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ABSTRACT

Background: Ruptured intracranial aneurysms is a much studied topic, with

reports indicating the presence of unruptured intracranial aneurysms in approx-

imately 5% of the adult population. Although the rupture rate of intracranial

aneurysms is not high, it may lead to serious consequences including disabil-

ity and mortality. Current treatments for intracranial aneurysms, however, also

carry significant risks. To counter this, accurate assessment of the potential for in-

tracranial aneurysm rupture is thereby essential in order for clinicians to balance

the risk of surgery against the risk of the natural history.

In current medical practice, greater emphasis is placed upon medical imaging

technologies, including CTA, MRA and DSA scan for diagnostic purposes. These

are widely applied in neurovascular imaging as a non-invasive diagnostic tool for

the detection and evaluation of intracranial aneurysms. This makes it possible

to visualize three dimensional (3D) cerebral aneurysms, the results allowing us

to be able to reconstruct patient-specific vessels and aneurysms. Currently, the

3D geometry blood vessel has been applied in the performance of haemodynamic

simulations, with the results obtained subsequently applied as a tool for the di-

agnosis of aneurysm risk and in support of neurosurgeons for the treatment of

aneurysms. Visualization and haemodynamic simulations are all based upon the

results of medical image reconstruction - aimed at the extraction geometries of

targeted intracranial aneurysms from three-dimensional (3D) medical images. De-

spite the many image segmentation methods available, with varying approaches



and algorithms, no dominant method yet exists, in terms of effectiveness, across

the cerebral aneurysm. It has been indicated that it is necessary to develop a

method in order to accurately segment the cerebrovascular aneurysm; thereby

allowing us to measure aneurysm volume, size, and its 3D shape.

Methods: In this thesis, I proposed a new method of segmentation called the

Threshold-based Level Set (TLS) method. This method was specifically designed

for application in cerebrovascular and cerebral aneurysms, and was based upon

the Geodesic Active Contours model and Chan-Vese model (CV), integrating

both region and boundary information to segment cerebral aneurysms through

the use of a global threshold and gradient magnitude to form the speed function.

Validation tests have been carried out to ensure the quality of the proposed TLS

method in both 3D CTA scan and 3D DSA scan images. Both in-vivo and in-vitro

validation tests were performed. In the in-vivo experiment, forty five aneurysm

patients, including vascular and cerebral aneurysm CTA imagery across three

locations; the internal carotid artery (ICA), middle cerebral artery (MCA) and

anterior communicating artery (AComA), were used for the validation of the TLS

method via analysis of the forty five TLS segmented models in terms of geometric

shape, volume, and haemodynamic results. In the in-vitro experiment, however,

a series of CT scans of silicone aneurysm models were conducted in this study,

with four different silicone models and four rates of contrast agent dilution used

to generate various image data sets for validation of the TLS method.

Results: The proposed TLS method was found to be able to accurately seg-

ment intracranial aneurysms with blurred boundaries, complex cerebrovascular

anatomical shapes and inhomogeneous images under automatic conditions. By

comparison and contrast to other approaches, the TLS method revealed the high-

est volume overlap rate (JM), and lowest volume difference (VD), with its most



important advantage featuring its ability to identify the complex local geometry

of intracranial aneurysms - extremely important information in clinical applica-

tion. The results from in-vivo validation showed that the TLS method appears

higher in terms of overlap ratio and smaller in terms of volume difference than

the other methods for ICA, MCA, and AComA aneurysms. The study likewise

indicated that the volume differences and the overlap ratio of TLS may be con-

trolled at a maximum of under 9% and a minimum of over 92% for all aneurysm

locations respectively. In-vitro validation results showed that the TLS method

was able to achieve over 89% of the volume overlap rate and under 7% of the

volume difference across all different degrees of silicone model shape complexities

and contrast agent dilutions.

Conclusion: The TLS method is a technique with the ability to automatically

segment intracranial aneurysms without the setting of a seed point or intensity

threshold, and is likewise available for the segmentation of modifiable anatomical

shapes, with blurred boundaries and inhomogeneous images. The TLS method

may thus be a useful tool in the assistance of clinical diagnosis and surgical

preparation, and play a vital part in the future of computational haemodynamics

research.
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Chapter 1

Introduction

1.1 Cerebrovascular Disease

As the centre of coordination for a range of functions, the human brain is supplied

by a rich network of blood vessels. These vessels are responsible for the supply and

delivery of oxygen and nutrients, as well as the elimination of toxic waste products. The

Circle of Willis forms the major centre of this arterial system, branching from the anterior

to the posterior regions of the brain vertebral-basilar system [1], as seen in Figure 1.1.

Branching from the common carotid arteries, the left and right internal carotid arteries

ICA form the structure that supply the majority of the forebrain. These eventually

separate into corresponding left and right anterior cerebral arteries (ACAs) (connected

by a smaller vessel called the anterior communicating artery (ACoA)) and the middle

cerebral artery (MCA). Posterior communicating arteries (PCoA) interconnect the ICAs

with their respective left and right posterior cerebral arteries (PCA), which comprise the

posterior part of the Circle of Willis.

Cerebrovascular diseases is significant when there is interruption or impediment of

cerebral blood flow. Several pathologies contribute to cerebrovascular disease, including

1
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Figure 1.1: The Circle of Willis
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the formation of intracranial aneurysms, arteriovenous malformations, or stenosis(e.g.

atheromatous disease and dissection).

The focus of this study centres upon intracranial aneurysms. Though the exact mech-

anisms behind there development, growth and eventual rupture remain uncertain - the

formation of aneurysms (i.e. pathological focal dilation of a cerebral artery) results from

a weakened internal eleastic lamina of the arterial wall. This can result in the formation

of a blister-like out-pouching which may rupture without warning and bleed into the adja-

cent subarachnoid space surrounding brain tissue (subarachnoid hemorrhage or SAH), or

into the brain parenchyma (intracerebral haemorrhage or ICH). The consequences of such

haemorrhage can be stroke, coma and potential death. Aneurysms may be typed accord-

ingly to pathophysiological features, including a) saccular, b) fusiform and c) dissecting

type aneurysms (Figure 1.2).

Figure 1.2: Types of aortic aneurysm.

Pseudoaneurysms or false aneurysms may also occur, which are essentially charac-



4 Chapter 1. Introduction

terized by collections of blood outside the arterial wall, with none of the arterial wall

dilatation associated with that of true aneurysms.

Eighty five percent of all cerebrovascular aneurysms occur within the Circle of Willis.

The most common sites for aneurysm location are: ACoA (35%); ICA (30%); and

MCA (22%) [2]. Approximately 30% of patients with aneurysms will harbor multiple

aneurysms [2]. Intracranial aneurysms represent a significant risk to health, with rupture

and subsequent SAH linked to morality rates of up to 40% within the first week, and 50%

by the first 6 months [2, 3].

The majority of aneurysms cause no symptoms or signs prior to rupture. The pro-

portion of SAH that are caused by aneurysms that eventually rupture is approximately

85% [4].

Currently, two therapies are available to prevent potential rupture. These are, surgical

clipping and endovascular coil insertion. The choice of which procedure is recommended

is dependent upon aneurysm size and location, as well as external factors including avail-

ability of technologies, and physician technique [5].

The primary aim of both techniques is to physically separate the aneurysm sac from

cerebral circulation, thereby obstructing blood supply into the aneurysm. During clipping,

dissection of the aneurysm from surrounding brain tissue is performed via craniotomy,

with clips of varying sizes and shapes in relation to aneurysm size applied to its neck or

base. Endovascular techniques have varied over time, with the introduction of proximal

balloon occlusion in the 1970s - to the development of the first Guglielmi detachable coil

(GDC), approved of by the FDA in 1995 [6]. Success in preventing future rupture is

determined by occlusion of the aneurysm sac remaining robust over time.
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1.2 The role of medical image segmentation in In-

tracranial Aneurysms

1.2.1 3D Visualization

In current medicine, greater emphasis is placed upon medical imaging technologies,

including CT (computerised tomographic scan), MRI (magnetic resonance imaging) and

DSA (digital subtraction angiography) scanning for diagnostic purposes. These are able

to visualize anatomical structures to very fine detail, allowing, in some instances, for the

imaging of intracranial aneurysms at a sub-millimetre level. These imaging modalities may

be combined to yield images to determine both the structural and functional relationships

of organs.

Unlike the slice-by-slice method of analyzing traditional film-based or soft-copy “read-

ings ”of radiological imaging data, current technologies such as CT, MRI and DSA scan-

ning utilise volume rendering [7–9], surface rendering [10–12] and maximum intensity

projections (MIP) [13, 14] to formulate 3D visualisations. This facilitates a greater abil-

ity to accurately locate and pinpoint areas of concern in real-time, to better inform the

formulation of treatment and management strategies.

Direct volume rendering requires every sample value to be mapped to opacity and

colour. One such technique includes volume ray casting. This is effective for the evalua-

tion of tissue structures, to reveal abnormalities in vascular distribution and abnormalities

of anatomy - such as aneurysm formations. Its main advantage lies in the measurement

of interior data, which allows for more information about spatial relationships between

differing structures and organs. The downside, however, is that it is computationally in-

tensive, and it may be difficult to interpret cloudy interiors, and the difficulty of analyzing

heavy loads of high-resolution data. In surface rendering, the most common technique
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Figure 1.3: Three visualization techniques are displayed. Top left: Multiplanar reforma-

tions (MPR) image in sagittal plane. Top right: 30-mm Maximum intensity projection

(MIP) slab in coronal plane, centered around the green line as displayed on the image top

left (cross referencing). Bottom left: Volume rendering (VR) image
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employed is polygon-based rendering, such as Marching Cubes [15, 16]. These generate

polygons that are approximate isosurfaces from a volume, which are then rendered via a

polygon rendering algorithm. Issues, however, inevitably arise with this method. Though

generally faster than volumetric ray casting, a lot of time is required to alter the isosurface

of interest, making the method difficult to implement in real time. Moreover, the gen-

eration of large amounts of polygons may be difficult to manage upon high-end graphics

workstation, and problems may arise with the visualization of the interior of the volumes

measured in polygon-based rendering.

Maximum intensity projection (MIP) - a visualization technique often used for blood

vessel imaging - projects the highest intensity on each ray onto the corresponding pixel,

with grey values calculated via data re-sampling at discrete k locations on rays. Often-

times, the minimum intensity on a ray may be selected for the visualisation, depending on

the dataset and the object to be visualized. One disadvantage however, is the impossibil-

ity of following a blood vessel in the foreground, when other structures in the background

with higher intensity, cross this vessel.

Segmentation methods must thus be consistent and of sufficient accuracy, to enable

to effective utilization of 3D imaging techniques. Despite this, however, no one method

can guarantee accurate object definition under all circumstances.

1.2.2 Measurement

Multiple measurements must be made prior to the development of treatment plans for

intracranial aneurysms. These include dome-to-neck ratios, the diameter of neck size, the

location of the aneurysm, and its shape [17–19].

Obtainment of these parameters has been made easier through recent technological

advances in imaging modalities - allowing for improvements in the ability to both describe

and quantify more complex geometrical and morphological indices. Aside from volume and
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area, other investigated factors include wall undulation, non-sphericity, conicity parameter

and ellipticity indexes [20–22], as well as correlation between 2D and 3D features such as

volume-to-ostium ratio [23,24] and the spatial relationship between the parent vasculature

and the aneurysm itself.

Strong correlations have been found between size ratio index, obtained via extraction

of maximal aneurysm height and parent vessel diameter, and rupture risk, with angles

of inclination of the aneurysm sac and vessel in relation to the neck plane proposed as

an additional morphological parameter - to varying degrees of success. Several semi-

automatic computer-aided tools are available for quantitative evaluation of aneurysms

[25–28].

1.2.3 Image-guided surgery

In order to prevent the flow of blood into the aneurysm, endovascular procedures can

be guided by modern imaging devices [29, 30]. During the coiling procedure, a micro

catheter is typically inserted into the arterial system and into the aneurysm itself, led by

guide wires. After this, small helical-shaped coils are passed through the catheter and

into the aneurysm, to fill and effectively seal it from subsequent blood flow, a procedure

guided via X-ray imaging.

1.2.4 Surgical analysis

Cerebral aneurysms typically present in numerous shapes and sizes. Much like size,

shape is vital in influencing rupture risk [31]. As such, advances in imaging modalities such

as 3D rotational angiography (3D-RA), CT and MR, have made it possible to analyse the

complexity of aneurysm shape in a 3D environment, prior to treatment, thereby improving

the efficiency and effectiveness of surgical intervention.
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1.2.5 Surgical simulation

Image-based neuronavigational systems are now commonly implemented to optimize

the accuracy of neurosurgical procedures. These systems involve the use of a workstation

and reference arrays or frames, which are connected to a clamp that serves to immobilize

the head. These frames utilize passive markers which then reflect infrared flashes, which

are subsequently detected via infrared camera systems. Prior to operation, a 3D recon-

struction of the patients head is obtained via imaging data - loaded onto the workstation.

This is followed by patient-to-image registration, with several fixed reference points on

the scalp surface used to map the 3D image produced, to the surface of the patients head.

Once this is established, the progress of the surgical approach may then be followed via

the use of a probe to a region of interest in the operative field that will be displayed on

the workstation screen [32].

Alongside vascular neuronavigation systems, simulation techniques have also been es-

tablished to optimize the performance of aneurysm clipping procedures. The introduction

of virtual 3D models has allowed for anticipation of aneurysm deformations during clip

application, thereby influencing decisions surrounding the selection of clips size, number,

shape and orientation. Moreover, specific cerebrovascular neuronavigation procedures

have been developed with basis upon 3D-CTA or 3D-DSA in order to improve surgical

guidance and promote the prediction of the location and orientation of aneurysms within

both parenchymal and vascular environments [33].

As segmentation methods have an important role in surgical simulation, it must thus

be consistent and of sufficient accuracy, to enable effective utilization in the assistance of

surgical preparations for intracranial aneurysms.
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1.3 Aims and Motivation

The aim of this thesis is to develop and validate segmentation methods for medical

imaging applications. In particular, the main project involves the segmentation of cerebral

aneurysms in the brain.

Aim 1: Propose an algorithm, the Threshold-based Level Set (TLS) for cerebrovas-

cular image segmentation.

Aim 2: Develop an automatic robust TLS segmentation software based on the pro-

posed TLS algorithm to improve problems existing in current segmentation tech-

nology.

Aim 3: Apply TLS software in the segmentation of intracranial aneurysms.

Aim 4: Validate TLS software using patient-specific aneurysm cases with different

sizes and locations.

Aim 5: Investigate the influence of differing segmentation methods upon patient-

specific analyses of cerebrovascular haemodynamics.

Aim 6: Validate TLS software using silicone aneurysm models.

The motivation for this work is to increase patient safety by providing better and

more detailed information surrounding intracranial aneurysms, in order to optimise image

interpretation and medical decision-making process. As knowledge of aneurysm size,

location and morphology is essential in surgical intervention planning and performance,

this work may assist medical practitioners in the segmentation and characterization of

aneurysms, thereby improving both accuracy and reliability.
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1.4 Thesis Outline

The thesis is organized into seven chapters. In Chapter 1 and Chapter 2, introduce

some background information regarding medical and medical imaging. In Chapter 3,

describes common methods and theories on medical image segmentation. In Chapter 4,

the Threshold-based Level Set algorithm is proposed. Investigation of image segmentation

methods, including TLS method of intracranial aneurysm haemodynamic research is given

in Chapter 5. In Chapter 6, presents the validation of TLS method through the use of

silicone models. Finally, conclusions of the thesis are discussed in Chapter 7.
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Chapter 2

Medical Image Acquisition

There are three types of medical imaging technology commonly used for the diagnosis,

evaluation of risks and treatment of intracranial aneurysms; Computed Tomography An-

giography (Figure 2.1), Magnetic resonance and Digital subtraction angiography. In this

chapter, we briefly introduce some basic concepts behind three medical imaging technolo-

gies, including the principles of scanning and imaging reconstruction, and the advantages

and disadvantages that each have for the detection of intracranial aneurysms [34–37].

Both medical image data representation format and handling is explained in the last

section of this chapter.

2.1 Computed Tomography Angiography

Computed tomographic angiography, or CTA, is one of the key technologies in the

field of diagnostic radiology, alongside magnetic resonance angiography or MRA. These

two techniques are commonly used in most vascular diagnostic procedures - most recently

for the peripheral arteries and the circle of Willis, with the recent development of CTA for

imaging of the coronary arteries. Developed in the early 1990s, CTA is a fast and robust

technology, allowing for the obtainment of high spatial resolution 3-dimensional images

13
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Figure 2.1: 3D CTA scanner (GE Healthcare, Discovery CT750. )
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allowing for the evaluation of both the vascular lumen and the vessel wall surrounding

structures. CTA is a minimally invasive medical test which uses a CT scanner to produce

detailed images of both blood vessels and tissues. An iodine-rich contrast material is

usually injected through a small catheter placed in the vein of the arm. A CT scan is

then performed whilst contrast is passed through blood vessels to the various organs of

the body.

2.1.1 Type of CT Scan

2.1.1.1 Spiral (Helical) CT

In contrast to conventional CT, the spiral CT does not require a section-by-section

scan. Instead, the patient is translated through the scan plane at a uniform speed, during

the data collection process (Figure 2.2), using a rotating x-ray tube. An image can be

generated from each point along this scanned volume, with sectional images able to be

constructed at arbitrary levels. Furthermore, additional images can be overlapped as

needed, without the need for further scanning and hence increased exposure to radiation.

2.1.1.2 Multislice CT

Utilising third-generation technology and with the addition of two or more synchronously

rotating detector arrays, alongside solid state detectors, the multislice CT is employed for

the generation of multiple image slices in parallel. As many as 1000 detectors are posi-

tioned in the long dimension along the semicircular detector arch, with typically 16 or

more located in the shorter dimension tangential to this arch. The number of detectors

determines the number of image slices made producible by the multislice CT equipment

- with 6, 8, 10, 16, 64, 128 and 320 detector array systems made available (Figure 2.3).
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Figure 2.2: Principle of spiral CT scan.

2.1.2 Basic Concepts of Computed Tomography

2.1.2.1 Scanning Principle

The CT scan is a medical imaging procedure that utilizes x-ray and computer-generated

technologies to produce two or three-dimensional images of the body. During the imaging

process, the patient is typically placed between the x-ray source and detector. The inten-

sity of attenuated radiation, or the degree of x-ray absorption by the body, is detected via

the use of thin, semicircular digital detectors located within the scanner. Using mathe-

matical image reconstruction (inverse Radon transformation), we are able to use this raw

data - the degree of x-ray absorption found along each of the many paths through the

body - to calculate local attenuation at each point within the acquisition volume. Local

attenuation coefficients are normalized to produce CT numbers for every point of the

image matrix. Measured in terms of the Hounsfield unit (HU), a CT number is assigned

to each voxel, according to the degree of attenuation found in that particular voxel. The

degree of x-ray absorption is proportional to the density of tissue, with higher densities
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Figure 2.3: Principle of multislice CT scanners : A thin fan-shaped beam rotates around

the body and is detected by more than two synchronously rotating detector array. Dia-

grams of various 64-slice detector designs (in z-direction). Most designs lengthen arrays

and provide all submillimeter elements. Siemens scanner uses 32 elements and dynamic-

focus x-ray tube to yield 2 measurements per detector.
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associated with greater CT numbers. Water, the medium on which this scale is indexed, is

always 0 HU, with bone found to be approximately 1000 HU. There is, however, no upper

limit, with the available range of CT numbers varying accordingly with the scanners used

and the number of bits available per pixel.

In order to obtain numerical values of convenient size, and to avoid dependence on

the energy of the radiation, the CT number is defined mathematically as: CT number

= 1000× (µ− µwater) /µwater Where µ is the linear attenuation coefficients of tissue and

µwater is the linear attenuation coefficients of water. Following the collection, this data

is compiled to form x-ray projections of images of very thin, transverse slices of the

body [38–41].

2.1.2.2 Image Reconstruction

The processes behind image reconstruction are illustrated in Figure 2.4. Detector

signals registered during each scan are preprocessed to compensate for the heterogeneities

present within the system. It is only after various correctional steps and transformation

from signal intensities into x-ray attenuation values that this data is called the CT raw

data - used to yield the image data set. Image reconstruction typically starts with selection

of the desired field of view. Each ray passing through this field of view is used for

reconstruction, with the attenuation value for each image point determined via use of the

average of attenuation coefficients for all rays crossing this point - a process termed “back

projection”. This type of projection however, produces non-sharp images with blurred

edges, with resulting attenuation profiles subjected to an edge-enhancing mathematical

filtering process called “convolution”. The type of filtering process used is determined by

“convolution kernels”or reconstruction algorithms. These are used to alter the properties

of reconstructed CT sections in terms of spatial resolution and image noise.

