Bacteriochlorophyll biosynthetic enzymes; molecular mechanistic studies on magnesium chelatase and S-adenosyl-L-methionine:magnesium protoporphyrin IX *O*-methyltransferase

Artur Sawicki (BSc Hons)

Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, New South Wales, Australia January 2010

This thesis is presented for the degree of Doctor of Philosophy in Chemistry and Biomolecular Sciences

Contents

Abstract	iv	
Declaration		
Acknowledgements	vi	
Cover image description	vii	
List of Publications	viii	
Abbreviations	ix	
1. Introduction	1	
1.1 Photosynthesis	1	
1.2 (Bacterio)chlorophyll biosynthesis	2	
1.2.1 Overview of the pathway	2	
1.2.2 Historical background	6	
1.2.3 Genetic map of the bacteriochlorophyll biosynthetic pathway	6	
1.2.4 Differences between bacteriochlorophyll and chlorophyll biosynthesis	8	
1.3 Regulation	11	
1.3.1 Anaerobic/aerobic regulation of bacteriochlorophyll biosynthesis	11	
1.3.2 Regulation of magnesium chelatase	12	
1.3.2.1 Regulation of BchH	12	
1.3.2.2 Light regulation of ChlI, ChlD, and ChlH	12	
1.3.2.3 Additional regulation of Chll, ChlD, and ChlH	13	
1.3.2.4 Regulation of ChlI and ChlH by reducing disulphide bonds	15	
1.3.3 Branchpoint of tetrapyrrole biosynthesis; magnesium or iron insertion	16	
1.3.4 Regulation of S-adenosyl-L-methionine:magnesium protoporphyrin IX		
<i>O</i> -methyltransferase (BchM/ChlM)	17	
1.3.4.1 Product inhibition	17	
1.3.4.2 Other regulation	17	
1.4 Cellular localization of protoporphyrinogen oxidase, magnesium chelatase, Gun4,		
and O-methyltransferase	18	
1.4.1 Overview	18	
1.4.2 Magnesium chelatase	19	
1.4.3 Gun4 and ChlH	20	
1.4.4 <i>O</i> -methyltransferase	20	
1.5 Magnesium chelatase past and present	21	
1.5.1 Overview	21	
1.5.2 Early magnesium chelatase activity	21	
1.5.3 In vitro assays	22	

i

1.5.4 Reaction mechanism	23
1.5.5 Heterologous expression, reconstitution, and purification	25
1.5.6 Aerobic cobaltochelatase, a homologous enzyme to magnesium chelatase	27
1.5.7 BchI/ChlI subunit	27
1.5.8 BchD/ChlD subunit	30
1.5.9 BchI•BchD/ChlI•ChlD complex	31
1.5.10 BchH/ChlH subunit	33
1.5.11 ChlH and the role of Gun4	35
1.5.12 ChlH is a multi-functional protein	36
1.6 S-adenosyl-L-methionine:magnesium protoporphyrin IX O-methyltransferase	
(BchM/ChlM)	36
1.6.1 Overview	36
1.6.2 Early O-methyltransferase activity	37
1.6.3 Stopped and continuous assays	38
1.6.4 Purification and stability	39
1.6.5 Identification of BchM/ChlM as O-methyltransferase	40
1.6.6 Reaction mechanism	41
1.7 Evidence for magnesium chelatase and O-methyltransferase associations	44
1.7.1 Early studies	44
1.7.2 BchH-BchM/ChlH-ChlM interactions	44
1.8 BchJ	46
1.8.1 The role of BchJ in bacteriochlorophyll biosynthesis	46
2. Paper I: Recessiveness and Dominance in Barley Mutants Deficient in Mg-Chelatase Subunit	
D, an AAA Protein Involved in Chlorophyll Biosynthesis	47
2.1 Synopsis	47
2.2 Journal article	48
2.3 Supplementary data	59
3. Paper II: Kinetic Analyses of the Magnesium Chelatase Provide Insights into the Mechanism,	
Structure, and Formation of the Complex	64
3.1 Synopsis	64
3.2 Journal article	65
3.3 Supplementary data	74
3.4 Addendum	77
4. Paper III: S-Adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase from	1
Rhodobacter capsulatus: mechanistic insights and stimulation with phospholipids	80
4.1 Synopsis	80

