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Abstract
The prediction of an author’s native language using only their second language writing — a task
called Native Language Identification (NLI) — is usually tackled using supervised classification.
This is underpinned by the presupposition that an author will be disposed towards certain language
production patterns in their second language (L2), due to influence from their first language (L1).
This identification of such L1-specific linguistic patterns can be used to study language transfer effects
in Second Language Acquisition (SLA). NLI can also be used in forensic linguistics, serving as a tool
for authorship profiling to provide evidence about a writer’s linguistic background.

NLI is a young but rapidly growing research topic. It has become a well-defined classification task
in the past decade and increasing work during the last five years has brought an unprecedented level
of research focus and momentum to the area, culminating in the first NLI Shared Task in 2013. Most
work hitherto has focused on the core machine learning and feature engineering facets of the task,
obtaining suitable data and unifying the area with a common evaluation framework.

This thesis makes three broad contributions: (1) exploring the task in new ways; (2) investigating
how NLI can inform SLA; and (3) introducing the novel task of L1-based text segmentation.

Following our implementation of an NLI system for the shared task — which investigated the
effects of classifier ensembles, feature types and feature diversity — we explored the task in several new
ways. We first looked at human and oracle performance, gauging potential for further improvements in
classification performance. We used two oracles to estimate upper bounds for NLI accuracy, applying
them to a new dataset composed of all submissions to the 2013 shared task, revealing interesting error
patterns. We then presented the first study of human performance for NLI using a group of experts.
The experts did not outperform our NLI system, with the performance gap likely to widen on the
standard NLI setup, demonstrating that this is a hard task that, uncharacteristically, computers can
perform better than humans. We next explored the cross-lingual applicability of NLI by extending it
to other languages. To this end we identified six typologically very different sources of non-English L2
data and via a series of experiments using common features established that NLI accuracy is similar
across the L2s and a wide range of L1s. We showed that other patterns, e.g. oracle performance and
feature diversity, also hold across languages.

Next, we considered practical applications of NLI in SLA research, investigating ways to use the
classification task to give a broad linguistic interpretation of the data. Our first exploration focused on
language transfer, the characteristic L2 usage patterns caused by native language interference, which
is investigated by SLA researchers seeking to find overused and underused features. We proposed a
method for deriving ranked lists of such discriminative features and then analyzed our results to see
how useful they might be in formulating plausible language transfer hypotheses. We then defined and
examined an approach to formulating and testing hypotheses about errors and the environments in
which they are made, a process which traditionally in SLA often involves substantial effort. To this
end we defined a new task for finding contexts for errors that vary with the native language of the
writer and propose four graph-theoretic models for doing so. The findings in this chapter form the
basis of a useful research direction for developing methods to assist SLA experts develop hypotheses
using large data.

The final part of this dissertation introduced the novel task of native language-based text segmen-
tation, exploring how discriminative NLI features investigated in the previous task can be exploited
here. The goal is to partition a text into regions that exhibit differing L1 influence; such methods
could be applied for intrinsic plagiarism detection or even literary analysis. We adapted an unsuper-
vised Bayesian approach originally developed for topic segmentation to one with generative models
built over features useful in NLI. We investigated several models: one with alternating asymmetric
priors was the best, with compactness of distributions over features proving to be important.
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Advances in Natural Language Processing (NLP) research have often (but not always) resulted in

increased cooperation and interaction between NLP and linguistics. NLP technology has had a direct

impact on linguistics, resulting in the development of advanced data processing tools for applied and

corpus linguists. On the other hand, linguistic research continues to inform NLP in various ways and

has benefited tasks such as part-of-speech tagging, morphological analysis, speech recognition and

more.

Machine Learning (ML) and Second Language Acquisition (SLA) are two major research areas

related to NLP and linguistics, respectively. A specific trend tying these together has been the

application of NLP and ML to study SLA and other phenomena related to language learning. As the

name implies, SLA is concerned with the processes involved in acquiring a second language, including

that of language transfer. This developing connection and synergy between ML and SLA can help

provide many insights into learner language, and is a primary motivation of this thesis.

It is well known that the manner in which most non-native speakers use a language is strongly

influenced by their native or mother tongue. The most obvious manifestation of this comes from

speech where speakers’ accents are influenced by the distinct phonology of their native tongue. How-

ever, it has been shown that non-native writings also contain discriminative signals about the writer’s

linguistic background. Just as a non-native speaker can be identified by his or her accent, influence

from an individual’s mother tongue leads to the systematic manifestation of language use patterns

and other linguistic phenomena that can reliably help identify the native language of the author of a

particular text.

1
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It has been observed in the linguistics literature since at least the 1950s that native speakers

of particular languages make characteristic errors when speaking or writing in a second language.

For example, an erroneous sentence such as the development of country park can directly alleviate

overcrowdedness is very unlikely to occur in the English written by a Spanish native speaker, whereas

it is more likely to be written by a Chinese native speaker. This is due to the fact that determiner

errors such as this are more likely to be committed by Chinese speakers. This phenomenon has

been investigated independently in a number of different fields from different perspectives, including

qualitative and quantitative research in SLA and Foreign Language Teaching and Learning (FLTL),

and more recently though predictive computational models in NLP; yet until now, there has been

surprisingly little synergy between the various approaches.

In the field of SLA, an early focus was on the observable errors made by speakers of a particular

native language (called the L1) in speaking or writing in another language (the L2); e.g., in the

Contrastive Analysis (CA) approach (Lado, 1957). Much of the motivation here was and continues to

be pedagogical, with the aim of identifying good practices in FLTL. Identifying characteristic errors

of different native speakers helps with providing appropriate feedback to learners and with creating

appropriate teaching materials. This has become a key topic within the field, and as Ellis (2008)

notes in his comprehensive overview of SLA, the issue of identifying which effects on L2 acquisition

are attributable to L1 and which to general developmental (or other) processes is a pervasive one.

Similarly, Ortega (2009) gives as a key question of interest “What is the role played by first language

in L2 development, vis-à-vis the role of other universal development forces?”

Such transfer effects are generally studied and identified through the comparison of the L2 writings

of learners from two or more L1 backgrounds. This methodology can identify phenomena such as

avoidance and overuse; it is also able to minimise overestimation of transfer effects. The difficulty,

then, is that in SLA research most identification of candidate transfer effect constructions is done

manually, and it is difficult to carry this out for a large amount of text. Small quantities of text

can lead to poor estimates of the true extent of underlying cross-linguistic transfer effects, just by

the nature of statistical sampling. Ellis cites seven studies which give proportions of cross-linguistic

errors ranging from 3% to 51%. While some of this extreme variability is attributable to differences

in methodology, sample size would be a major factor. A large-scale study would therefore minimise

this problem.

Granger (2011) discusses the methodology of carrying out corpus-based approaches that use some

automated error identification techniques as a solution to this. They show some promise, but tend to

be few in number and limited in scope. An example is the study of Diéz-Bedmar and Papp (2008),

comparing Chinese and Spanish learners of English with respect to the English article system (a,

an, the). Drawing on 175 texts, they take a particular theoretical analysis (the so-called Bickerton

semantic wheel), use the simple Wordsmith tools designed to extract data for lexicographers to identify

errors in a semi-automatic way, and evaluate using hypothesis testing (chi-square and z-tests, in their

case). In contrast, a fully automatic techniques would mean that — in addition to being able to

process more data — any change in assumptions or in theoretical approach could be made easily,

without need for manual re-annotation.

The issue of identifying L1 effects in L2 texts has been treated differently within the field of NLP,

where it is typically tackled as part of the task of Native Language Identification (NLI), a subtype of

text classification where the goal is to determine the native language of an author writing in a second
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Figure 1.1: Examples of SLA-relevant information that can be extracted from learner corpora.

language. This is sometimes part of a broader task where an author is classified with respect to

characteristics such as gender, age, native language, and so on. These variables are often of interest

to forensic linguistics experts and intelligence agencies, as we discuss in §1.1.2. Additionally, this

profile information is often of interest to marketing organisations for product promotional reasons,

or to governments for crime investigation purposes, such as for phishing (Myers, 2007), the attempt

to defraud through texts that are designed to deceive Internet users into giving away confidential

details.

Most of the existing work on NLI treats the problem as a classification one, and adopts a supervised

machine learning approach. This statistical methodology can provide insight into how individuals use

their implicit and explicit knowledge about the phonology, syntax and orthography of their native

language to produce text in a second language.

Recent work in this area (Wong, 2012) has demonstrated that NLI can inform us about learner

language mistakes and usage patterns. Such systems could be used to automatically identify language

features that are strongly associated with writers of a particular L1 background and use them in a

number of ways. This includes the formulation and testing of hypotheses relating to transfer effects,

but could also be expanded to more sophisticated tasks such as linking specific usage patterns and

errors together to better understand the contexts in which learners make certain mistakes. Figure 1.1

depicts some of the SLA-relevant information that could be extracted from learner texts. To this

end, the use of state-of-the-art tools and techniques from NLP enable us to process large quantities

of data (thousands of times the size of the manual studies) in a way that will let us explore a variety

of assumptions and theoretical analyses.
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In a similar manner to which the development of electronic learner corpora was considered “a

revolution in applied linguistics” (Granger, 1994), automated methods for extracting L1-based per-

sistent language transfer effects via NLI are an innovative approach to tackling problems that SLA

researchers have been looking at for a long time. As Milton and Tsang (1993) noted:

Because interlanguage research is still largely pursued by manual analysis, EFL profession-

als lack sufficient evidence to quantify adequately students’ problems in written expression.

Nor do we have a reliable measure of the significance of written error. To adapt a Tang

dynasty poem by Wang Wei: we work in the midst of mountains of linguistic data with

no idea of their true magnitude. We have no quantitative model of the characteristics of

our students’ writing, and so have no real measure of the degree of specific communicative

problems in varieties of learner English. Without a reliable index of the degree of difficulty

that our students have with the various dimensions of written English such as its lexis,

syntax, pragmatics and semantics, we are left to make do with approximations based on

impressions, anecdotes and manual counts of small samples.

If the corpus-linguistic techniques which have been employed so successfully to NS [Na-

tive Speaker] writing can be used, with modification, to assist in the analysis of NNS

[Non-native Speaker] writing, we can demonstrate to students, teachers and textbook

writers precisely how NNS written language differs from (and is similar to) native-speaker

varieties. These methods might help provide an empirical measure of the effectiveness

of pedagogical techniques currently employed in teaching students to understand and ap-

proximate NS writing styles. Until suitable computer programs are refined, a considerable

amount of the analysis must remain manual, but human analysis can be greatly aided with

current software which allows the creation of large databases that can be retrieved and

searched electronically.

With the ongoing development of systems based on sophisticated linguistic features and machine

learning, work in this area is moving far beyond “bean counting at the lexical level” (Milton and

Tsang, 1993). Indeed, NLI can form the basis for the development of substantially more sophisti-

cated methods for investigating learner language using newly developed learner corpora which are

unprecedented in their size.

1.1 Applications

With the proliferation of text and language technology in the last decade, there are a number of fields

where NLI could be applied. Here we outline several key applications that would immensely benefit

from the advancement of NLI methods.

1.1.1 Language Teaching and Learning

Today, we live in a world where there more bilingual individuals than monolinguals, but multilin-

gualism does not automatically imply having attained full mastery of multiple languages. In fact,

polyglots are rarely equally well-versed in all of their languages and very few people are as proficient

in their second languages as they are in their mother tongue.
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As the world continues to become a highly globalized and interconnected community, the learning

of foreign languages is becoming increasingly common. It is typical in many countries for this to be a

part of the formal education process, beginning in either high school or university. This is particularly

so in Europe, where many countries are teaching English intensively even in primary school. Alongside

academia, immigration has been another driving factor behind the rise of bilingualism. Some groups

command more economic or social power than others, and those individuals who wish to join these

groups are often required to learn the new host’s language. This requirement is often implemented

through various gate-keeping mechanisms such as language tests. These have been some of the most

common reasons as to why people would experience the opportunity or need to acquire an additional

language.

Since the end of World War II, the world has witnessed the ascendancy of English as its lingua

franca. One consequence of this has been that non-English speakers from across the globe are aware

of the benefits of learning English, and highly motivated to do so. While some individuals may learn

languages out of their own interest, most people expect to improve their lives in some meaningful

way, and this increases their motivation to do so. In fact, English is already the most commonly

used language in the areas of science and business. However, the majority of English speakers are not

native speakers and just like any other foreign language, there can be many challenges in mastering

English.

From a socio-linguistic point of view, it has been shown that listeners will often evaluate speakers

on a range of attributes based on their language use. This is often measured using language attitude

tests, such as the matched-guise test, that aim to uncover subconscious attitudes listeners hold about

people based on the linguistic variety that they use (Lambert, 1967). These linguistic attitudes have

been known to influence workplace environments, business interactions and other social systems and

processes. In fact, research shows that “non-natives tend to be downgraded in contexts ranging from

the classroom to the workplace” (Eisenstein, 1983). This is generally facilitated by the fact that a

speaker’s language use patterns have been shown to serve as markers for evaluating their personal

and socio-economic characteristics (Ball, 1983). In multi-cultural settings, this has been shown to

enable listeners to elicit certain stereotypes about the speaker and potentially lead to less favourable

evaluations. More examples of how such perceptions arise can be found in Giles et al. (1981) and

Bilaniuk (2003).

Many learners are aware of these perceptions to some degree and seek to ameliorate these effects

through adapting their language production. These modification have been captured by models such

as the Communication Accommodation Theory (Giles and Ogay, 2007) which postulates that speakers

tend to accommodate their language production to interlocuters that they like by converging their

styles to minimize differences. Alternatively, divergence may result in the accentuation of linguistic

differences in order for the interlocuters to assert their distinctiveness. In this sense, speakers are

motivated by what they want to accomplish and accordingly keep their audience in mind when they

make linguistic choices in order to reduce linguistic dissimilarities (Giles et al., 1991).

Furthermore, while technological advancements such as the introduction of the telephone, fax,

Internet and personal computing have diminished the obstacles posed by physical distances, language

proficiency remains an impediment to both business and interpersonal communication. This has lead

to an increasing necessity for language learning resources, which has in turn fuelled much of the

language acquisition research of the past decade.
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All of this provides intrinsic motivation for many of the learners to continue improving their

language skills beyond that of basic communication or working proficiency towards near-native levels.

In itself, this is not an easy task, but a good starting point is to reduce those idiosyncratic language

use patterns that are being caused by the influence of the native language.

Within SLA research, NLI can be used to identify the most challenging aspects of a language for

learners from specific L1 backgrounds. As opposed to much of the work in SLA that takes a deductive,

corpus-based approach, using NLI does not require that we start with a set of pre-existing hypotheses.

Instead, we canvas the available data to identify regularities and patterns that are distinct to writers

from a particular L1 background. Once the significance of these patterns have been established

through statistical testing, we can then hypothesize about the underlying linguistic causes of these

intergroup differences. With respect to the field, Jarvis (2012) suggests that NLI is an innovative

approach to tackling problems that SLA researchers have been looking at for a long time.

Based on such language-specific models, learners can be provided with customized and specific

feedback, determined by their native language. For example, algorithms based on these models could

provide students with much more specific and focused feedback when used in automated writing

evaluation systems (Rozovskaya and Roth, 2011).

Furthermore, researchers are interested in the nature and degree to which a native language affects

the acquisition and production of other consequently learnt languages. NLI-based analyses could be

used to help researchers in linguistics and cognitive science to better understand the process of second

language acquisition and language transfer effects. This information can better inform researchers

about how language is processed in the brain, in way that are not possible by just studying monolin-

guals, thereby providing us with important insights that increase our knowledge and understanding

of the human language faculty.

1.1.2 Forensic Linguistics and Legal applications

The field of forensic linguistics (Gibbons, 2003; Coulthard and Johnson, 2007) — a branch of applied

linguistics — involves the application of linguistic and scientific knowledge within the context of the

law. It is a juncture where the legal system and linguistic stylistics intersect (Gibbons and Prakasam,

2004; McMenamin, 2002).

Research in this young field has been growing since its inception in the 1960s. A series of seminars

and the establishment of the International Association of Forensic Linguists1 launched the field into

the academic conference circuit and it has continued to expand since. The Centre for Forensic

Linguistics at Aston University, the first research centre dedicated to this area, was opened in 2008.

These developments, coupled with the growing use of linguistic evidence, have brought the discipline

into the mainstream. A more detailed outline of the field’s history can be found in Blackwell (2013).

Although the field has expanded to many other strands, the application of textual analysis to

disputed documents remains one of its core foci. The use of software and machine-readable corpora

are also becoming increasingly common in this area.

From a forensic point of view, NLI can be a useful tool for use by intelligence and law enforcement

agencies. In fact, recent NLI research such as that related to the work conducted by Perkins (2014)

at The Centre for Forensic Linguistics has already attracted interest and funding from intelligence

1http://www.iafl.org/

http://www.iafl.org/
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agencies (Perkins, 2014, p. 17). In this context NLI can be used as a tool for Authorship Profiling

(Grant, 2007) in order to provide evidence about the linguistic background of an author.

There are a number of situations where a text, such as an anonymous letter, is the central piece of

evidence in an investigation. The ability to extract additional information from an anonymous text

can enable the authorities and intelligence agencies to learn more about threats and those responsible

for them. Clues about the native language of a writer can help investigators in determining the source

of anonymous text and the importance of this analysis is often bolstered by the fact that in such

scenarios, the only data available to users and investigators is the text itself. One recently studied

example is the analysis of extremist related activity on the web (Abbasi and Chen, 2005).

Although linguistic profiling methods are not considered reliable enough to meet the stringent legal

criteria for evidence (Perkins, 2014, p. 16), their use in legal procedures is not without precedence.

McMenamin (2002, pp. 207-233) lists a number of adjudicated cases where forensic stylistics

evidence played some role in the case outcome. Some examples cases include:

• A bank received various anonymous letters advising against financing a large business project.

The company provided a list of likely suspect writers.

• A large hospital received a number of anonymous letters threatening an administrator. The

hospital identified a number of present and former employees as possible writers.

Another case highlighted by Blackwell (2013) is that of the 2001 anthrax attacks, where a number

of threatening letters containing anthrax spores were mailed to news media outlets and public figures

in the US. The emerging consensus among forensic linguists who analyzed the letters was that they

were likely written by a native speaker, despite several spelling mistakes and non-standard syntax.

This analysis seems to have been accurate as the FBI prepared to prosecute Bruce Edwards Ivins in

2008. Although he committed suicide before the case could proceed, he was later declared the sole

culprit for the attacks.

Such forensic analyses have also been extended to SMS text messages sent from mobile phones

(Grant, 2010). A notable case is the conviction of David Hodgson, where the jury was persuaded

by linguistic evidence of his authorship of text messages sent from his former lover’s phone after

her death (Grant, 2012, p. 475). Much of the evidence used here was based on discriminating the

messaging styles of the two individuals using the lexical choices and preferences.

Linguistic stylistics also played a role in the case of Ted Kaczynski, also known as the “Un-

abomber”, who waged a nationwide bombing campaign across the US from 1978 to 1995. In 1995,

the Unabomber demanded that his 35,000 word manifesto be published by the media in order for

him to end his bombing campaign, a request which was granted in September of that year. The

perpetrator’s brother, David Kaczynski, found linguistic similarities between the manifesto and his

brother’s writing. He examined the idiosyncrasies by comparing the manifesto to old handwritten

essays and letters written by Ted, helping to identify the perpetrator.

Error analysis has also played a role in cases involving non-native writing. Hubbard (1994) reports

on the use of linguistic analysis in an extortion case where an L1 Polish speaker was charged with

having written a number of extortion letters to a nationwide chain store in South Africa. During

the trial the defence solicited the services of an expert witness who asked the accused to write seven

compositions on various topics under test conditions.
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These writings were then compared against the extortion letters through an error analysis. The

defence argued that it was improbable the the accused had authored the extortion letters. The

prosecution then sought the assistance of a linguist to critique this evidence, using stylometric and

error analyses. This process — particularly quantitative analysis of article and spelling errors —

involved comparing the defendant’s writing against the extortion letters and additional compositions

by other L1 Polish authors who were included. The results showed that the accused’s writings were

the closest match to the extortionist out of the eight candidates. This evidence suggested that the

defence had overstated their argument and ultimately helped secure a conviction.

An important point to consider here is the rigorous objectivity required in applying such meth-

ods during the legal process. Here, the defence and prosecution differed in their manually-applied

methodology, leading to the formation of opposing arguments. The use of computational models such

as NLI for automating such analyses could help increase the objectivity of the process, provided that

appropriate training data is used. At the very least, it could lead to more reproducible results. The

cases described in this section rely on the same types of linguistic differences that are used in NLI

and demonstrate how such systems could be used as an investigative tool.

In addition to their usage in post-hoc forensic analyses, they could also be used in conjunction

with real-time monitoring and detection systems. Furthermore, the derived language profiles could

also be used in some security applications where the scope of information retrieval or search space

could be limited to those documents matching certain native language models or linguistic criteria.

1.1.3 Other Applications

The development of highly specific L1–L2 language transfer models could be potentially useful in

many other fields of language technology, including speech recognition, machine translation, parsing

and part-of-speech tagging.

Such models can also be applied to the task of automatic grammatical error detection and cor-

rection. It has already been shown that contextual models based on the user’s native language can

assist error correction systems (Gamon et al., 2008; Lee, 2009). Such systems include those designed

for correcting grammar and spelling mistakes where the availability of more specific language profiles

could help improve the effectiveness and accuracy of these systems.

Most of the above-mentioned NLP systems are trained on corpora of native English text, usually

resulting in much lower performance when used with non-native data. As their use becomes more

widespread, language specific models would benefit these tools and enable them to be more robust

and be used with a wider range of input data.

1.2 Goals and Objectives

NLI is a young but rapidly growing area of research. It has become a well-defined classification task

in the past decade and increasing work during the last five years has brought an unprecedented level

of research focus and momentum to the area, culminating in the first NLI Shared Task in 2013. Most

work to date has focused on the core machine learning and feature engineering facets of the task,

obtaining suitable data and unifying the area with a common evaluation framework.

Bearing this in mind, this thesis focuses on three broad goals within this area. These three aims,

along with more specific objectives, are listed below.
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1. Exploring the NLI task in new ways to gain further insights about the task and how they affect

practical applications of the methods.

(a) Assess human performance for NLI, something which has not been done to date. We

also aim to compare the performance of experts against a machine learning model to see

whether this is the kind of task that is hard for computers, relative to humans or vice versa.

(b) Evaluate oracle performance for estimating the upper-bounds for NLI accuracy, gauging

potential for further improvements in classification performance. Results are also analyzed

for interesting error patterns.

(c) Determine how well NLI systems might perform on other data, including those from other

domains and genres. We use a new dataset to conduct large-scale cross-corpus evaluation

to assess this using standard features and an oracle.

(d) Explore the cross-lingual applicability of NLI by extending it to other languages to deter-

mine if results hold across languages.

(e) Examine suitability of the methods to discriminating between native and non-native writ-

ing in a binary classification task.

2. Investigating how NLI can inform SLA by drawing together work from both areas.

(a) Study the possibility of using the classification task to give a broad linguistic interpreta-

tion of the data. The NLI literature has not qualitatively assessed the information being

captured by NLI models and how these may be connected with SLA phenomena. If the

features do correspond to SLA-related issues, they can potentially be used in SLA research.

(b) Propose a method for deriving interpretable, ranked lists of underused and overused lin-

guistic features from large-scale data. Such a method should ideally work with arbitrary

features and provide lists for individual L1s.

(c) Analyze results to ascertain if they can be used to develop plausible language transfer

hypotheses supported by current linguistic evidence. This enables us to determine how

the knowledge obtained from NLI models can inform SLA research.

(d) Define a new task for finding linguistic contexts for errors that vary with the native lan-

guage of the writer, and examine a variety of models to see which best tackles the new task.

3. Applying NLI models to other NLP tasks.

(a) Introduce the novel task of L1-based text segmentation, where the goal is to segment

texts based on L1 influence. This is useful for tracing L1 influence in texts that contain

such effects from more than one language and can be applied in areas such as plagiarism

detection and literary analysis.

(b) Explore a range of Bayesian models for this, including a novel one using alternating asym-

metric priors, based on adapting an unsupervised topic segmentation approach to use

syntactic POS n-gram features with compact distributions.

(c) Examine how the discriminative NLI features from classifier models can be exploited in

this unsupervised task.
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An overarching aim here — most directly reflected by the second and third goals — is to draw

together research from the computational linguistics and language learning fields to see how they can

inform each other. A key aim here is to develop models using machine learning for addressing in a

unified way problems regarding second language learning in the fields of SLA/FLTL and NLP: the

SLA and FLTL research can benefit from use of the tools of NLP on large-scale data, while NLP

tasks can benefit from the derived models and language acquisition insights from SLA.

1.3 Motivation and Significance

There are two major ways in which the proposed work is significant. One is related to connecting

SLA to work in NLP. As discussed above, an important strand of work in SLA is motivated by the

aim of improving foreign language teaching and learning; and NLP has the tools to use large amounts

of data to do this (semi-)automatically. There is a reasonable body of work within NLP that also

has the goal of helping learners of a language: the work by Tetreault et al. (2010) is an example

of identifying specific problems for a learner, and there is some work towards building more general

models (Tetreault and Chodorow, 2009). However, these are concerned with disparate phenomena,

in a sense looking at learner problems on a case-by-case basis, whereas the aim of this work is to

look at the more fundamental transfer-related questions identified in SLA. Moreover, while there

are some attempts in SLA to use computational approaches on larger-scale data (such as in Jarvis

and Crossley (2012)), these still use fairly elementary techniques and have several shortcomings,

including in approaches to corpus annotation and in the computational artefacts derived from these.

Overall, there is much scope for contributing better techniques to fields dedicated to understanding

and improving human learning of languages; work in NLI has been moving towards this direction.

A significant contribution of this thesis is that we further explore the task of NLI in new ways,

including human performance, oracles and extensions to several other languages. Building on this,

we also consider how these models could be used to support and inform specific tasks in SLA.

The second way in which this thesis is significant is the connection between NLI and other NLP

tasks: it will highlight the ways in which knowledge about learner writing can be used in other

NLP areas. In a special journal issue on the interaction of linguistics and NLP, Ken Church, one

of the founders of statistical approaches in NLP, lamented the broad disappearance of linguistics

from work in NLP (Church, 2011). This thesis aims to renew the relationship between linguistics

and computation, at least in this particular domain, with an expectation of more such insights. We

anticipate that both of these fundamental characteristics of the proposed work will also lead to the

practical benefit of a deeper understanding of cross-linguistic effects and of improved performance in

NLI-related tasks.

The work is innovative in a number of ways. The combination of SLA and the abovementioned

state-of-the-art NLP techniques is new, as are the ideas behind the proposed approaches, detailed

below in the individual tasks into which the work will be broken. In terms of NLI, the experiments

discussed in Chapter 5 are the first to explore the application of these methods to languages be-

yond English. This work is also the first to examine other issues such as human performance and

feature interaction. In terms of error and language transfer detection, the application to SLA and

to identifying transfer effects is itself novel. And in terms of bringing these together, the use of the

graph-theoretic models we propose for identifying error contexts is a novel approach to going beyond
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the use of linguists’ intuition as a method for generating candidate hypotheses for an SLA study,

quite different from existing applications of graph-theoretic methods in NLP. Finally, the native

language-based text segmentation task proposed and tackled in Chapter 7 is also a novel contribution

of this thesis.

1.4 Thesis Outline

The remainder of this thesis is organized as follows:

• In Chapter 2 we introduce key topics and a detailed overview of related work, including an

exhaustive survey of the NLI literature.

• In Chapter 3 we develop our NLI system and examine relevant machine learning issues.

• Chapter 4 investigates oracles, human performance and cross-corpus evaluation for NLI.

• Chapter 5 extends our NLI methods to a range of other languages to assess their cross-lingual

applicability.

• Chapter 6 discusses how the NLI methodology can be used to extract relevant features of learner

language that can assist qualitative research in language teaching and acquisition.

• Chapter 7 uses our NLI work to propose an unsupervised method for detecting influence from

multiple L1s within a single document.

• We conclude with Chapter 8 where we recap the three main components of this thesis, comment

on the methodological limitations and discuss potential extensions for the future work.
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Chapter 2

Related Work

NLI is a type of authorship attribution, which is often approached using a text classification paradigm.

We will begin with a discussion of the related problems of text classification and authorship attribu-

tion. This will be followed by a complete and detailed review of all Native Language Identification

research to date. Finally, we look at Cross-Linguistic Influence, which relates to the language transfer

theories that explain the characteristic second language production patterns of learners, an idea that

underpins NLI and enables the identification of non-native writers.

Although there has been a significant amount of NLI work presented recently, a survey of the

field has yet to be conducted. While this chapter provides pertinent background information for the

upcoming chapters, it also serves as the first comprehensive review of NLI research, linking it with

wider research areas in linguistics and NLP. In surveying the field, this chapter details the features

and experimental setup that will be used in the thesis.
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2.1 Document Classification

We begin by briefly introducing the concept and methodology of text classification. This is because

most of the work in NLI to date has treated the problem as a classification task and tackled it

supervised machine learning methods, therefore a brief introduction to the key concepts and problems

is warranted.

Document classification (also known as document or text categorization) is the task of automati-

cally assigning text documents to groups using algorithmic methods. These groups may be a set of

predefined classes, or in the absence of a pre-existing categories, the algorithm may need to auto-

matically cluster them according to their similarity. This assignment is generally done on the basis

of the document’s content. Text documents may be classified according to their topic or subject, or

some other criteria such as author, document type, writing style or other attributes of the contents.

Associated metadata, where available, may also be used in the classification process.

The concept of text classification is not a new one, and its roots can be traced as far back as the

work of Maron (1961). The task, which is an amalgamation of the methodologies from Information

Retrieval (IR) and Machine Learning (ML), has gained significant attention over the last two decades

due to the emergence of a large amount of digital documents and a need to automatically sort and

categorize them.

The development of effective ML algorithms has enabled researchers to build automatic document

classifiers that learn the attributes and characteristics of interest from a set of labelled texts. Prior

to the emergence of these methods documents were manually classified by trained specialists or by

systems that used manually engineered classification rules, both of which were cumbersome and

error-prone processes. In many cases, given enough training data, machine leaning-based systems

can achieve performance comparable to human experts using considerably less time and effort.

2.1.1 The Machine Learning Approach

The ML-based approach to text classification has become the de facto standard over the last two

decades. Its high levels of effectiveness and efficiency have established it as a feasible and practical

alternative to both manual classification and rule-based classifiers. A very detailed review of this

approach is presented by Sebastiani (2002).

The ML approach generally uses a learner which builds a classifier to recognize each category

through a general inductive process that involves inspecting a set of features extracted from the

documents. In this paradigm, most of the effort goes into creating an automatic classifier instead of

engineering the classification rules. Although there is a cost associated with the creation of annotated

data, this is still often lower than the effort of creating manual classification schemes. The general

framework of such a text classification system is shown in Figure 2.1.

This classification procedure may be unsupervised or supervised. Unsupervised classification (Ko

and Seo, 2000; Sandler, 2005) is done without any labelled training data, and can be considered a

type of document clustering. This approach is motivated by the fact that while the collection of

training documents is often straightforward, their manual labelling by domain experts is a costly and

time consuming process. While some unsupervised systems may attain comparable performance to

supervised classifiers on some tasks, their accuracy is generally lower. Such systems can also be used

a preliminary step in creating the training data for a supervised classifier.



2.1. DOCUMENT CLASSIFICATION 15

Training

PredictionInput Document

Preprocessing Feature Extraction

Classifier

Label

Label

Machine Learning Algorithm

Figure 2.1: General framework for a text classification system.

Supervised classification uses statistical and ML methods to automatically learn classification

rules from gold-standard training data that has been manually labelled by human experts. Its name

is derived from the fact that the process is supervised by the human-assigned categorical information

assigned to each training text. In this sense, the training data is a key component of the system. If

such pre-labelled data is not available for a classification task, it will need to be created. While a cum-

bersome and time-consuming task, it is still often easier than manually engineering and maintaining

a set of classification rules.

2.1.2 Applications of Text Classification

Document classification techniques can be applied to a variety of problems, as we outline in this

section. These problems generally require large amounts of free text documents to be sorted and

organized into some set of predefined categories. The types of documents may vary across tasks (e.g.

news articles, essays, emails, HTML or even tweets), and the type of classification may require input

documents to be assigned to a single class or multiple classes. Text classification has been successfully

applied to a range of real-world problems and we will briefly review some of them below.

Spam Filtering In this application, incoming email messages are assigned one of two classes: spam

or not spam. This is done by analysing the email contents and the associated metadata such as the

sender details.

Document Organization Classification methods can also be applied to organizing a set of docu-

ments to facilitate processing and browsing. Examples of such applications include the categorization

of news articles or scientific papers into appropriate categories. In more complex scenarios this or-

ganization can also be hierarchical, particularly when there are a large number of categories which

can be naturally arranged in a hierarchical manner. A good example of such a scenario is the catego-

rization of web pages which are large in number and span hundreds or thousands of categories. Such

problems are decomposed into many decisions, each usually at the branch nodes of the hierarchy.
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Language Identification Not to be confused with NLI, Language Identification is the task of

identifying the language in which a given document has been written in (Cavnar and Trenkle, 1994).

In practice this process is performed through learning the association between character distribution

models for different languages. Other approaches have also incorporated the use of characteristic

words. Such techniques have applications in various document processing systems, including as a

first step in automated machine translation (Beesley, 1988). For example, the Google Translate1

machine translation system currently incorporates such a step if input is entered without explicitly

specifying the input language. The training data are usually labelled texts from each of the target

languages. Problems can arise when an input document is in a previously unseen language, is too

short or contains text from multiple languages. Dialect Identification is a very closely related task,

but applied to variants of the same language (Malmasi and Dras, 2015b; Malmasi et al., 2015b).

Sentiment Analysis Opinion mining and sentiment analysis have also made use of text classifica-

tion techniques. These areas broadly work on the computational treatment of sentiments, opinions,

and subjectivity in text that can be used to develop opinion-oriented IR systems. Just as some of the

previously mentioned applications need to be topic-aware, these systems must be sentiment-aware

and this is often achieved through sentiment classification where the class labels are sentiments such

as positive, negative or neutral. The number of categories can vary: sentiment-polarity classification is

a binary classification problem but more complex tasks may seek to classify the strength of an opinion

with a larger number of classes (e.g. determining a star rating for movie reviews). A comprehensive

review of the task and the classification approach can be found in the survey by Pang and Lee (2008).

Authorship Attribution The task of identifying the author of a text from a set of candidates

is referred to as authorship attribution. This task has also been addressed as a text classification

problem where the author identities serve as class labels and documents written by those authors are

used for training. This task will be discussed in more detail in §2.2.

Genre Classification The classification of a text’s genre or style is another problem that has

been framed in the text classification context (Lee and Myaeng, 2002; Kessler et al., 1997). Some

examples of document genres include research article, product review, news article, legal document,

advertisement or novel. It is important to note that these classes are different to the ones used in

topic-based classification: genre classification is more concerned with structure rather than the content

and is often performed with different feature types. It has applications in information retrieval and

extraction.

Word Sense Disambiguation The task of identifying the particular sense of an ambiguous

(homonymous or polysemous) word is known as word sense disambiguation (WSD). In such a task

a decision is required about the correct word sense, given the context in which the word appears

in. WSD has been approached as a text classification problem where the occurrence contexts are

documents and the senses serve as categories (Escudero et al., 2000).

Automated Essay Grading In the educational context, document classification methods have also

been adapted to assist in the development of automated grading of student essays (Yannakoudakis

1https://translate.google.com/

https://translate.google.com/
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et al., 2011; Shermis and Burstein, 2003; Larkey, 1998). This is motivated by the fact that grading is a

highly time consuming process and automated assessment tools could help free up the time of human

assessors. It could also help reduce the subjectiveness in grading which leads to significant variance

in the marks given by teachers. Such systems have so far used features that rely on the surface forms

of the words and the text stylistics; one consequent limitation is that they have generally been unable

to assess the content being communicated by the essay. However, the results from many systems

based on document structure, word use, syntactic fluency and other attributes that measure writing

quality have been found to correlate highly with human graders.

Text Filtering Text classification techniques have also been applied to the task of filtering a

stream of documents (Belkin and Croft, 1992). Such a system could be used by an information

consumer to prevent the delivery of uninteresting incoming documents from an information producer.

Alternatively, it could be used on the producer’s end to selectively disseminate information to the

appropriate consumers, for example in web-based systems that allow uses to create personalized news

streams.

2.1.3 Learning Algorithms and Features

Various types of machine learning algorithm have been applied for text classification tasks. These

include Näıve Bayes, decision trees, logistic regression and neural networks. Sebastiani (2002) presents

a review of how these algorithms are applied in text classification.

Due to the complex nature of human language and texts, the data we work with is often highly

dimensional and sparse, requiring robust algorithms that can adapt to such large amounts of data.

Many of these learning algorithms cannot scale up to the number of features present in practical

text classification problems and thus require dimensionality reduction of the feature space prior to

training.

Support Vector Machine (SVM) classifiers have proven to be suited to large feature spaces. They

have been widely explored for text classification and categorization and proven to be efficient and

effective (Joachims, 1998, 1999). Advantages of SVMs include less reliance on feature reduction as the

algorithm is robust against overfitting and can scale up to very large dimensions. Another advantage

is that numerous implementations of SVM classifiers are freely and publicly available as a result of

the efforts of the research community. These factors have enabled SVMs to provide state-of-the-art

performance in many text classification tasks and have been used abundantly in NLI.

Logistic Regression (LR) classifiers, a discriminative model like the SVM, have also proven to be

effective for text classification (Genkin et al., 2007) and their use in NLI has also been common. They

are linear and probabilistic in nature, enabling them to effectively handle large feature spaces.

A wide range of feature types – e.g. word and character n-grams – have been used by researchers

to solve various text classification problems. These standard feature classes, along with others used

specifically for NLI, are described in detail later in this chapter in §2.3.2.

2.1.4 Evaluation Metrics

The evaluation of text classifiers is generally performed through the analysis of experimental results.

These results can be presented within a confusion matrix, which is a table that displays the actual
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and predicted classifications provided by the system. Rows contain the actual number of items in

each class while the columns display the predicted items in each class.

Predicted
Classes 1 2 3 4 5

Actual

1 [249] 0 0 0 121
2 0 [87] 5 0 2
3 0 19 [104] 0 0
4 32 14 243 [0] 26
5 97 42 64 4 [12]

Table 2.1: An example confusion matrix for a classification task with 5 classes. Entries in square
brackets along the diagonal represent correct classification.

Each classification result within the possible classes can be qualified as being:

• True Positive (tp): The item has been classified correctly as belonging to the right class.

• False Positive (fp): The item was misclassified as belonging to an incorrect class.

• True Negative (tn): The item was not part of the class and correctly assigned to another class.

• False Negative (fn): The item was part of the class, but incorrectly misclassified.

Based on these criteria, several standard measures have been proposed to measure, evaluate and

compare classification performance.

Precision and Recall Originally used in Information Retrieval, Precision and Recall have also

been adopted for evaluating document classification.

Precision is defined as the probability that a document predicted to be part of a class actually

belongs to that class.

Precision =
tp

tp+ fp

Recall is defined as the probability that a document that is in a class is predicted to be in this

class.

Recall =
tp

tp+ fn

F-measure Combining both precision and recall into a single metric, the F-measure (sometimes

called the F1 measure when it is balanced, viz. precision and recall are weighted equally) is the

harmonic mean of the precision and recall values:

F = 2 · precision · recall

precision + recall

Accuracy Another alternative measure that is commonly used is accuracy. It is a general measure

of how well the system has performed and represents the proportion of the results that are true (both

positive and negative). Accuracy is influenced by the class distribution.
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Figure 2.2: Authorship analysis has two major sub-fields. Authorship attribution is concerned with
identifying the author from a predefined set of candidate authors. Authorship profiling aims to predict
more general traits or characteristics of the author.

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

Other similar metrics for measuring classifier effectiveness have also been proposed, but the ones

described here are those that are generally used in the literature.

2.2 Authorship Analysis

The process of analysing the distinct characteristics of a text with the aim of deriving information

and conclusions about its author is known as Authorship Analysis. This stylometric approach uses

statistical methods to analyse the literary style and markers in texts (Holmes, 1998). This area can be

broadly represented as two sub-fields: authorship attribution and authorship profiling, as illustrated

in Figure 2.2.

Authorship attribution (also known as authorship identification) is a well-researched problem with

the aim of determining the author of an anonymous text from a predefined list of candidates. This is

generally achieved by comparing the input data with previously written texts by the known authors

to identify the most likely candidate author. Following the seminal work of Mosteller and Wallace

(1964) that used various statistical methods to identify the authors of the Federalist Papers,2 the

techniques have been expanded and applied to various other domains such as scientific writing and

social media. The advent of the Internet and social media has been a driving factor in recent au-

thorship attribution research, fuelled by the the rapid growth of user-generated content and publicly

available communications and text information. More recently, it has been applied to investigating

digital evidence (Chaski, 2005) and analysing extremist communications (Abbasi and Chen, 2005).

2 The Federalist Papers are an influential collection of documents promoting the ratification of the United States
Constitution, published in 1787–88. Although the 85 papers were published under a single pseudonym at the time,
the three authors were later identified as being Alexander Hamilton, James Madison, and John Jay. However, the
authorship of some of the essays remained disputed and the attribution task here has been to determine which author
wrote which of the disputed papers.
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Authorship profiling (also known as authorship characterisation) aims to predict more general

traits or characteristics of the author from their writing. While this is useful in itself, it can also aid

authorship attribution investigations where the analysis is approached under the assumption that no

viable set of candidate authors is present. Instead, linguistic observations from the text are used to

predict characteristics or features that inform us about a particular class that the author belongs

to (Argamon et al., 2006). This distinction of authors into several classes enables the creation of

author profiles, which can then assist with the identification of an author. Various categorical classes

of author attributes have been proposed in past research, including age, gender, nationality, socio-

economic status, education level and psychological constructs. Estival et al. (2007) investigated

several traits and categorized them as being either demographic or psychometric in nature. While

many such potential traits have been defined for the purpose of this task, most studies aim to identify

a few of these. New traits continue to be proposed in recent studies, including the author’s ethnic

background as well as whether they are a native English speaker (Rao et al., 2011; Bergsma et al.,

2012).

It is also worth mentioning the related area of similarity detection methods which can be used to

determine the degree of similarity between multiple texts. In this approach, no specific information

about the authorship of the works may be required. Similarly, the derived conclusions may also

not inform us about the authorship, but rather only the similarity between texts. It could also be

employed in cases where the number of potential authors is too large or we cannot be confident that

the actual author is within the candidate set (Koppel et al., 2011b). These techniques have also been

applied to the problem of automated plagiarism detection.

Chronologically speaking, we can consider authorship analysis to be the predecessor to NLI, and

more specifically, we can observe that the goals of NLI and authorship attribution are similar in

many respects. While the latter aims to determine the individual author of some text, NLI only seeks

to determine the author’s native language. If we consider the native language to be a fundamental

author trait, then NLI can be seen as a subtask of authorship profiling. Approaches to both tasks

have employed similar linguistic features such as function words and character n-grams.

2.3 Native Language Identification

The process of determining an author’s native language based on their language production in a

non-native language is known as Native Language Identification. In particular, we can consider this

to be a type of authorship profiling, as discussed in §2.2.

NLI works by identifying language use patterns that are common to certain groups of speakers

that share the same native language. This process is underpinned by the presupposition that an

author’s linguistic background will dispose them towards particular language production patterns

in their learnt languages, as influenced by their mother tongue. This relates to the issue of Cross-

linguistic Influence, which will be discussed in §2.4. The diagram in Figure 2.3 illustrates the concept

of an example NLI system.

NLI is a fairly recent, but rapidly growing, area of research. While some early research was

conducted in the early 2000s, most work has only appeared in the last few years. This trend can be

observed in Figure 2.4 which shows the number of NLI related publications per year since the first
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Figure 2.3: The general concept of an NLI system is depicted in this example. English texts that
are written by non-native authors are passed to an NLI system which predicts the native language of
their authors based on their writing.

study in this area. This surge of interest, coupled with the inaugural shared task in 2013, has resulted

in NLI becoming a well-established NLP task.

While NLI can help us better observe and understand the ways in which non-natives learn a

language, the methodology can interact with techniques from SLA in analyzing the process of language

learning. The results of these kinds of analyses can help learners improve their language skills in a

self-directed manner and also assist teachers and educators to better focus their efforts on particular

areas that prove difficult for students from specific L1 backgrounds.

In many areas of NLP, the focus of research is on automating tasks that can be performed

accurately and without much difficulty by humans, but not machines. Examples include speech

recognition, classification and named entity extraction. In contrast, there are other tasks such as

authorship attribution and NLI that are quite complex for humans, but much easier to do through

statistical analysis and machine learning. It is quite plausible that given the number of possible

candidate languages and the large range of feature types and spaces, it would be unlikely that human

judges could match the performance of current NLI systems.

NLI is well suited to languages that have many non-native speakers. English, due to its promi-

nence, large number of learners and role as business and scientific lingua franca has attracted the most

attention from researchers to date. This has also been facilitated by the large body of learner data

that has accumulated over the last few decades. With this in mind, one of the central contributions

of this work is the extension of NLI to additional, non-English L2s such as Chinese.

In most studies in the field, NLI has been treated as a multi-class supervised classification task.

In this common experimental design, the native languages (L1) are used as class labels and the

individual writings are used as training and testing data. Results are usually reported in terms of

the classification accuracy, often under cross-validation.

NLI systems can be improved and optimized in several ways, including:

• Classification algorithm selection

• Hyperparameter optimization
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Figure 2.4: The number of NLI related scientific publications per year, for the years 2001–2013.

• Incorporation of useful feature types and spaces

• Feature selection and representation optimization

• Feature combination methods

Most NLI research works on improving some or all of these facets of the task.

2.3.1 NLI Corpora

A number of different datasets have been used for NLI. In this section we introduce some of the most

commonly used ones.

Learner corpora — datasets composed of the writings of learners of a particular language — are a

key component of language acquisition research and their utilization has been considered “a revolution

in applied linguistics” (Granger, 1994).

They are designed to assist researchers studying various aspects of learner interlanguage and are

often used to investigate learner language production in an exploratory manner in order to generate

hypotheses. Recently, learner corpora have also been utilized in various NLP tasks including error

detection and correction (Gamon et al., 2013), language transfer hypothesis formulation (Swanson

and Charniak, 2014) and Native Language Identification (Tetreault et al., 2013). In fact, they are a

core component of NLI research. While such corpus-based studies have become an accepted standard

in SLA research and relevant NLP tasks, there remains a paucity of large-scale L2 corpora.

Additionally, there are a number of characteristics and design requirements that must be met for

a corpus to be useful for NLI research. An ideal NLI corpus should:

• have multiple and diverse L1 groups represented

• be balanced by topic so as to avoid topic bias, as discussed in the next section

• be balanced in proficiency across the groups

• contain similar numbers of texts per L1, i.e. be balanced by class
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Figure 2.5: An example of a dataset that is not balanced by topic: class 1 contains mostly documents
from topic A, while class 2 is dominated by texts from topic B. Here, a learning algorithm may
distinguish the classes through other confounding variables related to topic.

• be sufficiently large in size to reliably identify inter-group differences

Unfortunately very few of the currently available data sources meet all of these criteria.

2.3.1.1 Topic Bias

Before we go on to discuss the available corpora, we first introduce the concept of topic bias, an

important criteria in evaluating these datasets. Topic bias, an issue that affects stylistic classification

tasks like NLI, can occur as a result of the themes or topics of the texts to be classified not being

evenly distributed across the classes. For example, if in our training data all the texts written by

English L1 speakers are on topic A, while all the French L1 authors write about topic B, then we have

implicitly trained our classifier on the topics as well. In this case the classifier learns to distinguish

our target variable through another confounding variable. This concept is illustrated in Figure 2.5.

While this is an extreme example, in real world scenarios even a slightly skewed topic distribution

can negatively affect the classification results and thus this source of bias must be accounted for.

Accordingly, the use of lexical features (e.g. word n-grams) cannot be justified in circumstances

where a topic balanced dataset is not being used, due to the mentioned issues with topic bias (Koppel

et al., 2009). For this reason, some of the earlier studies we mention in our review of the literature did

not use lexical features when investigating unbalanced datasets such as the ICLE. Other researchers

like Brooke and Hirst (2012b), however, argue that lexical features cannot be simply ignored.

2.3.1.2 The ICLE Corpus

The International Corpus of Learner English (ICLE) contains English essays written by learners from

16 different native language backgrounds (Granger, 2003). These L1 groups and the number of essays

in each group are shown in Table 2.2.

It should be noted that this dataset was not designed for use in NLI research and researchers have

pointed out a number of methodological flaws that may arise due to its use. A major issue is that

the topic distribution is not balanced across the L1 groups. Brooke and Hirst (2011) showed that

the corpus is compromised by topic bias that makes it difficult to draw conclusions about the true

efficacy of the derived features. These findings are discussed later in this section.
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Native Language Documents
Bulgarian 302
Chinese 982
Czech 243
Dutch 263
Finnish 390
French 347
German 437
Italian 392
Japanese 366
Norwegian 317
Polish 365
Russian 276
Spanish 251
Swedish 355
Tswana 519
Turkish 280
Total 6,085

Table 2.2: The 16 L1 groups included in the ICLE corpus and the number of essays in each group.

Native Language Documents
Catalan 64
Chinese 66
Dutch 2
French 146
German 69
Greek 74
Italian 76
Japanese 81
Korean 86
Polish 76
Portuguese 68
Russian 83
Spanish 200
Swedish 15
Thai 63
Turkish 75
Total 1,244

Table 2.3: The 16 L1 groups included in the CLC FCE corpus and the number of essays in each
group.

Another issue with this corpus is that it is quite small, containing only 6,085 texts, making it

difficult to effectively split the data for training and testing. Any additional splitting of the already

limited texts limits our ability to obtain the statistically significant results. Furthermore, it makes

it difficult to determine whether the developed methodology can scale well to larger corpora or be

applied to different domains.

Prior to the 2013 NLI Shared Task, most researchers had used the second version of the ICLE

corpus for training and evaluation as the best available option at that time.

2.3.1.3 The CLC FCE Corpus

The CLC FCE Dataset3 is a set of 1,244 exam scripts written by candidates who sat the Cambridge

ESOL First Certificate in English (FCE) examination in 2000 and 2001. The scripts are extracted

3http://ilexir.co.uk/applications/clc-fce-dataset/
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Figure 2.6: Language families in the Toefl11 corpus. The languages were selected to represent
different families, but to also have several from within the same families. Diagram reproduced from
Blanchard et al. (2013).

from the much larger Cambridge Learner Corpus (CLC),4 which is being developed as a collaborative

effort between Cambridge University Press and Cambridge Assessment.

