Software Verification Techniques for
Malware Detection

MRes Year 2 Thesis

Robert Payne

B.A - Media, Macquarie University, 2016
B.I'T, Macquarie University, 2016

=
11 ,

MACQUARIE
University

SYDNEY-AUSTRALIA

Department of Computing
Faculty of Science
Macquarie University, NSW 2109, Australia

Submitted 24th October 2019

(©ORobert Payne 2019

Declaration

This work has not previously been submitted for a degree or diploma in any university.
To the best of my knowledge and belief, the thesis contains no material previously
published or written by another person except where due reference is made in the

thesis itself.

Signed: ﬁ ‘ fw

07/10/2019

iii

Acknowledgements

I would like to thank my supervisor Franck Cassez for his guidance and patience
throughout the course of this thesis.

I would also like to thank both Franck Cassez and Anthony Sloane for access to the

tool Skink and their creation of it.

Abstract

Information leakage is the undesired output of information from a program that reveals
the value or nature of a piece of private information that should not be shared. Detecting
information leakage is a problem that has been approached using methods including
taint tracking and analysis which deals with the marking of private data in a program
and tracking its flow to detect if that flow is connected to an undesired output.

In this thesis, a technique is presented to specify information leaks in programs
with regard to assertions (program annotations) and demonstrate that this technique
can be used to unveil common information leakage using current software verification
tools.

This method is then compared with information leakage examples from current
publications and current taint analysis benchmarks for detecting information leakage
to demonstrate its effectiveness.

Motivation for this work is driven by a need for a formal method for defining and
encoding leaks through program annotation, that leads to more effective future work
into accurately detecting information leakage, both in malicious programs (malware)

and unintentional leaking programs.

viii

Contents

Declaration iii
Acknowledgements v
Abstract vii
List of Figures xiv
List of Tables XV
1 Introduction 1
1.1 IntroduCtion o v v vt e e e e e e e e e e e e e e e e 1
1.2 Motivation v v i it e e e e e e e e e e e e e e e 2
1.3 Goals. . . . o e e e e e 2
1.4 Overview of ThesiS o v v i i e e e e e e e e e e e e e e 3

2 Background 4
2.1 InformationLeakage 4
2.2 Taint Analysis e 5
2.3 Non-Interference and Other Approaches to Information Security 7
2.4 The Contextual Impactof Leaks 7

3 Formal Definitions for Information Leakage 9
3.1 Introductiont e 9
3.2 Programs e e e e e e 9
3.3 Publicand Private Variables 11
3.4 InformationLeaks. 12
3.5 ObservationPoints 13
3.6 Specifying Leaks Using Observation Points and Predicates 14
3.7 Leaks Involving Calculation 14

ix

Contents

3.8 Considering Observer Capabilities

3.9 SUmMMAry o e e e e e e e e e e

Specifying Leakages with Program Annotations
4.1 IntroducCtionottt e
4.2 Specifying Leaks for Explicit Flows
4.3 The Influence on Specifying Leaks From Observation Points
4.4 Specifying Leaks for Implicit Flows
4.5 Adjusting Leak Specifications for Specific Leakage Concerns
4.6 Specifying Leaks via Loop Counters
4.7 Annotating Examples From Benchmarks
4.7.1 Leaks Through Arrays Commonly Resulting in False Positives
4.7.2 A More Complex Implicit Flow Benchmark

4.8 More Complex Predicates

Software Model Checking for Detecting Leaks
5.1 Using Skink for Static Analysis
5.2 Adapting Examples to C Code for Verification
5.3 Verifying Leaks Influenced By Observation Points
5.4 Verifying Implicit Flow Leaks
5.5 Verifying Leaks via Loop Counters
5.6 Verifying Leaks Adjusted for Specific Leakage Concerns
5.7 Verifying Java Based Benchmark CasesinCCode
5.8 Complex Implicit Flows
5.9 Comparison Alongside Taint Analysis Accuracy
5.9.1 Benefits Compared Taint-tracking Methods
5.9.2 Drawbacks Compared to Taint-tracking Methods

5.10 Conclusion i i

Literature Review
6.1 IntroducCtion i i it

6.2 Taint Analysis e

17
17
17
19
20
22
24
25
25
28
29

30
30
30
31
32
32
33
34
36
38
39
40
40

Contents xi

6.2.1 Taint Propagation Logic. 41

6.2.2 Dynamic Taint Overhead 43

6.3 Signature Detection i i e e e e 44
6.3.1 Signature Detection and Code Obfuscation 44

6.3.2 Machine Learning in Signature Detection 45

6.4 Evaluation 45
6.4.1 Taint Propagation et uuenio... 45

6.4.2 Machine Learning & Signature Detection Methods 46

6.5 Conclusion 46

7 Conclusion 47
7.1 ThesisSummaryottt e 47
7.2 Final Conclusions 48
7.3 Potential Future Research 48
7.3.1 Multiple Points of Observation 49
Bibliography 51

Contents

List of Figures

3.1 CFGfor Program PTrog; « . v v v v v v et e e et e e e e e e e e e e e e 10
3.2 Program Progq o v v ittt e e e e e 10
3.3 CFGfor Program Progy . . « v v v v vt i e it e e e e e e e e e e e 10
3.4 Program Prog,ot e e 10
3.5 Simple Leaking Program 13
3.6 CFG of a Program Containing a Leak Involving a Calculation 15
4.1 CFG of Example 1 from Schwartzetal. [1] 18
4.2 CFG of Example 3 from Schwartzetal. [1] 18
4.3 CFG of a Program Demonstrating How an Observation Point’s Contents
Influences Leak Predicate Definition. 19
4.4 CFG of the small/large program from Kangetal. [2] 21
45 PINLeak CFG i e e e e e e e e 23
4.6 Pseudo Code for the CFGof Figure 4.5 23
4.7 Leak Through a Loop Counter CFG 24
4.8 ArrayAccess 1 CFG e 26
4.9 ArrayAccess 2CFG e 26
4.10 SecuriBench Micro Arrays1 CFG 27
4.11 ImplicitFlow1 Test Case o v v vt ittt e e e it e e 28
5.1 C code for the program of Figure 3.5 31
5.2 C code for the program of Figure 4.3 31
5.3 C code for the program of Figure 4.4 32
5.4 C code for the program of Figure 4.7 32
5.5 Ccode for the program of Figure 4.5 33
5.6 Original Java code for ArrayAccesl from DroidBench 2.0 [3] 34
5.7 C code for the program ArrayAccesl 35

xiii

Xiv LIST OF FIGURES

5.8 C code for the program ArrayAcces2v..... 35
5.9 Ccode for the program Arraysl 36
5.10 C code Adaptation ImplicitFlowl 37
7.1 Program with two observation points 49

List of Tables

3.1 Observation Map for Figure 3.5 14
3.2 Observation and Leak Predicate Maps for Figure 3.5 14
3.3 Observation and Leak Predicate Maps for Figure 3.6 15
4.1 Observation and Leak Predicate Maps for Figure 4.1 18
4.2 Observation and Leak Predicate Maps for Figure 4.2 18
4.3 Observation and Leak Predicate Maps for Figure 4.3 with¢; 19
4.4 Observation and Leak Predicate Maps for Figure 4.3 withoutc, 19
4.5 Observation and Leak Predicate Maps for Figure 4.4 22
4.6 Observation and Leak Predicate Maps for Figure 4.5 23
4.7 Observation and Leak Predicate Maps for Figure 4.7 24
4.8 Observation and Leak Predicate Maps for ArrayAccessl 26
4.9 Observation and Leak Predicate Maps for ArrayAccess2. 26
4.10 Observation and Leak Predicate Maps for Arraysl 27
4.11 Observation and Leak Predicate Maps for Figure 4.11 29
5.1 Comparison on Taint-Analysis Benchmarks 38
6.1 Taint PropagationLogic 43
6.2 Dynamic Taint Analysis Overhead 44
7.1 Observation and Leak Predicate Maps for Figure 7.1 49

LIST OF TABLES

Chapter 1

Introduction

1.1 Introduction

Information leakage can be defined loosely as any output from a computer program
that provides information that should not be shared outside the program to an external
observer. This type of information may include personal information such as passwords,
GPS coordinates, pin codes, id numbers, names, addresses, and other personal details
of users. If any of this data needs to be kept private within the program but is not,
this is considered information leakage. When a program performs an information leak

deliberately, it is called malware i.e. a malicious program.

Why information leakage is such a serious problem can be seen by considering the
nature of data handled in many software systems. If a personal banking application
on a mobile device leaks the pin code out to an observer, the security of the user’s
bank account is compromised and an attacker can potentially steal funds from them
by logging in using that pin code. Similarly, if another program on a mobile device
leaks the GPS coordinates of the device to outside observers, the privacy and security
of the user is compromised by that leak and malicious actors can use that information

to locate them.

Software is a complex and changing landscape and with many different approaches
to handling information flow that can result in leakages both by malicious intent or by
accident. Accuracy in detecting these leaks is essential, so programs with damaging
leaks can be identified and stopped, while programs that do not leak are able to

continue unhindered.

2 Introduction

1.2 Motivation

As will be discussed in Chapter 2, a major problem with current methods of detecting
information leakage is the inability to absolutely confirm that there are no leaks
occurring in a given program. This is due in part to the lack of formal methods for
defining leaks which results in many inaccuracies in the detection process. Current
methods of identifying information leakage are often only concerned with the possible
relation between private data and an output, and does not address whether the output

actually provides any compromising information.

Current methods of leakage detection (such as taint analysis) can result in the
incorrect identification of program outputs as leaks when they are not (false positives),
or identifying them as not leaks when they are (false negatives). Examples of these

cases will be discussed in Section 2.2 of Chapter 2.

Identification of false positives and false negatives in current leakage detection
methods demonstrates the need for a more precise and formal way of defining infor-
mation leakage before proceeding to check if leaks are occurring. To better assist the
work of detecting information leakage in programs, this work will present a method for
defining information leakage that can be used to specify what is considered a leak by

developers at specific points where an observer can read the values of public variables.

Motivation for this work is driven by a need for a formal specification for defining
and encoding leaks through program annotation will lead to more effective techniques

to detect information leaks and malicious programs.

1.3 Goals

The goals of this thesis are to formally define what a leak is; show that this formal
definition can be used to annotate programs with predicates that characterise infor-
mation leakage; and demonstrate how to use software model checking techniques to

automatically identify information leaks.

81.4 Overview of Thesis 3

1.4 Overview of Thesis

Chapter 2 presents background on information leakage and malware detection. Chapter
3 provides basic definitions and demonstrates a method for formally defining leaks and
annotating programs with the predicates that characterise them. Chapter 4 demonstrate
the annotation technique in a range of examples addressing information leakage
examples of different forms. Chapter 5 present the method for detecting leaks using
software verification techniques and the Skink tool for static analysis of programs.
Chapter 6 presents a literature review of current methods of malware detection through
information leakage detection. Chapter 7 provides a conclusion and discussion of

potential future work.

Chapter 2

Background

2.1 Information Leakage

Information leaks are the undesired output of information from a program that reveals
the value of, or nature of, some private information handled by the program. This
undesired output could be the direct output of private data in full, such as a password
being sent out to a third party system or a private calendar entry being made public, to
an output that provides derivative information, such as leaking that a bank account
contains more than five hundred dollars.

It is important to note that some applications are not malicious but still uninten-
tionally leak information as a by-product of carrying out their purpose.

Information leakage is described by Li et al. as the path flowing from the source of
the sensitive information through an application and then back out of the application
(a point usually referred to as the sink) [4]. However, what happens to that information
along that flow can influence whether that information is still compromising by the
end of the flow or if it gets missed by the tracking software before being sent out of
the program.

Boreale investigated this issue when looking at quantifying information leakage
in his example of the PIN-Checking function which explored whether or not the pin
would be considered as leaked or not when multiple rejections of non-matching pins
were given [5]. Boreale then defined two models for assessing information leakage,
one where an attacker to the application is assumed to have full control and one where
the attacker has a more limited control over the application.

The rest of this chapter outlines the basic features of taint analysis and discusses

why there is a need for formal definitions of leaks with examples of information leakage

4

§2.2 Taint Analysis 5

highlighting this need.

