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Abstract 

Autofluorescence imaging plays a special role in cancer detection, as it is capable 

of recognising aspects of the chemical composition of tissue based on spectral 

signatures of naturally fluorescent compounds. Various components naturally present 

in cells and tissue have auto-fluorescence properties, including Porphyrins (PPIX), 

Nicotinamide adenine dinucleotide (NADH), and Flavins, whose contents are 

modified in cancer due to a transformation in cell metabolism. In particular, a lack of 

iron or ferrochelatase in tumours results in a change of PPIX concentration relative to 

the normal host tissue. Thus, quantification of these components and studying their 

variation provides valuable insights into the diagnosis and characterisation of cancer 

cells and tissue. 

Conventionally, auto-fluorescence imaging technology has been limited to a few 

costly channels (n<4) employed in some microscope methodologies such as 

fluorescence lifetime imaging (FLIM). Consequently, these technologies can monitor 

only a limited number of fluorophores. However, in this study, a newly designed 

spectral imaging microscope that employs tens of different channels (n=38) was used. 

This system uses light excitation with a number of narrowband ranges of wavelength 

and collects the native fluorescence emission of the sample at specific wavelengths. A 

combination of excitation /emission wavelength bands forms a spectral channel, and a 

number of such channels (n=38) were used in this work. The sample is imaged in each 

of these channels, to acquire separate spectral images. This represents an advance over 

traditional auto-fluorescence imaging systems. The availability of multiple channels 

makes it possible to survey the overall biochemical composition of the tissue, in 

addition to detecting specific markers to identify the tissue state. 

First, the newly-designed non-invasive auto-fluorescence multispectral imaging 

methodology was applied to detect Ocular surface squamous neoplasia (OSSN), with 

a view to a future clinical ophthalmological application. The aim was to distinguish 

between normal and neoplastic tissue in fixed human samples and sophisticated data 

analysis was applied to meticulously extract the spectral signature. Two different 

classification frameworks were deployed, namely intra- and inter-patient 

classification, to consider aspects of patients’ variability and quantify the spectral 
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signature of OSSN. Using machine learning methods, an approach was also introduced 

for objective assessment of boundary detection. This technique creates a 

false colour map which can be rapidly generated in quasi-real time and used for 

intraoperative assessment. The neoplastic boundaries predicted by employing machine 

learning methods were validated and assessed by an anatomical pathologist. The 

approach introduced in this study has the potential to reduce the incidence of eye 

biopsies, prevent therapy delays and make treatment more effective. 

Using such cutting-edge technology in auto-fluorescence imaging led us to 

employ a number of channels simultaneously to diagnose or monitor diseases with 

high accuracy. However, generating a large dataset based on tens of spectral images 

may also increase the possibility of having irrelevant channels which carry very little 

discriminatory information for a specific diagnostic application. Consequently, such 

multispectral imaging needs to be optimised in terms of the number of channels. 

Different known and unknown factors may influence the usefulness of the channels 

for a specific application, which cannot be determined by prejudgment. Hence, the best 

way for channel selection is to employ all of the channels for the detection and then 

determine which ones are the most relevant channels. In this study, an advanced 

methodology using a combination of swarm intelligence and cluster analysis was 

developed to discover rich and informative spectral channels for differentiating normal 

and diseased (OSSN) tissue.  First, discrimination analysis was applied to find normal 

and diseased clusters and then a criterion function was defined to minimise the within-

cluster variance while maximising the between-cluster variance. Such a criterion 

function was optimised using three different swarm intelligence methodologies 

including particle swarm intelligence (PSO), differential evolution (DE) and ant 

colony optimisation (ACO). Finally, depending on the required accuracy and criticality 

of the application, the richest subsets with a few channels were proposed (5 channels). 

Optimising the number of channels resulted in more efficient instrumentation in terms 

of equipment (5 out of 38 channels ), acquisition time (80% less acquisition time) and 

computation complexity. 

Moreover, the metabolic heterogeneity of melanoma cancer cells and fibroblast were 

considered in this study. Multi-spectral auto-fluorescence imaging was employed for 

evaluation of melanoma cells and fibroblast in order to produce discriminative 

information. Unlike typical auto-fluorescence imaging techniques that consider only a 
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few features, a variety of biologically relevant quantitative information was extracted 

from spectral images. Such a powerful analysis helped capture different aspects of the 

spectrum in a single cell resolution. Different features including intensity, first order 

and second order features, textural features, and different statistical measures of pixel 

values were quantitatively analysed. After selection of the most indicative features, a 

discriminative analysis was undertaken to distinguish melanoma cells from fibroblast 

efficiently. This was then followed by an examination of melanoma cells derived from 

a patient under treatment. Using unsupervised data processing, spectral features from 

the channels were de-correlated based on the principal component analysis (PCA). 

Then the data were quantitatively assessed using hierarchical clustering. 

Consequently, this study also successfully demonstrates (AUC>0.9) the possibility of 

obtaining information about melanoma cells and their environment to monitor their 

behaviour and discriminate them from normal skin cell types. Such a methodology 

may open a new way for cell therapy, regenerative medicine, personalized 

immunotherapy and cancer treatment.  
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Chapter 1: THESIS OVERVIEW 1 

Chapter 1: THESIS OVERVIEW 

This chapter outlines the background (section 1.1) and context of the research, 

and its purposes (section 1.2). Section 1.3. describes the significance and scope of this 

research. Finally, section 1.4. includes an outline of the remaining chapters of the 

thesis. 

1.1 BACKGROUND 

When cells (or tissues) are illuminated by specific wavelengths, they become excited 

and produce emission light which is called autofluorescence. Autofluorescence is 

emitted by endogenous (native) fluorophores which are present within cells or tissues 

naturally [1]. Cells and tissues contain many native fluorophores such as 

Protoporphyrin IX (PPIX), reduced nicotinamide adenine dinucleotide (NADH), 

Flavins, colognes. Fortunately, these components significantly contribute to cell 

metabolism and can, therefore, deliver an autofluorescence signature to evaluate 

biological conditions [2, 3]. Such a concept has been utilised in autofluorescence 

microscopy, which has helped detect the complex biological interactions and visualise 

cellular structures[4, 5].  

   Autofluorescence imaging (AFI) is an imaging technique that can capture the 

autofluorescence spectra of native fluorophores[6, 7]. Mainly, autofluorescence 

concept is used in biology as a non-invasive diagnostic and evaluation tool [8], which 

can be utilised as a real-world technology and also is an appropriate research tool to 

assist in learning about molecular interactions and mechanism [5, 8, 9]. Such 

technologies can be employed with no staining or preparation of the sample and can 

be used to study intact living cells or tissues with no possible artefactual side effects 

made by introduced chemicals. 

Autofluorescence application in health science is quite novel although 

autofluorescence phenomenon had been discovered for a long time [10]. 

Conventionally, auto-fluorescence imaging technology has been limited to a few 

costly channels employed in some microscope methodologies such as fluorescence 

lifetime imaging (FLIM). Consequently, these technologies can monitor only a limited 

number of fluorophores. .Recently, new equipment such as advanced cameras and 
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computational power have facilitated auto fluorescence applications in the medical 

environment with advanced technology[9].  

The current thesis employed a cutting-edge technology called multispectral 

autofluorescence imaging developed in our group recently[9, 11]. Multispectral 

autofluorescence imaging is cost-effective instrumentation as it uses LED to excite the 

sample rather than expensive lasers and employs tens of distinctive spectral channels 

to study the biological condition of cells or tissues[11]. This represents an advance 

over traditional auto-fluorescence imaging systems. The availability of multiple 

channels makes it possible to survey the overall biochemical composition of the tissue, 

in addition to detecting specific markers to identify the tissue state.  

Such technology advancement and previous promising results obtained in our group 

such as finding different cell subpopulations[9, 11] and ability to detect various 

compartments of the cells[9] inspired us to modify the technology further and apply it 

for more critical applications such as cancer characterisation and detection. In this 

study, we investigated two cancer types including eye surface neoplasia[12, 13] and 

melanoma (skin cancer)[14-16] where our technology can be simply translated for 

real-world applications as these diseases grow on the surface of the eye and skin where 

taking spectral images are straightforward compared to some organs such as stomach 

.In this study, the modified multispectral autofluorescence technology is demonstrated 

by imaging ex vivo human ocular tissue (normal and neoplasm) and also cells derived 

from human melanoma tumours. 

1.2 STATEMENT OF THE PROBLEM 

Early cancer detection is highly significant to improve patients’ chance of 

survival and their life quality[17, 18]. Generally, signs of cancer in the early stages are 

conventional[19, 20]. Therefore, clinicians need to make a reliable decision based on 

histopathology analysis, followed by biopsies. Unfortunately, biopsy is an imperfect 

approach due to several reasons: depending on skills and experience of the clinician to 

sample the tissue, biopsy can be subjective[20]. Biopsy tissue may fail to collect the 

diseased tissue, especially for sampling small tumours, and, therefore, the sample may 

show to be free of cancer incorrectly[21]. In addition, Histopathology assessment is 

time-consuming and cannot be performed easily for cancer margin assessment[20, 22].  

Therefore, an autofluorescence imaging diagnostic technique which is cost-

effective, potentially free of staining, and able to be performed in the clinic for real-
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time cancer detection and margin delineation is highly desirable and can have a 

significant impact, especially in ophthalmology field. In addition, such a technique is 

desirable in the cancer research field. The opportunity of gaining information about 

living cancer cells in a label-free manner can be significant for precise early detection, 

refining current therapies and also discovering innovative treatment procedures [23-

27].  

In addition, the autofluorescence multispectral imaging is quite new, so there are 

several gaps which are needed to be explored in terms of the instrumentation and data 

analysis. Although tens of spectral channels can be employed in multispectral imaging, 

the number of channels need to be wisely selected and optimised depending on the 

application to facilitate translating the technology for a real-world application. In 

addition, data analysis in multispectral images is challenging. Multispectral imaging 

provides a big volume of data which may be interfered by different noises. Therefore, 

a comprehensive data analysis methodology needs to be employed to extract rich and 

valuable information from spectral images for cancer characterisation. Moreover, 

sophisticated data analysis method has been applied throughout this thesis to extract 

the informative features from the spectral images. 

1.3 SIGNIFICANCE AND NOVELTY  

This thesis modified the multispectral imaging further in terms of illumination 

and filter arrangement to make the technology specialised for cancer detection and 

evaluation. This system uses light excitation with a number of narrowband ranges of 

wavelength and collects the native fluorescence emission of the sample at specific 

wavelengths. A combination of excitation /emission wavelength bands forms a 

spectral channel. In this study, 38 channels were arranged, which capture various 

fluorophores, especially the cancer biomarkers. To acquire separate spectral images 

and document the colour of sample, samples are imaged in each of these channels.  

This research study has focused on three main contributions after establishing 

the setup and modify the newly-designed auto-fluorescence multispectral imaging 

methodology. First, the customised non-invasive auto-fluorescence multispectral 

imaging methodology is applied to detect and delineate Ocular surface squamous 

neoplasia (OSSN). There is a gap for non-invasive OSSN detection using 
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autofluorescence.  Such technology can have a significant impact in the ophthalmology 

field as described in Chapter 4:.  

Secondly, this study improves the technology one step further for real wold 

translation. In fact, the technology needs to be optimised further for OSSN detection 

in terms of the effective channels to facilitate industrial translation. Using such cutting-

edge technology in auto-fluorescence imaging led us to employ some channels 

simultaneously to diagnose or monitor diseases with high accuracy. However, the 

effectiveness of a lower number of channels needs to be evaluated to find an 

opportunity for optimising the system as described in chapter Chapter 5:.  

Third, the modified technology is evaluated on melanoma cells. So metabolic 

heterogeneity of melanoma cancer cells and fibroblast were considered in this study. 

Multi-spectral auto-fluorescence imaging was employed for evaluation of melanoma 

cells and fibroblast in order to produce discriminative information including a variety 

of biologically relevant quantitative information. This study also demonstrates the 

possibility of obtaining information about melanoma cells when they are excised from 

a patient under treatment as described in Chapter 6:.   

Multispectral imaging produces a big volume of information about a sample. 

Consequently, this information needs to be best analysed to characterise cancer cells 

or tissues accurately. This study gives information about the imaging protocols and the 

way to process images and minimise the random or systematic errors which affect the 

spectral images. Data analysis were performed in this thesis by univariate analysis, 

multivariate analysis, and artificial intelligence. In fact, in-depth data analysis makes 

multispectral auto-fluorescence imaging a more powerful tool for the detection and 

evaluation of cancer cells or tissues. 

 

1.4 THESIS OUTLINE 

This thesis has been written in a thesis by manuscript format and includes 7 chapters. 

Chapter 1 outlines a general introduction and the motivation of this study.   Chapter 2 

investigates the concept of autofluorescence and describes the basic biology related to 

the autofluorescence. The various native fluorophores which have been mostly used 

as cancer biomarker are described and finally reviews various cancer types which have 

been characterised by autofluorescence concept. 
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Chapter 3 provides the details of the multispectral system employed in this study. The 

excitation and emission channels which are specified with a full description in the first 

part of the chapter. Then, various random or systematic noise which may interfere with 

the spectral channel and the techniques to treat them are outlined. The pre-processing 

strategy to prepare the spectral channels is elaborated in this chapter. 

Chapter 4 presents the application of technology in the detection of ocular 

surface squamous neoplasia using multispectral autofluorescence imaging. This 

chapter contains the revised manuscript and answers to reviewers. Firstly, section 4.1 

describes the current methodology for OSSN detection and the challenges leading us 

to apply the technology in the field of ophthalmology. Section 4.2 and 4.3 provides the 

details related to the patients, a brief description of the instrumentation and details of 

frameworks, data analysis and artificial intelligence used to delineate the boundary of 

OSSN. Section 4.4 presents the results of two frameworks used to detect OSSN and 

provides the statistical measures of the performance of the technology in detecting and 

delineating OSSN. Finally, section 4.5 discusses all of the results, challenges and 

future perspective of the study. This chapter also contains the supplementary material 

for the manuscript in section 4.8 and 4.9.   

Chapter 5: presents a novel methodology to optimise the multispectral system to 

facilitate the technology for industrial translation. Section 5.1 describes the problem 

and the available methodology for optimising a system and the challenges to optimise 

the multispectral imaging, especially for cancer detection and also the novelty of the 

proposed technology. Section 5.2 presents the technique developed in this thesis to 

optimise the system after describing the samples and methodology briefly. Section 5.3 

presents the results of the proposed technique. Finally, section 5.4 discusses the results 

and the future prospective of the technique. 

Chapter 6: demonstrates the application of the technology for melanoma cell 

characterisation. Section 6.1 presents the opportunities of characterisation of the 

melanoma cells in a label-free manner. Section 6.2describes the cell lines used in this 

research study, a brief description of the image acquisition system and the univariate 

and multivariate approaches for data analysis. Section 6.4 presents the results obtained 

from the spectral channels to distinguish melanoma cells from fibroblast followed by 

characterisation of a cell line related for a patient under treatment. Finally, section 6.5 

discussed the results and future prospective of the research. In Appendix B, the 
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application of the artificial neural network to evaluate the data extracted from the 

spectral information of the channels were also presented.    

Chapter 7: gives the summary of this work, the limitations and discusses the 

possible extension of this study. 
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Chapter 2: Autofluorescence in cancer 

characterisation 

This chapter outlines the basic principles of fluorescence (section2.1 and 2.2) 

and factors which may affect the fluorescence properties (section 2.3). Next, labeled 

and label-free detection using fluorescence concept was described in section 2.4. After 

describing various native fluorophores present within cells and tissues (section 2.5), 

the most important native fluorophores for cancer characterisation are described in 

section (2.6 , 2.7 and 2.9). Finally, screening several cancer types using 

autofluorescence is outlined in section 2.10. 

 

2.1 FLUORESCENCE PRINCIPLES 

 

Molecules in cells and tissue, which naturally emit light when irradiated by light 

at suitable wavelengths are called fluorophores [9]. When illuminated, fluorophores 

can absorb energy, and an electron of the molecule may move to an excited state. For 

a short time, the fluorophore stays in an excited electronic energy level and then emits 

fluorescent light to getting back to its ground state. However, it is possible that the 

excited electron returns to the ground state without fluorescence emission via different 

non-radiative processes[28]. Figure 1 shows different de-excitation pathways, 

including fluorescent emission of a fluorophore, radiation-less deactivation, energy 

transmission to another fluorophore within the cells, energy transmission to a non-

fluorescent molecule and static quenching[28].  
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Figure 1. De-excitation pathway diagram. (A) fluorescent emission of a fluorophore, (B) 

Radiation-less deactivation, (C) Energy transmission to another fluorophore within the cells, (D) 

energy transmission to a non-fluorescent molecule and (E) static quenching[28]. 

 

 

In the fluorescent emission pathway, when emitting a photon, the energy of the 

fluorophore drops by a value equal to the energy of the photon. Due to some energy 

loss during the process, the fluorescent photon emitted by a fluorophore has a longer 

wavelength than the photon absorbed by the fluorophore. This process can be shown 

using the following equations:  

 

0 1exS h S+ →  Eq. 1 

1 0 emS S h heat→ + +      Eq. 2 
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Equation 1 demonstrates the excitation process in which 
0S is the ground state,

h  is Planck’s constant, ex  the frequency of the excitation light and 1S is the excited 

state of the electron. Equation 2 shows the emission process in which em is the 

emission frequency [29]. The principle of fluorescence emission is illustrated by a 

classical Jablonski diagram schematically as shown in Figure 2 (a,b,c). 
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Figure 2. Fluorescence principle. (a) Jablonski diagram illustrates the different energy levels of a 

molecule. Before absorbing energy, molecules are on the ground state with the least vibrational 

states S0. (b) The spectral properties associated with energy absorption and emission by a 

molecule could be linked to the energy values required to take a molecule from one energy state 

to another. Here, the absorption and emission spectra related to a sample fluorophore (FITC) are 

illustrated in a Jablonski diagram. Individual perpendicular gray line shows the absorption or 

emission spectra. Depending on the wavelength of the photons, the colours of the arrows are 

defined. As a case in point, purple colour represents a photon with ultraviolet energy and orange 

colour demonstrates the least energy that a photon can carry as it returns to the ground state S0. 

(c) The period related to different stages including excitation, emission, and phosphorescence that 

the change can take [30]. 

 

2.2 QUANTUM YIELD 

Quantum yield (Φ) is a parameter which characterises how effectively a 

fluorophore can produce fluorescence emission and is described by the following 

equation: 

emitted

absorbed

NP

NP
 =

              Eq. 3 

which is the ratio of the number of emitted photons ( emittedNP ) to the number of 

absorbed photons ( absorbedNP ). Quantum yield is a molecular characteristic and is not 

related to instrumentation [31].  
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2.3 FACTORS AFFECTING AUTOFLUORESCENCE PROPERTIES 

The complexity of the absorption and emission peaks associated with biological 

components can be much more than the fluorescence properties of primary 

fluorophores [32]. The local environmental factors of biological fluorophores can 

influence their spectral properties. Such factors include temperature, specific ion 

concentrations, the degree of humidity, pH value and the relative interaction with other 

molecules[33]. As a case in point, different tryptophan or tyrosine molecules in a 

protein may show different fluorescence properties depending on the other amino acids 

present in their approximation[33, 34]. Besides, fluorescence intensity of a specific 

fluorophore may decrease due to the presence of another molecule which can absorb 

the emitted photons. Such a process is called fluorescence quenching [28].  

Another factor which may change the emission fluorescence spectra and the 

quantum yield of a fluorophore is the pH value. The chemical specification of a 

molecule can be altered due to a different value of pH. Consequently, such a chemical 

specification variation can influence autofluorescence in intracellular locations[28]. 

Temperature also affects fluorescence properties based on various mechanisms. 

Temperature can change the medium viscosity and subsequently the interaction 

between different fluorophores. Also, some metabolic processes are dependent on the 

temperature, which can change the availability of some components[28]. 

2.4 LABELLED AND LABEL-FREE DETECTION BY FLUORESCENCE 

Methods which evaluate the tissues or cells by fluorescence imaging can be 

classified depending on the fluorophore types investigated to detect disease and the 

principles employed in instrumentation. There are two major categories for 

fluorophores: endogenous and exogenous fluorophores. Endogenous fluorophores are 

native tissue fluorescence and are responsible for autofluorescence, which is the focus 

of this study. On the contrary, Exogenous fluorophores have external origins and 

mostly are used for labeling.  

Auto-fluorescence is a term used to differentiate the native fluorescence of cells 

and tissues from the fluorescence acquired by treating samples with exogenous 

fluorescent markers such as indocyanin green (ICG),  that binds the structure of cells 

or tissues[20, 32]. The technique using exogenous fluorescent markers for diagnostics 

is based on variances in uptake between healthy and unhealthy tissues. However, 
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autofluorescence detection relies on variations of the concentration and distribution of 

endogenous fluorophores within the tissues or cells[20, 32].  

A similar method to multispectral autofluorescence imaging is hyperspectral 

reflectance imaging, which has dominantly used to detect difference cancer types, 

which is reviewed in ref [35] as shown in Table 1. The advantage of the hyperspectral 

reflectance is its simplicity; however, this method is limited to specify specific 

excitation band, which affect its accuracy.  The gap available in the literature in the 

spectral images is that there is no system with flexible excitation and emission bands. 

Table 1. Summary of hyperspectral imaging to detect cancer types 

 

2.5 NATIVE FLUOROPHORES 

 Most native fluorophores are related to the tissue’s structural matrix or are 

associated with the metabolic processes of cells. The key native fluorophores of the 

tissue structural matrix are elastin and collagen. Such fluorescence is due to cross-

linking among amino acids. Fluorophores related to metabolism of cells are flavins 

and reduced nicotinamide adenine dinucleotide (NADH). In addition, there are other 

native fluorophores such as tryptophan, tyrosineand phenylalanine, which categorized 

as the aromatic amino acids. Porphyrins and lipopigments are also among the main 

fluorescence components which are the end-products of lipid metabolism [36].  
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To interpret clinical and biological studies based on autofluorescence, the 

following key points needs to be considered. First, each fluorophore possesses a unique 

excitation and emission spectra (see Figure 3). Second, biological tissues or cells may 

have a blend of several fluorophores with various concentration. Consequently, to 

diagnose cancerous lesions based on autofluorescence, the concentration variation of 

one or more fluorophore(s) needs to be considered [20].  

