
Applying Automatic Program
Verification Techniques to

Spreadsheets

A Dissertation Presented in Fulfillment
of the Requirements for the Degree of

Masters of Research

Sarah Heimlich

B.Eng (Hons), Macquarie University, 2017

Department of Computing
Faculty of Science

Macquarie University, NSW 2109, Australia

Submitted July 2019

c©Sarah Heimlich 2019

Declaration

This work has not previously been submitted for a degree or diploma in any university.

To the best of my knowledge and belief, the thesis contains no material previously

published or written by another person except where due reference is made in the

thesis itself.

Signed: .

Date: .

iii

30/07/2019

Dedication

To Anna Marie Denny, beloved Grandmother and the most determined person I’ve

ever known.

v

Acknowledgements

First and foremost I’d like to thank my family for never failing to support me through

my studies. They know better than anyone that this thesis was a battle, and their

constant support and encouragement kept me going.

To the entire village who supported me through the duration of this process,

thank you. Thank you for holding my hand and keeping me from (literally and

figuratively) falling down. In particular, thank you to Alison, Austin, and Kiatin for

always having my back.

Last, but certainly not least, thank you to my supervisor Prof. Sloane for all the

assistance.

vii

Abstract

Errors in spreadsheets cost the global economy billions of dollars every year. Spread-

sheets are a Turing complete functional end-user programming language. As such,

it is not surprising that researchers have investigated how spreadsheet errors can be

minimised and resolved using traditional software engineering practices. Despite

general success in this field of research, spreadsheets exhibit many unique features

that can make standard software engineering techniques difficult. In particular,

as we will show, spreadsheets are a partially ordered, non-recursive class of pro-

gramming languages that support native, automatic type conversion. We further

spreadsheet research by proposing and creating a spreadsheet static analyser that

automatically verifies whether a spreadsheet will execute without errors over a

variety of inputs. The system statically analyses a program to locate spreadsheet

specific errors then translates the spreadsheet into C so existing trace abstraction

refinement verification tools can be used for common verification challenges. Using

the tool, we analyze several spreadsheet corpora to determine the tool’s efficacy.

The tool was able to correctly determine the validity of all spreadsheets tested, find

an undetected type system error, and determine lines of C code generated are a

likely indicator of spreadsheet quality.

ix

x

Contents

Declaration iii

Dedication v

Acknowledgements vii

Abstract ix

List of Figures xvi

List of Tables xvii

1 Introduction 1

1.1 Report Structure . 2

2 Background 3

2.1 Spreadsheets . 3

2.1.1 Spreadsheet Terminology . 4

2.1.2 Spreadsheets as a Programming Language 4

2.1.3 Spreadsheet Smells . 5

2.1.4 Understanding Spreadsheet Errors 6

2.1.5 Parsing Spreadsheets . 9

2.2 End-User Programming and Software Engineering 9

2.2.1 Understanding the User . 9

2.2.2 Current Research Projects . 10

2.3 Automatic Program Verification . 11

xi

xii Contents

2.3.1 Predicate Logic . 12

2.3.2 Abstract Interpretation . 12

2.3.3 Automata and Trace Abstraction Refinement 13

2.3.4 Skink . 15

3 Design Considerations 17

3.1 Narrowing Scope . 18

3.2 The Problem Space . 19

3.2.1 Type System . 19

3.2.2 Null Cells . 21

3.2.3 Arguments . 22

3.2.4 Statement Ordering . 23

3.2.5 If Statements . 24

3.3 Converting to Verifiable C Code . 25

3.3.1 Abstract Syntax Tree Representation 25

3.3.2 C Code Compilation . 26

3.3.3 Asserts . 27

3.3.4 Defining the inputs . 28

4 The System 31

4.1 Step One - Parsing . 31

4.1.1 Statement Ordering and Excluding Self-Referencing 32

4.1.2 The Grammar and Abstract Syntax Tree Creation 34

4.2 Step Two - Transformation . 36

4.3 Step Three - Code Creation and Assert Insertion 36

4.3.1 Handling I F Statements . 37

4.3.2 Type Checking . 37

4.3.3 Divide by Zero . 39

Contents xiii

4.3.4 Final Code . 39

4.4 Step Four - Verification . 40

5 Results 41

5.1 Enron . 41

5.2 Grades . 43

5.3 Generated Test Cases . 44

5.4 Summary of Findings . 45

6 Conclusions and Future Research 47

6.1 Future Work . 47

6.2 Conclusion . 49

A The Aivaloglou Spreadsheet Grammar 51

B False Witness from Skink 55

xiv Contents

List of Figures

2.1 Spreadsheet showing the long calculation chain smell by calculating

the Fibonacci sequence. 6

2.2 Possible errors as outlined by Rajalingha et. al. [43] 8

2.3 Automata which proves no divide by zero errors occur in the sample

program. 14

3.1 Example of how booleans are actually 0 and 1. The formulas for the

B column are shown in the C column. 20

3.2 The hierarchy and polymorphic property of the spreadsheet type

system, values stored as numbers are shown in blue. 21

3.3 Static Functional Data Sequencing implies recursion is forbidden as

shown by the cell pairs A1/A2 and B2/B3. 24

3.4 Example of converting arrays to references to avoid implicit refer-

ences. Both trees represent SU M(A2 : A4, B2), the tree on the left

(in black) maintains the array, while the tree on the right (in red)

translates the array to references. 26

3.5 Example of how the type system can cause even simple spreadsheets

to not compile. 26

3.6 Example of how more complex spreadsheets can hide compile errors. 27

3.7 Example of divide. 28

4.1 The stages of the system and their responsibilities. 32

4.2 A spreadsheet that contains a set of self-referencing cells. 33

4.3 The grammar used to parse spreadsheets represented as expressions. 35

xv

xvi LIST OF FIGURES

4.4 Spreadsheet which could throw a error. 39

5.1 Graph showing the number of cells in a spreadsheet compared to the

lines of generated C code. Files that were found to have potential

errors are denoted in red. 44

5.2 Spreadsheet with division which was validated using the system. . . . 45

6.1 Example of a potential self-referencing cycle that cannot occur due

to I F statements. 48

List of Tables

2.1 Number of formulas resulting in errors in the Enron dataset as dis-

covered by Hermans and Murphy-Hill [26]. 6

2.2 Table demonstrating the abstraction of signs over multiplication and

addition. 13

5.1 Table outlining the results of running the system on nine sheets from

the Enron corpus. 43

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

As computers have become more common in society, so has end-user programming.

In particular, spreadsheets have emerged as a common tool for computer program-

ming novices and experts alike to create code. In 1996 there were over 30 million

users of Microsoft Excel [36], by 2015 that number was as high as 1.2 billion on

desktop applications alone [51]. As computer literacy increases across the globe, it

is predicted that end-user programming will expand as well [30].

It is estimated that 90% of industry analysts perform calculations using spread-

sheets with 95% of American firms using spreadsheets for financial reporting [27].

Despite this, spreadsheets are far from perfect. Numerous studies by organizations

including KPMG and Coopers and Lybrand have shown multiple bugs in 94% of

spreadsheets examined [42]. As a result, it is unsurprising that spreadsheet errors

cost the global economy billions of dollars annually [37].

Current research in end-user programming and spreadsheets is focused on

helping end-user programmers find flaws in their algorithms or the root causes of

run-time errors. Here, we consider how to find run-time errors before they occur

through automatic program verification.

Our system performs basic static analysis before converting the spreadsheet to

C using an Abstract Syntax Tree (AST) so more traditional static verification tools

can be used. In particular, the system created utilizes Skink, Macquarie University’s

verification tool, to perform static program verification. Using the system created,

we successfully verified and found errors in real-world and generated spreadsheets.

1

2 Introduction

The purpose of this project is to create a system to demonstrate the viability of

automatically verifying spreadsheets through static program analysis. It is important

to note this means we do not need to be able to verify every spreadsheet, instead

we can select a subset of spreadsheet functionality to consider.

1.1 Report Structure

Herein we present background knowledge in Chapter 2 and design considerations

in Chapter 3. With this foundation, we present the system created in Chapter 4 and

the results of running the spreadsheet on real-world and generated test cases in

Chapter 5. Finally, we describe how the project could be extended and our final

conclusions in Chapter 6.

Chapter 2

Background

To understand how we can apply automatic program verification to spreadsheets,

we must first understand spreadsheets and automatic program verification. In this

chapter, we examine the current corpus of research in both of these subject areas. We

also examine end-user programming and software engineering since spreadsheets

are an example of this research area.

2.1 Spreadsheets

Spreadsheets have a variety of use-cases across many subject domains - from ed-

ucation to simulations and many other diverse fields of study [31, 47]. Perhaps

the largest domain of spreadsheets is in business, where they are often used in

decision making processes. When errors occur in these spreadsheets, they can cost

organizations millions of dollars [37]. As a result, it is unsurprising that spreadsheet

research often occurs at the cross section of business and engineering with leading

research groups coming from both faculties [7, 24].

In this section, we seek to further understand spreadsheets by examining the

literature available. As with the majority of the literature, we do not consider

extensions to spreadsheets such as macros or visual basic.

3

4 Background

2.1.1 Spreadsheet Terminology

There are a variety of terms that are specific to spreadsheet programming envi-

ronments, and it is critical this vernacular is understood and how it differs from

traditional programming languages.

In a spreadsheet we refer to the smallest executable program as a cell. Cells

are arranged in a grid and can be referenced by their column and row. Rows are

denoted by base 10 numbers while columns are referenced by base 26 represented

by letters [5].

Cells can be defined as either a constant or formula. In their turn, formulas can

contain function calls, constants, references to cells, and traditional mathematical

operators (+, −, /, x , etc.).

When cells are copy-pasted or moved, the referenced cells are updated based

upon the offset of the move [4]. For example moving = A2+ C1 from cell A1 to

B2 would update the formula to = B3+ D2. However, references can be forced

to not adopt the offset by the addition of a dollar sign [5]. This can be applied in

multiple ways; A$1 would maintain the row, $A1 would maintain the column, and

A1 would always refer to A1 even when moved. These copy-paste features are

what enable spreadsheets to be Turing-complete, we can consider copy-pasting a

cell to be the program’s execution.

2.1.2 Spreadsheets as a Programming Language

While not often viewed as a programming language, spreadsheets have been shown

to be Turing Complete [25]. In many applications (Microsoft Excel, Google Sheets,

etc.), iteration is not allowed. Instead, the iterations occur through sequential rows

in the sheet [25].

Spreadsheets can be further classified as a first-order functional [1], end-user

[25], data-sequenced [10], programming language. As a data sequenced language,

§2.1 Spreadsheets 5

spreadsheets are executed based on the flow of information instead of the order of

statements. To create looping functions, we can exploit the copy-paste features of

spreadsheets to manually create dynamic programs [25, 47].

Given the popularity of spreadsheets, it is not surprising that ensuring spread-

sheets are correct and accurate has become a major area of research. Research

groups from around the world are working on ensuring spreadsheet are correct

from a variety of angles — considering code smells [28, 17], testing [39], validation

[44, 9] and more.