2.2 Taint Analysis

A prominent method currently employed in the process of malware detection is taint
tracking and analysis for identifying information leakage, both malicious and unin-
tentional. Taint tracking involves marking (tainting) information which is considered
private and should not be leaked outside of the application being analysed. Taint
tracking can be defined as the process of observing the flow of the tainted pieces
of information throughout the execution of an application, making note of what it
influences and raising an alarm if the tainted data, or some important information
about its nature, is leaked out of the program in some form.

The tainted information is tracked throughout the execution of the program, noting
when it is transferred between variables or if it influences the formation of other
information in a way that may still reveal nature of the original tainted information.
According to this logic all variables affected are also tainted.

When public variables (which are variables that are shared outside the program)
become tainted, information is leaked.

Taint analysis is dependent on the taint propagation rules it is based on which
defines how taint propagates across variables during the program execution. These are
dependent on factors such as, whether the tainted variable is passed along to a new
variable, or whether a new variable is written due to that code’s execution dependence
on a decision using the tainted data. Different taint propagation rules used by different
publications are discussed in Section 6.2.1 of the literature review in Chapter 6.

A simple example of a taint tracking scenario is a program that takes a variable
containing tainted secret data. When that data is moved to a new variable, that new
variable is also marked as tainted. The new variable is then leaked in some form, such
as being printed on the screen, and a flag is raised by the taint analysis software to
indicate that tainted data is being leaked.

There is no perfect implementation of taint tracking and propagation, all current
implementations have cases which will result in over-tainting or under-tainting during

tracking, which in turn lead to false positives and false negatives. Over-tainting is

6 Background

the result when an output is marked as a leakage of information when it is not. This
is because of an issue in propagation rules that leads to the incorrect taint labels
being assigned to variables that should not have them and ultimately results in a false
positive for leaks. Under-tainting is the opposite case, where information leakage is not
detected. This can be the result of the propagation logic not continuing to assigning
taint to new variables as information moves through the system and ultimately results
in a false negative for leaks.

Some methods even take conservative approaches of deliberately producing false
positives to avoid false negatives. A prime example of where false positives commonly
occur can be seen in the tools HybridDroid, FlowDroid and TaintDroid where all
elements of arrays are considered to be sensitive when the data being tracked is put in
just one of its elements [6, 7, 8]. This is done as a trade off of accuracy for minimising
overhead during analysis.

Some analysis methods also allow false negatives when they consider those leaks to
be inconsequential because they only leak a small part of the original secret information.
Kang et al. state this directly as part of their approach when they present a program
example that they believe demonstrates a case that does not require tracking [2].

These types of inaccuracies can be because some outputs of information may be
considered leaks where in other cases they may not be. An example of such might be
when information is obscured enough in the program before leaking that it might be
considered by some to no longer be compromising to leak, but for others, any derivative
output or the secret information is enough to count as a leak.

There are two main types of taint analysis, static and dynamic. Static analysis that
is usually performed on the code without executing it, minimising risk but also taking
up a lot more processing power and time as it generally concerns itself with all possible
branches in the code and all possible inputs of data.

Dynamic analysis is performed alongside the program as it is executed and can
be more efficient compared to static analysis as it only concerns itself with the path
that execution actually takes and the data it actually uses, it does however incur an

overhead for the program being analysed at run-time.

Sometimes combinations of both static and dynamic approaches are employed to

§2.3 Non-Interference and Other Approaches to Information Security 7

benefit from features of both [9][2][10].

Perfect taint analysis will probably never be fully attainable. With static analysis,
this is due to requiring to make approximations during analysis [11] or not being able
to account for dynamic language features which can lead to false negatives [12]. With
dynamic analysis, this is due to the inherent unsoundness of dynamic analysis, that is

that the result of one run of dynamic analysis cannot be generalised.

2.3 Non-Interference and Other Approaches to Infor-
mation Security

Non-interference is the case first presented by Goguen and Meseguer [13] of identifying
information leakage focused on if changes in the private data in a program (often
referred to as high security data) should not cause any obvious change in the state to
the public data (low security) coming out. Often variables of these natures are referred
to as h and [respectively in examples. This is similar to how private data and public
data is represented in this thesis.

Language based security is the approach taken to enforcing security by imple-
menting security rules at the language level. In a survey of the area, Sabelfeld and
Myers discussed the various approaches to information flow security and the policies
implemented to enforce them [14]. Foundational to this type of work is the work
from Denning which focused on implementing static analysis to verify secure flow of

information through systems [15].

2.4 The Contextual Impact of Leaks

Across the literature in taint analysis there is a trend of not precisely defining leaks
beyond the assumption that a compromising leak exists if there is a possible flow of
information between a source of private data and an output.

This work builds upon an informal definition of a leak as being any compromising
output from program that provides information to an observer that should not be
shared outside the program. Drawing from this, it is important to give leakage formal

definitions that are specific to a program, its data, and its specific locations in the

8 Background

program where the information can be viewed by an external observer.

To illustrate this, take the example of a simple program on a smart phone that
has access to the device’s GPS coordinates. A program that handles GPS data can
possibly afford to leak the first digits of each coordinate (displaying coordinates such
as "4x.xxxx,4x.xxxx") as it might not even be possible to discern the country of origin
from such general coordinates. But if the first two digits or more were leaked (such as
"41.xxxx,41.xxxx"), then it might be possible to even discern not only the country of
origin but the city too.

Kang et al. show that in constructing taint propagation rules, this determines what
is and isn’t labelled as a leak for taint analysis [2]. In consequence, some outputs can
occur undetected that carry risk of revealing compromising features of the original
information.

Schwartz et al. discussed how these rules can be configured for analysis of specific
contexts by changing the taint propagation rules for different analysis cases [1]. They
attempted to address this partially with their example of the "tainted jump policy" table
defining what would and would not be defined as a case for propagating taint. This
approach though is still not as granular as a check at a specific output point that defines
what should and should not be allowed out at that point.

This is why it is important to define leaks formally in the context of the program
being analysed. Taking into account the nature of the private data and how it is handled
in a program can influence whether a leak actually has an impact in that program’s
context and help eliminate false positives and false negatives in analysis.

The next chapter outlines an approach to representing programs, specifying leaks,

and identifying where leaks can occur in programs.

Chapter 3

Formal Definitions for Information
Leakage

3.1 Introduction

To be able to detect leaks, there must first be a formal definition of what a leak is.
There must also be formal definitions provided for how programs will be represented,
how they handle sensitive data, and where leaks can occur. This chapter describes how
control flow graphs (CFGs) are used to represent programs, how they handle private
information with public/private variables in these programs, how these programs can
leak information from these variables at locations called observation points, and how
these leaks can be specified as predicates. The final section demonstrates how these

observation points and leak predicates can be annotated onto the CFGs of programs.

3.2 Programs

In this thesis, programs are represented by their control flow graphs (CFGs), showing
the flow between different locations in a program (Prog) made up of nodes and edges,
CFG(Prog) = (Npyog> Eprog)- The nodes (Np,,,) in graphs represent the different states
or locations in programs, including what commands have been executed and what
command is to be executed next. The edges (Ep,,,) represent the paths between nodes
in a program that are taken when the next command is executed. Such commands
could include the assignment of an expression to a variable (such as v; := 10+ 2), or
the choosing a path at a branch based upon a condition (such as v; < 20).

CFGs are a standard representation of programs and are used in this thesis with

the goal of making the analysis of programs and their paths of execution easier. CFGs

9

10 Formal Definitions for Information Leakage

are used to map this method of leak detection to programs and demonstrate their
effectiveness. This representation of programs and their clear description of a program’s
operation makes it easy to convert them to any programming language as required, as

shown in Chapter 5.

start — start H®
v :=0
2)

1 <10 vii=v;+1

v, : =20

v; >=10 3

@—> end

Figure 3.1: CFG for Program Prog, Figure 3.3: CFG for Program Prog,

1 |v;:=20
2 |if(v; >10)
3 Vo 1= Wq 1|v;:=0
4 |else 2 |while(v; < 10)
5 Vo =5 3 vii=v+1
Figure 3.2: Program Prog; Figure 3.4: Program Prog,

Figures 3.1 and 3.3 provide basic examples of CFGs. Figure 3.1 shows a simple CFG
that contains two paths based on a decision at location point 2. It starts by assigning
the value of 20 to the variable v; and then checks to see if it is greater than 10. If it is
greater than 10, the left path is taken and v, is then assigned the value of v,. If it is
not, the right path is taken and v, is assigned the value of 5. Figure 3.3 shows a simple
loop in a CFG that assigns O to the variable v; and loops through the action of adding
one to its value before finally exiting the loop after v, is found to be equal to or greater
than 10.

Pseudo-code examples of these two CFGs are presented in Figures 3.2 and 3.4 to

show how these programs would be written in a programming language. The indented

83.3 Public and Private Variables 11

code below the if () and while() commands represent the commands that are only
executed while their conditions are true.

As part of these programs rules surrounding variables and how they can be used
are added. The following sections outline what public and private variables are and

how their nature influences the definition of leaks.

3.3 Public and Private Variables

Programming languages make use of variables, V, which are a set of memory locations
that contain values of varying types including numerical, boolean and strings. To
represent how programs handle private data, public and private variables are introduced
here.

Public variables are a subset of all variables, P C V, that can potentially be
observed by outside actors and be sent outside of the application. Private variables
are a different subset of all variables, S C V, that should be kept secret from observers
who seek to discern their value.

A private variable’s contents can be transferred to a public variable but a variable
itself cannot be both a public and private. Hence the intersection of the public (P) and
private (S) variables is an empty set, (S NP = &).

Other variables within programs may be referred to as general variables like v,
or as conditions such as ¢;. In these cases, these variables are not public or private
variables.

These definitions of public and private variables draw inspiration from the public
and private variables seen in current popular programming languages such as Java and
C# where the private variables within a class are not directly accessible from outside
the class.

It should be noted that just like in the case of private variable data still being
accessible via alternative means (such as the use of a getPrivateData() function in
the same class as the private data variable), the private variables in our definition can
easily be worked around with the simple act of assigning of the private variable’s data

to a public variable (p, :=s;). This can be seen in the program discussed in Figure 3.5.

12 Formal Definitions for Information Leakage

3.4 Information Leaks

Information leaks occur when the contents of a private variable either influence the
contents of, or is assigned directly to, a public variable which is then observed by an

outsider.

Leaks are formally defined in this thesis as a predicate which is true for all possible
executions of a given program at a specific location. This predicate is specified as a
logical formula that will be checked during static analysis of a program at a location
where observation can occur. Doing so provides a method to prove precisely that there
is a leak occurring at that point. The predicate is a logical formula on all variables
within a program.

This method for defining leaks is different to the more standard and general defini-
tions of leaks discussed in Section 2.1 of Chapter 2, this is because this thesis is focused
on the detecting precisely leaks that occur consistently at a point in a program. More
general leaks that can occur but don’t occur consistently are not within the scope of

the work in this thesis and can potentially be addressed in future work.

Take, for example, the program comprised of three commands in Figure 3.5 that
has a private variable, s;, that contains private data that should not be leaked, the
contents of which is then assigned to a public variable, p; :=s;, followed by that public
variable being readable to an observer in location 3. The predicate for defining the
leak in that program is s; = p,, where it holds true for all possible values of s, at the
observation point (Section 3.5 will explain observation points in more detail). If the
predicate is true at program point 3, then an external observer can use this knowledge

to retrieve the value of s; by reading p;.

This way of specifying leaks is focused on consistent leaks, that is, a leak which
with each possible execution, the variable being read at the observation point has a
reliable and repeatable way to be used to work out some compromising aspect of the
private data. If there is one or more possible executions for which this is not the case
then it is not possible to be considered a consistent leak because the external observer

cannot consistently retrieve the secret information.

The main separating feature of the predicate annotation method compared to other

83.5 Observation Points 13

methods like taint analysis for detecting leaks is that it is only concerned with the leaks
that consistently occur at that given point in the program. Unlike the taint analysis
method that tracks multiple flows of information, this method is specifically focused on
checking for a consistent leak at the location where leaks are able to happen avoiding
the extra work involved in tracking multiple flows of information to that observation

point.

3.5 Observation Points

Observation points are locations in pro-
start H@ grams that allow for the observation of a
public variable’s contents from outside
s; :=SecretData
the program. These are the locations
G) in programs where information from in-
side the program is made observable and

=s e
Py ! hence where leakages of sensitive infor-

. . mation can potentially occur.
en

An observation map O : Np,,;, — 2

P

Figure 3.5: Simple Leaking Program
is a map from all nodes to subsets of all

public variables. An observation point is

a node n where O(n) is not an empty set (O(n) # @).

