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ABSTRACT 

The Mel-frequency Cepstrum Coefficient (MFCC), a technique designed initially for 

speech analysis, has in recent years become very popular in music emotion recognition 

projects. MFCC uses the Mel scaling method to simulate human auditory properties, 

logarithmic noise reduction techniques, and the Discrete Cosine Transformation (DCT) 

to generalise all salient features, without losing critical information. These techniques, 

while applicable to speech analysis, may not always be suitable for music analysis. We 

suggest, in Music Emotion Recognition (MER) analysis, spectral and temporal (which 

have a deep historical foundation) should be the more relevant features to use. 

We propose extracting three feature types, MFCC, Spectral, and Temporal, from the 

clips of songs in the ‘1000 songs’ dataset to train a simple Artificial neural network 

(ANN). The trained ANN model will subsequently be able to predict the emotion value 

of songs. The prediction error is calculated based on the predicted value and actual 

annotated value. The feature that produces the lowest prediction error is judged as the 

most suitable feature for MER. Our results show that spectral features produced the 

lowest error, whereas MFCC produced the highest prediction error; this suggests that 

MFCC may not be a suitable feature for MER. 
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1 INTRODUCTION 

1.1 Motivation 

Audio features extraction is a crucial technique in machine learning used by Content-

Based Music Information Retrieval (CBMIR). CBMIR is popular, in recent years, due 

to the high growth in audio and music demand in the mass media entertainment via the 

internet. With the proliferation of Songs/Movies Recommendation System to introduce 

services to the consumer based on their preference and mood. To recommend movies 

and songs based on a user’s emotion status is a new trend these days with the thrust of 

social media. At the current stage, it is almost impossible to create or understand human 

emotion by computer (algorithm). Music Emotion Recognition (MER) system provides 

a useful guideline and approaches towards the understanding of human emotion; 

subsequently, help in the development of humanised robots. Developers of these 

systems are desperate to find a suitable audio features extraction tool for the growing 

media market. With the widespread demand for audio features extraction, understanding 

the mechanism of the MFCC proved importance. 

1.2 Introduction of the Music Features 

Music can be fascinating, and not merely regarding the beautiful sounds of melodic 

arrangements. Music can make us feel emotional – sometimes delighted, other times, 

melancholic. How does music trigger our emotions? We will leave this question to 

music psychologists. In this paper, we attempt to discover the emotional quality of 

music via computing. It is not an easy task for a non-musician, as musicology and 

emotion in the context of psychology is an area of study vast in scope.  

We can discover some clues from the use of features that describe the characteristics of 

music. Music has many features, e.g. Pitch, Tempo, and Timbre. These features are 

concerned with the frequency of notes (pitch), the timing for when specific sound notes 

should be played (tempo), and the quality of the sound of notes (timbre). The style of 

music is not a feature; different composers, when creating music, choose to use a 

specific set of note patterns or a combination of features that is familiar to them and 

apply it to express emotions or moods. Another common practice by composers is the 

use of the Major mode to conduct ‘happy’ music, whereas the Minor mode is used for 

‘sad’ music. This practice has a long history that dates to ancient Greece when different 

music modes were employed to present a diverse range of expressions. Can we easily 

dissect music using these features to find evidence of the emotions therein?  



 

 

 

 

  

2 

1.3 Representing Emotions 

Emotions can be observed as unusual human behaviour. One would ask, why do 

humans have emotions at all? However, answering this question is not the aim of this 

study. In this research, we only require understanding the ‘representational form’ 

(Rep. Form) of emotions for measurement and computation purposes. Among the 

numerous psychological emotion models, the categorical model (CM) and the 

dimensional model (DM) apply to our study. The discrete model employs the actual 

wording related to emotion, e.g. ‘delighted’, ‘joy’, and ‘laugh’ to describe how 

emotions feel. The dimensional model uses valence and the arousal components, with 

assigned values (from -1.0 to 1.0) to represent emotion; for example, a smile in DM will 

be valence = 0.5 and arousal = 0.5.  

For a problem to be computable, variables (input and output data) for the said problem 

must be available in a quantised numerical value. All musical features and the emotional 

quantity were converted or extracted to a Rep. Form. Many musical features may not be 

available in a computable form, however, such as the style of music, and adaptation of 

the Major/Minor mode, the latter being a good indication of the emotions in music. 

Since this paper deals with sound as a media form of music, we can utilise acoustic 

physics processing techniques. In brief, the frequency aspect and the time aspect of 

sound, which we referred to as spectral and temporal properties, respectively, are 

provided in Rep. Form, thus rendering them computable. Pitch, tempo, and timbre 

belong to a spectral features group and are therefore included in the Rep. Form. 

To recognise emotion in music, we need the latter’s most representable features, as a 

variety of features may reflect different types of emotions. The options in this context 

generally revolve around either pitch spectrum features, time series features, or both. 

Moreover, it seems like common sense, as both features are related to acoustic physics, 

and therefore, related to music. Surprisingly, in many recent music research projects, a 

features extraction technique known as MFCC (Mel-Frequency Cepstrum Coefficient) 

is gaining popularity. 

 

1.4 About Machine Learning 

In recent years, machine learning (ML) techniques have become a fast-growing area in 

the field of computing. It represents promising technology that can potentially resolve 

many severe problems, e.g. those related to image recognition. With advancements in 

the development of machine learning – inspired by human intelligence – this area of 

research has branched off into a unique field known as artificial intelligence (AI). An 
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artificial neural network (ANN), a concept based on the human neuron network, is the 

critical component of AI. A large body of research has discovered that AI/ML can help 

to resolve abstract and complex problems, such as facial recognition, speech 

recognition, and pattern recognition problems. An ANN is designed to learn from input 

data and deduce a predictive model from the input data. This model is subsequently 

used to predict new outcomes for a new set of input data. 

1.5 Popularity of MFCC 

MFCC is well-recognised for its timbre texture and spectrum features, which are the 

highest features used in speech recognition. Many different sound analysis projects 

included MFCC as a primary feature set. The results achieved by Li and Chan (T. L. H. 

Li & Chan, 2011) in their music genre classification project, speech recognition project 

(Dave, 2013), as well as many others, are laudable. It raised the question, “What is the 

effect of audio quality on the robustness of MFCC and chroma features”, particularly in 

the context of music (Urbano, Bogdanov, & Herrera, 2014)? 

MFCC was initially developed for speech analysis (Davis & Mermelstein, 1980), and 

has since served as a state-of-the-art feature in speech research. The popularity of 

MFCC did not spread to music analysis until recently, likely due to its speech-oriented 

approach. Although music and speech share similarities, they are different in many 

ways. In human speech, the physiological structure of our trachea, throat, and tongue 

govern the quality of the voice, whereas, in most cases, instruments dominate the 

characteristics of a music piece. Simply stated, they are both spectra of a sound wave; 

however, music tends to have a broader spectrum range, while the speech spectrum is 

more clustered.  

Considering these differences, the real reason for the good results derived from using 

MFCC for music is not yet fully understood. An early paper (Logan, 2000) questioned 

the suitability of MFCC for music by examining the structure of processes included in 

the MFCC. The purpose of this study is to extend the research on Music Emotion 

Recognition by investigating the relationship between the components of music and 

emotion with the MFCC features. 

1.6 The following chapters of the thesis 

Music Features - Discuss the characteristic features involved in music that give us hints 

of emotions. Moreover, how the traditional understanding of the musical features is 

related to emotion. 

Emotion Models - Emotion is abstract and hard to understand. Be able to resolve with 

computing model, the basic structure and the psychological models, namely, the 
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Categorical and the Dimensional model are discussed. What the Valence and Arousal 

value in the models is? 