2.1.3 Spreadsheet Smells

Just as with traditional programming, spreadsheets are prone to poor implemen-

tation that can impact their usability and quality [47]. Many patterns of poor

implementation have been documented and are commonly referred to as “code

smells” [53]. For example, smells in spreadsheats can occur in formulas and ref-

erencing other data-sets [27, 25]. As we will discuss more in further chapters,

conditional complexity and long calculation chains have both been found to be

spreadsheet formula smells [25].

Conditional complexity occurs when embedded I F statements occur in the same

formula. Because it can be difficult to track the different branches in these formulas,

the usability and spreadsheet quality may suffer. By examining an example, it quickly

becomes clear how the branching in embedded I F statements is difficult to track. In

particular, if a cell is defined by the formula= I F(A1; B1; I F(A2; I F(A3; B3; C3); C2))

it is hard to follow the different paths and therefore the results.

Long calculation chains occur when formulas reference other cells whose formu-

las depend on additional cell references [25]. For example, the spreadsheet in Fig.

2.1 computes the Fibonacci sequence. Here, cell G1 depends on A1 and B1 through

C1, D1, E1, and F1. These long chains make it difficult to determine how a change

will propagate through the system.

6 Background

Table 2.1: Number of formulas resulting in errors in the Enron dataset as discovered by
Hermans and Murphy-Hill [26].

Error Type Formulas
#N/A 948,194
#NAM E? 339,365
#REF ! 183,014
#VALU E! 111,024
#DIV/0! 76,656
#NU M ! 4,087

Figure 2.1: Spreadsheet showing the long calculation chain smell by calculating the Fi-
bonacci sequence.

2.1.4 Understanding Spreadsheet Errors

To better understand how spreadsheets are used in the real world, we must have

a corpus to consider. In 2005, the EUSES corpus was compiled and released with

4,498 spreadsheets making it the largest set of spreadsheets available at the time

[19]. Since then, the Enron bankruptcy and resulting law suits have provided a

larger corpus with over 15,700 spreadsheets attached to emails that were released

[26]. While both of these corpora provide a glimpse into how spreadsheets are used,

the Enron corpus is generally considered to be more realistic as it is comprised of

spreadsheets used in the day-to-day operations of Enron. As a result, we will focus

our considerations here to the Enron data set.

Errors in the Enron Corpus

An analysis of the Enron corpus found out of 20,277,835 formulas, there were

1,662,340 errors [26], meaning over 8% of formulas result in an error. The study

also found that 14% of spreadsheets contained at least one error [26]. The frequency

of these errors is outlined in Table 2.1.

§2.1 Spreadsheets 7

The most common error was #N/A which occurs when a look up function finds

no matches. In a similar manner the second most common error, #NAM E?, occurs

when the name of a function is not recognized. Both of these errors often occur

through typos such as misspelling. Together, #N/A and #NAM E? account for over

77% of errors.

The #REF ! error occurs when a reference is invalid. For example if a column is

deleted and cells formerly in said column are referenced, a #REF ! would be thrown.

The #VALU E! error is the most ambiguous and can occur for multiple reasons; it is

in many ways the catch-all error. Of particular note, the #VALU E! error can occur

if text is referenced when a number is expected. Finally the #DIV/0! error which

obviously refers to division by zero and the #NU M ! error which occurs when the

calculation cannot be completed, for example taking a square root of a negative

number. It is interesting to note that the #DIV/0! error occurs nearly 19 times as

frequently as other errors that render a formula uncalculatable as denoted by the

#NU M ! error.

Formulas in the Enron Corpus

The Enron corpus also found that despite the wide variety of functions available in

spreadsheets, not many are used in practice. In particular, 62.8% of the spreadsheets

use only the 8 most common functions: SU M , +, −, /, ∗, I F , NOW , and AV ERAGE

[26]. The spreadsheets were also found to be of low quality, with 49.5% having at

least one smell. Of particular interest to this project, 22.3% of the spreadsheets had

long calculation chains and 5.5% had conditional complexity [26].

Spreadsheet Error Classification

Spreadsheet errors can be classified as shown in Fig. 2.2 [43]. Throughout the

literature, there is a focus on errors caused by the user whether it be from misun-

derstanding the problem or inputting the wrong data [10, 40].

8 Background

Figure 2.2: Possible errors as outlined by Rajalingha et. al. [43]

According to this school of thought, errors can all be classified as either software

errors or user errors. Given a researcher’s inability to fix errors in spreadsheet soft-

ware, our focus is on user errors which can be further classified as either qualitative

or quantitative. Qualitative errors are those that can result in an error message as

discussed in section 2.1.4.

Given the goal of this project, we will be focusing on qualitative errors which

are those caused by formatting, hard-coding, update, and semantic errors. While

at first this may seem like a wide range of errors, it is important to recognize the

common underlying cause of these issues.

Qualitative errors are caused when the program does not execute as expected

due to an issue with the actual code. To put this in terms of the project, qualitative

errors are addressable by automatic program verification and therefore will be the

focus of this project. This differs from the majority of the research which focuses on

quantitative errors [10, 40].

§2.2 End-User Programming and Software Engineering 9

2.1.5 Parsing Spreadsheets

There are multiple grammars available for parsing spreadsheets [20, 5, 1]. The

grammars vary in scope and ability to parse more complex formulas and spread-

sheets. For example, Abraham and Erwig’s grammar was designed to help determine

types in spreadsheets [1].

The most in-depth comprehensive context free grammar available was produced

in 2015 by Aivaloglou et. al as part of the Spreadsheet Lab at Delft University of

Technology [4]. Since then, the grammar has been made open source and further

improved [50]. As of 2017, the grammar was able to successfully parse 99.99% of

formulas based on a corpus of 8 million unique formulas extracted from four data-

sets including the Enron corpus [5]. The full grammar can be viewed in Appendix

A.

2.2 End-User Programming and Software Engineer-
ing

In 2012, there were less than 3 million professional programmers in the USA but

over 55 million end-user programmers [32, 45]. As a result, it is understandable

that end-user programming has become a large research topic in recent years

[32, 10, 12, 18]. At its core, end-user programming quite simply occurs when the

programmer is the user. Spreadsheets are an obvious case of end-user programming,

and thus we consider this field of resarch in this section.

2.2.1 Understanding the User

End-User Programming is classified as situations where users create code for personal

use [32]. It is important to note that personal use does not mean the code cannot

be used in a professional setting. Instead, personal use refers to the fact that the

user is both the creator and user of the system. For example, a professor deciding

10 Background

grades with a spreadsheet is a personal use-case.

Because end-user software engineering is based on personal use-cases, the

programmer is focused, more often than not, on functionality. As a direct result,

the processes and systems that are at the forefront of most software engineering

projects are an afterthought in end-user software engineering [32]. This is further

compounded as most end-user programmers lack the formal training typical of

professional programmers. This causes them to misjudge the need for formal testing

and to then become over confident in their system [41, 35].

End-user programmers may not see themselves as programmers and therefore

might be hesitant to see what they do as coding [25]. Instead, they see their task

as something from their area of expertise (accounting, statistics, etc.) [11]. Put

together, these factors make end-user programmers resistant to using tools, systems,

and processes that are available. In some cases, the end-user programmer may not

consider these options at all [11].

As a result, it is critical to provide easy to use systems that prompt the end-user

programmer [11, 10].

2.2.2 Current Research Projects

The majority of current research projects on end-user programming and spreadsheets

can fall into two major categories: testing to find errors and static analysis. For

example, GoalDebug assists users in finding errors and then automatically suggests

ways to correct the bugs [2]. Additional research projects in this area consider the

ability to use static analysis to find code smells including faulty empty-cells [33, 52]

and convert spreadsheets to use parallel processing [8]. Here we consider a project

from both the testing and analysis bodies of research.

From the above sections, we know that it is critical that any systems designed to

help end-user programmers be simple and easy to use. This led to the creation of

the What You See Is What You Test (WYSIWYT) methodology [10]. From a survey

§2.3 Automatic Program Verification 11

of the literature, it becomes apparent that WYSIWYT is one of the most successful

spreadsheet testing research projects to date [25].

In the first implementation of this system, users could add assert statements in a

visual method. This was shown to increase both the number of errors discovered and

corrected in a laboratory setting [10]. This model was extended to automatically

generate test cases and allow users to say if the results were correct or not [20].

However, this adds additional overhead for the end-user which goes against end-

user software engineering principles [25]. WYSIWYT is built on the Surprise-

Entice-Reward cognitive model [35]. This model drives users towards testing

through curiosity by surprising the user with new information, enticing them through

curiosity, and then rewarding by a better performing system [11].

As shown in section 2.1.4, we know that I F statements are one of the most

commonly used spreadsheet functions. As a result, it is hardly surprising entire

research projects focus on them. In particular, Zhang considers how I F statements

can be simplified by eliminating impossible branches [54]. By using this approach,

98% of respondents said the automatic simplifications helped their understanding

of the formula.

2.3 Automatic Program Verification

It is very easy to confuse program verification with validation. Program validation

is a process across the system’s lifetime, from requirements elicitation through to

maintenance, that ensures the software does what the customer expects [3]. On

the other hand, program verification tools seek to prove the program will behave

for all possible inputs [48]. Program verification can examine behaviours ranging

from program termination to divide-by-zero errors. Put simply, validation ensures

the customer is satisfied while verification proves properties about the program.

For the purposes of this research project, we limit our literature examination

12 Background

to static analysis for automatic program verification due to the nature of Skink,

the automatic program verification tool we will be using. This limitation leaves

plenty of research to consider as static analysis tools have been used since 1979 for

applications ranging from homeland security to space flight [48].

2.3.1 Predicate Logic

The underlying basis of many automatic program verification techniques is pred-

icate logic. Often, we use Hoare Triples of the form (|φ|)P(|ψ|) where φ is the

precondition, P is the program, and ψ is the post condition. The goal of program

verification is to prove ψ is implied by φ and P [29].

We prove ψ by statically analyzing a program which has been shown to be an

NP Hard problem for sufficiently complex programs [34]. Static analysis can be

deconstructed into many components such as Abstract Interpretation and Data Flow

Analysis [34]. However, the lines between these components have become blurred

over time [48].

2.3.2 Abstract Interpretation

In abstract interpretation, certain qualities of the program are abstracted and ana-

lyzed to prove the desired outcome [16]. A classic example of this is determining

if the result of an equation will be positive or negative [15]. In this case, we are

attempting to prove if the result will be positive or negative by abstracting the sign.

For example, if we have the formula posi t ive ∗ posi t ive ∗ negative, we know from

elementary mathematics that the result will be negative. In contrast, if we have

posi t ive+ posi t ive+ negative we know the answer could be positive or negative

depending on the magnitude of the values. This abstraction of signs can be seen in

Table 2.2.