The 1,244 scripts are distributed across 16 L1 groups, as shown in Table 2.3. For each exam

script, the CLC FCE Dataset includes the original text written by the candidate (transcribed and

anonymised, but otherwise unmodified) as well as marks, error annotation and essential demographic

details including the candidate’s first language and age bracket.

Although this corpus has been used for some NLI research, it is considered too small for this line

of research as the majority of the L1 groups have fewer than 80 texts.

2.3.1.4 The Toefl11 Corpus

The Toefl11 corpus (Blanchard et al., 2013) — also known as the ETS Corpus of Non-Native

Written English — is the first dataset designed specifically for the task of NLI and developed with

the aim of addressing the above-mentioned deficiencies of other previously used corpora. By providing

a common set of L1s and evaluation standards, the authors set out to facilitate the direct comparison

of approaches and methodologies.

Furthermore, as all of the texts were collected through the Educational Testing Service’s electronic

test delivery system, this ensures that all of the data files are encoded and stored in a consistent

manner.5 The corpus is available through the the Linguistic Data Consortium.6

It consists of 12,100 learner texts from speakers of 11 different languages. The texts are inde-

pendent task essays written in response to eight different prompts, and were collected in the process

of administering the Test of English as a Foreign Language (TOEFL R©) between 2006-2007. The

texts are divided into specific training (Toefl11-Train), development (Toefl11-Dev) and test

(Toefl11-Test) sets.

The 11 L1s are Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean, Spanish,

Telugu and Turkish. This selection ensures that there are L1s from diverse language families, but

also several from within certain families. The L1s and their language families are shown in Figure 2.6.

This dataset was designed specifically for NLI and the authors attempted to balance the texts by

topic and native language. There are a total of eight essay prompts in the corpus, with the prompts

setting each essay’s topic or theme. Although they were not able to create a perfectly balanced

corpus, the distribution of topics across L1s is very even. This distribution of essay prompts by L1 is

shown in Figure 2.7. Additionally, the texts of the eight prompts are listed in Table 2.4.

4http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom/item3646603/Cambridge-International-Corpus-
Cambridge-Learner-Corpus

5The essays are distributed as UTF-8 encoded text files.
6https://catalog.ldc.upenn.edu/LDC2014T06
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Figure 2.7: A plot of how the eight topic prompts are distributed across the L1 groups in the Toefl11
corpus. Prompts are labelled P1–P8. Figure reproduced from Blanchard et al. (2013).
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Prompt Text
P1 Do you agree or disagree with the following statement? It is better to have broad knowledge

of many academic subjects than to specialize in one specific subject. Use specific reasons

and examples to support your answer.

P2 Do you agree or disagree with the following statement? Young people enjoy life more than

older people do. Use specific reasons and examples to support your answer.

P3 Do you agree or disagree with the following statement? Young people nowadays do not give

enough time to helping their communities. Use specific reasons and examples to support

your answer.

P4 Do you agree or disagree with the following statement? Most advertisements make products

seem much better than they really are. Use specific reasons and examples to support your

answer.

P5 Do you agree or disagree with the following statement? In twenty years, there will be fewer

cars in use than there are today. Use reasons and examples to support your answer.

P6 Do you agree or disagree with the following statement? The best way to travel is in a group

led by a tour guide. Use reasons and examples to support your answer.

P7 Do you agree or disagree with the following statement? It is more important for students to

understand ideas and concepts than it is for them to learn facts. Use reasons and examples

to support your answer.

P8 Do you agree or disagree with the following statement? Successful people try new things

and take risks rather than only doing what they already know how to do well. Use reasons

and examples to support your answer.

Table 2.4: Texts of the eight prompts in the Toefl11 corpus.

Low
11%

Medium
54%

High
35%

 

Figure 2.8: Distribution of proficiency levels in the Toefl11 corpus.

Furthermore, the proficiency level of the author of each text (low, medium or high) is also provided

as metadata. More specifically, there are 1,330 low, 6,568 medium and 4,202 high proficiency texts.

This distribution is visualized in Figure 2.8. It should also be noted that the proficiency levels are

not evenly distributed across languages. Some languages such as Arabic, Japanese and Korean have

higher numbers of low proficiency essays and fewer high proficiency ones. The complete distribution

of proficiency levels per L1 in the Toefl11 corpus is illustrated in Figure 2.9.

2.3.2 Classification Features for NLI

A wide range of feature types have been used by researchers to solve various text classification

problems, including NLI. They vary in their linguistic complexity, ranging from shallow surface-based

features to those using deeper linguistic information. The nature of these features can be broadly
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Figure 2.9: The complete distribution of proficiency levels per L1 in the Toefl11 corpus. Figure
reproduced from Blanchard et al. (2013)
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categorized as being lexical, syntactic or stylistic. In this section we will discuss how these features

are extracted and describe a number of these features that have been used for text classification.

While using the aforementioned lexical features allows for a shallow analysis of the text by mostly

using the surface forms of the words, a deeper and more linguistically sophisticated approach can be

taken using syntactic features.

Many of these features are associated with specific linguistic cues that can assist with the language

identification. Cross-linguistic transfer has been shown to be present within the various linguistic

subsystems such as phonology, syntax, morphology and lexicon. Many of these features attempt

to capture discriminative cues that are related to these linguistic systems as expressed through an

individual’s writing.

2.3.2.1 N-gram frequency models

The use of n-gram frequency models is very common in text classification tasks and this approach

generally involved the creation of n-gram frequency profiles for document classes and comparing them

(Cavnar and Trenkle, 1994).

An n-gram can be defined as a sub-sequence of n contiguous items taken from a larger sequence.

The items in the sequence may be characters, words or other sequential data such as part of speech

tags, phonemes or syllables.

For most data types, not all items have the same probability of occurring, some will inevitably

appear more frequently than others and these distributions often vary by language, domain or register.

For example, this principle is embodied by Zipf’s Law (Zipf, 1949) which when applied to English

vocabulary reveals that word usage frequency follows a type of power-law distribution. That is to

say, while many words are used, only a few words can account for most of usage and the rest are

rarely used.

By the same token, words, characters and other items do not combine together in a random or

equally likely way. In fact, analysing an item and its neighbours as a sequence of n items can be

highly informative. Such sequences exist in various aspects of language use (e.g. due to grammatical

constraints or lexical associations) and can be exploited for classifying documents, particularly by

using distributions of n-grams. The use of distributions also enables systems to be robust against

statistical outliers. For text data, these may be a result of human errors (e.g. spelling mistakes) or

part of the digitization process (e.g. Optical Character Recognition errors in scanning).

To use such distributions, n-grams of a given feature type are first extracted in each document

class and the occurrences of each n-gram feature are counted to generate a frequency profile. When

a document is to be classified, this frequency distribution is obtained by the same procedure and the

extracted feature n-grams can be compared against those of each category to find the best match.

One issue to keep in mind is that suitable training data is generally needed to generate representa-

tive frequency distributions. The training data must have a reasonable number of documents and

each document must be sufficiently long. Using a few documents or very short texts may lead to

unrepresentative statistics.

Today n-gram models are widely used in broad range of applications, including language identifi-

cation, topic classification and speech recognition. They have been found to be a simple and reliable

method of using textual features and will be used in conjunction with many of the text classification

features that we describe below.
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It is also important to note that these models can become quite large, and consequently sparse, as

the value of n increases. Theoretically, the n-gram space grows exponentially with n, but in practice

this growth rate is somewhat lower as not all possible combinations are observed in the data.

2.3.2.2 Character n-grams

This is a sub-word feature that uses the constituent characters that make up the whole text. When

used as n-grams, the features are n-character slices of the text. From a linguistic point of view, the

substrings captured by this feature, depending on the order, can implicitly capture various sub-lexical

features including letters, phonemes, syllables, morphemes and suffixes.

There may be some implementation-specific variation in the method for extracting the character

n-grams. They may be extracted from across the whole text or limited to single words (i.e. substrings

are only extracted from within word boundaries). In other cases word boundaries may be kept and

represented by a special character such as an underscore(“ ”). Furthermore, the letter cases of the

words may also be normalized by folding them to all capitals or lowercase before extracting n-grams.

These choices can vary by implementation and some choices, such as converting all characters to

uppercase instead of lowercase, may not lead to different results.

As an example, for the value of n = 3, the character trigrams for the word language are

{lan, ang, ngu, gua, uag, age}. To use them for classification, the frequencies of all such n-grams

are calculated in each document and passed to the machine learner which uses them to train a

classifier model.

2.3.2.3 Word n-grams

The surface forms of words can be used as a feature for classification. The features are extracted

by tokenizing the documents. Each unique token may be used as a feature, but the use of n-

gram distributions is also common. In this scenario, the n-grams are extracted along with their

distributions. The example below demonstrates the word n-grams can be extracted from a sentence.

(2.1) John peered through the door.

The sentence in example 2.1 would generate the following bigrams: {John peered, peered through,

through the, the door}. The bi-gram feature captures various collocations from the text. Performed

over a large amount of text, the bi-gram distribution will help us identify the strongest (i.e. most

frequently occurring) collocations in the data.

The texts may optionally be converted to all lower or upper case letters in situations where letter

case information is not informative for classification. This normalization will help to reduce the

number of features in the feature space. Another variation is the exclusion of punctuation tokens.

The extraction of such n-grams of various orders can create a high dimensional feature space

containing thousands, if not millions, of such n-gram items. These distributions can be used by

machine learners to identify features that are highly discriminative and thus useful for document

classification.
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2.3.2.4 Lemma n-grams

With this feature, the tokens are first lemmatized to convert them to a normal form. This gener-

ally means that the lexemes in a document are replaced with their lemmas. The example below

demonstrates how the various inflected forms of word are mapped to a single token.

{run, ran, runs, running} → RUN

Some lemmatizers can use context information (such as word part-of-speech) and dictionary in-

formation to correctly map polysemous or irregularly inflected words to their correct lemma. Other

approaches may simply rely on a mapping of tokens to their lemmas. Both of these approaches are

vulnerable to spelling mistakes and rare words which are considered out-of-vocabulary. The use of

lemmas can be useful in generalizing the word token information in highly inflectional languages

where a word may have many forms.

2.3.2.5 Function Words

In contrast to content words, function words do not refer to specific topics themselves, but rather can

be seen as indicating the grammatical relations between other words. In a sense, they are the syntactic

glue that hold much of the content words together and their role in assigning syntax to sentences is

linguistically well-defined. They generally belong to a language’s set of closed-class words and embody

relations more than propositional content. Examples include articles, determiners, conjunctions and

auxiliary verbs.

Function words are considered to be highly context- and topic-independent but other open-class

words can also exhibit such properties. In practical applications, such as Information Retrieval, such

words are often removed as they are not informative and stoplists for different languages have been

developed for this purpose. These lists contain ‘stop words’ and formulaic discourse expressions such

as above-mentioned or on the other hand.

Function words’ topic independence has led them to be widely used in studies of authorship

attribution (Mosteller and Wallace, 1964) as well as NLI7 and they have been established to be

informative for these tasks. Much like Information Retrieval, the function word lists used in these

tasks are also often augmented with stoplists and this is also the approach that we take.

Such lists generally contain anywhere from 50 to several hundred words, depending on the gran-

ularity of the list and also the language in question.

2.3.2.6 Part-of-Speech Tags

Parts of Speech are linguistic categories (or word classes) assigned to words that signify their syntactic

role. Basic categories include verbs, nouns and adjectives but these can be expanded to include

additional morpho-syntactic information. The assignment of such categories to words in a text

enables us to add a level of linguistic abstraction by marking each word with its appropriate POS.

In computational linguistics this task is generally done automatically using a POS Tagger that

has been designed for a specific language. This task is often complicated by lexical ambiguity, which

refers to the fact that the same lexical representation or surface form of a word may have different

7For example, the largest list used by Wong and Dras (2009a) was a stopword list from Information Retrieval; given
the size of their list, this was presumably also the case for Koppel et al. (2005a), although the source there was not
given.
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meanings, depending on the context. To illustrate, compare the use of the word walks in the following

two sentences:

(2.2) John walks by the beach every Wednesday.

(2.3) John enjoys walks by the beach each Wednesday.

POS taggers usually disambiguate the word classes by taking into account the context and rela-

tionship with adjacent words. More thorough expositions of such systems can be found in some of

the seminal works in this field (Santorini, 1990; Brill, 1992; Schmid, 1994; Ratnaparkhi, 1996).

For text classification, analysis of their n-gram distributions can enable a classifier to recognize

linguistic regularities. POS n-grams capture the syntactic patterns, constructions and structure of

the texts and have been proven to be useful in classification tasks such as authorship attribution.

2.3.2.7 Phrase Structure Rules

Also known as Context-free Grammar Production Rules, these are the rules used to generate con-

stituent parts of sentences, such as noun phrases. One way to obtain these is by first generating

constituent parses for all sentences. The production rules, excluding lexicalizations, are then ex-

tracted. Figure 2.10 illustrates this with an example tree and its rules.

These context-free phrase structure rules capture the overall structure of grammatical construc-

tions and global syntactic patterns. They can also encode highly idiosyncratic constructions that are

particular to some L1 group. They have been found to be useful for NLI (Wong and Dras, 2011).

2.3.2.8 Tree Substitution Grammar Fragments

Tree Substitution Grammar (TSG) fragments have been proposed by Swanson and Charniak (2012)

as yet another type of syntactic feature for NLI or other syntactically motivated text classification

tasks. They demonstrated that this feature type can achieve high classification accuracy.
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Figure 2.11: Fragments from a Tree Substitution Grammar capable of deriving the sentences “George
hates broccoli” and “George hates shoes”. Reproduced from Swanson and Charniak (2012).

TSGs are a generalization of context-free grammars that allow non-terminals to rewrite as frag-

ments which can have an arbitrary size (Post and Gildea, 2013), instead of being limited to a depth

of one. A TSG fragment or elementary tree refers to these rules. Figure 2.11 shows several exam-

ple fragments from a Tree Substitution Grammar capable of deriving the sentences “George hates

broccoli” and “George hates shoes”.

2.3.2.9 Grammatical Dependencies

A dependency grammar captures the grammatical relationship between words in a sentence, usually

a relation between a head and its dependents.

In Tetreault et al. (2012), Stanford dependencies were investigated as yet another form of syntactic

feature. To extract this feature, each sentence in the texts must be parsed with a dependency parser to

obtain the grammatical dependencies. For the sentence shown in Figure 2.10 we obtain the following

dependencies:

det(fox-4, The-1)

amod(fox-4, quick-2)

amod(fox-4, brown-3)

nsubj(jumps-5, fox-4)

root(ROOT-0, jumps-5)

case(dog-9, over-6)

det(dog-9, the-7)

amod(dog-9, lazy-8)

nmod(jumps-5, dog-9)

The frequencies of each one of these dependency relations (without the numeric index) are then

counted across the whole text and the frequency distribution of all these relations are used as features,

similar to other n-gram features.

The dependencies have several styles of representation. In basic dependencies — the represen-

tation used by Tetreault et al. (2012) — each word is a dependent of one other word. A collapsed

representation converts the tree structure into a directed graph and thus considers additional depen-

dencies such as those from relative clauses and their antecedents.

Additionally, a POS transformation can also be applied to generate all the variations for each of

the dependencies (grammatical relations) by substituting each lemma with its corresponding POS tag.

For instance, a grammatical relation of det(dog, the) yields the following variations: det(NN, the),
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det(dog, DT), and det(NN, DT). This greatly increases the number of features but also generates

more abstract relations that can better generalize across documents.

These grammatical dependencies have been found to be a very useful NLI feature and thought

to capture a “more abstract representation of syntactic structures” (Tetreault et al., 2012; Bykh and

Meurers, 2014).

2.3.2.10 Adaptor Grammar n-grams

Adaptor grammars (Johnson, 2010) are a generalization of probabilistic context-free grammars that

can capture collocational pairings. Wong et al. (2012) explore the use of adaptor grammars to discover

arbitrary length n-gram collocations in a corpus.

They explore both the pure part-of-speech (POS) n-grams as well as the more promising mixtures

of POS and function words. This mixed model retains the surface form of function words instead

of using their POS tag. Some example mixed trigrams include “the NN that” or “NN that VBZ”.

They demonstrated that such features can outperform their pure POS counterparts.

They derive two adaptor grammars where each is associated with a different set of vocabulary:

either pure POS or the mixture of POS and function words. They use the grammar proposed by

Johnson (2010) for capturing topical collocations as presented below:

Sentence→ Docj j ∈ 1, . . . ,m

Docj → j j ∈ 1, . . . ,m

Docj → Docj Topici i ∈ 1, . . . , t;

j ∈ 1, . . . ,m

Topici →Words i ∈ 1, . . . , t

Words→Word

Words→Words Word

Word→ w w ∈ Vpos;
w ∈ Vpos+fw

As per Wong et al. (2012), Vpos contains 119 distinct POS tags based on the Brown tagset and

Vpos+fw is extended with 398 function words used in Wong and Dras (2011). The inference algorithm

for the adaptor grammars are based on the Markov Chain Monte Carlo technique made available

by Johnson (2010).8 Each one of the arbitrary length n-grams and their frequency is then used a

classification feature.

2.3.2.11 Summary of Features

A large number of features that have been explored for text classification and NLI and the selection

presented here is not exhaustive. There is no absolute best feature and the choice of which features to

use depends on the task. In this section we described the most commonly used and notable features,

including ones that will be used in this thesis.

8http://web.science.mq.edu.au/~mjohnson/Software.htm

http://web.science.mq.edu.au/~mjohnson/Software.htm
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2.3.3 Related Work

2.3.3.1 Early Studies

To our knowledge, the earliest work on detecting non-native language is that of Tomokiyo and Jones

(2001) whose main aim was to detect non-native speech using part-of-speech and lexical features, and

to also determine the native language of the non-native speakers. They were able to achieve 100%

accuracy in their study, which included six Chinese and 31 Japanese speakers.

Inspired by the field of stylometry, Jarvis et al. (2004) presented an early approach to L1 transfer

using lexical style and word choice, referred to as wordprints. They compiled a corpus of 446 texts

written by adolescent EFL learners from five different L1 backgrounds (Danish, Finnish, Portuguese,

Spanish and Swedish). Closely related L1 pairs were selected in order to make the task more challeng-

ing. The corpus texts consisted of descriptions of a segment of a silent Charlie Chaplin film. Focusing

exclusively on lexical transfer, the 30 most frequent words used by each group were collected, resulting

in a set of 53 words which were used as classification features. They applied a Linear Discriminant

Analysis (LDA) classifier with 11-fold cross-validation, obtaining an average accuracy of 81%.

Koppel et al. (2005a; 2005b) reported one of the first and most significant results in this field

(though many studies have erroneously referred to their work as being the very first in this field, this

is not entirely correct). Texts ranging from 500–850 words from five native languages (Bulgarian,

Czech, French, Russian, and Spanish, 258 texts per language) were selected from the first version

of the International Corpus of Learner English (Granger et al., 2009). They used a set of syntactic,

lexical, and stylistic features that included function words (e.g. and, from, which, whilst), character

n-grams (i.e. sequences of characters of length n), and part-of-speech (PoS) bi-grams, together with

some spelling mistakes. Using an SVM classifier, the achieved a classification accuracy of 80% with

ten-fold cross-validation. This was a strong result, given the chance baseline of 20%. The authors note

that just using character n-grams and function words enabled them to achieve an accuracy of 75%,

highlighting the utility of those specific features. Koppel et al. also suggested that syntactic features

(specifically errors) might be potentially useful, but only explored this idea at a rather shallow level

by characterising ungrammatical structures with rare POS bi-grams.

Tsur and Rappoport (2007) also used the same setup as Koppel et al. (2005a) in order to examine

the role of phonology in the non-native speaker’s lexical choice. The authors hypothesized that

character n-grams were useful in capturing the syllables of a language’s phonology, which would in

turn be influenced by the phonology of the writer’s native tongue. Using the same set of five languages

as Koppel et al. (2005a), they extracted the 200 most frequent bigrams for use as classification

features. Using this method they obtained an accuracy of 66% using the bigrams and compared

it to a baseline of 46% that was achieved using character unigrams. In a second experiment they

replaced two of the five languages (French and Spanish were replaced with Italian and Dutch) and

applied their methodology again, obtaining another similar result of 65%. On the whole, they were

able to successfully replicate the earlier results of Koppel et al. (2005a) and demonstrated that it was

possible to achieve good results simply by using character n-gram frequency distributions. The claim

that such n-grams are related to L1 phonology has since been challenged, for example by Nicolai and

Kondrak (2014), as we discuss in §2.3.3.7.

Estival et al. (2007) conducted a similar experiment using a proprietary dataset of 9,836 English

emails written by speakers of three languages (English, Spanish and Arabic) with a majority class
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baseline of 62.9%. They employed a set of lexical, syntactic and document structure (i.e. HTML)

features, testing them with several different types of classifier. They report a best accuracy of 84%

on this three way classification problem using a Random Forest classifier. It should be noted that

these results cannot be directly compared to the previous experiments as they use different numbers

of classes.

While the approaches described so far have relied heavily on lexical features, they made little use

of the syntactical cues available in the texts. Wong and Dras (2009a) proposed the use of syntactic

information for NLI as a domain- and content-independent source of clues for classification, moti-

vated by the initial insights from Contrastive Analysis (CA).9 Using the five languages investigated by

Koppel et al. with the addition of Chinese and Japanese, they explored the utility of syntactic error

information for NLI. They first replicated the work of Koppel et al. (2005a) with the three classes

of feature mentioned above and then extended the classification model with three syntactic errors

commonly observed in non-native English users which in CA had been identified as being influenced

by the native language: subject-verb disagreement, noun-number disagreement and misuse of deter-

miners. This preliminary study provided some evidence for the usefulness of syntactic information,

supported by statistical ANOVA tests which showed that languages differed significantly in their

error distributions. With regards to NLI, however, this did not yield an improvement in classification

accuracy.

2.3.3.2 Growing Interest

Following these preliminary studies, there was a spike in interest in NLI over the next few years that

led to marked advancements in the methods used to tackle the problem.

Wong and Dras (2011) extended their earlier results by exploiting parse structures for NLI. They

explored the usefulness of syntactic features in a broader sense by characterising syntactic errors with

cross sections of parse trees obtained from statistical parsing. More specifically, they utilised two

types of parse tree substructure to use as classification features — horizontal slices of the trees and

the feature schemas used in discriminative parse reranking (Charniak and Johnson, 2005). Only using

non-lexicalized rules and rules with function words they found that this improves the results signifi-

cantly by capturing more syntactic structure. These kinds of syntactic features perform significantly

better than lexical features alone, giving the best performance on the ICLE (v.2) dataset at the time.

One key phenomenon observed by Wong and Dras (2011) was that there were distributional

differences across parse production rules indicative of particular native languages. One example is

the production rule NP → NN NN (i.e. a noun phrase can consist of two singular nouns, such as

country park), which appears to be very common amongst Chinese speakers compared with other

native language groups. The claim that the paper makes is that this is likely to reflect determiner-

noun agreement errors, as that rule is used at the expense of one headed by a plural noun (NP →
NN NNS, e.g. for country parks). Their intuition is that there might be coherent clusters of related

features, with these clusters characterising typical errors or idiosyncrasies, that are predictive of a

particular native language; in the SLA context, which we discuss in §2.4 and this could reflect the

phenomenon of underuse or overuse.

Wong et al. (2011) investigated the use of Latent Dirichlet Analysis-based topic modelling to pro-

duce a feature set with lower dimensionality by clustering similar features. This approach, however,

9Contrastive Analysis is described later in §2.4.1.
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did not outperform the other baseline systems as the authors reported that LDA-induced classifica-

tion models perform worse than the full feature-based models. However, they did find some evidence

of coherent feature clustering, which is an interesting result that bears further investigation.

Ahn (2011) also investigated the feasibility of NLI using machine learning techniques. The re-

ported experiments were performed on a total of eight different native languages, with 200 texts

per L1. Seven classes were from the ICLE corpus (Bulgarian, Chinese, Czech, French, Japanese,

Russian and Spanish) and an eighth class of native English speaker writings was used from a corpus

of native English essays called the LOCNESS corpus.10 Using a Maximum Entropy classifier, they

achieved their best result of 81.3% using character trigrams alone, although part-of-speech n-grams

and syntactical features also worked relatively well. However, further investigation by the author

revealed that the trigrams were in fact capturing topic words. When the topic-specific content words

were removed from the feature set, the classification performance dropped, demonstrating that the

previous results were artificially inflated due to topic bias in the corpus.

Kochmar (2011) was inspired by the error-based approach used in Wong and Dras (2009a). The

author focuses on pairwise SVM classification on texts from the CLC FCE dataset which we ear-

lier described in §2.3.1.3. The available native languages include five Germanic linguistic varieties

(German, Swiss German, Dutch, Swedish and Danish) and five Romance languages (French, Italian,

Catalan, Spanish and Portuguese), but the author focuses mainly on pairwise binary classification

between language pairs. Similar to the previously reported results of Wong and Dras (2009a), the

manually derived error-type features (e.g. spelling and determiners) that are annotated in the corpus

did not yield any improvement over the baseline performance provided by the distributional features

(character/word/part-of-speech n-grams and production rules).

Brooke and Hirst (2011) demonstrated that the most commonly used multiple-L1 learner corpus

in NLI research at the time, the International Corpus of Learner English, was affected by topic bias.

They did this by grouping the texts together according to topic to create two sets. One set was used

for training and the other for testing and the roles were also reversed. This was compared against a

random split of the same texts and showed that the topic-based split performed significantly worse

(p < .0001) using several different core feature types. The authors hypothesize that this was due to

the classifier not being able to take advantage of topic-L1 correlations. This bias was a confounding

factor that was artificially inflating the results of experiments using this dataset. To address these

issues, they discussed new methods of obtaining “cheap” corpora scraped from the web. The authors

also noted that acquisition of such non-biased corpora would enable researchers to use lexical features,

which had been previously avoided.

Motivated by their findings in Brooke and Hirst (2011), Brooke and Hirst (2012a) state that NLI

“suffers from a relative paucity of useful training corpora, and standard within-corpus evaluation is

often problematic due to topic bias.” To address these issues they proposed the use of web-scraped L1

corpora and tested the utility of alternative sources of training data for NLI. The reported results of

their study demonstrate that automatically translated word bigrams can achieve accuracies as high

as 48.3% on a four-way classification task using the ICLE corpus. This result is much lower than

previously reported studies that exclusively used within-corpus training and testing, but this is a

tradeoff that ensures lower topic bias. Furthermore, their experiments also showed that increasing

10https://www.uclouvain.be/en-cecl-locness.html

http://www.learnercorpusassociation.org/resources/tools/locness-corpus/

https://www.uclouvain.be/en-cecl-locness.html
http://www.learnercorpusassociation.org/resources/tools/locness-corpus/
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the amount of training data resulted in a drastic improvement in accuracy (with boosts of up to

30%).

Torney et al. (2012) investigated the usefulness of psycholinguistic features for the task of NLI.

These features had not been previously applied and the authors hypothesized that they would pro-

vide new information and insights as they are “based in psychoanalysis rather than computational

linguistics”. The features were based on the Linguistic Inquiry and Word Count (LIWC) tool which

provides word counts in 80 different categories. Unlike other experiments, they used equal numbers

of texts from all 16 languages in the ICLE corpus, with 241 texts per L1 class and a random base-

line of 6.3%. Compared against other standard feature types (function words, character and POS

n-grams), the LIWC feature set was found to be the best single feature type, achieving an accuracy

of 50.3%. This accuracy was further increased when other standard features (such as character and

part-of-speech n-grams) were added, which the authors claim is evidence that the LIWC features are

sufficiently different from the others to improve classification accuracy. However, it must be noted

that the LIWC dictionary11 contains many topical content words,12 making this experimental setup

highly vulnerable to topic bias, particularly as it uses the ICLE corpus. This is substantial short-

coming to consider, and without additional experiments, it is difficult to assess the validity of these

claims. This experiment is also notable for having used a very large number of L1s.

Wong et al. (2012) proposed the use of adaptor grammars in order to extend the character and

part-of-speech n-gram features. In their experiment, adaptor grammars are used to discover n-grams

of arbitrary length consisting of mixtures of part-of-speech tags and function words (e.g. NN of NN).

The authors achieved the best n-gram results to date and showed that this composite feature can

produce good NLI features.

Swanson and Charniak (2012) explored the use of automatically induced Tree Substitution Gram-

mar fragments as classification features for NLI, further extending the work of Wong and Dras (2011).

They compared two state-of-the-art methods for Tree Substitution Grammar induction and showed

that features derived from both methods outperformed current state-of-the-art results. In compara-

tively evaluating the Bayesian and DoubleDOP induction methods on the ICLEv2 data, they found

that the Bayesian approach resulted in the highest accuracy (78.4%).

Tetreault et al. (2012) proposed the use of classifier ensembles for NLI and performed a compre-

hensive evaluation of the feature types used until that point. In their study they used an ensemble of

logistic regression learners using a wide range of features that included character and word n-grams,

function words, parts of speech, spelling errors and writing quality markers. With regard to syntac-

tic features, they also investigated the use of Tree Substitution Grammars and dependency features

extracted using the Stanford parser. Furthermore, they also proposed using language models for this

task and in their system used language model perplexity scores based on lexical 5-grams from each

language in the corpus. The set of features used here was the largest of any NLI study to date. With

this system, the authors reported state of the art accuracies of 90.1% and 80.9% on the ICLE and

Toefl11 corpora, respectively. Tetreault et al. (2012) also conducted cross-corpus evaluation, using

the 7 common L1 classes between the ICLE and Toefl11 corpora. Training on the ICLE data, they

report an accuracy of 26.6%.

Bykh and Meurers (2012) explored additional use of lexical features and proposed the systematic

use of all “recurring n-grams”, an approach Meurers originally developed for corpus annotation error

11http://www.liwc.net/descriptiontable1.php
12e.g. the words party, shopping and journey are in the dictionary.

http://www.liwc.net/descriptiontable1.php
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detection (Dickinson and Meurers, 2003, 2005), as features in NLI. They define recurring n-grams as

all n-grams of any length that appear in at least 2 texts in the training data. They create recurring n-

grams based on three feature types: words, parts of speech and Open-Class Part of Speech (OCPOS)

which is a special case where only open-class words (nouns, verbs, adjectives and cardinal numbers)

are converted to POS tags and closed-class words are left in their lexicalized form. For this study

they used an SVM classifier on seven L1s from the ICLE. They report that their word-based n-grams

achieved the highest accuracy (89.71%) followed by the OCPOS-based variety (80%). Interestingly,

the authors claim that they could not find any evidence of topic bias in the ICLE, something which

had been discussed by several other studies and could have potentially affected the accuracy of the

word n-grams. We also note that this study was based on only a small amount of data (100 texts per

L1, with 75 for training and 25 for testing).

Following these studies, it has since become well-established that syntactic features provide a

strong discriminative cue about the writer’s native language. The publication of these studies from

2009–2012 brought an unprecedented level of research focus and momentum to the area, culminating

in the NLI Shared Task 2013.

2.3.3.3 The 2013 NLI Shared Task

The very first shared task focusing on Native Language Identification was held in 2013, bringing

further focus, interest and attention to the field. The NLI Shared Task 201313 was co-located with

the eighth instalment of the Building Educational Applications Workshop at NAACL/HLT 2013.

Two key challenges that have hindered the progress of this field are paucity of suitable data and

the lack of a common evaluation framework.

As previously noted, most previous NLI research has used different L1s and differing numbers of

classes and texts, along with variation in use of cross-validation and different data splits. The use

of differing pre-processing techniques has also been a hindrance for cross-study evaluation of results.

In absence of a common evaluation standard, it had been difficult for researchers to compare and

contrast the various methodologies that had been explored. In this respect, the shared task also

aimed to facilitate the comparison of results by providing a large NLI-specific dataset and evaluation

procedure to all participants, thus enabling the direct comparison of results achieved through different

means and methodologies.

The competition resulted in 29 entries from teams across the globe, 24 of which also submitted a

reference paper describing their systems. The shared task featured 3 separate tracks or sub-tasks:

• Closed-training: The first and main task was the 11-way classification task using only the

Toefl11-Train and optionally Toefl11-Dev for training.

• Open-training-1: The second task allowed the use of any training data excluding Toefl11-

Train and Toefl11-Dev.

• Open-training-2: The third task reflects a more real-world scenario, allowing the combination

of Toefl11-Train and Toefl11-Dev with any other additional data.

Each team was allowed to submit up to 5 different systems for each task, allowing them to

experiment with different feature and parameter variations of their system. Entries in all tasks were

evaluated on the Toefl11-Test set.
13https://sites.google.com/site/nlisharedtask2013/home

https://sites.google.com/site/nlisharedtask2013/home
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2013 NLI Shared Task Results

Figure 2.12: NLI 2013 shared task results showing the accuracy obtained by each team’s best system.

Most teams only participated in the closed training task which attracted 29 teams competing and

116 submissions in total. Performances for each team’s best system were in the range of 31.9–83.5%,

as shown in Figure 2.12. There was no statistically significant difference between the results for the

top 5 teams.

The two open training sub-tasks drew far less interest, with only four teams submitting systems.

Accordingly, we do not include details relating to the open tasks in this section. The next section

will review the systems that submitted a description paper. The aim is to identify features, learners

and techniques that are commonly used. Our own entry will be described in Chapter 3.

2.3.3.4 Ensemble-based Shared Task Entries

A notable trend among the entries was the use of ensemble-based systems, which have been shown

to achieve better results over systems based on single models. In this section we briefly review the

systems that took this approach.

Gyawali et al. (2013) utilized lexical and syntactic features based on n-grams of characters, words

and part-of-speech tags (using both the Penn TreeBank and Universal Parts Of Speech tagsets),

along with perplexity values of character n-grams to build four different models. These models were

combined using a voting-based ensemble of SVM classifiers. Features values were weighted using the

TF-IDF scheme. In particular, the authors set out to investigate whether a more coarse grained

POS tagset would be useful for NLI. They explore the use of the Universal POS tagset which has 12

POS categories in the NLI shared task and compare the results with the fine-grained Penn TreeBank

(PTB) tagset that includes 36 POS categories. The highest accuracy of their system in the shared

task is 74.8%, achieved by combining all features into an ensemble. The authors found that the use of

coarse grained Universal POS tags as features generalizes the syntactic information and reduces the

discriminative power of the feature that comes from the fine granularity of the n-grams. For example,
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the PTB tagset distinguishes verbs into six distinct categories while the Universal POS tagset only

has a single category for that grammatical class.

In the system designed by Cimino et al. (2013) the authors use a wide set of general purpose

features that are designed to be portable across languages, domains and tasks. This set includes

features that are lexical (sentence length, document length, type/token ration, character and word

n-grams), morpho-syntactic (coarse and fine-grained part-of-speech tag n-grams) and syntactic (parse

tree and dependency-based features). They report that they found distributional differences across

the L1s for many of these features, including average word and sentence lengths. However, we note

that many of these differences are not of a large magnitude, and the authors did not run any statistical

tests to measure the significance levels of these differences. Using this feature set, they experiment

with a single-classifier system as well as classifier ensembles, using SVM and Maximum Entropy

classifiers. In their ensemble, they experiment using a majority voting system as well as a meta-

classifier approach. The authors report that the ensemble methods outperform all single-classifier

systems (by around 2%), and their best performance of 77.9% is provided by the meta-classifier

system which used linear SVM and MaxEnt as the component classifiers and combined the results

using a polynomial kernel SVM classifier. While the set of features used in this experiment is not

widely different to other reported NLI research, their use of a meta-classifier is an interesting approach

that warrants further study.

In their system, Goutte et al. (2013) used character, word and part-of-speech n-grams along with

syntactic dependencies. They used an ensemble of SVM classifiers trained on each feature space, using

a majority vote combiner method. To represent the feature values, they use two value normalization

methods based on TF-IDF and cosine normalization. Their best entry achieved an accuracy of 81.8%,

higher than many systems using the same standard features and more, demonstrating the effectiveness

of using ensemble classifiers and appropriate feature value representation. The authors, like many

others, also note that lexical features provided the best performance for a single feature in their

system, but that this can be boosted by combining multiple predictors.

The MITRE system (Henderson et al., 2013) is another highly lexicalized system where the pri-

mary features used are word, part-of-speech and character n-grams. In this system, these features

are used by independent classifiers (logistic regression, Winnow2 and language models) whose output

is then combined into a final prediction using a Näıve Bayes model. Their best performing ensemble

was 82.6% accurate in the shared task and the authors emphasize the value of ensemble methods

that combine independent systems. Furthermore, the authors also optimized the parameters of their

Naive Bayes model using a grid search over the development data.

Hladka et al. (2013) developed an ensemble classifier system using some standard features (lemma,

word and part-of-speech n-grams, word skipgrams) with SVM classifiers. They obtained an accuracy

of 72.5% in the shared task. They found that their ensemble, which is based on majority voting,

outperformed other methods of combining the features. This is yet another piece of evidence pointing

to the utility of using ensemble systems for NLI.

Another system that utilizes an ensemble is that of Bykh et al. (2013), where they used a

probability-based ensemble. They use a set of 16 features, including recurring word-based n-grams,

recurring OCPOS-based n-grams (as described in §2.3.3.2), dependencies, trees and lemmas. To

combine the different feature types, they explored combining all feature into a single vector and also

ensembles of SVM classifiers (each trained on a single feature type). Their best shared task perfor-
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mance of 82.2% was achieved using an ensemble with all of their features. Their analysis shows that

recurring word-based n-grams are the best performing single feature type, once again demonstrating

the relevance and significant of lexical features in NLI.

2.3.3.5 Other Shared Task Entries

Abu-Jbara et al. (2013) used an SVM classifier trained on lexical and syntactic features. In addition

to the standard features, they also included the number of unique word stems, punctuation and

capitalization patterns, tense and aspect frequencies, and the usage of downtoners (a degree adverb

such as somewhat) and intensifiers. Their best entry in the shared task achieved an accuracy rate

of 43.3%. The authors note that the best features in their system were character, word and part-of-

speech n-grams.

Daudaravicius (2013) took an approach that did not require any deep language processing, in

an attempt to engineer features that would be easier to generalize to other languages. The author

uses word length and suffix information and combines them into a new feature referred to as nend

transformation, where the word length and N characters from the end are combined to create a new

token. For example, the 3end transformation for the word make is 4ake. Next, n-grams of these

nend features are extracted. As opposed to the common classification approaches taken by most

other participants, the author chose instead to utilize a k-NN classifier, using the distance between

the test and training documents to assign the language label. The best submission had an accuracy

of 31.9% using this approach. This approach, while not achieving a competitive result in the shared

task, is notable for being language-independent requiring very little information processing. We also

note that using the word length and suffix information as separate features is also another way of

using the same features without an additional transformation to fuse them together.

The system developed by Bobicev (2013) is also designed to be language-independent and require

little linguistic processing of the data. This system is based on Prediction by Partial Matching (PPM),

which is an adaptive finite-context method for text compression that uses a back-off smoothing

technique for finite-order Markov models. It uses the last few observed symbols to predict the

upcoming symbol, where symbols may either be characters or words. This method uses the input

text in its original format and requires no feature engineering or extraction. The best entry for

this system obtained an accuracy of 62.5% using a word-based model that significantly outperforms

its character-based counterpart. While this compression-based classification approach is radically

different to those adopted by most other entries, it should be noted that the results are not markedly

different to those reported by others using word unigrams.

The winning entry for the shared task was that of Jarvis et al. (2013), with an accuracy of 83.6%.

The features used in this system are n-grams of words, parts-of-speech as well as lemmas. In addition

to normalizing each text to unit length, the authors also applied a log-entropy weighting schema to

the normalized values, which clearly improved the accuracy of the model. An L2-regularized SVM

classifier was used to create a single-model system. Furthermore, the authors employed their own

procedure for optimizing the cost parameter (C) of the SVM. While they did not use a great number

of features or introduce any new features for this task, we posit that their use of weighting schema

and hyperparameter optimization gave their system an edge over their competitors, the majority of

whom did not employ these techniques.
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Li (2013) also used a linear SVM classifier with character and word n-grams, style features from

authorship attribution (such as sentence and paragraph lengths) and the proficiency level information

provided in the corpus as metadata. This system achieved an accuracy of 77.3%. The author notes

that the style and proficiency features did not provide any improvements in their results.

The Nara Institute of Science and Technology (NAIST) Native Language Identification system by

Mizumoto et al. (2013) uses an SVM classifier with a particular focus on feature selection methods

for improving accuracy. Instead of using standard frequency-based feature weighting methods such

as TF-IDF, they propose using a measure of Native Language Frequency (NLF) which is the

number of languages (classes) in which a feature appears. The NLF value for this experiment ranges

between 1–11, where 11 means a feature appears in at least one text in every language. Applying this

to pre-existing features from the literature (character/word/part-of-speech n-grams, dependencies

and TSG fragments), the system’s best result in the shared task was 81.7%. This was achieved by

using their proposed feature selection method by excluding features that appeared in just one or all

languages (1 < NLF < 11) and binary feature representations.

Nicolai et al. (2013) also opt to use an SVM classifier with standard features, but also focus

on developing new features based on cognate interference and spelling errors. They propose a new

feature based on interference from cognates, words with a common linguistic origin from an ancestor

language, positing that interference may cause a person to use a cognate from their native language or

misspell a cognate under the influence of the L1 version. For each misspelled English word, the most

probable intended word is determined using spell-checking software. The translations of this word are

then looked up in bilingual English-L1 dictionaries for several of the L1 languages. If the spelling any

of these translations is sufficiently similar to the English version (as determined by the edit distance

and a threshold value), then the word is considered to be a cognate from the language with the

smallest edit distance. The authors state that although only applying to four of the 11 languages

(French, Spanish, German, and Italian), the cognate interference feature improves performance by

about 4%. Their best result on the test was 81.73%. While limited by the availability of dictionary

resources for the target languages, this is a novel feature with potential for further use in NLI. An

important issue to consider is that the authors’ current approach is only applicable to languages that

use the same script as the target L2, which is Latin and English in this case, and cannot be expanded

to other scripts such as Arabic or Korean. The use of phonetic dictionaries may be one potential

solution to this obstacle.

Wu et al. (2013) chose to explore the role of the feature representation in their system, using

only word unigram and bigram features to comparatively evaluate the performance of binary and

frequency-based feature value representations. Using an SVM classifier, their system achieves an

accuracy of 79.7% and the authors find that binary representations provide better performance in

their system. This finding is consistent with previously reported results (Brooke and Hirst, 2012b).

They also report that the inclusion of punctuation in their feature set was useful, but that the

proficiency information was not predictive.

The system developed by Brooke and Hirst (2013) also employed a single SVM classifier. In ad-

dition to the standard features used in their previous work (function words, character/word/part-of-

speech n-grams, dependencies, context-free productions, and “mixed” POS/function n-grams), they

also introduce several new features such as POS-abstracted n-grams, TSG fragments and psychologi-

cal word category association information from psycholinguistics. However, their testing demonstrates
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that none of these yield any improvement in classification accuracy. They experimented with using

frequency cutoff thresholds as a feature selection method, but found that optimal performance was

achieved with no feature selection at all. They also experiment with proficiency-segregated models,

but like several other authors, they did not find them to be helpful in improving classification.

With a strong focus on syntactic features, Swanson (2013) contrasts the performance of NLI using

five different representations of the syntactic parsing results. Tree Substitution Grammars are used

to parse the training texts and generate a set of TSG rules which are used as binary features for

classification. Swanson evaluates the role of the syntactic paradigm by comparing the performance

of five different variations of the output of the parsing process. The five formalisms used are plain

Berkeley Parses, Berkeley Parses with split symbols, dependency parses, dependency parses without

arc labels, and the heuristic annotations which are internal to the Stanford Parser. Tree Substitution

Grammars for the shared task training data were induced using each of these five output formats

and classification accuracy was compared using a MaxEnt classifier. While the accuracies for the

individual models ranged between 69–74%, the system’s best accuracy of 77.5% was achieved by

averaging the results of all models together. This result is also noteworthy for being one of the

highest results achieved using only a syntactic feature. The authors conclude by saying that instead

of attempting to find the optimal formalism for the task, NLI can benefit from using a range of

syntactic representations, further noting that there exist several other syntactic forms that have not

been explored in their work.

Another system that focuses on exploring feature weighting schemas is the entry by Gebre et al.

(2013) which uses standard NLI features (character/word/part-of-speech n-grams and spelling errors).

The raw frequency values for these features are first weighted using the well-known TF-IDF scheme

and then normalized (using the l2 norm) to account for differing text lengths. Using this weighting

technique and a few common features, their entry was able to achieve a competitive accuracy of

81.40%, which the authors attribute to their use of the weighting scheme.

Lynum (2013) created a system trained with a large number of lexical features. The author was

motivated by the possibility that the efficient application of simple lexical features would overcome

the need for an NLI system to learn the syntactic and morphological differences in the non-native

texts. In this spirit, only features derived from the surface forms of the available texts were used.

Features include word unigrams and bigrams, character n-grams and suffix bigrams based on the

last four characters of each word. Furthermore, the feature values were weighted using the TF-

IDF weighting scheme. The learner used in this experiment was a linear SVM and the SVM model

hyperparameters were also optimized over 5-fold cross-validation on the training data. This system

achieved an accuracy of 83.4% in the shared task, a strong result given the limited features types

used and the parsimonious nature of the approach.

Lavergne et al. (2013) designed their NLI system based on a Maximum Entropy classifier, training

it with a set of basic (character and part-of-speech n-grams) and complex features (spelling mistakes,

grammatical mistakes and lexical preference). The best result for their shared task entry was an

accuracy of 75.6% on the test data. Based on their experiments the authors note that while their

best results come from using the complete set of features, the basic n-gram features are the best

performing and no other type of feature provides significant improvement when added to the system.

The authors also observe that two specific language pairs have high rates of confusion: Hindi-Telugu

and Japanese-Korean. In an attempt to improve the classification accuracy of their models, they
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propose the use of a two-step classifier targeted at these specific hard to distinguish pairs. To this

end they created additional classifiers for each and documents classified as one of the languages in

the difficult pairs were re-processed by the second classifier. However, this approach only results in a

0.17% improvement in accuracy.

Lahiri and Mihalcea (2013) experimented with a range of classifiers (SVM, Naive Bayes, 1-nearest-

neighbor (1NN), J48 decision tree, and AdaBoost) utilizing a set of baseline n-gram features (words,

characters and parts-of-speech) as well as a novel set of features derived from Word Networks. Word

Networks are graphs of unique words found in a text where each vertex is a word and edges connect

words based on the graph building criteria. In this work, the authors created unweighted directed

edges between words that appeared consecutively. Once the network has been constructed, a set

of graph-theoretic features based on neighbourhood size, coreness and degree are extracted. While

this is a novel feature for NLI, it was unable to outperform the baseline feature set. Their best

result of 64.5% was achieved using the SVM classifier and baseline features, while the word network

features performed at 63%. They note that word n-grams performed the best, followed by POS and

character n-grams. Further experiments are needed to determine whether the word network features

are complementary to the baseline n-gram features and if combining them all together could yield

even better results, particularly by using classifier ensembles.

Kyle et al. (2013) explored the efficacy of an approach based on categories of key n-grams. They

created several such categories that included grammatical, rhetorical, semantic and syntactic key n-

grams. The authors had previously assessed the efficacy of these features within an automatic writing

evaluation system where they split essay texts into introduction, body, and conclusion paragraphs,

and further separated these into high and low proficiency categories based on the essay’s overall score.

Next, they used “keyness analysis” to identify n-grams that occurred significantly more often (positive

keyness values) in paragraphs of a specific type (e.g. in the introduction) from high scoring essays than

the same type of paragraphs from low-scoring essays. The positively and negatively key n-grams for

each paragraph type were then further separated into categories based on their rhetorical, syntactic,

grammatical, and cohesive characteristics and then used as variables in a multiple regression to

generate a model accounting for 24%–33% of the variance in essay scores. Motivated by their previous

success, they aimed to assess the performance of such a system on a prompt and proficiency-controlled

corpus and examine if this model could be applied to predict the author’s native language. Key n-

grams were identified on a per-language basis, by comparing the texts against a reference corpus

comprised of the texts of the other 11 languages. The n-grams were then manually categorized

into lists by two trained linguists with experience in the area of second language writing. Using

discriminant function analysis for classification, their highest accuracy in the shared task was 59.0%.

Analysing their results, the authors observe a number of findings that are potentially attributable

to language transfer. Given that this methodology is based on a manual categorization of the word

n-grams used by other systems, the authors also note that it is still unclear whether this approach

is more or less effective and further research will be required to determine whether the costs for the

manual creation of categorical n-gram lists is warranted.

Popescu and Ionescu (2013) approached the shared task using machine learning methods that work

at the character level, using string kernels and a kernel based on Local Rank Distance (LRD). This is

a machine learning oriented methodology that treats the text as a sequence of symbols, thus making

it another language-independent approach which is not based on any specific linguistic theory. The



46 CHAPTER 2. RELATED WORK

authors’ best entry ranked third in the shared task with an accuracy of 82.7%. This was achieved

by combining the two kernel methods in a classifier using Kernel Ridge Regression (KRR), which

the authors found to outperform an SVM classifier. String kernels have previously been shown to

be highly useful for text categorization (Lodhi et al., 2002) and the authors, who have successfully

applied these methods to authorship identification problems in the past, believe that these good

results are due to the fact that a string kernel of length 5 creates a high dimensional feature space

that embeds all substrings of length 5. In this sense, the features captured by the string kernel are

quite similar to character 5-grams, with the exception that the string kernel is not aware of and does

not use word boundary information, as is the case with the common method of extracting character

n-grams that does not cross word boundaries. Consequently, the string kernel is implicitly taking

into account function words, short content words, character 5-grams, word stems and morphological

information such as suffixes. The kernel does not play a role in selecting the most appropriate feature,

but leaves it to the learning algorithm to select the most discriminative ones from within the very

large feature space. This is a strong result given that unlike most other entries their system disregards

linguistic information about words, phrases, semantics, syntax and grammar.

Tsvetkov et al. (2013) used standard text classification techniques based on multiclass logistic

regression, combining individually weak predictors to classify the most probable native language

of the texts. Using a feature set that draws heavily on prior work in general text classification and

authorship identification their arsenal of feature types includes, amongst others, word/character/part-

of-speech n-grams, function words, and Brown clusters.14 This system obtained an accuracy of 81.5%

in the shared task, using a single model with all of these features. Their use of Brown clusters is

notable as the first application of the technique for NLI. The Brown word clustering algorithm can be

used to generate hierarchical clusters of similar words, and has previously been used as a feature in

various NLP tasks. For use in NLI, the authors report an accuracy of 72.26% using counts of Brown

cluster unigrams and bigrams in each document. This is an interesting result, although further

clarification is required to determine whether the information provided by this feature is redundant

or orthogonal in relation to other lexical features such as word n-grams.