 

 

Figure 3. Excitation and emission spectra for native fluorophores: (a)excitation spectra (b) 

emission spectra [20].  

2.6 NATIVE FLUOROPHORES USED AS CANCER BIOMARKER 

The fluorescence spectra of cancerous and normal tissue can be different, due to 

metabolism changes and morphologic alterations of the epithelial surface and 

underlying stroma [37, 38]. In addition, absorption and scattering of light changes due 

to the increased numbers of nuclei and increased microvascularity present in cancerous 

tissue[39].  Figure 4 shows microscopy images of a breast cancer tissue obtained from 

a patient who is an 85-year-old female. The disease is ductal carcinoma in situ (DCIS) 

with grade 3. Figure 4 (a) and (b) demonstrate microscopy images with a 40X 

magnification of the cancerous and normal breast tissues, respectively. Figure 4 (c) 

and (d) represent fluorescence spectra of the cancerous and normal breast tissues 

obtained from the same patient [40]. Figure 4 (c) and (d) demonstrate a clear difference 

between cancerous and normal fluorescence spectra. 
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Figure 4. Microscopic images of (a) breast cancer and (b) associated normal tissue samples from 

the same patient.  The fluorescence spectra of (a) breast cancer and (b) normal tissues were 

acquired with an excitation of 340 nm[40]. 

 

Figure 5. demonstrates the average fluorescence spectra associated with 

cancerous and normal breast tissue from 38 patients, which was obtained at a 340 nm 

excitation wavelength[40].  
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Figure 5. Mean fluorescence spectra for normal tissue and cancerous breast tissue gained using 

a 340nm excitation wavelength[40]. 

 

 
 

Although several native fluorophores have been used to detect various cancers, 

most of the researchers have tracked NADH, FAD, and PPIX[41].  In addition, it is 

reported that the autofluorescence spectra of normal and cancerous tissues have no 

significant difference regarding the fluorescence types, but a great difference can be 

observed in the fluorescence peaks and associated intensities between normal and 

adenomatous tissue from the same patient[42]. As shown in Figure 6, autofluorescence 

spectroscopic differences in normal and adenomatous colonic tissues are investigated 

based on three native fluorophores, NADH, FAD, and PPIX. Although the same 

spectra can be observed in terms of the emitted light wavelength (fluorophore types), 

substantial differences in autofluorescence values can be seen in normal and 

adenomatous colonic tissues [42]. 
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Figure 6. Autofluorescence spectra associated with normal colonic tissue and adenomatous 

colonic tissue (a),(b) spectra associated with normal colonic tissue in 2D and 3D, respectively. 

(c),(d) adenomatous colonic tissue in 2D and 3D, respectively[42]. 

 

 

2.7 NADH AND FLAVINS 

Native NADH exists in the free or bound form in cells and tissue. The excitation 

and the emission peaks of NADH are shown in Figure 7.  Because more than 80% of 

mitochondrial NADH is bound to proteins,  its fluorescence properties can be different 

in different cases [9]. 
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Figure 7. NADH fluorescence excitation and emission spectra[43]. 

 

 

Flavin can be excited at visible light wavelengths and is a significant source of 

cell autofluorescence. Oxidised Flavin can be produced from riboflavin and flavo- 

proteins, which are specifically concentrated in mitochondria. The free excitation 

spectrum of Flavin adenine dinucleotide (FAD), riboflavin and Flavin mononucleotide 

(FMN) were obtained, and it is reported that the spectra are very similar to each other 

as shown in Figure 8 [9]. 

Riboflavin is the precursor associated with the main cofactor of flavoproteins. It 

is a biologically common form including FAD and FNM. Their similar emission 

spectra range from 490-570nm, and their excitation spectra range from 320-480nm. 

Such co-factor side chains play a significant part in protein binding, so most 

flavoproteins contain bound FAD or FMN[44, 45].  
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Figure 8. Flavin fluorescence excitation and emission spectra[9]. 

 

2.8 NAD(P)H AND FAD IN CELLULAR METABOLISM 

Metabolism is described as all of the biochemical interactions in the cells [46]. 

Metabolism includes degrading diet components, synthesising macromolecules that 

are required by the cell, and producing small precursor molecules such as some amino 

acids for the needs of the cells. Metabolism also includes those reactions which involve 

electron transfers, such as oxidation reduction[47]. Metabolism serves three major 

objectives including the food/fuel transformation to energy for cellular processes, 

converting food/fuel to building blocks, and the eliminating nitrogenous wastes. Based 

on such processes organisms can grow and replicate, keep their structures, and interact 

with their environments[47]. 

Metabolism can be defined with two categories, catabolism and anabolism[48]. 

Catabolism is the breaking down of organic components, such as the conversion of 

glucose to pyruvate. On the other hand, the building up of cell components, 

including proteins and nucleic acids is defined as anabolism. Typically, catabolism 

releases energy and anabolism consumes energy. The chemical reactions taking place 

in metabolism are controlled into metabolic pathways, where one chemical is obtained 

from another chemical through a series of steps using a sequence of enzymes. Enzymes 

play a pivotal role in metabolism as they allow organisms to handle desirable reactions 
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which need energy and will not happen by themselves. Enzymes are defined 

as catalysts, which help reactions to progress more rapidly. [9, 46]. 

 The speed of metabolism, which is defined as the metabolic rate, can affect the 

amount of food an organism will need, and also influences the way it can gain that 

food. A prominent aspect of metabolism is the metabolic pathways similarity of 

various species[49]. As a case in point, the set of carboxylic acids which are the 

intermediates in the citric acid cycle exist in all recognised organisms [50]. Normally, 

catabolism takes electron carriers to their associated reduced form. However, oxidative 

phosphorylation takes them to their oxidised level. Glycolysis generates a net two 

pyruvate molecules, two ATP, and also reduces two components of NAD+ to NADH 

as shown in Figure 9. Next, Pyruvate may move into the mitochondria, in which it 

undertakes further broken down through pyruvate dehydrogenase complex (PDHC), 

generating acetyl CoA. Throughout this progression, initially, electrons are transported 

to the FAD component, which is an autofluorescent molecule and bound to LipDH 

within the PDHC, to make FADH2[51]. 

 LipDH is defined as an in-between electron transporter and hands off the electrons to 

the NAD+ present in cells to create NADH inside the mitochondria. Next, the acetyl 

CoA component can go into the tricarboxylic acid (TCA) cycle. This process breaks 

down carbon-based molecules to CO2 and generates three NADH for each acetyl CoA. 

In this process, dehydrogenase complexes, which contain autofluorescent LipDH, 

caries electron. In addition, NADH dehydrogenase inside the ETC can oxidise the 

NADH which is generated by catabolism[51]. 

Electrons are transferred by oxidative phosphorylation to several enzyme complexes 

which consume energy to deliver protons to the mitochondria intermembrane space. 

This process terminates with oxygen which is the final electron acceptor. The proton 

gradient generated between the inner mitochondrial membrane controls ATP 

construction by ATP synthase. This process, including NADH and FAD electron 

transfer, delivers an effective energy conversion from carbohydrate catabolism to 

ATP. Well-organized ATP generation is critical in mortally differentiated cells. 

Subsequently, such cells mainly depend on oxidative phosphorylation, which 

generates a great baseline optical redox ratio of FAD/ [NAD(P)H+FAD][51].  

Conditions leading to cell hypoxia drop the redox ratio due to decreasing oxidative 

phosphorylation and increasing glycolysis to generate enough ATP. Through the 
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anaerobic glycolysis process, pyruvate and NADH are transformed to NAD+ and 

lactate via LDH to keep break more glucose down and generate ATP. Consequently, 

free cytosolic NADH increases due to anaerobic glycolysis and results in dropping the 

optical redox ratio. In addition, Glucose catabolism increases relative to oxidative 

phosphorylation through biosynthesis. Glycolysis increase despite oxygen availability 

is called the Warburg effect[52], which leads to decreases in the optical redox 

ratio[51].  

 

 

 

Figure 9. NADH and Flavins roles in cell metabolism[51]. 
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In fact, Cancer cells can ferment glucose into lactate irrespective to the presence 

of oxygen. Such effect helps the efficient synthesis of macromolecular components 

which is necessary for fast dividing cells [52-54]. During proliferation, the great 

increase in glycolytic flux quickly produces cytosolic ATP, which results in variation 

in the number of high energy molecules such as  NADH [55]. Moreover, the FAD 

compound concentration changes when cells become cancerous, as FAD was 

contributed to the oxidation of metabolic molecules [3, 55, 56]. 

To give more information about metabolism and glycolysis, metabolism is 

converting food into energy. Metabolism is a complex biochemical process, which 

describes how food calories are combined with oxygen to produce the energy our body 

requires to function. Glycolysis is a sequence of reactions that produce energy from 

glucose via splitting it into two three carbon molecules with no need of oxygen 

presence. 

 

2.9 PORPHYRINS 

Porphyrins play a significant role in disease detection, clinical fluorescence 

spectroscopy and photodynamic diagnostics. Typically, porphyrins are synthesised 

from 5-aminolevulinic acid (5-ALA). While heme, the precursor of the red blood 

chromophore haemoglobin, is produced inside the mitochondria, a key porphyrin 

named Protoporphyrin IX (PpIX) is generated[57]. As shown in Figure 10, the 

maximum emission of fluorescent porphyrin components is at 630 nm and maximum 

excitation is at 400 nm[58]. It is also reported that a distinct 650nm emission peak 

measured in skin autofluorescence is due to Porphyrins[59].  

Cells contain a small amount of Porphyrins naturally. Under normal conditions, 

Protoporphyrin synthesis depends on feedback control. Cells generate protoporphyrin 

at a rate just sufficient to match their heme levels. Excessive cellular proliferation, 

however, makes the feedback mechanism lose control. Consequently, extra porphyrin 

creation appears in the tissues and blood [60, 61]. Various forms of native porphyrins 

exist in organisms, including Protoporphyrin IX, uroporphyrin, chlorins, 

phthalocyanines, coproporphyrin and hematoporphyrin. Depending on particular 

forms and links to other molecules, Porphyrins may show a complex spectral and 

optical behaviour[62].  
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Figure 10. PPIX fluorescence emission and absorption [58]. 

 

Protoporphyrin IX (PpIX) is a key porphyrin in eukaryotic cells among various 

forms of Porphyrins. PpIX is a part of heme synthesis and is a robust biomarker to 

detect cancerous tissue [62]. The fluorescence variation of PpIX between normal and 

cancerous tissue and cells might be affected by various factors. For example, 

pharmacological and physiological aspects may change from various positions of 

organs and tissues and also from different stages of disease [20]. Change in the amount 

of  PpIX in cancerous cells may also be associated with lack of iron or ferrochelatase 

[63] in tumours, which results in a change of the PpIX concentration relative to normal 

host tissue[20, 64].  

The application of native PpIX as a cancer marker has been reviewed in[42, 64] 

for colonic cancer and in [61] for breast cancer. It is reported that red fluorescence at 

635 nm due to porphyrin compounds in sera of cancer patients has been seen. In 

addition, it has been demonstrated that there is a relationship between porphyrin (with 

fluorescence at 630 nm) and cancer cell proliferation in an animal tumour model and 

it was found that higher concentrations of porphyrins in the blood can be used as a 

measure of cancer severity [61, 65]. In addition, Ramu Rajasekaran [66] reported that 

fluorescence emission spectral properties of urine at 405 nm excitation, which is 

responsible for PpIX, provide a statistical difference between patients with cancer 
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(Head and Neck, Cervix and Breast cancer) and normal subjects. He studied native 

fluorescence properties of human urine specimens based on excitation-emission 

matrices (EEMs) using a range of excitation and emission wavelengths. As can be seen 

from Figure 11, the fluorescence spectra of urine samples of cancer patients 

demonstrate significant spectral differences in both EEMs and emission spectra from 

normal subjects. 

 

 

 

 

Figure 11. The excitation-emission matrix of undiluted urine samples: (a) normal, (b) cancer, 

wavelength ranges at 250–450 nm for excitation and 270–750 nm for emission[66].  
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2.10 SCREENING 

Over a few past decades, autofluorescence has been evaluated in the detection of 

various cancer and neoplastic tissue. In the following, the application of 

autofluorescence in characterising several cancers and neoplastic tissue is described. 

Autofluorescence has been widely used to characterise breast cancer which is a 

major cause of cancer deaths among women [67].  

1n 2003 Paul J Tadrous et al [68] used FLIM to characterise human breast tissue 

at a histological resolution in unstained tissue samples. They used alcohol-fixed tissue 

samples from 13 patients stimulated by laser pulses at 415 nm. They measured the 

decay rate and compared average lifetimes of different tissue regions. They reported a 

significant difference between benign stroma, malignancy-associated stroma, blood 

vessels, and malignant epithelium (p < 0.05) [68].  

In 2004 Tara M Berslin [69] performed autofluorescence measurements on 56 

samples of tumours or benign breast tissue. They used a support vector machine 

algorithm and compared classification results with the histological diagnosis (gold 

standard). In their report, several excitation wavelengths and diffuse reflectance 

spectra demonstrated significant differences between tumour and benign tissues. They 

got a sensitivity of 70.0% and specificity of 91.7%. In 2010 Matthew D. Keller et al. 

[70] employed spectral measurements to evaluate the surface of the tissue mass from 

12 patients. They could achieve 85% sensitivity and 96% specificity after comparing 

their results to histopathology assessment.  In 2012   Vikrant Sharma [71] investigated 

the use of auto-fluorescence lifetime measurement (FLIM) for detecting invasive 

ductal carcinoma (IDC) in human ex vivo breast specimens. They utilised excitation 

at 447 ± 60 nm with several emission wavelengths (532±10, 562±40, 632±22, and 

644±24 nm). They evaluated auto-fluorescence lifetimes data for six specimens and 

could achieve 92.3 ± 0.8% accuracy. 

In 2015, Rodrigo de Andrade Natal[72] analysed sections obtained from 14 

patients with invasive ductal breast carcinoma. They used FLIM to monitor NAD(P)H 

and FAD fluorescence lifetime using 405nm excitation and with two emissions, 

445±45 and535±22. They demonstrated that breast cancer cells in contact with 

desmoplastic reaction showed a significantly lower NAD(P)H and FAD fluorescence 

lifetime. Furthermore, the optical redox ratio was also lower in these tumour cells[72]. 

In 2017, Jennifer E Phipps [67] obtained FLIM data from breast cancer specimens (N 
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= 20)  to detect breast specimens. They used excitation at 355 nm and collect the 

emission using 4 channels at 390nm, 466 nm, 542nm and 629/53 nm. They achieved 

about 97% accuracy for automated detection of cancerous, fibrous, and adipose tissue 

from breast cancer specimens. Ivana Pakova , et al. [73] employed autofluorescence 

technique to characterise the structure of blood plasma and mammary gland 

homogenates. They recruited patients at three different breast cancer stages with 

respect to healthy specimens. They demonstrated that the blood plasma and 

homogenate of patients with breast cancer have a significant difference in 

autofluorescence values in comparison with normal cases. Such results may serve as 

fast preliminary markers of cancer detection[73]. 

Colonic cancer has also been evaluated based on autofluorescence concept in 

several reports [74]. Bu-Hong Li et al.[42] obtained excitation-emission spectra of 

normal and adenomatous colonic tissues to explore auto fluorescence spectroscopic 

differences. Five patients were recruited in their study. They used excitation 

wavelengths ranging from 260 to 540 nm and collected emission spectra from a range 

starting 20 nm above the excitation wavelength and ended to 800 nm. In comparison 

to normal tissues, lower NAD (P)H and FAD, higher amino acids and protoporphyrin 

IX were seen in their results[42]. Li et al. used in ex vivo tissue and demonstrated that 

longer auto fluorescence lifetimes were presented in cancerous colonic tissues than in 

normal colon. They used excitation wavelength at 397nm and collected emission at 

635nm, which was related to the contribution of protoporphyrin IX (PpIX) [75]. 

Moreover, statistically significant FLIM ( excitation at 355 nm) results were seen 

between cancerous and healthy colon tissue from16 unstained surgical specimens of 

colon cancer[76].  

The hypothesis that autofluorescence is capable of differentiating normal from 

diseased oral tissue has been evaluated by several studies[37, 77]. Duncan et al. [63] 

employed biopsy specimens from patients to investigate the differences between 

normal and dysplastic tissues using spectroscopic measurements. They acquired 

fluorescence spectra from twelve histologically normal, including healthy mucosa or 

benign lesions, and ten abnormal, including dysplastic or malignant, tissue samples. 

They observed a significant spectral difference between normal and abnormal groups. 

Such differences were noticeable at the excitation wavelength of 410 nm and emission 

of 600 nm to 750 nm as shown in Figure 12. They demonstrated the capability of 
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autofluorescence to distinguish normal and dysplastic mucosa in vitro with a high 

degree of accuracy.  

 

Figure 12. Fluorescence properties of normal and abnormal (cancerous) oral mucosal tissues 

with 410 nm excitation wavelength [63]. 

 

 

Recently, Sun et al. used a FLIM system consisting of a rigid fibre-bundle 

endoscope providing a 4mm field of view. 10 patients were recruited for imaging of 

head and neck squamous cell carcinoma. The imaging was performed at 337-nm 

excitation ,and fluorescence was collected in the 435- to 485-nm. They showed that 

head and neck squamous cell carcinoma exhibited a shorter average lifetime (1210±40 

picoseconds) than the surrounding normal tissue (1490±60 picoseconds) [78].  

To detect the neoplastic transformations related to head and neck, various 

autofluorescence imaging modalities are available (see Figure 13) although they have 

not been particularly designed for head and neck region.  
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Figure 13. Available auto fluorescence imaging instrumentation to detect the neoplastic 

transformation and associated images illustrating the tumour detections[1].  

 

Cancer characterisation using autofluorescence was not limited to the above-

mentioned cancer types.  Mengyan Wang et al. employed a two-channel laser scanning 

confocal microscope to obtain autofluorescence images of lung tissue samples.  They 

evaluated autofluorescence images to characterise the cellular morphology and tissue 

structure of lung cancer. They demonstrated that most of the patients showed 

discriminating fluorescence in tumour tissues compared to normal tissues. They also 

reported that most of the samples have lower NADH/FAD values and higher 630 

nm/590 nm values in cancerous tissues than in normal tissues[79]. 

Autofluorescence imaging was also evaluated to analyse gastric cancer[80]. Shu 

Dong et al. employed a double-channel laser scanning confocal microscope with two 

excitation wavelengths, 488 nm and 543 nm, to acquire autofluorescence from 16 

gastric cancerous tissue samples and corresponding normal gastric tissue [80]. They 

could catch a discriminative autofluorescence signal in gastric cancer tissue which 

appeared as a reddish-brown image (see Figure 14).  
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Figure 14. Autofluorescence image of normal and cancerous gastric mucosa. (a) Red 

autofluorescence image of normal gastric mucosa. (b)  Green autofluorescence image of normal 

gastric mucosa. (c) Red autofluorescence image of cancerous gastric mucosa. (d) green 

autofluorescence image of cancerous gastric mucosa[80]. 

 

Autofluorescence technology was utilised in a light-induced fluorescence 

endoscopy system (see Figure 15 (a)) to detect early gastric cancer in a real-time 

manner. Using this technology, 85% of the cancer lesions could be detected with 94% 

and 86% sensitivity and specificity, respectively. Figure 15 (b-e) demonstrates the 

comparison between a white light endoscopic image, an autofluorescence image and a 

corresponding histology assessment[81]. 
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Figure 15. (a) Light-induced fluorescence endoscopy system diagram. (b) White-light endoscopic 

image of early gastric cancer. (c) Corresponding autofluorescence image which shows a dark 

red pattern. (d) Resected picture of the same site. (e) Sectioning schema; red lines demonstrate 

the tumour invasion [81]. 

 

 

Multi spectral imaging has been also employed to detect skin lesions[82]. 

Uncontrolled development of abnormal cells in skin cancer may change the spectral 

features to identify skin cancer lesions. Multispectral imaging systems can produce 

precise quantification of spectral and spatial features, which have been used over the 

last several years to extract spectral and colorimetric properties of the skin reliably and 

non-invasively [83]. Jakovels et al. [84] employed wavelength range from 450 nm to 

950 nm to recognize melanoma. Delpueyo et al. [85] also introduced a light-emitting 

diodes (LEDs)-based multispectral imaging system utilising eight different 

wavelengths (414–995 nm) and has reported they could successfully improve the 

detection of skin cancer lesions. 

 

 

2.11 CONCLUSION 

Autofluorescence concept has terrific capabilities of cancer characterisation, 

diagnostic and screening. Technologies employing autofluorescence are able to 

observe chemical composition change of the cells and tissues due to diseases onset and 
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development such as neoplastic or cancer metabolism. The main advantage of the 

autofluorescence techniques is that they are non-invasive. So, such techniques 

potentially can minimise biopsy incidence. Autofluorescence imaging is fast and can 

inspect a large area of tissue so it can be used for margin assessment and cancer 

boundary delineation in vivo and on a real-time basis. Therefore, autofluorescence 

imaging can be utilised for both cancer detection and cancer boundary delineation.  

Autofluorescence has capabilities to be merged with existing and new 

technologies such as robotic surgery in which low-light environment gives an optimal 

prospect for autofluorescence application. Finally, collaboration in a multi-

disciplinary area, including engineers, physicist, radiologist surgeons and the 

pathologist can lead to discovering more capabilities of autofluorescence technology 

for the more advanced application. The gap in the literature regarding auto 

fluorescence imaging is absence of a user-friendly system with flexible excitation and 

emission band selection which is considered in this study.  
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Chapter 3: Research Design 

This chapter describes the design adopted by this research to achieve informative 

autofluorescence spectral images to characterise cancerous tissue or cells. Section 3.2 

discusses the customised microscope used in this study and its associated details, 

including spectral channels, camera and the control system, described in section 3.3, 

3.4, 3.5 and 3.6.  Dishes and slides used in this study are described in section 3.7.  

Details related to the imaging protocol is described in 3.8. Image preparation 

importance in spectral images is described in section 3.9, and also the specific 

systematic noise involved with spectral images are described in 3.10, 3.11and 3.12. In 

addition, the random noise which may corrupt the spectral images and relevant 

techniques to remove them are described in section 3.13. After pre-processing the 

spectral images, image segmentation is described in 3.14. Finally, section 3.16 

discusses the ethical considerations of the research and its problems and limitations. 

