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6. DISCUSSION 

6.1 Overview 

The work presented in this thesis (Papers I-IV) concentrates on mechanistic studies of the 

bacteriochlorophyll biosynthetic enzymes; magnesium chelatase and O-methyltransferase from Rba. 

capsulatus, and how they may interact. The interaction between magnesium chelatase and BchJ, a 

protein with no currently assigned biological function in the pathway, was also examined. The key 

findings from each paper have been compiled into a cohesive discussion chapter. For clarity and 

continuity, additional experimental data is presented here that is not included in Papers I-IV. 

6.2 Magnesium chelatase 

6.2.1 Is the BchD/ChlD subunit oligomeric?  

Similarities between the N-terminus (AAA module) of BchI/ChlI and BchD/ChlD subunits of 

magnesium chelatase suggests that BchD is oligomeric (Fodje et al., 2001). AAA proteins are 

typically hexameric or heptameric (Iyer et al., 2004). Since BchI is hexameric (Fodje et al., 2001; 

Willows et al., 2004), it is hypothesized that BchD could also be hexameric. To test this, a previous 

strategy that was successful with chlI (xantha-h) mutants from barley was adopted (Hansson et al., 

1999; Hansson et al., 2002). Briefly, chlI mutants from barley show a semi-dominant effect on 

magnesium chelatase activity with heterozygous plants having 25-50 % of wild-type activity (Hansson 

et al., 1999). In vitro assays using Rba. capsulatus magnesium chelatase and a 1:1 molar ratio of wild 

type to mutant BchI results in > 50 % inhibition of magnesium chelatase activity (Hansson et al., 

2002). Dominant inhibition is expected with oligomeric proteins where each subunit can contribute to 

the formation of the multimer, such as BchI (Hansson et al., 2002).  

The in vivo stability of ChlD depends upon its interaction with ChlI. This is shown with barley 

chlI mutants having significantly decreased amounts of ChlD (Hansson et al., 1999; Lake et al., 2004). 

It is suggested that ATP hydrolysis is required for ChlI▪ChlD stability and protection from proteolysis 

since ATPase-deficient chlI mutants could not maintain wild type amounts of ChlD in vivo (Hansson 
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et al., 1999; Lake et al., 2004). Mutations in barley chlD (xantha-g) that have a diminished amount of 

ChlD in vivo did not show a decrease in ChlI and mutations in chlH (xantha-f) did not reduce the 

levels of ChlD (Hansson et al., 1999). This indicates that ChlI performs a chaperone-like function for 

the stabilization of ChlD (Hansson et al., 1999).  

Point mutations in barley chlD (xantha-g44, xantha-g45, and xantha-g65) in vivo were 

recessive, although xantha-g45 could still produce significant amounts of chlorophyll (Paper I). 

Xantha-g44 and xantha-g65  had a decreased amount of ChlD in vivo. The corresponding xantha-g44, 

xantha-g45, and xantha-g65 mutants were generated in Rba. capsulatus BchD (T227L, L418F, and 

G63E respectively) for in vitro studies. Mutants were mixed 1:1 with wild type BchD prior to 

refolding with BchI in magnesium chelatase assays. T227L and G63E mutants had little inhibitory 

effect on magnesium chelatase activity. These results indicated that xantha-g44 and xantha-g65 could 

not interact with ChlI in vivo or in vitro, and were prone to degradation in vivo. This explains the 

recessivity of these mutants in vivo. One of the mutants, xantha-g45 still retained wild type levels of 

protein in vivo, so in this case mutant ChlD could still interact with ChlI, and ChlD was therefore 

protected from degradation in vivo. The corresponding mutant in Rba. capsulatus (L418F) exhibited a 

dominant inhibitory effect on magnesium chelatase activity in vitro. Therefore this BchD mutant 

undergoes an oligomeric organization upon refolding, and can form mixed mutant-wild type oligomers 

similar to BchI (Hansson et al., 2002). Two separate point mutations in the MIDAS motif of BchD 

(D385A and S389A), a region important for interaction with BchI showed dominant inhibition of 

magnesium chelatase activity in vitro. These mutants could not contribute to magnesium chelatase 

activity without the inclusion of wild type BchD. This suggested that mixed mutant-wild type BchD 

oligomers could form but were defective in their ability to interact with BchI. 

When equal amounts of mutant and wild type BchD were refolded separately with BchI and 

later mixed, there was an additive effect upon magnesium chelatase activity. This showed that 

inhibitory mixed mutant-wild type BchD oligomers were not formed as previously observed. Once the 

BchI▪BchD complex formed, it was stable and did not undergo rearrangement of subunits. EM of 

BchD showed a spontaneous oligomerisation of apparently hexameric complex. ATP was not a 
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prerequisite for oligomerisation of BchD, unlike formation of hexameric BchI (Willows et al., 2004). 

These results suggested the BchI▪BchD complex exists as a two-level stacked hexameric structure. 

The double hexameric-shaped BchI▪BchD complex has since been shown by EM (Elmlund et al., 

2008). The hexameric shape of each subunit is composed of either three dimers or two trimers 

(Elmlund et al., 2008).  