2.3.3.6 Shared Task Summary

As a whole, the first NLI shared task can be considered a success, drawing a large number of entrants

and experts from not only Computational Linguistics, but also SLA. In reviewing the shared task

results and entries, we note a number of trends.

First, we observe that most systems had many commonalities. The majority of entrants used a

very similar set of standard features and machine learning methods. Similar to much of the previous

literature, the most commonly used features were character, word, and part-of-speech n-gram features

(usually with n <= 4) and syntactic features. Support Vector Machines were also the most commonly

used machine learner. While many teams drew heavily on prior work, others were notable for their

use of novel and unique approaches, such as the use of string kernels by Popescu and Ionescu (2013).

With so many similar entries, we need to look at the more nuanced differences between systems

to better understand the components that enabled some teams to achieve better results.

14 Brown clustering (Brown et al., 1992) is an unsupervised method for clustering words into classes based on the
contexts in which they are observed. Words are hierarchically grouped into a binary tree of classes. It has been shown
that this clustering method produces effective features for discriminative models.
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With regards to the machine learning techniques, Support Vector Machines were generally the

most successful. Another step that was taken by most of the top entries (particularly the top 5),

but not by most of the other entries is that of hyperparameter tuning and optimization. The most

accurate systems used the training and development data to optimize the parameters of their learning

algorithm and used the parameters for classifying the test data. We also note that the highest

performing entries also made use of classifier ensembles, instead of using a single learner.

Secondly, we note that the most accurate systems employed some form of weighting schema for

the feature values in addition to normalizing them to unit length. This was the case for several

of the teams in the top 10 and those who applied this technique seemed to have obtained better

results then those who did not, but had comparable systems and feature sets. We believe that this

is a potentially useful component that holds promise for boosting the performance of current NLI

systems and features. Additional research that directly assesses the role of feature weighting schemas

is needed to determine their utility.

Several entries attempted to use the proficiency-level meta-data included with the corpus to aid

the classification, for example the systems by Kyle et al. (2013), Brooke and Hirst (2013) and Malmasi

et al. (2013). However, none of them were able to successfully leverage this information to improve

their system accuracy. One potential issue here is that while the Toefl11 corpus is balanced for topic

and language, it is not balanced for proficiency levels. Overall, the three proficiency levels (High,

Medium and Low) are not equally represented, with over 85% of the texts falling in the High and

Medium categories (though not equally). This imbalance may be what makes it hard to establish

and exploit any proficiency-related patterns within this specific corpus. However, experiments with

a proficiency-balanced corpus may yield different results.

Several authors have confirmed that stylistic features (such as the number of characters/word-

s/sentences/paragraphs or the average word/sentence length) are not useful for the task of Native

Language Identification (Nicolai et al., 2013; Li, 2013).

2.3.3.7 Recent Work

Swanson and Charniak (2013) develop “a method for effective extraction of linguistic patterns that

are differentially expressed based on the native language of the author”. To this end they examine

both relevancy and redundancy of NLI features through a number of ranking metrics (including the

chi-square statistic). They then extend a Bayesian induction model for TSG inference based on a

supervised mixture of hierarchical grammars, in order to extract a filtered set of more linguistically-

informed features that could benefit both NLI and SLA research; an aim of their research was to find

relatively rare features that are nevertheless useful for L1 prediction.

Perkins (2014) presents an NLI study of L1 Persian speakers of English using data obtained from

publicly accessible blogs instead of learner compositions. Instead of using the supervised learning ap-

proach, this work is based on statistical analysis of manually coded linguistic features which include

part-of-speech categories along with additional flags that encode marked choices, ordering, position-

ing, etc. The first study compared the English writings of L1 Persian authors against natives, finding

a statistically significant difference in the linguistic features used by the two groups. The second study

also showed that such differences also exist when comparing against L1 Azeri and L1 Pashto authors.

Motivated by past forensic cases that involved perpetrators making an effort to disguise their true L1,

the third study focuses on the interesting problem of comparing L1 Persian speakers against a group
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impersonating Persian speakers. This involved eliciting data by asking participants to disguise their

linguistic background. Results indicate that there were considerable differences between the true and

disguise groups.

Bykh and Meurers (2014) explore the use of lexicalized and non-lexicalized phrase structure rules

for NLI. They show that the inclusion of lexicalized production rules (i.e. preterminal nodes and termi-

nals) provides improved results. In addition to the standard normalized frequency and binary feature

representations they also propose two new representations based on a “variationist sociolinguistic”

perspective. Although they show that these representations outperform the normalized frequency

approach, they do not compare this to other representations which have been shown to improve NLI

accuracy, such as TF-IDF. They combine their lexicalized production rules feature with additional

surface n-gram features in a tuned and optimized ensemble, reporting an accuracy of 84.82% on the

Toefl11-Test set.

Ionescu et al. (2014) extend the previous work of Popescu and Ionescu (2013) which used string

kernels to perform NLI using only character n-gram features. One improvement here is that several

string kernels are combined through multiple kernel learning. The authors also perform parameter

tuning to select the optimal settings for their system. They report an accuracy of 85.3% on the

Toefl11-Test set, 1.7% higher than the winning shared task system. It is also suggested that using

higher order n-grams, with n as high as 8, improves classification accuracy.

Nicolai and Kondrak (2014) investigate the issue of how and if L1 phonology is manifested in L2

texts. They investigate the source of L1 differences in the relative frequencies of character bigrams

since this is the feature that is most commonly assumed to capture phonological transfer, as claimed by

Tsur and Rappoport (2007) which we discussed in §2.3.3.1. They propose an algorithm to identify the

most discriminative words and subsequently, the extracted bigrams that correspond to these words.

Empirical evidence from their experiments suggests a different explanation to the inter-L1 differences

in character bigram distributions. They found that removing a small set of highly discriminative

words greatly degrades the accuracy of a bigram-based classifier. Based on this they conclude that

bigrams capture differences in word usage and lexical transfer rather than L1 phonology.

2.4 Second Language Acquisition: Cross-linguistic Influence

In this section we look at how a learner’s first language can influence the acquisition of other languages.

It is important to describe these theories as what most of the NLI systems described in the previous

sections are attempting to detect is this type of L1 influence. We will also return to this link between

NLI and L1 influence in Chapter 6, examining it in a more detailed manner.

Cross-linguistic influence (CLI), also referred to as language transfer, is one of the major topics

in the field of Second Language Acquisition (SLA). It has been said that being a speaker of some

specific native language (L1) can have direct and indirect consequences on an individual’s usage of

some later learned language (Jarvis and Crossley, 2012, p. 1), and this is the effect that is studied

in CLI.

However, linguists have historically been more focused on investigating a single language, and

often on some particular aspect such as phonology, syntax or morphology. Few have entirely focused

on making cross-linguistic comparisons or the influence of languages on each other in multilingual

individuals (Myers-Scotton, 2005, p. 11).
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Studies of bilingualism have led to two extreme positions (Myers-Scotton, 2005, p. 12). One view

is that considering multiple languages would complicate matters and thus obscure our view of human

language. The second position posits that studying bilinguals presents us with a opportunity to better

understand the structures of these languages by observing how they interact with and influence each

other. In this sense, the study of CLI through analysing non-native text can be helpful in informing

second-language pedagogy

Of the proposed models of cross-linguistic influence, two of the earliest and most widely recognized

ones are Contrastive Analysis and Error Analysis.

2.4.1 Contrastive Analysis and Error Analysis

Lado (1957) proposed Contrastive Analysis as one of the first methods to study language transfer

effects in learners. This methodology was focused on comparing the native and non-native languages

to identify to those differences that could give rise to learning difficulties.

Based on this work, Lado advanced the Contrastive Analysis Hypothesis which posits that those

elements which are similar to the native language will be easy to learn, and those elements that are

different will be difficult. This hypothesis predicts that learners will commit more errors related to

those linguistic aspects that differ the greatest. It also predicts that the “interference” (or negative

transfer) from the native language would increase with this degree of dissimilarity. The term interfer-

ence can refer to a number of phenomena that can occur when languages come into contact. These

effects may include lexical and syntactic transfer, amongst other things.

This approach gained significant traction over the next decade, but through continued research

it became evident that some errors were being committed by learners from varying linguistic back-

grounds in way that were not predicted by the model. Furthermore, it was also noted that some

errors which were being predicted by this model were not actually observed. Another issue with this

approach was that performing a comprehensive comparison of a language pair was a huge undertaking

that required significant resources.

These shortcomings led Corder (1967) to propose Error Analysis as an alternative methodology

that is centred on the typology of learner errors. This model extends the Contrastive Analysis

approach by proposing that there are several types of errors which also include the “interference”

errors predicted by Lado’s framework. This approach shifted the research focus to the actual errors

being produced by learners and “provided a methodology for investigating learner language” (Ellis,

1994, 48).

Error analysis is based on the premise that errors are a reflection of a learner’s current knowledge

or competence of a language at their current stage of the language acquisition process. It postulates

that these errors fall into several distinct categories, some of which are universal and not necessarily

due to interference from the mother tongue (Richards, 1971). Such universal errors may be due to

interference of the various patterns and irregularities with the target language and thus considered

to be developmental in nature.

2.4.1.1 Error Types

These systematic errors were classified into three categories by Richards (1971): developmental errors,

intralingual errors and interference (interlanguage) errors.
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Developmental Errors These errors are similar in nature to those observed during the acquisition

of the first language. Learners generally have limited knowledge about the workings of a new language

but attempt to leverage this narrow knowledge to form hypotheses about the new language. As a

result of their limited comprehension and knowledge, these hypotheses are often faulty and their

application results in developmental errors (Richards, 1971). Their prevalence decreases with time as

a learner’s hypotheses and learned rules are refined through practice and experience.

Intralingual Errors Richards (1971) argues that one type of common error is caused by the

learning strategies that learners use in their study of a new language. The manifestation of these

errors can be part of the rule learning process, caused by the incorrect or incomplete application of

the rules. For example, overgeneralization can occur when the application of a previously learned

rule in an inappropriate context yields an incorrect linguistic structure. Such errors commonly result

in noun-verb and tense agreement errors.

Interference (interlanguage) Errors These types of errors can be attributed to the role of

the native language. They can generally be predicted by examining and contrasting the linguistic

subsystems (such as the syntactic or morphological systems) of both languages. For example, in

examining a language pair such as Russian-English we may predict that Russian learners of English

may have difficulties in correctly using determiners due to the absence of these rules in their native

language.

The scope of such studies may also be narrow and more focused on particular facets of language use.

For example, Granger and Tyson (1996) investigated how English learners from various backgrounds

used English connectors. Looking at texts written by Chinese, German, Dutch, and French native

speakers, they found evidence of overuse and underuse of individual connectors. Yang and Huang

(2004) examined the impact of the absence of grammatical tense in Chinese on the acquisition of

the English tense-aspect system for native Chinese speakers. They found that the Chinese system

of expressing temporal information may reinforce the learners’ initial tendencies of using pragmatic

and lexical devices to indicate tense, which would be a type of negative transfer. Even with early

instructions on grammatical tense, they found a very slow shift towards the use of grammatical devices

due to the L1 interference which can be quite strong due to the magnitude of the difference between

the two languages’ tense systems.

These transfer errors can also be observed as part of the orthographic system. In one study on

such transfers, Sun-Alperin and Wang (2008) reported that native Spanish speakers committed more

English spelling errors which were related to the English vowel system. Intuitively this finding is

consistent with the hypothesis that could be drawn by contrasting the orthographic and phonological

systems of the two languages. While Spanish is consistent and highly regular in its spelling and

associated pronunciation, the link between English orthography and phonetics is not highly consistent,

particularly with diphthongs and triphthongs. This difference may lead to negative transfer where

learners may produce incorrect orthographic forms of English words which more closely resemble the

Spanish spelling of the word’s phonetic representation.
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2.4.2 Transfer Effects

Having discussed how CLI has been conceptualized by researchers, we now turn our attention to a

discussion of how these transfer effects manifest themselves in the language production of a learner.

These manifestations include positive transfer, overuse and avoidance.

Positive Transfer This type of transfer is generally facilitated by similarities between the native

tongue and second languages. The transfer effect can also differ for the various subsystems of a

language. The degree of similarity between two languages may vary in their vocabulary, orthography,

phonology or syntax. For example, high similarities in one aspect such as vocabulary may facilitate

high levels of transfer in language pairs such as Spanish-Portuguese or German-Dutch, but not as

much in other facets (Ellis, 2008). Such effects can also be observed in orthographic systems where

Chinese and Japanese native speakers may find it easier to learn each other’s languages in comparison

with those that speak a language which utilizes a phonetic alphabet.

Avoidance The underutilization of particular linguistic structures is known as avoidance. While

the existence of this phenomena has been established, the source of this underproduction is a debated

topic (Gass and Selinker, 2008).

One possible explanation is that avoidance is chiefly caused by the dissimilarities between two

languages. Evidence for this hypothesis was provided from a seminal experiment by Schachter (1974)

which demonstrated that English learners of Japanese and Chinese backgrounds made significantly

fewer relative clause errors than their Farsi and Arabic speaking counterparts. This was not because

Japanese and Chinese had syntactic structures more similar to English (in fact, the opposite is true),

but rather because they were avoiding the use of such structures. Another reason for avoidance may

be the inherent complexity of the structures themselves (Gass and Selinker, 2008).

Overuse The abovementioned avoidance or underuse of specific linguistic structures may result in

the overuse of other structures. In learners, this may manifest itself as the reluctance to produce

more complex constructions, instead opting to use combinations of simple sentences to express their

ideas.

Ellis (2008) mentions that overuse can occur due to intralingual processes such as overgeneraliza-

tion. This usually occurs when regular rules are applied to irregular forms of verbs or nouns, such as

saying runned or shoeses.

2.4.3 Lexical Transfer

The transfer effects associated with lexical items have been previously noted by researchers and lin-

guists (Odlin, 1989). These effects are mediated not only by similarities in word forms, but also word

semantics and meanings. This can lead to a great deal of positive transfer between similar languages

that expedites the learning process. For example, the closeness between the Spanish words presi-

dente/construcción/leyenda and their English equivalents president/construction/legend will play a

facilitatory role in the language acquisition process. This concept has been noted as far back as the

work of Sweet (1899), who stated:

Mastering the vocabulary of most European languages means simply learning to recognize

a number of old friends under slight disguises, and making a certain effort to learn a
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residue of irrecognizable words, which, however, offer less difficulty than they otherwise

would through being imbedded in a context of familiar words. The higher vocabulary of

science, art, and abstract thought hardly requires to be learnt at all; for it so consists

either of Latin and Greek terms common to most European languages or of translations

of them.

It is very different with a remote disconnected language such as Arabic or Chinese. The

abstract vocabulary of Arabic shows Greek influence, although this affords very little

practical help; but the terminology of Chinese philosophy and science is independent of

Western influence, so that every extension of the vocabulary requires a special effort of

memory and reasoning. The task of mastering such languages is literally an endless one.

Enough Arabic grammar for reading purposes is soon acquired, the construction being

always perfectly simple — at least in ordinary prose, but the student may read one class

of texts for years, and then, when he proceeds to another branch of the literature, he may

find that he can hardly understand a word, this being almost entirely the result of the

unfamiliarity of the new vocabulary required.

This observation has been confirmed by studies which have found that lexical similarities aid

learners with both language comprehension and production. One such study is that of Ard and

Homburg (1983) who compared the ESL performances of Arabic and Spanish speaking students.

The Spanish speaking students were far more successful in vocabulary questions, particularly for

words that had very similar spellings in both languages. This provided empirical evidence for the

advantageous effects of recognizing and using cognates, showing that it provided the Spanish speakers

with an edge over the Arabic speakers. This ability to establish links between L1 and L2 lexical forms

allows learners to develop a cognate strategy to aid with word production and recognition (De Groot

and Poot, 1997; Meara, 1993).

We should also make it clear that this notion of lexical transfer is different from that of loan

words. When speakers of two languages are in contact with each other they may learns some words

and phrases from each other’s languages. One group may also take some words and integrate them

into their own language. Words from one language that appear in another are called lexical borrowings.

This process usually occurs with nouns, where they are taken from a donor language and incorporated

into a recipient language. The results of this process can be seen in the presence of Russian load words

in the languages of former Soviet republics and other Eastern European countries. Many Chinese

words have also been taken into South-eastern Asian languages. Such changes may be motivated by

the fact that there is something more desirable or attractive about the other language, usually related

to the prestige or other attributes of its speakers, including demographic, economic and socio-political

considerations. It is because of these factors that English is the foremost source of borrowings into

languages everywhere, particularly in the domains of science and technology.

These transfer effects can also be negative, often observed under the phenomenon of “false friends”.

Well known to many language teachers, this effect occurs when two languages with various cognates

also have a subset of words that while morphologically similar, are not semantically related. Examples

include the Spanish verb realizar (to carry out) which English L1 learners may confuse with to realize

or the adjective embarazada (pregnant) which they often associate with embarrassed. In contrast

with the facilitatory effects of true cognates, these can provide learners with difficulties. However,

this is offset by the fact that in most languages the number of true cognates is much greater than that
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of false ones (Hammer and Monod, 1976). A cognate dictionary of English-French was compiled by

Hammer and Monod (1976) who reported that the ration of true to false cognates was roughly 11:1.

Researchers have also noted that the identification of true cognates is not always sufficient for

ensuring their correct usage. There may be grammatical differences in how they are used within each

language, and this can lead to other errors. A cognate verb present in two languages may employ a

reflexive construction in one, but not the other, and not observing this grammatical restriction may

lead to the erroneous application of the verb.

The degree of cognacy affects the cognate strategy employed by learners. Meara (1993) identified

four such patterns, each with their own difficulties. The first pattern occurs when there are a large

number of cognate-pairs, leading to considerable facilitation, for example in the case of Italian-

Spanish. In the second case, the number of cognates may be few and such similarities may not be

recognized or perceived by learners, resulting in very little facilitation. Some such language pairs are

Turkish-Swedish or Arabic-Japanese. The third scenario is a mixed one where cognates are mostly

present in the most common and frequent vocabulary, but rarely occur in the less frequent words.

The final pattern occurs when the use of cognates is limited to specific domains and topics.

Another important condition for these effects is that learners must perceive and be aware of the

presence of such cognates. Even when a considerable number of such words exist, not all learners

may be aware of their utility. Researchers have noted that simply by training students to take note of

cognates and use them helps them improve their vocabulary. In one such case Otwinowska-Kasztelanic

(2009) used this method to raise awareness of cognate vocabulary as a strategy in teaching English

to Polish adults.

It has been shown that this type of transfer is more likely to occur with nouns. Researchers posit

that this is because the transfer of syntactic structures involves different cognitive processes.

2.4.4 New Directions in CLI Research

With the advancement of technologies in corpus linguistics and Natural Language Processing, re-

searchers have been able to take new approaches to CLI research using large datasets and statistical

models.

Jarvis (2012, pp. 5–10) groups methods for investigating CLI into two broad categories, the

comparison-based and detection-based approaches, each with its own strengths and weaknesses.

The comparison-based approach In this approach, we generally focus on observing particular

differences between two languages. For example, we may examine how two languages differ in their

use of pronouns, articles or grammatical case. Once these differences have been identified, the next

step is then to determine the extent to which, if any, these linguistic dissimilarities or variations

impact L2 production. This process is carried out by examining writings of non-native speakers, with

a particular focus on errors.

The detection-based approach This method takes the opposite approach in the sense that in-

stead of beginning with a set of hypotheses, we instead canvas the available data to identify regularities

and patterns that are distinct to writers from a particular L1 background. Once the significance of

these patterns have been established through statistical testing, we can then hypothesize about the

underlying linguistic causes of these intergroup differences. With respect to the field, Jarvis (2012)
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then suggests that NLI is an innovative approach to tackling problems that SLA researchers have

been looking at for a long time.

In essence, we can broadly consider these approaches to be based on deductive and inductive

reasoning, respectively. The top-down, deductive approach entails the formulation of theories and

the use of data to confirm them. Conversely, the bottom-up inductive approach uses observed patterns

to form tentative hypothesis which are then tested for linguistic significance.

Within the field of linguistics, these methodologies are commonly referred to as corpus-based

(deductive) or corpus-driven (inductive) approaches. A corpus-driven methodology is one that uses

an inductive conceptualization in the analysis of specialized discourses (Groom, 2010, p. 60), made

possible by the advent of advanced computational platforms, hardware, algorithms and digitized

corpora. In this paradigm we begin with a neutral stance, free of any presuppositions, a priori

knowledge or linguistic bias. Instead, we rely on information extracted from our corpus data (such

as ranked frequency lists, n-grams, parse trees, keywords and concordances) to drive our analysis.

Then, through inductive reasoning (bottom-up logic), we form linguistic hypotheses based on observed

examples. This approach is contrasted by the “top-down” corpus-based methodology which uses

corpora to test pre-existing linguistic theories and hypotheses (Tognini-Bonelli, 2001, p. 65). A

detailed discussion of the differences between these two approaches can be found in Römer (2005,

p. 8). In the corpus-driven approach, the text is the central component and the derived evidence

is processed systematically. In exploring a language variety in this manner, we process this text to

extract observations in which we can find patterns and commonalities.

Advances in computer hardware as well as the software that have enabled the development of

large-scale digital corpora and Natural Language Processing methods have made the application of

the corpus-driven approach much more feasible in the last two decades. Researchers have access to

an increasingly large amount of electronic corpus resources and advanced software that facilitates the

rapid analyses of texts using a steadily increasing arsenal of linguistic features.

2.5 Chapter Summary

In this chapter we presented a comprehensive survey of NLI as well as a brief discussion of wider areas

of related work, including CLI. Continuing from here, we try to better understand NLI (its features,

task structure, potential for improvement and application to practical tasks) in Chapters 3–6. Much

of work and resources described in this chapter can be used to develop advanced models — e.g. via

NLI — for extraction of evidence that can be attributed to CLI. In Chapter 6 we combine all of

these elements and try out the detection-based direction, noted in §2.4.4, in an attempt to formulate

language transfer hypotheses from large-scale learner data. We then assess whether the features

obtained via this approach can help in a related task in Chapter 7.



Chapter 3

Native Language Identification

The work undertaken in this thesis is built upon a classification system for performing Native

Language Identification. In this chapter we present our work in building such a system, which began

with building our entry for the 2013 shared task. We used this as an opportunity to explore, inter

alia, ensemble classifiers, different feature types and granularity of tagsets. In the second part of this

chapter we explore feature diversity, the level of independence between the predictions provided by

different feature types. We propose one approach to measuring this interaction between features and

highlight several interesting trends that can help better understand the information being captured

by the feature types.
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3.1 NLI Shared Task System

In this section we describe the system we built and experiments we conducted as part of the 2013

NLI Shared Task, which we detailed in §2.3.3.3.

Among the efflorescence of work on Native Language Identification (NLI) in the period leading

up to the 2013 shared task, there were two trends in particular that we considered in building

our submission. The first is the proposal and use of new features that might have relevance to

NLI: for example, Wong and Dras (2011), motivated by the Contrastive Analysis Hypothesis (Lado,

1957) from the field of Second Language Acquisition, introduced syntactic structure as a feature;

Swanson and Charniak (2012) introduced more complex Tree Substitution (TSG) structures, learned

by Bayesian inference; and Bykh and Meurers (2012) used recurring n-grams, inspired by the variation

n-gram approach to corpus error annotation detection (Dickinson and Meurers, 2003). Starting

from the features introduced in these papers and others, then, other recent papers have compiled

a comprehensive collection of features based on the earlier work — Tetreault et al. (2012) is an

example, combining and analysing most of the features used in previous work. Given the relatively

short timeframe of the shared task, there seemed to be not much mileage in trying new features that

were likely to be more peripheral to the task.

A second trend, most apparent in 2012, was the examination of other corpora besides the Inter-

national Corpus of Learner English used in earlier work, and in particular the use of cross-corpus

evaluation (Brooke and Hirst, 2012b; Tetreault et al., 2012) to avoid topic bias in determining native

language. Possible topic bias had been a reason for avoiding a full range of n-grams, in particular

those containing content words (Koppel et al., 2009); the development of new corpora and the anal-

ysis of the effect of topic bias mitigated this. The consequent use of a full range of n-grams further

reinforced the view that novel features were unlikely to be a major source of interesting results.

We therefore concentrated for the most part on two areas: the use of classifier ensembles, and

the choice of part-of-speech tags. With classifier ensembles, Tetreault et al. (2012) noted that these

were highly useful in their system; but while that paper had extensive feature descriptions, it did not

discuss in detail the approach to its ensembles. We therefore decided to examine a range of possible

ensemble architectures. With part-of-speech tags, most work has used the Penn Treebank tagset,

including those based on syntactic structure. Kochmar (2011) on the other hand used the CLAWS2

tagset,1 which is much richer and more oriented to linguistic analysis than the Penn Treebank one.

Given the much larger size of the Toefl11 corpus used for this shared task than the corpora used

for much earlier work, data sparsity could be less of an issue, and the tagset a viable one for future

work.

The description of our submission is therefore in several parts. We begin with a description of

classifier ensembles in §3.1.1, followed by descriptions of ensemble combination methods in §3.1.2. In

§3.1.3 we present the preliminary experiments we conducted to guide the development of our entries

with a focus on the ensemble architectures we investigated, the features we used (which are for the

most part those applied in much of the previous work) and other experiments we performed on the

training data; in §3.1.4 we present our entries and their performance in the shared task; and in §3.1.5

we discuss some of the interesting characteristics of the data we noted during the shared task.

1http://ucrel.lancs.ac.uk/claws/

http://ucrel.lancs.ac.uk/claws/
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Figure 3.1: An example of parallel classifier ensemble architecture where N independent classifiers
provide predictions which are then fused using an ensemble combination method.

3.1.1 Classifier Ensembles

Classifier ensembles are a way of combining different classifiers or experts with the goal of improving

output accuracy through enhanced decision making. They have been applied to a wide range of real-

world problems and shown to achieve better results compared to single-classifier methods (Oza and

Tumer, 2008). Through aggregating the outputs of multiple classifiers in some way, their outputs are

generally considered to be more robust. Ensemble methods continue to receive increasing attention

from researchers and remain a focus of machine learning research (Woźniak et al., 2014; Kuncheva

and Rodŕıguez, 2014).

Such ensemble-based systems often use a parallel architecture, as illustrated in Figure 3.1, where

the classifiers are run independently and their outputs are aggregated using a fusion method. Other,

more sophisticated, ensemble methods that rely on meta-learning may employ a stacked architecture

where the output from a first set of classifiers is fed into a second level meta-classifier and so on.

The first part of creating an ensemble is generating the individual classifiers. Various methods

for creating these ensemble elements have been proposed. These involve using different algorithms,

parameters or feature types; applying different preprocessing or feature scaling methods; and varying

(e.g. distorting or resampling) the training data.

For example, Bagging (bootstrap aggregating) is a commonly used method for ensemble generation

(Breiman, 1996) that can create multiple base classifiers. It works by creating multiple bootstrap

training sets from the original training data and a separate classifier is trained from each one of

these sets. The generated classifiers are said to be diverse because each training set is created by

sampling with replacement and contains a random subset of the original data. Boosting (e.g. with

the AdaBoost algorithm) is another method where the base models are created with different weight

distributions over the training data with the aim of assigning higher weights to training instances

that are misclassified (Freund and Schapire, 1996).

The second part of ensemble design is choosing a combination rule to aggregate the outputs from

the various learners, this is discussed in the next section.
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3.1.2 Ensemble Combination Methods

Once it has been decided how the set of base classifiers will be generated, selecting the classifier

combination method is the next fundamental design question in ensemble construction.

The answer to this question depends on what output is available from the individual classifiers.

Some combination methods are designed to work with class labels, assuming that each learner out-

puts a single class label prediction for each data point. Other methods are designed to work with

class-based continuous output, requiring that for each instance every classifier provides a measure of

confidence2 for each class label. These outputs may correspond to probabilities for each class and

consequently sum to 1 over all the classes. That will be the case for the classifiers we will work with.

Although a number of different fusion methods have been proposed and tested, there is no single

dominant method (Polikar, 2006). The performance of these methods is influenced by the nature of

the problem and available training data, the size of the ensemble, the base classifiers used and the

diversity between their outputs.

The selection of this method is often done empirically. Many researchers have compared and

contrasted the performance of combiners on different problems, and most of these studies – both

empirical and theoretical – do not reach a definitive conclusion (Kuncheva, 2014, p 178).

In the same spirit, we experiment with several information fusion methods which have been

widely discussed in the machine learning literature. Our selected methods are described below; the

descriptions generally assume that the individual classifiers have probabilistic outputs. A variety of

other methods exist and the interested reader can refer to the thorough exposition by Polikar (2006).

3.1.2.1 Plurality voting

Each classifier votes for a single class label. The votes are tallied and the label with the highest

number3 of votes wins. Ties are broken arbitrarily. This voting method is very simple and does not

have any parameters to tune. An extensive analysis of this method and its theoretical underpinnings

can be found in Kuncheva (2004, p. 112).

3.1.2.2 Mean Probability Rule

The probability estimates for each class are added together and the class label with the highest average

probability is the winner. This is illustrated in Figure 3.2. This is equivalent to the probability sum

combiner which does not require calculating the average for each class. An important aspect of using

probability outputs in this way is that a classifier’s support for the true class label is taken into

account, even when it is not the predicted label (e.g. it could have the second highest probability).

This method has been shown to work well on a wide range of problems and, in general, it is considered

to be simple, intuitive, stable (Kuncheva, 2014, p. 155) and resilient to estimation errors (Kittler

et al., 1998) making it one of the more robust combiners discussed in the literature.

3.1.2.3 Median Probability Rule

Given that the mean probability used in the above rule is sensitive to outliers, an alternative is to

use the median as a more robust estimate of the mean (Kittler et al., 1998). Under this rule each

2e.g. an estimate of the posterior probability for the class label.
3This differs with a majority voting combiner where a label must obtain over 50% of the votes to win. However,

the names are sometimes used interchangeably.
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FIGURE 5.5 Operation of the average combiner.

Represented by the average combiner, the category of simple nontrainable
combiners is described in Figure 5.4, and illustrated diagrammatically in Figure 5.5.
These combiners are called nontrainable, because once the individual classifiers are
trained, their outputs can be fused to produce an ensemble decision, without any
further training.

◻◼ Example 5.3 Simple nontrainable combiners
The following example helps to clarify simple combiners. Let c = 3 and L = 5.
Assume that for a certain x

DP(x) =

⎡⎢⎢⎢⎢⎣
0.1 0.5 0.4
0.0 0.0 1.0
0.4 0.3 0.4
0.2 0.7 0.1
0.1 0.8 0.2

⎤⎥⎥⎥⎥⎦
. (5.20)

Applying the simple combiners column wise, we obtain:

Combiner 𝜇1(x) 𝜇2(x) 𝜇3(x)

Average 0.16 0.46 0.42
Minimum 0.00 0.00 0.10
Maximum 0.40 0.80 1.00
Median 0.10 0.50 0.40
40% trimmed mean 0.13 0.50 0.33
Product 0.00 0.00 0.0032

Figure 3.2: An example of a mean probability combiner. The feature vector for a sample is input
to L different classifiers, each of which output a vector of confidence probabilities for each possible
class label. These vectors are combined to form the decision profile for the instance which is used
to calculate the average support given to each label. The label with the maximum support is then
chosen as the prediction. Image reproduced from (Kuncheva, 2014, Fig. 5.5).

class label’s estimates are sorted and the median value is selected as the final score for that label.

The label with the highest median value is picked as the winner. As with the mean combiner, this

method measures the central tendency of support for each label as a means of reaching a consensus

decision.

3.1.2.4 Product Rule

For each class label, all of the probability estimates are multiplied together to create the label’s

final estimate (Polikar, 2006, p. 37). The label with the highest estimate is selected. This rule

can theoretically provide the best overall estimate of posterior probability for a label, assuming that

the individual estimates are accurate. A trade-off here is that this method is very sensitive to low

probabilities: a single low score for a label from any classifier will essentially eliminate that class

label.

3.1.2.5 Highest Confidence

In this simple method, the class label that receives the vote with the largest degree of confidence is

selected as the final prediction (Kuncheva, 2014, p. 150). In contrast to the previous methods, this

combiner disregards the consensus opinion and instead picks the prediction of the expert with the

highest degree of confidence.
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3.1.2.6 Borda Count

This method works by using each classifier’s confidence estimates to create a ranked list of the class

labels in order of preference, with the predicted label at rank 1. The winning label is then selected

using the Borda count4 algorithm (Ho et al., 1994). The algorithm works by assigning points to labels

based on their ranks. If there are N different labels, then each classifier’s preferences are assigned

points as follows: the top-ranked label receives N points, the second place label receives N−1 points,

third place receives N − 2 points and so on with the last preference receiving a single point. These

points are then tallied to select the winner with the highest score.

The most obvious advantage of this method is that it takes into account all of each classifier’s

preferences, making it possible for a label to win even if another label received the majority of the

first preference votes.

3.1.3 Preliminary Experiments

We approached the design of our system by conducting some preliminary experiments on the Toefl11-

Train and Toefl11-Dev data, described in §2.3.1.4, to guide our system development. In this

section we also outline some of these experiments and their results.

Our overall approach in terms of features and classifiers used is a fairly standard one. One differ-

ence from most approaches, but inspired by Tetreault et al. (2012), is that we train multiple classifiers

over subsets of the features, over different feature representations, and over different regularisation

approaches; we then combine them in ensembles.

3.1.3.1 Classifiers

For our machine learning methods, we experimented with both Support Vector Machine (SVM)

classifiers and Logistic Regression classifiers. Post hoc analysis of the shared task systems, detailed

in §2.3.3.3, shows that these two classifier types were the most popular among the entries. We

specifically use the LIBLINEAR software package (Fan et al., 2008),5 which is well-suited to text

classification tasks with large numbers of features and large numbers of documents. LIBLINEAR

provides both logistic regression and linear SVMs. Although both methods perform work with high-

dimensional input, as we described in §2.1.3, there are some differences that we must consider in

choosing which one to use in different scenarios.

Linear SVM Classifier SVMs are inherently binary classifiers and a common way to adapt them

for multi-class problems is through a one-vs-all (OVA) approach.6 Another common alternative is

a one-vs-one (OVO) method that builds N(N−1)
2 binary classifiers for all pairwise combinations. It

has been found that the OVR approach works best in NLI (Brooke and Hirst, 2012b), and our

experiments confirmed this and we therefore adopt this approach. Additionally, an SVM is a margin-

based classifier and does not output probability estimates for each class label, although there are

additional methods to map the outputs to probabilities (Platt, 2000).

4This method is generally attributed to Jean-Charles de Borda (1733–1799), but evidence suggests that it was also
proposed by Ramon Llull (1232–1315).

5Available from http://www.csie.ntu.edu.tw/%7Ecjlin/liblinear/
6Also known as a one-vs-rest (OVR) approach.



3.1. NLI SHARED TASK SYSTEM 61

Logistic Regression Classifiers This algorithm is inherently multi-class, meaning that OVA and

OVO approaches are not required. The logistic regression classifier is also probabilistic and provides

continuous probability estimates for each class label, which are required by most of our combination

methods (§3.1.2). We therefore follow the methodology of Tetreault et al. (2012) and use the logistic

regression classifiers in the work in this thesis chapter.

In both single feature experiments and the ensemble we train each model on one of our feature

types, which we describe in the next section.

3.1.3.2 Feature Set

We mostly use standard feature types in our system. Our feature set includes:

Character n-grams As described in §2.3.2.2. We limit our n-grams to the order of n = 1–3 and

the were extracted from within word boundaries.

Function Word n-grams In addition to the standard function word unigram features we described

in §2.3.2.5 we also propose an extension to higher order n-grams, which will be defined next in §3.1.3.4.

For extracting the features, a standard English function word list was obtained from the Onix Text

Retrieval Toolkit.7

Word n-grams We used this standard feature (§2.3.2.3), with n = 1–3. The n-grams included

punctuation marks.

POS n-grams This purely syntactic feature (defined in §2.3.2.6) was also used. In our work, the

POS tags for each text are predicted with a POS tagger and n-grams of order 1–3 are extracted

from the tags. These n-grams capture (very local) syntactic patterns of language use and are used as

classification features. Previous research and results from our own experiments show that sequences

of size 4 or greater achieve lower accuracy, possibly due to data sparsity, so we do not generally present

them in our work. Additionally, we also compare the performance of this feature using different POS

tagsets, as we describe below in §3.1.3.5.

TSG fragments We described this relatively new feature in §2.3.2.8. Here, as an approximation

to deploying the Bayesian approach to induce a TSG, each text is first parsed to obtain constituent

parse trees. TSG fragments are then extracted from the parse trees using the TSG system made

available by Post and Gildea (2009).8

Stanford Dependencies We also evaluate the grammatical dependency features we described

in §2.3.2.9. Here we extract all the basic (rather than the collapsed) dependencies returned by the

Stanford Parser (de Marneffe et al., 2006) and also apply the POS transformation.

Adaptor Grammar n-grams As outlined in §2.3.2.10, this feature captures n-grams of arbitrary

length. We use the mixed POS and function word variant, with the features being extracted using

the exact method of Wong et al. (2012).

7http://www.lextek.com/manuals/onix/stopwords1.html
8https://github.com/mjpost/dptsg

http://www.lextek.com/manuals/onix/stopwords1.html
https://github.com/mjpost/dptsg
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Input Text

To enjoy life 
we have to 
appreciate 
every moment.

Content Word Removal

to we have to 
every

N-gram Extraction

{to, we}
{we, have}
{have, to}
{to, every}

Figure 3.3: An example of how function word bigrams are extracted: content words are first stripped
from the input and n-grams are extracted from the remaining tokens.

N Accuracy

1 51.38

2 59.73

3 52.14

Table 3.1: NLI results for Function Word n-grams of order N . Our proposed Function Word bigram
and trigram features outperform the commonly used unigrams.

3.1.3.3 Feature Representation

Most NLI studies have used two types of feature representations: binary (presence or absence of a

feature in a text) and normalized frequencies. Although binary feature values have been used in

some studies (e.g. Wong and Dras (2011)), most have used frequency-based values. In our system we

experiment with both types.

3.1.3.4 Function Word n-grams

We did devise and test a new feature that attempts to capture patterns of function word use at the

sentence level. This is because function words have been found to be an important feature in stylistic

classification and an extension to n-grams could further improve accuracy.

We define function word n-grams as a type of word n-grams where content words are skipped:

they are thus a specific subtype of skip-gram discussed by Guthrie et al. (2006). For example, the

sentence We should all start taking the bus would first be reduced to we should all the by removing

the content words, from which we would then extract the n-grams. This process is also demonstrated

in Figure 3.3 with a different sentence. We test bigram and trigram versions of this feature.

To see if this sort of feature is at all useful, we conduct a preliminary experiment to compare

the performance of the widely used unigrams against the proposed bigram and trigram variants,

which have not been previously used for NLI. We trained a logistic regression classifier for each

feature type using the Toefl11-Train and Toefl11-Dev data, evaluating them under 10-fold cross-

validation. The results are listed in Table 3.1. They show that function word skip-grams are more

informative than the simple function word counts that have been previously used. We also observe

that performance drop with trigrams and therefore we do not include them in further experiments.
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I_PRP would_MD n’t_RB agree_VB with_IN this_DT statement_NN ._.

I_PPIS1 would_VM n’t_XX agree_VV0 with_IW this_DD1 statement_NN1 ._.

***

This_DT is_VBZ can_MD just_RB be_VB achieved_VBN by_IN concentrating_VBG

and_CC working_VBG hard_RB on_IN one_CD subject_NN ._.

This_DD1 is_VBZ can_VM just_RR be_VB0 achieved_VVN by_II concentrating_VVG

and_CC working_VVG hard_RR on_II one_MC1 subject_NN1 ._.

***

A_DT reason_NN for_IN this_DT could_MD be_VB also_RB a_DT problem_NN

of_IN teaching_NN skills_NNS ._.

A_AT1 reason_NN1 for_IF this_DD1 could_VM be_VB0 also_RR a_AT1 problem_NN1

of_IO teaching_NN1 skills_NN2 ._.

Figure 3.4: Three example sentences tagged with both the PTB (red) and CLAWS2 (blue) tagsets.

3.1.3.5 Comparing POS Tagsets

In extracting POS n-gram features from the data we were faced with a choice between two automatic

taggers: The Stanford POS tagger and the Robust Accurate Statistical Parsing (RASP) system.9

While both systems are trained on large datasets and considered to be accurate, a key difference

is the tagset that they use. The Stanford system uses the Penn Treebank (PTB) tagset which has 36

tags. RASP uses a modified version of the CLAWS2 tagset10 which has 166 tags. To demonstrate some

of these differences, three example sentences tagged with both tagsets are shown in Figure 3.4. Some

of the notable differences include the more linguistically fine-grained categorization of pronouns,11

determiners and prepositions in the CLAWS2 tagset. For example, the prepositions with, by, for and

of are all given the same PTB tag while CLAWS2 assigns them each a unique tag. Additionally,

the CLAWS2 tagset also distinguishes open-class words more finely, for example, through verb sub-

categorization.

Given the large difference in the number of tags they use, we decided to directly compare both

variants to gauge their performance for this task.

To compare the tagsets we trained individual logistic regression classifiers for n-grams of order 1–4

using both tagsets and tested them. This was done by training the Toefl11-Train and Toefl11-

Dev data and evaluating them under 10-fold cross-validation. The results are listed in Table 3.2 and

show that the CLAWS2-tagged data provided better performance in all cases. While it is possible

that CLAWS2’s better performance could be attributed to other factors such as tagging accuracy, we

do not believe this to be the case as the Stanford Tagger is known for its high accuracy.12

These differences are quite clear and accordingly, we use the features extracted via the RASP

tagger in our experiments. This finding also has implications for other syntactic features that make use

of POS tags, such as Adaptor Grammars, Stanford Dependencies and Tree Substitution Grammars.

9http://ilexir.co.uk/applications/rasp/
10http://ucrel.lancs.ac.uk/claws2tags.html
11CLAWS2 has over 20 pronoun tags.
1297% on the standard WSJ22-24 test set, see http://nlp.stanford.edu/software/pos-tagger-faq.shtml

http://ilexir.co.uk/applications/rasp/
http://ucrel.lancs.ac.uk/claws2tags.html
http://nlp.stanford.edu/software/pos-tagger-faq.shtml
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N PTB CLAWS2

1 34.03 43.76

2 48.85 58.93

3 51.06 59.39

4 49.85 52.81

Table 3.2: Classification accuracy results for POS n-grams of order N using both the PTB and
CLAWS2 tagsets. The larger CLAWS2 tagset used by RASP tagger performed substantially better
for all values of N .

Feature Train + Dev Set Test Set

Chance Baseline 9.1 9.1

Character unigram 33.99 34.70

Character bigram 51.64 49.80

Character trigram 66.43 66.70

RASP POS unigram 43.76 45.10

RASP POS bigram 58.93 61.60

RASP POS trigram 59.39 62.70

Function word unigram 51.38 54.00

Function word bigram 59.73 63.00

Word unigram 74.61 75.50

Word bigram 74.46 76.00

Word trigram 63.60 65.00

TSG Fragments 72.16 72.70

Stanford Dependencies 73.78 75.90

Adaptor Grammar
POS/FW n-grams

69.76 70.00

Table 3.3: Classification results for our individual features.

This issue of tagset size is further explored in greater depth in Chapter 5, as part of the experiment

described in §5.8.

3.1.3.6 Individual Feature Performance

We next ran some similar tests to evaluate the performance of our other feature types. This was done

by training a single classifier on the Toefl11-Train and Toefl11-Dev data for each feature type

and evaluating them under 10-fold cross-validation. Additionally, we also trained on the combined

Toefl11-Train and Toefl11-Dev data and evaluated the features on the held-out Toefl11-Test

set once the data labels were released after the shared task. The results are summarized in Table 3.3.

Character n-grams are an informative feature and our results are very similar to those reported

by previous researchers (Tsur and Rappoport, 2007). In particular, it should be noted that the use

of punctuation is a very powerful feature for distinguishing languages. Romance language speakers

were most likely to use more punctuation symbols (colons, semicolons, ellipsis, parenthesis, etc.) and

at higher rates. Chinese, Japanese and Korean speakers were far less likely to use punctuation in

their writing.
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The performance of word n-grams, TSG fragments, adaptor grammar n-grams and Stanford

Dependencies was very strong and comparable to previously reported research. Word n-grams do

particularly well, in spite of the topic balanced data.

Hapax Legomena and Dis Legomena Given the strong performance of the lexical features, we

also investigated word unigrams at a more fine-grained level. The special word categories Hapax

Legomena and Dis legomena refer to words that appear only once and twice, respectively, in a

complete text. In practice, these features are a subset of our word unigram feature, where Hapax

Legomena correspond to unigrams with a frequency of 1 within a text and Dis legomena are unigrams

with a frequency of 2. In our experimental results we found that Hapax Legomena alone provides

an accuracy of 61%. Combining the two features together yields an accuracy of 67%. This is an

interesting finding as both of these features alone provide an accuracy close to the whole set of word

unigrams. They were, however, not included in our system due to their lower performance.

3.1.3.7 Ensemble Construction and Evaluation

To construct our ensemble, we train individual logistic regression classifiers on a single feature type

(e.g. POS n-grams), using a specific feature value representation and classifier. We utilize a parallel

ensemble structure where the classifiers are run on the input texts independently and their results

are then fused into the final output using a combiner.

In the course of our experiments we have observed that the effect of the feature representation

varies with the feature type, size of the feature space and the learning algorithm itself. Based on

this, then, we decided to generate two distinct classifiers for each feature type, one trained with

frequency-based values (raw counts scaled using the l2-norm) and the other with binary. This results

in two base classifiers per feature type (e.g. POS2grams-bin and POS2grams-freq). Our experiments

also assess both their individual and joint performance.

Furthermore, in our preliminary experiments we also observed that some feature types performed

better with L1-regularization and others with L2-regularization. As a result of this we also extend

our ensemble by generating classifiers using both regularization methods and evaluate their individual

and combined performance. This generates an ensemble with four classifiers per feature type, (e.g.

POS2grams-bin-L1, POS2grams-freq-L1, POS2grams-bin-L2 and POS2grams-freq-L2).

Bagging Additionally, we also experiment with bagging (bootstrap aggregating), a commonly used

method for ensemble generation (Breiman, 1996) to generate multiple classifiers per feature type. Our

experiments here did not find any improvements in accuracy, even with larger numbers of bootstrap

samples (50 or more). Bagging is said to be more suitable for unstable classifiers which have greater

variability in their performance13 and are more susceptible to noise in the training data (Breiman,

1996). In our experiments with individual feature types we have found the classifiers to be quite

stable in their performance, across different folds and training set sizes. This is one potential reason

why bagging did not yield significant improvements. Accordingly, we did not investigate this any

further and did not use the method for our submission.

Combination Methods Of the methods outlined in §3.1.2 we found the mean probability combiner

to be the best performing and our results are reported using this combiner. However, we also note that

13i.e. when changing the training data results in significant differences in model performance.
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Ensemble Components bin-L1 bin-L2 freq-L1 freq-L2 CV Test set

(1) Complete Ensemble x x x x 81.50 81.60

(2) Only binary values x x 82.46 83.10

(3) Only freq values x x 65.28 67.20

(4) L1-regularized only x x 80.33 81.10

(5) L2-regularized only x x 81.42 81.10

(6) Bin, L1-regularized only x 81.57 82.00

(7) Bin, L2-regularized only x 82.00 82.50

Table 3.4: NLI classification results for our ensembles, best result in column in bold (binary values
with L1- and L2-regularized solvers).

the differences across all combination methods was roughly 1–2%. Any new approach to ensemble

combination here would consequently want to be radically different to expect a notable improvement

in performance.

Ensemble Results We used the same training and testing data as the previous section (§3.1.3.6).

Table 3.4 shows the results from our ensembles. The feature types included in the ensemble are those

whose results are listed individually in Table 3.3. (So, for example, we only use the RASP-tagged

POS n-grams, not the Penn Treebank ones.) The complete ensemble consists of four classifiers per

feature type: L1- and L2-regularized versions with both binary and frequency values.

Combining Regularization Approaches Our results show that combining both the L1- and L2-

regularized classifiers in the ensemble provided a small increase in accuracy. Ensembles with only one

of the L1 or L2-regularization terms have lower accuracy than the combined methods (e.g. comparing

row 2 of Table 3.4 with rows 6 and 7).

3.1.3.8 Proficiency-level Based Classification

Our final preliminary experiment examined how we could utilize the proficiency level information

provided in the Toefl11 corpus (texts are marked as either low, medium or high proficiency) in

our ensembles. We did this by evaluating classifiers that are trained using only texts from specific

proficiencies.

Tetreault et al. (2012) established that the classification accuracy of their system varied across

proficiency levels, with high proficiency texts being the hardest to classify. This is most likely due

to the fact that writers at differing skill levels commit distinct types of errors at different rates

(Ortega, 2009, for example). If learners of different backgrounds commit these errors with different

distributions, these patterns could be used by a learner to further improve classification accuracy.

We evaluated this by segregating the Toefl11-Train and Toefl11-Dev sets into subsets of dif-

ferent proficiency levels. We then trained logistic regression models on different subsets of Toefl11-

Train and tested on different subsets of Toefl11-Dev, aiming to find patterns about which training

subsets were best suited for classifying which test subsets.

Table 3.5 shows our results for this experiment, listing the different training and testing subsets.

The numbers show that in general texts should be classified with a learner trained with texts of a sim-
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Training Set Dev Set Accuracy

Low Low 52.2

Medium Low 72.1

High Low 40.3

Low + Medium Low 76.0

All Low 75.2

Low Medium 40.7

Medium Medium 83.6

High Medium 62.1

Medium + High Medium 85.3

Low + Medium Medium 83.8

All Medium 86.8

Low High 16.1

Medium High 68.1

High High 65.7

Medium + High High 74.7

All High 75.2

Table 3.5: Results for classifying the test set documents using classifiers trained with a specific
proficiency level. Each level’s best result in bold.

ilar proficiency. They also show that not all texts in a proficiency level are of uniform quality as some

levels perform better with data from the closest neighbouring levels (e.g. Medium texts perform best

with data from all proficiencies), suggesting that the three levels form a larger proficiency continuum

where users may fall in the higher or lower ends of a level. A larger corpus with more fine-grained

proficiency categories (i.e. more than three levels) could help address this and potentially achieve

higher results. We also note that training on low proficiency data for classifying high proficiency

texts, and vice versa, produces very low performance.