For third and fourth generation scanners, raw-data sets contain around 500 - 2300



2.1 Computed Tomography Angiography 19

projections for each 360o rotation of the x-ray tube. In turn, each projection is comprised

of approximately 500 - 900 single attenuation values, with image reconstructions from

this raw data finally yielding the image data set.

Figure 2.4: Processes involved in CT image.
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2.1.2.3 Parameters

2.1.2.3.1 Window Settings Only a portion of the CT scale is displayed. This is due

to 2 main reasons. The human eye is only able to distinguish between a limited range

of colour shades. Thus, there is no need to assign the complete diagnostic range of CT

numbers to the available range of grays, in distinguishing between differing structures.

This window is defined by its width, which affects image contrast and level (center), which

affects image brightness.

2.1.2.3.2 Artefacts in CT Scan Artefact is used to describe any discrepancy be-

tween the true attenuation values of the object and the CT numbers obtained from the

reconstructed image. With images produced via CT more prone to artifact than those

obtained via conventional radiography, due to reconstruction from a million separate de-

tector measurements. Artefacts can be categorized into 4 groups: a) streaking, due to

inconsistencies in a single measurement, b) shading, c) rings, d) distortion - due to helical

reconstruction

Many things may cause the appearance of artefact. Physics-based artefacts arise due

to physical processes involved in the data collection process whilst patient-based artefacts

are caused by patient-dependent factors such as movement and the interference of metallic

materials. Scanner-based artefacts arise due to imperfections in scanner function, whilst

helical and multi-section artefacts are caused by errors in image reconstruction [42–44].

2.1.3 Computed Tomographic Angiography in Detection of Aneurysms

Computed tomographic angiography, or CTA (Figure 2.5), is a medical imaging tech-

nology used to visualize arterial and venous vessels throughout the body. One of its key

advantages lies in its ability to visualize smaller vessels, including those of the Circle

of Willis; the anterior choroidal and lenticulostriate, and the perforating arteries at the
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ACoA and apex BA. Calcium deposits in the wall of aneurysms may also be detected

via CTA, allowing for the visualization of thrombus formations in relation to vessel walls.

This has important implications for treatment planning [45].

CTA, however, is unable to visualize collateral flow patterns, with the imaging of

smaller vessels (<0.5 mm diameter) not recommended, should they influence therapeutic

approach and design. CTA following conventional CT imaging is performed to optimize

outcomes for cases involving potential aneurysmal SAH. However, for cases featuring hard

to identify or unclear delineation of the aneurysmal growth, due to insufficient technical

expertise - DSA may be employed until greater technical skill in CTA operation is gained.

Most patients can be easily and comfortably treated without DSA [46].

Figure 2.5: Computed tomographic angiography of the cerebral arteries.
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2.2 Magnetic Resonance Angiography

Magnetic resonance angiography (MRA) involves the use of radiofrequency waves and

magnetic field gradients in production of images. In response to the varying hydrogen den-

sities and reaction to magnetic field gradients, a range of pulse sequences are administered

upon tissues to either enhance or reduce these waves. These sequences include phase-

contrast angiography (PC), time-of-flight angiography (TOF) and 3D contrast-enhanced

MRA.

2.2.1 Type of MRA

2.2.1.1 Time of Flight and Phase contrast Magnetic Resonance Angiography

Tissues and structures within the slice of interest are saturated with repeated radio

frequency pulse waves during time of flight magnetic resonance angiography (TOF-MRA)

(Figure 2.6). In comparison to the stationary nature of tissue, blood flows are not subject

to these radio frequencies. They thus maintain their signal intensity, and allow for the

creation of a contrast between the dynamic nature of the inflowing fluid, and its static

background. Limitations of this technique, however, include the impact of signal losses

distal to stenosis due to turbulence, and the longer acquisition times involved.

2.2.1.2 Phase-contrast Magnetic Resonance Angiography

Utilising velocity-induced phase shifts which move protons via bipolar flow-encoding

gradients, phase-contrast angiography (PC-MRA) is able to generate images of both static

and non-static structures, with both two and three-dimensional techniques available (Fig-

ure 2.7). Though turbulent flow may continue to cause the occurrence of artefacts at the

site of vessel stenosis, signal losses distal to this is minimized via the use of PC-MRA, when

compared to TOF-MRA. Both TOF-MRA and PC-MRA are utilized in cases wherein pa-
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Figure 2.6: Time of flight magnetic resonance angiography of the cerebral arteries.

tients are found to have contraindications to gadolinium infusion - a contrast medium

used in the conduction of MRA scans.

2.2.1.3 Contrast-enhanced Magnetic Resonance Angiography

3D contrast enhanced MRA (CE-MRA), has emerged as an accurate and efficient tech-

nique for the imaging of vascular structures without the limitation of previous techniques.

Combining the enhanced tissue contrast obtained with conventional MRI techniques, CE-

MRA is able to provide a 3-dimensional image that may be rotated 360 degrees for

improved evaluation following post-processing. Gadolinium chelate, a paramagnetic con-

trast, is infused via intravascular injection to shorten the T1 relaxation time of blood,

in comparison to surrounding tissue. This technique is less flow sensitive, as the signal

of blood flow is often times based upon intrinsic T1 signals and less upon flow effects.
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Figure 2.7: Phase-contrast magnetic resonance angiography of an arteriovenous malfor-

mation.

Increased spatial resolution can increase scanning times. The post-processing process can

allow for the production of maximum intensity projection (MIP) images. Unlike TOF-

MRA or PC-MRA, intravascular signals are dependent upon T1 relaxation and not inflow

or phase-accumulation, resulting in the reduction of in-plane saturation and turbulence-

induced signal loss. Careful timing of the contrast bolus is likewise necessary to ensure

higher concentrations of gadolinium at the desired station, during the image acquisition

process.

2.2.2 Basic Concepts of Magnetic Resonance Angiography

2.2.2.1 Scanning Principle

MRI scans may be used to produce images of the nuclei of atoms which contain an odd

number of protons and/or neutrons. One nucleus which satisfies this criterion, is that of
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the hydrogen atom - comprised of a single proton. With a magnetic dipole, the hydrogen

nucleus is able to interact and align or antialign with the strong magnetic field generated

via the MRI. Coupled with its abundance in the body, the net sum of the magnetic dipole

moments from a group of these atoms will result in a bulk magnitisation that is aligned

with the transverse or applied magnetic field (Figure 2.8).

Figure 2.8: The bulk magnetization, M, rotates, or precesses, when it is transverse. The

receiver coil detects an oscillating signal from the component of magnetization (My) that

points toward it. The rate of precession and the frequency of the signal are proportional

to the strength of the magnetic field. In this diagram, the magnetic field is aligned along

the z-axis.

Maximum signals are generated when the longitudinal or aligned magnetization is

slanted at 90 degrees, perpendicular to the direction of the applied magnetic field Mag-

netic field gradients that alter with position are superimposed upon the spatially uniform

magnetic field upon imaging, with the resulting spatially varying fields produced causing

the bulk magnetization at differing locations to process at varying speeds. Transverse

magnetization at different locations will thus result in signals with varying frequencies.

Based on these frequencies, magnetic field gradients are then mapped to their proper po-

sitions in all three dimensions, during the image reconstruction process. Signal intensities

of magnetic resonance vary depending upon numerous factors, with a host of protocols

that may be altered in order to accentuate or diminish the influence of these factors on
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the produced image.

One factor that influences signal intensity is the amplitude of the transverse component

of magnetization. Transverse magnetization will decay or diminish exponentially with

time, with the rate of decay marked by the time constant, T2. This rate of decay is

dependent upon the microstructure of tissues surrounding the magnetic dipole moments

that make up the bulk magnetization. Differing tissues possess differing T2 decay times,

with shorter times indicating a faster rate of transverse magnetization deterioration, and

longer times indicative of a slower rate of decay. By allowing time to elapse between the

transverse rotation of the magnetization, and its detection - signal differences from tissues

with distinct T2 decay times are obtained. The time from this transverse tipping to signal

detection is controlled by an imaging parameter called TE or echo time. As scans with

longer echo times are able to accentuate signal differences due to variations in T2 decay

times, these images are referred to collectively, as T2 weighted.

Other factors that affects signal intensity is the magnitude of longitudinal magneti-

zation. Following transverse tipping, the longitudinal component of magnetization will

undergo exponential regrowth. This rate of regrowth is marked by a time constant called

T1. This regrowth rate depends upon the microstructure of the tissue surrounding the

magnetic dipole moments. As differing tissues possess dissimilar microstructures, they

possess differing T1 regrowth times. In MRI, the longitudinal magnetization can be

tipped multiple times in order to encode enough information to map signals to the proper

locations in the image.

If a short period of time elapses between the application of one tipping pulse and the

next, the longitudinal magnetization does not fully regrow. Moreover, longitudinal mag-

netization from short T1 tissues regrows more than the longitudinal magnetization seen

from tissues with longer T1. Thus, allowing only a short amount of time to elapse between

tipping pulses ensures that differing amounts of magnetization are tipped transverse. This
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results in generation of distinct signals from different tissues based on variations in T1

regrowth times. The time between tipping pulses is controlled by the parameter, TR

or repetition time. Since scans with shorter repetition times exacerbate signal differ-

ences based upon variations in T1 regrowth times, these images will be referred to as

T1 weighted. In order to minimize T2-weighting in these scans, the shortest possible

echo time is used. In cases when a long TR and short TE are used, the signal no longer

becomes dependent on T1 or T2 differences.

Alongside this, signal intensity is likewise influence by a multitude of factors like

temperature, diffusion, the strength of magnetic field, motion, and the injection of a

T1-shortening contrast material [47–50].

2.2.2.2 Limitation of Magnetic Resonance Angiography

Patient cooperation is of utmost importance for the obtainment of high-quality images,

as patient-dependent artefacts may arise due to inadequate breath-holding or unplanned

motion. At times, conscious sedation and/or general anesthesia may be necessary prior to

scanning, to optimize image-quality for particular patients - ie: claustrophobic patients

who may suffer symptoms of anxiety. Moreover, patient body size may limit the ability of

participants to undergo MRA, due to size and weight limitations carried by most scanners.

MRA, in particular CE-MRA, is contraindicated in patients with a history of renal

disease. The use of gadolinium-based contrast has been implicated in various nephrogenic

conditions including nephrogenic systemic fibrosis - a systemic and fibrotic syndrome with

potentially fatal consequences. Those afflicted typically present with progressive fibrosis

and hyperpigmentation of the skin, with varying degrees of visceral. The risk of this is

exacerbated amongst patients suffering from end-stage kidney disease.

Moreover, metallic implants such as stent devices may exhibit signal dropout following

MRA scanning, due to magnetic susceptibility and radio frequency shielding. This may
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potentially impact the accuracy of imaging for vessels with previously-implanted stent de-

vices. MRA is likewise contraindicated for patients with magnetic, electrically conductive

or RF-reactive implants, including pace-makers and defibrillators. Titanium implants,

however, are generally considered safe.

2.2.3 Magnetic Resonance Angiography in Detection of Aneurysms

3D TOF-MRA has been found to be more effective than the 3D PC-MR technique

in evaluation of aneurysms [51]. As with CTA, use of both two and three-dimensional

imaging display modalities is recommended to optimize this process. Lower aneurysm de-

tection rates are found for MRA, than compared to the DSA or CTA imaging techniques,

particularly for smaller aneurysms (<3 mm).

Moreover, though less accurate quantification and lesion characterization are likewise

found [52–54]. New strategies using CE-MRA have shown promising results.

This is due to several factors, including lower image resolution when compared to

modern multi-slice CTA imaging, with the saturation of slow-flow and intravoxel phase

dispersion in the presence of turbulent flow oftentimes leading to incomplete delineation

on three-dimensional TOF-MRA imaging (Figure 2.9). Diagnostic difficulties might arise

from a high signal artefact - such as the mimicking of flow signals by intraluminal thrombi

or hematomas surrounding recently ruptured aneurysms [55,56].

Applied as both a rapid first-pass technique and steady state technique, CE-MRA has

been found useful in the delineation of thrombi from patient lumen in large aneurysm

growths - though its reliability has been reduced for aneurysms of smaller size [57, 58].

Further improvements in aneurysm detection may be achieved via higher signal-to-noise

and resolution. When used in combination with parallel imaging techniques such as

sensitivity coding (SENSE), new synergies are now made possible [59].
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Figure 2.9: TOF-MRA of a giant intracranial aneurysm (A) 3D TOF MRA MIP image

and (B) source image of the patient with a large aneurysm. The aneurysm can be detected

(arrow), but is an incomplete delineation of the aneurysm.

2.3 Digital Subtraction Angiography

2.3.1 Basic Concepts of Digital Subtraction Angiography

DSA has long been considered the gold standard for the generation of high-resolution

images of the vascular system (Figure 2.10). This involves the recording and processing

of a fluoroscopic image in order to mask the radiodensities of vessel wall and surrounding

tissues. Once this subtraction is performed, the image is made exclusively of the subse-

quent local injection of intraluminal contrast. Any movement after this initial subtraction

image results in motion artefact and image deterioration, and a new mask image must

be obtained prior to the injection of contrast. Although iodinated contrast materials

are most common, alternative agents such as gadolinium or carbon dioxide, can also be

utilized [60–62].
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Figure 2.10: Digital subtraction angiography of the cerebral arteries. Several advantages

exist for DSA over less invasive modalities such as CTA and MRA. Techniques including

road mapping allow for a previously recorded image of a contrast-filled vessel to be viewed

on a monitor, whilst angiographic wires and catheters are passed through this image in

real time.
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2.3.2 Limitations of Conventional Angiography

One of the main limitations is the invasive nature of conventional angiography, which

requires percutaneous vessel cannulation, alongside use of intravascular wires, sheaths,

catheters and other devices. Complications may also arise, including the rupture, dis-

section or thrombosis of vessels. Formation of pseudoaneurysms, and arteriovenous fis-

tulae. The facilities and technical operating skills required for conventional angiography

make this method the most expensive, over the other non-invasive techniques described.

However, though most imaging modalities entail the use of contrast agents, which may

be nephrotoxic and allergenic, a substantially lower amount is used when compared to

techniques including CTA, where larger defined boluses are required for optimal vessel

opacification.

2.4 Comparason of CTA and DSA in Detection of

Aneurysms

Recent studies have supported the use of CTA as an effective initial imaging technique

for the suspected detection of intracranial aneurysms. High sensitivity and specificity

has been found for CTA (Sources), particularly amongst patients harbouring smaller-size

aneurysms. The advantage of CTA over DSA in aneurysm detection lies in its ability to

distinguish the presence of mural calcification and intracranial thrombi, as well as deter-

mine the relationship of the aneurysm to the adjacent bony structures, and its orientation

in relation to intraparenchymal hemorrhage [63,64]. When aneurysms are concealed how-

ever, due to the presence of adjacent surgical clips or bony structures, the ability of CTA

to distinguish smaller vessels diminishes [65].
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2.5 Image Representation and Handling

Acquired 3D images, oftentimes in the form of multiple 2D image stacks, are stored

on workstations linked to the scanners, which must be transferred to calculators for data

processing. Presented by greater than 256 gray levels, 8-bit image formats, such as TIFF,

must be handled by specialized image-editing software tailored to the representation of

medical data. The need for a standard manner for the communication and translation of

medical images is due to the vast array of patient and investigator variables that must

be gathered in the acquisition process - including the time of acquisition, acquisition

modality and scan parameters, and image number, position and resolution. This system,

called Digital Communication in Medicine or DICOM, is the international standard for

medical images and related information (ISO 12052) - defining the formats for images with

the data and quality necessary for clinical use. Utilised in tens of thousands of imaging

devices, including radiology, cardiology and radiotherapy devices including CT and MRI,

DICOM has allowed for the replacement of conventional forms of imaging with a fully

digitial workflow [66–68].

2.5.1 DICOM File Structure

DICOM file has two parts consisting of header and data set. The Figure 2.11 shows

the basic file structure.

2.5.2 File Header

The header, which may or may not be included in the file, is comprised of a 128 byte

File Preamble, followed by a 4 byte DICOM prefix. This standard does not require any

structure for the fixed size preamble, and does not need to be structured as a DICOM

data element with a tag and length. The intent of this file header is to facilitate access



2.5 Image Representation and Handling 33

Figure 2.11: DICOM file structure.
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to the data contained in the DICOM file by providing compatibility with a number of

commonly used computer image file formats.

Figure 2.12: DICOM data set structure.

2.5.3 Data Set

The data set (Figure 2-11) represents a slice of the larger population, and is con-

structed of data elements, made up of 4 parts. These include the data element tag, value

representation (VR), value length and value field.

Data Element Tag: an ordered pair of 16-bit unsigned integers representing the group

number followed by the element number, like (XXXX,YYYY). It uniquely identifies the

Data Element.

VR: A two-byte character string, which describes the data type and format in Value

Field.

Value Length: a 16 or 32-bit unsigned integer, which shows the length of Value Field.

Value Field: the stored information DICOM data model is described by information

object definition (IOD).

Though the Data Element Tag is often simple and conspicuous, its readability may be

limited, with only standard Data Elements able to be understood with the assistance of

a Data Dictionary.
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Medical Image Segmentation

Medical image segmentation is aimed at the extraction of targeted objects (organs,

tissues) from images. This chapter will briefly present the most common categories of

image segmentation methods used in the medical image segmentation process. We will

introduce first the techniques of thresholding and region growing, before focusing upon

more modern techniques prevalent throughout the field of medical imaging which a seg-

mentation is found by means of optimizing an energy functional. In this context we talk

about boundary based, region based and hybrid methods. The strengths and limitations

of various image segmentation methods will also be explored.

3.1 Thresholding and Region Growing

As one of the fastest and most simple of region-based techniques, thresholding utilises

a single threshold value to identify and produce images of objects. Values above and

below this pixel are classified as object and background pixels respectively. Thresholding

works well for high-contrast objects with a sharp edge, though the method often fails using

smooth and non-homogenous images, influenced by background noise. Unfortunately, this

is oftentimes the case for medical images, thereby limiting the utility of this research in

35
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medical imaging.

A more sophisticated version of thresholding includes the use of region growing algo-

rithms. This begins with use of a given seed point, known as an object pixel. The region

surrounding the pixel is classified as background or object, depending upon a thresh-

old value determined by reasonable criteria. This object is then segmented via filtering

through the pixels which may be classified as “object”. Issues however, surround this

method, most notably the leakage of pixels, as it is difficult to establish a threshold value

that can serve to confine an actual object.

3.2 Deformable Contour Methods

The underlying tenet of this method is the definition of an energy functional for the

production of a continuous curve or surface, which includes both external energy from

the image data, and internal energy from the curve or surface itself, as input. Following

this, calculation of variations are made, and the energy functional minimized to produce

the expected segmentation result.

3.2.1 Snakes

The Snake was introdused by Kass et al. [69], this technique involves the use of an

explicit type of curve energy. In this, the curve deforms to minimize curve energy -

including both external energy derived from the image, and internal energy derived from

the curve itself, via use of a variational method. This energy is defined by:

E [C (s)] = −
∫ 1

0

|OI (C (s))|2 ds+ α

∫ 1

0

|C ′ (s)|2 ds+ β

∫ 1

0

|C ′′ (s)|2 ds (3.1)

where C(s) is a parametric curve with parameters, I is the image, and C ′and C ′′are the

first and second derivatives of C with respect to its parameters. The first term is referred
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to as external energy, whilst the last two terms represent the internal energies of the

snake. Whilst the external energy is used to drive the curve towards points with high-

magnitude gradients (ie: images featuring strong edges), the first internal energy, weighted

by α ≥ 0, forces the curve to become continuous and the second, weighted by β ≥ 0 forces

the curve to become smooth. The minimization of the first internal energy causes the

curve to shrink, and the points along the curve to become equidistant with one another.

Minimisation of the second energy reduces curvature difference, thereby smoothing out

the curve. One of the most well-known numerical methods for energy minimization is

the Euler-Lagrangiane equation, denoted by ∂E/∂C = 0. Application of this equation

results in a partial differential equation (PDE), which may be solved through use of a

finite-difference or finite-element method. This is the basic principle behind the popular

deformable curve methods used in image processing, though all solutions produced would

be location-specific - with results strongly dependent upon use of a proper starting curve

and proper initialization.

The Snakes algorithm was the first to utilize variational methods for image segmen-

tation. However, the technique suffers from a number of drawbacks, most notably, the

problem of explicit curve representation. Topological changes are not easily accommo-

dated in this method, and complex re-parameterisation algorithms are often times neces-

sary. Moreover, the nodes of the curve may be affected by local image features, including

image noise, with solutions particularly sensitive to proper initialization. Difficulties may

also arise in regards to specification of parameters used in the energy function.