Mel-Frequency Cepstrum Coefficient - Theoretically, MFCC is a complicated formula; 

we broke down the processes and discussed the general concept involved. In each step, 

we illustrated with the graphical result of input sound wave in the processes to 

understand the transformation and the mathematical functions involved. 

Existing Work in MER - discusses some works using the more complicated Neural 

Network for MER, and the problems they are facing. Moreover, other projects using 

different options of MFCC to achieve a better result. Thus, raised the question if the 

MFCC is still suitable for musical analysis. 

The experiment - describes the approach, model and the procedures we used to test the 

MFCC, spectral and temporal features with a simple perceptron.  

Result and Discussion - summarised the observation of the result and discussion of the 

issues and the suitability in the use of the MFCC in MER. We concluded that it might 

not be the desirable features in comparison to the spectral and temporal features. 
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2 MUSIC FEATURES 

Music comprises groups of sound put together in a pattern based on the composer’s 

previous experiences. According to the active pattern, human listeners may or may not 

enjoy listening to a musical piece. The degree of enjoyment involved is different for 

many people, is influenced according to their cultural background, and their 

understanding of music. Music listeners are likely to experience music enjoyment if the 

sound is harmonised. 

2.1 Music features  

The tempo of the music is a good indicator of the excitement present in the music. Fast 

music can give people a feeling of significant excitement, perhaps that something is 

going to happen, whereas slower music tends to induce feelings of calmness, mystery, 

and sadness.  

The beat is also another important feature in music to control the mood of the music. It 

is the pulse of rhythm in music. It is usually the beginning of a bar (section of notes in a 

repeating sequence stressed and unstressed in loudness ("strong" and "weak" pattern ).   

A music genre is the property of music that provides clues to the emotions that 

correspond to the music; for example, ‘blue jazz’ is a representation of a type of 

despondent music. The genre is not a music structure; instead, it is like a specific 

category of music. Musicians generally use a set of conventional structures in their 

music, which shapes the properties of the genre. 

Slow tempo, low pitch, and low loudness level are associated with sad 

expressions(Juslin & Sloboda, 2010). However, none of these features can conclusively 

point to an emotion; instead, a blend of different features is needed. 

Kate Hevner (an expert in music psychology) showed that individual features are not 

enough for understanding emotion in music. Extraction techniques are needed that can 

summarise all features rather than individual features (Hevner, 1937). 

Other studies have shown that specific music structures arouse the same emotion in 

listeners (Meyer, 2017). 

2.2 The mysteries of the major and minor key 

The use of major and minor modes in Western music has a long historical evolution 

from its origins in Greek musical cultures. Musicians in ancient times used different 

https://en.wikipedia.org/wiki/Pulse_(music)
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modes to create a mood for the expression of emotions. The modern day’s major and 

minor mode originated from ancient Greek musical practice.  

The Major mode is linked with the positive characteristics of being dynamic, 

determined, defined, and more natural. It expresses joyfulness and excitement; it sounds 

sharp, hopeful, forward-looking, and happy. 

The minor mode’s characteristics are passive and depressing; it expresses sorrow, 

despair, grief, mystery, and melancholy. It sounds low, hopeless and sad – the negative 

of the major.  

Many musicians recognise that using major or minor mode is not the only factor 

involved in emotion recognition. Preferably, it is the overall effect of music that must be 

observed, inseparable from rhythm, harmony, melody, intensity, and tempo. Moreover, 

general emotional feelings cannot be apprehended in a single moment in time but as part 

of a sequence, influenced by what had immediately been heard previously (Hevner, 

1935).  

2.3 The style of music 

The style of music is a good indicator of emotion; for example, ‘blue jazz’ provides 

clues regarding the sadness of early slavery life for black Americans. The style of music 

is a complicated topic, even for well-trained musicians. It involves not only musicology 

but also the cultural background of the composers and listeners. For example, a Western 

European listener may experience significant difficulty appreciating Chinese music. The 

style is a problematic feature to extract; most musicians instead extract dedicated 

features and distinct patterns in music to indicate its style. 

2.4 Features believed to trigger emotion 

The following table lists musical features associated with different emotions. Tempo is 

typically regarded as the most important, but other factors such as mode, loudness, and 

melody, can also influence the emotional valence (positive/negative emotion) of music.  

 

 

 

 

 

https://en.wikipedia.org/wiki/Tempo
https://en.wikipedia.org/wiki/Mode_(music)
https://en.wikipedia.org/wiki/Loudness
https://en.wikipedia.org/wiki/Melody
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Table 1 - Musical Features associated with Emotions 

Structural 

feature 
Musical properties Associated emotions  

Tempo The speed or pace of the music. 

Fast tempo: happiness, excitement, 

anger. Slow tempo: sadness, 

serenity.  

Mode Type of scale 
Major scale: happiness, joy. 

Minor scale: sadness. 

Loudness 
The strength (hardness in volume) 

and amplitude of a sound. 
Intensity, power, or anger.  

Melody 
The incremental/decremental 

effect of a musical tone. 

Gradual and incremental harmonic 

change: happiness, relaxation, 

serenity. 

Sudden harmonic change: 

excitement, anger, unpleasantness. 

Rhythm 
The repeating pattern or beat of a 

song. 

Smooth/regular rhythm: happiness, 

peace. Rough/irregular rhythm: 

amusement, uneasiness.  

Varied rhythm: joy.  
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3 EMOTION MODELS 

3.1 The perception of emotion from music 

Musical expectancy refers to a process through which a listener can feel emotion when 

the regular pattern of music is interrupted. Regular progression of pitch (any spatial 

feature) induces a feeling of calmness and comfort. When this calmness is interrupted, 

our essential human alertness is triggered to manage the change. This alertness is part of 

our human emotion. For example, when experiencing fear as a result of perceived 

danger, we can react through the action of running away or remaining in where we are 

to face the danger (the flight or fight response). Leonard Meyer (Meyer, Kraehenbuehl 

& Meyer, 1961), a pioneering music emotion psychologist, linked this psychological 

behaviour to emotion and meaning in music. Meyer examined the structures and 

features of music that correspond to emotion. We can observe this from the melodies 

employed by Samuel Barber, known for creating the sadness of the music. Barber 

generally adopted simple melodies and lengthened the musical phrase to prolong a 

feeling of sadness. Then, suddenly, this peace is interrupted by shortening the phrase 

and introducing a change in feeling. This thrown-off-balance undermines the rational 

expectations of listeners (Larson, 2018). 

Ancient Greek musicians composed music based on modes; they believed each of these 

modes harmonised musical tunes with the sounds of nature, spiritual feeling, and 

internal human emotions (James, 1995). These modes are merely arrangements of tonal 

patterns and tonal intervals (“a concord of tones separated by unequal but carefully 

proportionated intervals”). Popular musical modes include Dorian, Phrygian and 

Lydian. These modes are meant to convey different types of mood and thus, elicit 

emotion. 

A standard definition of emotion is that it is human feeling corresponding to an internal 

or external stimulus. Happiness, love, fear, anger, sadness, and hatred are emotions that 

can arise because of experience, mood, a personality responding to a situation or 

scenario, what we observe, or a piece of music that we hear.  

Vast research has attempted to define emotions, but to date, there exists no definitive 

answer. As natural phenomena, it is difficult to capture all the underlying complexities 

of emotion into a single definition. Charles Darwin argued that emotion is a human skill 
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of survival (Darwin, 1872). We ‘fear’ danger, and as a result, we engage in the fight or 

flight response. 