4.2 Journal article	81
4.3 Supplementary data	91
5. Paper IV: BchJ functions like a magnesium-protoporphyrin IX carrier between magnesium	
chelatase and S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase	
in Rhodobacter capsulatus	104
5.1 Synopsis	104
5.2 Manuscript	105
5.3 Supplementary data, schema and figures	123
6. Discussion	143
6.1 Overview	143
6.2 Magnesium chelatase	143
6.2.1 Is the BchD/ChlD subunit oligomeric?	143
6.2.2 Magnesium chelatase reaction mechanism	145
6.2.3 Stimulatory/inhibitory effect of detergents upon magnesium chelatase	148
6.3 S-adenosyl-L-methionine:magnesium protoporphyrin IX O-methyltransferase (Bch	M)151
6.3.1 Purification of <i>O</i> -methyltransferase	151
6.3.2 Discovering that phospholipids stabilize and stimulate O-methyltransfera	ise
activity	152
6.3.3 Structural effects with phospholipids	155
6.3.4 Porphyrin substrates of O-methyltransferase	156
6.3.5 <i>O</i> -methyltransferase reaction mechanism	157
6.4 Interactions between magnesium chelatase and O-methyltransferase, BchJ, or	
detergent Tween 80	158
6.4.1 Effect of magnesium chelatase on O-methyltransferase activity	158
6.4.2 Aggregation of BchM and BchJ with magnesium	159
6.4.3 Binding of proto and Mg-proto to BchM or BchJ	160
6.4.4 Effect of O-methyltransferase, BchJ, and Tween 80 upon magnesium	
chelatase activity	160
7. Conclusions and future work	162
8. References	165

Abstract

The majority of reactions in the bacteriochlorophyll biosynthetic pathway were first elucidated in the 1940-50's. It is only in recent times that molecular mechanisms of the intermediate steps have been determined. The work presented in this thesis is concerned with mechanistic studies of two successive steps of the pathway from *Rba. capsulatus*. The two enzymes involved are magnesium chelatase (consisting of BchI, BchD, and BchH subunits), and *S*-adenosyl-L-methionine:magnesium protoporphyrin IX *O*-methyltransferase (BchM). Their respective reaction mechanisms were analysed separately and shown how they operate in a coupled system. Also studied is the interaction between magnesium chelatase and an unclassified protein in bacteriochlorophyll biosynthesis, BchJ.

Dominant inhibition of magnesium chelatase activity *in vitro* with BchD mutants revealed this subunit was oligomeric. Kinetic data indicated that the molar ratio of BchI:BchD was 1:1, while there are ~2 BchH subunits that interacted with each BchI•BchD complex. It was proposed that secondary catalysis of magnesium chelatase required ATPase activity of BchI for the structural reorganization of the BchI•BchD complex and BchH subunit into catalytic-ready configurations.

O-methyltransferase required the phospholipid, phosphatidylglycerol for stability and optimal enzymatic activity. Enzyme kinetics showed the K_m of Mg-proto from *Rba. capsulatus O*-methyltransferase was approximately two orders of magnitude lower than the plant/algal enzyme, but similar to *O*-methyltransferase from another photosynthetic bacterium, *Chlorobaculum tepidum*. The reaction mechanism was random sequential which is comparable to previous studies with *O*-methyltransferase from *Synechocystis*.

Interactions between magnesium chelatase and BchM or BchJ were observed with magnesium chelatase assays. BchM or BchJ removed the product of the magnesium chelatase reaction, magnesium protoporphyrin IX from BchH. There was a 1:1 molar ratio of BchM or BchJ with BchH. BchH-BchM was the dominant interaction, so it is suggested that BchJ could play a role as a porphyrin binding protein.

Declaration

I certify that the work in this thesis entitled "Bacteriochlorophyll biosynthetic enzymes; molecular mechanistic studies on magnesium chelatase and *S*-adenosyl-L-methionine:magnesium protoporphyrin IX *O*-methyltransferase" has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree to any other university or institution other than Macquarie University.

I also certify that the thesis is an original piece of research performed between March 2003 and January 2010 and it has been written by me. Any help and assistance that I have received in my research work and the preparation of the thesis itself have been appropriately acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Artur Sawicki (Student No. 40033910)

27th January 2010

Acknowledgements

I must thank my parents for being so patient with me, that alone has meant a lot and I could not have completed this work without their love and support. Of course I must thank my supervisor, Associate Professor Robert Willows who has graciously given me the opportunity to undertake this work; it has been an excellent journey. Many thanks also go to Dr. Tom Roberts my associate supervisor, who has helped me on numerous occasions, and Professor Roger Hiller who has been invaluable in providing a wealth of experience. I thank Paul Worden for generating all the DNA sequencing data, and Eva Axelsson from Lund University, Sweden for inviting me to contribute to *Paper I*.