3.1 INTRODUCTION 

Auto-fluorescence microscopy can play a pivotal role in the biology and 

biochemical fields such as cancer science by providing information about micro-

organism, biostructure and cell environment in a non-invasive manner[86]. Various 

scientists have progressed auto-fluorescence application to biology, but lots of 

different aspects have still not been explored[87, 88]. In addition, there is still much 

room to make progress in the field concerning new imaging technology, new image 

processing and different ways to extract valuable information from auto-fluorescence 

related signals, especially in cancer science.  

Extracting valuable information from autofluorescence spectral images requires 

to develop a particular procedure due to the presence of various types of noises[89].  

Such noises may hide the informative part of the spectral signal and corrupt the 

extracted information.  Besides, autofluorescence in single-cell resolution may not be 

a solid signal, so a meticulous methodology should be employed to acquire reliable 

information[9]. Thanks to the modem technology in the camera industry, and 

customising current microscopic technology, a new methodology is used in this 

research study to extract information from the autofluorescence properties of cells and 
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tissues[9]. In addition, sophisticated image pre-processing techniques were deployed 

to prepare spectral images for various computational analysis and decision making.   

3.2 CUSTOMISED FLUORESCENCE MICROSCOPE 

The central part of the multi-spectral system used in this study is a fluorescence 

microscope. Such a microscope uses the fluorescence concept along with typical 

optical devices including scattering, reflection lights and proper light sources and 

sensors. These kinds of microscopes have capabilities to extract fluorescence 

information to form different spectral images. In this project, a customised system 

previously developed in our group was used [9], however with new modifications 

regarding new protocol, filters and light source arrangement.  

Our microscope technology includes a Leica microscope, which has some 

specific and distinctive optical features. First, an EMCCD camera can be simply fixed 

on the microscope, as there are multiple input and output ports in the microscope. 

Several rear ports were available which enable designing a proper illumination system. 

The microscope has an external power supply to facilitate better thermal stability. The 

microscope has a mechanical wheel which can house four different filter cubes. 

Compared to confocal systems with several channels provoided by high-power lasers, 

the price of our customized system was more cost-effective as the system uses the LED 

source to light the sample instead of high-power lasers. Figure 16 (a) shows the system 

used in this study.  
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Figure 16. Customised microscope employed in this study: (a) the microscope[90], (b) a sample 

filter cube 

 

3.3 EXCITATION SOURCES 

Lamps using light emitting diodes are called LEDs. New technology in the LED 

industries results in advanced LED lamps[91]. These lights have a more abundant 

lifespan, up to 25 times than of typical lights, and are cost effective. These lights are 

much more efficient in consuming energy with a very limited time required for 

warming up and stabilisation. LEDs with advanced technologies have found their ways 

for more professional applications like medical instrumentation [92]. LEDs can be 

manufactured with a very small bandwidth and can be manufactured with various 

centre wavelength from UV range to close to red. So, they can give a big wavelength 

choice to users and also can reduce the need for costly filters to get a specific 

wavelength. The output power of the LEDs are usually in tens of milliwatts (mW) 

which makes them proper choices for critical medical applications such as 

ophthalmological equipment. This research has used multiple LEDs as excitation 

sources, each of which has a specific wavelength. A typical microscope was advanced 

by adding more excitation light to make the system capable of extracting more 

information from biological materials [90].  Figure 17. shows the spectra of the LEDs 

used in this study. 
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Figure 17. Excitation wavelengths used in this study 

 

To show which fluorophores potentially get excited by wavelengths used in this 

study, the centre frequency of each LED is shown on various excitation fluorophore 

graphs (see Figure 18). This graph blends the LEDs and cell fluorophore and can show 

which excitation wavelength can excite what fluorophores at the same time, and also 

it represents the possible fluorophores that can be excited using all of the available 

LEDs.  

 

 

Figure 18. Centre wavelength of LEDs used on various excitation fluorophore graph. (the 

original figure was borrowed from [20] ). Further information about the channels created by 

excitation wavelengths described here is listed in table 2. 
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It is worth mentioning that Beer’s low applies in the samples with the finite 

thickness. The Beer-Lambert law is describing the relation between the attenuation of 

light and the properties of the sample through which the light is traveling[93]. In this 

study, the samples have almost the same thickness and the emission light is collected 

from the same side where it was excited. Therefore, the effect of the Beer’s low is the 

same for all of the samples used in this study. Moreover, the autofluorescence signals 

are collected while the sample is illuminated by the LEDs, so there is no effect of 

fluorescence decay interfering our results.   

3.4 EMISSION BANDS 

The customised microscope uses four filter cubes to manage the excitation and 

emission wavelengths. A sample filter cube used in this study is shown in Figure 16 

(b).  Each filter cube contains three optical filters including an excitation filter, a 

dichroic beam splitter and an emission filter. Although the excitation wavelength 

associated with each LED is narrow, the excitation filter is used to make the excitation 

light more restricted. The dichroic is responsible to split the light, reflect the excitation 

wavelength to the sample and block the excitation light from reaching the detector. 

The emission filter confines the light coming from the sample to a specific wavelength 

band. Different microscopes can hold a different number of the filter cubes. In the 

current research, four filter cubes were used to generate the spectral images. These 

four filter cubes were mounted on a mechanical wheel which could be turned 

manually. A spectral image formed by the combination of a specific excitation 

wavelength with a specific filter is called a channel in this study. This control provides 

a specific colour to be captured in each channel with defined excitation and emission 

wavelength.  Figure 19 shows the cut-off wavelength for the excitation, dichroic and 

emission for each filter cube. The band pass region of the emission filters is in the 

range of ~50-100 nm to collect enough signal. Narrowing further down the region may 

have adverse effect on the subsequent analysis due to lack of informative signal. 
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Figure 19. Filter cube specifications used in this study: (a) filter cube 1  (b) filter cube 2 (c) filter 

cube 3 (d) filter cube 4. Further information about the channels created by excitation 

wavelengths described here is listed in table 2. 

 

3.5 CAMERA 

Another key part of the microscope used in this study is the camera which 

captures the signal coming from the samples. Its performance directly influences the 

quality of the images and subsequently, the information extracted from the images. In 

this research, a digital camera manufactured by Hamamatsu Company named ORCA-
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flash4.0lt was used. It was a low noise camera with high quantum efficiency, which 

could produce high-quality images valuable for quantitative analysis. ORCA-

flash4.0lt performance surpassed the performance of Gen I sCMOS and interline CCD 

cameras at different input levels. Such attribute helps the camera to have a strong signal 

to noise ratio even with a limited exposure time compared to other cameras. Figure 20. 

illustrates the relative SNR of the ORCA-flash4.0lt compared to other cameras at 550 

nm[94].  

 

Figure 20. ORCA-flash4.0lt performance  

 

 

Figure 21. ORCA-flash4.0lt performance in terms of quantum efficiency and field of view (a) 

quantum efficiency of the camera for different wavelength range (b) comparing the field of view 

of the ORCA-flash4.0lt   and interline CCD [94] 

 

Figure 21(a) shows the quantum efficiency of the camera for various wavelength 

range. Quantum efficiency is the effectiveness of the camera to capture photons and 

convert them to signals. The ORCA-flash4.0lt shows overall better performance than 

other cameras. The maximum quantum efficiency of ORCA-flash4.0lt is about 600 

nm and is about 70%. The camera shows acceptable performance for all of the filters 
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used for this research project. Figure 21(b) compares the field of view for the ORCA-

flash4.0lt to that of a CCD camera. It shows that ORCA-flash4.0lt can capture almost 

three times as large an area as the CCD camera. The larger field of view helps to 

capture more cells or image a larger area of tissue in one shot. Other important 

specifications of the camera are presented in Table 2. 

 

Table 2. Detailed ORCA-flash4.0lt performance and specifications[94]. 

 

 

3.6 SYSTEM CONTROL 

Synchronising the multispectral system was done via custom-made software 

written in MATLAB [90]. Library functions provided by the camera provider were 

used to control the camera. To control the LED bank, a digital I/O card with 24 

channels was employed. Using MATLAB software, a graphical user interface (GUI) 

was developed which provided complete control of the camera and LED bank to 

activate them one by one. After defining a protocol to set operational parameters such 

as exposure time, excitation wavelength, and emission filter, the user can run the GUI 

to acquire the images. Figure 22 shows the GUI interface used in this study. 
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Figure 22. The graphical user interface (GUI) used in this study to control the camera and LED 

bank[90]. 

 

3.7 DISHES AND SLIDES FOR IMAGING 

This research project involved both tissue and cell characterisation. Tissues were 

processed at pathological laboratories and were placed on optical microscope slides 

(Figure 23 (a)). About the cells, after being cultured, cells were transferred into 

appropriate microscope dishes. Dishes used in this study were petri dishes (Figure 23 

(b)) and 96 well dishes (Figure 23 (c)). A specialised petri dish was also used to find 

the focus point of the microscope.  To prepare such dishes, 10×10 girds were etched 

at the bottom of the dishes. Each grid was square with a 50 um edge.   

 

 

Figure 23. Slides and dishes used in this study: (a) A sample, (b) a sample petri dish, (c) a 

sample 96 well dish. 
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3.8 IMAGING PROTOCOLS 

Combining the excitation wavelengths to the emission filters led to define a 

number of channels, each of which forms a spectral image. However, to define a 

channel effectively, we need to consider the “Stokes shift” of the native fluorophores. 

As a case in point, defining a channel with an excitation less than 360nm and emission 

more than 700 nm is almost useless as there are no natural fluorophores which can 

glow with those specific excitation and emission wavelengths. In this study 38 spectral 

channels have been used as shown in Table 3. 

Table 3. Spectral channels used in this study 

Channel 

No. 

Excitation 

wavelength 

Emission 

wavelength 

Channel 

No. 

Excitation 

wavelength 

Emission 

wavelength 

1 340 420-460 20 382 573-613 

2 368 420-460 21 388 573-613 

3 373 420-460 22 391 573-613 

4 378 420-460 23 394 573-613 

5 382 420-460 24 405 573-613 

6 388 420-460 25 413 573-613 

7 340 454-495 26 432 573-613 

8 368 454-495 27 441 573-613 

9 373 454-495 28 455 573-613 

10 378 454-495 29 460 573-613 

11 382 420-460 30 470 573-613 

12 388 454-495 31 491 573-613 

13 391 454-495 32 510 573-613 

14 394 454-495 33 382 575-650 

15 405 454-495 34 388 575-650 

16 340 573-613 35 391 575-650 
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17 368 573-613 36 394 575-650 

18 373 573-613 37 405 575-650 

19 378 573-613 38 413 575-650 

 

3.9 IMAGE PREPARATION AND PROCESSING 

The imaging system employed in this study provides both spatial and spectral 

information simultaneously and generates a data file called a data block. The data 

block is a rich three-dimensional data file, so it may potentially encompass more 

diagnostic information. On the other hand, such a significant volume information also 

causes complexities in implementing analysis and processing of spectral data[89]. 

Therefore, to extract valuable spectral and spatial information, sophisticated image 

processing and precise methods are required. In this section, the pre-processing steps 

leading to images ready for extracting diagnostically valuable information are 

described.  

To quantify an image, it is a must to pay attention to the presence of erroneous 

data values such as dead or saturated pixel and/or non-informative background [9, 89]. 

Otherwise, further processing is misleading, as such measurement distorts the 

conclusion and so leads to an unreliable identification. The abnormal observation may 

have various sources; however, the most prominent bases resulting in anomalies in 

spectral images are instrument and radiation. Furthermore, the camera, which is based 

on diode array detectors, may be the source of the different potential errors. In fact, the 

malfunction of one of the diodes in the detector array will result in dead pixels (missing 

or zero values) or saturated values. Moreover, the illumination of the sample ideally 

should be uniform, but in the real world this is impossible and the illumination profile 

has an uneven curvature [95].  

Each of the mentioned examples can be a source of error distorting the final 

results [89]. Consequently, pre-processing the image is a mandatory step toward 

obtaining reliable results. In this study, pre-process the medical multi-spectral imaging 

carefully is investigated and an appropriate algorithm is developed. To prepare the 

spectral images, it is required to acquire some supporting images. Two reference 

images were taken at the beginning of each experiment, including calibration and 
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background images. Using these images different steps were taken to prepare all of the 

spectral images called pre-processing steps. This algorithm involves cosmetic ray 

removal, smoothing, background subtraction and microscope calibration, image 

equalisation and region of interest segregation.  Depending on the nature of the 

analysis, it is possible that some steps were omitted without affecting the outcome. 

3.10 CALIBRATING THE IMAGES 

To illuminate a sample, the fluorescence microscope utilises various LEDs, each 

of which possesses a specific wavelength and illumination profile. Ideally, the output 

light of the LEDs should be identical at all wavelengths, irrespective of the sample 

under examination. However, the imaging system often displays significant signal 

variations. Such non-uniformity of the illumination can be affected by various factors 

and so needs to be corrected.  

To calibrate the microscope, a calibration fluid and a precise Fluorolog 

spectrometer were needed. The calibration fluid was produced which was a mixture of 

chemicals which together had fluorescence properties in all the spectral channels. This 

fluid was a mixture of several chemicals, including NADH, PPIX and riboflavin, 

depending on the channels which might be used. On the other hand, the mixture was 

chosen such that there is no zero response for all of the channels used in the 

microscope. The spectrum of calibration fluid was measured first by a Fluorolog 

spectrometer as the reference instrument. The Fluorolog spectrometer is a Cary Eclipse 

Fluorescence Spectrophotometer™, which has been calibrated periodically in our 

laboratory by certified technicians and produces reliable results. Then, the same fluid 

was used to take spectral images using the microscope.  

As it was mentioned above, these two spectra should be ideally identical as they 

are taken from the same fluid with two different instruments. However, they were not 

due to potential differnet illumination profile of each LED used in our costomised 

system. Consequently, the microscope was calibrated based on Fluorolog spectrometer 

values. To achieve that, firstly, the Fluorolog spectrum was normalised such that the 

values add to one. These values were then used to form a set of correction calibration 

images named calibration vector. To calibrate all of the spectral images, the sample 

image was divided by the image acquired from the calibration fluid.  Next, the 
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correction vector at each pixel position is multiplied the image value to correct and 

calibrate the output of the hardware.  

3.11 REMOVING THE BACKGROUND 

In the multispectral imaging, a non-informative observation that is inconsistent 

with the whole data set is called background. These corruptive signals are mostly 

caused by ambient lights, and residual autofluorescence from the microscope slide, 

petri dish, objective or internal microscope elements[89]. To remove background 

superimposed on a spectral image, an image from water (or medium) which has no 

fluorescence signal in calibration sample petri dishes were taken and subtracted from 

the HIS image. Careful attention is needed while getting the focus point to take the 

water image, as it directly affects the accuracy of the results. Previous researchers 

proposed that the focal point with five minor units of the microscope scale upper than 

inside dish surface is a proper point to take a background image [9]. 

3.12 IMAGE EQUALIZATION 

The multi-spectral cube has various spectral channels generated at various 

wavelengths. Depending on the wavelength, the pixel value which the camera catches 

is very different[9]. In addition, taking the images from different systems may result 

in different pixel values due to different specifications of the cameras. To minimise 

such challenges, an image equalisation formula was used to convert the intensity unit 

to photons per pixel per second (PPS). To achieve this, firstly, a quantum efficiency 

graph associated with the camera should be obtained. As Figure 21 (a) illustrates, 

quantum efficiency shows the relation between the number of photons and the pixel 

value recorded for each pixel. To convert intensity to PPS the following equation was 

used: 

int( ( , ) )
( , )

ensity

PPS

Y i j Bo Se
Y i j

Qe Ex

− 
=


    Eq. ( 4) 

 

where ( , )PPSY i j  is the pixel value converted to PPS in position ( , )i j  in the image, 

int ( , )ensityY i j  is the image intensity in the in position ( , )i j  in the image. ‘Bo’ is the 

"dark count" which is the amount of electrons that are randomly captured into the 

corresponding wells of CCD pixels without the presence of any photons. ‘ Se ’ is the 

sensitivity which describes how many electrons correspond to the smallest graduation 
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of a pixel value. ‘ Ex ’ is the exposure time to minimise the exposure time’s influence 

on the associated number of photons. 

3.13 IMAGE NOISES 

It is crystal clear that experimental signals in the real world come with noise. This 

noise can be negligible if the signal to noise ratio is high enough, but generally 

speaking, noise corrupts the signals and must be reduced in order to proceed further 

with data analysis. The processing of signals to remove noise mostly is called de-

noising or smoothing [89]. 

Auto-fluorescence signals are quite weak. Consequently, spectral images are 

susceptible to the presence of noise. In addition, autofluorescence equipment utilises 

a small channel width, so the image sensor cannot capture much energy, and self-

generated noise inside the sensor happens. Moreover, light variation and environment 

aberrations decrease the amount of spectral signal which is captured. Consequently, 

denoising is an essential part of autofluorescence image processing before any further 

investigation [11, 95].  

3.13.1 Removing spikes (cosmetic ray) 

A rapid rise followed by a sharp drop in a small area of a spectral image is named 

a cosmetic ray (see Figure 24 (a)). Such abnormalities can be due to the irregular 

behaviour of the detector, failures of electronic circuits or environmental 

circumstances. These cosmetic rays may mask the informative details of the spectral 

channel and may cause us to misinterpret the spectral information[9, 89]. In order to 

identify cosmetic rays, a typical solution is manual supervision, yet this method needs 

human care which requires lots of time. A solution is even tougher when multispectral 

data are considered since a multispectral data cube encloses many spectral channels 

and manual observation is not a possible approach. In this study, an automatic method 

for cosmetic ray removal was utilised which has two steps, cosmetic ray localisation 

and replacement.  

Cosmetic rays are formed due to deposition of high amounts of energy deposit 

in a few pixels, leading to saturated pixels with impulsive variations. This effect can 

be inspected in the histogram distribution of a spectral channel. Points positioned in 

the high count interval, and somewhat compact, in an image histogram can be 
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considered as Cosmetic rays[46].  To detect cosmetic rays, an algorithm developed 

consisting of the following steps: 

• Select small sub-frames which cover the whole frame with some degree of 

overlap. 

• Calculate the standard deviation of the pixel distribution. 

• Generate a histogram of the distribution of counts. 

• Catch the mode of the histogram, which is its peak. 

• Catch gaps in the histogram, which means bins with zero values. 

• Catch the first gap which is broader than a predefined threshold, typically 

three standard deviations. 

• Identify pixels with values more than the gap which is influenced by 

cosmetic rays[46]. 

After the cosmetic rays were localised to a spectral channel, they need to be 

replaced by a proper value in order to minimise the risk of information loss. There are 

various ways to estimate the value of signals, yet the two most typical ones are 

interpolating and averaging. In this study, we decided to substitute the cosmetic ray 

values by the average of the counts in the nearby pixels.  

 

3.13.2 Image smoothing 

Spectral channels are also prone to get stochastic noise which can be illumination 

based or non-illumination based. Dark current shot noise and readout noise are 

considered as illumination independent noise [9]. Such noise can be minimized by 

using a sensor whose working temperature is low. In this study, we used a camera 

working below -65 C . In addition, the camera was resistant to temperature related 

noise as it was working at practically the same temperature all the imaging time[9]. 

Another type of random noise which occurs due to illumination, such as photon shot 

noise, can be considered as Poisson noise due to a high degree of similarity[9].  

Different methods can be applied to remove stochastic noise. Conventionally, a 

moving spatial average was a typical method. With the advent of the Fourier transform, 

de-noising mostly performed in the frequency domain [96]. In this study, the image 
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demonising by using wavelet transformation was achieved. This kind of smoothing 

removes Poisson noise by dividing the spectral image into different images with a 

range of scales and then zeros the coefficients below a particular threshold value[96]. 

Zeroing the coefficients with lower amplitude helps because image components with 

high frequency and low amplitude mostly do not convey valuable information. After 

removing the image components with low amplitude, a reverse wavelet was applied to 

reconstruct the spectral image. Figure 24 (a) shows a spectral image before image 

processing, and de-noising and Figure 24 (b) demonstrate the same image after 

processing in this study. Observing Figure 24 reveals that the stochastic noise along 

with background and cosmetic rays were optimally removed thanks to the image 

processing approach applied in this study. 
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Figure 24. A spectral image under processing to remove different noises: (a) Before processing 

(b) After processing 

 

3.14 CELL AND TISSUE SEGMENTATION 

The spectral images acquired in this study have a square field of view in which 

cells are distributed. In such an image, cells do not cover all the scanned area, and 

consequently, some areas are left outside the cells or tissue.  Also, this study was 

conducted statistical analysis in a single cell resolution, so the cells need to be isolated 

from the background. In addition to single cell analysis, this study also involved with 

tissue characterising to delineate OSSN which required tissue segmentation from the 

spectral images. Particular parts of the tissue were needed to be considered for 

classification purpose which was delineated by a trained pathologist. Therefore, 

spectral images acquired in this study were required to be segmented to obtain a region 

of interests (ROI). In this study, the ROIs were segmented by producing a 

manual binary mask in which the pixels corresponding to the ROI were 1, and all other 

pixels were 0. Then, such a mask was applied to associated spectral images.  

 

3.15 DATA ANALAYSIS 

In this study a range of different analysis such as one variate analysis, 

multivariate analysis and machine learning techniques. Depending on the target of the 

analysis, a specific analysis has been selected and justified in the associated section. 

To validate the method, different level of cross validation was used which is described 

in the appropriate section. A range of different data clustering has been used in this 

study, such as principal component analysis[97]. The separability of the clusters was 

quantified using inter-cluster distances, and various classifiers were also developed to 

predict the label of the cells or tissue. Such methods have been also used hyperspectral 

remote sensing, which is a close field to the auto fluorescence spectral imaging.  

Although the image formation process is different, the concept of the data analysis can 

be similar[98].   
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3.16 ETHICS  

This study involved with human samples and was undertaken in full agreement with 

human ethics at Macquarie University( reference numbers: 5201600708  and 

5201400458).  
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Chapter 4: OSSN DETECTION AND 

DELINEATION 

This chapter had been submitted to a medical journal named “ocular surface” and 

recently has got revision recently. In this chapter, the revised paper, supplementary 

materials and response to reviewers and editor are provided. The paper describes the 

background, method, results and discussion of OSSN detection in sections: 4.1, 4.2, 

4.4 and 4.5. The revised supplementary material is provided in section 4.8 and 4.9. 