For easier readability in this thesis, observation points in a program CFG are repre-

sented by red nodes in the graph as demonstrated in Figure 3.5.

Figure 3.5 shows a program that assigns the value of some secret data to the secret
variable s, the value from s, is then assigned to the public variable p,, finally the value

of p, is able to be observed at location point 3, O(3) = {p;}.

Observations of a program are presented in an accompanying table. Table 3.1
shows how annotations are mapped to the control flow graph with the annotation on
the left and the contents of the observation on the right. Observations that are empty

are not included in the table.

14 Formal Definitions for Information Leakage

Node | Observation
3 {p 1 }

Table 3.1: Observation Map for Figure 3.5

3.6 Specifying Leaks Using Observation Points and Pred-
icates

A leak predicate can be annotated to a location n in a program in the same way as an
observation point with a leak predicate annotation. It is used to state the leak predicate
in an annotation that should be always be true at that specific location within the
program for a leak to be consistently occurring.

The leak predicate map L : Np,,, — 2F is a map from nodes to subsets of leak
predicate formulas F.

An example of this can be done for Figure 3.5 by annotating the leak predicate at
location point 3 of L(3) with (s; = p;) along with the observation point annotation.

Table 3.2 shows the updated annotation table with the leak predicate added.

Node | Observation | Leak Predicate
3 {p:} P1=5%

Table 3.2: Observation and Leak Predicate Maps for Figure 3.5

If the annotated predicate at program point 3 of Figure 3.5 is found to be consistently
true for all possible paths through the program (as is the case for this program), then
there is a leak confirmed to be occurring because an attacker can discover the value of
the secret data based upon the contents of this observation point and the knowledge

of the predicate.

3.7 Leaks Involving Calculation

There are cases of leaks which can be defined as the result of a calculation such that
there is still a consistent way for every execution of the program for an observer to
deduce relevant data from the output.

In Figure 3.6, the contents of the private variable, s, is passed to a public variable,

P1, while being modified through the addition of a constant, 5, to its value and then

83.8 Considering Observer Capabilities 15

shared at the observation point at program point 3.
In this case the annotated leak predicate would be defined as p; =s; +5 at program
point 3. A more general definition of this leak would be the 3k s.t. p; =s; + k. Where

k is the constant, 5, in this program.

start H@ Node | Observation | Leak Predicate
3 {p:} p1=s5+5

s; :=secretData .)
Table 3.3: Observation and Leak Predicate

CZD Maps for Figure 3.6

p1:=8+5

‘—> end

Figure 3.6: CFG of a Program Containing
a Leak Involving a Calculation

The clear present limitation for this method of defining leak predicates is the
limitation of defining then when they are rely on functions outside the analysis scope.
At present these are not addressed in this thesis but is identified as an area required to
be addressed in future work.

Another factor that is outside the current scope of this thesis is the complexity of
these maps when more private variables and observation points need to be accounted
for. This is discussed in the future work section of the final chapter of this thesis.

Figure 3.6 and Table 3.3 represent the simplest example of a leak involving a
calculation of some form. Chapter 4 provides further examples where leak predicates
need to account for more complex cases. Before progressing to these examples, there
is a need to explain some assumptions made when presenting these program examples

and their annotations.

3.8 Considering Observer Capabilities

In specifying observation and leak annotations, assumptions are made about the
observer’s capabilities in these scenarios, that is, if they can perform calculations upon

the observed data and how much memory they have to store the observed data.

16 Formal Definitions for Information Leakage

With Figure 3.5 there is the assumption that there is the minimum ability to at least
observe and use the information attained at the observation point.

Other assumptions might be made in defining a predicate such as if they have the
computing power to consistently perform an operation on the received data such that
they can reconstruct the secret data from the observed value. This is the case shown in
the Figure 3.6 and Table 3.3 where it is assumed that the observer can perform the
simple addition/subtraction calculation to reconstruct s;.

For the examples used in this thesis, the assumption is made that the observer can at
least observe one item at an observation point and perform some simple computation
upon it as presented in the corresponding leak predicate.

Chapter 7 will briefly discuss more complex considerations relating to observer

capabilities in the future work section.

3.9 Summary

This chapter has presented a way for leaks to be formally defined as specific predicate
annotations that are used to verify accurately if a leak is occurring. When the annota-
tions of these predicates consistently hold true for all possible executions of a program
being analysed, these leaks are proven to be occurring.

Chapter 4 demonstrates how this method can be applied to a variety of example
programs, some of which are adapted from current published literature on information

leakage. Chapter 5 discusses how to automate this analysis.

Chapter 4

Specifying Leakages with Program
Annotations

4.1 Introduction

This chapter will demonstrate how the annotation technique is used to encode informa-
tion leakage with program annotation in a range of examples and show how predicates
are designed for each annotation case.

These examples are both original, and draw from current published literature
showing different program cases of importance when detecting information leakage.
These examples are intended to show how this method can be applied to accurately
define leaks in different scenarios.

The benefit of annotating a CFG with a leak predicate is that the program and its
annotations (predicates) are in a form that is compatible with current software model

checking techniques and tools (which will be covered in Chapter 5).

4.2 Specifying Leaks for Explicit Flows

The example presented in Figure 3.6 for simple calculations in leaks demonstrated
a case with a minor step involving a calculation on the value of s; before allowing
the its leak through the observation of p;. This is an example of a simple obfuscation,
an act of trying to hide secret information’s flow in the program before it is leaked.
In this case it is done by changing its value in a way that is easily reversed after it is
observed. This is a similar case to some of the examples presented by Schwartz et al.
when discussing different cases where they need to track the flow of information to

detect resulting information leaks [1].

17

18 Specifying Leakages with Program Annotations

These examples are included here to demonstrate how this predicate annotation
method can be used to clearly identify leaks already being detected by other methods.
This is done before going on to prove the method’s accuracy in examples where other
methods do not detect leaks accurately.

The examples have been adapted into the CFGs displayed in Figures 4.1 and 4.2
and have annotated to show how this method can be applied in these cases. In both
cases the sensitive data being tracked was originally a user input, but in these examples

it is a private variable being assigned some general value of secretData.

start H@ start ﬂ@

s, :=secretData s; ;=2 X secretData
@ O
pP1:i=2xs8; P1:=5+$;
‘—> end ‘—> end
Figure 4.1: CFG of Example 1 Figure 4.2: CFG of Example 3
from Schwartz et al. [1] from Schwartz et al. [1]
Node | Observation | Leak Predicate Node | Observation | Leak Predicate
3 {p.} $1 = % 3 {p1} S1 = plT_S
Table 4.1: Observation and Leak Predicate Table 4.2: Observation and Leak Predicate
Maps for Figure 4.1 Maps for Figure 4.2

Figure 4.1 is an adaptation of Example 1 from Schwartz et al. which was originally
solely focused in on the task of tracking the transfer of sensitive data to a new variable
[1]. For analysis this example is extend by adding an observation point containing p,
at the end of the program. This was added since that is when the flow of information
ultimately becomes compromising. In this case the predicate for defining a leak here
would be s; = &, or more generally as s, = £ where k = 2. The annotation table for
this observation point and leak predicated can be seen in Table 4.1.

Figure 4.2 is an adaptation of Example 3 from Schwartz et al. [1]. Once again
the input is replaced with secretData. Additionally, instead of leaking the value with

a goto command, the observation point annotation at location point 3 is used. The

84.3 The Influence on Specifying Leaks From Observation Points 19

annotation table for this observation point and leak predicated can be seen in Table
4.2.

These examples are some of the simpler cases for detecting leaks, in which the
observer can see just one variable and make calculations from there. In Section 4.3 a
program will be introduced which is used to show how leaks are defined in a slightly

more complex scenario.

4.3 The Influence on Specifying Leaks From Observa-
tion Points

The contents of an observation point can drastically influence how a leak predicate is
defined. The program in Figure 4.3 demonstrates how the variables the observer has
the ability to read at an observation point influences how a leak predicate is defined.

In Figure 4.3, based on an arbitrary value or condition c,; at location point 2, the
program either adds or subtracts 5 from the value of the private data, s,, before reaching

an observation point at location point 5.

start — Node | Observation Leak Predicate

5 {p1,c1}

s, :=secretData

(c; = s;=p;—5)A
(m¢; = s;=p;+5)

Table 4.3: Observation and Leak Predicate
Maps for Figure 4.3 with ¢,

c, = true
Node | Observation | Leak Predicate
(s;=p;+5)V
S {pl} (1 _pl _5)
p1:i=s8 + S1=P1

Table 4.4: Observation and Leak Predicate
Maps for Figure 4.3 without ¢,

Figure 4.3: CFG of a Program Demonstrat-
ing How an Observation Point’s Contents
Influences Leak Predicate Definition

The leak predicate to be defined here is heavily influenced by what is being observed
at the observation point.

Here if the observer is able to observe both p; and ¢, at location point 5 (such that

20 Specifying Leakages with Program Annotations

O(5) = {p;,c1}) they can fully reconstruct the value of s; using this information. The
resulting predicate would be s; = p; —5 if ¢; was true and s; = p; + 5 if ¢; was false.
Or more simply put, (c; = s; =p;—5)A(~¢c; = s; = p; +5). The annotations for
this case are presented in Table 4.3.

If the observer can only observe p; at the observation point (such that O(5) = {p,}),
it is not possible for them to fully reconstruct the value of s;. Without knowing
the condition c; at location point 2 the leak predicate can only be defined as either
p; =S, +5or p; =s; —5. The observer cannot know which path was taken and hence
does not know which calculation was carried out when assigning the value to p;. The
observation and leakage annotations for the case where only p, is observed without c;
is presented in Table 4.4.

In this example, the more variables an observer can view at an observation point,
the more power they have to discern the value of s;, as seen by the difference in leak
predicates between Tables 4.3 and 4.4.

The example of the second leak predicate case shown in Table 4.4 shows how leak
predicates can be constructed precisely for cases where a leak does not lead to the
full reconstruction of s; but can still be considered compromising. Depending on the
context, cases with outputs like these may be considered acceptable.

In both of these cases though, predicate annotation is used to precisely define what
the leak predicate is and can be used to verify that the corresponding leak is occurring.

The next section will discuss an example of a leak that is considered acceptable by

many, and hence considered inconsequential for tracking purposes.

4.4 Specifying Leaks for Implicit Flows

There are some cases where publications present programs involving leaks that they
do not attempt to detect because they consider them to be inconsequential. This can
be seen in the program from Kang et al. with an implicit flow that does not preserve
enough of the secret information for them to consider it worthy to track [2]. This
program has been adapted into a CFG in Figure 4.4.

Implicit flows are cases where the secret information is passed on by more indirect

means as a result of control flow rather than a direct passing of secret information

84.4 Specitying Leaks for Implicit Flows 21

from one variable to another [16]. In this case, the information being passed through
this implicit flow is preserving just a small detail about the secret information but other
implicit flows can certainly preserve it fully (this can be seen later in the discussion
around Figure 4.11).

The program they present only outputs a message revealing if the secret information
was a value smaller or larger than 100. They did not consider the output of either
"large" or "small" as a compromising leak for their taint tracking system to track due to

it leaking such a small part of the program’s secret information.

It is suggested that this kind of program could be seen as a compromising leak too,
depending on the nature of the secret information being protected. In one scenario,
the secret information could be a bank account balance and the leak could be enough
to make someone a target for scamming or other cyber-attacks.

This example demonstrates how

start — the predicate annotation method can

s, 1= secret be implemented to detect these forms

of leaks due to the ability to exactly

specify the leak predicate for that
s; > 100 s; <=100
given observation point context.

py = true 5, = false The CFG in Figure 4.4 is simpli-
fied in some ways from the original
example to be more compatible with
the analysis techniques and coding

end language used in Chapter 5. The

main change that has been made
Figure 4.4: CFG of the small/large program

from Kang et al. [2] here is that instead of the observation

containing a string saying "large" or
"small" it is simplified it to a boolean
variable being either true when it is larger than 100 or false if it is equal to or less than

100.

If there is concern about leaking information of if s,’s value being above or below

100, the leak predicate can be defined as p; = (s; > 100) for the annotation of this

22 Specifying Leakages with Program Annotations

program, which is used to verify that there is a consistent leak of this nature occurring.