3.2.2 Level Set Methods

In the face of difficulty of handling topological alterations, a non-parametric de-

formable contour method - or level-set method, was proposed by Caselles et al. [70] and

Malladi et al. [71] in an effort to address this issue. This method originates from the the-
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ory of propagating solid/liquid interface (front) with use of a curvature-dependent speed,

as proposed by Osher and Sethian [72].

Figure 3.1: The red surface is the graph of a level set function ϕ = 0, and the flat blue

region representing the x-y plane. The boundary of the shape is then the embedded curve

C.

In the level set method, a curve or surface C(t) is implicitly represented as the zero

level set of a time dependent function ϕ : Ω → R, by C (t) = {x, y ∈ R | ϕ (x, y, t) = 0}.

This curve or surface is then deformed by the function:

∂ϕ (t)

∂t
= −F~n (3.2)

The Eq.3.2 is a partial differential equation,or a Hamilton-Jacobi equation in particular,

this may be solved via use of finite differences on a Cartesian grid. The advantage of level

set method lies in piece-wise continuity and the handling of topology through the implicit



3.2 Deformable Contour Methods 39

Figure 3.2: ϕ0 presents an initial level set function ϕ, C0 = ϕ0 = 0 is the initial boundary

of the embedded curve C, a speed F drives the curve C in the normal direction toward

the object.
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zero level set function. The major setbacks of level set methods, however, lie in their

computationally expansive nature, due to the need for iterative optimization methods in

the solution of complex PDE (partial differential equation).

3.2.3 Geodesic Active Contours

With basis upon the level set method, the geodesic active contour was simultane-

ously proposed by Caselles et al. [73] and Kichenassamy et al. [74]. The geodesic active

contours unified the curve evolution approaches with the classical energy minimiazation

methods (snakes). It was proven that the minimization of a simplified contour energy

with no second order term in Eq.3.1 is equivalent to the minimization of the contour

length weighted by an edge detection function in Riemannian space. The energy to be

minimized is represented in the following form:

EGAC [C (s)] =

∫ L(c)

0

g (|OI (C (s))|) ds (3.3)

where L(C) is the length of C, g(OI) is a strictly decreasing inverse edge indicator func-

tion, typically g(|OI|) = 1/(1 + |OI|2). In order to minimize Eq.3.3, the curve evolution

equation ∂C(t)
∂t

= g(I)κ ~N − (Og · ~N) ~N should be applied, where κ is the Euclidean curva-

ture and ~N represets the unit inward normal. If the planar curve C evolves according to

∂C
∂t

= β ~N , for a given function β, then the embedding function ϕ should deform according

to ∂ϕ
∂t

= β|Oϕ|, where β is computed on the level set. By embedding the evolution of C in

the ϕ, topological changes of C(t) are handled automatically, thereby ensuring accuracy.

Solving the geodesic problem is thus equivalent to finding the solution ∂ϕ
∂t

= 0 for the

following evolution equation:

∂ϕ

∂t
= |Oϕ|div

(
g(I)

Oϕ
|Oϕ|

)
(3.4)

The geodesic active contour model provides a coupling between segmentation based

on energy minimization and the level set framework. Whilst a rigorous mathematical
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approach is necessary for its optimization, the curve representation is flexible and robust,

allowing for both analysis and practical application.

3.2.4 Active Contours without Edges

With reliance of both classical approaches and active contour models upon the edge

function in relation to the image gradient, these techniques are limited to detection of

objects defined by its respective gradient. This is oftentimes problematic due to variations

in edge contrast and noise. Models may fail when applied to objects with blurred or

weakened edges, with the risk of leakage occurring if the edge is not well defined. Region-

based active contour modelling was introduced by Chan & Vese [75], which allow for

the detection of contours with and without gradient. A stopping term, as introduced in

by the Mumford-Shah segmentation technique, is adopted in this model, with the entire

curve evolution conducted under the level-set framework. Under the assumption that

only two regions exist in which segments are constant piecewise, this model also operates

for generalized input cases, where pixels conform to Gaussian distributions both within

and outside of the desired segmentation. One of the advantages of the active contour

model is its ability to segment blurred or discontinuous boundaries, and the ability for

the initialization process to be initiated at any point within the image. Interior contours

are moreover detected automatically. The active contours model is a special case of the

Mumford-Shah functional for segmentation. Through this, the minimal partition problem

may be addressed, which aims to find a partitioning of the image which best separates

the interior of the curve from the exterior. This may be described as:

ECV [C(s)] = µ

∫ L(c)

0

ds+

∫∫
Ωc

(I(x, y)− c1)2dxdy +

∫∫
Ω\Ωc

(I(x, y)− c2)2dxdy (3.5)

where Ωc is the interior of the curve C, c1 and c2 are the average image intensities in the

interior and exterior of C respectively and µ ≥ 0 is a weight parameter. The first term
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is a regularization which serves to minimizes the length, whilst the second and last terms

provide the balancing between the interior and exterior values. The image is separated

into two regions or phases, approximated by constant values c1 and c2, and when µ = 0

the first term disappears, and the Chan-Vese method becomes a simple thresholding

method by the threshold (c1 + c2)/2 [76]. The main advantage of this model is the global

dependence and the tendency to produce globally optimal solutions in practice. However,

the influence of background intensity may cause difficulties in the utilization of active

contours models for medical image segmentation.

3.3 Hybrid Methods

The segmentation methods identified in this chapter are classified into three broad

groups according to the use of image features: region-based, boundary-based and hybrid.

Of these methods, the thresholding, region-growing and Chan-Vese active contour models

are region-based, the main disadvantage of these involving their inability to segment

images that feature non-homogenous intensities. Boundary-based methods include the

snake and geodesic active contour models. The disadvantage of these models is the data

leakage that may occur in the case of blurred or very smooth boundaries.

Hybrid methods, on the other hand, are driven by both region and boundary-based

information, and have to date achieved great success in the field of medical image seg-

mentation. The main reason behind their success lies in the ability of these methods to

simultaneously combine accurate and specific local information, with more robust, global

information, to produce the final segmented image.
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3.3.1 Robust Active Contour with Local Median

The Chan-Vese active contour model is based upon two assumptions that surround

image pixel properties. First, it is assumed that intensity values conform to a Gaussian

distribution within each region, and second, that the global mean or average intensity

value vary across differing regions and hence may be utilised in discriminating between

pixels. These two assumptions, however, are often times violated in reality, resulting in

segmentation leakage or misclassification. A new method which employed local medians

as opposed to a global mean, was thus proposed by Liu [77], represented as:

E[C(s)] = µ

∫ L(c)

0

ds+

∫∫
Ωc

(I(x, y)− f1)2dxdy +

∫∫
Ω\Ωc

(I(x, y)− f2)2dxdy (3.6)

In Eq.3.6, local medians f1 and f2 replace global mean c1 and c2 in Eq.3.5 respectively.

Where f1 = median(I ∗ inside(C) ∗ W ), f2 = median(I ∗ outside(C) ∗ W ), W is a

rectangle window that is used to define neighbourhood pixels in an image. The robust

active contour model using local information in an image instead of the global information

improved the quality of the medical image segmentation.

3.3.2 Threshold-based Level Set

My PhD study introduces a new hybrid method called the threshold-based level set

(TLS) [78]. This method was designed for the segmentation of intracranial aneurysms,

with aim to optimize the accuracy of detecting aneurysm size and shape - whilst remaining

automatic in its process. The TLS combines both geodesic active contour, which utilizes

local boundary information and the Chan-Vese model, which uses region-specific global

information, within the level-set framework to produce accurate segmentations of the

morphology of intracranial aneurysms under varying clinical conditions. The associated

evolution of PDE in the level-set framework is represented as follows:

∂ϕ

∂t
= |Oϕ|

(
α (I − T ) + βdiv

(
g
Oϕ
|Oϕ|

))
(3.7)
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where I represents the image to be segmented, T the intensity threshold, g is the image

gradient, κ = div( Oϕ
|Oϕ|) the curvature, α the image propagation constant and β represents

the spatial modifier constant for the curvature κ. α and β serve to weight the relative

influence of each of these terms on the movement of the surface contour. Details for the

TLS method will be further described in Chapter 4.



Chapter 4

Threshold-based Level Set

Segmentation Method

Level set methods are popular for solving many types of segmentation problems. The

popularity of this is mainly due to the robust deformations and embedding in a well-

studied mathematical framework. The previous chapter outlined the history of variational

methods, which are mostly implemented using the level set representation. This chapter

will continue by describing contributions in this thesis by applying a new level set method

for intracranial aneurysm segmentation. Section 4.1 will start with a brief review of sev-

eral approaches which are currently utilized in cerebrovascular segmentation. Sections 4.2

to Section 4.5 will explain in detail, the method of threshold-based level set segmenta-

tion, including the principle, formula, numerical scheme and the parameter setting of the

boundary detector function. Section 4.6 will describe clinical studies in which we applied

the proposed threshold-based level set method to eight patient-specific aneurysm cases,

with comparison of results obtained alongside other segmentation approaches. These

results will be a part of the in-vivo validation tests conducted.

45
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4.1 Background

Specification of intracranial aneurysm morphology and hemodynamic analysis requires

segmentation of vascular geometries from three-dimensional (3D) medical images, pro-

duced via CTA, MRA or DSA. Methods for such manipulations of medical images are

directly linked to the accuracy of aneurysm model construction, particularly regarding

the geometry of complex shapes and volumes. In most cases, this process involves ex-

traction of the 2D image from CTA, MRA or DSA, followed by reconstruction of the 3D

aneurysm surface model. As such, several approaches exist and are currently utilized in

cerebrovascular segmentation. On one hand, the fuzzy-based approach has been adapted

for the detection of malformed and small vessels in MRA images [79], whilst region grow-

ing approaches are popular in medical image segmentation due to their simplicity and

computational efficiency [80]. Major problems, however, include leakage when the bound-

ary is blurred, and sensitivity to seed position. Utilization of implicit active contour

methods within the level-set framework seem to be widespread in medical image segmen-

tation [81–83] as the method does not suffer from parameterization surface problems [84]

and has the capability to handle complex geometries and topological changes [69, 72].

More recently, active contour methods have also appeared in the modeling of intracra-

nial aneurysms and cerebrovascular segmentation [85,86]. Law et al. proposed a method

based upon multi-range filters and local variances to perform segmentation of intracranial

aneurysms using Phase Contrast Magnetic Resonance Angiography data [87]. Hernandez

and Frangi have developed a segmentation method for intracranial aneurysms based on

Geometric Active Regions (GAR), using CTA and 3D Rotational Angiography data [88],

whilst several Geodesic Active Contours (GAC) based methods have since been adapted

for segmentation of brain aneurysms from CTA data [89,90]. These methods require either

sufficient training sets or are reliant upon boundary information obtained from medical

imaging. Furthermore, boundary-based active contour level set methods may easily leak
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when the target boundary is not clearly defined. Though Firouzian et al. proposed a

Geodesic Active Contours -based level set method which employs region information and

intensity, a user-defined seed point is required in order to calculate intensity threshold [91].

Despite the many image segmentation methods available, with varying approaches and

algorithms, there is no dominant method in terms of effectiveness, across all areas [92–94].

Our previous study indicated that the volume of the aneurysm models depend strongly

on the differing segmentation methods. The segmentation method used, likewise influ-

ences the local geometric shapes of the aneurysms invovled [95]. Validation will thus

become necessary, in order to compare segmentation methods and adjust the parameters

of these segmentation techniques to assure the quality of patient-specific cerebral-vascular

hemodynamic analysis. Although a number of commercial software packages for segmen-

tation are currently available on the market, there is a conspicuous lack of discussion of

methodology and information regarding validation processes.

In this thesis, We propose a new threshold-based level set method for cerebral aneurysms.

This method is based on the Geodesic Active Contours model [73] and Chan-Vese model

(CV) [75], integrating both region and boundary information to segment cerebral aneurysms

through the use of a global threshold and gradient magnitude to form the speed func-

tion. The initial threshold is calculated from the Chan-Vese model and is then iteratively

updated via the use of local image information to refine the details of edges throughout

the process of segmentation. Upon reaching the aneurysm boundary, the change in the

threshold value will decrease because of the contrast created between aneurysm and non-

aneurysm intensities and the iteration will stop. The algorithm may then be implemented

in an automatic or semi-automatic manner depending on the complexity of the aneurysm

shape.
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4.2 Threshold-Based Level Set (TLS)

The threshold-based level set combines both the geodesic active contour and the Chan-

Vese model within the level set framework.

Under the level set scheme, this contour is seen to deform by the function; ∂C(t))
∂t

=

−F |Oϕ|, with an embedded surface C(t) represented as the zero level set of ϕ by C(t) =

{x, y ∈ R|ϕ(x, y, t) = 0}. F represents a function for speed, which drives the C(t) surface

evolution in the normal direction. It is clear that F exerts a direct impact upon the

quality of medical image segmentation. The associated evolution of PDE in the level set

framework is represented as follows:

∂ϕ

∂t
= |Oϕ|

(
α (I − T ) + βdiv

(
g
Oϕ
|Oϕ|

))
(4.1)

where I represents the image to be segmented, T the intensity threshold, g is the boundary

detector function (more details is discussed in section 4.5, κ = div( Oϕ
|Oϕ|) the curvature,

α the image propagation constant and β represents the spatial modifier constant for the

curvature κ. α and β serve to weight the relative influence of each of these terms on the

movement of the surface contour.

The first term of the RHS of the formula, α(I − T ), defines the region where T is an

automatically defined parameter indicating the lower boundary of the intensity level for

the target object. In this, the target aneurysm is always assumed to possess a relatively

higher intensity level than its background. It can thus be seen that this first term forces

the contours to enclose regions with intensity levels greater than T. When the contour

lies within the aneurysm region, (I − T ) ≥ 0, it expands in the normal direction. When

(I−T ) < 0, the contour lies beyond the aneurysm region, and thus shrinks with a negative

speed. This process stops when the contours converge to the aneurysm boundary; the

image I reaching a threshold of T . If we isolate this first term on the RHS of the Eq. 4.1,

it becomes the selection criteria for the lower threshold in the region growing threshold
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method. The second term in the formula would likewise become the geodesic active

contour term.

4.3 Numerical Scheme

If ϕ is a signed distance function (SDF), i.e. |Oϕ| = 1, Eq.4.1 can be simplified to

ϕt = α(I − T ) + βdiv(gOϕ) (4.2)

which suggests a stable iterative numerical scheme to approximate the PDE.

Let ϕk and ϕk+1 denote the embedding function ϕ in the ith and (i+ 1)th iterations

respectively, the proposed numerical scheme to update from ϕk to ϕk+1 consists of the

following four steps:

• Re-initialise ϕk. Re-initialisation of an embedding function ϕ is the process to make

|Oϕ| = 1 while the embedded curve (the zero set) remains unchanged. One of the

efficient methods for reinitialisation is the fast marching method [84].

• Update ϕk to obtain ϕk using ϕk = ϕk +4tα(I − T ) with the predefined time step

4t.

• Re-initialise ϕk.

• Update ϕk to obtain ϕk+1 via solving the PDE ϕt = βdiv (gOϕ) using the addi-

tive operator splitting (AOS) approach. AOS is an unconditionally stable finite

difference method initially proposed in [96] for nonlinear diffusion filtering and then

proposed in [97] for geodesic active contour problem.
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4.4 Method for Automatic Threshold Selection

The threshold-based level set requires an appropriate estimate of the threshold value

from proper segmentation of the aneurysm, obtained using Chan-Vese model and the

statistical data, in particular, confidence interval (CI) and confidence level (CL).

4.4.1 Confidence Interval (CI) and Confidence Level (CL)

The confidence level CL represents how often the true percentage of a population

lies within the confidence interval CI. Based on Chebyshevs inequality [98] a general

relationship for symmetric distribution between CI and CL can be established. The

inequality for symmetric distribution is given as:

P (|X − µ| > kσ) ≤ 1

k2 k > 0 (4.3)

where X is the random variable population, µ is the population mean and confidence

interval is represented by k times σ standard deviation. Eq.4.3 indicates that more than(
1− 1

k2
× 100

)
percent of the population lies between k standard deviations from the

population mean.

For non-symmetric distribution, the one-tailed version of the inequality is used. This

is given by:

P (X − µ > kσ) ≤ 1

1 + k2 k > 0 (4.4)

For this inequality, it follows that when k = 1, more than 50% of the population is located

one standard deviation away from the mean.
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4.4.2 Initial Threshold Selection

According to the theory of confidence interval, the lower bound threshold of the

aneurysm can be defined by:

Ti = µa − kiσa i ≥ 0 (4.5)

The threshold T represents the difference between the mean of the intensity of the

aneurysm (µa) and k times its standard deviation (σa). The intensities of the aneurysm

and its background regions are different, with the lowest intensity threshold of the aneurysm

the same as the highest intensity threshold of the background. Thus, the relationship

µb + kbσb = µa − kaσa would apply. The confidence levels for both the aneurysm and

its background are considered to be the same; kb = ka = k, thereby allowing k to be

expressed as:

k =
µa − µb
σa + σb

(4.6)

We have utilized the Chan-Vese model method to perform an initial segmentation. From

the results obtained, the initial k0 was seen to be calculated via Eq.4.6. The initial T0

can likewise be found using Eq.4.5.

4.5 TLS Boundary Detector Function

The TLS method (Eq.4.1) utilizes a boundary detector function g, g can be definded

as:

g (|OI|) =
1

1 + c |OI|2
(4.7)

where, g is for the detection of vascular boundaries, |OI| represents a gradient magnitude

and c is a constant that controls the slope of the boundary detector function, g (|OI|).

At the boundary of the aneurysm and background, the gradient |OI| is seen to increase

significantly. At the inside of the aneurysm, the gradient |OI| is small and g (|OI|) = 1.
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However, at an ideal edge, |OI| → ∞ and g (|OI|)→ 0. In other words, when g (|OI|) = 0,

this indicates a boundary. As mentioned in the chapter 2, different medical imaging

modalities are able to generate different quality of medical imagery. The gradient |OI| of

CTA image is relatively lower compared with the DSA image. Thus, a relatively c was

needed for the adjustment of the decreasing speed of g (|OI|), in order to ensure that the

search for the boundary was stopped at the aneurysm boundary.

Figure 4.1 TLS Boundary detector function g (|OI|) is showed in three cases, g value

is showed in the colomn and |OI|2 is listed in the row, (a) the Case 1 is a CTA image,

the maximum of |OI|2 at the boundary is 8000. We can see when c = 1, even |OI|2 value

is 2000 which is far from the boundary, g is already smaller than 0.1. However, if adjust

c to 0.1, when g = 0.1, |OI|2 is around 5000. We noticed that when c = 0.01, g will
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Figure 4.1: TLS Boundary detector function g in three cases with the different value of

c. The left side g with c = 1, then g curve shifts to the right when c× 10−1.
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stop at around 8000, and will cross some boundary, resulting in over segmentation. Thus,

choosing c = 0.1 for Case 1 seems to be a suitable choice. (b) and (c) are a DSA image, in

the Case 2 and Case 4 the maximum |OI|2 is around 8.3× 105 and 3.3× 106 respectively.

c = 10−3 and c = 10−4 are more suited for each case respectively.

To overcome the problem, the TLS method uses a criteria to automatically select a

suitable value for c for the TLS Boundary detector function g (|OI|). This criteria for

value of c is found for which the g curve must meet two conditions: when g (|OI|) = 0.1,

|OI|2 ≥ max
(
|OI|2

)
× 50%, and when g (|OI|) = 0.01, |OI|2 ≤ max

(
|OI|2

)
× 80%. For

example, in Case 1, max
(
|OI|2

)
× 50% = 4000, max

(
|OI|2

)
× 80% = 6400, from Figure

4.1 (a), we can see that at 4000 ≤ |OI|2 ≤ 6400, a g curve with c = 0.1 is able to meet

the criteria.

4.6 Experiment

Clinical studies were performed with the consent of the patient in relation to the acqui-

sition of aneurysm images. These images were collected retrospectively from a database.

The protocols involved in data collection and analyses were approved of by the local in-

stitutional review board and the regional research ethics committee, with eight patient

data sets harboring internal carotid artery aneurysms acquired by 3D CTA scans (GE

Healthcare) or 3D DSA scans. Cases 1, 2, 6, 7 are CTA images, whilst another four are

DSA images. Both 2D CTA and DSA images are depicted in Figure 4.2.

Cross-sectional images were acquired by CT angiography scanner with multidetector-

row capability, with a table speed of 9 mm/s and zero-degree table (and gantry tilt).

Scanning was initiated from the common carotid artery and continued parallel to the

orbito-meatal line to the level of the Circle of Willis, during which intravenous injection

of contrast material was administered at a rate of 3.5 mls/s. The aneurysm image was
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512× 512 pixel field, with slices of continuous thickness used to segment and reconstruct

3D vascular geometry. All pixels are expressed in Hounsfield Units (HU).