The critical part of abstract interpretation is to automatically determine the

correct abstraction [23]. Abstractions must be limited to the proper domain. Simply

§2.3 Automatic Program Verification 13

Table 2.2: Table demonstrating the abstraction of signs over multiplication and addition.
Abstraction Result
pos× pos pos
pos× neg neg
neg × pos neg
neg × neg pos
pos+ pos pos
pos+ neg ?
neg + pos ?
neg + neg neg

assuming an abstraction that works in one situation will work in another, in this

case that the abstraction of sign over multiplication is the same as addition, would

be incorrect. Abstract relationships such as these can be expressed as lattices to

enable automatic program verification [14].

There is an intrinsic relationship between Abstract Interpretation and other

automatic program verification techniques including Data Flow Analysis [46]. In

data flow analysis, a program’s execution order is abstracted into the form of a

data-flow graph. This graph can then be annotated and used to verify attributes of

the program [6].

2.3.3 Automata and Trace Abstraction Refinement

Another technique used in automatic program verification is based upon automata

[23]. Using various forms of automata, we can check different properties of a

program. For example, alternating automata can be used to verify concurrent

programs and Floyd-Hoare automata to verify a correctness property. This technique

works by creating automata where the accepting state should not occur [22].

We can create an automata where each node represents a line of code, and

the transitions between nodes are the potential paths through the program. Each

transition represents a different line of code. We can further define any assert

statements that fail go to an accepting state of the automata. With this setup, by

14 Background

proving the automata never ends in an accepting state, we have verified the program.

More formally, we call the accepting paths through the automata abstract error

traces. If we show there is a feasible abstract error trace, the program is incorrect.

Listing 2.1: Example assert to avoid divide by zero error.

1 assume (b > −5);
2 in t myFunction (a , b) {
3 b = b + 5;
4 b = b / 2;
5 a s s e r t (b != 0) ;
6 return a / b ;
7 }

Applying this to myFunction in Listing 2.1, we obtain the automata shown in

Fig. 2.3. Because we know the value of b when entering myFunction cannot equal

−5, it is possible to prove the accepting state never occurs. Since we cannot enter

the accepting state, we know the program is correct.

Figure 2.3: Automata which proves no divide by zero errors occur in the sample program.

By reducing the automata to simpler forms over multiple iterations, we refine the

potential abstract error traces [22]. And thus, we have abstract error refinement.

§2.3 Automatic Program Verification 15

2.3.4 Skink

For this project, we will be utilizing Skink, the software verification tool developed

by Macquarie University [13]. Skink utilizes refinement of trace abstraction using

automata as outlined above. As part of this process, Skink creates a control-flow

graph and determines which paths the program can take. If a viable path to an

error exists, Skink is able to return an abstract error trace, referred to as a “witness”,

demonstrating how the program could fail.

To tell Skink what to verify, we use assert statements. In Skink, these are of

the form __V ERI F I ER_er ror(). Skink will return "FALSE" if one of these asserts

can be called, otherwise Skink will return "TRUE." For FALSE results, Skink also

provides an example of how the error could occur which we call a witness. An

example witness can be found in Appendix B.

To use this in practice, we use if statements to determine whether the

__V ERI F I ER_er ror() should occur. This allows the system to capitalize on the

ability for static analysis versifiers to determine if certain paths of execution are

possible. For example, consider a divide by zero error. In this case, we need to ensure

the denominator cannot be equal to zero, so we put the __V ERI F I ER_er ror() inside

an if statement that will trigger if the denominator is zero. This is shown in Listing

2.2. Putting this in terms of the Hoare Triples discussed in Section 2.3, the condition

guarding the if statement (A2== 0) is the post condition (ψ). The precondition

(φ) and program (P) are defined prior to the code shown in Listing 2.2.

Listing 2.2: Example of using Skink to verify no divide by zero error is possible.

1 i f (A2 = = 0) {
2 __VERIFIER_error () ;
3 }
4 in t B1 = A1/A2 ;

16 Background

Chapter 3

Design Considerations

When designing and creating the system for this project, the first step was to decide

which platform it should be based upon. Despite the prevalence of Microsoft Office,

we chose to examine Open Office Calc. This choice was made due to the open

source nature of the platform. This gave additional insight into the errors possible

in a spreadsheet, how they are caused, and therefore how we can verify they cannot

occur in a given spreadsheet. Unlike Excel which does not provide a complete list

of error codes or their underlying causes, Open Office Calc has a fully published

list of the possible errors and their causes [38]. Additionally, the .ods file format

used is defined by the non-profit organization OASIS, a consortium of over 5,000

participants that creates standards for a multitude of computing platforms.

This decision lets us have a wider view of the problem. For example, as discussed

in Section 2.1.4, other researchers have considered errors and the rate at which

they occur in spreadsheets. However, the research only considered six error codes

as these were the codes viewable in Excel. In comparison, Open Office Calc has 27

unique error codes, giving further insight into what is causing each error.

The choice to use Open Office Calc gives no loss in generality of our findings to

other spreadsheets, like Excel. Instead, it provides greater transparency into the

underlying system.

17

18 Design Considerations

3.1 Narrowing Scope

As discussed in Section 2.1.4, by implementing eight of the built in spreadsheet

functions (SU M , +, −, /, ∗, I F , NOW , and AV ERAGE), we should be able to process

over 60% of spreadsheets. Given the goal of this project is to demonstrate automatic

program verification is viable, being able to work with 60% of spreadsheets is more

than enough to accomplish our goal.

By considering these eight functions, it becomes apparent they represent a good

cross-section of spreadsheet methods. It includes traditional math functions (+, −,

/, and ∗), a function without an argument (NOW), a straightforward function with

arguments (SU M), a function that could throw a divide-by-zero error (AV ERAGE),

and most importantly the branching function (I F).

It is critical that I F is included as a key component of any programming lan-

guage is algorithms. As discussed in Section 2.1.2, we know that spreadsheets

expressly forbid looping and self-referencing. As a result, I F statements are the

main algorithmic device in spreadsheets. While I F statements have already been

included as part of the 8 most common functions, it is important to note that I F

statements need to be included in the scope to allow realistic algorithms.

With the scope narrowed to these eight functions, we consider which error

types we want to verify will not occur. With / being the fourth most common

function used in spreadsheets, the first error we chose to consider was #DIV/0!.

Given the complexity of the spreadsheet type system, which we will discuss in more

detail in Section 3.2.1, the second error we verify is type errors which are a kind

of #VALU E! error. While these two errors are not the most common, as shown in

Table 2.1, it is critical to remember the goal of this project is to demonstrate the

viability of applying automatic verification techniques to spreadsheets. These errors

were selected to have one error that overlaps with traditional program verification

challenges (#DIV/0!) and one error that presents a unique challenge (#VALU E!).

§3.2 The Problem Space 19

3.2 The Problem Space

As discussed in Section 2.1.2, spreadsheets are a Turing-complete programming

language. However, because they are designed for end-user programming, they

have many unique attributes, especially when compared to traditional programming

languages. Here we consider some of these properties and how they will impact

verification.

3.2.1 Type System

Spreadsheets have a weakly typed system that implicitly converts values where

possible in a manner that mimics polymorphism as we demonstrate in this section.

In particular, the type system of spreadsheets has three main types: string, number,

and boolean. Each of these types behaves as a computer scientist would expect, a

string contains a sequence of ASCII characters, a number can be an integer or float,

and a boolean represents true/false. However, this only scratches the surface of the

intricacies of each data type and does not account for null values.

It should be noted that while the data appears as many different types to the

user, underneath most types are converted to a string, number, or boolean. For

example, consider the NOW function. To the user, this appears to return a date and

time. However, the date and time are stored as a floating-point number. As a result,

for our purposes we can consider dates to be numbers, thus removing a layer of

complexity and simplifying the process.

While booleans appears to the user as TRUE or FALSE, it quickly becomes obvious

this is not true as we begin using them in formulas. For example, consider the

formulas in Fig. 3.1. Here, we can see that booleans are actually stored as either 1

or 0, both through adding TRUE and FALSE as is done in B1 or concatenating the

values as in B2. Thus, we can say that a boolean is a number. This makes our task

easier as bool in C is usually represented as a 1 or 0.

20 Design Considerations

Figure 3.1: Example of how booleans are actually 0 and 1. The formulas for the B column
are shown in the C column.

We can take this argument further by considering I F statements. We know

I F statements in spreadsheets are of the form I F(BOOL; FOO; BAR) where if the

BOOL is true, we return FOO otherwise we return BAR. However, because booleans

are simply numbers, it stands to reason a BOOL can be any number. In fact, this is

the case. The behavior is the same as for C; FOO will execute anytime BOOL does

not equal 0, and BAR will execute in all other cases.

Having considered booleans in great detail, next we consider numbers. As

already stated, for our purposes we consider numbers to be both integers and

floating point numbers. In Fig. 3.1 cell B2 shows that booleans, which are numbers,

can be concatenated. As a result, we know that both booleans and numbers can be

used as strings. This differs to C, which as a strongly typed language does not allow

for substitution between most data types. In particular, numbers cannot be used in

place of a string.

The remaining data type we consider is strings. Unlike booleans and numbers,

strings can only be used as strings. When a number is required, a string cannot

replace it. This intrinsically makes sense because while we know it is safe to replace

the number 1 with the string "1" as needed, there is no logical numerical substitute

for most strings.

Combining our knowledge of data types in spreadsheets, we can consider

booleans to be a subclass of numbers, dates to be numbers, and numbers to be a

subclass of strings. As a result, just as polymorphism allows for multiple classes

to be interchangeable, numbers, dates, and booleans can be used as strings. The

§3.2 The Problem Space 21

Figure 3.2: The hierarchy and polymorphic property of the spreadsheet type system, values
stored as numbers are shown in blue.

type system’s hierarchy is shown in Fig. 3.2 to better illustrate this polymophic

relationship. In total, we can say that spreadsheets have a weak type system that

applies native, automatic type conversion.

3.2.2 Null Cells

In most programming languages, using a variable with a null value causes errors.

While this can happen in some cases in spreadsheets, it is the exception rather

than the rule. In most cases the system will evaluate an empty cell to zero if it is

expecting a number or an empty string if it is expecting a sting. This enables the

spreadsheet to operate in a deterministic fashion without throwing errors in the

majority of cases. However, because the spreadsheet continues to not throw errors,

22 Design Considerations

it may lull users into a false sense of security. This has caused empty cells to be the

target of other research projects as discussed in Section 2.2.2.

Unlike other projects, our concern with null cells is whether they can throw an

error or not. Here, we consider the errors they are likely to cause to better inform

our system design.

The obvious error a null cell could contribute is #DIV/0! as the numerical eval-

uation of a null cell is zero. In addition, other errors can occur because spreadsheets

will ignore null cells in COUN T functions. This goes beyond simply COUN T and

includes AV ERAGE which is computed as SU M(cel ls)/COUN T (cel ls). As a result,

if AV ERAGE is called on a set of empty cells, it will cause a divide by zero error.