I would like to thank the members of the Willows/Hiller/Atwell lab past and present who have each made the research experience memorable. This includes Professor Brian Atwell, Dr. Ron Bradner, Tony Jerkovic, Frank Sharples, Eva Axelsson, Nick Sirijovski, Vanessa Lake, Mark Broughton, Jane Walmesly, Fredericke Winkhaus, David Muturo, Andrew Scafaro, Paul Emseis, Andre Hallen, Nishen Naidoo, Joshua Edwards, Alison Kriegel, Phyllis Farmer, Dorothy Seguna, Masood Mohammad, Juliett Suich, and Margaret Morgan.

I must also include the excellent people who were/are the backbone of the Biology/CBMS departments who make everyday life more pleasant. This includes Boeddi, Professor David Briscoe, Professor David Raftos, Professor Andy Beattie, Professor Janusz Gebicki, Dr Moreland Gibbs, Dr Junior Te'o, Prefessor Helena Nevaleinen, Professor Jim Kohen, Professor Millar Whalley, Professor Edward Cole, Dr Alex Charlson, Dr Sham Nair, Dr Martin Slade, Rekha Joshi, Elsa Mardones, Alicia Gestal, Marita Holley, Jenny Minard, Catherine Wong, Jane Yang, Rod Nurthen, Rita Holland, Angela Moncrieff, Ray Cameron, Ray Duell, Monika King, Keith Tonkin, Mark Chan, Tony Wang, Peter Tung, Keith Maxwell, Ron Claassens, Laura McMillan, Marie Howitt, Maria Hyland, Margaret Merceria, Dr Adam Stow, Dr Julia Raftos, Dr Sinan Ali, Professor Shoba Ranganathan, Professor Andrew Try, Professor Peter Karuso, Professor Joanne Jamie. Here I most sincerely thank Professor David Raftos and Rekha Joshi for graciously giving me the opportunity to teach biology, this act of kindness will not be forgotten.

Also many thanks to friends from Macquarie University not directly involved in the work, but have helped me immeasurably. This includes Kerstin Bilgmann, Thomas Dzeha, Simone Ciampi, Quach Truong, Liisa Kautto, Vince Repaci, Shannon Smith, Wasama Ajaz, Ulysse Bove, Jonathan Sandovall-Castillo, Mattias Roth, Daniel Butt, George Wilson, Charlie Huveneers, George Pappas, Karl Hassan, Sasha Tetu, Verity Hodgkinson, Alison Kan, Nicole Vella, Rowan McGinley, Simone McGinley, Viviana Varela, Andres Varela, Nolwenn Dheilly, Barbara Garcia, James Cook, Visaahini Sureshan, Jens Moll, Renan Ersoy, Yoon Choi, Andrew Piggott.

Finally I kindly thank Dr Ron Bradner for thoroughly analysing the thesis before submission.

Cover image description

From the information acquired in previous studies and the results presented in this thesis, a schematic was constructed showing the flux of porphyrin metabolites from magnesium chelatase to *O*-methyltransferase and BchJ. Starting at the bottom left of the image, the association of two BchH-proto subunits with the double-hexameric BchI-BchD unit forms a complete magnesium chelatase complex. This triggers a large amount of ATP hydrolysis by the BchI subunit and causes conformational changes of the complex [1]. This energy is utilised to convert protoporphyrin IX (proto) to magnesium protoporphyrin IX (Mg-proto) which remains bound to BchH [2]. With the addition of *O*-methyltransferase (BchM) or BchJ, there is an association of each of these proteins with BchH-Mg-proto, and a dissociation of BchI-BchD [3]. BchM-BchH-Mg-proto is the stronger interaction and BchM removes Mg-proto from BchH [4]. If BchJ does remove Mg-proto from BchH, the porphyrin is translocated to BchM. With *S*-adenosyl-L-methionine (SAM) present, BchM converts Mg-proto to Mg-proto ester. Either Mg-proto ester, or Mg-proto is released from BchM [5a and b respectively]. At the end of the first cycle of magnesium chelation, BchI-BchD and BchH are structurally reorganized before carrying out additional catalysis [6, 7, and 8]. BchJ may be involved in delivering new proto substrate to BchH [8].