This annotation is presented in the annotations in Table 4.5.

Node | Observation | Leak Predicate
5 {p.} p1 = (s; >100)

Table 4.5: Observation and Leak Predicate Maps for Figure 4.4

This annotation example shows how we can be precise with the leak predicate
annotation techniques used to detect leaks involving implicit flows that are usually
ignored due to their minimal data preservation in the implicit flow. Section 4.5 demon-
strates an example where different predicates can defined for different observation
points, each crafted based on a different idea about what is considered a leak at that

point.

4.5 Adjusting Leak Specifications for Specific Leakage
Concerns

Section 4.4 discussed an example that some would consider to be an inconsequential
leak and in Section 4.3 presented an example that could have different predicates
depending on what was being observed. In this section a program is presented that
can have different predicates specified for it depending on what we consider to be a
compromising leak.

Figure 4.5 presents a CFG of a program that leaks the first two digits of a four
digit pin code which is stored in array S; and leaked through the observation of array
P, at location point 6. Figure 4.6 presents a pseudo code version of the program
to help provide a better understanding of what is happening with the program with
observe(P;) representing the observation point.

For this program, depending on the requirements surrounding the program’s security
this might be considered a leak or it might not, the PIN code is not useful unless the
attacker has all four digits but they are closer to knowing the full PIN than they were
before, and that could be enough to count this as a leak. In either case, the leak

predicate can be defined precisely to verify if these leaks are occurring.

84.5 Adjusting Leak Specifications for Specific Leakage Concerns 23

start 4>®

1 | Sy :=secretPINArray
2 |i:=0
S, :=secretPINArray 3 |while(i < 2)
4 P[i]:=8;[i]
G) 5 i=i+1
6 |observe(P;)

Figure 4.6: Pseudo Code for the CFG of
Figure 4.5

end
Figure 4.5: PIN Leak CFG
Node | Observation Leak Predicate
6 {P1} (51[1]:P1[1])A(51[2]:Pl[z])

Table 4.6: Observation and Leak Predicate Maps for Figure 4.5

If there is a concern for leaking only those two first digits then a predicate could
be specified as (S;[1] = P;[1]) A (S;[2] = P;[2]) and in the case of this program this
predicate would be found consistently true for all executions. This is the predicate
included in the annotations in Table 4.6.

Alternatively, if the concern was only for the program in Figure 4.5 leaking all digits
of the pin then the following predicate might be appropriate, where the intersection
of the secret pin and the observed array is such that (S;[0] = P,;[0]) A (5;[1] =
P,[1]) A(S1[2] = P;[2]) A (S,[3] = P;[3]). This predicate would be not true for all
possible executions in Figure 4.5 and a consistent leak of the full pin code array is
confirmed as not occurring.

This is a similar case to the GPS program described in Section 2.3 of Chapter 2
when discussing the contextual impact of leaks which could leak the first two digits of
each coordinate. As demonstrated with the above program leaking the first two digits
of a pin code, we could similarly construct a predicate to confirm a leak of the first two
digits of each GPS coordinate. We could also similarly construct a predicate to check

for just one digit of each coordinate or all digits as demonstrated with predicate for

24 Specifying Leakages with Program Annotations

checking for a consistent full PIN leak.

These examples show how we can design leak predicate annotations which account
for not only each observation point, but also account for the tolerance level of what
we consider a leak for that location in its program context. Taint analysis methods of

leakage detection do not provide this level of granularity.

4.6 Specifying Leaks via Loop Counters

Another case where leaks can be obfuscated from detection are within loops. The
following program illustrated in Figure 4.7 contains a loop that is used to obfuscate
the passing of a private variable’s data to a public one before it is being observed.
The purpose of this example is to show how it is possible to annotate leaks that are
obfuscated this way by loops.

In Figure 4.7 there is an implicit flow with a loop that attempts to obfuscate the
assignment of p; to the value of s;. This is done incrementing p, as a loop counter
until it is equal to the value of s;, at which point the loop ends and p, is observed at

location point 5.

start H@ Node | Observation | Leak Predicate
S {p:} P1=3;
p;:=0 Table 4.7: Observation and Leak Predicate

Maps for Figure 4.7

sy :=secretData

3

p1=p1+1
P1<s1 \o(p; <sy)

‘—> end

Figure 4.7: Leak Through a Loop Counter
CFG

The leak predicate in this example would be the same leak predicate as in the first

leak example from Figure 3.5 of p; =s;. The leak predicate presented in Table 4.7 will

84.7 Annotating Examples From Benchmarks 25

hold true at location point 5.

Although the leak predicate here is simple to define, this leak can be hard to detect
with information flow tracking because the variable being observed has never been
directly assigned the value of the secret data but has instead been incremented to the

value of the secret data through its use as a loop counter.

4.7 Annotating Examples From Benchmarks

Benchmarks for leakage detection exist which contain sets of programs addressing sets
of different scenarios where programs can leak information. They are created so that
leakage detection methods can be tested on them to discern their accuracy. There are
a few benchmarks in current literature that have relevance to the predicate annotation
method, such as JInfoFlow-bench [17], SecuriBench Micro [18], Droidbench 2.0 [3]
and ICC-Bench [4], provide test cases for measuring leakage detection accuracy for
taint tracking implementations.

Section 4.7.1 presents some example cases selected from the Droidbench 2.0 [7]
and SecuriBench Micro [18] benchmarks adapted to CFGs to demonstrate how the
annotation method can be used to detect leaks in these test cases and meet benchmark

requirements.

4.7.1 Leaks Through Arrays Commonly Resulting in False Positives

The predicate annotation method has been demonstrated with an example involving
arrays in Figure 4.5, but that example was not a type of case commonly resulting in
false positives for some leakage detection methods. As discussed in Section 2.2 of
Chapter 2, some taint tracking methods do not have the precise accuracy to confirm a
leak is not occurring when the secret information is passed into an array and another
piece of information is passed out.

The purpose of this thesis is to present predicate annotation as a way to improve
the accuracy of information leakage detection, so it is important to demonstrate the
method against cases well known for their common false positives.

Figures 4.8 and 4.9 present the CFG adaptations of ArrayAccess1 and ArrayAccess2

benchmark test cases from the DroidBench 2.0 benchmark [3]. Both programs are

26 Specifying Leakages with Program Annotations

designed to test for the common occurrence of false positives caused by information
flows involving arrays.

These two test cases are important because many taint tracking tools consider the
whole arrays tainted when tainted data is added to just one item in the array and, as a
result, any output of any value from the array will often be labelled as a leak when
there is actually no leak occurring.

ArrayAccess] is a case where an array is assigned three separate values, one being
from the source of secret data, and then an observation is performed on one of the
non-compromising pieces of data in the array. ArrayAccess2 is a case where an array is
assigned two values, one from the source of secret data and one that isn’t, and then the
element from the array that is not compromising is accessed after an attempt to slightly

obscure the index of the element being accessed using the function calculateIndex().

start — start —

s; :=secretData s, :=secretData

4] =y,
‘—> end
[2]:=v, Figure 4.9: ArrayAccess 2 CFG
‘—» end
Figure 4.8: ArrayAccess 1 CFG
Node | Observation | Leak Predicate Node | Observation | Leak Predicate
5 {P,[2]} P[2] =35, 4 {P,[4]} P[4] =5,

Table 4.8: Observation and Leak Predicate Table 4.9: Observation and Leak Predicate
Maps for ArrayAccess1 Maps for ArrayAccess2

To verify that ArrayAccess] is not leaking the value of s; the predicate P;[2] =s,
can be used to confirm that the output of P,[2] does not consistently share the value

of the secret data. To verify that that ArrayAccess2 is not consistently leaking, the

84.7 Annotating Examples From Benchmarks 27

predicate P;[4] = s; can be used to prove this. 4 being the consistent result of the
calculateIndex() function in the case of this program. In other scenarios it may still
be necessary to define as P;[calculateIndex()] = s, with the function still involved
(this is still possible to verify using the verification tool used in the coming chapter
on software model checking), or with another formula representing the result of the
function if required.

With their corresponding predicates being annotated, both ArrayAccess1 and Ar-
rayAccess2 would be found to be false and hence not consistently leaking. Tables 4.8
and 4.9 demonstrate how they can be annotated for analysis for leakage detection,
and confirm that there are not consistent leaks occurring in these programs.

Using these test cases it can be demonstrated how the method of predicate annota-
tion can avoid the false positives often occurring in current taint analysis methods.

These test cases hold similarities to the array test cases from the older SecuriBench
Micro benchmark which is more focused on Java web applications and their potential
security vulnerabilities [18]. There are 10 cases in this set of array test cases and
demonstrating against each of them individually would take up too much space in this
thesis. Therefore only a CFG adaptation and annotation table for SecuriBench Micro
benchmark case Arrays1 in Figure 4.10 and Table 4.10 is presented so as to show a

true positive case for detecting a consistent leak occurring through an array.

start — Node | Observation | Leak Predicate
3 {P,[0]} P,[0]=s,

s; :=secretData
Table 4.10: Observation and Leak Predi-
cate Maps for Arraysl

P,[0]:=s,

end

Figure 4.10: SecuriBench Micro Arraysl
CFG

Figure 4.10 shows a program that assigns the secret data to the first element in an
array and the observation point annotation shows that that element is then observed.
The leak predicate to check for this is then defined as P;[0] = s, to prove that there is

a consistent leak occurring.

28 Specifying Leakages with Program Annotations

4.7.2 A More Complex Implicit Flow Benchmark

As discussed in Sections 4.4 and 4.6, implicit flows in programs can result in information
leaks that are more likely to result in false negatives from many taint tracking methods.
We have already discussed examples involving some form of implicit flow in the previous

examples, but in this section seeks to prove our technique against a much more complex

case.
The DroidBench "ImplicitFlow1l" test
start — case is used as a more complex example of
Sy :=device] MEI a leak involving implicit flows [3]. This pro-
@ gram tries to deliberately obfuscate the leak
P, :=obfuscateIMEI(S;) of the 15 digit identification code for a mo-
‘ bile device, called an IMEI, by obscuring its
flow through the conversion from an integer
CAD to an array of characters and sending that
P, :=copyIMEI(S,) array out. It then also converts the original

‘—' end [MEI to a character array and then makes an

Figure 4.11: ImplicitFlow1 Test Case array using the ASCII values of those charac-

ters (e.g. "1" becomes 49) before compiling

them back into a string and leaking the newly reconstructed IMEI out. This test case
has been simplified and adapted to the CFG method in Figure 4.11.

In this example adapted into a CFG in Figure 4.11, the command of ob f uscateI MEI()
contains a switch case that takes in the original IMEI and returns it converted into
an array of characters where 0 becomes "a", 1 becomes "b", and so on. copyIMEI()
represents a function that converts the IMEI to a char array of the ASCII values of the
numbers in the id code and returns a string of the IMEI reconstructed after the process.

The expectation of the benchmark in this test case is that the leak at the second of
the two observation points, location point 5, will be the more difficult to detect due to
the implicit flows involved. With the annotation of predicates introduced in this thesis,
this becomes much easier to detect as the check of the output is now being done right
before the observation point.

Defining predicates in this case becomes more complex when involving string and

84.8 More Complex Predicates 29

Node | Observation Leak Predicate
Z - (P[0]= 5,101+ 97) A (P T1] = $,[1]+ 97)A
1 (P [2] =S,[2]+97) A A(P,[14] =S,[14]+97)
5 (P} (P,[0] =S,[0]+48) A(P[1]=S,[1]+48)A
2 (P,[2]=S,[2]+48) A A(P;[14] = S,[14] + 48)

Table 4.11: Observation and Leak Predicate Maps for Figure 4.11

character variables but after treating the ASCII values of each character in a string as
the integer of its ASCII value the predicates for each observation point can be easily
defined. The leak predicate to check for the leak at the first observation point is
(P[0]=8,[0]+97)A(P[1]1=S4[1]+97) A (P;[2] = S4[2] +97) A A(P[14] =
S.[14]+ 97) where 97 is the ASCII value of the character "a". The predicate for the
second observation point would be (P,[0] = S;[0]+48)A(P,[1] = S;[1]+48)A(P,[2] =
S;[2] +48) A A (P;[14] = S,[14] + 48) where 48 is the ASCII value of the
character "0". Table 4.11 outlines the annotations for both observation points and their
corresponding leak predicates.

