Semi-Parametric Cause-Specific Cox Model with Competing Risks Applied to
Credit Default Risk

Figure 2.3: Semi-Parametric Mixture-Cure Cox Model Applied to Credit Default Risk

2.2 Literature Review - Models

This section is a detailed literature review of: (1) survival analysis; (2) competing risk

analysis; and (3) mixture cure analysis. Each is covered in individual subsections, tracing the

origin of the analysis (in some cases the 17th century) before detailing the semi-parametric

Cox Model this thesis applies to credit risk modelling.
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2.2.1 Single-Event Survival Analysis

Single-event survival analysis models the time to a single event of interest. Censored time-

to-event data was first studied by actuaries (Fisher and Lin, 1999), with English astronomer

Edmund Halley (1693) developing the first life table to describe human mortality. Several

related functions describe the distribution of a random variable T representing time to event

(see for example Klein and Moeschberger (2003)), where knowledge of one function allows

recovery of the others. These are the: survival function S(t); the hazard function h(t); and

cumulative hazard function H(t). The survival function (the complement of the cumulative

distribution function F(t)) represents the probability a subject survives beyond time t

S(t) = P[T > t] = 1 − F(t) = 1 −
∫ t

0
f (u)du (2.1)

where f (t) is the density function of T . The hazard function h(t) is fundamental to survival

analysis playing a central role in the semi-parametric Cox model (1972, 1975). Repre-

senting the instantaneous probability of an event occurring, conditional on the subject not

experiencing the event yet, mathematically it is

h(t) = lim
∆t→0

P[t < T ≤ t + ∆t |T > t]
∆t

=
f (t)
S(t)

. (2.2)

The cumulative hazard function is H(t) =
∫ t
0 h(u)du.

These functions can be extended to compare survival between two or more groups or

conditionally explaining survival in a regression using covariates. There are broadly three

categories of analysis techniques (see for exampleKalbfleisch andPrentice (2002) andHosmer

et al. (2008)) which are outlined below. Dirick et al. (2017) details in a benchmark study how

these techniques are applied to credit default modelling.

The first are non-parametric techniques for which no functional form is assumed for

the distribution T . Prominent methods include the Kaplan-Meier (1958) survival function

estimator which estimates S(t) and the Nelson-Aalen cumulative hazard estimator (Nelson

(1969, 1972) and Aalen (1978)) which estimates H(t). Tests for significant differences in

survival between groups can be undertaken using (for example) the log-rank test (Mantel

(1966), Peto and Peto (1972)). Non-parametric techniques are not covered by this thesis.
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The second are parametric techniques (which allow inclusion of covariates) and further

assume a functional form for both covariates and the distribution of T using a regression.

Called accelerated failure time (AFT) models, these assume (for example) either a Weibull,

exponential, gamma, log-logistic or log-normal distribution for T (Kalbfleisch and Prentice,

2002). Similarly, parametric techniques are not covered by this thesis.

The third are semi-parametric models (which allow for the inclusion of covariates),

and assume a functional form for the covariates via a regression, but make no additional

assumptions for the distribution of T . The semi-parametric Cox model (1972, 1975) is a

widely used semi-parametric approach to estimate the hazard h(t) and is the primary focus of

this thesis, not only for single-event survival analysis but also for competing risk analysis and

mixture-cure analysis. Hosmer et al. (2008) cites the attraction of such regression techniques

is that plausible models may be easily fit, evaluated, and interpreted. Kalbfleisch and Prentice

(2002) describe one of its chief benefits is that it allows an intuitive explanation of the hazard

conditional on explanatory covariates.

2.2.1.1 Semi-Parametric Cox Model - Baseline Covariates

The semi-parametric Cox (1972, 1975) model is the corner-stone of modern survival

analysis (Zheng and Lin, 2007). LetTi be the event time for subject i andCi the corresponding

non-informative right censoring time so that the observable survival time is Yi = min(Ti,Ci).

Denoting the observed Yi by yi (i = 1, . . . ,n), each yi is then either a time recording an event

of interest (δi = 1) or censoring time (δi = 0). Additionally, suppose there are p explanatory

covariates arranged in the vector xT
i = [x1, ..., xp] available for each subject (i = 1, ...,n) which

are thought to explain time to event. These explanatory variables can include quantitative

variables (such as customer age or loan balance), qualitative variables (such as treatment

group or product type) as well as potentially interactions between covariates. The observed

data becomes (yi, xi, δi), and can be used to estimate the semi-parametric Cox model

hi(t |xi) = h0(t)ex
T
i β (2.3)
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where βT = [β1, ..., βp] are regression coefficients for the covariate vector xT
i , and h0(t) is an

arbitrary unspecified function of time called the baseline hazard that combines multiplica-

tively with the covariate effects to act on the hazard function. This leads to the conditional

survival function Si(t |xi) = S0(t)[e
xT
i
β
], where S0(t) is the baseline survival function.

With only baseline (fixed-time) covariates, the Cox model is commonly referred to

as the “proportional hazards” model, because hazards between subjects are proportional

(Kalbfleisch and Prentice, 2002). That is, the ratio of hazards between two different subjects

A and B
hA(t |xA)

hB(t |xB)
=

h0(t)ex
T
A
β

h0(t)ex
T
Bβ
= e(x

T
A
−xTB)β (2.4)

is constant over time. This value is called the relative risk (Klein and Moeschberger, 2003) or

the hazard ratio (Hosmer et al., 2008). It is important to test that the assumption of proportional

hazards holds when applying the Cox model to a dataset. This can be conducted by (for

example) scaled Schoenfeld (1981) residuals or by plotting log-log survival curves (Cox and

Oakes, 1984). If these tests detect a violation of the proportional hazards assumption, then

one remedy can be to include a time-varying covariate in the model (Hosmer et al., 2008).

To estimate the effects βT = [β1, ..., βp] in equation (2.3), using observed data (yi, xi, δi)

(i = 1, . . . ,n), one can use Cox’s partial likelihood (Cox 1972, 1975). The Cox partial

likelihood can be derived as a profile likelihood using the likelihood adapted for right-

censored data (Klein and Moeschberger (2003), Johansen (1983)).

Rather than detailing the derivation of the partial likelihood, we instead outline an intuitive

derivation from Cox and Oakes (1984). In the absence of tied failure times, let τ1 < τ2 <

... < τd be the ordered failure times amongst the n subjects in the sample, where d is the total

number of subjects in the sample ever observed to experience the event of interest and (n− d)

is the total number of censored subjects. Let R(τj) be the risk set which is comprises all

subjects still under observation in the study (ie: either not yet censored or not yet encountered

an event of interest) just before the j th failure time τj , ( j = 1, ..., d). As per Klein and

Moeschberger (2003), the conditional probability that subject i fails at τj with covariates xT
i
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given that one individual fails from the risk set R(τj) is

P[subject i fails at τj | one failure at τj]

=
P[subject i fails at τj | subject i survives to τj]

P[one failure at τj | subject i survives to τj]

=
ex

T
i β∑

k∈R(τj ) e
xT
k
β
.

(2.5)

The partial likelihood is formed by multiplying these conditional probabilities over all d

observed failure times from the sample. For (i = 1, . . . ,n), where n is the sample size of all

subjects, the resulting partial likelihood function is

L(β) =
n∏

i=1

[
ex

T
i β∑

k∈R(τj ) e
xT
k
β

]δi
=

d∏
i=1

[
ex

T
j β∑

k∈R(τj ) e
xT
k
β

]
(2.6)

where δi = 1 for subjects with an observed failure time, such that
∑n

i=1 δi = d. The numerator

depends only on information from the individual subject who experiences an event of interest

at τj , whereas the denominator captures information from all subjects in the risk set (ie: those

who have not yet experienced an event and/or have not yet been censored). Estimation is

carried out using the log-partial likelihood function

l(β) =
n∑

i=1
δi

[
xT

i β − ln

( ∑
k∈R(τi)

ex
T
k
β

)]
. (2.7)

The maximum partial likelihood estimator, denoted as β̂, is obtained by differentiating

equation (2.7) with respect to β and solving ∂l(β)/∂β = 0 (Hosmer et al., 2008). The

variance estimator is obtained in a similar manner for maximum likelihood, as the inverse

of the negative second order derivative of the log-partial likelihood (i.e.: the inverse of the

observed information I (β) from the partial likelihood). Klein and Moeschberger (2003)

discuss how these equations are amended for tied survival times.

To estimate the baseline hazard h0(t) there are two common estimators available, each

additional estimation step requiring estimated regression coefficients β̂ from the semi-

parametric Cox model as input. The first is the Breslow (1972) estimator of the cumulative

baseline hazard function H0(t), which can be derived by maximising a profile likelihood
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conditional on the log-hazard ratio estimates. This estimator has the undesirable feature

that it produces point estimates of h0(t) that are very “noisy” and unstable (Hosmer et al.,

2008). This estimator becomes the non-parametric Nelson-Aalen estimator of the cumulative

hazard when there are no covariates present (Klein and Moeschberger, 2003). The second is

the Kalbfleisch and Prentice (2002) estimator of the baseline survival function S0(t) which

mirrors the derivation of the Kapaln-Meier non-parametric estimator and Rodriguez (2005)

outlines how the estimator is constructed. The estimator also produces “noisy” and unstable

point estimates of h0(t). It reduces to the non-parametric Kaplan-Meier estimator when no

covariates are present (Hosmer et al., 2008).

2.2.1.2 Semi-Parametric Cox Model - Time Varying Covariates

Often there are covariates whose value for a given subject may change over time during

their observation in the study (Cox and Oakes, 1984). Crowley and Hu (1977) extend the

semi-parametric Cox model (1975) to include time-varying (also known as time-dependent)

covariates. These differ fundamentally from baseline covariates, whose values are measured

only once for each subject at entry to the study and either do not change or do change but

are not tracked over time. Time-varying covariates are very important for modelling credit

default (Bellotti and Crook, 2014), with variables such as dynamic loan-to-value ratio, recent

customer delinquency and loan top-ups all important for predicting home loan default (see

for example Thackham and Ma (2020a) and Thackham and Ma (2020b)).

Crowley and Hu (1977) extend the Cox model to cater for time-varying covariates,

analysing the famous Stanford heart transplant data. Their model uses (in addition to baseline

covariates) transplant status and transplant age to predict survival of patients. The method

developed estimates the regression coefficients for both baseline and time-varying covariates

using an amended version of the partial likelihood. The amendment allows the same subject

to have potentially different values for their covariates in different risk sets. In addition to

baseline covariates xT
i = [x1, ..., xp], let zi(t)T = [z1(t), . . . , zq(t)] be a tuple of q time varying

covariates for the ith subject. This assumes that the covariate process zT
i (t) is known for

any time which the subject is under observation (Kalbfleisch and Prentice, 2002). However

Therneau et al. (2015) point out that the partial likelihood only requires values of zT
i (t) to be

precisely known at the d failure times. Following equation (9.2.1) of Klein andMoeschberger
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(2003), for (i = 1, . . . ,n), where n is the sample size of all subjects, the available data becomes

(yi, xi, zi(t), δi). If event times are distinct and τ1 < τ2 < ... < τd denotes these ordered event

times, x( j) and z( j)(τj) denotes the covariates associated with subject whose event time τj

and R(R(τj)) is the risk set at time τj , then the partial likelihood including time-varying

covariates zT
i (t) with regression coefficients γ is

L(β,γ) =
d∏

j=1

[
ex

T
(j)
β+zT

(j)
(τj )γ∑

k∈R(τj ) e
xT
k
β+zT

k
(τk )γ

]
(2.8)

where δi = 1 for subjects with an observed failure time, such that
∑n

i=1 δi = d. Parameter

estimation and inference proceeds similarly as for the case with only baseline covariates.

2.2.1.3 Baseline Hazard Estimation

In many applications of the Cox model, such as modelling credit default, estimation

of survival probabilities (rather than simply just the regression coefficients) are of interest.

Royston (2011) opines this should entail an explicit estimate of the baseline hazard function

h0(t). For example, van Houwelingen (2000) states:

“It is the duty of the [statistician] involved in reporting the prognostic model to give all

the information needed to build further on their model. For Cox models that should also

include the baseline hazard or survival rate, if possible smoothed somehow or given in an

approximate functional form using fractional polynomials, exponentials, rational functions

or something similar.”

Given that the partial likelihood specifically does not estimate the baseline hazard h0(t),

recovery of survival probabilities requires an additional estimation step. Incorporating both

baseline covariates xT
i and time-varying covariates zT

i (t), the survival function is S(t) = e−H(t),

where

H(t) =
∫ t

0
h0(u)exp

(
xTi β+z

T
i (u)γ

)
du. (2.9)

There are more recent developments of the baseline hazard estimators that in general

rely on a log-transform of h0(t). Royston (2011) proposes a method to approximate the
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log-baseline hazard (which ensures positivity of the baseline hazard) using fractional poly-

nomials and restricted cubic splines. However, similar to the Breslow (1972) and Kalbfleisch

and Prentice (2002) methods, Royston’s method requires as input the estimated regression

coefficients from the partial likelihood method. This means that Royston (2011) does not

attempt to estimate both the effects and the baseline hazard jointly.

Cai and Betensky (2003) estimating the log-hazard using linear splines for interval cen-

sored data. Cai et al. (2012) extend this to estimate the baseline hazard using linear splines

to model the log-hazard (which ensures positivity of the hazard) with smoothing parameters

estimated by restricted maximum likelihood (REML). The authors recast the problem as a

mixed-effects Poisson regression with an offset term, which allows estimation in standard

statistical packages, such as SAS or R. Their methodology does not cater for conditional

explanation of survival times using covariates.

Kneib and Fahrmeir (2004) provide several extensions to the Cox model, calling their

model a mixed-hazard regression. Their extensions include modelling log-baseline hazard

(to ensure positivity of the baseline hazard) using penalised splines, as well as allowing for

time-varying covariates.

2.2.1.4 Maximum Penalised Likelihood Estimation

Maet al. (2014) develop an approach to simultaneously estimate the regression coefficients

and the baseline hazard (without a log-transform) for the Cox model that contains non-time-

varying covariates, an approach this thesis extends. The approach of Ma et al. (2014)

uses maximum penalised likelihood (MPL), where a penalty is used to impose a degree

of smoothness to the baseline hazard. The parameters are estimated using constrained

optimisation to respect the non-negativity of the baseline hazard. Starting with the hazard

hi(t) = h0(t)exTi β, the likelihood for all subjects (i = 1, . . . ,n) is

L(β, h0(t)) =
n∏

i=1
Li(β, h0(t)) (2.10)
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where for the ith subjectwith observed time yi and censoring indicator δi, we have Li(β, h0(ti)) =

[ fi(ti)]δi × [Si(ti)](1−δi). The log-likelihood is then

l(β, h0(t)) = log (L(β, h0)) =

n∑
i=1

δi log ( fi(yi)) + (1 − δi) ln (Si(yi)) . (2.11)

Substituting into equation (2.11) the fact that log (Si(yi)) = −Hi(yi) and fi(yi) = hi(yi)Si(yi),

the log-likelihood becomes:

l(β, h0(t)) =
n∑

i=1
δi [log (hi(yi)) + log (Si(yi))] + (1 − δi) log (Si(yi))

= −

n∑
i=1

Hi(yi) +

n∑
i=1

δilog (hi(yi))

(2.12)

The method caters for baseline covariates xT
i , which introduced to equation (2.12) the log-

likelihood becomes

l(β, h0(t)) = −
n∑

i=1
H0(yi)ex

T
i β +

n∑
i=1

δi
(
log (h0(yi)) + xT

i β
)
. (2.13)

Because h0(t) has infinite dimension, the authors introduce a basis function to approximate

the baseline hazard h0(t) =
∑m

u=1 θuψu(t), where ψu(t) is the basis function and θu are values

that require estimation when fitting the model. The authors impose two conditions on model

fitting: (1) a smoothness constraint by adding a penalty term to the log-likelihood, denoted

λJ(h0(t)); and (2) requiring all values of θu to be greater than or equal to zero. This results

in needing to undertake constrained maximisation of the penalised log-likelihood function

Φ(β, h0(t)) = l(β, h0(t)) − λJ(h0(t)). (2.14)

Defining the basis for the cumulative baseline hazard as Ψu(ti) =
∫ t
0 ψu(v)dv, the cumulative

hazard is written as:

H0(t) =
∫ t

0
h0(s)ds =

m∑
u=1

θu

∫ t

0
ψ0(s)ds =

m∑
u=1

θuΨu(t). (2.15)
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This results in the penalised log-likelihood

Φ(β, h0(t)) = −
n∑

i=1

m∑
u=1

θuex
T
i βΨu(t) +

n∑
i=1

δi

(
log

(
m∑

u=1
θuψu(t)

)
+ xT

i β

)
− λJ(h0(t)). (2.16)

In the two published papers (chapter 3 and chapter 4) and a prepared manuscript (chapter

5) of this thesis extends the work of Ma et al. (2014) and investigates results using both

simulation and application to modelling the risk of credit default. Chapter 3 extends the work

to include both baseline and time-varying covariates. Chapter 4 further extends the work to

include competing risks (for default and repayment) using both baseline and time-varying

covariates. Chapter 5 extends the work to mixture-cure model with baseline covariates.

2.2.2 Competing Risk Analysis

Competing risk models analyse the time until subjects encounter one of potentially many

possible risks. “Competing” means risks for each subject are mutually exclusive so the

occurrence of an event precludes any other event from occurring for that subject. For

example if the event of primary interest is home loan default then a competing risk is early

repayment. Competing risks analysis, also called “multiple-decrements analysis” by actuaries

(Deshmukh, 2012), has a similar genesis as survival analysis (David and Moeschberger

(1978)). The first recorded use was by Daniel Bernoulli (1760) who extended Edmund

Halley’s (1693) method for constructing life tables to demonstrate the increase in human

survival if the competing risk of small pox were eliminated as a cause of death.

Often competing risks are ignored and studies focus on the primary risk by simply treating

competing events as censored (Austin et al., 2016). This can lead to problems, for example

Putter et al. (2007) demonstrates when applying the Kaplan-Meier (1958) estimate to the

event of interest while treating all other competing risks as censored underestimates the

survival function of the event of primary interest.

To start, letTi be the true survival time (which may not be observed due to censoring), and

Ci the corresponding non-informative right-censoring time, thus the observed survival time
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is Yi = min(Ti,Ci). The value of Ti for each subject is associated with g = 1, . . .G mutually

excluding competing risks. Denoting realised values of Yi with yi, the tuple of observed

values for each subject becomes (yi, δi1, . . . , δiG) where δig = 1 when the subject encounters

risk g and zero otherwise. Additionally δi0 =
∑G

g=1 δig so δi0 = 0 when the event time for a

subject is censored.

An important function for competing risk analysis is the Cumulative Incidence Function

(CIF). Pintilie (2006) outlines that the CIF for event type g represents the probability that

event g occurs before time t in the presence of all other possible causes, and is defined as

Fg(t) = P[Yi ≤ t,g]. (2.17)

The Cumulative Distribution Function (CDF) for any of the g events to occur before time t is

the sum of the g individual CIFs

F(t) = P[Yi ≤ t] =
G∑
g=1

Fg(t) =
G∑
g=1

P[Yi <= t,g]. (2.18)

For the gth competing risk, Pintilie (2006) details the cause-specific hazard is

hg(t) = lim
∆t→0

P[t < Yi ≤ t + ∆t,G = g |Yi > t]
∆t

=
fg(t)
S(t)

(2.19)

where S(t) is the all-risk survival, that is the survival of a subject not encountering any of

the (g = 1, . . . ,G) risks prior to time t. The cause specific hazard does not have direct

interpretation in terms of survival probabilities for the particular event type. In addition,

the following relationships hold for h(t), H(t), f (t), F(t) and S(t) which respectively are

functions for the hazard, cumulative hazard, density, cumulative distribution and survival for

all risk combined

h(t) =
∑G

g=1
hg(t) (2.20)

H(t) =
∑G

g=1
Hg(t) (2.21)

f (t) =
∑G

g=1
fg(t) (2.22)

F(t) =
∑G

g=1
Fg(t) (2.23)
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S(t) =
∏G

g=1
Sg(t). (2.24)

where the subscript g signifies that the function pertains to the gth risk. Further, Hg(t) =∫ t
u=0 hg(u)du is the cause-specific cumulative hazard and Fg(t) =

∫ t
u=0 fg(u)du.

For semi-parametric regression approaches, there are two prevailing methods to construct

models that conditionally explain survival in the presence of competing risks. The first

focusses onmodelling the cause-specific hazard (Pintilie, 2006), which conditionally explains

the instantaneous rate of occurrence of the gth risk in subjects who are currently event free –

that is, in subjects who have not yet experienced any of the different types of events. This is

the method used in chapter 4 of this thesis. The second, introduced by Fine and Gray (1999),

focusses on the hazard of the sub-distribution, which conditionally explains the instantaneous

risk of failure from the gth event in subjects who have not yet experienced an event of type

g, but may or may not have experienced another event. The hazard of the sub-distribution is

not explored in this thesis.

Sueyoshi (1992) extends semi-parametric Cox model with competing risks to cater for

time-varying covariates, assuming these are piecewise constant (ie: they remain constant

between the discrete times they are observed), arguing this is appropriate as there is a lack of

a-priori knowledge of the evolution path for their values. Barnett and Graves (2008) discuss

time-varying covariates provide richer information, but require non-standard data formatting.

Introducing both baseline and time-covariates, the cause-specific hazard becomes

hig(t) = h0g(t)ex
T
i βg+z

T
i (t)γg i = 1, . . . ,n and g = 1, . . . ,G (2.25)

where: h0g(t) is the gth baseline hazard; xi and zi(t) are vectors of baseline and time-

varying covariates respectively; and βg and γg are the accompanying vectors of regression

coefficients. Observed data for the ith subject becomes (yi, δi, xi, zi(t)), so the partial likelihood

for (i = 1, . . . ,n) subjects for all the regression coefficients β = (β1, . . . , βG) and γ =
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(γ1, . . . ,γG) is

L(β) =
n∏

i=1

[
hig(yi)∑

j∈Rg(τj ) h j(τj)

]1δi=g

=

n∏
i=1

G∏
g=1

[
hig(yi)∑

j∈Rg(τj ) h j(τj)

]1δi=g

. (2.26)

This is the product of individual partial likelihoods for estimating the gth cause specific

hazard but setting all other events to be censored. It thus follows that maximising the g

cause-specific hazards individual also maximises equation (2.26). The practicality of this is

that to estimate the gth cause-specific hazard, all that is necessary is to set δi = 0 for subjects

that have an event other than type g. Critically Bakoyannis and Touloumi (2011) discuss that

individual estimation of the g cause-specific hazards does not require independence of the

competing risks and that while the most common approach is to fit models individually to

each event type, there are methods that allow simultaneous estimation.

2.2.3 Mixture-Cure Analysis

Mixture-cure analysis models the time to an event of interest where subjects are from two

distinct populations; (1) those susceptible to the event of interest; and (2) those no longer

susceptible and hence “cured”. These models were initially applied in studies of diseases,

beginning with Berkson and Gage (1952) and Farewell (1982) who devised parametric

approaches. Later extensions are by authors such as Kuk and Chen (1992), Peng and Dear

(2000) and Sy and Taylor (2000) who extend the method to include the semi-parametric Cox

model, with Cai et al. (2012) providing an R implementation in their smcure, estimating

model parameters using the Expectation-Maximisation approach of Dempster et al. (1977).

The implication with the mixture-cure model is that the survival curve for the both the

susceptible and non-susceptible populations considered together plateaus at a level equal to

the long-run cure probability.

Let Ri be a susceptibility indicator so that Ri = 1 if subject i is susceptible and Ri = 0 for

otherwise. Let Ti be the time at which the event of interest occurs for the ith subject in the

susceptible population, and Ci be the non-informative (independent) right censoring time for

the ith subject in the susceptible population. So the observable survival time for all subjects

is Yi = min(Ti,Ci) for susceptible subjects and Yi = ∞ for non-susceptible subjects, with yi
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representing observed realisations. Thus each value of yi can represent the time an event of

interest occurs if δi = 1, or when δi = 0, this individual can be either right censored for the

event of interest or belong to the non-susceptible population. To simplify discussions we let

the combined survival time be

T†i =


Ti, if ith subject is susceptible

∞, if ith subject is not susceptible.
(2.27)

In equation (2.28) below we express the relationship between survival functions S†i (t) =

P(T†i > t) and Si(t) = P(Ti > t).

For all subjects there are p covariates in the vector xT
i = [xi1, . . . , xip] that help explain

survival in the susceptible population and q covariates in the vector wT
i = [wi1, . . . ,wiq] that

help explain the probability of susceptibility. Defining α and β as regression coefficients and

h0(t) as the non-parametric continuous baseline hazard, the mixture cure model is

S†i (t |wi, xi) = πi(wi)Si(t |Ri = 1, xi) + 1 − πi(wi) (2.28)

where

P[Ri = 1] = πi(wi) = 1/
(
1 + exp(−wT

i α)
)

(2.29)

hi(t |Ri = 1, xi) = h0(t)ex
T
i β (2.30)

Si(t |Ri = 1, xi) = e−
∫ t

0 hi(ξ |Ri=1,xi)dξ (2.31)

Note that Ri is unobservable, with instead all that is observable are censored survival times

corresponding to either: (1) subjects from the non-susceptible population; or (2) subjects

from the susceptible population but whose censoring time occurs prior to their event time.

In equation (2.28) the function S†i (ti |wi, xi) has the property it “plateaus” at the long-run

cure rate 1− πi(wi) (ie: as t →∞ then S†i (ti |wi, xi) → 1− πi(wi)). Absent a non-susceptible

population (ie: π = 1), equation (2.28) becomes the survival function Si(t |Ri = 1, xi).
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2.2.3.1 Estimation via Expectation-Maximisation

Using observed data (yi, δi,wi, xi) (i = 1, . . . ,n), the observed likelihood is

L(α, β) =
n∏

i−1

[
π(wi) f (yi |Ri, xi)

]δi [ (
1 − π(wi)

)
+ π(wi)S(yi |Ri = 1, xi)

]1−δi
(2.32)

where f (yi |Ri, xi) is the density function for the susceptible population. Note that when all

subjects are susceptible (ie: π(wi) = 1 for all subjects) then equation (2.32) reduces to the

likelihood for the semi-parametric Cox model. Given Ri, the complete likelihood function is

LComplete(α, β) =
n∏

i=1

[
π(wi)

Ri
(
1 − π(wi)

) (1−Ri)
]
×

[
h(yi |Ri = 1, xi)

RiδiS(yi |Ri = 1, xi)
Ri

]
= L Incident(α |R) × LLatent(β |R).

(2.33)

The likelihood in equation (2.33) is the product of likelihood functions for a logistic regression

model (L Incident(α |R)) and a Cox model (LLatent(β |R)) conditional on susceptible subjects.

Equation (2.33) relies on: (1 − Ri)(1 − δi) = (1 − Ri); π(wi)
Riδiπ(wi)

Ri(1−δi) = π(wi)
Ri ; and

h(yi |Ri, xi) = f (ti |Ri, xi)/S(yi |Ri, xi).

The corresponding log-likelihood can be rearranged into a log-likelihood which is the

sum of following two components

l Incident(α |R) =
n∑

i=1
log

[
π(wi)

Ri
(
1 − π(wi)

)Ri

]
(2.34)

lLatent(β |R) =
n∑

i=1
log

[
h(yi |Ri = 1, xi)

δiRiS(yi |Ri = 1, xi)
Ri

]
(2.35)

It is impossible to segregate all subjects into cured and non-cured individuals at t = 0.

This corresponds to the random variable Ri only being observed for subjects whose event

time yi is an event of interest (δi = 1 and Ri = 1), while random variable Ri is missing for

subjects whose event time yi is censored (δi = 0). In this setting, model estimation can instead

be carried out using the Expectation-Maximisation algorithm of Dempster et al. (1977). To

maximise the likelihood in equation (2.32), an estimate of E[Ri |Yi] for the expected value of
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the random variable Ri is needed.

Several authors use the EM algorithm to estimate the mixture-cure model including (for

example) Peng and Dear (2000) and Sy and Taylor (2000) with the latter comparing the

Breslow estimator for the baseline hazard or the Kaplan-Meir estimator for baseline survival.

Yu and Tiwari (2007) use the EM algorithm to fit a mixture-cure model but using additive

hazards. Lu (2008) also uses the EMalgorithm, but goes on to also estimate a semi-parametric

variance bound. Mohammad et al. (2019) adopt a profile likelihood approach to estimate the

cumulative baseline hazard and the regression parameters, which “profiles out” the baseline

hazard function from the Cox proportional hazard model. The results of this model are

compared to the approach implemented in the R package smcure by Chao et al. (2012).

2.2.3.2 Estimation via Other Methods

While manymethods in the literature adopt the EM algorithm to estimate the mixture-cure

model, there are other published approaches. Examples of parametric approaches include Gu

et al. (2011)who develop a proportional oddsmodelwith aWeibull baseline hazard to cater for

the cure fraction in a cancer study, while Elorant et al. (2014) use relative survival and excess

mortality via a parametric mixture-cure model to cancer data. Li et al. (2007) develops a

mixture-curemodel for dependant censoring using Archimedean copulas. Bayesian examples

usually adoptMarkov-ChainMonte-Carlo (MCMC)methods, such as Basu and Tiwari (2010)

who use MCMC with a marginal likelihood and a piece-wise constant hazard, Coelho et al.

(2015) use MCMC Procedure in SAS (SAS (2020)) and a three-parameter Burr distribution

for the baseline hazard, while Yin and Ibrahim (2005) useMCMCand a piecewise exponential

hazard.

Other published approaches look to parametrise the baseline hazard. Corbiere et al. (2009)

estimates the mixture-cure model using penalised maximum likelihood, parametrising the

cumulative hazard using cubic I-splines. Hua and Xiang (2013) cater for interval censoring

using transformed baseline hazard function using splines. Andersson et al. (2011) fit a flexible

parametric cure model which uses log-cumulative excess hazard of the relative risk, fitting

their model in Stata with restrictive cubic splines. Patilea and VanKeilegom (2017) model the

cure probably parametrically (such as via a logistic transform) but the survival component
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of the model non-parametrically, devising an inversion formula based on the cumulative

baseline hazard. Liu and Shen (2009) develop a semi-parametric mixture-cure model for

interval censored data, parametrising the cumulative baseline hazard using non-decreasing

step-functions. Sy and Taylor (2000) employ the EM algorithm to estimate regression

parameters and either the Breslow estimator for the baseline hazard or the Kaplan-Meier

estimator for baseline survival. Corbiere and Joly (2007) parametrise the baseline survival

function using a Weibull and exponential distributions.

Regarding standard error estimation, Sy and Taylor (2000) outline an approach to estimate

asymptotic variance of the regression parameters in a mixture-cure model. They apply a zero-

tail constraint which sets the baseline survival function for the susceptible population equal

to zero at the final observed event. Corbiere and Joly (2007) undertake a non-parametric

bootstrap.

This thesis extends the work of Ma et al. (2014) to mixture-cure model with baseline

covariates in chapter 5, and investigates results using both simulation and application to

modelling the risk of credit default.

2.3 Literature Review - Applications to Credit Risk

Survival analysis was first introduced by Narain (1992) to credit default modelling and

now appears widely in the literature as a method to estimate the chance a customer will default

(Lessmann et al., 2015). Survival analysis can be used to determine not only if, but when, a

customer is likely to default, which is one of the key advantages beyond logistic regression

(the most commonly employed method in industry).

Banasik et al. (1999) investigate survival analysis for credit scoring, which is designed to

answer the question of how likely an applicant for credit is to default by a given time in the

future. The paper compares four models (logistic regression, the Cox model and the Weibull

and exponential accelerated lifetime models) finding they all perform similarly given the data

in their study. The paper also recognises the competing risk nature of credit risk data, and

outlines (but does not fit) an approach that models the risk of credit default as the event of

interest and successful repayment as a competing risk.
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Bellotti and Crook (2009) show that using time-varying macroeconomic variables in the

semi-parametric Cox model improves the accuracy of estimating the probability of default

compared to both a semi-parametric Cox model (without time-varying covariates) and a

logistic regression. The authors also argue that given credit data is typically in a panel

format, where new accounts enter, old accounts leave and each account is observed for a

sequential period of time, it naturally allows the use of survival models with time-varying

covariates. They also state an additional advantage of survival analysis is that it provides

probability of default estimates over many different horizons, where logistic regression is

restricted to a just single horizon.

Man (2014) explores a probability of default model using consumer and corporate data

from Rabobank, developing an algorithm to undertake the binning of covariates using the

hazard function (rather than the industry standard weight of evidence (Good, 1950)) as well

as devising a method to compare predictions from a survival model and a logistic regression.

The results confirms that survival models perform similarly to logistic regression, a finding

repeated by other authors (see for example Stepanova and Thomas (2002)). Despite these

performance similarities, Man (2014) states that survival models have certain advantages over

logistic regression, specifically: (1) less data is discarded because survival analysis can utilise

censored observations; and (2) logistic regression only estimates the survival probability for

a fixed time interval (for example over one year). Djeundje and Crook (2019) incorporate

time-varying coefficients by estimating a discrete-time survival model for credit card data,

and parametrise the baseline hazard using B-splines.

Im et al. (2012) develop a semi-parametric Cox model to predict default risk for a

sample of United States credit card data. They identify that macroeconomic effects have a

marked impact on observed default rates, doubling due to the global financial crisis. Their

method does not include macro-economic variables as covariates, instead including indicator

variables for each calendar quarter, an effect the authors call a “time-dependency factor”.

The authors point out that this is not only a function of the macroeconomic effects but also

the aggregated effects of all time-dependent factors that are not otherwise accounted for in

the remaining predictor variables in the model. Their paper plots the resulting coefficients,

which is reproduced in figure 2.4 below. Their model correctly detects the increase in default

risk due to the financial crisis in late 2008 and the bursting of the dot-com bubble in early
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2004. However the model also detects an apparent increase in the risk of default in the last

quarter of 2005, but this was instead subsequently diagnosed by the authors to be the result

of a change in collection policy at the bank concerned. The paper concludes with comments

that this approach to modelling the macro-economic effects using survival analysis is novel,

but would pose substantial challenges if the model were implemented to estimate out-of-time

predictions. The authors suggest two alternate methods to counter this shortcoming, both of

which use constant extrapolation beyond the in-sample training data.

Figure 2.4: Estimated Coefficients from for US Credit Card Data Model
Source: Im et al. (2012) (figure 3)

An important aspect of defaulted loans is that some defaults can “cure”, and return to be

performing loans and then be again at risk of default. An example of a default that typically

cures is forbearance (or hardship), whereby the lender will grant temporary concessionary

arrangements, with the expectation that the customer will return to performing – this is an

example of recurrent events. Ambrose and Capone (2020) capture the increased hazard of

second and subsequent defaults by including a time-varying covariate of “time since last

default”. They test their approach using USA data from the Federal Housing Administration

to develop a Cox proportional hazard model that also considers financial, borrower, and

macroeconomic variables.

Mortgage loans face two interdependent competing risks of default and early prepayment,

which need simultaneous development and estimation. Hall and Lundstedt (2005) describe

why default and prepayment are intertwined, discussing how the all-survival function and



34 Literature Review

the cumulative incidence functions for each competing risk may fluctuate when interest rates

rise or when interest rates fall. When rates fall, then prepayments occur faster and defaults

occur less frequently. When rates rise, then prepayments occur slower and defaults occur

more frequently. The authors also discuss using stylised graphs for the seasoning effects of

loans, whereby the hazard for defaults are humped and peak in at about 24 months.

Tong et al. (2012) constructs a mixture-cure model to estimate not only if a customer is

likely to default (susceptibility) but when they are likely to default given they are susceptible

(survival time). The authors state this type of approach explicitly recognises and caters for

the competing risk of successful loan repayment, and has been employed previously to model

long-term survival of cancer patients for two distinct subpopulations — those cured who

will never relapse; and those uncured who remain susceptible to the disease. The model is

trained using data from a United Kingdom personal loan portfolio and the model parameters

for the mixture cure model are estimated using the expectation-maximisation (EM) algorithm

(Dempster et al., 1977). A 100-fold cross-validation is used to obtain unbiased predictive

performance estimates and bootstrapping is used to estimate 95% confidence intervals.

Clapp et al. (2005) compares a multi-nominal logit model with amixture-cure model. The

findings are that themixture-curemodel is superior, but can be difficult in some circumstances

for the estimation to converge. The unobserved heterogeneity is captured by including subject-

specific random effects, one in each the linear predictors for each competing risk.

Dirick et al. (2015) outlines how mixture cure models are applicable to credit risk mod-

elling as the vast majority of loans do not have an event of interest (default), identifying three

susceptible sub-populations: default; maturity; and early redemption. This leads naturally to

the overall survival being modelled as a multi-nominal logit model with each event modelled

using their own individual conditional survival functions. The model is fit in a benchmark

study using ten different real-world data sets from five banks. Dirick et al (2016) extend this

work to additionally include macroeconomic variables as time-varying covariates, using a

discrete-time model to construct the full likelihood, and uses the EM algorithm to estimate

the parameters.

Djeundje and Crook (2018) outline a multi-state model for credit card data and extend the
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competing risk survival model to estimate transition intensities between loans that are up-to-

date, and those that are one, two and three months in arrears. The model estimates each of

the 6 models using separate semi-parametric Cox models, parametrising the baseline hazards

using B-splines and both baseline and time-varying covariates are included in the model.

Random effects cater for dependence between jumps undertaken by the same account. In

order to translate these estimates to competing risk probabilities, the authors use an approach

common in actuarial mathematics for life contingent risks (see for example Luptakova and

Bilikova (2014)).

2.4 Structure of This Thesis

The remainder of this thesis is structured as follows. Chapter 3 is a published paper (Thack-

ham and Ma, 2020a) extending the work of Ma et al. (2014) to estimate a semi-parametric

Cox model with time-varying covariates. Chapter 4 is a published paper (Thackham and Ma,

2020b) that further extends Ma et al. (2014) and Thackham and Ma (2020a) to cater for com-

peting risks. Chapter 5 is a manuscript prepared for publication extending Ma et al. (2014)

to estimate a semi-parametric mixture-cure Cox model. Each of chapters 3, 4 and 5 outline

the necessary theory, undertake simulation studies and apply the methods to estimating credit

risk default for home loan data. The thesis ends with a conclusion and discussion. The thesis

is supported by an appendix that contains the R-code to fit the models from chapters 3, 4 and

5.
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3.1 Abstract

Including time-varying covariates is a popular extension to the Cox model and a suitable

approach for dealing with non-proportional hazards. However partial likelihood estimation of
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this model has three shortcomings: (1) estimated regression coefficients can be less accurate

in small samples with heavy censoring; (2) the baseline hazard is not directly estimated; and

(3) a covariance matrix for both the regression coefficients and the baseline hazard is not

easily produced.

We address these by developing amaximum likelihood approach to jointly estimate regression

coefficients and baseline hazard using a constrained optimisation ensuring the latter’s non-

negativity. We demonstrate asymptotic properties of these estimates and show via simulation

their increased accuracy compared to partial likelihood estimates in small samples and show

our method produces smoother baseline hazard estimates than the Breslow estimator.

Finally, we apply our method to two examples, including an important real-world finan-

cial example to estimate time to default for retail home loans. We demonstrate using our

maximum-likelihood estimate for the baseline hazard can give much clearer corroboratory

evidence of the “humped hazard”, whereby the risk of loan default rises to a peak and then

later falls.