List of publications

Paper I: Axelsson E, Lundqvist J, Sawicki A, Nilsson S, Schroder I, Al-Karadaghi S, Willows RD, Hansson M (2006) "Recessiveness and Dominance in Barley Mutants Deficient in Mg-Chelatase Subunit D, an AAA Protein Involved in Chlorophyll Biosynthesis" *The Plant Cell* **18**: 3606-3616.

Paper II: Sawicki A, Willows RD (2008) "Kinetic Analyses of the Magnesium Chelatase Provide Insights into the Mechanism, Structure, and Formation of the Complex" *Journal of Biological Chemistry* 283: 31294-31302.

Paper III: Sawicki A, Willows RD (2007) "S-Adenosyl-L-methionine:magnesium-protoporphyrin IX *O*-methyltransferase from *Rhodobacter capsulatus*: mechanistic insights and stimulation with phospholipids" *Biochemical Journal* **406**: 469-478.

Paper IV: **Sawicki A, Willows RD** "BchJ functions like a magnesium-protoporphyrin IX carrier between magnesium chelatase and *S*-adenosyl-L-methionine:magnesium-protoporphyrin IX *O*methyltransferase in *Rhodobacter capsulatus*" Submitted, *FEBS Journal*, December 24, 2009.

The work in this thesis centres on the findings of four papers presented in chapters 2-5 inclusive. Chapter 6 is devoted to unifying these findings into a discussion section. As a co-author in *Paper I*, I was involved in optimizing and conducting all magnesium chelatase assays. In *Papers II-IV* I was involved in conducting all experiments, data analysis, and preparation of manuscripts. The role of the supervisor was in contributed to the planning of experiments, assistance in data interpretation, and general support and guidance.

Abbreviations

A. rubrum	Acidiphilium rubrum
A. thaliana	Arabidopsis thaliana
ABA	Abscisic acid
AcsF	Aerobic oxidative cyclase
ADP	Adenosine diphosphate
ALA	δ-aminolevulinic acid
AMP	Adenosine monophosphate
ATP	Adenosine triphosphate
BchD/ChlD	Magnesium chelatase D subunit
BchE	Anaerobic oxidative cyclase
BchH/ChlH	Magnesium chelatase H subunit
BchI/ChlI	Magnesium chelatase I subunit
BchJ	Protein with unknown role in bacteriochlorophyll biosynthesis
BchM/ChlM	S-adenosyl-L-methionine:magnesium protoporphyrin IX O-methyltransferase
C. reinhardtii	Chlamydomonas reinhardtii
C. tepidum	Chlorobaculum tepidum
C. vibrioforme	Chlorobium vibrioforme
CD	Circular dichroism
CMC	Critical micelle concentration
Da	Dalton
DOPG	Dioleoyl phosphatidylglycerol
DPOR	Dark-operative protochlorophyllide oxidoreductase
DTT	Dithiothreitol
E. coli	Escherichia coli
E. gracilis	Euglena gracilis
EM	Electron microscopy
GC	Gas chromatography
Gun	Genomes uncoupled
His	Histidine
IPTG	Isopropyl-β-D-thiogalactopyranoside
IR	Infra-red
kDa	Kilodalton
K _d	Dissociation constant
K _m	Substrate concentration at half maximal velocity, Michaelis-Menten constant
ELIP	Early light induced protein

ICM	Intracytoplasmic membrane
LDAO	Lauryl dimethylamine oxide
LC-MS	Liquid chromatography-mass spectrometry
Mg-proto	Magnesium protoporphyrin IX
Mg-proto ester	Magnesium protoporphyrin IX monomethyl ester
NEM	N-ethyl maleimide
P-20	Polysorbate-20 (highly purified Tween 20)
PCMB	<i>p</i> -chloromercuribenzoic acid
PCMBS	<i>p</i> -chloromercuribenzene sulphonate
PCR	Polymerase chain reaction
PE	Phosphatidylethanolamine
PG	Phosphatidylglycerol
pK _a	Acid dissociation constant
POPG	Palmitoyl-oleoyl phosphatidylglycerol
POR	Protochlorophyllide oxidoreductase
PS	Phosphatidylserine
Proto	Protoporphyrin IX
Rba	Rhodobacter
RP-HPLC	Reversed phase-high performance liquid chromatography
SAH	S-adenosyl homocysteine
SAM	S-adenosyl-L-methionine
SDS-PAGE	Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
TLC	Thin layer chromatography
V _{max}	Maximal velocity, Michaelis-Menten constant