3.2 Development of the emotions model 

In a music emotion recognition (MER) system, the primary difficulty is the measuring 

of emotions. To measure human emotion, researchers categorise the basic emotions we 

have and quantify emotion according to values. Both the categorical model and 

multidimensional approaches are popularly employed for identifying emotions (Shetty, 

Kasbe, Jorwekar, Kamble & Velankar, 2015; Shetty et al., 2015). 

Psychologists model emotions in two ways: dimensional and categorical/discrete 

models. The dimensional model (DM) is a more natural approach for quantification, 

whereas the categorical model (CM) is easier to understand. DM uses quantified values, 

whereas CM maps to actual words describing a feeling, e.g. ‘happy’, ‘fear’, ‘disgust’, 

and ‘angry’. 

3.3 Discrete model 

In 1935 study, Kate Hevner used a list of adjectives to define the distinct types of 

emotions from the listeners.  This list of emotion has since become the standard set of 

discrete emotions used by emotional studies. In the 1960s, the concept of emotions was 

further developed into six basic components or 256 types of emotions.  

Many argue that emotion is just the composition of the basic components that can be 

identified as happiness, fear, sadness, and anger.  

Silvan Tomkins (Tomkins, 1962) concluded that there are eight primary emotions: 

surprise, interest, joy, rage, fear, disgust, shame, and anguish. Any other emotion 

Tomkins classified as a combination of basic emotions. 

Charles Darwin is a well-known supporter of the basic emotions model. Paul Ekman 

(Sabini & Silver, 2005) and Carroll Izard (Juslin, 2018) argue that there are various 

similarities in the ways people across the world produce and recognise the facial 

expressions of at least six emotions.  

3.4 Dimensional model 

Valence refers to a feeling of pleasantness (positive) or unpleasantness (negative) about 

stimuli or a situation. Emotions are commonly associated with a negative value for 

anger and fear, and a positive value for joy and happiness. 

The value of valence is difficult to obtain; how do we evaluate a smile’s valence as 

being lower than that of laughter? How can the degree of grief be measured using a 

https://en.wikipedia.org/wiki/Silvan_Tomkins
https://en.wikipedia.org/wiki/Surprise_(emotion)
https://en.wikipedia.org/wiki/Interest_(emotion)
https://en.wikipedia.org/wiki/Rage_(emotion)
https://en.wikipedia.org/wiki/Fear
https://en.wikipedia.org/wiki/Disgust
https://en.wikipedia.org/wiki/Shame
https://en.wikipedia.org/wiki/Charles_Darwin
https://en.wikipedia.org/wiki/Paul_Ekman
https://en.wikipedia.org/wiki/Carroll_Izard
https://en.wikipedia.org/wiki/Anger
https://en.wikipedia.org/wiki/Fear
https://en.wikipedia.org/wiki/Joy
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quantified negative value? Derived from the observation of expressions made by facial 

muscle activity, new techniques such as the Facial Action Coding System and modern 

brain imaging can assist in obtaining the value of valence. 

Arousal measures the calmness or excitement level present in valence. In a dangerous 

situation, our body’s physiological reactions cause our palms to become sweaty and our 

heart to beat faster, situated us in a high-arousal emotional state. Arousal arises from 

our reptilian brain. The reptilian brain detects whether the situation is threatening or 

favourable, using our sensory organs (eyes, mouth, skin/hands). This triggers the fight 

or flight response, which originates from within our survival instincts. 

3.5 Combined model 

The two-dimensional circumplex model offers a means for combining the discrete and 

dimensional models in an ordinate-format; this provides a tool for characterising and 

converting the discrete emotion and the quantised value of emotion. 

In 1980, James Russell developed the circumplex model (Russell, 1980). This model 

suggests that emotions are distributed in a two-dimensional circular space, which 

includes Arousal and Valence. Arousal represents the vertical axis, and valence the 

horizontal axis, while the centre of the circle represents a neutral valence and a medium 

level of arousal. The different type of emotions in the discrete model is evaluated with a 

Valence and the Arousal Value and placed in the circle of the circumplex model. 

https://en.wikipedia.org/wiki/Facial_Action_Coding_System
https://en.wikipedia.org/wiki/Brain_imaging
http://www.tronviggroup.com/brain-science-and-marketing/
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
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Figure 1 - Circumplex model (James Russell, 1980). 
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4 MEL-FREQUENCY CEPSTRAL COEFFICIENT 

The MFCC is a feature representation popularly used in speech analysis. Davis and 

Mermelstein introduced the coefficient in the 1980s, and it remains a contemporary 

technique in the field of sound analysis. The reason for this is that MFCCs can represent 

sound better modelling the human auditory system. 

4.1 The mel-frequency cepstral coefficient MFCC  

MFCC is essentially a transformation, and re-grouping process like Cepstrum, except 

the Frequency for Cepstrum, is rescaled using the Mel conversion; thus, the name the 

Mel-Frequency Cepstral Coefficients. 

MFCC is defined as the following: 

𝑴𝑭𝑪𝑪(𝒌) =  𝐃𝐂𝐓( 𝒍𝒐𝒈𝟏𝟎|𝐃𝐅𝐓( 𝐌𝐞𝐥(𝐤) )|𝟐 )     Eq. 1 

 

𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑔𝑛𝑎𝑙       

DCT - Discrete Cosine Transformation 

 DFT - Discrete Fourier Transformation 

 Mel – Mel scaling 

Note that the above formula is almost the same as Cepstrum below, only that IFT(….) 

in the Cepstrum formula is replaced with DCT(…) and the signal k in DFT() is now 

Mel(k). 

4.2 MFCC is an amalgamation of these concepts/techniques 

Power Spectrum 

The power spectrum 𝑃(𝑘) for the signal 𝑆𝑖(𝑘) is given by:  

𝑷(𝒌) =
𝟏

𝑵
| 𝐃𝐅𝐓( 𝑺𝒊(𝒌) )|𝟐        Eq. 2 
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Fourier Transformation 

In acoustic physics theory, a sound wave can be decomposed into a spectrum of other 

higher frequencies. The standard process to decompose the sound is known as “Fourier 

Transformation” (FT). This spectrum represents the properties of that sound. Here the 

sound of the piano, C-Major chord, in a wave format (Figure 2) is decomposed to the 

spectrum (Figure 3) of different frequencies. We can see the different frequencies below 

the 5000 Hz, making up most of the C-Major chord. 

            

Figure 2 - C Maj Chord sound wave    Figure 3- C Major Chord’s spectrum 

(Above Figures created with a piano sound to Audacity (audio software)) 

Cepstrum 

In the 1963 paper by Bogert et al., titled with all strange name,  “The Quefrency 

Alanysis of time series for Echoes: Cepstrum pseudo-autocovariance, cross-cepstrum, 

and Saphe cracking”(B.P. Bogert, 1963), Cepstrum techniques were used for the first 

time in the detection of seismic echoes, a technique that is currently applied to many 

sound analysis applications. 

A Cepstrum is a value, c(k)  is the value by Inverse Fourier Transform (IFT) of the 

logarithm of the spectrum (Discrete Fourier Transformation (DFT)) of a signal, the 

formula of which is shown below:  

𝑪(𝒌) =  𝑰𝑭𝑻( 𝒍𝒐𝒈𝟏𝟎|𝐃𝐅𝐓( (𝐤) )|𝟐  )      

 Eq. 3 

where 

https://en.wikipedia.org/wiki/Logarithm
https://en.wikipedia.org/wiki/Power_spectrum
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k is the sample signal 

IFT = Inverse Fourier Transformation 

DFT = Discrete Fourier Transformation 

 

 

Figure 4 - Cepstrum of the C Major Chord 

(Figure is generated by the Audacity by input a piano sound of middle C Major Chord) 

Mel scaling 

Mel scale formulates the perceptual scale of the non-linearity of human auditory 

characteristics to the pitches in the human audible range. The human ear exhibits a lazy 

effect with higher sound pitches, where we are less sensitive to a higher pitch. A feeling 

of loudness appears to follow a Mel scaling curve as follows. This curve is linear in the 

low range but logarithmic in the high range. The term ‘Mel’ is derived from the word 

‘Melody’, to indicate that the scale is based on pitch comparisons. 