Keywords: Cox model, time-varying covariates, maximum likelihood, constrained optimi-

sation.

3.2 Introduction

Survival analysis involves following subjects for an observation period in anticipation an

event of interest will occur. If the event does not occur within this observation period, the

time to event for this subject is right censored. The Coxmodel (Cox, 1972) is the corner-stone

of modern survival analysis allowing the natural logarithm of the hazard ratio to be a linear

function of covariates. It has been applied in areas as diverse as biomedical science, industrial

life testing (Kalbfleisch and Prentice, 2002) and finance (Lessmann et al., 2015). Crowley

and Hu (1977) extend the model to include time-varying covariates whose values change for

a subject while they are in the study. These time-varying covariates can also be used to relax

the inherited proportional hazards assumption of the Cox model with time-fixed covariates

(Cox and Oakes, 1984).

Time-varying covariates can be either a continuous or a discrete function of time. In this
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paper we consider discrete time-varying covariates but cater for the setting where the values

of time-varying covariates can change multiple times for a given subject and assume there is

no measurement error for both time-fixed and time-varying covariates. An example of such

a time-varying covariate in a financial setting is a home loan whose interest rate changes

during term of the loan; this can occur never, once, or potentially numerous times.

As is the case for the Cox model with time-fixed covariates, estimation of the regression

parameters for time-varying covariates is commonly obtained using the partial likelihood

method. In some settings this approach results in:

1. potentially inaccurate estimates for coefficients of the time-varying covariates when

the sample size is small and with heavy censoring (Heinze and Dunkler, 2008);

2. no estimation of the baseline hazard without resort to a separate estimation via the

Breslow method.

The full likelihood method we develop in this paper avoids these shortcomings. Estimation

of solely regression coefficients is no problem if the analysis aims to draw inferences on

covariate effects or calculate hazard ratios. However if the analysis is for inferences on

survival probabilities, then an estimate of the baseline hazard is required. The Breslow

method provides a secondary estimation of the baseline hazard to which the partial likelihood

estimated regression coefficients are required inputs, with resultant baseline hazard estimates

typically being highly volatile (e.g. Hosmer et al. (2008)).

While there are likelihood based methods for simultaneous estimation of regression

coefficients and baseline hazardwith time-fixed covariates (see for example, Cai andBetensky

(2003), Joly et al. (1998) and Ma et al. (2014)), similar likelihood-based methods for Cox

modelwith time-varying covariates are not conveniently available. Wong et al. (2017) develop

a maximum likelihood approach to estimate a piece-wise (on baseline hazard) proportional

hazard model with time-varying covariates, however all the time-varying covariates are

piece-wise constant with one or two common change-points.

In this paper, we present a novel maximum-likelihood method that extends the computa-

tional approach of Ma et al. (2014) by simultaneous estimation of the regression coefficients

and baseline hazard for the Cox model with right censoring when time-varying covariates
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present. We develop a constrained optimisation algorithm which is efficient and easy to im-

plement and provide an asymptotic covariance matrix for these estimates, allowing inferences

to be conducted efficiently on quantities of interest. Our method provides additional features

to those devised by Wong et al. (2017), such as: a flexible spline-based approximation to the

baseline hazard; proof of consistency and asymptotic normality of the maximum likelihood

estimates; and provision of a Hessian matrix for regression and baseline parameters.

This paper proceeds as follows. Section 3.3 introduces the terminology used thoughout

our paper before going on to explain our maximum-likelihood method for the Coxmodel with

time-varying covariates. In section 3.4 we develop our constrained optimisation algorithm

with section 3.5 studying asymptotic properties of these estimators. Section 3.6 shows results

of applying our model in a simulation study and goes on to demonstrate two real-world

applications of our methodology. We conclude with a discussion in section 3.7.

3.3 The likelihood function

We begin by outlining the notation used in this paper. Let Ti be the event time for subject i

andCi the corresponding non-informative right censoring time so that the observable survival

time is Yi = min(Ti,Ci). Denote the observed Yi by yi for i = 1, . . . ,n. Each yi can be either

a time recording an event of interest (δi = 1) or censoring time (δi = 0). Observations

are represented as (yi, δi). We develop a maximum likelihood approach to fit the following

semi-parametric Cox model with time-varying covariates:

hi(t) = h0(t)ex
T
i β+zi(t)Tγ (3.1)

where β and γ are vectors for regression coefficients, and h0(t) is the non-parametric baseline

hazard functionwhichwe assume is continuous. In order for (3.1) to be a valid hazard function

it must have h0(t) ≥ 0, a constraint we respect in the estimation process we develop in this

paper.

The covariates for subject i are separated into baseline (time-fixed) and time-varying

covariates, so that xi = [xi1, ..., xip]
T is a vector of p baseline covariates and zi(t) =

[zi1(t), . . . , ziq(t)]T is a vector of q time-varying covariates.
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We re-express (3.1) as

hi(t) = h∗0i(t)e
xTi β, (3.2)

where h∗0i(t) = h0(t)ezi(t)Tγ and estimate simultaneously β,γ and h0(t). One noticeable benefit

of the simultaneous estimation is that the corresponding asymptotic covariance matrix can

be established relatively easily. Estimating h0(t) without restrictions is infeasible as h0(t) is

an infinite dimensional parameter while we only have a finite number of observations. A

common strategy is to simplify h0(t) to a finite dimensional subspace where its dimension

grows with the sample size n but at a slower rate. We require that when n→∞ the simplified

h0(t) converges to the true h0(t) (Wong and Severini, 1991). The subspace we employ has

the dimension m (≤ n) and has non-negative basis functions ψu(t) (where u = 1, . . . ,m) such

that

h0(t) ≈
m∑

u=1
θuψu(t), (3.3)

where ψu(t) ≥ 0 are non-negative basis functions. We will still denote the right-hand-side

of (3.3) by h0(t) when there is no confusion. While there are many suitable non-negative

basis functions for ψu(t) our paper focusses has two: (1) indicator functions resulting in a

piece-wise constant h0(t); and (2) M-splines as per Ramsay (1988). The cumulative baseline

hazard corresponding to (3.3) is given by H0(t) =
∑m

u=1 θuΨu(t),where Ψu(t) =
∫ t
0 ψu(s)ds is

the cumulative basis function. Together, this implies that the cumulative hazard for subject i,

Hi(t), can be written as

Hi(t) = H∗0i(t)e
xTi β, (3.4)

where H∗0i(t) =
∑

u θuΨ
∗
ui(t) and

Ψ
∗
ui(t) =

∫ t

0
ψu(s)ezi(s)Tγds. (3.5)

In practical situations, the time-varying covariates zib(t), b = 1, . . . ,q, are rarely contin-

uous functions of t. In this paper we consider all zib(t) are discrete functions, so that zib(t)

remains a constant in each of the ni time intervals for subject i. For example, when a patient

visited a doctor, measurements such as blood pressure, cholesterol level, etc. were taken.

These values remained unchanged until the next visit. Thus we assume

zib(t) = ziabI(tia ≤ t < ti,a+1), (3.6)
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where I is an indicator function, a = 1, . . . ,ni and tia are called the “changing points" of

zib(t). Without loss of generality we assume ti1 = 0 and ti,ni+1 = yi. Clearly, each zib(t) is

piece-wise constant with ni pieces over [0, yi].

We adopt the “long-format" data frame to accommodate time-varying covariates in our

R program. Table 3.1 shows a simple example to elaborate this data frame, where “status"

of 0 means no event and 1 means event. Subject 1 has an event time at y1 and subject 2

has a censoring time at y2, and they both have time varying covariates. Subject 1 has three

recorded measurements on the time varying covariates and subject 2 has two.

subject start end status z1(t) ... zq(t)
1 t11 t12 0 z111 ... z11q

t12 t13 0 z121 ... z12q
t13 y1 1 z131 ... z13q

2 t21 t22 0 z211 ... z21q
t22 y2 0 z221 ... z22q

3 ... ... ... ... ...

Table 3.1: Example of time-varying covariate data frame

For example, Zhang et al. (2018) demonstrate construction of the above data frame can

be achieved with the assistance of the survival::tmerge() function from the survival

package (Therneau et al., 2015).

Calculation of the integral in (3.5) is simplified when the time varying covariates are

discrete. For t ∈ (tid, ti,d+1] we have

Ψ
∗
ui(t) =

d∑
a=1
[Ψu(ti,a+1) − Ψu(tia)]ezTiaγ, (3.7)

where zia = [zia1, . . . , ziaq]
T , and therefore

H∗0i(t) =
d∑

a=1
[H0(ti,a+1) − H0(tia)]ezTiaγ . (3.8)

Note that Ψu(ti1) = 0 and H0(ti1) = 0 for all i and u.
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The log-likelihood function from independent survival times y1, . . . , yn is

l(β,γ,θ) = −
n∑

i=1
H∗0i(yi)exTi β +

n∑
i=1

δi(log h0(yi) + xT
i β + zT

i,ni+1γ). (3.9)

Let θ be an m-vector for all θu. We wish to estimate η = [βT,γT,θT ]T by maximising

the log-likelihood subject to the constraints θu ≥ 0 (since ψu(t) ≥ 0) for u = 1, . . . ,m. A

computational algorithm for this optimisation problem is developed in the next section.

3.4 Constrained optimisation

The Karush–Kuhn–Tucker (KKT) (Karush (1939), Kuhn and Tucker (1951)) first-order

necessary conditions for the constrained optimal solution of β, γ and θ are

∂l
∂β j
= 0, (3.10)

∂l
∂γb
= 0, (3.11)

∂l
∂θu
= 0 if θu > 0 or

∂l
∂θu

< 0 if θu = 0. (3.12)

Many available algorithms for constrained optimisation problems such as those given in

Luenberger and Ye (2008) are less efficient for our problem when m is large. We therefore

instead develop in this section an easy-to-implement algorithm which is efficient for a large

m.

We adopt the following strategy to solve equations given in (3.10), (4.16) and (3.12).

Beginning with estimates β(k), γ(k) and θ(k) at iteration k, iteration k + 1 comprises the

following alternating steps.

1: Compute β(k+1) so that l(β(k+1),γ(k),θ(k)) ≥ l(β(k),γ(k),θ(k)).

2: Compute γ(k+1) so that l(β(k+1),γ(k+1),θ(k)) ≥ l(β(k+1),γ(k),θ(k)).

3: Compute θ(k+1) ≥ 0 so that l(β(k+1),γ(k+1),θ(k+1)) ≥ l(β(k+1),γ(k+1),θ(k)).
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These conditions assure l(β(k+1),γ(k+1),θ(k+1)) ≥ l(β(k),γ(k),θ(k)) at the end of iteration k+1,

which is a key requirement for convergence of this algorithm. Steps 1 and 2 are solved by the

Newton algorithm incorporating line search steps, and Step 3 is solved by a multiplicative-

iterative (MI) algorithm (e.g. Chan and Ma (2012) and Ma (2010)) designed to respect the

non-negative constraints on θ. We call this algorithm the Newton-MI algorithm similar to

Ma et al. (2014).

To update β, we employ one iteration of the Newton algorithm with line search. Starting

with β(k) and using a line-search with step size ω(k)1 ∈ (0,1], we have

β(k+1) = β(k) + ω(k)1 (X
TA(k)X)−1XT (−A(k)1n + δ), (3.13)

where X (of size n × p) is the model matrix of time fixed covariates and its i-th row is given

by xT
i , A is a diagonal matrix given by A = diag(H∗01(y1)exT1 β, . . . ,H∗0n(yn)exTn β), 1n is an

n-vector of 1’s and δ is an n-vector for δi’s. Matrix A(k) is A with β = β(k), γ = γ(k) and

θ = θ(k). Matrix XTAX is the negative Hessian of l(β,γ,θ) with respect to β. The line

search parameter ω(k)1 helps to achieve l(β(k+1),γ(k),θ(k)) ≥ l(β(k),γ(k),θ(k)).

Similarly, the Newton method with line search is also applied to update γ. First, let

Z = [ZT
1 , . . . ,Z

T
n ]

T , where Zi = [zi1, . . . ,zi,ni+1]
T . Note that zia is defined with equation

(3.7). Matrix Z is in fact the model matrix associated with the time-varying covariates, and

it has the dimension of N × q, where N =
∑

i ni. Let B = diag(exT1 βB1, . . . , exTn βBn), where

Bi is a diagonal matrix of size ni × ni with diagonal elements [H0(ri,a+1) − H0(ri,a)]ezTiaγ for

a = 0, . . . ,ni − 1. Let ζ be an N-vector given by ζ = [ζ11, . . . , ζ1,n1−1, . . . , ζn1, . . . , ζn,nn−1]
T ,

where ζia = 1 only if a = ni − 1 and δi = 1; otherwise, ζia = 0. Then, the Newton algorithm

with line search updates γ according to

γ(k+1) = γ(k) + ω(k)2 (Z
TB(k)Z)−1ZT (−B(k)1N + ζ ), (3.14)

where ω(k)2 ∈ (0,1] is a line search step size and B(k) denotes B but with β = β(k+1), γ = γ(k)

and θ = θ(k). Matrix ZTBZ is the negative Hessian of l(β,γ,θ) with respect to γ. Note that

ω
(k)
2 is used to achieve l(β(k+1),γ(k+1),θ(k)) ≥ l(β(k+1),γ(k),θ(k)).

Finally for updating θ, we adopt themultiplicative-iterative (MI) algorithmwhich respects
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the non-negative constraint on θ and also is very easy to implement. Let both C and C∗ be

n × m matrices but their (i,u) elements are ψu(yi) and Ψ∗ui(yi) respectively. Let δ be the

n-vector for δi and f the n-vector for exTi β. The MI algorithm updates θ according to

θ(k+1) = θ(k) + ω(k)3 S(k)
(
CT [D(k)]−1δ − [C∗(k)]T f(k)

)
, (3.15)

where D and S are diagonal matrices with elements h0(yi) and θu/(
∑

i Ψ
∗
ui(yi)exTi β + ε)

respectively, and here ε is a small threshold used to avoid the corresponding denominator

being zero. The step size ω(k)3 ∈ (0,1] again guarantees that l(β(k+1),γ(k+1),θ(k+1)) ≥

l(β(k+1),γ(k+1),θ(k)).

All the above line searches can be efficiently conducted using, for example, the Armijo

rule (Luenberger and Ye, 2008). We comment that the above algorithm is very easy to

implement. The updating formula for γ naturally suggests the “long" data format, similar

to R “survival" package (Therneau, 2019) for time dependent covariates as demonstrated

earlier in Table 4.8. The “start" and “end" times are needed to select the B matrix and

compute Ψ∗ui values and the ζ vector is determined solely from the “status" column.

When A1/2X and B1/2Z have full column rank, matrices XTAX and ZTBZ are positive

definite so that the updates for β and γ are well defined. Following the same argument as

in Chan and Ma (2012) we can show that (i) if θ(k) is non-negative then θ(k+1) is also non-

negative, and (ii) under certain regularity conditions, this algorithm converges to a solution

satisfying the KKT conditions.

3.5 Asymptotic Properties

Asymptotic results are pivotal for performing inferences without relying on computational

demanding methods such as bootstrapping which may be less practical for large data sets.

Let (β0,γ0, h00(t)) be the true parameters. Let β̂ and γ̂ be the ML estimates of β and γ

respectively. Denote hn(t) =
∑m

u=1 θuψu(t) and ĥn(t) =
∑m

u=1 θ̂uψu(t), where θ̂u is the ML

estimate of θu and m increases with n. Let θ be the vector for all θu and θ̂ the vector for θ̂u.

Following Xu et al. (2018), strong consistency results for β̂, γ̂ and ĥn(t) can be established

when m → ∞ and n → ∞ but m/n → 0, with results in Theorem 1 below. These results
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are mathematically nice but they are practically less useful. Therefore in Theorem 2, we

produce a more useful asymptotic normality result for β̂, γ̂ and θ̂ for fixed m. The simulation

results in Section 3.6 demonstrate that the asymptotic variance in Theorem 4 is accurate when

compared with the variance obtained from the Monte Carlo method.

The proofs for Theorems 1 and 2 are omitted as they are very similar to the corresponding

proofs in Xu et al. (2018). The results in these theorems require some regularity conditions

similar to these in Xu et al. (2018). We first state assumptions needed for Theorem 1.

A1. Matrices X and Z are bounded and both E(XXT ) and E(ZZT ) are non-singular.

A2. For function hn(t), its corresponding coefficient vector θ is in a compact subset of Rm.

A3. Assume for any h0(t), there exists a hn(t) such that maxt |hn(t) − h0(t)| → 0 as m→∞

and n→∞ but m/n→ 0.

We comment that Assumption A3 can be satisfied according to Proposition 2.8 of DeBoor

and Daniel (1974).

Theorem 1 Assume Assumptions A1 – A3 hold. Assume there exists an interval [a, b], where

0 ≤ a < b < ∞, such that h0(t) is bounded and has up to r ≥ 1 derivatives over [a, b].

Assume the number of basis functions satisfy m = nυ, where 0 < υ < 1. Then, when n→∞,

1. ‖ β̂ − β0‖ → 0 and ‖γ̂ − γ0‖ → 0 almost surely, and

2. supt∈[a,b] | ĥn(t) − h00(t)| → 0 almost surely.

Next, similar to Yu and Ruppert (2002), we develop a more useful asymptotic normality

result for β̂, γ̂ and θ̂ assuming a fixed m, and therefore m is retained in the asymptotic results.

The maximum likelihood estimates β̂, γ̂ and θ̂ can still achieve
√

n convergence rate in

this context. The fix m assumption lies somewhere between parametric and non-parametric

modelling as there are freedoms in selecting a value for m. A major benefit is that this

asymptotic normality can be used to make inferences involving β, γ and h0(t). This will be

helpful in, for example, inferences on survival probabilities or predictions.

Let η = (θT, βT,γT )T , whose length is m + p + q, and it makes the log-likelihood

a function of η. The maximum likelihood estimate of η, denoted by η̂, is obtained by
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maximizing l(η) with the constraint θ ≥ 0. In developing this asymptotic normality, we

must allow the possibility of active constraints (i.e. some θu = 0); otherwise, a non-positive

definite information matrix can be obtained if some θu estimates are 0.

We follow Moore et al. (2008) (Theorem 2) to facilitate the asymptotic normality proper-

ties for the constrained maximum likelihood estimates. To elucidate discussions we assume,

without loss of generality, that there are c active θ ≥ 0 constraints in the maximum likelihood

estimates. We need to introduce the matrix U in Assumption B5 below to indicate the active

constraints. Note that UTU = I(m+p+q−c)×(m+p+q−c).

The asymptotic normality results for the maximum likelihood estimate η̂ require the

following regularity assumptions.

Assumptions:

B1. Random vectors (yi, δi,xT
i ,z

T
i (t)), i = 1, . . . ,n, are independent and identically dis-

tributed.

B2. The space Ξ for η is compact.

B3. lim
n→∞

n−1l(η) exists and has a unique maximum at η0 ∈ Ξ.

B4. l(η) is bounded and is twice continuously differentiable in a neighbourhood of η0, and

the matrix F(η) = limn→∞ n−1∂l2/∂η∂ηT exist.

B5. Assume there are c active constraints from θ. LetU(m+p+q)×(m+p+q−c) be amatrix whose

rows take zero values corresponding to the active constraints and other rows form an

identity matrix. Assume the matrix UTF(η)U is invertible in a neighbourhood of η0.

Theorem 2 Assume Assumptions B1 – B5 hold. Assume there are c active constraints in the

maximum likelihood estimate of θ and the corresponding U is defined as in Assumption B5.

Then, when n→∞,

1. The constrained MPL estimate η̂ is consistent for η0, and

2.
√

n(η̂−η0) converges in distribution to N(0, F̃(η0)
−1), where F̃(η)−1 = U(UTF(η)U)−1UT .
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We comment that matrix F̃(η)−1 is in fact very easy to compute. Firstly, UTF(η)U is ob-

tained simply by deleting the rows and columns of F(η) associated with the active constraints.

Then (UTF(η)U)−1 is calculated. Finally, F̃(η)−1 is obtained by padding (UTF(η)U)−1 with

zeros at the positions of the deleted rows and columns. The results in Theorem 4 demand that

the active constraints must be identified. This can be easily done as follows. If the maximum

likelihood estimates of θ̂u is either exactly zero or very close to zero with gradient of less

than (say) −10−2 then we treat it as active.

The simulation results reported in Section 3.6 demonstrate that biases in the maximum

likelihood estimates are usually negligible and the asymptotic variances of the estimates are

accurate.

3.6 Results

In this section we first report the results of a simulation study which compares our

maximum likelihood estimates of β,γ and h0(t) against the partial likelihood estimates

where h0(t) is estimated using the Breslow method for the partial likelihood method. Then

we demonstrate our ML estimation method to fit a Cox model with time dependent covariates

in two different applied settings: (1) fitting the Stanford Heart Transplant data (Crowley and

Hu, 1977); and (2) an important real-world financial example to estimate time to default for

retail home loans.

3.6.1 A simulation study

To test the ML method and the algorithm we developed, we simulate independent survival

times yi = min(ti, ci) using the model

hi(ti) = h0(ti)eβ1x1i+β2x2i+γ1z1i(ti), (3.16)

where h0(ti) is the baseline hazard. We test two different baseline hazards: (1) of a Weibull

distribution: h0(ti) = λ−ννtν−1
i , where λ = 1 and ν = 1.5; and (2) of an Exponential

distribution: h0(ti) = λ where λ = 1.

A censoring time ci, which is independent of ti, is generated from a uniform distribution
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U(0, µc) for each i, where µc is chosen to give, on average, a desired censoring proportion

πc. Thus, independent pairs (yi, δi) for i = 1, . . . ,n, where δi is the event time indicator,

are generated. We select the regression coefficients β1 = β2 = 1 and γ1 = 1 in our

simulation. Values for the first baseline covariate x1 are randomly drawn from a normal

N(0,1) distribution and values for the second baseline covariate x2 are randomly drawn from

a Bernouli distribution with parameter 0.5. The time-dependent covariate z1(ti) is set to zero

at baseline for all subjects. For each subject, its z1(ti) changes value three times, each time

switching between either zero and one or vice-versa. To solidify, let these three switching

times be (t1i, t2i, t3i) such that 0 < t1i < t2i < t3i, meaning that: for t ∈ [0, t1i) z1(ti) has

a value of 0; for t ∈ [t1i, t2i) it has a value of 1; for t ∈ [t2i, t3i) it has a value of 0; and

for t ∈ [t3i,∞) it has a value of 1. To make the simulation complicated, switching times

(t1i, t2i, t3i) are randomly selected individually for each subject, so that no subject has the

same set of switching times as any other subject.

We adopt the approach outlined in Austin (2012) to sample survival data with time-

varying covariates from aWeibull and exponential distributions. To conduct the Monte Carlo

simulation, we draw M = 2000 samples across: two sample sizes (n = 100 and n = 2000);

two approximate censoring proportions (π = 20% and π = 80%); and two baseline hazards

(Exponential and Weibull). The baseline hazards are parametrised using piece-wise constant

indicator functions, with knots selected so that there are an equal number of observed events

within each interval. The number of piece-wise constant indicator functions are displayed in

table 3.2.

For each combination we estimate the baseline and time-dependent effects using our

ML method (β̂ML
1 , β̂ML

2 , γ̂ML
1 ) and compare them with the partial likelihood estimates

(β̂PL
1 , β̂PL

2 , γ̂PL
1 ). Table 3.2 summarises the bias, Monte-Carlo standard deviation (SD) and

mean-square error (MSE) for the regression coefficients calculated from the simulation study.
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Exponential Hazard (λ = 1, ν = 1) Weibull Hazard (λ = 1, ν = 1.5)
Sample Size (n) n=100 n=100 n=2000 n=2000 n=100 n=100 n=2000 n=2000

Censor Proportion (π) π = 20% π = 80% π = 20% π = 80% π = 20% π = 80% π = 20% π = 80%
No. Baseline Fun. (m) m=5 m=4 m=16 m=10 m=5 m=4 m=16 m=10

γ̂1 ML Bias 0.1051 0.0807 0.0016 0.0074 0.1354 0.2998 0.0216 0.0035
SD 0.4115 0.5584 0.0683 0.1415 0.3998 0.5750 0.1808 0.2647

MSE 0.1804 0.3184 0.0047 0.0201 0.1782 0.4206 0.0332 0.0701
PL Bias 2.2283 4.0046 0.0022 0.0148 3.0103 4.4146 0.0198 0.0029

SD 5.9563 8.5452 0.2333 0.2884 7.4610 9.3421 0.2570 0.3256
MSE 40.4435 89.0576 0.0544 0.0834 64.7287 106.7631 0.0664 0.1061

β̂1 ML Bias 0.0309 0.0361 0.0001 0.0026 -0.0149 0.0369 0.0004 0.0013
SD 0.1450 0.2051 0.0298 0.0406 0.1387 0.2419 0.0313 0.0483

MSE 0.0220 0.0434 0.0009 0.0017 0.0194 0.0599 0.0010 0.0023
PL Bias 0.0312 0.0290 0.0001 0.0025 0.0230 0.0437 -0.0015 0.0016

SD 0.1492 0.2052 0.0306 0.0408 0.1512 0.2516 0.0310 0.0482
MSE 0.0232 0.0430 0.0009 0.0017 0.0234 0.0652 0.0010 0.0023

β̂2 ML Bias 0.0382 0.0300 0.0033 -0.0035 -0.0126 0.0374 0.0017 -0.0039
SD 0.2306 0.3475 0.0522 0.0711 0.2284 0.4262 0.0538 0.0872

MSE 0.0547 0.1216 0.0027 0.0051 0.0523 0.1830 0.0029 0.0076
PL Bias 0.0386 0.0229 0.0033 -0.0036 0.0234 0.0424 0.0032 -0.0037

SD 0.2366 0.3458 0.0527 0.0713 0.2428 0.4345 0.0540 0.0874
MSE 0.0574 0.1201 0.0028 0.0051 0.0595 0.1905 0.0029 0.0077

Table 3.2: Comparing estimates γ̂1, β̂1 and β̂2 from maximum likelihood (ML) and partial
likelihood (PL) methods

These results show that when n = 100 (small sample sizes) the maximum likelihood

estimates perform better than partial likelihood on both bias and standard deviations for

time-varying covariates. Particularly, in this context, the maximum likelihood method has

much smaller biases and standard deviations in recovering the effect for the time-dependent

covariate. These conclusions are further substantiated by Figure 3.1 and Figure 3.2, which

compare the mean parameter estimates for γ̂1 with n = 100.
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(a) n=100, 20% censoring, Exponential Hazard

(b) n=100, 80% censoring, Exponential Hazard

Figure 3.1: Simulation Results for γ̂1 (with a censoring proportion of (a) 20%, (b) 80%),
comparing maximum likelihood (ML) and partial likelihood (PL) estimation, Exponential
Baseline.
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(a) n=100, 20% censoring, Weibull Hazard

(b) n=100, 80% censoring, Weibull Hazard

Figure 3.2: Simulation Results for γ̂1 (with a censoring proportion of (a) 20%, (b) 80%),
comparing maximum likelihood (ML) and partial likelihood (PL) estimation, Weibull Base-
line.

The maximum likelihood estimation of the Cox model also provides an estimate of the

baseline hazard. The plots in Figure 3.3 and Figure 3.4 compare the true baseline hazard

to the results from each of the four simulations, together with simultaneous 95% confidence

intervals (CIs) (where standard deviations were obtained from the Monte Carlo results). The

results demonstrate that the baseline hazard can be recovered to a close degree of accuracy

by our method.
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(a) n=2000, 20% censoring, Exp Hazard (b) n=2000, 80% censoring, Exp Hazard

(c) n=100, 20% censoring, Exp Hazard (d) n=100, 80% censoring, Exp Hazard

Figure 3.3: Comparison of true and estimated Exponential baseline hazards, together with
simultaneous 95% CIs.
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(a) n=2000, 20% censoring, Weibull Hazard (b) n=2000, 80% censoring, Weibull Hazard

(c) n=100, 20% censoring, Weibull Hazard (d) n=100, 80% censoring, Weibull Hazard

Figure 3.4: Comparison of true and estimated Weibull baseline hazards, together with
simultaneous 95% CIs.

3.6.2 Application 1 - Stanford Heart Data

For our first example we apply our maximum likelihood estimation to the Stanford Heart

Transplant data. This dataset has been studied several times, notably by Crowley and Hu

(1977) who study the effects of a number of covariates as to whether heart transplant prolongs

survival for patients with heart disease. The data follows 103 patients admitted to the Stanford

Heart Transplant Program during which time a search for a suitable donor heart is undertaken.

This search takes from between a few days to up to a year. Seventy-five patients undergo a

transplant, however some patients die prior to a suitable donor heart is found.

Each patient has recorded the date of acceptance T1, and the date when they are last

observed T2, so that their survival time is T2 − T1 days. If T2 is the time of death then the



54
PAPER 1: On Maximum Likelihood Estimation of the Semi-Parametric Cox Model with

Time-Varying Covariates

subject’s event time is fully observed; if T2 is the closing date of the study then the subject’s

event time is right censored. To facilitate modelling with time-varying covariates, we adopt

the “long" format where each record has one or several “start” and “stop" times depending

on the time-varying covariates. For our application, we select three baseline covariates:

“age" – age in years at acceptance minus 45; “year" – acceptance time point after the study

began; “surgery" – an indicator if the patient has previously had bypass surgery. A single

time-dependent covariate called “transplant" is created to indicate whether the patient has a

heart transplant at a particular time. Using this data, we estimate the model

hi(t) = h0(t)eβagexage+βyear xyear+βsurgxsurg+γtranztran(t) (3.17)

where: xage is patient age in years at acceptance minus 45; xyear is the year of patient

acceptance; xsurg is an indicator if the patient has previously had bypass surgery (1=yes,

0=no); and ztrans(t) is a time-dependent covariate whose values changes from 0 prior to

a patient reviving a transplant to 1 post a patient receiving a transplant. The regression

parameters (βage, βyear, βsurg, γtrans) are unknown and require estimation. For maximum

likelihood estimation, we approximate the baseline hazard h0(t) by 6 cubic M-spline basis

functions with knots selected at quantiles of the observed data.

The results of ourmaximum likelihood and the partial likelihood estimation are detailed in

Table 3.3. Eachmethod returns similar accuracy for the regression coefficients and associated

standard errors however themaximum likelihood estimation also returns a further 6 parameter

estimates for the baseline hazard function displayed in Figure 3.5. In order to compare the

Maximum Likelihood Estimation Partial Likelihood Estimation
Parameter Value SE z pval Value SE z pval

β̂age 0.031 0.014 2.232 0.020 0.027 0.014 1.981 0.024
β̂surg -0.676 0.367 -1.847 0.045 -0.636 0.367 -1.731 0.042
β̂year -0.146 0.070 -2.074 0.021 -0.146 0.070 -2.074 0.019
γ̂tran -0.014 0.312 -0.044 0.482 -0.014 0.313 -0.046 0.482

Table 3.3: Parameter estimates for the Stanford Heart Transplant Data

baseline hazards from the maximum likelihood and partial likelihood methods, we calculate

the Breslow estimator for the baseline hazard using the partial likelihood outputs. We plot

the results in Figure 3.5.
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(a) ML baseline hazard estimate

(b) Breslow baseline hazard estimate

Figure 3.5: Comparison of the baseline hazard estimation from the maximum likelihood (a)
and the Breslow (b) methods.

The maximum likelihood estimate of the baseline hazard is clearly smoother than the

Breslow estimator, and therefore contains more useful and interpretable information.

3.6.3 Application 2 - Credit Risk Data

In this second example we apply our maximum likelihood estimation to a real-world credit

risk dataset comprising a randomised and anonymised sample of n = 100,000 Australian

home loans spanning the calendar years 2003 to 2014 and containing the 11 baseline covariates

and 2 time-varying covariates as per table 3.4. Note that variable 12 (Dynamic Loan to Value

Ratio) and variable 13 (Worst Delinquency in Last 6Months) are the time-varying covariates.

The baseline hazard is parametrised using 11 piece-wise constant indicator functions, with

knots selected so that there are an equal number of observed events within each piece-wise

constant.
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Variable Description ( * = mean corrected )
1 Mortgage Insured Does the home loan have lenders mortgagee insurance? (Yes / No)?
2 Borrower’s Occupation Professional / Trades / Sales / Other
3 Borrowers How many borrowers are there for this home loan (either 1 or 2+)?
4 Salary Credits Do the borrowers deposit salary into the home loan account (Yes/No)?
5 Credit Card Do the borrowers have a credit card? (Yes/No)
6 Personal Loan Do the borrowers have a personal loan? (Yes/No)
7 Repayment Method Are repayments principal and interest (P&I) or interest only (IO)?
8 Repayment Frequency Are repayments made monthly or fortnightly/other
9 Borrower Tenure* How many months has the borrower been a customer (0,1,2...)?
10 Total Home Loans* Total number of home loans the borrowers have (integer 1, 2, ...)
11 Opening Balance* The original balance when the home loan opened ($millions)
12 Dynamic Loan to The current loan balance divided by the current estimate of the value of

Value Ratio* the home securing the loan. This is a time-varying covariate, as both the
numerator and denominator of this ratio vary over time.

13 Worst Delinquency in The highest number of missed monthly payments within the last 6 months,
Last 6 Months lagged by a period of 12 months. This variable can take integer values of

0, 1, 2, ... . This is a time-varying covariate because delinquency status
(the number of repayments behind a customer is) definitionally begins at
zero at origination but can change to values greater than zero over time.

Table 3.4: Description of the 11 baseline and 2 time-varying covariates in the Home Loan
dataset

Partial Likelihood Maximum Likelihood
Name Level Estimate Std Err Estimate Std Err

Mortgage Insured Yes 0.1615 0.0557 0.1599 0.0556
Borrower’s Occupation Profession −0.5542 0.0647 −0.5543 0.0647

Trades 0.0036 0.0595 0.0034 0.0595
Other −0.3496 0.0953 −0.3478 0.0953
Sales 0 − 0 −

Borrowers 2+ −0.3184 0.0484 −0.3183 0.0484
Salary Credits Yes −0.3240 0.2123 −0.3225 0.2123
Credit Card Yes −0.2775 0.0515 −0.2778 0.0515
Personal Loan Yes 0.2666 0.1019 0.2670 0.1019
Repayment Method IO 0.1720 0.0522 0.1729 0.0522
Repayment Frequency Monthly 0.1728 0.0600 0.1715 0.0560
Customer Tenure (Months) −0.0021 0.0003 −0.0021 0.0003
Total Home Loans (Count) −0.1112 0.0186 −0.1111 0.0186
Opening Balance ($millions) 0.5131 0.1183 0.5124 0.1183
Dynamic Loan to Value Ratio (t) 2.7924 0.1303 2.7917 0.1303
Worst Delinquency in Last 6 Months (t-12) 2.9979 0.06328 2.9983 0.0632

Table 3.5: Comparison of Parameter Estimates of the Eleven Baseline and Two
Time-Varying Covariates Using Maximum Likelihood and Partial Likelihood Estimation

Table 3.5 demonstrates the estimated regression coefficients and standard errors from

maximum likelihood and partial likelihood are very similar. The numerical estimates for the

baseline hazard are graphed figure 3.6. In order to compare the baseline hazard estimates,

we use the Breslow (1972) estimator for the partial likelihood method. Figure 3.6 compares

results of the Breslow estimator (grey line) as per the R package survival (Therneau, 2019);

overlaid is the baseline estimate from the maximum likelihood method (black line) along with

the associate 95% simultaneous confidence intervals (grey shaded area).
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Figure 3.6: Comparison of Baseline Hazard Using:
“Breslow + Partial Likelihood (PL)” verses “Maximum Likelihood (ML)” Estimation

While in general the two estimates tend to follow each other, it is very clear that the

Breslow baseline hazard estimate exhibits a substantially larger degree of volatility than the

estimate from the maximum likelihood method. There is a clear evidence in the data of the

“humped hazard”, with the intensity of default risk beginning low before peaking between 24

and 36 months since the loans were originated. This feature is commonly known for credit

portfolio in the finance industry (see for example Im et al. (2012) and Bellotti and Crook

(2013)).

3.7 Conclusion

Extension of Cox model to time-varying covariates provides not only additional flexibility

to explain the time to event data but also the ability to cater for violation in the proportional

hazards assumption. The prevailing estimation technique maximises the partial likelihood

resulting in estimates for the regression coefficients but not the baseline hazard. This allows

the estimation of hazard ratios as well as inferences on the estimated effects. However, in

order to recover some other quantities, such as survival probabilities for individual subjects,

an estimate of the baseline hazard is needed. Commonly this relies on the Breslow method

(Breslow, 1972), which can result in volatile baseline hazard estimates without providing

standard errors.
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The partial likelihood method for the Cox model with time-varying covariates has three

shortcomings that are not well addressed in the literature: (1) the regression estimates can

be inaccurate in samples of moderate size and heavy censoring; (2) the baseline hazard is

estimated separately to the regression coefficients; and (3) this separate estimation means a

covariance matrix for both the estimated regression coefficients and baseline hazard is not

conveniently produced.

In this paper we have developed a novel maximum likelihood approach using constrained

optimisation. Our method estimates simultaneously regression coefficients and the baseline

hazard. We also have developed the asymptomatic properties of our estimates and have

implemented our approach in the R programming language.

Using this R implementation, we show via simulations that our maximum likelihood

method produces more accurate estimates in small samples with heavy censoring than esti-

mates obtained via partial likelihood. We also show that we can recover the baseline hazard

with a suitable degree of accuracy.

3.8 Appendix: Hessian matrix

The second derivatives with respect to β and γ are:

∂2l

∂β∂βT = −XTAX,
∂2l

∂γ∂γT = −ZTBZ.

The other second derivatives are:

∂2l
∂θu∂θv

= −

n∑
i=1

δi
ψu(yi)ψv(yi)

h0(yi)
2 ,

∂2l
∂β j∂θu

= −

n∑
i=1
Ψ
∗
ui(yi)exTi βxi j,

∂2l
∂γb∂θu

= −

n∑
i=1
Ψ
∗∗
uib(yi)exTi βxi j,

∂2l
∂β j∂γb

= −

n∑
i=1

H∗∗oib(yi)exTi βxi j,
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where, if t ∈ Bid ,

Ψ
∗∗
uib(t) =

d∑
a=1
[Ψu(ria) − Ψu(ri,a−1)]ezTiaγziab

H∗∗0ib(t) =
d∑

a=1
[H0(ria) − H0(ri,a−1)]ezTiaγziab
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4.1 Abstract

Credit-granting institutions need to estimate the probability of loan default, which repre-

sents the chance a customer fails to make repayments as promised. Critically this estimation

is intertwined with the competing risk a customer fully repays their loan while also having

key predictive drivers with values that change over time. A conventional model in this setting

is a competing risks Cox Model with time-varying covariates. However partial likelihood

estimation of this model has two shortcomings: (1) the baseline hazard is not estimated, so

calculating probabilities requires a further estimation step; and (2) a covariance matrix for

both regression coefficients and the baseline hazard is not produced.

This paper caters for these shortcomings by devising a maximum likelihood technique

to jointly estimate regression coefficients and the cause-specific baseline hazards using con-

strained optimisation to ensure the latter’s non-negativity. We show via simulation our

technique produces regression coefficients estimates with lower bias in small samples with

heavy censoring. When applied to a real-world credit risk dataset consisting of home loan

data our Maximum Likelihood approach produces a smoother estimate of the cause-specific

baseline hazards for default and redemption than those obtained using the Partial Likelihood

and Breslow approach. This provides better clarity of the shape of these functions through

both a less volatile central estimate as well as quantifying the error of this central estimate.