Figure 4.2: 2D CTA or DSA images of the eight cases. Case 1,2,3 and 4 on the top row

from left to right and Case 5,6,7 and 8 on the bottom row from left to right.

To evaluate the TLS method, we employed another two segmentation methods, the

Region Growing Threshold (RGT), the Chan-Vese model (CV) (the details of which are

described in chapter 3), both of which are commonly used in the field of medical imag-

ing. The results obtained from 3D automatic aneurysm segmentations, from the Region

Growing Threshold (RGT), the Chan-Vese model (CV), and the Threshold-Based Level

Set (TLS), were compared to results obtained via manual segmentation, performed by

an expert radiologist over eight data sets of CTA imagery. Evaluation was based upon

six validation metrics: volume difference (VD), Jaccards measure (volume overlap metric,

JM), false positive ratio (rfp), false negative ratio (rfn), Hausdorff distance (maximum

surface distance, HD), and mean absolute surface distance (MASD).
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4.6.1 Experiment Setting

For quantitative evaluation, manual segmentation of eight aneurysms using open

source software, 3D Slicer, was conducted by an expert radiologist. The results obtained

were utilized as a ground truth (GT) for the comparison of other methods. A region of

interest (ROI), a good representation of the targeted region for segmentation, was selected

depending on aneurysm size. All experiments were performed on cropped data sets to

reduce calculation time and memory usage, with preparatory work completed prior to the

conduction of the experiments.

4.6.1.1 Parameter Setting

• The threshold-based level set

The initial zero level set is a rectangular prism surface, constructed by subtraction

of two pixels on either side of the ROI. Thus, three parameters needed to be set:

α, β from Eq.4.1 and c from Eq.4.7. All eight experiments utilized a fixed setting

of α = 10, β = 3. c is selected automatically depending upon the image quality

generated by the medical imaging modalities in the range 0.1 to 10−4. The role of

this has been detailed in Section 4.5.

• The Chan-Vese model

Apart from its representation by factional form, CV can also be expressed through

the level set form. The associated evolution PDE in the level set framework is

represented as:

∂ϕ

∂t
= |Oϕ|

[
λ2 (I − µout)2 − λ1 (I − µin)2 − α + βdiv

(
Oϕ
|Oϕ|

)]
(4.8)

where µin is the mean of the target object of intensity, µout represents the mean of

the background of intensity and λ1, λ2, α, β are positive constants. The initial zero
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level set is a cuboid surface, constructed in the same manner as the TLS, with the

parameters in Eq.4.8 fixed for all cases; λ1 = λ2 = 0.001, α = 0, β = 0.3.

• The region growing threshold

Details of the region growing threshold are explained in chapter 3, section 3.1. The

RGT selection criterion is described as per the following equation:

I (X) ∈ [X − T1, X − T2] (4.9)

According to each case, an initial seed point is required to determine the starting

loci within the specific aneurysm. For low and high intensity thresholds T1 and T2

in Eq.4.9, T1 was selected to utilize the threshold of the TLS result for each case,

with T2 representing the highest intensity of the aneurysm.

4.6.2 Evaluation

• Aneurysm volume was calculated through use of the boundary geometry, segmented

using various methods. The volume difference (VD) was calculated using the equa-

tion, V D =
∣∣∣ (Vs−Vg)

Vg

∣∣∣×100%, where Vg represents the volume of GT and Vs represents

the volume of the TLS, RGT or CV methods.

• Jaccards measure (JM) is a volume overlap metric, used to count the percentage of

voxel intersections for the paired segmentations. This can be seen as JM = 2×|Sg∩Ss|
Sg∪Ss

,

where Sg represents the voxels created by the GT and Ss the voxels generated

through use of the TLS, RGT or CV methods.

• False positive ratio (rfp) represents the percentage of the extra voxels of Ss, located

outside of Sg. When the rfp equates to zero, no voxels in Ss will be located outside

of Sg. Accordingly, rfp = |Ss|−|Sg∩Ss|
|Sg | , where Sg represents the voxels created by the

GT and Ss represents the voxels generated by the TLS, RGT or CV methods.
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• False negative ratio (rfn) represents the percentage of the lost voxels of Ss, which

cover the internal surface of the Sg. This may be seen as rfn = |Sg |−|Sg∩Ss|
|Sg | , where

Sg represents the voxels created by the GT and Ss represents the voxels generated

by the TLS, RGT or CV methods.

• Hausdorff distance (HD) measures maximum surface distance. This measure is

extremely sensitive to outliers and may not reflect the overall degree of correlation.

• The mean absolute surface distance (MASD), indicates the average degree of differ-

ence between two surfaces and does not depend on aneurysm size.

4.6.3 Results

The Figure4.3 presents the process of CV segmentation in eight cases via use of 2D

contour evolution. In this, we can see that the CV method is able to locate the ob-

ject (aneurysm) efficiently and quickly. However, this technique is less accurate. This

insufficient and over segmented result can be seen in case 2 and case 8 respectively.

The Figure 4.4 illustrates the results of TLS segmentation of eight cases via the use of

2D contour evolution. To compare with the results from the CV method, more contour

evaluations were conducted around the boundary of the aneurysms. This clearly indicates

that the TLS method is able to work on the detail of the aneurysm boundary. In case 8

(Right bottom of Figure 4.3), the yellow contour represents the output of the CV method,

with evidence that the result obtained is over segmented. The red contour represents the

TLS result, which uses information from the image edge in order to adjust the contour

towards the right position. The results from TLS segmentation of eight cases presenting

via 3D model are illustrated in Figure 4.5. All segmentation results across the eight cases,

including RGT, CV and TLS are presented in Figure 4.6.

The calculated values of VD, JM, rfp, rfn, HD and MASD for the eight cases considered
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Figure 4.3: CV method contour evolution process of eight cases. The blue lines represent

the contour changes during the evolution process and the red line marks the final contour

that stops at the apparent boundary of the aneurysms. Top to bottom and left to right,

represents Case 1 to Case 8 respectively.
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Figure 4.4: TLS method contour evolution process of eight cases. The blue lines represent

the contour changes during the evolution process, the yellow lines indicate the primary

CV result and the red line marks the final contour that stops at the apparent boundary

of the aneurysms.
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Figure 4.5: TLS segmentation results of eight cases presenting by 3D model.

Colour is proportional to the surface height (Z direction) from blue to red.
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Figure 4.6: The segmentation results of eight cases, represented by 2D contours. The

blue contour represents the result of the Region Growing Threshold (RGT), the yellow

and red represent the results of the Chan-Vese (CV) and the Threshold-based Level Set

(TLS) respectively.
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Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Average±SD
V D(%)
GT 0 0 0 0 0 0 0 0
TLS 1.55 4.6 4.48 0.46 2.92 0.12 3.5 2.27 2.51±1.72
RGT 7.65 4.47 8.86 1.37 5.52 6.09 3.21 10.90 6.01±3.9
CV 11.63 18.23 5.60 4.04 2.47 2.51 24.18 14.02 10.34±8.06

JM(%)
GT 100 100 100 100 100 100 100 100
TLS 91.87 89.66 88.57 93.25 91.64 92.35 91.55 93.79 91.59±1.74
RGT 90.12 88.24 87.02 93 91.39 90.9 94.27 89.58 90.57±2.38
CV 88.24 84.02 86.73 89.53 91.85 91.82 76.96 89.59 87.34±4.93

rfp(%)
GT 0 0 0 0 0 0 0 0
TLS 4.97 2.91 3.20 1.65 3.60 3.99 4.06 2.11 3.31±1.08
RGT 0.64 3.80 14.72 0.92 9.22 1.64 5.95 0.13 4.63±5.13
CV 11.84 18.02 13.26 5.38 4.6 5.54 28.75 11.62 12.38±8.09

rfn(%)
GT 0 0 0 0 0 0 0 0
TLS 3.57 3.25 1.51 5.21 1.40 3.97 4.73 4.23 3.48±1.40
RGT 9.26 8.40 0.17 6.15 0.18 7.61 0.12 10.30 5.27±4.40
CV 1.32 0.84 1.78 5.66 3.93 3.09 0.92 0 2.19±1.89

HD(pixel)
GT 0 0 0 0 0 0 0 0
TLS 0.51 0.65 0.68 1.17 0.79 1.89 0.65 0.79 0.89±0.45
RGT 0.77 0.64 0.89 1.41 0.55 1.86 0.49 0.76 0.92±0.47
CV 0.75 1.17 1.04 2.09 1.19 0.51 1.00 0.95 1.09±0.46

MASD(pixel)
GT 0 0 0 0 0 0 0 0
TLS 0.08 0.08 0.07 0.09 0.07 0.05 0.07 0.10 0.08±0.02
RGT 0.10 0.10 0.12 0.10 0.10 0.07 0.07 0.10 0.10±0.02
CV 0.06 0.06 0.07 0.11 0.08 0.05 0.07 0.10 0.08±0.02

Table 4.1: The results of segmentation size and volume comparison.
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are tabulated in Table 4.1. The average values are also shown. Figure 4.7 depicts the

volume of the aneurysm. The minimum VD can be seen in the TLS method. The average

value of VD is seen to be 2.51%, though the maximum VD is seen for Case 7 using the

CV method. The values of JM indicate that the TLS method has the highest overlap rate

in comparison to the other two methods, with an average of 91.59%. A study of rfp and

rfn indicates a 3.31% overflow and 3.48% absence on average for the TLS method. The

largest rfp and the smallest rfn were found to occur via use of the CV method. These

results likewise indicate that the largest volume was generated by the CV method, when

compared to all other methods.

Results obtained for the surface distance metrics (HD and MASD) indicate the relia-

bility of all segmentation methods, with the HD values for the TLS method between 0.51

to 1.89 pixels and the maximum MASD found to be 0.08.

Figure 4.8 depicts the 3D geometry of Case 4, restructured via three segmentation

methods. Only TLS was effective in fully reconstructing the parent artery and aneurysm,

while the other two methods were not able to construct a portion of the artery. One

reason for this is that the aneurysm size in Case 4 is larger in comparison to other cases

and is a DSA image, The obvious changes of the blood speed in the large aneurysm is

reflected in the image with the intensity inhomogeneous distribution. Both RGT and CV

models are only able to function under homogeneity images [99]. Another point is that

the distal parent artery itself is curved to lie proximal to the aneurysm. These results

likewise indicate that the TLS method may be utilized in the segmentation of aneurysms

with blurred boundaries and inhomogeneous images.
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Figure 4.7: Aneurysm volume against segmentation methods.
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Figure 4.8: 3D geometries of segmentation results comparison, from left to right; CV,

RGT, and TLS.

4.7 Conclusion

The TLS method is able to segment intracranial aneurysms with blurred boundaries,

complex cerebrovascular anatomical shapes and inhomogeneous images under automatic

conditions. By comparison and contrast to other approaches, the TLS method results

show that it has the highest volume overlap rate (JM), the lowest volume difference (VD)

and greater attention to a local geometry of intracranial aneurysms which is an extremely

important improvement in clinical application.

In summary, we found that the volume of the aneurysm models is able to reach a

difference of 24% with different segmentation methods. The anatomical shapes of local

aneurysms were likewise found to significantly influence segmentation results. The geom-

etry overlapping characters (Jaccards measure), maximum surface distance, and mean

absolute surface distance have also exhibited variations across different segmentation

methods. This study revealed the existence of inherent limitations in the application
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of cerebrovascular segmentation present in current segmentation methods.



Chapter 5

Influence of Medical Image

Segmentation Methods on

Intracranial Aneurysm

Haemodynamic

Patient-specific haemodynamic technology has, in recent years, been increasingly utilised

in clinical applications. The results from computational haemodynamic simulation results,

i.e. blood pressure, velocity, wall shear stress (WSS), and energy loss (EL) support vas-

cular surgeons in disease diagnoses and surgical preparation. Furthermore, this is an

active area of research in recent years, in attempt to explain aneurysm formation, de-

velopment and rupture. Computational haemodynamic simulation is typically performed

via the use of geometric results obtained via medical image segmentation. However, even

when employed upon the same set of medical imaging data, the geometry and volume of

intracranial aneurysm models are highly dependent upon the varying segmentation meth-

ods, described in chapter 4. This chapter will investigate the influence of this technology

69
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upon each haemodynamic characteristics, caused by changes in the geometry, caused by

three segmentation methods; the Region Growing Threshold (RGT), Chan-Vese model

(CV) and Threshold-Based Level Set (TLS). Section 5.1 will introduce computational

fluid dynamics (CFD) technology application in intracranial aneurysms with current cir-

cumstances, whilst Section 5.2 will expand upon patient data collection. In total, 45

patients with three different anatomical locations were introduced in this study. The ex-

perimental methods and setting of parameters will be listed in Section 5.3, whilst results

will be detailed in Section 5.4. In summary, we discovered that the average VD of all

three segmentation methods lay in the vicinity of 9.3% (SD=± 4.6%). The computa-

tional haemodynamic simulation was performed via the use of three varying categories

of segmentation methodology, alongside measurement of typical haemodynamic charac-

teristics; i.e. energy loss (EL) and wall shear stress (WSS). From this, we were able to

garner an average of 21.9% (SD=±8.6%, P < 0.01) the difference in EL between the

varying segmentation methods. On the other hand, the difference in WSS sat at an av-

erage of 23.8% (SD=±8.5%, P < 0.01) and 126.4% (SD=±124.4%) for the highest and

lowest volumes of WSS respectively. These results indicated that the difference in EL and

greatest WSS appeared to be both relatively stable and subject to control via the influ-

ence of segmentation method. However, the results of the lowest WSS, were seen to be

significantly dependent upon the surface geometry of the aneurysm surface. It is thereby

essential, in order to confirm the quality of segmentation processes in the application of

patient-specific analyses of cerebrovascular haemodynamics - to validate these individual

segmentation methods as separate technologies.
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5.1 Background

Rupture of intracranial aneurysm (IA) is a much studied topic, with reports indicating

the presence of un-ruptured IAs in approximately 5% of the adult population [100, 101].

Though the rupture rate of IAs is not high [102] it may lead to serious consequences

including disability and mortality [103]. On the other hand, current treatments of IAs

also carry significant risks. To counter this, accurate assessment of IA is thereby essential

in order for clinicians to balance the risk of surgery against the risk of natural IA rupture

[104,105].

Computed Tomography Angiography (CTA) is widely applied in neurovascular imag-

ing as a non-invasive diagnostic tool for the detection and evaluation of intracranial

aneurysms. This makes it possible to visualize three dimensional (3D) cerebral aneurysms,

allowing us to reconstruct patient-specific vessels. Currently, the 3D geometry blood ves-

sel has been applied in the performance of haemodynamic simulations, with the results

subsequently applied as an intelligent tool for the diagnosis and support of aneurysmal

treatment. Computational fluid dynamics (CFD) technology has since been applied to

calculate blood pressure, velocity, wall shear stress (WSS), and energy loss (EL) [106]

- parameters that are difficult to obtain via direct measurement. These haemodynamic

parameters have provided useful information in support of vascular surgeons in disease

diagnoses and surgical preparation. Moreover, reconstruction of vascular structure from

patient specific 3D angiography was used extensively to explain aneurysm formation, de-

velopment and rupture [107–109]. As such, various types of aneurysm morphology simula-

tion have become the mainstay method for assessing the role of morphology in predicting

the risk of rupture [21,110]. Indeed, by improving the generation of idealized bifurcation

models [111], classifying the saccular intracranial aneurysm [112] and conducting in-vitro

analysis of bifurcation aneurysms, this method has become even more effective [113,114].

Despite this, however, a study placing focus on the effect of hemodynamic parameters
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including wall shear stress (WSS) in 20 middle cerebral artery (MCA) aneurysms, has

shed light on evidence that proved the pathogenic effect of high WSS in the initiation of

aneurysms and low WSS in both the growth and rupture of cerebral aneurysms [115]. Ce-

bral et al. [116] performed CFD for a total of 62 cerebral aneurysms at various locations,

with findings that indicated the presence of high-speed narrow jet flows in ruptured cases,

resulting in high flow at the inlet regions of the aneurysm. Under normal conditions,

spatial average was found to be higher within ruptured aneurysms than those within

the parent artery. However, a marked reduction was also seen at the top or within the

bleb area of the ruptured aneurysm. It is thus unclear whether high or low flow induce

aneurysm rupture. Some purport that high flows may induce aneurysm rupture 11 while

others claim that low flow at the aneurysm dome poses significant dangers to aneurysm

integrity [117].

Further studies concentrating on the energy loss (EL) of 4 ruptured and 26 unruptured

internal carotid artery aneurysms found that the EL of ruptured cases was 5 times greater

than those of the unruptured cases [106]. Furthermore, a study of 210 cerebral aneurysms

revealed the presence of higher kinetic energy ratio in ruptured aneurysms, when compared

with their unruptured counterparts [118]. Likewise, a study of 26 aneurysms indicated a

reasonable association between larger regions of low WSS and the appearance of ruptured

aneurysms [119].

The accuracy of CFD simulation is highly dependent upon vessel geometry [120], with

methods of medical image segmentation directly influencing the accuracy of aneurysm

model construction, particuarly regarding the shapes and volumes of the vessel. Despite

the many methods, each with varying approaches and algorithms, there are currently no

dominant segmentation methods, in terms of effectiveness, across all areas [92–94]. Our

previous study has indicated that the volume of the aneurysm models exhibit variances

across different segmentation methods, with the technique likewise influencing the local
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geometric shapes of the aneurysms modelled [95]. The validation and verification of

such methods will thus be an essential process, comparing segmentation methods and

adjusting the parameters of these segmentation techniques in order to confirm the quality

of patient-specific cerebral-vascular haemodynamic analysis. Moreover, though a number

of commercial segmentation software packages have since been released to the market,

there is a current lack of methodological discussion and information regarding validation

processes.

In this thesis, 45 aneurysm patients, including vascular and cerebral aneurysm CTA

imagery across three locations; the internal carotid artery (ICA), middle cerebral artery

(MCA) and anterior communicating artery (AComA), are used for analysis. Three seg-

mentation methods; the Region Growing Threshold (RGT), Chan-Vese model (CV) [75],

and the Threshold-Based Level Set (TLS) [78] proposed by our group are applied to seg-

ment data from these images. Subsequent comparisons of differences were then drawn,

utilising calculations made via the above three segmentation methods, and CFD simula-

tions were performed in order to compare their respective influences upon haemodynamics

research.

5.2 Patient Data

Fourty-five patients with middle size aneurysms were selected from the patient database;

15 ICA, 15 MCA, and 15 AComA aneurysm patients. Three-dimensional Computer To-

mograph Angiograph (3D-CTA) (GE and Siemens) were performed upon all patients,

with cross-sectional images acquired via a CT angiography scanner under the same pro-

tocols, a table speed of 9 mm/s and zero-degree table. Scanning was initiated from the

common carotid artery and continued parallel to the orbito-meatal line to the level of the

Circle of Willis, during which intravenous injection of contrast material was administered
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at a rate of 3.5 mls/s. Aneurysm image was 512× 512 pixel field, whilst slices of contin-

uous thickness were used to segment and reconstruct 3D vascular geometry. Pixels were

expressed in Hounsfield Units (HU), with the CTA imaging carried out from the period

spanning 2008 to 2012. The age of patients ranged between 62− 71 years, with aneurysm

size between 4− 9 mm in this study. Patients selected in this study were all female.

Clinical studies were performed with the consent of the patient in relation to acqui-

sition of aneurysm images. These protocols were approved of by the local institutional

review board and the regional research ethics committees.

5.3 Experiment

For quantitative evaluation, manual segmentation of 45 aneurysms using open source

software, 3D Slicer (http://www.slicer.org), was conducted by an expert radiologist. The

results were utilized as a ground truth (GT) for the comparison of other methods. A

region of interest (ROI), a good representation of the targeted region for segmentation,

was selected depending on the aneurysm size. All experiments were performed on cropped

data sets to reduce calculation time and memory usage, with preparatory work completed

prior to the conduction of the experiments.

5.3.1 Segmentation Methods and Parameter Setting

Three different segmentation methods, the region growing threshold (RGT), the Chan-

Vese model (CV) and we proposed the threshold-based level set (TLS) are employed to

produce three geometry 3D models for one patient case. These geometric models are

used in the later CFD calculation to compare the difference of the features caused by

the segmentation methods. Details of the RGT, CV and TLS are described in chapter

3 and 4. The parameter setting used in the experiment for each segmentation method
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is given as follows: For the RGT, the low intensity threshold T1 is selected to utilize the

threshold of the TLS result for each case, with the high intensity T2 representing the

highest intensity of the aneurysm in the medical image. For the TLS, the initial zero

level set is a rectangular prism surface, constructed by subtraction of two pixels on either

side of the ROI. All forty five experiments utilized a fixed setting of α = 10, β = 3. c is

selected automatically depending on the image quality generated by the medical imaging

modalities in the range 0.1 to 10−4. For the CV, The initial zero level set is a cuboid

surface, constructed in the same manner as the TLS, with the parameters fixed for all

cases; λ1 = λ2 = 0.001, α = 0, β = 0.3.