Collectively the present studies and previous work show that BchD/ChlD has a structural role 

in the magnesium chelatase reaction as a platform for BchI, forming a catalytic complex. A catalytic 

cycle was proposed for the formation and turnover of the BchI▪BchD/ChlI▪ChlD protein complex in 

Paper I. The BchD subunit undergoes spontaneous hexamerisation, whereas BchI requires ATP and 

free magnesium to form this oligomer (Hansson et al., 2002; Willows et al., 2004). If there is sufficient 

BchI/ChlI, magnesium and ATP present, BchI/ChlI and BchD/ChlD interact and form a stable 6:6 

double hexameric BchI▪BchD/ChlI▪ChlD complex. If any of these components are absent or below 

optimal concentrations, BchD/ChlD is proteolytically degraded in vivo (Lake et al., 2004). A decrease 

in each of these components occurs during prolonged darkness in plants (Usuda, 1988; Papenbrock et 

al., 1999; Ishijima et al., 2003). The final step in magnesium chelatase catalysis involves the stable 

BchI▪BchD/ChlI▪ChlD complex interacting with BchH-proto/ChlH-proto. The BchI▪BchD/ChlI▪ChlD 

catalytic center can presumably perform several rounds of catalysis. In Paper II intermediate steps of 

magnesium chelatase involved in secondary catalysis are described in terms of ATP hydrolysis. 

6.2.2 Magnesium chelatase reaction mechanism 

To complement the studies directed at the role of BchD/ChlD, it was decided to conduct a 

thorough kinetic investigation of each magnesium chelatase subunit from Rba. capsulatus (Paper II). 

The kinetic properties of each substrate including magnesium, ATP, and proto were determined and 

each magnesium chelatase subunit was independently analysed in some detail. ATPase assays of the 

magnesium chelatase complex were included to suggest other roles for ATP hydrolysis apart from 

chelation of magnesium into proto.  
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At first inspection, magnesium and ATP substrates were hyperbolic with respect to 

magnesium chelatase activity (Paper II). However this proved to be incorrect for magnesium due to 

the failure to consider the magnesium present with protein subunits. Re-investigation of the 

magnesium substrate showed a sigmoidal relationship (Paper II Addendum). This data suggested a 

regulatory role of the magnesium substrate which agrees with previous results using magnesium 

chelatase from pea, cucumber, C. tepidum, and Synechocystis (Richter and Rienits, 1982; Guo et al., 

1998; Jensen et al., 1998; Reid and Hunter, 2004; Johnson and Schmidt-Dannert, 2008). This is 

different to Rba. sphaeroides magnesium chelatase which has a hyperbolic response with magnesium 

(Gibson et al., 1999).  

The inclusion of exogenous proto to magnesium chelatase assays generated a greater amount 

of product than simply using BchH-proto as substrate. This showed that additional rounds of catalysis 

occurred with magnesium chelatase and a secondary rate of chelation was measured. The secondary 

rate represented the loss of Mg-proto from BchH, re-loading of BchH with fresh proto and catalysis by 

the BchI▪BchD complex. The secondary rate was ~26 times slower than the initial rate. Therefore 

recycling of reacted BchH-Mg-proto for a second round of catalysis was the rate-limiting step of the 

reaction. BchH does not readily release Mg-proto following catalysis (Sirijovski et al., 2008) which 

agrees with our data that secondary catalysis is not easily undertaken (Paper II). 

The addition of BchH-proto/ChlH-proto to the BchI▪BchD/ChlI▪ChlD complex triggers a 

large increase in ATPase activity in Synechocystis and Rba. capsulatus (Jensen et al., 1999a) (Paper 

II). ATPase activity of Rba. capsulatus BchI▪BchD▪BchH-proto continued after magnesium chelatase 

activity ceased at reaction equilibrium (Paper II). BchH has large conformational changes associated 

with binding proto (Sirijovski et al., 2008). It is suggested that the continued ATPase activity of the 

BchI▪BchD complex may be required for structural re-organization of BchH which is needed for 

undertaking additional rounds of catalysis (Paper II). This may explain some of the large amount of 

ATP hydrolysis required for magnesium chelation in Synechocystis where 15 ATP molecules were 

estimated for insertion of one magnesium atom into proto (Reid and Hunter, 2004). Removal of ATP, 

or exchange for non-hydrolysable ATP (adenosine 5’-[β,γ-methylene] triphosphate) decreased the 
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stability of the ChlI▪ChlD complex in Synechocystis (Jensen et al., 1999a). Therefore it is also possible 

that ATPase activity is needed for maintaining the BchI▪BchD/ChlI▪ChlD complex in a conformation 

ready for catalysis. 

The secondary rate of magnesium chelatase was used to estimate a Km value of 47 ± 9 nM for 

proto. This represented the Km
proto

 during additional catalysis by magnesium chelatase and is not a real 

Km value which is normally determined from the initial rate. This was the best estimate of the Km since 

an effective way to remove proto naturally bound to BchH could not be found (see 1.5.10). However 

Km
proto

 is comparable to previous Km values of proto for chloroplast preparations of cucumber and pea 

magnesium chelatase using initial rates (25 nM and 13.5 ± 6 nM respectively) (Richter and Rienits, 

1982; Guo et al., 1998), and lower than purified magnesium chelatase from Rba. sphaeroides (150 ± 

50 nM) (Gibson et al., 1999). It is significantly lower than Synechocystis (1250 ± 280 nM) (Jensen et 

al., 1998), and previous stopped assays with Rba. capsulatus (1230 nM) (Willows and Beale, 1998). 

The kinetic experiments mainly utilised continuous assays (Paper II) and are expected to be more 

accurate than stopped assays. 

Kinetic experiments with Synechocystis magnesium chelatase show that ChlD behaves as an 

enzyme, while the ChlI and ChlH subunits are the substrates (Jensen et al., 1998). Previous studies 

with Rba. capsulatus magnesium chelatase did not take this into account (Willows and Beale, 1998). 