We implement our method in R.

Keywords: Competing Risk Cause Specific Cox Models, Time-varying Covariates, Con-

strained Maximum Likelihood Optimisation, Credit Risk.

4.2 Introduction

Credit-granting institutions are in the business of lending money to customers, some

of whom may fail to repay in a timely manner monies they contractually owe (namely

principal, interest and fees), thereby defaulting on their obligation. An accurate estimate of

the probability of default is vital for two reasons. The first is for institutions granted permission

to use the Internal Ratings-Based approach by their regulator to calculateminimum regulatory

credit capital (BIS, 2006). The second is for institutions to satisfy international accounting

standards to calculate expected credit losses (IASB (2014), FASB (2016)). However loans
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that repay monies owed earlier than contractually due can impact the probability of loan

default, with Wycinka (2019) outlining competing risks models can appropriately cater for

this.

Competing risks models analyse time to event of interest where there are two or more

possible events subjects can encounter. “Competing” means events for each subject are

mutually exclusive so the occurrence of an event precludes any other event from happening.

For example if the event of interest is home loan default then a competing risk is early

repayment. Often competing events are ignored and studies focus on the primary event by

simply treating competing events as censored (Austin et al., 2016). This can lead to biased

estimates; for example Putter et al. (2007) demonstrates when applying the Kaplan-Meier

(1958) estimate to the event of interest while treating all other competing events as censored

under estimates the survival function of the event of interest.

There are two prevailing regression models for competing risks. The first is the cause-

specific hazard Cox (1972, 1975) model of Prentice et al. (1978) and the second is the

sub-distribution hazard Cox model of Fine and Gray (1999). Our paper focuses on the

cause-specific Cox model which estimates the instantaneous rate of a risk for subjects who

are currently risk free.

Competing risks analysis have been applied to credit risk (see Banasik et al. (1999) and

Stepanova and Thomas (2002)). Deng et al. (2000) estimate cause-specific hazard models for

early repayment and default for commercial mortgages. Wycinka (2019) demonstrates when

managing a credit portfolio, early repayments alter the probability of loan default. Time-

varying covariates (Crowley and Hu, 1977) are often included in the cause-specific Cox

regression models. Bellotti and Crook (2009) show that using time-varying macroeconomic

variables improves the predictive accuracy, and when analysing a sample of United States

credit card data, Im et al. (2012) show that macroeconomic effects have a marked impact on

observed default rates which doubled due to the global financial crisis.

Estimating competing risks cause-specific hazards Cox models with time-varying covari-

ates is most commonly undertaken by maximising the partial likelihood (see for example,

Pintilie (2006)). However, the partial likelihood approach suffers from the following short-

comings:

1. it does not directly produce an estimation of the baseline hazards. A common remedy is
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to adopt a separate estimation via the Breslow method (1972), which typically returns

baseline hazard estimates that are highly volatile (e.g. Hosmer et al. (2008))

2. it does not provide a covariance matrix for the regression coefficients and the baseline

hazard, so joint inferences cannot be formed

3. it may give potentially inaccurate estimates for coefficients of the time-varying covari-

ates when the sample size is small and with heavy censoring.

We develop an approach that uses the full likelihood thus avoiding these shortcomings,

estimating regression parameters aswell as simultaneously providing estimates of the baseline

cause-specific hazards. The latter is necessary for drawing inferences on, for example, the

survival function. The method devises a novel maximum likelihood method that extends the

computational approach of Thackham and Ma (2020), developing a constrained optimisation

algorithm which is efficient and easy to implement – which we do so in R – and produces

an asymptotic covariance matrix for all the model parameters, allowing inferences to be

conducted efficiently on quantities of interest.

This paper proceeds as follows. Section 4.3 devises the log-likelihood function for the

competing risk Cox model with time-varying covariates and uninformative right-censoring.

Section 4.4 details simulation results comparing our method with the conventional partial

likelihood method, going on to apply our method in a real credit setting generating insights

to a real-world credit risk dataset. Our paper concludes with discussions in Section 4.5. The

accompanying supplementary material details a special constrained optimisation algorithm

for computing the maximum likelihood estimates of regression coefficients and baseline

hazards, along with asymptotic results.

4.3 The likelihood function

For subject i, i = 1, . . . .n, let Ti be the true survival time (which may not be observed

due to censoring), Ci the corresponding non-informative right-censoring time, thus observed

survival time is Yi = min(Ti,Ci). Each Ti is associated with g = 1, . . .G mutually excluding

competing risks. Realised values for random variableYi are yi and the tuple of observed values

for subject i is (yi, δi1, . . . , δiG) where δig = 1 when subject i encounters risk g. Additionally

we define δi0 =
∑G

g=1 δig so δi0 = 0 when the event time for subject i is censored.
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We develop a maximum likelihood approach to fit the following Cox model for each of

g, g = 1, . . . ,G, competing risks cause specific hazard model with time-varying covariates:

hig(t) = h0g(t)ex
T
i βg+zTi (t)γg (4.1)

where hig(t) denotes the hazard of subject i for risk g, βg and γg are vectors respectively

for regression coefficients for time-fixed and time-varying covariates, and h0g(t) the non-

parametric baseline hazard function. For (4.1) to be a valid hazard function it must have

h0g(t) ≥ 0 for all g, constraints we respect in the estimation process we develop in this paper.

Covariates are separated into p time-fixed covariates xi = [xi1, ..., xip]
T and q time-varying

covariates zi(t) = [zi1(t), . . . , ziq(t)]T .

We re-express (2.2) as

hig(t) = h∗0ig(t)e
xTi βg (4.2)

where h∗0ig(t) = h0g(t)ezi(t)Tγg . Estimating each h0g(t)without restrictions is an ill-conditioned

problem. To cater for this we simplify h0g(t) to a finite dimensional subspace where its di-

mension grows with the sample size n but at a slower rate and further require that when

n → ∞ the simplified h0g(t) converges to the true h0g(t) (Wong and Severini, 1991). The

subspace we employ to achieve this has the dimension mg (≤ n) with non-negative basis

functions ψgu(t) ≥ 0 (where u = 1, . . . ,mg) giving

h0g(t) ≈
mg∑
u=1

θguψgu(t). (4.3)

We will still denote the right-hand-side of (4.3) by h0g(t) when there is no confusion.

While there are many suitable non-negative basis functions for ψgu(t), this paper focusses

on an indicator functions resulting in a piece-wise constant h0g(t). Our method can be easily

adapted to other non-negative basis functions, for example M-splines as per Ramsay (1988).

The cumulative baseline hazard corresponding to (4.3) is given by H0g(t) =
∑m

u=1 θguΨgu(t),

whereΨgu(t) =
∫ t
0 ψgu(s)ds is the cumulative basis function. Together, the cumulative hazard

Hig(t) is

Hig(t) = H∗0ig(t)e
xTi βg, (4.4)
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where H∗0ig(t) =
∑

u θguΨ
∗
gui(t) and

Ψ
∗
gui(t) =

∫ t

0
ψgu(s)ezi(s)Tγgds. (4.5)

Our algorithm demands evaluation of Ψ∗gui(t) for all yi within each iteration which is a

computational burden. One simplification is to discretise the time-varying covariates. In

practice, time-varying covariates zib(t), b = 1, . . . ,q rarely appear as a continuous function

of time t since its measurements are usually taken over a finite number of time points. For

example, the balance of a customer’s loan could change several times within each month but

for risk modelling purposes end-of-month loan balances may be sufficient for monitoring and

modelling the risk of the loan. In this paper we consider all zib(t) are discrete functions, so

zib(t) remains a constant in each of the time intervals for subject i. Thus

zib(t) = ziabI(tia ≤ t < ti,a+1), (4.6)

where I is an indicator function, a = 1, . . . ,ni. Points tia define bins for the discretised

“changing points" of zib(t), forming ni bins. Change points are common for all time-varying

covariates of subject i, obtained by combining change points of the time-varying covariates

of subject i. Without loss of generality we assume ti1 = 0 and ti,ni+1 = yi.

Calculation of the integral in (4.5) is simplified when time-varying covariates are discrete.

For t ∈ (tid, ti,d+1]

Ψ
∗
gui(t) =

d∑
a=1
[Ψgu(ti,a+1) − Ψgu(tia)]ezTiaγg, (4.7)

where zia = [zia1, . . . , ziaq]
T , and therefore

H∗0ig(t) =
d∑

a=1
[H0g(ti,a+1) − H0(tia)]ezTiaγ . (4.8)

Note Ψgu(ti1) = 0 and H0g(ti1) = 0 for all i, u and competing risk g.

Let θg be the mg-vector for all θgu ≥ 0. Let β = [βT
1 , . . . , β

T
G]

T , γ = [γT
1 , . . . ,γ

T
G]

T and

θ = [θT
1 , . . . ,θ

T
G]

T . The log-likelihood function from independent survival times y1, . . . , yn
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and competing risks g = 1, . . . ,G is

l(β,γ,θ) =
G∑
g=1

[
−

n∑
i=1

H∗0ig(yi)exTi βg +

n∑
i=1

δig(log h0g(yi) + xT
i βg + zT

i,ni+1γg)

]
. (4.9)

The supplementarymaterial develops our constrained optimisation algorithmwhich estimates

β,γ and θ by maximising (4.9) subject to θ ≥ 0.

4.4 Results

4.4.1 Simulation Results

We compare our maximum likelihood method with the conventional partial likelihood

method by simulating competing risk data for two competing risks, with the followingWeibull

baseline hazards:

h0g(t) = λgνgtνg−1, g = 1,2 (4.10)

where νg and λg are the shape and scale parameters respectively for risk g. Our simulation

sets to ν1 = ν2 = 1.5 and λ1 = λ2 = 1.0. We consider G = 2 competing risks where each

cause-specific hazard includes two baseline covariates x1 and x2 and a single time-varying

covariate z(t) resulting in

hig(t) = h0g(t) exp(βg1xi1 + βg2xi2 + γgzi‘(t)). (4.11)

We define zi(t) as a dichotomous time-varying covariate with at most one change from

untreated (z = 0) to treated (z = 1), and if subject i does undergo this switch, it occurs at time

t = ti1. For baseline covariates, we select xi1 ∼ N(0,1) and xi2 ∼ Bernouli(0.5). Extending

the approach of Austin (2012) from a single risk to two competing risks, the corresponding

cumulative hazard is

Hi(t) =
2∑

g=1
λg exp(βg1xig + βg2xig)

[
tνgi1 + tν1 exp(γg) − tν1

i1 exp(γg)

]
. (4.12)

As per Bender et al. (2005), a single survival time T from the competing risks model with

the hazard in equation (4.11) can be generated by inverting the expression in equation (4.12),

such that T = H−1[− log(u)] where u ∼ Uni f (0,1).
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To simulate the event, let Wti be the event that subject i encounters, so that Wti ∈ 0,1,2.

All subjects begin at time ti = 0 with W0 = 0 and persist there until transitioning at time

ti = Ti to experience either event 1 (WTi = 1) or event 2 (WTi = 2). As per Beyersmann et al.

(2009), the probability that the event which occurs at time ti = Ti is event 1 is

P[WTi = 1|ti < Ti ≤ ti + dt,Ti ≥ ti] =
P[ti < Ti ≤ ti + dt,WTi = 1]

P[Ti ≤ ti + dt |Ti ≥ ti]
=

h1(ti)
h1(ti) + h2(ti)

= p

(4.13)

so that the event of risk 1 occurring is sampled form the Bernoulli distribution Bernoulli(p),

where the parameter p is equation (4.13).

Right-censoring times are independently drawn from a uniform distribution parametrised

so that two different censoring proportions (π = 10% and π = 40%) are realized. The

regression coefficients βg1, βg2 and γg are set to 1.0. Two different sample-sizes are used:

n = 1000 and n = 100. We draw M = 1000 replications for each combinations n and π,

and then estimate the regression coefficients of the two cause-specific hazards using partial

likelihood (PL) and our maximum likelihood (ML) method. Results for the bias, standard

deviation and mean-square error of the model parameters in Table 4.1 demonstrate that

the ML method can more effectively recover the true parameter value for the time-varying

covariate than the PL method in the smaller sample size with heavier censoring. Figures 4.1a

and 4.1b further draw this out by displaying the mean and the empirical confidence intervals.

Table 4.2 displays the area under the curve (AUC) statistic for each simulation setting along

with empirical confidence intervals, showing the ML method has better accuracy in the

smaller sample size with heavier censoring. Finally, the panels in figure 4.2 chart how

the simulated results recover the true Weibull baseline hazard function, with accompanying

empirical confidence intervals.
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n = 1000, π = 10% n = 1000, π = 40% n = 100, π = 10% n = 100, π = 40%
Risk Parameter Measure ML PL ML PL ML PL ML PL

1 β̂11 Bias -0.0051 -0.0150 -0.0034 -0.0059 0.0350 0.0374 0.0509 0.0665
SD 0.0566 0.0577 0.0669 0.0664 0.2045 0.2068 0.2546 0.2541
MSE 0.0032 0.0036 0.0720 0.0717 0.0430 0.0442 0.0674 0.0690

β̂12 Bias 0.0044 0.0127 0.0150 0.0161 0.0452 0.0464 0.0715 0.0899
SD 0.1031 0.1034 0.1169 0.1172 0.3327 0.3331 0.3993 0.4086
MSE 0.0106 0.0108 0.1235 0.1237 0.1127 0.1131 0.1645 0.1750

γ̂1 Bias 0.0075 0.0698 0.0196 0.0263 -0.1253 5.2011 0.3572 4.4639
SD 0.3706 0.4384 0.1863 0.1941 1.6968 11.0337 2.4026 12.2002
MSE 0.1374 0.1971 0.1879 0.1904 2.8950 148.7937 5.9002 168.77

2 β̂21 Bias -0.0048 0.0048 0.0051 0.0066 0.0227 0.0295 0.0359 0.0526
SD 0.0603 0.0605 0.0697 0.0697 0.2139 0.2177 0.2563 0.2584
MSE 0.0037 0.0037 0.0049 0.0049 0.0463 0.0483 0.0670 0.0695

β̂22 Bias 0.0006 -0.0073 0.0004 -0.0007 -0.0056 -0.0158 -0.0313 -0.0401
SD 0.1057 0.1054 0.1232 0.1234 0.3289 0.3261 0.4432 0.4392
MSE 0.0112 0.0112 0.0152 0.0152 0.1082 0.1066 0.1974 0.1945

γ̂2 Bias -0.0252 0.0483 0.0098 0.0175 0.3532 4.4582 0.5264 4.7883
SD 0.4021 0.4285 0.2071 0.2167 1.7409 10.5153 2.2961 11.0397
MSE 0.1623 0.1859 0.0430 0.0473 3.1556 130.446 5.5491 144.8018

Table 4.1: Comparing estimates β̂11, β̂12, γ̂1, β̂21, β̂22, and γ̂2, from maximum likelihood
(ML) and partial likelihood (PL) methods

RiskMethod n = 1000, π = 10% n = 1000, π = 40% n = 100, π = 10% n = 100, π = 40%
1 ML 0.7436 (0.7164, 0.7719) 0.7454 (0.7165, 0.7754) 0.7577 (0.6414, 0.8743) 0.7589 (0.6439, 0.8690)

PL+Bres 0.7423 (0.7006, 0.7866) 0.7444 (0.7114, 0.7842) 0.7073 (0.5252, 0.8982) 0.6723 (0.5120, 0.9020)
2 ML 0.7461 (0.7144, 0.7774) 0.7488 (0.7137, 0.7741) 0.7571 (0.6481, 0.8840) 0.7507 (0.6195, 0.8804)

PL+Bres 0.7466 (0.7001, 0.7945) 0.7442 (0.7042, 0.7849) 0.6995 (0.5267, 0.9067) 0.6813 (0.5187, 0.9101)

Table 4.2: Comparison of AUC (with 95% CI), from maximum likelihood (ML) and partial
likelihood (PL) plus Breslow methods

(a) n=100 π = 10% (b) n=100 π = 40%
Figure 4.1: Maximum Likelihood (ML) and Partial Likelihood (PL) Simulation Results for
γ̂1
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(a) n=1000 π = 10% (b) n=1000 π = 40%

(c) n=100 π = 10% (d) n=100 π = 40%
Figure 4.2: Comparison of true and Maximum Likelihood estimated baseline hazards, to-
gether with simultaneous 95% CIs.

4.4.2 Application to Credit Risk Data

We compare our maximum likelihood estimation to the partial likelihood estimation using a

real-world credit risk dataset comprising a randomised and anonymised sample of n = 80,000

Australian home loans originated in the calendar years 2003 to 2014. Loans were followed

from origination until the earlier of either: loan default; loan redemption; or the end of

2015. The event of interest is default which is defined when the loan has one or more of

the following events occur: continuously 90 days past due for an amount greater than $1000;

granting of forbearance; or borrower bankruptcy. The competing risk is redemption which

encompasses both early extinguishing of the outstanding amount by the customer as well as

scheduled credit maturity, however given the data spans ten years since loan origination and

home loans typically have a contractual maturity upwards of 25 years, the vast majority of
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redemptions are early extinguishing of the outstanding amount by the customer. Loans not

observed to encounter any event are right-censored; see table 4.3.

Outcome for Loan Count Percent
Observed Default (event of interest) 1,444 1.8%
Observed Redemption (competing risk) 39,608 49.5%
Right Censored 38,948 48.7%
Total 80,000 100.0%

Table 4.3: Distribution of Observed and Censored Outcomes

The data contains 17 candidate covariates, covering 4 baseline covariates and 3 time-

varying covariates as per table 4.4. Variable 15 (Dynamic Loan to Value Ratio), variable

16 (top-up flag) and variable 17 (Worst Delinquency in Last 6 Months) are the time-varying

covariates. Note that including loan-specific time-varying covariates does have implications

for out-of-time model application, but for the purpose of testing the methodology they are

nevertheless included. We use this dataset to apply our maximum likelihood estimation

method to fit competing risks model and compare these results to estimates from the partial

likelihood method. Because the partial likelihood method does not estimate the baseline

hazard, we calculate this using the Breslow (1972) method. The baseline cause-specific

baseline hazards for our maximum likelihood method, as described in equation (4.3), are

approximated using piece-wise constant indicator functions for the event of interest and

redemption. Knots are used to define the beginning of each of these constant indicator

functions, and are selected for each hazard so that an equal number of observed events are

contained within each piece-wise constant interval. Note this is only an example and other

basis functions could also be applied. Data preparation uses both SAS (2020) and R (2020),

with the model estimated in R (2020).
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# Covariate Description ( * = mean corrected )
1 Mortgage Insured Does the home loan have lenders mortgagee insurance? (Yes / No)?
2 Borrower’s Occupation Professional / Trades / Sales / Other
3 Number of Borrowers How many borrowers are there for this home loan (either 1 or 2+)?
4 Salary Credits Do the borrowers deposit salary into the home loan account (Yes/No)?
5 Credit Card Do the borrowers have a credit card? (Yes/No)
6 Personal Loan Do the borrowers have a personal loan? (Yes/No)
7 Repayment Method Are repayments principal and interest (P&I) or interest only (IO)?
8 Repayment Frequency Are repayments made monthly or fortnightly/other
9 Original Loan Term What was the original loan term, banded into (0,5], (5,30]?
10 Borrower Age What was the age of the borrower at origination?
11 Product What is the product, either Investor or Owner Occupier?
12 Borrower Tenure* How many months has the borrower been a customer (0,1,2...)?
13 Total Home Loans* Total number of home loans the borrowers have (integer 1, 2, ...)
14 Opening Balance* The original balance when the home loan opened ($millions)
15 Dynamic Loan to The current loan balance divided by the current estimate of the value of

Value Ratio* the home securing the loan. This is a time-varying covariate, as both the
numerator and denominator of this ratio vary over time.

16 Top Up Flag Has the loan been “topped-up” by increasing the original limit. This is a
time-varying covariate, as all loans begin with Top Up Flag=“No“, and this
switches to “Yes” the first time that a loan receives a top-up

17 Worst Delinquency in The highest number of missed monthly payments within the last 6 months,
Last 6 Months lagged by a period of 12 months. This variable can take integer values of

0, 1, 2, ... . This is a time-varying covariate because delinquency status
(the number of repayments behind a customer is) definitionally begins at
zero at origination but can change to values greater than zero over time

Table 4.4: Description of the 14 baseline and 3 time-varying covariates in the Home Loan
dataset

Tables 4.5 and 4.6 detail estimated regression parameters for the default (the event of

interest) and redemption (the competing risk), demonstrating that our maximum likelihood

approach produces similar results to the partial likelihood estimation.

Event = Default (customer does not repay monies on time and defaults)
PL ML

Covariate Level Estimate Std Err Estimate Std Err
Mortgage Insured Yes 0.1849 0.0607 0.1916 0.0606

No 0 - 0 -
Borrower Occupation Professional -0.5551 0.0719 -0.5546 0.0719

Trades -0.0388 0.0666 -0.0384 0.0666
Other -0.2332 0.1013 -0.2309 0.1013
Sales 0 - 0 -

Number of Borrowers 1 0 - 0 -
2+ -0.3698 0.0537 -0.3711 0.0537

Credit Card No 0 - 0 -
Yes -0.2327 0.0576 -0.2310 0.0576

Personal Loan No 0 - 0 -
Yes 0.3506 0.1076 0.3525 0.1075

Borrowers Tenure (Months) -0.0014 0.0003 -0.0014 0.0003
Total Number of Home Loans -0.1593 0.0205 -0.1587 0.0205
Opening Balance 0.4482 0.1313 0.4529 0.1311
Worst Delinquency in Last 6 Months (t-12) 2.9079 0.0732 2.9117 0.0731
Dynamic Loan to Value Ratio (t) 2.8991 0.1281 2.8488 0.1254

Table 4.5: Parameter Estimates for Maximum Likelihood and Partial Likelihood for Default
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Event = Redemption (customer repays all monies on time and closes good)
PL ML

Covariate Level Estimate Std Err Estimate Std Err
Number of Borrowers 1 0 - 0 -

2+ 0.0595 0.0108 0.0595 0.0108
Personal Loan Yes 0.1335 0.0247 0.1365 0.0247

No 0 - 0 -
Customer Tenure (Months) -0.0004 0.0001 -0.0004 0.0001
Total Home Loans -0.0216 0.0032 -0.0215 0.0032
Borrowers Age (Years) -0.0050 0.0005 -0.0050 0.0005
Opening Balance -0.4312 0.0269 -0.4305 0.0269
Original Loan Term (Years) (0,5] 0 - 0 -

(5,30] -0.2226 0.0135 -0.2212 0.0135
Product Investor -0.1065 0.0119 -0.1074 0.0119

Owner Occ 0 - 0 -
Top Up Flag (t) Yes (t) -0.1142 0.0155 -0.1262 0.0155

No (t) 0 - 0 -

Table 4.6: Parameter Estimates for Maximum Likelihood and Partial Likelihood for
Redemption

To further explore the models fit using maximum liklihood and partial likelihood, the

panels in figure 4.3 display estimates for the baseline cause-specific hazard functions, cumu-

lative hazard functions and survival functions for both default and redemption respectively.

Each plot compares: (1) the Breslow estimate (grey dashed line); with (2) our maximum

likelihood estimate (black solid line) together with the 95% confidence interval calculated

using the Hessian matrix (grey shaded area) of our maximum likelihood approach. The

plots in figures 4.3a and 4.3b clearly show that our maximum likelihood estimation approach

produces less-volatile estimates than the Breslow method. Further, as per figure 4.3a the

maximum likelihood approach is able to detect a “humped” baseline cause-specific hazard

for the risk of home loan default, as the intensity of default risk begins low before peaking

at about 24 months. While the timing and size of this hump could differ between portfolio

and jurisdiction, this is a commonly reported feature of credit portfolios (see for example Im

et al. (2012) and Bellotti and Crook (2013)). Additionally, as per figure 4.3b the maximum

likelihood approach suggests the hazard for redemption remains reasonably flat in comparison

the hazard for default, albeit with potentially some minor peaks in intensity. The minor peak

at 60 months for the redemption hazard may be driven by the ending of incentive periods,

whereby new loans are offered lower interest rates initially but revert to a higher interest rates

after an initial few years. What is more striking is that the maximum likelihood approach

is better able to detect and measure the increase in variability of the intensity for both loan

redemption and default over time, as reflected the 95% confidence intervals starting at their

narrowest, increasing as the loans age.
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(a) Baseline Hazard - Default (b) Baseline Hazard - Redemption

(c) Cum. Baseline Hazard - Default (d) Cum. Baseline Hazard - Redemption
Figure 4.3: Comparison Between Partial Likelihood andMaximum Likelihood Estimation of
Cause-Specific Baseline Hazards and Baseline Cumulative Hazard for Default and Redemp-
tion. Shaded Regions are 95% Asymptotic Maximum Likelihood Confidence Intervals.

While the maximum likelihood method produces less volatile estimates of the baseline

hazard than using the combination of the partial likelihood and the Breslow estimate, figures

4.3c and 4.3d show the related cumulative hazard functions are very similar, with the Breslow

estimate generally falling within the 95% percent confidence interval of the maximum like-

lihood estimate. The extent of this similarity may be in-part driven by the large sample size

of the applied credit risk data (n=80,000), suggesting that numerical implications discussed

earlier in section 4.4 of this paper dissipate for much larger sample sizes.

Table 4.7 details calibration and discrimination results for the models estimated using

the maximum likelihood method and the partial likelihood method. The first column gives
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the observed number of defaults while the second and third columns gives respectively the

expected number of defaults from each method. The expected number of defaults E[D(T)]

up until time T needs to recognise the competing risk of redemption. Adapting the approach

of Tong et al. (2012), this is achieved using

E[D(T)] =
n∑

i=1

T∑
t=1

SiD(t − 1) × SiR(t − 1) ×
[SiD(t − 1) − SiD(t)]

SiD(t − 1)
(4.14)

where SiD(t) and SiR(t) are the cause-specific survival for subject i for default (D) and

redemption (R) respectively. The final two columns in table 4.7 display the AUC statistic

for both the maximum likelihood and partial likelihood methods, together with the 95%

confidences intervals. The AUC values are measured from time zero to the time indicated in

the first column of the table. Probability of default can be recovered by dividing the expected

number of defaults by the sample size.

Time Observed Expected Expected AUC (95%CI) AUC (95%CI)
(months) Defaults Defaults ML Defaults PL ML PL+Breslow

12 255 283 266 0.8179 (0.7938, 0.8420) 0.8149 (0.7906, 0.8392)
24 620 702 655 0.7901 (0.7736, 0.8065) 0.7894 (0.7729, 0.8058)
36 885 925 882 0.7847 (0.7702, 0.7992) 0.7846 (0.7700, 0.7991)
48 1,090 1,070 1,029 0.7861 (0.7729, 0.7993) 0.7862 (0.7730, 0.7994)
60 1,244 1,186 1,144 0.7884 (0.7760, 0.8008) 0.7886 (0.7762, 0.8010)
72 1,343 1,256 1,221 0.7871 (0.7750, 0.7991) 0.7882 (0.7761, 0.8002)
84 1,388 1,307 1,266 0.7873 (0.7754, 0.7991) 0.7874 (0.7755, 0.7992)
96 1,422 1,344 1,304 0.7849 (0.7730, 0.7968) 0.7855 (0.7736, 0.7973)
108 1,435 1,375 1,332 0.7852 (0.7733, 0.7970) 0.7851 (0.7732, 0.7970)
120 1,440 1,402 1,357 0.7857 (0.7739, 0.7974) 0.7853 (0.7735, 0.7971)

Table 4.7: Calibration and Discrimination Results the Models Estimated using Maximum
Likelihood (ML) and Partial Likelihood + Breslow (PL+Bres.) for Default

The conclusion that we draw from the models fit to the credit risk data using maximum

likelihood and partial likelihood are that both methods yield highly comparable fitted models.

The primary additional insight gained by applying our maximum likelihood method to this

data is a clearer and less volatile description of the shape of the underlying hazards for

default and redemption together with an estimate of the asymptotic sampling variation of

these estimates.

4.5 Conclusion

Credit providers lend money to customers, some of whom may fail to make timely repay-

ments thereby defaulting. An accurate and insightful estimate of the probability of default is
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a vital input to calculate an institution’s minimum regulatory credit capital under the Basel

II Accord (BIS, 2006), as well as expected loss under Financial Reporting Standards (IASB,

2014) and (FASB, 2016). Ideally estimating probability of default should recognise the com-

peting risk of redemption as well as time-varying covariates, which requires simultaneous

development and estimation of each risk. This paper concerns such a model, detailing a

maximum-likelihood approach to estimate the parameters of a competing risks Cox Model

with time-varying covariates, and compares this to the prevailing partial likelihood estimation

approach for this model in both a simulation study (to understand small-sample behaviour)

and in an application to credit risk modelling.

Our maximum likelihood approach provides several computational benefits compared to

the partial likelihood estimation, by:

1. Jointly estimating both the regression coefficients as well as the baseline hazard using

constrained optimisation (ensuring a non-negative baseline hazard);

2. Producing asymptotic variance estimates of regression coefficients and the baseline

hazard, allowing inferences to be more readily drawn;

3. Producing a baseline hazard estimate with far less volatility than the Breslow estimator

(which uses the results of the partial likelihood estimation as input).

In a simulation study, these benefits are explored and show our estimation approach can

accurately recover the true parameter estimate in small samples with heavy censoring.

In an application to credit risk, these benefits are explored by comparing various aspects

of a model fit using maximum likelihood estimation to a model fit using partial likelihood

estimation, with each designed to predict the time to loan default using time-varying covariates

and in the presence of the competing risk of redemption.

The results show our method provides a comparable model fit to that under the partial

likelihood approach, but our maximum likelihood approach provides a key benefit of enhanc-

ing clarity of the shape of the baseline hazards for default and redemption. While the partial

likelihood approach (in combination with the Breslow estimator) produces a baseline hazard

estimate with a high degree of volatility, the maximum likelihood approach returns a less

volatile estimate together with an associated standard error which we can use to construct

and display a confidence intervals. For the data at hand, this allows us to locate evidence of

the “humped” hazard along with its significance, a feature that has been previously reported
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in other credit risk data (see for example Im et al. (2012) and Bellotti and Crook (2013)).

Similarly, our method allows a clear picture to be formed on the hazard or redemption together

with its significance, which for this data is comparably flatter than the hazard for default but

with a minor peak at approximately 60 months. Our approach also quantifies the increase in

variability of the intensity for both loan redemption and default over time. On this basis, we

feel our maximum likelihood estimation approach is a plausible alternative for credit-granting

institutions to apply to estimate probability of default.

Further directions we would like to take this research includes using macroeconomic

time-varying covariates to seek to improve the model fit, implementation of covariate splines

and release of our source code in a published R package.

Our paper is supported by a supplementary materials document that thoroughly details

the derivation of the gradient and Hessian necessary for our maximum likelihood approach,

outlines the computational scheme to estimate themodel parameters and proves the asymptotic

properties of our estimates.
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4.6 Supplementary Material

(A) Hessian matrix

The second derivatives with respect to βg and γg are:

∂2l

∂βg∂β
T
g

= −XTAgX,
∂2l

∂γg∂γ
T
g

= −ZTBgZ.

The other second derivatives are:

∂2l
∂θgu∂θgv

= −

n∑
i=1

δig
ψgu(yi)ψv(yi)

h0g(yi)
2 ,

∂2l
∂βg j∂θgu

= −

n∑
i=1
Ψ
∗
gui(yi)exTi βg xi j,

∂2l
∂γgb∂θgu

= −

n∑
i=1
Ψ
∗∗
guib(yi)exTi βg xi j,

∂2l
∂βg j∂γgb

= −

n∑
i=1

H∗∗0gib(yi)exTi βg xi j,

where, if t ∈ (tid, ti,d+1],

Ψ
∗∗
guib(t) =

d∑
a=1
[Ψgu(ti,a+1) − Ψgu(ti,a)]ezTiaγg ziab

H∗∗0gib(t) =
d∑

a=1
[H0g(ti,a+1) − H0g(ri,a)]ezTiaγg ziab

Constrained Optimisation Algorithm

The Karush–Kuhn–Tucker (KKT) (Karush (1939), Kuhn and Tucker (1951)) first-order nec-

essary conditions for the constrained optimal solution of βg, γg and θg ≥ 0 are

∂l
∂βg j

= 0, (4.15)

∂l
∂γgb

= 0, (4.16)

∂l
∂θgu

= 0 if θgu > 0 or
∂l
∂θgu

< 0 if θgu = 0 (4.17)

where g = 1, . . . ,G represent the G competing risks, j = 1, . . . , p, b = 1, . . . ,q and u =

1, . . . ,mg.
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For time-varying covariates, special care must be taken for data format and data entry.

We adopt the “long-format" data frame to accommodate time-varying covariates in our R

program, with Table 4.8 showing a simple example to elaborate this data frame. It details

the data frame structure for the first two subjects who are exposed to only two risks, however

the structure generalises for more than two risks. Critically, this “long-format" creates a

record for each subject when any time-varying covariate subject i is measured. Additionally,

it contains one status column for each risk (columns for δig) the subjects are exposed to, so

for this example there are two status columns denoted status1 and status2. Focussing on

Subject 1, it has time-varying covariates that are measured twice at times t12 and t13, and

experiences an event for risk 1 at time y1. As subject 1 experiences an event for risk 1, the

column status1 is set to 1 for the final record and 0 for all previous time points and the

column status2 is set to 0 at all time points. Turning focus to subject 2, it has time-varying

covariates measured at time t22 and then experiences an event for risk 2 at time at y2. As

subject 2 experiences an event for risk 2, the column status2 is set to 1 for the final record and

0 for all previous time points and the column status1 is set to 0 or all time points.

subject start end status1 status2 z1(t) ... zq(t)

1 t11 t12 0 0 z111 ... z11q
t12 t13 0 0 z121 ... z12q
t13 y1 1 0 z131 ... z13q

2 t21 t22 0 0 z211 ... z21q
t22 y2 0 1 z221 ... z22q

3 ... ... ... ... ... ... ...
...

...
...

...
...

...
...

...

Table 4.8: Example of time-varying covariate data frame

The long-format data frame can be easily created in R (2020). For example, Zhang

et al. (2018) demonstrate construction of such as data frame with the assistance of the

survival::tmerge() function from the survival package (Therneau et al., 2015).

Many available algorithms for constrained optimisation (for example Luenberger and

Ye (2008)) are less efficient for our problem when some mg are large, such as if one uses

indicator basis functions where each bin contains just one event time. We therefore develop

an algorithm which is efficient for a large mg. We adopt the following alternating iterative

strategy to solve equations given in (4.15), (4.16) and (4.17), and update βg, γg and θg for

each risk g in turn. With a given g, beginning with the current estimates β(k)g , γ(k)g and θ(k)g

at iteration k, iteration k + 1 comprises the following alternating steps:
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1: compute β(k+1)
g so that l(β(k+1)

g ,γ(k)g ,θ(k)g ) ≥ l(β(k)g ,γ(k)g ,θ(k)g );

2: compute γ(k+1)
g so that l(β(k+1)

g ,γ(k+1)
g ,θ(k)g ) ≥ l(β(k+1)

g ,γ(k)g ,θ(k)g );

3: compute θ(k+1)
g ≥ 0 so that l(β(k+1)

g ,γ(k+1)
g ,θ(k+1)

g ) ≥ l(β(k+1)
g ,γ(k+1)

g ,θ(k)g ).

These conditions assure l(β(k+1)
g ,γ(k+1)

g ,θ(k+1)
g ) ≥ l(β(k)g ,γ(k)g ,θ(k)g ) at the end of iteration k+1,

which is a key requirement for convergence of this algorithm. Steps 1 and 2 are solved by the

Newton algorithm incorporating line search steps, and Step 3 is solved by a multiplicative-

iterative (MI) algorithm (e.g. Chan and Ma (2012) and Ma (2010)) designed to respect the

non-negative constraints on θg. We call this algorithm the Newton-MI algorithm similar to

Ma et al. (2014).

To update βg, we employ one iteration of the Newton algorithm with line search. Starting

with β(k)g and using a line-search with step size ω(k)1g ∈ (0,1], we have

β(k+1)
g = β(k)g + ω

(k)
1g (X

TA(k)g X)−1XT (−A(k)g 1n + δg), (4.18)

where X (of size n × p) is the model matrix of time fixed covariates and its i-th row is given

by xT
i , Ag is a diagonal matrix given by Ag = diag(H∗0g1(y1)exT1 βg, . . . ,H∗0gn(yn)exTn βg), 1n is

an n-vector of 1’s and δg is an n-vector for δig’s for the competing risk g. Matrix A(k)g is Ag

with βg = β(k)g , γg = γ(k)g and θg = θ(k)g . Matrix XTAgX is the negative Hessian of l(β,γ,θ)

with respect to βg. Let lg(βg,γg,θg) be the part of log-likelihood (as per equation (9) of the

main paper) that is related to risk g only, and clearly we have

l(β,γ,θ) =
G∑
g=1

lg(βg,γg,θg)

since parameters of different risks are fully separated. The line search parameter ω(k)1g helps

to achieve lg(β
(k+1)
g ,γ(k)g ,θ(k)g ) ≥ lg(β

(k)
g ,γ(k)g ,θ(k)g ).

Similarly, the Newton method with line search is also applied to update γg. First, let

Z = [ZT
1 , . . . ,Z

T
n ]

T , where Zi = [zi1, . . . ,zi,ni+1]
T . Here, each zia is a vector defined with

equation (7) of the main paper. Matrix Z is in fact the model matrix associated with

the time-varying covariates, and it has the dimension of N × q, where N =
∑

i ni. Let

Bg = diag(exT1 βgBg1, . . . , exTn βgBgn), where Bgi is a diagonal matrix of size ni × ni with

diagonal elements [Hg0(ti,a+1) − Hg0(ti,a)]ezTiaγg for a = 1, . . . ,ni. Let ζ g be an N-vector for
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statusp column; see Table 4.8. Namely, ζ g = [ζg11, . . . , ζg1n1, . . . , ζgn1, . . . , ζgnnn]
T , where

ζgia = 1 only if a = ngi and δig = 1; otherwise, ζgia = 0. We again conduct one iteration of

the Newton algorithm with line search to update γg:

γ(k+1)
g = γ(k)g + ω

(k)
2g (Z

TB(k)g Z)−1ZT (−B(k)g 1N + ζ g), (4.19)

where ω(k)2g ∈ (0,1] is a line search step size and B(k)g denotes Bg but with βg = β(k+1)
g ,

γg = γ(k)g and θg = θ(k)g . Note that matrix ZTBgZ is the negative Hessian of l(β,γ,θ) with

respect to γg. Note that ω
(k)
2g is used to achieve lg(β

(k+1)
g ,γ(k+1)

g ,θ(k)g ) ≥ lg(β
(k+1)
g ,γ(k)g ,θ(k)g ).