Finally, comments with corresponding answers are provided in section Error! R

eference source not found.. 
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Abstract 

 
Purpose: Diagnosing Ocular surface squamous neoplasia (OSSN) using newly designed multispectral imaging technique. 

 

Methods: Eighteen patients with histopathological diagnosis of Ocular Surface Squamous Neoplasia (OSSN) were recruited.  

Their previously collected biopsy specimens of OSSN were reprocessed without staining to obtain auto fluorescence multispectral 

microscopy images.  This technique involved a custom-built spectral imaging system with 38 spectral channels. Inter and intra 
patient frameworks were deployed to automatically detect and delineate OSSN using machine learning methods. Different 

machine learning methods were evaluated, with K nearest neighbour and Support Vector Machine chosen as preferred classifiers 

for intra and interpatient frameworks, respectively. The performance of the technique was evaluated against a pathological 
assessment. 

 

Results: Quantitative analysis of the spectral images provided a strong multispectral signature of a relative difference between 

neoplastic and normal tissue both within each patient (at p< 0.0005) and between patients (at p< 0.001). Our fully automated 

diagnostic method based on machine learning produces maps of the relatively well circumscribed neoplastic-non neoplastic 

interface. Such maps can be rapidly generated in quasi-real time and used for intraoperative assessment. Generally, OSSN could 
be detected using multispectral analysis in all patients investigated here. The cancer margins detected by multispectral analysis 

were in close and reasonable agreement with the margins observed in the H&E sections in intra and inter patient classification, 

respectively.  

 

Conclusions: This study shows the feasibility of using multispectral auto-florescence imaging to detect and find the boundary of 

human OSSN. Fully automated analysis of multispectral images based on machine learning methods provides a promising 

diagnostic for OSSN which can be translated to future clinical applications.  

 

Keywords: Ocular surface squamous neoplasia, Boundary detection, Auto florescence 
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4.1 INTRODUCTION 

Ocular surface squamous neoplasia (OSSN) [99] is considered the most common 

neoplastic eye surface disease [100, 101] and constitutes approximately 10% of ocular 

surface lesions [102]. OSSN is a broad term which encompasses noninvasive 

conjunctival intraepithelial neoplasia (CIN), dysplasia and squamous cell carcinoma 

in situ (SCCIS), and invasive squamous cell carcinoma (SCC) where tumor cells 

invade the stroma by breaching the basement membrane [99, 103, 104]. Early 

detection and accurate boundary delineation of OSSN results in simple and more 

curative treatments such as topical therapies[105, 106], whereas advanced invasive 

lesions may require eye exenteration [107] and also has the risk of mortality[108]. The 

clinical symptoms of OSSN are variable [109], so patients may experience delay in 

treatment or be diagnosed inappropriately due to lack of suitable methods [107, 110].  

Currently, accurate diagnosis relies on clinical suspicion which can be confirmed 

by impression cytology or biopsy [111, 112]. Ocular biopsy represents the gold 

standard for diagnosis of OSSN which relies on a histological assessment [111].  

Biopsy is invasive and, theoretically, there is risk of seeding [113, 114]. Impression 

cytology (IC) is another OSSN diagnostic method which examines tumor cells 

collected from the superficial layers of the ocular surface [112]. Although it is less 

invasive than a biopsy, its reliability remains disputed [115]. Biopsies and IC are only 

carried out in the case of clinically visible disease, so small lesions may be missed 

which results in a false negative outcome [21]. Intraoperatively, it is extremely difficult 

to distinguish tissue margins using both biopsy and IC methods. The corneal end can 

be friable and split away from tissue samples, with resulting fragmentation of tissue 

sometimes hampering histological assessment of margin clearance. Moreover, 

histology and IC processing require long sample preparation time [22]. More recently, 

new  imaging modalities have been used to detect OSSN, such as ultrasound 

biomicroscopy [116], in vivo confocal microscopy [117] and optical coherence 

tomography (OCT) [118]. These imaging modalities  [118] do not provide a very sharp 

distinction between OSSN and benign lesions, which makes clinical applications of 

these technologies challenging [119]. Moreover, some technologies such as Raman 

spectroscopy[120] need sophisticated technology to be implemented although showed 

promising results in detection of cancer. Therefore, their application for routine OSSN 

detection is also challenging.  
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To overcome these limitations, an imaging diagnostic technique for OSSN 

which is cost-effective and potentially free of staining, and able to be performed in the 

clinic is highly desirable. Recently, auto-fluorescence imaging techniques have been 

applied for cancer diagnostics, using advanced modalities, e.g. fluorescence lifetime 

imaging (FLIM) [121, 122]. These were applied to various types of cancer such as 

neck cancer, lung cancer, cervical cancer, as reviewed in [22, 123, 124]. Auto-

fluorescence imaging plays a special role in cancer detection, as it is capable of 

recognizing aspects of chemical composition of tissue based on spectral signatures 

[125, 126] of naturally fluorescent compounds such as, Protoporphyrin IX (PPIX), 

reduced nicotinamide adenine dinucleotide (NADH) and Flavin adenine dinucleotide 

(FAD) [42, 52] whose content is modified in cancer due to a transformation in cell 

metabolism. In particular, lack of iron or ferrochelatase in tumors results in a change 

of PPIX concentration relative to the normal host tissue [20, 64]. The utilisation of 

native PPIX as a cancer marker has been explored in colon and breast cancer [42, 61, 

64]. Furthermore, cancerous cells transform glucose into lactate regardless of the 

presence of oxygen, resulting in concentration change of NADH and FAD and their 

ratio [3, 55]. Consequently tumor cells can be differentiated from healthy cells by auto-

fluorescence imaging [20].  

In this study, we used a newly-designed non-invasive auto-fluorescence 

multispectral imaging methodology of OSSN, with a view to future clinical 

ophthalmological application. This study aims to distinguish normal and neoplastic 

tissue in fixed human samples. Two different classification frameworks were deployed 

namely intra- and inter-patient classification [22] to consider aspects of patients’ 

variability and quantify spectral signature of OSSN. We also introduced an approach 

for objective assessment of boundary detection using machine learning methods. This 

technique creates a false colour map which can be rapidly generated in quasi-real time 

and used for intraoperative assessment. The neoplastic boundaries predicted by 

employing our machine learning methods were validated and assessed by an 

anatomical pathologist. To the best of our knowledge, this is the first study where 

multispectral analysis of auto-fluorescence in conjunction with artificial intelligence 

was applied to identify and find boundaries of human OSSN.  
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4.2 METHODS 

 

4.2.1 Patient recruitment 

 

Our analysis of patients’ samples was performed under the permission from 

Macquarie University Human Research Ethics Committee, reference No: 5201600708 

and informed consents were obtained. The 4µm tissue sections were prepared in pairs; 

these included a standard FFPE H&E (formalin fixed paraffin embedded haematoxylin 

and eosin) section used as reference, and adjacent formalin fixed, dehydrated, paraffin 

embedded dewaxed and cover slipped section without staining used for multispectral 

analysis. The region of interest (ROI) which served as our gold standard, was located 

on the H&E section and correlated with the unstained slide where multispectral 

imaging was performed. Figure 25 illustrates the sample preparation and 

characterisation in this study. To categorize lesions as normal or neoplastic, classical 

grading of dysplasia based on thickness of epithelial involvement by abnormal cells 

was used. Involvement of basal third and basal two thirds correspond to low grade 

(CIN1) and moderate grade dysplasia (CIN2) respectively, and involvement of all 

thirds and full thickness involvement correspond to high grade dysplasia (CIN3) and 

SCCIS respectively. All lesions with varying grades of dysplasia, SCCIS or SCC were 

considered neoplastic. A total of 18 samples from 18 eyes of 18 patients (40 to 82 years 

old) were included in this study, as described in Table 4. 

 

 
 

Figure 25 Sample preparation and characterization. (a) Collection of eye biopsies from patient 

subjected to eye surgery. (b) Preparation of histology samples. (c) Cutting of two adjacent tissue 

sections. (d) Pathology assessment of a stained slide of the sample used as a reference. (e) 

Multispectral imaging of an unstained slide from adjacent tissue section.  
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Table 4. Summary of patient information and surgical specimens 
Patient ID Age Gender eye Histology analysis 

PID 1 63 Male Right SCCIS 

PID 2 78 Male Right SCCIS 

PID 3 69 Female Right High grade dysplasia 

PID 4 59 Male left Low grade dysplasia 

PID 5 80 Male Right High grade dysplasia 

PID 6 72 Male Right SCCIS 

PID 7 78 Male Right SCC 

PID 8 41 Male Right Low grade dysplasia 

PID 9 79 Male left Low grade dysplasia 

PID 10 62 Female Right SCCIS 

PID 11 64 Female left SCCIS 

PID 12  74 Male left High grade dysplasia 

PID 13 60 Male Right SCCIS 

PID 14 58 Male left Moderate grade dysplasia 

PID 15 72 Male left SCCIS 

PID 16 82 Male Right Moderate grade dysplasia 

PID 17 47 Male Right SCCIS 

PID 18 59 Male Right SCCIS 

 

 

4.2.2  Fluorescence multispectral imaging system and imaging procedure 

We used a novel custom-made wide-field fluorescence microscopy system [11, 

95, 127] incorporating a number of light emitting diodes (LEDs) for multispectral 

excitation. These LEDs determine the excitation wavelength ranges as specified in 

Table 5. This Table also lists optical filters used to determine the excitation/emission 

wavelength ranges used in this work. Taken together, these excitation and emission 

wavelength ranges produce a number of distinctive spectral channels (𝑁𝑐ℎ=38). These 

channels can capture various fluorophores, including NADH, PPIX, Flavins, 

lipopigments, collagen, Elastin.  Multispectral imaging involves generating a sequence 

of fluorescence images of the same sample area in each of these spectral channels, 

collectively referred to as a “data block”. Each data block is accompanied by a 

differential contrast microscopy (DIC) image of the sample, used as broad reference. 

A CCD camera with high quantum efficiency was used to acquire the fluorescence 

images in the spectral channels. This camera has a 16 bit A/D converter and 2048x2048 

pixel sensor. The images we captured using an adapted IX83 Leica microscope, at 40 

times magnification (40x). 

 

 

Table 5. The excitation/emission wavelength ranges (spectral channels) used in this study (green 

squares). The excitation was supplied by a number of LED light sources whose spectra had listed 
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peak wavelengths and approximately 10 nm channelwidth, covering a spectral range from 340 

nm to 510 nm. The wavelength range of the fluorescence emission light produced by the sample 

was determined by four channel pass emission filters which span the electromagnetic spectrum 

from 420 to 650 nm. Each channel pass filter is combined with an appropriate dichroic mirror 

with cut off wavelengths of 405nm, 450nm, 573nm and 460 nm for emission filters with 420-460 

nm channel pass, 454-496 nm channel pass, 573-613 nm and 575-650 nm, respectively. This 

arrangement of 17 LED excitation wavelength ranges with 4 emission channel pass filters results 

in 38 channels (our microscope setup is shown in Supplementary Figure 30).  

 

4.3  DATA ANALYSIS 

4.3.1 Image preprocessing 

 

The image preprocessing is performed to remove random and systematic errors 

which influence the individual spectral channel images [11, 89, 95, 128]. Random 

errors include Poisson’s noise, dead pixels, spikes due to cosmic rays, analogue-to-

digital converter errors, bit errors in transmission, and similar [89, 95]. Spikes, 

saturated or dead pixels were located by a 'threshold limiting window' and then 

replaced by values interpolated from the immediately adjacent 8 pixels [129] ( for 

more information see supplementary material section 4.8.2). To remove Poisson’s 

noise, a wavelet filter with symmetric Mother function was used [128, 130, 131] (for 

more information see supplementary material section4.8.3). 

Apart from random errors, two systematic errors make contributions to the 

spectral channel images namely the fluorescent background (from the microscope 

optics and the sample slide) and uneven illumination of the field of view [11]. To 

remove this background, a reference background was subtracted from each data block, 

channel by channel (for more information see supplementary material section4.8.4). 

To correct for uneven illumination, the spectral images were divided by the images 
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taken from a reference calibration fluid for each spectral channel separately [95] ( for 

more information see supplementary material section4.8.6).  

4.3.2 Image stitching 

 

The use of 40 times magnification objective used to acquire fluorescence images 

has a limited field of view (~ 0.20 -0.25 mm2 of a sample covered in each image). To 

enable the inspection of larger fields of view, a series of overlapping microscopy 

images were taken. Then, the affine algorithm [132] was applied to co-register the 

overlapping images based on an image taken by 5x objective with a bright field 

microscope. Finally, a composite image was generated (Supplementary Figure 31 and 

Figure 32.).  

4.3.3 Establishing initial normal and neoplastic signatures  

 

In order to extract specific quantitative information from images in each spectral 

channel to differentiate between neoplastic and normal tissue, the images were first 

divided into corresponding sectors (squares, 10 x 10 pixels each) and average intensity 

in each spectral channel was calculated over each sector at XY plane (Supplementary 

Figure 33). This averaging decreases the computational time and acts as an additional 

low pass filter which removes some of the remaining random variations in tissue 

and/or fluorescent signals.  The average fluorescence intensity in each sector forms an 

𝑁𝑐ℎ (𝑁𝑐ℎ = 38) dimensional feature vector, referred to as the spectral signature of that 

sector. Hence, many sectors (> 10000) were extracted from each tissue, each of which 

produces a vector of features.  Depending on the pathology assessment, each sector 

was labelled as normal or neoplasm. Subsequently, these sectors were fed into machine 

learning techniques as each dimension of such sector provide an input feature.   

 

4.3.4 Classification frameworks 

 

In this study, we used two different standard frameworks for classification: inter-

patient classification and intra-patient classification [22].  

We used the inter-patient classification framework [133] to detect patient’s 

OSSN considering between patient variability and heterogeneity. Due to relatively 
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small size of the patient group (eighteen) we applied the standard “leave one [patient] 

out” approach [134]. A single patient was chosen and the data associated with the 

patient (named the “testing” patient) were put aside. Further, the multispectral 

signatures of the neoplastic and normal tissue were recognized based on the data from 

the remaining cohort of patients (named “training” patients). Hence, the tissue from 

the “testing” patient has no contribution to the multispectral neoplastic signature 

identified in this step. Accordingly, the recognized signature is applied to predict block 

labels of the “testing” patient in order to generate the false colour map and statistical 

metrics. This is then repeated until all patients in the cohort considered as testing 

patients have been processed. This workflow is illustrated in Figure 26 (a).  

In the intra-patient framework, the multispectral signature of neoplastic/normal 

tissue was recognized based on a single patient independently of other patients and 

then tested on another part of tissue from the same patient. This framework was 

proposed in the literature to minimize interpatient variability and heterogeneity[22]. 

Figure 28(a) illustrates the intra-patient workflow. The unstained tissue is first divided 

into two separate sections called the training and testing tissue. The training tissue has 

both normal and neoplastic areas, the availability of which makes it possible to extract 

the multispectral neoplastic signature. The trained classifiers were then applied to the 

data blocks of the testing area of the same patient for the label prediction (“neoplastic” 

vs “non-neoplastic”), which resulted in a false colour map (Figure 29) and related 

statistical metrics. The Supplementary Figure 34 shows the testing and training tissue 

for a sample patient. This process was repeated for all patients (n=6) whose samples 

were appropriate for intra-patient classification. Such samples must have sufficiently 

large neoplastic and normal area in their training tissue, in order to properly identify 

the multispectral neoplastic signature. Moreover, their testing tissue must incorporate 

the intersection between neoplastic and normal tissue, which is required for drawing 

an accurate false colour map. 

4.3.5 Multivariate analysis and artificial intelligence methods 

 

A range of different univariate, multivariate and artificial intelligence methods 

were used in this study including ANOVA[135], PCA[97], statistical learning and 

machine learning analyses [136, 137]. ANOVA was used to evaluate the within and 

between group variance and verify the statistical significance of our tissue 
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identification. In addition, t- test was applied on the elements of spectral signature from 

neoplastic and normal tissue to prove that they are not from a normal distribution with 

equal means[138](more information can be found at supplementary material section 

4.8.9).  A significant difference can be regarded as indicative of a strong multispectral 

signature of a relative difference between neoplastic and normal tissue from an 

individual patient. To evaluate the robustness of the multispectral content hidden in 

the training data, the unsupervised PCA analysis may also be implemented (more 

information can be found at supplementary material section 4.8.94.8.10).   

 Machine learning methods as artificial intelligence approaches were used to 

generate smart statistical models relating the spectral signatures to tissue pathological 

condition. To select a robust prediction model, different classifiers were evaluated and 

chosen based on their properties and performance, including the artificial neural 

network classifier (ANN)[139], quadratic discriminant analysis classifiers (QDA) 

[140], Decision Trees [141], Support vector machines (SVM) [142] with linear and 

quadric kernels, and K nearest neighbour (KNN) [143]. Evaluation of the classifier 

training process was performed by  K fold (K=10) cross validation [144], which also 

kept the classifiers secure from overtraining[145] (more information can be found at 

supplementary material section 4.8.94.8.11).  

After evaluating the predictive model using ROC and their performance [144], 

the KNN and SVM were chosen as the preferred classifiers in this study for  the intra 

patient and inter patient frameworks, respectively. KNN was selected as it showed 

high performance in intra patient classification with the area under curve (AUC) close 

to 1. The KNN learns the data construction to predict class labels by defining the 

nearest neighbours and assessing the similarity to a query example [143]. In fact within 

a dataset, the data points will usually be in adjacent proximity to other data points that 

have comparable properties. Providing the data points are recognized with a 

classification label, then an unclassified data point can be labeled from its nearest 

neighbours [136]. KNN rapidly learns the data structure and it can be quickly re-

trained, which is beneficial for intra patient classification. In the intra patient 

framework, a specialized classifier is generated for each patient, which can then be 

stored in the doctors’ office computer.  SVM is a strong supervised method which 

forms a hyperplane with maximum margins in the high dimensional spectral feature 

space to separate data points into neoplastic and normal classes. In addition to strong 
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performance (AUC>0.98), SVM  with quadric kernel is chosen for inter patient 

classification as it has robust performance in dealing with sparse and noisy data [142] 

caused from between patient variability. These machine learning techniques were 

trained on sectors extracted from neoplastic and normal area of patients’ samples to 

find the multispectral signature of neoplasia. Then, the trained model was applied on 

an unknown area to determine the existence of similar pathological conditions [22]. 

Finally, the predicted outcomes were compared with the pathology gold standard to 

evaluate the classifier performance.  

4.4 RESULTS 

 

In order to effectively analyze the multispectral data and consider the “between-

patients”  and “within-patient” variability of the spectral neoplastic signatures, we 

developed two different frameworks named intra- and inter-patient classification [22]. 

The neoplastic boundary outlined by the pathologist served as the gold standard for 

our analysis of neoplastic prediction.  

 

4.4.1 Inter-patient classification results 

 

In the inter-patient classification we evaluate a relative difference between 

neoplastic and normal tissue from all patients in the training cohort. The tissue sectors 

extracted from the training area were grouped into normal and neoplastic sections and 

passed the univariate t-test in each iteration; this has verified that significant 

differences exist (on average at p< 0.001). As described above, SVM classifier was 

selected and trained as the predictive model for inter-patient classification. 

Subsequently, the image sectors of the testing patient were fed into the classifier to 

predict their labels. The final ROC curve shown in Figure 26(b) is an average of the 

ROC curves generated in each iteration of the loop. The ROC with AUC>0.98 

demonstrated that the SVM classifier was well trained and could successfully generate 

the multispectral signature of the training sectors in the inter- patient framework. 
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Figure 26.  Inter patient classification workflow and analysis. (a) The interpatient work flow 

incorporates a loop beginning from the 'START' point. The cohort of patients is divided into 

two groups: the testing group comprising one patient and the training group with 19 patients. 

Neoplastic and normal area of training patients are segmented and classified as normal or 

neoplastic sectors. After SVM the classifier is shaped, and it is then applied to the testing patient 

to predict sector labels in that patient. Then, another iteration commences from the START 

point with a consecutive testing patient. The loop continues until the data blocks from all of the 

eligible testing patients are examined. (b) ROC curve of SVM classifier used for the prediction 

of data block labels in the inter-patient classification (AUC >0.9 which demonstrate a grate 

separation between classes).  
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Chapter 4: OSSN DETECTION AND DELINEATION 63 

 
 

Figure 27.  False colour map superimposed on the DIC image of testing patients in the inter-

patient classification for different patients in comparison with the corresponding histology 
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images. Data blocks are coloured in red or green if they are respectively predicted to be neoplastic 

or normal. First/third column is the multispectral false colour map and the second/fourth column 

is the corresponding H&E image. (a),(b) and (c),(d) neoplastic and normal section for PID 1, 

respectively. (e),(f) and (g),(h) neoplastic and normal section for PID 2, respectively. (i),(j) and 

(k),(l) neoplastic and normal section for PID 3, respectively. (m),(n) and (o),(p) neoplastic and 

normal section for PID 4, respectively. (q),(r) and (s),(t) neoplastic and normal section for PID5, 

respectively. (u),(v) and (w),(x) neoplastic and normal section for PID 6, respectively. (y),(z) and 

(aa),(ab) neoplastic and normal section for PID 7, respectively. (ac),(ad) and (ae),(af) neoplastic 

and normal section for PID 8, respectively. (ag),(ah) and (ai),(aj) neoplastic and normal section 

for PID 9, respectively. (ak),(al) and (am),(an) neoplastic and normal section for PID 10, 

respectively. (ao),(ap) and (aq),(ar) neoplastic and normal section for PID 11, respectively. 

(as),(at) neoplastic section for PID 12. (au),(av) neoplastic section for PID 13. (aw),(ax) neoplastic 

section for PID 14. (ay),(az) neoplastic section for PID 15. (ba),(bb) neoplastic section for PID 16. 