In Paper II when BchD was used at comparatively lower concentrations, BchI and BchH-proto also 

responded as substrates. With optimal amounts of BchI and BchH-proto, BchD behaved as an enzyme. 

The nature of the interaction of BchI and BchH as substrates with BchD was different. 

BchI responded hyperbolically at four different BchD concentrations. A global Km
BchI

 of 20 

nM indicated that at this BchI concentration, half of the BchI and BchD subunits form a stable 

complex. BchI was saturable for magnesium chelatase activity and required an excess of BchI over 

BchD for optimal magnesium chelatase activity which agrees with previous studies (Jensen et al., 

1998; Willows and Beale, 1998; Gibson et al., 1999) (Paper II). The proposed stoichiometry of the 

BchI:BchD/ChlI:ChlD complex is estimated at 2-5:1 depending on the concentration of BchD/ChlD 
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(Jensen et al., 1998; Willows and Beale, 1998; Gibson et al., 1999). The EM structure of the 

BchI▪BchD complex is a double hexamer with equal proportions of each subunit (Elmlund et al., 

2008). It is now clear that the proposed BchI:BchD ratios are not a true representation of the structure 

of a stable BchI▪BchD complex. The hyperbolic result with BchI at different concentrations of BchD 

indicated a 1:1 molar ratio with BchD (Paper II) and this correlates with the structural data (Elmlund 

et al., 2008). It is suggested that excess BchI over BchD required in in vitro assays of magnesium 

chelatase is for the stability of the BchI▪BchD complex. BchD tends to aggregate in the absence of 

BchI, and so it may be that an excess of BchI is required to prevent this aggregation during refolding 

of BchD in vitro. 

BchH was sigmoidal (Hill constant ~2) when measuring magnesium chelatase activity at 

variable BchI:BchD ratios and concentrations (Paper II). ATPase activity of magnesium chelatase 

with respect to BchH was also sigmoidal. This strongly suggested that there are approximately two 

BchH subunits that interact with the BchI▪BchD catalytic complex. The S0.5 for BchH-proto was ~132 

nM which is 6 times greater than the Km for BchI. Therefore the interaction between BchI and BchD 

was much stronger than BchH and BchD or BchH and BchI▪BchD. This agrees with a similar kinetic 

study using Synechocystis magnesium chelatase showing a Km
ChlI

 of 85-107 nM and Km
ChlH

 of 200-260 

nM (Jensen et al., 1998).  

6.2.3 Stimulatory/inhibitory effect of detergents upon magnesium chelatase 

The addition of increasing amounts of the detergents Tween 80, Tween 20, P-20, or Triton X-

100 resulted in more Mg-proto made by magnesium chelatase (Fig. 7A-D, Box 3). The optimal 

concentration of each of the four detergents occurred near or above their critical micelle concentration 

(CMC) (Helenius et al., 1979; Neugebauer, 1990). Each of the detergent micelles have similarly large 

molecular masses. Tween 80 has a molecular weight of ~78,600 Da (de Campo et al., 2004), Tween 

20 (P-20) is ~73,680 Da (Garstecki et al., 2005), and Triton X-100 is ~87,920 Da (Neugebauer, 1990). 

Micelle size was inferred by multiplying their respective aggregation numbers with their molecular 

weights. Another common feature of each of the stimulatory detergents was their non-ionic form. The 
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interaction of detergent Tween 80 in the magnesium chelatase reaction was tested further in Paper IV 

and also discussed in 6.4.4. From these results there are two common features of detergents that could 

be important for stimulatory interaction with magnesium chelatase; 1) large molecular mass micelles, 

and 2) a non-ionic detergent. 

LDAO and deoxycholic acid (Box 3) suddenly inhibited magnesium chelatase at break-point 

concentrations (Fig. 7E-F). The break-point was below the CMC for LDAO and near the CMC for 

deoxycholic acid. Micelles are not the major inhibitory feature of LDAO, although interestingly the 

micelle size is small (~17,300 Da) (Herrmann, 1962) in comparison to the stimulatory detergents. 

LDAO is zwitterionic and the charge contribution may inhibit magnesium chelatase. In contrast to 

LDAO, micelles appear to play a major part in the inhibition of magnesium chelatase by deoxycholic 

acid. Deoxycholic acid is anionic and has bulky side groups and either/or a combination of these 

features could have a detrimental effect on magnesium chelatase. Similar to LDAO, deoxycholic acid 

has a small micellar size (700 Da) (Helenius et al., 1979) which supports the idea that large-sized 

micelles may be needed for optimal stimulatory effects upon magnesium chelatase.  

 



 

150 

 

Figure 7. Stimulation or inhibition of magnesium chelatase product formation by detergent. The 

magnesium chelatase assay was performed with increasing concentrations of six detergents tested 

(x-axis). The amount of Mg-proto made by magnesium chelatase without any detergent is assigned 

zero pmol on the y-axis. A-D were analysed using the Michaelis-Menten equation, 

V=Vmax*[S]/(Km+[S]), where V is pmol Mg-proto made and [S] is detergent concentration. A 

negative amount of pmol Mg-proto on the y-axis (E-F) indicated inhibition by the detergent. 

Assays were performed at 30 °C in 50 mM Tricine-NaOH pH 8.0, 15 mM MgCl2, 1 mM ATP, 2 

mM DTT, 3.2 mM urea, 44 mM glycerol, 7.8 nM BchD, 15.6 nM BchI, and 60 nM BchH-proto. 