3.2.3 Arguments

Because we are converting the functional spreadsheet language into procedural

C, there are many interesting problems to solve. Notably, arguments passed into

functions can be other function calls. For example, = SU M(A2; SU M(A3; A4)) is a

valid spreadsheet cell. This case is fairly trivial as the two SU M statements can be

evaluated recursively through an AST to give

= SU M(A2; A3+A4) on the first iteration and = A2+A3+A4 on the second iteration.

While this first case can be automatically handled through an AST, arguments can

be much more difficult as show in Formula 3.1.

B1= SU M(B2 : B4; I F(C1; C2; C3)) (3.1)

In this case, we have two interesting elements to consider. The first is the

array B2 : B4. Until now, we have only considered cases where every cell being

referenced is explicitly stated in the formula. Once an array of length greater than 2

is considered, we say the cell is being implicitly referenced. This is because the only

cells stated are B2 and B4, but the array means this formula also references B3. As

§3.2 The Problem Space 23

a result, we must account for implicit referencing in our system. Arrays can contain

empty cells which we must correctly account for as discussed in section 3.2.2.

More importantly, Formula 3.1 gives us a glimpse into I F statement usage with

I F(C1; C2; C3) used as an argument. This generates many additional problems as

will be discussed in section 3.2.5.

3.2.4 Statement Ordering

Because spreadsheets are a data-sequenced language, the order of the statements

is dependent on the order in which each cell is referenced. Cells that reference

other cells must be processed later. In particular, if we have the cell A1 defined by

the formula = A2 then we know that A1 must be defined after A2. We express this

as A1 < A2. It is important to note that there does not need to be a unique order

in which cells must be processed. For example, if a spreadsheet does not contain

any references, any ordering of the cells is considered legitimate. As a result, it

is apparent that the ordering of cells exhibits the required characteristics to be a

partially ordered set.

Knowing the order of statement processing is a partially ordered set lets us prove

that self-referencing is impossible. To prove this, let us consider a case where cell

A1 is defined as = A2 and cell A2 is defined as = A1, then according to our partial

order we would have A1 < A2 and A2 < A1. Because both of these statements

cannot be true, we know recursion is not allowed in spreadsheets. This example

can easily be generalised and proven to be true for any cells that self-reference.

Additional examples of referencing can be seen in Fig. 3.3 which has two examples

of self-referencing, both of which cause errors as they make the order of statement

execution impossible.

24 Design Considerations

Figure 3.3: Static Functional Data Sequencing implies recursion is forbidden as shown by
the cell pairs A1/A2 and B2/B3.

3.2.5 If Statements

Because spreadsheets do not allow any looping or self-referencing, I F statements

are one of the major algorithmic devices available. However, their implementation

causes many unique verification challenges.

The majority of spreadsheet functions have a set return type: SU M will return a

number and CONCAT will return a string. However, I F statements are an exception

to this rule, as they do not have a specific return type. To make this even more

challenging, each branch of the I F statement can have a different return type. For

example = I F(A1; 27; ”RUSH”) would return a number if A1 is true and a string if

A1 is false. This means when an I F statement occurs, we must change not only the

result, but also the type of the result.

The simple answer to process I F statements is allow an AST to handle them in

a recursive method as discussed with SU M in section 3.2.3. This could be achieved

through conditional expressions. For example, if we consider formula 3.1 again, we

could convert this to C code via a conditional statements as shown in Listing 3.1.

However, as discussed in section 3.2.1, I F statements can return a boolean, number,

or string which we must account for in the verification process. In our example here,

that means we must track the result of the I F and then ensure the result can be

used as a number. As a result, the system cannot simply use conditional statements

to implement I F statements, instead a more vigorous approach must be applied as

§3.3 Converting to Verifiable C Code 25

will be discussed in Section 4.2.

Listing 3.1: Example of converting an embedded I F to a conditional that does not allow
for type checking.

1 in t B1 = B2 + B3 + B4 + (C1 == 0 ? C2 : C3) ;

3.3 Converting to Verifiable C Code

The main hurdle this project must address is how to translate spreadsheet properties

we wish to verify into problems that can be solved by static analysis verification

tools in general and Skink in particular. Static analysis has its limitations, but

it is particularly good at determining if certain paths of execution are possible.

As a result, we must translate the spreadsheet properties we wish to verify into

branching problems which Skink can solve. In this section, we consider how this

can be accomplished.

3.3.1 Abstract Syntax Tree Representation

To convert the spreadsheet to C, we build an AST, manipulate the tree, and then

convert it to C. As part of this process, we must ensure that all the cells referenced

in a formula, including those implicitly referenced through arrays, are in the final C

code. To accomplish this, either all the references must be included in the AST or

we must account for implicit arguments when converting the AST to C.

The simplest solution is to have all the implicit references converted to explicit

references in the AST. This allows the system to directly convert each node in the

AST to C code. For example, consider the trees shown in Fig. 3.4. Here, the tree

on the left has the arguments as an array and a reference while the tree on the

right has all the arguments explicitly referenced. The right hand tree is simpler to

implement and convert to C as the SU M function only has to handle a single type,

namely references.

26 Design Considerations

Figure 3.4: Example of converting arrays to references to avoid implicit references. Both
trees represent SU M(A2 : A4, B2), the tree on the left (in black) maintains the array, while
the tree on the right (in red) translates the array to references.

3.3.2 C Code Compilation

It is of upmost importance that all the C programs generated must compile. While

this sounds obvious and trivial, because of the complex spreadsheet type system,

having programs compile is not a given. For example, consider the spreadsheet

shown in Fig. 3.5 which attempts to add together a number (971) and a string

(Spartans). The simple and intuitive way of converting this to C is shown in Listing

3.2. However, this code would not compile as you cannot add an integer and char

array in C.

Figure 3.5: Example of how the type system can cause even simple spreadsheets to not
compile.

§3.3 Converting to Verifiable C Code 27

Listing 3.2: Example of how the spreadsheet type system can cause a simple translation to
C to not compile.

1 in t A1 = 971;
2 char A2 [] = " Spartans " ;
3 in t B2 = A1 + A2 ;

The case shown in Fig. 3.5 is simple enough that cell B2 would throw an error

in the spreadhseet itself, thereby alerting the user to the problem. However, other

cases are not as straight forward. For example, let us consider a case that involves

an I F statement as shown in Fig. 3.6. This I F statement can mask the error. In this

case, no error code would be thrown by the spreadsheet as cell A2 would evaluate

to a number (971). However, to generate C code, it is not obvious if A2 should be

defined as a number or a string.

Figure 3.6: Example of how more complex spreadsheets can hide compile errors.

The system must be able to handle these cases and ensure that all code generated

compiles.

3.3.3 Asserts

While verifying a #DIV/0! is simple to verify, other cases are more difficult. In

particular, verifying the types are correct presents many unique challenges because

C and Skink have a strictly typed system, unlike the weak polymorphic typing in

spreadsheets. As a result, our system must track the type of a variable and verify

only correct data types are used.

28 Design Considerations

3.3.4 Defining the inputs

We know the goal of verification is to show a post condition (ψ) will hold for program

(P) for the precondition (φ). More informally, we say that verification proves certain

properties hold over a range of inputs. To accomplish this, the code requires a means

to tell the verification tool that a certain value could vary. For example, in Skink we

can denote a non-deterministic integer by __V ERI F I ER_nondet_int().

The challenge with spreadsheets is to know which values should be variable,

and which ones should be constant. For example, consider the spreadsheet in Fig.

3.7 which has cell A2 defined by the formula = A1/B1. If we consider the A1 and

B1 cells to be constant, to verify the system does not throw a #DIV/0! error, we

would execute the code in Listing 3.3. This would return TRUE as Skink would

recognize B1 equals 32 which is not 0, and thus the error cannot be thrown. This

creates a situation in which we are not properly verifying the spreadsheet as we

will only discover errors that are already present. Instead, we want to show that for

a variety of values the spreadsheet will still execute properly.

Figure 3.7: Example of divide.

Listing 3.3: Example of having too many constants creating uninteresting verification.

1 in t A1 = 31;
2 in t B1 = 32;
3 i f (B1 == 0) {
4 __VERIFIER_error () ;
5 }
6 in t A2 = A1/B1

With no additional knowledge about the spreadsheet, it is difficult to know

which cells should be verified as variables and which should be constants. With

everything as a constant, there will be spreadsheets falsely verified to be correct,

§3.3 Converting to Verifiable C Code 29

but with everything set as a constant, there will be spreadsheets falsely verified to

be incorrect. Given the goal of the project is to demonstrate that automatic program

verification is viable, we would prefer too many errors to be detected within the

scope of this project. This is addressed in more detail in Chapter .

As a result, we consider all cells that are not formulas or null to be inputs to the

system. This allows us to obtain the code shown in Listing 3.4 which would return

FALSE. This is because Skink would recognised that when B1 is zero, a #DIV/0!

error would occur.

Listing 3.4: Example of inserting variable integers to create interesting verification.

1 in t A1 = __VERIFIER_nondet_int () ;
2 in t B1 = __VERIFIER_nondet_int () ;
3 i f (B1 == 0) {
4 __VERIFIER_error () ;
5 }
6 in t A2 = A1/B1

Unlike cells with an explicit value, we have chosen to assign null cells a value of

zero as this is what they evaluate to as discussed in Section 3.2.2. This choice was

made as unlike cells with values, these cells do not represent anything, and thus do

not have a fluctuating value.

30 Design Considerations

Chapter 4

The System

In the previous chapters we have given the background of research for this project,

limited the scope of inquiry, and examined the unique elements of spreadsheets

that will impact verification. In this chapter, we bring this knowledge together to

describe the system created.

At a high level, the system will verify spreadsheets by compiling them into C code

with numerous assert statements to ensure errors cannot occur across a range of

inputs. The assert-filled C code is verified by Skink, Macquarie University’s software

verification tool. To easily integrate with Skink, the system was created in Scala,

the same language Skink is written in, so the systems can seamlessly work together.

In total, the system works in four steps: parsing, transformation, code creation,

and verification through Skink. Each stage of the process handles some of the

challenges discussed in previous sections as outlined in Fig. 4.1. In this chapter we

walk through each step in detail and explain its role in the overall system.

4.1 Step One - Parsing

The goal of the parsing step is to transform the spreadsheet from the .ods file created

by Open Office Calc into a sequence of properly ordered formulas that we call an

expression and from that expression into the AST.

31

32 The System

Figure 4.1: The stages of the system and their responsibilities.

4.1.1 Statement Ordering and Excluding Self-Referencing

Two key challenges in creating the system are proper ordering of cells into C

statements and removing self-referencing of cells in the process. To order the

statements and create a simple data structure to pass to the grammar, we turn

the .ods file into what we call an expression. The expression is the definitions of

the cells in a proper order separated by commas. For example, the spreadsheet

shown in Fig. 3.7 would give the expression A1 = 31, B1 = 32, A2 = A1/B1, This

step not only determines the order of statements, but also ensures there are no

self-referencing cycles, removes arrays as arguments, and creates a simpler format

for the grammar to parse. This step also allows us to change between different

spreadsheet file formats (.ods, .exls, etc.) by switching out a single module instead

of needing to recreate the entire system.