(bc),(bd) neoplastic section for PID 17. (be),(bf) neoplastic section for PID 18. (The borders of the 

lesions are highlighted by dash line in the Supplementary Material Figure 35 ) 

 

The representative false colour maps for neoplastic boundary evaluations are 

shown in Figure 27(a-be).  In this Figure, the neoplastic tissue is coloured in red and 

normal in green on the DIC image depending on the classifier predictions. Generally, 

neoplastic areas determined by multispectral imaging are reasonably similar to 

neoplastic areas determined by histology. Figure 27 c,p,ab,af,ar,ar,at,av,az,al,bb  show 

the identical results om multispectral analysis and sector classification to give identical 

results with histopathology assessment. In several samples, the neoplastic areas 

determined by multispectral imaging were smaller than those determined by histology 

(Figure 27. a,e,I,m,t,x,aj,an,bd). We note that in some cases (Figure 27 i,bd) the areas 

classified by multispectral imaging  as healthy were surrounded by neoplastic areas 

which is unlikely. Such samples can be post-processed and reclassified based on 

supervised corrections to remove those areas. Figure 27 g,k,o,r,v,z,ad,ah , ap depict 

normal samples which have shown false positive regions. We did not correlate the 

disease grade with the multispectral signature and there is no general correlation 

concerning the grade of disease and agreement between histological images and 

multispectral approach in this study. Overall, Figure 27 demonstrates that ~ 40% of 

patients show strong correlation (>85%) with histopathology assessment, ~50% 

reasonable(>65%) and ~10% poor agreement (<65%) with the histopathology 

assessment. The poor agreement between multi spectral and histopathology 

assessment led to 11%, 18%, 88% and 80% false negative, false positive, sensitivity 
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“ 

and specificity rate, respectively, which can be considered reasonably high for the 

system. In addition, the correlation between histology assessment and multi spectral 

analysis pixel-wise is ~ 78%. 

Figure 27 indicates that it is possible to form clinically useful judgments based 

on multispectral analysis. It confirms that regions identified as neoplasm in pathology 

can be classified as neoplastic tissue using our multispectral imaging approach with 

reasonable agreement. We emphasize that all patients investigated here who were 

diagnosed to have OSSN by pathology, have been identified as having neoplastic 

tissue by our approach. This means that, in principle, this system has the capability to 

eliminate the histological assessment for confirmation of OSSN in patients. In 

addition, if biopsy was prescribed to validate the positive multispectral outcome, a 

physician can use the multispectral map to locate the area most likely to have OSSN 

and avoid blind area selection. Localizing biopsy sample also minimizes size of 

excised tissue. 

 

4.4.2 Intra patient classification results 

 

In the intra patient classification, we evaluate a relative difference between 

neoplastic and normal tissue from one patient at a time. In this classification, patient 

variability in detecting OSSN is minimized. The KNN classifier was selected for 

reasons explained in the data analysis section and was trained as the predictive model 

for intra patient classification. A significant difference (at p< 0.0005) was 

demonstrated in the t-test and regarded as indicative of a strong multispectral signature 

of a relative difference between neoplastic and normal tissue from an individual 

patient. Figure 28(b) shows the three highest PCA scores in the discriminant space, 

demonstrating that the neoplastic sectors are very clearly separated from the normal 

sectors. Subsequently, these training data were used to shape the classifiers. The ROC 

curve for the KNN classier obtained from the example sample is shown in Figure 28(c) 

which demonstrates the area under the curve (AUC) of selected classifier is 

approaching 1, proving that the predictive models could efficiently recognize the 

multispectral signature of the neoplastic versus normal tissues.  To generate the false 

colour map highlighting the neoplastic areas, firstly, the average spectral signature of 

the sectors in the testing area were extracted and fed into the KNN classifier to predict 
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if they are neoplastic or normal. Then, these sectors were coloured red (neoplastic) or 

green (normal) and positioned on the composite DIC image. Figure 29 (a,e,i,c,g,k) 

show the false colour maps for samples from  patients used in the intra-patient 

framework. 

 

 

 

 
 

Figure 28. Intra-patient analysis workflow and data analysis. (a) Neoplastic section, normal section and 

normal neoplastic interface from an unstained tissue of a single patient are collected. Neoplastic and 

normal sectors are used as training tissue and the normal-neoplastic interface serves as the testing tissue. 

Data blocks extracted from neoplastic and normal areas are used to train classifiers. The classifiers are 

then applied to the sectors of the testing tissue to predict their labels. Finally, the predicted labels are 

compared to the gold standard pathology recommendations to draw metrics (Figure 34 demonstrate 
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an example framework to show how samples from a single patient was used for training and testing). 

(b) Data blocks extracted from the training area are projected onto a discriminative space created by 

unsupervised PCA for the example patient. The neoplastic or normal data points for the sample patient 

are shown by purple or blue colour, respectively (separability~5). The arbitrary units (a.u.) has been 

used as it is combination of different channels . (c) ROC curve associated with KNN classifier applied 

on the sample patient (AUC~1 which demonstrates the separation between the classes).  

 

 

 

 

In the intra patient classification, the testing tissue incorporates the normal/ 

neoplasm interface. Hence, to evaluate the concordance between the multi spectral 

false colour map and H&E sections in Figure 29, H&E images were orientated with 

the neoplastic /normal areas located on the left/right side of the tissue for all sections 

with their corresponding colour maps. Figure 29 shows a remarkably high correlation 

between the multispectral prediction and histopathological evaluation at the 

normal/neoplasm interface for all of the 6 patients tested in the intra patient framework 

. Figure 29 a,e,i,c,g and k confirms that  the classifier was able to correctly detect the 

tumour and normal areas  in 100% of patients investigated.  In Figure 29 i j and k, we 

note that a small normal area is developing in the neoplastic areas, which is highly 

unlikely. In this framework, the correlation between the histology assessment and 

multispectral analysis is ~94%. The agreement between H&E sections and 

multispectral analysis can be improved by a supervised correction to reclassify these 

areas.  In addition, smoothing the colour map images can remove slight misclassified 

spots. Generally, in all patients the tumour was detected within less than 200 microns 

from a pathological boundary, suggesting that such a small excision margin would be 

safe and adequate.  

 



 

68 Chapter 4: OSSN DETECTION AND DELINEATION 

 
 

 

Figure 29) False colour map generated to locate the neoplastic boundary on the testing tissue in 

the intra patient classification framework in comparison with the corresponding histology images. 

The position of the block data on the DIC image is coloured in red or green if they are predicted 

to be neoplastic or normal, respectively. First/third column is the multispectral false colour map 

and second/third column is corresponding H&E section. (a) and (b) associated to PID4, (b) and 

(c) associated to PID9, (e) and (f) associated to PID 10. (g) and (h) associated to PID 1. (i) and(j) 

associated to PID 3, (k) and(l) associated to PID7 (borders of the lesions were highlighted by dash 

line in the Supplementary Material Figure 36).   
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4.5 DISCUSSION 

 

 Imaging modalities capable of non-invasively detecting OSSN at early stages 

and precise localization of tumour margins are highly desirable in the clinic. This 

approach has the potential to reduce the incidence of eye biopsies, prevent therapy 

delays and make treatment more effective. In this study, we propose a non-invasive 

auto-fluorescence multispectral imaging procedure for quantitative analysis of cancer-

related spectral signatures of the tissue retaining the relevant spatial information. This 

approach is applicable both to early diagnosis and the delineation of neoplastic 

boundary on a real time basis, employing cost-effective wide-field microscopy 

instrumentation. Our system uses light excitation with a number of narrow band 

wavelength ranges and it collects native fluorescence emission of the tissue also at 

specific wavelengths ranges. Each excitation /emission wavelength band combination 

forms a spectral channel, and we used (n=38) such channels in this work (Table 5). 

The sample is imaged in each of these channels, to acquire separate fluorescent channel 

images. This represents an advance over the current, ophthalmological auto- 

fluorescence imaging systems. Current auto fluorescence technologies employed in 

fundus camera typically use only one blue light excitation to evaluate retina diseases 

such as macular dystrophies, age related macular degeneration, white dot syndromes, 

retinitis pigmentosa as reviewed at [146, 147]. In fact, the availability of multiple 

channels makes it possible to survey the overall biochemical composition in the tissue, 

in addition to detecting specific markers to identify tissue state. 

Artificial intelligence is applied in this study to eliminate the need of data 

interpretation by a highly skilled operator. We established two independent 

classifications, in the intra- and inter-patient frameworks to provide maps of neoplastic 

boundaries. In both cases, the analyzed data were validated by comparing with the 

pathology standard. In the intra-patient classification, the neoplastic boundary was 

detected using a model formed by the tumour and normal tissue from the same patient. 

This approach showed reliable results with high agreement between false color 

multispectral map and corresponding H&E sections. The intra-patient method is highly 

relevant clinically as corresponding healthy areas in the same patient (such as the other 

eye) are usually available. The intra patient framework can be applied for accurate 
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boundary delineation, and also to detect possible OSSN spots in another eye or the 

OSSN recurrence at the early stages. 

Our intra patient classification may help to monitor OSSN treatment. Surgical 

excision and topical interferon with retinoic acid are the mainstay of treatment where 

our technology can offer an advantage.  Surgical excision [148] needs to be complete 

[149-151] to avoid subsequent recurrence [152, 153].  Currently, OSSN recurrence 

rate after surgery can be high (>30%) [148, 154]. An accurate intra-patient image could 

assist the surgeon to precisely locate the neoplastic boundaries and to completely 

remove the residual neoplastic tissue. On the other hand, accurate boundary detection 

may help the surgeon to avoid redundant resection of healthy tissue. In the case of 

tumour regression by topical treatment, premature treatment termination led by a false 

clinical impression may also increase the risk of recurrence. The technology could be 

used to monitor treatment efficacy and detect recurrences non-invasively. 

In this study, the inter-patient classification framework shows acceptable 

accuracy with reasonable qualitative performance. Lower accuracy of interpatient 

classification compared to intra patient framework is attributed to biological 

heterogeneity of  patients and  neoplasms [18]. The effects unrelated to neoplastic 

disease such as different sunlight exposure, different ethnicities, eye colours etc. may 

mask the multispectral signature and influence the results. Furthermore, metabolic 

activity within the tumour may not be uniform which could also influence the 

classifier. In addition, sample preparation such as uneven cut, or folded tissue may 

affect the classification. Although such diversity casts a shadow on the statistical 

power, the significance tests demonstrate that interpatient classification is still 

acceptably accurate with the p-value of < 0.001 but with room for improvement. In 

this feasibility study, our inter-patient models were constructed based on a limited 

number of patients. A larger patient’s database is likely to refine the spectral signatures 

and limit random side effects. The interpatient classifier can be directly employed to 

diagnose the incidence of neoplastic tissue in the eye or to assist in decision making 

for clinicians.  

The technique discussed here has the potential to be used in a range of 

applications.  It can be simply integrated with a slit lamp in the clinics or be integrated 

with the equipment in surgical suites. The number of the channels can be optimized 

bearing in mind the misclassification error, critical nature of the application and the 
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consequences of misclassification error; with a smaller number of channels likely to 

make the system more user-friendly. To potentially apply our technology in a real 

clinical setting safe excitation lights were employed based on the power intensity. In 

fact, the highest UV power used in this study is less than half of the solar UV power 

which would reach the pupil on an average sunny day at earth sea level.  

The technology described here offers distinctive advantages in ophthalmology 

applications. It is an inexpensive noninvasive technique with capability to be used on 

an outpatient basis. The imaging system used in this study doesn’t require any contact 

with the ocular surface in contrast to both ultrasound biomicroscopy and some 

confocal microscopy devices [21]. The contactless nature of our approach decreases 

both the length of time and technical expertise required for employing the system for 

real clinical applications. To use the time more effectively, a relatively small yet 

informative number of spectral images were collected in specific spectral channels 

using our technology.   Consequently, the data for a single field of view can be acquired 

in less than 3 minutes and data analysis required to predict tissue labels using pre-

trained classifiers is on a real time basis.  This time factor is critical when the 

technology is used in the operating theatre.  

 This study can be considered as the first step towards clinical application, using 

the concept that proposed technology with artificial intelligence is capable of detecting 

and discriminating between normal and neoplastic eye tissue with a reasonable degree 

of accuracy.  The surgeon could easily identify normal areas before photographing the 

suspect area at the slit lamp. As this study was conducted on paraffin embedded ex 

vivo tissue, the results are valid only in this scenario and evaluating in vivo application 

of the proposed technology is a potential extension of this study. Investigation of the 

effect of tissue fixation was beyond of the ethics and the scope of this study and was 

not considered in this thesis. At the current stage, the system cannot be applied directly 

for live patients and it needs some further measure such as optimizing the system. 

Although the same classifiers may not be applicable for the live tissue, the technique 

and approach to train the classifiers are the same for live tissue and patients. Another 

possible extension of this study could focus on discrimination between eye lesions of 

different grades including aggressive lesions, requiring action and resection, and 

benign cases. In this study, benign entities such as  pterygia [155] were not evaluated. 

As a future study, pterygia could be investigated based on the technique described 
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here, as it is likely that pterygia will have a different chemical composition when 

compared to normal cells. In fact, this study could be extended to classify tissue in 

three different groups, comparing normal tissue, pterygia and neoplastic tissue.  

 

4.6 CONCLUSION 

In this study quantitative analysis of the spectral images extracted a strong 

multispectral signature of a relative difference between neoplastic and normal tissue 

both within each patient (at p< 0.0005) and between patients (at p< 0.001). The fully 

automated diagnostic method developed in this study based on machine learning 

produces maps of the relatively well circumscribed neoplastic-non neoplastic 

interface. Generally, OSSN could be detected using multispectral analysis in all 

patients investigated here. we got ~94% correlation in intra patient classification and 

~78% in inter patient classification. Such percentage shows the pixels with the same 

label in both histology and multi spectral analysis This study shows the feasibility of 

using multispectral auto-florescence imaging to detect and find the boundary of human 

OSSN. One of the limitations of this study is  the limited number of the available 

patients which is considered for the future study. 
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4.8 SUPPLEMENTARY NOTES ASSOCIATED WITH METHOD 

SECTION 

 

4.8.1 A schematic for customized auto-florescence imaging system setup 

 

 

 

Figure 30. Customized auto-fluorescence imaging system setup. One LED with 

specific wavelength excites the tissue at a time. The scattered auto-fluorescence light 

pass a channel pass filter and captured by a CCD camera. This process repeats until 

all the spectral images are taken. 

 

 

4.8.2 Treating spikes 

To remove the spikes, saturated or dead pixels, a 'threshold limiting window' is 

scanned over the spectral channel images to locate them; these spikes are then replaced 

by values interpolated from the immediately adjacent pixels [129].  To provide more 

details, removing spikes has two stages: identification and replacement. This effect 

can be inspected via histogram distribution of a spectral channel as cosmic rays do not 

follow ta typical Gaussian distribution of the pixel and have high values compared to 

other pixel. A typical way to detect cosmic rays is to find them through image 

histogram globally and just consider the pixel values which are much higher than the 

most frequently occurring pixel value (mode) of all pixels. 

 In this study to advance the analysis and make sure to find all of the cosmic 

rays, we find the cosmetic rays locally and applied a 'threshold limiting window' 
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scanned over the spectral channel images. After evaluation different dimension, a 

scanning window with 20x20 was selected, which had an acceptable performance to 

find all of the cosmetic rays for different spectral images. After finding the cosmic 

rays, they needed to be replaced by a close value to the adjacent pixels to avoid over 

smoothing the pixel. Hence, only 8 immediate pixel were chosen to interpolate. More 

information has now been provided in supplementary material. 

 

4.8.3 Treating Poisson’s noise 

The aim for de- noising was to treat Poisson’s noise for improving signal to noise 

ratio with minimal loss of the informative part of signal. To do this aim, wavelet 

transformation was used. Wavelets with different mother functions, including Haar, 

Daubechies, Symmetric, Biorthogonal, were tried and finally a customized wavelet 

filter with symmetric Mother function was used [128, 130] which fitted well to spectral 

channels rather and could successfully improve the signal to noise ratio. Each spectral 

channel image was divided into different scale components with specific coefficients 

generated by the wavelet function. To ensure that the minimum amount of information 

loss happens, wavelet function with different levels was tried and finally 3 levels was 

set. Finally, by applying an inverse wavelet transform, the de-noised image was 

reconstructed [131].  

 

4.8.4 Treating background  

The background signal is a non-informative portion of the spectral images, 

which is unrelated to the auto fluorescence emission of the tissue sample. To capture 

the background reference signal, a series of spectral images acquired from an empty 

sample. These reference background images were de- noised and then subtracted from 

images taken from samples, channel by channel, to correct the back ground from tissue 

images.   

 

4.8.5 Treating uneven illumination 

To capture the illumination curve of each spectral channel, a series of spectral 

images acquired from a reference calibration fluid which has a fluorescence signal in 

all of the channel. Then, the calibration image were de - noised and its background 
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were corrected. Finally, the images from samples were divided by the calibration 

image, channel by channel. Such technique removes spectral distortion created by 

uneven illumination of the field of view [95]. 

 

4.8.6 Image stitching 

 
 

Figure 31. DIC image registration for a sample patient.   To enable the inspection of larger fields 

of view, a series of overlapping microscopy images were taken (b-I). Then, the affine algorithm 

was applied to co-register the overlapping images based on an image taken by 5x objective with 

a bright field microscope. Finally, a composite image was generated (a). 
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Figure 32. a spectral image after being pre-proceed and registered. (EX: 378±10 nm, EM: 454-

496) 

 

4.8.7 Generating sectors and spectral signiture 

 

 

 

Figure 33. Extracting sectors from multi spectral images. 

 

 

4.8.8 Testing and training tissue for a sample patient in intra-patient 

framework. 
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Figure 34. Testing and training tissue for a sample patient in intra-patient framework. Tissue 

from one single patient is first divided into two separate sections called the training and testing 

tissue. The training tissue has both normal and neoplastic areas, the availability of which makes 

it possible to extract the multispectral neoplastic signature. The trained classifiers were then 

applied to the data blocks of the testing area of the same patient for the label prediction 

(“neoplastic” vs “non-neoplastic”), which resulted in a false colour map and related statistical 

metrics.  

 

 

 

4.8.9 t-test 

To apply t- test in this study, first he sectors extracted from the training area and 

then spectral signature of the sector were obtained. The spectral signature for each 

sector is a feature vector with 38 elements corresponding to 38 spectral channels. Then 

the spectral signature of sectors were grouped to “neoplastic” and “normal” sets 

depending to the each sector. Finally, t- test was applied on the spectral signature of 

sectors, element by element. Therefore, for each feature (each element of the spectral 

signature), t test was applied once and to verify if there is a statistically significant 

difference between neoplastic and normal groups. In the better words, T test proves 

that the features extracted from the spectral images are significant for two groups. A 

significant difference can be regarded as indicative of a strong multispectral signature 
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of a relative difference between neoplastic and normal tissue from an individual 

patient. 

 

4.8.10 Principal component analysis (PCA) 

PCA is a linear transformation which reflects the feature vectors obtained from 

sectors into a new uncorrelated orthogonal space. The training data were projected 

onto the discriminative space created by the PCA analysis and the uncorrelated scores 

were calculated. PCA was used to de-correlate the image data across spectral channels. 

PCA projects the feature vectors onto the eigenvectors of the covariance matrix, 

illustrating informative variations of uncorrelated data. 

 

4.8.11 Machine learning performance evaluation 

After verifying the robustness of the spectral signatures using t test, machine 

learning methodology were utilized. In the training process, K fold (K=10) cross 

validation was employed to monitor the performance of machine learning methods. To 

this aim, the training data was randomly disaggregated into 10 equal size folds. Each 

fold was used to evaluate the classifier algorithm trained by the 9 remaining folds. The 

process ran for 10 iterations, and all the accuracies obtained were averaged to calculate 

the overall performance. This  was then repeated for the classifier algorithm using 

different thresholds to generate the 'receiver operating characteristic' (ROC) curve, 

which leads to an optimized training process [145]. The learning methods were also 

statistically evaluated based on area under ROC curve (AUC). AUC values close to 1 

shows the excellent performance of the classifier. For intra patient classification where 

a classifier is designed particularly for a patient, the training time efficiency was also 

considered.  
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4.9 SUPPLEMENTARY NOTES ASSOCIATED TO RESULT SECTION 
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Figure 35.  False colour map superimposed on the DIC image of testing patients in the inter-

patient classification for different patients with corresponding H&E images with dash lines to 

highlight boundary of normal and neoplasm tissue with green and red color, respectively.   

Data blocks are coloured in red or green if they are respectively predicted to be neoplastic or 

normal. First/third column is the multispectral false colour map and the second/fourth column 

is the corresponding H&E image. (a),(b) and (c),(d) neoplastic and normal section for PID 1, 

respectively. (e),(f) and (g),(h) neoplastic and normal section for PID 2, respectively. (i),(j) 

and (k),(l) neoplastic and normal section for PID 3, respectively. (m),(n) and (o),(p) neoplastic 

and normal section for PID 4, respectively. (q),(r) and (s),(t) neoplastic and normal section for 

PID5, respectively. (u),(v) and (w),(x) neoplastic and normal section for PID 6, respectively. 

(y),(z) and (aa),(ab) neoplastic and normal section for PID 7, respectively. (ac),(ad) and 

(ae),(af) neoplastic and normal section for PID 8, respectively. (ag),(ah) and (ai),(aj) neoplastic 

and normal section for PID 9, respectively. (ak),(al) and (am),(an) neoplastic and normal 

section for PID 10, respectively. (ao),(ap) and (aq),(ar) neoplastic and normal section for PID 

11, respectively. (as),(at) neoplastic section for PID 12. (au),(av) neoplastic section for PID 

13. (aw),(ax) neoplastic section for PID 14. (ay),(az) neoplastic section for PID 15. (ba),(bb) 

neoplastic section for PID 16. (bc),(bd) neoplastic section for PID 17. (be),(bf) neoplastic 

section for PID 18. 
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Figure 36) False colour map generated to locate the neoplastic boundary on the testing tissue 

in the intra patient classification framework in comparison with the corresponding histology 

images with dash lines to highlight boundary of normal and neoplasm tissue with green and 

red color, respectively.   . The position of the block data on the DIC image is coloured in red 

or green if they are predicted to be neoplastic or normal, respectively. First/third column is the 

multispectral false colour map and second/third column is corresponding H&E section. (a) and 

(b) associated to PID4, (b) and (c) associated to PID9, (e) and (f) associated to PID 10. (g) and 

(h) associated to PID 1. (i) and(j) associated to PID 3, (k) and(l) associated to PID7.   
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Chapter 5: CHANNEL SELECTION AND 

SYSTEM OPTIMISATION 

This chapter describes the methodology adopted by this research to optimise the 

multispectral imaging for detection of OSSN in terms of the number of channels and 

progress the technology one step further for real-world clinical application.  This 

chapter has been written in a manuscript format to be submitted in ‘Investigative 

Ophthalmology & Visual Science’ which outlines the background and the purpose of 

the chapter in section 5.1. The methodology of the research is described in 5.2. Section 

5.3 and 5.4  represent the results and discussion, respectively. 