Based on these results, we decided to use this approach in one of our shared task entries. This was

made possible as the unlabelled version of the Toefl11-Test set released during the shared task

included the proficiency information. A proficiency classifier would be required in other practical

scenarios where the proficiency details of test documents are unavailable.

3.1.4 Shared Task Systems and Results

Based on the preliminary experiments described above in §3.1.3, we created the following five systems

for entry into the shared task.

1. A system based on the full ensemble of four classifiers per feature type. This, and the other

four ensembles below are all combined with the mean probability fusion rule.

2. An ensemble of L1-regularized classifiers using only binary feature representations.

3. An ensemble of L2-regularized classifiers using only binary feature representations.

4. An ensemble of L1- and L2-regularized classifiers using only binary feature representations.

5. A proficiency-segregated version of the full ensemble, with the low proficiency texts classified

by models trained on low and medium proficiency texts and medium and high proficiency texts

being classified by models trained on all data.
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System Accuracy (%)

1 79.6

2 79.7

3 79.7

4 80.1

5 79.5

Table 3.6: Official shared task results for our 5 systems.

Predicted

ARA CHI FRE GER HIN ITA JPN KOR SPA TEL TUR

A
ct

u
a
l

ARA [78] 0 5 2 4 1 1 0 5 4 0

CHI 1 [89] 1 1 1 0 4 2 1 0 0

FRE 1 1 [86] 4 3 3 0 0 2 0 0

GER 0 1 2 [92] 1 0 1 0 1 0 2

HIN 1 2 0 0 [76] 0 0 0 2 18 1

ITA 0 0 5 3 0 [88] 0 0 2 0 2

JPN 1 6 1 2 1 0 [83] 3 0 0 3

KOR 1 9 4 1 1 0 10 [71] 2 1 0

SPA 5 1 10 1 2 10 0 3 [64] 0 4

TEL 2 1 0 1 17 0 0 0 0 [79] 0

TUR 5 5 4 1 0 2 2 3 3 0 [75]

Table 3.7: Confusion matrix of our best system in the 2013 NLI Shared Task.

The official results for all of our systems are shown in Table 3.6. All systems had very similar

results, with System 4 achieving the best results. This shows that combining different regularization

approaches can help improve accuracy.

We also note that the proficiency-segregated ensemble that used separate models for low profi-

ciency texts failed to achieve any improvement on the test set. The results are almost identical to the

non-segregated version (System 1). This is not entirely surprising given that the medium and high

proficiency categories make up some 89% of the Toefl11 data, as we described in §2.3.1.4.

The results listed here are those reported by the shared task organizers. The systems we submitted

were trained on only the Toefl11-Train set and we had not included the Toefl11-Dev set like

other teams. When trained on both of these sets the best result on the test set improves to 83.1%,

3% higher than our best submission result, and close to the winning system’s result (83.6%).

The confusion matrix of the output from our best system is presented in Figure 3.5. A tabulated

version with the exact counts is also presented in Table 3.7. We see that German is the most correctly

classified class while Spanish has the worst performance due to confusion with two other Romance

languages: French and Italian. Interestingly, however, French and Italian are not often confused with

Spanish. A similar pattern is also observed for Korean being confused for Japanese and Chinese.

Finally, we also note that the greatest degree of confusion is between Hindi and Telugu, as we discuss

in the next section.

A plot of each team’s best system was previously shown in Figure 2.12, with our results listed as

“MQ”. There was no statistically significant difference between the top five teams.
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Figure 3.5: Confusion matrix of our best system in the 2013 NLI Shared Task.
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3.1.5 Discussion

Our experiments for building our shared task entry resulted in a number of useful results. For the most

part we focused on evaluating the different tagsets and building ensembles. We demonstrated that a

more linguistically fine-grained tagset achieves higher classification results than a more coarse one, an

issue which we will revisit more thoroughly in §5.8. We also demonstrated that classifier ensembles

are useful for this task; the results achieved by our ensemble were higher than any single feature

could achieve alone. Additionally, our results indicate that combining different machine learners in

an ensemble can be useful.

We also tested a proficiency-segregated ensemble, although this did not result in improved per-

formance. Several other shared task entries also attempted to use the proficiency level meta-data

included with the corpus to aid classification, e.g. the systems by Kyle et al. (2013) and Brooke and

Hirst (2013), although none of them were able to successfully leverage this information to improve

their system’s accuracy.

In terms of feature engineering, we proposed the use of function word bigrams as a new feature

and also reported results suggesting that using larger POS tagsets can improve NLI accuracy.

3.1.5.1 Feature Analysis

We conducted a brief analysis of our extracted features, looking at the most predictive ones according

to their Information Gain. Although we did not find any obvious indicators of topic bias, we noted

some other issues of potential concern.

Chinese, Japanese and Korean speakers make excessive use of phrases such as however, first of

all and secondly. At first glance, the usage rate of these phrases seems unnaturally high (more than

50% of Korean texts had a sentence beginning with however). This could perhaps be a cohort effect

relating to those individually attempting this particular TOEFL exam, rather than an L1 effect: it

would be useful to know how much variability there is in terms of where candidates come from.

It was also noticed that many writers mention the name of their country in their texts, and this

could potentially create a high correlation between those words and the language class label, leading

perhaps to an artificial boosting of results. For example, the words India, Turkey, Japan, Korea and

Germany appear with high frequency in the texts of their corresponding L1 speakers — hundreds of

times, in fact, in contrast to frequencies in the single figures for speakers of other L1s. These might

also be an artefact of the type of text, rather than related to the L1 as such.

Although the new topic-balanced Toefl11 data is a marked improvement over previously used

corpora, these features highlight an important issue: other categories of non-topical words, such as

the toponyms we observed here, can exert undue influence on results based on lexical features. The

models used to obtain such results must be inspected in order to better understand the types of

features that are highly weighted by the model. This is an issue that we will revisit in §4.2 and §6.3.

3.1.5.2 Hindi vs. Telugu

We single out here this language pair because of the high level of confusion between the two classes.

Looking at the results obtained by other teams, we observe that this language pair provided the

worst classification accuracy for almost all teams. No system was able to achieve an accuracy of

80% for Hindi (something many achieved for other languages). In analysing the actual and predicted
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Each/DT person/NN should/MD has/VBZ one/CD specialized/VBN subject/NN ./.

As/IN we/PRP have/VBP noticed/VBN ,/, societies/NNS must/MD consists/VBZ
of/IN people/NNS of/IN different/JJ knowleges/NNS and/CC it/PRP is/VBZ
impossible/JJ to/TO find/VB a/DT person/NN who/WP is/VBZ creative/JJ in/IN
many/JJ academic/JJ fields/NNS ./.

It/PRP is/VBZ very/RB intresting/JJ becouse/NN before/IN you/PRP trav-
el/VBP to/TO the/DT country/NN ,/, the/DT group/NN giude/NN has/VBZ
has/VBZ seted/VBN the/DT shcudual/NN ./.

I/PRP both/DT agree/VBP and/CC disgree/VBP with/IN those/DT two/CD
statemant/JJ ./.

from/IN my/PRP$ prepactive/JJ I/PRP thik/VBP what/WP all/DT matter/NN
is/VBZ your/PRP$ comfor/NN what/WP ever/RB you/PRP feel/VBP goood/NN
about/IN you/PRP choose/VBP ./.

in/IN the/DT pass/NN cople/NN years/NNS there/EX were/VBD alot/NN
of/IN people/NNS that/WDT are/VBP successful/JJ ,/, and/CC so/RB much/JJ
ambition/NN ./.

For/IN an/DT exampl/NN Bill/NNP Gaets/NNP ang/NN Inishtine/NNP ./.

they/PRP were/VBD so/RB pore/RB in/IN school/NN ,/, but/CC they/PRP
were/VBD so/RB successful/JJ in/IN life/NN infact/NN they/PRP made/VBD
the/DT World/NNP chainged/VBD dy/JJ two/CD emprtant/JJ things/NNS :/:
well/RB and/CC ambition/NN ./.

Figure 3.6: POS tagging results for several learner sentences with grammatical and orthographic
errors. Some of the errors are highlighted in bold. Results obtained from the Stanford POS tagger.

classes for all documents classified as Hindi and Telugu by our system, we find that generally all of

the actual Hindi and Telugu texts (96% and 99%, respectively) are within the set. Our classifier is

clearly having difficulty discriminating between these two specific classes.

Given this, we posit that the confounding influence may have more to do with the particular style

of English that is spoken and taught within the country, rather than the specific L1 itself. Consulting

other research about SLA differences in multi-lingual countries could shed further light on this.

Analysing highly informative features provides some clues about the influence of a common culture

or national identity: in our classifier, the words India, Indian and Hindu were highly predictive of

both Hindi and Telugu texts, but no other languages. Looking at individual language pairs in this

way could lead to incremental improvement in the overall classification accuracy of NLI systems. We

also look at this issue later in §4.1.4.

3.1.5.3 POS tagging learner texts

Many shared task systems, including ours, investigated using syntactic information such as POS tags

as classification features. As we described, this is achieved by using automatic POS taggers based on

statistical models, e.g. the Stanford POS Tagger, to automatically annotate the learner texts.

One issue to consider here is that the models used by these statistical taggers are trained on well-

formed text from a standard variety of the language written by native speakers (e.g. news articles).

When tested on such data, the models generally achieve high accuracies of 96% or higher. However,

it cannot be assumed that these tools will achieve similar levels of accuracy on learner data, a distinct

genre which they were not trained on. Furthermore, learner writing is known to contain various types

of errors and ungrammatical sentences.
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This is a consideration that has not gone unnoticed and several researchers have investigated

this question. Van Rooy and Schäfer (2002) investigated this issue and report that “learner spelling

errors contributed substantially to tagging errors”, causing up to 38% of the POS tagging errors.

Dı́az-Negrillo et al. (2010) argue that the properties of learner language are systematically different

from those assumed for the standard variety of the language and that this interlanguage cannot be

considered a noisy variant of the native language. Instead of viewing this as a robustness issue, they

suggest that a new POS model for learner language may be more suitable. Based on the results of their

empirical analysis they highlight several issues with standard POS models and they propose a new

tripartite POS annotated model that encodes properties based on the lexical stem, distribution and

morphology. Another take on this issue can be found in Cahill (2015), which looks at the performance

of syntactic parsers on text when errors are introduced. The recommendation here is that instead of

adapting annotation schemes to accommodate learner errors, it may be better to shoehorn existing

schemes to fit learner texts.

This evidence points to a performance degradation on learner data and suggests that the POS

annotations used in many previous NLI studies are vulnerable to tagging errors. To investigate this we

looked at the tagging results from the Stanford POS Tagger for several low proficiency texts from our

Toefl11 training data. A number of sentences with grammatical and orthographic errors from these

texts, along with their tags, are shown in Figure 3.6. Some of the errors have been highlighted in bold.

We observe several instances where spelling mistakes result in tagging errors (e.g. statemant/JJ) but

we also note there are a number of other instances where misspelled words are tagged correctly, e.g.

emprtant/JJ, intresting/JJ and chainged/VBD. This shows that the tagger does posses some degree

of robustness against learner errors.

Although it is evident that statistical tagger performance is degraded on this data, it is unclear

how this affects performance when the tags are used downstream for NLI. Evidence from previous

work, and that presented throughout this thesis, suggests that they work well as features and have

hence gained wide adoption. One possibility is that systematic learner errors result in systematic

tagging errors. The NLI model can then learn to associate the tagging errors with the specific L1

groups that commit the writing errors that result in those particular erroneous tag patterns.

Of course it is also possible that the use of more accurate POS tags, obtained via more robust

tagging or manual post-correction, could improve NLI results. This stance assumes that errors

could reduce the efficacy of POS tag n-grams in distinguishing the different syntactic patterns used

by different L1 groups. Testing this hypothesis will require carefully controlled experiments with

sufficient data in order to reach a conclusive result. This line of inquiry, however, lies beyond the

scope of this thesis and is left for future work.

3.1.5.4 SVM vs Logistic Regression

Post hoc analysis of the shared task results (§2.3.3.3) revealed that many of the top systems, including

the winning entry, followed two broad patterns: they used SVM classifiers along with frequency-based

feature values.

Our ensemble performance using logistic regression was consistent with that of previous research

(Tetreault et al., 2012; Brooke and Hirst, 2012b) which concluded that there is a preference for binary

feature values instead of frequency-based ones. Including both types in our ensemble did not improve

results.
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Given the better performance of SVM-based shared task systems we further investigated this by

testing the performance of our individual features with a linear SVM classifier trained on normalized

frequency feature values. The results for this comparison, listed in §3.2.2, showed substantially

improved results over the logistic regression models. If output probability estimates for each class

label are required for ensemble combination, these can be obtained by applying Platt scaling (Platt,

2000). Accordingly, we conducted the rest of the experiments in this thesis using such linear SVM

models.

3.2 Measuring Feature Diversity

Results from our previous experiments show that while some feature types yield similar accuracies

independently, such as those in Table 3.3, combining them can improve performance. This indicates

that the information they capture is diverse, but how diverse are they and how can we measure the

level of independence between the feature types?

This is a question that has not been tackled in NLI, despite researchers examining dozens of

feature types to date. Research examining the combination of multiple features, e.g. Tetreault et al.

(2012), has only look at the accuracy of individual features. In this experiment we examine one

approach to measuring the degree of diversity between features.

An ablation study is a common approach in machine learning that aims to measure the contri-

bution of each feature in a multi-component system. This ablative analysis is usually carried out

by measuring the performance of the entire system with all components (i.e. features) and then

progressively removing the components one at a time to see how the performance degrades.14

While useful for estimating the potential contribution of a component, this type of analysis does

not directly inform us about the pairwise relation between any two given components. In their study

of classifying discourse cohesion relations, Wellner et al. (2009) performed an ablation analysis of

their feature classes and note:

From the ablation results [...] it is clear that the utility of most of the individual features

classes is lessened when all the other feature classes are taken into account. This indicates

that multiple feature classes are responsible for providing evidence [about] given discourse

relations. Removing a single feature class degrades performance, but only slightly, as the

others can compensate. (Wellner et al. (2009, p. 122))

This highlights the need to quantify the overlap between any two given components in a system.

Our approach to estimating the amount of diversity between two feature types is based on measuring

the level of agreement between the two for predicting labels on the same set of documents. Here, we

aim to examine feature differences by holding the classifier parameters and data constant.

Previous research has suggested that Yule’s Q coefficient statistic (Yule, 1912; Warrens, 2008) is

a useful measure of pairwise dependence between two classifiers (Kuncheva et al., 2003). This notion

of dependence relates to complementarity and orthogonality, and is an important factor in combining

classifiers (Lam, 2000).

Yule’s Q statistic is a correlation coefficient for binary measurements and can be applied to

classifier outputs for each data point where the output values represent correct (1) and incorrect (0)

14Other variations exist, e.g. Richardson et al. (2006) and Wellner et al. (2009).
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predictions made by that learner. Each classifier Ci produces a result vector yi = [yi,1, · · · , yi,N ] for a

set of N documents where yi,j = 1 if Ci correctly classifies the jth document, otherwise it is 0. Given

these output vectors from two classifiers Ci and Ck, a 2×2 contingency table can be derived:

Ck Correct Ck Wrong

Ci Correct N11 N10

Ci Wrong N01 N00

Here N11 is the frequency of items that both classifiers predicted correctly, N00 where they were

both wrong, and so on. The Q coefficient for the two classifiers can then be calculated as:

Qi,k =
N11N00 −N01N10

N11N00 +N01N10

This distribution-free association measure15 is based on taking the products of the diagonal cell

frequencies and calculating the ratio of their difference and sum.16 Q ranges between −1 and +1,

where −1 signifies negative association, 0 indicates no association (independence) and +1 means

perfect positive correlation (dependence).

3.2.1 Methodology and Data

In §3.1 we concluded that linear SVM classifiers with frequency-based features produced the best

results and discussed this in §3.1.5.4. Accordingly, that is the learner we use in this section (and the

rest of the thesis). All of our classifiers here are always of the same type, a linear SVM classifier,

but they are trained with different features on the very same dataset. This allows us to measure the

dependency between feature types themselves.

We use the Toefl11 data for this study. We use classification accuracy as our evaluation metric,

obtained by training on the Toefl11-Train and Toefl11-Dev sets and testing on the Toefl11-

Test set. We take this approach, instead of cross-validation, because shared task results from our

own work earlier in this chapter, and other shared task participants, has demonstrated that the

performance of both approaches is very similar.

We employ the same set of syntactic and lexical features that we detailed in §3.1.3.2. These

include: Adaptor Grammars (AG), character n-grams,17 Function word unigrams and bigrams, Word

and Lemma n-grams, CFG Production Rules, Penn Treebank (PTB) part-of-speech n-grams, RASP

part-of-speech n-grams, Stanford Dependencies with POS transformations, and Tree Substitution

Grammar (TSG) fragments.

3.2.2 Results

We begin by assessing the classification accuracy for each of our individual features, as shown in

Figure 3.7. We observe that some feature pairs, such as Adaptor Grammars and Character trigrams

and Lemma unigrams and Stanford Dependencies, achieve very similar accuracy.

15We also note that this is equivalent to the 2×2 version of Goodman and Kruskal’s gamma measure for ordinal
variables.

16Division by zero is possible here, see Bakeman and Quera (2011, p. 115) for more details.
17We restrict our investigation here to 1–3-grams, as in §3.1. Recent work has also shown improvements from longer

sequences for certain feature types (Jarvis et al., 2013; Ionescu et al., 2014).
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Figure 3.7: NLI accuracy per feature type on the Toefl11 test set.
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Figure 3.8: The Q-coefficient matrices of our feature set. The matrices are displayed as heat maps.

The matrix of the Q-coefficients for all features are shown graphically in Figure 3.8. This matrix is

symmetric by definition of Q. The most discernible feature is the red cluster (representing the lowest

Q-coefficient values) in the bottom left of the matrix. This region covers the correlations between

syntactic and lexical features, showing that they differ the most.

Another interesting aspect is the strong correlations between the lexical features, shown by the

clustering of high values in the bottom right corner. It also shows that character n-grams capture

similar information to words. Even character unigrams – the lowest performing lexical feature –

show much stronger dependence with word unigrams than other syntactic features. Additionally,

the high values in the bottom middle section of the matrix show that Stanford Dependencies and

TSG fragments largely capture the same information as Word and Lemma bigrams. These issues are

explored further in §3.2.3.

In contrast to the lexical features, the syntactic ones show much lower inter-correlation levels,

evidenced by lower values in the top left corner and absence of a visible cluster. This seems to

indicate that there is greater diversity among these features.

Such analyses can help us better understand the linguistic properties of features and guide in-

terpretation of the results. This knowledge can also be useful in creating classifier ensembles. One

goal in creating such committee-based classifiers is the identification of the most diverse independent

learners and this method can be applied to that end. To assess this, we also measure the classification

accuracy for all 171 possible feature pair combinations fi and fj in our feature set.18 Each pair is

combined in a mean probability classifier ensemble, as we described in §3.1.2.2, and run against the

18We have 19 features and therefore 19×18
2

= 171 possible combinations.
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Figure 3.9: Scatterplot of the Q-coefficient vs relative increase in accuracy for all 171 feature pairs.

Toefl11-Test set. For each pair we also calculate the relative increase over only using the more

accurate feature of the two; the relative increase is defined as:

Accuracyfi+fj −max(Accuracyfi , Accuracyfj )

This measures the net effect of combining the two: positive for improvements and negative for

degradation. An alternative metric here for this could be the “Oracle” which we will introduce in

Chapter 4.

The increase for each pair is compared against the Q-coefficient, and Pearson’s correlation for

the two variables shows a medium-sized, statistically significant negative correlation (r = −.303,

p = .000). A scatterplot is shown in Figure 3.9, where we observe that almost all feature pairs with

Q < 0.5 yielded a net increase while many pairs with Q > 0.6 resulted in performance degradation.

The measure is particularly useful when comparing features with similar individual accuracy to

identify sets with the highest diversity. This is because diversity itself cannot be the sole criteria for

feature selection; a weak feature such as character unigrams will be very diverse with respect to a

strong one like POS n-grams but this does not ipso facto make it a good feature and we must also

consider accuracy.

3.2.3 Analyzing Words and Dependencies

Grammatical dependencies have been found to be a very useful NLI feature and thought to capture

a “more abstract representation of syntactic structures” (Tetreault et al., 2012; Bykh and Meurers,

2014). Accordingly, we were initially surprised to find the high correlation between dependencies and

word bigrams (Q = 0.93). However, this relation may not be unexpected after all.

One source of supporting evidence comes from examining dependency distances. Using English

data,19 Liu (2008) reports a Mean Dependency Distance (MDD) of 2.54 with 51% of the dependencies

19120k sentences averaging 21 tokens each.



78 CHAPTER 3. NATIVE LANGUAGE IDENTIFICATION

D
e
p
e
n
d
e
n
ci

e
s

W
o
rd

 U
n
ig

ra
m

s

W
o
rd

 B
ig

ra
m

s

1
 S

ki
p
 B

ig
ra

m
s

2
 S

ki
p
 B

ig
ra

m
s

3
 S

ki
p
 B

ig
ra

m
s

Dependencies

Word Unigrams

Word Bigrams

1 Skip Bigrams

2 Skip Bigrams

3 Skip Bigrams

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.10: The Q-coefficient matrix for dependencies, word n-grams and skip-grams.

being adjacent and thus also captured by word bigrams. This also suggests that we can capture more

of this information by considering non-adjacent tokens. We test this hypothesis by using k-skip word

bigrams (Guthrie et al., 2006) as classification features, with k = 1–3.

The 1-skip bigrams yield an accuracy of 79.3% on the Toefl11 test set, higher than either word

bigrams or Stanford Dependencies. The 2- and 3-skip grams achieve 78.4% and 77.9%. The matrix

of Q-coefficients for these features is shown in Figure 3.10, showing that the 1-skip word bigrams

feature is the closest to the dependencies feature with a Q-coefficient of 0.96. It is also the closest to

standard word unigrams and bigrams with Q-coefficients of 0.91 and 0.97, respectively.

These results suggest that skip-grams are a very useful feature for NLI.20 They could also be used

as a substitute for dependencies in scenarios where running a full parser may not be feasible, e.g.

real-time data processing. Moreover, if NLI were to be applied to other languages, this feature can be

a good approximation of the dependencies feature for low-resourced languages without an accurate

parser. However, results may vary by language as Liu (2008) shows MDD values vary by language

and possibly genre. We also note that the skip-gram feature space grows prodigiously as k increases,

although this is to be expected of all n-grams.

Another related issue is whether sub-lexical character n-grams are independent of word features.

Previously, Tsur and Rappoport (2007) hypothesized that these n-grams are discriminative due to

writer choices “strongly influenced by the phonology of their native language”. Nicolai and Kondrak

(2014) also investigate the source of L1 differences in the relative frequencies of character bigrams.

20 Hladka et al. (2013) and Henderson et al. (2013) previously used a skip-gram variant that did not include 0 skips
as per Guthrie et al. (2006) and did not improve accuracy.
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Figure 3.11: F1-scores for classifying L1 using English words with Old English or Latin origins.

They propose an algorithm to identify the most discriminative words and subsequently, the character

bigrams corresponding to these words. They found that removing a small set of highly discriminative

words21 greatly degrades the accuracy of a bigram-based classifier. Based on this they conclude that

bigrams capture differences in word usage and lexical transfer rather than L1 phonology. Evidence

from our analysis also points to a similar pattern with the predictions of character bigrams and

trigrams being strongly correlated with word and lemma unigrams.

Such lexical transfer effects have been previously noted by others (Odlin, 1989). The effects are

mediated not only by cognates and word form similarities, but also semantics and meanings. We thus

also examine the link between L1 and word usage.

Using the Etymological WordNet22 database (de Melo, 2014), we extracted two lists of English

words with either Old English (508 words) or Latin origins (1,310 words). These words were used

as features to train two classifiers on the Toefl11-Train and Toefl11-Dev data. The F1-scores

for classification on Toefl11-Test set are shown in Figure 3.11. The Old English words, with their

West Germanic roots, yield the best results for classifying German data. Conversely, the Latinate

features achieve the best results for Italian followed by French, both languages descended from Latin.

This experiment, albeit limited in scope, provides some empirical evidence suggesting that small sets

of words can capture lexical transfer effects potentially mediated by L1 similarity and cognates. This

relates to the lexical transfer effects that we discussed earlier in §2.4.3.

3.2.4 Conclusion

In this experiment we examined a method for measuring feature diversity in NLI and highlighted

several interesting trends. We demonstrated how this analysis can be used to better understand the

information captured by features and used it to examine the relationship between lexical features.

21Examples they provide include opinion, conclude, however, France, Turkey, Italian and Germany.
22http://www1.icsi.berkeley.edu/%7edemelo/etymwn/

http://www1.icsi.berkeley.edu/%7edemelo/etymwn/
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The analysis suggested the idea, confirmed experimentally, that a variant of 1-skip bigrams can in

fact be a useful feature.

3.3 Chapter Summary

In this chapter we:

• built an accurate NLI system that will serve as a key component of later chapters

• established that more linguistically fine-grained POS tagsets yield better performance

• proposed the use of function word n-gram features for NLI

• demonstrated the utility of ensemble methods for NLI

• showed that certain lexical features, e.g. toponyms, can exert undue influence on results

• concluded that SVM classifiers trained on frequency-based features produce the best results

• proposed a method for measuring NLI feature diversity based on Yule’s Q-coefficient statistic

• highlighted several interesting trends and correlations between lexical and syntactic features

Having established a framework for NLI, in the next chapter we:

x examine aspects of NLI that are relevant to practical applications

x consider estimating the upper-bound for NLI accuracy using oracle measures

x investigate human performance for NLI using a group of experts

x assess how NLI systems perform on out-of-domain data



Chapter 4

Human Baselines, Oracles and

Cross-Corpus NLI
This chapter focuses on examining aspects of NLI that are relevant to practical applications. In

the first section we consider the question of determining the upper-bounds for NLI accuracy. We

propose using two oracle measures to estimate this, applying them to our features and a new dataset

composed of all submissions to the 2013 shared task, revealing interesting error patterns. We then

consider the question of human performance for NLI, presenting the first such experiment using a

group of experts. In the second section we consider how well NLI systems might perform on other

data, including those from other domains and genres. We introduce and use a new dataset to conduct

large-scale cross-corpus evaluation to assess this using standard features and an oracle.
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4.1 Oracles and Human Performance

All of the NLI research conducted to date has relied on comparisons against simple baselines — namely

the random and majority baseline measures — to evaluate if the methods surpass these baselines and

can be therefore be considered “successful”. An interesting question about NLI research concerns

an upper-bound on the accuracy achievable for a dataset. While baselines help determine the lower

bounds for performance, no attempts have been made to estimate an upper-bound. More specifically

for this thesis, given a dataset, a selection of features and classifiers in an ensemble, what is the

maximal performance that could be achieved by an NLI system that always picks the best candidate

label? This question, not previously addressed in the context of NLI to date, is the primary focus

of this section. Such a measure is an interesting and useful upper-limit baseline for researchers

to consider when evaluating their work, since obtaining 100% classification accuracy may not be a

reasonable or even feasible goal. In this study we investigate this issue with the aim of deriving such

an upper-limit for NLI accuracy. Additionally, we use this method to to analyze the submissions

from all teams in the 2013 NLI shared task.

A second goal of this section is to measure human performance for NLI, something not attempted

to date. To this end we design and run a crowd-sourced experiment where expert human evaluators

predict the L1 of texts from the NLI shared task and their performance is compared against an

equivalent NLI system. This novel experiment provides insight into how experts would perform on

this task.

4.1.1 Oracle Classifiers

One possible approach to estimating an upper-bound for classification accuracy, and one that we

employ here, is the use of an “Oracle” classifier. This method has previously been used to analyze

the limits of majority vote classifier combination (Kuncheva et al., 2001). An oracle is a type of

multiple classifier fusion method that can be used to combine the results of an ensemble of classifiers

which are all used to classify a dataset.

The oracle will assign the correct class label for an instance if at least one of the constituent

classifiers in the system produces the correct label for that data point. Some example oracle results

for an ensemble of three classifiers are shown in Table 4.1. The probability of correct classification of

a data point by the oracle is:

POracle = 1− P (All Classifiers Incorrect)

Oracles are usually used in comparative experiments and to gauge the performance and diversity

of the classifiers chosen for an ensemble (Kuncheva, 2002; Kuncheva et al., 2003). They can help

us quantify the potential upper limit of an ensemble’s performance on the given data and how this

performance varies with different ensemble configurations and combinations.

One scenario is the use of an oracle to evaluate the utility of a set of feature types. Here each

classifier in the ensemble is trained on a single feature type. This is the focus of our first experiment.

Another scenario involves the combination of different learning algorithms trained on similar

features, to form an ensemble in order to evaluate the potential benefits and limits of combining

different classification approaches. This is the focus of our second experiment, using all of the entries

from the 2013 shared task as independent systems.
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Classifier Output

Instance True Label C1 C2 C3 Oracle

18354.txt ARA TUR ARA ARA Correct

15398.txt CHI JPN JPN KOR Incorrect

22754.txt HIN GER TEL HIN Correct

10459.txt SPA SPA SPA SPA Correct

11567.txt ITA FRE GER SPA Incorrect

Table 4.1: Example oracle results for an ensemble of three classifiers.

4.1.2 Ensemble Combination Methods

While the oracle chooses the correct class label if at least one constituent classifier has selected it, it is

possible to generalize this idea by relating it to the combination methods of §3.1.2. The combination

methods we examine are as follows.

Oracle The correct label is selected if predicted by any ensemble member, as described in §4.1.1.

Plurality Voting This is the standard combination strategy that selects the label with the highest

number of votes,1 regardless of the percentage of votes it received (Polikar, 2006), that we described

in §3.1.2.1.

Accuracy@N To account for the possibility that a classifier may predict the correct label essentially

by chance (with a probability determined by the random baseline) and thus exaggerate the oracle

score, we propose an Accuracy@N combiner. This method is inspired by the “Precision at k” metric

from Information Retrieval (Manning et al., 2008) which measures precision at fixed low levels of

results (e.g. the top 10 results). Here, it is an extension of the Plurality vote combiner where instead

of selecting the label with the highest votes, the labels are ranked by their vote counts and an instance

is correctly classified if the true label is in the top N ranked candidates.2 Another way to view it is

as a more restricted version of the Oracle combiner that is limited to the top N ranked candidates

in order to minimize the influence of a single classifier having chosen the correct label by chance. In

this study we experiment with N = 2 and 3. We also note that setting N = 1 is equivalent to the

Plurality voting method.

Mean Probability All classifiers provide probability estimates for each possible class. The esti-

mates for each class are collected and the one with the highest mean wins (Polikar, 2006, §4.2). We

previously described this method in §3.1.2.2.

Simple Combination Combines all features into a single feature space and uses a single classifier.

4.1.3 Feature Set Evaluation

Our first experiment attempts to derive the potential accuracy upper-limit of our feature set. Here

we follow our previous setup described in §3.2.1, meaning that we train a single SVM classifier for

1This differs with a majority vote combiner where a label must obtain over 50% of the votes.
2In case of ties we choose randomly from the labels with the same number of votes.
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Accuracy (%)

10-fold CV Test Set

Random Baseline 9.1 9.1

Shared Task Best 84.3 83.6

Oracle 95.6 95.4

Accuracy@3 92.5 92.2

Accuracy@2 88.6 88.0

Plurality Vote 78.2 77.6

Simple Combination 78.2 77.5

Mean Probability 79.4 78.7

Table 4.2: Oracle results using our feature set.

each feature type to create our classifier ensemble. We do not experiment with combining different

machine learners as we did in Chapter 3, instead we focus on gauging the potential of the feature set.

We employ the standard set feature types we used in Chapter 3: character/word n-grams, Part-of-

Speech (POS) n-grams, function words, Context-free grammar production rules, Tree Substitution

Grammar fragments and Stanford Dependencies. Detailed descriptions of these features can be found

in §3.1.3.2. For features interactions and diversity, see §3.2.

We report classification accuracy under 10-fold cross-validation using the combined Toefl11-

Train and Toefl11-Dev sets. We also report accuracy on the Toefl11-Test set from the 2013

shared task, after training on the combined Toefl11-Train and Toefl11-Dev sets. We compare

against a random baseline and the top performer from the shared task (Jarvis et al., 2013).

The results for these experiments are shown in Table 4.2. The cross-validation and test results

are very similar, with the oracle accuracy at 95%, suggesting that for each document there is in most

cases at least one feature type that correctly predicts it. This drops to 88% with the Accuracy@2

combiner, but this is still substantially higher than the plurality vote and the best results from the

shared task. This suggests that there is a noticeable tail of feature types dragging the plurality vote

down. The results also seem to suggest that the correct label is often in the top two predictions; this

is something we investigate further in the next experiment.

4.1.4 2013 Shared Task Evaluation

In the second experiment we apply our method to the submissions in the 2013 NLI Shared Task,

aiming to quantify the potential upper limit for combining a range of different systems. We do not

train any models here; each submission to shared task consists of predicted labels for each document

in Toefl11-Dev and is treated as an independent classifier.

The shared task data comes from the closed-training sub-task.3 Each team was allowed to submit

up to 5 different runs for each task, allowing them to experiment with different feature and parameter

variations of their system. Each team’s systems produce predictions using their own set of features

and learning algorithms, with several of these systems using ensembles themselves.

3The shared task consisted of three sub-tasks. For each task, the test set was Toefl11-Test; only the type of
training data varied by task where the other two sub-tasks allowed the use of external training data. Refer to §2.3.3.3
for more details.
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Accuracy (%)

Best Run All Runs

Random Baseline 9.1 9.1

Shared Task Best 83.6 83.6

Oracle 97.9 99.5

Accuracy@3 95.5 95.6

Accuracy@2 92.2 92.5

Plurality Vote 84.5 84.4

Table 4.3: Oracle results on the NLI 2013 shared task systems. The Best Run ensemble includes each
team’s best system, for a total of 29 systems. The All Runs ensemble consists of all 116 submission
from all teams.

In total, 116 runs were submitted by 29 teams, with the winning entry achieving the highest accu-

racy of 83.6% on the Toefl11-Test set. The data for this experiment was prepared by aggregating

all submitted runs. Additionally, we have also made this data, along with the entries for the other

open training sub-tasks, available for use by other researchers. The predictions can be downloaded4

in CSV format. This data, known as the Nli2013 Submissions dataset, can assist with research in

NLI as well as more fundamental machine learning and ensemble research.

The ensembles here are constructed by combining the submitted entries, each of which is treated as

a single system. We experiment under two conditions: using only each team’s best run (29 systems

in total) and using all 116 runs together. Results are compared against the random baseline and

winning entry in the competition.

Table 4.3 shows the results for this experiment. The oracle results here are higher than the previous

experiment, which is not unexpected given the much larger number of predictions per document.

Results for the other combiners are also higher here.

The Accuracy@2 results are 92% in both conditions, much higher than the winning entry’s 83.6%.

Results from the Accuracy@2 combiner, both here and in the previous experiment, show that a great

majority of the texts are close to being correctly classified: this value is significantly higher than

the plurality combiner5 and not much lower than the oracle itself. This shows that the correct label

receives a significant portion of the votes, and when not the winning label, it is often the runner-up.6

One implication of this concerns practical applications of NLI, e.g. in a manual analysis, where

it may be worthwhile for researchers to also consider the runner-up label in their evaluation. When

using NLI in critical applications in an operational (i.e. real-world) setting, it may be more prudent

to employ a semi-automatic, computer-aided classification system (Larkey and Croft, 1996) instead

of a fully-automatic classifier.

This knowledge could also be used to increase NLI accuracy by aiming to develop more sophis-

ticated classifiers that can take into account the top N labels in their decision making, similar to

discriminative reranking methods applied in statistical parsing (Charniak and Johnson, 2005).

We also look more closely at the relationship between the top two label values. Using the Accu-

racy@2 combiner, we isolate the cases where the actual label was the runner up and extract the most

frequent pairs of such top 2 labels, presented in Table 4.4. We see that a quarter of these errors are

4http://web.science.mq.edu.au/~smalmasi/data/NLI2013-SUBMISSIONS.zip
5Which is itself equivalent to an Accuracy@1 combiner.
6In approx. 8% of the cases here, to be more precise.

http://web.science.mq.edu.au/~smalmasi/data/NLI2013-SUBMISSIONS.zip
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confusion between Hindi and Telugu. Chinese, Japanese and Korean are also often confused by the

shared task entries.

We also examine the confusion matrices for the plurality, Accuracy@2 and oracle combiners,7

shown in Figure 4.1. They demonstrate that Hindi–Telugu is the most commonly confused pair,

as we discussed in §3.1.5.2, and confirm the directionality of the confusion: more Telugu texts are

misclassified as Hindi than vice versa. The oracle confusion matrix highlights the few cases where

none of the systems could correctly predict the label.

4.1.5 Human NLI Performance

While most NLI work has focused on improving system performance, to our knowledge there has not

been any corresponding study which looks at human performance for this task. To give our preceding

results more context, as well as the results of the field, we ran an exploratory study to determine how

accurate humans are for this task.

4.1.5.1 Experiment Design

Our initial idea was to use the Amazon Mechanical Turk to collect crowdsourced judgments. However,

unlike simpler NLP tasks, e.g. sentiment analysis and word sense disambiguation, which can be

effectively annotated by untrained Turkers (Snow et al., 2008), NLI requires raters with knowledge

and exposure to writers with different L1s. These constitute a very specific skill set that will be hard

to obtain using untrained Turkers.

Optimally, one would use a set of ESL teachers and researchers who have experience in working

with ESL writers from all of the 11 L1s, though such people are rarity. As a reasonable compromise, we

chose 10 professors and researchers who have varied linguistic backgrounds, speak multiple languages,

and have had exposure with the particular L1s, either as a speaker or through working with ESL

students. We also constrained the task from 11 L1s to 5 (Arabic, Chinese, German, Hindi, and

Spanish) as we believed that 11 L1s would be too much of an overload on the judges. The 5 L1s

selected all belong to separate language families.

The experiment consisted of rating 30 essays from Toefl11-Test. These essays were split into

two conditions: 15 of them we selected from the subset which most Shared Task systems could predict

correctly (easy), and the remaining 15 were essays which the most Shared Task systems had difficulty

predicting (hard). The L1s were distributed evenly over the essays and both easy and hard conditions

(3 “easy” and 3 “hard” essays per L1). All raters completed the task within an hour.

7Where the Accuracy@2 and oracle combiners could not predict the correct label the plurality vote was used instead.

Confused Pair Percent Cumulative Percent

Hin–Tel 15.9 15.9

Tel–Hin 10.2 26.1

Chi–Kor 6.8 33.0

Jpn–Kor 6.8 39.8

Kor–Tur 4.5 44.3

Table 4.4: The most commonly predicted top 2 class label pairs where the runner-up is the true label.
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Figure 4.1: Confusion matrices for the plurality (top), Accuracy@2 (middle) and oracle (bottom)
combiners.
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Figure 4.2: Prediction accuracy for each of our 10 participants under both easy and hard conditions.

Accuracy (%)

Easy Hard All

Random Baseline 20.0 20.0 20.0

NLI Plurality Vote 100.0 33.3 66.7

NLI Mean Probability 100.0 46.7 73.3

Top Human 66.7 40.0 53.3

Human Plurality Vote 73.3 40.0 56.7

Table 4.5: Comparing human participant performance against an NLI system on 30 selected texts.

4.1.5.2 Results

Figure 4.2 shows the accuracy for each of the 10 raters in this pilot study. The top rater accurately

identified the L1 for 16 out of 30 texts (53.3%), with the lowest raters at 30.0% overall and an average

of 37.3%. All raters did at least as well on the “easy” cases than on the “hard”, although usually

better. A more detailed version of the results with individual accuracy for all 10 raters across all

texts is shown in Figure 4.3.

A paired-samples t-test was conducted to compare human accuracy in the easy and hard condi-

tions. A significant difference was found for easy (M=45.33, SD=11.67) and hard (M=30, SD=10.06),

t(9)=−3.851, p = .004.

Next, we compared human accuracy with our NLI system, which we re-trained using only the five

selected L1s. Results are shown in Table 4.5. All ensembles outperform human raters and a plurality

vote composed of the human raters. Interestingly, the human plurality vote was only 3% higher than

the top human score, suggesting that the raters tended to get the same essays correct.

We also note that some L1s received more correct predictions than others,8 but the difference

is not statistically significant.9 A confusion matrix generated from the plurality vote of the human

experts, shown in Figure 4.4, also reflects this pattern. It shows that Chinese is the most correctly

predicted class (followed by Spanish) while German is the most confused. This can be compared

8CHI: 50%, SPA: 46.7%, HIN: 33.3%, GER: 31.7%, ARA: 26.7%
9Our sample size is too small, but this is still suggestive.
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Figure 4.3: Individual results for the 10 raters across all texts. Correct predictions are highlighted in
green. The last column indicates how many shared task entries correctly predicted that text.
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Figure 4.4: Confusion matrix based on a plurality vote using the human expert predictions on all 30
learner essays.

against the confusion matrix of the NLI system using the mean probability ensemble, as shown in

Figure 4.5.

Some participants noted that while they had familiarity with L1 Spanish and Chinese non-native

writing, they did not have much exposure to the other L1s, possibly due to international student

cohorts.

Our belief, based on these pilot results, is that as the number of classes increases, the machine

learning systems will outpace the human raters by an increasingly wide margin. It should also be

noted that we purposefully selected disparate L1s to make easier for the human raters. As there are

several other L1s in the Toefl11 that are in the Romance family class, and others where it is less

likely for raters to have seen student essays (such as Telugu), including those will also likely affect

human performance.

4.1.6 Discussion

We presented a novel analysis for predicting the “potential” upper limit of NLI accuracy on a dataset.

This upper limit can vary depending on which components — feature types and algorithms — are

used in the system. Alongside other baselines, oracle performance can assist in interpreting the

relative performance of an NLI system.10

Using the entries submitted by the participants of the 2013 NLI shared task we conducted the

largest analysis of NLI systems to date. An analysis using our Accuracy@N oracle showed that a

significant portion of the errors being committed involve the confusion of the top two labels. Future

research that focuses on improving classification for these frequently confused class pairs can lead to

very large improvements in overall results.

10e.g. an NLI system with 70% accuracy against an Oracle baseline of 80% is relatively better compared to one with
74% accuracy against an Oracle baseline of 93%.
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Figure 4.5: Confusion matrix based on the NLI systems predictions for all 30 learner essays.

We also ran the first study of human performance for NLI, with results suggesting a committee

of 10 raters could not outperform our NLI system on a simplified version of the task. Our experience

in designing the experiment also highlighted the difficulties in finding experts suited for this task.

There are also additional issues to consider for future experiments using human judges. An

important question to raise is whether the professors and researchers used in this study are the best

judges for this task. Would experienced ESL teachers perform better? Were the experts chosen for

this study a good approximation for such ESL teachers? It could be argued that speaking a second

language and/or interacting with a small number of students who are non-native speakers is not

the same as reading thousands of learner essays over a long period and noticing characteristic errors.

From this point of view our systems received more “training” than the human experts here. However,

we would still contend that finding such experts with significant experience across a large number of

L1 is not an easy undertaking in itself.

A useful application of the oracle method is to isolate the subset of wholly misclassified texts for

further investigation and error analysis. This segregated data can then be independently studied to

better understand the aspects that make it hard to classify them correctly. This can also be used to

guide feature engineering practices in order to develop features that can distinguish these challenging

texts. In practice, this type of oracle measure can be used to guide the process of choosing the pool

of classifiers that form an ensemble.

We also note that these oracle figures would be produced by an optimal system that always makes

the correct decision using this pool of classifiers. While these oracle results could be interpreted as

potentially attainable, this may not be feasible and practical limits could be substantially lower.
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4.2 Large-Scale Cross-Corpus Evaluation

The work we have examined so far has focused mostly on a single corpus, using cross-validation and

test sets for evaluation. Alternatively, cross-corpus evaluation involves training one one corpus and

testing on a completely different corpus. This approach can help assess the fundamental issue of how

much the trained model generalizes beyond the particular characteristics of the training data.

Furthermore, deriving SLA hypotheses from a single corpus may not be entirely useful for SLA

research. Many variables like genre and topic are constant within a corpus, restricting the validity of

such cross-validation studies to those dimensions.

An alternative, potentially more helpful approach, is to identify transfer features that reliably

distinguish an L1 across multiple corpora of differing genres and domains. A cross-corpus methodology

may be a more promising avenue to finding features that generalize to diverse text sources, but requires

additional large corpora. It is also a more realistic approach,11 and one we pursue in this work.

Accordingly, the aims of the present experiment are to: (1) test a large new corpus suitable for

NLI; (2) perform within-corpus evaluation with a comparative analysis against equivalent corpora;

(3) perform cross-corpus evaluation to determine the efficiency of corpus independent features; and

(4) examine the possibility of using lexical features in a cross-corpus scenario.

4.2.1 Related Work

Cross-corpus studies have been conducted for various data-driven NLP tasks and applications, includ-

ing parsing (Gildea, 2001), WSD (Escudero et al., 2000), NER (Nothman et al., 2009) and biomedical

text mining (Airola et al., 2008). While most such experiments show a drop in performance, the effect

varies widely across tasks, making it hard to predict the expected drop for NLI. We aim to address

this question using large training and testing data.

The use of cross-corpus evaluation in NLI has been limited thus far, likely due to the paucity

of suitable data; very few NLI studies have been conducted using distinct corpora for training and

testing.

Brooke and Hirst (2011) created the Lang-8 corpus by extracting a large collection of online

journal entries from the Lang-8 website,12 an online platform designed to assist learners improve

their language skills by writing such entries. They conduct a cross-corpus experiment using 7 L1

classes with 200 texts per class per corpus. Comparing against a 14.3% random baseline, they

achieve 26.7% accuracy for training on the ICLE corpus (§2.3.1.2) and testing on the Lang-8 data

and 46.1% for the reverse setup. They use a combination of several standard features,13 including

lexical ones, with word n-grams being the most accurate. They note that performance is much lower

than cross-validation.

Bykh and Meurers (2014) explore the use of lexicalized and non-lexicalized phrase structure rules

for NLI. They build their own dataset for cross-corpus evaluation by amalgamating data from five

different corpora. This dataset consists of 5,843 texts across the same 11 classes as the Toefl11,

although their data is unbalanced.14 Despite their data not being topic balanced, they use lexical

features and report cross-corpus accuracies of 28–43% against a majority baseline of 18%.

11i.e. when applied in practical scenarios, real world data being evaluated is unlikely to be identical in nature to the
training corpora used here.

12http://lang-8.com/
13Function words, POS n-grams, Character n-grams and word n-grams.
14e.g. they have over 1000 L1 Chinese texts and only 349 L1 Turkish texts.

http://lang-8.com/
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EFCamDat Toefl11

850 texts per L1 1,100 texts per L1

Arabic Arabic

Chinese Chinese

French French

German German

Italian Italian

Japanese Japanese

Korean Korean

Spanish Spanish

Turkish Turkish

Portuguese Hindi

Russian Telugu

Table 4.6: The 11 L1 classes extracted from the EfCamDat corpus, compared to the Toefl11
corpus. The first 9 classes are common between both.

In sum, previous work has relied mostly on small and unbalanced datasets in cross-corpus evalua-

tion. In this section we aim to improve on this by using large and balanced corpora for both training

and testing.

Furthermore, although these studies have used lexical features, they have not examined (e.g. via

feature analysis) the specific words which are informative in a cross-corpus context in order to verify

that no types of bias, topic or otherwise, exist. Tetreault et al. (2012) justify their use of lexical

features by noting that their corpora “are composed of sufficiently different topics that there should

not be significant overlap”. However, as we discovered in our features analysis of the shared task data

in §3.1.5.1, other categories of non-topical words, such as the toponyms, can exert undue influence

on classification results. This is an issue which we will investigate in this experiment.

4.2.2 EFCamDat: A new corpus for NLI

The EF Cambridge Open Language Database (EfCamDat) is an English L2 corpus that was released

recently (Geertzen et al., 2013). It is composed of texts submitted to Englishtown, an online school

used by thousands of learners daily.

This corpus is notable for its size, containing some 550k texts from numerous nationalities, mak-

ing it an ideal candidate for NLI research. While the Toefl11 is made of argumentative essays,

EfCamDat has a much wider range of genres including writing emails, descriptions, letters, reviews,

instructions and more.

In this section we present an application of NLI to this new data. As some of the texts can be

short, we use the methodology of Brooke and Hirst (2011) to concatenate and create texts with at

least 300 tokens, much like the Toefl11.

From the data we choose 850 texts from each of the top 11 nationalities.15 This subset of Ef-

CamDat thus consists of 9,350 documents totalling approximately 3.2m tokens. This is an average

of 337 tokens per text, close to the 348 tokens per text in Toefl11.

15This was the largest number for which we could get documents from all 11 classes. A higher amount would have
resulted in an imbalanced dataset.
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This also provides us with the same number of classes as the Toefl11, as shown in Table 4.6,

facilitating direct performance comparisons. The table also indicates the 9 classes common to both

corpora. This subset of common classes enables us to perform large-scale cross-corpus validation

experiments that have not been possible until now.

4.2.3 Methodology

We use the same classification approach we described in §3.2.1, viz., a linear SVM is used trained for

each feature type using relative frequency values. We also combine features with a mean probability

ensemble classifier which we described in §3.1.2.2. We compare results against a random baseline as

well as an oracle.

We use the EfCamDat data, described above in §4.2.2, as well as the the Toefl11 data, which

is a combination of the Toefl11-Train and Toefl11-Dev sets here.

We use a set of well-tested and basic features, as the focus of our experiment here is cross-corpus

evaluation and not maximizing accuracy. Due to the potential topic bias issues described in §2.3.1.1,

we avoid using lexical features as EfCamDat is not topic balanced. We extract the following topic-

independent feature types:

Function words are extracted as described in §2.3.2.5. We also apply function word bigrams as

described in §3.1.3.4.

Context-free Grammar Production Rules are extracted after parsing each sentence, as de-

scribed in §2.3.2.7 and §3.1.3.2.

Part-of-Speech (POS) n-grams of size 1–3 are also extracted as features, as we described in

§2.3.2.6 and §3.1.3.2. We use the Penn Treebank tagset here.

4.2.4 Within-Corpus Evaluation

Our first experiment applies 10-fold cross-validation within the EfCamDat corpus to assess feature

efficacy. The results are shown in the first column of Table 4.7.