Specifying these leaks with the leak predicates allows confirmation that there are

leaks in this program for which other tools such as FlowDroid [7] return false negatives.

4.8 More Complex Predicates

This method of annotation can be successfully applied to program examples with
increasing complexity, addressing common information leakage issues. Therefore, it is
considered this will continue to apply in more complex program examples.

A more complex example could involve observations of encrypted data or cases
where the leak is the result of a calculation using data observed at multiple observation
points. While defining more complex predicates for outputs dealing with leaks like
these is possible, these are outside the scope of this current thesis. This thesis focuses
on methods for automating this detection. Discussion of more complex extensions of
this method is included in Section 7.3 on potential future work in Chapter 7.

Chapter 5 focuses on how to automate the process of detecting these leak predicates
and verifying if they are true for all executions using, Skink, the static analysis tool for

software verification [19].

Chapter 5

Software Model Checking for
Detecting Leaks

5.1 Using Skink for Static Analysis

This thesis demonstrates its method in action by using the static analysis tool for
software verification, called Skink [19], which can confirm if a C program is running
correctly based on conditions specified as assertions within the program being analysed.

Since Skink was developed to analyse C programs, the CFG examples in this thesis
will be adapted to C code so as to be compatible for analysis. The following sections in
this chapter will outline the process of adapting examples to C programs, analysing

them, the accuracy of these cases, and comparing them to cases from other publications.

5.2 Adapting Examples to C Code for Verification

Take the simplest of the program CFGs presented in the previous chapter with Figure 3.5.
A C code adaptation of the CFG is presented in Figure 5.1. Here s; and p, are defined as
integers and the leak predicate annotation is now encoded with _ VERIFIER assert()
at the location in the program where it was annotated in its CFG. Variables that can
have different values every execution like s, are assigned non-deterministic values
using the function _ VERIFIER nondet_int().

The program is only found to be correct by Skink when the predicate within
__VERIFIER assert() is always found to be true at that program point.

Analysing the program presented in Figure 5.1 with Skink returns that the predi-
cate here, asserted at line 5, holds true for all possible executions, confirming that a

consistent leak is indeed occurring in this basic example.

30

AN WN

OO A WN -

85.3 Verifying Leaks Influenced By Observation Points 31

int main() {
int s1 = __VERIFIER_nondet_int(); // secret
int pl = s1; // public

__VERIFIER assert(sl=—pl) ;

Figure 5.1: C code for the program of Figure 3.5
5.3 Verifying Leaks Influenced By Observation Points

Figure 5.2 presents the code adaptation of the CFG from Figure 4.3 which had a leak
that could only be deduced the original value of s, to a set of possible values. For the
non-deterministic condition ¢, from the original CFG, it is also set to a non-deterministic
boolean using the function _ VERIFIER nondet bool().

The first leak predicate in this example was (c; = s; = p;—5)A(—¢; = s, =p;+

5) but predicates may need to be written differently to be compatible with the C environ-

ment for analysis, hence a predicate is rewritten to (c==(p == s + k))&&(lc==(p == s — k))

while still preserving the predicate’s original definition.
Similarly the second predicate of (s; = p; +5) V (s; = p; — 5) was rewritten to

(p ==s+ k)| | (p == s — k) while preserving the original definition’s function.

int main() {

int s = _ VERIFIER nondet_int();; // secret
int p; // public
int k = 5;
_Bool ¢ = __VERIFIER nondet_bool ();
if (e){
p=s + k;
}else {
p=s—Kk;
}

__VERIFIER assert((p = s + k)||(p = s — k));
__VERIFIER assert((c==(p = s + k))&&(lc==(p

s —k)));

Figure 5.2: C code for the program of Figure 4.3

Running the code with both assertions included from Figure 5.2 with Skink also
returns that the asserted leak predicates holds consistently true for all possible execu-

tions.

32 Software Model Checking for Detecting Leaks

5.4 Verifying Implicit Flow Leaks

Figure 5.3 is the C code adaption of Figure 4.4. The predicate is relatively unchanged in
the adaption to its assertion in C code at line 13. Skink again verifies that the asserted
leak predicate holds true for all possible executions, confirming that the resulting leak

after this implicit flow is occurring.

OO WN -

int main() {
int p; //public

int vl = 1;
int v2 = 0;
int s = VERIFIER nondet_int(); //secret

if (s > 100) {

p = vl
} else {
p = v2;

}

__VERIFIER assert(p = (s>100));

Figure 5.3: C code for the program of Figure 4.4

5.5 Verifying Leaks via Loop Counters

OV ONOU b~ WDN -

[

int main() {
int s = _ VERIFIER nondet_int(); // secret
int p = 0; // public

while (p<s) {
Pp=p +L
}

__VERIFIER assert(p = s);

Figure 5.4: C code for the program of Figure 4.7

Figure 5.4 is a C adaptation of the CFG from Figure 4.7 demonstrating the example
which, as part of its process, incremented the value of p; and was leaked when its
value was equal to s; by slightly obfuscated means. Again, when analysed by Skink,

the assertion of the leak predicate p; =s; was found to be true in all executions where

OO UT D WN -

8§5.6 \Verifying Leaks Adjusted for Specific Leakage Concerns 33

the observation point was reached, confirming a consistent leak in the program after

the loop has run its course.

5.6 Verifying Leaks Adjusted for Specific Leakage Con-
cerns

Figure 5.5 is the code adaptation of the PIN leak example form Figure 4.5 with some
extra alterations, primarily that the program now leaks all four digits of the pin code
and there are now three leak predicates being asserted. In the discussion of potential
leak predicates for this program in Section 4.5, two predicates were originally discussed,
based on the context of the program and the focus on what was considered to be a

compromising leak.

int main() {
int S[4]; // secret pin
int P[4]; //public

__VERIFIER nondet_int()%10;
__VERIFIER_nondet_int()%10;
__VERIFIER nondet_int()%10;
__VERIFIER _nondet_int()%10;

for (int i=0;i<4;i=i+1){
P[i] = 0;
int temp = S[i];
P[i]=temp;

}

//check for first 2 digits leak:
__VERIFIER assert ((S[0] = P[0])&(S[1] = P[1]));

//check for any 2 or more digit leak:
__VERIFIER_assert(2<=((S[0]==P[0]D+(S[1]==P[1])+(S[2]==P[2]D+(S[3]==P[3])));

//check for all 4 digits leak:
__VERIFIER assert ((S[0]==P[0])&(S[1]==P[1])&(S[2]==P[2])&(S[3]==P[31));

Figure 5.5: C code for the program of Figure 4.5

In this C code three different predicate assertions are presented to show how they
can be used to test for slightly different cases depending on what was could be con-
sidered to be a leak in that context. In the first predicate being asserted at line 17 of
the code in Figure 5.5, (S[0] == P[0]) & (S[1] == P[1]), is used to check for the con-
sistent leaking of only the first two digits of the PIN code. The second predicate
line 20, 2 <= ((S[0]==P[0]) + (S[1]==P[1]) + (S[2]==P[2]) + (S[3]==P[3])),

is used to verify if the program is leaking two or more of the PIN code digits. The final

OO U WN R

34 Software Model Checking for Detecting Leaks

predicate at line 23, (S[0]==P[0]) & (S[1]==P[1]) & (S[2]==P[2]) & (S[3]==P[3)),
verifies if the program leaks all four digits.

Analysing this program with Skink finds that all three predicates hold true since
the program leaks all four digits of the PIN code array every time. This shows how
differently designed predicates can be used to test for slightly different leakage concerns.

Other example cases from current literature exist, such as the coming section on
taint analysis benchmarks which are written in Java, where the code being tested is
adapted from another programming language not presently compatible with Skink. In
these cases, the programs have been manually translated to C code to aid in analysis

while still working to maintain the purpose of these benchmark programs.

5.7 Verifying Java Based Benchmark Cases in C Code

DroidBench 2.0 is a benchmark for testing taint analysis methods for Android Java
applications [3]. To prove the effectiveness of the leakage detection method in Skink
against these benchmarks, these examples were adapted to C code for annotation and
analysis. It must be noted that many of these test cases are built around features of the
object oriented Java language and elements specific to the Android environment, as
a result not all benchmarks are ideal for conversion to C and are left for future work

when potentially applying this analysis method directly to Java code.

public static String[] arrayData;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout. activity_array_accessl);

arrayData = new String[3];

arrayData[0] = "element_1_is_tainted:";

arrayData[1l] = ((TelephonyManager) getSystemService (Context.TELEPHONY SERVICE))
.getDeviceld (); //source

//arrayData[2] is not tainted

arrayData[2] = "neutral_text";

SmsManager sms = SmsManager. getDefault ();

//no data leak: 3rd argument of sendTextmessage() is not tainted
sms.sendTextMessage ("+49_1234", null, arrayData[2], null, null); //sink, no leak

Figure 5.6: Original Java code for ArrayAcces1 from DroidBench 2.0 [3]

—

= O N0 WU WDN -

§5.7 Verifying Java Based Benchmark Cases in C Code 35

Figure 5.6 presents the original Java code from the Droidbench 2.0 ArrayAccess1
test case and Figure 5.7 is the C code adaptation of the test case made for compatibility
purposes. Here since the focus is on tracking the tainted elements in arrays, C does not
have string type and only character arrays which would result in a multi-dimensional
array if it was attempted to replicate the act of using strings as array elements. Since
there is a whole separate test case in the same benchmark set for leaks involving
multidimensional arrays, this example works with integer values instead to avoid

adding extra complexity when adapting the code.

int main() { 1| int main() {
int s = __VERIFIER_nondet_int(); 2 int s = __VERIFIER_nondet_int();
int P[3]; 3 int P[5];
int vl = __VERIFIER _nondet_int(); 4| P[0] = __VERIFIER_nondet_int();
int v2 = __ VERIFIER nondet_int (); 5| P[1] = s;
P[0] = v1; 6/ P[2] = __VERIFIER nondet_int();
P[1] = s; 7| P[3] = __VERIFIER_nondet_int ();
P[2] = v2; 8| P[4] = __VERIFIER_nondet_int();
9
__VERIFIER _assert (P[2]==5s); 10 __VERIFIER assert(P[calculateIndex()]==s);
} 11}
12
13| int calculateIndex (){
Figure 5.7: C code for the program 14| int index = 1;
15 index++;
ArrayAccesl 16| index #= 5:
17 index = index%10;
18 index += 4;
19
20 return index;
21|}

Figure 5.8: C code for the program
ArrayAcces2

Figures 5.7 and 5.8 present the C code of the two benchmark cases for which
annotations were discussed alongside the CFGs of their programs in Figures 4.8 and
4.9. Here the other elements in the arrays are also assigned non-deteministic integers
to confirm that their values do not affect the outcome in the assertion.

For the assertion for Figure 5.7 is simply written as P[2]==s, whereas the assertion
for Figure 5.8 can be written as P[calculateIndex()]J==s using the index obfuscation
function of calculateIndex() in the predicate definition.

Analysing both of these C code adaptations in Skink return false confirming that

there is not a consistent leak occurring in this example program.

N A WN -

36 Software Model Checking for Detecting Leaks

int main() {

int s = __VERIFIER nondet_int(); // secret
int P[10]; // public
P[O] = s;

__VERIFIER_assert(P[0]==s);

Figure 5.9: C code for the program Arraysl

Figure 5.9 presents the C code adaptation of the simple Arrays1l benchmark case.
Here it is asserted with the predicate annotated in Table 4.10 to verify that the obser-

vation of the array element P[0] at that point will result in a consistent leak.

5.8 Complex Implicit Flows

An example of a more complex case from the DroidBench 2.0 benchmark is that of the
ImplicitFlow1 case originally discussed alongside Figure 4.11. Cases involving implicit
flows are not detectable by taint analysis tools like TaintDroid due to their difficulties
if they were attempting to track them usually leading to an overabundance of false
positives [8].

The adapted and annotated C code of this test case is displayed in Figure 5.10.
Here some changes were made to adapt the original test from Java to C code. The
biggest change is the incorporation of separate functions to be inline within the main
function to facilitate analysis, treating strings as character arrays due to the lack of
string variables in C. As a result, this test case has some similarities to the PIN leak
example from Figure 5.5, in particular the definition of predicates using arrays.

It is important to note that the secret id number in this program was changed
from the 15 digit id array to a 4 digit id array. This is done purely for presentability
and minimising the space in this thesis that the predicates and code will take up for
addressing the array of such length. The method is demonstrated with the 4 digit array
knowing that this can easily be extended to a 15 digit one.