Finally for updating θg, we adopt the multiplicative-iterative (MI) algorithm (see, for

example, Chan and Ma (2012), Ma et al. (2014) and Thackham and Ma (2020)) which

respects the non-negative constraint on θg and also is very easy to implement. Towards this,

we let both Cg and C∗g be n×mg matrices; and their (i,u)-th elements are ψgu(yi) and Ψ∗gui(yi)

respectively. Let fg be an n-vector for exTi βg . The MI algorithm updates θg according to

θ(k+1)
g = θ(k)g + ω

(k)
3g S(k)g

(
CT
g [D

(k)
g ]
−1δg − [C∗(k)g ]

T f(k)g

)
, (4.20)

where Dg and Sg are diagonal matrices with elements h0g(yi) and θgu/(
∑

i Ψ
∗
gui(yi)exTi βg +εg)

respectively. In (4.20), εg is a small threshold for avoiding the corresponding denomina-

tor being zero. The step size ω(k)3g ∈ (0,1] is used to achieve lg(β
(k+1)
g ,γ(k+1)

g ,θ(k+1)
g ) ≥

lg(β
(k+1)
g ,γ(k+1)

g ,θ(k)g ).

The line search steps can be efficiently conducted using, for example, the Armijo rule

(Luenberger and Ye, 2008). This algorithm is very easy to implement. The updating formula

for γg naturally suggests the “long" data format, similar to the R “survival" package

(Therneau, 2019) for time dependent covariates as demonstrated in Table 4.8. The “start" and

“end" times are needed to select the Bg matrix and compute Ψ∗gui values and the ζ g vector is

determined solely from the corresponding “status" column for risk g.

Convergence of this algorithm can be established following Chan and Ma (2012). In

particular, we can prove that when A1/2
g X and B1/2

g Z have full column rank, then (i) if θ(k)g is

non-negative then θ(k+1)
g is also non-negative, and (ii) under certain regularity conditions, this

algorithm converges to a solution satisfying the KKT conditions (4.15) – (4.17). Asymptotic

results of our method are supplied in Appendix 4.6.
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Asymptotic Properties

In this section we discuss some asymptotic results for the maximum likelihood estimates.

These results are useful for performing inferences without relying on computational demand-

ing methods such as bootstrapping.

For risk g, let (β0g,γ0g, h00g(t)) denote the true parameters associated with this risk.

Recall we hng(t) =
∑mg

u=1 θguψgu(t) to approximate the baseline hazard h0g(t) using mg basis

functions. Let β̂g, γ̂g and θ̂g be the ML estimates. Define ĥng(t) =
∑m

u=1 θ̂guψgu(t).

Following Xu et al. (2018), strong consistency results for β̂g, γ̂g and ĥng(t) can be

established when mg → ∞ and n → ∞ but mg/n → 0, with results given in Theorem 3

below. Theorem 4 provides a more useful asymptotic normality result for β̂g, γ̂g and θ̂g for

fixed mg. In practice, one can only has a large but finite n, and thus a fixed mg is a reasonable

assumption. However, the size of mg can vary with n. The simulation results in Section 3

of the main paper demonstrate that the asymptotic variance in Theorem 4 is accurate when

compared with the variance obtained from the Monte Carlo method.

The proofs for Theorems 3 and 4 are omitted as they are very similar to the corresponding

proofs in Xu et al. (2018). The results in these theorems require some regularity conditions

similar to these in Xu et al. (2018). We first state assumptions needed for Theorem 3.

A1. Matrices X and Z are bounded and both E(XXT ) and E(ZZT ) are non-singular.

A2. For the function h0g(t), its corresponding coefficient vector θg is in a compact subset

of Rmg .

A3. Assume that for any baseline hazard h0g(t), there exists a hng(t) such that maxt |hng(t)−

hg0(t)| → 0 as mg →∞ and n→∞ but mg/n→ 0.

Note that assumption A3 can be satisfied according to Proposition 2.8 of DeBoor and Daniel

(1974).

Theorem 3 Assume Assumptions A1 – A3 hold. Assume there exists an interval [a, b], where

0 ≤ a < b < ∞, such that h0g(t) is bounded and has up to r ≥ 1 derivatives over [a, b].

Assume the number of basis functions satisfy mg = nυ, where 0 < υ < 1. Then, when n→∞,

1. ‖ β̂g − β0g‖ → 0 and ‖γ̂g − γ0g‖ → 0 almost surely, and

2. supt∈[a,b] | ĥng(t) − h00g(t)| → 0 almost surely.
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We next develop a asymptotic normality result for β̂g, γ̂g and θ̂g assuming a fixed mg, and

therefore mg is retained in the asymptotic results. This result is capable to provide inferences

on the baseline hazard and the rational for a fixed mg is similar to the argument in Yu and

Ruppert (2002). The maximum likelihood estimates β̂g, γ̂g and θ̂g can still achieve
√

n

convergence rate in this context. The fix mg assumption lies somewhere between parametric

and non-parametric modelling as there are freedoms in selecting a value for mg. A major

benefit is that this asymptotic normality can be used to make inferences involving βg, γg and

hg0(t). This will be helpful in, for example, inferences on survival probabilities or predictions.

Let ηg = (θ
T, βT

g ,γ
T
g )

T , whose length is mg + p + q, and it makes the log-likelihood a

function of η = (ηT
1 , . . . ,η

T
G)

T . The maximum likelihood estimate of all ηg, denoted by η̂g,

are obtained by maximizing l(η) with the constraint θg ≥ 0 for all g. In developing this

asymptotic normality, we must allow the possibility of active constraints (i.e. some θgu = 0);

otherwise, a non-positive definite information matrix can be obtained if some θgu estimates

are 0.

The way to allow for active constraints in the asymptotic results has been developed,

for example, in Xu et al. (2018) and Thackham and Ma (2020). Suppose for risk g, there

are cg active θg ≥ 0 constraints in the maximum likelihood estimates. We define a matrix

Ug in Assumption B5 below to indicate the active constraints, which satisfies UT
gUg =

I(mg+p+q−cg)×(mg+p+q−cg).

The asymptotic normality results for the maximum likelihood estimate η̂g require the

following regularity assumptions.

Assumptions:

B1. For t ∈ [a, b], random vectors (yi, δi1, . . . , δiG,xT
i , {z

T
i (τ), τ ≤ t}), i = 1, . . . ,n, are

independent and identically distributed.

B2. The space Ξg for ηg is compact for all g.

B3. Let η0 = (η
T
01, . . . ,η

T
0G)

T be the true parameter vector. Then, lim
n→∞

n−1l(η) exists and

has a unique maximum at η0.

B4. l(η) is bounded and is twice continuously differentiable in a neighbourhood of η0, and

the matrix F(η) = limn→∞ n−1∂l2/∂η∂ηT exist. Since parameters for different risks

are fully separated in the log-likelihood function l, F is a block diagonal matrix with

blocks Fg(ηg) = limn→∞ n−1∂l2
g/∂ηg∂η

T
g .
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B5. Assume there are cg active constraints from θg. Let Ug be a matrix whose rows take

zero values corresponding to the active constraints and other rows form an identity

matrix. Ug has the dimension (mg + p + q) × (mg + p + q − cg). Assume the matrix

UT
gFg(ηg)Ug is invertible in a neighbourhood of η0g.

Theorem 4 Assume Assumptions B1 – B5 hold. For risk g assume there are cg active

constraints in the maximum likelihood estimate of θg and the corresponding Ug is defined as

in Assumption B5. Then, when n→∞,

1. The constrained MPL estimate η̂g is consistent for η0g, and

2.
√

n(η̂g−η0g) converges in distribution to Ng(0, F̃g(ηg0)
−1), where the covariance matrix

given by is F̃g(ηg)
−1 = Ug(Ug

TFg(ηg)Ug)
−1Ug

T .

Matrix F̃g(ηg)
−1 is in fact very easy to compute. Firstly, Ug

TFg(ηg)Ug is obtained simply

by deleting the rows and columns of Fg(ηg) associated with the active constraints. Then

(UT
gFg(ηg)Ug)

−1 is calculated. Finally, F̃g(ηg)
−1 is obtained by padding (UT

gFg(ηg)Ug)
−1

with zeros at the positions of the deleted rows and columns. Implementation of the results

in Theorem 4 demands that the active constraints must be identified. We adopt the following

strategy. If the maximum likelihood estimates of θ̂gu is either exactly zero or very close to

zero with gradient of less than (say) −10−2 then we treat it as active.

The simulation results reported in Section 3 of the main paper demonstrate that biases in

the maximum likelihood estimates are usually negligible and the asymptotic variances of the

estimates are accurate.
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PAPER 3: Maximum Likelihood Estimation

of the Mixture Cure Semi-Parametric Cox

Model – an Application to Credit Risk

This chapter is a manuscript submitted in consideration for publication in October 2020.

Thackham, M. and Ma, J. Maximum Likelihood Estimation of the Mixture Cure Semi-

Parametric Cox Model – an Application to Credit Risk.

5.1 Abstract

Banks and other institutions extend credit to customers, some of whom fail to repay as

obliged and default. An accurate estimate of the probability of loan default is important

for calculating minimum regulatory credit capital requirements and loan-loss provisions.

Mixture-cure models have been used to estimate the probability of loan default, which
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supposes customers emanate from two distinct populations; (1) those susceptible to default;

and (2) those not susceptible and hence “cured”. While the Expectation Maximization

(EM) algorithm is a common approach to estimate this model, it does not readily return

estimates of either the baseline hazard for susceptible customers or variance estimates for

model parameters without additional calculation steps.

This paper applies a constrained maximum likelihood algorithm to fit this model, where

the constraint ensures the baseline hazard for susceptible customers is non-negative, jointly

returning estimates for both regression parameters and the baseline hazard. This provides

two key benefits: (1) an asymptotic variance matrix for all model parameters allowing joint

inference on regression parameters and the baseline hazard without computationally intensive

methods such as a bootstrap; and (2) a baseline hazard that is directly estimated without extra

calculations using, for example, the Breslow (1972) method. Comparison of our method with

the EM method is also provided.

Keywords: Mixture-Cure Survival Models, ConstrainedMaximum Likelihood Optimisation,

Credit Risk Modelling.

5.2 Introduction

The primary business of banks and other credit-granting is lending funds to customers.

Some customers may not make timely payments on their contractual obligations and default.

An accurate estimate of the probability of default is a vital input to calculate both the

institution’s minimum regulatory credit capital (BIS, 2006) as well as its expected credit

losses (IASB, 2014). These estimates also flow into wider risk-management activities of the

bank, such as loan pricing, profit calculations and underwriting (Siddiqi, 2005).

Survival analysis has been readily applied to estimate default risk. These include single-

event survival analysis focussing on only the risk of credit default (see for example Banasik

et al. (1999), Lessmann et al. (2015)) aswell as competing risk analysis, recognisingmany cus-

tomers successfully repay their loans (see for example Hall and Lundstedt (2005), Stepanova

and Thomas (2002), Deng et al. (2000), Wycinka (2019), Thackham and Ma (2020b)). An-

other approach, mixture-cure analysis, assumes customers are from two distinct populations;
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(1) those susceptible to default; and (2) those not susceptible to default. This means the sur-

vival curve plateaus at a level of the long-run cure probability. These models were initially

applied in studies of diseases, beginning with Berkson and Gage (1952), Farewell (1982) and

Farewell (1986) who devised parametric approaches. Later extensions by authors such as

Kuk and Chen (1992), Peng and Dear (2000) and Sy and Taylor (2000) extend the method

to include the semi-parametric Cox model. Cai et al. (2012) implement this model via the

smcure R package, with parameters estimated using the expectation-maximisation (EM)

algorithm (Dempster et al., 1977).

Mixture-cure models have been applied to credit risk, recognising that not all customers

default on their obligations, allowing not only if a customer is likely to default (their sus-

ceptibility) but also when they are likely to default (their survival time). Tong et al. (2012)

outlines that mixture-cure models can be applied to estimate the risk of credit default by

estimating a mixture-cure model using United Kingdom personal loan data using the EM al-

gorithm. Dirick et al. (2017a) details how mixture cure models are highly applicable to credit

risk modelling as the vast majority of loans do not default. Dirick et al (2016) extend this

work to additionally include macroeconomic variables as discrete time-varying covariates

to construct the full likelihood, and the EM algorithm to estimate model parameters. Alves

and Dias (2015) apply a mixture-cure model to a sample of Portuguese car-loan data using

four parametric baseline distributions for the susceptible population (exponential, Weibull,

log-normal, log-logistic) and using maximum likelihood to estimate these fully-parametric

models.

Kuk and Chen (1992) detail that the hazard of the semi-parametric mixture-cure model is

no longer proportional to a function of time, so that estimating themodel via partial likelihood

is not possible. Thus mixture-cure survival models typically estimate parameters using the

EM algorithm. This approach maximises a complete data likelihood, driven by the latency

of the susceptible population. Some approaches, such as those introduced by Murphy (1994)

and Murphy (1995) for frailty survival models, and adapted by Lu (2008) for mixture-cure

models, estimate the non-parametric mixture cure model via maximum likelihood using the

cumulative baseline hazard.
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Estimating the baseline hazard remains an area of research and is important to themixture-

curemodel and there have been several published approaches. Corbiere et al. (2009) estimates

the mixture-cure model using penalised maximum likelihood, parametrising the cumulative

hazard using cubic I-splines. Hua and Xiang (2013) cater for interval censoring using

transformed baseline hazard function using splines. Andersson et al. (2011) fit a flexible

parametric cure model using log-cumulative excess hazard of the relative risk, fitting their

model in Stata with restrictive cubic splines. Patilea and VanKeilegom (2017) model the cure

probably parametrically (such as via a logistic transform) but the survival component of the

model non-parametrically, devising an inversion formula based on the cumulative baseline

hazard. Liu and Shen (2009) develop a semi-parametric mixture-cure model for interval

censored data, parametrising the cumulative baseline hazard using non-decreasing step-

functions. Sy and Taylor (2000) employ the EM algorithm to estimate regression parameters

and either the Breslow estimator for the baseline hazard or the Kaplan-Meier estimator for

baseline survival. Corbiere and Joly (2007) parametrise the baseline survival function using

a Weibull and exponential distributions.

In this paper, we outline a maximum likelihood approach to estimate the mixture-cure

semi-parametric Cox model via constrained optimisation to jointly estimate the regression

parameters and the baseline hazard for the susceptible populationwhere the constraint respects

the latter’s non-negativity. This is achieved by approximating the baseline hazard using non-

negative basis functions and applying an extended version of the multiplicative-iterative

algorithm of Ma et al. (2014) (see also Thackham and Ma (2020a) and Thackham and Ma

(2020b) for applications of this algorithm to credit risk). Our approach deals with two

key aspects of estimating the mixture-cure survival model that remain unaddressed in the

literature, these being production of:

1. a Hessian matrix for both the regression parameters and the baseline hazard, allow-

ing joint inference without the need for a computational intensive method such as

bootstrapping; and

2. a direct estimation of the baseline hazard for the susceptible population, constrained to

respect its non-negativity, together with an estimate of its variance, without the need to

undertake an additional step, such as the Breslow (1972) estimator.
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We employ our method to estimate a mixture-cure semi-parametric Cox model using

an anonymised sample of real home-loan data. We show our maximum likelihood method

is able to estimate regression parameters with comparable accuracy to the EM algorithm.

Specifically, our maximum-likelihood approach has two key advantages of the over EM

algorithm: it does not rely on taking expected values of latent variables; and it readily returns

an invertible Hessian so that asymptotic variance estimates can be produced, without resort

to bootstrap. As our method readily returns asymptotic variance estimates we can provide

z-statistics for drawing inferences (without the need for a bootstrap) on regression parameters.

Additionally, as our method also readily returns an estimate of the baseline hazard along with

asymptotic variance estimates, we are able to plot the baseline hazard with a 95% piecewise

confidence intervals, confirming that the susceptible population has a humped-hazard.

This paper proceeds as follow. Section 5.3 outlines our methodology, including the

likelihood function, gradient vector an Hessian matrix. Section 5.4 details the multiplicative-

iterative algorithm used by our method for model estimation. We implement our model in R,

which we use in section 5.5 to undertake both the simulation and the applied analysis. We

conclude with a discussion in section 5.6. Our paper is supplemented by an appendix which

provides additional detail of the multiplicative-iterative algorithm in section 5.4.

5.3 Maximum Likelihood Estimation

5.3.1 The Likelihood Function

This section begins by outlining notation used in this paper. Let Ri be a susceptibility

indicator so that Ri = 1 if subject i is susceptible and Ri = 0 for otherwise. Let Ti be the time

at which the event of interest occurs for the ith subject in the susceptible population, and Ci be

the non-informative (independent) right censoring time for the ith subject in the susceptible

population. So the observable survival time for all subjects is Yi = min(Ti,Ci) for susceptible

subjects and Yi = ∞ for non-susceptible subjects, with yi representing observed realisations.

Thus each value of yi can represent the time an event of interest occurs if δi = 1, or when

δi = 0, this individual can be either right censored for the event of interest or belong to the
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non-susceptible population. To simplify discussions we let the combined survival time be

T†i =
{

Ti, if ith subject is susceptible
∞, if ith subject is not susceptible. (5.1)

In equation (5.2) below we express the relationship between survival functions S†i (t) =

P(T†i > t) and Si(t) = P(Ti > t).

In addition, assume that for subject i we observed p covariates and their values are given

in the vector xT
i = [xi1, . . . , xip] and q covariates in the vector wT

i = [wi1, . . . ,wiq] that help

explain susceptibility. Defining β and α as regression coefficients associated with xT
i and wT

i

respectively, and h0(t) as the non-parametric continuous baseline hazard for the susceptible

population, the mixture cure model is

S†i (t |wi, xi) = πi(wi)Si(t |Ri = 1, xi) + 1 − πi(wi) (5.2)

where, in this paper we consider the following specifications:

πi(wi) = 1/
(
1 + exp(−wT

i α)
)

(5.3)

hi(t |Ri = 1, xi) = h0(t)ex
T
i β (5.4)

Si(t |Ri = 1, xi) = e−
∫ t

0 hi(ξ |Ri=1,xi)dξ (5.5)

where πi(wi) is the probability of subjects in the susceptible population. Here, the function

S†i (t |wi, xi) has the property that it “plateaus” at the long-run cure rate (ie: as t → ∞ then

S†i (t |wi, xi) → 1 − πi(wi)). When there is no non-susceptible population (ie: πi(wi) = 1 for

all subjects), equation (5.2) becomes the same as the conventional survival function (ie: as

t →∞ then S†(t) → 0).

For the hazard in equation (5.4) to be valid, we must constrain h0(t) ≥ 0 in our model,

which this paper does when developing the constrained maximum likelihood algorithm to

fit our model. However as h0(t) is an infinite dimensional parameter, estimating h0(t) using

a finite number of observations without restrictions is infeasible. A common strategy is to

simplify h0(t) to a finite dimensional subspace where its dimension grows with the sample

size n but at a slower rate. We require that when n→∞ the simplified h0(t) converges to the
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true h0(t) (Wong and Severini, 1991). The subspace we employ has the dimension m (≤ n)

and has non-negative basis functions ψu(t) (where u = 1, . . . ,m) such that

h0(t) :=
m∑

u=1
θuψu(t), (5.6)

where ψu(t) ≥ 0 are non-negative basis functions. Corresponding cumulative baseline hazard

is given by H0 =
∑m

u=1 θuΨu(t), where Ψu(t) =
∫ t

s=0 ψu(s)ds is the cumulative basis function.

Together, this implies the cumulative hazard

Hi(t) = H0(t)ex
T
i β . (5.7)

The available data to estimate the model are (yi, δi,wi, xi) for i = 1, . . . ,n. Let θ be the

m vector for all θu, so that the likelihood of the mixture-cure model for all i independent

subjects is

L(α, β,θ) =
n∏

i=1

[
πi(wi) fi(yi |Ri = 1, xi)

]δi [ (
1 − πi(wi)

)
+ πi(wi)Si(yi |Ri = 1, xi)

]1−δi
(5.8)

where fi(yi |Ri = 1, xi) = hi(yi |Ri = 1, xi) × Si(yi |Ri = 1, xi) is the density function for

the susceptible population. Note that when all subjects are susceptible (ie: π(wi) = 1 for

all subjects) then the likelihood in equation (5.8) reduces to the likelihood for the semi-

parametric Cox model. For notational ease, the conditioning on Ri, xi and wi are dropped,

and the corresponding log-likelihood is

l(α, β,θ) =
n∑

i=1
δi ln

[
πi

]
+ δi ln

[
h0(yi)

]
+ δi

[
xT

i β
]

− δi

[
Hi(yi)

]
+ (1 − δi) ln

[
πiSi(yi) +

(
1 − πi

) ] (5.9)

where we need to estimate the vector of parameters η = [αT, βT,θT ]T .
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5.3.2 Gradient Vector and Hessian Matrix

Our algorithm to estimate the model parameters requires first and second derivatives of

the log-likelihood in equation (5.9) with respect to η. We note that:

∂

∂α j
πi = wi jπ

2
i e−w

T
i α = −

∂

∂α j
(1 − πi) = wi jπi(1 − πi) (5.10)

and further the following expressions which are useful in the calculation of the gradient and

Hessian matrices:

bi =
πi

(
Si(yi) − 1

)
πiSi(yi) + 1 − πi

(5.11)

di =
πiSi(yi)

πiSi(yi) + 1 − πi
(5.12)

The first derivatives are

∂l
∂α j
=

n∑
i=1

[
δi + (1 − δ)bi

]
(1 − πi)wi j (5.13)

∂l
∂β j

n∑
i=1

[
δi −

(
δi + (1 − δi)di

)
Hi(yi)

]
xi j (5.14)

∂l
∂θu
=

n∑
i=1

[
δi
ψu(yi)

h0(yi)
−

(
δi + (1 − δi)di

)
Ψu(yi)ex

T
i β

]
. (5.15)

Elements of the Hessian matrix are

∂2l
∂α j∂αk

= −

n∑
i=1

[
δi − (1 − δi)(1 − bi)

]
(1 − πi)bi(1 − bi)wi jwik (5.16)

∂2l
∂β j βk

= −

n∑
i=1

[
δi + (1 − δi)di

(
1 − (1 − di)Hi(yi)

) ]
Hi(yi)xi j xik (5.17)

∂2l
∂θuθv

= −

n∑
i=1

[
δi
ψu(yi)ψv(yi)

h2
0(yi)

− (1 − δi)di(1 − di)Ψu(yi)Ψv(yi)e2xTi β
]

(5.18)
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∂2l
∂β jαk

= −

n∑
i=1
(1 − δi)di(1 − di)Hi(yi)xi jwik (5.19)

∂2l
∂α jθu

= −

n∑
i=1
(1 − δi)di(1 − di)Ψu(yi)wi j (5.20)

∂2l
∂β jθu

= −
[
δi + (1 − δi)di

(
1 − (1 − di)

)
Hi(yi)

]
xi jΨu(yi)

xTi β . (5.21)

5.4 Constrained Optimisation Algorithm

The Karush–Kuhn–Tucker (KKT) (Karush (1939), Kuhn and Tucker (1951)) first-order

necessary conditions for the constrained optimal solution of β, α and θ are

∂l
∂β j
= 0, (5.22)

∂l
∂α j
= 0, (5.23)

∂l
∂θu
= 0 if θu > 0 or

∂l
∂θu

< 0 if θu = 0 (5.24)

Some algorithms for constrained optimisation can be found in, for example, Luenberger and

Ye (2008). However, many of them are less efficient for our problem when m is large. We

therefore instead develop in this section an algorithm which is efficient for a large m.

We adopt the following strategy to solve equations given in (5.22), (5.23) and (5.24).

Beginning with estimates β(k), α(k) and θ(k) at iteration k, iteration k + 1 comprises the

following alternating steps.

1: Compute β(k+1) so that l(β(k+1),α(k),θ(k)) ≥ l(β(k),α(k),θ(k)).

2: Compute α(k+1) so that l(β(k+1),α(k+1),θ(k)) ≥ l(β(k+1),α(k),θ(k)).

3: Compute θ(k+1) ≥ 0 so that l(β(k+1),α(k+1),θ(k+1)) ≥ l(β(k+1),α(k+1),θ(k)).

These incremental conditions assure l(β(k+1),α(k+1),θ(k+1)) ≥ l(β(k),α(k),θ(k)) at the end of

iteration k + 1, which is a key requirement for convergence of this algorithm. Steps 1 and 2
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are solved by the Newton algorithm incorporating line search steps, and Step 3 is solved by a

multiplicative-iterative (MI) algorithm (e.g. Chan and Ma (2012) and Ma (2010)) designed

to respect the non-negative constraints on θ. We call this algorithm the Newton-MI algorithm

similar to Ma et al. (2014), Thackham and Ma (2020a), and Thackham and Ma (2020b).

To update β, we employ one iteration of the Newton algorithm with line search. Starting

with β(k) and using a line-search with step size ω(k)1 ∈ (0,1], we have

β(k+1) = β(k) − ω(k)1 (X
TB(k)2 X)−1XT (B(k)1 1n + δ), (5.25)

whereX (of size n×p) is the model matrix of covariates and its i-th row is given by xT
i , B1 and

B2 are a diagonal matrix whose iith element are detailed in appendix A, 1n is an n-vector of 1’s

and δ is an n-vector for δi. Matrices B(k)1 and B(k)2 are B1 and B2 respectively with β = β(k),

α = α(k) and θ = θ(k). Matrix XTB2X is the negative Hessian of l(β,α,θ) with respect to β.

The line search parameter ω(k)1 helps to achieve l(β(k+1),α(k),θ(k)) ≥ l(β(k),α(k),θ(k)).

Similarly, the Newton method with line search is also applied to update the logistic

regression parameter α. Starting with α(k) and using a line-search with step sizeω(k)2 ∈ (0,1],

we have

α(k+1) = α(k) − ω(k)2 (W
TA(k)2 W)−1WT (A(k)1 1n + ξ), (5.26)

where W (of size n × q) is the model matrix of covariates for the logistic regression and its

i-th row is given by wT
i , A1 and A2 are a diagonal matrix whose iith element are detailed

in appendix A, and ξ is an n-vector for δi(1 − πi). Matrices A(k)1 and A(k)2 are A1 and A2

respectively with β = β(k+1), α = α(k) and θ = θ(k). Matrix WTA2W is the negative

Hessian of l(β,α,θ) with respect to α. The line search parameter ω(k)2 helps to achieve

l(β(k+1),α(k+1),θ(k)) ≥ l(β(k+1),α(k),θ(k)).

Finally for updating θ, we adopt themultiplicative-iterative (MI) algorithmwhich respects

the non-negative constraint on θ. Let both C and C∗ be n × m matrices but their (i,u)

elements are ψu(yi) and Ψu(yi) respectively. Let δ be the n-vector for δi and f the n-vector

for δiexTi β + (1 − δ1)exTi βdi. The MI algorithm updates θ according to

θ(k+1) = θ(k) + ω(k)3 S(k)
(
CT [D(k)]−1δ − [C∗]T f(k)

)
, (5.27)
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where D and S are diagonal matrices with elements h0(yi) and θu/(C∗T f + ε) respectively,

and here ε is a small threshold used to avoid the corresponding denominator being zero. The

step size ω(k)3 ∈ (0,1] again guarantees that l(β(k+1),α(k+1),θ(k+1)) ≥ l(β(k+1),α(k+1),θ(k)).

All the above line searches can be efficiently conducted using, for example, the Armijo

rule (Luenberger and Ye, 2008). When B1/2
2 X and A1/2

2 W have full column rank, matrices

XTB2X and WTA2W are positive definite so that the updates for β and α are well defined.

Following the same argument as in Chan and Ma (2012) we can show that (i) if θ(k) is

non-negative then θ(k+1) is also non-negative, and (ii) under certain regularity conditions,

this algorithm converges to a solution satisfying the KKT conditions.

Regarding implementation, the user may parametrise the baseline hazard θ by specifying

the number of observed events within each piece-wise constant interval. The number of knots

is usually taken as the cubic root of the number of events.

5.5 Results

In this section, we demonstrate our method using both a simulation study as well as an

applied example to an anonymised real-world credit risk dataset. These are benchmarked

against the smcure R package (Chao et al., 2012)

5.5.1 Simulation Results

For our simulation study, we draw M = 1,000 survival times across two different samples

sizes (n = 100 and n = 1,000) from a mixture-cure model specified by (5.2) – (5.5), where

the covariates are generated according to w1 ∼ N(0,1) and x1 ∼ N(0,1). Bender et al.

(2005) details that survival times for the susceptible subjects can be drawn by inverting the

cumulative hazard H(t) such that T = H−1[− log(u)] where u ∼ Uni f (0,1). For all subjects,

the independent right-censoring time is drawn from a uniform distribution with lower bound

of zero and upper bound is chosen to approximate the desired censoring proportion (either

20% or 50%). Susceptibility is simulated by drawing Bernouli(π) for each subject and

if this value is 1 the survival time is set to the censoring time. Parameters are set to be:

α0 = 1, α1 = 1, β1 = 1, λ = 1, ν = 1.
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N = 100 N = 100 N = 2000 N = 2000
cens.= 50% cens.= 20% cens.= 50% cens.= 20%

Parm Measure EM Constrained EM Constrained EM Constrained EM Constrained
Algo. ML Algo. ML Algo. ML Algo. ML

Bias 0.6182 0.2176 -0.3061 0.0562 0.7769 0.6433 -0.1782 0.0043
α̂0 SD 1.0210 0.8053 0.3895 0.2564 0.1272 0.122 0.1053 0.0874

MSE 1.4246 0.6959 0.2454 0.0689 0.6197 0.4287 0.0428 0.0077
α̂1 Bias 0.7156 0.5138 -0.1249 0.0919 0.2862 0.2375 -0.0992 -0.0045

SD 0.8758 0.6093 0.3972 0.2443 0.116 0.1103 0.0886 0.0856
MSE 1.2791 0.6353 0.1734 0.0681 0.0954 0.0686 0.0177 0.0073

β̂1 Bias -0.2180 -0.2136 -0.0882 0.0240 -0.1476 -0.1291 -0.0428 -0.0032
SD 0.2253 0.1861 0.1725 0.1638 0.0534 0.0501 0.054 0.0488
MSE 0.0983 0.0803 0.0375 0.0274 0.0246 0.0193 0.0047 0.0024

Table 5.1: Simulation Results of Parameters Estimates using ExpectationMaximisation (EM)
and Constrained Maximum Likelihood (ML)

The results for the bias, standard deviation (SD) and mean-square error (MSE) across

sample-size and censoring proportion from the simulation are in table 5.1. The results

show our maximum likelihood approach returns comparable accuracy for coefficients in the

survival component (β1) and lower bias for coefficients in the logistic component (α1 and α0).

Not only does our constrained maximum likelihood algorithm return estimates for regression

parameters, but it also return (in the same optimisation) estimates for the baseline hazard

for the susceptible population. Figure 5.1 demonstrates for each simulation setting that our

constrained maximum likelihood method can capture the true baseline hazard, along with the

95% empirical confidence intervals.

(a) n=100 Cens=(20%,50%) (b) n=2000 Cens=(20%,50%)

Figure 5.1: Comparison of true and Maximum Likelihood estimated baseline hazards, to-
gether with simultaneous 95% CIs, using Constrained Maximum Likelihood (ML)
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5.5.2 Application to Credit Risk Data

We apply our maximum likelihood estimation of themixture-curemodel to a real-world credit

risk dataset comprising a randomised and anonymised sample of n = 100,000 Australian

home loans spanning the calendar years 2003 to 2014. The event of interest for this data is

the default at any time during the life for each home loan. Table 5.2 details the number of

loans which have observed default events.

Outcome for Loan Count Percent
Observed Default (event of interest) 1,823 1.823%
No Default Observed (either censored or non-susceptible) 98,177 98.177%
Total 100,000 100.000%

Table 5.2: Number of Defaults and Observations in the Credit Risk Dataset

The data are sourced from a large Australian mortgage originating bank. The data are

proprietary and commercially sensitive (thus not available publicly), and has been provided

to one of the author’s to help demonstrate the applicability of the methodology in this

paper. Given the paper is methodological, the focus is not the application which is simply a

demonstration of the method.

The data contains 11 baseline covariates as per table 5.3. We use this dataset to apply our

maximum likelihood estimation method to fit the mixture cure model and compare this to the

EM algorithm. The baseline cause-specific baseline hazard for the susceptible population

is parametrised using 7 piece-wise constant indicator functions, with knots are selected so

that there are roughly an equal number of observed events within each piece-wise constant

interval.

# Covariate Description ( * = mean corrected )
1 Mortgage Insured Does the home loan have lenders mortgagee insurance? (Yes / No)?
2 Credit Card Do the borrowers have a credit card? (Yes/No)
3 Personal Loan Do the borrowers have a personal loan? (Yes/No)
4 Repayment Method Are repayments principal and interest (P&I) or interest only (IO)?
5 Repayment Frequency Are repayments made monthly or fortnightly/other
6 Loan Term What is the original loan term (1-5 years or 6+ years)?
7 Borrower Tenure* How many months has the borrower been a customer (0,1,2...)?
8 Borrower Age* How old is the primary borrower (years)?
9 Total Home Loans* Total number of home loans the borrowers have (integer 1, 2, ...)
10 Opening Balance* The original balance when the home loan opened ($millions)
11 Original Loan to The original loan balance divided by the original the value of

Value Ratio* the home securing the loan.

Table 5.3: Description of the 11 covariates in the Home Loan dataset

Table 5.4 below details estimated regression parameters for the susceptibility (logistic)
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and survival components of the mixture cure model. The first three columns of the table

details the model component (logistic or survival) and the covariate. The final four columns

of the table show the results of the fitted mixture-cure model. Column (A) displays the

parameter estimates returned via the EM algorithm while column (B) displays the parameter

estimates returned via our constrained maximum likelihood algorithm. In addition, column

(C) displays the asymptotic standard error that is readily returned from our constrained

maximum likelihood approach which we use in columns (D) and (E) to calculate a z-statistic

and associated p-value, concluding all effects entered into the model are significant. Note that

these inferences are able to be drawn without use of computationally intensive bootstraping,

but instead are the asymptotic variance estimates form the constrained maximum likelihood

estimation from the diagonals of the inverse Hessian matrix.

Applying our constrained maximum likelihood approach to this data results in intuitive

parameter estimates. For susceptibility, customers who required mortgagee insurance cover-

age or those with shorter tenure are more likely to be susceptible of credit default. These risk

signals are intuitive, as mortgage insurance is typically required for high loan-to-value loans

and customers with a shorter length of relationship with a bank tend to be higher default risk.

For survival time, covariates can be grouped into four groups. The first relates to details

of the home loan granted to the customer. Customers whose home loans had a higher opening

balance, higher loan-to-value ratio, or longer initial term have an increased time to credit

default. The second group relate to other products the customer also holds in addition to their

home loan. Customers with multiple home loans or at least one credit card are lower credit

default risk, suggestive that these customers already have a long-term and multi-product

relationships with the bank. Customers with at least one personal loan with the bank are

higher risk. The third group relate to how the customer plans to repay their loan. Customers

who pay both principal and interest (rather than interest only) and customers who repay

fortnightly (rather than monthly) are lower risk. This makes sense, as these customers pay

more money to the bank sooner, as well as the fact that they make the amount of money being

paid in future more susceptible to rises in interest rates. The fourth group is customer age,

with older customers being riskier, which for this data may be detecting a refinancing risk.
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(A) (B) (C) (D) (E)
EM ML ML ML ML

Component Covariate Level Estimate Estimate Std Err z p-val

Logistic Intercept -2.8493 -2.8495 0.3139 9.0777 < .0001
Logistic Mortgage Insured Yes 0.6803 0.6799 0.0726 9.3650 < .0001
Logistic No 0 0 - - -
Logistic Borrower Tenure -0.0023 -0.0024 0.0003 8.0000 < .0001
Survival Credit Card Yes -0.4029 -0.3943 0.045 8.7622 < .0001
Survival No 0 0 - - -
Survival Personal Loan Yes 0.7054 0.6945 0.0860 8.0756 < .0001
Survival No 0 0 - - -
Survival Repayment Method PI 0.1510 0.1484 0.0577 2.5719 0.0292
Survival IO 0 0 - - -
Survival Repayment Frequency Fortnight 0.2852 0.2603 0.0522 4.9866 < .0001
Survival Other 0 0 - - -
Survival Total Home Loans -0.2068 -0.1958 0.0172 11.384 < .0001
Survival Opening Balance 0.4408 0.4248 0.1019 4.1688 < .0001
Survival Original Loan to Value 0.0156 0.0154 0.0016 9.6250 < .0001
Survival Borrower Age 0.0127 0.0128 0.0020 6.4000 < .0001
Survival Loan Term 1-5 years -0.2886 -0.2996 0.0583 5.1389 < .0001
Survival 6+ years 0 0 - - -

Table 5.4: Results of Parameters Estimates using Expectation Maximisation (EM) and
Analytical Maximum Likelihood (ML)

Our maximum likelihood method also readily returns an estimate of the baseline hazard,

along with an asymptotic variance. Figure 5.2 plots the baseline hazard for the susceptible

population, and uses the asymptotic variance to plot the 95% piecewise confidence interval

derived from inverting the Hessian matrix from our maximum likelihood approach. The plot

confirms that the hazard for the risk of default for the susceptible population is “humped”,

so that for this data the risk of default rises to a peak before starting to fall. Despite often

varying in size and timing betweens different countries and different asset classes, this effect

is well documented (see for example Im et al. (2012), Bellotti and Crook (2013), Thackham

and Ma (2020a) and Thackham and Ma (2020b)). A benefit of applying our constrained

maximum likelihood estimation approach to credit risk data is that it provides clearer and

easy interpretation of this effect, together with the ability to discern its significance using the

asymptotic variance our method produces.
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Figure 5.2: Baseline Hazard and Piecewise 95% Confidence Interval for the Susceptible
Population

Table 5.5 outlines calibration and discrimination results for each model. The first column

is the time since origination while the second column gives the observed cumulative number

of defaults up to time T . The third and fourth columns respectively give the expected number

of defaults from the Constrained Maximum Likelihood (ML) and Expectation Maximisation

(EM) estimation approach. The expected number of defaults up until timeT needs to recognise

the competing risk of redemption, so the expression is multiplied by Ke(t), the Kaplan-Meier

estimator (Kaplan andMeier, 1958) of early loan repayment at time t. Following the approach

of Tong et al. (2012), this is achieved using

E[D(T)] =
n∑

i=1

T∑
t

(
Si(t − 1) − Si(t)

)
Ke(t) (5.28)

where Si(t) is the population survival estimate at time t for subject i. The final two columns

of table 5.5 are the AUC statistics, together with 95% confidence intervals. The AUC could

be improved by extending the methodology to include time-varying covariates, however this

is not addressed in this paper and is instead left as an avenue of future research.
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Time Observed Expected Expected AUC (95%CI) AUC (95%CI)
(months) Defaults Defaults ML Defaults EL ML EL

12 313 351 243 0.7334 (0.7077, 0.7592) 0.7337 (0.7080, 0.7594)
24 764 728 657 0.7145 (0.6973, 0.7317) 0.7149 (0.6977, 0.7321)
36 1,099 1,031 983 0.7107 (0.6959, 0.7254) 0.7106 (0.6958, 0.7253)
48 1,376 1,303 1,280 0.7025 (0.6889, 0.7160) 0.7021 (0.6885, 0.7156)
60 1,570 1,519 1,516 0.6995 (0.6867, 0.7122) 0.6988 (0.6860, 0.7115)
72 1,694 1,679 1,710 0.6978 (0.6855, 0.7102) 0.6968 (0.6845, 0.7092)
84 1,754 1,808 1,833 0.6950 (0.6828, 0.7072) 0.6936 (0.6814, 0.7057)
96 1,796 1,908 1,955 0.6925 (0.6804, 0.7046) 0.6901 (0.6780, 0.7022)
108 1,814 1,987 2,038 0.6914 (0.6793, 0.7034) 0.6881 (0.6761, 0.7001)
120 1,823 2,030 2,083 0.6908 (0.6787, 0.7028) 0.6868 (0.6748, 0.6988)

Table 5.5: Calibration Results for Expectation Maximisation (EM) and Constrained
Maximum Likelihood (ML)

5.6 Conclusion

Financiers critically require accurate estimates of the probability of default for loans they

grant to customers, for use as inputs to both minimum regulatory credit capital requirements

and loan-loss provisioning. These estimates also flow into wider risk-management activities

of the bank, such as loan pricing, profit calculations and underwriting (Siddiqi, 2005).