All features perform substantially higher than the 9% chance baseline. POS trigrams are the best

single feature (53%), suggesting there exist significant interclass syntactic differences. Combining all

the features using an ensemble yields the best accuracy of 65% against an upper-bound of 87% set

by the oracle.

We also compare these within-corpus results to those from the Toefl11. As shown in Figure 4.6,

we find that feature performance is nearly identical across corpora. We also note that the oracle

performance on the Toefl11 data using the same feature set is almost identical (86.2%), something

which we will revisit in §5.9.

Figure 4.7 shows the confusion matrix for the results obtained with the ensemble. German is the

most correctly classified L1, while the highest confusion is between Japanese–Korean, followed by

Spanish–Portuguese and French–Italian. This is not surprising given their syntactic similarity as well

as being typologically related in case of the latter two.

These trends are very similar to those we observed in the Toefl11 data, as previously shown in

the confusion matrix in Figure 3.5. Another interesting observation here is that German is the most
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Classification Feature EfCamDat

10-fold CV
Train EfCamDat

Test Toefl11
Train Toefl11
Test EfCamDat

Random Baseline 9.09 11.11 11.11

Oracle 86.84 64.92 62.43

Function Word unigrams 52.01 27.14 21.77

Function Word bigrams 47.92 29.21 22.63

Production Rules 49.12 30.73 23.91

Part-of-Speech unigrams 33.21 23.42 16.71

Part-of-Speech bigrams 50.43 31.02 23.09

Part-of-Speech trigrams 53.05 32.38 25.55

Ensemble (All features) 64.95 33.45 28.42

Word unigrams – 41.82 42.48

Table 4.7: Classification accuracy (%) for our within- and cross-corpus experiments. The three result
columns are: (1) cross-validation within the EfCamDat, (2) training on the EfCamDat and testing
on Toefl11 and (3) training on Toefl11 and testing on EfCamDat.
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Figure 4.6: Comparing feature performance on the EfCamDat corpus against the Toefl11 corpus.
POS-1/2/3: POS uni/bi/trigrams, FW: Function Words, PR: CFG Productions
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Figure 4.7: EfCamDat 11-class confusion matrix.

correctly predicted class in both datasets. One possible explanation is that German is typologically

the closest language to the target L2 – English – across both datasets, resulting in linguistic patterns

that are possibly closer to native English writing than the other L1s represented. Pursuing this line

of inquiry could be done through additional experiments, for example, by adding a class of native

English data to the experiment.16 If our intuition is valid, then German L1 texts would have the

greatest amount of confusion with the native texts.

4.2.5 Large-Scale Cross-Corpus Evaluation

Our second experiment tests the cross-corpus efficacy of the features by training on EfCamDat and

testing on the Toefl11,17 and vice versa. As the corpus texts are from different genres, this approach

enables us to test the cross-corpus and cross-genre generalizability of our features.

Having established the oracle accuracy for cross-validation, we will also compare this against the

cross-corpus oracle performance.

Results are shown in the second and third columns of Table 4.7. While lower than the cross-

validation results which were on 11 classes vs 9 here, the results are still far greater than the baseline.

The accuracy for training on EfCamDat and testing on Toefl11 is higher (33.45%) than the other

way around (28.42%), even though Toefl11 is the slightly larger corpus. This is possibly because

EfCamDat has numerous genres while Toefl11 does not. The cross-corpus oracle is also over 20%

lower than the cross-validation results, despite an increase in the random baseline, showing that some

features are not portable across corpora. Training on Toefl11 also yields a lower oracle.

16This native data would need to be controlled for topic and genre in order to perform a comparable analysis.
17The 9 common classes discussed in §4.2.2 are used.
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Arabic German Japanese

Saudi Germany Japan

Arabia Berlin Tokyo

Arabic Hamburg Osaka

Mohammed Frankfurt Nagoya

Ali Munich Yen

Table 4.8: Selected items from the top 15 most discriminative words for Arabic/German/Japanese.

Although a performance drop was expected due to the big genre differences, results suggest the

presence of some corpus-independent features that capture cross-linguistic influence. However, they

also suggest that a large portion of the features helpful for NLI are genre-dependent.

4.2.6 Lexical Feature Analysis

Previously, word n-grams have been applied in small-scale cross-corpus studies and found to be the

best feature, as we discussed earlier in §4.2.1. Word n-grams have been previously used in NLI and

are believed to capture lexical transfer effects which have been previously noted by researchers and

linguists (Odlin, 1989). The effects are mediated not only by cognates and word form similarities,

but also semantics and meanings. Other NLI studies have also provided empirical evidence for this

hypothesis and agree with our results in §3.2.3.

However, issues stemming from topic bias18 — which we described in §2.3.1.1 — have also limited

their use in NLI. Although their use has been justified in cross-corpus scenarios due to the lower risk

of topic overlap across corpora, we earlier noted that issues with using lexical features extend beyond

topics to words such as toponyms. In an attempt to investigate this, we applied word unigrams to

our cross-corpus experiment. We achieved an accuracy of 41.8% for training on the EfCamDat and

testing on Toefl11 and 42.5% for the reverse setting, as shown in the last row of Table 4.7. These

are the best results in this setup.

To check for any topic-bias effects, we inspected the most discriminative features for each L1 class.

This was done by ranking the features according to the weights assigned by the SVM model. In this

manner, SVMs have been successfully applied in data mining and knowledge discovery tasks such

as identifying discriminant cancer genes (Guyon et al., 2002). The specifics of this feature ranking

method are specified in §6.3.

This analysis revealed that the top features were mostly cultural and geographic references related

to the author’s country. Table 4.8 contains words selected from the top 15 most discriminative features

found in the cross-corpus experiment for three L1s. We observe that most of these are toponyms or

culture-specific terms such as names and currencies. These results reveal another potential issue with

using lexical features. Although this isn’t topic-bias, the features do not represent genuine linguistic

differences or lexical transfer effects between L1 groups. This type of analysis was not undertaken by

the previous word we outlined in §4.2.1. In practical scenarios such as described in §1.1, this could

also make NLI systems vulnerable to content-based manipulation. The exclusion of proper nouns or

certain named entities from the extracted features is one potential way to combat this.

18Due to correlations between text topics and L1 classes.
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4.2.7 Discussion

In this section we presented the first application of NLI to one of the largest and newest publicly

available L2 English learner corpora. Cross-validation experiments mirrored the performance of

other corpora and demonstrated its utility for the task. We believe this will motivate future work by

equipping researchers with a large-scale corpus that is highly suitable for NLI.

Next, results from the largest cross-corpus NLI evaluation to date were presented, providing

evidence for the presence of transfer features that generalize across learners, corpora, topics and

genres. However, the fact that the cross-corpus accuracy is lower than within-corpus cross-validation

highlights that a large portion of the features are highly corpus-specific. This suggests that NLI

models are not entirely portable across corpora.

This has implications for applications of NLI in the real world and warrants further analysis. It is a

critical issue for NLI to resolve whether (and if so, why) the features are corpus specific – and to what

extent these are corpus selection effects or the consequences of our approach to testing writing skills

using open-ended prompts that result in idiosyncratic content (such as mentioning stories discussing

home or cultural experiences).

Practical applications of NLI to forensic linguistics or SLA must be robust to input from numer-

ous sources and their associated variations, and this finding highlights the need for a cross-corpus

approach.

We also employed the oracle classifier in a cross-corpus setting and showed that this trend was

also reflected by its substantially lower accuracy. Based on this we believe that the oracle can be a

very useful method for evaluating cross-corpus experiments.

Finally, we conducted a cross-corpus lexical feature analysis and demonstrated that the previous

arguments for using lexical features in such experiments due to absence of topic overlap may not be

entirely valid.

A shortcoming here is that we did not balance texts by proficiency to match the Toefl11. We

expect that a more even sampling of proficiency or using proficiency-segregated models will yield

higher accuracy and features more representative of students at each proficiency level.
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4.3 Chapter Summary

In this chapter we:

• proposed two oracles to estimate upper bounds for NLI accuracy

• released a new dataset composed of all the submissions to the 2013 NLI Shared Task

• used the oracles, this data and our feature to analyze NLI performance

• established that a substantial portion of errors involve the confusion of the top two labels

• conducted the first study of human performance for the task of NLI using 10 experts

• showed that experts could not outperform an NLI system on a simplified version of the task

• tested a large new corpus for NLI, showing that performance is similar to the Toefl11 data

• performed a large-scale cross-corpus experiment using the Toefl11 and EfCamDat corpora

• analyzed the results and showed that NLI features may not generalize well across genres

• explored the lexical features that were highly informative in a cross-corpus setting

• verified that lexical features like names and toponyms can exert undue influence on NLI results

Following this, in the next chapter we:

x explore the cross-lingual applicability of NLI by extending it to other L2 languages

x evaluate if previous results, e.g. large tagsets, feature diversity & oracles, hold across languages

x examine the potential for distinguishing native and non-native writing in multiple languages
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Chapter 5

Multilingual NLI: Exploring Other

L2s Beyond English

Our work thus far has looked at NLI on L2 English data and evaluated various aspects of what

makes it effective. In this chapter we present the first large-scale extension of NLI to other L2s, using

data from six new languages. A cornerstone of this chapter is the identification of suitable data for

use here and in future work: we have collected corpora used here from a wide range of sources. We use

standard sets of features to systematically compare results across the set of L2s and a wide range of

L1s. We also evaluate if other result patterns, e.g. effects of POS tagset size, oracle performance and

feature diversity, also hold across languages. We also employ the NLI setup in an experiment aiming

to distinguish the writings of native speakers from non-natives, using data from three languages.
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5.1 Motivation

While it has attracted significant attention from researchers, almost all of the NLI research to date,

which we reviewed in §2.3.3, has focused exclusively on English L2 data. In fact, most work in SLA,

and NLP for that matter has dealt with English. This is largely due to the fact that since World

War II, the world has witnessed the ascendancy of English as its lingua franca. While English is the

native language of over 400 million people in the U.S., U.K. and the Commonwealth, there are also

over a billion people who speak English as their second or foreign language (Guo and Beckett, 2007).

This has created a global environment where learning multiple languages is not exceptional and this

has fuelled the growing research into second language acquisition.

However, while English is one of the most widely spoken languages in the world there are still a

sizeable number of jobs and activities in parts of the world where the acquisition of a language other

than English is a necessity.

One such example is Finland, where due to the predicted labour shortage, the government has

adopted policies encouraging economic and work-related migration (Ministry of Labour, 2006), with

an emphasis on the role of the education system. Aiding new immigrants to learn the Finnish

language has been a key pillar of this policy particularly, as learning the language of the host nation

has been found to be an important factor for social integration and assimilation, especially in Finland

(Nieminen, 2009). This, in turn, has motivated research in studying the acquisition of Finnish to

identify the most challenging aspects of the process.1

Another such example is that of Chinese. Interest in learning Chinese is rapidly growing,2 leading

to increased research in Teaching Chinese as a Foreign Language (TCFL) and the development of re-

lated resources such as learner corpora (Chen et al., 2010). This booming growth in Chinese language

learning (Rose and Carson, 2014; Zhao and Huang, 2010), related to the dramatic globalization of the

past few decades and a shift in the global language order (Tsung and Cruickshank, 2011), has brought

with it learners from diverse backgrounds. Consequently, a key challenge here is the development of

appropriate resources — language learning tools, assessments and pedagogical materials — driven by

language technology, applied linguistics and SLA research (Tsung and Cruickshank, 2011).

Yet another case is the teaching of Arabic as a foreign language which has experienced unparalleled

growth in the past two decades. For a long time the teaching of Arabic was not considered a priority,

but this view has now changed. Arabic is now perceived as a critical and strategically useful language

(Ryding, 2013), with enrolments rising rapidly and already at an all time high (Wahba et al., 2013).

These trends of focusing on other languages is also reflected in the NLP community, evidenced by

the continuously increasing research focus on tools and resources for languages like Arabic (Habash,

2010) and Chinese (Wong et al., 2009).

Given the increasing research focusing on other L2s, we believe that there is a need to apply

NLI to other languages, not only to gauge their applicability but also to aid in teaching research for

other emerging languages. This need is partially driven by the increasing number of learners of other

languages, as described above.

An important question that arises here is how linguistic and typological differences with English

may affect NLI performance. The six languages investigated in this chapter vary significantly with

respect not only to English, but also amongst themselves, in various linguistic subsystems; these dif-

1For example, the recent study by Siitonen (2014).
2http://www.china.usc.edu/chinese-language-study-rising-fast

http://www.china.usc.edu/chinese-language-study-rising-fast
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ferences are detailed in §5.2. In this regard the current study aims to assess whether these differences

significantly impact NLI performance for different L2s.

5.1.1 Goals and Objectives

This chapter has several aims related to the work from the previous chapters as well as other aspects

of NLI. The overarching goal here is to experiment with the extension of NLI to languages other than

English. One objective is to investigate the efficacy of the features that have been common to almost

all NLI approaches to date, including our work thus far, on several languages which are significantly

different from English. Answering this question requires the identification of the relevant non-English

learner corpora. This data is then used in our first two experiments to assess whether NLI techniques

and features work across a diverse set of languages. Having identified the required corpora, our next

objective here is to use cross-lingual evidence to investigate other core issues in NLI.

While NLI research has investigated the characteristics that distinguish L1 groups, this has not

been wholly extended to automatically discriminating native and non-native texts. This extension,

using appropriate native control data, is another aim of the work presented in this chapter.

Another issue that arises in this type of multilingual research is the use of multiple part-of-speech

(POS) tagsets developed for different languages. Differences in the granularity of the tags mean that

they are often not directly comparable. Notwithstanding comparability, in §3.1 we also concluded

that a more linguistically fine-grained POS tagset produced better results for English NLI. Both of

these issues are investigated by one of our experiments where we compare the performance of different

tagsets and also convert the tags for each language to a more general and common tagset in order to

make the results more directly comparable across the languages.

A large range of feature types have been proposed for NLI and researchers have used varying

combinations of these features. In §3.2 we proposed a method to measure the degree of dependence,

overlap and complementarity between different features, testing it on English data. Accordingly,

another aim of the present inquiry is to apply this method and quantify inter-feature diversity across

multiple datasets and assess how the results compare across languages.

The final objective of thus chapter relates to estimating the upper limits of NLI accuracy. Evidence

from current research indicates that some texts, particularly those of more proficient authors, can

be challenging to classify and thus a pragmatic measure for such an upper-bound is needed. In §4.1

we proposed the use of an oracle for doing so, applying it to our features and the shared task data

to derive realistic upper-bounds for classification accuracy. In §4.2 we applied this oracle in a cross-

corpus setting and showed it can also be useful there. In this chapter we extend this oracle use to

other languages and compare it with results on the English data.

The objective of these last two experiments is not solely focused on the machine learning aspects,

but also relates to seeing if the same patterns we observed in previous chapters are reflected here

across other languages, which is of importance to multilingual research in this area.

5.1.2 Chapter Outline

The rest of this chapter is organised as follows. We begin by presenting the corpora we use in §5.2. Our

classification methodology is described in §5.3 and our feature set is outlined in §5.4. The descriptions
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Target L2 Source
Corpus

No.
of L1
Classes

Text
Length

Text
Count

Topic
Balanced

English Toefl11 11 349 (85) 12,100 Y

Spanish ARU 6 298 (176) 206 N

Arabic ALC 7 155 (76) 329 N

Italian VALICO 14 210 (105) 2,531 N

German FALKO 8 392 (135) 221 N

Chinese JCLC 11 621 (26) 3,216 N

Finnish LAS2 9 562 (304) 204 N

Table 5.1: A summary of the basic properties of the L2 data used in our study. The text length is
the average number of tokens across the texts along with the standard deviation in parentheses.

and results from our experiments are detailed in §§5.5–5.10 and followed by a general discussion

in §5.11 that summarizes the conclusions of our experiments and add some further discussion.

5.2 Data

In this section we outline the data used in this chapter. This includes the six L2 languages: in

addition to outlining the corpora and their characteristics, we also describe how these languages

differ linguistically and typologically from English, the most commonly investigated language in NLI.

While such corpus-based studies have become an accepted standard in SLA research and relevant

NLP tasks, there remains a paucity of large-scale L2 corpora. For L2 English, the two main datasets

are the International Corpus of Learner English (ICLE) (Granger, 2003) and Toefl11 (Blanchard

et al., 2013) corpora, with the latter being the largest publicly available corpus of non-native English

writing.3

A major concern for researchers is the paucity of quality learner corpora that target languages

other than English (Nesselhauf, 2004). The aforementioned data scarcity is far more acute for L2

other than English and this fact has not gone unnoticed by the research community (Lozano and

Mendikoetxea, 2013; Abuhakema et al., 2008). Such corpora are few in number and this scarcity

potentially stems from the costly resources required for the collection and compilation of sufficient

texts for developing a large-scale learner corpus.

Additionally, there are a number of characteristics and design requirements that must be met for

a corpus to be useful for NLI research, as we discussed in §2.3.1.

One key contribution of this chapter is the identification and evaluation of corpora that meet

as many of these requirements as possible. The remainder of this section outlines the languages

and corresponding datasets which we have identified as being potentially useful for this research and

provides a summary of their key characteristics. A summary of the basic properties of the data for

each language is shown in Table 5.1. Additionally, a listing of the L1 groups and text counts for each

corpus can be found in Table 5.2, which also shows the average text length for documents in each

class in tokens, except for Chinese, which is measured in characters.

3Toefl11, previously described in §2.3.1.4, contains c. 4 million tokens in 12,100 texts.
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5.2.1 Italian

Italian, a Romance language similar to French and Spanish, is a modern descendant of Latin. It uses

the same alphabet as English, although certain letters such as j and x are only used in foreign words.

As a result of being related to Latin there are various cognates between English and Italian, including

a range of false friends.

Morphologically, it is a little more complicated in some ways than English. Nouns are inflected

for gender (male or female) and number. However, Italian differs from other Romance languages in

this regard in that the plural marker is realized as a vowel change in the gender marker and not

through the addition of an -s morpheme. Certain nouns, such as weekdays, are not capitalized.

Verbs are inflected for tense and person. In addition to the five inflected tenses, others are formed

via auxiliaries. An important aspect of the verbal system is the presence of the subjunctive mood

across the verb tenses. At the sentence level, SVO is the normal order, although post-verbal subjects

are also allowed depending on the semantic context of the subject and verb. Pronouns are frequently

dropped in Italian and this could lead to a different, possibly slightly more compact, function word

distribution.

Adjectives can be positioned both pre- and post-nominally in nominal groups, with the position

marking a functional aspect of its use as either descriptive (pre-nominal) or restrictive (post-nominal).

This could result in a wider, more sparse distribution of POS n-grams. Possessives also behave in the

same manner as adjectives in most contexts. A more detailed exposition of these linguistic properties,

amongst others, can be found in Vincent (2009).

For our Italian data we utilise the VALICO Corpus (Corino, 2008). VALICO (Varietà di Ap-

prendimento della Lingua Italiana Corpus Online, i.e. the Online Corpus of Learner Varieties of

Italian) includes approximately 1 million tokens of learner Italian writing from a wide range of L1s

along with the associated metadata.

Although over 20 native language groups are represented in the data, many do not have sufficient

data for our purposes. We have selected the top 14 native languages by the number of available

texts as the rest of the classes contain too few texts; these are shown in Table 5.2. In terms of the

number of L1 classes, this is the highest number used in our experiments. On the other hand, there

is significant imbalance in the number of texts per class.

5.2.2 German

The German language, spoken by some 100 million native speakers, is an official language of Germany,

Austria, Switzerland, Luxembourg and Liechtenstein.

English and German are similar in many aspects and both belong to the Indo-European language

family, as part of the West Germanic group within the Germanic branch (Hawkins, 2009).

In spite of this typological closeness, there are a number of differences that may cause problems for

NLI with our standard features. German has a much richer case and morphology system compared

to English and this may lead to different usage patterns of function words. Furthermore, German

also has a more variable word ordering system with more long distance dependencies, potentially

leading to a wider set of POS n-grams. It is not clear how well this feature can capture potential

L1-influenced ordering patterns.
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Italian Chinese

L1 Texts Length L1 Texts Length

Albanian 55 185 Burmese 349 618

Chinese 187 162 Filipino 415 618

Czech 84 170 Indonesian 402 619

English 310 222 Japanese∗ 180 621

French 335 214 Khmer 294 625

German 306 178 Korean∗ 330 619

Hindi 146 189 Laotian 366 630

Japanese 415 183 Mongolian 101 633

Polish 201 348 Spanish∗ 112 618

Portuguese 45 192 Thai 400 624

Romanian 63 207 Vietnamese 267 623

Russian 40 202

Serbian 124 229

Spanish 220 253

Total 2,531 Total 3,216

Finnish German

L1 Texts Length L1 Text Length

Czech 27 479 Chinese 11 330

English 10 653 Danish 38 442

German 21 615 English 52 475

Hungarian 21 686 French 17 512

Japanese 34 409 Polish 47 331

Komi 11 673 Russian 35 364

Lithuanian 28 634 Turkish 10 353

Polish 12 377 Uzbek 11 327

Russian 40 536

Total 204 Total 221

Arabic Spanish

L1 Texts Length L1 Texts Length

Chinese 76 145 English 45 326

English 35 151 French 47 410

French 44 133 German 17 325

Fulani 36 152 Greek 21 245

Malay 46 142 Italian 54 318

Urdu 64 183 Japanese 22 163

Yoruba 28 170

Total 329 Total 206

Table 5.2: A breakdown of the six languages and the L1 classes used in our study. Texts is the number
of documents in each L1 class and Length represents the average text length in tokens, except for
Chinese, which is measured in characters.
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The largest publicly available selection of German learner texts can be found in the FALKO

(fehlerannotierten Lernerkorpus) corpus4 by Siemen et al. (2006) and this is the source of the

German data used in this work.

It has several sub-corpora, including the essay sub-corpus (argumentative essays written by learn-

ers) and summary sub-corpus (text summaries written by learners). It also contains baseline corpora

with texts written by German native speakers. For the purposes of our experiments we combine the

essay and summary texts, but do not use the longitudinal sub-corpus texts. A listing of the L1 groups

and text counts of the corpus subset we use can be found in Table 5.2.

5.2.3 Spanish

As the Romance language with the greatest number of speakers, Spanish is the official language of

some 20 countries.

Much like German, many aspects of Spanish grammar are similar to English, so our feature set

may not have any issues in capturing L1-based interlanguage differences. Although Spanish syntax

is mostly SVO it also has a somewhat richer morphology and a subjunctive mood (Green, 2009),

though we do not expect these differences to pose a challenge. Pronouns are also frequently dropped

and this information is captured by POS tags rather than function words. There is also a complete

agreement system for number and gender within noun phrases, resulting in a wider distribution of

POS n-grams. Spanish also makes pervasive use of auxiliaries, with more than fifty verbs that have

auxiliary functions (Green, 2009, p. 214). This is a difference that affects distributions of both

function words and POS tags.

Our Spanish learner texts were sourced from the Anglia Ruskin University (ARU) Spanish learner

corpus. This is a multiple-L1 corpus5 comprised of Spanish texts that were produced by students

either as coursework or as part of exams. The texts are entered exactly as written by students and

have not been corrected. The learners include undergraduates at Anglia Ruskin learning Spanish and

some ERASMUS students from France, Germany and Italy. These students have varied nationalities

and backgrounds (56% do not have English as L1).

Each text includes meta-data with the following information: the task set, the conditions (exam-

/coursework), the text type (narrative, description, etc.), proficiency level (beginner, intermediate or

advanced), course-book (where known), student identity number, L1, and gender.

A total of 20 L1s are represented in the version of the data that we received in July 2013, but many

of these have too few texts to be effectively used in our experiments. Since not all the represented

L1s have sufficient amounts of data, we only make use of the top six L1 categories (English, Italian,

French, Japanese, Greek and German), as shown in Table 5.2.

5.2.4 Chinese

Chinese, an independent branch of the Sino-Tibetan family, is spoken by over a billion people. Unlike

the other languages used in this study, Chinese orthography does not use an alphabet, but rather a

logosyllabic system where each character may be an individual word or a constituent syllable.

4http://www.linguistik.hu-berlin.de/institut/professuren/korpuslinguistik/forschung/falko
5The project under which this corpus was being compiled was never completed and the corpus was never publicly

released. We were able to receive a current copy of the files from Dr. Anne Ife (anne.ife@anglia.ac.uk) at the
Department of English, Communication, Film & Media at Anglia Ruskin University

http://www.linguistik.hu-berlin.de/institut/professuren/korpuslinguistik/forschung/falko
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Chinese is also an isolating language: there is little grammatical inflectional morphology. In

contrast, other languages use inflection and auxiliaries to encode information about who did what

to whom and when. In Chinese some of this information is conveyed via word order — much like in

English — and an understanding of the context. Gender, number and tense may be indicated through

lexical choices, or omitted entirely. More details about these unique characteristics of Chinese can be

found in Li and Thompson (2009).

Levy and Manning (2003) point out three ways in which these difference may manifest themselves:

First, Chinese makes less use of function words and morphology than English: deter-

minerless nouns are more widespread, plural marking is restricted and rare, and verbs

appear in a unique form with few supporting function words. Second, whereas English

is largely left-headed and right-branching, Chinese is more mixed: most categories are

right-headed, but verbal and prepositional complements follow their heads. Significantly,

this means that attachment ambiguity among a verb’s complements, a major source of

parsing ambiguity in English, is rare in Chinese. The third major difference is subject pro-

drop — the null realization of uncontrolled pronominal subjects — which is widespread

in Chinese, but rare in English. This creates ambiguities between parses of subject-less

structures as IP or as VP, and between interpretations of preverbal NPs as NP adjuncts

or as subjects. (Levy and Manning (2003: pp. 439–440))

Given these differences, an interesting question is whether previously used features can capture

the differences in the interlanguage of Chinese learners. For example, POS-based features have relied

heavily on the ordering of tag sequences which are often differentiated by morphological inflections

— can these features differentiate L1s in the absence of the same amount of information? The same

question can be asked of function words, how does their reduced frequency affect NLI accuracy?

Growing interest has led to recent attempts at creating L2 Chinese learner corpora. One such

endeavour — an ongoing project since 2006 — is being conducted at Jinan university in China,

aiming to collect data from learners of Chinese. As part of the research presented in this chapter we

collaborated with the researchers at Jinan University to use this data to create a machine-readable

corpus of learner Chinese, suitable for research in SLA and NLP. These efforts led to the release of

the Jinan Chinese Learner Corpus (JCLC), the first large-scale corpus of L2 Chinese (Wang et al.,

2015). The JCLC is freely available to the research community and accessible on the web.6 It can be

used via a web-based interface for querying the data. Alternatively, the original texts can be used in

text format for more advanced tasks.

Currently, the corpus contains approximately 6 million Chinese characters written by students.

The majority of this data has been collected from foreign students learning Chinese at various uni-

versities in China, with some data coming from universities outside China. This data includes both

exams and assignments. The texts are manually transcribed with all errors being maintained. Error

annotations are not available at this stage. Learners from 59 countries are represented and proficiency

levels are sampled representatively across beginner, intermediate and advanced levels. However, texts

by learners from other Asian countries are disproportionately represented, with this likely being due

to their geographical proximity and links to China. A more detailed description of this data can be

found in Wang et al. (2015).

6http://hwy.jnu.edu.cn/jclc/

http://hwy.jnu.edu.cn/jclc/
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For this work we extracted 3.75 million tokens of text from the JCLC in the form of individual

sentences. Following a methodology similar to that of Brooke and Hirst (2011), we combine the

sentences from the same L1 to generate texts of 600 tokens on average, creating a set of documents

suitable for NLI.

More specifically, the dataset composed of artificial documents is generated as follows. For each

class, all the available texts are processed and the individual sentences from these texts are placed

into a single pool. Once this pool has been created, we begin the process of generating artificial

documents.

For each artificial text, its required minimum length is first determined by randomly picking a

value within a pre-specified range [M,N ]. This chosen value represents the minimum number of

tokens or characters that are required to create a new document. By specifying this range parameter,

instead of a single fixed value, we can create an artificial dataset where there is still some reasonable

amount of variance in length between texts.

Sentences from the pool are then randomly allocated to the document until its length exceeds the

required minimum value. The document is then considered complete; it is added to the new dataset

and we proceed to generate another. It should also be noted that the document length may exceed

the upper bound of the range parameter, depending on the length of the final sentence that crosses

the minimum threshold. The sampling of sentences from the pool is done without replacement.

This process continues until there are insufficient sentences to create any more documents. The

sentences remaining in the pool are then discarded. This procedure is performed for every class in

the original dataset and yields a new dataset of artificial documents.

Manufacturing documents in this manner has a number of positive impacts. Firstly, it ensures that

all documents are similar and comparable in length. If the data are being used to classify documents

from another source, instead of cross-validation, the generation parameters could be changed so that

the training set is similar to the test set in terms of length. Secondly, the random sampling used here

means that the texts created for each class are a mix of different authorship styles, proficiencies and

topics.

Although there are over 50 L1s available in the corpus, we choose the top 11 languages, shown in

Table 5.2, to use in our experiments. This is due to two considerations. First, while many L1s are

represented in the corpus, most have relatively few texts. Choosing the top 11 classes allows us to

have a large number of classes and also ensure that there is sufficient data per-class. Secondly, this

is the same number of classes used in the NLI 2013 shared task, enabling us to draw cross-language

comparisons with the shared task results.

5.2.5 Arabic

Arabic, part of the Semitic family of languages, is the official language of over 20 countries. It is

comprised of many regional dialects with the Modern Standard Arabic (MSA) variety having the role

of a common dialect across the Arabic-speaking population.

A wide range of differences from English, some of which are highlighted below, make this an

interesting test case for current NLI methods. More specifically, a rich morphology and grammar

could pose challenges for syntactic features in NLI.

Arabic orthography is very different from English with right-to-left text that uses connective

letters. Moreover, this is further complicated due to the presence of word elongation, common
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ligatures, zero-width diacritics and allographic variants. The morphology of Arabic is also quite

rich with many morphemes that can appear as prefixes, suffixes or even circumfixes. These mark

grammatical information including case, number, gender, and definiteness, amongst others. This

constitutes a sophisticated morphotactic system. Nouns are inflected for gender, number, case and

determination, which is marked using the al- prefix. Verbal morphology consists of affixes for marking

mood, person and aspect. For further information we refer the reader to the thorough overview in

Kaye (2009).

Other researchers have noted that this morphological complexity means that Arabic has a high

vocabulary growth rate, leading to issues in tasks such as language modelling (Diab, 2009; Vergyri

et al., 2004). This issue could also be problematic for our POS n-gram features. Arabic function words

have previously been used for authorship attribution (Abbasi and Chen, 2005) and our experiments

will evaluate their utility for NLI.

The need for L1-specific SLA research and teaching material is particularly salient for a complex

language such as Arabic which has several learning stages (Mansouri, 2005), such as phrasal and

inter-phrasal agreement morphology, which are hierarchical and generally acquired in a specific order

(Nielsen, 1997).

No Arabic learner corpora were available for a long time, but recently, the first version of the

Arabic Learner Corpus7 (ALC) was released by Alfaifi and Atwell (2013). The corpus includes texts

by Arabic learners studying in Saudi Arabia, mostly timed essays written in class. In total, 66

different L1 backgrounds are represented. While texts by native Arabic speakers studying to improve

their writing are also included, we do not utilize these. Both plain text and XML versions of the

learner writings are provided with the corpus. Additionally, an online version of the corpus with more

advanced search and browsing functionality has recently been made available.8

We use the more recent second version of the ALC (Alfaifi et al., 2014) as the data for our

experiments. While there are 66 different L1s in the corpus, the majority of these have fewer than 10

texts and cannot reliably be used for NLI. Instead we use a subset of the corpus consisting of the top

seven native languages by number of texts and as a result of this, this Arabic dataset is the smallest

corpus used in an NLI experiment to date. The languages and document counts in each class are

shown in Table 5.2.

5.2.6 Finnish

The final language included in this chapter is Finnish, a member of the Baltic-Finnic language group

and spoken predominantly in the Republic of Finland and Estonia.

Finnish is an agglutinative language and this poses a particular challenge. In terms of morpho-

logical complexity, it is among the world’s most extreme: its number of cases, for example, places

it in the highest category in the comparative World Atlas of Language Structures (Iggesen, 2013).

Comrie (1989) proposed two scales for characterising morphology, the index of synthesis (based on

the number of categories expressed per morpheme) and the index of fusion (based on the number

of categories expressed per morpheme). While an isolating language like Vietnamese would have an

index of synthesis score close to 1, the lowest possible score, Finnish scores particularly high on this

metric (Pirkola, 2001). Because of this morphological richness, and because it is typically associated

7http://www.arabiclearnercorpus.com/
8http://www.alcsearch.com/

http://www.arabiclearnercorpus.com/
http://www.alcsearch.com/
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with freeness of word order, Finnish potentially poses a problem for the quite strongly lexical fea-

tures currently used in NLI. For more details we refer the interested reader to Branch (2009) where

a detailed discussion of these characteristics is presented.

The Finnish texts used here were sourced from the Corpus of Advanced Learner Finnish (LAS2)

which consists of L2 Finnish writings (Ivaska, 2014). The texts are being collected as part of an

ongoing project at the University of Turku9 since 2007 with the goal of collection suitable data than

allows for quantitative and qualitative analysis of Finnish interlanguage.

The current version of the corpus contains approximately 630k tokens of text in 640 texts collected

from writers of 15 different L1 backgrounds. The included native language backgrounds are: Czech,

English, Erzya, Estonian, German, Hungarian, Icelandic, Japanese, Komi, Lithuanian, Polish, Rus-

sian, Slovak, Swedish and Udmurt. The corpus texts are available in an XML format and have been

annotated in terms of parts of speech, word lemmas, morphological forms and syntactic functions.

While there are 15 different L1s represented in the corpus, the majority of these have fewer than

10 texts and cannot reliably be used for NLI. Instead we use a subset of the corpus consisting of the

top seven native languages by number of texts. The languages and document counts in each class are

shown in Table 5.2.

5.2.7 Other Corpora

In this section we describe two other corpora that we use in this chapter, specifically for Experiment 3.

5.2.7.1 The CEDEL2 Corpus

One of the first large-scale English L1–Spanish L2 corpora, the CEDEL2 corpus (Lozano, 2009; Lozano

and Mendikoetxea, 2013) was developed as a part of a research project (at the Universidad Autónoma

de Madrid and Universidad de Granada in Spain) that aims to investigate how English-speaking

learners acquire Spanish. It contains Spanish texts written by English L1 speakers as well as Spanish

native speaker controls for comparative purposes. The non-native writings are further classified into

three groups according to their proficiency level (Beginner, Intermediate and Advanced). This data

differs from the above-described corpora as it does not contain multiple L1 groups.

5.2.7.2 The LOCNESS Corpus

The Louvain Corpus of Native English Essays (LOCNESS)10 — part of the Louvain family of corpora

— is comprised of essays written by native English speakers. The corpus contains c. 324k tokens of

text produced by British and American students. This corpus can serve as native control data for L2

English texts, given the lack of native speaker data in the Toefl11 corpus.

Similar to the Toefl11 data, the writings are argumentative essays on a broad set of topics

ranging from nuclear power to yoga. They were written by native English speakers in universities in

the US and Britain. Many of these essays are timed and collected under exam conditions, while some

others are untimed. The data was collected in the early 1990s and the available meta-data indicates

that these annotations may not be entirely reliable.

9http://www.utu.fi/fi/yksikot/hum/yksikot/suomi-sgr/tutkimus/tutkimushankkeet/las2/Sivut/home.aspx
10http://www.learnercorpusassociation.org/resources/corpora/locness-corpus/

http://www.utu.fi/fi/yksikot/hum/yksikot/suomi-sgr/tutkimus/ tutkimushankkeet/las2/Sivut/home.aspx
http://www.learnercorpusassociation.org/resources/corpora/locness-corpus/
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5.2.8 Data Preparation Challenges

The use of such varied corpora can pose several technical and design challenges which must be

addressed. Based on our experience, we list here some of issues that we encountered during these

experiments, and how they were addressed.

5.2.8.1 File formats

Corpora can exist in several file formats, the most common of which are XML, HTML, word processor

documents (Microsoft Word or RTF) and plain text. As a first step, it was necessary to convert all

the files to a common machine-readable format before the data could be processed. We chose to

convert all of the documents into a standard text format for maximum compatibility.

5.2.8.2 File Encoding

The choice of text encoding is particularly important when working with languages that use characters

beyond the ASCII range. To maximize compatibility with languages and software tools, we encoded

our text files as Unicode using the UTF-8 encoding without a Byte Order Mark (BOM). We also note

that some languages may be represented by various character encoding standards,11 so we found that

developing programs and tools that work with a unified character encoding such as Unicode was the

best way to maximize their compatibility so that they work with as many languages as possible.

5.2.8.3 Unicode Normalization

This is the process of converting Unicode strings so that all canonical-equivalent strings12 have the

exact same binary representation.13 It may also be necessary to remove certain characters that are

not part of the target language. Without the application of such safeguards, experimental results may

be compromised by the occurrence of characters and symbols that only appear in texts from specific

corpora or speakers of certain native languages. This effect has previously been noted by Tetreault

et al. (2012) where idiosyncrasies such as the presence of characters which only appear in texts written

by speakers of certain languages can compromise the usability of the corpus. This is because such

characters can become strongly associated with a class and artificially inflate classification results,

thus making it hard to assess the true performance of the features.

5.2.8.4 Segmentation and Tokenization

Corpora are made available with differing levels of linguistic processing. Some are pre-tokenized, some

may be sentence or paragraph segmented while others are simply the raw files as produced by the

authors. It is crucial to consistently maintain all files in the same format to avoid feature extraction

errors. For example, if extracting character n-grams from a set of tokenized and untokenized texts,

the extracted features will differ and this may influence the classification process. Accordingly, we

made sure all the files had comparable formats and structures. We stored the documents with one

sentence per line and each sentence was tokenized.

11e.g. GB18030, GBK and GB2312 for Chinese text
12 In Unicode, some sequences of code points may represent the same character. For example, the character Ö can

be represented by a single code point (U+00D6) or a sequence of the Latin capital letter O (U+004F) and a combining
diaeresis (U+0308). Both will appear the same to a reader and are canonically equivalent, however, they will be
processed as distinct features by an algorithm — hence the need to perform normalization.

13 More information can be found at http://www.unicode.org/faq/normalization.html

http://www.unicode.org/faq/normalization.html
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5.2.8.5 Annotations and Idiosyncrasies

Some corpora may be annotated with additional information such as errors, corrections of errors

or discourse/topical information. Where present, we removed all such information so that only the

original text, as produced by the author, remained. Another minor issue has to do with the class

labels that various corpora use to represent the different languages. For example, the FALKO Corpus

uses the ISO 639 three letter language codes while other corpora simply use the language names or

even numbers. It was necessary to create a unified set of language codes or identifiers and assign

them to the texts accordingly.

5.3 Methodology

We also follow the supervised classification approach described in chapters 2 and 3. We devise and

run experiments using several models that capture different types of linguistic information. For each

model, features are extracted from the texts and a classifier is trained to predict the L1 labels using

the features.

5.3.1 Classification

We use the very same classification approach we described in §3.2.1, viz. a linear SVM is used trained

for each feature type using relative frequency values.

5.3.2 Evaluation

Consistent with our work thus far, most other NLI studies and the 2013 shared task, we report our

results as classification accuracy under k-fold cross-validation, with k = 10. In recent years this has

become an emergent de facto standard for reporting NLI results.

For creating our folds, we employ stratified cross-validation which aims to ensure that the pro-

portion of classes within each partition is equal (Kohavi, 1995).

For comparison purposes, we define a majority baseline, calculated by using the largest class in

the dataset as the classification output for all input documents. For example, in the case of the L2

Chinese data listed in Table 5.2, the largest L1 class is Filipino with 415 documents in a dataset with

3,216 documents in total. The majority baseline is thus calculated as 415
3216 = 12.9%.

No other baselines are available here as this is the first NLI work on these corpora.

5.3.3 NLP Tools

In this section we briefly list and describe the tools used to process our data.

Chinese and German For processing these two languages, the Stanford CoreNLP14 suite of NLP

tools (Manning et al., 2014) and the provided models were used to tokenize, POS tag and parse the

unsegmented corpus texts.

14http://nlp.stanford.edu/software/corenlp.shtml

http://nlp.stanford.edu/software/corenlp.shtml
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Language POS Tagset Tag Count

Chinese Penn Chinese Treebank Tagset 33

English Penn Treebank Tagset 36

German “Stuttgart/Tübinger Tagsets” (STTS) 55

Italian/Spanish EAGLES Tagset >300

Finnish Custom Tagset 59

Table 5.3: A listing of the tagsets used for the languages in our experiments, including the size of the
tagset.

Arabic The tokenization and word segmentation of Arabic is an important preprocessing step for

addressing the orthographic issues discussed in §5.2.5. For this task we utilize the Stanford Word

Segmenter (Monroe et al., 2014).15 The Arabic texts were POS tagged and parsed using the Stanford

Arabic Parser.16

Spanish and Italian All of the processing on these language was performed using FreeLing (Padró

and Stanilovsky, 2012; Carreras et al., 2004), an open-source suite of language analyzers with a focus

on multilingual NLP.

5.4 Features

From most NLI work, the majority of which we reviewed in §2.3.3, we observe that POS n-grams and

function words constitute a core set of standard features for this task: these will be our fundamental

features as well, as described below. We did not use any lexical features (e.g. word n-grams) in

these experiments since none of our corpora are topic balanced and could be affected by topic bias

or toponymic words, as we explained in §2.3.1.1 and §3.1.5.1.

Part-of-Speech Tags In this chapter we use POS n-grams of order 1–3, as described in §2.3.2.6.

The different languages and NLP tools used to process them each utilize distinct POS tagsets. For

example, our Chinese data is tagged using the Penn Chinese Treebank tagset (Xia, 2000). For Italian

and Spanish, the EAGLES Tagset17 is used while for German the Stuttgart/Tübinger Tagset (STTS)

is used (Schiller et al., 1995).

A summary of these tagsets can be found in Table 5.3. Looking at these values it becomes evident

that some languages have a much more detailed tag set than for other languages. It has been standard

in monolingual research to just use the best available tagger and tagset that were explicitly developed

for some particular language. However, this approach can be problematic in multilingual research

where the tagsets, and consequently the classification results obtained by employing them, are not

comparable. One possibility is to convert the tags for each language to a more general and common

tagset; this would make the results more directly comparable across the languages. This issue will be

further explored in Experiment IV, which is presented in §5.8.

Function Words We also use function words as features, which we described in §2.3.2.5.

15http://nlp.stanford.edu/software/segmenter.shtml
16http://nlp.stanford.edu/projects/arabic.shtml
17http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html

http://nlp.stanford.edu/software/segmenter.shtml
http://nlp.stanford.edu/projects/arabic.shtml
http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
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Language Italian German Spanish Chinese Arabic Finnish English

Count 399 603 351 449 150 747 400

Table 5.4: Function Word counts for the various languages in our study.

The English word list was obtained from the Onix Text Retrieval Toolkit.18 For Chinese we

compiled a list of 449 function words using Chinese language teaching resources. The complete

list can be accessed online.19 The lists for the rest of the languages have been sourced from the

multilingual Information Retrieval resources made available by Prof. Jacques Savoy and can also be

accessed online.20

The function word counts for these lists are shown in Table 5.4 and we observe that there is some

variation between the list sizes across the languages. This is generally due to lexical differences and

the degree of morphological complexity as the lists contain all possible inflections of the words. For

example, the Finnish list contains the words heihin, heille, heiltä, heissä, heistä and heitä, all of which

are declensions of the third person plural pronoun he. Other languages may have fewer such inflected

words, leading to different list sizes.

Phrase Structure Rules Where possible, we also used Context-free Grammar Production Rules

(as described in §2.3.2.7) as features. It should also be noted that the extraction of this feature is

predicated upon the availability of an accurate parser for the target language. Unfortunately, this is

not the case for all of our languages.

5.5 Experiment I – Evaluating Features

Our first experiment is aimed at evaluating whether the types of NLI systems and features sets

employed for L2 English writings can also work for other languages. We perform NLI on the datasets

of the languages described above, running experiments within each corpus, over all of the L1 classes

described in §5.2.

There have been conflicting results about the optimal feature representation to use for NLI.

Some have reported that binary representations perform better (Brooke and Hirst, 2012b; Wu et al.,

2013) while others argue that frequency-based representations yield better results (Jarvis et al., 2013;

Lahiri and Mihalcea, 2013). In §3.1.5.4 we also concluded that frequency-based feature represen-

tations worked best for the English data. This is an issue that we revisit here by comparing both

representations across all of our data. This can help inform current research by determining if there

are any patterns that hold cross-linguistically.

Consequently, each experiment is run with two feature representations: binary (encoding presence

or absence of a feature) and normalized frequencies, where feature values are normalized to text length

using the l2-norm. We also combine the features into a single vector to create combined classifiers to

assess if a union of the features can yield higher accuracy.

18http://www.lextek.com/manuals/onix/stopwords1.html
19http://comp.mq.edu.au/%7Emadras/research/data/chinese-fw.txt
20http://members.unine.ch/jacques.savoy/clef/index.html

http://www.lextek.com/manuals/onix/stopwords1.html
http://comp.mq.edu.au/%7Emadras/research/data/chinese-fw.txt
http://members.unine.ch/jacques.savoy/clef/index.html
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5.5.1 Results and Discussion

The results for all of our languages are included in Table 5.5.1. The majority baseline is calculated

by using the largest class as the default classification label chosen for all texts. For each language we

report results using two feature representations: binary (bin) and normalized frequencies (freq).

General Observations A key finding from this experiment is that NLI models can be successfully

applied to non-English data. This is an important step for furthering NLI research as the field is still

relatively young and many fundamental questions have yet to be answered.

We also assess the overlap of the information captured by our models by combining them all into

one vector to create a single classifier. From Table 5.5.1 we see that for each feature representation,

the combined feature results are higher than the single best feature. This demonstrates that for

at least some of the features, the information they capture is orthogonal and complementary, and

combining them can improve results.

We also note the difference in the efficacy of the feature representations and see a clear preference

for frequency-based feature values — they outperform the binary representations in all cases. Others

have found that binary features are the most effective for English NLI (Brooke and Hirst, 2012b),

but our results indicate the frequency representation is more useful in this task.

Below we note language-specific details and analyses.

Chinese The results show that POS tags are very useful features here. The trigram frequencies

give the best accuracy of 55.60%, suggesting that there exist group-specific patterns of Chinese word

order and category choice which provide a highly discriminative cue about the L1. This is interesting

given that fixed word order is important in Chinese, as discussed in §5.2.4. Function word frequency

features provide an accuracy of 51.91%, significantly higher than the baseline. As for English L2

texts, this suggests the presence of L1-specific grammatical and lexical choice patterns that can help

distinguish the L1, potentially due to cross-linguistic transfer. We also use phrase structure rules as

classification feature, achieving an accuracy of 49.80%. Again, as for English L2 data, the syntactic

substructures would seem to contain characteristic and idiosyncratic constructions specific to L1

groups and that these syntactic cues strongly signal the writer’s L1.

The Chinese data is the largest corpus used in this work and also has the same number of classes

as the Toefl11 corpus used in the 2013 NLI shared task. This enables us to compare the results

across the datasets to see how these features perform across languages. However there are also a

number of caveats to bear in mind: the corpora differ in size and the Chinese data is not balanced

by class as Toefl11 is. We perform the same experiments on Toefl11 using the English CoreNLP

models, Penn Treebank POS tagset and our set of 400 English function words. Figure 5.1 shows the

results side by side.

Perhaps surprisingly, we see that the results closely mirror each other across corpora in terms of

relative strengths of feature types. This may be connected to the strongly configurational nature of

both English and Chinese.

Arabic The frequency distributions of the production rules yield 31.7% accuracy and function

words achieve 29.2%. While all the models provide results above the baseline, POS tag n-grams are
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imum accuracy of 70.61%. This demonstrates
that for at least some of the features, the informa-
tion they capture is orthogonal and complemen-
tary, and combining them can improve results.

6 Discussion
A key finding here is that NLI models can be suc-
cessfully applied to non-English data. This is an
important step for furthering NLI research as the
field is still relatively young and many fundamen-
tal questions have yet to be answered.

All of the tested models are effective, and they
appear to be complementary as combining them
improves overall accuracy. We also note the differ-
ence in the efficacy of the feature representations
and see a clear preference for frequency-based fea-
ture values. Others have found that binary features
are the most effective for English NLI (Brooke and
Hirst, 2012), but our results indicate frequency in-
formation is more informative in this task. The
combination of both feature types has also been
reported to be effective (Malmasi et al., 2013).

To see how these models perform across lan-
guages, we also compare the results against the
TOEFL11 corpus used in the NLI2013 shared
task. We perform the same experiments on that
dataset using the English CoreNLP models, Penn
Treebank PoS tagset and a set of 400 English func-
tion words. Figure 2 shows the results side by side.

Remarkably, we see that the model results
closely mirror each other across corpora. This is a
highly interesting finding from our study that mer-
its further investigation. There is a systematic pat-
tern occurring across data from learners of com-
pletely different L1-L2 pairs. This suggests that
manifestations of CLI via surface phenomena oc-
cur at the same levels and patternings regardless
of the L2. Cross-language studies can help re-
searchers in linguistics and cognitive science to
better understand the SLA process and language
transfer effects. They can enhance our understand-
ing of how language is processed in the brain in
ways that are not possible by just studying mono-
linguals or single L1-L2 pairs, thereby providing
us with important insights that increase our knowl-
edge and understanding of the human language
faculty.

One limitation of this work is the lack of sim-
ilar amounts of training data for each language.
However, many of the early and influential NLI
studies (e.g. Koppel et al. (2005), Tsur and Rap-
poport (2007)) were performed under similar cir-

PoS-1 PoS-2 PoS-3 FW PR
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Figure 2: Comparing feature performance on the
Chinese Learner Corpus and English TOEFL11
corpora. PoS-1/2/3: PoS uni/bi/trigrams, FW:
Function Words, PR: Production Rules

cumstances. This issue was noted at the time, but
did not deter researchers as corpora with similar
issues were used for many years. Non-English
NLI is also at a similar state where the extant cor-
pora are not optimal for the task, but no other al-
ternatives exist for conducting this research.

Finally, there are also a number of way to fur-
ther develop this work. Firstly, the experimental
scope could be expanded to use even more lin-
guistically sophisticated features such as depen-
dency parses. Model accuracy could potentially
be improved by using the metadata to develop
proficiency-segregated models. Classifier ensem-
bles could also help in increasing the accuracy.