Here defining predicates became more complex but could be worked out by testing
with extra non-deterministic values assigned to k. In the obfuscation in this test case,
each digit is changed to a corresponding letter. The original test predicate designed

to find the relationship between each digit and its corresponding output letter was to

85.8 Complex Implicit Flows 37

1| int main() {

2 int S[4];

3 int P1[4];

4

5 S1[0] = __VERIFIER nondet_uint()%10;
6 S1[1] = __VERIFIER_nondet_uint()%10;
7 S1[2] = __VERIFIER_nondet_uint()%10;
8 S1[3] = __VERIFIER_nondet_uint()%10;
9

10 __VERIFIER assume (S1[0]<10&&S1[0]>0);
11 __VERIFIER assume (S1[1]<10&&S1[1]>0);
12 __VERIFIER assume (S1[2]<10&&S1[2]>0);
13 __VERIFIER _assume (S1[3]<10&&S1[3]>0);
14

15 for(int i = 0; i<4; i++){

16 switch (S1[i]) {

17 case 0:

18 P1[i] = ’a’;

19 break;

20 case 1:

21 P1[i] = 'b’;

22 break;

23 case 2:

24 P1[i] = ’c¢’;

25 break;

26 case 3:

27 P1[i] = ’d’;

28 break;

29 case 4:

30 P1[i] = ’e’;

31 break;

32 case 5:

33 P1[i] = 'f’;

34 break;

35 case 6:

36 P1[i] = ’g’;

37 break;

38 case 7:

39 P1[i] = 'h’;

40 break;

41 case 8:

42
43
44
45
46
47
48
49

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

P1[i] = ’i’;
break;

case 9:
P1[i] = "j’;
break;

}

//Check for first obfuscated

//leak and observation point here:
__VERIFIER assert(S1[0]+’a’=—P1[0]);
__VERIFIER assert(S1[1]+’a’=P1[1]);
__VERIFIER assert(S1[2]+’a’=P1[2]);
__VERIFIER _assert(S1[3]+’a’=P1[3]);

//convert integers to ASCII values sincg
//C does not have casting like in JAVA

int P3[4];

P3[0] = S1[0]+’0’;
P3[1] = S1[1]+°0";
P3[2] = S1[2]+°0";
P3[3] = S1[3]+°0";

int numbers[58] = {0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,
30,31,32,33,34,35,36,37,38,39,
40,41,42,43,44,45,46,47,48,49,
50,51,52,53,54,55,56,57};

int P2[4];

for(int i = 0; i < 4; i++){
int tmp = numbers[P3[i]];
P2[i] = tmp;

__VERIFIER assert (S1[0]+48==P2[0
" VERIFIER assert(S1[1]+48==pP2[1
__VERIFIER _assert(S1[2]+48==P2[2
" VERIFIER assert (S1[3]+48==P2[3

[RF

Figure 5.10: C code Adaptation ImplicitFlow1

assert that S;[1]+k # P;[1]. This test found that when k was equal to 97 this assertion

would fail, 97 being to be the ASCII value of the character "a". Taking this information,

the predicate S1[1]4+97 = P1[1] (or it could even be written as S1[1]+"a"= P1[1] in

the C code since char variables will be treated as their integer ASCII values in the

calculation) was asserted to identify that in all executions this predicate held true

and a consistent leak was occurring for that digit of the id number. Extending this

predicate to check all four digits proved that there was a consistent leak occurring for

the whole id number. A similar method was used to construct the predicate for the

second observation point resulting in the predicates listed below.

Leak Predicate 1:

38 Software Model Checking for Detecting Leaks

(S1[0]4+97 =P1[0]) & (S1[1]+97 =P1[1]) & (S1[2]+97 = P1[2]) & (S1[3]+97 = P1[3])
Leak Predicate 2:

(P1[0] = S1[0]+48) & (P1[1] = S1[1]+48) & (P1[2] = S1[2]+48) & (P1[3] = S1[3]+48)

These predicates are broken down into separate assertions, as seen on lines52-55
and 79-82, for the purpose of readability. This provides the same result during analysis
as if they were still one whole predicate since Skink will only return true for this

program if all assertions within it are found to be true.

5.9 Comparison Alongside Taint Analysis Accuracy

DroidBench [3] Leak FlowDroid | Predicate Annotation
ArrayAccess1 No FP TN
ArrayAccess2 No FP TN
ArrayCopy1 Yes N/A TP
MultidimensionalArrayl | Yes N/A TP
Loopl Yes TP TP
Loop2 Yes TP TP
UnreachableCode No TN TN
ImplicitFlow1 Yes FN TP
ImplicitFlow2 Yes FN TP
SecuriBench Micro [18] | Leak FlowDroid | Predicate Annotation
Arraysl Yes TP TP
Arrays2a Yes TP TP
Arrays2b No FP N
Arrays3a Yes TP TP
Arrays3b No FP TN
Arrays4 Yes TP TP
ArraysS No FP TN
Arrays6 Yes TP TP
Arrays7 Yes TP TP
Arrays8a Yes TP TP
Arrays8b No FP TN
Arrays9 Yes TP TP
Arrays10a Yes TP TP
Arrays10b No FP TN

Table 5.1: Comparison on Taint-Analysis Benchmarks
TP: True Positive ~ FP: False Positive
TN: True Negative FN: False Negative

The annotation method was tested against other benchmark cases to show leaks

can be accurately detected where other methods often get false positives and false

85.9 Comparison Alongside Taint Analysis Accuracy 39

negatives.

Table 5.1 lists some taint analysis benchmark cases used from DroidBench 2.0 [3]
and SecuriBench Micro [18] and shows where the method presented in this paper
clearly determines whether or not a leak is occurring alongside FlowDroid [7]. Predicate
annotation is compared to FlowDroid, since it was presented with the DroidBench
benchmark and has been tested against both DroidBench and SecuriBench Micro.

Their results are recorded as true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). There are two cases for FlowDroid where their results
are listed as N/A, this is because results weren’t available in publications for how it

performed in those tests.

5.9.1 Benefits Compared Taint-tracking Methods

A major benefit of using predicates and assertions in annotations for leakage detection
as opposed to taint tracking methods is the removal of the need to track the each
individual step along the way making the decision at each stage whether the tracking
should continue for the pieces of derivative information generated at each point. Using
our method, the checking can be done at the point of observation, affording a greater
accuracy at those points as reflected by some of the results listed in Table 5.1.

Compared to taint analysis methods, use of leak predicate assertions can reduce
the instances of unnecessary false positives. Take the example of the PIN code program
discussed earlier in Figure 5.5 and the multiple predicates presented for different
leakage concerns. Under normal taint analysis methods, all outputs discussed would
result in being being labeled as leaks where as with a more specific leak predicate
definition provided in this thesis’s method would result in only the compromising one
being considered a leak.

The other major benefit is the elimination of a variety of false positive cases con-
nected to information flowing through arrays and implicit flows. Some taint analysis
tools deliberately do not try tracking implicit flows (TaintDroid [8]) or do attempt to
do so resulting in extra false positives (DTA++ [2]). The benefits of using predicate
annotation in these cases have been demonstrated through a variety of examples in

this and the previous chapter.

40 Software Model Checking for Detecting Leaks

5.9.2 Drawbacks Compared to Taint-tracking Methods

The biggest drawback of the predicate annotation method in its present form is the
required pre-knowledge and understanding of the program’s leak so as to be able to
construct a leak predicate.

This predicate annotation method requires the clear definition of leaks as predicates
based on the program’s context. If a predicate is not specified correctly, it may fail to
identify a leak correctly and therefore produce a result stating there is no consistent
leak for that predicate, when a correct predicate is specified it would return that there
was a consistent leak. For example, the leak predicate defined in Table 3.3 is p; =s;+5
and correctly identifies the leak in program in Figure 3.6, but if the incorrect leak
predicate was defined for this program as p; = s; then the predicate would never hold
true with no leak being detected.

Taint tracking has similar drawbacks when it comes to defining taint propagation
rules, if the rules aren’t defined correctly, leaks will be missed. The difference here is
that these rules can be defined once for whole program analysis, predicate annotation
requires predicates to be designed for every observation point.

Predicate annotation method cannot confirm both true positives and true negatives
at the same time for programs that have multiple observation points where one leaks
consistently and the other does not. If one assertion in Skink returns false, the whole
program’s analysis returns with a false.

Taint analysis methods can identify both types cases in one analysis (depending
on the quality of their taint prorogation rules) as they only flag leaks when a flow of

sensitive information reaches an output, any other output is not considered a leak.

5.10 Conclusion

This chapter demonstrated how, using the software model checking tool Skink [19],
analysis of programs with leak predicate assertions can be automated to confirm if a
program is consistently leaking. Chapter 6 provides a literature review of related work

in malware detection and taint tracking before final conclusions in Chapter 7.

Chapter 6

Literature Review

6.1 Introduction

This chapter presents a literature review of current related works. It explores the
current state of taint analysis and other malware detection methods (including signature
detection and machine learning), examining their accuracy and some of the benefits

and drawbacks from these approaches.

6.2 Taint Analysis
6.2.1 Taint Propagation Logic

One of the first implementations of data tainting was in the Perl programming language
that allowed for the basic tracking and would throw fatal errors if tainted data was
leaked [20]. Early work in taint analysis can be traced back to the 1980s with Ferrante
et al.’s work into data and control dependencies, graphing out what pieces of data and
sections of code are dependent on preceding lines of code [21].

In more recent research, work has continued to improve the process of tracking
tainted data throughout the execution of a program, by implementing a range of new
rules and methods for tracking more complex flows of information.

Schwartz et al. defined a series of rules for taint propagation in a dynamic analysis
but observed that control dependencies could not be accounted for in dynamic analysis
alone, as dynamic only concerned itself with the code path that was executed and not
the others that were not taken by the application in that execution [1].

Bao et al. introduced the use of strict control dependencies, the idea that there are
some control dependencies that should not result in the tainting of another variable

and helped to remove cases of over-tainting arising from using more basic control

41

42 Literature Review

dependencies [22].

Kang et al. observed cases within the strict control dependencies base rules from
Bao et al. that they worked to correct by presenting their system that worked to identify
unlabelled under-tainting cases when analysing an application and then generated it’s
own taint propagation rules to account for these cases in analysing that application
[2].

For Android systems specifically, Enck et al. presented TaintDriod which looked at
four levels for taint propagation (variable, message, method and file) to more effectively
track taint in the smart phone environment [8]. Zhang et al. presented VetDroid that
had the added benefit of identifying information leakage relating to the devices network
state (which TaintDroid did not detect) [23]. Tam el at. observed that TaintDroid and
VetDroid both had the drawback of requiring heavy modification of the Android OS to
implement their own methods. Tam el at.’s implementation, CopperDroid, focused on
using behavioural profiles instead to identify malware [24].

Graa et al. also sought to reduce under-tainting in the android environment and
did so by identifying cases such as leakages that occur when a variable is not changed,
leaking that another branch of code was taken upon a decision using the private data
[25]. Extending upon this work in a later study in 2014, they explored how to detect
further obfuscation attacks used to hide information leakages and introduced new rules
to propagate taint thorough these cases [26]. In both cases, the focus was purely on
the more pressing need to reduce under-tainting rather than reduce over-tainting.

A method of using static taint analysis as part of a malware signature detection
was employed by Feng et al., however, they noted they were not fully prepared for
obfuscation methods [27]. Not being prepared for obfuscation could lead to under-
tainting.

Arzt et al. in 2014, presented FlowDroid which claimed to take into account the
context of input data during its taint analysis. They demonstrated how it could be
used to detect leaking apps and malicious apps from multiple sources, along with their
own benchmark set that they developed called DroidBench which they used to test

FlowDroid against various key leakage scenarios [7].

You el at. looked into identifying implicit flows in the Android environment and

§6.2 Taint Analysis 43

demonstrated how they could be exploited, leaving a window for future work in
detecting and defending against these cases [28]. Li et al. presented their own inter-
component communication information leakage detection application, IccTA, which
used static analysis methods and was tested against their own set of benchmarks they
created [4], extending from DroidBench [7].

Table 6.1 compares different approaches to tracking taint and how they perform
specifically in regard to over-tainting and under-tainting based on their own observa-
tions (stated). Another column for unstated under-taint is added based on evaluations
from other papers or based upon simple observation of the propagation rules, to list
cases of under-taint that are not mentioned in the original papers. If no identified
unstated under-taint exist, the entry is listed as "unclear" as there is the potential for

still undiscovered cases to exist.