Essentially, 1000 mels equals 1000 hertz; a frequency lower than 1000 hertz increases 

linearly to meet the 1000 mel scale, whereas a frequency above 1000 hertz will slowly 

lose out to the Mel scale (see Figure 2). Four octaves on the Hertz scale above 500 hertz 

equal roughly two octaves on the Mel scale.  

A formula to convert f (Hertz) into m (Mel) is:  

http://dictionary.sensagent.com/Octave/en-en/
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𝒎𝒆𝒍 = 𝟐𝟐𝟗𝟓 𝒍𝒐𝒈𝟏𝟎 (𝟏 +  
𝒇

𝟕𝟎𝟎
)       Eq. 4 

It is plotted as follows: 

 

Figure 5 - Mel Scaling curve 

(Figure from https://en.wikipedia.org/wiki/Mel_scale) 

Because of the Mel-effect of our ear, we take a small window of periodogram bins and 

sum them up to calculate the energy exists in various frequency regions.  

As the frequencies go higher in the filters, we become less sensitive about variations. 

We are interested in roughly how much energy occurs at each spot. The Mel scale tells 

us exactly how to space our filterbanks and how wide to make them. 

 

Figure 6 - Mel Filtered Bank bin(Bello, 2013) 
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In figure 7, we can see how each of the filter banks in capturing the power spectrum in 

different frequency regions as follows. 

 

Figure 7- Mel filter Bank bin mask with the Power Spectrum 

(Figure from http://practicalcryptography.com/miscellaneous/machine-

learning/guide-melfrequency-cepstral-coeffcients-mfccs/) 

Discrete cosine transformation (DCT) 

A discrete cosine transform is a mathematical transformation process that is 

commonly used in image processing to compress a large size image into a smaller 

encrypted form, such as the “jpeg” file. 

The final step in MFCC is to compute the DCT of the log filter bank energies. As the 

Mel-filterbank bins are all overlapped; the filter bank data are strictly correlated with 

one another. The DCT decorrelates and compresses the data into a few coefficients; this 

eliminates the redundant information in the data.  
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DCT is a real-valued transformation, like the Discrete Fourier Transformation as in 

Cepstrum’s IFT. The IFT is replaced with the DCT, which approximates the IFT and 

compresses the data. 

Most of its energy is concentrated on a few low coefficients (effectively compressing 

the spectrum) 

𝑿𝒌 = ∑ 𝒙𝒏 𝒄𝒐𝒔 [
𝛑

𝑵
(𝒏 +  

𝟏

𝟐
) 𝒌]𝑵−𝟏

𝒏=𝟎    𝐤 =  𝟎 , … , 𝐍 −  𝟏.    Eq. 5 

Windowing/Framing 

Continuity of sound produced a large amount of data and required substantial 

processing.  Each different parts of sound can reflect different properties at a specific 

instant. So, it is common to use framing techniques on the signal, cut it into smaller 

pieces, for analysis.  

Depending on the circumstances, the overall effect is obtained for all the pieces and 

then summarised to get an idea about the ultimate effect of the sound.  

We can assume that frequencies in a small part of the signal are stationary over a very 

short period. Therefore, by doing a Fourier transform over this short time frame, we can 

obtain a good approximation of the frequency contours of the signal by concatenating 

adjacent frames. 

In some cases, we may want to emphasise sections of the signal to reveal to the not-so-

obvious feature in the signal. Alternatively, we are interested in a specific part of the 

signal, different shape of windowing can help to do that.  

For example, the use of the Hamming windowing to emphasise the middle section of a 

signal. 
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Figure 6 - Hamming Windowing 

(Above figure from https://haythamfayek.com/2016/04/21/speech-processing-for-

machine-learning.html) 

4.3 MFCC processes 

In practice, the MFCC formula is translated into the following processes: 
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Figure 7 - MFCC Overall process Block Diagram 

4.4 Why do we need MFCC?  

Features extraction 

The selection of features in machine learning (ML) is a critical process. ML relies on 

salient features data to deduce a predictive model. If the selected features are not 

reflecting the true nature of the problem, the predictive model is either unusable or can 

produce the wrong conclusions. However, what is the real nature of the problem?  In 

other words, how to select features related to the conclusion of the problem? In many 

cases, researchers must use some statistical techniques, such as correlation and 

covariance, to establish the relationship of features and the designated problems. In this 
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project, as illustrated, we have based on some historical understanding of music and 

emotion to decide the features, that is the pitch, tempo and the timbres of music. 

Segmentation 

Continuity of sound requires substantial processing. Different parts of sound reflect 

different properties at a specific instant. We need to use the framing techniques on the 

signal, cut it into smaller pieces, for analysis. The overall effect is obtained for all the 

pieces; this information is then summarised to get an idea of how much energy or the 

pattern exists in various sound regions.  

Noise reduction and filtering 

Noise in the signal represents a significant problem in signal analysis. The traditional 

approach for reducing the presence of noise in a signal is through filtering. Different 

types of noise will require different filtering techniques. In Cepstrum, the logarithmic 

operation is used to suppress the noise level, and to detect an echo. This operation may 

not be needed, as music timbre is indistinguishable from noise. 

The size of the spectrum vector 

When sound is decomposed into a spectrum, the size of the frequency vector grows by 

the range of the spectrum. We want to compress the size of the data but without losing 

too much of the timbre quality. Although in the compression process, there is some loss 

of the original data, the crucial data is retained. 



 

 

    

 

21 

5 TEMPORAL AND SPECTRAL PROPERTIES 

There is no easy measurement of the music features, such as, “Tempo”, “Melody” and 

“Rhythm” and “Timbre” from audio file. These terms are somewhat abstract with 

respect to a scientist who needs to measure more precise information. 

Luckily, with the techniques from signal processing, we can extract the temporal and 

spectral properties from the audio file. 

And we know that music sound wave is a superposition of different harmonics wave. As 

a result, the music sound that we receive is a spectrum (different pitches of sound). 

In acoustic physic, we can attribute sound wave with different properties as spectrum 

distribution or the shape of the spectrum distribution. From the distribution of the 

spectrum, we can thus interpret the essential music features as listed for further 

processing. 

Now let look at the properties of these Music Features: 

Beat is the regular pulse of sound in music, for example, when we count, tap or clap 

along with the music. Each of the sound pulses is usually similar in loudness. 

Tempo is the speed of the Beat in music, that is the Beats Per Minute (BPM). For 

example, at 120 BPM there will be 120 beats in one minute. Tempo governed the style 

of music terms, such as Slowly, Fast, Allegro, or Largo. A slow tempo is associated 

with sad expressions (Juslin & Sloboda, 2010).  

“Timbre depends primarily upon the frequency spectrum, although it also depends 

upon the sound pressure and the temporal characteristics of the sound" (Acoustical 

Society of America Standards Secretariat 1994). 

The word “Melody” in music refer to the sense of “tune”.  

And Rhythm is referring to the sense of ‘Beat’ and ‘Tempo”. 

Tonality in music involves organizing musical structure around a central note. 