5.3.2 Haemodynamic Simulation Methods

5.3.2.1 Simulation Process

FD simulation includes three stages: 1) the segmentation of an aneurysm from med-

ical imaging data recorded in DICOM format and generation of a Standard Tessellation

Language (STL) format geometry data; 2) mesh generation and 3) CFD analysis (Figure

5.1). In the first stage, the segmentation methods mentioned above were introduced to

reconstruct vessel and aneurysm geometry. In the second stage, ANSYS ICEM was em-

ployed in the formation of a mesh for CFD simulation. For the third stage, the geometric

models were transferred to a haemodynamic system for CFD analysis.

5.3.2.2 Mesh Generation

As the accuracy of CFD results depend highly upon grid resolution and boundary

conditions, a series of verification and validation analyses of mesh independent tests have

been carried out at the initiation of this study. When the mesh number was found

to have reached approximately 400,000 the haemodynamic character; energy loss (EL),
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Figure 5.1: Components of the computational analysis system: A: DICOM image obtained

from CT or MRI scans. B: 3D angiographic image. C: Numerical model (STL format).

D: Mesh generation for finite element model. E: Haemodynamic results.

began to converge into a constant. Thus, accurately reliable results could be obtained

with the total of 563,000 finite elements and 240,000 nodes used in this study. In order

to accurately calculate the WSS, five layers of prism mesh were inserted onto the arterys

internal surface. The distance of the first prism mesh to the artery surface was set to 0.01

mm.

5.3.2.3 Fluid Dynamic Calculation

Flow simulation is based on the Navier-Stokes (N-S) momentum equation and conti-

nuity equation defined as below:
∂
∂t

(ρui) + ∂
∂xj

(ρuiuj) = ∂p
∂xi

+ ∂
∂xj

[
µ
(
∂ui
∂xj

+
∂uj
∂xi

)]
∂ρ
∂t

+ ∂
∂xj

(ρuj) = 0

(5.1)

Where i, j =1, 2, 3, x1, x2, x3 represents coordinate axes, ui, uj and p are the velocity

vectors and the pressure in the point of the fluid domain, ρ and µ are blood density and

viscosity, t is time.
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5.3.2.4 Blood Flow Modeling and Boundary Conditions

In this study, calculations were performed with steady flow rate 250 ml/min, 150

ml/min, and 100 ml/min at the parent artery inlet for idealized models using average flow

rate in the ICA, MCA, and Acom respectively [121]. CFD calculations were performed

via the use of CFX 14.1 solver package (ANSYS). In this study, an incompressible, steady-

state laminar flow model was considered for the simulation. In large arteries (diameter

> 0.5 mm) the Non-Newtonian behaviour of the blood flow is negligible, so blood was

assumed to be a Newtonian fluid with blood flow density and dynamic viscosity of 1050

kg/m3 and 0.0035 Pa.s respectively [115]. By adopting the conventional assumption of a

lack of resistance in the cerebral circulation, outlet boundary conditions were set to zero

pressure [122]. Along the artery and aneurysm wall, a no-slip flow boundary condition

was imposed at the vessel’s inner lumen and arteries were assumed to be rigid.

5.3.2.5 Haemodynamic Result Analysis; Energy Loss

Energy loss is calculated as the power difference from inlet to outlet, and can be

calculated as follows:

EL =
∑(

Pi + ρ
1

2
v2
i

)
−
∑(

Po + ρ
1

2
v2
o

)
(5.2)

where ρ is density, v is velocity, i indicates inlet, and o means outlet. In order to calcualte

the difference from each segmentation method, the energy loss difference is calculated via

the following equation;

4EL (%) =
|ELGT − ELi|

ELi
× 100 (5.3)

where, GT is Ground truth method, i is segmentation method RGT, CV, and TLS.



78
Chapter 5. Influence of Medical Image Segmentation Methods on Intracranial Aneurysm

Haemodynamic

5.3.2.6 Haemodynamic Result Analysis; Wall Shear Stress (WSS)

The wall shear stress (WSS) is derived from predicted flow velocities. The parameter

is known to be associated with initial thickening and thrombosis formation, with the WSS

defined as:

WSS = −µ∂vt
∂n
|wall (5.4)

where µ is the dynamic viscosity, v represents the velocity parallel to the wall and is

the unit vector perpendicular to the wall. Like EL, the WSS is also calculated via the

difference between each segmentation method;

4WSS (%) =
|WSSGT −WSSi|

WSSi
× 100 (5.5)

where, GT is Ground truth method, i indicates segmentation method RGT, CV, and

TLS.

5.3.3 Segmentation Results Evaluation

Aneurysm volume size was calculated through use of the boundary geometry, seg-

mented by various segmentation methods. The volume difference (VD) was calculated

via utilisation of the equation, V D =
∣∣∣ (Vs−Vg)

Vg

∣∣∣ × 100%, where Vg represents the volume

of GT and Vs represents the volume of the TLS, RGT or CV methods. Jaccards measure

(JM) is a volume overlap metric, utilised to count the percentage of voxel intersections

for the paired segmentations. JM = 2×|Sg∩Ss|
Sg∪Ss

, where Sg represents the voxels created by

the GT and Ss the voxels generated through use of the TLS, RGT or CV methods. Haus-

dorff distance (HD) measures the maximum surface distance. This measure is extremely

sensitive to outliers and may not reflect the overall degree of correlation.
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5.4 Results

Table 5.1 listed the details of all the segmentation and haemodynamics simulation

results classified by the intracranial aneurysm locations and segmentation methods.

ICA MCA AcomA

VD(%)±SD
TLS 6.2±2.9 8.5±4.7 6.4±4.8
RGT 6.4±3.5 8.8±3.5 9.1±3.6
CV 13.5±4.1 10.3±7.6 14.3±6.2

JM(%)±SD
TLS 93.0±1.2 92.0±1.5 92.3±1.5
RGT 92.5±1.8 90.2±2.1 92.1±1.6
CV 90.2±1.9 89.5±1.9 88.0±2.9

HD(pixel)
TLS 0.74 0.70 0.72
RGT 0.77 0.75 1.06
CV 1.04 1.61 1.04

EL(%)±SD
TLS 14.8±5.5 17.9±8.4 29.2±5.8
RGT 21.2±7.2 28.8±8.1 26.6±10.8
CV 23.1±8.0 22.5±11.4 25.0±13.0

WSS(high,%)±SD
TLS 15.3±4.8 20.3±8.6 19.0±5.8
RGT 22.0±7.3 26.2±13.6 31.4±13.6
CV 23.7±4.8 21.7±8.5 36.3±9.5

WSS(low,%)±SD
TLS 103.5±98.2 269.4±391.2 60.0±18.7
RGT 96.1±112.8 268.7±205.0 82.4±67.6
CV 99.8±95.7 52.4±16.1 104.9±114.5

Table 5.1: The segmentation and haemodynamics simulation results.

5.4.1 Geometric Shapes Observation

Figure 5.2 (e) represents a picture that was taken during treatment of an IA. Two

protrusions; A and B, can be clearly observed in the IA, with protrusion A located upon

the larger protrusion B. Figure 5.2 (c) and (d) indicate that the results of RGT and TLS

methods segment both A and B protrusions. On the other hand, analysis of Figure 5.2 (b)
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reveals that the CV method leads to the display of protrusion B only, whilst protrusion

A is not replicated in the segmented result.

Figure 5.2: Segmentation results comparison (aneurysm with bleb), from left to right: (a)

GT, (b) CV, (c) RGT, (d) TLS, and (e) photo from open head surgery. The aneurysm

bleb was only able to be observed by the TLS method (d).

5.4.2 Aneurysm Segmentation Results

All model volume differences are listed in Figure 5.3. The largest difference in terms

of aneurysm volume, compared with the manual GT method, is around 15%, 17% and

18% within the ICA, MCA, and AComA aneurysms respectively. The maximum VD

usually occured in cases whereby the aneurysm connected with multiple arteries. The

results of VD from TLS method appeared smaller than that of the other segmentation

methods. The average VD of TLS segmentation methods were 5.5% (SD=±2.9%), 8.7%

(SD=±4.7%), 9.1% (SD=±4.8%) for ICA, MCA, and AComA aneurysms respectively.

The study indicated that the volume differences seen in aneurysm size may be controlled at

a maximum under 15% (SD=±6.2%), through the use of various segmentation methods.

The geometry volume overlap ratio was calculated via the use of JM, with the results

depicted in Figure 5.4. The average overlap ratio are; 91.9%, 91.5%, and 90.6% for ICA,

MCA, and AComA aneurysms respectively. The TLS method appears higher in terms of
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overlap ratio than the other methods. HD measurements indicate the maximum surface

distance to outliers. The maximum HD usually occurs at the top of the intracranial

aneurysm; e.g. bleb location. Figure 5.5 depicts the results of HD within three types of

aneurysm. The HD results obtained via the TLS method was shown to be lower than

0.8 pixels, coinciding with the results obtained via the manual GT method. The greatest

HD was seen to occur in the MCA intracranial aneurysm, a result hypothesized to be due

to intracranial aneurysm surface roughness; i.e. from blebs, and the entailing increase in

segmentation complexity.

Figure 5.3: Volume difference against segmentation methods.
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Figure 5.4: Comparison of aneurysm and vessel volume overlap results.
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Figure 5.5: Comparison of aneurysm HD results.
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5.4.3 Haemodynamic Simulation Results

CFD simulation is performed via a process that includes segmented geometries. In or-

der to compare various models under the same flow conditions; inflow was assumed at 150

ml/min. The outflow condition is extended to a length distant enough to allow pressure

recovery at the outlets. Figure 5.6 depicts the results of EL differences, with the average

EL differences calculated from TLS, RGS, and CV segmentation methods shown to be

18.2% (SD=±6.8%), 24.4% (SD=±9.3%), and 23.2% (SD=±9.8%) respectively (P<0.01).

Figure 5.7, on the other hand, illustrates pressure distribution upon the aneurysm sur-

Figure 5.6: Haemodynamic results; EL.

face, with the distributions exhibiting variations across the various segmentation methods.

Figure 5.8 depicts the average results of the highest WSS, calculated via the use of the

three methods of segmentation. The average of the highest WSS difference, calculated
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from TLS, RGS, and CV segmentation methods were found to be 16.8% (SD=±6.8%),

26.4% (SD=±8.3%), and 28.3% (SD=±7.8%) respectively (P<0.01). In this study, the

highest WSS was observed at the inlet of aneurysm neck, seen in Figure 5.9. We found

significant discrepancies for the lowest WSS, measured via each method. The average

differences from the 45 intracranial aneurysms were found to be 144.3% (SD=±169.4%),

149.1% (SD=±129.4%), and 85.7% (SD=±75.4%) for TLS, RGT, and CV respectively

(P> 0.1). The lowest WSS was found at the top of the aneurysm, a location with a high

risk of rupture, with most IA ruptures occurring commonly at the top of the IA, rather

than at its neck [123]. In particular, for ICA, MCA and AComA IAs respectively, there

was a 99.8% (SD=±102.2%), 196.8% (SD=±204.1%), and 82.4% (SD=±66.9%) differ-

ence when compared to the results obtained via manual GT segmentation method. This

shows that the haemodynamic results are dependent upon the accuracy of segmentation

methods. Figure 5.8 illustrates the distribution of WSS via the use of different segmen-

tation methods, with the maximum difference of the lowest WSS found to be 1033% in

the AComA IA segmented via use of the RGT method. These results indicate that local

differences arose for WSS, particularly in the region of the bulb.

5.5 Discussion

The three segmentation methods introduced in this study are popular technologies,

commonly utilised in medical image reconstruction. Though vessel boundary is rather

easily extrapolated via the RGT method, its issues lie with the sensitivity of threshold

selection and seed position [124]. Based on level set technology, the CV method is capable

of defining vessel boundaries despite lack of clarity, and is thereby able to model images

with approximate boundaries [75]. This level of accuracy, however, is not sufficient for the

conductance of haemodynamics studies. To counter this, the TLS method was proposed
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Figure 5.7: Pressure distributions.
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Figure 5.8: Haemodynamic results; WSS (highest volume).
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Figure 5.9: WSS distributions.
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to improve upon these segmentation applications, a technique with the ability to segment

aneurysms automatically without the setting of a seed point or intensity threshold, and is

likewise available for the segmentation of complex cerebrovascular anatomical shapes[28].

Our results have confirmed that the reconstructed geometry, segmented via the use of TLS,

is able to be controlled within an acceptable range (VD < 10% SD=±5%, JM>90%, and

HD<1 Pixel ), with the differences found to be significantly lower than previous methods.

Our haemodynamic results indicate that the volumes of EL difference are to be con-

trolled to a level with deviations of less than 20% between the differing segmentation

methods. The results of TLS method also reveal the lowest difference and deviation

(18.2%, SD=±6.8%) when compared to the other models of segmentation. On the other

hand, we found that the results of WSS were notably dependent upon technique, par-

ticularly in terms of the quality of the lowest WSS. WSS is known to be calculated via

local velocity vectors near the vessel surface (Equation 4), a major reason behind its sen-

sitivity to and influence by the local surface geometry. As mentioned in equation 2, EL

is a magnitude volume which is typically only influenced by the flow parameter at both

the inlet and outlet. Although the local geometry of the aneurysm likewise influences the

subsequent loss of flow power, the EL values obtained have been found to lie within a

statistically reasonable range. Using the TLS method, VD and overlap difference can be

restricted to a certain range (ie: under VD <10% SD=±5%, JM>90%, and HD<1 Pixel).

The values of EL were thus maintained at a given level throughout this study, with a de-

viation range below 20%. However, the results of WSS are uncontrollable and uncertain,

with the maximum difference of WSS, particularly for the lowest WSS, calculated to be

over 1000% (10 times) different from segmentation methods. We therefore believe that it

may be enough proof to introduce WSS parameters in estimating the risk of aneurysm

rupture, with further discussions to come, when these segmentation methods are fully

validated.
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5.6 Conclusion

Three dichotomous segmentation methods were introduced for the analysis of 45 cere-

bral aneurysm models in terms of geometric shape, volume, and haemodynamic results.

Although based on the same medical imagery and data, differing methods of image seg-

mentation generated alterations in shape, volume, thereby resulting in significant haemo-

dynamic results. The results of EL were observed to be statistically stable as opposed to

the relative uncertainty of the WSS, with the occurrence of uncertain results negatively

affecting the accuracy of patient-specific haemodynamic applications. The TLS method

was proposed to improve cerebrovascular aneurysm segmentation applications, a tech-

nique with the ability to segment aneurysms automatically without the setting of a seed

point or intensity threshold, and is likewise available for the segmentation of modifiable

anatomical shapes.

We believe that a validation process to confirm the results of these segmentations, will

be of vital importance in limiting the error arising from such manipulations of image data.

With this, the results that are influenced by the segmentation process must be included

in the haemodynamic study. A series of in-vitro and in-vivo validation will thereby be

performed in our future projects in order to address this issue.



Chapter 6

Validation of the Threshold-based

Level Set Segmentation Method via

use of Silicone Models

In chapter 5, we stated the necessity and importance of the validation process for

segmentation methods applied in medical imaging. In short, all medical applications

based upon medical image segmentation technique should entail a process of segmentation

method validation. We conducted in-vivo validation tests via the use of eight patient-

specific aneurysm cases, with the results given in chapter 4. In this chapter, we performed

a series of in-vitro validation tests via the use of three designed silicone aneurysm models

and a patient-specific silicone aneurysm model. These silicone models were scanned by 3D

CT with four different dilution rates of contrast agent. The outcomes were then applied

to validate our previously proposed segmentation method; Threshold-Based Level Set

(TLS). These results were likewise employed to investigate optimal parameter settings

for the best segmentation results. Four different types of silicone aneurysm models were

designed for this study.

91



92
Chapter 6. Validation of the Threshold-based Level Set Segmentation Method via use of

Silicone Models

Section 6.1 will detail in brief, the current situation of segmentation method validation

in intracranial aneurysms research and an introduction of in-vivo validation testing .

From Section 6.2 to Section 6.4 we will explain data acquisition, segmentation methods

and parameter setting and the results of these methods of evaluation. Section 6.5 will

describe the results of validation, followed by discussion, which will be listed Section 6.6.

In summary, validation results obtained show that at the highest contrast solution, all

segmentation methods achieved an overlap rate of more than 93% and less than 0.7 pixels

of MASD. Even at the lowest contrast dilution, the TLS method is able to achieve an

overlap of 89%. The TLS method provided a relatively stable geometry at various contrast

densities. The study validated the accuracy of the proposed TLS segmentation method

and discussed the optimal parameter settings for automatic segmentation.

6.1 Background

Recently, more researchers realized the importance of segmentation method validation

based on the relationship between segmentation results and its further application in

intracranial aneurysm research [100, 104, 106, 125–128]. However, challenges still remain

regarding the validation of any kind of segmentation methods, a point particularly true

for individual patients [19, 129–131]. Bogunovic et al. [132] reported an evaluation study

for automated segmentation of cerebral vasculature with aneurysms using geodesic active

region method in 3DRA and TOF-MRA, Firouzian et al [91] proposed and validated a

Geodesic Active Contours-based level set method which employed region information for

intracranial aneurysm segmentation in CTA.

To validate our previously proposed Threshold-Based Level Set (TLS) segmentation

method [78], a series of in-vivo and in-vitro validation tests were performed. The details of

the in-vivo validation were introduced in Chapter 4. Four types of aneurysm models which
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were designed with differing complexities of shape were introduced for in-vitro validation

tests, with the in-vitro process designed as following: First, four types of silicone models,

manufactured by 3D printer, were scanned via 3D CT. These silicon aneurysm models

were injected with four different dilution rates of contrast agent. the outcomes were

then segmented via three segmentation methods; Region Growing Threshold (RGT), and

Chan-Vese model (CV). Following this, four different evaluation measures were utilized

as indexes of accuracy, and compared with the results; the measurement of arterial vol-

ume differences (VD), Jaccards measure (volume overlaps metric, JM), Hausdorff distance

(maximum surface distance, HD) and mean absolute surface distance(MASD). Moreover,

the consistency of segmentation methods in segmented results were investigated via sta-

tistical analyses using the intraclass correlation coefficient (ICC) [133] and paired T-tests.

The validation results were likewise employed to investigate optimal parameter settings

for the TLS method, in order to obtain the best segmentation results.

6.2 Experiment Data Acquisition

Four types of silicone aneurysm models with different aneurysm forms including sac-

cular, fusiform and patient specified, different size and angles of parent artery were used

in this study. The silicon models were set in one plastic container and the container was

filled with water during CT scan (Figure 6.1). The silicone models were scanned via use

of a 3D CTA machine (GE Healthcare, Discovery CT750). The resolution of each CT

image was 512 × 512 pixel field (0.12mm × 0.12mm), with slice thickness set to 0.625mm.

The first set of data was obtained without the use of contrast (therefore rendering

the models with air). The other four sets of results were obtained by using four types of

diluted contrast medium; 1:5, 1:10, 1:20, and 1:40.
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Figure 6.1: Experiment equipment. Four types of silicone aneurysm models and the CT

scan. Top left: the silicone models in a plastic container. Top right: The models in the

CT scan. Bottom from left to right: model 1 shift to model 4.
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6.3 Contrast Medium and Dilution

The Omnipaque 350 (350 mgI/mL, Iohexol) contrast medium was used to dilute four

differing amounts of contrast medium in the ratios 1:5,1:10,1:20 and 1:40 for each scan,

with the dilution of the contrast medium 1:5 (D1:5, 20%) representative of one part

contrast agent to four parts water. This principle can likewise be applied to the dilutions

of 1:10 (D1:10, 10%), 1:20 (D1:20, 5 %) and 1:40 (D1:40, 2.5%). A histogram of the

diluted intensity distributions is depicted in Figure 6.2. The intensity distributions of the

real intracranial aneurysm DAS image was similar to the experiment image which utilised

the D1:5 and D1:10 contrast medium. Moreover, the intensity ranges for the CTA image

of the actual aneurysm, were similar to those of the experiment image, using the D1:5

and D1:10 contrast medium.

6.4 Data Preparation

For quantitative evaluation, linear registration was first performed for all five sets of

data for the same silicone model, before a region of interest (ROI) was selected for all

data.

6.4.1 Ground Truth

There are two ways to generate a ground truth for each silicone model in this study.