 

  

Abstract 

Clinical OSSN diagnostics by non-invasive spectral imaging of eye autofluorescence 

must be rapid enough to be comfortable for patients – without sacrificing accuracy. 

This requires identifying optimised spectral signatures of OSSN. Here, we identified 

such signatures using a data-driven methodology of swarm intelligence. Ten patients 

with histopathological diagnosis of ocular surface squamous neoplasia (OSSN) were 

recruited. Their unstained biopsy OSSN specimens were investigated using a custom-

built autofluorescence multispectral microscopy imaging system. The images were 

taken in 38 spectral channels spanning specific excitation (340nm-510nm) and 

emission (420nm-650nm) wavelength ranges. To identify optimised OSSN spectral 

signatures, swarm intelligence was combined with discriminative cluster analysis. 

Three evolutionary strategies including particle swarm intelligence, differential 

evaluation and ant colony optimization were employed to discover a group of 

interacting channels yielding the optimised OSSN spectral signature. To validate the 

results and assess the generality power of our OSSN spectral signature, external and 

internal cross-validations were employed. Our study found optimized spectral 

signature of OSSN allowing rapid diagnostic imaging in clinical settings and showed 

the feasibility of using optimized multispectral auto-florescence spectral signature to 

detect and find the boundaries of human OSSN. This advance will facilitate translating 

the multispectral imaging technology for non-invasive OSSN diagnostics. 
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Keywords: Ocular surface squamous neoplasia (OSSN), Autofluorescence spectral 

signature, Swarm intelligence 

 

5.1 INTRODUCTION 

Conventionally, autofluorescence imaging technologies such as fluorescence 

lifetime imaging microscopy (FLIM) have been limited to employ only a few costly 

channels (N<3) [156, 157]. New cutting-edge advancement of autofluorescence 

sensing technology has introduced an unlimited number of spectral channels, which 

could track several native fluorophores simultaneously with denser spectral resolution. 

Such innovative technology employs a number of channels to cover a broad spectrum 

ranging from deep UV to infrared wavelengths [11, 95]. Recently, such multispectral 

autofluorescence imaging with 38 spectral channels showed successful results in 

detection and boundary delineation of Ocular surface squamous neoplasia (OSSN), 

[99] which is referred to the most common neoplastic eye surface disorder [100, 101]. 

 Although multispectral imaging provides the opportunity of using tens of 

channels with unrestricted spectral specifications to detect OSSN, the number of 

channels and associated multispectral signature need to be optimised to facilitate 

translating the technology for a real-world ophthalmology application. Each channel 

employed to the multispectral imaging imposes additional cost and extra acquisition 

time. Irrespective to the cost, time plays a crucial factor for precise OSSN detection 

for a cautious patient whose eyes may move. Such an unintentional movement can be 

minimised by reducing the acquisition time. 

In fact, We have been able to identify the OSSN signature using 38 spectral 

channels detecting fluorescent signals from native fluorophores such as 

protoporphyrin IX (PPIX), reduced nicotinamide adenine dinucleotide (NADH) and 

flavin adenine dinucleotide (FAD)[158]. The relative content  of these native 

fluorophores were reported to be  modified in cancer due to cancer-induced 

transformation in cell metabolism[20, 42, 52, 64]. However. This technology is 

required for an efficient and patient-friendly diagnostic, because imaging in each 

channel at the maximum eye-safe excitation limit requires several seconds. As a result, 

employing tens of channels leads to a long imaging time, during which unintentional 

eye movement and blinking cause unavoidable interference such as image shifts and 

defocusing [159]. Therefore, to enable clinical translation of the technology and its 
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deployment for ophthalmologic application, a robust methodology must be developed 

to identify the smallest number of imaging channels with optimised spectral 

specifications which can accurately determine the spectral signature of OSSN.  

 Prejudgment [160] is a simple way to optimise multispectral imaging 

technology. Prejudgment suggests tracking specific biomarkers previously discovered 

and design a channel arrangement based on their excitation-emission spectra. 

However, such a methodology has two limitations. First, the multispectral imaging 

becomes restricted to known biomarkers, and there is no opportunity to find new and 

potentially more indicative channels. Secondly, excitation-emission spectra of a 

fluorophore are not a reliable source to select channels, as they may change due to 

various factors such as change in PH [32] as described in section 2.3. Therefore, 

prejudgment cannot be a proper technique to select the indicative channels, as there 

are various known and unknown factors that influence the usefulness of the channels 

for a specific diagnostic application. Hence, the best option is to investigate the 

complex aspects of the disease using all channels and then choose the effective ones 

directly from some patients before translating the technology to a real clinical 

application. 

As another option, a channel subset can be selected by scoring the robustness of 

each channel to detect diseases independently of other channels[161, 162]. Although 

beneficial for removing very irrelevant channels, this methodology cannot be useful to 

select an efficient subset of channels. In fact, due to possible mutual information 

between close channels[11], grouping individually good channels cannot necessarily 

result in an efficient classification performance[163]. 

 Channel selection for OSSN classification using multi-spectra autofluorescence 

imaging can be more challenging than other classification problems, as the inter-

patient variability may have a considerable influence on cancer spectral signature. It is 

likely that some channels may be affected by factors unrelated to cancer transformation 

such as age, gender, race, smoking status, and more especially, eye colour and various 

amount of sunlight exposure[164].  Such side effects can potentially touch the spectral 

signature of the tissue and subsequently interferes in the channel selection process.  

In this study, we investigate the problem of channel selection to detect OSSN to 

propose a few indicative channels which together can extract the spectral signature of 

the OSSN effectively. This method showed promising results in similar application 
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[165]; however, its application in biomedical multi spectral imaging needs to be 

investigated further. This technique for channel selection is proposed which addresses 

the above-mentioned challenges as follows: 

1- From the entire set of channels, we search for an indicative combination of 

good channels and consider their performance as a whole. Channels are 

selected based on cluster analysis by considering channel’s contribution to the 

quality of clusters found by discrimination analysis.  

2- A creative approach is used to minimise the influence of the side effects 

unrelated to cancer transformation for channel selection. 

In this study, the channel selection process involves a selection criterion and 

searching algorithms.  First, diseased (OSSN) and normal clusters are formed based 

on discrimination analysis [166], and then a standard criterion function to evaluate the 

quality of clusters is defined as a selection measure. To minimise side effects, the 

criterion function is calculated on intra-patient basis and then averaged over several 

patients. Such methodology fuses the advantage of both interpatient and intra-patient 

frameworks and keeps the criterion function almost safe from being affected by inter-

patient variability. To optimise the system, swarm intelligence[167-169], which is 

referred to the collective intelligence behaviour of a group of naïve agents [170, 171], 

is used. The performance of various searching algorithm based on swarm intelligence, 

including particle swarm intelligence (PSO) [172-174], differential evaluation (DE) 

[175] and ant colony optimisation (ANC)[176, 177] are evaluated to find the good 

channels optimising the criterion function. To investigate the generality power of the 

proposed method, testing patients which did not have any contribution to developing 

the model were evaluated.  

 

5.2 METHOD 

5.2.1 Sample collection 

Our analysis of patients’ samples was performed under the permission from 

Macquarie University Human Research Ethics Committee, reference No: 5201600708 

and informed consents were obtained. Eye biopsies from OSSN positive patients were 

collected as part of the routine medical procedure, and they were analysed at the 

Histopathology department/ Douglas Hanly Moir Pathology, Sydney. Each biopsy 
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diced into two sections, one of which was used for multispectral analysis with no 

staining.  Another cut was used to produce a matched hematoxylin-eosin (HE)-stained 

slide as a reference to locate the diseased and normal areas of the tissue and served as 

our gold standard. As the stained and non-stained section were close matches, the 

associated region of interest was also found on the unstained tissue.  In this work ten 

patinets were requrited with both normal and OSSN samples. 

5.2.2 Image acquisition and preparation 

The images were captured using an adapted IX83 Leica microscope, at 40 x 

magnification. A camera with high quantum efficiency is used to acquire fluorescence 

images. Multispectral imaging involves generating a sequence of fluorescence images 

of the same sample area in each of these channels.  The normal and cancerous sections 

for each patient were imaged with 38 channels covering a range of UV to red. Then 

the images were pre-processed to remove the background and light curvature. Random 

errors include Poisson noise, dead pixels, spikes due to cosmic rays, analogue-to-

digital converter errors, bit errors in transmission, and similar sources [89, 95]. To 

remove spikes, saturated or dead pixels, a 'threshold limiting window' is scanned over 

the spectral images to locate them; these spikes are then replaced by values 

interpolated from the immediately adjacent 8 pixels [129]. To remove the Poisson 

noise, a customised wavelet filter with symmetric Mather function was used [128, 

130]. Apart from random errors, two systematic errors make a contribution to the 

spectral images, namely the fluorescent background (from the microscope optics and 

the sample slide)  and uneven illumination of the field of view [11].  

5.2.3 Data generation  

To generate data points, images acquired from non-stained tissue for each patient were 

binned with 10×10 pixels for all the channels. As such, many data points (>10k) from 

each patient were obtained. Such binned pixels were extracted and served data points, 

each of which has 38 dimensions corresponding to the number of channels. Each data 

point was labelled as diseased or normal depending on the pathology assessment. 

Therefore, each patient had two groups of data points including diseased and normal 

sets. 
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5.2.4 Channel selection algorithm 

In this study, the patients were divided into two groups randomly: 60% of 

patients (N=6) used for developing channel selection algorithm, and 40% of the 

patients, called testing patients, were put aside for blind testing. The testing patients 

do not contribute to developing the channel selection algorithm. The procedure is 

shown in Figure 37.  

 

 

Figure 37. Channel selection strategy  

 

The proposed channel selection algorithm was performed by making use of 

cluster analysis and swarm intelligence. First,  Diseased and normal clusters were 

found using linear discrimination analysis[166]. Then, different search studies based 

on swarm intelligence [171]were employed in the space of possible channel subsets, 

guided by the quality improvement of the clusters. Hence, the channel selection 

methodology involves a criterion function and search algorithms to optimise the 

criterion function. In the following, initially, the criterion function is described, and 

then the way of its optimisation is explained. 

5.2.5 Criterion function 

This study employed an effective criterion function based on cluster analysis. 

First, the data points are reflected into a discriminative space to find the diseased and 

normal clusters. Such space was created based on linear discrimination analysis using 

two canonical variables[166]. The canonical variables are a linear combination of the 



 

90 Chapter 5: CHANNEL SELECTION AND SYSTEM OPTIMISATION 

selected channels. Figure 38 represents the parameters used to define the 

discrimination power of clusters. The blue arrows are the standard deviation, and the 

green arrow is the centroid distance. QC (see Eq.5) is a measure which evaluates the 

ratio of within-cluster variance and between cluster variance. To improve the 

discrimination power of clusters, the QC value needs to be minimised.  

2 2
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=     Eq. 5 

 

 

Figure 38.Standard deviation and centre distance of the clusters as the criterion function  

 

In Eq.5, 1STD  and 2STD  are the standard deviations of diseased and normal clusters, 

respectively, and Dis  is the centroid distance of the two clusters. To have quality 

clusters, QS should be minimised. 

In this study, to deal with side effects, we fused inter and intra-patient 

frameworks to get the advantage of both frameworks while minimising their 

limitations. We calculated the QCs for patients, one by one. In this case, the criterion 

is mostly focused on cancer retransformation, as other side effects such as age, eye 

colour, etc. are almost constant for one patient. Then, we calculate a global criterion 

function using the bellow equation over a number of patients to consider different 

aspects of disease and develop a powerful criterion function. 
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where iQC  is calculated for patient number i using a subset of channels. To normalise

iQC , it was divided by iMQC which is corresponding iQC  when all of the channels 

are used.  Then, an indicative subset of channels would be selected by minimising the 

criterion function 

5.2.6 Search algorithms 

After defining a criterion function, swarm intelligence [171] is applied for 

optimisation. There are various swarm intelligence techniques; therefore, several 

methods including ant colony optimization (ACO)[176], particle swarm intelligence 

(PSO) [172] and differential evaluation(DE) [175] were used in this study and their 

performance were evaluated.  

Ant Colony Optimization (ACO) is a metaheuristic tactic suggested by the 

foraging behaviour of real ants. This approach has four main contributors including 

ant, pheromone, daemon action, and decentralised control. In this approach, a simple 

agent called an ant simulates the survey and exploitation in search space created by 

channels and follows a direction marked by most other ants. This simple concept leads 

to ants’ collaboration to find the shortest and optimised paths[176, 178]. Particle 

swarm intelligence (PSO) was inspired by birds’ behaviour, consisting of separation, 

alignment, and cohesion.  The PSO algorithm starts with a number of simple agents, 

and the fitness value of each agent is calculated followed by determining individual 

and overall bests. Next, the velocity and the position of each agent is updated until the 

system gets optimised through attracting all agents towards the best answer[178, 179]. 

The Differential Evolution (DE) algorithm is a population-based algorithm which 

starts with initialising a population and then the fittest members are evaluated. Next, a 

new channel set is generated based on mutation. Such a channel set is mixed through 

the crossover, and the algorithm runs until we get the optimised solution [178].  

 

5.3 RESULTS 

The objective of this study is to identify a channel subset that distinguishes 

diseased (OSSN) and normal tissue effectively. Initially, the number of channels is 

restricted to a specific number, and the minimal criterion value and the corresponding 
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channels will be found (section 5.3.1).  Then, the same procedure will be repeated for 

a various number of channels to discover an optimal channel subset (section 5.3.2).   

5.3.1 Finding a subset of indicative channels with a particular number of 

elements 

After selecting 60% of patients (N=6) randomly from the available cohort to 

develop the methodology, the data points for each patient were extracted and grouped 

into normal and diseased sets. To find the clusters and calculate the criterion, the data 

points for each patient needed to be projected into a discrimination space created by 

canonical variables. To provide the methodology with generality power, a cross-

validation approach was used[144]. The data points for each patient were divided into 

50% for designing the discriminative space spanned by canonical variables and 50% 

to calculate the criterion value. So, the best discrimination space which can separate 

normal and neoplastic data points were found using 50% of the data and then the 

remaining data points were reflected into the generated space to calculate QC. This 

process was repeated for six patients, and finally, the criterion function value was 

obtained over all six patients.  

Assuming that the required number of selected channels is K, which is less than 

the entire channels, so the K channels were selected to produce a discrimination space 

for each patient. These K channels were combined linearly to form canonical variables, 

and clusters were generated that best classify normal and diseased groups.  In this 

section, we present the results in detail for K (K=6) channels and show how the clusters 

and criterion function are changing with a different combination of 6 channels. PSO, 

ANC and DE were applied to minimise the criterion function and find the subset of 

channels. Algorithms were run until leading to a convergence, that no variation can be 

identified even after many iterations (number of iteration>105).  
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Figure 39.Criterion function improvement using PSO, ANT, DE after iteration  

 

 

Figure 39  represents the performance of the three optimisation algorithm used 

in this study to find the best channels over 100k iterations. It shows that PSO could 

minimise the criterion to 4.53 and both DE and ANT colony minimised the error to 

4.47. It is worth mentioning that the channels selected by DE and ACO were exactly 

the same after 104 iterations with the same criterion value. Figure 39 also illustrates 

that PSO rapidly gets a reasonably good outcome. In fact, after only 20 iterations a 

good subset was found with a criterion value of 4.649, just 4% above the minimum 

value which is 4.472. Results show that PSO is a perfect candidate when we want to 

get the results after a limited number of iterations. However, Figure 39 shows that PSO 

was not able to find an optimum value after 105 iterations compared to DE and ACO. 

Looking at DE and ACO reveals that both could successfully find an optimum subset 

of channels. Comparing DE and ACO colony shows that DE could come to a 

conclusion much faster than ANT colony, as DE could reach 4.47 after 82 iterations 

and kept that value for all 100k iteration. 

To show how the quality of clusters with various iterations and corresponding 

channels changes, the clusters of a sample patient used in developing the algorithm are 

shown in  Figure 40. This figure represents the discrimination space generated by 

channels suggested based on DE after 10, 30, 100, 10k iterations. The proposed 

channels were taken, a discrimination space was generated, and then the data points 

associated with a sample patient were reflected on the space. As is shown, the quality 
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of the clusters improved as the number of iterations increased and the criterion function 

is minimised.  

 

 

Figure 40. Cluster improvement due to selecting more effective channel subsets: (a) after 10 

iterations, (b) after 30 iterations, (c) after 100 iterations, (d) after 10k iterations. 

 

 

After finding the candidate channels, they were evaluated based on the testing 

patients, put aside for the blind test. The selected channels were extracted from the 

data points associated with the blind-test patients, and corresponding data points were 

reflected on the discriminative space. Figure 41 demonstrates the performance of the 

optimised channels for four testing patients. It is clear that those channels are effective 

for testing patients, as we have separated clusters for malignant and normal data points. 

Figure 41 validates the generality power of the methodology.   
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Figure 41. Validating the selected channels on blind test patients. (a) patient no.1 (b) patient 

no.2 (c) patient no.3 (d) patient no.4. 

 

5.3.2 The optimum number of channels for OSSN detection 

After developing the methodology to select a particular number of channels, we 

applied it to a range of a different number of channels to find the optimum number. 

Therefore, the minimal criterion value for the optimum combination of channels with 

a different number ( 2,3,...,30N   ) was calculated using three searching algorithms 

as shown in Figure 42.  
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Figure 42. Criterion function vs the number of selected channels 

 

 

Figure 42 shows that at different numbers of channels, ACO, PSO and DE show 

the same trend yet slightly different performance to minimise the criterion. Generally, 

DE shows better performance rather than ACO and PSO. For less than five channels 

ACO has better performance than PSO. To synergise the performance of different 

algorithms, the outcome of three searching algorithms were fused to generate one 

combined algorithm which demonstrates the best subset of the channels for all of the 

numbers. In fact, for each number of selected channels, the outcome of the lowest 

criterion function is considered using the function: 

min{ , , }i i i iS ACO PSO DE=  Eq. 7 

 

Consequently, the fused curve, which gives the lowest criterion of the three 

curves, was generated as shown with blue crosses in Figure 43. In this case, DE was 

demonstrated the best performance mostly in different number of channels and data 

fusion could select its outcome. As is demonstrated in Figure 43, with an increasing 

number of channels, the criterion decreases. However, the rate of improvement drops 

after selection of 10 channels. To quantify how the performance changes with an 

increasing number of channels, the best curve fitting the data was found as shown in 

Figure 43 with a red line.  
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Figure 43. The criterion value of channel subset selection with a curve fitted to the associated 

criterion 

 

 

The most appropriate curve for the points is a power curve which successfully 

fits the points with R_squre=0.9934 and RMSE=0.2228 with the following equation: 

 

1.50C _ ( ) 34.14 2.125riterion Function N N −= +   Eq. 8 

 

where N is the number of channels. Criterion function equation demonstrates that with 

an increasing number of the channels, the criterion decreases. To evaluate how the 

improvement rate increases with an increase in the number of channels, the derivative 

of the criterion function was obtained as shown in Figure 44. 

 

 

Figure 44. Performance rate vs increasing number of channels. 

 

Looking at how Figure 44 represents the first three channels, the rate increases 

very fast and then decreases. In fact, after selecting ten channels, the improvement is 

close to zero, and after six channels (Ch.16, Ch.36, Ch.37, Ch.3, Ch.5, Ch.11) the 

improvement rate is less than 0.5 in criterion function value. This graph proves that 

for more than ten channels (Ch.36, Ch.20, Ch.37, Ch.1, Ch.11, Ch.16, Ch.19, Ch.2, 

Ch.6, Ch.24 ) the performance is constant with no improvement or deterioration. 
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5.4 DISCUSSION 

 

This study developed a clever methodology for discovering richly informative 

spectral channels with respect to differentiating normal and diseased (OSSN) tissue 

through a combination of swarm intelligence and cluster analysis. employing tens of 

channels leads to a long imaging time( each spectral image to acquire need 4 seconds), 

during which unintentional eye movement and blinking cause unavoidable 

interference such as image shifts and defocusing. A criterion function is defined to 

minimise the within-cluster variance while maximising the between-cluster variance 

and was optimised using three swarm intelligence methodologies, including PSO, DE 

and ACO, to find the richest subset of channels. The criterion function developed in 

this study has been defined to get minimally influenced by side-effects, which leads to 

improve generality power of the methodology. Subsets with various numbers of 

channels were evaluated to find the optimised number of possible channel. 

This study proposes different subsets of channels, which can be used for various 

applications.  Decision on the number of required channels depends on various factors 

including cost limitation, the criticality of the application, acquisition time, etc. As a 

case in point, if the methodology is supposed to be used for cancer boundary detection 

in an operating room, the application criticality would be high, so a higher number of 

channels is suggested.  

If it is required to find only a specific number of channels, the number of selected 

channels can be restricted to a predefined number. For example, the number of 

channels may be restricted to 3 and the proposed methodology can then be performed. 

Sometimes, even some specific biomarker, such as NADH and PpIX, are defined in 

advance; however, the specific spectral channel must be defined to strongly catch those 

biomarkers in the tissue. In this case, a couple of adjacent channels can be designed 

about that biomarkers’ spectra and, the best channel can be selected directly from the 

samples.  

 The indicative channels may also assist the clinical practice in learning disease-

specific patterns. Correlating such channels with the diseases may give an in depth 

understanding into the underlying processes that produced the data. Such investigation 
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can extend the application of multispectral imaging to the discovery of unknown 

biomarkers and knowledge. The prospect of this study is providing one more step 

toward translating the multispectral imaging technology for real medical application 

in ophthalmology. So, optimising the number of channels results in more efficient 

instrumentation regarding equipment, acquisition time and computation complexity. 

This methodology was tried on OSSN detection, but it is not limited to that. Different 

diseases can be evaluated using this methodology, and also it is possible to define 

mores customised criterion function depending on the goal of the study. 