Many methods have been deployed to estimate probability of default, including mixture-

cure models which suppose customers emanate from two distinct populations; (1) those

susceptible to default; and (2) those not susceptible to default and hence “cured”. Under this

model, covariates can be used to explain not only loan default susceptibility but also loan

default survival.

While the commonly applied approach to use the Expectation Maximization algorithm

of Dempster et al. (1977) provides estimates of regression coefficients, it does not readily

return estimates of either the baseline hazard for the susceptible population or the estimates

of variances for model parameters without resort to additional calculation steps, such as

bootstrapping to recover variance estimates for regression parameters, or recover baseline

hazard estimates.

In this paper, we apply a constrained maximum likelihood approach to estimate the

mixture-cure model. Using a constrained optimisation, we jointly estimate both regression

parameters and the baseline hazard where the constraint ensures the hazard’s non-negativity.

This method applies an extended version of the multiplicative-iterative algorithm of Ma
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et al. (2014) which implements a non-negative basis function for the baseline hazard. Our

approach generates two key benefits, being: (1) provision of an invertible Hessian matrix for

all parameters, so that joint inference on regression parameters and the baseline are possible

without a bootstrap; and (2) a estimate of the baseline hazard that is not estimated via (for

example) a logarithm transform or an extra calculation step (for example) using the Breslow

(1972) estimator.

When our maximum likelihood estimation method of the mixture-cure model is applied

to an anonymised sample of real home-loan data, results show comparable accuracy to the

EM algorithm. Via the readily returned asymptotic variance estimates, we calculate z-

statistics, concluding regression parameters for this data are significant, without the need for

a bootstrap. We additionally confirm using our method’s estimate of the baseline hazard for

the susceptible population is humped, and accompany this with by a 95% confidence interval

calculated using the asymptotic variance returned from our constrained maximum likelihood

approach.

Future avenues of research for our mixture-cure methodology could include extensions

to cater for competing risks as well as for including time-varying covariates.

5.7 Appendix A

As referred to in section (4.6), details of the matrices in the constrained optimisation are as

follows.

For the update to β, B1 and B2 are diagonal matrices whose iith elements are given by

B1 = diag

( [
δi −

(
δi + (1 − δi)Pi

)
Hi(yi)

] )
, and

B2 = diag

( [
δi + (1 − δi)Pi

(
1 − (1 − Pi)Hi(yi)

) ]
Hi(yi)

)
.

To ensure that the negative of the Hessian matrix is positive-definite, for the update to α,

we use the following A1 and A2 are diagonal matrices whose iith elements are given by

A1 = diag

( [
δi + (1 − δ)bi

]
(1 − πi)

)
, and
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A2 = diag

( [
δi − (1 − δi)(1 − bi)

]
(1 − πi)bi(1 − bi)

)
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6
Conclusion and Discussion

The core business of credit-granting institutions is lending money to customers, some of

whom may default on their obligation to repay in a timely manner monies they contractually

owe (namely principal, interest and fees). This exposes the institution to credit risk, which is

“the potential loss a bank would suffer if a borrower fails to meets its obligations” (Apostolik

et al., 2009). Lam (2003) details how risk quantification forms a vital component of effective

risk management, in turn enabling application of appropriate risk controls so the institu-

tion’s residual profile risk is maintained within risk appetite. Effective risk management by

individual institutions have wider benefits to both the economy and society. In Australia,

Authorised Deposit-Taking Institutions had total loans and advances of $2.8 trillion (APRA,

2020), exceeding the country’s entire 2019 Gross Domestic Product of $1.9 trillion (ABS,

2020). As a concentrated financial market place, with many large and few small credit-

granting institutions, a small disruption to the financial system from an institution that poorly

manages its own risks can cause, as evidenced in the Financial Crisis of 2008, instability in

other firms and ultimately economic recessions.
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Quantitative credit risk management techniques estimate the frequency of customer de-

fault and loss severity in the event of default. Statistical estimates are formulated for metrics

covering: Probability of Default (PD); Exposure at Default (EAD); and Loss Given Default

(LGD). Together, PD, EAD and LGD are used as inputs to calculate expected loss (EL), which

inform loan-loss provisions required under international accounting standards (IASB (2014),

FASB (2016)), as well calculating unexpected loss (UL) required by institutions granted reg-

ulatory approval under the Basel Accords (BIS, 2006) to use the Advanced Internal Ratings

Based (A-IRB) Approach for minimum credit capital. This thesis centred on improvements

to methods quantifying the risk of credit default used for PD. Institutions already deploy

analytical techniques using large amounts of their own internal data to quantify the risk of

credit default and the refinements and improvements in this thesis could further assist insti-

tutions control their credit risk profile. See Thackham and Ma (2020) and Tong et al. (2012)

respectively for example background on EAD and LGD.

To meet regulatory and audit approval, credit models need to have intuitive drivers and

an understandable functional form. Regression techniques are therefore regularly used to

estimate the risk of credit default and while logistic regression is common (Baesens et al.

(2003), Lessmann et al. (2015)), several studies detail survival models achieve comparable

accuracy to logistic regression but provide additional benefits (see fore example: Bellotti

and Crook (2009), Stepanova and Thomas (2002) and Tong et al. (2012)). Chief benefits

are inclusion of censored data and capability for model predictions across multiple time

horizons, as logistic regression discards censored data and predicts over a single horizon.

Other benefits of survival models include extensions for time-varying covariates, competing

risks and mixture-cure approaches, which provide additional flexibility.

Survival analysis follows subjects in anticipation they encounter an event of interest. Such

studies span not just finance but a wide array of disciplines, such as biomedical science and

industrial life testing (Kalbfleisch and Prentice, 2002). Actuaries pioneered survival analysis

(Fisher and Lin, 1999), with English astronomer Edmund Halley (1693) constructing the

first life table of human mortality. Competing risk analysis (also known to Actuaries as

“multiple decrements”) was first used by the Swiss Physicist Daniel Bernoulli (1760) who

extended Halley’s (1693) life table method to demonstrate the increase in human survival if

the competing risk of small pox were eliminated as a cause of death. In more contemporary
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times, David Cox introduced the method of partial likelihood (1972, 1975), marking the start

of regression analysis for time to event data, with the semi-parametric Cox model remaining

a common and favoured regression technique for analysing such data (Ren and Zhou, 2011).

This model has since been extended in numerous ways, with the more notable extensions

explored in this thesis being those by Crowley and Hu (1977) to cater for time-varying

covariates, and by (for example) Sy and Taylor (2000) to cater for mixture-cure models.

This thesis contains via two published papers and one manuscript prepared in readiness for

publication chapters on each of the Cox model with a single event of interest, competing

risk analysis, and mixture-cure analysis, with a clear focus in the application of each of these

approaches in the domain of credit risk modelling.

The first paper was published in the Journal of Applied Statistics (Thackham and Ma,

2020a) and concerns a computational approach to estimate the Cox model with time-varying

covariates. Despite its many applications, the partial likelihood method used to estimate

the Cox model with time-varying covariates contains two distinct shortcomings: (1) the

baseline hazard is not directly estimated by the partial likelihood method, so that recovery

of survival probabilities requires a further estimation step after fitting, such as that provided

by Breslow (1972); and (2) the partial likelihood does not produce a covariance matrix

for both fitted parameters and the baseline hazard, meaning joint inferences of the model

parameters cannot be made. The paper developed a new methodology to address these two

shortcomings. It does this by simultaneously estimating using maximum likelihood both

regression coefficients and the baseline hazard whose sample design include uninformative

right-censoring and time-varying covariates. Our approach adds to the literature by: (1)

estimating model parameters using maximum likelihood; and (2) providing an estimate of

the baseline hazard using a piece-wise constant basis which removes reliance on a secondary

estimation step. We develop the necessary theory to estimate our model, including gradient

vectors and the Hessian matrix, and implement this in the R programming language. Our

approach extended the Newton Multiplicative-Iterative method of Ma et al. (2014) in order

to jointly estimate the regression parameters and baseline hazard, which addresses the steep

computational challenge of needing to respect the non-negativity constraint of the baseline

hazard. We compare our proposed method with the partial likelihood method in combination

with the Breslow (1972) baseline hazard estimator, using both a simulation study and a
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real-world application to model the risk of credit default for home loans. The results of

the simulation study show superior performance of the maximum likelihood method over

the partial likelihood method to recover the true population parameters in small to moderate

sized samples. When applied to a sample of home loans (which has a large sample size),

our results show that both baseline and time-varying estimated regression coefficients agree

closely between the approaches, however the maximum likelihood estimate of the baseline

hazard has markedly lower volatility.

The second paper was published in the Journal of Operations Research (Thackham and

Ma, 2020b) concerned a computational approach to estimate the semi-parametric cause-

specific hazard Cox model with time-varying covariates of Prentice et al. (1978). It builds on

Thackham andMa (2020a) by extending it to an applied credit risk setting where there are two

competing risks, these being the risk the customer defaults on their loan (which is the event

of interest), and the competing risk that the customer fully repays all monies contractually

owed. The paper outlines the full log-likelihood of the model with an arbitrary but finite

number of competing risks, going on to devise an algorithm to estimate all the baseline

regression coefficients, time-varying regression coefficients, and baseline hazards. We fit

a competing risk model using our methodology for the risks of both loan default and loan

repayment, demonstrating our method provides intuitive parameter estimates comparable to

those returned using partial likelihood. Our method goes on to clearly confirm the shapes

of the baseline hazards for the risks of loan default and loan repayment while also providing

a 95% asymptotic confidence interval estimated via inverting the negative of the Hessian

matrix readily produced by our maximum likelihood approach. We additionally show via

simulation specifically devised to simulate competing risk data that our technique produces

regression coefficient estimates with lower bias in small samples with heavy censoring.

The third paper was a manuscript prepared for submission and concerned a computational

approach to estimate the semi-parametric mixture-cure model where the model assumes

subjects are from two distinct populations; (1) those susceptible to default; and (2) those no

longer susceptible and hence “cured”. A common estimation approach for this model uses the

Expectation Maximisation (EM) algorithm of Dempster et al. (1977). In this paper we apply

a maximum likelihood approach to estimate the mixture-cure Cox model. Our approach

starts with the full log-likelihood for which we calculate the gradient vector and Hessian
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matrix and devise a computational scheme that extends further the approach of Thackham

and Ma (2020a) and Thackham and Ma (2020b) using an amended version of the Newton

Multiplicative-Iterative method of Ma et al. (2014). Using this constrained optimisation,

we jointly estimate both regression parameters and the baseline hazard where the constraint

ensures the hazard’s non-negativity. This provides two key benefits over using the EM

algorithm to estimate the model: (1) an asymptotic variance matrix for all model parameters

is produced allowing joint inference on regression parameters and the baseline hazard without

the need to bootstrap; and (2) a continuous baseline hazard estimate is returned that is directly

estimated without (for example) a logarithm transform or an extra calculations.

There are a number of avenues of future research. The first avenue, the methodologies

could be tested against other models, such as accelerated failure-time models, logistic regres-

sion models, and multinomial regression models. The second avenue, an understanding of

how methodologies generalise to unseen data by using training and testing samples could be

carried out. The third avenue, the mixture-cure methodology could be extended to include

both time-varying covariates and/or competing risks.

In closing, our research in this thesis provides several enhancements the prevailing avail-

able quantitative credit risk management methodologies to estimate the risk of credit default

using survival analysis, spanning contributions in survival analysis, competing risk analysis,

and mixture cure analysis. Our approaches apply constrained maximum likelihood estima-

tion, where the constraint ensures non-negative of baseline hazards, providing comparably

accurate parameter estimates to prevailing approaches while also retuning less volatile base-

line hazard estimates allowing clearer determination of their shapes. The significance of

these baseline hazards can be easily discerned using the asymptotic variances returned by

our maximum likelihood estimation approach.



A
Appendix - Implementation and Simulation

This appendix supports this thesis by providing additional background and the R code to

implement our methodologies. This appendix consists of five sections:

1. Implementation of the Cox Model with time-varying covariates

2. Simulation of survival data with time-varying covariates

3. Simulation of competing risk data with time-varying covariates

4. Implementation of the mixture-cure model

5. Simulation of mixture-cure data
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A.1 Model Implementation - Cox Model with TVC

In this section of the appendix, we discuss the model implementation of the Newton

Multiplicative-Iterative Algorithm for constrained optimisation. This implementation is used

for both Paper 1 which focussed on survival analysis, as well as paper 2 which focussed on

competing risk analysis

A.1.1 Two Input data.frames

A key requirement of our implementation is the need for two input dataframes: one each

for the baseline and time-varying covariates. The best manner in which to demonstrate this

is via a small worked example. Suppose we have n = 3 subjects, for which have p = 2

baseline and q = 2 time-varying covariates. Suppose further that for our data there are three

event times at t = 3, 1 and 2 respectively for subjects 1, 2 and 3. The first of the two input

dataframes governs baseline covariates, and contain one row for each subject. The columns

detail the subject identifier, event time, and status (1 for observed event, 0 otherwise). The

remaining p = 2 columns contain the data for the baseline covariates. This is demonstrated

in table A.1 below.

Subject Time Status x1 x2

1 3 1 104 1
2 1 1 55 0
3 2 1 23 1

Table A.1: An Example Baseline Dataframe

The second of the two input dataframes governs the time-varying covariates, containing

multiple rows for each subject (as outlined previously). Based on the unique observed event

times from the data (in our case, these are the times t = 1, 2 and 3), each subject will have

a record for each of these observed event times, up until when the given subject leaves the

study. Table A.2 demonstrates this for our example. Subject i = 1 has an event time of t1 = 3,

so it has three records in the dataframe. Subject i = 2 has an event time of t2 = 1, so it has

only one record while subject i = 3 has an event time of t3 = 2, so it has two records. The

columns for this dataframe begin with a subject identifier, as well as a variable recording the

ji time-points (ri ji ) when the time-varying covariates are measured for each of the i subjects.

The final q = 2 columns contain the values of the time-varying covariates. Note that the key
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feature of this dataframe is that the values of the time-varying covariates can potentially (but

not necessarily) change over time for a given subject.

Subject ri ji z1(ri ji ) z2(ri ji )

1 1 5 1
1 2 4 0
1 3 2 1
2 1 8 0
3 1 3 1
3 2 2 1

Table A.2: Example Time-Varying Covariate Data Frame

A key difficulty to overcome in themodel implementation is how to undertake calculations

for this expanded time-varying covariate dataframe. One natural method to do this in R is

to separate the Z matrix into a list of n matrices, one each for every individual subject,

and use functions such as lapply and mapply to undertake the necessary calculations. To

demonstrate this for the data in tables A.1 and A.2, the baseline covariate matrix (X) and

time-varying covariate matrix (Z), as defined (in the general case) earlier in the thesis are

X =

[
x11 = 104 x12 = 1
x21 = 55 x22 = 0
x31 = 23 x32 = 1

]
(A.1)

and

Z =


z1(r11) = 5 z2(r11) = 1
z1(r12) = 4 z2(r12) = 0
z1(r13) = 2 z2(r13) = 1
z1(r21) = 8 z2(r21) = 0
z1(r31) = 3 z2(r31) = 1
z1(r32) = 2 z2(r32) = 1


. (A.2)

A.1.2 Fitting a Model and Available Controls

A.1.2.1 coxph_mlt()

As the user interface to our model implementation we create the coxph_mlt() function,

which will jointly estimate regression coefficients and the baseline hazard of the Cox model

usingmaximum likihoodwith time-varying covariates. The function is called in the following

manner:

coxph_mlt ( formula , data , formula.z , data.z , riji , subject , control , ... )

A call to the coxph_mlt() function requires the following six mandatory arguments, as well
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as allowing for additional optional arguments which are passed to the coxph_mlt.control():

formula A formula object, with the response on the left of a ∼ operator, and baseline
covariates on the right separated by a “+” sign. The response must be a survival
object as returned by the survival::Surv() function. A value of status=1 signifies
that subject i was observed to have an event, while status=0 signifies the subject
was censored. For example: Surv ( time , status ) ∼ x1 + x2 .

data The baseline data.frame that contains the baseline covariate information, as well
as the event time and status indicator used in the formula object. The
dataframe also requires each entry to be signified by a unique subject identifier
for each subject i.

formula.z A linear predictor for the time-varying covariates. This should not be a formula
object, but covariates need to be preceded by a ∼ operator prior to listing
the time-varying covariates on the right separated by a “+” sign.
For example: Surv(start, end , statusLong) ∼ z1 + z2 .

data.z The time-varying covariate data.frame, that has been expanded so that there is
one record for every event time for every subject, up to the time that the subject
leaves the study. For subject i, there are ji records in the dataframe. One
method to achieve this is to use the function survival::survSplit()

riji The ji time-points at which the time varying covariates are observed for
subject i.

subject The unique identifier for subject i.
... Other (optional) arguments which are passed to the control function

coxph_mlt.control().

The function returns an object of the class coxph_mlt, which is a list containing the results

of the fitting algorithm. Example code to call the function is

fit.MPLt <– coxph_mlt(formula = Surv(time, status) ∼ x1 + x2,

data = baseline,

formula.z = Surv(start, end , statusLong) ∼ z1 + z2,

riji = end,

subject = id,

data.z = time_varying).

A.1.2.2 coxph_mlt.control()

The coxph_mlt.control function has the following optional arguments that allow the user

to control various aspects of the model fit. Any arguments not supplied by the user will be

assigned the indicated default values.
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basis The basis or the baseline hazard. Options are either uni f orm or mspline
max.iter The maximum number of iterations for the Newton Multiplicative-Iterative

algorithm. The default value is 10,000.
n.events_basis (only available for basis=”uni f orm”) The number of observed events to

include in each basis of a uniform baseline hazard. With n.obs representing
the number of observed events. The default is calculated using
round(3.5log(n.obs) − 7.5).

order (only available for basis=”mspline”) order of the msplines. The default is 3.
range.quant (only available for basis=”mspline”) The range for which quantiles are

used to form internal knots. The default is c(0.075, .9).
tol The convergence tolerance value, which is the smallest change in the

parameter estimates between iterations that when achieved indicates
convergence has occurred. The default value is 1 × 10−6.

min.theta The size for the individual elements in the θ vector that are considered
indistinguishable from zero. The default value is 1 × 10−10.

kappa The initial step-size in the line search. The default value is 0.6.

A.1.3 Exploring a Fitted Model

Six new functions have been written that accept as input the returned results of a fitted

model with coxph_mlt to predict, extract, summarise and plot aspects related to a fitted

model.

1. summary of a fitted model (summary.coxph_mlt)

2. returning model coefficients in a data.frame (tidy.coxph_mlt)

3. returning model coefficients in a vector (coef.coxph_mlt)

4. returning residuals of a fitted model (residuals.coxph_mlt)

5. graphs of the baseline hazard, baseline cumulative hazard and baseline survival func-

tions (plot.coxph_mlt)

6. returning model predicted values for a subject potentially not included in the original

model training (predict.coxph_mlt)

All of these functions accept an object of class coxph_mlt resulting from a model fit using

summary.coxph_mlt.

A.1.3.1 summary.coxph_mlt()

This returns to the R console a summary of the fitted model including: fitted parameter

estimates with associated p-values and significance tests; details regarding the number of



130 Appendix - Implementation and Simulation

observed evens and total records; and detail on the convergence of the model such as the

number of iterations and achieved value of the log-likelihood. The input is:

object An object of class coxph_mlt resulting from summary.coxph_mlt
detail (optional) determine the level of detail returned. Available values are:

detail=”RegOnly to display on the estimated regression coefficients of β and γ);
and detail=”All which additionally displays estimated baseline parameters θ.
The default is ”RegOnly”

A.1.3.2 tidy.coxph_mlt()

This returns a data. f rame summary of the fitted model including: fitted parameter

estimates with associated p-values and significance tests. The input is:

object An object of class coxph_mlt resulting from summary.coxph_mlt

A.1.3.3 coef.coxph_mlt()

This returns a list with three elements of the fitted model parameters. Each element

contains the fitted parameters of β, γ and θ. The input is:

object An object of class coxph_mlt resulting from summary.coxph_mlt

A.1.3.4 residuals.coxph_mlt()

This returns a data. f rame containing the Martingale and the Cox-Snell residuals of a

fitted model. The input is:

object An object of class coxph_mlt resulting from summary.coxph_mlt

A.1.3.5 predict.coxph_mlt()

This returns a list of model predicted values for a subject potentially not included in the

original model training.. The input is:

object An object of class coxph_mlt resulting from summary.coxph_mlt
newdata.short A data. f rame for a single subject containing baseline covariates, event time

and status
newdata.long A data. f rame for a single subject containing time-varying covariates,

start time, end time and status
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A.1.3.6 plot.coxph_mlt()

This returns an object of class ggplot of a graph of either the baseline hazard, baseline

cumulative hazard or baseline survival functions for a model fitted using coxph_mlt(). The

input is:

object An object of class coxph_mlt resulting from summary.coxph_mlt
type (optional) which type of graph is produced. Available levels are

”Hazard”, ”CumHazard” or ”Survival. The default is ”Hazard”.

A.1.3.7 predict.coxph_mlt()

This returns a list of model predicted values for a subject potentially not included in the

original model training. The input is:

object An object of class coxph_mlt resulting from summary.coxph_mlt
newdata.short A data. f rame for a single subject containing baseline covariates,

event time and status
newdata.long A data. f rame for a single subject containing time-varying covariates,

start time, end time and status

A.1.4 R Code
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

coxph_mlt=function(formula,data,formula.z,riji,subject,data.z,subset,

spare,na.action,control,...){

#==============

# get and organise information

# (same tests as in coxph(), thanks to the survival package)

mc = match.call(expand.dots = FALSE)

m = match(c("formula","data","subset","na.action"),names(mc),0)

mc.orig = mc

mc = mc[c(1,m)]

if (m[1]==0){stop("A formula argument is required")}

data.name = if(m[2]!=0){mc[m[2]][[1]]}else{"-"}

mc[[1]] = as.name("model.frame")

mc$formula = if(missing(data)) terms(formula)

else terms(formula, data=data)

mf = eval(mc,parent.frame())

if (any(is.na(mf))) stop("Missing observations in the model variables")

if (nrow(mf) ==0) stop("No (non-missing) observations")

mt = attr(mf,"terms")

# extract response

y = model.extract(mf, "response")

type = attr(y, "type")

if(!inherits(y, "Surv")){stop("Response must be a survival object")}

if(type!="right"&&type!="counting"){

stop(paste("Cox model doesn’t support \"", type, "\" survival data",sep = ""))

}

#==============
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#==============

# indicator for survival or censoring

t_i = y[,1L]

observed = y[,2L]==1L

c_i = ifelse(observed==T,1,0)

n = length(t_i)

n.obs = sum(observed)

#==============

#==============

# control arguments

extraArgs <- list(...)

if (length(extraArgs)) {

controlargs <- names(formals(coxph_mpl.control))

m <- pmatch(names(extraArgs), controlargs, nomatch=0L)

if (any(m==0L))

stop(gettextf("Argument(s) %s not matched", names(extraArgs)[m==0L]),

domain = NA, call. = FALSE)

}

if (missing(control)) control <- coxph_mpl.control(n.obs, ...)

#==============

#==============

# ties

t_i.obs = t_i[observed]

ties = duplicated(t_i.obs)

t_i.obs = t_i.obs[!ties]

n.obs = length(t_i.obs)

#==============

#==============

# X matrix

#X = model.matrix(mt, mf, contrasts)

X = model.matrix(mt, mf)

X = X[,!apply(X, 2, function(x) all(x==x[1])), drop=FALSE]

p = ncol(X)

#==============

#==============

# knot sequence and psi matrices

knots = knots_mpl(control, t_i.obs, range(t_i))

m = knots$m

# Basis functions

psi = basis_mpl(t_i,knots,control$basis,control$order,which=1)

PSI = basis_mpl(t_i,knots,control$basis,control$order,which=2)

#R = penalty_mpl(control,knots)

R=matrix(rep(0,m*m), nrow=m, ncol=m)

#==============

#==============

# Z variables

var.z=all.names(formula.z)

var.z=var.z[6:length(var.z)]

var.z=var.z[(var.z==’+’)==FALSE]

var.z.status=all.names(formula.z[2])[4]

# Narrow the Z matrix

var.riji=mc.orig[[which(names(mc.orig)==’riji’)]]

var.subj=mc.orig[[which(names(mc.orig)==’subject’)]]

var.riji=as.character(var.riji)

var.subj=as.character(var.subj)

Z=data.z[,c(var.subj, var.riji, var.z)]
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Subj=Z[,var.subj]

noZ=FALSE

q=ncol(Z)

# Last value of Z matrix for each subject

tmp=data.table(Subj=data.z[,var.subj],time=data.z[,var.riji], data.z[,var.z])

tmp2=tmp[, .SD[.N], by=Subj][,c(’Subj’,’time’):=NULL]

last.z=data.matrix(tmp2, rownames.force = NA)

#==============

#==============

# Times for all measures

t_i_z=Z[,var.riji]

# Basis functions

Npsi = basis_mpl(t_i_z,knots,control$basis,control$order,which=1)

NPSI = basis_mpl(t_i_z,knots,control$basis,control$order,which=2)

NPSI = ifelse(NPSI<0,0,NPSI)

#==============

#==============

# Difference in zPSI

# First differences, but retaining the first element - Nxm

NPSIdiff = data.frame(Subj=Z[,var.subj], NPSI, stringsAsFactors=FALSE) %>%

group_by(Subj) %>%

# Lagged difference, but not for first value

mutate_at(vars(-group_cols()),list(~ifelse(row_number()==1,.,. - lag(.)))) %>%

#mutate_all(funs(ifelse(row_number()==1,.,. - lag(.)))) %>%

# Set NA to zero

mutate_at(vars(-group_cols()),list(~ifelse(is.na(.),0,.))) %>%

ungroup(Subj) %>%

select(-Subj) %>%

as.matrix

# Initial value for Gamma

q=length(var.z)

Gamma=as.matrix(rep(0,q))

base::rownames(Gamma)=var.z

# Most narrow version of Z

Z=as.matrix(data.z[,c(var.z)])

longstatus=as.matrix(data.z[,c(var.z.status)])

#==============

#==============

# Fir the model

lambda = control$smooth

Beta = rep(0,p)

Theta = rep(1,knots$m)

correction = 1

full.iter = 0

this.max.iter=control$max.iter[1]

this.max.iter=1

for(iter in 1:this.max.iter){

fit <- coxphfit(

status = as.integer(observed), longstatus=longstatus, X=X, Z=Z, last.z=last.z, Subj=Subj, R = R,

psi = psi, PSI = PSI,

Npsi=Npsi, NPSI=NPSI, NPSIdiff=NPSIdiff,

Beta0 = Beta, Theta0 = Theta/correction, Gamma0=Gamma,

lambda = as.double(lambda), kappa = control$kappa,

convVal = control$tol, minTheta = control$epsilon, maxiter = control$max.iter[2])

}

#==============

#==============



134 Appendix - Implementation and Simulation

if(control$max.iter[1]>1) control$smooth = lambda

M_theta_m1 = fit$coef$Theta

H = as.matrix(fit$matricies$H) ;rownames(H)=colnames(H)=NULL

p = length(fit$coef$Beta)

m = length(fit$coef$Theta)

q = length(fit$coef$Gamma)

Minv_2 = Hinv = matrix(0,p+q+m,p+q+m)

#pos = c(rep(TRUE,p), rep(TRUE,q), !(abs(M_theta_m1)<1E-5) & !(fit$GradTheta< -1E-2))

pos = c(rep(TRUE,p), rep(TRUE,q), !(abs(M_theta_m1)<1E-5 & (fit$GradTheta< -1E-2)))

#==============

#==============

# Hessian

temp = try(solve(H[pos,pos]),silent=TRUE)

if(class(temp)!="try-error"){

Hinv[pos,pos] = temp

cov_NuNu_H = Hinv

se.Eta_H = suppressWarnings(sqrt(diag(cov_NuNu_H)))

}else{

cov_NuNu_H = matrix(NA,p+m,p+m)

se.Eta_H = rep(NA,p+m)

}

#==============

#==============

# Graph data

# Grid to calcuate h0, h0.low, h0.high, H0, S0

numPoints = 1000

grid = seq(knots$Alpha[1],max(knots$Alpha),length=numPoints)

# Evaultate the basis function psi(t) at the grid values

M_psi_Xm = basis_mpl(grid,knots,basis=control$basis,order=control$order,which=1)

# Evaultate the basis function PSI(t) at the grid values

M_PSI_Xm = basis_mpl(grid,knots,basis=control$basis,order=control$order,which=2)

# h0,H0, S0

h0= M_psi_Xm%*%fit$coef$Theta

H0= M_PSI_Xm%*%fit$coef$Theta

S0=exp(-H0)

# h0,H0, S0 low and high

se.Theta=se.Eta_H[(p+q+1):(p+q+m)]

Theta.low =pmax(as.numeric(fit$coef$Theta)-1.96*se.Theta,0)

Theta.high=as.numeric(fit$coef$Theta)+1.96*se.Theta

h0.low =M_psi_Xm%*%Theta.low

h0.high=M_psi_Xm%*%Theta.high

H0.low =M_PSI_Xm%*%Theta.low

H0.high=M_PSI_Xm%*%Theta.high

S0.low=exp(-H0.low)

S0.high=exp(-H0.high)

# Save the graph data

graphData=data.frame(t=grid, h0, h0.low, h0.high, H0, H0.low, H0.high, S0, S0.low, S0.high)

#==============

#==============

# Residuals

# Find values of Z at time t_i for each subject

# These are the last values of the Z matrix

var.subj2=quo(!! sym(var.subj))

last.Z = data.z %>%

group_by(!! var.subj2)%>%
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mutate(rn=row_number(),

max.rn=max(rn)) %>%

filter(rn==max.rn) %>%

ungroup

last.Z.out=as.matrix(last.Z[,c(var.subj, var.riji)])

last.Z =as.matrix(last.Z[,c(var.z)])

# Calucate the fitted values for cumulative hazard at time t_i

H_t_i=PSI %*% fit$coef$Theta * exp(X %*% fit$coef$Beta + last.Z %*% fit$coef$Gamma)

# Margingale residuals

Martingale.Res=data.frame(Martingale.Res=c_i-H_t_i)

# Cox-Snell residuals

CoxSnell.Res=data.frame(CoxSnell=H_t_i)

# Status

Status=data.frame(Status=c_i)

# Residuals

Residuals=data.frame(last.Z.out, Status, X, last.Z, Martingale.Res, CoxSnell.Res)

#==============

#==============

if(control$basis==’uniform’){

# Graph data

se.Theta=se.Eta_H[(p+q+1):(p+q+m)]

se.Theta2=se.Theta[c(1,1:m)]

Theta2=fit$coef$Theta[c(1,1:m)]

graphData_uniform=data.frame(Alpha=knots$Alpha,

Theta=Theta2,

se.Theta=se.Theta2,

low=Theta2-1.96*se.Theta2,

high=Theta2+1.96*se.Theta2)

}

else {

graphData_uniform=NA;

}

#==============

#==============

# output

fit$knots = knots

fit$control = control

fit$call = match.call()

fit$dim = list(n = n, n.obs = sum(observed), n.ties = sum(ties), p = p, q = q, m = knots$m)

fit$data = list(time = t_i, observed = observed, X = X, Z = Z, name = data.name,

graphData=graphData, graphData_uniform=graphData_uniform, Residuals=Residuals)

fit$matricies=list(H=H, loglik=fit$loglik, cov_NuNu_H=cov_NuNu_H, se.Eta_H=se.Eta_H,

psi=fit$matricies$psi, PSI=fit$matricies$PSI, NPSIdiff=NPSIdiff, H0starMu=fit$matricies$H0starMu,

NPSIdiff_by_eZGamma_by_Theta_by_Mu=fit$matricies$NPSIdiff_by_eZGamma_by_Theta_by_Mu, History=fit$History)

class(fit) = "coxph_mlt"

fit

#==============

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

coxphfit <- function(status, longstatus, X, Z, last.z, Subj, R, psi, PSI,

Npsi, NPSI, NPSIdiff, Beta0, Gamma0, Theta0, lambda, kappa, convVal, minTheta, maxiter){

p = ncol(X)

n = nrow(X)

m = ncol(R)

N = dim(Z)

l = p+m
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# Initialise

Theta0 = as.matrix(Theta0) # mx1

PsiTheta = PSI %*% Theta0 # nxm x mx1 = nx1

psiTheta = psi %*% Theta0 # nxm x mx1 = nx1

Mu = exp(X %*% Beta0) # nxp x px1 = nx1

PsiThetaMu <- PsiTheta*Mu # element-wise nx1

psiThetaMu <- psiTheta*Mu # element-wise nx1

RTheta = R %*% Theta0 # mxm x mx1 = mx1

keep.names.Gamma=base::rownames(Gamma0)

# Number of measurements for each subject

count=data.frame(Subj=Subj, stringsAsFactors=FALSE) %>%

group_by(Subj) %>%

summarise(n=n())

#==============

# Initialise

q=ncol(Z)

l = p+m+q

Zu=exp(last.z%*% Gamma0) # nxq x qx1 = nx1

# Initialise H0star using Gamma0 and Theta0

calc0=calc(NPSIdiff=NPSIdiff, Z=Z, Subj=Subj, thisGamma=Gamma0, thisTheta=Theta0)

H0star=calc0$H0star

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

# nx1 + element-wise nx1 = nx1 (ith component is the ith obs contribution to loglik)

pen <- as.numeric(crossprod(Theta0,RTheta)) # 1xn x nx1 = 1x1 scalar

ploglik0 = (1-lambda)*sum(loglik) - lambda*pen # 1x1 scalar, the penalised likelihood

Gamma=Gamma0

Beta=Beta0

Theta=Theta0

#==============

#==============

# Save values

this.maxiter=maxiter

ploglikMat=matrix(rep(0,(this.maxiter+1)*3), ncol=3, nrow=this.maxiter+1)

ploglikMat[1,]=ploglik0

BetaMat =matrix(rep(0,(this.maxiter+1)*p), nrow=this.maxiter+1, ncol=p)

GammaMat=matrix(rep(0,(this.maxiter+1)*q), nrow=this.maxiter+1, ncol=q)

ThetaMat=matrix(rep(0,(this.maxiter+1)*m), nrow=this.maxiter+1, ncol=m)

BetaMat [1,]=Beta0

GammaMat[1,]=Gamma0

ThetaMat[1,]=Theta0

#==============

#==============

# Update Beta

for(iter in 1:maxiter){

# Update beta

StatusMinH0starMu = status-H0star*Mu

GradBeta <- t(X) %*% StatusMinH0starMu

HessianBeta <- as.matrix(crossprod(X, Diagonal(n=n, x=H0star*Mu)) %*% X)

StepBeta <- solve(HessianBeta) %*% GradBeta

Beta <- Beta0 + StepBeta

##

Mu = exp(X %*% Beta)

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

ploglik = (1-lambda)*sum(loglik) - lambda*pen

# Adapt Newton step if needed

r=0

while(ploglik < ploglik0){
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r=r+1

StepBeta = StepBeta/kappa

Beta <- Beta0 + StepBeta

Mu = exp(X %*% Beta)

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

ploglik = (1-lambda)*sum(loglik) - lambda*pen

#cat("Beta: ",r)

if (r>500) break

}

ploglik0=ploglik

ploglikMat[1+iter,1]=ploglik0

#==============

#==============

# Update gamma

# Create H0diff - Nxm x mx1 = Nx1

H0diff=NPSIdiff %*% Theta

# Elements matrix B - Nx1

MuRep=rep(Mu, count$n)

Belement=H0diff * exp(Z%*%Gamma) * MuRep

## Newton

longStatusMinBelementexpandMu = longstatus-Belement

GradGamma <- crossprod(Z, longStatusMinBelementexpandMu)

HessianGamma <- crossprod(Z, Diagonal(n=length(Belement), x=Belement)) %*% Z

StepGamma <- solve(HessianGamma) %*% GradGamma

Gamma <- Gamma0 + StepGamma

Gamma=as.matrix(Gamma)

# Update H0star using Gamma and Theta0

Zu=exp(last.z%*% Gamma)

calc0=calc(NPSIdiff=NPSIdiff, Z=Z, Subj=Subj, thisGamma=Gamma, thisTheta=Theta)

H0star=calc0$H0star

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu) # nx1 + element-wise nx1 = nx1 (ith component is the ith obs contribution to loglik)

ploglik = sum(loglik) # 1x1 scalar, the penalised likelihood

# Adapt Newton step if needed

r=0

while(ploglik < ploglik0){

r=r+1

StepGamma = StepGamma/kappa

Gamma <- Gamma0 + StepGamma

Gamma=as.matrix(Gamma)

Zu=exp(last.z%*% Gamma)

calc0=calc(NPSIdiff=NPSIdiff, Z=Z, Subj=Subj, thisGamma=Gamma, thisTheta=Theta)

H0star=calc0$H0star

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu) # nx1 + element-wise nx1 = nx1 (ith component is the ith obs contribution to loglik)

ploglik = (1-lambda)*sum(loglik) - lambda*pen # 1x1 scalar, the penalised likelihood

#cat("Gamma: ",r)

if (r>50000) break

}

ploglik0=ploglik

ploglikMat[1+iter,2]=ploglik0

#==============

#==============

# Update theta

W <- psi/matrix(psi %*% Theta,nrow=nrow(psi),ncol=ncol(psi), byrow=F) #nXm /(element-wise) nXm matrix

WTstatus <- t(W) %*% status #mXn x nx1, result is mx1

PSIstar=calc0$PSIstar

PSIstarMu <- crossprod(PSIstar, Mu)
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GradTheta <- (1-lambda)*(WTstatus-PSIstarMu) - 2*lambda*(R %*% Theta)

sTheta <- Theta/((1-lambda)*PSIstarMu + ifelse(RTheta>0, 2*lambda*(R %*% Theta0), 0) + 0.3)

StepTheta <- GradTheta*sTheta

Theta <- as.matrix(Theta0) + StepTheta

Theta[which(Theta<minTheta)]=minTheta

calc0=calc(NPSIdiff=NPSIdiff, Z=Z, Subj=Subj, thisGamma=Gamma, thisTheta=Theta)

H0star=calc0$H0star # nX1

psiTheta = psi %*% Theta # nXm x mX1, result is nX1

RTheta = R %*% Theta # mXm x mX1, result is mX1

loglik = -H0star*Mu + status*log(psiTheta*Mu*Zu)

pen <- as.numeric(crossprod(Theta,RTheta))

ploglik = (1-lambda)*sum(loglik) - lambda*pen

# Adapt Newton step if needed

r=0

while(ploglik < ploglik0){

r=r+1

StepTheta <- StepTheta/kappa

Theta <- as.matrix(Theta0) + StepTheta

Theta[which(Theta<minTheta)]=minTheta

calc0=calc(NPSIdiff=NPSIdiff, Z=Z, Subj=Subj, thisGamma=Gamma, thisTheta=Theta)

