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Abstract 

The majority of reactions in the bacteriochlorophyll biosynthetic pathway were first elucidated 

in the 1940-50’s. It is only in recent times that molecular mechanisms of the intermediate steps have 

been determined. The work presented in this thesis is concerned with mechanistic studies of two 

successive steps of the pathway from Rba. capsulatus. The two enzymes involved are magnesium 

chelatase (consisting of BchI, BchD, and BchH subunits), and S-adenosyl-L-methionine:magnesium 

protoporphyrin IX O-methyltransferase (BchM). Their respective reaction mechanisms were analysed 

separately and shown how they operate in a coupled system. Also studied is the interaction between 

magnesium chelatase and an unclassified protein in bacteriochlorophyll biosynthesis, BchJ.  

Dominant inhibition of magnesium chelatase activity in vitro with BchD mutants revealed this 

subunit was oligomeric. Kinetic data indicated that the molar ratio of BchI:BchD was 1:1, while there 

are ~2 BchH subunits that interacted with each BchI▪BchD complex. It was proposed that secondary 

catalysis of magnesium chelatase required ATPase activity of BchI for the structural reorganization of 

the BchI▪BchD complex and BchH subunit into catalytic-ready configurations. 

O-methyltransferase required the phospholipid, phosphatidylglycerol for stability and optimal 

enzymatic activity. Enzyme kinetics showed the Km of Mg-proto from Rba. capsulatus O-

methyltransferase was approximately two orders of magnitude lower than the plant/algal enzyme, but 

similar to O-methyltransferase from another photosynthetic bacterium, Chlorobaculum tepidum. The 

reaction mechanism was random sequential which is comparable to previous studies with O-

methyltransferase from Synechocystis. 

Interactions between magnesium chelatase and BchM or BchJ were observed with magnesium 

chelatase assays. BchM or BchJ removed the product of the magnesium chelatase reaction, 

magnesium protoporphyrin IX from BchH. There was a 1:1 molar ratio of BchM or BchJ with BchH. 

BchH-BchM was the dominant interaction, so it is suggested that BchJ could play a role as a porphyrin 

binding protein. 
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Cover image description 

From the information acquired in previous studies and the results presented in this thesis, a 

schematic was constructed showing the flux of porphyrin metabolites from magnesium chelatase to O-

methyltransferase and BchJ. Starting at the bottom left of the image, the association of two BchH-

proto subunits with the double-hexameric BchI▪BchD unit forms a complete magnesium chelatase 

complex. This triggers a large amount of ATP hydrolysis by the BchI subunit and causes 

conformational changes of the complex [1]. This energy is utilised to convert protoporphyrin IX 

(proto) to magnesium protoporphyrin IX (Mg-proto) which remains bound to BchH [2]. With the 

addition of O-methyltransferase (BchM) or BchJ, there is an association of each of these proteins with 

BchH-Mg-proto, and a dissociation of BchI▪BchD [3]. BchM-BchH-Mg-proto is the stronger 

interaction and BchM removes Mg-proto from BchH [4]. If BchJ does remove Mg-proto from BchH, 

the porphyrin is translocated to BchM. With S-adenosyl-L-methionine (SAM) present, BchM converts 

Mg-proto to Mg-proto ester. Either Mg-proto ester, or Mg-proto is released from BchM [5a and b 

respectively]. At the end of the first cycle of magnesium chelation, BchI▪BchD and BchH are 

structurally reorganized before carrying out additional catalysis [6, 7, and 8]. BchJ may be involved in 

delivering new proto substrate to BchH [8]. 
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