Paper Year Stated Stated. Unstatefi
Over-taint | Under-taint | Under-taint
Bao et al.[22] 2010 | No No Yes
Schwartz et al. [1] | 2010 | No No Yes
Kang et al [2] 2011 | Yes Yes Yes
Graa et al. [25] 2013 | Yes No Unclear
Enck et at. [8] 2014 | Yes No Yes
Graa et al. [26] 2014 | Yes No Unclear
Feng et al. [27] 2014 | No Yes Unclear
Arzt et al. [7] 2014 | Yes No Unclear
Wei et al. [29] 2014 | Yes No Unclear
Lee et al. [6] 2016 | Yes No Unclear
Fu et al [30] 2018 | Yes Yes Unclear

Table 6.1: Taint Propagation Logic

6.2.2 Dynamic Taint Overhead

A complication that comes with dynamic taint analysis is the overhead it brings to
the execution of the application being analysed. Overhead being the extra processing
power required alongside to carry out the analysis.

Moore & Chong presented a way to minimise overhead by using preliminary static

analysis to identify areas where it is no longer necessary to track information [10].

44 Literature Review

Taint analysis implementations, including HybriDroid [6], FlowDroid [7] and Taint-
Droid [8], have taken a different approach to minimise overhead in their dynamic
analysis by allowing for over-tainting, by tainting whole arrays when a value within
them are tainted. This is done to avoid dealing with the overhead incurred with
tracking different taint tags for each entry within the array in the Java environment
[8].

Ming et al. took a new approach again to tracking taint by making use of multi-core
processing but depended on straight-line code which had a small amount of variables
that it needed to track at runtime [31]. The same team presented StraightTaint in 2016
which minimised overhead by making use of offline symbolic taint analysis [32].

Table 6.2 outlines the overhead percentages of dynamic taint analysis methods that

supply an overhead percentage in their articles.

Paper Environment | Claimed Overhead
Bao et al [22] N/A 76%
Zhang et al [23] Android 32.294%
Enck et al. [8] Android 14%
Wei and Lie [33] Android 10-20%
Fu et al. [30] WebAssembly 5-12%

Table 6.2: Dynamic Taint Analysis Overhead

6.3 Signature Detection

Signature detection methods are being used in malware detection and are the process
of generating signatures that represent applications or segments of applications based
on specific features, such as code structure, behaviour or other identifiable aspects.
These can then be used to compare against signatures that have already been generated
for already existing applications that are known to be malicious. If there is a match
then the new application is also identified as malicious and appropriate action can be

taken.

6.3.1 Signature Detection and Code Obfuscation

Since changing one feature can lead to a new signature, a variety of methods can

be employed to obfuscate code including; inserting redundant code, shuffling code

86.4 Evaluation 45

ordering, replacing functions with new ones that still get the required result, and much
more [34].

Apposcopy presented a way of using taint tracking to develop an application sig-
nature based on the semantic nature of its code instead of the syntactic, as a way of
getting around some forms of obfuscation [27]. However, it was pointed out by others
that Apposcopy was still vulnerable to the more complex forms of obfuscation [35].

Schrittwieser et al. performed an analysis of the existing methods for obfuscation,
and obfuscation detection finding techniques that relied on pattern recognition, like in
signature detection, were still highly susceptible to obfuscation [36].

Wang and Rountev later presented techniques for detecting obfuscated code in
Android applications by the application of machine learning techniques to train a model
for identifying features of the application that would indicate that it had undergone

some form of obfuscation process [37].

6.3.2 Machine Learning in Signature Detection

Many of the existing implementations of machine learning take various ways of using
the API calls of an application to generate signatures for training [38, 39, 40, 41, 42].
Yuan et al. highlighted the effectiveness of machine learning methods in the
detection of malware that is the repackaging of existing malware features and identified
how current popular anti-virus software did not handle repackaging as well [43].
Mariconti et al. presented MAMADroid, a method that involved constructing Markov
chains of abstracted API calls as representation of application behaviour, both benign
and malicious, then training a machine learning model to identify malware on them
and then demonstrated how effective it was in detecting newer forms of malware

without any new training over different year sets of training data [44].

6.4 Evaluation
6.4.1 Taint Propagation

At present, no taint analysis method has demonstrated a way to propagate taint that

results in 100% accuracy. All cases seem to result in over-tainting or under-tainting.

46 Literature Review

Sometimes these issues are deliberately for the sake of reducing overhead, such as the
case of array over-tainting discussed in Section 6.2.2 on dynamic taint overhead.
Many current taint analysis methods rely on the manual definition of sources and
sinks which leaves analysis vulnerable to the introduction of new unforeseen sources
and sinks. Machine learning methods have been employed, as seen in SUSI by Rasthofer
et al., to try and account for the introduction of new taint sources and sinks that could

be introduced through new or unfamiliar APIs [45].

6.4.2 Machine Learning & Signature Detection Methods

A major issue that is apparent from the methods involving machine learning and
signature detection is that of new methods of malicious activity for which there is no
current signature built or machine learning model trained on, either as a result of
deliberate obfuscation or normal replacement of old API functions with new ones.

It is demonstrated in some cases that it is possible to protect against new malware,
as demonstrated by Mariconti et al. with their malware detection system, MAMADroid,
but it still demonstrated a drop in detection accuracy across each following year of
malware samples after training on a given year’s training data [44].

A clear focus for improvement is the vulnerability to the new signatures not seen
before. Significant work has been done to account for this but it is clear that further

work is required to improve accuracy duration.

6.5 Conclusion

In this literature review, the current state of taint analysis methods for information
leakage (both malicious or otherwise) and other methods of malware detection based
on signature detection has been discussed.

The current state of taint propagation logic was reviewed and the still present inac-
curacies of over-tainting and under-tainting that exist in current solutions, resulting
partially from issues such as overhead and focusing on efficiency, was identified. Signa-
ture detection and machine learning methods in malware detection were considered.
Challenges faced in the area of identifying new threats that do not share features with

samples of malware already detected and categorised continue to be a concern.

Chapter 7

Conclusion

7.1 Thesis Summary

This thesis has demonstrated how the problem of information leakage is best addressed
through the development of formal definitions of what constitutes a leak. The method
of specifying leaks through the use of predicate annotation is shown to allow for
the verification of whether leaks are occurring in a program when used with current
software model checking tools (such as Skink).

This method’s effectiveness has been demonstrated against constructed examples,
examples from published literature and taint analysis benchmark cases.

Working with examples from current taint analysis literature show how the tech-
nique could be applied in these cases to generate the same results, and potentially

detect leak cases that other methods considered not to be worth the effort.

Examples of programs have been provided that could be annotated with different
leak predicates, depending on factors such as what was being observed at an observation
point and what could be considered a leak for a program in that specific context.

When looking at benchmarks, there was a focus on demonstrating predicate an-
notation with examples in which current methods commonly result in false positives
and false negatives due to complications in their techniques or trade-offs made for
efficiency purposes.

The benefits of the predicate annotation method can be seen in the removal of the
need for step by step tracking of secret information through a program’s flow and the
potential errors that come with that process. These benefits the of annotation method
address issues with taint tracking methods that result in false positives with arrays and

false negatives with some implicit flow cases.

47

48 Conclusion

Drawbacks with the method currently include the effort that can be involved in
designing predicates for each given scenario and how false negatives and false positives

can result if predicates are not defined precisely.

7.2 Final Conclusions

This thesis has demonstrated how information leakage can be addressed with formal
definitions of leaks and demonstrated a way to do so with leak predicates and program
annotation. This provides a precise and accurate way to specify leaks in their given
contexts and verify that they are occurring using embedded definitions within the
program code.

The predicate annotation method has been proven in a variety of scenarios where its
benefits over taint analysis methods have been shown to avoid common false positive
and false negative scenarios.

This thesis provides a basis for more accurate leakage detection that can now be
applied in other contexts. There is further work that can be done on this technique to
make it easier to define leaks in different scenarios of much more intense complexity.

This thesis provides the groundwork upon which this future work can build upon.

7.3 Potential Future Research

The application of the predicate annotation method to a range of actively used program-
ming languages is an important focus for future work. This would allow for application
of this method in detecting leaks in programs such as those designed for mobile devices.
This is where the main focus of current information leakage detection work is focused.

Java is a primary language this could be applied to since this is the language used
for android device applications and the primary focus of much of the current published
literature in taint analysis. A benefit of this is the ability to test this method against the
benchmarks written in Java more directly and no longer need to convert them to C for
testing. There are existing Java verification tools that could be used in applying this
method to the language, such as Java PathFinder [46].

Exploring automating the annotation method, potentially developing a tool that

87.3 Potential Future Research 49

can analyse the given CFG of a program and provide a list of suggested points for
annotations and suggested variables to include in the leak predicate.

Complex cases of leaks involving encryption need to be addressed in future work.
Predicate annotation has not been applied in cases involving encryption and would
present significant challenges due to the nature of encryption’s deliberate difficulty in
reversing it without the right information.

Work can also be done to extend the evaluation of the predicate annotation method
by comparing to traditional encodings of noninterference analysis with product pro-

grams such as those presented by Eilers et al. [47].

7.3.1 Multiple Points of Observation

A more complex case for consideration in future work is a case in programs where
more than one point of observation occurs within a program and the leak occurs only
if the observer can make a calculation using values from multiple observation points.

Figure 7.1 has two points of observation at locations 3 and 5, where the leak is only
compromising if the observer can perform a calculation using the information from
both points. In this example, it is possible for the observer to discern the precise value
of the s; by observing the change in the public variable p, at the end of the program.

v, is assumed to be a constant value that is the same for any program execution.

start —» Node | Observation | Leak Predicate
3
s, :=secretData {p/l} -
> {P1} $1=D;—D1

Table 7.1: Observation and Leak Predicate
Maps for Figure 7.1

®
-
® -

Figure 7.1: Program with two
observation points

50 Conclusion

Here the predicate to determine if there is a leak would be the difference between
the value of p, at the first observation point subtracted from its value when it is observed
again at the second observation point. To define the leak and make predicate checking
easier, the annotation process could benefit from some simplification of variables for
this context and the shifting of observation points.

Note that in the annotation table there is only an annotation of a leak predicate
for the second observation point as there is not a concern with the first observation of
p; leaking s, at that point. The leak predicate for L(5) can be defined as s; = p; — D
where p/1 is the changed value of p, at the second observation of location point 5.

This example assumes that the observer has the capability to remember two different
outputs from the program while it is running, as it needs both the value of p, and
p; to calculate the original value of s;. If p;’s output overwrites that of p, then both
can be remembered at the same time, and without the ability to remember both for
calculation, no leak can occur as it is not possible to reconstruct s;. The following
sections will begin to look at how the capabilities of an observer can influence how a

leak can be defined also.

Bibliography

[1]

[5]

[6]

[7]

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask),” in 31st IEEE Symposium on Security and Privacy, S&P 2010,
16-19 May 2010, Berleley /Oakland, California, USA, pp. 317-331, IEEE Computer
Society, 2010.

M. G. Kang, S. McCamant, P Poosankam, and D. Song, “DTA++: dynamic taint
analysis with targeted control-flow propagation,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS 2011, San Diego, California,
USA, 6th February - 9th February 2011, The Internet Society, 2011.

C. Fritz, S. Arzt, and S. Rasthofer, “DroidBench 2.0,” Online:

https: //github.com /secure-software-engineering /DroidBench, 2015.

L. Li, A. Bartel, T. E Bissyandé, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P D. McDaniel, “Iccta: Detecting inter-component privacy leaks in
android apps,” in 37th IEEE /ACM International Conference on Software Engineering,
ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1 (A. Bertolino, G. Canfora,
and S. G. Elbaum, eds.), pp. 280-291, IEEE Computer Society, 2015.

M. Boreale, “Quantifying information leakage in process calculi,” Inf. Comput.,

vol. 207, no. 6, pp. 699-725, 2009.

S. Lee, J. Dolby, and S. Ryu, “Hybridroid: static analysis framework for android
hybrid applications,” in Lo et al. [48], pp. 250-261.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L. Traon, D. Octeau,
and P D. McDaniel, “Flowdroid: precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for android apps,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’14, Edinburgh, United

51

52

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Kingdom - June 09 - 11, 2014 (M. E P O’Boyle and K. Pingali, eds.), pp. 259-269,
ACM, 2014.