H0star=calc0$H0star

psiTheta = psi %*% Theta

psiThetaMu <- psiTheta*Mu

RTheta = R %*% Theta

loglik = -H0star*Mu + status*log(psiThetaMu)

pen <- as.numeric(crossprod(Theta,RTheta))

ploglik = (1-lambda)*sum(loglik) - lambda*pen

#cat("Theta: ",r)

if (r>500) break

}

# Save the penalised likelihood

ploglik0 <- ploglik

ploglikMat[1+iter,3]=ploglik0

# Check for convergence

varepsilon <- max(c(abs(Beta-Beta0),abs(Gamma-Gamma0),abs(Theta-Theta0)))

if (varepsilon<convVal) break

Beta0 <- Beta

Gamma0 <- Gamma

Theta0 <- Theta

BetaMat [1+iter,]=Beta0

GammaMat[1+iter,]=Gamma0

ThetaMat[1+iter,]=Theta0

#print(iter)

if ( (round(iter/10,6)-floor(iter/10)) == 0){

cat(iter, ’iterations...\n’)

}

}

# ================

# ================

#Inference for Beta

H0starMu=H0star*Mu

V1 <- - t(X) %*% Diagonal(n=length(H0starMu), x=H0starMu) %*% X

colnames(V1)=rownames(V1)=NULL

HessianBeta <- V1

# ================

# ================

# Inference for Gamma
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# Create H0diff - Nxm x mx1 = Nx1

H0diff=NPSIdiff %*% Theta

# Elements matrix B - Nx1

MuRep=rep(Mu, count$n)

Belement=H0diff * exp(Z%*%Gamma) * MuRep

V2= - t(Z) %*% Diagonal(n=length(Belement), x=Belement) %*% as.matrix(Z)

V2=as.matrix(V2)

HessianGamma <- V2

# ================

# ================

# Inference for Theta

V3 <- as.matrix(t(psi) %*% Diagonal(n=n, x=as.numeric(status/psiTheta^2)) %*% psi) #(mxn)x(nxn)x(nxm)=mxm #B

HessianTheta <- V3

# ================

# ================

# Inference for d2l/dbeta dtheta

V13 = - t(X) %*% Diagonal(n=length(Mu), x=Mu) %*% calc0$PSIstar

V13=as.matrix(V13)

colnames(V13)=rownames(V13)=NULL

# ================

# ================

# Inference for dl/dbeta dgamma

# Replicate the rows of X j_{i} times each - result is Nxp matrix

timesToRep=count$n

rows <- rep( 1:nrow(X) , timesToRep)

Xrep=matrix(X[rows,], ncol=ncol(X))

V12 = - t(Xrep) %*% Diagonal(n=length(Belement), x=Belement) %*% Z

V12=as.matrix(V12)

# ================

# ================

# Inference for dl/dgamma dtheta

# Replicate the rows of Mu j_{i} times each - result is Nx1 vector

timesToRep=count$n

rows <- rep( 1:nrow(Mu) , timesToRep)

Murep=matrix(Mu[rows,], ncol=1)

V23= - t(Z) %*% Diagonal(n=length(Murep), x=Murep) %*% calc0$NPSIdiff_by_eZGammaRep

V23=as.matrix(V23)

# ================

# ================

# H matrix

row1=cbind( V1 , V12 , V13)

row2=cbind(t(V12), V2 , V23)

row3=cbind(t(V13), t(V23), -V3)

Halt=-1*rbind(row1, row2, row3)

H=Halt

M2=Halt

# ================

# ================

# Make sure Gamma has the right names;

base::rownames(Gamma)=keep.names.Gamma

# ================

# ================

#Output

return(list(coef=list(Beta=Beta, Gamma=Gamma, Theta=Theta),loglik=list(iter=iter, ploglik=ploglik[1], correction=ploglik[2],

ploglikMat=ploglikMat),matricies=list(H=H, H0starMu=H0starMu, psi=psi, PSI=PSI, H0star=H0star,
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NPSIdiff_by_eZGammaRep=calc0$NPSIdiff_by_eZGammaRep),GradTheta=GradTheta,

History=list(BetaMat=BetaMat, GammaMat=GammaMat, ThetaMat=ThetaMat)))

# ================

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Function to update H0star and PSIstar using the latest Gamma and Theta

calc<-function(NPSIdiff, Z, Subj, thisGamma, thisTheta)

{

# exp(zT.Gamma) - Nx1

eZGamma=exp(Z%*%thisGamma)

# Replicate the number of columns for eZGamma - Nxm

thism=dim(thisTheta)[1]

thismRep=matrix(rep(1,thism), nrow=1)

eZGammaRep = eZGamma %*% thismRep

# Element wise multiplication - Nxm

NPSIdiff_by_eZGammaRep=NPSIdiff * eZGammaRep

# Summarise to create PSIstar - nXm

#PSIstar.old = data.frame(Subj=Subj, NPSIdiff_by_eZGammaRep, stringsAsFactors=FALSE) %>%

# group_by(Subj) %>%

# # Sum the columns

# summarise_all(sum) %>%

# ungroup %>%

# select(-Subj) %>%

# as.matrix

# Summarise to create PSIstar - nXm

temp = data.table(Subj=Subj, NPSIdiff_by_eZGammaRep)[

,j= lapply(.SD, sum), by=Subj][

,Subj:=NULL]

PSIstar=data.matrix(temp, rownames.force = NA)

rm(temp)

# Create H0star - nX1

H0star=PSIstar %*% thisTheta

return(list(H0star=H0star,PSIstar=PSIstar, NPSIdiff_by_eZGammaRep=NPSIdiff_by_eZGammaRep))

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# function to predict:

# h0, H0, S0 for a baseline subject and

# h, H and S for a non-basline subject

predict.coxph_mlt <- function(object, newdata.short, newdata.long) {

#----------------

# Regression coefficients

valuesBeta =data.frame(xVars=rownames(object$coef[1:2]$Beta), BetaCoef=object$coef[1:2]$Beta, stringsAsFactors=F)

rownames(valuesBeta)=NULL

valuesGamma=data.frame(zVars=rownames(object$coef[1:2]$Gamma),GammaCoef=object$coef[1:2]$Gamma, stringsAsFactors=F)

rownames(valuesGamma)=NULL

#----------------

#----------------

# Time

the.time.var=as.character(object$call$riji)

#----------------

#----------------

# Create X and beta vectors
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# Need to cater for dummies and continuous variables

numsTest = t(t(unlist(lapply(newdata.short, is.numeric))))

numsTest2 = data.frame(V1=rownames(numsTest), V3=numsTest[,1], stringsAsFactors=F)

# Transpose input data

temp=t(newdata.short)

newdata.short2 = data.frame(V1=rownames(temp), V2=temp[,1], stringsAsFactors=F) %>%

left_join(numsTest2, by=’V1’) %>%

mutate(xVars = ifelse(V3==TRUE,paste0(V1), paste0(V1, V2))) %>%

mutate(Value = as.numeric(ifelse(V3==TRUE,V2, 1))) %>%

select(xVars, Value)

# Merge on the parameters

valuesBeta2 = valuesBeta %>%

left_join(newdata.short2, by=’xVars’) %>%

mutate(Value=ifelse(is.na(Value),0, Value))

# X and beta vectors

X=t(valuesBeta2[,3])

beta=t(t(valuesBeta2[,2]))

#----------------

#----------------

# Create Z and gamma vectors

Z = newdata.long %>%

select(valuesGamma$zVars) %>%

as.matrix

gamma=t(t(valuesGamma[,2]))

#----------------

#----------------

# Create theta vectors

theta=object$coef$Theta

#----------------

#----------------

# Time

the.time = newdata.long %>%

ungroup %>%

select_(.dots=the.time.var)

colnames(the.time)=’time’

# Grid

#numPoints = max(object$knots$Alpha)-object$knots$Alpha[1]+1

#temp_grid = seq(object$knots$Alpha[1],max(object$knots$Alpha),length=numPoints)

#grid=sort(unique(c(the.time$time, temp_grid)))

numPoints = 4

temp_grid = seq(object$knots$Alpha[1],max(object$knots$Alpha),length=numPoints)

grid=sort(unique(c(temp_grid)))

# Evaultate the basis function psi(t) at the grid values

M_psi_Xm = basis_mpl(grid,object$knots,basis=object$control$basis,order=object$control$order,which=1)

# Evaultate the basis function PSI(t) at the grid values

M_PSI_Xm = basis_mpl(grid,object$knots,basis=object$control$basis,order=object$control$order,which=2)

# h0,H0, S0

h0= M_psi_Xm%*%object$coef$Theta

H0= M_PSI_Xm%*%object$coef$Theta

S0=exp(-H0)

# h0,H0, S0 low and high

p=object$dim$p

q=object$dim$q
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m=object$dim$m

se.Theta=object$matricies$se.Eta_H[(p+q+1):(p+q+m)]

Theta.low =pmax(as.numeric(object$coef$Theta)-1.96*se.Theta,0)

Theta.high=as.numeric(object$coef$Theta)+1.96*se.Theta

h0.low =M_psi_Xm%*%matrix(Theta.low)

h0.high=M_psi_Xm%*%matrix(Theta.high)

H0.low =M_PSI_Xm%*%Theta.low

H0.high=M_PSI_Xm%*%Theta.high

S0.low=exp(-H0.low)

S0.high=exp(-H0.high)

# Collate the baseline values

baseline=data.frame(time=grid, h0=h0, h0.low=h0.low, h0.high=h0.high,

H0=H0, H0.low=H0.low, H0.high=H0.high,

S0=S0, S0.low=S0.low, S0.high=S0.high)

# Z Linear predictor

linPredZ=data.frame(time=the.time$time, linPredZ=Z %*% gamma, Z)

# X Linear predictor

linPredX=X %*% beta

# Linear predictor

linPred=cbind(linPredZ, linPredX) %>%

mutate(linPred=linPredZ + linPredX) %>%

select(-linPredZ, -linPredX)

# alltime

#alltime=data.frame(time=unique(sort(c(grid, the.time$time))))

alltime=data.frame(time=unique(sort(c(grid))))

# Final output

# Join the data by time

alltime2 = alltime %>%

left_join(baseline, by=’time’) %>%

left_join(linPred, by=’time’)

# Fill down intermedate values

alltime3 = alltime2 %>%

fill(h0,.direction=’down’) %>%

fill(h0.low,.direction=’down’) %>%

fill(h0.high,.direction=’down’) %>%

fill(H0,.direction=’down’) %>%

fill(S0,.direction=’down’) %>%

fill(linPred, .direction=’down’) %>%

fill(valuesGamma$zVars, .direction=’down’)

# Calculate the non-baseline values

alltime4 = alltime3 %>%

mutate(adj=exp(linPred),

h=h0 * adj,

H0.comp=h0*(time-lag(time)),

H0.comp=ifelse(is.na(H0.comp),0,H0.comp),

H0=cumsum(H0.comp),

H=H0 * adj,

S0=exp(-H0),

S=exp(-H)) %>%

select(-adj)

#----------------

#-------------------

# Non-baseline subject

# Calculate NPSIdiff
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NPSIdiff = data.frame(Subj=1, M_PSI_Xm, stringsAsFactors=FALSE) %>%

group_by(Subj) %>%

# Lagged difference, but not for first value

mutate_at(vars(-group_cols()),list(~ifelse(row_number()==1,.,. - lag(.)))) %>%

# Set NA to zero

mutate_at(vars(-group_cols()),list(~ifelse(is.na(.),0,.))) %>%

ungroup(Subj) %>%

select(-Subj) %>%

as.matrix

# Z matrix, evaluated at the grid

Zgrid = alltime4 %>%

select(valuesGamma$zVars) %>%

as.matrix

# Call calc0

calc0=calc(NPSIdiff=M_PSI_Xm, Z=Zgrid, Subj=1, thisGamma=gamma, thisTheta=theta)

#----------------

#----------------

# partial H / partial beta

Mu = linPredX

H0starMu=calc0$H0star*Mu

dH_dBeta = t(X) %*% H0starMu

#----------------

#----------------

# partial H / partial gamma

# Create H0diff - Nxm x mx1 = Nx1

H0diff=NPSIdiff %*% theta

# Elements matrix B - Nx1

MuRep=rep(Mu, length(H0diff))

Belement=H0diff * exp(Zgrid %*% gamma) * MuRep

dH_dGamma = t(Zgrid) %*% Belement

#-------------------

#----------------

# partial H / partial theta

PSIstarMu = crossprod(calc0$PSIstar, Mu)

dH_dTheta = PSIstarMu

#----------------

#----------------

dH_dEta=rbind(dH_dBeta, dH_dGamma, dH_dTheta)

#----------------

return(alltime4)

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

summary.coxph_mlt <-function(object=NULL, detail=’RegOnly’){

# Dimensions

p=object$dim$p

q=object$dim$q

m=object$dim$m

# Regression coefficents

Coeficient=round(rbind(object$coef$Beta, object$coef$Gamma),8)

Variable=t(t(row.names(Coeficient)))

# Regression significance

se=round(object$matricies$se.Eta_H[1:(p+q)],8)
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z=round(Coeficient/se,8)

pval=round(pnorm(-abs(Coeficient/se), 0, 1),8)*2

# Compile table for regression estaimtes

reg=data.frame(Variable=Variable,

Coeficient=Coeficient,

Std.Err=se,

z=z,

pval=pval,

row.names=NULL,

stringsAsFactors =FALSE) %>%

mutate(sig=ifelse(pval <0.001, "***",

ifelse(pval <0.01, "**",

ifelse(pval <0.05, "*",

ifelse(pval <0.1, ".",’’)))))

# h0(t) Basis Function coefficents

Coeficient.Theta=object$coef$Theta

Variable.Theta=paste0(’Theta’, seq(1,m,1))

# h0(t) Basis Function significance

se.Theta=round(object$matricies$se.Eta_H[(p+q+1):(p+q+m)],20)

z.Theta=round(Coeficient.Theta/se.Theta,20)

pval.Theta=round(pnorm(-abs(Coeficient.Theta/se.Theta), 0, 1),20)*2

# Compile table for h0(t) Basis Function estaimtes

h0r=data.frame(Variable=Variable.Theta,

Coeficient=Coeficient.Theta,

Std.Err=se.Theta,

z=z.Theta,

pval=pval.Theta,

row.names=NULL,

stringsAsFactors =FALSE) %>%

mutate(sig=ifelse(pval <0.001, "***",

ifelse(pval <0.01, "**",

ifelse(pval <0.05, "*",

ifelse(pval <0.1, ".",’’)))))

# Significance details

sigs="Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1"

# Print the output

cat(’-------------- Results of coxph_mlt() --------------’)

cat(’\n\n’)

cat(’Details of the Model Call:’)

cat(’\n’)

print(object$call)

cat(’\n’)

cat(’Model Details:’)

cat("\n Number of Subjects : ",object$dim$n)

cat("\n Number of Events : ",object$dim$n.obs)

cat("\n Number of Iterations : ",object$matricies$loglik$iter)

cat("\n Log-Likelihood : ",object$matricies$loglik$ploglik)

cat("\n h0(t) Basis Function : ",object$control$basis)

cat("\n Number of Parameters : ",p,’ baseline ,’, q, ’time-varying, ’, m, ’h0(t) basis’)

cat(’\n\n’)

cat(’Parameter Estimates:’)

cat(’\n’)

print(reg)

if(detail==’All’){

cat(’\n’)

cat(’h0(t) Basis Function Parameter Estimates:’)

cat(’\n’)

print(h0r)

}
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cat(sigs)

cat(’\n\n’)

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

tidy.coxph_mlt <-function(object=NULL){

# Dimensions

p=object$dim$p

q=object$dim$q

m=object$dim$m

# Regression coefficents

Coeficient=round(rbind(object$coef$Beta, object$coef$Gamma),8)

Variable=t(t(row.names(Coeficient)))

# Regression significance

se=round(object$matricies$se.Eta_H[1:(p+q)],8)

z=round(Coeficient/se,8)

pval=round(pnorm(-abs(Coeficient/se), 0, 1),8)*2

# Compile table for regression estaimtes

reg=data.frame(Variable=Variable,

Coeficient=Coeficient,

Std.Err=se,

z=z,

pval=pval,

row.names=NULL,

stringsAsFactors =FALSE) %>%

mutate(sig=ifelse(pval <0.001, "***",

ifelse(pval <0.01, "**",

ifelse(pval <0.05, "*",

ifelse(pval <0.1, ".",’’)))))

# h0(t) Basis Function coefficents

Coeficient.Theta=object$coef$Theta

Variable.Theta=paste0(’Theta’, seq(1,m,1))

# h0(t) Basis Function significance

se.Theta=round(object$matricies$se.Eta_H[(p+q+1):(p+q+m)],8)

z.Theta=round(Coeficient.Theta/se.Theta,8)

pval.Theta=round(pnorm(-abs(Coeficient.Theta/se.Theta), 0, 1),8)*2

# Compile table for h0(t) Basis Function estaimtes

h0r=data.frame(Variable=Variable.Theta,

Coeficient=Coeficient.Theta,

Std.Err=se.Theta,

z=z.Theta,

pval=pval.Theta,

row.names=NULL,

stringsAsFactors =FALSE) %>%

mutate(sig=ifelse(pval <0.001, "***",

ifelse(pval <0.01, "**",

ifelse(pval <0.05, "*",

ifelse(pval <0.1, ".",’’)))))

out=list(coef=reg, h0.coef=h0r)

return(out)

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

coef.coxph_mlt=function(object) {

return(object$coef)
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}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

plot.coxph_mlt=function(object, type=’Hazard’) {

if (type == ’Hazard’){

# Baseline hazard

p1=ggplot(data=object$data$graphData) +

geom_step(aes(x=t, y=h0, color=’h0(t)’)) +

geom_step(aes(x=t, y=h0.low, color=’95%CI’)) +

geom_step(aes(x=t, y=h0.high,color=’95%CI’)) +

ggtitle(’Baseline Hazard with 95% CI’) + ylab(’h0(t)’) +

theme(plot.title = element_text(hjust = 0.5), legend.position=’bottom’) +

scale_color_discrete(name = "Series")

}

if (type == ’CumHazard’){

# Baseline cumulative hazard

p1=ggplot(data=object$data$graphData) +

geom_step(aes(x=t, y=H0, color=’H0(t)’)) +

geom_step(aes(x=t, y=H0.low, color=’95%CI’)) +

geom_step(aes(x=t, y=H0.high,color=’95%CI’)) +

ggtitle(’Cumulative Baseline Hazard with 95% CI’) + ylab(’H0(t)’) +

theme(plot.title = element_text(hjust = 0.5), legend.position=’bottom’) +

scale_color_discrete(name = "Series")

}

if (type == ’Survival’){

# Baseline survival

p1=ggplot(data=object$data$graphData) +

geom_step(aes(x=t, y=S0, color=’S0(t)’)) +

geom_step(aes(x=t, y=S0.low, color=’95%CI’)) +

geom_step(aes(x=t, y=S0.high,color=’95%CI’)) +

ggtitle(’Baseline Survival with 95% CI’) + ylab(’S0(t)’) + ylim(0,1)+

theme(plot.title = element_text(hjust = 0.5), legend.position=’bottom’) +

scale_color_discrete(name = "Series")

}

return(p1)

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

residuals.coxph_mlt=function(object) {

return(object$data$Residuals)

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

coxph_mpl.control <- function(n.obs=NULL, basis = "uniform", smooth = NULL, max.iter=c(50,1e+05), tol=1e-7,

n.knots = NULL, n.events_basis = NULL, range.quant = c(0.075,.9),

cover.sigma.quant = .25, cover.sigma.fixed=.25, min.theta = 1e-10,

penalty = 2L, order = 3L, kappa = 1/.6, epsilon = 1e-50, ties = "unique",

seed = NULL, knots.manual=NULL){

basis = basis.name_mpl(basis)

max.iter = c(ifelse(is.null(smooth),ifelse(max.iter[1]>0,as.integer(max.iter[1]),50),1L),

ifelse(max.iter[2]>0,as.integer(max.iter[2]),1e+05))

tol = ifelse(tol>0 & tol<1,tol,1e-7)

order = ifelse(order>0 & order<6,as.integer(order),3L)

min.theta = ifelse(min.theta>0 & min.theta<1e-3,min.theta,1e-10)

penalty = penalty.order_mpl(penalty,basis,order)

kappa = ifelse(kappa>1, kappa, 1/.6)

cover.sigma.quant = ifelse(cover.sigma.quant>0 & cover.sigma.quant<0.4,cover.sigma.quant,0.3)

cover.sigma.fixed = ifelse(cover.sigma.fixed>0 & cover.sigma.fixed<0.4,cover.sigma.fixed,0.3)

if(all(range.quant<1) & all(range.quant>0) & length(range.quant)==2){
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range.quant = range.quant[order(range.quant)]

}else{range.quant = c(0.075,.9)}

if(is.null(n.knots)|sum(n.knots)<3|length(n.knots)!=2){

n.knots = if(basis!=’uniform’ & basis!=’msplines’){c(0,20)}else{c(8,2)}

}

if(!is.null(n.events_basis)){

n.events_basis = ifelse(n.events_basis<1|n.events_basis>floor(n.obs/2),

max(round(3.5*log(n.obs)-7.5),1L),round(n.events_basis))

}else{n.events_basis = max(round(3.5*log(n.obs)-7.5),1L)}

if(!is.null(smooth)){

smooth = ifelse(smooth<0,0,smooth)

}else{smooth=0}

out = list(basis = basis, smooth = smooth, max.iter = max.iter, tol = tol,

order = order, penalty = penalty, n.knots = n.knots, range.quant = range.quant,

cover.sigma.quant = cover.sigma.quant, cover.sigma.fixed = cover.sigma.fixed,

n.events_basis = as.integer(n.events_basis), min.theta = min.theta, ties = ties,

seed = as.integer(seed), kappa = kappa, epsilon = epsilon,

knots.manual=knots.manual)

class(out) = "coxph_mpl.control"

out

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

basis.name_mpl <- function(k){

if(k == "discr"| k == "discretized" | k == "discretised" | k == "unif" | k == "uniform"){"uniform"

}else{if(k == "m" | k == "msplines" | k == "mspline"){"msplines"

}else{if(k == "gauss" | k == "gaussian"){"gaussian"

}else{if(k == "epa" | k == "epanechikov"){"epanechikov"

}else{stop("Unkown basis choice", call. = FALSE)}}}}

}#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

penalty.order_mpl <- function(p,basis,order){

p = as.integer(p)

switch(basis,

’uniform’ = ifelse(p>0 & p<3,p,2),

’gaussian’ = ifelse(p>0 & p<3,p,2),

’msplines’ = order-1,

’epa’ = 2)

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

knots_mpl=function(control,events,range){

n.events = length(events)

## uniform

if(control$basis=="uniform"){

m = floor(n.events/control$n.events_basis)

n.i_u = round(control$n.events_basis*c(rep(1L,m-1L),1L+n.events/control$n.events_basis-m))

Alpha = c(range[1],unlist(lapply(split(events[order(events)],rep(1L:m,n.i_u)),max)))

if(Alpha[length(Alpha)]<range[2]){Alpha[length(Alpha)]=range[2]}

if(!(is.null(control$knots.manual))){Alpha=c(control$knots.manual, range)}

Alpha = Alpha[order(Alpha)]

Alpha=unique(sort(Alpha))

Alpha = unique(Alpha)

m = length(Alpha)-1

Delta = Alpha[2L:(m+1L)]-Alpha[1L:m]

list(m=m,Alpha=Alpha,Delta=Delta)

## other

}else{

# quantile knots

if(control$n.knots[1]>0){
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Alpha1 = quantile(events,prob=seq(control$range.quant[1],control$range.quant[2],length=control$n.knots[1]))

}else{Alpha1 = NULL}

#control$n.knots[2] = max(control$n.knots[2]+2,2)

Alpha2 = c(range[1],seq(ifelse(control$n.knots[1]==0,range[1],max(Alpha1)),

range[2],length=control$n.knots[2])[-1])

if(control$n.knots[2]==0){Alpha2=range}

Alpha = unique(c(Alpha1,Alpha2))

Alpha = Alpha[order(Alpha)]

Alpha=unique(sort(Alpha))

n.Alpha = length(Alpha)

## gaussian-basis

if(control$basis=="gaussian"){

Sigma = Delta = rep(0,n.Alpha)

for(aw in 1:n.Alpha){

if(aw>1 & aw<(n.Alpha-control$n.knots[2]+2)){

while(sum(events>(Alpha[aw]-2*Sigma[aw])&events<(Alpha[aw]+2*Sigma[aw]))<(n.events*control$cover.sigma.quant)){

Sigma[aw] = Sigma[aw] + 0.001}

}else{Sigma[aw] = control$cover.sigma.fixed*(Alpha[n.Alpha]-Alpha[1])/3}

Delta[aw]= pnorm((range[2]-Alpha[aw])/Sigma[aw])-

pnorm((range[1]-control$epsilon-Alpha[aw])/Sigma[aw])

}

list(m=n.Alpha, Alpha=Alpha, Sigma=Sigma, Delta=Delta)

## m-splines and epanechikov

}else{

m = n.Alpha+control$order-2

list(m=m, Alpha=Alpha, Delta=rep(1,m))

}

}

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

basis_mpl = function(x,knots,basis,order,which=c(1,2)){

which.matrix = rep(T,2)

which.matrix[-which]=FALSE

n = length(x)

Alpha = knots$Alpha

Delta = knots$Delta

n.Alpha = length(Alpha)

m = ifelse(basis=="msplines"|basis=="epanechikov",n.Alpha+order-2,knots$m)

M_Psi_nm = M_psi_nm = matrix(0,n,m)

##

if(basis=="uniform"){

u_i = sapply(x,function(y,lim=Alpha[-1L])sum(lim<y)+1L)

for(i in 1:n){

M_psi_nm[i,u_i[i]] = 1

M_Psi_nm[i,1:u_i[i]] = c(if(u_i[i]>1){Delta[1:(u_i[i]-1)]},

x[i]-Alpha[u_i[i]])

}

##

}else{

if(basis=="gaussian"){

Sigma = knots$Sigma

for(u in 1:m){

M_psi_nm[,u] = dnorm((x-Alpha[u])/Sigma[u])/(Sigma[u]*Delta[u])

M_Psi_nm[,u] = (pnorm((x-Alpha[u])/Sigma[u])-

pnorm((Alpha[1]-Alpha[u])/Sigma[u]))/Delta[u]

}

##

}else{

seq1n = 1:n

Alpha_star = as.numeric(c(rep(Alpha[1],order-1L),Alpha,rep(Alpha[n.Alpha],order-1L)))
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M_psi_nm = M_Psi_nm = cbind(M_psi_nm,0)

if(which.matrix[1]){

Alpha_star_x = sapply(x,function(y,lim=Alpha[-1L])sum(lim<y)+1L)+order-1L

if(basis=="msplines"){

M_psi_nm[(Alpha_star_x-1L)*n+seq1n]=1/(Alpha_star[Alpha_star_x+1]-Alpha_star[Alpha_star_x])

if(order>1){

for(ow in 2L:order){

uw_x = Alpha_star_x-ow+1L

for(pw in 0:(ow-1L)){

pos_x = (uw_x+pw-1L)*n+seq1n

M_psi_nm[pos_x]=(ow/((ow-1)*(Alpha_star[1:m+ow]-Alpha_star[1:m])))[uw_x+pw]*

((x-Alpha_star[uw_x+pw])*M_psi_nm[pos_x]+

(Alpha_star[uw_x+pw+ow]-x)*M_psi_nm[pos_x+n])

}

}

}

# Epanechikov

}else{

uw_x = Alpha_star_x-order+1L

for(pw in 0:(order-1L)){

pos_x = (uw_x+pw-1L)*n+seq1n

pos_1 = (uw_x+pw)==1

pos_m = (uw_x+pw)==m

pos_other = pos_1==FALSE & pos_m==FALSE

# 1<u<m

M_psi_nm[pos_x[pos_other]]=(6*(x-Alpha_star[uw_x+pw])*(x-Alpha_star[uw_x+pw+order])/

((Alpha_star[uw_x+pw]-Alpha_star[uw_x+pw+order])^3))[pos_other]

# case u=1

M_psi_nm[pos_x[pos_1]]=(12*(x-Alpha_star[uw_x+pw+order])*(x-2*Alpha_star[uw_x+pw]+Alpha_star[uw_x+pw+order])/

((2*Alpha_star[uw_x+pw]-2*Alpha_star[uw_x+pw+order])^3))[pos_1]

# case u=m

M_psi_nm[pos_x[pos_m]]=(12*(x-Alpha_star[uw_x+pw])*(x+Alpha_star[uw_x+pw]-2*Alpha_star[uw_x+pw+order])/

((2*Alpha_star[uw_x+pw]-2*Alpha_star[uw_x+pw+order])^3))[pos_m]

}

}

M_psi_nm = M_psi_nm[,1:m,drop=FALSE]

}

if(which.matrix[2]){

rank.x = rank(x)

x = x[order(x)]

Alpha_x = sapply(x,function(y,lim=Alpha[-1L])sum(lim<y)+1L)

# integral equals 1

up_u = cumsum(tabulate(Alpha_x,n.Alpha-1))

for(uw in 1:(m-order+1)){M_Psi_nm[min(n,up_u[uw]+1):n,uw] = 1}

# other cases

if(basis=="msplines"){

Alpha_star2 = c(rep(Alpha[1],order),Alpha,rep(Alpha[n.Alpha],order))

factor_v = c((Alpha_star2[(order+2):length(Alpha_star2)]-Alpha_star2[1:(length(Alpha_star2)-order-1)])/

(order+1),rep(0,order-1))

M_psi2_nm = cbind(basis_mpl(x,knots,basis=basis,order=order+1,which=1),matrix(0,n,order-1))

pos_xo = rep((Alpha_x-1L)*n,1)+seq1n

pos_xo1 = rep(pos_xo,order)+rep(1:order,each=n)*n

for(ow in 0:(order-1)){

M_Psi_nm[pos_xo+ow*n] = apply(matrix(M_psi2_nm[pos_xo1+ow*n]*

factor_v[rep(Alpha_x,order)+rep((1:order)+ow,each=n)],ncol=order),1,sum)

}

}else{

Alpha_star_x = sapply(x,function(y,lim=Alpha[-1L])sum(lim<y)+1L)+order-1L

uw_x = Alpha_star_x-order+1L

for(pw in 0:(order-1L)){

pos_x = (uw_x+pw-1L)*n+seq1n

pos_1 = (uw_x+pw)==1

pos_m = (uw_x+pw)==m

pos_other = pos_1==FALSE & pos_m==FALSE

# 1<u<m
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M_Psi_nm[pos_x[pos_other]]=((x-Alpha_star[uw_x+pw])^2*(2*x+Alpha_star[uw_x+pw]-3*Alpha_star[uw_x+pw+order])/

((Alpha_star[uw_x+pw]-Alpha_star[uw_x+pw+order])^3))[pos_other]

# case u=1

M_Psi_nm[pos_x[pos_1]]=((x-Alpha_star[uw_x+pw])*(x^2-2*x*Alpha_star[uw_x+pw]-2*Alpha_star[uw_x+pw]^2+

6*Alpha_star[uw_x+pw]*Alpha_star[uw_x+pw+order]-3*Alpha_star[uw_x+pw+order]^2)/

(2*(Alpha_star[uw_x+pw]-Alpha_star[uw_x+pw+order])^3))[pos_1]

# case u=m

M_Psi_nm[pos_x[pos_m]]=((x-Alpha_star[uw_x+pw])^2*(x+2*Alpha_star[uw_x+pw]-3*Alpha_star[uw_x+pw+order])/

(2*(Alpha_star[uw_x+pw]-Alpha_star[uw_x+pw+order])^3))[pos_m]

}

}

M_Psi_nm = M_Psi_nm[rank.x,1:m,drop=FALSE]

}}}

# pdf and cdf

if(all(which.matrix)){list(psi=M_psi_nm,Psi=M_Psi_nm)

# pdf or cdf

}else{if(which.matrix[1]){M_psi_nm}else{M_Psi_nm}}

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A.2 Simulating Survival Data with TVC

In this section of the appendix, we discuss the simulation scheme of survival data with

time-varying covariates. This simulation scheme is used for Paper 1 which focussed on

survival analysis.

A.2.1 R Code
#===============================================================

# Step 1: Packages and Optoins

# Libraries

library(data.table)

library(sqldf)

library(survival)

library(tidyverse)

library(reshape2)

library(Matrix)

library(stringr)

library(tcltk)

# No scientific noitation

options(scipen=999)

#===============================================================

#===============================================================

# Step 2: FUNCTION quickSim() to draw 1 sample

Sim <- function(sampSize, in.t.naught, n.knots, range.quant, censor.ub, basis, neb){

#~~~~~~~~~~~~~~~~~~~

# Simulation using Austin (2012)

# Generating survival times to simulate Cox proportional hazards

# models with time-varying covariates

# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546387/

#

# sampSize = size of survival sample to draw

# in.t.naught = the time at which sunjects possible switch from z=0 to z=1

# n.events_basis = number of events in each basis fucntion for MLE

# censor.ub = upper bound for censoring distribution U(0,censor.ub)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 1: Covariates and parameters

# Sample size

n=sampSize

# Continuous and binary baseline covariate

x1=rnorm (n,mean=0,sd=1)

x2=rbinom(n,size=1, prob=0.5)

# Baseline and time-varying effects

beta1=1;beta2=1;gamma=1

xbeta=x1*beta1 +x2*beta2

# z swaps values in the following manner 50% of subjects

switch =runif(n, min=0, max=1)>0

# Randomly adust the swtich time
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c1=in.t.naught[1]

c2=in.t.naught[2]

c3=in.t.naught[3]

ct1=runif(n, min=c1*.95, max=c1*1.05)

ct2=runif(n, min=c2*.95, max=c2*1.05)

ct3=runif(n, min=c3*.95, max=c3*1.05)

t1=ifelse(switch==TRUE,ct1,1e10)

t2=ifelse(switch==TRUE,ct2,1e10)

t3=ifelse(switch==TRUE,ct3,1e10)

# Weibull distribution

lambda = 1 # Scale parameter

nu = 1.5 # Shape parameter

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 2: Inverst transform

# Uniform(0,1) for probability inverse transform

u=runif(n, min=0, max=1)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 3: Undertake time.event simulation

# Dichotomous time-varying covariate with three changes

val1.upr=-log(u)

val1.lwr=(lambda*exp(xbeta))

val1=(val1.upr/val1.lwr)^(1/nu)

val2.upr=-log(u) - lambda*exp(xbeta)*t1^nu + lambda*exp(xbeta+gamma)*t1^nu

val2.lwr=lambda*exp(xbeta+gamma)

val2=(val2.upr/val2.lwr)^(1/nu)

val3.upr=-log(u) - lambda*exp(xbeta)*t1^nu - lambda*exp(xbeta+gamma)*(t2^nu-t1^nu) +

lambda*exp(xbeta)*t2^nu

val3.lwr=lambda*exp(xbeta)

val3=(val3.upr/val3.lwr)^(1/nu)

val4.upr=-log(u) - lambda*exp(xbeta)*t1^nu - lambda*exp(xbeta+gamma)*(t2^nu-t1^nu) -

lambda*exp(xbeta)*(t3^nu-t2^nu) + lambda*exp(xbeta+gamma)*t3^nu

val4.lwr=lambda*exp(xbeta+gamma)

val4=(val4.upr/val4.lwr)^(1/nu)

cut0=0

cut1=lambda*exp(xbeta)*(t1^nu)

cut2=lambda*exp(xbeta)*(t1^nu + exp(gamma)*(t2^nu-t1^nu))

cut3=lambda*exp(xbeta)*(t1^nu + exp(gamma)*(t2^nu-t1^nu) + (t3^nu-t2^nu))

cut4=1e10

R1=ifelse(-log(u)>= cut0 & -log(u)< cut1, val1,0)

R2=ifelse(-log(u)>= cut1 & -log(u)< cut2, val2,0)

R3=ifelse(-log(u)>= cut2 & -log(u)< cut3, val3,0)

R4=ifelse(-log(u)>= cut3 & -log(u)< cut4, val4,0)

time.event=pmax(R1,R2,R3,R4)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4: Undertake time.censor simulation

time.censor=runif(n=n, min=0, max=censor.ub)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 5: Time and status

time =ifelse(time.event<=time.censor, time.event, time.censor)

statusA=ifelse(time.event<=time.censor, 1, 0)
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#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 6: Modelling data

df=data.frame(id=seq(1,n,1), time=time, statusA=statusA, x1=x1, x2=x2)

df.longa =data.frame(id=df$id, time=0, zz=0)

df.longb =data.frame(id=df$id, time=ct1, zz=1)

df.longc =data.frame(id=df$id, time=ct2, zz=0)

df.longd =data.frame(id=df$id, time=ct3, zz=1)

df.longabcd=bind_rows(df.longa, df.longb, df.longc, df.longd) %>% arrange(id)

# Use tmerge

aaa<-tmerge(df,df,id=id,

status=event(time,statusA))

# Use tmerge again

bbb <- tmerge(aaa,df.longabcd,id=id, finalz=tdc(time,zz))

ccc <- tmerge(bbb,df.longabcd,id=id, finalz=tdc(time,zz))

df.long <- tmerge(ccc,df.longabcd,id=id, finalz=tdc(time,zz))

censorRate=1-mean(df$statusA)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 8: PL estimation

plFit=coxph(Surv(tstart, tstop, status)~ x1 + x2 + finalz + cluster(id),

data=df.long)

plCoef=coef(plFit)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 9: ML estimation

mlFit=coxph_mlt(Surv(time, statusA) ~ x1 + x2,

data=df,

formula.z=Surv(tstart, tstop, status)~ finalz,

riji=tstop,

subject=id,

data.z=df.long,

max.iter=c(50,2000),

basis=basis,

n.events_basis=neb,

n.knots=n.knots,

range.quant=range.quant,

order=3)

mlCoef=mlFit$coef

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 10: Collate output list

final=list(df=df,

df.long=df.long,

censorRate=censorRate,

plFit=plFit,

plCoef=plCoef,

plCoefSE=sqrt(diag(plFit$var)),

mlCoef=mlCoef,

mlCoefSE=mlFit$matricies$se.Eta_H,

mlFit=mlFit)

return(final)

#~~~~~~~~~~~~~~~~~~~

}

#===============================================================
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A.3 Simulating Competing Risk Data with TVC

This section devises a scheme to simulate competing risk data for two competing risks,

each with different Weibull baseline cause-specific hazards. This simulation scheme is used

for Paper 2 which focussed on competing risk analysis.

A.3.1 Background

Figure A.1 displays the settingwhere all subjects begin in the same state and can encounter

one fo two mutually exclusive events. More formally, let Xt be the state a subject is in at time

t (t > 0), so that Xt ∈ 0,1,2. All subjects begin in state 0 at time t = 0 (X0 = 0) and persist

there until transitioning at time t = T to either event 1 (XT = 1) or event 2 (XT = 2).

Figure A.1: Competing Risk Analysis Example of 2 Possible Events

While there are several different parametrisations of the Weibull distribution, we adopt

the parametrisation used in Bender et al. (2005) who define the baseline hazard

h0(t) = λνtν−1 (A.3)

where ν and λ are the shape and scale parameters respectively. Others, such as Klein and

Moeschberger (2003) and Beyersmann et al. (2012) use the alternate parametrisation of ν = a

and λ = b−a; this is also in keeping with the parametrisation used in the R function rweibull.