5.5 CONCLUSION 

The recently introduced auto fluorescence multi spectral imaging opens the 

opportunity of spectral imaging employing a large number of spectral channels with 

defined excitation and emission wavelength ranges, making it possible to extract 

spectral signatures of OSSN. However, in clinical ophthalmic applications such as 

diagnostics of OSSN or identification of cancer boundaries, such signature needs to be 

optimized in terms of spectral content and the number of channels. In particular, it is 

significant to reduce the imaging time without sacrificing classification accuracy. This 

study discovered a richly informative spectral signature able to to rapidly differentiate 

normal and diseased (OSSN) tissue through a combination of cluster analysis and 

swarm intelligence. In this study, discovering the spectral signature of OSSN was 

formulated as a two-objective optimization task with a fitness function reflecting the 

discriminative performance of the spectral signature and the reduction in the number 

of elements. Three swarm intelligence methods including PSO, DE, and ACO well 

established in the domain of machine learning were assessed, and DE was found to 

have the best capability to search and optimize the OSSN spectral signature. 

Depending on the criticality of the application, this study found spectral signatures 

based on 5 and 10 channels which could successfully detect OSSN while reducing the 

scanning time by 87% and 73%, respectively, compared to all 38 channels in our 

original work [158]. 
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5.7 APPENDIX A 

 

In this study, the criterion function was developed based on the cluster analysis. 

Such a criterion function was easy to be modified, and also its range was from 0 to 

infinity. Another criterion function which can also be defined is based on the 

performance of a classifier such as Support Vector Machine (SVM). SVM is a strong 

supervised method which forms a hyperplane with maximum margins in the high 

dimensional spectral feature space to separate data points into neoplastic and normal 

classes, whose theoretical background is well described in ref: [142].  To compare the 

effectiveness of the proposed methodology, we evaluate SVM to find the optimum 

channels, and its performance was compared against our methodology. 

 We evaluate AUC [180] associated with SVM classifier. Therefore, an SVM 

classifier was developed based on the channels suggested by DE and cluster analysis 

after 10, 30, 100, 10k iterations, and ROC was produced. As Figure 45 represents, 

AUC gets to saturation even based on the channel subset adopted after ten iterations, 

and no change happens to that for channels adopted after 30, 100, 10k. However, 

Figure 40 demonstrates that we have some change by increasing the number of 

iterations. Investigation of Figure 40 and Figure 45 proves the limitation of AUC as a 

criterion function for multispectral channel selection. In this case, such a criterion 

cannot be a proper criterion function for channel selection in multispectral imaging. 
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Figure 45. ROC curve of SVM classifier for channel subset selection of DE: (a) after 10 

iterations, (b) after 30 iterations, (c) after 100 iterations, (d) after 10k iterations. 
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Chapter 6: MELANOMA CELL 

CLASSIFICATION 

This chapter describes the application of multispectral autofluorescence imaging 

to classify melanoma cells. This chapter has been written as a draft of a manuscript to 

be submitted in ‘Journal of Biophotonics’, and outlines the background and the 

purpose of the chapter in section6.1. The methodology of the research, including cell 

lines used in this study, a brief description of the system and data analysis techniques, 

is described in section 6.2. Section 6.4 represent the results, including melanoma and 

normal cells (fibroblast) classification and monitoring spectral change due to 

treatment. Finally, section 6.5 discusses the results. After successful results on 

applying the multis spectral imaging for detection of OSSN, this research were 

extended to evaluate skin cancer cells. This chapter demonstrate the application of the 

multi spectral autofluorescence imaging to detect cancer cells (Melanoma) which is 

according to the target of thesis. 

 

Melanoma cell classification using autofluorescence multispectral 

imaging 

 

Abstract 

This study presents a novel multispectral autofluorescence imaging microscopy 

method to differentiate melanoma and fibroblast. A customized instrumental approach 

based on autofluorescence imaging and advanced data analysis discriminate skin cell 

types based on a non-invasive, label-free technique. The customized technique 

involves a sequence of auto fluorescence images with slightly different spectral 

specification. After preparing the images and diminish unwanted random and 

systematic noises, many features were extracted from the spectral images. Then, the 

dimension of the features was reduced, and linear discriminative analysis applied to 

classify cell types which could successfully reach to high accuracy with a single cell 

resolution. The same methodology was also applied to differentiate melanoma cells 
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before and after treatment. This approach may have potential to be used for more 

advanced applications such as melanoma early detection and treatment monitoring. 

6.1 INTRODUCTION 

 ‘Cutaneous malignant melanoma’ is the most aggressive skin cancer, 

responsible for 74% of skin cancer-related deaths, and its incidence is constantly 

growing worldwide [19, 23, 24, 181-183]. The opportunity of gaining information 

about melanoma cells in a label-free manner can be significant for precise early 

detection, refining current therapies and also discovering innovative treatment 

procedures [23-27]. Recently, autofluorescence spectrum analysis as a non-invasive 

tool has demonstrated a promising tool in monitoring biological substances in the 

absence of any perturbation prompted by exogenous fluorophores [184], as reviewed 

in several reports [20, 41, 185].  

Common methods used for characterising the auto-fluorescence spectra of cells 

are Fluorescence spectroscopy[186, 187], Multiphoton microscopy and fluorescence 

lifetime imaging microscopy(FLIM) [55]. Fluorescence spectroscopy measures the 

average auto-fluorescence emission of cells, which is disconnected from single cell 

properties [27, 188, 189]. Cell populations are heterogeneous and analysing single-cell 

properties provides the opportunity to discover mechanisms which may not be 

identified when analysing a bulk population of cells[189]. Multiphoton and 

fluorescence lifetime imaging microscopy (FLIM) can perform autofluorescence 

imaging in a single cell resolution [11]. However, these technologies are mostly 

limited to two costly auto fluorescence channels. In fact, employing only a few 

channels may not provide sufficient information for accurate decision making [190, 

191].  

In this study, a new single-photon excited fluorescence imaging microscope, 

recently designed in our group [95], was used to discriminate melanoma cells. Unlike 

common autofluorescence microscopy, this system employs a number of channels 

covering a broad range of spectrum using economical instrumentation. The system 

splits the excitation light into tens of narrow channel wavelength series and collects 

emissions at a number of wavelengths. A combination of each excitation and emission 

wavelength results in a distinct spectral channel. In this work, 38 channels were used, 

which covers a number of native fluorophores, including NADH, PpIX, falvins. Cells 
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were imaged in each spectral channel, to acquire a separate fluorescence channel 

spectrum, different in each pixel. Employing tens of spectral channels enables this 

technology to monitor overall biochemical dynamic equilibrium and also to seek 

specific markers, which is an advance on the current autofluorescence imaging. 

In this work, firstly, classification of melanoma cells and fibroblasts as malignant 

and normal skin cells, respectively, were considered. Multispectral autofluorescence 

imaging was evaluated for assessment of melanoma cells and fibroblasts to produce 

discriminative information. In contrast to typical autofluorescence imaging which 

considers a few single features, a variety of biologically relevant quantitative 

information extracted from the spectral images to capture different aspects of the 

spectrum with a single cell resolution. This quantitative information was in terms of 

different features including intensity, first order, second order, textural features and 

various statistical measures of pixel values [95, 192, 193]. A few most indicative 

features were selected and then discriminative analysis [180] was undertaken to 

classify melanoma from normal cells (fibroblast). This was then followed by 

examination of melanoma cells derived from a patient under treatment. Based on 

unsupervised data processing, we applied PCA decorrelation on the data[97] to 

monitor any possible spectral change in cells, before and after treatment. Then the data 

were quantitatively assessed based on hierarchy clustering[194]. To the best of our 

knowledge, the introduced technology is novel in skin cells and is a first step toward 

applying the technology to more advanced cases. 

 

6.2 METHOD 

 

6.2.1 Patient recruitment and Cell isolation 

Our analysis of patients’ samples was performed under the permission from Macquarie 

University Human Research Ethics Committee, reference No: 5201400458. Cells used 

in this study originated from 10 patients. All of the cells used in this study were 

cultured in a biologically similar manner. Cell lines were cultured in Dulbecco’s 

Modified Eagle Medium supplemented with 10  heat inactivated fetal bovine serum 

(FBS; Sigma-Aldrich, St. Louis, MO, USA), 11.25 mM glutamine (Gibco, Thermo 
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Fisher Scientific, Waltham, MA, USA), and 10 mM HEPES (Gibco) and were 

maintained at 37°C with 5% CO2. 

 

6.2.2 Fluorescence multispectral system and image acquisition 

We used a custom-made multispectral microscopy system to generate a sequence 

of fluorescence spectral images of the one sample area. Each spectral image has a 

specific excitation and emission wavelength. The excitation wavelength range is 

determined by a number of light emitting diodes (LED) covering a range of 

wavelengths from 340 to 510 nm. Four filter cubes with particular optical filters and a 

dichroic mirror are used to confine the light scattered from the samples and spam the 

electromagnetic spectrum from 420 to 650 nm.  These excitation-emission 

wavelengths form 38 distinct spectral channels packed in a hypercube. 

 

6.3 DATA ANALYSIS 

In this study, powerful data analysis techniques were performed to evaluate the 

spectral information of the cells. After imaging, the spectral images were pre-

processed to treat any possible artefacts and noises. Then, cells were segmented and 

various spectral information was extracted in terms of quantitative features. Several 

techniques were employed to analysis the features in this study. Analysis of variance 

(ANOVA) was employed to evaluate the robustness of the features. Also, Pearson 

correlation measure was used to calculate the correlation among the features. Principal 

component analysis (PCA) was performed to de-correlate the features and linear 

discrimination analysis (LDA) was performed to find the clusters. In addition, particle 

swarm optimization (PSO) was applied for feature selection due to its high speed to 

get convergence. These analyses are described in detail in the following sections. 

6.3.1 Image pre-processing and enhancement 

Each channel spectrum is influenced by possible various errors, including 

Poisson noise, dead pixels and spikes. To treat spikes and dead pixels, a 'threshold 

limiting window' was slid over the spectral channels to find and replace them by values 

interpolated from the nearly adjacent pixels. In addition, the spectral images were 

smoothed by a wavelet filter with a symmetric mother function to treat Poisson noise. 
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In addition, uneven LED illumination of the field of view and a fluorescence 

background, coming from the microscope optics and the sample slide, also influence 

the spectral images. The background is removed by subtracting an image of the 

medium in a culture dish from each spectral image. Uneven illumination is treated via 

dividing spectral channels by images taken from a reference calibration fluid which 

has a fluorescence signal in all channels. The error removal procedure is performed on 

each channel separately.  

6.3.2 Segmentation 

After reducing the noise signal from the spectral images, cells need to be isolated 

[128] from the background to be ready for single cell analysis. In this study, cells were 

segmented from the DIC image manually to create a binary mask. Then, the mask was 

applied to all channels to isolate the cells in channels.  

 

6.3.3 Spectral feature extraction 

In contrast to typical autofluorescence image analysis, which mostly uses only a 

few features, in this study various types of features were used[9]. The features include 

cell colours, first order features, second-order features, textural features and various 

statistical measures of cell intensities. 

 Cell colours and their associated features extracted from autofluorescence 

spectral images are directly linked to the chemical composition of the cells [95]. They 

include the mean intensity ( iE  ), second order moment ( i  ), third order moment ( iS  

) as follows: 
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where ijP  is the pixel value of each pixel. In addition, Haralick's texture features [195] 

were extracted and used to differentiate the cell types. Textural features represent some 

biological characteristics such as fluorophore distribution within a cell to accomplish 
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broad information of the location of fluorescent intracellular components [9]. 

Haralick's texture features are based on the grey level co-occurrence matrix:  
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G is a square matrix whose dimension is the grey levels in the image Ng. ( , )p i j   

is the probability that a pixel with value i can be found adjacent to a pixel of value  j 

[196].  After generating the co-occurrence matrix, Haralick's texture features are 

calculated for each cell of the spectral images as follows [9, 95, 193]: 
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where   and   are the mean and variance, respectively. 
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Such features were extracted for each cell in all 38 channels and also statistical 

measures of cell intensities such as channel ratio were calculated, so each cell had 



  

Chapter 6: MELANOMA CELL CLASSIFICATION 109 

many (>2000) quantitative features. Consequently, spectral channels of each cell 

provide a feature vector with a label defining cell types. As a result of this stage, many 

features were obtained for subsequent cell classification into normal and cancerous 

groups. Extracting many features helps evaluate different aspects of the spectral 

properties of the cells. However, all of the features may not be indicative of cell groups 

or they may have some degree of correlations to each other.  

6.3.4 Analysis of variance 

ANOVA is a statistical test frequently used for experimental data to prove that 

the difference between groups did not happen by chance, via rejecting a null 

hypothesis. Typically, it is followed by statistically significant results when a 

probability is less than a specific threshold (mostly p< 0.05)[197, 198]. 

ANOVA partitions the data variance into two components: 

• Variation between groups, which is jy Y− , where jy  is the mean of the 

sample and ‘Y’ is the total variance of the data. 

• Variation within a group, which is ij jy y−  where ijy is the observations. 

In fact, ANOVA divides the total sum of squares (SST) between the group sum 

of squared (SSR) and the sum of squared errors (SSE) as follows: 

2 2 2( ) ( ) ( )ij j j ij j

i j j i j
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y y−  are SST, SSR  and 

SSE, respectively and jn  represents the sample size for different groups as j varies. 

Then, the between groups variation is compared to the within-group variation. 

Hence, a ratio of between and within-group variation is calculated. If the ratio is 

significantly high, it can be concluded that the groups have different means and they 

are different groups. It can be measured by an F value as follows: 

1
SSR

MSRkF
SSE MSE

N k

−= =

−

 Eq. 18 

 



 

110 Chapter 6: MELANOMA CELL CLASSIFICATION 

where MSR is the mean squared value, MSE is the mean squared error, k is the group 

number, and N is the number of all observations[199, 200]. 

6.3.5 Pearson correlation 

To find valuable information from spectral channels, many features from 

different aspects are extracted, which may lead to some degree of correlation among 

the features. Hence, to develop a valuable model, it is necessary to find correlated 

features. A statistical measure to evaluate the correlation is the correlation coefficient, 

representing a putative linear relation between features. In this study, Pearson product 

moment correlation coefficients [201] were used, with the following formula: 
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where ‘n’ is the sample size, 
ix and  x  are sample points from different 

observations and the associated mean value, respectively, and analogously for 
iy  and 

y . The correlation value varies from -1 (showing a high negative correlation) through 

0 (representing no correlation) to +1 (as the perfect positive correlation). Based on a 

Rule of Thumb [202], a correlation in the range of -0.3 to 0.3 is negligible.  

 

6.3.6 Principal component analysis 

Principal component analysis (PCA) is used in this study to transform to a feature 

space consisting of linear combinations of the original features with zero correlation 

between the new features. PCA is a transformation to reflect the feature vectors into a 

new linearly uncorrelated orthogonal space. The largest variance present in the data 

lays on the top principal components known as the most informative axes [9]. 

Transforming the original features into a new basis found by the PCA transformation 

provides another informative feature which is a linear combination of the original data. 
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6.3.7 Linear discrimination analysis 

To generate a discrimination space and categorize the groups, we used linear 

discrimination analysis (LDA). LDA is a supervised learning which determines 

optimal basis axes to find different clusters[203, 204].  

To generate the discrimination space, imagine there are C pattern classes, 

C1, C2, C3,…, Cc  in an N-dimensional space. The number of observations is li and xij is the 

j-th sample. i  denotes the mean vector of the observations in the i th class whose 

population mean value is assumed to be ( )i ij iE x C = . The expected mean value of 

the entire data set is 0 . Hence, the inter-class scatter is as follows: 

0 0

1

1
( )( )
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T

b i i i

i

S l
M

   
=

= − −  Eq.19 

 

and the intra-class scatter is : 
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= − −  Eq. 20 

An arbitrary choice can be made to select groups of observations. The class mean i  

can be estimated from the class sample average and the similarity as follows: 

1

1 il

i ij

ji

m x
l =

=   Eq. 21 

 

To estimate the expected mean value of the whole data set, the average of the 

observations is used: 

0

1 1

1 ilC

ij

i j

m x
M = =

=   Eq. 22 

 

We need to find a transformation matrix producing new variables which are able to 

maximize the ratio of inter to intra-scatter ( ( )fJ W ).  

( )
T

b
f T

w

w S w
J W

w S w
=   Eq. 23 

 

So, a new coordinate system can be formed by the eigenvectors w1,w2,… wd  

concerning: 
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b wS w S w=  Eq. 24 

 

Therefore, the projection of the input data to the new space created by the 

eigenvectors leads to approximate optimal class discrimination. Each axis of the new 

discrimination space indicates a canonical variable generated by an eigenvector [9, 

95]. 

 

6.3.8 Particle swarm optimisation 

After removing correlated and insignificant features, the number of remaining 

features can still be too high to develop a productive model [205]. Consequently, a 

limited number of indicative features with maximum relevancy and minimum 

redundancy needs to be nominated as a subset of features. Here, Particle swarm 

optimisation (PSO) was employed for feature selection to maximise cluster quality as 

the fitting function. Such methodology also considers the interaction between the 

features. PSO is a swarm intelligence inspired by birds’ behaviour and follows the 

following principal [179]. 

A particle is an individual in a PSO whose population forms a swarm. The ith 

particle has two aspects at an iteration k as follows: 

The particle position in the space of the data as  

1( ,..., ,... )k k k K

i n NX x x x=
 Eq. 25 

 

where  , ,1k

n n nx l u n N    , nl  and nu  are maximum and minimum of the 

channels, respectively, for the thn   dimension. 

The particle speed in the space of the data is as follows: 

1( ,..., ,..., )k k k k

i n NV v v v=
Eq. 26 

In which the maximum limit of the speed is max max,1 max, max,( ,..., ,..., )k k k k

n NV v v v=    and 

the minimum limit is min min,1 min, min,( ,..., ,..., )k k k k

n NV v v v= . 

As the algorithm runs, the swarm needs to be updated by the following 

equations: 
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1

1 1 2 2( ) ( )k k k k k k

i i b i g iV V c r P X c r P X+ = + − + −
 Eq. 27 

1 1k k k

i i iX X V+ += +
 Eq. 28 

 

where the best particle location in the previous step is bP and the best overall 

position is gP  found between all of the particles in the population. bP  and gP can be 

calculated by the following equations: 

: ( ) ( )

: ( ) ( )

b i b

b

i i b

p f x f P
p

X f x f P


= 

  Eq.29 

   

0 1 0 1{ , ,..., } | ( ) min( ( ), ( ),...., ( ))g m g mP P P P f P f P f P f P =
 Eq. 30 

where f is the objective function, m is the number of individuals, 1 2,r r  are 

generated from uniform random variable between 0 and 1 and   is an inertia 

coefficient initialised in the range of 0 to 1. 1c  and 2c are constants to set to optimise 

the algorithm.  

 

6.4 RESULTS 

In this study, the newly designed multi-spectral autofluorescence imaging was 

applied on skin cells for two main purposes. First, the technology was employed to 

distinguish normal (fibroblast) and cancerous (melanoma) skin cell types. Second, the 

technology was used to detect possible spectral changes in melanoma due to treatment 

with a combination of BRAF and MEK.  

 

6.4.1 Differentiating fibroblast and melanoma cells 

After extracting spectral features on a single cell basis, each cell obtained a 

vector of features (dimension> 2000) with a normal or melanoma label. First of all, 

univariate analysis was applied to the data to discover any possible pattern among the 

spectral features, which informs the cell labels, and then advanced multivariate 

analysis were used to analyse the spectral data more efficiently. 
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As an initial demonstration of the features’ robustness to distinguish the cell 

groups (melanoma and normal cells), the uni-variate ANOVA test was utilised on the 

features, one by one. Cells were grouped into normal and melanoma sets. Then, 

ANOVA was applied to obtain F_ factor and associated p-value. Figure 46 (a) plots 

the empirical cumulative distribution function (CDF) of p-values generated by 

ANOVA. The red dashed line in Figure 46 (a) shows the number of features whose p- 

values are less than 0.05. It demonstrates that more than 50% of the features can 

represent a significant difference between normal and melanoma cells. Although some 

features may show mutual correlation, this check shows that the technology used in 

this study could generate many indicative features to distinguish normal and melanoma 

cells.  

Figure 46 (b,c,d) illustrates box plots of the three selected indicative features 

with the highest F factor (p- value <0.005) and negligible correlation (R < 0.1). These 

features include FID1, which is the mean value of the cells in channel 13, FID2, which 

is the mean value of the cells in channel 17 divided by the mean value of those in 

channel 13, and FID 3, which is the mean value of channel 25 divided by the mean 

value of channel 9. Using these three features, a 3-dimensional space was created as 

shown in Figure 46 (e). 

 



  

Chapter 6: MELANOMA CELL CLASSIFICATION 115 

 

Figure 46. Univariate data analysis to differentiate melanoma cells from normal cells 

(fibroblast): (a) CDF value of features. (b) FID1, which is the mean value of the cells in channel 

13 (c) FID2, which is the mean value of the cells in channel 17 divided by the mean value of 

those in channel 13. (d) FID 3, which is the mean value of channel 25 divided by the mean value 

of channel 9.  (e) 3D feature space created by FID1, FID2 and FID3 (Separability distance ~1.23) 

 

Figure 46 (e) demonstrates that melanoma and normal data points form separate 

patterns although with some extent of confusion. Hence, to glean a more realistic 

picture of the data and to provide powerful data modelling able to extract a spectral 

signature more efficiently, multivariate analysis was applied in this study. In fact, as 

shown in Figure 46 (e), with univariate analyses, a reasonable separation between 

melanoma and normal cells can be obtained. However, such univariate analysis 

confines the spectral signature to use only 3 features, which may not be enough for an 

accurate decision making. So, a more advanced analysis may provide better separation 

by implementing spectral features more efficiently. 

To advance the multivariate analysis and evaluate the generalisation competency 

of the methodology, a portion of the data was put aside for blind testing. Consequently, 

the data points involved partitioning into two separate subsets: (1) training data (60%), 



 

116 Chapter 6: MELANOMA CELL CLASSIFICATION 

which were used to develop a multivariate model, (2) testing data (40%), which were 

put aside to test the models. Testing data do not have any contribution to the model 

development. Developing a model has different stages in this study as shown in Figure 

47. 