• Idealized silicone models (three designed models: model 1, model 3 and model 4):

Three silicone models were ideally designed via use of an open-source Computer-

Aided Design (CAD) system (FreeCAD, http://www.freecadweb.org). Figure 6.3

shows the silicone models and Table 6.1 lists all design sizes for these models. A 3D

printer was used to generate 3D aneurysm models as foundations for the manufacture
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Figure 6.2: Histogram of diluted contrast medium intensity distributions (HU) in exper-

iment images.
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of silicone models. Firstly, both the non contrasted CT image data set for the silicone

model and this model
′

CAD model data set were imported into the 3D Slicer (open

source (http://www.slicer.org)). Secondly, CAD model data set was registered and

calibrated with the CT image data set. Following this, a set of binary image data

for the CAD model was generated via the PolyData To Label Map module of 3D

Slicer. This binary image data was used as the ground truth (GT) of the idealized

silicone model in the comparison procedure. Figure 6.4 depicts an example using

model 3.

Figure 6.3: Three designed silicone aneurysm models.

DesignSize(mm)

BulgeDiameter(A) BulgeLength(B) TubeDiameter Thickness

Model1 14 12 6 0.6
Model3 10 18.32 6 0.6
Model4 12 18.32 8 0.6

Table 6.1: Design size of the three silicone models.

• Patient specified silicone aneurysm model (one model: model 2):

The patient specified silicone aneurysm model is shown in Figure 6.5. To generate a

ground truth for model 2, a set of data in which contrast medium was not utilised,

was segmented via manual means. This manual segmentation was conducted by an

experienced radiologist through the use of 3D Slicer. The result obtained via manual
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Figure 6.4: An example (model 3) for the generation of ground truth. (A) The red 3D

model represents the CAD model. (B) The gray 2D images are the CT images of the

silicone model, imported to 3D slicer in axial, sagittal and coronal planes; the red lines

represent the surface lines of the CAD model in 2D, which are registed and calibrated

with the CT image, whilst the blue area represents the generated ground truth (GT).
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segmentation was utilized as the ground truth (GT) for the patient specified silicone

aneurysm model.

Figure 6.5: Patient specified silicone aneurysm model.

6.5 Segmentation Methods and Parameter Setting

Three segmentation methods were introduced in this study; Region Growing Thresh-

old Connecting (RGT), Chan-Vese model (CV), and Threshold-Based Level Set (TLS).

Details of the RGT, CV and TLS approaches were described in Chapters 3 and 4. Here

we focus on the setting and selection of parameters.
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6.5.1 The Region Growing Threshold (RGT)

To execute the RGT segmentation method I (X) ∈ [X − T1, X + T2], two initial in-

tensity thresholds (low and high) need to be inputted. The initial high threshold value

is the highest intensity of the images, with the initial low threshold, also called the seed,

potentially impacting the accuracy of segmentation results. In this study, two sets of

RGT segmentation results based on two initial low threshold selection technique; RGT

(ave) and RGT (best), were produced for all contrast solutions and models. RGT (ave)

represents the results of segmentation when the initial low threshold value was selected

to be fixed at 800 HU, 370 HU, 260 HU and 180 HU for the contrast dilutions 1:5, 1:10,

1:20, and 1:40 respectively. The initial low threshold value selection was based upon the

histograms of diluted contrast medium intensity distributions (HU) in the experiment

images (Figure 6.2). RGT (best) represents the best segmentation results selected from a

range of intensity thresholds. We performed a series of RGT segmentation for the same

image with differing initial low threshold values, with the results from segmentation com-

pared to the ground truth (GT) and the overlap rates (JM) between the results and GT

calculated. Figure 6-6 indicates the relationship between the overlap rates (JM) and the

initial low threshold (T) in all dilution rates and models. E.g. in Figure D1:40, RGT

(best) chose the initial low threshold value 180 HU for models 2, 3 and 4, and 200 HU for

model 1.

6.5.2 The Threshold-based Level Set (TLS)

The initial zero level set is a rectangular prism surface, constructed via subtraction

of two pixels on either side of the ROI. Two parameters thus need to be set: α, β from

the TLS equation: ∂ϕ
∂t

= |Oϕ|
(
α (I − T ) + βdiv

(
g Oϕ
|Oϕ|

))
. β is a constant of curvature

smoothness; as β increases, the curvature surface becomes increasingly smoother. Because
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Figure 6.6: The region growing threshold selection for RGT (best). The relationship

between the overlap rate (JM) and the initial low threshold (T).
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the local surface shape of intracranial aneurysms are vital in preventing data loss from the

aneurysm surface, in this study, we set β =1 to indicate a complete lack of smoothness.

For selection of the best image propagation constant, for the application of the TLS

method in intracranial aneurysm segmentation, a selection test for the image propagation

constant was conducted.

6.5.2.1 TLS Image Propagation Constant α Selection Test

When β is set to 1, the image propagation constant is the only parameter to re-

quire optimization in the equation: ∂ϕ
∂t

= |Oϕ|
(
α (I − T ) + βdiv

(
g Oϕ
|Oϕ|

))
. α is a tuning

parameter that allows for accurate bias adjustment of the TLS method and enables the

dragging of TLS results towards a specific object of segmentation , or more precisely, an

intracranial aneurysm. A validation test had been performed. In the test, we gave the

image propagation constant α=5 at the first iteration, then increased by 1 at the next

iteration. In each iteration, the segmentation results, e.g. volume and the mean of the

aneurysm intensity value T, would change slightly. The relationship of the overlap rate

(JM) and the α value is shown in Figure 6.7. From Figure 6.7 (a), we can see that the in-

creases of JM are proportional to the rise in α across all models and dilution rates. When

α=5, the JM is lower than others, meaning that the image propagation constant is not of

adequate strength for the segmentation results to closely match reality. For example, in

model 4, D1:5, we see that when α=5, the JM is 90%. When α rises to 10, JM is around

94%. A difference of JM for each iteration, with increasing is illustrated in Figure 6.7

(b). This figure clearly indicates that, after α rises to 15, the difference for the overlap

rate (JM) is around zero for all models and dilution rates. Based on the test results of

TLS image propagation for constant α, we suggest the use of the parameter α ≥ 15 or

the accuracy of the TLS result. In this study , we will use α=15.
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6.5.3 The Chan-Vese model (CV)

The initial zero level set for CV model is a cuboid surface, constructed in the same

manner as the TLS method. we used a fixed setting for the parametters in the equation:

∂ϕ
∂t

= |Oϕ|
[
λ2 (I − µout)2 − λ1 (I − µin)2 − α + βdiv

(
Oϕ
|Oϕ|

)]
. For all models and dilution

rates; λ1 = λ2 = 0.005, α = 0, β = 1.

6.6 Segmentation Results Evaluation Methods

Silicone model volume size was calculated through use of the boundary geometry,

segmented by various segmentation methods. The volume difference (VD) was calculated

via utilisation of the equation, V D =
∣∣∣ (Vs−Vg)

Vg

∣∣∣ × 100%, where Vg represents the volume

of GT and Vs represents the volume of the TLS, RGT or CV methods. Jaccards measure

(JM) is a volume overlap metric, utilised to count the percentage of voxel intersections

for the paired segmentations.

JM = 2×|Vg∩Vs|
Vg∪Vs , where Vg represents the voxels created by the GT and Vs the vox-

els generated through use of the TLS, RGT or CV methods. Hausdorff distance (HD)

measures the maximum surface distance. This measure is extremely sensitive to outliers

and may not reflect the overall degree of correlation. The mean absolute surface distance

(MASD), indicates the average degree of difference between two surfaces and does not

depend on aneurysm size.

To evaluate the efficacy of the segmentation methods across all dilution rates for

the segmented results from the four silicone models, the intraclass correlation coefficient

(ICC), a statistic tool, was employed to assess inter-method consistency, e.g. TLS vs.

RGT, or TLS vs. CV. The ICC was defined as ICC = MD−M
MD+(k−1)M

where MD represents

the data variance for the contrast agent and the model variability and M, the residual

variance due to the difference between segmentation methods, k represents the number
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Figure 6.7: TLS image propagation constant selection test results. (a) The overlap rate

(JM) versus . (b) The difference of JM versus .
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of different methods compared, namely k=2 in this study. The ICC ranges from 0 to 1,

indicating the degree of inter-method consistency. When ICC = 1, the two segmentation

methods compared are of high consistency, the results of segmentation will thus not be

impacted by the methods used.

6.7 Results

6.7.1 TLS Segmentation Results

Two types of TLS segmentation results are listed in Table 6.2. In Table 6.2, the

volume and the mean of the boundary threshold (T) of the models were directly calculated

via use of the TLS method, and the volume overlap rate (JM), the volume difference,

the maximum surface distance (HD) and the mean absolute surface distance (MASD)

were obtained from the TLS method for comparison with the ground truth. Figures 6-8

illustrates the TLS segmented results of all models in 2D and 3D. The highest volume

overlap rate (JM) was observed in the contrast dilution rate D 1:5 for all models. The

poor performance of JM between all models was perceived in the patient specified model

(model 2). The biggest volume difference (VD) was also seen in the patient specified

model regardless of contrast dilution rates. Models 1 and 2 feature the largest HD across

all contrast dilution rates. HD measures the maximum surface distance between TLS

and the ground truth and is sensitive to outliers. In this study, Figures 6.8(a) Model 1

and Figures 6.8(b) Model 2 (blue arrows) clearly illustrate that the outliers were found

in the aneurysm neck position, the bleb location and the vessel bending point. The mean

absolute surface distance (MASD) measures the average surface difference between TLS

and the ground truth. The results show that all models in all contrast dilution rates

expressed less than a 1.5 pixel difference, when compared with the ground truth. Even

Models 1 and 2, though having the higher HD, indicating a difference in location, had a
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MASD that was relatively small as MASD reflects the overall degree of correlation. In

summary, TLS exhibited better performance in high contrast medium situations. The

reason for this is that a high contrast medium would make the boundary between models

and the background sharper within CTA scan images. Its boundaries are crisp steps, not

gradual, thus a good quality of images contributes to a greater segmentation result. The

model shapes impact some TLS results slightly, e.g. HD, VD. Overall, TLS results were

not impacted by model shapes in high contrast medium situations.
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Figure 6.8: TLS segmentation results of model 1 (a), model 2 (b), model 3 (c) and model

4 (d), in 2D and 3D. The grey image is a CT scan image, the beige image is the TLS

segmented result and the green image represents the ground truth image. The blue arrows

point to a difference in the location. Row 1: contrast dilution 1:5, row 2: contrast dilution

1:10, row 3: contrast dilution 1:20, and row 4: contrast dilution 1:40.
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Model1 Model2 Model3 Model4 Mean±SD
D1 : 5
V olume 2448.02 1299.11 1396.10 1392.26
T 898.09 677.32 849.80 916.54
JM(%) 94.24 92.31 96.08 92.32 93.74±1.80
V D(%) 0.01 6.45 0.69 6.66 3.45±3.59
HD(pixel) 7.51 5.63 4.10 4.84 5.52±1.47
MASD(pixel) 0.71 0.76 0.47 0.86 0.70±0.17

D1 : 10
V olume 2506.76 1207.68 1400.26 1351.31
T 456.46 440.51 308.22 463.13
JM(%) 93.09 91.97 91.62 91.86 92.13±0.65
V D(%) 0.70 4.69 0.92 1.43 1.95±1.85
HD(pixel) 9.18 5.64 5.80 7.85 7.12±1.70
MASD(pixel) 0.60 0.77 0.99 0.91 0.81±0.17

D1 : 20
V olume 2396.85 1299.08 1390.47 1542.07
T 293.03 251.43 179.35 312.15
JM(%) 93.35 90.15 90.70 90.18 91.10±1.53
V D(%) 0.89 3.74 1.23 1.34 1.80±1.31
HD(pixel) 13.36 12.85 6.50 12.11 11.21±3.18
MASD(pixel) 1.23 0.88 0.99 1.18 1.07±0.16

D1 : 40
V olume 2403.13 1257.20 1333.02 1337.07
T 218.34 196.97 200.86 202.24
JM(%) 91.76 82.87 91.31 91.00 89.24±4.26
V D(%) 1.70 9.16 2.82 1.98 3.91±3.53
HD(pixel) 11.36 13.90 10.52 6.15 10.48±3.22
MASD(pixel) 1.24 1.41 0.98 0.96 1.15±0.22

Mean±SD
V olume 2438.69±50.78 1265.77±43.47 1379.96±31.55 1405.68±93.89
JM(%) 93.11±1.03 89.33±4.41 92.43±2.46 91.34±0.95
V D(%) 0.84±0.69 6.01±2.38 1.42±0.96 2.85±2.56
HD(pixel) 10.35±2.55 9.51±4.49 6.73±2.72 7.74±3.16
MASD(pixel) 0.94±0.34 0.95±0.31 0.86±0.26 0.98±0.14

Table 6.2: TLS segmentation results.
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6.7.2 Segmentation Methods Comparison Results

Comparison of all segmentation methods are listed in Table 6.3. These segmentation

results were generated via TLS, RGT and CV methods. Two results, however, were

produced via the RGT method - RGT (best) and RGT (ave). Details are listed in Section

6.5.1. In total, four segmentation results as evaluated by JM, VD, HD and MASD were

compared in this section. By comparing these segmentation results in different models and

under medium contrast dilution rates, we aim to investigate the applicability, accuracy

and alternatives of segmentation methods when utilised in certain situations.

Figure 6.9 a) depicts the volume overlap rate (JM) by models. The TLS achieved a

JM of over 89% across all models. The JM value of model 2 revealed the lowest value

across all segmentation methods. As model 2 has the most complex shape, it indicates

that the shape of the model could have impact upon volume overlap rate. Figure 6.9 b)

indicates the overlap rate (JM) by dilution. When the contrast agent decreased from high

D1:5 to low D1:40, the value of JM declined across all TLS, RGT and CV methods, with

the average overlap ratios found to be 91.70±2.92%, 89.59±4.30%, and 83.03±11.46%

for TLS, RGT (ave), and CV respectively. When compared to other methods, the TLS

method appears higher in terms of overlap ratio.

Figure 6.10 a) depicts the volume difference (VD) across various models. The largest

VD was recorded in model 2, across all segmentation methods. The VD for model 2 were

found to be : 6.01±2.38%, 11.13±5.10% and 33.92±30.31% for TLS, RGT (ave), and CV

respectively.

Figure 6.10 b) illustrates volume difference (VD) by dilution. The highest VD across

all methods was recorded with a dilution of 1:40. These were 3.91±3.53%, 12.77±4.74%

and 52.62±24.93% for TLS, RGT (ave), and CV respectively. The TLS method appears

lower in terms of VD than the other methods. The VD of the TLS was found to be under

7%, across all models and contrast dilutions.
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(CI = 95%) Mean±SD Min Max

TLS
JM(%) 91.70±2.92 90.15 93.26
V D(%) 2.78±.65 1.37 4.19
HD(pixel) 8.58±.31 6.82 10.35
MASD(pixel) 0.93±.25 0.80 1.06

RGT (best)
JM(%) 91.81±3.14 90.14 93.48
V D(%) 1.05±0.80 0.63 1.48
HD(pixel) 8.03±2.84 6.51 9.54
MASD(pixel) 0.94±0.39 0.73 1.15

RGT (ave)
JM(%) 89.59±4.30 87.30 91.89
V D(%) 6.84±4.89 4.23 9.45
HD(pixel) 8.83±3.48 6.97 10.69
MASD(pixel) 1.10±0.44 0.86 1.33

CV
JM(%) 83.03±11.46 76.93 89.14
V D(%) 20.40±23.80 7.72 33.08
HD(pixel) 15.02±9.09 10.18 19.86
MASD(pixel) 1.45±1.03 0.91 2.00

Table 6.3: Comparison of segmentation methods.

Figure 6.9: Volume overlaps results comparison by model and contrast medium dilution.
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Figure 6.10: Volume difference against segmentation methods by model and contrast

medium dilution.

TLSvs.RGT (best) TLSvs.RGT (ave) TLSvs.CV

ICC P − value ICC P − value ICC P − value
JM 0.90 0.754 0.81 0.002 0.36 0.002
VD 0.19 0.014 0.44 0.001 0.09 0.007
HD 0.81 0.259 0.70 0.712 0.38 0.004

MASD 0.68 0.883 0.66 0.045 0.20 0.043

Table 6.4: Statistical results.
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HD measurements indicate the maximum surface distance to outliers (Figure 6.11).

MASD represents the mean absolute surface distance (Figure 6.12). The largest HD and

MASD were found to be: 11.21±3.18, 1.15±0.22; 13.26±1.30, 1.45±0.17; 22.29±10.43,

2.68±1.36 pixels through all models and contrast dilutions for TLS, RGT (ave), and CV

respectively. The TLS method appears lower in terms of HD and MASD when compared

to other methods.

Furthermore, as RGT is a semi-objective method, the intensity threshold setting may

affect the results of segmentation From Figure 6.9, we can see that the JM of RGT (best)

was better than the JM of TLS in model 2 and the contrast solutions D1:5 and D1:40.

The RGT (best) also achieved, VD was lower than 1.48±1.10%, whilst the largest of HD

was 11.05±0.47 pixels and the largest of MASD was found to be 1.27±0.58 pixels across

all models and contrast solutions.

In this study, we found that model geometry shape has significant impact upon seg-

mentation results in the aneurysm neck, bleb and bending locations. In Model 1, the

segmentation results obtained from the TLS method indicated that JM was higher, VD

and MASD was lower. This means that the TLS method was able to achieve high quality,

global segmentation results. Despite this, the segmentation result HD, linked to local ge-

ometry shape, was high. As mentioned in Section 6.7.1 and Figure 6.8, the most outliers

and differences were found to occur in the aneurysm neck, bleb and bending positions.

Model 1 represents a saccular neck aneurysm. Other methods exhibited the same results

as the TLS in Model 1. Model 2 is a patient-specified aneurysm model characterised by a

greater number of bends and a complex structure. The global segmentation results JM,

VD and the local segmentation result HD all exhibited poorer performance. Secondly,

we found that apart from TLS method, both the RGT and CV also exhibited better

performances in high contrast medium situations. A high contrast medium contributes to

image quality with a sharp boundary, and allows for greater segmentation results across
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all segmentation methods.

In summary, the TLS method exhibited better performance in JM, VD, HD and MASD

when compared to RGT and CV methods under automatic operation. Although the RGT

method is able to achieve the best performance (RGT (best)) when the initial threshold

is set at the right value, it is hard to achieve this, especially in an automatic manner.

Figure 6.11: The maximum surface distance (HD) against segmentation methods by model

and contrast medium dilution.

6.7.3 Statistic Analysis

The intraclass correlation coefficient (ICC) and the paired T-tests were performed upon

three pairs of segmentation methods in order to evaluate their consistency in determining

the values of JM, VD, HD and MASD, as depicted in Table 6.4. Excellent inter-method

consistency and no statistically significant differences were found for JM for TLS vs.

RGT(best) as ICC=0.90, p value=0.754. This indicates that the use of both segmentation

methods were seen to generate statistically similar results in JM. Good agreement with no

statistically significant differences were found for HD for both TLS vs. RGT (best) and

TLS vs. RGT (ave) (ICC ≥0.70, p value >0.05). This indicates that both TLS and RGT



116
Chapter 6. Validation of the Threshold-based Level Set Segmentation Method via use of

Silicone Models

Figure 6.12: The mean absolute surface distance (MASD) against segmentation methods

by model and contrast medium dilution.

(best) produced similar values for JM and HD, indicating that the two methods have a

high degree of substitutability. RGT (best) exhibited the best segmentation result (Table

6.3 in this study, however, this was difficult to achieve, as the perfect initial threshold

was hard to detect. As an alternative method, the TLS is able to achieve a similarly high

level of performance under automatic situations.

The poorest value of ICC and statistically significant differences were found for VD

across all comparison pairs and for all parameters characterized in TLS vs. CV (ICC

≤0.44, p value < 0.05). This raises implications for the application of particular segmen-

tation methods when calculating specific results, particularly VD the value for which

proved the most difficult to ascertain statistically significant outcomes.

6.8 Discussion

We used silicone models as an object of experiment. It is easy to use its actual size to

calculate the real volume of the models. Based on this real volume, we are able to generate
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to a greater degree of accuracy, the ground truth (GT) to validate the TLS method.

The shapes of both model 3 and 4 were simpler than model 1, but performance was

found to be poorer when compared to model 1. This is due to the fact that neither model

3 nor 4 were connected in a Y shape. Moreover, as models 3 and 4 were not isolated, the

shapes were more complex than that of model 1.

The segmented objects are intensity inhomogeneous, especially in the boundary area

of objects - a common problem existing in medical imaging segmentation. It is clear,

however, that this problem exists in low contrast medium dilution rates for CT scan

images, more than they do for the high dilution rates in this study. Although the TLS is

able to use region information to overcome this problem, performance in the low contrast

medium dilution rates was found to be poorer than high dilution rates.

The influence of this problem on CV method performance is obvious. Although CV

performs well when image contrast is high (more than 10%), its performance decreases

very quickly with the contrast, in comparison to other methods which are more robust

to contrast level. One possible reason for this, is that the homogeneity assumption of the

CV model cannot be guaranteed in low-contrast images [99].