The cause-specific hazards baseline covariates (x1 and x2) and a single time-varying

covariate (z(t)) are

h1(t) = h01(t)exp(β11x1 + β12x2 + γ1z(t)) (A.4)
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h2(t) = h02(t)exp(β21x1 + β22x2 + γ2z(t)) (A.5)

where β11, β12, γ1 and β21, β22, γ2 are the regression coefficients for the first and second

competing risks respectively. For each cause-specific hazard, the Weibull baseline hazards

are h01(t) = λ1ν1tν1−1 and h02(t) = λ2ν2tν2−1, where νk and λk are the shape and scale

parameters respectively for the k = 1,2 competing risks. The all-risk hazard describes the

hazard for any event

h(t) = h01(t)exp(β11x1 + β12x2 + γ1z(t)) + h02(t)exp(β21x1 + β22x2 + γ2z(t)) (A.6)

and the associated all-risk cumulative hazard is

H(t) =
∫ t

0
h01(s)exp(β11x1+ β12x2+γ1z(s))+ h02(s)exp(β21x1+ β22x2+γ2z(s))ds. (A.7)

For the Weibull baseline hazards, this results in

H(t) =
∫ t

0
λ1ν1sν1−1exp(β11x1 + β12x2 + γ1z(s))ds

+

∫ t

0
λ2ν2sν2−1exp(β21x1 + β22x2 + γ2z(s))ds

H(t) = λ1ν1exp(β11x1 + β12x2)

∫ t

0
sν1−1exp(γ1z(s))ds

+ λ2ν2exp(β21x1 + β22x2)

∫ t

0
sν2−1exp(γ2z(s))ds.

(A.8)

A.3.2 Simulating Survival Time

We define z(t) as a dichotomous time-varying covariate with at most one change from

untreated (z = 0) to treated (z = 1) and that this switch (should it occur for a subject) does

so at the time t = t1. This means we need to evaluate the cumulative hazard in the integral in

equation (A.8) for the following two time domains

• z = 0, for t < t1

• z = 1, for t ≥ t1.
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Separating the integrals in equation (A.8) into these two time domains results in

H(t) = λ1ν1exp(β11x1 + β12x2)

[ ∫ t1

0
sν1−1ds +

∫ t

t1
sν1−1exp(γ1)ds

]
+ λ2ν2exp(β21x1 + β22x2)

[ ∫ t1

0
sν2−1ds +

∫ t

t1
sν2−1exp(γ1)ds

]
H(t) = λ1ν1exp(β11x1 + β12x2)

[
1
ν1

tν1
1 +

1
ν1

tν1exp(γ1) −
1
ν1

tν1
1 exp(γ1)

]
+ λ2ν2exp(β21x1 + β22x2)

[
1
ν2

tν2
1 +

1
ν2

tν2exp(γ2) −
1
ν2

tν2
1 exp(γ2)

]
.

(A.9)

This implies

H(t) =



λ1exp(β11x1 + β12x2)tν1 + λ2exp(β21x1 + β22x2)tν2 , if t < t1

λ1exp(β11x1 + β12x2)

[
tν1
1 + tν1exp(γ1) − tν1

1 exp(γ1)

]
+λ2exp(β21x1 + β22x2)

[
tν2
1 + tν2exp(γ2) − tν2

1 exp(γ2)

]
, if t ≥ t1.

(A.10)

This partitions the domain of the cumulative hazard into two intervals: D1 = (0, t1) and

D2 = [t1,∞). Let

• r1 = λ1exp(β11x1 + β12x2)t
ν1
1 + λ2exp(β21x1 + β22x2)t

ν2
1

so that

• R1 =
(
0,r1

)
• R1 =

[
r1,∞

)
are the ranges of the cumulative hazard function associated with domains D1 and D2. In

order to simluate using this scheme, we need to invert H(t) in equation (A.10). There are two

approaches:

1. adopt the simplification λ1 = λ2 = λ and ν1 = ν2 = ν and invert analytically; or

2. invert numerically.
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A.3.2.1 Analytical Inversion of H(t)

For the first approach, we analytically invert H(t) from equation (A.10). For the domain

D1, the inverse is

H−1(t) =

(
t

λ
(
exp(β11x1 + β12x2) + exp(β21x1 + β22x2)

) )1/ν

(A.11)

and analytic inverse inverse of H(t) for the domain D2 is

H−1(t) =

(
t − λtν1

(
exp(β11x1 + β12x2) + exp(β21x1 + β22x2)

)
+ λtν1

(
exp(β11x1 + β12x2)exp(γ1) + exp(β21x1 + β22x2)exp(γ1)

)
λ
(
exp(β11x1 + β12x2)exp(γ1) + exp(β21x1 + β22x2)exp(γ2)

) )1/ν

(A.12)

Therfor we can simulate survival time as

T =



(
−ln(u)

λ

(
exp(β11x1+β12x2)+exp(β21x1+β22x2)

) )1/ν

, if −log(u) < r1

(
−ln(u)−λtν1

(
exp(β11x1+β12x2)+exp(β21x1+β22x2)

)
+λtν1

(
exp(β11x1+β12x2)exp(γ1)+exp(β21x1+β22x2)exp(γ1)

)
λ

(
exp(β11x1+β12x2)exp(γ1)+exp(β21x1+β22x2)exp(γ2)

) )1/ν

,if −log(u) ≥ r1

(A.13)

where u ∼ Uni(0,1).

A.3.2.2 Numerical Inversion of H(t)

For the second approach, we numerically invert H(t) from equation (A.10). For a

given y and H(t), we wish to compute t such that H(t) = y. To achieve this, we use

the stats::uniroot() function to fine the roots of the equation H(t) − y = 0, evaluated at

the value y = −ln(u).
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A.3.3 Simulating Event Type

To simulate which event occurs, we return to figure A.1. The probability that the event

which occurs at time t = T is event 1 (XT = 1) is

P[XT = 1|t < T ≤ t + dt,T ≥ t] =
P[t < T ≤ t + dt,XT = 1]

P[T ≤ t + dt |T ≥ t]

=
h01(t)

h01(t) + h02(t)

=
λ1ν1tν1−1

λ1ν1tν1−1 + λ2ν2tν2−1 .

(A.14)

To simulate, we draw from the binomial distribution xT ∼ Bin(p), where the parameter p is

equation (A.14).

A.3.4 R Code
#===============================================================

# Step 1: Packages and Options

# # Packages

library(Matrix)

library(ggplot2)

library(plyr)

library(tidyverse)

library(survival) # 2.44-1.1

library(data.table);library(broom);library(cmprsk)

# Options

#No scientific noitation

options(scipen=999)

#===============================================================

#===============================================================

# Step 2: FUNCTION inverse.eval() - Evaluate the inverse of a function at a specified value

inverse.eval = function (inputFun, x.inverse.eval, lower = -100, upper = 10000) {

#~~~~~~~~~~~~~~~~~~~

# Numerical inverse of a function

# https://stackoverflow.com/questions/10081479/solving-for-the-inverse-of-a-function-in-r

# Solve the roots (ie: the x-intercepts) for: f(x) - y = 0

# inputFun - the function to numerically invert

# x.inverse.eval - a vector of x-values to evaluate the numerical inverted function

# lower, upper - ranges to pass to uniroot()

#~~~~~~~~~~~~~~~~~~~

# Step 2A: Initialise empty output

y.inv.numeric.return=as.matrix(rep(0,length(x.inverse.eval)))

# Step 2B: Loop over each input x-value

for (i in 1:length(x.inverse.eval)){

# Step 2Bi: Extract the ith x-value

this.x.inverse.eval=x.inverse.eval[i]



A.3 Simulating Competing Risk Data with TVC 159

# Step 2Bii: Call uniroot() to solve f(x) - y = 0

uniroot.arg1 = uniroot((function (internal.x=lower) {inputFun(internal.x) - this.x.inverse.eval}),

lower = lower, upper = upper)[1]

# Step 2Biii: Save the ith value the inverted function, as evaluated at x[i]

y.inv.numeric.return[i]=as.numeric(uniroot.arg1)

}

# Step 2C: Return the results

return(y.inv.numeric.return)

}

#===============================================================

#===============================================================

# Step 3: FUNCTION simCall() - Simulate competing risk survuval time

simCall <- function(n,

lambda1, lambda2,

nu1, nu2,

x1, x2,

t.one,

beta11, beta12, gamma1,

beta21, beta22, gamma2){

#~~~~~~~~~~~~~~~~~~~

# Simulate competing risk survival time

# lambda1, lambda2 = Scale parameters

# nu1,nu2 = Shape parameters

# t.one = the value of t at which z switches from 0 to 1

# beta11, beta12, gamma1 = regression parameters from first CR

# beta21, beta22, gamma2 = regression parameters from second CR

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 3A: Inverst transform

# Uniform(0,1) for probability inverse transform

u=runif(n, min=0, max=1)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 3B: Linear predictors

xbeta1=x1*beta11 +x2*beta12

xbeta2=x1*beta21 +x2*beta22

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 3C: H(t) functions that need to be numerically inverted

Hr1 = function(t){

value = lambda1 * exp(xbeta1.value) * t^nu1 +

lambda2 * exp(xbeta2.value) * t^nu2

return(value)

}

Hr2 = function(t){

value = lambda1 * exp(xbeta1.value) * (t.one.value^nu1 + t^nu1 * exp(gamma1) - t.one.value^nu1 * exp(gamma1)) +

lambda2 * exp(xbeta2.value) * (t.one.value^nu2 + t^nu2 * exp(gamma2) - t.one.value^nu2 * exp(gamma2))

return(value)

}

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 3D: Loop over each value for the inversion

event.time.num=rep(0,n)

for (i in 1:n){

# Extract the ith value from each vector
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xbeta1.value=xbeta1[i]

xbeta2.value=xbeta2[i]

t.one.value=t.one[i]

neg.log.u=-log(u)[i]

# Test which piece-wise function to invert

#test=(-log(u)<(lambda1 * exp(xbeta1.value) * t.one^nu1 +

# lambda2 * exp(xbeta2.value) * t.one^nu2))

test.num=(neg.log.u<Hr1(t.one.value))

# Undertake the correct inversion

if (test.num==FALSE){

temp=inverse.eval(inputFun=Hr2, x.inverse.eval=neg.log.u, lower=1E-12)

} else

{

temp=inverse.eval(inputFun=Hr1, x.inverse.eval=neg.log.u, lower=1E-12)

}

# Save the results

event.time.num[i]=temp

}

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 3D: Simulate event.type.num

h01.num=lambda1 * nu1 * event.time.num^{nu1-1}

h02.num=lambda2 * nu2 * event.time.num^{nu2-1}

p.num=h01.num / (h01.num + h02.num)

event.type.num=rbinom(n=n, p=p.num, size=1)+1

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 3E: Combine results

all=bind_cols(event.time=event.time.num, event.type=event.type.num)

return(all)

#~~~~~~~~~~~~~~~~~~~

}

#~~~~~~~~~~~~~~~~~~~

#===============================================================

#===============================================================

# Step 4: FUNCTION simAndFit()

simAndFit <- function(sampSize, in.t.naught, censor.ub, pct, neb, man, l, u){

#~~~~~~~~~~~~~~~~~~~

# Simulate survival times and fit Cox proportional hazards models with time-varying covariates

# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546387/

#

# sampSize = sample size to draw

# in.t.naught = the times at which subjects possible switch from z=0 to z=1

# n.knots = c(v1, v2) nknots call to coxph_mlt

# range.quant = range.quant() call to coxph_mlt

# censor.ub = upper bound for censoring distribution U(0,censor.ub)

# basis = basis for baseline hazard

# pct = percent of observations that switch

# neb = number of events in each basis function

# man = 1 for manual knots, 0 otherwise

# l = lambda

# u = nu

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4A: Covariates and parameters

# Sample size
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n=sampSize

# Continuous and binary baseline covariate

x1=rnorm (n,mean=0,sd=1)

x2=rbinom(n,size=1, prob=0.5)

# Baseline and time-varying effects

beta11=1;beta12=1;gamma1=1

beta21=1;beta22=1;gamma2=1

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4B: z swaps from z=0 to z=1 at time=5 for 100% of subjects

#switch =runif(n, min=0, max=1)>0

switch =runif(n, min=0, max=1)>(1-pct)

# Randomly adust the swtich time

c2=in.t.naught

ct2=runif(n, min=c2*.95, max=c2*1.05)

t2=ifelse(switch==TRUE,ct2,1e10)

# Weibull distribution

lambda1=l

lambda2=l

nu1=u

nu2=u

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4C: Draw the simulation

# Only use t2 as the single cut point for now

parms=data.frame(lambda1=lambda1, lambda2=lambda2, nu1=nu1, nu2=nu2)

sim=simCall(n=n,

lambda1=lambda1, lambda2=lambda2,

nu1=nu1, nu2=nu2,

x1=x1, x2=x2,

t.one=t2,

beta11=beta11, beta12=beta12, gamma1=gamma1,

beta21=beta21, beta22=beta22, gamma2=gamma2)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4D: Undertake time.censor simulation

time.censor=runif(n=n, min=0, max=censor.ub)

time.censor=data.frame(time.censor=time.censor)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4E: Time and status

time.df0 = data.frame(sim, time.censor, switch.time=t2, x1=x1, x2=x2) %>%

mutate(id=row_number()) %>%

mutate(time =ifelse(event.time<=time.censor, event.time, time.censor)) %>%

mutate(status=ifelse(event.time<=time.censor, event.type, 0)) %>%

# TVC

mutate(actual.switch =ifelse(time>switch.time,T,F),

actual.switch.time=ifelse(time>switch.time,switch.time,NA),

z =ifelse(time>switch.time,1,0)) %>%

# Make individual statuses

mutate(status1=ifelse(status==1,1,0),

status2=ifelse(status==2,1,0)) %>%

select(id, time, status, status1, status2, x1, x2, actual.switch, actual.switch.time, z)

time.df = time.df0

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4F: Modelling data, both long and baseline
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df =time.df %>%

select(id, time, actual.switch.time, status, x1, x2, z)

# Ready for tmerge()

df.longa =data.frame(id=df$id, time=0, zz=0)

df.longb =data.frame(id=df$id, time=df$actual.switch.time, zz=1)

df.longab=bind_rows(df.longa, df.longb) %>% arrange(id)

# Use tmerge

aaa<-tmerge(df,df,id=id,

status=event(time,status))

# Use tmerge again

temp_df.long <- tmerge(aaa,df.longab,id=id,

finalz=tdc(time,zz))

# Make individual statuses

df.long = temp_df.long %>%

mutate(status1=ifelse(status==1,1,0),

status2=ifelse(status==2,1,0))

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Split the baseline datasets

df_1 = time.df %>% select(id, x1, x2, time, status1) %>% as.data.frame

df_2 = time.df %>% select(id, x1, x2, time, status2) %>% as.data.frame

# Split the baseline datasets

df_long_1 = df.long %>% select(id, x1, x2, finalz, tstart, tstop, status1) %>% as.data.frame

df_long_2 = df.long %>% select(id, x1, x2, finalz, tstart, tstop, status2) %>% as.data.frame

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Censor Rate

censorRate=mean(df$status==0)

# z rate

zRate=sum(df$z)/n

# Status rate

statusRate=as.data.frame(table(df$status))

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4G: PL estimation for event 1

plFit_1=coxph(Surv(tstart, tstop, status1)~ x1 + x2 + finalz,

data=df_long_1,

ties=’breslow’)

plCoef_1=coef(plFit_1)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4I(2): PL estimation for event 2

plFit_2=coxph(Surv(tstart, tstop, status2)~ x1 + x2 + finalz,

data=df_long_2,

ties=’breslow’)

plCoef_2=coef(plFit_2)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4I(3): collate the PL results

temp1a=bind_cols(Risk=rep(1,3), Type=rep(’Coef’,3), Parm=c(’x1’, ’x2’, ’z1’), Coef=plCoef_1)

temp1b=bind_cols(Risk=rep(1,3), Type=rep(’SE’,3), Parm=c(’x1’, ’x2’, ’z1’), Coef=sqrt(diag(plFit_1$var)))

temp2a=bind_cols(Risk=rep(2,3), Type=rep(’Coef’,3), Parm=c(’x1’, ’x2’, ’z1’), Coef=plCoef_2)
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temp2b=bind_cols(Risk=rep(2,3), Type=rep(’SE’,3), Parm=c(’x1’, ’x2’, ’z1’), Coef=sqrt(diag(plFit_2$var)))

temp3 =bind_cols(Risk=rep(0,2), Type=rep(’Oth’,2), Parm=c(’censorRate’,’zRate’), Coef=c(censorRate, zRate))

both_plCoef=bind_rows(temp1a, temp1b, temp2a, temp2b, temp3)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

if (man==1){

kman1=c(quantile(df_1$time, probs=seq(0,1,0.1)))

kman2=c(quantile(df_2$time, probs=seq(0,1,0.1)))

} else{

kman1=NULL

kman2=NULL

}

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4J(1): ML estimation for event 1

mlFit_1=coxph_mlt(Surv(time, status1) ~ x1 + x2,

data=df_1,

formula.z= Surv(tstart, tstop, status1) ~ finalz,

riji=tstop,

subject=id,

data.z=df_long_1,

max.iter=c(50,2000),

basis=’uniform’,

knots.manual=kman1,

n.events_basis=neb)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4J(2): ML estimation for event 2

mlFit_2=coxph_mlt(Surv(time, status2) ~ x1 + x2,

data=df_2,

formula.z= Surv(tstart, tstop, status2) ~ finalz,

riji=tstop,

subject=id,

data.z=df_long_2,

max.iter=c(50,2000),

basis=’uniform’,

knots.manual=kman2,

n.events_basis=neb)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step 4K: Collate output list

final=list(censorRate=censorRate,

zRate=zRate,

statusRate=statusRate,

parms=parms,

sim=sim,

df=df,

df.long=df.long,

df_1=df_1,

df_2=df_2,

df_long_1=df_long_1,

df_long_2=df_long_2,

plFit_1=plFit_1,

plFit_2=plFit_2,

plCoefSE_1=sqrt(diag(plFit_1$var)),

plCoefSE_2=sqrt(diag(plFit_2$var)),

mlFit_1=mlFit_1,

mlFit_2=mlFit_2,

mlCoefSE_1=t(t(mlFit_1$matricies$se.Eta_H)),

mlCoefSE_2=t(t(mlFit_2$matricies$se.Eta_H)))
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return(final)

#~~~~~~~~~~~~~~~~~~~

}

#===============================================================
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A.4 Model Implementation - Mixture-Cure Model

In this section of the appendix, we discuss the model implementation of the mixture-cure

model . This implementation is used for both Paper 3 which focussed mixture-cure analysis.

A.4.1 R Code
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Smcml

smcml=function(formula,data,formula.cure,na.action,control,...){

#==============

# Intial checks and information

mc.orig = match.call(expand.dots = FALSE)

m = match(c("formula","data","na.action"),names(mc.orig),0)

mc = mc.orig[c(1,m)]

data.name = if(m[2]!=0){mc[m[2]][[1]]}else{"-"}

mc[[1]] = as.name("model.frame")

mc$formula = if(missing(data)){terms(formula)}else{terms(formula, data=data)}

mf = eval(mc,parent.frame())

if (any(is.na(mf))){stop("Missing observations in the model variables")}

if (nrow(mf) ==0){stop("No (non-missing) observations")}

mt = attr(mf,"terms")

#==============

#==============

# Response

y = model.extract(mf, "response")

#==============

#==============

# Status and indicator for survival

observed = y[,2L]==1L

n = length(y)

status=as.integer(observed)

t_i = y[,1L]

t_i.obs = t_i[observed]

n.obs = sum(observed)

#==============

#==============

# control arguments

extraArgs <- list(...)

if (length(extraArgs)) {

controlargs <- names(formals(smcml.control))

m2 <- pmatch(names(extraArgs), controlargs, nomatch=0L)

if (any(m2==0L))

stop(gettextf("Argument(s) %s not matched", names(extraArgs)[m2==0L]),

domain = NA, call. = FALSE)

}

if (missing(control)){control <- smcml.control(n.obs, ...)}

#==============

#==============

# X matrix

X = model.matrix(mt, mf)

X = X[,!apply(X, 2, function(x) all(x==x[1])), drop=FALSE]

p = ncol(X)

#==============
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#==============

# W matrix

var.w=all.names(formula.cure)

temp1 = var.w != ’~’

temp2 = var.w != ’+’

temp3 = var.w != ’formula.cure’

temp4 = temp1 * temp2 * temp3 * seq(1,length(var.w))

var.w = var.w[temp4]

Wtemp=data[,var.w]

temp=rep(1,n)

Intercept=data.frame(Intercept=temp)

W=data.frame(Intercept,Wtemp)

W=as.matrix(W)

q=ncol(W)

#==============

#==============

# Knot sequence and psi matrices

knots = knots_smcml(control, t_i)

m = knots$m

# Basis functions

psi = basis_smcml(t_i,knots,control$basis,control$order,which=1)

PSI = basis_smcml(t_i,knots,control$basis,control$order,which=2)

#==============

#==============

# Fit the model

Beta = as.matrix(rep(0,p))

Alpha = as.matrix(rep(0,q))

Theta = as.matrix(rep(1,knots$m))

fit <- smcmlfit(status=status,

X=X,

W=W,

psi=psi,

PSI=PSI,

Beta0=Beta,

Theta0=Theta,

Alpha0=Alpha,

kappa=control$kappa,

convVal=control$tol,

minTheta=control$epsilon,

maxiter=control$max.iter)

#==============

#==============

# Identify theta values that are zero

pos = c(rep(TRUE,p), rep(TRUE,q), !(abs(fit$coef$Theta)<1E-5 & (fit$GradTheta< -1E-2)))

#==============

#==============

# Calculate Hessian

Hessian = as.matrix(fit$matricies$Hessian)

HessianInv = matrix(0,p+q+m,p+q+m)

temp = try(solve(-Hessian[pos,pos]),silent=TRUE)

if(class(temp)!="try-error"){

HessianInv[pos,pos] = temp

cov_NuNu_H = HessianInv

se.Eta_H = suppressWarnings(sqrt(diag(cov_NuNu_H)))

}else{

cov_NuNu_H = matrix(NA,p+q+m,p+q+m)

se.Eta_H = rep(NA,p+q+m)

}

#==============
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#==============

# output

fit$matricies$cov_NuNu_H=cov_NuNu_H

fit$matricies$se.Eta_H=se.Eta_H

fit$knots = knots

fit$control = control

fit$call = match.call()

fit$dim = list(n = n, p = p, q = q, m = knots$m)

fit$data = list(time = t_i, observed = observed, X = X, W = W, name = data.name)

class(fit) = "smcml"

fit

#==============

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Smcmlfit

smcmlfit <- function(status, X=X, W=W, psi=psi, PSI=PSI, Beta0, Theta0, Alpha0,

kappa, convVal, minTheta, maxiter){

#==============

# Initialise

p = length(Beta0)

q = length(Alpha0)

m = length(Theta0)

l = p+m+q

n = nrow(X)

Beta=Beta0

Alpha=Alpha0

Theta=Theta0

#==============

#==============

# Function to update calculatoin of the log-likelihood

ll=function(thisBeta, thisAlpha, thisTheta, X, W, psi, PSI){

h0 = psi %*% thisTheta # nxm x mx1 = nx1

H0 = PSI %*% thisTheta # nxm x mx1 = nx1

h=h0*exp(X %*% thisBeta) # nxp x px1 = nx1; element-wise nx1

H=H0*exp(X %*% thisBeta) # nxp x px1 = nx1; element-wise nx1

S=exp(-H) # element-wise nx1

pii=1/(1+exp(-W%*%thisAlpha)) # nxq x qx1; element-wise nx1

logliki = status * (log(pii) + log(h0) + X %*% thisBeta - H) + (1 - status) *log(pii * S + (1-pii))

loglik=sum(logliki)

return=list(h0=h0, H0=H0, h=h, H=H, S=S, pii=pii, loglik=loglik)

return(return)

}

fn=ll(Beta0, Alpha0, Theta0, X=X, W=W, psi=psi, PSI=PSI)

loglik0=fn$loglik

#==============

#==============

# Save values for each iteration

this.maxiter=maxiter

loglikMat=matrix(rep(0,(this.maxiter+1)*3), ncol=3, nrow=this.maxiter+1)

loglikMat[1,]=loglik0

BetaMat =matrix(rep(0,(this.maxiter+1)*p), nrow=this.maxiter+1, ncol=p)

AlphaMat=matrix(rep(0,(this.maxiter+1)*q), nrow=this.maxiter+1, ncol=q)

ThetaMat=matrix(rep(0,(this.maxiter+1)*m), nrow=this.maxiter+1, ncol=m)

BetaMat [1,]=Beta0

AlphaMat[1,]=Alpha0

ThetaMat[1,]=Theta0
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#==============

#==============

for(iter in 1:maxiter){

# Update beta

# Grad Beta

B1vec = - status*fn$H - (1-status)*fn$H*(fn$pii*fn$S)/(fn$pii*fn$S+1-fn$pii)

GradBeta <- t(X) %*% (status + B1vec)

# Hessian Beta

B2vec = B1vec - (1-status)*fn$H*fn$H*fn$S*fn$pii*(1-fn$pii) / (fn$pii*fn$S + 1-fn$pii)^2

HessianBeta <- as.matrix(crossprod(X, Diagonal(n=n, x=B2vec)) %*% X)

# Step Beta

StepBeta <- solve(HessianBeta) %*% GradBeta

Beta <- Beta0 - StepBeta

fn=ll(Beta, Alpha0, Theta0, X=X, W=W, psi=psi, PSI=PSI)

loglik = fn$loglik

# Adapt Newton step if needed

r=0

while(loglik < loglik0){

r=r+1

StepBeta = StepBeta/kappa

Beta <- Beta0 - StepBeta

fn=ll(Beta, Alpha0, Theta0, X=X, W=W, psi=psi, PSI=PSI)

loglik = fn$loglik

if (r>500) break

}

loglik0=loglik

loglikMat[1+iter,1]=loglik

#==============

#==============

# Update Alpha

# Grad Alpha

A1vec = status*(1-fn$pii) + (1-status)*fn$pii*(1-fn$pii)*(fn$S-1)/(fn$pii*fn$S+1-fn$pii)

GradAlpha <- t(W) %*% (A1vec)

# Hessian Alpha

A2vec = - status*fn$pii*(1-fn$pii) - (1-status)* ( (fn$pii*(1-fn$pii)*(fn$S-1) ) / (fn$pii*fn$S+1-fn$pii) )^2

# Step Alpha

HessianAlpha <- as.matrix(crossprod(W, Diagonal(n=n, x=A2vec)) %*% W)

StepAlpha <- solve(HessianAlpha) %*% GradAlpha

#if(iter==30){browser()}

Alpha <- Alpha0 - StepAlpha

fn=ll(Beta, Alpha, Theta0, X=X, W=W, psi=psi, PSI=PSI)

loglik = fn$loglik

# Adapt Newton step if needed

r=0

while(loglik < loglik0){

r=r+1

StepAlpha = StepAlpha/kappa

Alpha <- Alpha0 - StepAlpha

fn=ll(Beta, Alpha, Theta0, X=X, W=W, psi=psi, PSI=PSI)
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loglik = fn$loglik

if (r>500) break

}

loglik0=loglik

loglikMat[1+iter,2]=loglik

#==============

#==============

# Update theta

C=psi # nxm

Cstar=PSI # nxm

# Grad Theta

D=Diagonal(n=n, x=fn$h0) # nxn

f1=status*exp(X%*%Beta) + (1-status)*exp(X%*%Beta) * fn$pii * fn$S /(fn$pii*fn$S+1-fn$pii) #nx1

GradTheta=as.matrix(t(C) %*% solve(D) %*% status - t(Cstar) %*% f1) # mxn x nxn x nx1 = mx1

w_u=t(Cstar) %*% f1 # mxn x nx1 = mx1

v_u=Theta0 / (w_u + 0) # element-wise mx1 / mx1 = mx1

StepTheta=v_u * GradTheta # element-wise mx1 / mx1 = mx1

Theta = as.matrix(Theta0 + StepTheta)

Theta[which(Theta<minTheta)]=minTheta

fn=ll(Beta, Alpha, Theta, X=X, W=W, psi=psi, PSI=PSI)

loglik = fn$loglik

# Adapt Newton step if needed

r=0

while(loglik < loglik0){

r=r+1

StepTheta = StepTheta/kappa

Theta = as.matrix(Theta0 + StepTheta)

Theta[which(Theta<minTheta)]=minTheta

fn=ll(Beta, Alpha, Theta, X=X, W=W, psi=psi, PSI=PSI)

loglik = fn$loglik

if (r>500) break

}

loglik0=loglik

loglikMat[1+iter,3]=loglik

# Check for convergence

varepsilon <- max(c(abs(Alpha-Alpha0),abs(Beta-Beta0),abs(Theta-Theta0)))

if (varepsilon<convVal) break

Beta0 <- Beta

Alpha0 <- Alpha

Theta0 <- Theta

BetaMat [1+iter,]=Beta0

AlphaMat[1+iter,]=Alpha0

ThetaMat[1+iter,]=Theta0

if ( (round(iter/10,6)-floor(iter/10)) == 0){

cat(iter, ’iterations...\n’)

}else{

#cat(iter, ’\n’)

}

}

cat(iter, ’iterations...\n’)

#==============

#==============
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#Inference for Beta pxp

B1vec = - status*fn$H - (1-status)*fn$H*(fn$pii*fn$S)/(fn$pii*fn$S+1-fn$pii)

B2vec = B1vec - (1-status)*fn$H*fn$H*fn$S*fn$pii*(1-fn$pii) / (fn$pii*fn$S + 1-fn$pii)^2

V1 = as.matrix(crossprod(X, Diagonal(n=n, x=B2vec)) %*% X)

colnames(V1)=rownames(V1)=NULL

#================

#==============

# Inference for Alpha qxq

A2vec = - status*fn$pii*(1-fn$pii) +

(1-status)*fn$pii*(1-fn$pii)*(fn$S-1) * ( (fn$pii*fn$S+1-fn$pii)*(1-2*fn$pii) - (fn$pii-fn$pii^2)*(fn$S-1) ) / (fn$pii*fn$S+1-fn$pii)^2

V2 = as.matrix(crossprod(W, Diagonal(n=n, x=A2vec)) %*% W)

colnames(V2)=rownames(V2)=NULL

#==============

#==============

# Inference for Theta mxm

aa = -t(C) %*% Diagonal(n=n, x=as.numeric(status/fn$h0^2)) %*% C

bb = (1-status) * (exp(X%*%Beta))^2 * fn$pii * (1-fn$pii) * fn$S/(fn$pii*fn$S+1-fn$pii)^2

cc = t(Cstar) %*% Diagonal(n=n, x=as.numeric(bb)) %*% Cstar

V3 = (aa+cc)

#==============

#==============

# Inference for d2l/dalpha dbeta qxp

aa= -(1-status) * fn$pii * (1 - fn$pii) * fn$S * fn$H /(fn$pii*fn$S+1-fn$pii)^2

V21 = t(W) %*% Diagonal(n=n, x=aa) %*% X

V21 = as.matrix(V21)

colnames(V21)=rownames(V21)=NULL

V12=t(V21)

#==============

#==============

# Inference for d2l/dalpha dtheta qxm

aa= -(1-status) * fn$pii * (1 - fn$pii) * fn$S * exp(X%*%Beta) /(fn$pii*fn$S+1-fn$pii)^2

V23 = t(W) %*% Diagonal(n=n, x=aa) %*% Cstar

V23 = as.matrix(V23)

colnames(V23)=rownames(V23)=NULL

V32=t(V23)

#==============

#==============

# Inference for d2l/dbeta dtheta pxm

aa1= -status*exp(X%*%Beta)

aa2= -(1-status)*exp(X%*%Beta)*fn$pii*fn$S/(fn$pii*fn$S+1-fn$pii)

aa3= (1-status)*exp(X%*%Beta)*fn$H*fn$S*fn$pii*(1-fn$pii)/(fn$pii*fn$S+1-fn$pii)^2

aa4=aa1+aa2+aa3

V13 = t(X) %*% Diagonal(n=n, x=aa4) %*% Cstar

V13 = as.matrix(V13)

colnames(V13)=rownames(V13)=NULL

V31=t(V13)

#==============

#==============

# H matrix

row1=cbind( V1, V12, V13)

row2=cbind(V21, V2, V23)

row3=cbind(V31, V32, V3)

Hessian=rbind(row1, row2, row3)

condnoAlpha=kappa(HessianAlpha)

#==============

#==============

#Output

return(list(coef=list(Beta=Beta, Alpha=Alpha, Theta=Theta),
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condnoAlpha=condnoAlpha,

GradTheta=as.matrix(GradTheta),

loglik=list(iter=iter, loglik=fn$loglik),

matricies=list(h0=fn$h0, H0=fn$H0, h=fn$h, H=fn$H, S=fn$S, pii=fn$pii, Hessian=Hessian),

History=list(loglikMat=loglikMat, BetaMat=BetaMat, AlphaMat=AlphaMat, ThetaMat=ThetaMat)))

#==============

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Control

smcml.control <- function(n.obs=NULL, basis = "uniform", max.iter=2000, tol=1e-7,

n.knots = NULL, n.events_basis = NULL, range.quant = c(0.075,.9),

min.theta = 1e-10, order = 3L,

kappa = 1/.6, epsilon = 1e-50, knots.manual=NULL){

tol = ifelse(tol>0 & tol<1,tol,1e-7)

order = ifelse(order>0 & order<6,as.integer(order),3L)

min.theta = ifelse(min.theta>0 & min.theta<1e-3,min.theta,1e-10)

kappa = ifelse(kappa>1, kappa, 1/.6)

if(all(range.quant<1) & all(range.quant>0) & length(range.quant)==2){

range.quant = range.quant[order(range.quant)]

}else{range.quant = c(0.075,.9)}

if(is.null(n.knots)|sum(n.knots)<3|length(n.knots)!=2){

n.knots = if(basis!=’uniform’ & basis!=’msplines’){c(0,20)}else{c(8,2)}

}

if(!is.null(n.events_basis)){

n.events_basis = ifelse(n.events_basis<1|n.events_basis>floor(n.obs/2),

max(round(3.5*log(n.obs)-7.5),1L),round(n.events_basis))

}else{n.events_basis = max(round(3.5*log(n.obs)-7.5),1L)}

out = list(basis = basis, max.iter = max.iter, tol = tol,

n.knots = n.knots, range.quant = range.quant,

n.events_basis = as.integer(n.events_basis), min.theta = min.theta,

kappa = kappa, epsilon = epsilon,

knots.manual=knots.manual)

class(out) = "smcml.control"

out

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Knots

knots_smcml=function(control,events){

n.events = length(events)

range = range(events)

if(!(is.null(control$knots.manual))){

Zeta=c(control$knots.manual, range)

Zeta = Zeta[order(Zeta)]

Zeta=unique(sort(Zeta))

}else{

Zeta1 = quantile(events,seq(0,control$range.quant[2],length.out=(control$n.knots[1]+1)))

Zeta2 = seq(quantile(events,control$range.quant[2]),range(events)[2],length=control$n.knots[2]+2)

Zeta = c(Zeta1,Zeta2[-1])

}

n.Zeta = length(Zeta)

m = length(Zeta)-1

Delta = Zeta[2L:(m+1L)]-Zeta[1L:m]

list(m=m,Zeta=Zeta,Delta=Delta)

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# Basis

basis_smcml = function(x,knots,basis,order,which=c(1,2)){
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which.matrix = rep(T,2)

which.matrix[-which]=FALSE

n = length(x)

Zeta = knots$Zeta

Delta = knots$Delta

n.Zeta = length(Zeta)

m = knots$m

M_Psi_nm = M_psi_nm = matrix(0,n,m)

u_i = sapply(x,function(y,lim=Zeta[-1L])sum(lim<y)+1L)

for(i in 1:n){

M_psi_nm[i,u_i[i]] = 1

M_Psi_nm[i,1:u_i[i]] = c(if(u_i[i]>1){Delta[1:(u_i[i]-1)]},

x[i]-Zeta[u_i[i]])

}

if(which.matrix[1]){M_psi_nm}else{M_Psi_nm}

}

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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A.5 Simulating Mixture-Cure Data

In this section of the appendix, we discuss the simulation scheme of mixture-cure data.

This simulation scheme is used for Paper 3 which focussed on mixture-cure analysis.

A.5.1 R Code
#===============================================================

# Step 1: Packages and Options

# Packages

library(Matrix)

library(tidyverse)

library(survival)

library(smcure)

# Options - no scientific noitation

options(scipen=999)

# Supress automatic output of a function

quiet <- function(x) {

sink(tempfile())

on.exit(sink())

invisible(force(x))

}

#===============================================================

#===============================================================

# Step 2: FUNCTION drawSim() to draw sample

drawSim <- function(in.seed, sampSize, censor.ub, true.alpha0){

#~~~~~~~~~~~~~~~~~~~

# Simulation of mixture-cure survival times

#

# in.seed = seed for random numbers

# sampSize = size of survival sample to draw

# censor.ub = upper bound for censoring distribution U(0,censor.ub)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step A: Setup

# Seed, sample size, basline

set.seed(in.seed)

n=sampSize

lambda = 1 # Scale parameter

nu = 1 # Shape parameter

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step B: Survival

# Baseline linear predictor

x1=rnorm (n,mean=0,sd=1)

beta1=1;beta2=1;

xbeta=x1*beta1

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step C: Undertake time.event simulation

# Uniform(0,1) for probability inverse transform

u=runif(n, min=0, max=1)
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time.event=(-log(u)/(lambda*exp(xbeta)))^(1/nu)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step D: Undertake time.censor simulation

time.censor=runif(n=n, min=0, max=censor.ub)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step E: Susceptibility

# Logistic linear predictor

w1=rnorm (n,mean=0,sd=1)

alpha0=true.alpha0;alpha1=1;

walpha=alpha0 + w1*alpha1

true.pi=1/(1+exp(walpha))

ui=runif(n, min=0, max=1)

true.susceptible=ifelse(ui>=true.pi,1,0)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step F: Time and status

time =ifelse(time.event<=time.censor & true.susceptible==1, time.event, time.censor)

status=ifelse(time.event<=time.censor & true.susceptible==1, 1, 0)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step G: Combine the data

# All the data

df.all=data.frame(time=time, status=status, x1=x1, x2=x2, w1=w1, w2=w2,

time.event=time.event, time.censor=time.censor, true.pi=true.pi,

ui=ui, true.susceptible=true.susceptible)

# Modelling data

df = df.all %>%

select(time=time, status=status, x1=x1, x2=x2, w1=w1, w2=w2) %>%

arrange(time)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step H: Returned list

final=list(df.all=df.all, df=df)

return(final)

#~~~~~~~~~~~~~~~~~~~

}

#===============================================================

#===============================================================

# Step 3: FUNCTION fitOnSim() to fit ML and MC models

fitOnSim = function(tag, simNum, in.seed, sampSize, censor.ub, true.alpha0){

#~~~~~~~~~~~~~~~~~~~

# Fit simluate mixture-cure data and fir ML and MC model

#

# tag = identifier for set of simulatoins

# simNum = simulation number within tag

# in.seed = seed for drawing simulations

# sampSize = size of survival sample to draw

# censor.ub = upper bound for censoring distribution U(0,censor.ub)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step A: Draw a simulation

sim1=drawSim(in.seed=in.seed, sampSize=sampSize, censor.ub=censor.ub, true.alpha0=true.alpha0)

#~~~~~~~~~~~~~~~~~~~
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#~~~~~~~~~~~~~~~~~~~

# Step B: Survival mixture cure model with smcure

mixc <- quiet(smcure(Surv(time,status)~x1,

cureform=~w1,

data=sim1$df,

model="ph",

Var = F))

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step C: Survival mixture cure model with smcure

fit1=smcml(formula=Surv(time,status)~x1,

formula.cure~w1,

data=sim1$df,

basis=’uniform’,

n.knots=c(3,1),

max.iter=2000,

range.quant=c(0.2,0.8))

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step D: Collate results.