Generally, any Western or non-Western music is periodically returning to a central, or 

focal tone. More specifically, tonality refers to the particular system of relationship 

between notes, chords (3 notes together), and keys (sets of notes and chords).  

https://en.wikipedia.org/wiki/Timbre#CITEREFAcoustical_Society_of_America_Standards_Secretariat1994
https://en.wikipedia.org/wiki/Timbre#CITEREFAcoustical_Society_of_America_Standards_Secretariat1994
https://www.merriam-webster.com/dictionary/compositions
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Music depends on both melody and rhythm. Melody adds timbre of music, whereas 

rhythm adds the pace of the song. 

For music to be computable, we have to use the temporal/spectral properties to represent 

the above properties. 

There are more music psychology researches which classify/quantify the relationship 

between each of music features and the temporal properties these components. We are 

not looking into the details of this here but just a summary of the effect of the music 

features. 

As we can see in the Existing work, the mixture of the features for use in the research is 

often not ascertained. 

5.1 Temporal features 

In the time domain approach, the change of pattern in the loudness or amplitude of 

sound signifies the properties of sound. It is referred to as the temporal properties.  

One example of a temporal property is zero-crossing rate (ZCR), which is the number of 

times the level of sound crosses over zero. ZCR measures the rate of loudness crossing 

over to quietness; in other words, it is counting sound pulses. The speed of the pulses is, 

therefore, the speed of the beats. So, it is a good indicator of Tempo. And we can see 

from Table 1 that Tempo is vital in expressing emotions. 

𝐙𝐂𝐑(𝐦) =  
𝟏

𝟐𝐍
 ∑

𝐍

𝟐

𝐧=−
𝐍

𝟐

|𝐬𝐠𝐧(𝐱(𝐧 + 𝐦𝐡)) −  𝐬𝐠𝐧(𝐱(𝐧 + 𝐦𝐡 −  𝟏))|  Eq.9 

Where,      𝑠𝑔𝑛(𝑥) = {    

1          𝑖𝑓 𝑥 > 0
0          𝑖𝑓 𝑥 = 0

−1         𝑖𝑓 𝑥 <  0   
 

5.2 Spectral features 

There are many spectral features; for example, the central frequency (centroid) of the 

spectrum, the highest frequency of the spectrum, and shape of the spectrum, are 

generally classified as the spectral properties.  

These spectral properties are useful for describing the timbre of music. 
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5.3 Spectral Centroid 

 

Spectral Centroid (SC) is associated with sound brightness and can indicate the type of 

sound, e.g. human voice or musical instruments. Human voice trend to cluster in a 

specific range referencing to a centroid frequency. Centroid can also be a quick 

summary of the music, such as saying, the G major is the key for a piece of music. 

SC is defined as: 

𝑺𝑪(𝒙) =
𝜮𝒌𝒇𝒌|𝑿(𝒙,𝒌)|

𝜮𝒌|𝑿(𝒙,𝒌)|
         Eq. 6 

 

5.4 Spectral bandwidth 

Spectral bandwidth (SB) is a measure of the range of the pitch in sound and can be 

used to characterise the asymmetry and distribution of pitches. Each individual 

instrument also tends to cluster around a specific range of pitches.  

SB is defined as: 

𝐒𝐁(𝐱) =
𝚺𝐤(𝐟𝐤−𝐒𝐂(𝐱))

𝟐
|𝐗(𝐱,𝐤)|

𝚺𝐤|𝐗(𝐱,𝐤)|
        Eq. 7  

5.5 Spectral Flatness 

The spectral flatness (SF) of the spectrum indicates a change in pitch, from a high 

pitch to a lower pitch, and vice versa. 

The constant maintenance of pitch usually represents the emptiness (the slow 

progression) of music. The sudden change of pitches also indicates something is 

happening. The music pieces make good use of expectancy, sudden change of key and 

timing, to create rhythmic moods.  

SF is defined as: 

𝐒𝐅(𝐱) =
(𝚷𝐤|𝐗(𝐱,𝐤)|)

𝟏
𝐤

𝟏

𝐤
𝚺𝐤|𝐗(𝐱,𝐤)|

         Eq. 8 

k = band number, K = total number of bands, x = signal 
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6 EXISTING WORK IN MUSIC EMOTION RECOGNITION 

With the advent of artificial intelligence architecture and the promise of self-learning, 

many music emotion recognition systems are employing artificial neural networks 

(ANNs) and getting good accuracy in predicting emotions. Malik et al. (2017) 

combined the recurrent neural network (RNN) (to deal with the time-series nature of 

music) and the convolutional neural network (CNN) (for feature pattern recognition 

power). They modified the design of stacked CNN and RNN for continuous prediction 

of emotion in the valence-arousal space. This modification reduced a significant amount 

of network parameters, and outperformed the advanced method in 2015 created by Li, 

Tian, Xu, Ning and Cai, 2016), who used a deep bidirectional short-term memory 

(DBLTSM) approach.  

Many published works often combine MFCC with other features such as temporal and 

spectral properties. Among the regular features used in MER, there is a search for new 

features that can recognise musical emotions. Arguably, MFCC has already 

embedded/summarised all the necessary information of music, in which case there 

should be no need to combine these musically related features. Researchers often must 

select between better features or more complicated models. It is the fundamental reason 

most researchers employ the standard features set (openSMILE, comprising 260 

features) to avoid having to choose potentially better features.  

The potential of using AI techniques to solve a number of problems is seen as a trend 

towards adopting more complicated models – from support vector machines (Shetty et 

al., 2015), to more recently adopting LTSM (X. Li et al., 2016), stacked RNN, and CNN 

(Malik et al., 2017), and multi-layered feed-forward artificial neural networks (Masood, 

Nayal, Jain, Doja & Ahmad, 2017). 

Despite improvements in the accuracy of these projects, the advanced model structure 

has given rise to some concerns regarding performance. A CNN model will take hours 

to train without a graphics processing unit (GPU). Most deep learning neural network 

architectures are resource hungry, both regarding required memory size and CPU 

number-crunching requirements. For example, we attempted conducting the handwritten 

digit recognition sample project (MNIST on TensorFlow) on a CNN (728 input, three 

hidden layers) with 60,000 images of numerical “digits”. The process took roughly 1.5 

hours to train, but with the help of a GPU, took only 15 minutes. 
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Despite the trend of using complicated neural network structures, Gonzalez (2013) 

suggests that the structure of the predictive model is not significant. A non-salient 

feature set will yield poor results, regardless of how good the model is (Gonzalez, 

2013).  

Gonzalez also points out that the dimension reduction approach (PCA) can be used in 

machine learning to reduce the full set of features, rather than choosing a smaller set and 

missing out on vital information. Gonzales chose three alternate feature sets instead of 

the MFCC, which were less computationally complex and performed better than the 

MFCC features. 

Another paper (Nalini & Palanivel, 2016) considered the use of the residual phase (RP) 

among MFCC features, which is often omitted. The residual phase is defined as the 

cosine of the phase function of the signal, derived from the linear prediction (LP) 

residual. Specific information present in the residual phase is compared to the 

information present in the current MFCC, increasing the emotion recognition 

performance (Nalini & Palanivel, 2016). MFCC alone can achieve a good result, above 

90%; the use of the residual phase method improved this performance to 96.0%, 99.0%, 

and 95.0%, using AANN, SVM, and RBFNN, respectively. 
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7 THE EXPERIMENT 

7.1 Introduction 

 

Traditionally, spectral and temporal features have been used to describe the acoustic 

properties of sound. These features are more accessible to calculate than MFCCs. 

Additionally, as noted in the previous chapters, we have listed the importance of pitch, 

tempo, and timbre to express emotion in music; we concluded that emotions are more 

related to the spectral and temporal properties.  