Dashed vertical lines indicate the CMC of the detergents. CMC values of Tween 80, Tween 20, P-

20, and Triton X-100 are determined in water (Neugebauer, 1990), LDAO CMC is determined in 

water (Herrmann, 1962), and deoxycholic acid at pH 9 (Helenius et al., 1979). Assays were 

performed according to the method in Paper II. 

 

 

 



 

151 

 

Box 3. Detergents 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chemical structure of detergents at pH 8. The four repeating units of Tween 80 and Tween 20, 

w+x+y+z = 20. Tween 20 and P-20 (Biacore Life Sciences) have identical structures except P-20 

has a much greater purity than Tween 20. For Triton X-100, n ~ 9.6 (Neugebauer, 1990). Tween 

and Triton X-100 are non-ionic, LDAO is zwitterionic (pKa 5.0) (Herrmann, 1962), and 

deoxycholic acid (pKa 6.2) (Helenius et al., 1979) is anionic.  

 

6.3 S-adenosyl-L-methionine:magnesium protoporphyrin IX O-

methyltransferase (BchM) 

6.3.1 Purification of O-methyltransferase 

It was necessary to express heterologous His-tagged O-methyltransferase from Rba. 

capsulatus  in E. coli at lower temperatures (15-18 °C) with isopropyl-β-D-thiogalactopyranoside 

(IPTG) since expression in the range 25-37 °C resulted in very little protein recovery (< 0.1 mg) 

(Paper III). It was beneficial to limit the number of chromatographic steps since the protein is 

unstable, even at 4 °C. After solubilisation of O-methyltransferase from inclusion bodies using 

detergent P-20 a single chromatographic step using Ni
2+

-affinity chromatography was enough to purify 

O-methyltransferase to near-homogeneity. It was later found that phospholipids, in particular 
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phosphatidylglycerol (PG) are crucial for maintaining solubility of O-methyltransferase, especially the 

highly-purified form. The protein from inclusion bodies could be solubilised with other detergents 

such as Tween 80, Tween 20, or Triton X-100, however it was highly unstable and aggregated within 

several hours at room temperature. The detergent instability of O-methyltransferase from Rba. 

sphaeroides and E. gracilis has also been reported (Hinchigeri et al., 1981; Hinchigeri et al., 1984). 

6.3.2 Discovering that phospholipids stabilize and stimulate O-methyltransferase activity 

The first inclinations of the dependence of O-methyltransferase upon phospholipids came 

about as an after-thought following the use of a coupled O-methyltransferase assay. This coupled 

assay employed BchM, Mg-proto, together with an in situ system for generating S-adenosyl-L-

methionine (SAM) (Fig. 8a). In situ production of SAM consisted of a crude preparation of SAM 

synthetase (E.C. 2.5.1.6), L-methionine and ATP. The control O-methyltransferase assay simply 

substituted commercial SAM for the components of the in situ-generation of SAM. 

The coupled in situ method generated the product of the O-methyltransferase reaction at a 4-

fold faster rate than using commercial SAM (Fig. 8b). It seemed unlikely that this difference in 

enzymatic activity was due to the reported instability of SAM (Borchardt, 1979; Hoffman, 1986), 

since a freshly prepared solution of the more stable p-toluene sulphonate salt (Fiecchi, 1976) was used. 

It was of interest to isolate the stimulatory component of O-methyltransferase found in the in situ 

SAM synthesizing system. 

Crude SAM synthetase with SAM as substrate also increased O-methyltransferase activity by 

~4-fold (Paper III). This ruled out L-methionine and ATP as stimulatory components. When SAM 

synthetase was replaced by E. coli BL21(DE3) Star crude cell lysate, a similar 4-fold stimulatory 

effect upon O-methyltransferase activity was seen. This ruled out the possibility of crude SAM 

synthetase as the enhancer. Thus a component of E. coli cell lysate also contained the stimulatory 

compound of  interest.  After boiling  E. coli crude cell lysate and  centrifugation, the  supernatant  still 
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Figure 8. Comparison of control O-methyltransferase assay against a coupled O-methyltransferase 

assay involving an in situ generation of SAM. A. Schematic of control and coupled O-

methyltransferase and SAM synthetase assay with in situ generated SAM. B. O-methyltransferase 

assay. All assays were performed in triplicate with final concentrations of 50 mM Tris-HCl pH 8.5, 

0.3 µM Mg-proto, 2.5 mM DTT, 40 nM BchM, 1.5 mM MgCl2, 3 mM KCl, 0.5 mM ATP at 30 °C 

for 10 min. The control assay included commercially derived 12 µM SAM. The coupled in situ 

assay required generation of SAM by preincubation of 24 µM L-methionine, 1 mM ATP, 3.3 mM 

DTT, 3 mM MgCl2, 6 mM KCl, 0.6 µM Mg-proto and 17.7 µg crude SAM synthetase in 50 mM 

Tris-HCl pH 8.5 at 30 °C for 10 min prior to addition of an equal volume of BchM. Final 

concentrations of each component in control and coupled assays were identical. O-

methyltransferase assays were performed according to the method in Paper III.  

