THE RELATION OF SLOPE FORM TO MASS MOVEMENT NEAR PICTON, N.S.W.

by

David L. Dunkerley, B.A., A.Mus.A.

Thesis submitted in partial fulfilment of the requirements for the degree of

B.A. (Hons.) in the School of Earth Sciences, Macquarie University

NOVEMBER 1972

TABLE OF CONTENTS

			Page
ACKNOWL	EDGEMI	INTS	i
LIST OF	SYMBO	DLS USED	iii
CHAPTER			
I	INTF	RODUCTION	1
	1.1	Theories of hillslope development involving a form-process relationship	1
	1.2	Studies of the form-process relationship made by engineers	11
	1.3	Previous studies	17
II	THE	ENVIRONMENT OF THE STUDY AREA	22
	2.1	Location	22
	2.2	Geological setting of the study area 2.2.1 Stratigraphy of the Sydney	24
		Basin	24
		2.2.2 Stratigraphy of the Wianamatta Group	26
	2.3	Geology of the Study area	29
	2.4	Climate of the study area 2.4.1 Rainfall 2.4.2 Temperature	33 33 36
	2.5	Vegetation of the study area	36
	2.6	Soils of the study area	38
	2.7	Seismicity	40
	2.8	Current slope processes	40
	2.9	Landslides in the study area 2.9.1 Earthflow distribution and	43
		morphology	44

·

	II (Cont.)	2.9.2 Causes of earthflows in the study area	56
		2.10	Environmental change within the study area 2.10.1 Climatic change 2.10.2 Vegetation Change 2.10.3 Surface process changes	59 59 61 62
	III		D METHODS OF SLOPE PROFILE MEASUREMENT, HILLSLOPE FORM IN THE STUDY AREA	6 5
		.3.1	Introduction	65
		3.2	The measurement of slope profiles in the field	71
•		3.3	Field methods of hillslope measurement used in the present study	76
		3.4	Methods of analysis of slope profile data	85
		3.5	3.5.3.1 The effect of plan curvature on slope	87 87 89 101
			inclination 3.5.3.2 The effect of geology	117
			on slope form 3.5.4 Angle frequencies in the study area	121 124
	IV	RESI	DUAL SHEAR STRENGTH AND ITS MEASUREMENT	135
		4.1	Introduction	135
		4.2	Development of ideas on "residual" shear strength	140
		4.3	The nature of residual strength 4.3.1 Factors controlling the	142
			residual angle of shearing resistance (¢'r)	149

Page

.

CHAPTER

IV	(Cont.)		
	4.4	The measurement of residual strength	152
	4.5	The techniques used in the present study 4.5.1 Validity of the use of remoulded samples	157 167
	4.6	Results of shear strength determin- ations	171
v		RELATIONSHIP OF HILLSLOPE FORM AND UTION TO THE PROPERTIES OF THE SLOPE LE	202
	5.1	Analysis of slope stability	202
	5.2	strength parameters to slope	
		inclination 5.2.1 Inclination of slopes	203
		stable against landsliding 5.2.2 Inclination of slopes free	204
		from undercutting 5.2.3 Inclination of basal slope	206
		segments 5.2.4 Slope angle frequency	208
		distribution	210
	5.3	The mode of slope evolution in the study area	212
	5.4	The relevance of residual strength to slope stability	221
	5.5	Relationship of findings of the presense study to previous studies of slope evolution in the Razorback Range	nt 225
	5.6	Significance of the inferred manner of slope evolution 5.6.1 Dynamic equilibrium 5.6.2 Decline or retreat? 5.6.3 Characteristic and limiting slope angles	228 231 232 233

CHAPTER		
VI	CONCLUSION	235

APPENDIXES

APPENDIX A:	Derivation of slope stability equations	237
APPENDIX B:	Slope profile plotting program	240
APPENDIX C:	Computer program 'CREST'	244
APPENDIX D:	Relay switching circuit	250
APPENDIX E:	Summarised slope profile data	251

BIBLIOGRAPHY

258

.

ACKNOWLEDGEMENTS

I owe a principal debt of thanks to Mr. Russell Blong for suggesting the subject of this thesis, and for giving generously of his own time in the early stages of the work. His kindness was greatly appreciated.

Thanks are also due to Mr. R. Blackwood for allowing the use of the soil shear box, and to Messrs. B. Chisholm and E. Penfold of the University Workshops for constructing the countershaft bearings required. Mr. Allan Wells (School of Maths and Physics) gave much-needed advice on electrical matters; Mr. L. Giuren (Maths and Physics Workshop) kindly checked the motor windings and allowed the use of workshop facilities under this control.

Dr. H.G. Poulos (Department of Civil Engineering, University of Sydney) gave advice on the preparation of soil samples and general laboratory practice.

Miss Lorraine Pearce (C.S.I.R.O. Division of Radiophysics) wrote the computer program CREST, and Mr. Richard Lansdowne wrote the slope profile plotting program. The assistance of both is greatly appreciated.

i

Many people have assisted by providing information and bibliographic material. I owe particular thanks to Mr. E.A. Wright (Project Planning and Exploration Manager, Clutha Development Pty. Ltd.) for providing copies of borehole logs and for allowing the use of unpublished reports; to Mr. C.R. Matson (N.S.W. Geological Survey) and Mr. Graeme Boyd (Coffey & Hollingsworth Pty. Ltd.) for providing copies of papers. The help of fellow students has also been valuable.

My sincere thanks go to my supervisor, Dr. M.A.J. Williams, for his assistance both through discussion and in the field.

Finally, thanks are due to the members of my family for their patience throughout the year.

ii

LIST OF SYMBOLS USED

с	cohesion
c'	cohesion under effective stress
φ	angle of shearing resistance
φ '	angle of shearing resistance under effective stress
c'r	residual cohesion
¢"r	residual angle of shearing resistance
Ŷ	saturated density of soil
Υ _w	density of water
σ'n	effective normal stress
τ	shear stress
σ	normal stress
u	neutral pressure
I _B	Brittleness Index
λ _R	residual coefficient
β	slope inclination
m	depth fraction of soil column saturated
F	factor of safety
S	shear strength
s _f	peak shear strength
sr	residual shear strength