7 Conclusion
In this work we have presented the first application
of NLI to non-English data. Using the Chinese
Learner Corpus, we compare models based on
PoS tags, function words and context-free gram-
mar production rules and find that they all yield
high classification accuracies.

Comparing the models against an equivalent
English learner corpus we find that the accura-
cies are almost identical across both L2s, suggest-
ing a systematic pattern of cross-linguistic transfer
where the degree of transfer is independent of the
L1 and L2. Further research with other L2 learner
corpora is needed to investigate this phenomena.
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Figure 5.1: Comparing feature performance on the CLC and Toefl11 corpora. POS-1/2/3: POS
uni/bi/trigrams, FW: Function Words, PR: Production Rules.

the most useful features. Combining all of the models into a single feature space provides the highest

accuracy of 41%.

The Arabic results deviate from the other language in several ways. First, the improvement over

the baseline is much lower than for other languages. Second, although POS bigrams provide the

highest accuracy for a single feature type with 37.6%, this is very similar to the POS unigrams and

trigrams. Production rules were also worse than POS n-grams. Third, although the combined model

is higher than the single-feature models, this is a much smaller boost compared to other languages.

All of these issues could potentially be due to data size.

The Arabic data is our smallest corpus, which to the best of our knowledge, is the smallest dataset

used for NLI in terms of document count and length. In this regard, we are surprised by relatively

high classification accuracy of our system, given the restricted amount of training data available.

While it is hard to make comparisons with most other experiments due to differing number of classes,

one comparable study is that of Wong and Dras (2009b) which used some similar features on a 7-class

English dataset. Despite their use of a much larger dataset,21 our individual models are only around

10% lower in accuracy.

In their study of NLI corpora, Brooke and Hirst (2011) showed that increasing the amount of

training data makes a very significant difference in NLI accuracy for both syntactic and lexical

features. This was verified by Tetreault et al. (2012) who showed that there is a very steep rise in

accuracy as the corpus size is increased towards 11,000 texts.22 Based on this, we expect that given

similarly sized training data, an Arabic NLI system can achieve similar accuracies.

Italian We make use of all 14 classes available in the VALICO corpus. This is the largest number of

classes in this work and one of the highest to be used in an NLI experiment.23 Function words scored

50.1% accuracy and POS trigrams yielded 56.89%. Combining all of the features together improves

this to 69.09%, four times higher than the baseline.

21Wong and Dras (2009b) had 110 texts per class, with average text lengths of more than 600 words.
22Equivalent to 1000 texts per L1 class.
23Previously, Torney et al. (2012) used 16 classes from the ICLE corpus.
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Finnish Here we observe that the distribution of function words yields 54.6% accuracy. This is

perhaps unexpected in that Finnish, as a morphologically rich language, has a reduced role for

function words relative to other languages. We believe their usefulness here is due to the use of an

IR stoplist which contains more than just linguistically defined closed-class words.

The best single-feature accuracy of 54.8% comes from POS trigrams. This may also be unexpected,

given that Finnish has much freer word order than the other languages in this study. But the gap

over function words is only 0.2%, compared to the strongly configurational Chinese and Italian, where

the gap is 4–6%.

The combined model provides the highest accuracy of 58.86%, around 4% better than the best

single feature type. An interesting difference is that POS unigrams achieve a much lower accuracy of

36.3%.

German Here function words are the best single feature for this language. This deviates from the

results for the other languages where POS n-grams are usually the best syntactic feature. Again, this

may reflect the nature of the language: German, like Finnish, is not (strongly) configurational.

Spanish The pattern here is most similar to Chinese and Italian.

5.5.2 Learning Curves

We can also examine the learning curves of these features across various languages to see if the

learning rates differ cross-linguistically.

These curves are generated by incrementally increasing the size of the training set, from 10%

through to 90%. We produce one curve for each feature-language pair, using two of the best per-

forming features: Function Words and POS trigrams. As a dataset needs to be sufficiently large for

training on 10% of it to give a meaningful result, we analyze the curves only for the English Toefl11

data and our two biggest non-English datasets: Chinese and Italian. The curves are presented in

Figure 5.2.

The curves demonstrate similar rates of learning across languages. We also note that while the

relationship between function word and POS trigram features isn’t perfectly constant across number

of training examples, there are still discernible trends. The English and Chinese data are most

suitable for direct comparison as they have the same number of classes. Here, we see that Function

Words provide similar accuracy scores across both languages with 2000 training documents. They

also plateau at a similar score. Similar patterns can be observed for POS trigrams.

5.6 Experiment II – Comparing Languages

The focus of our second experiment is to systematically compare the performance of our feature set

across a range of languages. Here, we are interested in a more direct cross-linguistic comparison on

datasets with equal numbers of classes. We approach this by using subsets of our corpora so that

they all have the same number of number of classes.

We run this experiment using our two biggest corpora, Chinese and Italian. Additionally, we also

compare our results to a subset of the Toefl11 L2 English corpus. Table 5.6 shows the six languages

that were selected from each of the three corpora. The number of documents within each class are
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Figure 5.2: The learning curves (classification accuracy score vs. training set size) for two feature
types, Function Words and POS trigrams, across three languages: English (Toefl11, row 1), Chinese
(CLC, row 2) and Italian (VALICO, row 3).
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Language L1 Classes

Chinese Filipino, Indonesian, Thai

330 texts per class Laotian, Burmese, Korean

Italian French, Japanese, Spanish

200 texts per class English, Polish, German

English French, Japanese, Spanish

1,100 texts per class Hindi, Turkish, Arabic

Table 5.6: The six L1 classes used for each language in Experiment II.

Feature
Accuracy

Chinese Italian English

Random Baseline 16·67% 16·67% 16·67%

(1) Function Words 62·12% 59·24% 63·82%

(2) POS unigrams 47·78% 51·15% 48·59%

(3) POS bigrams 63·14% 63·58% 63·70%

(4) POS trigrams 64·31% 64·66% 65·62%

All features (1–4) 68·14% 67·61% 70·05%

Table 5.7: Comparing classification results across languages.

kept even. These languages were chosen in order to maximize the number of classes and the number

of documents within each class.

Given that the results of Experiment I favored the use of frequency-based feature values, we also

use them here. We anticipate that the results will be higher than the previous experiment, given that

there are fewer classes.

5.6.1 Results

The results for all three languages are shown in Table 5.7. Each language has a majority class baseline

of 16.67% as the class sizes are balanced. The results follow a similar pattern as the previous exper-

iments with POS trigrams being the best single feature and a combination of everything achieving

the best results.

Chinese yields 68.14% accuracy, while Italian and English data obtain 67.61% and 70.05%, re-

spectively. All of these are more than 4 times higher than the baseline.

5.6.2 Discussion

These results, shown graphically in Figure 5.3, demonstrate very similar performances across three

different L2 corpora, much like the results in Experiment 1 for comparing English and Chinese

performances. The results are particularly interesting as the features are performing almost identically

across entirely different L1–L2 pairs. Again, as in §5.5.1, this may be related to the degree of

configurationality in these languages.
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Figure 5.3: Performance of our syntactic features (Function Words and Part-of-Speech 1-3 grams)
across the three languages.

Here we also see that combining the features provides the best results in all cases. We also

note that the English data is much larger than the others. It contains a total of 6,600 texts (evenly

distributed with 1,100 per language) and this is a probably reason for the slightly higher performance.

5.7 Experiment III – Identifying Non-Native Writing

Our third experiment involves using the previously described features to classify texts as either having

been written by a native speaker (NS) or non-native speaker (NNS) author. This should be a feasible

task, given the results of the previous experiments. The objective here to see to what degree our

features can distinguish the writings of non-native speakers and how this performance varies across

the three different languages for which we have NS data: Finnish, Spanish and English.

We approach this in a similar manner to the previous experiments, with the exception that this is

a binary classification task for distinguishing two classes: native speaker author (NS) and non-native

speaker author (NNS). Texts for the NNS class will come from learner corpora of three different

languages while data from native speaker controls is used for the NS class, as we describe here.

For Finnish we utilize a set of 100 control texts included in the LAS2 corpus that are written by

native Finnish speakers. These represent the NS class. This is contrasted against the NNS class which

includes 100 texts in total, sampled as evenly as possible24 from each language25 listed in Table 5.2.

For Spanish we use the CEDEL2 corpus, described in §5.2.7.1. Here we use 700 native speaker

texts along with another set of 700 NNS texts randomly drawn from the essays of L1 English speakers.

All texts are sourced from the same corpus and have a similar topic distribution.

Finally, we also apply these methods to L2 English data using the Toefl11 and LOCNESS

corpora, described in §2.3.1.4 and §5.2.7. This is required as the Toefl11 corpus does not contain

any native control texts. The NS class is composed of 400 native speaker essays taken from the

LOCNESS corpus and the NNS data comes from the Toefl11 corpus. We sample this data evenly

from the 11 L1 non-native classes, selecting 36 or 37 texts from each to create a total of 400 texts.

The number of documents in both classes for each language are equal, hence all results are

compared against a random baseline of 50%. This experiment only uses frequency-based feature value

representations and results are reported as classification accuracy under 10-fold cross-validation.

24So that the non-native speaker class consists of a similar number of texts from each L1 class.
25English only has 10 texts, so we include 2 extra Japanese texts to create a set of 100 documents, with roughly 11

texts from each L1 class.
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Feature
Accuracy

Finnish Spanish English

Random Baseline 50·00% 50·00% 50·00%

(1) Function Words 93·96% 91·12% 94·26%

(2) Part-of-Speech unigrams 88·54% 88·71% 87·91%

(3) Part-of-Speech bigrams 90·15% 90·35% 91·81%

(4) Part-of-Speech trigrams 91·45% 91·35% 92·87%

(5) Production Rules N/A 91·28% 93·61%

All features combined 94·92% 95·23% 96·45%

Table 5.8: Accuracy for classifying texts as Native or Non-Native.

5.7.1 Results and Discussion

Table 5.7.1 shows the results for all three languages, demonstrating that all features greatly surpass

the 50% baseline for all languages. The use of function words is the best single feature for two of the

three languages, but combining all the features provides the best accuracy of approximately 95% in

all cases.

Our Finnish data is relatively small with 100 documents in each class, thus we see that our

commonly used features are largely sufficient for this task, even on a small dataset. The combined

model achieves an accuracy of 94.92%.

For Spanish, all features with the exception of POS unigrams achieve accuracies of over 90%.

When combined, the model yields the best accuracy of 95.23%.

The Spanish and Finnish results are very similar, despite Spanish having a much larger dataset.

To investigate this further, we examined the learning curve for the best Spanish feature — POS

trigrams — as shown in Figure 5.4.

We note that although the accuracy increases as the amount of data increases, the curve is much

flatter than those for NLI in §5.5. However, this is offset by the fact that the curve’s starting point

is much higher, achieving over 85% accuracy by using only 10% of the data for training.

The English results are very similar to those from the other languages and the combined model

scores a cross-validation accuracy of 96.45%. The texts in the English experiment here — unlike the

Finnish and Spanish data — are sourced from different corpora, but while they are all student essays,

they may differ significantly in topic, genre and style. some of these differences were highlighted

in §5.2.7.2. This was a limitation that we were unable to overcome with the currently available

data. In future work, further topic-controlled experiments can also be performed for English using a

dataset that contains sufficient amounts of native and non-native data for the same topic. The use

of synthetic data could have an impact on such studies. Ideally, we would have a dataset that was

collected under the same exam conditions as the Toefl11 and on the same topics. However, to the

best of our knowledge, no corpus of timed, exam-condition essays written by native English speakers

is currently available to the research community.

One direction for future experiments is the investigation of the relationship between L2 proficiency

and the detection accuracy of non-native writing. Previous results by Tetreault et al. (2012) show

that NLI accuracy decreases as writing proficiency improves and becomes more native-like, but would
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Figure 5.4: A learning curve for the Spanish Native vs. non-Native classifier trained on POS trigrams.
The standard deviation range is also highlighted.

this pattern hold here as well? Another potential path for future work is to extend this experiment

to the sub-document level to evaluate the applicability of this approach at the paragraph, or even

sentence level.

It should also be noted that it may be possible to approach this problem as a verification task

(Koppel and Schler, 2004) instead of a binary classification one. In this scenario the methodology

is one of novelty or outlier detection where the goal is to decide if a new observation belongs to the

training distribution or not. This can achieved using one-class classifiers such as a one-class SVM

(Schölkopf et al., 2001). One option is select native writing as the inlier training class as it is easier

to characterize native writing and more importantly, training data is more readily available. It is

also harder to define non-native writing as there can be many varieties, as we have shown in our

experiments thus far. This is something we aim to investigate in future work by comparing the two

approaches.

5.8 Experiment IV – The effects of POS tagset size on NLI

accuracy

POS tagging is a core component of many NLP systems and this is no different in the case of NLI, as

evidenced by experimental results thus far. Over the last few decades, a variety of tagsets have been

developed for various languages and treebanks. Each of these tagsets is often unique and tailored to

the features of a specific language. Within the same language, the existing tagsets can differ in their

level of granularity.
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Tagsets differ in size according to their level of syntactic categorization which provides different

levels of syntactically meaningful information. They can be very fine-grained in their distinction

between syntactic categories by including more morpho-syntactic information such as gender, number,

person, case, tense, verb transitivity and so on. Alternatively, a more coarse-grained tagset may only

use broader syntactic categories such as verb or noun. This can be observed by looking at some of

the tagsets developed for English, e.g.:

Penn Treebank Tagset (Marcus et al., 1993) – 36 tags

Brown Corpus Tagset (Greene and Rubin, 1971) – 87 tags

CLAWS2 Tagset (Garside, 1987) – 166 tags

SUSANNE Corpus Tagset (Sampson, 1993) – 352 tags

In this chapter we also made use of a slew of different tagsets for the different languages, which

were outlined in §5.4. Since the n-grams extracted from these POS tags can help capture charac-

teristic word ordering and error patterns, it could be argued that a larger tagset can generate more

discriminative sequences and thus yield better classification performance. However, it can also result

in much larger and more sparse feature vectors.26 Using the Penn Treebank and CLAWS2 tagsets,

in §3.1 we concluded that a more linguistically fine-grained POS tagset produced better results for

English NLI.

Accordingly, the aim of this experiment is to assess the effect of POS tagset size on classification

accuracy, hypothesizing that a larger target will provide better results. We base this on our initial

results from §3.1.3.5 which showed that a larger tagset achieved better accuracy. We also aim to com-

pare the effectiveness of POS tags cross-linguistically. This could also enable us to better understand

the results from §5.5 and what impact the different granularity of tagsets might have had.

Some previous research has examined this issue on L2 English data, but no complete comparison is

available. Gyawali et al. (2013) report that the use of a smaller tagset reduced English NLI accuracy.

To further investigate this issue, we conduct a more thorough, cross-linguistic comparative evaluation

of tagset performance.

5.8.1 A Universal Part of Speech Tagset

While a number of different tagsets have been proposed, certain tasks such as cross-lingual POS tag-

ging (Täckström et al., 2013), multilingual parsing (McDonald et al., 2013) or drawing comparisons

across tagsets require the use of a common tagset across languages. To facilitate such cross-lingual re-

search, Petrov et al. (2012) propose a Universal POS Tagset consisting of twelve coarse POS categories

that are considered to be universal across languages.27

We utilize this Universal POS Tagset (UPOS) in this experiment and convert the tags in the

three largest datasets available: English, Chinese and Italian. By mapping from each language-

specific tagset to the universal one, we obtain POS data in a common format across all languages.

This enables us to compare the relative performance of the original and reduced tagset data. It also

26Theoretically the n-gram space grows exponentially with n, but the growth rate is lower in practice as not all
possible combinations are observed in the data.

27 These categories are: Noun (nouns), Verb (verbs), Adj (adjectives), Adv (adverbs), Pron (pronouns), Det
(determiners and articles), Adp (prepositions and postpositions), Num (numerals), Conj (conjunctions), Prt (parti-
cles), “.” (punctuation marks) and X (a catch-all for other categories such as abbreviations or foreign words). These
categories were derived through analysis of tagsets proposed for 22 different languages.
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Figure 5.5: NLI classification accuracy for L2 English data from the Toefl11 corpus, using POS
n-grams extracted with the CLAWS, Penn Treebank and Universal POS tagsets.
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Figure 5.6: NLI classification accuracy for the L2 Chinese data, using POS n-grams extracted with
the Penn Chinese Treebank and Universal POS tagsets.

permits us to compare the utility of POS tags as a classification feature across languages. For English

we experiment with three tagsets: CLAWS, Penn Treebank (PTB) and UPOS.

5.8.2 Results and Discussion

The results for English are shown in Figure 5.5 and demonstrate that the largest tagset — CLAWS

— provides the best classification accuracy. Classification accuracy continues to drop as the tagset

gets smaller.

Figures 5.6 and 5.7 show the results for Chinese and Italian, respectively. Here we see a similar

pattern, but the performance drop is much steeper for Italian. This is likely because the Italian data

uses a much more fine-grained tagset than Chinese.28

A notable finding here, related to our first hypothesis, is that larger tagsets always yield higher

classification results. Evidence from all three languages supported this.

However, these results also show that even with only 12 POS tags, the UPOS set retains around

80% of the classification accuracy of the full tagsets. This finding signals that the great majority of

the syntactic patterns that are characteristic of L1 groups are related to the ordering of the most

basic word categories. This can be further investigated by comparing learner data with the same L1

but multiple L2s29 to find common transfer patterns related to that L1.

28We observe 330 tags in our Italian data while the Penn Chinese Treebank only uses 33 tags. The reduction from
330 to 12 tags is steeper, hence the greater drop in accuracy.

29e.g. comparing Chinese-English, Chinese-Spanish and Chinese-French.
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Figure 5.7: NLI classification accuracy for the L2 Italian data using POS n-grams extracted with the
EAGLES and the Universal POS tagsets.

Another interesting observation is that the UPOS results are quite similar and closely mirror

each other across the three languages. Prima facie, this supports previous findings suggesting that a

systematic pattern of cross-linguistic transfer may exist, where the degree of transfer is independent

of the L1 and L2 (Malmasi and Dras, 2014b). While these results are certainly not conclusive, this

is a question that merits further investigation, pending the availability of additional learner corpora

in the future.

Finally, as evidenced by our results, we can also conclude that the use of a universal tagset can be

helpful in comparing the performance of syntactic features such as POS tags in cross-lingual studies

where the languages use distinct tagsets.

5.9 Experiment V – Bounding Classification Accuracy

In Chapter 4 we proposed the use of oracles for measuring the upper bound an classification accuracy

for a dataset. The aim of this experiment to evaluate this methodology on additional data beyond

English.

In this experiment we use the selected feature set on our biggest datasets: Chinese, Italian and

English. Following the oracle methodology described in §4.1.1, we train a single classifier for each

feature type to create our ensemble. We do not experiment with combining different machine learners

here; instead we focus on gauging the potential of the feature set.

The oracle classifier fusion method is then run on each ensemble so that the correct label is

assigned to each document if any of the classifiers in the ensemble classify it correctly. These labels

are then used to calculate the potential accuracy of the ensemble on the dataset. We perform this

procedure for each language.

5.9.1 Results

The oracle results for the three languages are shown in Table 5.9 and contrasted against the majority

class baseline and our combined features classifier. These results establish that NLI systems have

the potential to achieve high classification accuracy. Analyzing the relative increase over the baseline

shows better performance on larger datasets.

The results indicate that at least one of our feature types was able to correctly classify some 85%

of the texts in each dataset. However, even under this best scenario, we should note that not a single
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Italian Chinese English

Majority Baseline 16·40% 12·90% 09·09%

Our Best Accuracy 69·09% 70·61% 70·58%

Oracle Accuracy 84·35% 87·60% 86·20%

Table 5.9: Oracle classifier accuracy for the three languages in experiment V.

classifier is able to correctly predict the label for the remaining 15% of the data. This suggests that

a certain portion of L2 texts are not distinguishable by any of our current features. This value is

similar across the three languages, indicating that this may be a more general trend.

5.9.2 Discussion

This experiment evaluated an oracle classifier for estimating the “potential” upper limit of NLI

accuracy on several datasets. This upper limit can vary depending on which components — feature

types and algorithms — are used to build the NLI system. Alongside other baseline measures, the

Oracle performance can be helpful in interpreting the relative performance of an NLI system.30

A useful application of this method is to isolate the subset of wholly misclassified texts for further

investigation and error analysis. This segregated data can then be independently studied to better

understand the aspects that make it hard to classify them correctly. This can also be used to guide

feature engineering practices in order to develop features that can distinguish these challenging data

points.

As the oracle accuracy is similar across the three languages, this may indicate a more general

trend related to writing proficiency and the maximum classification potential. Previously, the work of

Tetreault et al. (2012) demonstrated that classification gets increasingly harder as writer proficiency

increases. This higher proficiency makes it more challenging to discern the native-like writings of

authors of distinct L1 backgrounds. It may also point to a deficiency in the feature set: a portion of

the data are indistinguishable using the current features.

5.10 Analyzing Feature Diversity

Earlier in §3.2 we outlined a method for analyzing feature diversity and applied the method to English

data. In this section we complement those initial results by running the same analysis for Chinese

and Arabic and comparing them with English to see if similar diversity patterns hold across different

languages.

5.10.1 Results

We calculate the Q coefficient for our largest dataset, Chinese, using all five features listed in Ta-

ble 5.5.1. For comparison purposes, we also calculate Q for the same features on the Arabic and

Toefl11 English data. The matrices of the Q coefficients for all features and languages are shown

graphically in Figure 5.8. We did not find a negative correlation between any of our features.

30e.g. an NLI system with 70% accuracy against an Oracle baseline of 80% is relatively better compared to one with
74% accuracy against an Oracle baseline of 93%.
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Figure 5.8: The Q-coefficient matrices of five features for Chinese (top), Arabic (middle) and English
(bottom). The matrices are displayed as heat maps. POS 1/2/3: POS uni/bi/trigrams, FW: Function
Words, PR: Production Rules.
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The values for Chinese show a weak correlation of 0.3 between Function Words and all other

features. Production Rules also have a moderate correlation with POS trigrams. Additionally,

although their outputs are weakly to moderately correlated, these three features yield similar accuracy

when used independently. Such features, with high individual accuracy yet low output correlation

are ideal sources of diversity when combining classifiers.

Looking at the other languages, we also observe very similar patterns across the data, as can be

seen by comparing the plots in Figure 5.8. This seems to suggest that these correlation patterns may

hold cross-lingually.

To test the validity of these results, we re-ran the Chinese experiment from §5.5, this time combin-

ing the top 3 features with the lowest average Q coefficient, weighted by their classification error.31

These features are Function Words, Production Rules and POS trigrams and combining them yields

an accuracy of 70.7%, compared to 70.6% for using all five features. This, then, suggests that the

most diverse features contribute the most to the combined classifier and that removing redundant

information can increase accuracy. Having several highly dependent feature types may make it harder

for a learner to overcome their errors.

5.11 General Discussion

The study presented in this chapter examined a number of different issues from a cross-lingual per-

spective, making a number of novel contributions to NLI research. Using up to six languages to

inform our research, our experiments use evidence from multiple languages to support their results

and to identify general patterns that hold across multiple languages. The most prominent finding here

is that NLI techniques can be successfully applied to a range of languages that differ from English,

which has been the focus of almost all previous research.

To the best of our knowledge this is the first sizeable study of NLI with a primary focus on multiple

non-English L2 corpora. This includes the identification of relevant data and tools for conducting

cross-lingual NLI research. We believe this is an important step for furthering NLI research as the

field is still relatively young and many fundamental questions remain unanswered. These results are

useful for gaining deeper insights about the technique and exploring its potential application in a

range of contexts, including education, SLA and forensic linguistics.

Our first two experiments evaluated our features and data, showing that the selected commonly

used features perform well and with similar accuracy across languages, taking into account corpus size;

they also suggest that the effectiveness of particular feature types is related to the typological character

of the L2 to some extent. The third experiment compared non-native and native control data, showing

that they can be discerned with 95% accuracy. We also looked at multilingual evaluations of other

NLI issues. Experiment V applied an oracle to several languages, aiming to calculate the upper limits

of classification accuracy in this task. Our feature diversity analysis in §5.10 also showed that feature

dependence patterns hold across several languages.

We also note the difference in the efficacy of the feature representations and see a clear preference

for frequency-based feature values. Others have found that binary features are the most effective

for English NLI (Brooke and Hirst, 2012b), but our results indicate frequency information is more

informative in this task.

31For feature i this is calculated as Q̄i × (1−Accuracyi); lower values suggest higher accuracy and diversity.
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Additionally, the corpora we have identified here can be used in other NLP tasks, including error

detection and correction. This, of course, depends largely on the kinds of annotations the corpora

have. If not already present, the corpora would need to be annotated for grammatical errors and

their corrections.

There are also a number of methodological shortcomings that merit discussion. In its current

state, research in non-English NLI is affected by many of the same issues that were prevalent in

English NLI research prior to the release of the Toefl11 corpus. This includes the lack of a common

evaluation framework and a paucity of large-scale datasets that are controlled for topic, the number

of texts across the various L1 classes and also text length.

This study is affected by many such issues, e.g. a lack of even amounts of training data, as none

of the non-English corpora used here were designed specifically for NLI. However, it should be noted

that many of the early studies in English NLI were performed under similar circumstances. These

issues were noted at the time, but did not deter researchers as corpora with similar issues were used

for many years. Non-English NLI is also at a similar state where the extant corpora are not optimal

for the task, but no other alternatives exist for conducting this research.

In addition to this data paucity, the lack of NLP tools for all languages is another limiting factor

that hinders further research. Many aspects of NLI studies require the use of accurate parsers and

taggers to extract relevant information from learner texts. The set of features used in this work was

limited by the availability of linguistic tools for our chosen languages.

Finally, we would also like to point to the failure to distinguish between the L2 and any other

acquired languages as a more general criticism of the NLI literature to date. The current body of NLI

literature fails to distinguish whether the learner language is in fact the writer’s second language, or

whether it is possibly a third language (L3). None of the corpora used here contain this metadata.

It has been noted in the SLA literature that when acquiring an L3, there may be instances of

both L1- and L2-based transfer effects on L3 production (Ringbom, 2001). Studies of such second

language transfer effects during L3 acquisition have been a recent focus in cross-linguistic influence

research (Murphy, 2005).

One potential reason for this shortcoming in NLI is that none of the commonly used corpora

distinguish between the L2 and L3; they only include the author’s L1 and the language being learned.

This language is generally assumed to be an L2, but may not be case. At its core, this issue relates to

corpus linguistics and the methodology used to create learner corpora. The thorough study of these

effects is contingent upon the availability of more detailed language profiles of authors in learner

corpora. The manifestation of these interlanguage transfer effects (the influence of one non-native

language on another) is dependent on the status, recency and proficiency of the learner’s acquired

languages (Cenoz and Jessner, 2001). Accordingly, these variables need to be accounted for by the

corpus creation methodology.

It should also be noted that based on currently available evidence, identifying the specific source

of cross-linguistic influence in speakers of an L3 or additional languages (L4, L5, etc.) is not an easy

task. Recent studies point to the methodological problems in studying productions of multilinguals

(De Angelis, 2005; Williams and Hammarberg, 1998; Dewaele, 1998).

From an NLP standpoint, if the author’s acquired languages or their number is known, it may

be possible to attempt to trace different transfer effects to their source using advanced segmentation
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techniques. We believe that this is an interesting task in itself and a potentially promising area of

future research.

Although specific directions for future research were discussed within each experiment, there are

also a number of broader avenues for future work. The extension of these experiments to additional

languages is the most straightforward direction for future research. The goal here would be to verify

if the trends and patterns found in this work can be replicated in other languages. This can be

expanded to a more comprehensive framework for comparative studies using equivalent syntactic

features but with distinct L1–L2 pairs to help us better understand Cross-Linguistic Influence and

its manifestations. Such a framework could also help us better understand the differences between

different L1–L2 language pairs.

The potential expansion of the experimental scope to include more linguistically sophisticated

features also merits further investigation, but this is limited by the availability of language-specific

NLP tools and resources. Such features include dependency parses, language models, stylometric

measures and misspellings. The cross-lingual comparison of these features may identify additional

trends.

A common theme across the first three experiments was that the combination of features provided

the best results. This can be further extended by the application of classifier ensemble methods. This

could be done by aggregating the output of various classifiers to classify each document, similar to the

work of Tetreault et al. (2012) for English NLI. We discussed a number of such ensemble combination

methods in §3.1. The methods described in our feature diversity analysis from §5.10 could also help

guide the selection of diverse features to reduce redundancy in the classifier committee.

5.12 Chapter Summary

In this chapter we:

• identified sources of suitable NLI data for six typologically different languages

• released the Jinan Chinese Learner Corpus

• applied NLI to these languages, achieving similar performance for the six L2s

• established that performance of common features is similar across different languages

• concluded that more fine-grained POS tagsets also perform better for other languages

• demonstrated that oracle performance patterns are similar for other L2s

• showed that feature diversity trends are similar across languages

• evaluated the classification of native and non-native writing, achieving high accuracy

Following this, in the next chapter we:

x examine how NLI models can inform SLA research



Chapter 6

Extracting Language Transfer

Hypotheses and Error Contexts

Having established that NLI as a classification task is applicable to a range of L1s, in this chapter

we look at how information captured by models from this task could potentially inform SLA research.

We do this in two parts. We first examine the extracted features to see if there is any potential for

using the various linguistic feature types in SLA. In the second part we look at how SLA hypotheses

might be constructed using such features.
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6.1 Hypotheses in SLA

In §2.4 we briefly discussed the field of Second Language Acquisition (SLA) which is concerned with

the processes involved in acquiring a second language, including those of language transfer and cross-

linguistic influence. Studies conducted in the field of SLA may be classified into different groups (e.g.

qualitative or quantitative) based on the applied methodology. One such taxonomy of SLA research,

put forward by Lightbown (1985), proposes the following three broad categories:

Descriptive studies which involve the examination of gathered linguistic data (e.g. learner data),

comparing it against some other data (e.g. native language) and describing the differences and con-

sistencies therein. Such studies are generally exploratory in nature. Once the “raw” data has been

described and explored, researchers may also begin interpreting their initial findings and forming

hypotheses about the observations.

Hypothesis-testing studies start with some hypothesis about learner’s use of language and seek

to test this, instead of examining natural language samples. Some of these hypotheses may have

been formulated using results from the above-mentioned descriptive studies or alternatively, they

may also come from other sources such as a Contrastive Analysis between two or more languages.

This approach may then include the collection of additional data (e.g. through elicitation or testing)

and most commonly involve the application of statistical significance testing (Norris, 2015).

Experimental studies are those which attempt to manipulate some variable, e.g. those relating

to language instruction, and attempt to measure related outcomes. Such studies also often test a

specific hypothesis; they are also more difficult to design and conduct.

Based on this taxonomy we can see that hypothesis generation plays an important role in SLA and

can guide the direction of experimental work; exploratory studies help formulate hypotheses which

are then confirmed or rejected by additional, potentially empirical, follow-up studies.

In exploratory studies, SLA research aims to find distributional differences in language use and

error rates between L1s, often referred to as overuse, the extensive use of some linguistic structures,

and underuse, the underutilization of particular structures, also known as avoidance (Gass and

Selinker, 2008). These concepts relate to language transfer effects, and were described earlier in §2.4.2.

However, the identification of such linguistic patterns that could form the basis of a hypothesis

— e.g. specific types of errors, idiosyncratic productions and their contexts — is a process which

often involves substantial effort. We now look at an example of an SLA study to better understand

what constitutes such a hypothesis and the steps involved in testing it.

An example of SLA research that examines a specific hypothesis is the study of Diéz-Bedmar and

Papp (2008), comparing Chinese and Spanish learners of English with respect to the English article

system (a, an, the). Informed by prior descriptive and empirical research and a Contrastive Analysis

of the languages, they form specific hypotheses that they seek to test:

Our prediction is that, since the Chinese language lacks a grammaticalised article system,

Chinese learners of English face a grammatical learning task which will manifest itself in

their underuse of the English articles due to the omission of the and a/an and a higher

rate of use (overuse) of the zero (∅) article. On the other hand, [...] we expect that both



6.1. HYPOTHESES IN SLA 135

1. [+SR, +HK]
(the)

2. [−SR, +HK]
(the, a, Ø)

3. [+SR, −HK]
(a, Ø) 

4. [−SR, −HK]
(a, Ø)

Figure 6.1: An illustration of Bickerton’s semantic wheel showing the features associated with each
category as well as the applicable articles.

Chinese and Spanish learners will exhibit a pragmatic problem by misusing and overusing

articles. While for the Spanish speakers this prediction means that we expect them to

misuse and overuse English articles in their interlanguage, for the Chinese these seemingly

contradictory predictions mean that we would expect them not only to underuse, but also

to misuse and overuse articles until they learn to restrict their use to the specific semantic

contexts and pragmatic functions in which they are employed in English.

They adopt a particular theoretical framework, using Bickerton’s (1981) semantic wheel for noun

phrase reference for the analysis of their data. This semantic wheel is a taxonomy of English article

usage based on two binary features: [± Specific Reference] or [± SR] and [± Hearer Knowledge] or [±
HK]. Specificity is the speaker’s intention to refer and Hearer Knowledge is the speaker’s assumption

about the familiarity of the hearer with the referent and their ability to infer it. The combinations

of these two features result in four categories, as shown in Figure 6.1. These four categories can be

termed as:

Category Examples

(1) Referential definites Pass me the pen.

The first person to walk on the moon...

(2) Generics Elephants have trunks.

Fruit flourishes in the valley.

(3) First mentions and A man phoned.

referential indefinites I’ve bought a new car.

(4) Non-referential and Alice is an accountant.

non-specific indefinites I guess I should buy a new car.

Table 6.1: The four categories in Bickerton’s semantic wheel.

The authors then collected corpora containing 175 non-native and 164 native texts. Articles in

the native corpora were tagged using a coding system derived from the four categories of Bickerton’s
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semantic wheel. This annotation allows for a corpus-based Contrastive Analysis of the three L1s,

which the authors use as a basis of forming their hypotheses. The learner texts were also corrected

by native speakers and incorrect article use was tagged with corrections, using the same coding system

as the native texts.

Next, they use the simple Wordsmith software package — designed to extract data for lexicogra-

phers — to retrieve and quantify the tagged errors in a semi-automatic way, and evaluate whether

Chinese and Spanish L1 speakers do behave differently via hypothesis testing (chi-square and z-tests,

in their case). They conclude that Chinese and Spanish do have characteristic differences, with pat-

terns of zero article and definite article use differing according to semantic context. Such studies are

typically carried out on relatively small datasets, and use fairly elementary tools. Sources such as

Ellis (2008) and Ortega (2009) give good overviews of such studies.

There are several aspects of such research, e.g. annotation and detection of overuse/underuse

trends, where NLP and machine learning methods could help. These computational techniques hold

out the promise of aiding these processes in a (semi-)automated way, enabling them to be conducted on

large-scale data of a magnitude previously unprecedented in SLA research. This, in turn, could enable

the identification of previously hidden issues in non-native speaker writing, and allow hypotheses to

be tested on a much larger scale and with more empirical reliability than previously possibly. The

remainder of this chapter is dedicated to our initial investigations into the plausibility of such an

approach.

6.2 Related Work

6.2.1 NLI and Feature Analysis

While Native Language Identification (NLI) as a subfield of NLP has seen much new work in the

last few years — §2.3.3 provides a comprehensive review — the emphasis on optimizing classification

task results, for example by using classifier ensembles as we showed in Chapter 3, versus analysing

features for relevance to other tasks has varied. In this section we briefly discuss works which directly

look at how features might be related to language-learning tasks or SLA research.

The seminal work of Koppel et al. (2005a) that presented NLI as a classification task included, in

addition to standard lexical and PoS n-gram features, errors made by the writers; these errors were

automatically identified using Microsoft Word grammar checker. Kochmar (2011) used the First

Certificate in English (FCE) corpus for NLI, including the manually annotated errors as features,

and presented an analysis of usefulness of features (including errors) with respect to L1.

Wong and Dras (2011) used syntactic features on the basis of SLA theory that posits that L1

constructions may be reflected in some form of characteristic errors or patterns in L2 constructions

to some extent, or through overuse or avoidance of particular constructions in L2 (Lado, 1957; Ellis,

2008); they did note distributional differences of features related to L1. Wong et al. (2012) induced

topic models over function words and POS n-grams, where some of the topics appeared to reflect L1-

specific characteristics. These works, while interested in the nature of the features, do not evaluate

them except via classification accuracy. Coming from a linguistic perspective, the work in Jarvis

and Crossley (2012) uses Linear Discriminant Analysis for classification of texts by L1, and identify

interesting features by a stepwise feature selection process in the course of classification, rather than

via the measurement of their variability across L1s. Swanson and Charniak (2012) similarly explore
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using syntax, where they propose a richer representation for L1-specific constructions through Tree

Substitution Grammar fragments, which we described in §2.3.2.8.

Among this efflorescence of NLI work, a new trend explored by researchers aims to extract lists

of candidate language transfer features. Swanson and Charniak (2013) examine both relevancy and

redundancy of features through a number of metrics (including the χ2-statistic used later in this

chapter). They then extend a Bayesian induction model for TSG inference based on a supervised

mixture of hierarchical grammars, in order to extract a filtered set of more linguistically informed

features that could benefit both NLI and SLA research; an aim was to find relatively rare features

that are nevertheless useful for L1 prediction.

Swanson and Charniak (2014) continue on from this with a data-driven approach to ranking

features, again using TSGs. They do this by comparing L2 data against the writer’s L1 to find

features where the L1 use is mirrored in L2 use. A key shortcoming here is that only the most

obvious effects can be detected, but this is not the case with many transfer effects that are “too

complex” to observe in this manner (Jarvis and Crossley, 2012, p. 183). Moreover, this method is

unable to detect underuse, it is only suitable for syntactic features since it relies on constituent tree

structures. It has also only been applied to very small data (4,000 sentences) over 3 L1s.

6.2.2 Relation to Language Teaching and Learning

The large demand for result-oriented language teaching and learning resources is an important moti-

vating factor in SLA research (Richards and Rodgers, 2014; Ortega, 2009). Today, we live in a world

where there are more bilingual individuals than monolinguals, but multilingualism does not automat-

ically imply having attained full mastery of multiple languages. As the world continues on the path

to becoming a highly globalized and interconnected community, the learning of foreign languages is

becoming increasingly common and is driven by a demand for language skills (Tinsley, 2013). All of

this provides intrinsic motivation for many of the learners to continue improving their language skills

beyond that of basic communication or working proficiency towards near-native levels. In itself, this

is not an easy task, but a good starting point is to reduce those idiosyncratic language use patterns

caused by the influence of the native language. The first step towards this is to identify such usage

patterns and transfer effects through studies such as this one.

The motivations for identifying L1-related language production patterns are manifold. Such tech-

niques can help SLA researchers identify important L1-specific learning and teaching issues. In turn,

the identification of such issues can enable researchers to develop pedagogical material that takes into

consideration a learner’s L1 and addresses them. This equates to teaching material that is tailored

for students of an L1 group. Some research into the inclusion of L1 knowledge in teaching material

has already been conducted.

Horst et al. (2010) investigated how L1 knowledge can be incorporated into language instruction in

order to facilitate learning. They approached this by designing a series of cross-linguistic awareness

(CLA) activities which were tested with francophone learners of English at a school in Montreal,

Quebec, Canada. The CLA material was developed by identifying commonalities between French

and English. Next, a set of 11 CLA teaching packages were developed and piloted in an intensive

year-long ESL program. Although they did not conduct empirical evaluation with a control group,

observations and interviews indicate that this is a promising approach that can address a wide range

of linguistic phenomena.
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Laufer and Girsai (2008) investigated the effects of explicit contrastive analysis on vocabulary ac-

quisition. Three groups of L2 English learners of the same L1 were used to form separate instructional

conditions: meaning focused instruction (MFI), non-contrastive form-focused instruction (FFI), and

contrastive analysis and translation (CAT). The CAT group performed translation tasks and was also

provided a contrastive analysis of the target items and their L1 translation options. One week later,

all groups were tested for retention of the target items and the CAT group significantly outperformed

the others. These results are interpreted as evidence for L1 influence on L2 vocabulary acquisition.

Such findings from SLA research, although not the principal source of knowledge for teachers, are

considered helpful to them and have great pedagogical relevance. Although a more comprehensive

exposition of the pedagogical aspects of SLA is beyond the scope of our work, we refer the interested

reader to Lightbown (2000) for an overview of SLA research in the classroom and how it can influence

teaching.

6.3 Extracting Language Transfer Hypothesis Candidates

As we described earlier, SLA researchers are interested in identifying distributional differences that

could be attributed to language transfer effects — i.e. overuse and underuse — in learner language.

While there have been some attempts in SLA to use computational approaches on small-scale data,1

these still use fairly elementary techniques and have several shortcomings, including in the manual

approaches to annotation and the computational artefacts derived from these.

Conversely, NLI work has focused on automatic learner L1 classification using machine mearning

with large-scale data and sophisticated linguistic features. Our NLI experiments from the preceding

chapters have demonstrated that the linguistic productions of different L1 groups can be distinguished

with high accuracy. NLI experiments by other researchers, as discussed in §2.3.3, have also yielded

good results.

However, despite these well-established results in predicting the L1s of non-native authors, few

attempts have been made to interpret the features that distinguish the L1s. This is partly because no

methods for an SLA-oriented feature analysis have been proposed; most work has focused on testing

feature types using standard machine learning tools.

The overarching aim of this section is to develop a methodology that enables the exploration of

discriminative NLI features to examine their use for SLA research. This can help us evaluate if this

is a plausible approach for connecting the NLI paradigm to SLA applications that could be used to

link these features to their underlying linguistic causes and explanations. These candidates can then

be applied in other areas such as remedial SLA strategies.

We propose that feature weights calculated in training a learning algorithm are a potentially

interesting way to explore the feature space and argue that they are more suitable that other ranking

and relevancy methods used for feature selection. In the next section we describe the proposed

method, followed by an outline of our data and feature types, and we conclude with the results of

our investigation in the final section.

1e.g. Chen (2013) explore the use of phrasal verbs by Chinese students using approximately 1800 essays. Similarly,
Lozanó and Mendikoetxea (2010) investigated the production of postverbal subjects (i.e. VS order) in L2 English,
using some 250k words of non-native data. Such studies are on a much smaller scale compared to the investigation we
present using 4m tokens across 12k essays from Toefl11.
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6.3.1 Language Transfer Hypothesis Candidate Extraction Method

In order to extract features which are strongly associated with an L1 group, i.e. the overuse and

underuse features described above in §6.1, some type of feature selection method (Liu and Motoda,

2007) could be applied to extract the most informative features. The feature sets obtained via such

methods can then be “analysed by domain experts to gain more insight into the problem modelled”

(Saeys et al., 2008) and better understand the process from which the data was extracted. One

example of such a feature scoring method is the Fisher score:
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(
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j − x̄j

)2
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(−)
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)2

1
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The F-score (Fisher score, not to be confused with F-measure) measures the ratio between the

intraclass and interclass variance in the values of feature j, where x represents the feature values in

the negative and positive examples.2 More discriminative features have higher scores.

Another alternative method is Information Gain (Yang and Pedersen, 1997). As defined in equa-

tion 6.2, it measures the entropy gain associated with feature t in assigning the class label c.

G(t) = −
m∑

i=1

Pr(ci) logPr(ci)

+ Pr(t)
m∑

i=1

Pr(ci|t) logPr(ci|t)

+ Pr(t̄)
m∑

i=1

Pr(ci|t̄) logPr(ci|t̄)

ff

ff

ff

(6.2)

Until the late 1990s, machine learning work in most domains used only tens of features (Guyon

and Elisseeff, 2003), although this has rapidly expanded to datasets with thousands, if not millions,

of features for complex tasks like gene selection or text classification. Although the abovementioned

methods may yield reasonable results for small or trivial data with relatively few features, it has

been noted that they fail to produce good results for large numbers of features in multi-class settings

(Forman, 2004).

Other limitations of these methods, particularly related to our task, are that they do not provide

ranked lists per class, and more importantly, they do not explicitly capture per class underuse, an

important concept in SLA. In sum, the ability of these methods for inspecting features to extract

useful knowledge from the data is limited.

Another approach that has been proposed to address this issue is based on using an SVM classifier

to evaluate feature relevance and extract information from large data. In their innovative and influ-

ential work, Guyon et al. (2002) show that SVMs have both qualitative and quantitative advantages

over other feature ranking and selection methods. They also highlight that a key advantage of SVMs

is their ability to take into account the mutual information captured by the input features, whereas

measures such as Information Gain or the F-score assess features independently. Furthermore, al-

though many learning algorithms require feature selection for input pruning to reduce computational

2See Chang and Lin (2008) for more details.



140 CHAPTER 6. TRANSFER HYPOTHESES & ERROR CONTEXTS

Overused 
Feature List

Learner texts from 
target L1 speakers

Learner texts from 
other L1 speakers

Linguistic Annotation

Feature Extraction

Underused 
Feature List

Figure 6.2: Our methodology for extracting language transfer hypothesis candidates is based on
contrasting L1 groups against each other to find discriminative features.

cost, SVMs are known to be robust to very high dimensional input and feature selection is gener-

ally not needed (Rogati and Yang, 2002). In this manner, SVMs have been successfully applied in

data mining and knowledge discovery tasks such as examining proteomic data for tumor diagnostics

analysis (Jong et al., 2004) and identifying discriminant cancer genes (Guyon et al., 2002).

Our approach to identifying potential language transfer effects follows this methodology and is

based on the use of SVM weights to identify distinguishing linguistic features of each L1. We take the

very same classification approach as in previous chapters, described in §3.2.1. One aspect that bears

repeating is that we adopt a one-vs-all (OVA) approach in adapting SVMs to multi-class data, as

described in §3.1.3.1. Here, this also allows us to find features most relevant to each native language

class. The classifier was trained using l2 regularization. An overview of this approach is shown in

Figure 6.2. Our data and features will be described in §6.3.2 below.

Using the extracted features, we train linear Support Vector Machine (SVM) models for each L1.

In training each model, the SVM weight vector is calculated according to (6.3):

w =
∑

i

αiyixi (6.3)

Here yi ∈ {1,−1} and represents the class label and xi is the feature vector for instance i.3 The

weight vector w is calculated for each L1 class. Features associated with the positive class will have

larger, positive weights and unrelated features will be assigned negative weights.

After training, the positive and negative weights for each L1 are split into two lists and ranked by

weight. The positive weights represent overused features, while features whose absence (i.e. underuse)

is indicative of an L1 will have large negative weights. This process yields two candidate language

transfer feature lists per L1.

3See Burges (1998) for a detailed explanation.
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6.3.2 Data and Features

We use the Toefl11 corpus for this investigation, which was described in §2.3.1.4. The following

feature types were used in our analysis of the learner texts. They were extracted using the same

methodology we earlier described in §3.1.3.2.

Adaptor grammar collocations We use the mixed POS and function word version to discover

arbitrary length n-grams, as described in §2.3.2.10.

Stanford Dependencies This feature is used to capture longer distance grammatical relations

and their types, as described in §2.3.2.9.

Lexical features Content and function words are also considered as two feature types related to

learner’s vocabulary and spelling. See §2.3.2.3.

6.3.3 Results

We now turn to an analysis of the output from our system to see how it might be useful for SLA

research. Table 6.2 lists some elements from the underuse and overuse lists for various L1s. The

lists are of different feature types. They have been chosen to demonstrate all feature types, but also

a wide range of languages. We look at some examples of highly weighted features that have been

discussed in the SLA literature.

Hindi L1 writers are distinguished by certain function words including hence, thus, and etc, and

a much higher usage rate of male pronouns. It has been observed in the literature (Sanyal, 2007,

for example) that the English spoken in India still retains characteristics of the English that was

spoken during the time of the Raj and the East India Company that have disappeared from other

English varieties, so it sounds more formal to other speakers, or retains traces of an archaic business

correspondence style; the features noted fit that pattern.

The second list includes content words overused by Arabic L1 learners. Analysis of content words,

and for many other L1s in our data, reveals very frequent misspellings which are believed to be due

to orthographic or phonetic influences (Tsur and Rappoport, 2007; Odlin, 1989). Since Arabic does

not share orthography with English, it is possible that most of these are due to phonetics. Looking

at items 1, 3 and 5 we can see a common pattern: the English letter u which has various phonetic

realizations is being replaced by a vowel that more often represents that sound. Items 2 and 5 are

also phonetically similar to the intended words.

For Spanish L1 authors we provide both underuse and overuse lists of syntactic dependencies.

The top 3 overuse rules show the word that is very often used as the subject of verbs.4 This is almost

certainly a consequence of the prominent syntactic role played by the Spanish word que which,

depending on the context, is equivalent to the English words whom, who, which, and most commonly,

that. The 4th rule shows they often use this as a determiner for plural nouns. A survey of the corpus

reveals many such errors in texts of Spanish learners, e.g. “this actions” or “this emissions”. The 5th

rule shows that the adjectival modifier of a plural noun is being incorrectly pluralised to match the

4 Although that is considered a Wh-determiner in this case, this is the relationship which the Stanford dependency
parser assigns to such tokens in a relative clause. The relationship between the head of the preceding relative clause
and the verb or noun is usually marked separately, as illustrated in the third example in Figure 6.3.
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Figure 6.3: Three of the most common overuse patterns found in the writing of L1 Spanish learners.
They show erroneous pluralization of adjectives, determiner misuse and overuse of the word that.

noun in number as would be required in Spanish, for example, “differents subjects”. Some examples

of these dependencies are shown in Figure 6.3.

Turning to the underused features in Spanish L1 texts, we see that 4 related features rank highly,

showing that these is not commonly used as a determiner for plural nouns and which is rarely used as

a subject. The final feature shows that no is avoided as a determiner. This may be because while no

mostly has the same role in Spanish as it does in English, it cannot be used as a determiner; ningún

must be used instead. We hypothesize that this construction is being avoided as placing no before

a noun in Spanish is ungrammatical. This example demonstrates that our two list methodology can

not only help identify overused structures, but also uncovers the related constructs that are being

underutilized at their expense.

The final list in Table 6.2 is of underused Adaptor Grammar patterns by Chinese learners. The

first two features show that these writers significantly underuse determiners, here an, other and these

before nouns. This is not unexpected since Chinese learners’ difficulties with English articles are

well known (Robertson, 2000). More interestingly, we find underuse of features like even if and

might, along with others not listed here such as “could VB”5 plus many other variants related to

the subjunctive mood. To illustrate this, Figure 6.4 shows the number of exam scripts in each L1

group that contain the phrase even if, highlighting the large inter-group differences in the use of this

linguistic feature.