When considering how to order the statements, it quickly becomes apparent

that this problem is similar in nature to excluding self-referencing. To solve both

problems, we need to determine the order in which the statements should be

processed, if a cell references itself either directly or transitively, we will discover

§4.1 Step One - Parsing 33

this as there will be no correct ordering of the statements.

We discussed in Section 3.2.4, we know that the order in which cells are processed

can be considered a partially ordered set. Consequently, we can create a Hasse

diagram of the ordering in the form of a directed graph. By performing a topological

sort on the graph, we can determine a valid order to process the cells. This also

allows us to discover self-referencing cells as they will create a cycle in the Hasse

diagram.

To determine the order in which the cells should be processed, we create a

directed graph that models the referencing. For example, let us consider the spread-

sheet and resulting directed graph shown in Fig. 4.2. Here, we can see how the

referenced cells point to their parent cell, such as in the the A column where A1 is

defined as = A2+ A3, which creates the edges from A2 to A1 and A3 to A1. Fig. 4.2

also shows an example of self-referencing through the cycle between B1 which is

defined as = B2 and B2 which is defined as = B1. To ensure we have a connected

graph, we create a null cell that references all constant values. This is shown via

cell C1. With a connected graph, we can easily perform a topological sort which

gives a valid ordering of the statements.

Figure 4.2: A spreadsheet that contains a set of self-referencing cells.

When creating the directed graph, we also include implicitly referenced cells

from arrays as discussed in section 3.2.3. In this process we transform the array into

a list of arguments to better facilitate creating the AST as we will discuss in more

detail below. For example, if we had a cell defined by the formula = SU M(A2 : B4),

this would be transformed into = SU M(A2; A3; A4; B2; B3; B4).

34 The System

4.1.2 The Grammar and Abstract Syntax Tree Creation

Rather than create a grammar from scratch, we based the grammar on the Excel

formula parsing grammar presented by Aivaloglou, Hoepelman, and Hermans [4].

While multiple grammars are available for parsing spreadsheets, the Aivaloglou

grammar was selected as it successfully parsed 99.99% of the eight million formulas

with which it was tested including those in the Enron corpus [4].

For our purposes we have simplified the grammar to only use the eight most

common functions as discussed in Section 3.1 along with =, >, and % as required

for some of our test cases as we will discuss in Chapter 5. While our scope of inquiry

would enable the usage of other grammars, by using the Aivaloglou grammar we

know the system can be easily extended for future work.

The Aivaloglou grammar was created to parse an Excel formula instead of an

Open Office Calc spreadsheet. As a result, the grammar had to be slightly modified

to allow for multiple Calc formulas to be parsed. To implement the grammar, we

use SBT-RATS [49] which utilizes Parsing Expression Grammars (PEGs) to define

the language [21]. The exact SBT-RATS parsable grammar used can be viewed in

Fig. 4.3.

The majority of the changes made to the Aivaloglou grammar were superficial.

For example, Calc uses semi-colons instead of commas to separate arguments passed

into a function. Additionally, in the .ods file format used by Calc, cell references are

enclosed in square brackets and preceded by a full stop, meaning the reference of A1

is [.A1]. This means we have to parse SU M([.A1]; [.A2]) instead of SU M(A1, A2).

In addition to these superficial changes, changes were also made to facilitate

multiple formulas to be parsed. The Aivaloglou grammar only allows a single

formula to be parsed at a time, but we want to be able to parse the entire sheet. As

a result, expressions and statements were added to the grammar. Statements are of

the form cel l = value, and when combined create expressions.

§4.1 Step One - Parsing 35

Figure 4.3: The grammar used to parse spreadsheets represented as expressions.

Ex p =
Assign Ex p
| Assign
| AssignI f Ex p.

Assign= Cell “= ”Formula “, ”.

AssignI f = i f Re f + “= ” nI f .

Formula =
nI f
| Formula “+ ” Formula
| “+ ” Formula
| Formula “− ” Formula
| “− ” Formula
| Formula “ ∗ ” Formula
| Formula “/” Formula
| Formula “= ” Formula
| Formula “> ” Formula
| Formula “%”

| “SU M(” + Ar gs+ “)”
| “AV ERAGE(” + Ar gs+ “)”
| “NOW ()”
| Arra y
| CellRe f
| i f Re f
| NumConstant
| St r
| “(” Formula “)”
| “null”.

nI f = “I F(” + Formula+ “; ”+
Formula+ “; ”+ Formula+ “)”.

Ar gs =
Formula “; ”Ar gs
| Formula.

NumConstant =
Decimal
| Number
| Bool.

Arra y = “[.” Cell “ : .” Cell “]”.

CellRe f = “[.” Col Row “]”.

Col = “$”? [A− Z] + .

Row= “$”?[1− 9][0− 9] ∗ .

i f Re f = row+ “i f ”.

Number = [0− 9] + .

Decimal = Number “.” Number.

St r = “ “ ′′ middleO f St ring.

middleO f St ring =
“ ′′ ′′

| _ middleO f St ring.

Bool =
“ f alse”

| “t rue”.

36 The System

The “null” formula was added to the grammar to allow empty cells to be parsed

and represented in the AST. This is important as null cells have many unique

properties we want to verify as discussed sections 3.2.2 and 3.3. We also added the

"assignIf" formula to simplify the process of removing I F statements from arguments

as we will discuss in more detail in Section 4.2.

4.2 Step Two - Transformation

To create the C code, we need the AST to be in a procedural format. Because

formulas can be embedded as arguments, the AST cannot be directly translated

into C code. For example, considerwhat would happen if we have an I F inside a

SU M . While this is a perfectly valid snippet of spreadsheet code, as discussed in

section 3.2.5, we cannot simply embed the I F statement inside a formula in C as

we must allow for type verification. As a result, we must transform the AST to a

more procedural format.

To transform the AST from a functional to procedural format, we lift the I F

out of the SU M . This process can be repeated recursively as needed to handle

embedded I F statements. While we have focused our discussion here on lifting I F

statements, the same process can be applied to any function that cannot exist as an

argument within a procedural language.

4.3 Step Three - Code Creation and Assert Insertion

Once the AST is in a procedural format, creating the C code is a detailed but simple

process. We process the AST in a left-recursive order, transforming each node to

the appropriate C code.

The important part of the code creation is ensuring that the code will compile

and find #DIV/0! and type #VALU E! errors as discussed in Section 3.1. To accom-

plish this, we must properly implement I F statements, add the appropriate assert

§4.3 Step Three - Code Creation and Assert Insertion 37

statements, and resolve type system compilation errors.

4.3.1 Handling I F Statements

As discussed in Section 4.2, we know I F statements are lifted into their own assign

nodes in the AST. However, they are still defined in the functional manner of

assigning a variable name to result of the statement. To remedy this, we assign the

value inside the if and else statements. In line with good programming practice, we

assign the variable a temporary value of zero before the if-else statement to ensure

the variable has a value.

To create the if-else statement in C, we must remember that booleans are actually

numbers in spreadsheet languages where zero represents false and one represents

true as discussed in Section 3.2.1. Taking this a step further, any non-zero value

evaluates to true. As a result, instead of having i f (val) we convert the I F statement

to i f (val! = 0). While C already evaluates I F statements this way, we explicitly

state it to be clear in our intent and simplify potential future work with strings.

Putting this together we can transform the statement I F(B1; B1; B2) into the C code

shown in Listing 4.1.

Listing 4.1: C Version of I F(B1; B1; B2).

1 in t i f 1 = 0;
2 i f (B1 != 0) {
3 i f 1 = B1 ;
4 } else {
5 i f 1 = B2 ;
6 }

4.3.2 Type Checking

Once we begin to have multiple types, ensuring the generated code compiles becomes

more challenging. For example, if the user tries to add a string and number together,

the C code will not compile. As a result, we model everything as a number. This

38 The System

decision can be justified as all eight functions within our scope are based on numbers.

Additionally, for the purposes of verification, the concern is not about what the

function outputs, but rather whether the function is capable of causing errors. By

modeling everything as an integer, code compilation becomes much simpler.

Based on Section 3.2.1, we know all the data types we expect to encounter are

either numbers or strings. As a result, the system simply needs to differentiate

between these types. To accomplish this, for every cell we add an additional integer

that tracks whether the cell contains a number or a string. For example if A1 = 3132,

we would have A1Num= 1 while if A2= ”T DU” we would have A2Num= 0. To

verify the correct type is used, we can check the tracking integer has the expected

value. For example, if we had cell A1 defined by the formula = A2+ A3 we could

verify both A2 and A3 are numbers using the code shown in Listing 4.2.

Listing 4.2: Asserts to check A2 and A3 are numbers.

1 i f (A2Num = = 0){
2 __VERIFIER_error () ;
3 }
4 i f (A3Num = = 0){
5 __VERIFIER_error () ;
6 }

While this is simple when a cell simply contains a value, it becomes more complex

when formulas are considered. In the simplest case, we can take the return type

of the function called, and assume the cell takes this value. For example, where

A1 = A2+A3, because we know the + function returns a number, we would assume

A1 is a number. In cases where a cell references another cell, we assume they have

the same type. In particular, we say that if A1 = A2 then A1Num = A2Num. This

enables us to handle seven of our initial eight functions in scope, with the exception

being I F statements.

Unsurprisingly, I F statements complicate the situation. As discussed in Section

3.3, I F statements could return any type, and may return a different type depending

§4.3 Step Three - Code Creation and Assert Insertion 39

on the input. For example, consider Fig. 4.4. In this example, if C1 is true, A2 will

be a number. But if C1 is false, A2 will be a string. As a result, we use the same

methodology as for I F statements. We set the variable tracking the type to 0, and

then update it as needed inside the if-else statements. This is shown in Listing 4.4

which coverts Fig. 4.4 into verifiable C code.

Figure 4.4: Spreadsheet which could throw a error.

4.3.3 Divide by Zero

The simplest assert statements that we consider are those to ensure there are no

#DIV/0! errors in the spreadsheet. As discussed in Section 3.3, we simply assert

that the denominator of the function cannot equal zero. For example, if we had

A1= A2/A3 our code would become that in Listing 4.3.

Listing 4.3: Verification no divide by zero error occurs.

1 i f (A3 = = 0)
2 __VERIFIER_error () ;
3 in t A1 = A2 / A3 ;

4.3.4 Final Code

With the compilation difficulties and assert statements well understood, the only

remaining item is adding some simple code at the start and end to ensure the file

compiles. Putting all of this together, we can transform the spreadsheet shown in

Fig. 4.4 into the code in Listing 4.4.

40 The System

Listing 4.4: The fully generated C code for verifying the spreadsheet in Fig. 4.4.