6.9 Conclusions

In this in-vitro study, a series of CT scans of silicone aneurysm models (SAM) were

conducted in this study, with four different silicone models and four rates of contrast

agent dilution used to generate various image data sets for validation of our previously

proposed TLS segmentation method. The TLS method was able to achieve over 89%

of the volume overlap rate and under 7% of the volume difference across all different

degrees of silicone model shape complexities and contrast agent dilutions. We compared

TLS with RGT and CV to investigate the influence of different methods on segmentation
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results. For various level of contrast agent, TLS vs. RGT (best) exhibited reliability

in overlap rate (JM) and HD, but no consistency in VD. CV reported a high JM and

low MASD only under high contrast conditions. The study also found that the VD of

each segmentation result was highly dependent on the method of segmentation. The TLS

method is a technique with the ability to segment intracranial aneurysms automatically

without the setting of a seed point or intensity threshold, and is likewise available for the

segmentation of modifiable anatomical shapes. This method is thus a valuable tool for

clinical diagnosis and surgical preparation, and will furthermore, play a vital role as an

important tool for future haemodynamic research.



Chapter 7

Conclusions and Future Work

7.1 Conclusion

The primary focus of this thesis is on the development of an automatic technique en-

abled to detect local geometry and an accurate system for the segmentation of intracranial

aneurysms. The study may be classified into two major parts: proposal of a new seg-

mentation algorithm, the Threshold-based Level Set (TLS) for intracranial aneurysm and

surrounding celebravascular structures, and validation of the TLS method via in-vivo and

in-vitro experiments for clinical application.

In chapter 4 (Aim 1, 2 and 3), a new level set method for intracranial aneurysm

segmentation was proposed. The details of the threshold-based level set segmentation

method were explained, including the principle, formula, numerical scheme and param-

eter settings. We applied the TLS method to eight patient-specific aneurysm cases and

compared the results of TLS segmentation with other segmentation approaches. From

this, we found that various methods of segmentation were able to generate a range of ge-

ometric models with differences in shape and volume, the occurrence of uncertain results

having the reductive potential to negatively affect clinical treatment decisions. Through

119
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analysis of eight cerebral aneurysm models, this study indicated that the TLS method

possessed the highest overlap rate in comparison to other methods, with an average of

91.59% with the minimum the volume difference. These results likewise indicate that

the TLS method may be utilized in the segmentation of aneurysms with blurred bound-

aries and in inhomogeneous images. The TLS method has been proven to improve the

accuracy of cerebrovascular aneurysm segmentation - a technique with the ability to seg-

ment aneurysms anatomically without the setting of a seed point or intensity threshold.

This method is also suitable for the segmentation of complex cerebrovascular anatomical

shapes.

In chapter 5 (aim 4 and 5), three dichotomous segmentation methods were introduced

for the analysis of 45 cerebral aneurysm models in terms of geometric shape, volume, and

haemodynamic results. The results of in-vivo validation showed that the TLS method

appeared higher in terms of overlap ratio and smaller in terms of the volume difference

when compared to the other methods across ICA, MCA, and AComA aneurysms. It also

indicated that the volume differences and the overlap ratio of TLS may be controlled

at a maximum of under 9% and a minimum of over 92% for all aneurysms respectively.

Although based on the same medical imagery and data, different methods of image seg-

mentation were found to generate alterations in shape and volume, thereby resulting in

significantly differing haemodynamic results. To investigate the impact of segmentation

results on patient specified analysis of haemodynamic simulation, computational haemo-

dynamic simulation was performed via the use of three varying categories of segmentation

methodology, alongside measurement of typical haemodynamic characteristics, including

energy loss (EL) and wall shear stress (WSS). The results indicated that the difference

in EL and greatest WSS appeared to be both relatively stable and subject to control by

the influence of segmentation method. However, the results of the lowest WSS were seen

to be significantly dependent upon the surface geometry of the aneurysm surface. It is
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thereby essential to confirm the quality of segmentation processes, in order to optimise

patient-specific analyses of cerebrovascular haemodynamics. We believe that a validation

process to confirm the results of these segmentations, will be of vital importance in lim-

iting the error arising from such manipulations of image data. With this, the results that

are influenced by the segmentation process must be included in the haemodynamic study.

In chapter 6 (aim 6), a series of in-vitro experiments using CT scan, were conducted on

silicone aneurysm models (SAM). In this, four different silicone models and four dilution

rates of contrast agent were used to generate various image data sets for validation of our

previously proposed TLS segmentation method. The TLS method was found to be able to

achieve over 89% of the volume overlap rate and under 7% of the volume difference in all

silicone model shapes with differeing degrees of complexity, and contrast agent dilutions.

We compared TLS with Region Growing Threshold (RGT) and Chan-Vese model (CV)

to investigate the influence of different methods on segmentation results. For various level

of contrast agent, TLS vs. RGT (best) exhibited a reliability in overlap rate (JM) and

maximum surface distance (HD), but no consistency in the volume difference. CV was seen

to have a high JM and low mean absolute surface distance (MASD), though only under

high contrast conditions. The study found the volume difference of the segmentation result

to be highly dependent on the segmentation method. The TLS method was found to be

a technique with the ability to automatically segment intracranial aneurysms without the

setting of a seed point or intensity threshold, and is likewise available for the segmentation

of modifiable anatomical shapes, with blurred boundaries and inhomogeneous images. It

is thus a valuable tool for clinical diagnosis and surgical preparation, and will furthermore,

play a vital role as an important tool for future haemodynamic research.
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7.2 Future Work

7.2.1 Measurement of Geometrical Characterisation of Intracra-

nial Aneurysms

Geometric indices (maximum diameter, neck diameter, height, aspect ratio, bottleneck

factor, bulge location, volume, surface area) as defined on intracranial aneurysms, have

been widely used in rupture risk assessment and surgical planning. However, most indices

employed in clinical settings are currently evaluated on two dimensional images that in-

evitably fail to capture the three dimensional nature of complex aneurysmal shapes. In

addition, they may suffer from poor inter and intra operator repeatability, since mea-

surements are performed manually. The purpose of future work in this field, is thus

to introduce objective and robust techniques for the 3D characterization of intracranial

aneurysms, whilst preserving a close connection to the way aneurysms are currently char-

acterized in clinical settings.

7.2.2 Medical Image Registration for Intracranial Aneurysms

Medical image registration is an important task in medical image processing. Image

registration refers to the process of aligning data sets, which may be applied to images

from the same subject acquired via the use of different modalities (e.g., CTA, MRA and

DSA) or at different time points (e.g., follow-up scans). Image registration is able to be

utilised in follow up patients with untreated intracranial aneurysms via the comparison

of CTA images, taken at differing times, to analyse changes within the aneurysm. Image

registration may also be used in the reconstruction of cerebral vessel models for patients

with treated intracranial aneurysms, to avoid problems surrounding metal artifacts in

CTA imaging . A large number of methods for image registration, ranging from simple



7.2 Future Work 123

(e.g., rigid or affine transformations) to more complex transformations (e.g., deformable

transforms) are described in the literature. However, no one method currently exhibits

for all applications. The goal of future work in medical image registration is thus to find

an optimum method for intracranial aneurysm registration.



124 Chapter 7. Conclusions and Future Work



Appendix A

Appendix Title

Paper 1: Image segmentation methods for intracranial aneurysm haemodynamic

research

Paper 2: Investigation of Image Segmentation Methods for Intracranial Aneurysm

Haemodynamic Research

Paper 3: Development of Image Segmentation Methods for Intracranial Aneurysms

Paper 4: A Comparison of Medical Image Segmentation Methods for Cerebral

Aneurysm Computational Hemodynamics

An Ethics Approval Letter

125



126 Chapter A. Appendix Title



Bibliography

[1] A. Osborn and J. Jacobs, Diagnostic Cerebral Angiography. Lippincott Williams

& Wilkins, 1999.

[2] A. Keedy, “An overview of intracranial aneurysms,” Mcgill J Med, vol. 9, no. 2, pp.

141–6, 2006.

[3] E. S. Connolly, A. A. Rabinstein, J. R. Carhuapoma, C. P. Derdeyn, J. Dion, R. T.

Higashida, B. L. Hoh, C. J. Kirkness, A. M. Naidech, C. S. Ogilvy, A. B. Patel,

B. G. Thompson, and P. Vespa, “Guidelines for the management of aneurysmal sub-

arachnoid hemorrhage: A guideline for healthcare professionals from the american

heart association/american stroke association,” Stroke, vol. 43, no. 6, pp. 1711–1737,

2012.

[4] J. van Gijn and G. J. E. Rinkel, “Subarachnoid haemorrhage: diagnosis, causes and

management,” Brain, vol. 124, no. 2, pp. 249–278, 2001.

[5] J. E. Loewenstein, S. C. Gayle, E. J. Duffis, C. J. Prestigiacomo, and C. D. Gandhi,

“The natural history and treatment options for unruptured intracranial aneurysms,”

International Journal of Vascular Medicine, vol. 2012, p. 11, 2012.

[6] M. Jensen, Evaluation of the Cerebral Vessels: Endovascular Therapy. Springer

Milan, 2012, book section 5, pp. 27–36.

127



128 BIBLIOGRAPHY

[7] Q. Zhang, R. Eagleson, and T. M. Peters, “Volume visualization: a technical

overview with a focus on medical applications,” J Digit Imaging, vol. 24, no. 4,

pp. 640–64, 2011.

[8] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,” in Proceedings

of the 15th annual conference on Computer graphics and interactive techniques.

ACM, 1988, Conference Proceedings, pp. 65–74.

[9] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. Engel, Real-time

Volume Graphics. A. K. Peters, Ltd., 2006.

[10] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive ray tracing

for isosurface rendering,” in Proceedings of the conference on Visualization ’98.

IEEE Computer Society Press, 1998, Conference Proceedings, pp. 233–238.

[11] M. K. Bosma, “Iso-surface volume rendering: speed and accuracy for medical ap-

plications,” 2000.

[12] U. Tiede, K. H. Hoehne, M. Bomans, A. Pommert, M. Riemer, and G. Wiebecke,

“Surface rendering,” IEEE Comput. Graph. Appl., vol. 10, no. 2, pp. 41–53, 1990.

[13] E. K. Fishman, D. R. Ney, D. G. Heath, F. M. Corl, K. M. Horton, and P. T.

Johnson, “Volume rendering versus maximum intensity projection in ct angiogra-

phy: What works best, when, and why,” RadioGraphics, vol. 26, no. 3, pp. 905–922,

2006.

[14] S. Schreiner, C. B. Paschal, and R. L. Galloway, “Comparison of projection al-

gorithms used for the construction of maximum intensity projection images,” J

Comput Assist Tomogr, vol. 20, no. 1, pp. 56–67, 1996.



BIBLIOGRAPHY 129

[15] J. J. Choi, B.-S. Shin, Y. G. Shin, and K. Cleary, “Efficient volumetric ray casting

for isosurface rendering,” Computers and Graphics, vol. 24, no. 5, pp. 661–670, 2000.

[16] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface

construction algorithm,” SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 163–169,

1987.

[17] A. Badry, R. Elshafey, and M. Khalil, “Detection, characterization and endovascular

therapy planning of intracranial aneurysms with 16-channel multidetector row ct

angiography,” Egyptian Journal of Radiology and Nuclear Medicine, 2013.

[18] M. Groth, N. D. Forkert, J. H. Buhk, M. Schoenfeld, E. Goebell, and J. Fiehler,

“Comparison of 3d computer-aided with manual cerebral aneurysm measurements

in different imaging modalities,” Neuroradiology, vol. 55, no. 2, pp. 171–8, 2013.

[19] H. Takao, Y. Murayama, T. Ishibashi, T. Saguchi, M. Ebara, H. Arakawa, K. Irie,

K. Iwasaki, M. Umezu, and T. Abe, “Comparing accuracy of cerebral aneurysm size

measurements from three routine investigations: computed tomography, magnetic

resonance imaging, and digital subtraction angiography,” Neurol Med Chir (Tokyo),

vol. 50, no. 10, pp. 893–9, 2010.

[20] S. Dhar, M. Tremmel, J. Mocco, M. Kim, J. Yamamoto, A. H. Siddiqui, L. N.

Hopkins, and H. Meng, “Morphology parameters for intracranial aneurysm rupture

risk assessment,” Neurosurgery, vol. 63, no. 2, pp. 185–96; discussion 196–7, 2008.

[21] M. L. Raghavan, B. Ma, and R. E. Harbaugh, “Quantified aneurysm shape and

rupture risk,” J Neurosurg, vol. 102, no. 2, pp. 355–62, 2005.

[22] J. Xiang, S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H.

Siddiqui, E. I. Levy, and H. Meng, “Hemodynamic-morphologic discriminants for

intracranial aneurysm rupture,” Stroke, vol. 42, no. 1, pp. 144–52, 2011.



130 BIBLIOGRAPHY

[23] C. W. Ryu, O. K. Kwon, J. S. Koh, and E. J. Kim, “Analysis of aneurysm rupture in

relation to the geometric indices: aspect ratio, volume, and volume-to-neck ratio,”

Neuroradiology, vol. 53, no. 11, pp. 883–9, 2011.

[24] R. Yasuda, C. M. Strother, W. Taki, K. Shinki, K. Royalty, K. Pulfer, and C. Kar-

monik, “Aneurysm volume-to-ostium area ratio: a parameter useful for discrimi-

nating the rupture status of intracranial aneurysms,” Neurosurgery, vol. 68, no. 2,

pp. 310–7; discussion 317–8, 2011.

[25] T. Ries, K. Wegscheider, A. Wulff, K. Radelfahr, D. Saring, N. D. Forkert, and

J. Fiehler, “Quantification of recurrence volumes after endovascular treatment of

cerebral aneurysm as surrogate endpoint for treatment stability,” Neuroradiology,

vol. 53, no. 8, pp. 593–8, 2011.

[26] M. Groth, J. Fiehler, and N. D. Forkert, “Variability in visual assessment of cerebral

aneurysms could be reduced by quantification of recurrence volumes,” AJNR Am J

Neuroradiol, vol. 32, no. 8, pp. E163–4; author reply E165, 2011.

[27] R. Cardenes, J. M. Pozo, H. Bogunovic, I. Larrabide, and A. F. Frangi, “Auto-

matic aneurysm neck detection using surface voronoi diagrams,” IEEE Trans Med

Imaging, vol. 30, no. 10, pp. 1863–76, 2011.

[28] M. Piccinelli, D. A. Steinman, Y. Hoi, F. Tong, A. Veneziani, and L. Antiga, “Auto-

matic neck plane detection and 3d geometric characterization of aneurysmal sacs,”

Ann Biomed Eng, vol. 40, no. 10, pp. 2188–211, 2012.

[29] I. Wanke, A. Doerfler, U. Dietrich, T. Egelhof, B. Schoch, D. Stolke, and

M. Forsting, “Endovascular treatment of unruptured intracranial aneurysms,”

AJNR Am J Neuroradiol, vol. 23, no. 5, pp. 756–61, 2002.



BIBLIOGRAPHY 131

[30] A. Doerfler, I. Wanke, S. L. Goericke, H. Wiedemayer, T. Engelhorn, E. R. Gizewski,

D. Stolke, and M. Forsting, “Endovascular treatment of middle cerebral artery

aneurysms with electrolytically detachable coils,” AJNR Am J Neuroradiol, vol. 27,

no. 3, pp. 513–20, 2006.

[31] A. Lauric, E. L. Miller, M. I. Baharoglu, and A. M. Malek, “3d shape analysis

of intracranial aneurysms using the writhe number as a discriminant for rupture,”

Annals of Biomedical Engineering, vol. 39, no. 5, pp. 1457–1469, 2011.

[32] D. A. Orringer, A. Golby, and F. Jolesz, “Neuronavigation in the surgical manage-

ment of brain tumors: current and future trends,” Expert Rev Med Devices, vol. 9,

no. 5, pp. 491–500, 2012.

[33] P. Marinho, L. Thines, L. Verscheure, S. Mordon, J. P. Lejeune, and M. Vermandel,

“Recent advances in cerebrovascular simulation and neuronavigation for the opti-

mization of intracranial aneurysm clipping,” Comput Aided Surg, vol. 17, no. 2, pp.

47–55, 2012.

[34] J. N. Bruneton, “Spiral and multislice computed tomography of the body,” Clinical

imaging, vol. 27, no. 5, pp. 365–365, 2003.

[35] W. S. Moore and J. C. Jimenez, A handbook of vascular disease management. Sin-

gapore: World Scientific, 2011.

[36] M. Prokop and M. Galanski, Spiral and multislice computed tomography of the body.

Stuttgart ; New York: Thieme, 2003.

[37] M. R. Harrigan and J. P. Deveikis, Handbook of cerebrovascular disease and neu-

rointerventional technique, second edition. ed. Dordecht ;: Humana Press, 2013.



132 BIBLIOGRAPHY

[38] K. Klingenbeck-Regn, S. Schaller, T. Flohr, B. Ohnesorge, A. F. Kopp, and

U. Baum, “Subsecond multi-slice computed tomography: basics and applications,”

European Journal of Radiology, vol. 31, no. 2, pp. 110–124, 1999.

[39] L. W. Goldman, “Principles of ct and ct technology,” J Nucl Med Technol, vol. 35,

no. 3, pp. 115–28; quiz 129–30, 2007.

[40] R. Gupta, A. C. Cheung, S. H. Bartling, J. Lisauskas, M. Grasruck, C. Leidecker,

B. Schmidt, T. Flohr, and T. J. Brady, “Flat-panel volume ct: fundamental prin-

ciples, technology, and applications,” Radiographics, vol. 28, no. 7, pp. 2009–22,

2008.

[41] H. J. Otero, M. L. Steigner, and F. J. Rybicki, “The ”post-64” era of coronary ct

angiography: understanding new technology from physical principles,” Radiol Clin

North Am, vol. 47, no. 1, pp. 79–90, 2009.

[42] J. F. Barrett and N. Keat, “Artifacts in ct: recognition and avoidance,” Radiograph-

ics, vol. 24, no. 6, pp. 1679–91, 2004.

[43] S. Karimi, P. Cosman, C. Wald, and H. Martz, “Segmentation of artifacts and

anatomy in ct metal artifact reduction,” Med Phys, vol. 39, no. 10, pp. 5857–68,

2012.

[44] S. Radzi, G. Cowin, M. Robinson, J. Pratap, A. Volp, M. A. Schuetz, and

B. Schmutz, “Metal artifacts from titanium and steel screws in ct, 1.5t and 3t

mr images of the tibial pilon: a quantitative assessment in 3d,” Quant Imaging Med

Surg, vol. 4, no. 3, pp. 163–72, 2014.

[45] J. P. Villablanca, N. Martin, R. Jahan, Y. P. Gobin, Frazee, G. Duckwiler,

J. Bentson, M. Hardart, D. Coiteiro, J. Sayre, and F. Vinuela, “Volume-rendered



BIBLIOGRAPHY 133

helical computerized tomography angiography in the detection and characterization

of intracranial aneurysms,” J Neurosurg, vol. 93, no. 2, pp. 254–64, 2000.

[46] E. T. Chappell, F. C. Moure, and M. C. Good, “Comparison of computed to-

mographic angiography with digital subtraction angiography in the diagnosis of

cerebral aneurysms: a meta-analysis,” Neurosurgery, vol. 52, no. 3, pp. 624–31;

discussion 630–1, 2003.

[47] J. E. Siebert, J. R. Pernicone, and E. J. Potchen, “Physical principles and applica-

tion of magnetic resonance angiography,” Semin Ultrasound CT MR, vol. 13, no. 4,

pp. 227–45, 1992.

[48] D. Chien and R. R. Edelman, “Basic principles and clinical applications of magnetic

resonance angiography,” Semin Roentgenol, vol. 27, no. 1, pp. 53–62, 1992.

[49] R. R. Edelman, “Basic principles of magnetic resonance angiography,” Cardiovasc

Intervent Radiol, vol. 15, no. 1, pp. 3–13, 1992.

[50] B. M. Tress and P. M. Desmond, “Magnetic resonance angiography. i. basic princi-

ples,” Australas Radiol, vol. 37, no. 3, pp. 236–8, 1993.

[51] r. Huston, J., D. A. Nichols, P. H. Luetmer, J. T. Goodwin, F. B. Meyer, D. O.

Wiebers, and A. L. Weaver, “Blinded prospective evaluation of sensitivity of mr

angiography to known intracranial aneurysms: importance of aneurysm size,” AJNR

Am J Neuroradiol, vol. 15, no. 9, pp. 1607–14, 1994.