One explanation is that linguistic differences between Chinese and English in expressing counter-

factuals could cause them to avoid such constructions in L2 English. Previous research in this

area has linked the absence of subjunctive linguistic structures in Chinese to different cognitive

representations of the world and difficulties in thinking counterfactually (Bloom, 2014), although this

has been disputed by others (Au, 1983; Garbern Liu, 1985).

We now discuss several features relating to languages not listed in Table 6.2. Adaptor Grammars

also reveal frequent use of the “existential there”6 in German L1 data while they are highly underused

5e.g. could be, could have, could go and other variants
6e.g. “There is/are ...”, different to the locative “there”
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Figure 6.4: The number of exam scripts in each L1 group of the Toefl11 corpus containing the
phrase “even if” in the text. The total number of documents per L1 are equal.

English Spanish English Spanish

diferent diferente conclution conclusión

consecuence consecuencia desagree Neg. affix des-

responsability responsabilidad especific espećıfico

oportunity oportunidad necesary necesario

Table 6.3: Common and highly ranked English misspellings of Spanish learners and their Spanish
cognates.

in French L1 data. The literature is in agreement with our data: The German equivalent es gibt is

common while French use is far more constrained (Cappelle and Loock, 2013). The use of the

existential there in French was studied by Cappelle and Loock (2013), who state:

Drawing on extensive counts conducted in available corpora and self-compiled samples

of translated English and French, intra-language comparisons of translated and non-

translated language use show that existential there is under-represented in English trans-

lated from French while existential il y a is over-represented in French translated from

English. It is suggested that source-language interference is responsible for these differ-

ences.

Lexical analysis also revealed Spanish–English orthographic transfer in the texts of L1 Spanish

authors, with some highly ranked patterns listed in Table 6.3. This transfer is evidenced by the

similarity of misspelled English words to their Spanish equivalents. We observe transfer of ortho-

graphic rules and conventions (e.g. omission of double letters in diferent and oportunity) as well as

morphemes (e.g. desagree with the Spanish affix des- being equivalent to dis- in English).

We also observe other patterns which remain unexplained. For instance, Chinese, Japanese and

Korean speakers make excessive use of phrases such as however, first and second. One possibility is

that this relates to argumentation styles that are possibly influenced by cultural norms. More broadly,
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this effect could also be teaching- rather than transfer-related. For example, it may be case that a

widely-used text book for learning English in Korea happens to overuse this construction. While the

overuse is extreme in some cases,7 more research is required to determine the causal factors. We hope

to expand on this and other hypotheses in future work.

Some recent findings from the 2013 NLI Shared Task found that L1 Hindi and Telugu learners

of English had similar transfer effects and their writings were difficult to distinguish. It has been

posited that this is likely due to shared culture and teaching environments (Malmasi et al., 2013).

6.3.4 Discussion

In this section we defined a method for ranking arbitrary features that reflect both overuse and

underuse for individual L1s. We believe that these results highlight some of the interesting hypotheses

and patterns that can be extracted from learner data using our methodology. More specifically,

this investigation shows that the feature weights assigned by the SVM have some correspondence

with phenomena and hypotheses discussed in the SLA literature; this evidences the suitability of

our method for identifying features that can form the basis of SLA hypotheses as we discussed

in §6.1. This investigation, an intersection of NLP, Machine Learning and SLA, illustrates how the

various disciplines can complement each other by bringing together theoretical, experimental and

computational issues.

In terms of NLI, this work is the first attempt to examine and present a broad linguistic inter-

pretation of the features that enable learning algorithms to accurately classify L1s, including feature

underuse. NLI systems achieve classification accuracies of over 80% on this 11-class task, leading to

theoretical questions about the features that make them so effective. This work also has a backwards

link in this regard by providing qualitative evidence about the underpinning linguistic theories that

make NLI work.

There are several directions for future work. The first relates to clustering the data within the

lists. Our intuition is that there might be coherent clusters of related features, with these clusters

characterising typical errors or idiosyncrasies, that are predictive of a particular L1. As shown in

our results, some features are highly related and may be caused by the same underlying transfer

phenomena. For example, our list of overused syntactic constructs by Spanish learners includes 3

high ranking features related to the same transfer effect. The use of unsupervised learning methods

such as Bayesian mixture models may be appropriate here. For parse features, tree kernels could

help measure similarity between the trees and fragments. Finally, the use of other linguistic features

such as Context-free Grammar phrase structure rules or Tree Substitution Grammars could provide

additional insights.

An important extension of this work could entail the inclusion of native speaker data in the exper-

iment. The current experiment was performed using non-native groups and focused on identifying the

differences between these groups. Previously, in §5.7, we demonstrated that native and non-native

text could be distinguished with great accuracy. However, it is not clear how the addition of a native

speaker class to the standard NLI performance would affect its performance. For identifying lan-

guage transfer effects, such a setup could help identify at least two things: (1) the set of idiosyncratic

constructs common to the majority of learners; and (2) constructions and vocabulary not acquired

by any of the non-natives. Both of these would be of high value to researchers. The main challenge

7Over half the Korean texts had at least one sentence-initial however.
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to performing such experiments is the paucity of native speaker data covering the same topics and

collected under the same conditions, as we pointed out in §5.7.1.

Another important aspect to consider is the introduction of appropriate evaluation methods.

Given the recency of this topic, no standard evaluation measures have been proposed for this emergent

area of research. Accordingly, a key goal of future work should be the development of such evaluation

methods for this nascent task.

The evaluation of the extracted hypotheses is based on the interpretation of SLA experts and

consequently, quantitative evaluation is not possible per se, without expert evaluation. Therefore,

it is not possibly to quantitatively evaluate the quality of the lists produced by each method, this

requires human evaluation and thus the features produced through such methodology are hypothe-

sis candidates.

It is however possible to develop similarity metrics and methods for comparing the candidate lists

and this is an issue we plan to address in future research. This enables the direct comparison of

candidate lists produced by different methods, researchers and any previously proposed methods. It

also allows researchers to compare lists from different L1 groups to identify similar patterns of language

use that may be shared across specific groups of L1s. We also aim to investigate the development of

additional metrics to assist experts in interpreting the results. This includes the relevant statistical

analyses as well as visualization methods.

Notwithstanding these directions, in the next section we go on to look at how to use these sorts

of features to construct and rank SLA hypotheses.

6.4 Extracting Error Contexts

As noted in §6.1, a research goal in SLA is to formulate and test hypotheses about errors and the

particular environments in which they are made. There are several steps that would need to be taken

to use the information from Eqn. 6.3 to formulate an SLA hypothesis. Typically hypotheses involve

more than just a single (type of) word.

One particular approach to finding aspects of texts characteristic of their L1s that has motivated

the work in this section is described in Yannakoudakis et al. (2012), the goal of which is to develop

visualisation tools for SLA researchers. They present graphs of the relationships between errors

and their contexts, such that SLA researchers can navigate through the graphs to find contexts for

particular errors that can lead to hypotheses like that of Diéz-Bedmar and Papp (2008) above. In this

section, we look at approaches to finding such hypothesis candidates automatically in the context of

L1–L2 interaction by analysing the graphs used in the visualisations of Yannakoudakis et al. (2012).

Specifically, we do the following:

• We propose a new task that is more directly oriented to SLA research than NLI has been for

the most part, with the goal of identifying error-related contexts that are characteristic of L1s.

• We evaluate a number of models for finding such contexts, ranging from a simple baseline to

treating the problem as a graph-theoretic maximum weighted clique one.

• We examine the results of some of the models to see how the task and the models might

contribute to SLA research.
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Verb Agreement

<p>Some people

<ns type="AGV"><i>says</i><c>say</c></ns>

...</p>

Incorrect Verb Inflection

<p>The day I

<ns type="IV"><i>shaked</i><c>shook</c></ns>

their hands,...</p>

Missing Determiner
<p>I am

<ns type="MD"><c>a</c></ns> really good singer.</p>

Figure 6.5: FCE corpus examples. Error types indicated by <ns type>...</ns>; errors indicated by
<i>...</i>; corrections indicated by <c>...</c>.

We began this chapter with some details on related work in §6.2. Although that body of work

shares some similarities with the present experiment, our focus is on errors rather than on the distri-

butional differences, and we look at error contexts that may not constitute a TSG tree or grammatical

dependency.

Because we draw heavily on the work of Yannakoudakis et al. (2012), we next review relevant

aspects of that work in §6.4.1; we then present our task definition and experimental setup in §6.4.2;

we give results along with a discussion in §6.4.3; and we conclude in §6.4.4.

6.4.1 Developing Hypotheses: A Visualisation Tool

The context of the Yannakoudakis et al. (2012) work is automated grading of English as a Second or

Other Language (ESOL) exam scripts, as described in Briscoe et al. (2010). The automated grading

takes a classification approach, using a binary discriminative learner, with useful features including

lexical and POS n-grams.

The publicly available dataset on which the work was carried out consists of texts from the FCE

exam, aimed at upper-intermediate students of English across various L1s, and was presented in

Yannakoudakis et al. (2011). This FCE corpus8 consists of a subset of 1244 texts of the Cambridge

Learner Corpus,9 and is manually annotated with errors and their corrections, as well as a classifica-

tion according to an error typology, as in Figure 6.5.

Yannakoudakis et al. (2012) present their English Profile (EP) visualiser as a way to “visually

analyse as well as perform a linguistic interpretation of discriminative features that characterise

learner English”, using the features of this essay classification task. A screenshot of the front-end for

their system in shown in Figure 6.6.

They define a measure of co-occurrence of features, among themselves and with errors, as a

core part of their analysis. Given the set of all sentences in the corpus S = {s1, s2, . . . , s|S|} and

the set of all features F = {f1, f2, . . . , f|F |}, a feature fi ∈ F is associated with a feature fj ∈ F

(i 6= j, 1 ≤ i, j ≤ M) according to the score given in Equation (6.4), for sk ∈ S, 1 ≤ k ≤ N and

exists() a binary function returning true if the input feature occurs in sk.

scoreff(fj , fi) =

∑|S|
k=1 exists(fj , fi, sk)
∑|S|

k=1 exists(fi, sk)
(6.4)

8http://ilexir.co.uk/applications/ep-visualiser/
9http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom/item364603/

http://ilexir.co.uk/applications/ep-visualiser/
http://www.cup.cam.ac.uk/gb/elt/catalogue/subject/custom/item364603/
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Figure 6.6: The front-end of the EP visualizer system. Image reproduced from Yannakoudakis et al.
(2012).

They mention an analogous measure for feature-error co-occurrence; we assume given the set of

all errors E = {e1, e2, . . . , e|E|} that this is defined as follows:

scoreef(fj , ei) =

∑|S|
k=1 exists(fj , ei, sk)
∑|S|

k=1 exists(ei, sk)
(6.5)

A graph is defined with features and errors as vertices; an edge between features (resp. features

and errors) is established if scoreff() (resp. scoreef) is within some user-defined range. This graph of

feature–feature (resp. feature–error) relationships is then presented visually. An example of such a

feature-feature graph is shown in Figure 6.7.

The paper then presents a case study of how the EP visualiser can be used to assist SLA re-

searchers. The case study starts by noting that RG JJ NN1 is the 18th most discriminative negative

feature from the essay classifier; then, further inspecting the graph of discriminative features, that

it’s linked to JJ NN1 II and VBZ RG. Then, looking at feature-error relations, it investigates an

association with error MD (missing determiner), and presents some examples that match the fea-

tures (e.g. Unix is very powerful system but there is one thing against it), along with a discussion

of relationships to various L1s. It is this process of finding interesting features and linking them to

particular errors and L1s that we present an approach to automating in this section.

6.4.2 Task Definition and Experimental Setup

At a general level, our goal is to find which kinds of constructions (in a loose sense) centred around

errors are particularly characteristic of various L1s.

The specific task we define for this paper, then, is to select a set of features (in the terminology

of Yannakoudakis et al. (2012))—which we refer to as the error context—that, when combined

with the error, show a strong association with L1, in a manner we describe below. So, for example,
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Figure 6.7: An example of a feature-feature graph for the feature II JJ.

this may involve finding that an MD error in the context of RG JJ NN1, JJ NN1 II and VBZ RG

shows a strong association with L1. We investigate a number of models for this selection process:

the task then is the identification of which models produce poor error contexts (which will not rank

highly in hypothesis testing) and which produce good ones (potentially worth considering by an SLA

researcher). Below we discuss the data we use, the measure of association for an error and its context,

the set of errors chosen, and the models for selecting context.

Language Size

Chinese chi 66

French fre 146

German ger 69

Italian ita 76

Japanese jap 81

Korean kor 86

Spanish spa 200

Turkish tur 75

Table 6.4: FCEsub, broken down by language
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language mean

chi 0.885790

fre 0.460894

ger 0.366587

ita 0.581401

jap 1.058159

kor 1.067211

spa 0.472253

tur 1.014129

F-stat 18.031

sig. <0.001

Table 6.5: ANOVA results giving mean score (number of sentences with MD error per 10 sentences)
for each language, the ANOVA F-statistic, and significance value

6.4.2.1 Data

The corpus we use for evaluating the models for our task is derived from the FCE corpus of Yan-

nakoudakis et al. (2012). The full FCE corpus consists of 1244 scripts over 16 languages; script counts

range from 2 (Dutch) to 200 (Spanish).

The features used by Yannakoudakis et al. (2012) were derived from their essay classification task.

As we are interested in associations with L1, we instead use features from the system we submitted to

the NLI shared task and described in Chapter 3, which was applied to the Toefl11 dataset. We only

use POS n-grams (n = 1, 2, 3) as features in this section, as we had earlier found them to be good

features.10 Note that we use the terminology of Yannakoudakis et al. (2012) here: what had their

origin as features in the essay classification task are still referred to as features in the visualisation

tool, although the task carried out there is not a classification one. Similarly, we refer to our PoS

n-grams as features, although we are not classifying errors using these features and so are not carrying

out feature selection for the typical purpose of optimising classification performance.

For this, as did Yannakoudakis et al. (2012), we use the RASP parser (Briscoe et al., 2006) for

tagging; the tags are consequently from the CLAWS2 tagset,11 which are more fine-grained in terms

of linguistic analysis than the more frequently used Penn Treebank tags.

For our task, we then used the subset of the FCE corpus where the languages overlapped with the

Toefl11 corpus: we refer to this as FCEsub. This gives 799 scripts over 8 languages, distributed as

in Table 6.4; a positive byproduct is that the L1s are more similar in size than the full FCE corpus.

6.4.2.2 Association Measure

We noted in §6.1 that SLA studies such as Diéz-Bedmar and Papp (2008) use standard hypothesis

testing techniques. We take this as a starting point. We could, for example, evaluate whether a

particular raw error (that is, without a feature context) is strongly associated with L1s by using a

single factor ANOVA test.12 The independent variable would be the L1. The dependent variable

could be one of a number of alternatives; we choose the number of sentences with a particular error

10See §3.1.3.5 and §5.8 for more details.
11http://ucrel.lancs.ac.uk/claws2tags.html
12See, e.g., Jackson (2009).

http://ucrel.lancs.ac.uk/claws2tags.html
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Type Name F-stat p-val N

DJ Wrong Derived Adjective 3.27 .002 332

DN Wrong Derived Noun 0.70 .671 294

MD Missing Determiner 18.03 .000 1702

MT Missing Preposition 2.81 .007 985

UD Unnecessary Determiner 1.20 .301 807

UT Unnecessary Preposition 0.26 .968 689

UV Unnecessary Verb 0.78 .606 317

Table 6.6: Error types chosen for evaluation, including F-statistic, ANOVA p-value and corpus count
of sentences containing error.

per 10 sentences.13 To illustrate, we give the ANOVA results from FCEsub for the MD error in

Table 6.5. The ANOVA calculation is based on an F-statistic which compares variance between

treatments against variance within treatments; this is compared against critical values for the F-

statistic to determine statistical significance. The expected value of the F-statistic under the null

hypothesis is 1, with values above 1 increasingly inconsistent with the null hypothesis. The data in

Table 6.5 shows that the MD error does vary significantly with L1; a post-hoc Tukey HSD test lets

us identify which specific languages exhibit this difference and shows that, for example (and as can

be observed in the means), German L1 speakers are significantly different from Korean L1 speakers

in the occurrence of MD errors.

For our task we are not interested in significance per se. Rather, we are interested in whether we

can find occurrences of errors plus contexts that are more strongly associated with, or that vary across,

L1s, e.g. that an MD error in the context of RG JJ NN1, JJ NN1 II and VBZ RG is more strongly

associated with L1s; and we are also interested in which of our proposed methods for identifying an

error’s feature context does this best. For this purpose, then, we use just the F-statistic from the

ANOVA test, this time with the dependent variable as the ratio of occurrences of error plus error

context per 10 sentences: a higher F-statistic shows a stronger association with L1s.14

We also consider the χ2-statistic from Pearson’s chi-squared test, noting that it is also used in SLA

hypothesis testing and that it was additionally found by Swanson and Charniak (2013) to be good at

distinguishing interesting features in their related task (see §6.2 for more detail). The F-statistic and

χ2-statistic are closely related: a random variate of the F-distribution is the ratio of two chi-squared

variates scaled by their degrees of freedom. A difference is that χ2 compares observed versus expected

counts rather than proportions: to take account of the differing text lengths, our observed frequency

is the number of sentences with error and error context per L1; our expected frequency is the total

number of sentences with that error and error context scaled according to the proportion of sentences

labelled with that L1 relative to the corpus as a whole.

6.4.2.3 Errors Chosen

From the 74 error types in the FCE corpus, we select a subset to evaluate our models. In addition to

the MD error used in the case study of Yannakoudakis et al. (2012), we choose a subset which has a

range of F-statistic values as described above: some show very similar patterns across L1s (i.e. with

13We note that the texts differ significantly in length by L1, so it would not be suitable to normalise as occurrences
per document.

14As we are only using the F-statistic to evaluate ranks, we do not need a multiple comparison adjustment such
as the Bonferroni correction: this would only apply for comparisons to a significance threshold, and in any case the
Bonferroni is monotonic and does not affect rankings.
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low F-statistic), such as DN Wrong Derived Noun (e.g. hot vs heat); others do vary significantly

with L1, such as DJ Wrong Derived Adjective (e.g. reasonally vs reasonable). Having errors with a

range of F-statistic values lets us evaluate whether finding good error contexts works only for strongly

L1-associated errors, weakly L1-associated errors, or across the spectrum. Our subset is in Table 6.6,

along with their F-statistic, ANOVA p-value and counts in FCEsub.

6.4.2.4 Models

We propose four models for choosing error contexts. These models rank error contexts; we evaluate

the ranked error contexts by F-statistic and χ2-statistic values (§6.4.2.2).

ErrorCoocc In this model we rank features by error-feature co-occurrence scores given by Equa-

tion (6.5). The L1 is not taken into account, so this will just return common features which may be

equally strongly associated with errors across all L1s. We look at results for when k = 1..3 features

are chosen. For k = 2, 3, we add the individual error-feature scores together for the ranking.15 It

may be the case that interesting results could be obtained for k > 3, but we only look at the k = 1..3

in this preliminary work to see if there are any discernible trends suggesting that larger values of k

could help.

L1Assoc Here we use features that are strongly associated with the L1s from the Toefl11 corpus

and NLI shared task. Specifically, we rank features by their Information Gain with respect to L1s

as in the process of feature selection from the shared task.16 The relationship between errors and

features (in the form of error-feature co-occurrence scores) is not taken into account here. Again,

we look at results for when k = 1..3 features are chosen, and for k = 2, 3, we add the individual

error-feature scores together for the ranking.

MaxWeightClique Both of the preceding models look only at one factor that might be relevant:

error-feature scores (finding features that are related to the errors) and a measure of the association

of features with L1s; but there is no link between them, and interaction of features is not taken

into account. In Yannakoudakis et al. (2012), the visualiser provides to the SLA researcher a graph

showing the relatedness of features, based on Equation (6.4), and the SLA researcher combines this

with error-feature scores to find interesting candidate error contexts; we create a similar graph and

aim to imitate the process by incorporating error-feature scores as follows.

We define a weighted undirected graph G = (V,A) such that V is the set of features used in the

above models (i.e. POS n-grams from ErrorCoocc); A is defined such that (vi, vj) ∈ A for vertices

vi, vj ∈ V if 0.8 ≤ scoreff(vi, vj) ≤ 1.0 where scoreff() is as defined as in Equation (6.4).17 Given our

set of errors E defined at Equation (6.5) above, the weight of a vertex vi is defined as scoreef(vi, ej)

for some ej ∈ E. Given this graph, it is possible to characterise the finding of related features

with strong aggregate associations with errors as an instance of the maximum weight clique

problem (Bomze et al., 1999). As the name suggests, this finds a clique of maximum weight, here

the strongest aggregate feature–error association. While this is an NP-hard problem, there are quite

efficient algorithms for solving it; we use one called wclique, proposed by Österg̊ard (1999).18

15For k = 2 the combinations were made from the top 100 features from k = 1, and for k = 3 from the top 50.
16We recalculated this over the subset of eight languages used in this paper.
17We choose this threshold value as it is the one used in the graph definition of Yannakoudakis et al. (2012).
18Code for wclique is available at: http://tcs.legacy.ics.tkk.fi/~pat/wclique.html.

http://tcs.legacy.ics.tkk.fi/~pat/wclique.html
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model r

ErrorCoocc 0.95

L1Assoc 0.97

MaxWeightClique 0.95

MaxWeightClique-L1 0.92

Table 6.7: Average correlation coefficient r between the F-statistic and chi-square statistic for each
model

MaxWeightClique-L1 We also look at a variant of MaxWeightClique where we construct

the graphs based only on relationships among features for a particular L1. That is, there will be eight

weighted graphs per error of interest.

6.4.3 Results and Discussion

6.4.3.1 Overall Results

We only present the F-statistic results here; the χ2-statistic showed very similar patterns. The average

correlation between the two for each model shows the strong similarity (Table 6.7).

For the F-statistic results, presented in Table 6.8, we report the highest F-statistic in the N -best

list (N = 1, 5, 20, 50) for each model. For models ErrorCoocc and L1Assoc we report the highest

F-statistic for each value of k (k = 1, 2, 3). The number of occurrences of the error context with the

highest F-statistic is given in parentheses after the F-statistic; the highest value for each N is in bold.

For MaxWeightClique-L1, we also note the language of the graph from which the highest score

was derived.

We note by comparing Table 6.8 with Table 6.6 that for each error type except for MD, it is

possible to find an error context that is more strongly associated with L1s than is the raw error type

alone. For MD this is not surprising, as its frequency of occurrence is very strongly linked to the

L1, as noted in Table 6.5 and §6.4.2.2.19 (For the error type MT also, no model produces an error

context more strongly associated with the L1 for the single best choice where N = 1, but does for

larger values of N .)

With respect to the individual models, the simple ErrorCoocc scores highly, giving the best

result about half the time, and the best results can occur for any of k = 1, 2, 3. The number of

instances returned for each error plus error context is larger than for the other models as well, which

is not surprising as the model aims to find contexts strongly associated with the errors rather than

with L1s. However, these are then likely to be features that are fairly common across L1s; we look

at some examples in §6.4.3.2.

L1Assoc performs fairly poorly on our evaluation measure, although in many cases it does find

an error context more strongly associated with the L1 than just the raw error type. Counts are also

lower. Also, for this model, k = 2, 3 are always worse than k = 1: bringing in a second context feature

reduces the number of occurrences to such an extent that the F-statistic can drop dramatically. This is

probably in part an artefact of the size of the FCE corpus (and particularly our FCEsub subcorpus):

these features derived from the Toefl11 corpus just do not occur sufficiently often in our evaluation

corpus (and in fact there are often large numbers of zero occurrences for k = 2, 3).

19The fact that determiner errors are very widely studied in terms of analysing cross-linguistic influence suggests a
broad consensus that they vary strongly with L1. In addition to Diéz-Bedmar and Papp (2008), a sample of other
studies includes Parrish (1987), Young (1996) and Ionin and Montrul (2010).
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Error Context Example sentences

DJ JJ, NN1 Basically/RR ,/, I/PPIS1 helped/VVD them/PPHO2 liaise/VV0
with/IW the/AT local/JJ police/NN and/CC get/VV0 some/DD
<ns type=”DJ”><i>electronical</i><c>electronic/JJ</c></ns> equipment/NN1
that/CST they/PPHS2 needed/VVD.

The/AT show/NN1 will/VM be/VB0 at/II the/AT Central/JJ
Exhibition/NN1 Hall/NP1 and/CC it/PPH1 will/VM be/VB0
<ns type=”DJ”><i>opened</i><c>open/JJ</c></ns> until/ICS 7/MC.

UV TO VV0 II,
NNL1, II,
NN2, VV0 II

I/PPIS1 used/VMK to/TO <ns type=”UV”><i>be</i></ns> play/VV0 in/II
the/AT school/NNL1 team/NN1 . . . and/CC our/APP$ team/NN1 was/VBDZ one/MC1
of/IO the/AT best/JJT basketball/NN1 teams/NN2 . . .

DN XX,
XX VV0,
VM XX VV0,
NN1

Never/RR the/AT less/DAR ,/, in/II summer/NNT1 we/PPIS2 can/VM n’t/XX re-
sist/VV0 such/DA <ns type=”DN”><i>hot</i><c>heat/NN1</c></ns>!

. . . I/PPIS1 think/VV0 you/PPY should/VM have/VH0 a/AT1 <ns type=”DN”><i>baby-
parking</i><c>kindergarten/NP1</c></ns> ,/, in/II fact/NN1 a/AT1 certain/JJ num-
ber/NN1 of/IO women/NN2 could/VM n’t/XX see/VV0 the/AT Festival/NN1 be-
cause/CS of/IO their/APP$ sons/NN2.

MD VBZ RG,
RG JJ NN1

The/AT first/MD and/CC most/RR important/JJ thing/NN1 is/VBZ that/RG mod-
ern/JJ technology/NN1 has/VHZ made/VVN our/APP$ life/NN1 easier/JJR ,/, for/IF
instance/NN1 <ns type=”MD”><c>the/AT</c></ns> rice/NN1 cooker/NN1 is/VBZ
a/AT1 great/JJ invention/NN1 . . .

Figure 6.8: Examples for sample error types and specific error contexts. Error contexts are bolded.

MaxWeightClique also performs fairly poorly. However, in many cases it also finds an error

context more strongly associated with L1 than the raw error type alone (DN, MT, UD, UT, UV),

even if not always for N = 1, and it has intermediate counts of occurrences.

MaxWeightClique-L1 gives the best results in the other half of the cases where ErrorCoocc

does not. The error contexts that it finds, however, are very specific, often to a single language (as

might be expected by its definition) with very small numbers of counts.

6.4.3.2 Some Examples

We look at some examples in Figure 6.8, to illustrate both interesting error contexts found and areas

where the models do a poor job. In these sample sentences, only errors of interest are retained and

highlighted.

The DJ error with context { JJ, NN1 } illustrates the top result found under the ErrorCoocc

model for N = 20. In the first sentence the model seems to find a useful pattern: the adjective

that is at the centre of the error occurs in the context of a singular noun. On the other hand, the

second sentence illustrates a problem: because the range of the context is the whole sentence, frequent

features such as NN1 will occur a lot in other parts of the sentence that have no apparent relation to

the actual error. The ErrorCoocc model is thus likely to be picking up false positives by virtue of

the relatively high frequencies of its error contexts.

The UV error with context { TO VV0 II, NNL1, II, NN2, VV0 II } illustrates the top result found

under the MaxWeightClique-L1 model for N = 5. This is very specific, and its three instances

only appear in Turkish. But all three are similar errors from different documents, so it appears likely

to be a genuine pattern, although the NN2 seems only to have a tenuous connection.

The DN error with context { XX, XX VV0, VM XX VV0, NN1 } illustrates the top result found

under the MaxWeightClique-L1 model for N = 50. A number of this reasonably sized set are

similar to the first sentence, where the context appears interesting. In this example, hot is used for

heat ; the other examples of this type are from Spanish and Italian (similarly, e.g., live for life), where
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the error seems to be connected to words where the English derivational morphology is not simply

affixation. However, there are some like the second sentence, where (as for the DJ error) the error

context appears in a different clause, and are likely irrelevant.

The MD error in the last row we examine because (a more complex version of) it was the focus of

the case study in Yannakoudakis et al. (2012), which from the examples of that paper looked quite

convincing as an error context of relevance to SLA research. However, it and the related examples of

Yannakoudakis et al. (2012) were not in the publicly available corpus,20 and in fact there is only one

example of this error and context in the whole FCE corpus, illustrating the issue of data sparsity.

Further, this example also illustrates the issue of tagging error: that is tagged as RG (degree adverb)

where it should be CST.

So as might be anticipated from the frequency numbers in Table 6.8, the MaxWeightClique-L1

model produces context that looks interesting from an SLA perspective, but is relatively limited in

scope; the ErrorCoocc model produces a much larger set of candidates, and can successfully find

error context such that they behave differently with respect to the L1s according to the ANOVA

F-statistic, but produces false positives. Overall, a recurring issue illustrated for all models by the

examples is the proposal of error context far away from any likely relevance to SLA.

6.4.4 Concluding Remarks and Future Work

In this section, prompted by work on using computational visualisation techniques to help SLA

researchers form hypotheses about errors and the environments in which they are made, we have

defined a new task for finding interesting contexts for errors that vary with the native language of

the speaker. We proposed four models, ranging from one based on simple error-feature co-occurrence

statistics to one based on the maximum weighted clique on an L1-specific feature association graph;

these all managed to find contexts that were more strongly associated with L1s than the raw errors

alone, and produced (albeit with many false positives in the case of the simple model) some error

contexts that look potentially useful for SLA.

6.4.4.1 Future Directions for Error Context Extraction

This research is largely intended to prompt more work on applying NLP techniques to SLA more

broadly. As such, there are many ways in which the work could be further developed. First, to get

rid of obviously incorrect cases, the size of the area over which the feature-feature and feature-error

scores are calculated could be restricted, perhaps to the relevant clause or a certain window size.

Second, it may not be the case that the ANOVA F-statistic or χ2 are the best evaluation measure:

in medical work, for example, there is the notion of clinical significance, which takes effect size into

account and is often more relevant to the practitioner than statistical significance. Similarly, the

current features may not be the most meaningful. As part of this, an important step would be to

bring in SLA researchers, to assess proposed error contexts and look at what evaluation measures

best relate to this. The role of the present work would then be to rule out models for producing

error contexts (like L1Assoc) that produce weaker results in hypothesis testing: it would thus be

complementary to the visualisation work from which it stems, guiding SLA researchers away from

unproductive areas of the space of possible hypotheses. And third, the size of the corpus is (as always)

an issue: as these error-annotated corpora are few and far between, a semi-supervised approach or

20We assume that the multiple examples come from the larger CLC corpus.
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one that in some way incorporated unannotated data would be useful, perhaps using some of the

extensive recent work on error annotation.

Furthermore, there are potentially other methods to increase the accuracy of our analysis. One

such approach is to limit our analysis to errors and features that co-occur within the within the same

clause, rather than just the sentence. This assumes that errors and features that occur across clause

boundaries are not related, and that the accuracy of our analysis can be improved by excluding them.

One possible flaw with this method is its dependence on the accurate parsing of clauses within the

texts, which is not guaranteed in our learner texts that often contain significant amounts of syntactic

and grammatical errors. Given the possible difficulties with accurate parsing of clauses, a simplified

version of this approach would be the use of a fixed window size around errors, where only features

that are present within this window would be considered as related.

6.5 Chapter Summary

In this chapter we:

• considered how knowledge obtained from NLI models can inform SLA research

• proposed a method for extracting and ranking overused/underused features per L1

• analyzed some of the most discriminative linguistic features extracted using our method

• showed that the features correspond to phenomena and hypotheses from the SLA literature

• defined a new task for finding error contexts that vary by the native language

• developed new graph-theoretic models for identifying potential SLA hypotheses centred on error

contexts

• demonstrated that they find contexts that are more strongly associated with L1s than raw

errors alone
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Chapter 7

Native Language-based Text

Segmentation

In the previous chapter we found that features used in the NLI classification task have potential to

be used in other tasks, there connected to SLA. In this chapter we look at how classification models

learned from NLI can be applied to the task of tracing linguistic influence in L2 texts that contain

L1 influence from more than one language. This may be a document with language productions of

more than one author or the work of a single multilingual author. We look at one way of framing

this type of question as an NLP task, as a variant of text segmentation where the goal is to segment

texts based on L1 influence. We position this with respect to (the small amount of) other work on

text segmentation that is not based on topic and then explore a range of Bayesian models along the

lines of Eisenstein and Barzilay (2008) for addressing our tasks.

Chapter Contents

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2.1 Topic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2.2 Bible Authorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.3 Poetry Voice Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.4 Plagiarism Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.2.5 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3.1 Document Generation and Data . . . . . . . . . . . . . . . . . . . . . . . . 169

7.4 Segmentation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.4.1 TopicSeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.4.2 L1Seg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4.3 L1Seg-Compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.4.4 L1Seg-AsymP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5.1 Segmenting by Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.5.2 L1-based Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.5.3 Incorporating Discriminative Features . . . . . . . . . . . . . . . . . . . . . 179

7.5.4 Applying Two Asymmetric Priors . . . . . . . . . . . . . . . . . . . . . . . 179

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

159



160 CHAPTER 7. NATIVE LANGUAGE-BASED TEXT SEGMENTATION

7.1 Motivation

NLP methods have been used to perform different types of text analysis, such as topic modelling and

sentiment analysis. One novel type of textual analysis involves the identification of sub-sections of a

text that show influence from different linguistic backgrounds. This could involve a text composed

by multiple authors or the work of a single multilingual author.

An example of such a multilingual author is Joseph Conrad, known for having written a number

of famous English-language novels: Almayer’s Folly, Heart of Darkness, Lord Jim and Nostromo,

amongst others. Conrad (born Józef Teodor Konrad Korzeniowski; 1857–1924) was born in Poland

and moved to England at the age of 21. He was raised speaking Polish and French and in addition

to learning English, he also had knowledge of Latin, German and Greek.

His writings have been the subject of much literary analysis, with one particular direction of such

research being the identification of likely L1 influences on his English writing, given that he was fluent

in both Polish and French.

In The Linguistic influence of Polish on Joseph Conrad’s style, Morzinski (1994) investigates the

influence of the Polish language on Conrad’s work, suggesting that it had great impact on his writing

style. To this end, she points to different types of influences in his work ranging from some very

abstract literary characteristics (“that Slavonic defeatism with which all his writing is permeated” in

the words of Coleman (1931) that Morzinski cites) but also more concrete syntactic and morphological

characteristics (e.g. “Several had still their staves in their hands” where the adverb still is awkwardly

placed, although it follows the correct Polish word order) of English sentences that seemingly invoke

Polish-like sentence construction and word order.

Morzinski identifies in particular verb forms (e.g. Polish emphasis on aspect rather than tense),

voice (Polish third reflexive voice) and placement of adverbs (partly as a consequence of differences

in morphology between Polish and English). Several examples extracted from Conrad’s writings by

Morzinski are listed below.

(7.1) One gets sometimes such a flash of insight.

Miewa sie taki blysk intuicji.

(7.2) I knew once a Scotch sailmaker [...]

Znalem raz szkockiego zaglomistrza [...]

(7.3) like a flash of lightning came to her the reminiscence of that despised and almost forgotten

civilization she had only glanced at in her days of restraint, of sorrow, and of anger [...]

(7.4) But the resources of my sagacity I did not review.

(7.5) In that equipage they hawked from town to town the watermelons of central Russian.

In 7.1 we see an example where the aspectual meaning of the verb in Polish precludes the need

for an adverb which would be required for an English equivalent. Here Conrad has placed it after the

verb, following standard Polish word order. Similarly, standard Polish word order generally places

adverbs of frequency directly after the main verb, something often observed in Conrad’s English

writing as demonstrated in example 7.2.

Due to its rich morphology, Polish is also a free word order language where the most significant

or emphasized items are often placed first. Accordingly, inverted English word order is also not



7.1. MOTIVATION 161

uncommon in Conrad’s works. Example 7.3 illustrates a case where the verb and subject are inverted.

Similarly, an OSV sentence is shown in example 7.4.

Morzinski also notes that prepositional phrases can appear anywhere in Polish sentences, while

they strongly prefer to remain near their heads in English. These result in some very stylistically

marked sentences in Conrad’s works. The final example, 7.5, shows such an interrupting prepositional

phrase in a sentence.

These are but a few examples of the stylistic features detailed by Morzinski. Peters (2013) writes

of Morzinski’s work:

She also contends that attempts to maintain nuances of Polish along with its verbal and

reflexive features interfere at times with Conrad’s stylistic fluency. Morzinski identifies

two particular Polish features that arise in Conrad’s English: his use of time with verbs

and adverbs. She suggests that the less complex grammatical temporal relationships as

well as certain semantic features of Polish cause Conrad to employ, for example, temporal

verb constructions and adverbs in ways unusual for native English speakers. Similarly,

Conrad’s extensive use of intransitive verbs imply his efforts to put into English certain

features of Polish (such as reflexive passives, formal passives, and impersonals) that exist

differently in English. She feels that this factor may have led to what many have seen as

Conrad’s impressionistic style. Morzinski goes on to argue that the influence of Polish on

Conrad’s written English seems to have decreased over the course of his career.

Similarly, Hervouet (1990) argues for the influence of French literature and language on Conrad’s

works in The French Face of Joseph Conrad.

Such analyses of Conrad’s writings have been performed manually and this raises the question:

can NLP and computational models — unsupervised methods, in particular — assist in performing

such tasks? This would require models capable of detecting a particular change in authorial style and

is related to other types of stylistic change such as plagiarism detection and authorship attribution.

The detection of authorship changes in a text is another area where such text segmentation

methods can be helpful. Documents with potentially more than one author are one scenario where

identifying text segments with differing writing styles could be potentially useful. This can also

be applied to documents which are purportedly composed by a single author but actually contain

contributions from multiple authors. One application of such methods has been in Bible authorship

attribution, which we discuss in §7.2.2.

Other types of authorial and stylistic change detection tasks include plagiarism detection (§7.2.4)

and poetic voice change detection (§7.2.3). These applications can be thought of as being intrinsic,

where no reference corpus is available and unsupervised methods must be used. In addition to this,

the methods must be primarily focused on detecting syntactic changes and shifts as opposed to just

topic changes. This means that non-lexical features, like those we have seen in previous chapters,

must be applied for this task.

The primary focus of this chapter is to consider how the analysis and identification of different L1

influences in a text can be framed as a computational linguistics task. As with the above-mentioned

work, we propose to conceptualize it as a variety of text segmentation where we aim to split a text

into regions that display differing L1 influence.
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To this end we investigate Bayesian segmentation models, drawing on the previous work defining

this, in particular Eisenstein and Barzilay (2008). This is done in conjunction with the generation of

artificial documents with influences from multiple L1s.

The remainder of this chapter is organized as follow. In the next section we begin by summarizing

some past NLP work that has tackled similar problems. We then outline our experimental setup,

followed by details of our experiments and results. We conclude with a discussion and possible

directions for future work.

7.2 Related Work

We will first introduce topic segmentation, which is the most widely applied type of segmentation,

along with the relevant evaluation measures. This is followed by several other segmentation tasks

which are not based on topic: Bible authorship, poetry voice detection and plagiarism detection.

7.2.1 Topic Segmentation

The most widely-researched text segmentation task is that of topic segmentation, where the goal is

to divide a text into topically coherent segments. The concept of lexical cohesion is an important

aspect of research in this area. Lexical cohesion refers to the principle that text is not formed by a

random set of words and sentences but rather logically ordered sets of related words that together

form a topic. The cohesion refers to the fact that sentences “stick together” to form a single topical

unit. In addition to the semantic relation between words, other methods such as back-references and

conjunctions also help achieve cohesion. A detailed treatment of cohesion can be found in the work

of Halliday and Hasan (1976). Additionally, a more succinct summary of lexical cohesion can also be

found in Morris and Hirst (1991, §1).

Lexical cohesion is not just limited to relations between word pairs but occurs among sequences of

related words, known as lexical chains. These chains provide clues about the cohesion and structure

of a text and can be considered a “good indication of the linguistic segmentation” (Morris and Hirst,

1991). For example, Toefl11 essays written in response to a prompt about understanding concepts

and learning facts1 might contain something like the following two lexical chains: {education,
learning, understanding} and {fact, theory, idea, concept, knowledge}. Morris and Hirst

(1991) were the first to propose a method for the computation of such chains, using a thesaurus as

the underlying knowledge base. They note:

When a lexical chain ends, there is a tendency for a linguistic segment to end, as the

lexical chains tend to indicate the topicality of segments. If a new lexical chain begins,

this is an indication or clue that a new segment has begun. If an old chain is referred to

again (a chain return), it is a strong indication that a previous segment is being returned

to.

Given its relevance to topic segmentation, a number of different models have been proposed based

on the principle lexical cohesion. The task here is to identify points in a text – usually at sentence

boundaries – where lexical coherence is low and then predict the topic change boundaries according to

1The specific prompt, referred to P7 in the corpus and listed in Table 2.4, is: Do you agree or disagree with the
following statement? It is more important for students to understand ideas and concepts than it is for them to learn
facts. Use specific reasons and examples to support your answer.
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these local minima. This is generally achieved by selecting points that minimize the level of coherence

between sequential segments.

7.2.1.1 TextTiling

The TextTiling algorithm (Hearst, 1994, 1997) is one early and popular approach to text segmentation.

It is an unsupervised and domain-independent method for automatic subdivision of a text into multi-

paragraph units that each represent a topic. The algorithm relies on lexical frequency and distribution

information to determine topic boundaries, assuming that each topic has its own vocabulary and that

large shifts in this vocabulary usage correspond to topic shifts.

Based on this, a tokenized document is first divided into lexical blocks (i.e. pseudo-sentences) of

a predefined size. Next, the similarity between all adjacent lexical blocks is measured using a cosine

similarity metric. Scores are assigned to all block boundaries and the topic boundaries are then set at

the minima along this sequence. These boundaries are then adjusted to coincide with the paragraph

boundaries in the original document. The algorithm automatically detects the number of segments

in each document.

TextTiling has been shown to work well on segmenting lengthy, expository documents. It was

evaluated by comparing the algorithm against reader judgements. Seven readers were asked to mark

topic change paragraph boundaries in 13 articles. Agreement among the judges was imperfect and

only those boundaries marked by at least three readers were retained as “true” boundaries for eval-

uation. The method was evaluated according to how many true boundaries it selected out of the

total (precision) and how many true boundaries out of the total possible were marked (recall). The

TextTiling segmentation (66% precision, 61% recall) outperformed a baseline system that placed ran-

dom boundaries (44% precision, 37% recall) and its segmentations also matched closely with those of

human annotators (81% precision, 71% recall).

Although precision and recall are standard measures in information retrieval, researchers soon

noted that their use for evaluating segmentation are problematic. One issue is the trade-off between

precision and recall: increasing one usually decreases the other. Additionally, they are not sensitive

to near-misses: missing a boundary by either a minimal or wide margin results in a score of 0.

Beeferman et al. (1997) note that “an algorithm that places a boundary a sentence away from the

actual boundary every time actually receives worse precision and recall scores than an algorithm that

hypothesizes a boundary at every position.” These shortcomings led to the proposal of specific text

segmentation metrics, which we discuss in the next section.

7.2.1.2 Evaluation Metrics

There exist two standard and widely used text segmentation metrics that compare predicted segmen-

tation boundaries against a gold standard reference. Both of these measures are being reported in

recent work on topic segmentation and we also follow this practice in our own work.We now briefly

describe these two metrics.

Pk Proposed by Beeferman et al. (1997, 1999), this metric is aimed at resolving some of the issues

associated with using precision and recall, including partial scoring for near-misses. The method

uses a sliding window that is calculated as being half the average size of a segment. This window is

moved over the text and at each instance it counts if the element at the start of the probe window
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is predicted as being in the same segment as the last element and if this is actually false, i.e. the

proposed segmentation disagrees with the gold standard. These counts are normalized by the number

of measurements to produce a score between 0 and 1. Here a lower score means better performance,

with 0 being a perfect segmentation. The authors report Pk values of 0.12 for segmenting broadcast

news and 0.19 for segmenting Wall Street Journal text. However, it has also been noted that some

“degenerate” algorithms – such as placing boundaries randomly or at every possible position – can

score 0.5 (Pevzner and Hearst, 2002).

WindowDiff (WD) The Pk has been criticized by Pevzner and Hearst (2002) for applying different

penalties for false positive and false negatives in addition to failing to penalize false positives at all

in some cases. They propose the WindowDiff (WD) metric to remedy these shortcomings. Instead

of just testing if two sentences are in the same segment, WD requires that the number of segments

between the two sentences be the same in both the hypothesized and gold standard segmentations.

7.2.1.3 Unsupervised Bayesian Segmentation

The work of Eisenstein and Barzilay (2008) is a very different approach compared to TextTiling that

has become popular. The authors propose a novel Bayesian approach based on a generative model

that assumes that each segment has its own language model. Under this assumption the task can be

framed as predicting boundaries at points which maximize the probability of a text being generated

by a given language model. An open-source implementation of the method, called BayesSeg, is

made available by the authors.

We discuss their model at some length here: it is the basis of many later models (which we briefly

note at the end of this section) and also the basis for the work in this chapter.

Their method is based on lexical cohesion — expressed in this context as topic segments having

compact and consistent lexical distributions — and attempts to implement this within a probabilistic

framework by modelling words within each segment as draws from a multinomial language model

associated with that segment.

In Equation 1 of their work they define the observation likelihood as,

p(X | z,Θ) =

T∏

t

p(xt | θzt), (7.1)

where X is the set of all T sentences, z is the vector of segment assignments for each sentence,

xt is the bag of words drawn from the language model and Θ is the set of all K language models

Θ1 . . .ΘK . K is assumed to be fixed and known, which is standard in segmentation work. The authors

also impose an additional constraint, that zt must be equal to either zt−1 (the previous sentence’s

segment) or zt+1 (the next segment), in order to ensure a linear segmentation.

The key concept here is that the language model corresponding to each segment must concentrate

its probability mass on a compact set of words, consistent with the principle of lexical cohesion.

This segmentation model has two parameters: the set of language models Θ and the segment

assignment indexes z. The authors note that since this task is only concerned with the segment

assignments, searching in the space of language models is not desirable. They offer two alternatives

to overcome this: (1) taking point estimates of the language models (Eisenstein and Barzilay, 2008,
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§3.1) which is considered to be theoretically unsatisfying and (2) marginalizing them out (Eisenstein

and Barzilay, 2008, §3.2), which yields better performance.

Equation 7 of Eisenstein and Barzilay (2008), reproduced here, shows how they marginalize over

the language models,

p(X | z, θ0) =

K∏

j

∏

{t:zt=j}

p(xt | θ0) · (7.2)

=

K∏

j

∫
dθj

∏

{t:zt=j}

p(xt | θj)p(θj | θ0)

=

K∏

j

pdcm({xt : zt = j} | θ0)

The definition of pdcm — which refers to the Dirichlet compound multinomial distribution —

follows. This DCM distribution expresses the expectation over all of the multinomial language models,

when conditioned on the symmetric Dirichlet prior θ0,

pdcm({xt : zt = j} | θ0) =
Γ(Wθ0)

Γ(Nj +Wθo)

W∏

i

Γ(nj,i + θ0)

Γ(θ0)
(7.3)

where W is the number of words in the vocabulary and Nj =
∑W

i nj,i, the total number of words

in the segment j. The gamma function Γ(n) is an extension of the factorial where Γ(n) = (n− 1)!.

The authors then observe that the optimal segmentation maximizes the joint probability

p(X, z | θ0) = p(X | z, θ0)p(z)

and assume a uniform p(z) over valid segmentations with no probability mass assigned to in-

valid segmentations. The hyperparameter θ0 can be chosen, or can be learned via an Expectation-

Maximization process.2

The authors evaluate their method on two corpora from different domain: the ICSI corpus of

meeting transcripts which is used in speech segmentation, and a new corpus of medical text created

by the authors. The meeting corpus has transcripts of 75 multi-party meetings, 25 of which are

annotated with segment boundaries. The text corpus is constructed from the contents of a medical

textbook3 composed of 227 chapters where each chapter is segmented into sections with a total of

1136 sections.4

Their results show that their method substantially outperforms other segmentation approaches

for both the meeting transcripts (their method giving Pk = 0.34) and medical textbook datasets

(Pk = 0.26).

This work presents a significant contribution and a lot of subsequent research has drawn on this

methodology for varying purposes.5 Eisenstein (2009) later expanded this model for hierarchical text

segmentation, treating lexical cohesion as a multi-scale phenomenon. The approach was adapted so

that each token is modelled as a draw from a pyramid of latent topic models with the structure of

2The implementation that the authors provide can do this.
3The book, Clinical Methods: The History, Physical, and Laboratory Examinations, is available for free download

at http://onlinebooks.library.upenn.edu
4There are an average of 5 segments per chapter, and an average of 140 sentences per chapter.
5The paper currently has 125 citations in Google Scholar.

http://onlinebooks.library.upenn.edu
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the pyramid being constrained to induce a hierarchical segmentation. Many other studies in the area

use the BayesSeg system as a competitive baseline for evaluating their own work. Examples include

the Affinity Propagation-based segmentation method of Kazantseva and Szpakowicz (2011) and the

content modelling work of Chen et al. (2009).

Others have also extended the Bayesian approach in some way. Jeong and Titov (2010), for

example, propose a model for joint discourse segmentation and alignment for documents with parallel

structures, such as a text with commentaries or presenting alternative views on the same topic. This

is motivated partly by the goal that “revealing relations between the parts by jointly segmenting

and predicting links between the segments, would help to visualize such documents” as well as for

generating summaries of the aligned segments. They extend the model of Eisenstein and Barzilay

(2008) to segment and align parts of a parallel document.

Another example of an extension to the Bayesian model is the work of Du et al. (2013) who modify

the Eisenstein and Barzilay (2008) model “into a structured topic model that can capture a simple

hierarchical topic structure latent in documents”. This is not done to perform hierarchical segmen-

tation, but instead the information from the hierarchies is used to improve the linear segmentation.

They also use BayesSeg as a baseline for evaluating their work.

7.2.2 Bible Authorship

Koppel et al. (2011a) consider the task of decomposing a document into its authorial components

based on their stylistic properties and propose an unsupervised method for doing so.

Their aim here is to be able to delineate the contributions of each individual author in a multi-

author text, where the contributions are entire chapters. The method is unsupervised in the sense

that no prior information or other writing samples by the authors are available.

The authors use biblical books as their data, specifically the books of Jeremiah (52 chapters) and

Ezekiel (48 chapters) in Hebrew, both of which are generally believed to be single-authored. The

chapters in these books are unlabelled. A single artificial corpus was constructed by interleaving

chapters of the books of Jeremiah and Ezekiel and the task is to identify those by the same author.