1 extern void __VERIFIER_error () _ _ a t t r i b u t e _ _ (
2 (__noreturn__)) ;
3 unsigned in t __VERIFIER_nondet_uint () ;
4 in t main () {
5 in t C1Num = 1;
6 in t C1 = __VERIFIER_nondet_int () ;
7 in t B1Num = 0;
8 in t B1 = __VERIFIER_nondet_int () ;
9 in t A1Num = 1;

10 in t A1 = __VERIFIER_nondet_int () ;
11 in t if1Num = 0;
12 // Compute the IF s ta t ement in c e l l A2 .
13 in t i f 1 = 0;
14 i f (C1!= 0) {
15 if1Num = A1Num;
16 i f 1 = A1 ;
17 } else {
18 if1Num = B1Num;
19 i f 1=B1 ;
20 }
21 in t A2Num = if1Num ;
22 in t A2 = i f 1 ;
23 // Ensure the c e l l s added in B2 are both numbers .
24 i f (A1Num == 0)
25 __VERIFIER_error () ;
26 i f (A2Num == 0)
27 __VERIFIER_error () ;
28 in t B2Num = 1;
29 in t B2 = A1 + A2 ;
30 }

4.4 Step Four - Verification

The final step in our verification system is handing the assert filled C code to Skink.

Skink then analyses the code to determine if the assert statements could occur given

all possible values of the variables. Skink then outputs the results, along with a

witness if an error could occur. An example witness is shown in Appendix B.

Chapter 5

Results

To determine the success of the code and the project, we ran the code on three sets

of input data: a subset of the Enron corpus, a grading sheet, and generated test

cases. In this process, we added three simple functions to the grammar, namely

equal to, greater than, and percentage, to enable some of these data-sets to be

parsed. Each of these data-sets let us examine the system in a different manner.

After running a spreadsheet through the system, a result of TRUE meant the

spreadsheet was verified to be correct, while FALSE meant an error had been

detected. When Skink returned FALSE, the witness error trace was examined to

determine what type of error had been discovered.

5.1 Enron

As previously discussed, the Enron spreadsheet corpus is considered the gold stan-

dard for testing spreadsheets. Because it was obtained through subpoenas as part

of the bankruptcy process, the spreadsheets give a unique glimpse into how spread-

sheets are used in a corporate setting.

To test the system created, we decided to analyze the spreadsheets created by a

single user to act as a use case. After analyzing spreadsheets generated by different

employees, we found a large percentage of those generated by Barry Tycholiz could

be parsed by the system. As a result, we ran all nine spreadsheets he had created

that only contained parsable formulas through the system. By manually checking

41

42 Results

these spreadsheets, we believed three should return FALSE while six should return

TRUE. In running the system on the sheets, all had the expected return type. All of

the FALSE errors discovered were caused by division. In particular, the employee

was dividing by a variable that could equal zero. A summary of the results can be

seen in Table 5.1.

Two spreadsheets generated stack overflow errors on initial testing. The first

one when run through the system generated and the second one through Skink. By

increasing the size of the stack, we were able to successfully run both programs.

It is believed the stack overflow in Skink was caused due to the large programs

generated by the system. In particular, the file that caused the error was 1,135 lines

long. This caused us to consider the size of the C files generated. At a minimum,

every cell with a value or referenced will generate two lines of C code: one for

defining the variable and one for tracking the variable’s type. However, if the cell

is defined by a formula with references, this will add an additional three lines

per referenced cell to perform the type checking. If an I F statement is used, an

additional nine lines will be added.

This basic understanding was confirmed by examining the number of lines of

code generated compared to the number of cells in each spreadsheet as shown in

Table 5.1. As expected, each cell generated at least two lines of C code. On average,

3.52 lines of C code were generated for each cell in the spreadsheet. By graphing

the function as shown in Fig. 5.1, we see there is a generally linear trend between

the number of spreadsheet cells and lines of C code. However, we can also see that

the spreadsheets that are not verified to be correct appear to be above the average

trend line. Investigating further, we found spreadsheets that could cause errors

have an average of 4.49 lines of C code generated per spreadsheet cell. This is both

above the average for all spreadsheets, as well as those that were verified to be

correct which had an average of 3 lines of code per cell.

While this finding is not statistically significant, it is in line with other research

§5.2 Grades 43

Enron Corpus ID Result Stack Overflow Cells Lines Lines per Cell
barry_tycholiz_000_1_1.pst.65 TRUE No 39 123 3.15
barry_tycholiz_000_1_1.pst.67 TRUE No 45 115 2.56
barry_tycholiz_000_1_1.pst.56 TRUE No 62 229 3.69
barry_tycholiz_000_1_1.pst.10 TRUE Yes 140 361 2.58

barry_tycholiz_000_1_1.pst.31
FALSE
Divide by zero No 141 503 3.57

barry_tycholiz_000_1_1.pst.30 TRUE No 195 675 3.46

barry_tycholiz_000_1_1.pst.13
FALSE
Divide by zero No 216 1301 6.02

barry_tycholiz_000_1_1.pst.75 TRUE No 237 657 2.77

barry_tycholiz_000_1_1.pst.32
FALSE
Divide by zero Yes, in Skink 292 1135 3.89

Average 151.89 566.56 3.52

Table 5.1: Table outlining the results of running the system on nine sheets from the Enron
corpus.

which has shown more complicated spreadsheets are more likely to have bugs

and throw errors. We know the additional lines of code are generated by having

additional references to cells or I F statements, thereby making lines of generated

code per cell a measure related to spreadsheet complexity. In particular, we know a

spreadsheet full of smells such as conditional complexity and long chain calculations

as discussed in Section 2.1.3 will lead to longer C files due to the increased number

of I F statements and references required for these smells to exist.

5.2 Grades

The next spreadsheet considered was one used by a professor to determine grades

for students. The spreadsheet mainly consisted of the same line which added up

a student’s marks to determine their final numerical score, and then convert that

score into a letter grade. The line was repeated for every student in the class.

Through manual examination, the spreadsheet appeared to be valid, but upon

running it through the system, Skink said an error could occur. By examining the

witness, a cell containing the text "0" was found being called by a SU M statement.

Because the value was "0", the value was ignored by the SU M function and thus the

44 Results

Figure 5.1: Graph showing the number of cells in a spreadsheet compared to the lines of
generated C code. Files that were found to have potential errors are denoted in red.

cell still had the correct result. As a result, this error had gone undetected both by

the original user and the manual inspection. Had the value been any other number,

the error would have produced an incorrect calculation result. After changing the

cell from the string "0" to the number zero, the spreadsheet was run through the

system again and was verified to be correct.

5.3 Generated Test Cases

In addition to the real world spreadsheets used, we also created some generated

files to highlight some key attributes of the system.

After running the system on some Enron sheets, it was concerning that every

division was causing the spreadsheet to not be validated. As a result, our first goal

was to create a spreadsheet that would not throw a #DIV/0! error even when

dividing by a variable. To accomplish this, we created the spreadsheet shown in

Fig. 5.2. This spreadsheet has a divide by a value which cannot equal zero. This

occurs because the denominator will be evaluated as 0+ 1 since cell C1 is null and

§5.4 Summary of Findings 45

therefore we consider it to always evaluate to 0. As a result, despite the appearance

of a potential #DIV/0! error, our verification system shows the spreadsheet is valid.

Figure 5.2: Spreadsheet with division which was validated using the system.

Additionally, although through the grade spreadsheet we found a type error, we

wanted to ensure these errors could be found in more complex situations, such as

when the type could change based on an I F statement. To achieve this, we ran the

code on the sheet shown in Fig. 4.4. In this situation, Skink found a type error

could occur as we expected.

5.4 Summary of Findings

In running the system on sheets from the Enron corpus, a grading example, and a

generated test case, we found it worked on all the cases it was presented. While the

files were larger than anticipated, by increasing the size of the stack we were able

to successfully validate the spreadsheets. The system was able to find type errors

that had gone undetected by the original user as well as a manual inspector prior to

testing. We also successfully showed that while the system does not validate the

majority of spreadsheets that divide by a variable, there are cases for which this will

not occur. Perhaps our most interesting finding is that the number of lines of C code

generated per spreadsheet cell appears to be an indicator of spreadsheet quality. It is

important to note this claim centers around the number of lines of C code generated

per spreadsheet cell rather than the number of lines of code generated from the

spreadsheet as a whole. This is most likely caused by the numerous spreadsheet

smells, namely conditional complexity and chain calculations) that cause additional

lines of code to be generated per cell.

46 Results

Chapter 6

Conclusions and Future Research

6.1 Future Work

The goal of this project was to create a system to demonstrate the viability of

automatically verifying spreadsheets through static program analysis. While we

have accomplished this goal, it has opened many potential directions for future

projects. Here we discuss the next steps in automatic program verification applied

to spreadsheets.

Due to the time frame of this project, our scope was limited to the eight most

commonly used functions in spreadsheets. An obvious next step is to expand this to

allow more spreadsheets to be verified using the system. This will allow for a wider

corpus to be verified.

In verifying AV ERAGE, we have not considered if all the arguments passed to

AV ERAGE are null. As discussed, this would cause a #DIV/0! error to occur.

When we generate the Hasse structure to determine the order in which cells

are processed, we assume all branches can occur. However, we know from other

research that this is not always the case in spreadsheets. By identifying and removing

these dead branches from the system, we would stop identifying self-referencing

cycles that cannot exist. For example, consider the spreadsheet in Fig. 6.1. The

current system would find a self referencing cycle between cells A1 and A2, however,

upon further inspection, this sheet cannot throw an error as the self referencing can

never occur. A1 will equal A2 only if B1 is true. However, A2 will equal A1 if B1 is

47

48 Conclusions and Future Research

false. Since B1 cannot be both true and false, the self referencing can never occur.

Figure 6.1: Example of a potential self-referencing cycle that cannot occur due to I F
statements.

As we found when running the system, the majority of the time a user divides

by a referenced cell, the system will not validate the spreadsheet. This is because

we currently assume cells that are assigned a single value could be any number.

Future projects could allow the user to specify cells as constants or a range of values,

thereby enabling more spreadsheets to be verified. This can be easily acheived

through Skink with the __V ERI F I ER_assume(p) function.

Because spreadsheets can quickly have many cells and formulas, the size of the

AST initially caused stack overflow errors. Future projects should consider how

to minimise the size of the AST to reduce the computing power required to verify

spreadsheets.

The current user interface is not intuitive and requires some basic knowledge

of technical tools such as command line and the ability to understand the trace

abstraction witness. By creating a more intuitive display, we would allow more

end-users to access the system.

Once the system is further developed as discussed above, the obvious next step

is to test it with real end-users. This would allow us to know if the system helps

users find errors before they occur and identify what is going wrong with errors

that already exist.

§6.2 Conclusion 49

6.2 Conclusion

It is widely known that bugs in spreadsheets cost the global economy billions of

dollars. As a result, there is significant interest in improving spreadsheet accuracy

and quality. The goal of this project was to create a system to demonstrate the

viability of automatically verifying spreadsheets through static program analysis.