[52] Z. Watanabe, Y. Kikuchi, K. Izaki, N. Hanyu, F. S. Lim, H. Gotou, J. Koizumi,

T. Gotou, M. Kowada, and K. Watanabe, “The usefulness of 3d mr angiography in

surgery for ruptured cerebral aneurysms,” Surg Neurol, vol. 55, no. 6, pp. 359–64,

2001.



134 BIBLIOGRAPHY

[53] W. M. Adams, R. D. Laitt, and A. Jackson, “The role of mr angiography in the

pretreatment assessment of intracranial aneurysms: a comparative study,” AJNR

Am J Neuroradiol, vol. 21, no. 9, pp. 1618–28, 2000.

[54] M. Okahara, H. Kiyosue, M. Yamashita, H. Nagatomi, H. Hata, T. Saginoya,

Y. Sagara, and H. Mori, “Diagnostic accuracy of magnetic resonance angiogra-

phy for cerebral aneurysms in correlation with 3d-digital subtraction angiographic

images: a study of 133 aneurysms,” Stroke, vol. 33, no. 7, pp. 1803–8, 2002.

[55] P. Brugieres, J. Blustajn, C. Le Guerinel, J. F. Meder, P. Thomas, and A. Gaston,

“Magnetic resonance angiography of giant intracranial aneurysms,” Neuroradiology,

vol. 40, no. 2, pp. 96–102, 1998.

[56] O. De Jesus and N. Rifkinson, “Magnetic resonance angiography of giant aneurysms.

pitfalls and surgical implications,” P R Health Sci J, vol. 16, no. 2, pp. 131–5, 1997.

[57] T. Metens, F. Rio, D. Baleriaux, T. Roger, P. David, and G. Rodesch, “Intracra-

nial aneurysms: detection with gadolinium-enhanced dynamic three-dimensional mr

angiography-initial results,” Radiology, vol. 216, no. 1, pp. 39–46, 2000.

[58] H. R. Jager, H. Ellamushi, E. A. Moore, J. P. Grieve, N. D. Kitchen, and W. J. Tay-

lor, “Contrast-enhanced mr angiography of intracranial giant aneurysms,” AJNR

Am J Neuroradiol, vol. 21, no. 10, pp. 1900–7, 2000.

[59] W. A. Willinek, J. Gieseke, M. von Falkenhausen, M. Born, D. Hadizadeh,

C. Manka, H. J. Textor, H. H. Schild, and C. K. Kuhl, “Sensitivity encoding (sense)

for high spatial resolution time-of-flight mr angiography of the intracranial arteries

at 3.0 t,” Rofo, vol. 176, no. 1, pp. 21–6, 2004.

[60] D. Y. Yoon, K. J. Lim, C. S. Choi, B. M. Cho, S. M. Oh, and S. K. Chang, “Detection

and characterization of intracranial aneurysms with 16-channel multidetector row



BIBLIOGRAPHY 135

ct angiography: a prospective comparison of volume-rendered images and digital

subtraction angiography,” AJNR Am J Neuroradiol, vol. 28, no. 1, pp. 60–7, 2007.

[61] D. P. Harrington, L. M. Boxt, and P. D. Murray, “Digital subtraction angiogra-

phy: overview of technical principles,” American Journal of Roentgenology, vol.

139, no. 4, pp. 781–786, 1982.

[62] M. Castillo, Digital Subtraction Angiography (DSA): Basic Principles. John Wiley

and Sons, Ltd, 2014, pp. 207–220.

[63] J. Menke, J. Larsen, and K. Kallenberg, “Diagnosing cerebral aneurysms by com-

puted tomographic angiography: meta-analysis,” Ann Neurol, vol. 69, no. 4, pp.

646–54, 2011.

[64] C. J. Prestigiacomo, A. Sabit, W. He, P. Jethwa, C. Gandhi, and J. Russin, “Three

dimensional ct angiography versus digital subtraction angiography in the detection

of intracranial aneurysms in subarachnoid hemorrhage,” J Neurointerv Surg, vol. 2,

no. 4, pp. 385–9, 2010.

[65] J. B. Bederson and J. B. Bederson, “Guidelines for the management of aneurysmal

subarachnoid hemorrhage: A statement for healthcare professionals from a special

writing group of the stroke council, american heart association,” Stroke (1970),

vol. 40, no. 3, pp. 994–1025, 2009.

[66] M. Larobina and L. Murino, “Medical image file formats,” Journal of Digital Imag-

ing, vol. 27, no. 2, pp. 200–206, 2014.

[67] r. Wiggins, R. H., H. C. Davidson, H. R. Harnsberger, J. R. Lauman, and P. A.

Goede, “Image file formats: past, present, and future,” Radiographics, vol. 21, no. 3,

pp. 789–98, 2001.



136 BIBLIOGRAPHY

[68] O. S. Pianykh, Digital imaging and communications in medicine (DICOM) : a prac-

tical introduction and survival guide, 2nd ed. Heidelberg ; New York: Springer,

2012.

[69] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” Inter-

national Journal of Computer Vision, vol. 1, pp. 321–331, 1988.

[70] V. Caselles, F. Catt, T. Coll, and F. Dibos, “A geometric model for active contours

in image processing,” Numerische Mathematik, vol. 66, no. 1, pp. 1–31, 1993.

[71] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front prop-

agation: a level set approach,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 17, no. 2, pp. 158–175, 1995.

[72] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent speed:

Algorithms based on hamilton-jacobi formulations,” Journal of Computational

Physics, vol. vol 79, pp. 12–49, 1988.

[73] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International

Journal of Computer Vision, vol. 22, no. 1, pp. 61–79, 1997.

[74] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, “Gradient

flows and geometric active contour models,” in Computer Vision, 1995. Proceed-

ings., Fifth International Conference on, 1995, Conference Proceedings, pp. 810–

815.

[75] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE TRANSAC-

TIONS ON IMAGE PROCESSING, vol. vol. 10, no. 2, pp. 266–277, 2001.

[76] R. Kimmel, Fast Edge Integration. Springer New York, 2003, book section 4, pp.

59–77.



BIBLIOGRAPHY 137

[77] L. Jundong, “Robust image segmentation using local median,” in Computer and

Robot Vision, 2006. The 3rd Canadian Conference on, 2006, Conference Proceed-

ings, pp. 31–31.

[78] Y. Sen, Y. Qian, A. Avolio, and M. Morgan, “Development of image segmentation

methods for intracranial aneurysms,” Comput Math Methods Med, vol. 2013, p.

715325, 2013.

[79] N. D. Forkert, A. Schmidt-Richberg, J. Fiehler, T. Illies, D. Moller, H. Handels,

and D. Saring, “Fuzzy-based vascular structure enhancement in time-of-flight mra

images for improved segmentation,” Methods Inf Med, vol. 50, no. 1, pp. 74–83,

2011.

[80] B. E. Chapman, J. O. Stapelton, and D. L. Parker, “Intracranial vessel segmentation

from time-of-flight mra using pre-processing of the mip z-buffer: accuracy of the zbs

algorithm,” Medical image analysis, vol. 8, no. 2, pp. 113–26, 2004.

[81] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and

G. Gerig, “User-guided 3d active contour segmentation of anatomical structures:

significantly improved efficiency and reliability,” NeuroImage, vol. 31, no. 3, pp.

1116–28, 2006.

[82] M. Droske, B. Meyer, M. Rumpf, and C. Schaller, “An adaptive level set method for

medical image segmentation,” in Information Processing in Medical Imaging, ser.

Lecture Notes in Computer Science, M. Insana and R. Leahy, Eds. Springer Berlin

Heidelberg, 2001, vol. 2082, pp. 416–422.

[83] M. E. Leventon, W. E. L. Grimson, and O. Faugeras, “Statistical shape influence

in geodesic active contours,” Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, vol. 1, pp. 316–323, 2000.



138 BIBLIOGRAPHY

[84] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces

in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials

Science. Cambridge University Press, 1999.

[85] S. Demirci, G. Lejeune, and N. Navab, “Hybird deformable model for aneurysm seg-

mentation,” in Biomedical Imaging: From Nano to Macro, 2009., 2009, Conference

Proceedings, pp. 33– 36.

[86] N. Wilson, K. Wang, R. W. Dutton, and C. Taylor, “A software framework for

creating patient specific geometric models from medical imaging data for simulation

based medical planning of vascular surgery,” in MICCAI ’01 Proceedings of the

4th International Conference on Medical Image Computing and Computer-Assisted

Intervention, 2001, Conference Proceedings, pp. 449–456.

[87] M. W. Law and A. C. Chung, “Vessel and intracranial aneurysm segmentation using

multi-range filters and local variances,” MICCAI, vol. 10(Pt 1), pp. 866–874, 2007.

[88] M. Hernandez and A. F. Frangi, “Non-parametric geodesic active regions: method

and evaluation for cerebral aneurysms segmentation in 3dra and cta,” Medical image

analysis, vol. 11, no. 3, pp. 224–41, 2007.

[89] R. Manniesing, B. K. Velthuis, M. S. van Leeuwen, I. C. van der Schaaf, P. J. van

Laar, and W. J. Niessen, “Level set based cerebral vasculature segmentation and

diameter quantification in ct angiography,” Medical image analysis, vol. 10, no. 2,

pp. 200–14, 2006.

[90] T. Deschamps, P. Schwartz, D. Trebotich, P. Colella, D. Saloner, and R. Mal-

ladi, “Vessel segmentation and blood flow simulation using level-sets and embedded

boundary methods,” International Congress Series, vol. 1268, pp. 75–80, 2004.



BIBLIOGRAPHY 139

[91] A. Firouzian, R. Manniesing, Z. H. Flach, R. Risselada, F. van Kooten, M. C.

Sturkenboom, A. van der Lugt, and W. J. Niessen, “Intracranial aneurysm segmen-

tation in 3d ct angiography: method and quantitative validation with and without

prior noise filtering,” Eur J Radiol, vol. 79, no. 2, pp. 299–304, 2011.

[92] T. Zuva, O. O. Olugbara, S. O. Ojo, and S. M. Ngwira, “Image segmentation,

availabletechniques, developments and open issues,” Canadian Journal on Image

Processing and Computer Vision, vol. Vol. 2 No. 3, pp. 20–29, 2011.

[93] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “A review of 3d vessel lumen

segmentation techniques: models, features and extraction schemes,” Medical image

analysis, vol. 13, no. 6, pp. 819–45, 2009.

[94] H. Zhang, J. E. Fritts, and S. A. Goldman, “Image segmentation evaluation: A

survey of unsupervised methods,” Computer Vision and Image Understanding, vol.

110, no. 2, pp. 260–280, 2008.

[95] Y. Sen, Y. Qian, Y. Zhang, and M. Morgan, “A comparison of medical image seg-

mentation methods for cerebral aneurysm computational hemodynamics,” in 2011

4th International Conference on Biomedical Engineering and Informatics, vol. 2,

2011, Conference Proceedings, pp. 901–904.

[96] J. Weickert, B. H. Romeny, and M. A. Viergever, “Efficient and reliable schemes for

nonlinear diffusion filtering,” IEEE Trans Image Process, vol. 7, no. 3, pp. 398–410,

1998.

[97] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, “Fast geodesic active con-

tours,” IEEE Trans Image Process, vol. 10, no. 10, pp. 1467–75, 2001.

[98] J. Russell and R. Cohn, Chebyshev’s inequality. Book on Demand Ltd, 2012.



140 BIBLIOGRAPHY

[99] P. T. Truc, T. S. Kim, S. Lee, and Y. K. Lee, “A study on the feasibility of active

contours on automatic ct bone segmentation,” J Digit Imaging, vol. 23, no. 6, pp.

793–805, 2010.

[100] M. H. Vlak, G. J. Rinkel, P. Greebe, J. G. van der Bom, and A. Algra, “Trigger

factors and their attributable risk for rupture of intracranial aneurysms: A case-

crossover study,” Stroke, vol. 42, pp. 1878–1882, 2011.

[101] L. Jonathan, J. K. Song, and D. W. Newell, “Cerebral aneurysms,” N Engl J Med,

vol. 355, pp. 928–939, 2006.

[102] N. de Rooij, F. Linn, J. van der Plas, A. Algra, and G. Rinkel, “Incidence of sub-

arachnoid haemorrhage: a systematic review with emphasis on region, age, gender

and time trends,” Journal of neurology, neurosurgery, and psychiatry, vol. 78(12),

pp. 1365–1372, 2007.

[103] L. H. Phillips II, J. P. Whisnant, W. Michael O’Fallon, and T. M. Sundt Jr.,

“The unchanging pattern of subarachnoid hemorrhage in a community,” Neurol-

ogy, vol. 30, pp. 1034–1040, 1980.

[104] M. J. H. Wermer, I. C. van der Schaaf, A. Algra, and G. J. E. Rinkel, “Risk of

rupture of unruptured intracranial aneurysms in relation to patient and aneurysm

characteristics: an updated meta-analysis.” Stroke, vol. 38(4), pp. 1404–1410, 2007.

[105] N. F. Kassell, J. C. Torner, E. C. Haley, J. A. Jane, Jr, H. P. Adams, and G. L.

Kongable, “The international cooperative study on the timing of aneurysm surgery.

part 1: Overall management results,” J Neurosurg, vol. 73(1), pp. 18–36, 1990.

[106] Y. Qian, H. Takao, M. Umezu, and Y. Murayama, “Risk analysis of unruptured

aneurysms using computed fluid dynamics technology: Preliminary results,” AJNR

Am J Neuroradiol, vol. 32(10), pp. 1948–55, 2011.



BIBLIOGRAPHY 141

[107] M. A. Castro, C. M. Putman, and J. R. Cebral, “Computational modeling of cere-

bral aneurysms in arterial networks reconstructed from multiple 3d rotational an-

giography images,” Proceedings of SPIE, pp. 233–244, 2005.

[108] D. A. Steinman, J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth,

“Image-based computational simulation of flow dynamics in a giant intracranial

aneurysm,” AJNR Am J Neuroradiol, vol. 24(4), pp. 559–566, 2003.

[109] T. Hassan, E. V. Timofeev, M. Ezura, T. Saito, A. Takahashi, K. Takayama, and

T. Yoshimoto, “Hemodynamic analysis of an adult vein of galen aneurysm mal-

formation by use of 3d image-based computational fluid dynamics,” AJNR Am J

Neuroradiol, vol. 24(6), pp. 1075–1082, 2003.

[110] B. Ma, R. E. Harbaugh, and M. L. Raghavan, “Three-dimensional geometrical

characterization of cerebral aneurysms,” Annals of Biomedical Engineering, vol. 32,

no. 2, pp. 264–73, 2004.

[111] H. Zakaria, A. M. Robertson, and C. W. Kerber, “A parametric model for studies

of flow in arterial bifurcations,” Ann Biomed Eng, vol. 36, no. 9, pp. 1515–30, 2008.

[112] T. Hassan, E. V. Timofeev, T. Saito, H. Shimizu, M. Ezura, Y. Matsumoto,

K. Takayama, T. Tominaga, and A. Takahashi, “A proposed parent vessel geometry-

based categorization of saccular intracranial aneurysms: computational flow dynam-

ics analysis of the risk factors for lesion rupture,” J Neurosurg, vol. 103, no. 4, pp.

662–80, 2005.

[113] T.-M. Liou, T.-W. Chang, and W.-C. Chang, “Pulsatile flow through a bifurcation

with a cerebrovascular aneurysm,” Journal of Biomechanical Engineering, vol. 116,

no. 1, pp. 112–118, 1994.



142 BIBLIOGRAPHY

[114] H. J. Steiger, A. Poll, D. Liepsch, and H. J. Reulen, “Basic flow structure in saccular

aneurysms: a flow visualization study,” Heart Vessels, vol. 3, no. 2, pp. 55–65, 1987.

[115] M. Shojima, M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, A. Morita,

and T. Kirino, “Magnitude and role of wall shear stress on cerebral aneurysm:

computational fluid dynamic study of 20 middle cerebral artery aneurysms,” Stroke;

a journal of cerebral circulation, vol. 35, no. 11, pp. 2500–5, 2004.

[116] J. R. Cebral, M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and

C. M. Putman, “Characterization of cerebral aneurysmas for assessing risk of rup-

ture by using patient-specific computational hemodynamics models,” AJNR Am J

Neuroradiol, vol. 26(10), pp. 2550–2559, 2005.

[117] L. Goubergrits, J. Schaller, U. Kertzscher, N. van den Bruck, K. Poethkow, C. Petz,

H. C. Hege, and A. Spuler, “Statistical wall shear stress maps of ruptured and

unruptured middle cerebral artery aneurysms,” J R Soc Interface, vol. 9, no. 69,

pp. 677–88, 2012.

[118] J. R. Cebral, F. Mut, J. Weir, and C. Putman, “Quantitative characterization of the

hemodynamic environment in ruptured and unruptured brain aneurysms,” AJNR

Am J Neuroradiol, vol. 32, no. 1, pp. 145–51, 2011.

[119] L. D. Jou, D. H. Lee, H. Morsi, and M. E. Mawad, “Wall shear stress on ruptured

and unruptured intracranial aneurysms at the internal carotid artery,” AJNR Am

J Neuroradiol, vol. 29, no. 9, pp. 1761–7, 2008.

[120] J. B. Thomas, J. S. Milner, B. K. Rutt, and D. A. Steinman, “Reproducibility of

image-based computational fluid dynamics models of the human carotid bifurca-

tion,” Annals of Biomedical Engineering, vol. 31, no. 2, pp. 132–141, 2003.



BIBLIOGRAPHY 143

[121] M. D. Ford, N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman, “Char-

acterization of volumetric flow rate waveformes in the normal internal carotid and

vertebral arteries,” Physiol Meas, vol. 26(4), pp. 477–488, 2005.

[122] C. Karmonik, R. Klucznik, and G. Benndorf, “Comparison of velocity patterns in

an acoma aneurysm measured with 2d phase contrast mri and simulated with cfd,”

Technology and health care : official journal of the European Society for Engineering

and Medicine, vol. 16, no. 2, pp. 119–28, 2008.

[123] J. R. Cebral, M. Sheridan, and C. M. Putman, “Hemodynamics and bleb formation

in intracranial aneurysms,” AJNR. American journal of neuroradiology, vol. 31,

no. 2, pp. 304–10, 2010.

[124] G. Hu and Mageras, Survey of Recent Volumetric Medical Image Segmentation Tech-

niques. InTech, 2009.

[125] H. H. Chang, G. R. Duckwiler, D. J. Valentine, and W. C. Chu, “Computer-assisted

extraction of intracranial aneurysms on 3d rotational angiograms for computational

fluid dynamics modeling,” Med Phys, vol. 36, no. 12, pp. 5612–21, 2009.

[126] P. Venugopal, D. Valentino, H. Schmitt, J. P. Villablanca, F. Vinuela, and G. Duck-

wiler, “Sensitivity of patient-specific numerical simulation of cerebal aneurysm

hemodynamics to inflow boundary conditions,” J Neurosurg, vol. 106, no. 6, pp.

1051–60, 2007.

[127] M. A. Castro, C. M. Putman, and J. R. Cebral, “Computational fluid dynamics

modeling of intracranial aneurysms: effects of parent artery segmentation on intra-

aneurysmal hemodynamics,” AJNR Am J Neuroradiol, vol. 27, no. 8, pp. 1703–9,

2006.



144 BIBLIOGRAPHY

[128] T. Boskamp, D. Rinck, F. Link, B. Kummerlen, G. Stamm, and P. Mildenberger,

“New vessel analysis tool for morphometric quantification and visualization of ves-

sels in ct and mr imaging data sets,” Radiographics, vol. 24, no. 1, pp. 287–97,

2004.

[129] M. Spiegel, T. Redel, T. Struffert, J. Hornegger, and A. Doerfler, “A 2d driven 3d

vessel segmentation algorithm for 3d digital subtraction angiography data,” Phys

Med Biol, vol. 56, no. 19, pp. 6401–19, 2011.

[130] A. Popovic, M. de la Fuente, M. Engelhardt, and K. Radermacher, “Statistical

validation metric for accuracy assessment in medical image segmentation,” Inter-

national Journal of Computer Assisted Radiology and Surgery, vol. 2, no. 3-4, pp.

169–181, 2007.

[131] L. Costaridou, Medical image analysis methods, ser. Electrical engineering and ap-

plied signal processing series. Boca Raton: CRC Press Taylor and Francis, 2005.

[132] H. Bogunovic, J. M. Pozo, M. C. Villa-Uriol, C. B. Majoie, R. van den Berg, H. A.

Gratama van Andel, J. M. Macho, J. Blasco, L. S. Roman, and A. F. Frangi,

“Automated segmentation of cerebral vasculature with aneurysms in 3dra and tof-

mra using geodesic active regions: an evaluation study,” Med Phys, vol. 38, no. 1,

pp. 210–22, 2011.

[133] R. Ebel, “Estimation of the reliability of ratings,” Psychometrika, vol. 16, no. 4, pp.

407–424, 1951.
















































































