We hypothesize that the complexity of the MFCC may produce some adverse effects in 

an MER system. In the five MFCC’s processes, the logarithmic process might reduce 

the sensitivity of the music sound. The steps needed to compute Mel-filter banks had 

been motivated by the nature of human perception of voice signals. There may be no 

need for Mel-filter banks in music sound processing. The DCT is a complicated 

function which is sensitive to highly correlated inputs; we doubt it will cause some loss 

to the music timbres and pitch information. Moreover, the windowing implementation, 

such as the “Hamming Windowing” for the MFCC, is tailored explicitly for voice 

applications. Each of the processes adds some complexity to the operations and may 

cause a loss in the fidelity of the original sound data. 

Because the spectral and temporal properties are less complicated in comparison with 

MFCC, so we think the data distortion is not as bad; therefore, they should perform 

better in machine learning (regarding predicting emotional value). 

In this experiment, we will extract MFCC, spectral, and temporal features for each of 

the songs in the dataset. The individual features, or a combination of features, will be 

used to train a simple layer perceptron (a simple artificial neural network). The trained 

perceptron model will then be used to predict the result, i.e. the emotional value. Then 

we compare the prediction error of the three features, and the one with the lowest 

indicated prediction error is considered as the best feature. 

There are more complicated neural network configurations suitable for the proposed 

experiment. However, our primary goal is the comparison of musical features, not the 

neural network; therefore, we employed the most straightforward neural network. The 
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simple neural network eliminates the concern of having numerous parameters, as is the 

case for complex networks. 

7.2 Dataset and properties 

A 1000-song dataset (Soleymani, Caro, Schmidt, Sha, & Yang, 2013) was used, 

containing 45-second music clips randomly extracted from complete songs. The 45 

seconds of music clips were annotated using arousal and valence levels, on a nine-point 

scale. A fair share of the genre is selected to guarantee a more even distributed 

emotional value; because some specific genre is contributed to emotions. 

The dataset is annotated continuously and overall for arousal and valence dimensions. 

We are just using the overall emotion value (Soleymani et al., 2013). 

7.3 The annotation of emotion 

An important technique used by the 1000 songs dataset creators (Soleymani et al., 2013) 

is a psychologically-inspired video interface for collecting emotional feeling in multi-

dimensional value (valence-arousal) from listeners. The collected emotions were further 

corrected using a statistical method for any discrepancies. Other researchers, Panda, 

Malheiro, Rocha, Oliveira and Paiva (2013) created a new dataset by combining 

information from the content of songs (lyrics, title, comments) as a means for compiling 

the categorised emotions.  

In supervised Machine Learning methodologies, this is called the labelled value.  We 

used this annotated value and the predicted value to calculate the RMSE prediction 

error.  

7.4 Introduction of the Artificial Neural Network (ANN) 

Brain-Neurons are the basic information-processing units of the brain, as seen as Fig.8, 

is essentially consist of the dendrites, axon and terminals. 
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Figure 8 - Simplified Brain Neuron 

Like the Brain-Neuron, a Computational Neuron is a fundamental unit of the artificial 

neural network; it has multiple inputs (dendrites), the node (axon) and output 

(terminals) as shown in following.  

 

Figure 9 - A computational neuron 

  (Figure from https://galaxydatatech.com/2018/06/25/multi-layer-perceptron-model/) 

Artificial Neural Network is a computing concept based on the human brain’s neuron 

structure. A set of neurons are connected in a network fashion, allowing them to send 

information from one node to another. Neural Network is formed by connecting the 

output to the input of the next neuron as illustrated in Fig 9 (MLP network). 

Neuron/ Perceptron 

The concept of Perceptron was conceived in the 1950s and 1960s by the scientist Frank 

Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts on the Neurons. 

A neuron is the perceptron except the inputs are not weighted. 

Each perceptron is typically taken several weighted inputs, (x1, x2…), and produces a 

single output. All inputs are fed to an activation function to generate the output. 

 

http://en.wikipedia.org/wiki/Frank_Rosenblatt
http://en.wikipedia.org/wiki/Frank_Rosenblatt
http://scholar.google.ca/scholar?cluster=4035975255085082870
http://en.wikipedia.org/wiki/Warren_McCulloch
http://en.wikipedia.org/wiki/Walter_Pitts
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Generally, its output O(X) is formulated as 

O(X) = Act  (  ∑ ( Wi ∗  Xi )
𝑛

𝑖=1
  + Bias                  Eq.9 

where Act is the Activation Function of the node. 

Activation function controls the output of that node given an input or set of inputs.  

The two historically common activation functions are both Sigmoid, and Tanh is 

described by  

Some common activation functions are: 

The sigmoid function is logistic function has been widely used in machine learning 

basic configuration, especially for the logistic regression and some basic neural network 

implementations. 

Sigmoid(𝑥) =
1

1+ⅇ−𝑥                                                                              Eq.10 

Tanh function   

f(x) = tanh(x)                    Eq. 11 

tanh is also like logistic sigmoid but better. The range of the tanh function is from (-1 to 

1). tanh is also sigmoidal (s-shaped). The advantage is that the negative inputs will be 

mapped strongly negative, and the zero inputs will be mapped near zero in the tanh 

graph. 

Rectified Linear Units (ReLU) function 

In most DNNs, ReLUs is used in the hidden layers. A rectified linear unit output 0 if the 

input is less than 0, and if the input is greater than 0, the output is equal to the input. 

ReLUs' machinery is more like a real neuron in your body.  

𝑓(𝑥) = 𝑚𝑎𝑥(𝑥, 0)         Eq.12 

ReLU activations are the simplest non-linear activation function to use. When you get 

the input is positive, the derivative is just 1, so there isn't the squeezing effect you meet 

on backpropagated errors from the sigmoid function. ReLUs result in much faster 

training for large networks.  

Multi-layer perceptron (MLP) 

In Neural networks, nodes are typically arranged in multi-layers, known as Multi-layer 

perceptron (MLP). It is a type of feedforward artificial neural network which consists of 
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at least three layers of nodes: an input layer, a hidden layer and an output layer. Except 

for the input nodes, each node is a neuron that uses a nonlinear activation function. 

Layers are composed of some interconnected 'nodes' which is an 'activation function'. 

Input data are presented to the network via the 'input layer', which interface to one or 

more 'hidden layers' where the actual processing is done via a system of weighted 

'connections. The hidden layers then link to an 'output layer' where the answer is output 

as follows. 

 

 

Figure 10 - A Multi-Layer Training process 

The typical use of a neural network has the training and prediction processes. 

The neural network, when asked to resolve a problem, is also employing an iteration of 

try and error fashion to approximate the result, each time the weight is adjusted to 

produce an output. When the output is wrong, the weight value is revalued, and this is 

repeated until the output is correct or closer to the value.   

And this repetition of weight adjustment is repeated for each set of input until the output 

value matches the target result. Then, we referred to this process as training. We can use 

the trained network (the weight and the base are re-value) for prediction with the testing 

data. 



 

 

    

 

31 

In the training process, there are many initial values of the weight and the based value 

possible. Like the regression of a mathematical model, the coefficient of the variable is 

achieved for many iterations of the input data and the output data.  

After the network is trained, the node weighted values are used for new input data. This 

process is called the prediction; this is because the old training data characterize the 

resultant output of the new data.  

Purpose of the Backward Propagation 

To solve for the weights and the biases of the neural network become increasingly 

infeasible as the layers, and the complexity of the network grows. Backward 

Propagation (BP) is involved in the training phase for a neural network. This BP is used 

to improve the accuracy of the predicted result by re-adjusting the weights and biases in 

a backward manner. 

In training the neural network, there are the feed-forward phase and backpropagation 

phase. 