 

showed a 4-fold stimulatory increase in O-methyltransferase activity. Separation by size-exclusion 

chromatography (Nap-10 column) showed that this heat-stable component had an apparent molecular 

weight greater than 5,000 Da. This could mean a heat-stable protein or a micellar lipid is the 

component of interest. The latter was tested by first extracting whole phospholipids from E. coli 

(Osborn and Rothfield, 1966) and this was also stimulatory. This confirmed that phospholipids are the 

stimulatory component required for optimal O-methyltransferase activity. The E. coli phospholipid 

extract was expected to contain ~20-25 % phosphatidylglycerol (PG) and ~70-80 % 

phosphatidylethanolamine (PE) (Dowhan, 1997) (Box 4).  

 



 

154 

 

Box 4. Phospholipids 

 

 

 

 

 

 

 

 

 

 

Chemical structure of some common phospholipids. A General phospholipid structure.  Both alkyl 

groups are represented by (C18:1)2 (divaccenic acid , C18:1∆11) since this is the major fatty acid 

chain of Rhodobacter (Wood et al., 1965; Kenyon, 1978). R is a variable polar head group B 

Common R groups of the general phospholipid structure (Kenyon, 1978); PC, phosphatidylcholine, 

PE, phosphatidylethanolamine, and PG, phosphatidylglycerol are found in Rba. capsulatus.  

Phosphatidylserine (PS) is a minor phospholipid present in plants (Vance and Steenbergen, 2005). 

The charges of the ionic groups are shown at neutral pH (van Dijck et al., 1978; Szoka and 

Papahadjopoulos, 1980; Cevc et al., 1981; Seddon et al., 1983). C Structure of cardiolipin, another 

common phospholipid present in Rba. capsulatus (Kenyon, 1978). 

   

To deduce the phospholipid required for stimulating O-methyltransferase activity, a knowledge 

of the phospholipids from the source enzyme Rba. capsulatus is needed. In Rba. capsulatus and four 

other Rhodobacter species, the only two common phospholipids are the negatively charged PG and 

zwitterionic PE (Wood et al., 1965). Phosphatidylcholine, and cardiolipin are some of the other 

common phospholipids in Rba. capsulatus (Wood et al., 1965; Russell and Harwood, 1979). In Rba. 

capsulatus there is a large increase in the proportion of PG at the expense of PE when the growth 

conditions are changed to photosynthetic (39.3 % to 62.5 % for PG and 33.8 % to 18.7 % for PE) 

(Russell and Harwood, 1979). Mixed alkyl chain phospholipids PG, PE, and PS were tested for 

stimulatory O-methyltransferase activity. PG had the greatest impact (10-fold), followed by PS (8.6-

fold), with PE (1.4-fold) having little effect on O-methyltransferase activity. Therefore the in vitro 
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stimulatory effect of O-methyltransferase by PG parallels the increase in PG in vivo in Rba. capsulatus 

under photosynthetic growth conditions (Russell and Harwood, 1979). 

Dioleoyl phosphatidylglycerol (DOPG, (C18:1)2) and palmitoyl-oleoyl phosphatidylglycerol 

(POPG, C16:0, C18:1) each had a 4-5 fold stimulatory effect on O-methyltransferase activity, and it is 

puzzling that a non-uniform (mixed alkyl chain) phosphatidylglycerol structure worked better than the 

pure phospholipid structures. The mixed alkyl chain PG that was used from egg yolk lecithin contains 

approximately 36 % C16:0, 33 % C18:1, 14 % C18:2, and 10 % C18:0 (Sigma-Aldrich). A non-uniform 

micelle structure could be important for interaction with O-methyltransferase, or perhaps another 

untested PG is best, for example dilineoylphosphatidylglycerol (C18:2). Further studies with a broad 

range of pure and mixed PG molecules and using techniques such as electron spin resonance (ESR) is 

required to determine key features for lipid interactions with O-methyltransferase. ESR studies using a 

variety of spin-labelled lipids has been used extensively with the Na,K-ATPase transporter protein  

(Esmann and Marsh, 2006). The discovery that PG interacts with O-methyltransferase from Rba. 

capsulatus is perhaps not surprising since the enzyme is widely reported as being membrane-

associated (Gibson et al., 1963; Hinchigeri et al., 1981; Hinchigeri et al., 1984; Averina et al., 2002; 

Block et al., 2002). 

6.3.3 Structural effects with phospholipids 

O-methyltransferase from Synechocystis (ChlM) exists as a monomer (Shepherd et al., 2003) 

BchM from Rba. capsulatus was a high molecular weight polymer of unknown size by gel filtration, 

particularly in the absence of phospholipids (Paper III-IV). A high molecular weight form of BchM 

from C. tepidum has also been shown (Johnson and Schmidt-Dannert, 2008). Phospholipids such as 

PG dispersed BchM from Rba. capsulatus into lower molecular weight forms (Paper III). This may 

suggest that more individual BchM molecules are free to participate in the enzymatic reaction. A 

schematic attempts to show the effect of PG on the structure of BchM in terms of enzymatic activity 

(Fig. 9). 
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Figure 9. Schematic of proposed disaggregation of BchM into lower molecular weight structural 

forms by phosphatidylglycerol (PG). In the absence of PG, BchM was a large molecular weight 

aggregate (the size of the aggregate has not been determined). The addition of PG disaggregated 

BchM into mainly monomeric, dimeric and other multimeric forms. This schematic does not 

represent the frequency or identity of the multimers. It is suggested that the BchM polymer cannot 

bind Mg-proto as efficiently as the dispersed protein. Based on enzymatic assays, ~1/10
th

 of each 

BchM molecule in the polymer is capable of binding Mg-proto corresponding to 1/10
th

 possible 

enzymatic activity. Following dispersal of BchM into mixed monomers/multimers it is assumed 

that there is optimal efficiency of the enzyme (100 %). 