Their first method involves representing each chapter as a bag-of-words (using all words that

appear at least k = 2 times in the corpus). They then compute the cosine similarity of every pair of

chapters in the corpus and apply a clustering algorithm to group the chapters into two clusters. This

method does not perform well, with only half the chapters being clustered correctly.

Lexical choice is an important part of authorial style; while one author might prefer using the

words begin and end, another might prefer start and finish. With this in mind, the authors then

propose an extended method that exploits synonym choice. They give as an example the case that in

Hebrew there are seven synonyms for the word fear, and that different authors may choose consistently

from among them. The basic idea here is to identify synonyms based on the hypothesis that authors

differ in the proportion of words they use from a set of synonyms (synset).

The authors construct their own synsets using available biblical resources and annotations. They

then represent texts by vectors of synonyms6 and apply a modified cosine similarity measure to

compare and cluster these vectors. This results in substantial improvements in the clustering results,

demonstrating the utility of synonyms for this task.

6The value of a cell is 1/j for use of j synonyms in a particular synset.
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A key difference between this approach and our task is the assumption that different texts are

written by different authors. Our task does not make such an assumption, leaving open the possibility

that an author may exhibit different styles of writing as influenced by their different L1s. The method

also relies on the extensive historical Biblical scholarship that has identified important synsets for

differentiating authors. Relating this to our proposed L1-based segmentation task, this is not the

type of differentiating factor that would be normally applied.

7.2.3 Poetry Voice Detection

Others have also attempted to apply unsupervised segmentation methods for literary analysis, specif-

ically the stylistic segmentation of poetry. This was the focus of the work by Brooke et al. (2012)

where they perform stylistic segmentation of a well-known poem, The Waste Land by T.S. Eliot.

This poem is renowned for the great number of voices that appear throughout the text and has

been the subject of much literary analysis (Bedient and Eliot, 1986; Cooper, 1987). These distinct

voices, conceived of as representing different characters, have differing tones, lexis and grammatical

styles (e.g. reflecting the level of formality). The transitions between the voices are not explicitly

marked in the poem and the task here is to predict the breaks where these voice changes occur.

The authors argue that the use of generative models is not feasible for this task, noting:

Generative models, which use a bag-of-words assumption, have a very different problem:

in their standard form, they can capture only lexical cohesion, which is not the (primary)

focus of stylistic analysis.

They instead present a method based on deriving a curve that captures stylistic change. The local

maxima in this change curve represent potential breaks in the text. This stylistic change curve is

related to the TextTiling work of Hearst (1994, 1997) which we described in §7.2.1.1, but it has been

generalized to apply to any number of features derived from a span of text.7 The authors propose a

number of local features that are internal to the poem (e.g. word length, syllable count, part-of-speech

tag) as well as extrinsic features that are external to the poem. Some examples of extrinsic features

include using the average unigram counts in the 1T Corpus8 or sentiment polarity from a lexicon.

Initial tests on artificial mixed-style poems, generated by combining stylistically unique poems

from distinct authors, show that combining all features provide the best results that are well-above

baseline and approximately halfway close to perfect segmentation (Pk = 0.25). An interesting finding

reported here is the high performance and utility of extrinsic features for this task.

Results for segmenting The Waste Land are also above baseline, but lower than those for the

artificial poems as this is a much more difficult task which can be challenging even for human readers.9

Brooke et al. (2013) extend their investigation of this task by considering a clustering approach.

Here they assume an existing initial segmentation of the work and attempt to cluster the segments

which correspond to the same voice. They employ the same feature set and apply a slightly modified

version of the k-means clustering algorithm. Clusters are compared against a gold standard annota-

tion using the BCubed metric. Results on artificial poems show that the method is effective when

7TextTiling only uses a document’s vocabulary and performs quantitative lexical analyses to predict the segmenta-
tion of the text.

8The authors use this as a metric of how commonly a word is used in general.
9No accepted gold standard for the segmentation exists. Brooke et al. (2012) enlisted a class of 140 undergraduate

students in an English literature course to each segment the poem and used the majority judgement as one component
of their gold standard.



168 CHAPTER 7. NATIVE LANGUAGE-BASED TEXT SEGMENTATION

stylistic differences are clear and pronounced. For The Waste Land, however, the results are far lower

and the method less effective. This highlights the limitations of such methods and they conclude that

it is likely because the differences in the poem are much more subtle:

Literature, by its very nature, involves combining existing means of expression in sur-

prising new ways, resisting supervised analysis methods that depend on assumptions of

conformity. Our unsupervised approach to distinguishing voices in poetry offers this nec-

essary flexibility, and indeed seems to work reasonably well in cases when the stylistic

differences are clear. The Waste Land, however, is a very subtle text, and our results

suggest that we are a long way from something that would be a considered a possible

human interpretation.

7.2.4 Plagiarism Detection

Plagiarism detection is the task of analyzing a text to detect portions which are not original. The

goal of external plagiarism detection is to find similar documents or segments in a text, given a

reference corpus of potentially original documents. On the other hand, intrinsic plagiarism detection

is a more challenging task that does not rely on any additional documents, instead it analyzes a single

document with respect to variations and inconsistencies in writing style (Zu Eissen and Stein, 2006).

Plagiarism has been a particular issue for EFL students. Pecorari (2003) investigated potential

plagiarism in academic second-language writing, focusing specifically on patchwriting, the heavy use

of text from a different source with some modification and insertion of additional words and sentences

to form a new text. This is considered a form of plagiarism, even in cases where a citation is provided

as quotation marks are not used. Pecorari (2003) studied the writings of 17 postgraduate students,

comparing their texts against the original sources. Results showed that the texts exhibited features

that could be classified as plagiarism, but further analysis and interviews with the authors suggested

that there was no deliberate intent to plagiarize.

Another example is the work of Keck (2006) who compared the use of textual borrowing by

both native and non-native writers. The classified paraphrases into four categories: Near Copy,

Minimal Revision, Moderate Revision, and Substantial Revision. Results showed that L2 writers had

significantly more Near Copy paraphrases than their L1 counterparts. Other researchers have also

investigated plagiarism with regards to writers from certain countries (Shi, 2006; Abdul-Ameer and

Hussein, 2015).

It should also be noted that this research is generally not conducted by people working in NLP,

although there is some similarity in techniques. Change curves like the one described in the previous

section have also been explored for intrinsic plagiarism detection. Stamatatos (2009) proposes using a

style change function, but based only on character n-grams. The method first involves the calculation

of a character n-gram profile for the whole document by creating a vector of all n-gram frequencies

normalized by the text length, with n = 3 in this study. This is followed by passing a sliding window

of length l over the entire text and comparing the profile of the content within the window against

the document’s profile using a dissimilarity function.

This enables the creation of a stylistic change curve along the sliding window positions. The

authors then use the standard deviation of these values to detect local maxima which most likely

correspond to plagiarised passages.
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Using the corpus from First International Competition on Plagiarism Detection, the method

achieves an F-score of 0.29 in detecting plagiarised passage. This is a promising result considering

that this is a much more difficult task compared to external plagiarism detection where the task is

to find similar documents or segments in a reference corpus. To our knowledge these task have not

yet been tackled using a Bayesian approach.

7.2.5 Summary of Related Work

To summarize this related work, we can see that topic segmentation is a widely-researched task where

Bayesian methods have proven to be popular and successful. These methods are based on the concept

of lexical cohesion and require that distributions in the model exhibit compactness.

On the other hand, segmentation methods have rarely been applied for stylistic segmentation,

with no attempts to apply a Bayesian approach for this task: a goal of this chapter is, contra Brooke

et al. (2012), to define a generative model for stylistic segmentation.

7.3 Experimental Setup

The main aim of this work is to propose an unsupervised Bayesian approach to text segmentation

based on the native language of the writer(s), the kind of stylistic analysis that is the focus of this

thesis. We evaluate our Bayesian models on artificial texts generated from learner essays, similar

to the previously described work on Bible authorship and poetry segmentation. These generated

documents will then be segmented using an unsupervised approach based on generative models, as

described in §7.4.

7.3.1 Document Generation and Data

As the task is to segment texts by the author’s L1, we want to ensure that we are not segmenting

by topic and thus need use texts written by authors from different L1 backgrounds on the very same

topic. The Toefl11 corpus, which contains both L1 and essay prompt metadata, is a suitable dataset

for this task.

Next we choose a pair of languages from which text segments will be drawn. For this work the

two L1s we selected were German and Italian. The principle behind our choice is that for the first

attempt to tackle this task we should choose L1s that we know have the potential to be distinguished

based on the NLI classification task discussed in Chapter 3. German is the class with the highest

NLI accuracy in the Toefl11 corpus and Italian also performs very well. Additionally, there is also

very little confusion between the two; a binary NLI classifier trained on the language pair achieved

97% accuracy.

7.3.1.1 Document Generation

We then randomly draw documents from this subset of Toefl11 to form larger composite documents,

each of which contains s segments. Toefl11 essays — each of which is a segment — are randomly

drawn while alternating the L1 class after each segment. This is repeated until the maximum num-
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ber of segments per document, s, is reached. In this work we experiment with datasets generated

with s = 5.10

7.3.1.2 Data

We generate four distinct datasets for our experiments using the above methodology data from the

Toefl11-Train and Toefl11-Dev sets of the Toefl11 corpus. The documents in these datasets,

as described below, differ in the parameters used to select the essays for each segment and what type

of tokens are used. Tokens can be represented in their original form where the surface tokens are

used for performing segmentation. Alternatively, each token may be replaced by its POS tag and

this could be later used to extract POS n-grams. The POS representation is motivated by the fact

that our work from the preceding chapters evidenced that POS-based features are very useful for

capturing L1-based stylistic differences.11 Our method for encoding n-grams is described below in

§7.3.1.3.

TopicSeg-Tokens This data is generated by keeping the L1 class constant and alternating seg-

ments between two topics. We chose Italian for the L1 class and essays from the prompts “P7” and

“P8” are used.12 This dataset contains a total of 53 artificial documents and is useful for testing

segmentation by topic. It will be used to verify that topic segmentation as discussed in Eisenstein

and Barzilay (2008) functions as expected for data from this domain: that is, that topic change is

detectable.

TopicSeg-PTB As POS tags are useful features for capturing L1-based sytlistic differences, they

can be useful for this task. An insight here is that we can represent the documents at a level other

than lexical (Wong et al., 2012). Here the tokens in each text are replaced with their POS tags and

the segmentation is performed over this data. In these experiments the tags are obtained via the

Stanford Tagger and use the Penn Treebank (PTB) tagset, which we briefly described in §5.8. The

same L1 and topics as TopicSeg-Tokens are used for a total of 53 documents. Figure 7.1 shows an

example of a document with three segments where the PTB POS tags for each token are used. This

dataset will be used to investigate, inter alia, whether segmentation by topic is also possible on the

basis of stylistic features. We would expect not.

L1Seg-PTB This dataset is used for segmentation based on native language, also using the PTB

POS tags. In addition to our language pair we also choose a specific topic and then retrieve all

documents from the corpus that match these criteria. For this work we chose prompt “P7” since it

had the largest number of essays for our chosen L1 pair. This resulted in 57 documents. To generate

a document, essays are randomly drawn while alternating the L1 class after each segment. We would

expect that this dataset should not be segmentable by topic, as all the segments are on the same

topic; the segments should however, differ in stylistic characteristics related to the L1.

L1Seg-CLAWS2 This dataset is generated using the same methodology as L1Seg-PTB, with

the exception that the essays are tagged using the RASP tagger which uses the more fine-grained

10However, we have also successfully replicated all of our results using s = 7, 9.
11See previous results in §3.1.3.5 and §5.8.
12The descriptions of the prompts were listed in Table 2.4.
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==========

IN PRP$ NN , WP VBD IN DT NN VBZ RB RB JJ .

PRP VBP IN DT NN IN IN DT NN , NNS CC NN VBP RBR JJ IN TO VB NNS , VBZ IN DT JJ NN DT NN VBZ .

IN PRP$ NN IN DT NN , PRP VBZ RB RBR JJ TO VB NNS CC NNS IN DT NN .

DT JJS NN FW MD VB TO VB NN TO PRP$ NN , VBZ PRP$ JJ NN IN DT NN NN .

PRP VBP VBN NN CC IN JJS IN DT NNS FW VBD , TO VB NNS VBD DT RBS JJ NN IN DT VBG .

IN DT PRP MD VB VBN RB JJ TO VB DT NN .

IN PRP VBP IN TO VB TO DT NN JJ NN , IN PRP VBP RB VBN IN .

PRP MD VB DT NN IN DT NN MD VB IN DT NN NN VBP RB VBN CC FW MD VB DT NNS .

CC IN PRP VBP RB VB DT NN CC NNS IN NN POS NNP PRP MD RB VBN JJ TO VB PRP RB .

PRP VBP VBG IN NN TO DT NNS JJ TO NN NN .

DT NNS VBP RB JJ IN NNS WDT VBP DT NN IN PRP$ NN NN .

CC RB IN PRP PRP VBP JJ VB JJ TO VB CC TO VB WP VBD IN DT JJ NN CC NN .

TO RBR VB WP VBD JJ TO DT JJ JJ NN .

==========

IN PRP$ NN NN PRP VBD DT NN IN IN NNS RB JJ NN VBZ JJ CC RB RB DT NN IN DT JJ NN CC NNS .

IN NN MD VB IN DT NN DT NNS IN VBG VBP VBN PRP$ NNS .

IN DT JJR JJ NN IN PRP MD VB DT NN IN DT JJ NNS , DT NN VBZ DT JJ NN IN DT NN IN DT NN .

RB PRP CC PRP VBZ DT NN IN DT NN IN DT NN CC RB DT JJ JJ NNS .

DT NN VBZ RB MD VB JJ NNS , WDT RB RB VBZ RB VB IN DT NN IN DT JJ NN .

IN NN IN VBG IN DT NN IN DT NN PRP VBP RB VB TO VB JJ JJ NN .

NN DT JJ NN IN JJ NNS CC JJ NN TO DT NN VBZ DT NN IN DT NN IN PRP CC PRP VBZ TO VB DT NN .

RB IN NN IN NN NN CC RB IN PRP VBZ VBN IN DT NN TO VB VBN IN NN .

IN NN DT JJ NN IN DT JJ NN IN NN NN NN , NNP , IN JJ NN IN JJ NN .

CC RB IN DT NN IN NN PRP IN NN PRP VBZ IN DT JJ NN CC JJ NNS WDT NN IN NN VBZ JJ .

IN PRP PRP$ RBR JJ TO VB NNS IN DT JJ PRP VBP JJ IN CC WP VBZ JJ IN PRP$ VBG NN RB IN .

==========

EX VBP RB VBN VBG NNS IN DT NN IN VBG NNS CC IN NN DT NN IN NNS IN VBG .

IN PRP$ NN DT NN DT NN MD VB PRP$ VBG VBZ RB RB JJ IN DT JJ NN IN NN .

IN NN VBG NN VBZ DT NN IN JJ JJ NNS .

DT VBP NNS NN VBP TO VB VBN , PRP MD RB VB VBN IN DT NN IN DT NN .

RB EX VBZ DT NN IN DT NNS TO VB PRP .

IN DT JJ NN VBG NNS , DT VBP DT NN IN NNS CC NNS DT NNS VBP TO VB IN NN TO VB JJ .

DT MD DT VB VBN IN

CC MD DT NN IN NN NN NN IN PRP$ VBG RB IN VBG NNS .

PRP RB VBZ TO VB IN NN DT NNS IN JJ NNS .

CC MD DT NN IN NNS VB DT JJ NN RB IN VBG JJ IN DT JJ NNS CC NNS .

EX VBZ RB DT NN TO VB DT NN IN JJ NNS CC NNS WDT RB VBP RB VB VBN .

DT JJ NN VBZ RB DT NN IN NN CD NN VBZ .

DT NNS MD VB NN PRP VBP VBN IN PRP$ NNS RB , CC PRP$ JJ IN PRP TO VB NNS IN .

NNS VBP NNS IN VBG NNS , CC VBP JJ TO VB JJ NNS IN NNS PRP VBP VBN RB .

IN PRP MD RB VB VBN IN RB VBG NNS , CC VBG NNS VBZ DT NN TO JJ VBG .

DT NN MD VB DT JJ NN IN DT CD NNS .

VBG IN WP DT NN IN VBG VBZ CC RB VBG IN WP PRP POS NNS CC NN VBP .

Figure 7.1: An example of a document with three segments where the PTB POS tags for each token
are used.
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CLAWS2 tagset, as we described earlier in §5.8. This also resulted in 57 documents. The CLAWS2

tagset performed better in the NLI classification task and we will use this dataset to investigate if

there are any differences in this task.

7.3.1.3 Encoding n-gram information

In this section we describe our method for incorporating n-gram information into our topic models.

We do this as our preceding work, e.g. §5.8, has shown that n-grams outperform unigrams for NLI.

For lexical items, Lau et al. (2013) investigated the importance of n-grams within topic models.

They note that in topic modelling each token receives a topic label and that the words in a collocation

— e.g. stock market, White House or health care — may receive different topic assignments despite

forming a single semantic unit.

They then postulate that encoding such bigrams as single tokens guarantees that these units

receive a single label, potentially helping enhance the performance of topic models. This is the first

work to assess the impact of n-gram tokenization for LDA topic models, and the authors propose the

pre-extraction and tokenization of these bigram collocations by first identifying the top collocations

using a t-test. Through extensive studies using four corpora, they experiment with tokenizing the

top 1k, 10k and 100k collocations, reporting that using up to 1,000 of the top collocations provides

the best improvement over the unigram bag of words approach.

Given the parallels between our segmentation task and this topic modelling work, we also apply

the tokenization approach to our data in order to enable the L1Seg model to encode sequences of

POS tags. We do this by implementing a preprocessing step that converts each sentence within each

document to a set of bigrams or trigrams, where each n-gram is represented by a single token.13 This

procedure greatly increases the number of tokens per sentence and we posit that by explicitly encoding

POS tag sequences as individual tokens the segmentation model will be able to better distinguish

stylistic changes in the same way that POS n-grams (with n = 2, 3) improve NLI accuracy.

7.4 Segmentation Models

For segmentation we adopt the unsupervised Bayesian method of Eisenstein and Barzilay (2008),

as described in §7.2.1.3. An open-source implementation of the method, called BayesSeg, is made

available by the authors.14 Datasets generated as part of our experiments are then segmented and

we report results according to the metrics described in §7.2.1.2. We experiment with four models for

segmentation, described below.

7.4.1 TopicSeg

Our first model is exactly the one proposed by Eisenstein and Barzilay (2008). The aim here is to look

at how we perform at segmenting learner essays by topic in order to confirm that topic segmentation

works for this domain and these types of topics. This is something that has been shown to be quite

feasible by previous research (Beeferman et al., 1999; Eisenstein and Barzilay, 2008) and we aim to

evaluate how the different document types perform. We apply this model to the TopicSeg-Tokens

13e.g. the trigram DT JJ NN becomes a single token: DT-JJ-NN
14http://groups.csail.mit.edu/rbg/code/bayesseg/

http://groups.csail.mit.edu/rbg/code/bayesseg/
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and TopicSeg-PTB datasets where the texts have the same L1 and boundaries are placed between

essays of differing topics.

7.4.2 L1Seg

Our second model is based on that of Eisenstein and Barzilay (2008), but modified slightly with a

revised generative story. Where they assume a standard generative model over words with constraints

on topic change between sentences, we make make minor modifications to adapt the model for our

task. The standard generative story (Blei, 2012) — an account of how a model generates the observed

data — usually generates words in a two-stage process:

1. For each document, randomly choose a distribution of topics

2. For each word in the document:

(a) Assign a topic from those chosen in step 1

(b) Randomly choose a word from that topic’s vocabulary

Such generative models, although initially developed for language-related tasks such as topic

modelling, have been adapted to find trends in images, genetic data and social networks (Blei, 2012).

Here we modify this story to be over part-of-speech data instead of lexical items. By using this

syntactic data we aim to segment our texts based on the native language of the author for each

segment, with each “topic” now representing an L1. For this model we only make use of the L1Seg-

PTB dataset since POS tags have been shown to capture inter-L1 differences in syntax. This model

also applies to POS n-grams, as we described in §7.3.1.3.

7.4.3 L1Seg-Compact

It is also not obvious that the same methods that produce compact distributions in standard lexical

chains would also work for POS data, particularly if extended to POS n-grams which can result in a

very large number of tokens. In this regard Eisenstein and Barzilay (2008) note:

To obtain a high likelihood, the language models associated with each segment should

concentrate their probability mass on a compact subset of words. Language models that

spread their probability mass over a broad set of words will induce a lower likelihood.

This is consistent with the principle of lexical cohesion.

Eisenstein and Barzilay (2008) discuss this within the context of topic segmentation. For example,

a topic segment related to the previously mentioned essay prompt P7 might concentrate its probabil-

ity mass on the following set of words: {education, learning, understanding, fact, theory,

idea, concept, knowledge}. However, it is unclear if this would also would happen for POS tags;

there is no syntactic analogue for the sort of lexical chains important in topic segmentation. It may

then turn out that using all the POS tags as we did in the previous model would not achieve a strong

performance. Therefore additional approaches for compacting the set of tags used by the genera-

tive model, using knowledge from the classification task, could potentially be necessary for enhanced

performance.
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Figure 7.2: A visualization of sentences from a single segment. Each row represents a sentence and
each token is represented by a square. Token trigrams considered discriminative for either of our two
L1 classes are shown in blue or red, with the rest being considered non-discriminative.
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Figure 7.3: Tokens that are part of discriminative trigrams for both L1 classes are shown in purple
here.

Discarding Non-Discriminative Features One approach that could possibly overcome these

limitations is the removal of non-discriminative features from the input space. This would allow us to

encode POS sequence information via n-grams while also keeping the model’s vocabulary sufficiently

small. Doing this requires the use of extrinsic information for filtering the n-grams. The use of such

extrinsic information has proven to be useful for other similar tasks such as the poetry style change

segmentation work of Brooke et al. (2012), as described in §7.2.3.

We perform this filtering using the discriminative feature lists extracted using the method we

proposed in Chapter 6. We extract the top 300 most discriminative POS n-gram features for each

L1, resulting in two lists of 600 POS bigrams and trigrams. This list also enables us to visualize

the distribution of the discriminative features within our documents. Figure 7.2 shows one such

visualization of a single segment where each row represents a sentence and each token is represented

by a square. Tokens that are part of a trigram which is considered discriminative for either of our

two L1 classes are shown in blue or red.

Note that discriminative trigrams can overlap with each other within the same class (e.g. on lines

1 and 2 where two overlapping trigrams form a group of four consecutive tokens) and also between

two classes (e.g. on lines 10 and 11). This can occur in cases where the last tag in a discriminative

trigram overlaps with the first tag in another such n-gram. This is also shown in Figure 7.3 where

overlapping elements are displayed in purple.

Cases of overlap across two classes can be potentially problematic since we need to select the most

discriminative feature. We resolve such conflicts by using the weights15 assigned to the features: in

cases of overlap, the feature with the higher weight will be chosen.

15These weights come from the discriminative model used to extract informative features, see §6.3 for more details.
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7.4.4 L1Seg-AsymP

Looking at the distribution of discriminative features in our documents, as in Figure 7.2, one idea is

that incorporating knowledge about which features are associated with which L1 could potentially

help improve the results.

One approach to do this might be the use of asymmetric priors. We note that features associated

with an L1 often dominate in a segment, e.g. in Figure 7.2 we observe a preponderance of red squares.

Accordingly, priors can represent evidence external to the data that some some aspect should be

weighted more strongly: for us, this is evidence from the NLI classification task.

The segmentation models discussed so far only make use of a symmetric prior16 but later work

mentions that it would be possible to modify this to use an asymmetric prior (Eisenstein, 2009),

although this does not appear to have been implemented.

Given that they are effective for incorporating external information, recent work has highlighted

the importance of optimizing over such priors, and in particular, the use of asymmetric priors. One

example is the work of Wallach et al. (2009) on LDA where they report that “an asymmetric Dirichlet

prior over the document-topic distributions has substantial advantages over a symmetric prior”, with

the priors being approximated through hyperparameter optimization. Such methods have since been

applied in other tasks such as sentiment analysis (Lin and He, 2009; Lin et al., 2012) to achieve

substantial improvements. For sentiment analysis, Lin and He (2009) incorporate external information

from a subjectivity lexicon. As is the case here, the sentiment elements draw on external info, there

sources like the MPQA subjectivity lexicon. In applying LDA, instead of using a uniform Dirichlet

prior for the document–sentiment distribution, they experiment with an asymmetric prior. This

value was determined empirically, with the optimal values being 0.01 for positive sentiment elements

and 5.0 for negative sentiment ones. This result illustrates that there can be a very large difference

between the priors, with one being very strong. Such strong priors can give more weight to other

beliefs (for our task, the external NLI information) with respect to the data.

Conceptually, or our task this could at its simplest entail having two asymmetric priors, one

corresponding to L1a and the other to L1b.
17 Given this, we can assume that segments will alternate

between L1a and L1b. And instead of a single θ0, we have two asymmetric priors that we call θa,

θb corresponding to L1a and L1b respectively. This will require reworking the definition of pdcm in

equation 7.3 in §7.2.1.3.

The next issue is how to construct the θa and θb. The simplest scenario would require a single

constant value for all elements in one L1 and another for all elements in the other L1. Specifically,

referring to each element i of the prior with the notation θa[i] or θb[i] as appropriate, and using

discrim(L1x) to denote “the ranked list of discriminative n-grams for L1x”, we define

θa[i] =




c1 if θa[i] ∈ discrim(L1a)

c2 if θa[i] ∈ discrim(L1b)

and

16They use the default BayesSeg prior value which was optimized for topic segmentation by Eisenstein and Barzilay
(2008).

17A more sophisticated approach would be to have more numerous fine-grained asymmetric priors for each element
of L1a and L1b: that would correspond in our case to individual POS n-grams, and the asymmetric priors could be set
by reference to the weight of those n-grams from the NLI classification model. Given the relatively small size of our
dataset and the large number of parameters this would require, we do not investigate this here.
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θb[i] =




c2 if θb[i] ∈ discrim(L1a)

c1 if θb[i] ∈ discrim(L1b)

We would expect that c1 > c2 (i.e. the prior is stronger for those elements that come from the

appropriate ranked list of discriminative features), but these values will be learned.

Adapting Equation 7 of Eisenstein and Barzilay (2008):

p(X | z, θa, θb) =
∏

{jo:jo mod 2=1,j≤K}

∏

{t:zt=jo}

p(xt | θa) (7.4)

∏

{je:je mod 2=0,j≤K}

∏

{t:zt=je}

p(xt | θb) (7.5)

=
∏

jo

pdcm({xt : zt = jo} | θa)
∏

je

pdcm({xt : zt = je} | θb) (7.6)

Note that jo is an index over odd segments and je over even ones. K is as usual the total number

of segments.

pdcm({xt : zt = jo} | θa) =
Γ(

∑W
k θa[k])

Γ(Njo +
∑W

k θa[k])

W∏

i

Γ(nj,i + θa[i])

Γ(θa[i])
(7.7)

W is now more generally the number of items in our vocabulary (whether words or POS n-grams).

A notational addition here is θa[k] which refers the L1a prior for the kth word or POS n-gram. There

is an analogous pdcm for θb.

In principle we would then calculate p(X | z, θa, θb) twice: once where we assign θa to segment 1,

and the second time where we assign θb. We’d then compare the two p(X | z, θa, θb), and see which

one fits better. In this work, however, we will fix the initial L1: segment 1 corresponds to L1a and

consequently has prior θa.18

7.4.4.1 Asymmetric Prior Example

In this section we present a brief worked example of how the asymmetric prior would work. As

described in §7.2.1.3, there are two ways to create the language models: taking point estimates of

the language model or alternatively, marginalizing the language model. Although we work with the

marginalized model in our work, we will use the point estimate for this example as they are more

intuitive.

Supposing we have have a vocabulary of five words, which are POS tags19 in our case: { DT, EX,

IN, JJ, NN }; W = 5. In our example, let us say that EX is associated with L1a and the remaining

elements with L1b. Starting first with the symmetric case, let θo = (1, 1, 1, 1, 1).

The calculations of the point estimates for the first segment are then:

18This requires an extension of the BayesSeg software to support asymmetric priors. We will make this extended
version of the code available under the same conditions as BayesSeg.

19These could refer to, for example, { the, there, of, big, cat }
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θ̂1,DT =
n1,DT + 1

∑5
i=1 n1,i + 5

θ̂1,EX =
n1,EX + 1

∑5
i=1 n1,i + 5

. . .

Recall that θj is the language model for segment j. Here we use θ̂j,w to denote the point estimate

value for word w in θj . The 1 in the first numerator comes from θ0[1], in the second numerator from

θ0[2], and so on.

If we had one single asymmetric prior, say θ′0 = (1, 2, 1, 1, 1), then

θ̂1,DT =
n1,DT + 1

∑5
i=1 n1,i + 6

θ̂1,EX =
n1,EX + 2

∑5
i=1 n1,i + 6

. . .

Extending this to two priors, assume that the prior θ′0 defined above is our θa. Let θb =

(2, 1, 2, 2, 2). Then

θ̂2,DT =
n2,DT + 2

∑5
i=1 n1,i + 8

θ̂2,EX =
n2,EX + 1

∑5
i=1 n1,i + 8

. . .

In this example c1 = 2 and c2 = 1. It is apparent that under θa and consequently for our point

estimate θ̂1,EX , the element EX will be favoured, and under θb, the other elements. These priors

effect a kind of smoothing: the stronger the prior, the less the data has a say.

7.5 Results

In this section we outline the four experiments we conducted using the above-described models and

data. The results for all of our experiments can be found in Table 7.1.

7.5.1 Segmenting by Topic

We begin by testing the TopicSeg model to ensure that the Bayesian segmentation methodology

can achieve reasonable results for segmenting learner essays by topic. The results on the TopicSeg-
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Model Dataset Pk WD

TopicSeg TopicSeg-Tokens 0.213 0.215

TopicSeg TopicSeg-PTB 0.451 0.497

L1Seg L1Seg-PTB unigrams 0.473 0.497

L1Seg L1Seg-PTB bigrams 0.497 0.498

L1Seg L1Seg-PTB trigrams 0.495 0.490

L1Seg-Compact L1Seg-PTB bigrams 0.487 0.506

L1Seg-Compact L1Seg-PTB trigrams 0.392 0.397

L1Seg-Compact L1Seg-CLAWS2 bigrams 0.389 0.401

L1Seg-Compact L1Seg-CLAWS2 trigrams 0.373 0.375

L1Seg-AsymP L1Seg-CLAWS2 trigrams 0.316 0.318

L1Seg-Compact L1Seg-CLAWS2 trigrams (held-out set) 0.354 0.356

L1Seg-AsymP L1Seg-CLAWS2 trigrams (held-out set) 0.266 0.271

Table 7.1: Results for all of our text segmentation experiments.

Tokens dataset show that content words are very effective at segmenting the writings by topic,

achieving Pk values in the range 0.19–0.21.20 These values are similar to those reported for segmenting

Wall Street Journal text (Beeferman et al., 1999). On the other hand, using the PTB POS tag version

of the data in the TopicSeg-PTB dataset results in very poor segmentation results, with Pk values

around 0.45. This demonstrates that, as expected, POS tags do not provide enough information for

topic segmentation; it is not possible to construct even an approximation to lexical chains using them.

7.5.2 L1-based Segmentation

Having verified that the Bayesian segmentation approach is effective for topic segmentation on this

data, we now turn to the style-based L1Seg model for segmenting by the native language.

From the results in Table 7.1 we see very poor performance with a Pk value of 0.473 for segmenting

the texts in L1Seg-PTB using the unigrams as is. This was a somewhat unexpected result given

than we know POS unigram distributions are able to capture syntactic differences between L1-groups

— as demonstrated in §3.1.3.5 and §5.5.1 — albeit with limited accuracy.

These results, although not encouraging, are not entirely surprising given that POS tag unigrams

are a weak feature relative to other syntactic information such as POS bigrams and trigrams. Ac-

cordingly, we considered that the issue could be related to the bag-of-words approach used by the

Bayesian topic segmentation model and that it could be improved by enabling the model to take

bigrams and trigrams into account, as we described in §7.3.1.3.

20These values are obtained by calculating the average segmentation performance across all documents in the dataset,
a standard practice in the field.
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We repeated the above experiment with both the bigram and trigram encoded versions of L1Seg-

PTB, but neither approach resulted in any improvement in our results. In sum, we note that none

of the L1Seg variants tested here worked.

7.5.3 Incorporating Discriminative Features

The segmentation results are shown in Table 7.1. Filtering the bigrams results in some minor improve-

ments over the best results from the L1Seg model. However, there are substantial improvements

when using the filtered POS trigrams, with a Pk value of 0.392. We did not test unigrams as they

were the weakest NLI feature of the three.

This improvement is, we believe, because the Bayesian modelling of lexical cohesion over the input

tokens requires that each segment concentrates its probability mass on a compact subset of words. In

the context of the n-gram tokenization method tested in the previous section, the L1Seg model with

n-grams would most likely exacerbate the issue by prodigiously increasing the number of tokens in the

language model. Essentially we are faced with a feast or famine scenario: the unigrams do not capture

enough information to distinguish non-lexical shifts and the n-grams provide too many features.

We also see that using the CLAWS2 tagset outperforms the PTB tagset. The results achieved for

bigrams are much higher, while the trigram results are also better, with Pk = 0.37. NLI experiments

using different POS tagsets have established that more fine-grained tagsets (i.e. those with more tag

categories) provide greater classification accuracy when used as n-gram features for classification.21

These results comport with these previous findings.

In sum, the results from this experiment demonstrate the importance of inducing a compact

distribution, which we did here by reducing the vocabulary size by stripping non-informative features.

7.5.4 Applying Two Asymmetric Priors

Our final model, L1Seg-AsymP, assesses whether setting different priors for each L1 can improve

performance. We first investigate whether there is any choice of priors that can perform better on

our dataset and then verify this on a held-out test set.

The effects of prior strength in Bayesian estimation have been examined, with weak (< 1) and

strong (> 1) priors shown to achieve different results. In the context of hierarchical Dirichlet processes,

Wang and Blei (2009) note that the value of the prior controls both the smoothing and sparsity of

the Dirichlet, where weak priors encourage more sparse and compact models that place their mass

only only a few terms . This weak prior is also said to “(encode) increased confidence in the estimate

from the observed counts [and] (as) the parameter approaches zero, the expectation of each per-term

probability becomes closer to its empirical estimate”. An example of how such strong and weak

asymmetric priors have been successfully used for sentiment analysis was earlier described in §7.4.4.

We begin with a coarse grid search where the prior search space was defined to be in the interval

[0.1, 3.0], partitioned into 30 evenly spaced values that include both weak and strong priors. Values

for θa and θb were selected from these 30 values, resulting in 900 possible prior combinations. These

combinations also include cases where θa and θb both take the same value, making them equivalent

to the previous experiment.

21See §3.1.3.5 and §5.8 for more details.
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Figure 7.4: Results for running a coarse grid search for an asymmetric prior pair.

The grid search results are visualized in Figure 7.4. We observe that the prior pair of (0.6, 0.3)

achieves a Pk value of 0.321, a substantial improvement over the previous best result of 0.37. This

also highlights the importance of using weak priors for both values and is consistent with the emphasis

on compactness since weak priors result in more compact models.

Next we conduct a more fine-grained grid search, focusing on the range that provided the best

results in the coarse search. This time the prior search space was defined to be in the interval [0.3, 0.9],

partitioned into 60 evenly spaced values, resulting in 3,600 possible prior combinations.

The results are illustrated in Figure 7.5, showing that the prior pair of (0.64, 0.32) provides a

slight improvement of the Pk value to 0.316.

These results thus far have demonstrated that setting an asymmetric prior can be useful for this

task. However, we also need to evaluate the prior values on previously unseen data. As the data used

in our experiments so far comes from the Toefl11 test and development sets, we can use the held

out Toefl11-Test set data for this purpose.

To do this we generate an equivalent of the L1Seg-CLAWS2 dataset, but only using data from

the held-out Toefl11-Test set, resulting in a total of 5 documents with 5 segments each. Running

the L1Seg-Compact model on this dataset, we obtain a Pk value of 0.354. This value is very similar

to what we obtained on the L1Seg-CLAWS2 data and can be considered a baseline for evaluating

our asymmetric prior. Applying the best asymmetric prior from the grid search this improves to 0.266,

showing that the grid search was not just a result of overfitting on the training set.
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Figure 7.5: Results for running a fine-grained grid search for an asymmetric prior pair.

7.6 Discussion

In this chapter we considered the task of identifying L1 influence in texts that contain such effects

from more than one language. We framed this as a variant of text segmentation where the goal is to

subdivide a text into regions of different L1 influence. We explored a range of Bayesian models for

this, based on adapting an unsupervised topic segmentation approach to use POS n-gram features

that capture some short-range syntactic aspects of the text.

We demonstrated that a generative model for stylistic segmentation is possible, and further that

segmentation results improve substantially by compacting the n-gram distributions, achieved by

incorporating knowledge about discriminative features extracted from NLI models. Our best results

come from a model that uses alternating asymmetric priors for each L1, with the priors selected using

a grid search and then evaluated on a held-out test set.

This method could be adapted for use in some of the applications we discussed in §7.2, such

as literary analysis and plagiarism detection. For intrinsic plagiarism, for example, this could be

identified through the detection of stylistic inconsistencies or changes within the text. The detection

of such inconsistencies could also be applied to other tasks, such as detecting vandalism on Wikipedia.

Evaluation is another important aspect of this task that requires further consideration. Although

we use the same segmentation metrics for topic segmentation and our results here were quite similar to

those for topic segmentation, this task is a fundamentally different, and potentially more difficult. The

early topic segmentation work described in §7.2.1.1 was initially evaluated against human judgements.

We believe that such an approach should also be applied here. While human evaluators have been
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Figure 7.6: A visualization of a document containing three text segments from two alternating L1
backgrounds.

shown to be efficient at detecting topic segments, it is not clear if this would be the case for stylistically-

distinct L1-based segments. In §4.1 we showed that human raters could not outperform our NLI

system, but it remains to be seen if this pattern is also reflected for the current task. This is left for

future work. Perhaps it is a task only specialized literary scholars would be able to attempt.

An examination of one of our documents highlights the difficulty of the task. Figure 7.6 shows

a visualization of a document containing three text segments from two alternating L1 backgrounds.

Looking at the features of the sentences prior to and following the boundaries, we do not observe any

sharp changes in the distribution of the blue and red tokens. This lack of a sharp boundary attests

the inherent difficulty of this task. In the absence of the provided boundary positions, it would be

difficult to specify their positions with great confidence.

Future work could also consider different types of data. One idea is to investigate using manual

annotations of Joseph Conrad’s work for literary analysis similar to the scenarios described in §7.1. Yet

another idea is to look at plagiarism data, particularly those mixing native and non-native writings. It

would be interesting to compare these results against the current segmentation experiment since our
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previous work (§5.7) shows that discriminative models can discern non-native writing with extremely

high accuracy.

Our previous NLI work has shown that other syntactic features, including CFG production rules

and dependency parses, can be useful for capturing L1-based syntactic differences. The incorporation

of these features for this segmentation task could also be a potentially fruitful line of inquiry for

future work. We have taken a fairly straightforward approach which modifies the generative story. A

more sophisticated approach would be to incorporate features into the unsupervised model. One such

example is the work of Berg-Kirkpatrick et al. (2010) where they demonstrate that “each component

multinomial of a generative model can be turned into a miniature logistic regression model” with

the use of a modified EM algorithm. Their results showed that the feature-enhanced models which

incorporate linguistically-motivated features achieve substantial improvements for tasks such as part-

of-speech induction, grammar induction, word alignment, and word segmentation.

7.7 Chapter Summary

In this chapter we:

• defined the novel task of native language-based text segmentation

• explored a range of Bayesian models for addressing this task

• adapted an unsupervised Bayesian approach originally developed for topic segmentation to use

syntactic POS features

• incorporated knowledge about discriminative features extracted using NLI to compact the POS

n-gram distribution

• showed that segmentation results improve substantially by compacting the distribution of POS

n-grams in this manner

• demonstrated that performance can be further enhanced through extending the segmentation

model to incorporate asymmetric priors
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Chapter 8

Conclusion

When the research for this thesis commenced in 2012, fewer than 20 papers examining NLI had

been published. This was followed by an efflorescence of work in the area and growing interest from

researchers. This thesis makes contributions in three broad areas: (1) exploring the task in new

ways; (2) investigating how NLI can inform SLA, and (3) introducing the novel task of L1-based text

segmentation. In this chapter we briefly recap our major findings and highlight some avenues for

future work.

8.1 Summary of Contributions

We began by presenting the development of our NLI system in Chapter 3. We built this system

by exploring various classifier ensemble methods, showing that an ensemble of heterogeneous base

learners can achieve good results. Analysis of our results showed that larger, more fine-grained POS

tagsets are more useful for NLI and that proficiency-segregated models could be useful for improving

accuracy. This analysis was expanded with our proposal of a methodology for measuring feature

diversity. We highlighted several interesting trends and correlations between lexical and syntactic

features, including that syntactic features have lower levels of inter-correlation (and thus higher

diversity) compared to their lexical counterparts. In this chapter we also proposed a new feature for

NLI: function word n-grams, showing it to be informative for the task. We also demonstrated that

word skip-grams can serve as a useful alternative to grammatical dependency features.

In Chapter 4 we considered aspects of NLI that are relevant to practical applications. The first

part examined potential reference values for evaluating NLI results and looked at the use of an oracle

classifier to estimate a system’s performance upper-bound, something which had not been done to

date. We also proposed an Accuracy@N measure for evaluating how close a system is to reaching

the oracle performance by checking if the true label is within the top N ranked output labels. We

created a dataset composed of all the submissions to the 2013 NLI Shared Task, a resource which

we made publicly available, and applied our oracle measures to this data. Results here show that for

many misclassified texts the correct class label receives a significant portion of the ensemble votes and

when not the winning label, it is often the runner-up. This knowledge can also be used to increase

NLI accuracy by aiming to develop more sophisticated classifiers that can take into account the top

N labels in their decision making, similar to discriminative re-ranking methods applied in statistical

parsing. Another question that has been raised concerns how humans would perform at NLI. In the
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second part of this chapter we presented the first such study with a group of 10 human experts.

While some participants achieved modest results on our simplified setup with 5 L1s, they did not

outperform our NLI system, and this performance gap is likely to widen on the standard NLI setup.

The difficulty of finding qualified human experts was another issue highlighted here.

The second part of Chapter 4 we considered how well NLI systems might perform on other data,

including those from other domains and genres, by conducting large-scale cross-corpus evaluation.

Results showed that NLI features may not generalize well across genres and that certain lexical

features may exert undue influence on results and leave systems vulnerable to manipulation.

In Chapter 5 we presented the first large-scale study of NLI applied to texts written in languages

other than English, using data from six new languages. A cornerstone of this chapter was the

identification of suitable data sources which could be used here and for future work. With this goal

in mind, we identified six typologically very different sources of non-English L2 data and conducted

six experiments using a set of commonly used features. The results of our extensive experiments

suggest that NLI accuracy is similar across the set of L2s and a wide range of L1s. We also show

that other result patterns, e.g. oracle performance and feature diversity, also hold across languages.

Another outcome of this work was the release of the Jinan Chinese Learner Corpus (JCLC), containing

approximately 6 million Chinese characters written by students from over 50 different L1 backgrounds.

In this chapter we also provided a multilingual assessment of how the degree of syntactic data

encoded in part-of-speech tags affects their efficiency as classification features. It was found that

while using larger tagsets can lead to improved NLI accuracy, most differences between L1 groups lie

in the ordering of the most basic word categories.

In Chapter 6 we shifted our focus towards practical uses of our models in SLA research. Our

first exploration here focused on language transfer, the characteristic second language usage patterns

caused by native language interference, which is investigated by SLA researchers seeking to find

overused and underused features. A methodology for deriving ranked lists of such discriminative

features was developed and presented. To illustrate its potential to inform SLA research, we examined

some of the most discriminative features and found that they correspond to phenomena and language

transfer hypotheses discussed in the SLA literature. This was also the first such experiment to extend

NLI to a broad linguistic interpretation of the data and address the automatic extraction of underused

features on a per L1 basis.

The second half of Chapter 6 extended this to another research goal in SLA, which is to formulate

and test hypotheses about errors and the environments in which they are made, a process which often

involves substantial effort and large amounts of data; computational techniques promise help here.

To this end we defined a new task for finding contexts for errors that vary with the native language of

the speaker that are potentially useful for SLA research. We propose four models for approaching this

task, and find that one based only on error-feature co-occurrence and another based on determining

maximum weight cliques in a feature association graph discover strongly distinguishing contexts, with

an apparent trade-off between false positives and very specific contexts.

The final experiments of this thesis – described in Chapter 7 – explore the application of non-

lexical language transfer features to the novel task of native language-based text segmentation. The

aim of this task is to subdivide a text into regions that exhibit differing L1 influence. Such methods

could be applied for intrinsic plagiarism detection or even literary analysis. We adapted an unsuper-

vised Bayesian approach originally developed for topic segmentation to use syntactic POS features.
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Segmentation results were substantially improved by compacting the distribution of POS n-grams,

achieved by selective inclusion of the most discriminative features obtained using the methodology

we presented in Chapter 6. We also demonstrated that performance can be further enhanced through

extending the segmentation model to incorporate asymmetric priors and empirical selection of these

priors using a grid search.

Resource Contributions Research from this thesis has also resulted in the development of two

publicly available resource contributions:

• The Nli2013 Submissions dataset — containing the 144 entries submitted to 2013 NLI

shared task, as described in §4.1.4. This is useful for both NLI and ensemble research.

• The Jinan Chinese Learner Corpus — a dataset of approximately 6 million Chinese char-

acters written by students from over 50 different L1 backgrounds, as described in §5.2.4.

• BayesSeg with Asymmetric Priors — we are working on releasing the code for our extension

to BayesSeg for supporting asymmetric priors, as described in §7.4.4.

8.2 Future Work

Given the multi-faceted nature of the work presented here, there are many directions for future work.

Many of these potential avenues were detailed within each chapter and experiment presented here; in

most cases these ideas were local and mostly related to the methodological aspects of each experiment.

We highlight a select few recommendations for future expansions of the experiments here.

The classification systems presented in Chapter 3 could benefit from the application of more

sophisticated ensemble methods, e.g. ensemble pruning (Zhang et al., 2006) or stacked generalization

(Ting and Witten, 1999), to improve NLI accuracy. The commission of a larger study of human NLI

performance like the one we presented in Chapter 4 can also be a valuable contribution that could

lead to further insights, although this would likely be a costly and time-consuming endeavour. Wider

adoption of oracles in future NLI experiments can help better contextualize the results and assist

with their interpretation. Our multilingual NLI experiments from Chapter 5 could also be expanded

to additional languages, although this is limited by the current paucity of suitable data. Following

on from our experiments on discriminating the writings of native speakers from non-natives, one

direction for expansion of the NLI methodology is the inclusion of a Native class within experiments.

In the contexts of work with the Toefl11 data, for example, this would involve the inclusion of an

English L1 class.

We also pointed to the failure to distinguish between the L2 and any other acquired languages

as a more general criticism of the NLI literature to date. The current body of NLI literature fails

to distinguish whether the learner language is in fact the writer’s second language, or whether it is

possibly a third language (L3). None of the corpora used in this thesis contain this metadata. It

has been noted in the SLA literature that when acquiring an L3, there may be instances of both L1-

and L2-based transfer effects on L3 production (Ringbom, 2001). Studies of such second language

transfer effects during L3 acquisition have been a recent focus in cross-linguistic influence research

(Murphy, 2005).
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Although one very promising application of NLI is in the forensic domain, not much effort has been

expended in specifically assessing the methods for such tasks. Such a shift would require data that

goes beyond learner essays and instead more closely resembles real word scenarios, e.g. anonymous

letters, threats and radical communications. It would also be interesting to see to what degree these

methods are susceptible to wilful deception on the part of the authors.

In addition to the specific propositions listed so far, there are at least two distinct branches that

can be followed for long term research planning. The first of these concerns how we can utilize

the information that our models have learnt about different L1 groups. In particular, this relates

to how this information can be applied towards SLA research and language teaching. Making the

connection between these areas will require that the information in our models be presented in a

meaningful way that is conducive to the task at hand. For example, from a pedagogical viewpoint,

knowledge derived here could assist with language assessment and curriculum design. This research

also holds out the promise of identifying previously hidden issues in non-native writing, and allow

language transfer hypotheses to be formulated and reliably tested on a tremendously larger scale than

previously possible.

A second branch stems from the type of work we presented in Chapter 7 and is concerned with

how the computational models generated for NLI can be exploited for other NLP tasks. This is

particularly true for applications where knowledge about the L1 is helpful. The related tasks of

grammatical error detection and correction are salient examples of tasks which are often applied to

non-native writing where L1-specific knowledge could be applied to build more accurate models that

take into account native language-based idiosyncrasies of the input. Automated essay grading is

another related task knowledge from our models could be applied.

Methods for the detection of non-native writing could also be applied to tasks such as machine

translation in order to select the most appropriate methods and models based on the input. Similarly,

machine translation of minor languages still relies on significant post-editing work and in cases of

human translations that are not fluent, models similar to our work can help identify errors and

ungrammatical fragments.

Automated Speech Recognition (ASR) is another NLP task where non-native language production

poses serious issues. While there has been work in creating models that can adapt to non-native

pronunciation (Bouselmi et al., 2006), most of this work in non-native speech decoding has focused on

acoustic models. One approach here has been the addition of potential L1-induced mispronunciations

that non-natives may produce (Goronzy et al., 2004; Livescu and Glass, 2000). However, other

methods are needed to compensate for deviations in syntax (Van Doremalen et al., 2010). This also

includes ASR-based Computer-Assisted Language Learning (CALL) systems that need to provide

intelligent feedback on aspects of a speaker’s performance such as pronunciation and syntax.

In this context, the L1-specific linguistic features captured through NLI could be integrated within

such ASR systems in order to detect deviations from native speech patterns. As most ASR systems

rely on maximum a-posteriori approximation, accounting for syntactic deviations in word order and

sentence structure could better enable the decoder to map the acoustic observations to the actual,

albeit erroneous, sequence of words produced by the speaker. Going further, such systems could then

use this information to perform error correction as well.
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Cristóbal Lozano and Amaya Mendikoetxea. Learner corpora and Second Language Acquisition:
The design and collection of CEDEL2. Automatic Treatment and Analysis of Learner Corpus
Data. Amsterdam: John Benjamins, 2013. 104, 111
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