In the feed-forward phase we obtained the output of the network. Then, in the backward 

phase; the error with the predicted output and the expected output is calculated.  These 

discrepancies also called the loss derived with a Cost function. Then we go back and 

adjust the weights and biases so that we can reduce the error in the next try. As the error 

reduces the prediction accuracy improves. The error is reduced through what is called 

the gradient descent process in the working principle of BP. In training our network, 

the goal is to get the value of this cost function as low as possible. 

The working principle of BP. 

a. In the feed-forward phase, initial the network with random weight first. 

b. Then we calculate the cost function for the output. 

c. Propagate backward to obtain the Gradient Descent  

d. Update the new weight value with a lesser error. 

e. The new output is generated; the cost function is recalculated. 

These steps are repeated until the cost function is minimal.  

The weight is thus fixed. This is the trained network. 

Gradient descent is an update rule for adjusting the weights of the neural network to 

get us closer to the minimum cost function value we want. The objective of gradient 

descent is to move the error to the zero levels, we don’t want the error to be too positive 

or too negative. 
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The new weight value is the old weight subtracting the Gradient value. 

 

𝑤𝑛 = 𝑤 − 𝛼
𝜕J(W)

𝜕𝑤
        Eq. 13 

where  

the derivative of the Cost Function 
𝜕J(W)

𝜕𝑤
 is  gradient,  

𝛼 is the learning rate; wn is a new weight. 

In typical gradient descent algorithm, the Stochastic Gradient Descent can be used; 

which prevent the high value of the gradient or diminishing of the gradient as well. 

Cost function indicates ‘how good’ the model is in predictions for the output value “a” 

for a given value of the given set of value “b”. 

 

Cost = ∑ (𝑦′ − 𝑦)2𝑁

𝑖=1
       Eq. 14 

 

Cost denoted as J(W), we need to adjust the weights to achieve a minimum cost 

function value. 

There are many techniques for calculating the cost commonly referred to as the loss 

function, and they include root mean squared error and cross-entropy among others. The 

Gradient Descent is the standard optimization algorithms, iteratively work towards their 

optimal weight value. 

There are many algorithms use for the optimising Gradient Descent, for example,  

ADAM. Adam stands for Adaptive Moment Estimation. Adaptive Moment 

Estimation (Adam) is a method that computes adaptive learning rates for each 

parameter. 

How do Neural Networks Differ from Conventional Computing? 

The computational design can be quite different from the conventional sequential 

execution model. A sequential program can address an array of memory locations where 
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data and instructions are stored. In a sequential system, the computational steps are 

deterministic, sequential and logical, and the state of a given variable can be tracked 

from one operation to another.  

ANNs differ from a sequential system that it is non-deterministic. Instead of a complex 

central process (main program), many simple ones are used, to sum up the weighted 

inputs from other nodes.  

The ANNs network executes an operation for nodes in the network in a parallel manner; 

when the data present to the inputs, the resultant output is the immediate result of the 

network. For example, if “101010” present at the input, the result “1” is generated at the 

output. 

What Applications should Neural Networks Be Used For? Why is it better? 

Neural networks are universal approximators, and they work best if the system you are 

using them to model has a high tolerance to error.  

Although ANNs have success in the many fields of in the Machine Learning area, 

namely, pattern recognition. They work very well for non-linear problems, such as 

• capturing associations or discovering regularities within a set of patterns;  

• where the volume, number of variables or diversity of the data is very 

significant;  

• the relationships between variables are vaguely understood; or,  

• the relationships are difficult to describe adequately with conventional 

approaches.  

What are the disadvantages and disadvantages? 

Though ANNs have promising result in many severe problems. It has 

Disadvantages: 

1. Due to the complexity and the non-deterministic nature of the ANNs, the 

resultant model could sometimes hard to verify. Apart from defining the general 

architecture of a network and perhaps initially seeding it with a random number, 

the user has no other role than to feed it input and watch it train and await the 

output. In fact, it has been said that with backpropagation, "you almost don't 

know what you're doing". 

 

2. There are many software packages/libraries for users. Some freely available 

software packages (Tensorflow, Pytorch) do allow the user to examine the 
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progress of the training at regular time intervals, but the learning itself 

progresses on its own. 

 

3. Training of the ANNs is a very time-consuming process; the Back Propagation 

consists of thousands of epochs. 

Advantages: 

1. ANNs are used in the 'black boxes' approach; users do not need to know the 

actual structure of the network. This presents the ease of use for users, but it also 

makes tracing of the training model difficult, and the prediction of the result can 

be unexpected and unexplainable with the traditional concept. 

 

2. Due to the repetitive pattern of the neural network (each node structure is the 

same); it is favourable to run ANNs with parallel computing architecture. With 

each node implemented by a simple computation unit (namely, a summer); 

recently, the Graphical Processing Unit (GPU) architecture is quite suitable and 

getting popular. 
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7.5 Approaches/methods 

 

Features Extraction 

 

 

Figure 11 - Extraction different features from a Song 

We use the python utility to read the wave file of each song into a vector. 

The librosa library provides all the extraction utilities for MFCC features, the spectral 

features and the temporal features. 

Each sound wave signal was divided into roughly 3864 samples; each of a 10 milli-

samples window, features of these windows are extracted. 

For the centroid features, we used the middle section of the centroid frequency for each 

of the sound samples: centroid [0] [300:3500:2], which yielded 1600 centroid features. 

Similarly, we took the middle section of the zero-crossing rate for each of the sound 

samples: ZCR [0] [300:3500:2] which yield 1600 ZCR. 
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For the MFCC features, we concatenated the MFCC1 and MFCC2 of the middle section 

of the audio with 800 each to form the 1600 features. 

 

 

 

Figure 12 – Machine Learning Models for Training / Prediction of emotion 

1. Using Neupy library to design a single layer perceptron (SLP) (Untrained 

Perceptron in the diagram). 

2. Separate the dataset songs into half for training and a half to testing. 

3. Extract a feature set from training songs to train the Perceptron. 

4. The trained Perceptron is used to predict the emotion value from the testing 

songs’ features set. 

The prediction error (PE) is obtained from the labelled emotion value and the predicted 

emotion value from step 4 above. 

The input for the SLP is with 1600 feature values, (the diagram is shown as X1-X7) 

We repeated the four steps with each set of features, such as centroid, ZCR and MFCC 

into the SLP. Then all the PEs are recorded in the result table as follows. 
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Program and library setup 

We used the ‘librosa’ Python library to extract the features from the audio file. We were 

able to extract all MFCC, spectral features, and temporal features for our project. 

Scikit-learn is a machine learning package in Python, which we used for dimension 

reduction, e.g. principal component analysis. We used Neupy for the single-layer 

perceptron (artificial neural network). 

The hyper-parameter of the perceptron network 

net = algorithms.Adam(    [ 

        layers.Input(1600), 

        layers.Linear(1), 

    ], 

    step=0.1, 

    verbose=True, 

    show_epoch='4 times', 

    error='rmse', 

    shuffle_data=False, 

    decay_rate=0.01, 

    addons=[algorithms.WeightDecay] 

) 

Adam is an optimization algorithm is chosen because it provides a clean result in 

comparison with the traditional gradient descent procedure to update network weights 

iterative for the training data. 

Adam on optimisation has the following benefits for consideration: 

• Computationally efficient. 

• Little memory requirements. 

• Appropriate for non-stationary objectives. 

• Appropriate for problems with very noisy/or sparse gradients. 