 

6.3.4 Porphyrin substrates of O-methyltransferase 

Mg-proto is the natural substrate for BchM and has the greatest enzymatic activity, followed by 

Ca-proto, and Zn-proto (Gibson et al., 1963; Radmer and Bogorad, 1967) (Paper III) (Fig. 10). The 

observed ~10 % O-methyltransferase activity with proto from crude membrane preparations of Rba. 

sphaeroides and crude ChlM from Zea mays is likely to be a false positive since it is known that 

magnesium insertion into proto by magnesium chelatase is a difficult and intricate process. Proto from 

C. tepidum has very low O-methyltransferase activity (0.15 %) which is a more realistic result for the 

relative substrate specificity of proto for O-methyltransferase (Johnson and Schmidt-Dannert, 2008). 

Proto is unlikely to be a substrate for O-methyltransferase under physiological conditions. Assays with 

Rba. capsulatus could not detect any O-methyltransferase activity using proto as a substrate (Paper 

III). Synthetic derivatives of Mg-proto; Mg-deuteroporphyrin, and Mg-mesoporphyrin each have 

similar sub-optimal O-methyltransferase activity (Gibson et al., 1963) (Paper III) indicating the 

importance of the vinyl groups for binding. 

BchM-Mg-proto-PG 

monomer 

BchM polymer 

PG 

Mixed BchM-PG complexes 

            PG 

Legend 

BchM-Mg-proto 

        BchM 

~10 % BchM activity 100 % BchM activity 
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Figure 10. Substrate specificity for O-methyltransferase. Filled black bars indicate relative activity 

compared with Mg-proto. Filled grey bars indicate variation amongst different O-methyltransferase 

sources. Data is taken from crude enzyme preparations from Rba. sphaeroides (Ca-proto, Zn-proto, 

Mg-mesoporphyrin, Mg-deuteroporphyrin, proto) (Gibson et al., 1963), and Zea mays (Zn-proto, 

and proto) (Radmer and Bogorad, 1967), or purified enzyme from C. tepidum (proto) (Johnson and 

Schmidt-Dannert, 2008), and Rba. capsulatus (Zn-proto, and Mg-deuteroporphyrin) (Paper III). 

 

6.3.5 O-methyltransferase reaction mechanism 

Kinetic analysis of Rba. capsulatus O-methyltransferase revealed the Km of the two substrates 

of the enzyme; SAM, and Mg-proto (Paper III). The Km for SAM was 45 µM, and is comparable to 

previous studies shown in Table 3. The Km for Mg-proto was 0.11 µM which is similar to a recent 

study with purified C. tepidum enzyme (0.6 µM) (Table 3) (Johnson and Schmidt-Dannert, 2008). 
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Previous work with crude plant and algal O-methyltransferase showed a much higher Km
Mg-proto

 of 

~10-48 µM (Ebbon and Tait, 1969; Ellsworth et al., 1974; Shieh et al., 1978; Hinchigeri and Richards, 

1982). 

Kinetic analysis of each substrate with O-methyltransferase from Rba. capsulatus fitted to the 

Michaelis-Menten equation produced a pattern that was characteristic of a sequential reaction 

mechanism (Cleland, 1967) (Paper III). Product inhibition with SAH was non-competitive with 

respect to SAM and Mg-proto. The same pattern of product inhibition was observed with Mg-proto 

ester. Later experiments involving coupled magnesium chelatase and O-methyltransferase assays 

showed that addition of BchM produces more Mg-proto by magnesium chelatase in the absence of 

SAM (Paper IV) which implied that BchM can bind Mg-proto prior to SAM. Together these results 

indicated the reaction mechanism was random with respect to substrate binding and removal of 

product. This is called a random sequential or random Bi Bi reaction mechanism (Cleland, 1963), and 

this reaction type is the same as Synechocystis and E. gracilis ChlM (Hinchigeri and Richards, 1982; 

Shepherd et al., 2003), but differs from wheat ChlM (ping-pong) (Ellsworth et al., 1974; Yee et al., 

1989) or Rba. sphaeroides (ordered sequential mechanism) (Hinchigeri et al., 1984)(Table 3).  

6.4 Interactions between magnesium chelatase and O-methyltransferase, 

BchJ, or detergent Tween 80 

6.4.1 Effect of magnesium chelatase on O-methyltransferase activity 

Magnesium chelatase and O-methyltransferase assays are coupled (Gorchein, 1972; 

Hinchigeri et al., 1997; Alawady et al., 2005; Shepherd et al., 2005). The interaction is between 

BchM/ChlM and the BchH/ChlH subunit of magnesium chelatase and is thought to entail the transfer 

of Mg-proto. Kinetic studies highlighting the interactions between magnesium chelatase and O-

methyltransferase are directed at monitoring O-methyltransferase activity in response to the addition 

of BchH/ChlH (Hinchigeri et al., 1997; Alawady et al., 2005; Shepherd et al., 2005). BchH-proto or 

other combinations of magnesium chelatase subunits had no distinct stimulatory effect upon O-
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methyltransferase activity from Rba. capsulatus (Paper III). It should be noted that in these 

experiments Mg-proto was used as the substrate and BchH had proto bound when used. The difficulty 

in obtaining isolated BchH-Mg-proto was a weakness of the experiments. If BchH-Mg-proto was used 

instead of Mg-proto and BchH-proto, a different result may have been found. The addition of a fully 

functional BchI▪BchD▪BchH complex (which has BchH-proto and BchH-Mg-proto) to O-

methyltransferase had no clear-cut stimulatory effect on O-methyltransferase activity. This is probably 

because exogenous Mg-proto used in the assay is at a saturating concentration. With these limitations 

in the assays, it was decided to concentrate on the effect of O-methyltransferase upon magnesium 

chelatase activity with no addition of exogenous porphyrin (Paper IV). The effect of BchJ on 

magnesium chelatase was also examined since it has no defined role in bacteriochlorophyll 

biosynthesis (Chew and Bryant, 2007a, 2007b). 