In this document, we have outlined current research projects on spreadsheets,

end-user programming, and automatic program verification. Based on this knowl-

edge, we limited the scope of our system to the eight most common spreadsheet

functions enabling us to process over 60% of spreadsheets.

The background research done allowed us to consider the unique properties of

spreadsheets and how this changes the verification process. In particular, it enabled

us to notice the partially ordered execution order of cells makes self-referencing

cells impossible. It also informed our understanding of the weak polymorphic type

system employed in spreadsheets that enables native, automatic type conversion.

With this knowledge, we created a four-step system that parses spreadsheets,

transforms the AST from functional to procedural, creates C code with assert in-

sertion, and finally verifies the code with Skink a trace abstraction refinement

verification tool.

We were able to successfully use the system to verify spreadsheets from the Enron

corpus, a grading spreadsheet, and generated test cases. The system returned the

proper results for all the spreadsheets and found a bug in the grading spreadsheet

that had gone undetected. Interestingly, lines of C code generated per spreadsheet

cell appears to be an indicator of spreadsheet quality.

The goal of this project was to determine if spreadsheets could be verified through

static program analysis. Given the spreadsheets verified and errors found, we can

definitively say yes. Static program verification can be applied to spreadsheets.

50 Conclusions and Future Research

Appendix A

The Aivaloglou Spreadsheet
Grammar

The Aivaloglou Grammar as presented in [5]

〈Start〉::= 〈Formula〉

| ’=’ 〈Formula〉

| ‘=’ 〈Formula〉‘’

〈Formula〉::= 〈Constant〉

| 〈Reference〉

| 〈FunctionCall〉

| ‘(’ 〈Formula〉‘)’

| 〈ConstantArray〉

| RESERVED-NAME

〈Constant〉::= NUMBER | STRING | BOOL | ERROR

〈FunctionCall〉::= EXCEL-FUNCTION〈Arguments〉‘)’

| 〈UnOpPrefix〉〈Formula〉

| 〈Formula〉‘%’

| 〈Formula〉〈BinOp〉〈Formula〉

〈UnOpPrefix〉 ::= ’+’ | ’-’

〈BinOp〉::= ‘+’ | ’-’ | ’*’ | ’/’ | ’̂’ | ’&’ | ‘<’ | ‘>’ | ‘=’ | ‘<=’ | ‘>=’ | ‘<>’

〈Arguments〉::= 〈Argument〉 ’,’

〈Argument〉 | ε

51

52 The Aivaloglou Spreadsheet Grammar

〈Argument〉::= 〈Formula〉 | ε

〈Reference〉::= 〈ReferenceItem〉

| 〈RefFunctionCall〉

| ‘(’ 〈Reference〉‘)’

| 〈Prefix〉〈ReferenceItem〉

| FILE ‘!’ DDECALL

〈RefFunctionCall〉::= 〈Union〉

| 〈RefFunctionName〉〈Arguments〉‘)’

| 〈Reference〉‘:’ 〈Reference〉

| 〈Reference〉‘ ’ 〈Reference〉

〈ReferenceItem〉::= CELL

| 〈NamedRange〉

| VERTICAL-RANGE

| HORIZONTAL-RANGE

| UDF〈Arguments〉’)’

| ERROR-REF

| 〈StructuredReference〉

〈Prefix〉::= SHEET

| FILE SHEET

| FILE ‘!’

| MULTIPLE-SHEETS

| FILE MULTIPLE-SHEETS

| ‘” SHEET-QUOTED

| ‘” FILE SHEET-QUOTED

| ‘” MULTIPLE-SHEETS-QUOTED

| ‘” FILE MULTIPLE-SHEETS-QUOTED

〈RefFunctionName〉::= REF-FUNCTION

| REF-FUNCTION-COND

53

〈NamedRange〉::= NR | NR-COMBINATION

〈Union〉::= ‘(’ 〈Reference〉‘,’ 〈Reference〉 ‘)’

〈StructuredReference〉::= 〈SRElement〉

| ‘[’ 〈SRExpression〉‘]’

| NR〈SRElement〉

| NR ‘[’ ‘]’

| NR ‘[’ 〈SRExpression〉‘]’

〈SRExpression〉::= 〈SRElement〉

| 〈SRElement〉(‘:’ |‘,’) 〈SRElement〉

| 〈SRElement〉‘,’ 〈SRElement〉(‘:’ | ‘,’) 〈SRElement〉

| 〈SRElement〉‘,’ 〈SRElement〉‘,’

〈SRElement〉‘:’ 〈SRElement〉

〈SRElement〉::= ‘[’ (NR | SR-COLUMN) ‘]’

| FILE

〈ConstantArray〉::= ‘’ 〈ArrayColumns〉‘’

〈ArrayColumns〉::= 〈ArrayRows〉 ‘;’ 〈ArrayRows〉

〈ArrayRows〉::= 〈ArrayConst〉 ‘,’ 〈ArrayConst〉

〈ArrayConst〉::= 〈Constant〉 | 〈UnOpPrefix〉NUMBER

| ERROR-REF

54 The Aivaloglou Spreadsheet Grammar

Appendix B

False Witness from Skink

The false witness generated by running the code in Listing 4.4 through Skink.

Listing B.1: The false witness produced by Listing 4.4.

1 <?xml version=" 1.0 " encoding="UTF−8" standalone=" no " ?>
2 <graphml xmlns :x s i=
3 " h t t p : //www.w3. org/2001/XMLSchema−i n s t ance "
4 xmlns=
5 " h t t p : //graphml . graphdrawing . org/xmlns ">
6
7 <key id=" ent ry " f o r=" node " a t t r . name=" ent ry "

a t t r . type=" boolean "><default> f a l s e</default></key>
8 <key id=" b lock " f o r=" node " a t t r . name=" b lock "

a t t r . type=" i n t " />
9 <key id=" node . s r c " f o r=" node " a t t r . name=" node . s r c "

a t t r . type=" s t r i n g " />
10 <key id=" edge . s r c " f o r=" edge " a t t r . name=" edge . s r c "

a t t r . type=" s t r i n g " />
11 <key id=" s t a r t l i n e " f o r=" edge " a t t r . name=" s t a r t l i n e "

a t t r . type=" i n t " />
12 <key id=" endl ine " f o r=" edge " a t t r . name=" endl ine "

a t t r . type=" i n t " />
13 <key id=" v i o l a t i o n " f o r=" node " a t t r . name=" v i o l a t i o n "

a t t r . type=" boolean "><default> f a l s e</default></key>
14 <key id=" witness−type " f o r=" graph "
15 a t t r . name=" witness−type " a t t r . type=" s t r i n g " />
16 <key id=" sourcecodelang " f o r=" graph "
17 a t t r . name=" sourcecodelang " a t t r . type=" s t r i n g " />
18 <key id=" producer " f o r=" graph " a t t r . name=" producer "

a t t r . type=" s t r i n g " />
19 <key id=" s p e c i f i c a t i o n " f o r=" graph "
20 a t t r . name=" s p e c i f i c a t i o n " a t t r . type=" s t r i n g " />

55

56 False Witness from Skink

21 <key id=" p rogramf i l e " f o r=" graph " a t t r . name=" p rogramf i l e "
a t t r . type=" s t r i n g " />

22 <key id=" programhash " f o r=" graph " a t t r . name=" programhash "
a t t r . type=" s t r i n g " />

23 <key id=" memorymodel " f o r=" graph " a t t r . name=" memorymodel "
a t t r . type=" s t r i n g " />

24 <key id=" a r c h i t e c t u r e " f o r=" graph "
25 a t t r . name=" a r c h i t e c t u r e " a t t r . type=" s t r i n g " />
26 <key id=" assumption " f o r=" edge " a t t r . name=" assumption "

a t t r . type=" s t r i n g " />
27 <key id=" assumption . note " f o r=" edge "
28 a t t r . name=" assumption . note " a t t r . type=" s t r i n g " />
29 <key id=" assumption . scope " f o r=" edge "
30 a t t r . name=" assumption . scope " a t t r . type=" s t r i n g " />
31 <key id=" assumption . r e s u l t f u n c t i o n " f o r=" edge "
32 a t t r . name=" assumption . r e s u l t f u n c t i o n "
33 a t t r . type=" s t r i n g " />
34
35 <graph edgedefau l t=" d i r e c t ed ">
36 <data key=" witness−type ">v i o l a t i o n _ w i t n e s s</data>
37 <data key=" sourcecodelang ">C</data>
38 <data key=" producer ">sk ink</data>
39 <data key=" s p e c i f i c a t i o n ">
40 CHECK(i n i t (main ()) , LTL(G ! c a l l (__VERIFIER_error ())))
41 </data>
42 <data key=" p rogramf i l e ">f a l s e −type . c</data>
43 <data key=" programhash ">
44 a161f9f5d39596d218c726cd33bca3aef5ff3b8f
45 </data>
46 <data key=" memorymodel ">s imple</data>
47 <data key=" a r c h i t e c t u r e ">32 b i t</data>
48
49 <node id="N0">
50 <data key=" ent ry ">t rue</data>
51 </node>
52
53 <edge id=" E0 " source="N0" t a r g e t="N1">
54 <data key=" assumption ">\ r e s u l t == 0;</data>
55 <data key=" assumption . note ">hex: 0</data>
56 <data key=" assumption . scope ">main</data>
57 <data key=" assumption . r e s u l t f u n c t i o n ">

57

58 __VERIFIER_nondet_int
59 </data>
60 <data key=" edge . s r c ">
61 i n t C1=__VERIFIER_nondet_int () ;
62 </data>
63 <data key=" s t a r t l i n e ">5</data>
64 </edge>
65
66 <node id="N1">
67 </node>
68
69 <edge id=" E1 " source="N1" t a r g e t="N2">
70 <data key=" assumption ">\ r e s u l t == 0;</data>
71 <data key=" assumption . note ">unknown</data>
72 <data key=" assumption . scope ">main</data>
73 <data key=" assumption . r e s u l t f u n c t i o n ">
74 __VERIFIER_nondet_int
75 </data>
76 <data key=" edge . s r c ">
77 i n t A1=__VERIFIER_nondet_int () ;
78 </data>
79 <data key=" s t a r t l i n e ">7</data>
80 </edge>
81
82 <node id="N2">
83 </node>
84
85 <edge id=" E2 " source="N2" t a r g e t="N3">
86 <data key=" assumption ">\ r e s u l t == 0;</data>
87 <data key=" assumption . note ">unknown</data>
88 <data key=" assumption . scope ">main</data>
89 <data key=" assumption . r e s u l t f u n c t i o n ">
90 __VERIFIER_nondet_int
91 </data>
92 <data key=" edge . s r c ">
93 i n t B1=__VERIFIER_nondet_int () ;
94 </data>
95 <data key=" s t a r t l i n e ">9</data>
96 </edge>
97
98 <node id="N3">

58 False Witness from Skink

99 </node>
100
101 <edge id=" E3 " source="N3" t a r g e t="N4">
102 <data key=" edge . s r c ">
103 __VERIFIER_error () ;
104 </data>
105 <data key=" s t a r t l i n e ">24</data>
106 </edge>
107
108 <node id="N4">
109 <data key=" v i o l a t i o n ">t rue</data>
110 </node>
111
112 </graph>
113
114 </graphml>

Bibliography

[1] Robin Abraham and Martin Erwig. Type inference for spreadsheets. In Proceed-

ings of the 8th ACM SIGPLAN symposium on Principles and practice of declarative

programming - PPDP ’06, page 73, 2006.