W. Enck, P Gilbert, S. Han, V. Tendulkar, B. Chun, L. P Cox, J. Jung, P D. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for realtime
privacy monitoring on smartphones,” ACM Trans. Comput. Syst., vol. 32, no. 2,

pp. 5:1-5:29, 2014.

A. Russo and A. Sabelfeld, “Dynamic vs. static flow-sensitive security analysis,”
in Proceedings of the 23rd IEEE Computer Security Foundations Symposium, CSF
2010, Edinburgh, United Kingdom, July 17-19, 2010, pp. 186-199, IEEE Computer
Society, 2010.

S. Moore and S. Chong, “Static analysis for efficient hybrid information-flow
control,” in Proceedings of the 24th IEEE Computer Security Foundations Symposium,
CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011, pp. 146-160, IEEE Computer
Society, 2011.

B. Chess and G. McGraw, “Static analysis for security,” IEEE Security & Privacy,
vol. 2, no. 6, pp. 76-79, 2004.

B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhotdk, J. N. Amaral, B. E. Chang,
S. Z. Guyer, U. P Khedker, A. Mgller, and D. Vardoulakis, “In defense of soundiness:
a manifesto,” Commun. ACM, vol. 58, no. 2, pp. 44-46, 2015.

J. A. Goguen and J. Meseguer, “Security policies and security models,” in 1982
IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982,
pp. 11-20, IEEE Computer Society, 1982.

A. Sabelfeld and A. C. Myers, “Language-based information-flow security,” IEEE

Journal on Selected Areas in Communications, vol. 21, no. 1, pp. 5-19, 2003.

D. E. Denning, “A lattice model of secure information flow,” Commun. ACM,

vol. 19, no. 5, pp. 236-243, 1976.

D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows: Can’t live with ’em, can’t

live without ’em,” in Information Systems Security, 4th International Conference,

Bibliography 53

[17]

[18]

[19]

[20]

[21]

[22]

[23]

ICISS 2008, Hyderabad, India, December 16-20, 2008. Proceedings (R. Sekar and
A. K. Pujari, eds.), vol. 5352 of Lecture Notes in Computer Science, pp. 56-70,
Springer, 2008.

N. Grech and Y. Smaragdakis, “P/taint: unified points-to and taint analysis,”

PACMPL, vol. 1, no. OOPSLA, pp. 102:1-102:28, 2017.

B. Livshits, “Stanford SecuriBench Micro,” Online:

https: / /suif.stanford.edu /~livshits /work /securibench-micro /, 2006.

E Cassez, A. M. Sloane, M. Roberts, M. Pigram, P Suvanpong, and P G.
de Aledo Marugdn, “Skink: Static analysis of programs in LIVM intermediate
representation - (competition contribution),” in Tools and Algorithms for the Con-
struction and Analysis of Systems - 23rd International Conference, TACAS 2017, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II (A. Legay and
T. Margaria, eds.), vol. 10206 of Lecture Notes in Computer Science, pp. 380-384,
2017.

E. Siever, S. Spainhour, and N. Patwardhan, Perl in a nutshell - a desktop quick

reference. O’Reilly, 1999.

J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The Program Dependence Graph
and Its Use in Optimization,” ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 9, no. 3, pp. 319-349, 1987.

T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu, “Strict control dependence and its
effect on dynamic information flow analyses,” in Proceedings of the Nineteenth
International Symposium on Software Testing and Analysis, ISSTA 2010, Trento,
Italy, July 12-16, 2010 (P. Tonella and A. Orso, eds.), pp. 13-24, ACM, 2010.

Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P Ning, X. S. Wang, and B. Zang,
“Vetting undesirable behaviors in android apps with permission use analysis,” in

2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13,

54

Bibliography

[24]

[25]

[26]

[27]

[28]

[29]

Berlin, Germany, November 4-8, 2013 (A. Sadeghi, V. D. Gligor, and M. Yung, eds.),
pp. 611-622, ACM, 2013.

K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Automatic recon-
struction of android malware behaviors,” in 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February
8-11, 2015, The Internet Society, 2015.

M. Graa, N. Cuppens-Boulahia, E Cuppens, and A. R. Cavalli, “Formal characteri-
zation of illegal control flow in android system,” in Ninth International Conference
on Signal-Image Technology & Internet-Based Systems, SITIS 2013, Kyoto, Japan,
December 2-5, 2013 (K. Yétongnon, A. Dipanda, and R. Chbeir, eds.), pp. 293-300,
IEEE Computer Society, 2013.

M. Graa, N. Cuppens-Boulahia, E Cuppens, and A. R. Cavalli, “Protection against
code obfuscation attacks based on control dependencies in android systems,” in
IEEE Eighth International Conference on Software Security and Reliability, SERE
2014, San Francisco, CA, USA, June 30 - July 2, 2014 - Companion Volume,
pp. 149-157, IEEE, 2014.

Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: semantics-based detection
of android malware through static analysis,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014 (S. Cheung, A. Orso, and M. D.
Storey, eds.), pp. 576-587, ACM, 2014.

W. You, B. Liang, J. Li, W. Shi, and X. Zhang, “Android implicit information flow
demystified,” in Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’15, Singapore, April 14-17, 2015 (E Bao,
S. Miller, J. Zhou, and G. Ahn, eds.), pp. 585-590, ACM, 2015.

E Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps,” in

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Bibliography 55

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Security, Scottsdale, AZ, USA, November 3-7, 2014 (G. Ahn, M. Yung, and N. Li,
eds.), pp. 1329-1341, ACM, 2014.

W. Fu, R. Lin, and D. Inge, “Taintassembly: Taint-based information flow control

tracking for webassembly,” CoRR, vol. abs/1802.01050, 2018.

J. Ming, D. Wu, G. Xiao, J. Wang, and P, Liu, “Taintpipe: Pipelined symbolic taint
analysis,” in 24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015. (J. Jung and T. Holz, eds.), pp. 65-80, USENIX

Association, 2015.

J. Ming, D. Wu, J. Wang, G. Xiao, and P, Liu, “Straighttaint: decoupled offline

symbolic taint analysis,” in Lo et al. [48], pp. 308-319.

Z. Wei and D. Lie, “Lazytainter: Memory-efficient taint tracking in managed
runtimes,” in Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices, SPSM@CCS 2014, Scottsdale, AZ, USA, November
03 - 07, 2014 (C. Wang, D. Huang, K. Singh, and Z. Liang, eds.), pp. 27-38, ACM,
2014.

I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” in Proceed-
ings of the Fifth International Conference on Broadband and Wireless Computing,
Communication and Applications, BWCCA 2010, November 4-6, 2010, Fukuoka
Institute of Technology, Fukuoka, Japan (In conjunction with the 3PGCIC-2010
International Conference), pp. 297-300, IEEE Computer Society, 2010.

A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and qualitative
comparison of program analysis techniques for security assessment of android

software,” IEEE Trans. Software Eng., vol. 43, no. 6, pp. 492-530, 2017.

S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and E. R. Weippl,
“Protecting software through obfuscation: Can it keep pace with progress in code

analysis?,” ACM Comput. Surv., vol. 49, no. 1, pp. 4:1-4:37, 2016.

Y. Wang and A. Rountev, “Who changed you? obfuscator identification for an-

droid,” in 4th IEEE /ACM International Conference on Mobile Software Engineering

56

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

and Systems, MOBILESoft@ICSE 2017, Buenos Aires, Argentina, May 22-23, 2017,
pp. 154-164, IEEE, 2017.

E Ahmed, H. Hameed, M. Z. Shafiq, and M. Farooq, “Using spatio-temporal
information in API calls with machine learning algorithms for malware detection,”
in Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence,
AlSec 2009, Chicago, Illinois, USA, November 9, 2009 (D. Balfanz and J. Staddon,
eds.), pp. 55-62, ACM, 2009.

D. Wu, C. Mao, T. Wei, H. Lee, and K. Wu, “Droidmat: Android malware detec-
tion through manifest and API calls tracing,” in Seventh Asia Joint Conference
on Information Security, AsiaJCIS 2012, Kaohsiung, Taiwan, August 9-10, 2012,
pp. 62-69, IEEE Computer Society, 2012.

N. Peiravian and X. Zhu, “Machine learning for android malware detection using
permission and API calls,” in 25th IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2013, Herndon, VA, USA, November 4-6, 2013, pp. 300-
305, IEEE Computer Society, 2013.

Z.Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in android mal-
ware detection,” in ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL,
USA, August 17-22, 2014 (E E. Bustamante, Y. C. Hu, A. Krishnamurthy, and
S. Ratnasamy, eds.), pp. 371-372, ACM, 2014.

Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features for ro-
bust malware detection in android,” in Security and Privacy in Communication
Networks - 9th International ICST Conference, SecureComm 2013, Sydney, NSW,
Australia, September 25-28, 2013, Revised Selected Papers (T. A. Zia, A. Y. Zomaya,
V. Varadharajan, and Z. M. Mao, eds.), vol. 127 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering,

pp. 86-103, Springer, 2013.

Z.Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware characterization and
detection using deep learning,” Tsinghua Science and Technology, vol. 21, no. 1,

pp. 114-123, 2016.

Bibliography 57

[44]

[45]

[46]

[47]

[48]

E. Mariconti, L. Onwuzurike, P Andriotis, E. D. Cristofaro, G. J. Ross, and
G. Stringhini, “Mamadroid: Detecting android malware by building markov

chains of behavioral models,” CoRR, vol. abs/1612.04433, 2016.

S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning approach for classi-
fying and categorizing android sources and sinks,” in 21st Annual Network and
Distributed System Security Symposium, NDSS 2014, San Diego, California, USA,
February 23-26, 2014, The Internet Society, 2014.

W. Visser, K. Havelund, G. P Brat, S. Park, and E Lerda, “Model checking programs,”
Autom. Softw. Eng., vol. 10, no. 2, pp. 203-232, 2003.

M. Eilers, P Miiller, and S. Hitz, “Modular product programs,” in Programming
Languages and Systems - 27th European Symposium on Programming, ESOP 2018,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (A. Ahmed, ed.),

vol. 10801 of Lecture Notes in Computer Science, pp. 502-529, Springer, 2018.

D. Lo, S. Apel, and S. Khurshid, eds., Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2016, Singapore,

September 3-7, 2016, ACM, 2016.

	Declaration
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivation
	Goals
	Overview of Thesis

	Background
	Information Leakage
	Taint Analysis
	Non-Interference and Other Approaches to Information Security
	The Contextual Impact of Leaks

	Formal Definitions for Information Leakage
	Introduction
	Programs
	Public and Private Variables
	Information Leaks
	Observation Points
	Specifying Leaks Using Observation Points and Predicates
	Leaks Involving Calculation
	Considering Observer Capabilities
	Summary

	Specifying Leakages with Program Annotations
	Introduction
	Specifying Leaks for Explicit Flows
	The Influence on Specifying Leaks From Observation Points
	Specifying Leaks for Implicit Flows
	Adjusting Leak Specifications for Specific Leakage Concerns
	Specifying Leaks via Loop Counters
	Annotating Examples From Benchmarks
	Leaks Through Arrays Commonly Resulting in False Positives
	A More Complex Implicit Flow Benchmark

	More Complex Predicates

	Software Model Checking for Detecting Leaks
	Using Skink for Static Analysis
	Adapting Examples to C Code for Verification
	Verifying Leaks Influenced By Observation Points
	Verifying Implicit Flow Leaks
	Verifying Leaks via Loop Counters
	Verifying Leaks Adjusted for Specific Leakage Concerns
	Verifying Java Based Benchmark Cases in C Code
	Complex Implicit Flows
	Comparison Alongside Taint Analysis Accuracy
	Benefits Compared Taint-tracking Methods
	Drawbacks Compared to Taint-tracking Methods

	Conclusion

	Literature Review
	Introduction
	Taint Analysis
	Taint Propagation Logic
	Dynamic Taint Overhead

	Signature Detection
	Signature Detection and Code Obfuscation
	Machine Learning in Signature Detection

	Evaluation
	Taint Propagation
	Machine Learning & Signature Detection Methods

	Conclusion

	Conclusion
	Thesis Summary
	Final Conclusions
	Potential Future Research
	Multiple Points of Observation

	Bibliography