6.4.2 Aggregation of BchM and BchJ with magnesium 

Magnesium chelatase requires millimolar concentrations of magnesium for optimal activity 

(Paper II) so the effect of magnesium upon BchM and BchJ solubility was tested (Paper IV). Greater 

than approximately 2 mM magnesium caused aggregation of BchM and to a lesser degree BchJ (Paper 

IV). As the magnesium concentration increased up to 12.5 mM, the solubility of BchM and BchJ 

decreased. The addition of increasing concentrations of NaCl or KCl up to 200 mM prevented 

aggregation of BchM and BchJ by magnesium (results not shown). However as the higher salt 

concentrations inhibited magnesium chelatase activity this was not pursued any further. Assays 

involving interactions between magnesium chelatase and BchM or BchJ used 12.5 mM MgCl2. 

Therefore interactions involved aggregates of BchM and partial aggregates of BchJ. Preliminary 

assays showed that BchM, BchJ, and Tween 80 stimulated magnesium chelatase product formation in 

a similar way. This shows the aggregation of BchM or BchJ did not affect the interaction with 

magnesium chelatase.  
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6.4.3 Binding of proto and Mg-proto to BchM or BchJ 

Mg-proto naturally binds to O-methyltransferase as a substrate and BchJ was also tested for 

binding exogenous proto and Mg-proto by absorption spectroscopy. The addition of proto or Mg-proto 

to BchM or BchJ caused a shift in the soret region of the absorbance spectrum.  Spectra were shifted 

by approximately 10 nm for Mg-proto which is indicative of binding and a change in the surrounding 

environment of Mg-proto (Shelnutt et al., 1998). In contrast a negative control protein, aldolase had no 

shift in the soret spectrum after addition of Mg-proto. 

Secondary structure variations in BchM and BchJ alone were analysed by CD. This was 

compared with equal molar amounts of BchM or BchJ with Mg-proto. The CD spectrum of BchJ 

changed in the far-UV region but not the soret region after binding Mg-proto. The proportion of alpha 

helices increased, while beta strands were decreased by the same margin. In contrast the CD spectrum 

of BchM is relatively unchanged in the far-UV region (within experimental error) upon binding Mg-

proto, but there is a change in the CD soret. Therefore it appeared that BchJ secondary structure 

undergoes a conformational change after binding Mg-proto, while BchM secondary structure had a 

fixed conformation with a presumed distortion of Mg-proto which is a common occurrence in protein 

binding of porphyrins (Shelnutt et al., 1998).  

6.4.4 Effect of O-methyltransferase, BchJ, and Tween 80 on magnesium chelatase activity 

A time-course of magnesium chelatase product formation showed that BchM had a 

significantly dominant effect over BchJ and Tween 80. This suggested that BchM was the primary 

interacting partner of magnesium chelatase with potentially another role for BchJ. At the optimal 

concentration of BchM, BchJ, or Tween 80 additives magnesium chelatase converted up to 100 % of 

proto to Mg-proto. This is compared with 71 % using magnesium chelatase alone. Therefore each 

additive altered the equilibrium position of magnesium chelatase to favour product formation. BchH 

from Rba. capsulatus normally retains Mg-proto following catalysis (Sirijovski et al., 2008) and so it 

is suggested the addition of either BchM, BchJ, or Tween 80 causes the removal of Mg-proto from 

BchH. O-methyltransferase and BchJ had a concentration-dependent interaction with BchH of 
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magnesium chelatase. The concentration-dependent effect of BchM or BchJ relied upon changes in 

BchH concentrations. At each BchH-proto concentration the Km of BchM or BchJ was approximately 

half. This indicated there is a 1:1 interaction between BchM and BchJ with BchH-Mg-proto. In 

contrast at each BchH-proto concentration, the Km of Tween 80 was essentially the same so the effect 

of Tween 80 was independent of BchH concentration. The Km of Tween 80 was 3.6 µM which is 

below its CMC of 10 µM (Neugebauer, 1990). Optimal effect of Tween 80 was nearing the CMC so 

the detergent apparently depended upon micelle formation for interaction with magnesium chelatase 

(6.2.3 above). The cylindrical micelle structure of Tween 80 micelles has been shown by small-angle 

X-ray scattering (SAXS) (Aizawa, 2009). The structure changes to a discus-shaped micelle in a more 

hydrophobic environment (1,4-dioxane) and this could be important for removal of hydrophobic Mg-

proto from BchH, as well as the large micelle size described in 6.2.3.  