 

Figure 47.Data analysis framework 

 

In supervised learning, the number of features (dimensionality) should be limited, as a 

high number of features may lead to overfitting the learning algorithm[206]. As a filter 

based feature selection using ANOVA, all of the features with a p-value of more than 

0.05 were removed. Subsequently, about 900 features passed the filter and were 

considered significant. Figure 48 represents the univariate distance between normal 

and melanoma clusters made by each feature, which is a measure of their performance 

in distinguishing cell types. To select a collection of informative features, particle 

swarm optimisation (PSO) was employed. Finally, 12 indicative features were selected 

to distinguish between melanoma and normal cells as illustrated in Figure 49. 
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Figure 48. Univariate distance of normal and melanoma cell data points in univariate analysis 

 

Figure 49. Features selected for multivariate analysis: (a) mean intensity of channel 7 divided by 

mean intensity of channel 12. (b) mean intensity of channel 7 multiplied by mean intensity of 
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channel 6. (c) mean intensity of channel 28 divided by mean intensity of channel 23. (d) contrast 

value of channel 16 (e) mean intensity of channel 14 multiplied by mean intensity of channel 22. 

(f) mean intensity of channel 17 divided by mean intensity of channel 9. (g) mean intensity of 

channel 19 multiplied by mean intensity of channel 2. (h) skewness value of channel 9. (i) mean 

intensity of channel 3 times by mean intensity of channel 8. (j) entropy of channel 3 (k) mean 

intensity of channel 2 divided by mean intensity of channel 13. (l) correlation of channel No. 23. 

 

The selected features were fed to discrimination analysis which led us to 

generate an optimised space created by two canonical variables [11]. Canonical 

variables are linear combinations of the features which ensures excellent 

discrimination between melanoma and fibroblast. Consequently, the data points of the 

training were reflected into the discriminant space to visualise the structure and 

robustness of the newly selected feature space and the model as shown in Figure 50 

(a). As can be seen from Figure 50 (a), the space generated by the selected features 

could clearly separate melanoma and normal cells, and reveals the presence of great 

and extremely significant differences between two cell types.  

To evaluate the generality of the model developed by the training data sets, the 

testing data were assessed. In fact, the testing data did not have any contribution to 

find the indicative features or to develop the discriminative space and canonical 

variables. First, the training data were encircled in an ellipse which demonstrates the 

standard variation of the data across two data points’ eigenvectors and accounts for 

more than 70% of the data population (see Figure 50 (a)). The ellipse shows the 

confines of the melanoma and normal clusters in the developed model. Then, to show 

how well the testing data points follow the separation power we achieved from the 

training data, the testing data points were reflected on the same discriminative space 

and ellipse, as shown in Figure 50 (b). It is evident that the testing data points were 

also clearly encircled via an ellipse. Comparing the results in Figure 46(e) and Figure 

50 (a) demonstrates that multivariate analysis was able to extract spectral feature more 

efficiently than univariate analysis. Also, Figure 50 demonstrates that the spectral 

contents of channels are competent to discriminate biologically similar cultured cell 

groups of fibroblast (controls) and melanoma cells. 
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Figure 50. Clustering melanoma and normal (fibroblast) cells: (a) training set (Separability 

distance = 3.56) (b) testing set 
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The melanoma and normal clusters represented two separated clusters although there 

is a limited degree of the confusion, which is typical in cell clustering. The larger 

standard deviation of the melanoma cells may attribute to the variability of the cancer 

cells. For further analysis, linear and quadratic classifiers were designed, as they are 

effectively working with a limited volume of the training data [206] and also are 

resistant to the uncertainty of the data points which is unavoidable in biological data. 

Using K-fold cross-validation (K=10), ROCs were derived to evaluate the 

performance of linear and quadratic classifier systems as shown in Figure 51.  

 

Figure 51. ROC curve for linear and quadratic classifier  

 

Figure 51 demonstrates that the linear classifier has a 91.4% accuracy with 

AUC= 0.98, and the quadratic classifier shows 97.3% accuracy with AUC = 0.99. 
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Making a choice between these two classifiers, the linear classifier is the preferred 

candidate because it is less prone to overfitting the data.  

 

6.4.2 Monitoring spectral change due to treatment 

As the second purpose of this study, we applied the technology to observe a possible 

spectral change in melanoma cells due to treatment. Tumours were obtained from a 

patient under treatment with a combination of BRAF and MEK inhibitors [207]. BRAF 

and MEK are typical genes in Melanoma. V600E, which is a BRAF mutation, is 

carried by almost half of all melanomas. This mutation is the BRAF kinase 

abnormality, stimulating cancer progression. Another typical gene mutation in 

Melanoma is V600K. To stop Melanoma growth, BRAF and MEK inhibitors can be 

used to hinder V600E and V600K mutations’ activity, respectively [208-214]. 

We applied the multispectral autofluorescence technology to observe if the cells 

excised before treatment are different to the cells excised after treatment in terms of 

the spectral information. Three cell lines were excised through a specific schedule 

from a melanoma patient who was under treatment. One cell line was obtained from a 

tumour excised before the treatment, and two cell lines were obtained from tumours 

during treatment as shown in Table 6. To analyse the data with no prior information, 

unsupervised analysis was performed in this section. 

To track the spectral variation in the cells due to treatment, we used PCA analysis 

followed by hierarchical classification with a dendrogram. The multispectral 

autofluorescence colours of the cells were measured, then PCA was applied to the data 

to de-correlate the spectral information. After evaluating the principal components 

generated by PCA, a dendrogram analysis was employed to evaluate the multi-spectral 

signature of cell autofluorescence that reflects the level of correlation between similar 

cells. 

 

Table 6. Schedule for tumour cell extraction from the patient 

 

Label of cells Time Schedule 

Pre  Before the patient started therapy 

Prog 1 ~ four months after the patient started therapy 
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Prog 2 ~ five months after the patient started therapy 

 

To de-correlate the spectral features, PCA analysis was applied and principal 

components were obtained. Principal components are orthogonal to each other, so 

there is no redundant information between them. Each principal component captures a 

proportion of the variance present in the spectral information. Figure 52 demonstrates 

the proportion of the variance associated with top 15 principal components which 

captured more than 97% variance of all spectral information.  

 

 

Figure 52. Proportion of variance captured by each principal component 

 

 According to Figure 52, PC1 and PC2 hold the main variance proportion of the 

spectral information, which accounts for more than 70% of the total system variance.  

To visualise the robustness of the top two principal components in discrimination 

spectral variation associated with prior and during the treatment, the mean intensities 

of spectral cells were projected onto a two-dimensional space spaned by PC1 and PC2. 
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Figure 53.A discriminative space created by the two top principal components (separability 

distance ~6.5)  

 

 Figure 53 demonstrates that the cell groups after treatment move away from the 

cells prior to the treatment noticeably. In addition, two cell lines which are related to 

the after treatment have a correlation. 

A theory which may explain such spectral change can be as follows: 

Physiochemical activities such as glucose uptake, and lactate creation increase in 

human cancer cells with oncogenes [210-212]. Consequently, their inhibition could 

lead to altering the amount of the physiochemical substances formed or uptaken by 

cancer cells [213]. It has been demonstrated that MEK inhibition in melanoma cells 

hosting mutant BRAF causes a significant decrease (to 36% of control) in glucose 

uptake [214]. Therefore, melanoma therapy with inhibitors may result in changing the 

chemical composition of the cells.  

To capture spectral information in a higher dimension and include further 

indicative principal components to reveal the structure of the data quantitatively, an 

unsupervised agglomerative hierarchical classification with a dendrogram was used 

[194] as shown in Figure 54. The top 5 principal components were used as the input 

features of the dendrogram. These components could capture more than 85% of the 

total system variance as shown in Figure 52. Such an unsupervised classification is a 

bottom-up approach in which each observation is considered as a cluster initially. 
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Then, the pairs with a high value of similarity merge to form a new cluster and those 

with high dissimilarity move away from each other.  

Consequently, a hierarchy will form, while observations merge progressively. 

This approach results in finding the groups and subgroups in the data without forcing 

the data to form a specific cluster. In fact, this methodology reveals the hidden 

structure within the data. In this study, the top 5 PCAs, which captured the most 

variance in the data (>85%), were used to form a hierarchical classification. Every 

single vertical bar represents a cell with 5 elements which are their PCAs. The values 

are normalised to -3 to 3. Finally, two major clusters can be recognised from the 

dendrogram as they are coloured in Figure 54 in blue and red. Considering these 

classifications revealed that the blue cluster was mostly occupied by pre-treatment 

cells and the red cluster was occupied by after treatment cells.   

 

 

Figure 54. Unsupervised agglomerative hierarchical classification for monitoring the treatment 

 

Figure 54 demonstrates that the dendrogram could find a spectral correlation of 

the cells prior to treatment and after treatment. Considering the two classes, which are 

shown with blue dendrogram and red dendrogram, the blue dendrogram is mostly 

occupied by cells before treatment (76%) and the red dendrogram mostly occupied by 

cells excised after treatment cells (84%).  
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6.5 DISCUSSION 

Multispectral autofluorescence microscopy as demonstrated in this study 

provided rich spectral images which can be a source of valuable knowledge about the 

melanoma cells. Here, the spectral information in spectral images was obtained from 

inexpensive equipment which can be easily made-up on a standard fluorescence 

microscope. We improved the system by employing more spectral channels, unlike the 

two-channel autofluorescence microscope, and define tens of spectral channels (N=38) 

to capture a number of fluorophores, especially cancer biomarkers. Employing 38 

autofluorescence spectral channels enabled us to obtain a more powerful spectral 

signature to distinguish melanoma cells across a wide spectrum, which is an 

advancement to the current auto flouresence imaging systems employing only a few 

spectral channels. Advanced data processing methodology was employed to extract 

many informative, which led to finding distinct clusters of melanoma and normal cells.  

This study initially demonstrated the new technology’s capability to extract significant 

features to distinguish Fibroblast and melanoma cells in a same-culture condition and 

with no external additive dyes. Simple univariate analysis showed a promising 

difference between the features, and then applying multi-variate statistics could extract 

an indicative signature which separated melanoma and normal clusters effectively. In 

fact, multispectral autofluorescence examination could show differences between 

melanoma and fibroblast and could successfully deal with a high cellular heterogeneity 

which normally is present in cell populations.  

This study also shows the ability of the proposed technology to identify a 

potential change in cell chemical composition due to treatment, in a non-invasive 

manner with no additive dye. The correlation of the spectral values was removed using 

PCA analysis and the most indicative components extracted. The PCA space indicated 

that the cells after treatment moved away significantly from the cells before the 

treatment. In addition, hierarchical clustering without any prior knowledge and 

training could successfully detect the same spectral signature available in the cell from 

the same groups.  

Understanding the spectral changes due to the treatment and learning the 

consequences of therapy with BRAF and MEK inhibitors on the chemical composition 

of the cells may allow the finding of further combinatorial treatment choices. It also 

may offer to refine the use of current medications and accomplish a better cancer 
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control procedure in the clinic.  This non-invasive methodology may also recognise 

early pharmacodynamics responses more accurately. Predicting the therapy response 

early is crucial for cancer treatment, as tumour shrinkage may always appear in the 

early stages [212] which may result in a false negative indication for the treatment, 

and the physicians may terminate the therapy, and premature cessation of treatment 

may happen. Therefore, developing a technology which is capable to identify 

treatment response in a non-invasive manner to judge treatment usefulness may 

improve the survival rate of cancer patients. 

Various label-free technologies may be available with a single cell resolution to 

discriminate different cell types such as Multi-spectral reflectance microscopy or 

FIIM. However, the novelty of the proposed technology is that we could look at the 

cells more accurately by defining specific excitation and emission spectral channels. 

This ability allows us to exclude or include some wavelengths due to specific 

circumstances. Besides, we have our excitation-emission wavelengths under control 

and can use as many channels as we need in a broad range of wavelengths, from very 

deep UV to IR regions, which cannot be achieved in reflectance methods. For example, 

we can avoid some UV range, which may be harmful to living organs, and only pick 

safe wavelengths or we may excite those LEDs with a controlled amount of exposure 

time and power intensity. In addition, our technology is very cost effective compared 

to advanced FLIM systems. All the cells have been images following the same fashion, 

so that the effect of the cell culture conditions, Beer’s low and environment conditions 

are the same for all the cell groups. 

The newly designed system described here has a vast potential to explore in the 

field of cancer diagnosis and treatment. This methodology may help to learn more 

about various ranges of abnormalities which may appear on the skin, including 

melanoma, carcinoma, etc. Usually, melanoma is diagnosed based on a clinical exam 

using morphological criteria qualitatively. Such an impression is challenging, as there 

is a wide range of different pigmented lesions on skin whose properties may overlap 

melanoma features[215]. Hence, developing a sensitive screening technology able to 

differentiate different types of skin cells is vital.  

This technology may also enable finding particular cell subpopulations in order 

to support of drug screening processes. Consequently, an improved understanding of 

disease may lead to more effective diagnostics and therapeutics. This technology is a 
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non-invasive screening and selection of cells which is of vital significance in 

prospective clinical treatments. Using such technology may help to design a specific 

therapy for a particular patient. Our method may provide an appropriate and precise 

alternative to current invasive biopsy for monitoring the treatment response.  
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Chapter 7: Conclusions 

This thesis could successfully reach to its assigned targets. This study designed 

an illumination and filter arrangement to make the technology specialised for cancer 

detection and evaluation. In this study, 38 channels were arranged, which capture 

various fluorophores, especially the cancer biomarkers. This research study could 

effectively provide significant contributions in the field of cancer detection including 

detection and delineation of ocular surface squamous neoplasia (OSSN) and 

discrimination of melanoma cells. As a conclusion, this chapter covers a brief sumery 

of the theory and methodology used in this study (7.1) and a breif summery of the 

results (section 7.2). The practical  implication of the study is described in section 7.3 

and finally the potencial extension of the study is discussed in section 7.4. 

7.1 SUMMERY OF THE METHODOLOY ADOPTED BY THIS STUDY 

When cells or tissue are irradiated at a particular wavelength, some molecules, 

called fluorophores, would get excited and emit lights. Such a natural emission is 

called autofluorescence. Several fluorophores naturally available within cells and 

tissue have auto-fluorescence properties, including Porphyrins (PPIX), Nicotinamide 

adenine dinucleotide (NADH), and Flavins. Cancer transformation can lead to an 

alteration in the concentration of these native fluorophores, which results that emission 

and absorption properties of the tissues change. Due to these variations, cancerous 

cells or tissues can represent autofluorescent spectra which are different to associated 

normal cells or tissue. Therefore, observing the spectral pattern of normal and 

cancerous tissues or cells can be a tool to distinguish and characterise cancerous or 

abnormal conditions. 

The first focus of this study was to establish a proper autofluorescence imaging 

setup for cancer characterisation. After conducting a literature review and 

investigation of previous research, this study arranged 38 distinctive spectral channels 

to monitor various fluorophores, especially cancer biomarkers, as presented in Chapter 

3:. The availability of tens channels provided a rich source of information for 

univariate, multivariate analysis and artificial intelligence, and made it possible to 
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survey the overall biochemical composition of the tissue, in addition to detecting 

specific markers to identify the tissue or cell condition.  

Due to various random and systematic noises caused by the camera sensor, 

illumination and microscope, the raw spectral images could not directly be fed to the 

data analyses strategies. Therefore, a comprehensive pre-processing strategy was 

developed in this study to prepare the spectral images for further analysis. Such 

preparation minimised various artefacts in spectral images including saturated or dead 

pixels, Poisson noise, and background and illumination curvatures. Subsequently, the 

system and a pre-processing algorithm were ready to be applied for cancer 

characterisation on different cell lines and tissues, as presented in chapter 4, 5 and 6.  

   

7.2 SUMMARY OF THE EXPERIMENTAL RESULTS 

First, characterisation of eye surface neoplastic tissue based on the multispectral 

autofluorescence imaging was performed. 18 patients were employed and human 

OSSN samples were obtained. The target was to distinguish between normal and 

neoplastic tissue.  We established two different classification frameworks: intra- and 

inter-patient classification. Therefore, we considered aspects of patients’ variability 

and quantify the spectral signature of OSSN. 

 This study also used various data analysis teckniques and machine learning 

methods to design a methodology for OSSN of boundary delineation. For an 

intraoperative assessment, machine learning could rapidly predict a false colour map 

to define the boundary of OSSN. The neoplastic boundaries defined by machine 

learning methods were validated and assessed by an anatomical pathologist. 

 The approach proposed to detect OSSN in this study provides several benefits: 

Potentially it can reduce the requirement of eye biopsies, prevent therapy delays and 

also make treatment more effective. In addition, it may assist a physician to monitor 

OSSN treatment. An accurate intra-patient image could assist the surgeon to precisely 

locate the neoplastic boundaries and to completely cut out the residual neoplastic 

tissue. The technology could be used to monitor treatment efficacy and detect 

recurrences non-invasively. Quantitative analysis of the spectral images proved a 

strong multispectral signature of a relative difference between neoplastic and normal 

tissue both within each patient (at p< 0.0005) and between patients (at p< 0.001). the 
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automated diagnostic method based on machine learning produces maps of the 

relatively well circumscribed neoplastic-non neoplastic interface. Such maps can be 

rapidly generated in quasi-real time and used for intraoperative assessment. Generally, 

OSSN could be detected using multispectral analysis in all patients investigated here. 

Secondly, the multispectral autofluorescence was optimised in terms of the 

number of channels to facilitate industrial translation.  An advanced methodology 

using a combination of swarm intelligence and cluster analysis was developed to 

discover a subset of rich and informative spectral channels for differentiating normal 

and diseased (OSSN) tissue.  First, discrimination analysis was employed to find 

normal and diseased clusters, and then a criterion function was defined to minimise 

the within-cluster variance while maximising the between-cluster variance. Such a 

criterion function was optimised using three different swarm intelligence 

methodologies including particle swarm intelligence (PSO), differential evolution 

(DE) and ant colony optimisation (ACO). Finally, depending on the required accuracy 

and circumstances of the application, the richest subsets with a few channels were 

proposed. Optimising the number of channels resulted in more efficient 

instrumentation in terms of equipment, acquisition time and computation complexity. 

Depending on the criticality of the application, this study found spectral signatures 

based on 5 and 10 channels which could successfully detect OSSN while reducing the 

scanning time by 87% and 73%, respectively, compared to all 38 channels in our 

original work [158]. 

 

Finally, melanoma and fibroblast were assessed in this study. Unlike typical 

auto-fluorescence imaging techniques that consider only a few features, a variety of 

biologically relevant quantitative information was extracted from spectral images. 

Such a powerful analysis helped evaluate different aspects of the spectrum in a single 

cell resolution. Different features including intensity, first order and second order 

features, textural features, and different statistical measures of pixel values were 

quantitatively analysed. 

 After selection of the most indicative features, a discriminative analysis was 

undertaken to distinguish melanoma cells from fibroblast efficiently (AUC>0.9). The 

results showed that melanoma and normal cells formed two separate clusters. The 
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generality power of the analysis was successfully validated by testing data which did 

not have contribution in developing the model. 

 This was then followed by an examination of melanoma cells derived from a 

patient under treatment. Using unsupervised data processing, spectral features from 

the channels were de-correlated based on the principal component analysis (PCA). The 

analysis showed that the data points associated with a tumour extracted after treatment 

moves away from the data points related to a tumour extracted before the treatment. 

Then the data were quantitatively assessed using hierarchy clustering. Therefore, this 

study also successfully demonstrates the possibility of obtaining information about 

melanoma cells and their environment to monitor their behaviour and discriminate 

them from normal skin cell types (accuracy>80%). Such a methodology may open a 

new way for cell therapy, regenerative medicine, personalised immunotherapy and 

cancer treatment. In general, the accuracy of the system employed in this thesis is 

greater than 80% which is quite comparable with the similar systems described in 

section 2.10 but with some distinctive features such as single cell resolution, simple 

design and flexibility in spectral specifications. 

7.3 LIMITATIONS 

Autofluorescence cannot be a very strong signal, so the experiments need to be 

performed in a dark room to avoid ambient light interference.  

This study involved the development of both hardware and software, each of 

which faced several limitations. As the system was customised, it was hard and time-

consuming to find some parts to keep the system functional. Such a limitation could 

put a big delay in the research time to time. Moreover, this study was performed using 

only a 40X objective magnification. Therefore, to capture images from a large tissue, 

it was needed to take many images to make a final composite image. Consequently, 

acquisition and stitching the images were challenging.  

As this study involved with human samples, ethics application was required 

which could put a delay in the research. OSSN is a relatively rare disease and almost 

10% of all eye lesions were found to be OSSN. Therefore, a long period of sample 

collection was one big limitation of this study. Although we applied the standard 

“leave one [patient] out” (LOO) approach to deal with this limitation, the greater 

number of patients may help to improve the generality power of the proposed 
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technology, which can be considered for a possible extension of this study. Moreover, 

this study was multidisciplinary research which needed to collaborate with clinicians 

such as surgeons, cancer scientists and pathologists. Organising a meeting with such 

busy clinicians was another limitation of this study.  

One further limitaiton which is related to the nature of the auto flouresence 

imaging is that autoflouresence signal is reletively weak, so it is needed to emply very 

sensitive camera, especially when the spectral signatue is not strong. 

7.4 FUTURE STUDY 

In combination with high content data processing, autofluorescence multispectral 

imaging has many potential areas in cancer science which are still novel and can be 

explored, some of which are as follow: 

• As mentioned in 4.5, benign entities such as pterygia were not evaluated in 

this study. As a future study, pterygia could be investigated based on the 

technique described here, as it is likely that pterygia will have a different 

chemical composition when compared to normal tissue. In fact, this study 

could be extended to classify tissue in three different groups, comparing 

normal tissue, pterygia and neoplastic tissue with greater sample size. 

• A possible extension of this study could focus on discrimination between 

eye lesions of different grades including aggressive lesions, requiring action 

and resection, and benign cases. OSSN is a broad term which encompasses 

noninvasive conjunctival intraepithelial neoplasia (CIN), dysplasia and 

squamous cell carcinoma in situ (SCCIS), and invasive squamous cell 

carcinoma (SCC) where tumour cells invade the stroma by breaching the 

basement membrane. Such discrimination can help clinicians to design the 

treatment. 

• Autofluorescence imaging also can be applied to assess the patient diseases 

status and the effectiveness of the therapy. The multi-spectral analysis may 

help to understand better and broad range of diseases affecting the 

metabolism including cancer, neural degeneration. 
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• A possible extension of this study is to apply the technology to distinguish 

different types of skin cancer such as basal cell carcinoma, squamous cell 

carcinoma and melanoma.  
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