# Names

names.Alpha=t(t(paste0(’Alpha’, 1:length(fit1$coef$Alpha)-1)))

names.Beta =t(t(paste0(’Beta’ , 1:length(fit1$coef$Beta))))

names.Theta=t(t(paste0(’Theta’, 1:length(fit1$coef$Theta))))

names.ABT =rbind(names.Alpha, names.Beta, names.Theta)

names.ABT.se=paste0(’se.’,names.ABT)

names.AB =rbind(names.Alpha, names.Beta)

# Initial info

cr.df=sim1$df.all %>% filter(true.susceptible==1)

censorRate =c(’all’, ’Info’, ’censorRate’ , 1-sum(cr.df$status)/dim(cr.df)[1])

longRunSurvRate=c(’all’, ’Info’, ’longRunSurvRate’, sum(sim1$df.all$true.susceptible) /sampSize)

seed.used =c(’all’, ’Info’, ’seedused’ , in.seed)

time.ml =c(’ml’ , ’time’, ’time’ , t2)

time.mc =c(’mc’ , ’time’, ’time’ , t1)

iter =c(’ml’ , ’Info’, ’iter’ , fit1$loglik$iter)

condnoAlpha =c(’ml’ , ’Info’, ’condNoAlpha’ , fit1$condnoAlpha)

# Paramaters and se for ML

temp1=t(t(c(fit1$coef$Alpha, fit1$coef$Beta, fit1$coef$Theta)))

temp2=t(t(fit1$matricies$se.Eta_H))

parms.smcml=cbind(’ml’, ’Parm’, names.ABT , temp1)

se.smcml =cbind(’ml’, ’SE’, names.ABT.se, temp2)

# Paramaters for MC

temp3=t(t(c(mixc$b,mixc$beta)));rownames(temp3)=NULL

parms.smcure=cbind(’mc’, ’Parm’, names.AB, temp3)

results=rbind(censorRate, longRunSurvRate, seed.used, time.ml, time.mc, iter, condnoAlpha,

parms.smcml, parms.smcure, se.smcml)

rownames(results)=NULL

colnames(results)=c(’Model’, ’Type’, ’Parm’, ’Val’)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step E: Output to csv

# Name of csv

name.sampSize =str_replace_all(sampSize , "\\.", ’p’)

name.censor.ub =str_replace_all(censor.ub , "\\.", ’p’)

name.true.alpha0 =str_replace_all(true.alpha0, "\\.", ’p’)
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name.true.alpha0 =str_replace_all(true.alpha0, "\\-", ’n’)

firstPart=paste0(tag,

’_Reps_’ ,name.sampSize,

’_CensUB_’ ,name.censor.ub,

’_trueA0_’ ,name.true.alpha0)

#~~~~~~~~~~~~~~~~~~~

#~~~~~~~~~~~~~~~~~~~

# Step F: Return results to R

final=list(sim1=sim1, mixc=mixc, fit1=fit1, results=results)

return(final)

#~~~~~~~~~~~~~~~~~~~

}

#===============================================================



References

Aalen, O. (1978). Nonparametric inference for a family of counting processes Annals of

Statistics, 6(4), 701-726. https://www.jstor.org/stable/2958850

ABS. (2020). 5206.0 - Australian National Accounts: National Income, Expenditure and

Product, Dec 2019 ABS. https://tinyurl.com/y36zk96z

Alves, B. and Dias, J. (2015). Survival mixture models in behavioral scoring Expert Systems

with Applications, 42(8), 3902–3910. https://doi.org/10.1016/j.eswa.2014.12.036

Ambrose, B. and Capone, C. (2020). The Hazard Rates of First and Second

Default The Journal of Real Estate Finance and Economics, 20(3), 275–293.

https://doi.org/10.1023/A:1007837225924

Anderson, R. (20074). The Credit Scoring Toolkit Oxford.

Andersson, T., Dickman, P., Eloranta, S., Lambert, P. (2011). Estimating andModelling Cure

in Population-Based Cancer StudiesWithin the Framework of Flexible Parametric Survival

Models BMCMedical Research Methodology, 11(96), 1-11. https://doi.org/10.1186/1471-

2288-11-96

Andersen, P. K. and Ørnulf, B. and Richard, D. G. and Niels, K. (1993). Statistical models

based on counting processes. Springer New York.

Apostolik, R., Donohue, C., Went, P. (2009). Foundations of Banking Risk, An Overview of

Banking, Banking Risks and Risk-Based Banking Regulation GARP.

APRA. (2020). Monthly Authorised Deposit-Taking Institution Statistics APRA.

https://www.apra.gov.au

https://www.jstor.org/stable/2958850
https://tinyurl.com/y36zk96z
https://doi.org/10.1016/j.eswa.2014.12.036
https://doi.org/10.1023/A:1007837225924
https://doi.org/10.1186/1471-2288-11-96
https://doi.org/10.1186/1471-2288-11-96
https://www.apra.gov.au


178 References

Austin, P. (2012). Generating survival times to simulate cox proportional hazards

models with time-varying covariates. Statistics in Medicine, 31(29), 3946-3958.

https://doi.org/10.1002/sim.5452

Austin, P., Lee, D., Fine, J. (2016). Introduction to the Analysis of Sur-

vival Data in the Presence of Competing Risks. Circulation, 133(6), 601-609.

https://doi.org/10.1161/CIRCULATIONAHA.115.017719

Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Van-

thienen, J. (2003). Benchmarking state-of-the-art classification algorithms for

credit scoring. Journal of the Operational Research Society, 54(6), 627-635.

https://doi.org/10.1057/palgrave.jors.2601545

Banasik, J., Crook, J., Thomas, L. (1999). Not if but when will borrowers default. Journal

of the Operational Research Society, 50(12), 1185-1190. https://doi.org/10.2307/3010627

Bakoyannis, G. and Touloumi, G. (2011). Practical methods for competing risks

data: A review Statistical Methods in Medical Research, 21(3), 257-272.

https://doi.org/10.1177/0962280210394479

Barnett, A. and Graves, N. (2008). Competing risks models and time-

dependent covariates Critical Care (Biomed Central), 12(134), 1-3.

https://ccforum.biomedcentral.com/articles/10.1186/cc6840

Basu, S. and Tiwari, R. (2010). Breast cancer survival, competing risks and mixture cure

model: a Bayesian analysis Journal of the Royal Statistical Society. Series A (Statistics in

Society), 173(2), 307-329. https://doi.org/10.1111/j.1467-985X.2009.00618.x

Bellotti, T. and Crook, J. (2009). Credit scoring with macroeconomic variables using

survival analysis. Journal of the Operational Research Society, 60(12), 1699-1707.

https://doi.org/10.1057/jors.2008.130

Bellotti, T., and Crook, J. (2013). Forecasting and stress testing credit card de-

fault using dynamic models. International Journal of Forecasting, 29(4), 563-574.

https://doi.org/10.1016/j.ijforecast.2013.04.003

https://doi.org/10.1002/sim.5452
https://doi.org/10.1161/CIRCULATIONAHA.115.017719
https://doi.org/10.1057/palgrave.jors.2601545
https://doi.org/10.2307/3010627
https://doi.org/10.1177/0962280210394479
https://ccforum.biomedcentral.com/articles/10.1186/cc6840
https://doi.org/10.1111/j.1467-985X.2009.00618.x
https://doi.org/10.1057/jors.2008.130
https://doi.org/10.1016/j.ijforecast.2013.04.003


References 179

Bellotti, T. and Crook, T. (2014). Retail credit stress testing using a discrete hazard model

with macroeconomic factors Journal of the Operational Research Society, 65(3), 340-350.

https://doi.org/10.1057/jors.2013.91

Bender, R., Augustin, T., and Blettner, M. (2005). Generating survival times to sim-

ulate Cox proportional hazards models. Statistics in Medicine, 24(11), 1713-1723.

https://doi.org/10.1002/sim.2059

Berkson, Y. and Gage, R. (1952). Survival Curve for Cancer Patients Following Treatment.

J. Amer. Statist. Assoc., 47(259), 501-515. https://www.jstor.org/stable/2281318

Bernoulli, D. (1760). Essai d’une nouvelle analyse de la mortalité causée par la petite vérole,

et des avantages de l’inoculation pour la prévenirMémoir de l’Academie Royale de Science,

1-456.

Beyersmann, J., Allignol, A., Schumacher, M. (2012). Competing Risks and Multistate

Models with R Springer, New York, NY.

Beyersmann, J., Latouche, A., Buchholz, A., Schumacher, M. (2009). Simulating

competing risks data in survival analysis Statistics in Medicine, 28(6), 956-971.

https://doi.org/10.1002/sim.3516

BIS. (2005). An Explanatory Note on the Basel II IRB Risk Weight Functions Bank for

International Settlements. https://www.bis.org/bcbs/irbriskweight.htm

BIS. (2006). International Convergence of Capital Measurement and Capital Standards A

Revised Framework Comprehensive Version Bank for International Settlements. Basel

Framework

Breslow, N. E. (1972). Contribution to the discussion of paper by D.R. Cox. Journal of the

Royal Statistical Society: Series B, 34, 216–217 https://www.jstor.org/stable/2985181

Cai, T. and Betensky, R. A. (2003). Hazard regression for interval-censored data with

penalized spline. Biometrics, 59(3), 570-579. http://www.jstor.org/stable/3695433

Cai, T., Hyndman, R., Wand, M. (2012). Mixed Model-Based Hazard Es-

timation Journal of Computational and Graphical Statistics, 11(4), 784-798.

https://doi.org/10.1198/106186002862

https://doi.org/10.1057/jors.2013.91
https://doi.org/10.1002/sim.2059
https://www.jstor.org/stable/2281318
https://doi.org/10.1002/sim.3516
https://www.bis.org/bcbs/irbriskweight.htm
https://www.bis.org/basel_framework/index.htm?export=pdf
https://www.bis.org/basel_framework/index.htm?export=pdf
https://www.jstor.org/stable/2985181
http://www.jstor.org/stable/3695433
https://doi.org/10.1198/106186002862


180 References

Cai, C., Zou, Y., Peng, Y., Zhang, J. (2012). smcure: Fit Semiparametric Mixture Cure

Models R package version 2.0, https://CRAN.R-project.org/package=smcure

Chan, R. H. and Ma, J. (2012). A multiplicative iterative algorithm for box-constrained

penalized likelihood image restoration. IEEE Trans. Image Processing, 21, 3168-3181.

https://doi.org/10.1109/TIP.2012.2188811

Clapp, J., An, X., and Deng, Y. (2005). smcure: Unobserved Heterogeneity in

Models of Competing Mortgage Termination. Social Science Research Network.

https://ssrn.com/abstract=512624.

Corbiere, F., Commenges, D., Taylor, J., Joly, P. (2009). A penalized likeli-

hood approach for mixture cure models Statistics in Medicine, 28(3), 510–524.

https://doi.org/10.1002/sim.3481

Corbiere, F., Joly, P. (2007). A SAS macro for parametric and semiparametric mix-

ture cure models Computer Methods and Programs in Biomedicine, 85, 173–180.

https://doi.org/10.1016/j.cmpb.2006.10.008

Coelho-Barros, E., Achcar, J., Mazucheli, J. (2015). Mixture and Non-mixture Cure Rate

Model Considering the Burr XII Distribution. In: Steland A., Rafajłowicz E., Szajowski

K. (eds) Stochastic Models, Statistics and Their Applications. Springer Proceedings in

Mathematics & Statistics. https://doi.org/10.1007/978-3-319-13881-7_24

Cox, D. (1972). Regression models and life tables. Journal of the Royal Statistical Society,

Series B, 34(2), 187-220. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x

Cox, D. (1975). Partial likelihood. Biometrika, 62(2), 269-276.

https://doi.org/10.1093/biomet/62.2.269

Cox, D. R. and Oakes, D. (1984). Analysis of Survival Data. Chapman and Hall, New York,

NY.

Crouchy, M., Galai, D., Mark, R. (2006). The Essentials of Risk Management McGraw Hill,

New York, NY.

https://CRAN.R-project.org/package=smcure
https://doi.org/10.1109/TIP.2012.2188811
https://ssrn.com/abstract=512624
https://doi.org/10.1002/sim.3481
https://doi.org/10.1016/j.cmpb.2006.10.008
https://doi.org/10.1007/978-3-319-13881-7_24
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1093/biomet/62.2.269


References 181

Crowley, J. and Hu, M. (1977). Covariance analysis of heart transplant sur-

vival data. Journal of the American Statistical Association, 72(357), 27-36.

https://doi.org/10.1080/01621459.1977.10479903

David, J. and Moeschberger M. (1978). The Theory of Competing Risks Griffin, London.

DeBoor, C. and Daniel, J. W. (1974). Splines with nonnegative B-spline coefficients. Math-

ematics of Computation, 28(126), 565-568. https://www.jstor.org/stable/2005928

Deshmukh, S. (2012). Multiple Decrement Models in Insurance Springer, India.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum Likelihood from Incomplete Data

via the EMAlgorithm. Journal of the Royal Statistical Society. Series B (Methodological),

39(1), 1-38. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x

Deng, Y., Quigley, J., Van Order, R. (2000) Mortgage termination heterogeneity and the

exercise ofmortgage options. Econometrica, 68(2), 275-307. https://doi.org/10.1111/1468-

0262.00110

Dirick, L., Claeskens, G., Baesens, B. (2015). An Akaike Information Criterion for Multiple

Event Mixture Cure Models European Journal of Operational Research, 241(2), 449-457.

https://doi.org/10.1016/j.ejor.2014.08.038

Dirick, L., Claeskens, G., and Baesens, B. (2017). Time to default in credit scoring using

survival analysis: a benchmark study. Journal of the Operational Research Society, 68(6),

252-665. https://doi.org/10.1057/s41274-016-0128-9

Dirick, L. Bellotti, T., Claeskens, G., Baesens, B. (2016). Macro-economic

factors in credit risk calculations: Including time-varying covariates in mix-

ture cure models. Journal of Business and Economic Statistics, 37(1), 40-53.

https://doi.org/10.1080/07350015.2016.1260471

Djeundje, V. and Crook, J. (2018). Incorporating heterogeneity andmacroeconomic variables

into multi-state delinquency models for credit cards European Journal of Operational

Research, 271(2), 697-709. https://doi.org/10.1016/j.ejor.2018.05.040

https://doi.org/10.1080/01621459.1977.10479903
https://www.jstor.org/stable/2005928
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/1468-0262.00110
https://doi.org/10.1111/1468-0262.00110
https://doi.org/10.1016/j.ejor.2014.08.038
https://doi.org/10.1057/s41274-016-0128-9
https://doi.org/10.1080/07350015.2016.1260471
https://doi.org/10.1016/j.ejor.2018.05.040


182 References

Djeundje , V., Crook, J. (2009). Dynamic survival models with varying coeffi-

cients for credit risks European Journal of Operational Research, 275(1), 319-333.

https://doi.org/10.1016/j.ejor.2018.11.029

Elorant. S. Lambert, P., Andersson, T., Björkholm, M., Dickman, P. (2014). The Application

of Cure Models in the Presence of Competing Risks A Tool for Improved Risk Com-

munication in Population-Based Cancer Patient Survival Epidemiology, 25(5), 742-748.

https://doi.org/10.1097/EDE.0000000000000130

Erlenmaier, U. (2011). Chapter 4 in The Basel 2 Risk Parameters Estimation, Validation, and

Stress Testing (2nd edition) Springer, New York, NY.

Farewell, V. (1982). The Use ofMixtureModels for the Analysis of Survival DataWith Long-

Term Survivors. Biometrics, 38(4), 1041-1046. https://www.jstor.org/stable/2529885

Farewell, V. (1986). Mixture models in survival analysis: are they worth the risk? Canadian

Journal of Statistics, 14(3), 257–262. https://www.jstor.org/stable/3314804

Financial Accounting Standards Board (2016). Financial Instruments—Credit Losses (Topic

326) No. 2016-13 Measurement of Credit Losses on Financial Instruments. FASB Ac-

counting Standards

Fine, P. and Gray, R. (1999). A Proportional Hazards Model for the Subdistribution of

a Competing Risk. Journal of the American Statistical Association, 94(466), 496-509.

https://doi.org/10.1080/01621459.1999.10474144

Fisher, L., Lin, D. (1999). Time-Dependent Covariates In The Cox Proportional-

Hazards Regression Model Annual Review of Public Health, 20(1), 145-157.

https://doi.org/10.1146/annurev.publhealth.20.1.145

Good, I. (1950). Probability and the Weighting of Evidence Charles Griffith, London.

Gray, R. (1988). A Class of K-Sample Tests for Comparing the Cumulative In-

cidence of a Competing Risk The Annals of Statistics, 16(13), 1141-1154.

https://www.jstor.org/stable/2241622

https://doi.org/10.1016/j.ejor.2018.11.029
https://doi.org/10.1097/EDE.0000000000000130
https://www.jstor.org/stable/2529885
https://www.jstor.org/stable/3314804
https://www.fasb.org/jsp/FASB/Document_C/DocumentPage?cid=1176168232528&acceptedDisclaimer=true
https://www.fasb.org/jsp/FASB/Document_C/DocumentPage?cid=1176168232528&acceptedDisclaimer=true
https://doi.org/10.1080/01621459.1999.10474144
https://doi.org/10.1146/annurev.publhealth.20.1.145
https://www.jstor.org/stable/2241622


References 183

Gu, Y., Sinha, D., Banerjee, S. (2011). Analysis of Cure Rate Survival Data Under Propor-

tional Odds Model Lifetime Data Anal., 17(1), 123–134. https://doi.org/10.1007/s10985-

010-9171-z

Hall, A. and Lundstedt, K. (2005). The Competing Risks Framework for Mortgages: Mod-

eling the Interaction of Prepayment and Default Risk Management Association Journal,

September. https://tinyurl.com/yxhptgqv

Halley, E. (1693). An estimate of the degrees of the mortality of mankind, drawn from

curious tables of the births and funerals at the city of Breslaw Philosophical Transactions

of the Royal Society of London, 17 https://doi.org/10.1098/rstl.1693.0007

Hayden, E., and Porath, D. (2011). Chapter 1 in The Basel 2 Risk Parameters Estimation,

Validation, and Stress Testing (2nd edition) Springer, New York, NY.

Heinze, G. and Dunkler, D. (2008). Avoiding infinite estimates of time-dependent

effects in small-sample survival studies. Statistics in Medicine, 27, 6455 6469.

https://doi.org/10.1002/sim.3418

Honore, B. E. and Powell, J. L. (1994). Pairwise difference estimators of cen-

sored and truncated regression models. Journal of Econometrics, 64(1-2), 241-278.

https://doi.org/10.1016/0304-4076(94)90065-5

Hosmer, D., Lemeshow, S., and May, S. (2008). Applied Survival Analysis: Regression

Modeling of Time to Event Data, (2nd ed.). Wiley-Interscience, Hoboken, New Jersey.

Hua, T. and Xiang, L. (2013). Efficient Estimation for Semiparametric Cure Mod-

els with Interval-Censored Data Journal of Multivariate Analysis, 121, 139-151.

https://doi.org/10.1016/j.jmva.2013.06.006

IASB. (2014). International Financial Reporting Standard 9. https://www.ifrs.org/issued-

standards/list-of-standards/ifrs-9-financial-instruments/

Im, J., Apley, D., Qi, C., Shan, X. (2012) A time-dependent proportional hazards survival

model for credit risk analysis. Journal of the Operational Research Society, 63(3), 306-321.

https://doi.org/10.1057/jors.2011.34

https://doi.org/10.1007/s10985-010-9171-z
https://doi.org/10.1007/s10985-010-9171-z
https://tinyurl.com/yxhptgqv
https://doi.org/10.1098/rstl.1693.0007
https://doi.org/10.1002/sim.3418
https://doi.org/10.1016/0304-4076(94)90065-5
https://doi.org/10.1016/j.jmva.2013.06.006
https://www.ifrs.org/issued-standards/list-of-standards/ifrs-9-financial-instruments/
https://www.ifrs.org/issued-standards/list-of-standards/ifrs-9-financial-instruments/
https://doi.org/10.1057/jors.2011.34


184 References

Joly, P., Commenges, D., and Letenneur, L. (1998). A penalized likelihood approach for

arbitrarily censored and truncated data: Application to age-specific incidence of dementia.

Biometrics, 54(1), 185-194. https://pubmed.ncbi.nlm.nih.gov/9574965/

Johansen, S. (1983). An Extension of Cox’s Regression Model International Statistical

Review, 51(2), 165-174. https://www.jstor.org/stable/1402746

Jorion, P. (2006). Value at Risk: The New Benchmark for Managing Financial Risk (3rd ed.)

McGrath Hill, New York.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data.

John Wiley and Sons, New York, NY.

Kaplan. E. and Meier,P. (1958). Nonparametric estimation from incomplete obser-

vations. The Journal of the American Statistical Association, 53(282), 457-481.

https://doi.org/10.1080/01621459.1958.10501452

Karush, W. (1939). Minima of functions of several variables with inequalities as side

constraints. [Master’s thesis, M.Sc. Dissertation. Dept. of Mathematics], Univ. of Chicago.

Klein, J., and Moeschberger, M. (2003). Survival Analysis Techniques for Censored and

Truncated Data (2nd ed.) Springer, New York, NY.

Kneib, T, and Fahrmeir, L. (2004). A mixed model approach for struc-

tured hazard regression Collaborative Research Center 386, Discussion, 400.

https://doi.org/10.5282/ubm/epub.1770

Kuhn, H. and Tucker (1951). Nonlinear programming. Proceedings of 2nd Berkeley Sympo-

sium. Berkeley, pp481-492.

Lam, J. (2003). Enterprise Risk management: From Incentives to Controls Wiley Finance.

Lessmann, S., Baesens, B., Seowd, H., and Thomas, L. (2015). Benchmarking state-of-the-

art classification algorithms for credit scoring: An update of research. The Journal of the

Operational Research Society, 247(1), 124-136. https://doi.org/10.1016/j.ejor.2015.05.030

Li, Y., Tiwari, R., Guha, S. (2007). Mixture Cure SurvivalModels with Dependent Censoring

Journal,69(3), 285-306. https://doi.org/10.1111/j.1467-9868.2007.00589.x

https://pubmed.ncbi.nlm.nih.gov/9574965/
https://www.jstor.org/stable/1402746
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.5282/ubm/epub.1770
https://doi.org/10.1016/j.ejor.2015.05.030
https://doi.org/10.1111/j.1467-9868.2007.00589.x


References 185

Liu, H. and Shen, Y. (2009). A Semiparametric Regression Cure Model for Interval-

Censored Data Journal of the American Statistical Association, 104(487), 1168-1178.

https://doi.org/10.1198/jasa.2009.tm07494

Lu, W. (2008). Maximum likelihood estimation in the proportional hazards cure model. Ann

Inst Stat Math, 60, 545-574. https://doi.org/10.1007/s10463-007-0120-x

Luptakova, I. and Bilikova, M. (2014). Actuarial modeling of life insurance using decre-

ment models Journal of Applied Mathematics, Statistics and Informatics, 10(1), 81-91.

https://doi.org/10.2478/jamsi-2014-0008

Luenberger, D. and Ye, Y. (2008). Linear and Nonlinear Programming, 3 ed. Springer, New

York, NY.

Ma, J. (2010). Positively constrained multiplicative iterative algorithm for maximum penal-

ized likelihood tomographic reconstruction. IEEE Transactions on Nuclear Science, 57(1),

181-192. https://doi.org/10.1109/TNS.2009.2034462

Ma, J., Heritier, S., and Lô, S. (2014). On the maximum penalized likelihood approach for

proportional hazard models with right censored survival data. Computational Statistics

and Data Analysis, 74, 142-156. https://doi.org/10.1016/j.csda.2014.01.005

Man, R. (2014). Survival analysis in credit scoring A framework for PD estimation Masters

Thesis, University of Twente, The Netherlands. https://tinyurl.com/y3ntqlph

Mantel, N. (1966). Evaluation of survival data and two new rank order statistics arising in its

consideration Cancer Chemotherapy Reports, 50, 163-170.

McNeil, A., Frey, R., Embrechts, P. (2005). Quantitative Risk Management Princeton

University Press.

Mohammad, K., Hirose, Y., Surya, B., Yao, Y. (2019). Efficient Estimation For The Cox

Proportional Hazards Cure Model Working Paper.

Moore, T. J., Sadler, B. M. and Kozick, R. J. (2008). Maximum-likelihood estimation, the

Cramer-Rao bound, and the method of scoring with parameter constraints. IEEE Transac-

tions of Signal Process, 56, 895-908. https://ieeexplore.ieee.org/document/4451293

https://doi.org/10.1198/jasa.2009.tm07494
https://doi.org/10.1007/s10463-007-0120-x
https://doi.org/10.2478/jamsi-2014-0008
https://doi.org/10.1109/TNS.2009.2034462
https://doi.org/10.1016/j.csda.2014.01.005
https://tinyurl.com/y3ntqlph
https://ieeexplore.ieee.org/document/4451293


186 References

Murphy, S. (1994) Consistency in a proportional hazards model incorporating a random

effect. Annals of Statistics, 22(2), 721–731. https://www.jstor.org/stable/2242287

Murphy, S. (1995) Asymptotic theory for the frailty model. Annals of Statistics, 23(1),

182-198. https://www.jstor.org/stable/2242406

Narain, B. (1992). Survival analysis and the credit granting decision, in Credit Scoring and

Credit Control, L. C. Thomas, J. N. Crook, D. B. Edelman, eds. Oxford University Press.

Nelson,W. (1969). Hazard plotting for incomplete failure data Journal of Quality Technology,

1, 27-52. https://doi.org/10.1080/00224065.1969.11980344

Nelson, W. (1972). Theory and applications of hazard plotting for censored failure data

Technometrics, 14(4), 945-966. https://www.jstor.org/stable/1267144

OED. (2020). Oxford English Dictionary Oxford English Dictionary. http://www.oed.com

Patilea, V., VanKeilegom, I. (2017). A General Approach for Cure Models in Survival

Analysis. arXiv: Statistics Theory, 1-33. https://arxiv.org/pdf/1701.03769

Peto, R., and Peto, J. (1972). Asymptotically Efficient Rank Invariant Test Proce-

dures Journal of the Royal Statistical Society. Series A (General), 135(2), 185-207.

https://doi.org/10.2307/2344317

Peng, Y. and Dear, K. (2000). A Nonparametric Mixture Model for Cure Rate Estimation.

Biometrics, 56(1), 237-243. https://www.jstor.org/stable/2677127

Pintilie, M. (2006). Competing Risks a Practical Perspective John Wiley and Sons, West

Sussex, England.

Prentice, R. L., Kalbfleisch, J. D., Peterson, A. V., Flournoy, N., Farewell, V. T. and Breslow,

N. E. (1978). The analysis of fa7ilure times in the presence of competing risks. Biometrics,

34(4), 541-554. https://doi.org/10.2307/2530374

Putter, H., Fiocco, M. and Geskus, R. B. (2007). Tutorial in biostatistics: com-

peting risks and multi-state models. Statistics in Medicine, 26(11), 2389-2430.

https://doi.org/10.1002/sim.2712

https://www.jstor.org/stable/2242287
https://www.jstor.org/stable/2242406
https://doi.org/10.1080/00224065.1969.11980344
https://www.jstor.org/stable/1267144
http://www.oed.com
https://arxiv.org/pdf/1701.03769
https://doi.org/10.2307/2344317
https://www.jstor.org/stable/2677127
https://doi.org/10.2307/2530374
https://doi.org/10.1002/sim.2712


References 187

R Core Team. (2020). R 4.0.0: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing. http://www.R-project.org

Ramsay, J. O. (1988). Monotone regression splines in action. Statistical Science, 3(4),

425-441. https://doi.org/10.1214/ss/1177012761

Ren, J., and Zhou, M. (2011). Full likelihood inferences in the Cox model: an empirical

likelihood approach Annals of the Institute of Statistical Mathematics, 63(5), 1005-1018.

https://doi.org/10.1007/s10463-010-0272-y

Rodriguez, G. (2005). Non-Parametric Estimation in Survival Models Princeton Lecture

Notes, A(B4), CC-DD6. https://data.princeton.edu/pop509/NonParametricSurvival.pdf

Royston, P. (2011). Estimating a smooth baseline hazard function for the Cox model Working

Paper. https://tinyurl.com/y6bkjx8g

Rutkowski, M., Tarca, S. (2015). Regulatory Capital Modelling for Credit

Risk International Journal of Theoretical and Applied Finance, 18(05).

https://doi.org/10.1142/S021902491550034X

SAS Institute Inc. (2020). SAS Software, Version 9.4. http://www.sas.com

Schoenfeld, D. (Yr1981). The asymptotic properties of nonparametric tets for comparing

survival distributions Biometrika, 68(1), 316-319. https://doi.org/10.2307/2335833

Siddiqi, N. (2005). Credit Risk Scorecards: Developing and Implementing Intelligent Credit

Scoring. Wiley and SAS Business Series.

Stepanova, M. and Thomas, L. (2002). Survival analysis methods for personal loan data.

Operations Research, 50(2), 277-289. https://doi.org/10.1287/opre.50.2.277.426

Sterne, J., White, I., Carlin, J., Spratt, M., Royston, P., Kenward, M., Wood, A., Carpenter,

J. (2009). Multiple imputation for missing data in epidemiological and clinical research:

potential and pitfalls British Medical Journal,338. https://doi.org/10.1136/bmj.b2393

Sueyoshi, G. (1992). Semiparametric proportional hazards estimation of competing

risks models with time-varying covariates Journal of Econometrics, 51(1-2), 25-58.

https://doi.org/10.1016/0304-4076(92)90028-P

http://www.R-project.org
https://doi.org/10.1214/ss/1177012761
https://doi.org/10.1007/s10463-010-0272-y
https://data.princeton.edu/pop509/NonParametricSurvival.pdf
https://tinyurl.com/y6bkjx8g
https://doi.org/10.1142/S021902491550034X
http://www.sas.com
https://doi.org/10.2307/2335833
https://doi.org/10.1287/opre.50.2.277.426
https://doi.org/10.1136/bmj.b2393 
https://doi.org/10.1016/0304-4076(92)90028-P


188 References

Sy, J. andTaylor, J. (2000). Estimation in aCoxProportionalHazardsCureModel. Biometrics,

56(1), 227-236. https://doi.org/10.1111/j.0006-341X.2000.00227.x

Thackham, M., and Ma, J. (2019) Exposure at default without conversion factors - evidence

from Global Credit Data for large corporate revolving facilities J. R. Statist. Soc. A, 182(4),

1267-1286. https://doi.org/10.1111/rssa.12418

Thackham, M. andMa, J. (2020). On maximum likelihood estimation of the semi-parametric

Cox model with time-varying covariates. Journal of Applied Statistics, 47(9), 1511-1528.

https://doi.org/10.1080/02664763.2019.1681946

Thackham, M. and Ma, J. (2020). On maximum likelihood estimation of competing risks

using the cause-specific semi-parametric Cox model with time-varying covariates – An

application to credit risk Journal of the Operational Research Society, xx(y), aaa-bbb.

https://doi.org/10.1080/01605682.2020.1800418

Therneau, T. M. (2019). A Package for Survival Analysis in R. (R package version 3.1-6).

https://CRAN.R-project.org/package=survival

Therneau, T., Crowson, C., and Atkinson, E. (2015). Using time dependent co-

variates and time dependent coefficients in the Cox model. R CRAN Vignette.

https://cran.rproject.org/web/packages/survival/vignettes/timedep.pdf

Tong, T., Mues, C., and Thomas, L. (2012). Mixture cure models in credit scoring: If and

when borrowers default. European Journal of Operational Research, 218(1). 132-139.

https://doi.org/10.1016/j.ejor.2011.10.007

Tong, T., Mues, C., Thomas, L. (2013). A zero-adjusted gamma model for mort-

gage loan loss given default. International Journal of Forecasting, 29(4), 548-562.

https://doi.org/10.1016/j.ijforecast.2013.03.003

vanHouwelingen, H. (2000). Validation, calibration, revision and combination of prog-

nostic survival models Journal, 19(24), 3401-3415. https://doi.org/10.1002/1097-

0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2

Vasicek, O. (2002). Loan portfolio value Cutting Edge, 160-162. Risk.net

https://doi.org/10.1111/j.0006-341X.2000.00227.x
https://doi.org/10.1111/rssa.12418
https://doi.org/10.1080/02664763.2019.1681946
https://doi.org/10.1080/01605682.2020.1800418
https://CRAN.R-project.org/package=survival
https://cran.rproject.org/web/packages/survival/vignettes/timedep.pdf
https://doi.org/10.1016/j.ejor.2011.10.007
https://doi.org/10.1016/j.ijforecast.2013.03.003
https://doi.org/10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2
https://doi.org/10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2
Risk.net


References 189

Wong, W. H. and Severini, T. A. (1991). On maximum likelihood estima-

tion in infinite dimensional parameter spaces. Ann. Statist., 19(2), 603-632.

https://doi.org/10.1214/aos/1176348113

Wong, G. Y. C., Osborne, M. P., , Diao, Q., Yu, Q. (2017). Piecewise Cox models with right-

censored data. Communications in Statistics - Simulation and Computation, 46()10),

7894-7908. https://doi.org/10.1080/03610918.2016.1255968

Wycinka, E. (2019) Competing Risk Models of Default in the Presence of Early Repayments.

Econometrica, 23(2), 99–120. https://doi.org/10.15611/eada.2019.2.07

Xu, J. and Scott-Long, J. (2005). Confidence intervals for predicted outcomes in

regression models for categorical outcomes. The Stata Journal, 5(4), 537–559.

https://doi.org/10.1177/1536867X0500500405

Xu, J., Ma, J., Connors, M. H. and Brodaty, H. (2018). Proportional hazard model estimation

under dependent censoring using copulas and penalized likelihood. Statistics in Medicine,

37(14), 2238-2251. https://doi.org/10.1002/sim.7651

Yin, G., and Ibrahim, J. (2005). Cure rate models a unified approach The Canadian Journal

of Statistics, 33(4), 559-570. https://doi.org/10.1002/cjs.5550330407

Yeh, A., Twaddle, J., Frith, M.. (2005). Reserve Bank Bulletin Reserve Bank of New

Zealand, 68(3), 1-12. https://www.rbnz.govt.nz/research-and-publications/reserve-bank-

bulletin/2005/rbb2005-68-03-01

Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially lin-

ear single index models. J. Amer. Statist. Assoc., 97(460), 1042-1054.

https://doi.org/10.1198/016214502388618861

Yu, B., and Tiwari, R. (2007) Application of EM Algorithm to Mixture Cure Model for

Grouped Relative Survival Data

Journal of Data Science, 23(11), 1733-1747. https://doi.org/10.1002/sim.1774

Zangwill, W. (1969). Nonlinear Programming: A Unified Approach. Prentice-Hall, New

Jersey.

https://doi.org/10.1214/aos/1176348113
https://doi.org/10.1080/03610918.2016.1255968
https://doi.org/10.15611/eada.2019.2.07
https://doi.org/10.1177/1536867X0500500405
https://doi.org/10.1002/sim.7651
https://doi.org/10.1002/cjs.5550330407
https://www.rbnz.govt.nz/research-and-publications/reserve-bank-bulletin/2005/rbb2005-68-03-01
https://www.rbnz.govt.nz/research-and-publications/reserve-bank-bulletin/2005/rbb2005-68-03-01
https://doi.org/10.1198/016214502388618861
 https://doi.org/10.1002/sim.1774


190 References

Zhang Z., Reinikainen J., Adeleke K.A., Pieterse M.E., Groothuis-Oudshoorn C.G. (2018).

Time-varying covariates and coefficients in Cox regressionmodels. Annals of Translational

Medicine, 6(7), 121. https://doi.org/10.21037/atm.2018.02.12

Zheng, D. and Lin, D. (2007). Maximum likelihood estimation in semiparametric regression

models with censored data. Journal of the Royal Statistical Society B, 69, 507-564.

https://doi.org/10.1111/j.1369-7412.2007.00606.x

https://doi.org/10.21037/atm.2018.02.12
https://doi.org/10.1111/j.1369-7412.2007.00606.x

	Dedication
	Acknowledgements
	Abstract
	Introduction
	Motivations - Quantitative Credit Risk Management
	Background and Motivations
	Expected Loss (EL) and Unexpected Loss (UL)
	Credit Risk Components - PD, EAD, LGD
	Probability of Default (PD)
	Estimating Credit Default using Survival Analysis

	Aims and Contributions
	Existing Approaches and Limitations
	Summary of Contributions - 2 Publications, 1 Manuscript


	Literature Review
	Background - Survival Data and Survival Analysis
	Survival Data
	Survival Analysis

	Literature Review - Models
	Single-Event Survival Analysis
	Semi-Parametric Cox Model - Baseline Covariates
	Semi-Parametric Cox Model - Time Varying Covariates
	Baseline Hazard Estimation
	Maximum Penalised Likelihood Estimation

	Competing Risk Analysis
	Mixture-Cure Analysis
	Estimation via Expectation-Maximisation
	Estimation via Other Methods


	Literature Review - Applications to Credit Risk
	Structure of This Thesis

	PAPER 1: On Maximum Likelihood Estimation of the Semi-Parametric Cox Model with Time-Varying Covariates
	Abstract
	Introduction
	The likelihood function
	Constrained optimisation
	Asymptotic Properties
	Results
	A simulation study
	Application 1 - Stanford Heart Data
	Application 2 - Credit Risk Data

	Conclusion
	Appendix: Hessian matrix

	References
	PAPER 2: On Maximum Likelihood Estimation of Competing Risks using the Cause-Specific Semi-Parametric Cox Model with Time-Varying Covariates – an Application to Credit Risk
	Abstract
	Introduction
	The likelihood function
	Results
	Simulation Results
	Application to Credit Risk Data

	Conclusion

	References
	Supplementary Material

	References
	PAPER 3: Maximum Likelihood Estimation of the Mixture Cure Semi-Parametric Cox Model – an Application to Credit Risk
	Abstract
	Introduction
	Maximum Likelihood Estimation
	The Likelihood Function
	Gradient Vector and Hessian Matrix

	Constrained Optimisation Algorithm
	Results
	Simulation Results
	Application to Credit Risk Data

	Conclusion
	Appendix A

	References
	Conclusion and Discussion
	Appendix - Implementation and Simulation
	Model Implementation - Cox Model with TVC
	Two Input data.frames
	Fitting a Model and Available Controls
	coxph_mlt()
	coxph_mlt.control()

	Exploring a Fitted Model
	summary.coxph_mlt()
	tidy.coxph_mlt()
	coef.coxph_mlt()
	residuals.coxph_mlt()
	predict.coxph_mlt()
	plot.coxph_mlt()
	predict.coxph_mlt()

	R Code

	Simulating Survival Data with TVC
	R Code

	Simulating Competing Risk Data with TVC
	Background
	Simulating Survival Time
	Analytical Inversion of H(t)
	Numerical Inversion of H(t)

	Simulating Event Type
	R Code

	Model Implementation - Mixture-Cure Model
	R Code

	Simulating Mixture-Cure Data
	R Code


	References