SDS-PAGE of magnesium chelatase with BchM/BchJ supported the kinetic observations of 

BchM/BchJ-BchH interactions since BchH associated with either BchM or BchJ through aggregation 

of each protein (Paper IV). This may indicate a membranous interaction between these proteins in vivo 

which would fit the current model of porphyrin translocation among enzymes in plants presumably 

occurring at the inner envelope of the chloroplast (Masuda and Fujita, 2008). Fluorescence of Mg-

proto from soluble and insoluble fractions of the assay at completion indicated that BchM released 

Mg-proto into the soluble fraction while BchJ retained Mg-proto (Paper IV). A mixed assay with 

magnesium chelatase, BchM, and BchJ showed that BchM had the dominant effect in terms of Mg-

proto binding and release at equilibrium. The dominant effect of BchM supported time course 

experiments. Since the kinetic patterns of the interaction of BchM/BchJ with magnesium chelatase 

were comparable, it is suggested that BchJ may be able to deliver Mg-proto to BchM. Thus BchJ 

potentially has a porphyrin-binding role in bacteriochlorophyll biosynthesis as originally proposed by 

Chew and Bryant (2007a, 2007b). 
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7. CONCLUSIONS AND FUTURE WORK 

The stages of the magnesium chelatase reaction mechanism that require ATP hydrolysis are 

not well-defined. The work in Paper II proposes intermediate catalytic steps of the magnesium 

chelatase reaction mechanism that may require ATP hydrolysis. For example, the removal of Mg-

proto from BchH and re-loading with proto was suggested to involve interaction with the BchI▪BchD 

complex and ATPase activity. This is not definitive and needs further study. Novel protein-protein 

interaction studies may be required to resolve this since isolation of a BchI▪BchD▪BchH complex has 

not been successful. 

Kinetic evidence suggests that the BchH subunit of magnesium chelatase from Rba. 

capsulatus is likely to have two or three binding sites on the BchI▪BchD complex (Paper II). It shall 

be interesting if this is a common feature amongst the other magnesium chelatase enzymes from other 

photosynthetic bacteria, algae, and plants. Currently the model system for plant magnesium chelatase 

centres on Synechocystis since it synthesizes chlorophyll. The major difference in chlorophyll and 

bacteriochlorophyll biosynthetic organisms is the presence of Gun4 in chlorophyll biosynthesis. It 

should be tested if Gun4 with proto bound can deliver proto to ChlH for magnesium chelatase activity. 

Green sulphur and purple non-sulphur bacterial genomes produce BchJ which is not present in 

chlorophyll-synthesizing organisms. BchJ is suggested to have a similar role to Gun4 (Chew and 

Bryant, 2007a), and can stimulate magnesium chelatase in Rba. capsulatus (Paper IV). Studies using 

BchJ from other photosynthetic bacteria will help elucidate its function in magnesium chelatase or 

other roles in bacteriochlorophyll biosynthesis, for example as a porphyrin delivery protein.  

There are some uncommon features of magnesium chelatase from C. tepidum and A. thaliana. 

In each of these organisms there are two BchI/ChlI isoforms (Petersen et al., 1998; Rissler et al., 

2002), while there are three isoforms of BchH in C. tepidum (Frigaard et al., 2003; Frigaard and 

Bryant, 2004). We do not yet understand the role of these isoforms in terms of the reaction 

mechanism. We now have the means to express and purify plant magnesium chelatase, and this may 

give us a broader understanding of the magnesium chelatase reaction mechanism. There are certainly 
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going to be differences between bacterial and plant systems, but also between green sulphur, and 

purple non-sulphur bacteria. 

Structural information has greatly helped in our understanding of the magnesium chelatase 

reaction mechanism. The crystal structure of BchI (Fodje et al., 2001) and Gun4 (Verdecia et al., 

2005) is now known. There is an EM structure of BchH with and without proto (Sirijovski et al., 2008) 

and it would be of significant help if there was supporting X-ray crystal structural information of 

ChlH, or perhaps co-crystallization of ChlH/Gun4. Apart from assessing the interaction of ChlH with 

ChlI▪ChlD, this may also provide information to clarify if ChlH is an ABA-binding protein (Muller 

and Hansson, 2009). Further to this, the interaction of BchH/ChlH with O-methyltransferase has been 

shown using enzyme kinetics (Shepherd et al., 2005) (Paper IV). It would be advantageous to have an 

X-ray crystal structure of O-methyltransferase to model BchH-BchM interactions. This will be 

difficult with O-methyltransferase from C. tepidum and Rba. capsulatus since it has no defined 

multimeric structure (Johnson and Schmidt-Dannert, 2008) (Paper III). There is a greater chance with 

cyanobacterial O-methyltransferase since it is monomeric (Shepherd et al., 2003). Interactions 

between other (bacterio)chlorophyll biosynthetic enzymes should be examined since the cascade of 

porphyrin delivery from one enzyme to the next is likely to be a common theme in the pathway. 

Phospholipids stimulate O-methyltransferase activity in Rba. capsulatus (Paper III), and this 

lipid-effect should be tested with O-methyltransferase from plant, algae, and other photosynthetic 

bacteria. This is likely to be a common theme amongst O-methyltransferase since the enzyme is 

typically membranous (Tait and Gibson, 1961; Hinchigeri et al., 1984; Block et al., 2002). Enzyme 

kinetics of purified plant O-methyltransferase has not yet been conducted. Studies should include the 

porphyrin binding protein Gun4 since it can bind Mg-proto substrate for O-methyltransferase in A. 

thaliana (Adhikari et al., 2009). 

Tentative evidence of interactions between BchM and BchJ has been provided (Paper IV). 

Further work is needed to substantiate this finding such as employing affinity chromatography through 

the immobilisation of one protein on a solid matrix, and assessing any interaction of the second 
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protein. The potential interaction between BchM and BchJ may also be studied in vivo, which is 

expected to be membrane-associated. 
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