[2] Robin Abraham and Martin Erwig. GoalDebug: A spreadsheet debugger for

end users. Proceedings - International Conference on Software Engineering,

pages 251–260, 2007.

[3] W Richards Adrion, Martha A Branstad, and John Cherniavsky. Validation, veri-

fication, and testing of computer software. ACM Computing Surveys, 14(2):159–

192, 1982.

[4] Efthimia Aivaloglou, David Hoepelman, and Felienne Hermans. A grammar

for spreadsheet formulas evaluated on two large datasets. 2015 IEEE 15th

International Working Conference on Source Code Analysis and Manipulation,

SCAM 2015 - Proceedings, pages 121–130, 2015.

[5] Efthimia Aivaloglou, David Hoepelman, and Felienne Hermans. Parsing Excel

formulas : A grammar and its application on four large datasets. 2017.

[6] Frances E. Allen and John Cocke. A program data flow analysis procedure.

Communications of the ACM, 19(3):137, 1976.

[7] Kenneth Baker, Stephen Powell, Barry Lawson, Lynn Foster-Johnson,

and Robert Burnham. Spreadsheet Engineering Research Project.

http://faculty.tuck.dartmouth.edu/serp/. [Accessed: May 19, 2019].

59

60 BIBLIOGRAPHY

[8] Florian Biermann, Wensheng Dou, and Peter Sestoft. Rewriting high-level

spreadsheet structures into higher-order functional programs. In International

Symposium on Practical Aspects of Declarative Languages, pages 20–35. Springer,

2018.

[9] Brian Bishop and Kevin McDaid. An Empirical Study of End-User Behaviour

in Spreadsheet Error Detection & Correction. arXiv preprint arXiv:0802.3479,

pages 165–176, 2008.

[10] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C. Wallace.

End-user software engineering with assertions in the spreadsheet paradigm.

25th International Conference on Software Engineering, 2003. Proceedings.,

2003(May):93–103, 2003.

[11] Margaret Burnett. What is end-user software engineering and why does it

matter? Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), 5435 LNCS:15–28,

2009.

[12] Margaret Burnett, Curtis Cook, and Gregg Rothermel. End-user software

engineering. Communications of the ACM, 47(9):53, 2004.

[13] Franck Cassez, Anthony M. Sloane, Matthew Roberts, Matthew Pigram,

Pongsak Suvanpong, and Pablo Gonzalez de Aledo. Skink: Static analysis of

programs in LLVM intermediate representation. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 10206 LNCS:380–384, 2017.

[14] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified latice

model. POPL ’77 Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages, pages 238–252, 1977.

BIBLIOGRAPHY 61

[15] Patrick Cousot and Radhia Cousot. Abstract Interpretation and Application to

Logic Programs. Journal of Logic Programming, 13(2-3):103–180, 1992.

[16] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal

of Logic and Computation, 2(4):511–547, 1992.

[17] Jácome Cunha, João P. Fernandes, Hugo Ribeiro, and João Saraiva. Towards a

catalog of spreadsheet smells. Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

7336 LNCS(PART 4):202–216, 2012.

[18] William J Doll and Gholamreza Torkzadeh. End-User Computing. 12(2):259–

274, 2018.

[19] Marc Fisher and Gregg Rothermel. The EUSES Spreadsheet Corpus: A Shared

Resource for Supporting Experimentation with Spreadsheet Dependability

Mechanisms. Technical report.

[20] Marc Fisher, Gregg Rothermel, Darren Brown, Mingming Cao, Curtis Cook, and

Margaret Burnett. Integrating automated test generation into the WYSIWYT

spreadsheet testing methodology. ACM Transactions on Software Engineering

and Methodology, 15(2):150–194, 2006.

[21] Bryan Ford. Parsing Expression Grammars: A Recognition-Based Syntactic

Foundation.

[22] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement

of trace abstraction. Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5673

LNCS(Sas):69–85, 2009.

[23] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software Model

Checking for People Who Love Automata. (8044):36–52, 2013.

62 BIBLIOGRAPHY

[24] Felienne Hermans. Felienne Hermans | TU Delft Online. https://online-

learning.tudelft.nl/instructors/felienne-hermans/. [Accessed: May 19, 2019].

[25] Felienne Hermans, Bas Jansen, Sohon Roy, Efthimia Aivaloglou, Alaaeddin

Swidan, and David Hoepelman. Spreadsheets are Code: An Overview of

Software Engineering Approaches Applied to Spreadsheets. 2016 IEEE 23rd

International Conference on Software Analysis, Evolution, and Reengineering

(SANER), pages 56–65, 2016.

[26] Felienne Hermans and Emerson Murphy-Hill. Enron’s Spreadsheets and Re-

lated Emails: A Dataset and Analysis. Proceedings - International Conference

on Software Engineering, 2:7–16, 2015.

[27] Felienne Hermans, Martin Pinzger, and Arie Van Deursen. Detecting and

visualizing inter-worksheet smells in spreadsheets. Proceedings - International

Conference on Software Engineering, pages 441–451, 2012.

[28] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Detecting and refac-

toring code smells in spreadsheet formulas. Empirical Software Engineering,

2015.

[29] Michael Huth and Mark Ryan. Hoare Triples. In Logic in Computer Science,

chapter 4, pages 262–265. Cambridge University Press, 2 edition, 2004.

[30] Capers Jones. Endluser programming. Computer, 28(9):68–70, 1995.

[31] Bennett Kankuzi, Bassey Isong, and Lucia Letlonkane. Using the Spreadsheet

Paradigm to Introduce Fundamental Concepts of Programming to Novices.

(July):39–45, 2017.

[32] Andrew J. Ko, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary Shaw,

Susan Wiedenbeck, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret

BIBLIOGRAPHY 63

Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, and Henry Lieberman.

The state of the art in end-user software engineering. ACM Computing Surveys,

43(3):1–44, 2011.

[33] Patrick W Koch, Birgit Hofer, and Franz Wotawa. Static Spreadsheet Analy-

sis. 2016 IEEE International Symposium on Software Reliability Engineering

Workshops (ISSREW), (1):167–174, 2016.

[34] William Landi. Undecidability of static analysis. ACM Letters on Programming

Languages and Systems, 1(4):323–337, 1992.

[35] David Lizcano, Javier Soriano, Genoveva López, and Javier J. Gutiérrez. Au-

tomatic verification and validation wizard in web-centred end-user software

engineering. Journal of Systems and Software, 125:47–67, 2017.

[36] Microsoft. More Than 30 Million Users Make Microsoft Ex-

cel The World’s Most Popular Spreadsheet Program | Stories.

https://news.microsoft.com/1996/05/20/more-than-30-million-users-

make-microsoft-excel-the-worlds-most-popular-spreadsheet-program/, 1996.

[Accessed: May 19, 2019].

[37] Patrick O’Beirne, Felienne Hermans, Tie Cheng, and Mary Pat Campbell. Eu-

SpRIG Horror Stories. http://www.eusprig.org/horror-stories.htm. [Accessed:

May 19, 2019].

[38] OpenOffice. General error codes - Apache OpenOffice Wiki.

https://wiki.openoffice.org/wiki/Documentation/OOo3_User_Guides/

Calc_Guide/General_error_codes, 2018. [Accessed: May 19, 2019].

[39] Raymond R. Panko. Applying Code Inspection to Spreadsheet Testing. Journal

of Management Information Systems, 16(2):159–176, 1999.

64 BIBLIOGRAPHY

[40] R.R. Panko. Spreadsheet Errors: What We Know. What We Think We Can Do.

Proc. European Spreadsheet Risks Int. Grp. (EuSpRIG), page 9, 2000.

[41] Pak-Lok Poon, Fei-Ching Kuo, Huai Liu, and Tsong Yueh Chen. How can non-

technical end users effectively test their spreadsheets? Information Technology

& People, 27(4):440–462, 2014.

[42] Stephen G. Powell, Kenneth R. Baker, and Barry Lawson. A critical review of

the literature on spreadsheet errors. Decision Support Systems, 46(1):128–138,

2008.

[43] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards. Quality control in

spreadsheets: a software engineering-based approach to spreadsheet devel-

opment. Proceedings of the 33rd Annual Hawaii International Conference on

System Sciences, 00(c):1–9, 2000.

[44] Nick Randolph, John Morris, and Gareth Lee. A Generalised Spreadsheet

Verification Methodology. Proceeding ACSC ’02 Proceedings of the twenty-fifth

Australasian conference on Computer science, 4(February 2002):215–222, 2002.

[45] Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the numbers of

end users and end user programmers. Proceedings - 2005 IEEE Symposium on

Visual Languages and Human-Centric Computing, 2005:207–214, 2005.

[46] David A. Schmidt. Data flow analysis is model checking of abstract interpreta-

tions. Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages - POPL ’98, pages 38–48, 1998.

[47] Andrew F Seila. Spreadsheet Simulation. In Winter Simulation Conference,

pages 11–18, 2006.

[48] Vijay D Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Au-

tomated Techniques for Formal Software Verificatio. IEEE TRANSACTIONS

BIBLIOGRAPHY 65

ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,

27(7):1165–1178, 2008.

[49] Anthony M Sloane, Franck Cassez, and Scott Buckley. The sbt-rats parser

generator plugin for scala (tool paper). In Proceedings of the 2016 7th ACM

SIGPLAN Symposium on Scala, pages 110–113. ACM, 2016.

[50] SpreadsheetLab. XLParser. https://github.com/spreadsheetlab/XLParser.

[Accessed: May 19, 2019].

[51] Liam Tung. ’Microsoft by the numbers’ 2015: 700k Windows Store Apps,

1.2bn Office users | ZDNet. https://www.zdnet.com/article/microsoft-by-

the-numbers-2015-700k-windows-store-apps-1-2bn-office-users/, 2015. [Ac-

cessed: May 19, 2019].

[52] Liang Xu, Shuo Wang, Wensheng Dou, Bo Yang, Chushu Gao, Jun Wei, and Tao

Huang. Detecting faulty empty cells in spreadsheets. 25th IEEE International

Conference on Software Analysis, Evolution and Reengineering, SANER 2018 -

Proceedings, 2018-March(2):423–433, 2018.

[53] Aiko Yamashita and Leon Moonen. To what extent can maintenance problems

be predicted by code smell detection?–an empirical study. Information and

Software Technology, 55(12):2223–2242, 2013.

[54] Jie Zhang, Shi Han, Dan Hao, Lu Zhang, and Dongmei Zhang. Automated

Refactoring of Nested-IF Formulae in Spreadsheets. pages 1–11, 2017.