• Require little tuning. 
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8 RESULTS AND DISCUSSION 

8.1 Results 

Table 2 - RMSE value of the Prediction Error 

 

 

  

Features used Arousal Prediction Error 
Valence prediction 

error 

MFCC1+2 5.3146 5.2021 

MFCC1+3 3.1849 2.0 

MFCC1+4 4.3308 4.6622 

   

Zero-Crossing Rate 

(ZCR) 
1.5101 1.271 

   

Centroid 1.7425 1.2165 

Contrast 1.929 2.1043 

Flatness 1.4704 1.2664 

Rolloff 1.5448 1.1488 

Bandwidth (BW) 1.5316 1.3993 

   

MFCC1 + Centroid 1.1735 1.2309 

MFCC1 + ZCR 1.1749 1.3838 

ZCR + Centroid 1.6661 1.2531 
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Table 3 - Prediction Error Comparison 

 

The MFCC features have the highest prediction Error in compare with the other features 

in both the Arousal and the Valence prediction. 

The Temporal features (ZCR) has a similar prediction error as with the spectral features 

(Centroid, contrast, flatness, Bandwidth). 

The MFCC combine with the spectral and the temporal features yield a similar result as 

the spectral and temporal on its own. Because of the high prediction error of the MFCC, 

so it has little contribution to the overall effect. Therefore the combination prediction 

error has a similar value without the MFCC. 

Individually, MFCC is not a desirable feature to use.  We just used the first four 

components only, for the sake of direct comparison of features. However, there can be 

20 MFCC components; we can use PCA to reduce to a few components; then it may be 

more useful. Similarly, we can use PCA on many different spectral features.  

The first few components (the first four) in MFCC usually held the more important 

information of the signal this is due to the DCT transformation is more prominent for 

the principal signal composite. The accuracy or discrepancy in the result is shown that 

the MFCC1 and is combined with the other MFCCs such MFCC1 with MFCC2 or 

MFCC4 etc. It cannot explain why MFCC1 + 3 seem to have lower error than the 

neighbouring two MFCC combination. 
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8.2 Discussion of the study 

The logarithm suppressed spectral information 

The logarithm function is introduced to reduce noise, but this will affect the timbre 

quality of music. One approach to avoid this is the use of temporal or spectral features 

directly, rather than the spectrum vector being logarithmic-ed, as in the Cepstrum. The 

most recent trend is to use the time-domain feature directly, without involving 

complicated processing, and not using the Fourier Transformation at all. 

Mel scale may not be suitable for music 

The Mel scale may not be the correct auditory transformation to use, as we know that 

high pitches are generally the signature of an agitated emotion. The aim of music 

features extraction is not to filter out the more delicate details in sound or distort distinct 

features. 

In Western music, the equal-tempered scale (established by Bach) is generally used, 

which divides an octave into 12 equally spaced semi-tones. The octave interval 

corresponds to frequency doubling, and semi-tones that are equally spaced; thus, 

ascending one semi-tone multiplies the frequency by the twelfth root of two, or, 

approximately 1.059. The use of Mel scaling will distort the sense of even spacing in 

the equal-tempered scale. 

The dimensional reduction causes some loss 

The use of DCT to compress the information by keeping the crucial part of the 

information; it presents some losses to the details of timbre. Although the data 

dimension is substantially reduced, the twist and turn of rhythmic and tonal changes are 

lost. The composer often used these tonal changes to represent the delicate emotions. 

Redundant with spectral and temporal 

MFCC has been shown to correlate with spectral and temporal features (Logan, 2000). 

Therefore, it may be redundant to use MFCC with either spectral or temporal features. 

The missing part of MFCC  

MFCC is only the real number part of Cepstrum; however, there is also a phase part of 

Cepstrum, which can be useful for music analysis (Nalini & Palanivel, 2016). There are 

not many projects looking to use phrasal part of MFCC. The audio properties can spread 

throughout the MFCC components, which can be of 20 components; the first few 

components (the first four) usually held the more important information of the signal 

this is due to the DCT transformation is more prominent for the principal signal 
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composite. The accuracy or discrepancy in the result is shown that the MFCC1 and is 

combined with the other MFCCs such MFCC1 with MFCC2 or MFCC4 etc.  

Human factors  

The MFCC may be suitable for machine learning projects that do not need to interpret 

the meaning of the input features. In MER, it makes more sense to use spectral and 

temporal features, which are related to musical features. People relate to real musical 

features (as shown in Table 1), while MFCC has no musical meaning. It will always 

cast doubt on its validity in the context of music analysis. 

Problem with dimension reduction 

Many researchers do not believe that MFCC is a Principal Components version of all 

the critical features; therefore, also, extra features are combined with MFCC in the 

features engineering process. Researchers have, in the past, using the full set of musical 

features (OpenSMILE, 260 features), which have overlapping characteristics. They do 

not contribute to the machine learning’s predictive model, but rather, create extra 

overhead in the machine learning process. The use of principal component analysis to 

reduce the size of spectral and temporal features can achieve the same effect. In this 

experiment, we used the PCA to reduce the size of the features set and Python’s slicing 

to reduce the size of the feature. With reduced features, there is no need for a 

complicated architecture, such as a convolutional neural network, and a simpler 

prediction model can be used. MFCC can have up to 20 components, and it can be 

challenging to decide how many to use. For speech, the first few components are 

generally applied; for music, however, this number is more significant. 

The relationship between human voice and music  

According to the super-expressive voice theory (Juslin & Sloboda, 2010), what makes 

music expressive, for example, the sound of a violin, is the fact that it sounds very 

similar to the human voice; at the same time, it can move far beyond what the human 

voice can achieve in terms of speed, intensity, and timbre. For example, if human 

speech is perceived as ‘angry’ when it has a rapid rate, deep intensity, and a harsh 

timbre, a musical instrument can sound extremely ‘angry’ at an even higher speed, 

louder intensity, and a harsher timbre. The differences in speech and music require 

different treatments of sound signals. We cannot merely blindly use MFCC in music 

analysis, as in speech analysis.  
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Machine learning aspect 

Due to the limitation in machine learning, to reduce the numbers of the input features is 

preferable. The Discrete Cosine Transform (DCT) was used to compress the features 

data size. Given deep neural networks can accept a more significant number of features, 

(DCT) is no longer a required step in compression of the data. 

Other researchers seemed have better result with MFCC 

The argument here is that the MFCC have 5 processes involved; each of these processes 

would have reduced the fidelity/quality of the salient properties for the later analysis.  

Although the MFCC has lost the fidelity of the original properties in the music, it still 

kept the essential part of the music information for analysis.  

This may be the contribution of the Non-linearity of the more complicated Neural 

Network; whereas the perceptron in this experiment is linear. 

In further work, we suggest repeating this problem with a more complicated neural 

network to pick up the self-learning capabilities of the network. 
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8.3 Future Works 

 

1. We can further amplify the result obtained by using a complicated neural 

network. So, we will propose a new set of experiments in which the 

perceptrons are replaced by a 2-layer neural network with, perhaps, 20 or 

50 hidden nodes. This will inspect if MFCC flavour the non-linearity of a 

more complicated network. 

 

2. To confirm that MFCC is more flavour in speech, we will repeat the 

same experiment but with speech sound files. 

 

3. Next we will explore the use of the double-stacked CRNNs, (Malik et al., 

2017), to predict Valence and Arousal concurrently; this will put the co-

relation of the two in scope. 

 

4. Further, this approach can be extended into multiple stacked CNNs to 

include other components of emotion, namely, “motivation” and 

“jealousy”. Since many have argued that emotion is not merely just 

Valence and Arousal. 

 

5. Using speech to identify emotions. All the experiment setup here is also 

for ready investigating emotion in speech as well. As mentioned, MFCC 

was initially been designed for speech. So, instead of feeding the audio 

musical wave file as input; the audio speech file can be applied directly.  

 

6. Using facial imaging to identify emotions. The experiment here also is 

repeated with images files for a different set of features extraction. 
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